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Abstract. Promoting and maintaining diversity of candidate solutions
is a key requirement of evolutionary algorithms. In this paper, we use the
recently developed theory of magnitude to construct a gradient flow that
systematically manipulates finite subsets of Euclidean space to enhance
their diversity, and we apply the ideas in service of multi-objective evo-
lutionary algorithms. We demonstrate diversity enhancement on bench-
mark problems using leading algorithms.

1 Introduction

Promoting and maintaining diversity of candidate solutions is a key requirement
of evolutionary algorithms (EAs) in general and multi-objective EAs (MOEAs)
in particular [1,2]. Many ways of measuring diversity have been considered,
and many shortcomings identified [3]. Perhaps the most theoretically attractive
diversity measure, used by [4,5], is the Solow-Polasky diversity [6]. It turns out
that a recently systematized theory of diversity in generalized metric spaces [7]
singles out the Solow-Polasky diversity or magnitude of a (certain frequently total
subset of a) finite metric space as equal to the maximum value of the “correct”
definition (1) of diversity that uniquely satisfies various natural desiderata. While
the notion of magnitude was implicit in the mathematical ecology literature
over 25 years ago, an underlying notion of a diversity-maximizing probability
distribution is much more recent and has not yet been applied to EAs.

In the context of MOEAs, a practical shortcoming associated with magnitude
is its O(n3) algorithmic cost. To avoid this, [4,5] use an efficient approximation
to merely measure diversity rather than attempting to enhance it.

However, it can be profitable to incur the marginal cost of computing a
so-called weighting en route to the magnitude, since we can use it to enhance
diversity near the boundary of the image of the candidate solution set under the
objective functions. The nondominated part of this image is the current approx-
imation to the Pareto front; the ability of weightings to couple both diversity
and convergence to the Pareto front dovetails with recent indicator-based EA
approaches to Pareto-dominance based MOEAs [8,9]. Moreover, the agnosticism
of weightings to dimension further enhances their suitability for such applica-
tions.

In this paper, we construct a gradient flow that systematically manipulates
finite subsets of Euclidean space to enhance their diversity, which provides a
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useful primitive for quality diversity [10]. We then apply this primitive in service
of MOEAs by diversifying solution data through local mutations. For the sake
of illustration, we only perform these mutations on the results already obtained
by a MOEA, though they can be performed during evolution.

The paper is organized as follows. In Sect. 2, we sketch the concepts of weight-
ings, magnitude, and diversity, and describe an efficiently computable scale above
which a weighting is guaranteed to be proportional to the unique diversity-
maximizing distribution. In Sect. 3, we develop a notion of a weighting gradi-
ent (estimate) and an associated flow. In Sect. 4, we use this gradient flow to
demonstrate diversity enhancement on a toy problem before turning to bench-
mark problems in Sect. 5. Finally, we discuss algorithmic extensions in Sect. 6
before remarks in Sect. 7.

2 Weightings, Magnitude, and Diversity

For details on the ideas in this section, see §6 of [7] and also [16,30].
Call a square matrix Z ≥ 0 a similarity matrix if diag(Z) > 0. A motivating

class of examples is Z = exp[−td] where square brackets indicate entrywise
function application, t ∈ (0,∞), and d is a square dissimilarity matrix (e.g.,
the matrix encoding a finite metric space). A weighting w is a column vector
satisfying Zw = 1, where the vector of all ones is indicated on the right. A
coweighting is the transpose of a weighting for ZT . If Z admits both a weighting
w and a coweighting, then its magnitude is defined via 1T w =

∑
j wj , which also

turns out to equal the sum of the coweighting components.
In the case Z = exp[−td] and d is the distance matrix corresponding to

a finite subset of Euclidean space, Z is positive definite [11], hence invertible,
and so its weighting and magnitude are well-defined and unique. More generally,
if Z is invertible then its magnitude is 1T Z−11. For d as specified above, the
magnitude function is defined as the map t �→ 1T (exp[−td])−11.

Weightings are excellent scale-dependent boundary detectors in Euclidean
space (see, e.g., Fig. 2 and [12,13]). Meanwhile, magnitude is a very general
notion of size that encompasses rich scale-dependent geometrical data [14].

