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Preface

Welcome to the Proceedings of the 12th Conference on Evolutionary Multi-Criterion
Optimization (EMO), held in Leiden, The Netherlands, March 20–24, 2023 in hybrid
format.

Why hold EMO conferences? This question was discussed at EMO 2007 by its
founders. The doubts regarding the viability of the conferences were fortunately cast
away as the importance, need, andubiquity ofmulti-criterion optimization keeps growing
eachyear at a tremendous pace, impacting other areas andbeing influenced itself by them.

For millennia optimization (improving things) has played a crucial role for humans.
In more recent times, EMO (and optimization in general) has become important in sci-
ence in areas such as physics, biology, economics, social sciences, medical sciences, and
mathematics. For instance, Snell’s law was discovered by Willebrord Snellius through
experimentation, only later it was realized that it can be derived from Fermat’s principle
of least time, stating that light always chooses the path that is traveled in the least time.
As such, the laws of nature can often be perceived as a process of optimization and
optimal decision-making. Secondly, another use of optimization is the following. Many
insights can be gained by looking at extremal objects (for instance, given 2n points in
the plane no three of which lie on a line, n of them blue and n of them red, it is always
possible to create n line segments by using the given points such that the endpoints have
different colors and no two segments intersect – this can be understood by looking at
the appropriate extremal object). Thirdly, methodologies and techniques developed in
the EMO community have been empowering many practical scenarios: from finding
the best taxation system, the best returns on investments while avoiding too high risks,
discovering potent drug candidates with few side effects, to designing engineering struc-
tures that optimally balance the energy consumption and the environmental impact (e.g.,
minimizing the CO2 or CH4 emission).

In the EMO conferences, we focus mainly on the evolutionary approaches to solv-
ing multi-criterion optimization and decision-making problems since the applicability
of analytical/deterministic methods is often limited. For the scenarios where both cat-
egories of approaches are applicable, the hybridizations of analytical and evolutionary
algorithms have appeared over the years, combining the strengths of both categories.
Such hybridizations were also covered in the EMO conferences. In recent years, the
EMO community has been bridged with theMulti-Criterion Decision-Making (MCDM)
community, which focuses more on the decision-making aspects of the same problem.
According to the EMO tradition, also in this year’s event, many works are dedicated
to designing and studying algorithms, ranging from novel algorithmic operators to the
theoretical analysis of existing ones. Notably, there are some contributions that con-
nect EMO with Machine Learning/Artificial Intelligence, which draws more and more
research interests nowadays. Also, appropriate attention – also as a tutorial – is paid to
benchmarking and empirical performance assessment, for instance, new benchmarking
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problem sets. Furthermore, some submissions address real-world problems using EMO
methodologies, which nicely complete the scope of the conference.

The following five distinguished keynote speakers agreed to share their expertise
at EMO 2023: 1) Yaochu Jin, Alexander von Humboldt Professor at Bielefeld Univer-
sity, Germany, and Surrey Distinguished Chair, Professor of Computational Intelligence,
University of Surrey, UK. Professor Jin’s contributions are in the cross-fertilization of AI
andMulti-Criterion Optimization, among others. 2) Heike Trautmann, Professor of Data
Science: Statistics and Optimization, both at the Department of Information Systems,
the University of Münster, Germany, and the University of Twente, The Netherlands.
Her research mainly focuses on Data Science, Automated Algorithm Selection and
Configuration, Exploratory Landscape Analysis, (Multiobjective) Evolutionary Opti-
mization, and Data Stream Mining. 3) Frank Neumann, Professor and leader of the
Optimisation and Logistics Group and an Honorary Professorial Fellow at the Univer-
sity of Melbourne, Australia. Professor Neumann’s work focuses on theoretical aspects
of combinatorial and multi-objective optimization as well as high-impact applications in
the areas of cybersecurity, renewable energy, logistics, and mining. 4) Kalyanmoy Deb
is the Koenig Endowed Chair Professor at the Department of Electrical and Computer
Engineering at Michigan State University (MSU), East Lansing, USA. Professor Deb’s
main research interests are in evolutionary optimization algorithms and their application
in optimization and machine learning. He is largely known for his seminal research in
Evolutionary Multi-Criterion Optimization. 5) Aneta Neumann, who is a researcher at
the University of Adelaide, Australia, School of Computer and Mathematical Sciences,
Faculty of Sciences, Engineering and Technology, is known for work on applications of
optimization, analysis of stochastic optimization, and diversity optimization.

Ten esteemed scholars prepared five very instructive tutorials, continuing the recent
tradition of having tutorials at EMO: Dimo Brockhoff, Tea Tusar “BenchmarkingMulti-
objective Optimizers 2.0”; Amiram Moshaiov “Evolutionary Multi-Concept Optimiza-
tion”; Erella Eisenstadt-Matalon, Amiram Moshaiov, Kalyan Deb “Multi-Objective
Games”; Kalyan Deb, Dhish Saxena, Erik Goodman “Machine Learning Assisted Evo-
lutionary Multi-Objective Optimization”; Christian Grimme, Lennart Schaepermeier,
Pascal Kerschke “Continuous Multimodal Multi-Objective Optimization”.

Sixty-five papers were submitted to EMO 2023, of which forty-four were accepted.
The acceptance rate was 67.5%, and each contribution was peer-reviewed (single-blind)
by at least two experts in the field. Papers that were sent to the MCDM track, chaired by
Kaisa Miettinen and Iryna Yeveyeva, were reviewed by a dedicated panel of reviewers.
Mimicking EMO algorithms, which seek diversity among the candidate solutions, we
also achieved great geographic, topic-wise diversity. The accepted papers distribute
across five continents: Australia 4, Austria 2, Brazil 2, China 19, Finland 5, France 6,
Germany 13, India 15, Italy 1, Japan 5, Mexico 2, Poland 1, Portugal 2, Slovenia 3,
The Netherlands 13, United Kingdom 18, and the United States 5. The following topics
were represented: Algorithm Design and Engineering; Machine Learning and Multi-
criterion Optimization; Benchmarking and Performance Assessment; Indicator Design
and Complexity Analysis; Applications in Real World Domains; and Multi-Criteria
Decision Making and Interactive Algorithms.
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EMO conferences have been held on four continents so far: EMO 2001 in Zürich,
Switzerland (LNCS 1993), EMO 2003 in Faro, Portugal (LNCS 2632), EMO 2005 in
Guanajuato, Mexico (LNCS 3410), EMO 2007 in Matsushima, Japan (LNCS 4403),
EMO 2009 in Nantes, France (LNCS 5467), EMO 2011 in Ouro Preto, Brazil (LNCS
6576), EMO 2013 in Sheffield, UK (LNCS 7811), EMO 2015 in Guimarães, Portugal
(LNCS 9019), EMO 2017 in Münster, Germany (LNCS 10173), EMO 2019 in East
Lansing, USA (LNCS 11411), EMO 2021 in Shenzhen, China (LNCS 12654), and
EMO 2023 in Leiden, Netherlands (LNCS 13970).

EMO 2023 gave us the opportunity to celebrate a special birthday, the 60th birthday
of Kalyanmoy Deb, who is the creator of the biannual EMO conference series. Professor
Deb iswell known for hismajor, pioneering, and fundamental contributions to the field of
Multi-Criterion Optimization. Also, Kalyan is a charismatic force in advancing research
and promoting researchers in the EMO community.

It goes without saying that a conference consists of the work of authors, reviewers,
keynote speakers, tutorial presenters, and all organizers, and the publishing company
(that is, Springer Nature): to all these contributors, a big, heartfelt thank you!

Finally, we would like to thank Springer Nature for financing the Best Paper Award
and for publishing the proceedings,moreover theLeiden Institute ofAdvancedComputer
Science (LIACS), and Leiden University for financial support.

January 2023 Michael Emmerich
André Deutz
Hao Wang

Anna V. Kononova
Boris Naujoks

Ke Li
Kaisa Miettinen
Iryna Yevseyeva
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1 Jožef Stefan Institute, Ljubljana, Slovenia
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Abstract. Constraint handling in multiobjective optimization is more
complex than in single-objective optimization, where the values of the
objective and constraints are easier to combine. To gain insight into the
characteristics of constraint handling techniques (CHTs) for multiob-
jective optimization, we explore their effect independently from search
methods. We regard CHTs as transformations that alter the problem
landscape and visualize these modified landscapes. This helps us pre-
dict potential strengths and weaknesses for search methods. We then use
a simple local search technique to test our predictions. Results of the
experiments with six CHTs applied on 12 test problems show specific
properties of the studied CHTs that can help us devise better CHTs in
the future, as well as find suitable search methods for them.

Keywords: Constrained multiobjective optimization · Constraint
handling technique · Problem landscape · Visualization

1 Introduction

Constraint handling in multiobjective optimization requires taking into account
multiple (conflicting) objectives as well as constraints (often represented by the
overall constraint violation). As such, it is more demanding than constraint han-
dling in single-objective optimization, where the values of the sole objective and
the overall constraint violation can be combined more naturally. Possibly for this
reason, many constraint handling techniques (CHTs) in multiobjective optimiza-
tion are closely intertwined with the search method [4,9,17,19], which makes it is
hard to understand how much, when and why a particular CHT is more efficient
than some other.

For example, as Ma and Wang show in [18], the efficiency of constrained
multiobjective optimization algorithms heavily depends on the type of the prob-
lem. However, their study does not decouple CHTs from the optimization meth-
ods, meaning that its findings are tied to the frameworks of NSGA-II [5] and
MOEA/D [27] that encompass the examined CHTs. Similarly holds for the work

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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by Alsouly et al. [1] and our previous work [25], which connect problem land-
scape features with algorithm performance, but the considered algorithms differ
in multiple mechanisms, not just in the CHT.

A notable exception in this regard is the study by Fukumoto and Oyama [11],
which proposes a generic framework for incorporating CHTs into multiobjective
optimization algorithms. It views a CHT separately from the search method
and introduces a way to combine the two that covers dominance-based (e.g.,
NSGA-II [5]), decomposition-based (e.g., MOEA/D [27]), and indicator-based
(e.g., IBEA [29]) multiobjective optimization algorithms. The experiments are
then performed on different combinations of search methods and CHTs.

In this work, we explore the effect of CHTs independently from search meth-
ods, that is, as independently as possible. The goal is to enhance the understand-
ing of their workings and provide intuition that can help guide the improvement
of existing CHTs as well as find suitable search methods for particular CHTs. To
this end, we regard CHTs as transformations that alter the problem landscape.
We compute the CHT-based ranking of solutions from a grid approximation of
the problem landscape to visualize it for various constrained multiobjective opti-
mization problems (CMOPs). In this way, we are able to gain insight into the
problem as ‘seen’ by an algorithm that uses a particular CHT. The CHT-based
problem landscapes help us predict potential advantages and disadvantages for
search methods. We then use a simple deterministic grid-traversing local search
to test our predictions. The CMOPs used in this study are a combination of
eight well known test CMOPs and four new, relatively simple problems with
known properties that can help understand the characteristics of CHTs.

2 Background

2.1 Constrained Multiobjective Optimization Problems

We formulate a CMOP as follows:

minimize f(x) = (f1(x), . . . , fm(x))
subject to gi(x) ≤ 0, i = 1, . . . , p,

(1)

where x = (x1, . . . , xn) ∈ S is a search vector from the search space S, fi : S → R

are objective functions and gi : S → R are inequality constraint functions. We do
not explicitly include equality constraints as they can be formulated as inequality
constraints with the help of a user-defined tolerance value.

