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Abstract. A building spatial design (BSD) determines external and
internal walls and ceilings of a building. The design space has a hier-
archical structure, in which decisions on the existence or non-existence
of spatial components determine the existence of variables related to
these spaces, such as sizing and angles. In the optimization of BSDs it is
envisioned to optimize various performance indicators from multiple dis-
ciplines in concert, such as structural, functional, thermal, and daylight
performance. Existing representations of design spaces suffer from severe
limitations, such as only representing orthogonal designs or representing
the structures in parametric superstructure, allowing only for limited
design variations. This paper proposes prism nets - a new way of repre-
senting the search space of BSDs based on triangulations defining space
filling collections of triangular prisms that can be combined via coloring
parameters to spaces. Prism nets can accommodate for non-orthogonal
designs and are flexible in terms of topological variations. We follow the
guidelines for representation and operator design proposed in the frame-
work of metric-based evolutionary algorithms. The main contribution of
the paper is a detailed discussion of the search space representation and
corresponding mutation operators. Moreover, a proof of concept exam-
ple demonstrates the integration into multi-objective evolutionary algo-
rithms and provides first results on a simple, but reproducible, bench-
mark problem.

Keywords: Building spatial design · Mutation operators · Geometry
optimization · Non-standard representations · Multi-disciplinary design

1 Introduction

One of the advantages of evolutionary algorithms, compared to most classical
optimization algorithms, is that they can accommodate complex search spaces
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with variable dimension, such as the space of mathematical expressions [19], the
chemical space consisting of molecules represented by chemical graphs [20], or
various types of structures in engineering design [14] or neural architectures [15].
In the following we propose a non-standard representation of a search space for
multi-objective BSD optimization.

The domain of building spatial design (BSD) is concerned with finding opti-
mal layouts for buildings, including internal and external walls, floors and ceil-
ings. The building spatial design crucially governs the performance of a build-
ing in terms of various performance indicators (objectives), such as energy per-
formance (which is related to the outer surface area), structural performance
(strength, stiffness, and stability), and daylight performance (related to the size
and positioning of windows). In a previous project, an open source building
spatial design optimization toolbox (BSO toolbox [4,7]) has been developed by
researchers of the Eindhoven University of Technology, The Netherlands, and of
Leiden University, The Netherlands. The toolbox supports the human designer in
the task of multi-criteria and multi-disciplinary building spatial design. So far it
is restricted to BSDs based on orthogonal space partitioning and it features build-
ing physics (energy performance) and structural engineering disciplines (struc-
tural performance) [6]. The BSO toolbox uses a collection of quad-hexahedrons
to represent a Building Spatial Design (BSD). It then includes adaptive gram-
mars that provide a discipline related design to the BSD (e.g. a structure system
with among others flat shells, loads, and boundary conditions) including the
properties for discipline specific analysis. The grammars can also function via
evolutionary algorithms as described in Boonstra et al. [5]. Finally, the toolbox
includes a Finite Element Method (FEM) simulation-based evaluation of the
structural performance of BSDs, a Resistor Capacitor (RC) network based eval-
uation of thermal performance, and various design modification and constraint
handling techniques. Another example of approach to BSD is generating floor-
plan designs [13]. Main features of this approach is simplicity of usage in practice
and a new model of human-computer interaction. However, our approach allows
more automation, non-orthogonal shapes, and optimization based on energy and
structural performance of a building. The multiobjective optimization is accom-
plished by Pareto optimization using state-of-the-art optimization algorithms.
The main optimization algorithm is a hybrid memetic multi-objective optimiza-
tion algorithm [3] that is used to optimize layout choices, discrete variables as
well as continuous variables (using local hypervolume gradient-based search [3]).
Optimization is further explored by hybrid approaches that combine the algo-
rithm with design process simulations [6]. The data generated during the opti-
mization process can be interpreted by an explainability engine, which relates
regions on the Pareto front to features of the building spacial design that are
expressed in terms of the decision variables. A major downside of this system
was that it was limited to orthogonal spatial designs, however, progress is made
in allowing non-orthogonal BSD constrained to a collection of horizontal floor
and vertical walls quad-hexahedrons [11]. Our vision in this new paper is to also
represent more complex geometries of buildings in the BSO toolbox, namely,