Example 1. Consider a three-point space with d12 = d13 = 1 = d21 = d31 and
d23 = δ = d32. A routine calculation yields that

w1 =
e(δ+2)t − 2e(δ+1)t + e2t

e(δ+2)t − 2eδt + e2t
; w2 = w3 =

e(δ+2)t − e(δ+1)t

e(δ+2)t − 2eδt + e2t
.

For δ = 10−3, Fig. 1 shows that at t = 10−2, the “effective size” of the nearby
points is ≈0.25; that of the distal point is ≈0.5, so the “effective number of
points” is ≈1. At t = 10, these effective sizes are respectively ≈0.5 and ≈1, so
the effective number of points is ≈2. Finally, at t = 104, the effective sizes are
all ≈1, so the effective number of points is ≈3.
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Fig. 1. Weighting components for an “isoceles” metric space. The magnitude function
w1 + w2 + w3 gives a scale-dependent “effective number of points.”

For a probability distribution p and similarity matrix Z, the diversity DZ
q (p)

is defined for 1 < q < ∞ (and via limits for q = 1,∞) via

log DZ
q (p) :=

1
1 − q

log
∑

j:pj>0

pj(Zp)q−1
j . (1)

This is the “correct” measure of diversity in essentially the same way that Shan-
non entropy is the “correct” measure of information [7]. (In fact, the expression
(1) is a generalization of the Rényi entropy of order q. In the event Z = I,
the usual Rényi entropy is recovered, with Shannon entropy as the case q = 1.)
We therefore restrict our attention to it versus other measures such as those
discussed in [2,3].

Recent mathematical developments [7,15] have clarified the role of magni-
tude in maximizing (1) versus merely computing it. Specifically, if Z = exp[−td]
is positive definite with d symmetric, nonnegative, and with zero diagonal, and if
Z admits a positive weighting w = Z−11, then this (unique) weighting is propor-
tional to the diversity-maximizing distribution. This situation holds automati-
cally if d is the distance matrix of a finite subset of Euclidean space and if Z is
diagonally dominant (i.e., Zjj >

∑
k �=j Zjk).

For d with zero diagonal and all other entries positive, there is a least td > 0
such that exp[−td] is diagonally dominant for any t > td. Because exp[−td] is
diagonally dominant iff 1 > maxj

∑
k �=j exp(−tdjk), we can efficiently estimate

td using the following elementary bounds and a binary search:

Lemma 1. For d ∈ Mn as above, log(n−1)
minj maxk djk

≤ td ≤ log(n−1)
minj mink �=j djk

.

More importantly, we can also use Lemma 1 to find the least t+ < td such that
exp[−td] admits a positive weighting for t > t+.
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3 The Weighting Gradient Flow

We now define a gradient flow that (for t ≥ t+) increases the diversity of finite
subsets of Euclidean space and thereby provides a useful primitive for EAs.
Although there are various sophisticated approaches to estimating gradients on
point clouds (see, e.g., [17]), a reasonable heuristic estimate for the specific case
of the gradient of a weighting w on {xj}j in Euclidean space is

(∇̂w)j :=
∑

k �=j

Zjk∑
k′ �=j Zjk′

wk − wj

djk
ejk, (2)

where ejk := xk−xj

djk
. The weighting gradient flow induced by (2) is

ẋ = ∇̂w. (3)

Example 2. Figure 2 illustrates how weightings identify boundaries at various
scales, and the corresponding weighting gradient estimates (2).

