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Abstract. Multidisciplinary design optimization (MDO) involves solv-
ing problems that feature multiple subsystems or disciplines, which is an
important characteristic of many complex real-world problems. Whilst
a range of single-objective benchmark problems have been proposed for
MDO, there exists only a limited selection of multi-objective benchmarks,
with only one of these problems being scalable in the number of disci-
plines. In this paper, we propose a new multi-objective MDO test suite,
based on the popular ZDT bi-objective benchmark problems, which is
scalable in the number of disciplines and design variables. Dependencies
between disciplines can be defined directly in the problem formulation,
enabling a diverse set of multidisciplinary topologies to be constructed
that can resemble more realistic MDO problems. The new problems are
solved using a multidisciplinary feasible architecture which combines a
conventional multi-objective optimizer (NSGA-II) with a Newton-based
multidisciplinary analysis solver. Empirical findings show that it is possi-
ble to solve the proposed ZDT-MDO problems but that multimodal prob-
lem landscapes can pose a significant challenge to the optimizer. The pro-
posed test suite can help stimulate more research into the neglected but
important topic of multi-objective multidisciplinary optimization.

Keywords: Multidisciplinary design optimization · Multi-objective
optimization · Benchmark problems · Scalability

1 Introduction

Multidisciplinary design optimization (MDO) is an area of research that han-
dles optimization problems involving multiple disciplines, subsystems or com-
ponents. MDO recognises that large, complex or interwoven engineered systems
are often partitioned into smaller subsystems. This decomposition can arise for a
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number of interrelated reasons: from engineering practitioners taking a ‘divide-
and-conquer’ approach to solving complex design problems, to the way in which
engineering disciplines have emerged over time as discrete entities, to the func-
tional organisation of teams in large engineering companies and institutions.
Whilst MDO arose in the design of complex engineered products, such as exist
in the aerospace and automotive sectors, its application is not limited to engi-
neering, but is equally applicable to other complex systems contexts such as
environmental and public policy [14,18].

One important consideration in MDO is the need to model the interactions
between subsystems, because the performance of a system is not necessarily
defined just by its components, but also by the interactions between those com-
ponents. It is common to model the interactions by using linking (or coupling)
variables that are exchanged between the subsystems. However, when the sub-
systems have circular dependencies, it is not trivial to determine the values of
the linking variables, and it might be necessary to use numerical approximation
techniques, such as a multidisciplinary analysis (MDA) solver.

Several architectures have been proposed for dealing with MDO problems—
see, for example, the seminal survey paper by Martins & Lambe [17]. These
MDO architectures specify how to organize the discipline analysis models (and
other types of models) within the problem formulation, in order to facilitate
the process of finding the optimal design for the entire system. Some typical
examples are the individual discipline feasible and the multidisciplinary feasible
(MDF) architectures [4]. However, the focus of the MDO literature is primarily
on single-objective problems. Multiple conflicting objectives are often found in
real-world applications and, given that MDO problems are traditionally aimed
at engineering applications, it is perhaps surprising that, to our knowledge,
no multi-objective multidisciplinary optimization (MO-MDO) test suite has yet
been proposed. Such a test suite would provide an opportunity for researchers
and others to develop and test new optimization algorithms making them better
equipped for dealing with multi-objective MDO problems.

In earlier work, we proposed an MDO version of a bi-objective benchmark
problem known as ZDT1 [13]. This problem was then solved using an MDF archi-
tecture, encompassing a conventional multi-objective evolutionary optimization
algorithm, NSGA-II [5], as the system optimizer, and a Newton-based method
as the MDA solver. The present paper builds upon [13] and its distinctive con-
tribution is as follows:

1. the approach used to transform the original ZDT1 problem into an MDO
variant is extended to the remaining continuous ZDT problems;

2. the way the linking variables are integrated into the optimization problem is
improved, in that the deviation of the linking variables from their optimal
values is used to perturb the decision variables; and

3. two new topologies for connecting the disciplines via their linking variables are
proposed, and we show how it is possible to create arbitrary problem structures.

The scope of this work encompasses bi-objective MDO problems with both
varying number of variables and number of disciplines. The discipline analysis
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models are mutually interdependent. Although all optimization problems in this
work contain only continuous variables, discrete variables are also within scope
as long as they are supported by the optimization algorithm. We have only
considered the MDF architecture in this work, but other architectures could be
used instead as long they are compatible with the problem formulation.

The remainder of this paper is organised as follows. Section 2 discusses and
analyses the current state of multidisciplinary and multi-objective benchmark
problems. Section 3 introduces the proposed MO-MDO test suite. Several topolo-
gies for connecting the disciplines via linking variables are proposed in Sect. 4.
The experimental setup is in Sect. 5, while the obtained experimental results are
in Sect. 6. Section 7 gives a short summary of the work undertaken and proposes
directions for future work.