478 K. Pereverdieva et al.

BSDs with vertical walls but non-orthogonal floorplans or angles between walls.
See Fig. 1 for examples of orthogonal designs, a realization of a design by the
Dutch company ‘De Twee Snoeken’, and a non-orthogonal BSD.

To accomplish search spaces that comprise BSDs with more complex geome-
tries we are going to propose the new prism-net representation. The prism-net
search space accommodates all multi-floor building spatial designs with vertical
and straight walls and horizontal floors and ceilings, and it can be integrated into
evolutionary algorithms by augmenting it with mutation operators that will also
be described in this paper. Importantly, the angles of corners of spaces are not
restricted to right angles, allowing for more architectural freedom in the design
and potentially a further improvement of the various design objectives. Together
with the new prism-net representation we present a hierarchical mutation opera-
tor that encodes a scalable random modification of the building and is guided by
the principles of mutation operator design as stated in Rudolph [18] for integer
spaces and later refined in Droste and Wiesmann for metric spaces [10]. In brief,
the principles are accessibility (every point should be accessible by a finite num-
ber of mutations from any other point), symmetry (reversibility), unbiasedness
(maximum entropy), and scalability (of the mutation strength). They proved
to lead to excellent results in evolutionary optimization when applied to non-
standard search spaces such as integer vectors [18], binary decision diagrams [10]
and (variable-dimensional) mixed-integer search spaces [16]. Our representation
(the prism networks) consists of three levels - topological (triangulation of levels),
categorical integer (assignment of prisms to spaces), and continuous (placement
of corners or nodes of the triangulation). Constraints are introduced to express
the concept of space in a building spatial design, and to accommodate practical
needs, such as the avoidance of sharp corners, other geometrical preferences, and
the connectivity of the building to the ground. Note that this paper focuses on
building representation for optimization, and not on benchmarking, since there
is no system with similar functionality to compare the results with.

Fig. 1. Orthogonal BSDs (left) and a model of a building (middle), and BSDs based
on quadrilateral floorplans with non-orthogonal elements (right).

The paper is structured as follows: In Sect. 2 we introduce the new search
space representation for BSDs) and analyse its theoretical properties. In Sect. 3
we propose an hierarchical and scalable mutation operator for the BSDs that
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generates neighboring solutions in the search space. In Sect. 4 we show how the
new representation can be integrated into existing evolutionary multi-objective
optimization algorithms. Also first, reproducible, Pareto optimization results
with simple to encode performance indicators are presented. We conclude this
work with an outline to future research steps needed to fully integrate the BSD
representation into real-world computer aided design optimization environments,
such as the BSO toolbox (Sect. 5).

2 Search Space Representation

Firstly, let us introduce the three-dimensional Cartesian coordinate system R
3.

Each point can be described through three coordinates p = (x, y, z) with origin
O = (0, 0, 0). The plane (x, y, 0), x ∈ R, y ∈ R will be denoted by xOy.

The first assumption we make is that all ceilings and floors are parallel to
the plane xOy and all walls are parallel to the z-axis. Hence we can express
the building layout through a set of two-dimensional projections onto the plane
xOy for each level. The number of levels L and the heights of levels are given
by the variables: (h0, h1, . . . , hL). Representation implies that the building can
be devided into levels, but at the same time a space can be located on several
levels. Note, that these are building spatial designs with flat roofs and ceilings.