0 0.1436 0 0.2439 0 0.4815

Fig. 2. (Top) Weighting components for 500 points sampled without replacement from
a probability distribution on Z

2 that is approximately uniform on its support. From left
to right, various scale factors t defining Z = exp[−td] (with d = Euclidean distance)
are shown in terms of the intrinsic scales td and t+. Both the color and size of a point
indicate its weighting component; the nonzero color axis tick mark is at half maximum.
(Bottom) Weighting gradient estimate (2) for the data above. The gradient vectors are
scaled uniformly in each panel for visualization purposes. Note that for the largest
value of t the large gradient vectors have basepoints near other large gradient vectors.
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4 Enhancing Diversity

Following [18], we apply the ideas sketched above to a toy problem where the
objective function f has three components, each measuring the distance to a
vertex of a regular triangle with vertices in S1. The application is mostly con-
ceptually straightforward, but we mention a few implementation details:

– We begin with a uniformly distributed sample of n0 = 103 points in the disk
of radius 1.25, and retain n points that are dominated by ≤ δ = 0.1;

– Replace misbehaving points (e.g., out of bounds or NaNs) with predecessors;
– Set Sj := 1−2 domj

maxk domk
, where domj = |{points dominating the jth point}|;

– Evolve the n points under a modulated version of (3) on the objective space
with t = t+ as dyj = ds · Sj(∇̂w)j for only N = 10 steps and step size ds =√〈mink �=j(df )jk〉/n, where the pullback metric is df (x, x′) := d(f(x), f(x′));

– Pull back the weighting gradient flow from objective to solution space using
the Jacobian’s pseudoinverse, then recompute points in objective space.

The result of this experiment is depicted in Figs. 3 and 4. The salutary effect
on diversity in objective (and solution) space is apparent. This can be quantified
via the objective space magnitude functions, as shown in Fig. 5.

Fig. 3. Comparision of initial (red; left) and terminal (blue; right) locations of points
in the solution space. The weighting gradient flow produces more evenly distributed
terminal points. The triangle defining objective components (by distance to vertices)
is shown. The actual Pareto front is the interior of the triangle; the area displayed
is [−1, 1]2. Bottom: comparision of initial (red; left) and terminal (blue; right) points
in the objective space. The terminal points are more evenly distributed. (Color figure
online)
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Fig. 4. Comparision of initial (red; left) and terminal (blue; right) points in the objec-
tive space. The terminal points are more evenly distributed. (Color figure online)

Fig. 5. Magnitude increases for the experiment of Sect. 4 at scales above t+, where
magnitude equals diversity. (Top) Magnitude function quotients at various timesteps
for feasible points under the evolution of the (modulated) weighting gradient flow. The
horizontal axis t indicates the scale parameter; timesteps of numerators are indicated
via color, going from red at the initial timestep (0) to blue at the final timestep (10):
the denominator is the function at the initial timestep. Circles indicate the scales t+.
(Bottom) As above, but for non-dominated points. (Color figure online)

5 Performance on Benchmarks

The effectiveness of the (modulated) weighting gradient flow approach hinges
on the ability to cover and thereby “keep pressure on” the Pareto front. A
straightforward way to do this is to use a MOEA to produce an initial over-
approximation of the Pareto front as in [19], and then improve the diversity of
the overapproximation via the weighting gradient flow. We proceed to detail the
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results of an experiment along these lines. For the experiment we considered two
leading MOEAs (NSGA-II [20] and SPEA2 [21]) and two leading benchmark
problem sets (DTLZ [22]1 and WFG [24]), all implemented in PlatEMO version
2.9 [25]. For each problem, we used 10 decision variables, three objectives (to
enable visualization), and performed 10 runs (which appears quite adequate for
characterization purposes) with population size 250 and 104 fitness evaluations.
We then took N = 10 timesteps for the weighting gradient flow as before.

Figure 6 (cf. Fig. 5) shows magnitude functions at various timesteps of the
(modulated) weighting gradient flow applied to the results of NSGA-II on the
WFG2 benchmark. Feasible points show a diversity (as measured by magnitude
at scale t+ for the feasible objective points) increase of about 10%, whereas non-
dominated points show a diversity increase of several percent as well, even as
the total number of non-dominated points decreases by about 15%.

Fig. 6. As in Fig. 5, but for a solution of the WFG2 benchmark via NSGA-II.