2 Related Literature

The MDO paradigm originated in industrial settings, where different parts of
complex engineered products are designed or optimised by different disciplinary
teams. MDO codifies this arrangement via the structure of the optimization prob-
lem, including concepts such as: global variables, which are accessible by more
than one discipline; local variables, which are used only within one discipline; and
linking variables that are exchanged between disciplines as a way to model disci-
plinary interdependencies. The MDO literature is extensive [17], and we therefore
focus our review on the benchmark problems that have been proposed for testing
MDO approaches, since this is the area most pertinent to our paper’s aims, and
contrast these to popular benchmarks for multi-objective optimization.

2.1 Multi-disciplinary Benchmarks

There are comparatively few MDO benchmark problems compared with multi-
objective benchmarks. Many of these derive from the NASA MDO test suite
[19], which contains 14 problems, including the Golinski speed reducer problem,
propane combustion and aerospike nozzle design. While some of the benchmark
problems have been expanded, such as the speed reducer problem, other prob-
lems are outdated and do not fulfil the needs of current MDO research in terms
of complexity and scalability. Further, the original test suite is no longer avail-
able from its primary source, with the suite now distributed across a number of
secondary sources, e.g. [21].

Another popular MDO benchmark problem is the Sellar (also known as the
‘analytical’) problem [20]. This problem is small, consisting of only two disciplines,
each containing one equation for the multidisciplinary analysis, one local variable,
two global variables and two linking variables. As such, the problem cannot pro-
vide an indication of how a complex MDO architecture will perform. Further MDO
problems are esoteric, having been proposed for specific applications and typically
solved only by the problem proposers; examples include building envelope design
[23], robotic fish [2], automotive design [1] and wing design [3]. These problems
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are unsuitable as benchmarks because of the narrowness of the application and/or
lack of availability of the MDA equations in the public domain.

2.2 Multi-objective Benchmarks

The literature on multi-objective benchmark problems is very extensive and
we focus only on some popular examples in this section. The ZDT test suite,
proposed by Zitzler et al. [24], consists of six two-objective test problems, five
of which are continuous and one of which is discrete. For the purposes of this
paper, we will only discuss the continuous problems. In each problem, the first
objective f1 is a function of the first design variable, and the second objective
f2 comprises the product of a so-called g(.) function, which is a variation of
the sum of all design variables except the one found in the first objective, and
an h(.) function which defines the relationship between the first design variable
(and, by extension, f1) and the remainder. The ZDT test suite can be criticised
as unrealistic or incomparable with real-world problems, with structures that
provide only a limited reflection of the challenges posed by the current state of
research in multi-objective optimization. However, the problems are also simple
to modify and are scalable in the number of design variables.

Other test suites include those with similar g(.) functions, such as the DTLZ
problems which are scalable in the number of objectives [6], modular problems
such as WFG [12], and problems with varied constraints such as those provided
by DAS-CMOP [7] and MW [16].

2.3 Multi-objective Multidisciplinary Benchmarks

All the MDO problems mentioned above contain a single objective. Existing
multi-objective multidisciplinary optimization problems are derived from single-
objective MDO benchmarks which are not scalable, such as the Golinski speed
reducer problem [8,11,15]. More recently, we proposed a MO-MDO problem
based on the bi-objective ZDT1 problem [13], which is scalable in the num-
ber of variables and disciplines but has a cost landscape that is not otherwise
challenging to an optimizer.

3 Proposed MO-MDO Test Suite: ZDT-MDO

The proposed MO-MDO test suite is based on the ZDT benchmark problems and
we therefore label it ZDT-MDO. Despite the limitations of ZDT as a test set,
the original structure of the problems makes them amenable to restructuring
into MDO problems in which the original Pareto front is recoverable (which
is highly advantageous from an analysis perspective). Here, we consider the five
continuous ZDT problems, with ZDT5 omitted because it is binary encoded. For
all problems, the first decision variable controls the position across the Pareto
front, while the others are called distance decision variables because they control
the convergence towards the Pareto front.
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The multidisciplinary system contains global variables that are shared
between the disciplines, and each discipline has its own set of local variables.
The decision variables of the original ZDT problem are partitioned into global
and local ones, where the first nz are global and are represented by the vec-
tor z = (z1, . . . , znz

)T . The remaining ones are local variables and are dis-
tributed across N disciplines as given by the vector x = (x1, . . . ,xN )T . Each
xi = (xi,1, . . . , xi,nxi