The second assumption is that we are given a 3-D cuboid (more specifically,
an axis aligned 3-D orthogonal polyhedron) V in which the building is posi-
tioned. For clarity of presentation, we might for now consider that the cuboid
has sides parallel to the axes and one of the vertices coincides with the origin:
V = {(x, y, z) : x ∈ [0, xV ], y ∈ [0, yV ], z ∈ [0, zV ]}, where xV , yV and zV
are the predefined maximal width, depth and height of a building correspond-
ingly. Subsequently, the entire specified volume will be partitioned into prism
shaped cells, of which some will be selected (active cells) and define the build-
ing, whereas non-selected cells partition the space not part of the building. Cells
in the interior of the building can be combined to spaces, i.e., compartments
of the BSDs the points of which are not separated by walls. Each cell is a tri-
angular prism fully located on one of the levels. We will denote the number of
cells as Ncells and the set of cells as C = {ci}, i ∈ {1, 2, . . . , Ncells}. Because of
the first assumption we made and the fact that we require the triangular prisms
to be confined to two adjacent levels, it is possible to describe each cell ci in
the following way: ci = [(x1i, y1i), (x2i, y2i), (x3i, y3i), li, si], where (xki, yki), –
coordinates of the vertices of a triangular prism, k ∈ {1, 2, 3}, li ∈ {1, 2, . . . , L}
– level on which the cell ci is located (L denotes total number of levels), and
si ∈ {0, 1, . . . , Nspaces} – integer categorical variables referred to as ’colors’,
defined further in the text (Nspaces is the maximum number of spaces to be
represented). The set of prisms should form a partition of V and the sets of
prisms for a given level should form a partition of that level, and all prisms
should have non-zero volume, meaning that the vectors (x1i, y1i), (x2i, y2i), and
(x3i, y3i) are not allowed to be co-linear. It is desirable to be able to create build-
ing designs having an external shape other than the outer volume V (e.g, a box),
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and spaces to have other shapes than triangular prisms. We introduce coloring
scheme of triangular prisms to combine them into polygon-shaped spaces and
hence building. Each cell ci is associated with a non-negative integer variable
si ∈ {0, . . . , Ncolors}. We will call the values of these integer variables ‘colors’,
and they denote the space (an interior compartment that is not separated by
walls) to which a cell belongs. The user-defined maximum for the number of
spaces in the building is denoted by Ncolors. If si = 0, then cell ci is inactive,
meaning that it does not belong to the building. If si ∈ {1, . . . , Ncolors}, then it
is part of the building. If si = sj = n �= 0, i �= j, n ∈ N then both cells ci and
cj are parts of the same space sn. See the example of one level in Fig. 2 (left).
Here we see that only cells c2, c3, c4, c5, c6, c7, c8, and c10 represent actual
parts of the level. And cells c2 and c6 are combined into the space with color
equal to 4 (red), cells c5 and c8 are combined into the space with color equal
to 2 (yellow), cells c7 and c10 are combined into the space with color equal to
1 (green), and cells c3 and c4 are combined into the space with color equal to 3
(purple). Other cells are technically present in the representation of this floor,
but do not represent any part of the building.

Next we will define prism-nets as a data-structure and search space repre-
sentation that is based on collections of triangular prisms of the aforementioned
type and satisfy certain elementary constraints, given below. Here and further,
“triangle” means the projection of triangular prisms (cells) on the xOy plane.

Fig. 2. Projection of one particular level to the plane xOy (left). Connectedness for
the projection of one particular level to the plane xOy (right). (Color figure online)

Constraint 1: Non Overlap. Two cells on the same level should not overlap
each other. It means that two triangles can intersect each other only in two
cases: their intersection is a common vertex, or it is a common side of both
triangles. Recall, that previously, we said that the space is partitioned by the
prisms. However, this is not exactly true, because we allow the overlap to be of
zero measure (that is overlap at the boundary). This way we can view prisms as
closed sets.
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Constraint 2: Complete Coverage. Every point in the volume V is covered
by at least one cell.