We produce an ensemble characterization in Fig. 7. The figure shows that
the number of non-dominated points decreases since the weighting gradient flow
pushes some points a short distance away from the Pareto front (as illustrated in
Fig. 9) before they are halted or reversed. The figure also shows that the diversity
of non-dominated points generally increases slightly, and the diversity of feasible
points increases significantly. As a consequence, the diversity contributions of
individual solutions (as measured by the average weighting, i.e., the magnitude
of non-dominated points divided by their cardinality) also increases significantly.
For less challenging problems such as in Fig. 3, the number of non-dominated
points will decrease less, and the diversity gains will be enhanced.
1 For DTLZ, we considered only the two most relevant problems, viz. DTLZ4 and

DTLZ7. DTLZ4 was formulated “to investigate an MOEA’s ability to maintain a
good distribution of solutions” and DTLZ7 was formulated to “test an algorithm’s
ability to maintain subpopulation in different Pareto-optimal regions” [22]. (NB. One
approach for the latter, not pursued here, is to resample points so that the diversity
per point in each connected component of the Pareto front is approximately equal.
For the application of topological data analysis to Pareto fronts, see [23].).
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On the other hand, the effects of the weighting gradient flow are considerably
reduced in the case of SPEA2, which produces a visibly more uniform distribu-
tion in objective space than NSGA-II: see Fig. 11. The weighting gradient flow
appears to decrease this uniformity; the formation of a gap just behind the
boundary along with a slight increase in the population near the boundary are
the main visible indicators that something useful (at least for DTLZ4, WFG2,
WFG3, WFG6, and WFG8, per Fig. 7) is actually happening.

Fig. 7. Diversity of solutions increases markedly under the weighting gradient flow,
even as some points become slightly dominated. (Top) Average diversity quotients of
feasible (blue) and non-dominated (red) points under the weighting gradient flow along
with proportion of population that remains non-dominated (black). Here the diversity
is the magnitude at scale t+. Shaded bands indicate one standard deviation. All panels
have the same horizontal axis, viz., the number of timesteps (from 0 to N = 10). The
vertical axes are [1 − Δ, 1 + Δ], with Δ shown below each panel. Not shown explicitly
is the average weighting of non-dominated points, i.e., the red curve divided by the
black one, but so long as the colored bands already shown are visibly separate, this
consistently lies above the blue band. (Bottom) As for the top panels, but for SPEA2.
(Color figure online)

Although Figs. 7 and 8 shows that the weighting gradient flow causes a sig-
nificant proportion of points to become dominated, Fig. 9 uses the inverted gen-
erational distance (IGD) relative to uniformly distributed reference points on
Pareto fronts [26] to show that this qualitative change in dominance is belied by
only minor quantitative changes in the distance to Pareto fronts.2 (Note that
the relatively large increases in IGD for DTLZ4 and DTLZ7 are consequences of
starting from a low baseline.) That is, feasible points give a better quantitative
sense of diversification performance than nondominated points, especially in light
of use cases in which the weighting gradient flow is not limited to postprocessing.

2 Recall that the IGD for X relative to reference set R is 1
|R|

∑
r∈R minx∈X d(x, r).
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Fig. 8. As in Fig. 7, but for diversity taken as the magnitude at the scale maximizing
the quotient by the initial timestep.

Rather than relying solely on a delicate characterization of diversity, we also
visualize some of the results directly: this is the rationale for three-objective prob-
lems. Figure 10 shows how diversity in objective space is promoted for WFG2-3.
Figure 11 shows analogous results for SPEA2.

Careful inspection reveals that the weighting gradient flow tends to induce a
gap between the boundary of the non-dominated region and its interior, which is
consistent with the generally observed phenomenon that the largest weights in
finite subsets of Euclidean space tend to occur on boundaries and the smallest
weights immediately “behind” the boundary. Meanwhile, the boundary region
tends to become slightly more populated.3 From the perspective of a MOEA,
this is frequently a benefit, since extremal and non-extremal points on the non-
dominated approximation of the Pareto front differ in practical significance.4

6 Algorithmic Extensions

6.1 Multi-objective Weighting Gradient Flow

We can combine the weighting gradient flow with a multi-gradient descent strat-
egy in a way somewhat akin to [28]. The basic additional ideas are:

– Introduce variable regularizing terms λw and λf for the weighting and func-
tion gradient flows, respectively;

3 This highlights the need to distinguish between diversity and uniformity. The maxi-
mally diverse probability distribution on the interval [0, L] is 1

2+L
(δ0 + λ|[0,L] + δL),

where Dirac and restricted Lebesgue measures are indicated on the right hand side
[27]. Only in a suitable limit can boundary effects be ignored in relation to diversity.