)T contains a total of nxi
local variables at the ith disci-

pline where i ∈ {1, . . . , N}.
The disciplines exchange linking variables to model the interactions of the

overall system. These linking variables are the output of an analysis conducted
by each discipline that simulates the behaviour of a particular component of the
multidisciplinary system. There is a total of nyi

output linking variables at the
ith discipline, given by the vector yi = (yi,1, . . . , yi,nyi

)T , and y = (y1, . . . ,yN )T

contains the output linking variables of all disciplines. Each discipline may
require one or more linking variables from other disciplines to conduct its own
disciplinary analysis. To keep track of the linking variable connections in the
system consider the following:

1. let npi
(1 ≤ npi

< N) denote the number of disciplines that provide linking
variables to the ith discipline;

2. the indices of the disciplines that provide linking variables to the ith disci-
pline are stored in the set pi = {pi,1, . . . , pi,npi

} where pi,j ∈ {1, . . . , N}\{i}
∀j=1,...,npi

.

For instance, for a hypothetical four-discipline system, if the second and fourth
disciplines provide linking variables to the first discipline, then p1 = {2, 4}. The
discipline analysis at the ith discipline is to find yi that satisfies the following
expression:

Ai,iyi +
npi∑

j=1

(Ai,pi,j
ypi,j

) = −Ciz̄ − Dixi, (1)

where z̄ = (z2, . . . , znz
)T excludes the first decision variable of the original ZDT

problem. The above expression only relies on the decision variables of the dis-
tance type, implying that the positional decision variable (z1) is not included to
ensure that there is a single solution to the systems of equations. The matrices
in Eq. 1 are defined as follows:

1. Ai,i ∈ R
nyi

×nyi , Ci ∈ R
nyi

×(nz−1), and Di ∈ R
nyi

×nxi ∀i=1...,N ,
2. Ai,pi,j

∈ R
nyi

×nyj ∀i=1...,N and ∀j=1,...,npi
.

An important aspect of Eq. 1 is that, depending on how the disciplines are
connected, determining the linking variables for one discipline may require know-
ing the values of the linking variables from the other disciplines. It can become
even harder to solve in case there are cyclic connections in the system. The com-
plete set of equations across disciplines can form a full system of equations as
given by:
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⎡

⎢⎢⎢⎣

A1,1 A1,2 . . . A1,N

A2,1 A2,2 . . . A2,N

...
...

. . .
...

AN,1 AN,2 . . . AN,N

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

y1

y2

...
yN

⎤

⎥⎥⎥⎦ = −

⎡

⎢⎢⎢⎣

C1

C2

...
CN

⎤

⎥⎥⎥⎦ z̄ −

⎡

⎢⎢⎢⎣

D1 0 . . . 0
0 D2 . . . 0
...

...
. . .

...
0 0 . . . DN

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x1

x2

...
xN

⎤

⎥⎥⎥⎦ (2)

or equivalently given by:
Ay = −Cz̄ − Dx. (3)

To ensure that the full system of equations has a unique solution, A needs to
be invertible. Additionally, any column in A−1C or A−1D cannot be all zeros
to ensure that there are no redundant design variables. Finding all yis for the
entire system requires the use of numerical techniques, such as Gauss–Seidel and
Newton-based methods that are often called multidisciplinary analysis solvers in
the MDO literature [17].

The linking variables are incorporated into the optimization problem by
penalising the local variables as given by the function:

ξ(xi,yi) = xi + ‖yi − y∗
i ‖1, (4)

where y∗
i are the linking variable optimal values for the ith discipline, and

the operator ‖•‖1 is the L1-norm. Let the output of Eq. 4 be the vector
x̂i = (x̂i,1, . . . , x̂i,nxi

)T , and the function that applies the same transformation
to all xis is denoted by ξ(x,y). The proposed MO-MDO problem formulation
based on ZDT1 is given by:

min f1(z) = z1

min f2(z, ξ(x,y)) = g(z, ξ(x,y))h(z, ξ(x,y))

s.t. g(z, ξ(x,y)) = 1 +
9

nv − 1

⎛

⎝
nz∑

i=2

zi +
N∑

i=1

nxi∑

j=1

x̂i,j

⎞

⎠

h(z, ξ(x,y)) = 1 −
√

f1(z)
g(z, ξ(x,y))

(5)

where nv = nz +
∑N

i=1 nxi
. For the remaining ZDT problems, f1(z) = z1, with

the exception of ZDT6 which is f1(z) = 1 − exp(−4z1) sin6(6πz1), while the
g and h functions are shown in Table 1. For optimality, all decision variables
(global and local) with the exception of z1 have to be zero for the given g(·)
functions, unless transformations are applied. This means that Eq. 2 becomes
an homogeneous system of linear equations which is solved when all the yis are
zero vectors. The benchmarks established in this section can be found in the
project’s github repository1.