Constraint 3: Connectivity of Spaces. As described earlier the color of a cell
is a non-negative integer parameter which represents the space to which the cell
belongs (positive values), or is zero for cells outside the building. It is necessary
to prevent cases where cells with the same positive color are not connected to
each other. Next, we consider separately two situations: when cells are on the
same level and when they are not. To check if cells located on the same level with
the same color are connected, we introduce a test based on the idea of a dual
graph (see Fig. 2 (right)). The dual graph is constructed in the following way:
nodes of the graph represent cells, and two nodes are connected if corresponding
cells are connected (their intersection is either a face, a vertical edge, a vertex
or a horizontal edge). We suggest to check if the dual graph is connected. The
second condition is that the space has the same projection on every level, i.e.
if we consider parts of the space belonging to the same level, or ”layers” of the
space, then all layers should have the same shape and location in 2-dimensional
view. And moreover, a space should be located on adjacent levels.

Remark: Constraints 1–3 are intrinsic constraints, which means that they define
constraints of the prism net representation. Constraint 1 and 2 guarantee that
the projection of the prism net to the xOy plane is a triangulation for some set
of nodes, which partitions the region V . Constraint 3 is intrinsic to the definition
of spaces, making sure that spaces (regions of cells with the same color) are not
separated by means of walls, floors or ceilings internally.

Definition 1. (Properly colored) prism net: A prism net is a list of colored
triangular prism cells ci = [(x1i, y1i), (x2i, y2i), (x3i, y3i), li, si], i = 1, . . . , Ncells

positioned on level planes that are parallel to the ground-floor (z = 0) of a
given outer cuboid V , li ∈ {1, . . . , Nlevels}, with colors si ∈ {0, . . . , Ncolors} and
contained in the cuboid V . The height of each triangular prism is the height dif-
ference of two consecutive level planes, of which li is the index of the lower of the
two consecutive planes. In addition, in a prism-net also the ’partitioning’ con-
straints 1 and 2 must be satisfied. – A properly colored prism net (PCPN)
also satisfies constraint 3 (connectivity of spaces).

Next we will define some further constraints on prism nets that turn out to be
useful when implementing constraint checking or that are motivated by practical
constraints for real buildings.

Constraint 4: Convex Polygon. Projections of spaces should form convex
polygons. This constraint was added to keep the overall BSDs simple and to avoid
costly constraint checking procedures. From a building engineering perspective,
however, it is also possible to realize non-convex spaces, such as L-shaped spaces.
In the current toolbox, only spaces can be handled with 4 corners. An L-shaped
building can be exactly (or approximately) partitioned by triangular cells.
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Constraint 5: Spaces should be Connected to the Ground. The next
considered constraint is connectivity to the ground. Figure 3 illustrates different
types of connection of the spaces. For our example problem we allow all types of
connection except for the connection between the red space and all other spaces.
To formulate this constraint more strictly we need to introduce a dual graph
G = (N,E). The set of nodes N corresponds to the set of spaces. Two nodes ni,
nj ∈ N are connected by an edge eij ∈ E if the intersection of two correspond-
ing spaces is not an empty set. Black lines in Fig. 3 (left) represent edges of the
graph G. Constraint 5 is considered violated if there is no path from any space
to at least one space on the ground level.

Remark: Note that here we allow the connection of spaces via a single point.
Although this solution is feasible it is expected to perform poorly for a structural
objective function.

Constraint 6: No Cavities. In this representation we would like to exclude
the possibility of cavities. An example of a cavity mentioned above is illustrated
in Fig. 3 (right) (the cell between “blue”, “pink” and “green” spaces is the cavity).
To perform such a check, it is necessary to determine the cells with a color value
of zero which have a side on the border of the building, and make sure that all
other cells with zero color value are connected to them. To do it we need to
introduce a dual graph G0 = (N0, E0). The set of nodes N0 corresponds to the
set of cells with zero color value. Two nodes ni, nj ∈ N are connected by an
edge eij ∈ E0 if the intersection of two corresponding cells has two vertices, i.e.
the whole side (See Fig. 6). Constraint 6 is met if there is a path from every cell
with zero color value to at least one cell with zero color value located on the
boundary of the building. Remark: If constraint 4 and constraint 6 are met then
on each level all cells belonging to the same space are connected and there are
no cavities present in the building structure, and therefore external boundaries
on each level of each space is one of a closed chain of sides.