The overall constraint violation of solution x is computed with

v(x) =
p∑

i=1

vi(x), (2)

where vi(x) = max (0, gi(x)) is the constraint violation for constraint gi(x).
Given that in this work we do not consider the constraints separately, we will be
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Fig. 1. The four types of CMOPs (adapted from [18]). The Pareto fronts (PFs)
of the unconstrained/constrained problems are shown with thin black/thick orange
lines. (Color figure online)

using the shorter term constraint violation instead of overall constraint violation
to refer to v(x) in the rest of this paper.

A solution x is feasible when it satisfies all constraints, that is, when v(x) = 0.
The set of all feasible solutions is called the feasible region. A solution x ∈ S
dominates another solution y ∈ S when fi(x) ≤ fi(y) for all i = 1, . . . , m and
fj(x) < fj(y) for at least one j = 1, . . . , m. Additionally, a feasible solution
x∗ ∈ S is Pareto optimal if there are no feasible solutions x ∈ S that dominate
x∗. All nondominated feasible solutions represent the Pareto set, and its image
in the objective space is called the Pareto front.

When constraints are added to an otherwise unconstrained multiobjective
optimization problem, this can affect the size and position of its Pareto set and
front. The constraints that influence the Pareto set and front are called active
constraints, while the remaining ones are termed inactive constraints. The degree
of this change is the basis for the classification of CMOPs into types as proposed
by Ma and Wang [18]. Figure 1 shows the four types, which range from no change
to the Pareto front (Type I), to a reduced Pareto front (Type II), a partially
displaced Pareto front (Type III), and finally an entirely different Pareto front
(Type IV).

2.2 Constraint Handling Techniques

Our study comprises six methods for handling constraints in multiobjective opti-
mization. In the following, we describe these CHTs and their known strengths
and weaknesses.

One possible way of handling constraints (or rather, not handling them) is
to simply ignore them and solve the problem as if it was an unconstrained one.
We refer to this technique as constraint violation ignored. While such a strategy
cannot be expected to yield good results on problems with active constraints and
is therefore mostly omitted from comparison studies, it can be rather powerful
for solving CMOPs where the constraints do not severely affect the optima, that
is, problems of Type I (and, to some degree, Type II) [11].
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Another method for handling constraints is to treat the constraint violation
as an additional objective to be minimized1. We call this technique constraint
violation as objective. One often mentioned drawback of this approach is that
the additional objective can make the multiobjective optimization algorithm less
efficient [17].

A very popular technique (due to being the default way of handling con-
straints in the algorithm NSGA-II) is the constrained-domination principle [5].
According to this principle, solution x is preferred to solution y if: (i) solution
x is feasible and solutions y is infeasible, (ii) both solutions are feasible and x
dominates y, or (iii) both solutions are infeasible and x has a lower constraint
violation than y. The method is known to work rather well, except on problems
with multimodal constraint functions [28].

The multiobjective version of the epsilon-constraint method [22] could be
viewed as a relaxed variant of the constrained-domination principle, where solu-
tions with the constraint violation lower than a predefined ε ≥ 0 threshold are
treated as feasible. More formally, the epsilon-constraint method prefers solution
x to solution y when: (i) solution x dominates solution y and both have a small
constraint violation (v(x) ≤ ε and v(y) ≤ ε) or the same constraint violation, or
(ii) solution x has a lower constraint violation than solution y. The optimization
methods using the epsilon-constraint CHT usually gradually lower the value of
ε during the algorithm run [2]. Choosing the appropriate starting value for ε as
well as the mechanism to update it is nontrivial and problem-dependent.

Contrary to the methods that keep the objectives separate from the con-
straints, the penalty function transforms the objective values of infeasible solu-
tions x to f ′

i(x) by either using the constraint violation (when there are no
feasible solutions in the current population) or some penalty value that depends
on the value of the objective, the constraint violation and the proportion r of
feasible individuals in the current population [26]:

f ′
i(x) =

{
v(x), if r = 0
(1 − r)v(x) + rfi(x) +

√
fi(x)2 + v(x)2, if r > 0

. (3)

Suitably setting/adjusting the penalty value is recognized as a difficult task [17].
Finally, we also consider stochastic ranking, where the comparison of feasible

solutions is done based on the dominance relation, while the infeasible solutions
are compared either w.r.t. the constraint violation or the dominance relation—
the decision between the two is done randomly [13].

3 Methodology

3.1 Test Problems

In order to explore the effect of CHTs, we need to select some test CMOPs.
Because we aim to understand and visualize their landscapes, we choose prob-
lems with only two variables and two objectives. Ideally, the problems should
1 The alternative variant, where each separate constraint violation is regarded as a

new objective, is not considered in this work.
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have various properties and be of different types [18]. We select eight problems
from the existing well-known CMOP suites (C-DTLZ [15], DAS-CMOP [7], DC-
DTLZ [16] and MW [18]) as well as create four new ones, CBB1–4, where CBB
stands for Constrained BBOB [14] Biobjective (problem).

All four CBB problems were created by adding constraints to the first
instance of the 2-D bbob-biobj problem F1 (the double sphere problem) [3].
This is one of the easiest biobjective problems to solve as the Pareto set and
front are linear and the problem landscape is unimodal (but not separable).
However, when adding constraints to such a problem, it can become more diffi-
cult to solve while at the same time still easy to understand and interpret, which
is why we created the CBB problems and added them to our test problem set.

The constraint function used in CBB1 is linear. It intersects the Pareto set
of F1 in such a way that the Pareto set of CBB1 consists of two connected linear
parts. The constraint functions in the case of CBB2 and CBB3 are created by
slightly shifting a single Gaussian peak function [12] with the same mean but
a different covariance matrix, yielding in one case a problem of Type III (the
Pareto set of CBB2 is formed by two linear parts of the original problem and
one spherical that connects them) and in the other case a problem of Type IV
(the entire Pareto set of F1 is infeasible, the Pareto set of CBB3 consists of three
disconnected spherical regions). Finally, CBB4 uses the inverted Gaussian peak
function with three peaks as the constraint function (because the function is
inverted, the peaks now form the feasible region). Again, the entire Pareto set of
the original problem is infeasible, which yields a Type IV problem, whose Pareto
set consists of two disconnected spherical regions. The exact definitions of con-
straints for problems CBB1–4 are provided in the supplementary material [24].

Thus we have 12 test problems in total, three of each type: Type I:
DAS-CMOP3, DAS-CMOP5, MW14, Type II: C2-DTLZ2, DAS-CMOP1, DC1-
DTLZ1, Type III: CBB1, CBB2, MW3, and Type IV: CBB3, CBB4 and MW11.

3.2 CMOP Landscape Visualization

First, we wish to visualize the problem landscapes of our 12 test problems (see
Fig. 2). We can do so by approximating the search space with a grid of points. In
this study, we always use a grid of 301 × 301 points2. We handle separately the
feasible and infeasible regions of each problem. The feasible regions are visualized
using the dominance rank ratio [3,10], which computes for each point on the grid
the number of other grid points that dominate it and then visualizes them as a
ratio of all grid points—using blue hues in the logarithmic scale to emphasize
smaller values. The darker the color, the closer a point is to the Pareto set.
Points with a domination rank of zero are Pareto optimal and visualized in
black. The points in the infeasible regions are colored in red hues according

2 Note that using a grid approximation inevitably results in some artifacts. For exam-
ple, a linear Pareto set is in reality a line, but because of the approximation, some
points adjacent to this line also result as nondominated, yielding a ‘thick line’. The
coarser the grid, the larger the artifacts.
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Fig. 2. Problem landscape plots for all 12 CMOPs used in this study. Each three
problems of the same type are placed in the same row (from Type I at the top to Type
IV at the bottom). Blue hues show the dominance rank ratio [3,10] in the feasible
regions with black denoting the Pareto set. Red hues show the constraint violation in
the infeasible regions. (Color figure online)
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to their constraint violation values. Here, darker colors signify larger constraint
violations. As we can see from Fig. 2, the chosen problems form a diverse selection
of landscapes with various properties and Pareto set shapes.

Next, we want to see what becomes of the problem landscape when viewed
from the perspective of a particular CHT. To this end, we compute for each
CHT the rank that the CHT would assign to each point on the grid (compared
to other points). Then, we visualize the ratio of this rank in blue hues (similarly
as for the feasible problem regions of the original problem). Again, black is used
to denote the grid points with the lowest rank—the optimal points according to
the CHT. In this way, we gain a CHT-based problem landscape that assigns a
single value to each grid point. We will show the visualizations of these landscapes
in Sect. 4.2.

Note that if the Pareto set according to the CHT does not contain the entire
Pareto set of the original problem, we can expect that an optimization algorithm
using this CHT will have issues with convergence to the Pareto set.

3.3 Local Search

While already the visualization of a CHT-based landscape and comparison to
the original problem landscape gives a good idea of some of the issues that a
search method would encounter if it was used to find the optimum of such a
problem, we wish to quantify these effects. Since any mechanism of a search
method affects the behavior and interpretation of its results, we resort to a very
simple, deterministic procedure—local search with a Moore neighborhood (each
inner grid point in 2-D has eight neighbors).

Given a starting point on the grid, the local search iteratively moves to the
best neighboring grid point that is not worse that the current point until a
stopping criterion has been reached. The stopping criteria are: (i) the current
point is optimal in the CHT-based landscape, (ii) the current point is better than
all neighbors (it is a local optimum) (iii) all neighboring points have already been
visited (to avoid cycling). In order to assure that this procedure is deterministic,
the neighbors are always inspected in the same order (the north neighbor first
then the rest in clockwise order) and an earlier neighbor always takes precedence
over a later one when the ranks are tied among neighbors.

We can compute several quantities from a local search path on a CHT-based
problem landscape. First, we can check (and visualize) if the final point of the
path is Pareto optimal in the original landscape. If so, the path is denoted
as successful (shown in orange) and the final point is visualized with a star.
Otherwise, the path is deemed unsuccessful (shown in red) and the final point
is denoted as a cross. In addition, simulating an optimization algorithm that
chooses the best solution from its entire archive, we also record how many of the
points on the path are Pareto optimal in the original landscape and how many
are feasible. Of course, we also measure the path length (the number of points
on the path).
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4 Experiments

4.1 Experimental Setup

In our experiments, we apply the six CHTs from Sect. 2.2 to the 12 test problems
from Sect. 3.1. We normalize both objectives and constraint violations to [0, 1]
before computing the CHT-based landscapes. There are no parameters to be
set for the first three CHTs: constraint violation ignored, constraint violation
as objective, and constraint-domination principle. We set the ε of the epsilon-
constraint method to the 5th percentile of the constraint violation value of all
infeasible grid points to mimic the initial parameter setting from [6]. Note that
we do not vary the ε, therefore the epsilon-constraint method landscape in our
study should be regarded as the landscape seen by the search method at the
beginning of the optimization. Given that we do not use a population-based
algorithm, we set the proportion r to the proportion of feasible points on the
grid for the penalty function [26]. Finally, we use the recommended setting of 0.45
for the probability of comparing infeasible solutions according to the objective
values in stochastic ranking [20].

We repeat local search 100 times, starting from 100 equally-spaced points on
the grid for each combination of CHT and test problem. While the CHT-based
landscapes are static for all steps of the local search for the first five CHTs, we
use ten different stochastic ranking landscapes (in a loop) to mimic its stochastic
behavior (each local search step uses one of the landscapes in turn).