4 Using a scale t > t+ for the weighting gradient flow would tend to diminish the
distinction between uniformity (which is not a function of scale) and diversity (which
is). That is, our experiments make this distinction to the greatest possible extent.
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Fig. 9. The weighting gradient flow only slightly affects the quantitative dominance
behavior of points, as measured by IGD. (Top) IGD under the weighting gradient flow
starting from the results of NSGA-II runs, using uniformly distributed reference points
on Pareto fronts. Shaded bands indicate one standard deviation. All panels have the
same horizontal axis, viz., the number of timesteps (from 0 to N = 10). The vertical
axes are [0, y], where y is shown below each panel. (Bottom) As above, but for SPEA2.

– Form the objective-space differentials dyj = ds · [λwSj(∇̂w)j + λf

∑
�(∇̂f)�],

where the sum is over � such that 〈(∇̂w)j , (∇̂f�)j〉 > 0.

While we have tried this technique in isolation on MOEA benchmarks, the results
are poor. However, this is unsurprising: the benchmarks are designed to frustrate
MOEAs, much less multi-objective techniques relying on gradients.

6.2 Recycling Function Evaluations

In our experiments with post-processing the output of MOEAs, the weighting
gradient flow evolution took time comparable to (and in the case of NSGA-II,
slightly more than) the MOEA itself. Most of the time is spent evaluating the
fitness function: apart from an initialization step, the evaluations are performed
to compute Jacobians in service of pullback operations, and a lesser number are
performed to compute pushforwards to maintain consistency.

However, our motivating problems require significant time (on the order of a
second) for function evaluations. This demands a more efficient pullback scheme
that minimizes or avoids function evaluations, even if the results are substantially
worse. A reasonable idea is “recycling” in a sense similar to that employed in
some modern Monte Carlo algorithms [29]. Specifically, rather than computing a
good approximation to the Jacobian by evaluating functions afresh at very close
points along coordinate axes, we settle instead for an approximation of lesser
quality that exploits existing function evaluations. We have implemented this
in concert with a de novo computation of the Jacobian in the event that this
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Fig. 10. (Far left) Initial configuration in objective space for WFG2 after a NSGA-
II run. (Center left) Configuration after subsequently evolving under the weighting
gradient flow. Dominated points are gray. (Right panels) As on the left, but for WFG3.

Fig. 11. As in Fig. 10, but for SPEA2. Note the formation of gaps behind the boundary.

initial Jacobian estimate does not have full rank. Our experiments suggest that
this works reasonably well: for a typical run from Sect. 5, the number of function
evaluations is reduced from 30250 to 2750, and the actual results are broadly
comparable (sometimes better, sometimes worse): see Figs. 12 and 13.

This strategy will work poorly if evaluation points lie on a manifold of nonzero
codimension or low curvature, because in such cases a matrix that transforms
vectors from a base point to evaluation points into (a small multiple of) the
standard basis will have a large condition number. However, these situations
are relatively unlikely to present major problems in practice, and the recycling
approach is likely to be useful when function evaluations are expensive.

7 Remarks

Although our experiments have focused on the results of applying the weighting
gradient flow and related constructions after a MOEA has been applied, the more
natural application is in the course of a MOEA. As mentioned in Sect. 6, there
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Fig. 12. As in the top panel of Fig. 7, but for a Jacobian approximation that uses
existing function evaluations, increasing speed at the cost of accuracy.

Fig. 13. As in Fig. 9, but for a Jacobian approximation that uses existing function
evaluations, increasing speed at the cost of accuracy.

is ample scope to refine and build on ideas for increasing weighting components
in specific contexts. It is nevertheless clear that the theory of magnitude informs
principled and practical diversity-promoting mechanisms that can already be
usefully applied to benchmark multi-objective problems.
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