Fig. 3. Types of space connections (left). Allowed and not allowed location of cells
with zero color value (right).

Constraint 7: Non Sharp Angles (optional). In addition we introduce a
constraint that can be switched off by a user. This constraint avoids spaces
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with angles less than some threshold. A user selects the minimal allowable angle
and after that we calculate each angle in each space and check it against the
threshold.

3 Mutation Operators

In order to formulate search algorithms, it is essential to define operators that
generate neighbors of a given design. Next we introduce hierarchical mutation
operators that can be used in (multi-objective) evolutionary optimization to
create variations of a given design in the prism-network representation. It con-
sists of the three following main operations. (1) Topological mutation of the
cell partitioning, (2) Changing the discrete s-values (‘colors’), (3) Changing the
continuous coordinates of the vertices.

By topological mutation we will refer to a building layout transformation
that changes the triangulation of a convex quadrilateral space without changing
the boundaries of spaces. We need to define possible operations of mutation in
such a way that no constraint becomes violated. There are three topological
mutations suggested: diagonal ‘flip’ (change of diagonal), adding a vertex, and
deleting a vertex. The probability of applying each of them is determined by
mutation rate. Next, we will focus on each of them in more detail. Diagonal flip
chooses randomly one of the convex quadrilaterals formed by two triangle cells
belonging to the same space and the same level. The common edge of two cells
is the diagonal of mentioned quadrilateral. The mutation is a changing of this
diagonal to the other diagonal of the quadrilateral as shown in Fig. 4a).

Adding a vertex splits into two cases: adding a vertex to an edge and adding
a vertex to the interior of a cell. When adding a vertex occurs, first type of
adding appears with probability 0.9 and the second one with probability 0.1.
This ratio was picked empirically. For adding a vertex to an edge we randomly
choose a side of a triangle. If two triangles have coinciding sides, we count them
as one. Then we uniformly choose a point belonging to this side and add it as a
vertex. And finally we split adjacent cells to avoid constraints violation. If the
chosen side was on the boundary of two spaces (Fig. 4, c)) or if it was on the
side inside a space (Fig. 4, e)), then we need to add two sides coming out of
the selected vertex and corresponding cells. If the side was on the outer contour
of the building structure (Fig. 4, d)), then we need to add only one side and
corresponding cells. The second possible case is adding a vertex to the interior
of a cell. We randomly choose a cell and uniformly select a point inside of it
which becomes a vertex. And finally we add three sides and corresponding cells
(see Fig. 4 b)).

Deleting a Vertex. Since we include the operation of adding a vertex then we
also need a possibility of deleting a vertex so that the mutation operator is sym-
metrical. Firstly we determine the type of each vertex of the building structure.
If the vertex is on the corner of the outer contour, then we cannot delete it. If
the vertex is on the outer contour, but not on the corner, (Fig. 4, d) we allow
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Fig. 4. Topological mutation: a) diagonal flip, b) adding a vertex to the interior of a
cell, c)–g) adding a vertex to an edge/deleting a vertex.

to delete it only if it belongs exactly to one space (zero or non-zero space). If
a vertex is in the building interior, then we allow to delete it only if it belongs
to one (Fig. 4, e) or two (Fig. 4, c)) different spaces (zero or non-zero spaces).
These conditions are justified by necessity of leaving only the unfolded angles
after deleting a vertex. Secondly, we randomly select one of the vertices which
are allowed to be deleted, we delete the vertex and combine the cells in a way
that no constraint is violated as it is shown in Fig. 4 (c, d and e) for allowed
cases. But sometimes additional triangulation might be needed. In Fig. 4 there
are two cases when it is needed: f) with involvement of two spaces, g) in the
interior of one space. We use standard Delaunay triangulation [8].