4.2 Results and Discussion

CHT-Based Landscapes. We first inspect the CHT-based landscapes of the
Type II problem CBB1, which is the easiest to understand (see the blue-hued
landscapes in Fig. 3 and ignore the orange and red lines for now). When the
constraint violation is ignored, the landscape obviously matches that of the orig-
inal problem F1, for which the Pareto set is linear. As approximately 2/3 of the
apparent (as perceived by the CHT) Pareto set lie in the infeasible region, any
search method that would ignore the constraint violation would spend a lot of
effort in the infeasible region, making it inefficient.

When the constraint violation is treated as an objective, something interest-
ing happens. The Pareto set of this CHT-based landscape contains not only the
original Pareto set, but also a large region of otherwise infeasible solutions, which
are nevertheless nondominated in the resulting 3-D objective space. While this
does not happen on our problems of Type I and II, it appears on all six problems
of Type III and IV. This would likely mislead a search method to regard a part
of the infeasible region as optimal, which means that any optimization algorithm
that uses this CHT needs to additionally check for feasibility of the apparent
optimal solutions in order to be efficient.

Next, the landscapes of the constraint-domination principle, the epsilon-
constraint method and the penalty function look very similar. However, note
that the ‘line’ that we see in the landscape of the epsilon-constraint method
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Fig. 3. Plots of the CHT-based landscapes for Type III problem CBB1 (in blue hues)
for the six considered CHTs. Black denotes the Pareto set of these landscapes. Orange
and red lines show the paths of local optimization starting in 100 different points shown
with dots. If the path ends in a point that is optimal in the original problem landscape,
the line is orange and it ends with a star, otherwise the line is red and it ends with a
cross. (Color figure online)
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does not match the feasible space boundary from Fig. 2 (the former is placed
slightly higher than the latter). This means that for this CHT, the apparent
Pareto set is misplaced, making the landscape misleading to the search method.
This is why the optimization algorithms that employ this CHT need to gradu-
ally reduce the value of ε to 0 during the run, which then corresponds to the
constraint-domination principle. Also, note that the penalty function-based land-
scape is also slightly different as the infeasible region of the original problem is
darker close to the feasible space boundary. This adds some nonlinearity to the
landscape with unclear influence on a search method.

The first landscape of stochastic ranking (of the ten used) clearly shows that
the values of the infeasible region are randomly selected for each point separately
between the original dominance rank and the constraint violation. This makes
its landscape more rugged than the original one, which can pose problems to
methods prone to get stuck in local optima.

Local Search Paths. If we now look at the local search (LS) paths in Fig. 3
(orange and red lines), we can confirm that these results are mostly in accordance
with our predictions (LS with constrained violation ignored and constraint vio-
lation as objective is inefficient, LS with the epsilon-constraint method performs
worse than with the constraint-domination principle and stochastic ranking is
debilitating for local search in the infeasible region; we did not foresee the dam-
aging effect of the penalty function CHT).

Similar reasoning about CHT-based landscapes and the corresponding local
search paths could be applied also to the remaining problems. However, due to
the lack of space we refer to the supplementary material [24] for these results.

Local Search Summary Results. The information summarizing the perfor-
mance of local search paths can help us further analyze the CHTs. Figure 4 shows
the number of optimal solutions vs. the proportion of feasible solutions for LS
with each CHT on each problem. The number of optima is counted separately
for the entire path (filled markers) and separately for just the ending path point
(hollow markers). Note that these two quantities differ only for LS with con-
straint violation ignored and with the epsilon-constraint method, and only for
Type III and IV problems. This happens because these two CHTs fail to guide
local search on these problems, but still manage to cross the true Pareto set
along the way.

Concentrating on the outcomes regarding the optimality of solutions (the
y axis of plots in Fig. 4) we can immediately observe that the absolute worst
results (regardless of the CHT) are achieved on DAS-CMOP5 and DC1-DTLZ1,
which are multimodal and thus detrimental to local search. These two problems
therefore do not help our analysis. Disregarding them, we can see the trend
that the number of optimal solutions diminishes with increasing problem type,
which could be expected. The relatively poor performance of local search with all
CHTs except of the constrained-domination principle on the most basic problem
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Fig. 4. The number of optimal solutions (y axis) vs. the proportion of feasible solutions
(x axis) for local search with each CHT on each problem. Filled markers denote the
number of all optimal solutions on the path, while the hollow markers show the number
of final optimal solutions (the two differ only for constraint violation ignored and the
epsilon-constraint method on problems of Type III and IV). (Color figure online)

CBB1 is quite disappointing. It shows that the constrained-domination principle
is hard to beat and the other CHTs still have room for improvement.

We can further see that ignoring constraint violations is a very good strategy
for solving problems of Type I, which confirms the results from [11]. Not so
surprisingly, it is also one of the best CHTs for some Type II and III problems
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(those for which the intersection between the unconstrained and constrained
Pareto set is large).

The performance of LS with constraint violation as objective never stands out
(it is always in the middle). Similarly holds for LS with the epsilon-constrained
method on problems of Type I, II and III (for Type IV, it shows a very poor
performance). We also observe that the performances of LS with the constrained-
domination principle and with the penalty function are mostly very similar with
just a few exceptions. There (on C2-DTLZ2, CBB1 and MW11), the penalty
function-based landscape is visibly different from the one by the constrained-
domination principle, which has the undesired effect of guiding the local search
away from the optima. These two CHTs are the only ones with a potential to
solve Type IV problems with LS. Finally, the performance of LS with stochastic
ranking is solidly among the worst.

If we look at the same results from the point of view of feasibility, we can
see that, due to the 100 equally-spaced starting points of local search, there is
generally not a large difference in the proportion of feasible solutions among the
different CHTs. One (not so obvious) outlier here is LS with stochastic ranking,
whose relatively good proportion of feasible solutions despite the otherwise poor
performance stems from very short paths in the infeasible regions (the local
search quickly becomes trapped in local optima of this very rugged landscape)
rather than the CHT guiding the search towards the feasible region.

5 Conclusions

In this paper we proposed to look more closely at the various CHTs used for
solving CMOPs in order to gain insight into their strenghts and weaknesses. This
can help us devise better CHTs in the future, as well as find (more) appropri-
ate search methods for particular CHTs. For example, we saw that constraint
violation as objective requires additionally checking for feasibility, the epsilon-
constraint method shifts the location of the apparent Pareto set and that the
rugged landscape of stochastic ranking calls for a search method that can avoid
being stuck in local optima. Our analysis has additionally confirmed findings
from previous work [11,23] that problems of Type I (as well as some problems
of Type II and III) are not helpful for benchmarking optimization algorithms on
CMOPs as simply ignoring the constrains performs equally well.

As this work was limited to 2-D search and objective spaces we will consider
generalizing our methodology to higher dimensions in the future. We would also
like to similarly visualize the effects of dynamically changing CHTs and put more
focus on local Pareto sets (possibly by using visualizations from [21] or [8]).
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algorithms from the black-box optimization benchmarking BBOB-2009. In: Genetic
and Evolutionary Computation Conference, GECCO’10, Companion Material, pp.
1689–1696. ACM (2010). https://doi.org/10.1145/1830761.1830790

15. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using
reference-point based nondominated sorting approach, Part II: handling constraints

https://arxiv.org/abs/2203.00868
https://doi.org/10.1109/CEC.2012.6252868
https://doi.org/10.1162/evco_a_00298
https://doi.org/10.1145/3520304.3533640
https://doi.org/10.1145/3520304.3533640
https://doi.org/10.1109/4235.996017
https://doi.org/10.1007/s00500-019-03794-x
https://doi.org/10.1007/s00500-019-03794-x
https://doi.org/10.1162/evco_a_00259
https://doi.org/10.1162/evco_a_00259
https://doi.org/10.1109/TEVC.2021.3084119
https://dis.ijs.si/filipic/wcci2022tutorial/
https://doi.org/10.1007/978-3-319-77538-8_43
https://doi.org/10.1109/TEVC.2005.863628
https://doi.org/10.1109/TEVC.2005.863628
https://doi.org/10.1007/11903697_43
https://doi.org/10.1007/11903697_43
https://doi.org/10.1145/1830761.1830790


16 T. Tušar et al.
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Abstract. Multiobjective discrete optimization via simulation (MDOvS)
has received considerable attention from both academics and industry
due to its wide application. This paper proposes a two-stage fast conver-
gent search algorithm for MDOvS. In its first stage, the multiobjective
optimization problem under consideration is decomposed into several
single-objective optimization subproblems, and a Pareto retrospective
approximation method is used to generate an approximated optimal
solution for each subproblem. In the second stage, from the solutions
generated in the first stage, a multiobjective local stochastic search with
a revised simulation allocation rule is used to explore the entire Pareto
front. Our experimental studies show that the proposed method out-
performs the state-of-the-art MO-COMPASS on a set of test instances
with noisy evaluations and a bi-objective bus scheduling problem. Our
proposed method is up to ten times faster than MO-COMPASS.

Keywords: Multiobjective optimization · Simulation optimization ·
Integer-ordered · Decomposition · Stochastic

1 Introduction

Multiobjective discrete optimization via simulation (MDOvS) involves optimiz-
ing several conflicting objectives in a discrete design space. The objective func-
tion evaluations are conducted by computer or physical simulation experiments.
Each simulation on an objective at a candidate solution x can produce a noisy
estimate value of the objective function at x. To reduce the estimation vari-
ance, one can do multiple independent simulation experiments at x and use the
average of the obtained noisy function values as its estimate value [10]. Many
real-life applications can be modeled as MDOvS. Examples can be found in
manufacturing [1], aviation [15], medical [3], and transportation [22].

MDOvS methods can be roughly classified into two categories according to
their goals. The methods in one category assume that the number of alternatives
(i.e., candidate solutions) is small. These methods evaluate all the alternatives
and aim to identify the best solutions. The key design issue in these methods is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Emmerich et al. (Eds.): EMO 2023, LNCS 13970, pp. 17–28, 2023.
https://doi.org/10.1007/978-3-031-27250-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27250-9_2&domain=pdf
http://orcid.org/0000-0001-6719-0409
http://orcid.org/0000-0003-0786-0671
https://doi.org/10.1007/978-3-031-27250-9_2


18 F. Liu and Q. Zhang

how to allocate the simulation budget to these alternatives, i.e., to decide the
number of simulations for each alternative for maximizing the probability that
the true Pareto optimal solutions are correctly identified or other performance
metrics [2,13,16].

The methods in the other category are for the problem with a large num-
ber of candidate solutions. It is impractical, if not impossible, to evaluate all
the candidate solutions. These methods only select a small number of candi-
date solutions for evaluation. Thus, besides simulation budget allocation, they
need efficient search strategies for identifying promising candidate solutions for
evaluation. Global search and local search including gradient methods have
been implemented as search strategies. For example, multiobjective partition-
based random search [20] adopts a global random search method, and it can
be readily hybridized with other multiobjective optimization methods. MO-
COMPASS [12,14], a multiobjective version of COMPASS [9,21], a fast local
search for MDOvS, mainly exploits neighborhoods of some promising solutions
that have been identified during the search, and it uses a simple rule for sim-
ulation budget allocation. R-PERLE [4,5] uses a retrospective search strategy
and a pseudo-gradient-based line search for fast searching promising solutions.
It adopts an epsilon-constraint method to scale the multiobjective optimization
problem into several single-objective problems. The epsilon constraints are hard
to design.