1 https://github.com/vj2Sheffield/mdo zdt.

https://github.com/vj2Sheffield/mdo_zdt
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Table 1. The g and h functions of the proposed MO-MDO test suite

g h

ZDT2 1 + 9
nv−1

(∑nz
i=2 zi +

∑N
i=1

∑nxi
j=1 x̂i,j

)
1 − (f1/g)2

ZDT3
1 + 10(nv − 1) +

∑nz
i=2(zi − 10 cos(4πzi))

+
∑N

i=1

∑nxi
j=1(x̂i,j − 10 cos(4πx̂i,j))

1 − √
f1/g

ZDT4 1 + 9
nv−1

(∑nz
i=2 zi +

∑N
i=1

∑nxi
j=1 x̂i,j

)
1 − √

f1/g

ZDT6 1 + 9
nv−1

(∑nz
i=2 zi +

∑N
i=1

∑nxi
j=1 x̂i,j

)0.25

1 − (f1/g)2

4 Defining Dependencies Between Disciplines

The proposed formulation in Eq. 2 offers the flexibility to connect the disciplines
in different ways via linking variables. For instance, for a three-discipline system,
in case the second and third disciplines receive linking variables from the first
discipline, then A2,1 and A3,1 have non-zero elements. If there are no more
connections between the disciplines (except Ai,i ∀i=1...N which are set to the
identity matrix), then the remaining matrices in A are set to zero. On the other
hand, in case the first discipline receives linking variables from either the second
or third discipline (implying that A1,2 and/or A1,3 have non-zero elements), then
it can be said that the topology contains cyclic connections.

Figure 1a shows a five-discipline system where each discipline is only con-
nected to the next one, and a cyclic connection is created by connecting the
last discipline to the first one. The same topology is depicted by an extended
design structure matrix (XDSM) as shown in Fig. 1b. This technique has been
popularised by [17] to visualise the interconnections between the components of
a complex system. It is useful in particular to visualise both data dependencies
and process flow. The discipline analysis are represented in a diagonal, the input
data flows along the vertical direction, while the output data flows along the
horizontal direction. The data is labelled inside parallelograms, and the way the
data flows is shown as thick grey lines. Other possible ways of connecting the
disciplines are shown in the remaining subfigures in Fig. 1. We now propose the
following three topologies for connecting the disciplines:

1. OIOO: stands for “one-in-one-out” since each discipline only receives and
sends linking variables to a single discipline. We adopt a circular topology
where the first discipline receives linking variables from the last discipline.
This is given by p1 = {N} and pi = {i − 1} ∀i=2,...,N , and the XDSM is
shown in Fig. 1b.

2. TITO: stands for “two-in-two-out” since each discipline sends and receives
linking variables to two disciplines. This is given by p1 = {N, i + 1}, pi =
{i − 1, i + 1} and pN = {i − 1, 1}, and the XDSM is shown in Fig. 1d.

3. AIAO: stands for “all-in-all-out” since each discipline sends and receives link-
ing variables to all disciplines. This is given by pi = {1, . . . , N}\{i} ∀i=1,...,N ,
and the XDSM is shown in Fig. 1f.
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Fig. 1. Different topologies showcasing the dependencies between disciplines on a five-
discipline system.

5 Experimental Setup

The matrices in Eq. 1 are randomly generated and then row-normalised. The
only exception is Ai,i ∀i=1,...,N which is set to the identity matrix. The number
of global variables are set to 10 (nz = 10) and for all disciplines the number of
local variables and the size of the linking variables vector is set to 5 (i.e. nxi

= 5
and nyi

= 5 ∀i=1,...,N ). The lower and upper bounds for the decision variables
of all the problems are set to 0 and 1, respectively. The only exception is ZDT4
where the lower bounds are −5 and 5 for all decision variables with the exception
of z1 which takes values in the range [0, 1].