Next, we describe the Discrete variable mutation for the s-values (i.e.
the ‘colors’): Firstly we randomly choose the integer number from the set
{0, . . . , Nspaces}. If the chosen number is 0, then we randomly choose a cell
with non-zero s-value and change it to 0. If the chosen number is not 0, we
consider the space with s-value equal to the chosen number. From the set of
cells belonging to other spaces and connected to the chosen space we pick a
random number of cells and “color” them into the chosen color (s-value). After
performing one of these two colorings, we check if all constraints are met. If one
of them is violated, we skip this mutation. Finally, let us describe the continu-
ous parameter mutation: The vertices of the triangulation can be moved to
introduce topological changes on a particular level if the vertices are not on the
corner of the building projection. If a randomly chosen vertex does not belong
to the surface of polyhedron V , it is restricted to the space that is defined by
the polygon formed by the triangles that are adjacent to the vertex. To move
the vertex we randomly choose the angle from the half-open interval [0, 360),
calculate the distance along the selected angle between the vertex and the poly-
gon side, and use a truncated normal distribution with standard deviation equal
to the obtained distance divided by 3 to generate the updated location for the
vertex. If a randomly chosen vertex belongs to the surface of V , we identify the
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segment of the border on the projection to which the vertex belongs, randomly
choose one of two directions, and similarly move the vertex according to the
truncated normal distribution.

4 Integration to NSGA-II and SMS-EMOA

In order to test the new representation, we integrated it into two state-of-the-
art evolutionary multi-objective optimization algorithms1, the NSGA-II [9] and
SMS-EMOA [1] algorithms, and performed multi-objective optimizations with
two easy-to-reproduce example objective functions (see Github repository [17]
for Python codes): (1) Minimize the external surface area, excluding the floor
area (f1). f1 := Sv +Sh −→ min, where Sv - surface area of all vertical external
sides of the building, Sh =

∑L
i=2(si − si−1), si – surface area of level i, L –

number of levels. (2) Minimize the sum of deviations of space volumes from target
predefined volumes. Here we specify the sizes of spaces and seek to minimize the
absolute deviation from the prescribed sizes (f2).f2 =

∑Nspaces

j=1 |V a
j − V d

j | −→
min, where V a

j – actual volume of space j, V d
j – predefined volume of space j.

These objective functions are motivated by resource efficient light-weight
constructions. However, the ambition of the overall project is to state objectives
that also include energy performance, which can for instance be measured using
resistor networks, and structural performance, which can be computed using
FEM simulations [6]. However, we would like to abstain in this paper from the
details of simulation and are more interested in a problem that is reproducible
and easy to understand for non-domain experts.

Three experiments were carried out with the described objectives with differ-
ent values of the mutation rate. Each of the experiments contained 30 repeated
runs. The NSGA-II and SMS-EMOA algorithm were tested. For all runs the
same initial population (size: 10) was used. The initial population was set man-
ually since randomized generation of building designs is to be done in future
work. In the proposed experiment there are several invariants: the number of
levels of the building is 2, the height of the building is 2 (1 for each floor), and
the number of spaces is 3. The box V inside which the building is contained has
dimensions xV = 5, yV = 3, and zV = 2. Throughout the experiments, variables
were limited by these values. The values of 100, 5 and 30 were chosen as the
required space volumes for calculation of the second objective as V d

1 , V d
2 , and

V d
3 correspondingly, and the value of 50 degrees was chosen as the minimum

allowable angle of a space.
Since the values of the objectives differ significantly from each other, normal-

ization is needed. The value of the surface area of no more than 75 was obtained
experimentally, so it was decided to divide the absolute value of this objective