This paper proposes a two-stage algorithm for solving integer-ordered
MDOvS. In the first stage, we decompose the problem into several single-
objective optimization problems and perform retrospective approximation on
each sub-problem to find alternatives near the Pareto front. In the second
stage, we use a revised multiobjective local stochastic search to explore the
entire Pareto front. The main contribution is twofold: 1) A decomposition-based
Pareto retrospective approximation is proposed. It generates approximated non-
dominated solutions efficiently. 2) A two-stage framework is designed. The frame-
work takes advantage of both the efficient Pareto retrospective approximation
and the local stochastic search to balance optimization convergence and diver-
sity.

The remainder of this paper is organized as follows. Section 2 gives the prob-
lem formulation, Sect. 3 introduces the proposed algorithm in detail, Sect. 4
presents the experimental studies and discussion, and the last section concludes
the paper.

2 Problem Definition

Consider the following multiobjective simulation optimization problem with
integer-ordered variables:

min (f1(x), . . . , fm(x)),
s.t. x ∈ Θ,

(1)
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where fj(x) = E[Fj(x)] is the expected value of the j-th random objective
function Fj(x) at x for j = 1, . . . ,m. Independent samples (i.e., simulation
values) of Fj(x) can be obtained to estimate the value of fj(x) at each alternative
x. Θ is a finite integer-ordered design space, which is typically too large to be
evaluated exhaustively. We assume that Fj(x) on each alternative x follows a
normal distribution N(fj(x), σ2) and the σ is the same for all x [10].

Pareto optimality is adopted in this paper to define optimal solutions. x1 is
said to dominate x2, denoted as x1 ≺ x2, if and only if fj(x1) ≤ fj(x2) for each
j ∈ {1, . . . , m}. and fj(x1) < fj(x2) for at least one j ∈ {1, . . . , m}. x∗ is Pareto
optimal if no x ∈ Θ dominates x∗. The set of all the Pareto optimal points is
called the Pareto set (PS) and the set of their corresponding objective vectors is
called the Pareto front (PF). The goal is to approximate the entire PF as close
and as diverse as possible.

3 Algorithm

We propose a two-stage multiobjective simulation optimization method
(TSMOSO). It consists of a Pareto retrospective approximation method for the
first stage and a multiobjective local stochastic search for the second stage. Its
basic idea is to quickly obtain some approximated Pareto optimal solutions in
the first stage and then from them to explore the entire Pareto front in the
second stage.

3.1 Pareto Retrospective Approximation Method for the First
Stage

We proposed a decomposition-based Pareto retrospective approximation method
(PRA) for the first stage. Its pseudocode is shown in Algorithm 1. The initial
alternatives are generated by Latin Hypercube Sampling [8]. After initializa-
tion, the multiobjective optimization problem is decomposed into several sub-
problems defined by K uniformly distributed weight vectors λ1, . . . ,λK . The
weight vectors are generated using the method proposed by Das et al. [6]. The
decomposition function used in this paper is Tchebycheff aggregation [17]

f te(x|λ) = max
1≤j≤m

{λj(fj(x) − zj
∗)}, (2)

where z∗ = (z1∗, . . . , zm
∗) is a reference point. In our implementation, the refer-

ence point is set as the minimum objective value vector among all the evaluated
alternatives.

To optimize each sub-problem, a retrospective approximation (RA) [11] app-
roach is used, which is an improved version of sample average approximation
(SAA) [18]. In SAA, the objective function value is replaced by its empirical
mean and then a deterministic algorithm can be used. SAA uses a fixed number
of replications to calculate the empirical mean. To reduce the number of replica-
tions and computational cost, RA adaptively increases the number of replications
in each iteration.
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RA starts at the current best alternative in the initial population P0. It is
an iterative method. In each iteration of RA, the optimization starts from the
optimal solution in the last iteration. At the end of each iteration, the number
of replications r is enlarged to be r = r ∗ t2, where t2 is a scale factor. When
r reaches a threshold rt, the RA search on the current sub-problem i stops. In
each iteration of RA, a pseudo-gradient-based search is performed. It iteratively
performs two procedures 1) direction updating and 2) line search to minimize
f̄ te(x|λi).

Algorithm 1. Pareto Retrospective Approximation (PRA)
Input:
initial population P0; weight vectors {λ1, . . . , λK };
initial step size s0; scale factor t1; scale factor t2;
initial replication number r0; threshold of replication number rt.
Output: updated population P .

procedure PRA(P0, s0, t1, t2, {λ1, . . . , λK })
P ← P0, r ← r0
for i = 1 to K do

x ← argmin
x ∈P

f̄te(x|λi )

while r ≤ rt do
while not local optimal do

s ← s0
D , P ← Update Direction(x, λi , r, P )
x, P ← Line Search(x, λi , r, s, t1, D , P )

end while
r ← r ∗ t2

end while
end for

end procedure

procedure Update Direction(x, λi , r, P )
for j ← 1 to d do

xnew ← x + ej

Dj ← f̄te
r (xnew|λi ) − f̄te

r (x|λi )
P ← P ∪ xnew

end for
D ← D/Norm(D )

end procedure

procedure Line Search(x, λi , r, s, t1, D , P )
xold ← x
xnew ← round(xold + D ∗ t1)
while f̄te

r (xnew|λi ) < f̄te
r (xold|λi ) do

P ← P ∪ xnew

s ← s ∗ t1
xold ← xnew

xnew ← round(xold + D ∗ s)
end while
x ← xnew

end procedure

In direction updating, search direction D on current alternative x is updated
to be the negative pseudo gradient direction D on discrete space. Each dimension
of D is calculated according to Dj = −(f̄ te(x + ej |λi) − f̄ te(x|λi)), where
j ∈ {1, . . . , m}, and ej is a unit vector along j-th dimension. The direction is
then normalized to be D = D/Norm(D).
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In line search, the new alternative xnew is calculated from the old alternative
xold along the direction D with a step size of s and rounded to a nearest feasible
discrete position xnew = round(xold +s∗D). If the fitness of the new alternative
f̄ te(xnew|λi) is better than the old one f̄ te(xold|λi), the step size is enlarged to
be s = s ∗ t1 and the line search continues along current direction D, otherwise,
the line search procedure along current direction D stops. If the local optimal
point is reached, the current iteration of RA stops.

In the RA of each sub-problem i, we record a sufficient replication number
ri. A r is called sufficient if the following pseudo-gradient-based search with a
larger replication number doesn’t change the local optimal. A small ri generally
reflects a low uncertainty level of the problem and vice versa. We calculate the
average sufficient replication number rave =

∑
ri/K and use it in the second

stage to determine the simulation allocation budget.

3.2 Local Stochastic Search for the Second Stage

We adopt a multiobjective local stochastic search (LSS) to explore the entire
Pareto front in the second stage. Algorithm 2 shows the pseudocode of LSS.
Firstly, non-dominated sorting is performed on the tested alternative popula-
tion P . The P is sorted into approximated non-dominated alternatives Pnd and
dominated alternatives Pd according to their empirical means. Then, a promising
area Pr is generated around Pnd according to the euclidean distance in the design
space. A detailed formulation of Pr can be found in [14]. nnew new alternatives
Pnew are selected randomly from the promising area Pr and the population P is
updated. New simulations are allocated on the updated population P according
to the simulation allocation rule (SAR). The algorithm stops when the total
number of simulations N exceeds the budget B.

Algorithm 2. Local Stochastic Search (LSS)
Input:
simulation budget B; new population size nnew;
evaluated alternatives P .
Output:
approximated non-dominated alternatives Pnd.

while N < B do
Pnd, Pd ← NondSort(P )
Pr ← PromisingArea(Pnd, Pd)
Pnew ← RandomSampling(Pr, nnew)
P ← P ∪ Pnew

P, N ← SAR(P )
end while
Pnd ← NondSort(P )

The main difference between the local stochastic search used in our method
and that used in MO-COMPASS is on the SAR. MO-COMPASS [14] uses a
simple two-level SAR. In i-th iteration, it first ensures min{1, log(i)} samples
are allocated to each alternative, and distributes |Pnd| × min{1, log(i)} on the
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predicted non-dominated alternatives Pd and the alternatives selected from the
promising area Pnew to emphasis these critical solutions.

We design a multi-level SAR. It has two differences compared with the origi-
nal one [14]: 1) The number of samples allocated on the critical solutions is set to
be save × min{1, log(i)}, where save is the average sufficient number calculated
in the first stage. The reason is that |Pnd| cannot reflect the uncertainty of the
problem while save can. It can avoid using too many simulations on the problem
with small uncertainty. 2) A multi-level allocation method is used instead of
the two-level one. The first-level alternatives are the original critical alternatives
P 1 = Pd ∪ Pnew, the second-level alternatives are the predicted non-dominated
alternatives of the rest P 2 = NondSort(P/P 1) and so on. The number of repli-
cations for the n-th-level alternatives Pn is set to be save ×min{1, log(i)}/n. In
this way, the simulation allocation is more smooth. It improves the robustness
on problems with large uncertainty.

Compared with the well-known MO-COMPASS, which is a pure local
stochastic search, the proposed method divides the optimization process into
two stages. Stage one provides a few high-quality approximate Pareto optimal
solutions and Stage two starts from these solutions and generates more solu-
tions to approximate the whole Pareto front. This strategy makes our method
more efficient when the Pareto optimal solutions are close to each other as in
many applications. Stage one uses our designed decomposition-based retrospec-
tive approximation. Compared with the retrospective approximation based on
epsilon constraints, e.g., R-PERLE [5], our approach is easy to implement and
can be generalized to many-objective simulation problems. Stage two uses the
multiobjective local stochastic search. Compared with MO-COMPASS, it adopts
a new simulation allocation rule and can save the number of simulations.

4 Experimental Studies

We have compared the proposed TSMOSO with the current state-of-the-art MO-
COMPASS. First, experimental studies are carried out on test instances with
noisy evaluations. An ablation study is conducted to validate the contributions of
different algorithmic components. Then, the effectiveness of TSMOSO is further
demonstrated on a real-world biobjective bus scheduling problem.

4.1 Experiments on Test Instances

We used ZDT instances [7,14]. We modify the Pareto set of ZDT instances to
be a nonlinear function of variables and scale the Pareto front into the region
[0, 1]. The design space is discretized into Θ = {0, . . . , L}d, where L and d are
the discretization level and the number of variables, respectively. In this paper,
they are set to be L = 10, d = 5, which results in 161051 possible alternatives.
Apparently, it is too expensive to perform an exhaustive evaluation of every
alternative, which reflects the importance of the fast convergent search. Figure 1
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Fig. 1. An illustration of the discrete objective spaces of the test instances, where the
red sets are the Pareto fronts. (Color figure online)

illustrates the discrete objective spaces (in black) and the Pareto fronts (in red)
of different test instances.

Each instance has four different noise levels σ = {0.01, 0.1, 0.2, 0.5}, which
results in 20 test cases. The noise level is the standard error of normal distribu-
tion. In each case, we assume the noise levels on different objectives at different
alternatives are the same. 30 independent runs with different initial samplings
are carried out. Experiment settings for TSMOSO are: 1) initial population size
|P0| = 20, 2) the number of sub-problems K = 3, 3) the initial linear search step
length and its scale factor are s0 = 1.2 and t1 = 1.5, respectively, 4) the initial
number of replications and its scale factor are r0 = 4 and t2 = 2, respectively,
and 5) the threshold of the number of replications rt = 128.