For dealing with the MO-MDO problems, we adopt an MDF architecture
involving a system optimizer and a MDA solver that conducts the disciplinary
analysis one discipline at a time. For the system optimizer we use a popular
multi-objective optimization algorithm known as NSGA-II [5]. The crossover and
mutation probabilities are set to 90% and 1/nv, respectively, while the crossover
and mutation index are both set to 20. The number of generations is set to 1000
with a population size of 100. The initial population is randomly initialised. The
MDF architecture is provided by the OpenMDAO package in Python [10], and
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NSGA-II implementation by PyOptSparse [22]. The MDA solver is also provided
by OpenMDAO and uses a combination of a nonlinear and linear solver. The
nonlinear solver is a Newton method while the linear solver relies on linear alge-
bra techniques such as LU decomposition. The MDA solver runs for a maximum
of 1000 iterations. For comparing different problem instances the hypervolume
indicator is used. To compute the hypervolume we have used a dimension-sweep
algorithm, taken from [9]. The reference point used in the hypervolume com-
putations is {1.1, 14} for ZDT1, {1.1, 13} for ZDT3, {1.1, 1620} for ZDT4, and
{1.1, 17} for ZDT6.

6 Experimental Results

In this section we show the obtained results for the MDO version of ZDT1,
ZDT3, ZDT4 and ZDT6 problems. Due to space limitations, ZDT2 results are
omitted, since they are very similar to those obtained for ZDT1. For all cases the
MDA solver has run for sufficient number of iterations to guarantee convergence,
implying that the correct linking variables were obtained for the given global (z̄)
and local variables (x). Therefore our analysis will be mostly focused on the
performance of the system optimizer (NSGA-II) in dealing with these problems.

The convergence across generations is captured by the hypervolume metric in
Fig. 2 for five and 10 discipline problems with different linking variable topolo-
gies. Figure 3 depicts the non-dominated solutions obtained at the end of the
optimization run shown alongside the Pareto optimal front (POF). In all plots,
the notation D5 and D10 denotes the number of disciplines. Good convergence is
achieved for all problems instances involving ZDT1, ZDT3 and ZDT6, although
not all solutions are co-located on the POF for ZDT6. ZDT4 shows constant
improvement in terms of hypervolume across the generations, but achieves poor
convergence overall within the given computational budget.

Fig. 2. Hypervolume across generations.
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Fig. 3. Non-dominated solutions at the end of the optimization run.
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Fig. 4. Decision variable values obtained across the generations for 5 disciplines.
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An increase in the number of disciplines from five to 10 is expected to make
the problem more difficult, since it implies an increase in the number of deci-
sion variables (30 and 60 decision variables for five and 10 disciplines, respec-
tively). This difficulty is mostly reflected on ZDT4 where the values of f2 are
relatively higher for the 10 discipline case when compared with the five disci-
pline problem. The same trend is captured by the hypervolume for ZDT4, where
the five-discipline instances show better convergence when compared with the
10-discipline instances.

The values of the global and local variables across generations are shown
in Fig. 4. We only focus on the five discipline problem since similar results are
obtained for the 10 discipline case. At the end of each NSGA-II generation, we
take the median of the variable values across the population of solutions. This
means that there are 9 lines for the global variables and 25 lines for the local
variables in these plots. Figures 4a and 4b show the global and local variable
values, respectively, for ZDT1. Both variables converge towards the optima in
less than 200 generations. The same pattern is observed for the other problems
with the exception of ZDT4, and it took slightly longer to converge for ZDT6
(Figs. 4g and 4h). The decision variables for ZDT4 become trapped in local
optima after a few generations as shown in Figs. 4c–4f. The values of the decision
variables for AIAO are relatively close to the optima when compared with OIOO,
implying that AIAO achieves better performance when compared with OIOO
as shown in Fig. 3e. Given that the MDA solver has converged in all cases, the
differences in performance observed between topologies are likely attributable to
the stochasticity of the optimizer at the system level.

7 Summary and Future Work

In this paper we have proposed an MO-MDO test suite based on the continuous
ZDT problems. The test suite is scalable in the number of disciplines, as well as
the number of global and local decision variables. It offers a flexible approach
to defining dependencies between the disciplines, allowing for the construction
of more complex systems with multiple dependencies between disciplines. This
test suite offers the opportunity for researchers and others to develop MDO
architectures in combination with multi-objective optimization techniques. The
experimental results have shown that for easier ZDT problems, such as ZDT1
and ZDT3, it can be straightforward for an optimizer like NSGA-II and an
MDA solver to find a set of solutions with good convergence across the PF.
For problems that are harder to solve, such as ZDT4, it may require using an
impractical number of generations (beyond 1000) to find a well-converged set of
solutions, or a system optimizer more capable of dealing with multimodality in
the fitness landscape.

Future work will include an expansion of MDO problems to more complex
multi-objective test suites. This will allow for greater scalability in objectives,
as well as being potentially more representative of real-world problems. Extend-
ing some of these problems to MDO formulations is not straightforward and
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will require revisions to the present architecture. Additionally, alternative MDO
architectures will be considered for application to MO-MDO benchmarks.
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