1 Both algorithms feature parameterless selection in the bi-objective case. SMS-EMOA
is highly competitive across a wide range of bi-objective problems [2]. NSGA-II is
considered to be a commonly used algorithm for bi-objective optimization, whereas,
for problems with more objectives, we would rather consider NSGA-III.
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Fig. 5. Summary Pareto fronts (Empirical Attainment Levels [12]). Full red points are
attained by all runs, full blue points by just one run, and for points with sliding shades
of the color between blue and red are attained by 2 or more runs and less than 30 runs.
The black curve marks the median attainment curve. (Color figure online)

by 150, and the value of the deviation from the specified volumes was divided
by twice the sum of the required volumes. Thus, for the value of both objectives
to lie in the interval (0, 1) was achieved.

Each run of the NSGA-II algorithm was given a budget of 60 generations,
within each the proposed mutation operator was used. The recombination oper-
ator was not used. Mutation rate in this case determined the probability of
applying each of the mutations in the following sequence: topological muta-
tion, discrete parameter mutation, continuous parameter mutation. If any of the
mutations did not occur, the algorithm moved on to the next mutations in the
list.

In the first of the experiments, the probability of using each of the mutations
is 0.99, in the second with probability 0.3, and the third experiment can be
considered as local search, in which the probability of topological and discrete
mutations was 0.1, and continuous – 0.8. Firstly, points in objective space of all
runs from 60 generations were combined and then sorted by means of Pareto
dominance. Figure 5 (a)–(c) depicts the obtained Pareto non-dominated. We use
attainment curves [12] in the plot (Attained by all runs (best), attained by half
runs (median), attained by one run (worst)). The hyperparameter optimization
is to be done in future work.

There are three examples of building designs presented in Fig. 6. Mutation
rate 0.99 was set in order to obtain these designs. The knee point was chosen as
the solution for which the objective 1 and objective 2 are closer to each other
than for any other solutions among all 30 runs of the algorithm. Figure 6 also
shows two extreme values: a design with a minimum value of objective 1 among
all solutions and a design with a minimum value of objective 2. As you can see
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Fig. 6. Building design examples for NSGA-II with mutation rate 0.99: knee point and
optimal solution in f1 and in f2.

from Fig. 6, optimization allows you to get extreme solutions corresponding to
the objectives. Thus, for instance, to minimize the deviation of space volumes
from the values of 100, 5 and 30 (for pink, blue and green spaces correspond-
ingly), and for the maximum surface area, the algorithm outputs a design with
a fully occupied volume V (Fig. 6, c)). And for minimal surface area the algo-
rithm obtained a building design with a very small red space on level 0. None
of the spaces disappeared, as the number of spaces was required to be constant.
Three experiments were carried out with the described objectives with different
values of the mutation rate. Each of the experiments contained 30 runs of the
SMS-EMOA algorithm. Inputs used were completely the same as for NSGA-II
algorithm. Obtained Pareto fronts are illustrated in Fig. 5 (d)–(f). Both algo-
rithms produced almost linear Pareto fronts, however, Fig. 5 shows that the
SMS-EMOA algorithm takes into account Objective 2 more than Objective 1
during optimization, unlike NSGA-II, where the solutions on Pareto fronts are
distributed more evenly. Besides, for both algorithms Pareto fronts vary for dif-
ferent mutation rates. So, for the NSGA-II Pareto algorithm, the local search
front is more sparse than for the mutation rate of 0.99 and 0.3, and for the
SMS-EMOA algorithm, on the contrary, it is less sparse. The reasons for this
behavior have yet to be understood. A promising idea is also to adapt mutation
rates for the different mutation types by reinforcement learning [15].

5 Summary and Outlook

A new, non-orthogonal BSD representation was developed, equipped with a
domain-specific hierarchical mutation operator, and integrated into MOEAs. The
result forms an important step towards extending the design support systems
(e.g. the BSO toolbox [4,7]). All data and a detailed description of algorithms
are available in the GitHub repository [17].
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