There are several additional algorithmic components in TSMOSO compared
with MO-COMPASS. An ablation study is carried out to show the importance of
different components. We identify the three most important ones: 1) the Pareto
retrospective approximation, 2) the indicator save (denoted as Savg), which
decides the number of simulations in the second-stage optimization, and 3) the
multi-level simulation allocation rule (denoted as mlSAR). By deleting them one
by one from TSMOSO, we obtain the following three versions of TSMOSO:

– TSMOSO without mlSAR and Savg (V1)
– TSMOSO without mlSAR (V2)
– TSMOSO (V3)

Table 1 shows the simulation number (SN) and optimization efficiency score
(ES) of different algorithms on ZDT test instances. SN is the number of simula-
tions spent by different algorithms when they reach the same level (threshold) of
HV. In this paper, we choose to use 99% HVPF as the threshold, where HVPF

is the hypervolume of the Pareto front. ES is defined as the NS of the proposed
TSMOSO divided by that of the compared method. The larger the ES, the bet-
ter the performance. The last row is the four average ES values with respect to
four different noise levels σ = {0.01, 0.1, 0.2, 0.5}.

The results indicate that: 1) The proposed algorithm surpasses MO-
COMPASS in all the 40 test cases and the efficiency improvement is up to
tenfold; 2) The number of simulations spent increases with the noise level; 3)
The superiority of TSMOSO over MO-COMPASS is diminished as the noise level
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increases. TSMOSO V1 outperforms MO-COMPASS, which reflects the impor-
tance of using Pareto retrospective approximation in the first stage. There is an
obvious performance improvement from TSMOSO V1 to V2. The benefit of using
Savg is more obvious in less noisy cases, which reveals that the original SAR is
too conservative on low-noise cases. When comparing the results of TSMOSO
V2 and V3, interestingly, mlSAR doesn’t always increase the optimization effi-
ciency. Generally, mlSAR benefits the algorithm in high-noise cases while it is
less effective in low-noise cases. The reason is that mlSAR spends additional
simulations on middle-level alternatives. The additional simulations improve the
robustness in high-noise cases but are useless in low-level cases, where a small
number of simulations is already enough to identify optimal solutions.

Table 1. The simulaion number (SN) and efficiency score (ES) on ZDT instances using
MO-COMPASS and different versions of TSMOSO

Instance Noise level MO-COMPASS TSMOSO V1 TSMOSO V2 TSMOSO V3

SN ES SN ES SN ES SN

zdt1 0.01 58531 0.13 13824 0.55 6383 1.20 7671

zdt1 0.05 98729 0.24 37153 0.64 21287 1.12 23838

zdt1 0.1 101857 0.36 51034 0.73 34640 1.07 37131

zdt1 0.2 125289 0.46 90503 0.63 68991 0.83 57394

zdt2 0.01 76674 0.10 18997 0.41 7057 1.11 7847

zdt2 0.05 109663 0.20 48433 0.46 19280 1.16 22294

zdt2 0.1 218195 0.17 49883 0.73 37037 0.98 36233

zdt2 0.2 185315 0.57 127389 0.82 108892 0.96 104782

zdt3 0.01 73217 0.10 13897 0.53 6670 1.11 7389

zdt3 0.05 101084 0.18 37163 0.49 22937 0.80 18331

zdt3 0.1 102096 0.32 38974 0.85 34982 0.94 33012

zdt3 0.2 126062 0.42 89348 0.59 48975 1.08 52803

zdt4 0.01 49666 0.10 19070 0.27 4723 1.09 5143

zdt4 0.05 46008 0.14 21529 0.29 5851 1.08 6349

zdt4 0.1 43265 0.25 17129 0.62 8675 1.23 10666

zdt4 0.2 53095 0.39 33226 0.63 23212 0.90 20907

zdt6 0.01 60851 0.14 27967 0.30 8230 1.01 8307

zdt6 0.05 62848 0.16 33293 0.30 16473 0.62 10145

zdt6 0.1 74629 0.19 65071 0.22 20592 0.70 14505

zdt6 0.2 175454 0.28 73125 0.67 54111 0.90 48635

Average ES {0.11, 0.19, 0.26, 0.42} {0.41, 0.44, 0.63, 0.67} {1.10, 0.96, 0.99, 0.93}

Figure 2 compares the converge curves with a noise level of 0.1 on ZDT
instances. The colored curve is the average HV and the vertical error bar is the
normal deviation. Apparently, TSMOSO convergences much faster than MO-
COMPASS. In addition, the error bars reach zero at the end of optimization,
which means the algorithms can converge to the Pareto front in different inde-
pendent runs.
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Fig. 2. Average convergence curves of TSMOSO (red) and MO-COMPASS (blue) on
ZDT instances (Color figure online)

4.2 Biobjective Bus Scheduling

We demonstrate the algorithm on a biobjective integer bus scheduling problem
[5,19]. The problem requires scheduling the arrival times at the bus station of a
fleet of buses to minimize the expected operating cost of buses and the expected
waiting time of passengers. We suppose the passengers arrive at the bus station
according to a Poisson distribution P (k, λ), where λ = 10 is the arrival rate
per time unit. There are τ = 100 time units per day. During a day, a fleet
of buses b ∈ {1, 2, . . . , q} with infinite capacity is scheduled to visit the bus
station. Therefore, the decision variables are the integer arrival times of buses
at the station x = {x1, x2, . . . , xq}. We assume there is a no-cost bus at time
0 and a pre-scheduled bus at time τ and a bus is defined as not used if it is
scheduled at the same time as any other buses. The design space is selected to
be Θ = {0, 10, 20, . . . , 100}q, where q = 9, i.e., its a nine-bus scheduling problem.
The two objectives are formulated as:

F1(x) =

q+1∑

�=1

c0I {x� − x�−1 > 0} + (Ni (x�) − Ni (x�−1))
γ

,

F2(x) =

Ni(τ)∑

j=1

Wij ,

(3)

where Ni(xl) − Ni(xl−1) denotes the number of passenger arrivals between bus
l − 1 and bus l on the i-th day, where l = 1, 2, . . . , q + 1. Wij is the wait time of
the j-th passenger for j = 1, 2, . . . , Ni(τ) passengers on the i-th day.
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At any feasible x the expected value of objectives are:
f1(x) = E [F1 (x)]

=

q+1∑

�=1

c0I {x� − x�−1 > 0} + E

[√
Ni (x�) − Ni (x�−1)

]

≈
q+1∑

�=1

c0I {x� − x�−1 > 0} +
√

λ (x� − x�−1),

f2(x) = E [F2 (x)]

= E

⎡

⎣
Ni(τ)∑

j=1

Wij

⎤

⎦ = (λ/2)

q+1∑

�=1

(x� − x�−1)
2

.

(4)

A detailed description and analysis of the problem can be found in [5].
We perform 30 independent runs of TSMOSO and MO-COMPASS with dif-

ferent initial populations on the bus scheduling problem. The experimental set-
tings are the same as that used on numerical instances. The two objectives are
scaled to [0,1] according to the ideal and nadir points provided in [5]. Figure 3
(a) shows the convergence curves of HV versus the number of simulations in 30
independent runs. Although there is high randomness and some of the runs have
not yet converged, we can still easily observe from the results that TSMOSO
shows significantly faster convergence than MO-COMPASS on this multiobjec-
tive bus scheduling problem. Figure 3 (b) compares the approximated PFs of the
two methods with a computational budget of B = 1 × 105 simulations. Results
show that TSMOSO outperforms MO-COMPASS in terms of both convergence
and diversity.
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Fig. 3. Comparison of TSMOSO and MO-COMPASS on the biobjective bus scheduling
problem

5 Conclusion

This paper has proposed a two-stage algorithm called TSMOSO for solving
integer-ordered MDOvS. In the first stage, It uses a Pareto retrospective approxi-
mation to generate a set of approximated non-dominated solutions. In the second
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stage, it uses a local stochastic search with a revised multi-level simulation allo-
cation rule to explore the entire PF. The proposed algorithm is compared with
the state-of-the-art MO-COMPASS on noisy test instances and a biobjective
bus scheduling problem. Results demonstrate its effectiveness and efficiency. In
the future, we will investigate the combination of global search methods with
TSMOSO and apply it to real-world problems.
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Abstract. Multi-objective optimization problems give rise to a set of
Pareto-optimal (PO) solutions, each of which makes a certain trade-off
among objectives. When multiple PO solutions are to be considered for
different scenarios as platform-based solutions, a common structure in
them, if available, is highly desired for easier understanding, standard-
ization, and management purposes. In this paper, we propose a modified
optimization methodology to avoid converging to theoretical PO solutions
having no common structure and converging to a set of near-Pareto solu-
tions having simplistic common principles with regularity where the com-
mon principles are extracted from the PO solutions in an automated fash-
ion. After proposing the methodology, we first demonstrate its working
principle on a number of constrained and unconstrained multi-objective
test problems. Thereafter, we demonstrate the practical significance of the
proposed approach to a number of popular engineering design problems.
Searching for a set of solutions with regularity-based principles for differ-
ent platforms is a practically important task. This paper should encourage
more similar algorithmic developments in the near future.

Keywords: Regularity · Pareto-optimal solutions · Platform-based
designs · Evolutionary multi-objective optimization · Decision making

1 Introduction

The general structure of any optimization problem involves minimizing or max-
imizing single or multiple objective functions, representing the key performance
indicators (KPIs) of the problem, and satisfying a number of constraint func-
tions, imposing certain relationships among variables for solutions to be mean-
ingful. The first task is to mathematically formulate the resulting optimization
problem and then apply a suitable optimization algorithm to find the optimal
solution(s). Based on the number of objectives, the task can be categorized as a
single-objective [1–3], multi-objective (2–3 objectives) [4–7], or, many-objective
(>3 objectives) [8–10] optimization. In most real-world multi or many-objective
problems, it is not possible to find a single solution that is the best in terms
of all specified objectives. So, typically multi- and many-objective optimization
algorithms attempt to find a set of Pareto-optimal (PO) solutions.
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Classical point-based optimization algorithms use a generative solution
methodology in which the multi- or many-objective problem is scalarized to
a parametric single-objective problem. PO solutions are then generated one by
one using different parameter values. However, due to the basic operation with
a population of solutions and their implicit parallelism property, evolutionary
algorithms are increasingly being used to solve multi- and many-objective opti-
mization problems. It has been argued that since every PO solution must satisfy
certain optimality conditions [11,12], collectively they are expected to follow cer-
tain common properties involving decision variables, objectives, and constraint
values [13], resulting from the satisfaction of the equilibrium optimality con-
dition. The common principles extracted from a PO solution set can provide
valuable information to the user, as they exhibit explicit knowledge about the
properties of optimal solutions. A procedure of finding such common principles
from Pareto-optimal solutions is termed as a task of innovization – decipher-
ing innovative solution principles through optimization [13]. While “innovized”
principles were observed to exist in many practical problems, not every problem
may exhibit such common principles. Even if such principles exist, they can be
quite complex for human users to comprehend and make use of.

In this study, we argue that in practical problems, users would be willing
to sacrifice optimality in solutions with a certain type of regularity , particularly
if true PO solutions do not possess any simplistic pattern involving variables,
objective, and constraint values. In order not to deviate too much from the
true PO set for regularity, we propose a bi-objective optimization task that
attempts to find trade-off solutions that are not far from the true PO solutions
but possess regularity in terms of common patterns of features within certain
specified complexity. Besides providing an easier understanding of trade-off solu-
tions, regularity-based solutions would also facilitate an easier maintenance and
switching methodology from one trade-off solution to another in practice.

The rest of the paper is organized as follows: Sect. 2 provides the motiva-
tion behind the present study. A brief overview of the literature along a similar
direction is provided in Sect. 3. Section 4 describes the proposed methodology in
detail. The experimental outcome and corresponding discussion are presented in
Sect. 5. Finally, Sect. 6 concludes the paper and provides additional direction for
further research on this topic.

2 Motivation for Proposed Study

The goal of a multi-objective optimization process is to find a set of trade-off fea-
sible PO solutions to achieve two main purposes. First, each PO solution is a high-
quality candidate solution that in principle can be adopted in practice, and hence
they, collectively, provide an idea of alternate solutions pertaining to a problem.
Second, the trade-off information of PO solutions can be integrated with users’
decision-making priorities to choose a single preferred solution for implementa-
tion. In certain scenarios, the knowledge of alternate PO solutions may be used
to switch from one PO solution to another, if the circumstances demand. In other
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scenarios, different PO solutions can be suitable for different computing platforms
or environments. Thus, if the final solution set from a multi-objective optimization
task possesses certain regularity principles (with simplistic variable-objective-
constraint relationships), switching or maintenance of PO solutions under differ-
ent computing platforms or other scenarios can be easily achieved. Such a solution
philosophy is akin to platform-based design principles [14–16] which accelerated
standardized design solutions to be adopted during the late nineties due to easier
maintenance and re-usability considerations.

f2

f1

Regular front

Efficient front

Feasible objective space

Fig. 1. A regular front contains
solutions with common simplis-
tic features but may be domi-
nated by the PO front. It may
be worth sacrificing original effi-
cient solutions having no easily-
comprehensible features for solu-
tions with some regularity.

Figure 1 illustrates the concept of a
regular-front, in comparison to a PO front,
introduced in this study. PO solutions may
not have any regularity or the desired regu-
larity in them, because no regularity require-
ment is usually enforced as an optimization
goal. The figure illustrates that efficient solu-
tions can be widely different from each other
and may not possess any easy-to-comprehend
common principles. Every PO solution can
come from a unique combination of vari-
ables without much common pattern from
one solution to another. This may require
every PO solution to be interpreted differ-
ently with its own inventory, maintenance,
and operating conditions. If such PO solu-
tions are to be used in a platform-based appli-
cation scenario in which a solution is needed
for different platforms (having different com-
pute powers or differently scaled applications), it is desired that solutions have
certain common properties so that an easier inventory, maintenance or similar
operating conditions can be adopted. The figure shows that solutions lying on
a regular front can have common properties (circular cross-section), but cause
a small worsening of performance metrics compared to PO solutions. We argue
here that such regularity-based solutions will be more desired in practice than
PO solutions, for achieving a better understanding and control of dealing with
the solutions. The implementations of the concept of regularity might be differ-
ent in different problem scenarios, but the high-level idea remains the same. For
example, in numerical optimization problems, we may like to have a constant
value for certain variables to all regular solutions or have a simplistic relationship,
such as x1 ≤ x2 among all regular solutions. In the case of neural architecture
search, we may want to have certain common repeating blocks of connections
(known as micro-architecure [17]) in all trade-off neural network architectures.

3 Past Studies

The concept of regularity in multi-objective optimization is novel and there is not
much study yet in this direction. However, the concept is similar to the task of
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innovization, which was introduced by the second author in 2006 [13]. Innoviza-
tion deals with finding solution properties which are common to PO solutions.
After its introduction in [13], it has gained popularity over the years as a process
to get useful information about different design problems. Using innovization,
the authors were able to extract innovative design principles for three design
problems: multiple-disk clutch brake design, spring design, and welded beam
design problems. Since its inception, innovization has evolved and found inno-
vative applications. In [18], the authors have utilized innovization as a way of
improving the convergence speed through repair operations. The authors have
applied innovization during optimization to discover interesting design princi-
ples and used the information to guide the search in a better direction thereby
increasing the convergence speed. This idea of extracting the design principles
through innovization has been used by multiple researchers in the subsequent
years [19–22]. But there are fundamental distinctions between regularity-based
optimization introduced in this paper and innovization task. For example,

– In innovization, common properties of PO solutions are sought, so they can
provide vital knowledge about PO solutions to reach the original Pareto front
of the problem. In regularity-based optimization, the goal is to find a set of
trade-off solutions with certain simplistic properties of variables, objectives,
and constraints. The resulting solutions need not be PO solutions but are
expected to be close to the PO set in the objective space.

– Even though innovization attempts to extract important design information
from the intermediate/final PO solutions, all the PO solutions may or may not
follow the extracted information because it does not enforce all the solutions
to follow the pattern. But, in regularity-based optimization, the goal is to find
a set of regular solutions that exactly follow the obtained regularity principles.

Platform-based design studies [14–16] are close to the concept of regularity-
based optimization, but the former do not usually use any optimization method
to arrive at common properties among the platform of solutions.

4 Regularity-Based Optimization (RegEMO) Procedure

As discussed in Sect. 2, the goal of the proposed algorithm is to search for solu-
tions having two properties: (i) they possess some simple regularity principles,
and (ii) they are as close as possible to the PO solutions. The most intuitive
starting point of the approach is to look for some common principles that are
already existing in the majority of the PO solutions.

Let us illustrate the concept through a simple constrained two-variable, two-
objective test problem (BNH). The PO solutions obtained by NSGA-II [23] are
shown in Fig. 2b in blue points. Figure 2a shows the complexity and Pareto devi-
ation of different regularity principles considered by the RegEMO process. The
red stars in Fig. 2b are the regular points corresponding to the preferred regu-
larity principle from Fig. 2a. This process is described in more detail in Sect. 5.1
By analyzing the solutions, we observe that for AB, x1 = x2 ∈ [0, 3] and for
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Fig. 2. Proposed RegEMO procedure is illustrated on BNH problem. (Color figure
online)

BC, x2 = 3 with x1 ∈ [3, 5]. Such information on the properties of PO solutions
is useful to practitioners and the concept of discovering such knowledge of PO
solutions was termed the task of innovization [13]. If the above information is
comprehensible to the users so that they can be used for inventory, management,
or operation of the problem, there is no need for any further study and we shall
call these PO solutions as regular solutions.

However, if the division of properties is somehow complex to comprehend or
use, the user may be interested in finding a new set of solutions, not far from the
PO solutions, but possessing a more simplistic relationship, maybe within the
maximum desired complexity provided by the user. For example, our proposed
regularity-based EMO (RegEMO) has found a new set of trade-off solutions
(shown in red stars) that is close to the original PO set but has the following a
single simplistic linear property for the entire set:

x2 = 0.6x1 + 0.49, x1 ∈ [0, 4.18]. (1)

The above principle sacrifices the extreme parts of the PO front and makes a
slight deviation from the original PO front in the lower left part of the PO front,
but provides a simple linear relationship for users to have a better comprehension
and use of the knowledge.

4.1 Steps of Proposed RegEMO Procedure

The RegEMO procedure consists of six steps, as described below.

Step 1: Discovery and Clustering of the Pareto Front: The first step
of the regularity search process is to find a set of PO solutions using an evolu-
tionary multi-objective optimization (EMO) or an evolutionary many-objective
optimization (EMaO) procedure. Thereafter, a clustering operation is applied
to cluster the Pareto front based on the design space representations of the PO
solutions. In this study, we have pre-specified the number of clusters (nc) to be
found using the k-means [24] clustering approach, but later it can be replaced
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by other clustering processes which do not require such pre-specification. If the
user is interested in finding a set of regularity principles common to the entire
PO set, nc = 1 can be set.

Step 2: Identification of Non-fixed Variables: For each cluster of solutions
(say Cj), we try to identify variables that are not fixed to some specific values,
rather they vary across the PO solution subset. One simple idea would be to
measure the degree of variation of a variable (say i-th) in the subset (x(k)

i , where
k ∈ Cj) and compare it with the original specified search space using variable’s
lower and upper bounds (xL

i and xU
i ):

Δi =
maxk∈Cj

x
(k)
i − mink∈Cj

x
(k)
i

xU
i − xL

i

. (2)

By checking if Δi is within a pre-specified threshold (ζ), the variable can be
declared as a fixed variable. However, there is a problem with this approach. A
variable may converge to two or a few widely different values on the search space,
producing a large value of the numerator of the above equation. Although the
variable has settled to a few values, the above metric will not declare it as a fixed
variable. To alleviate this, we propose a binning procedure. We divide the range
(xU

i −xL
i ) in a certain number of bins (nbins). If a variable has representations in

equal or more than 50% bins, we declare it a non-fixed variable, else it becomes
a fixed variable.

Step 3: Regularity Search in Fixed Variables: The variables which are not
identified as non-fixed variables (x ∈ F̄) are termed as fixed variables (x ∈ F).
Next, we attempt to look for any regularity (piece-wise or complete) among the
fixed variables. The process starts by computing the average of fixed variable
values (xi,avg) in the population and arranging them in a non-decreasing order:
[∼, S] = ascend sort(xi,avg). The set S contains the variable ID of the fixed
variables in ascending order of the average variable value. Thereafter, we fit a
regression function r(s) (polynomial of degree η) through the average variable
values as a function of sorted variable ID (s) representing the fixed variable
xSs

. If the regression fit does not produce a small error, we divide the sorted
variables into smaller pieces and find a piece-wise regression fit within the desired
maximum error (εf ).

Step 4: Regularity Search in Non-Fixed Variables: Non-fixed variables
do not have a convergence to any fixed value(s), hence finding regularity in
non-fixed variables is more challenging. However, despite the variations in non-
fixed variables, they can be related to each other in a specific way and follow
certain simplistic relationships. Next, we attempt to decipher any such rela-
tionships among non-fixed variables. Several procedures are possible, but in our
current implementation, we divide the non-fixed variables into three categories:
(i) non-fixed dependent, (ii) non-fixed independent with which non-fixed depen-
dent variables have a relationship, and (iii) orphan non-fixed variables with no
apparent relationship with other non-fixed variables.
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The following tasks are performed on non-fixed variables only. The first step
is to identify these three different categories of non-fixed variables. For the iden-
tification, we have used Pearson correlation coefficient (PCC). Each non-fixed
variable is assigned a correlation score obtained by summing up the PCC scores
of that variable with every other variable. The variables having higher correla-
tion scores are candidates for becoming non-fixed dependent variables as they
are more related to the rest of the variables. So, we select the top K non-fixed
variables having higher correlation scores to become non-fixed dependent vari-
ables. Each non-fixed dependent variable is then represented as a linear combi-
nation of the remaining non-fixed variables where the coefficients (multiples of
κ) of the linear combination denote coefficients of linear regressor fitted for the
non-fixed dependent variables with respect to the other non-fixed variables. The
non-fixed variables having non-zero coefficients are termed as non-fixed inde-
pendent variables and the ones having zero coefficients are termed as non-fixed
orphan variables. A relationship is validated with an MSE bound εnf .

Note that the besides classifying the variables into four categories (fixed and
non-fixed variables together), the above process also assigns values for the fixed
variables and relationships among certain non-fixed variables.

Step 5: New Optimization Problem Formulation to Find Candidate
Regular Solution Set: The above regularity relationships, although obtained
from PO solutions, are on one hand simplistic (constant or linearly dependent
on each other), but appear in an approximate manner with tolerances specified
above. Since they capture a simple and approximate relationship (justifying reg-
ularity), users may be interested in knowing what new trade-off solutions would
be most appropriate to satisfy the relationships so that they are not far from
the actual PO front.

For this purpose, we formulate a new optimization problem by enforcing
the obtained relationships. To determine the variables of the new optimization
problem, first, all fixed variables are set to their observed fixed values and are
not considered as variables for the new optimization problem. Second, non-fixed
dependent variables are set by the obtained relationships (as constraints) as
functions of non-fixed independent variables and are also not considered as vari-
ables of the new optimization problem. The non-fixed independent variables
and orphan variables are chosen as variables of the new optimization problem
and their variable bounds are adjusted to the lower and upper bounds of their
variations in the PO set.

The objective function of the new optimization problem is identical to the
original problem. Constraints of the original problems are also included. We
employ an EMO/EMaO algorithm to again solve the new optimization problem.
It is expected that the obtained regular solution set will be inferior to the original
PO set, and therefore, their acceptability of them must be traded based on the
gain in simplicity in obtained regularity principles. We execute the following
final step for this purpose.

Step 6: Bi-objective Parametric Search and Choice of the Best Regular
Solution Set: The above process of arriving at regularity principles involves a
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Table 1. RegEMO parameters and allowable values for the bi-objective search.

RegEMO parameters Description Search space

Fixed var. regression degree (η) Highest degree for polynomial fitting regressor 1, 2, 3
Non-fixed independent var. factor (κ) Coefficients in multiples of 0.1, 0.3, 0.5
Non-fixed dependent equations (K) Max. number of non-fixed dependent vars. allowed 1, 2
Threshold for Δi (ζ) Threshold used for deciding if a variable is fixed 0.2, 0.5
Fixed var. MSE bound (εf ) Upper bound on MSE for regularity requirement 0.1, 0.3, 0.5
Non-fixed var. MSE bound (εnf ) Upper bound on MSE for regularity requirement 0.1, 0.3, 0.5
Number of clusters in the PO set (nc) Number of clusters for dividing the PO set 1, 2, 3

number of parameters mentioned in Table 1. A change in any of these parameters
(p-vector) will produce a different set of regularity principles (R(p)) having a
different complexity (C(p)) estimate and the new optimization will produce a
different regular solution set (Y(p)) with a different deviation (d(p)) estimate
from the original PO set. The first task will be to employ an unconstrained
bi-objective search in which parameters (p) are variables and two objectives (d
and C) are minimized. This will ensure that the final regular solution set Y∗ is
minimally away from the original PO set under the added constraints and also
have a minimal complexity estimate.

We now define metrics for two objectives. The deviation from the PO set is
simply defined as the percentage difference in hypervolume (HV) metrics of the
original PO set and the obtainedY-set, from the original PO set hypervolume:d =
1− HV(Y)/HV(PO). However, the complexity metric objective is computed from
the structure of fixed and non-fixed variable relationships. For an n-variable vector
having nf fixed, nni non-fixed independent, nnd non-fixed dependent variables,
we assign the following complexity metric value for each variable type: (i) fixed
var.: c1 = 0.5, (ii) non-fixed indep. var.: c2 = 6n − 11, (iii) non-fixed dep. var.:
c3 = 3nni, and (iv) orphan var.: c4 = c2(n − 2) + 4. The above assignments are
chosen by comparing different pairwise scenarios of relationships and enforcing an
intuitive preference to the more desired choice for each scenario. The complexity
of the regular solution set is then computed as follows:

C = c1nf + c2nni + c3nnd + c4(n − nf − nni − nnd). (3)

Fig. 3. Bi-objective front for
decision-making on the welded-
beam problem.

Since the total number of parametric
combinations is small (972), we execute
an exhaustive bi-objective search and iden-
tify the non-dominated parametric solution
(NDPS) set. Then, a pre-specified decision-
making approach is used to choose the pre-
ferred NDPS. We select the knee point (hav-
ing largest trade-off [25] in the neighborhood)
of the NDPS set if it has an HV deviation
d less than or equal to 2%, else we use the
principle that leads to the least HV deviation.
Every step of the proposed six-step procedure
is illustrated in Fig. 4.
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Fig. 4. Proposed steps for finding the regular front are depicted.

5 Results and Discussion

To visualize the effectiveness of the proposed approach, we apply it to a number
of constrained and unconstrained test problems as well as a few engineering
design problems. The regularity search uses NSGA-II for two-objective problems
and NSGA-III for three-objective problems. To keep the computational cost on
the same level, we have used 40, 000 function evaluations for all problems.

5.1 Test Problems

The final regularity principles obtained from the proposed six-step procedure are
presented in Table 2. Three-objective DTLZ2, DTLZ5 and DTLZ7 problems have
10 variables each with certain known structures of PO solutions. Hence, they
are ideal problems to test our procedure. The first two problems are constructed
with x3 to x10 taking a value of 0.5, while the first two variables change within
their lower and upper bounds [0, 1] uniformly to provide diversity in solutions.
Table 2(a) shows that the best-selected solution Y by our proposed procedure
has identified the above facts. Figure 5a shows that the original PO set and our
finally selected regular set are almost identical, meaning that the original PO
solutions already possess simple relationships and there is no need to find any
further approximate solutions close to the PO set. In the case of DTLZ5, the
first two objectives are correlated, hence only one variable causes the diversity
in the entire PO front, while other variables including x2 get fixed to 0.5. Here
too, the obtained regular solution set is close to the original PO set. For DTLZ7
problem, variables x3 to x10 are fixed to zero and there are two orphan variables
that produce the entire NDPS set.
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Having demonstrated simple structures in solutions on DTLZ test problems,
now we apply our procedure to four constrained problems. BNH problem and
its results from our approach were already discussed earlier in Fig. 2b. Figure 2a
shows the bi-objective NDPS front. Since there is no knee point, in this case, we
have selected the top-left point as it is having HV deviation of less than 2%.

For OSY, the original PO front has five sub-fronts each having different
combinations of fixed, non-fixed dependent, and independent variables [12]. The
complexity estimate of the true PO solution relationships is 379.5. Our proposed
approach finds only three sub-fronts, with simple structures. No multi-variable
relationships are observed, but solutions in all three sub-fronts vary with x3

to provide the needed diversity and they use different combinations of fixed
variables. The resulting complexity metric value is 319.5, about 16% better than
that of the PO set. Figure 5b shows the three sub-fronts which are closer to the
original PO front but contain the above simple relationships.

The problem SRN has no simple relationships among variables for the entire
PO front. However, our method finds that if the extreme parts of the PO front
are eliminated, simple principles for the two variables exist.

Fig. 5. Original and regular efficient sets for constrained and unconstrained test prob-
lems show minimal deviation and regularity principles depicted in Table 2.

5.2 Engineering Problems

Finally, we apply RegEMO procedure to three engineering problems. The final
sets of regular solutions are presented in Fig. 6, while the regularity principles
embedded in the solutions are shown in Table 3.

Fig. 6. Original and regular efficient sets for three engineering problems show minimal
deviation with regularity principles presented in Table 3.
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Table 2. Regularity principles extracted by RegEMO for constrained and uncon-
strained test problems.

(a) DTLZ2 (f) OSY

Fixed variables:

x3 = 0.50, x4 = 0.50, x5 = 0.51, x6 = 0.50,
x7 = 0.50, x8 = 0.50, x9 = 0.50, x10 = 0.50
Orphan variables:

x1 ∈ [0.00, 1.00], x2 ∈ [0.00, 1.00]
Non -fixed independent variables: None

Non -fixed dependent variables: None

Regular Front 1

Fixed variables:

Piece 1:

x2 = 0.92, x4 = 0.00, x6 = 0.11
Piece 2:

x1 = 4.72, x5 = 1.00
Orphan variables:

x3 ∈ [1.00, 4.96]
Non -fixed independent variables: None

Non -fixed dependent variables: None

(b) DTLZ5

Fixed variables:

x2 : 0.47, x3 : 0.50, x4 : 0.50, x5 : 0.50,
x6 : 0.51, x7 : 0.50, x8 : 0.50, x9 : 0.50,
x10 : 0.49
Orphan variables:

x1 ∈ [0.00, 1.00]
Non -fixed independent variables: None

Non -fixed dependent variables: None

Regular Front 2

Fixed variables:

x1 = 5.00, x2 = 1.00, x4 = 0.00, x5 = 4.99, x6 = 0.08
Orphan variables:

x3 ∈ [1.01, 4.92]
Non -fixed independent variables: None

Non -fixed dependent variables: None

(c) DTLZ7

Fixed variables:

x3 = 0.00, x4 = 0.00, x5 = 0.00, x6 = 0.00
x7 = 0.00, x8 = 0.00, x9 = 0.00, x10 = 0.00
Orphan variables:

x1 ∈ [0.00, 0.88], x2 ∈ [0.00, 0.88]
Non -fixed independent variables: None

Non -fixed dependent variables: None

Regular Front 3

constant variables:

Piece 1:

x1 = 0.16, x4 = 0.00
Piece 2:

x2 = 1.84, x5 = 1.01, x6 = 0.10
Orphan variables:

x3 ∈ [1.0, 3.54]
Non -fixed independent variables: None

Non -fixed dependent variables: None

(d) BNH (g) SRN

Fixed variables: None

Orphan variables: None

Non -fixed independent variables:

x1 ∈ [0.03, 4.18]
Non -fixed dependent variables:

x2 = (0.60 × x1) + 0.49

Fixed variables:

x1 = −2.36
Orphan variables:

x2 ∈ [2.55, 14.81]
Non -fixed independent variables: None

Non -fixed dependent variables: None

Table 3. Regularity principles extracted by RegEMO for engineering problems.

(a) Two-Member Truss (b) Welded Beam Design (c) Crashworthiness

Regular Front 1

Fixed variables: None

Orphan variables: None

Non -fixed independent variables:

x2 ∈ [0.001, 0.01]
Non -fixed dependent variables:

x1 = (0.5 × x2) + 0.0
x3 = (9.9 × x2) + 1.99

Regular Front 1

Fixed variables:

x2 = 0.40, x3 = 9.98
Orphan variables:

x1 ∈ [0.98, 1.10], x4 ∈ [1.76, 5.00]
Non -fixed independent variables: None

Non -fixed dependent variables: None

Regular Front 1

Fixed variables:

x1 = 1.07, x2 = 2.99
Orphan variables:

x3 ∈ [1.00, 3.00], x4 ∈ [1.00, 1.08], x5 ∈ [1.01, 2.97]
Non -fixed independent variables: None

Non -fixed dependent variables: None

Regular Front 2

Fixed variables:

x1 = 0.004, x2 = 0.01
Orphan variables:

x3 ∈ [2.57, 3.0]
Non -fixed independent variables: None

Non -fixed dependent variables: None

Regular Front 2

Fixed variables:

x3 = 9.99
Orphan variables: None

Non -fixed independent variables:

x4 ∈ [0.35, 1.33]
Non -fixed dependent variables:

x1 = (0.70 × x4) + 0.05
x2 = (−1.20 × x4) + 1.99

Regular Front 2

Fixed variables:

x1 = 1.00, x3 = 1.00, x4 = 1.00
Orphan variables:

x2 ∈ [1.00, 1.52], x5 ∈ [1.03, 2.68]
Non -fixed independent variables: None

Non -fixed dependent variables: None
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For the truss problem, the PO front has two parts with a transition point at
f1 = 0.045. For f1 ≤ 0.045, x3 = 2 and x1 = 0.5x2 are two principles for the
PO solutions reported in [13]. Our procedure is able to discover the same. While
x3 seems to be related to x2, but in the original range, x3 ∈ [1, 3], the variation
of x3 in the regular set is [1.99, 2.09], which is almost acceptable as a good
convergence near x3 = 2. This front is represented by region A-B in Fig. 6a. On
the right side of the transition point (marked by region B-C), RegEMO discovers
that x2 is fixed at 0.01 which is its upper bound. x1 also gets fixed to 0.004,
but x3 becomes an orphan variable in the range [2.57, 3.00]. These findings are
simple and similar to the ones observed before by analyzing PO solutions. For
these reasons, the original PO front and our regular front are quite close. For
the welded-beam design problem, the selected RegEMO solution comes from
the knee point (Fig. 3). The entire PO set has x3 = 10, which is found by our
procedure. As shown in [13], x2 stays constant at 0.40 on a part of the PO front
but increases with f2 at another part with simplistic regularity principles. For
the crashworthiness problem, no innovization study has been made before to
discover any apparent principles among variables. Clearly, the PO set has two
distinct sub-fronts and our procedure discovers two simple relationships among
variables. Although some parts of the original PO set are not covered by these
simplistic principles, Fig. 6c shows that NDPS points cover major parts of both
sub-fronts.

6 Conclusions

In this paper, we have questioned the practical validity of Pareto-optimal (PO)
solutions which have no simplistic common properties among their variable val-
ues. We then argued that a trade-off solution set near the original PO set, pos-
sessing certain simple relationships of variables, may be desired in lieu of PO
solutions. We have called them regular solutions and proposed here a six-step
procedure to identify them. The proposed procedure starts with the PO solu-
tions obtained by an EMO or EMaO algorithm and analyzes them to classify
all variables into four types depending on their constancy and dependencies on
each other. Thereafter, a parametric new optimization problem is formulated
with a reduced variable space (restricted by the variable relationships obtained
by the analysis steps). Finally, a bi-objective analysis of each parameter com-
bination’s effect on resulting non-dominated regular solution sets is performed
with two conflicting criteria: minimizing hypervolume difference between the
true PO front and the resulting regular front and minimizing the complexity
of the resulting variable relationships. A preferred regular solution set is then
chosen based on a trade-off between the two criteria.

The working of the proposed procedure has been demonstrated on a few
test problems for which the original PO set was designed to have simplistic
relationships among variables. Thereafter, the procedure has been applied to a
number of constrained problems and engineering design problems to discover
near PO solutions but possessing simplistic variable relationships.
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The concept is practical and the proposed procedure is novel, but there can
be other ways to achieve the same, which can be pursued next. The proposed
procedure, being algorithmic, keeps the final choice of a preferred regular front to
the decision-maker to make the approach further appealing to practitioners. We
believe that sacrificing Pareto-optimality for regularity in solutions demonstrated
in this paper should encourage more such studies in the coming years.
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Abstract. In this paper, we propose a novel decomposition method
based on cooperative coevolution (CC) to deal with large-scale multi-
objective optimization problems (LSMOPs) named Linkage Measure-
ment Minimization (LMM), and after decomposition, NSGA-II is
employed to optimize the subcomponents separately. CC is a mature
and efficient framework for solving large-scale optimization problems
(LSOPs), which decomposes LSOPs into multiple nonseparable subcom-
ponents and solves them alternately based on a divide-and-conquer strat-
egy. The essence of the successful implementation of the CC framework
is the design of decomposition methods. However, in LSMOPs, variables
in different objective functions may have different interactions, and the
design of a proper decomposition method for LSMOPs is more difficult
than for single objective optimization problems. Our proposed LMM can
identify the relatively strong interactions and search the better decom-
position iteratively. We evaluate our proposal on 21 benchmark functions
of 500-D and 1000-D, and numerical experiments show that our proposal
is quite competitive with the current popular decomposition methods.

Keywords: Cooperative coevolution (CC) · Linkage Measurement
Minimization (LMM) · large-scale multi-objective optimization
problems (LSMOPs) · NSGA-II

1 Introduction

The performance of canonical multi-objective evolutionary algorithms (MOEAs)
degenerates rapidly when solving large-scale optimization problems (LSOPs).
This is mainly due to the presence of the curse of dimensionality, which means
that the search space of optimization problems increases exponentially as the
number of variables increases. Thus, solving LSOPs faces a huge challenge. Many
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research efforts in computer science ranging from computational linear algebra
[11] and machine learning [4] to numerical optimization [7] have been published
to alleviate the curse of dimensionality.

Cooperative coevolution (CC) [14] is a flexible and efficient framework to
deal with LSOPs. CC decomposes the LSOPs into several nonseparable sub-
components and EAs are applied to solve the subcomponents alternately. Since
the solution found in a sub-problem cannot form a complete solution for evalu-
ation, representative solutions of the other subcomponents are required, which
compose the context vector [2]. The context vector is updated iteratively and
acts as the context in which cooperation occurs.

Many published research state that the CC framework is sensitive to decom-
position [12,13]. Thus, the key to the successful implementation of the CC frame-
work is the design of the decomposition method. In this paper, we design a novel
decomposition method named Linkage Measurement Minimization (LMM). We
regard the decomposition problem as a combinatorial optimization problem and
design an objective function based on Linkage Identification by the Nonlinearity
Check on Real-Coded GA (LINC-R) to lead the direction of optimization.

The remainder of this paper is organized as follows, Sect. 2 covers prelimi-
naries and a brief review of decomposition methods in LSMOPs. Section 3 intro-
duces our proposal CC-NSGA-LMM in detail. Section 4 shows the experiments
and analysis. Section 5 discusses future research. Finally, Sect. 6 concludes this
paper.

2 Preliminaries and Related Works

We first introduce the preliminaries in this section, including the definition of
LSMOPs, the separability of variables, and NSGA-II. Then, a brief review of
decomposition methods in LSMOPs is involved.

2.1 Preliminaries

Large-Scale Multi-objective Problems. Without loss of generality, a Multi-
objective Problem (MOP) can be mathematically defined as Eq. (1):

min F (x) = (f1(x), f2(x), ..., fM (x)),
s.t. x ∈ Ω,

(1)

where f : Ω → Λ ⊆ R
M consists of M objectives, Λ is the objective space,

Ω ⊆ R
D is the decision space, and x = (x1, x2, ..., xD) ∈ Ω is a solution consisting

of D decision variables. The dominance relation between two solutions can be
defined as (∀i ∈ 1, ...,M, fi(x) � fi(y) ∧ (∃j ∈ 1, ...,M, fi(x) ≤ fi(y)). If this
formula is satisfied, we can say that x dominates y. A Pareto optimal solution
is a solution that is not dominated by any solution in Ω. In LSMOPs, a trial
solution x) contains a large number of decision variables (e.g., D ≥ 1000).
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Separability of Variables. Separability of variables refers to the fact that the
setting of one variable has an impact on the fitness landscapes of other variables.
Given two variables xi and xj , if ∂2f

∂xi∂xj
= 0, then xi and xj are separable. A

partially separable function can be formulated as:

f(X) =
m∑

i=1

fi(Xi) (2)

m is the number of subcomponents. Notice that interaction is not rigorous equiv-
alent the nonseparability. A simple example is f(x) = (xi +xj)2, xi, xj ∈ [0, 10].
Although xi and xj interact, xi and xj are still separable in limited search space
considering monotonicity. Thus, the ultimate goal is to identify the separability
of all variables and to develop a decomposition method to assign the variables
into subcomponents properly.

NSGA-II. Non-dominated Sorting Genetic Algorithm (NSGA-II) is proposed
in paper [6]. With three special characteristics, the fast non-dominated sort-
ing approach, the fast crowded distance estimation procedure, and the sim-
ple crowded comparison operator, NSGA-II becomes one of the most popular
MOEAs. More details can ref to [6].

2.2 Decomposition Methods in LSMOPs

CC is first applied to deal with large-scale single-objective problems (LSSOPs)
and extended to LSMOPs from 2013 [1]. However, LSMOPs often contain mul-
tiple conflicting objective functions, and the interactions between variables in
different objective functions may be diverse, and both the convergence and diver-
sity of the population should be considered when optimizing each group of deci-
sion variables. Hence, the implementation of a divide-and-conquer strategy on
LSMOPs is much more difficult. Up to now, there are mainly three categories of
decomposition techniques: random grouping, differential grouping, and variable
analysis.

Random Grouping in LSMOPs. CCGDE3 [1] first adopts the random
grouping and assigns the variables into several groups with equal sizes. Although
the first work on LSMOPs is relatively naive and the random grouping seems not
reliable, it obtained satisfactory performance on some LSMOPs with up to 5, 000
decision variables in comparison to conventional MOEAs, and the mathematical
analysis in DECC-G [17] proves that it is quite efficient for random grouping to
capture the interactions without information about fitness landscape. Besides,
many random grouping strategies designed for LSSOPs such as MLCC [18] are
also introduced to LSMOPs and form a new algorithm MOEA/D-RDG [16].
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Differential Grouping in LSMOPs. Although the random grouping tech-
nique has the advantage of environmental insensitiveness and easy implemen-
tation, it does not consider the interactions between variables at all, thus, the
direction of optimization may be misled. To address this problem, the differential
grouping is extended from LSSOPs to LSMOPs. When identifying the interac-
tion between xi and xj , Eq. (3) defines the mechanism of differential grouping
in LSSOPs.

if |(f(sij) − f(si)) − (f(sj) − f(s))| < ε

then xi and xj are separable
(3)

si, sj , and sij are perturbed on s with δ in respective dimension(s), ε is a allow-
able error. TS [15] applies the Eq. (3) to all objective functions, and separability
between xi and xj is identified only Eq. (3) is satisfied in all objective functions.

Variable Analysis in LSMOPs. Both random grouping and differential
grouping were originally proposed for LSSOPs, which concentrate on assigning
the decision variables into subcomponents but ignore the population diversity
in the objective space. MOEA/DVA [10] perturbs the random samples, if all of
the perturbed solutions are nondominated with each other, the decision vari-
able is regarded as a position variable, whereas if each perturbed solution is
dominated by or dominates all of the others, the decision variable is regarded
as a distance variable; otherwise, it is regarded as a mixed variable. The posi-
tion variables influence the population diversity but do not change population
convergence. Hence they need only to be slightly adjusted for maintaining the
population diversity. On the contrary, the distance variables influence popula-
tion convergence but do not impact population diversity, which deserves lots of
computational costs to be deeply optimized for the best convergence. Numer-
ical experiments show that MOEA/DVA significantly outperforms many other
MOEAs on LSMOPs in benchmarks.

3 CC-NSGA-LMM

In this section, we will introduce the details of our proposal and the techniques.
Here in Fig. 1, we demonstrate the flowchart of the main steps. There are two
stages in CC-NSGA-LMM. In the decomposition stage, we regard the decom-
position problem as a combinatorial optimization problem, and the objective
function LMM is designed based on LINC-R. Elitist GA is applied to optimize
this objective function. In the optimization stage, the subcomponents are opti-
mized by NSGA-II.

Next, we will give a simple mathematical explanation of our designed linkage
measurement function (LMF).

The original LINC-R is defined in Eq. (4):

∃s ∈ Pop :
if |(f(sij) − f(si)) − (f(sj) − f(s))| > ε

then xi and xj are nonseparable

(4)
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Fig. 1. The flowchart of CC-NSGA-LMM

And we notice that the original LINC-R can be understood as the additive form
of vector. Thus, Eq. (4) can be written to Eq. (5)

∃s ∈ Pop :
if |(f(sij) − f(s)) − ((f(si) − f(s)) + (f(sj) − f(s)))| > ε

then xi and xj are nonseparable

(5)

Figure 2 shows how original LINC-R and variant LINC-R work on separable
variables. The original LINC-R compares the equivalence between fitness differ-
ence to identify the interaction while the variant LINC-R identify the interaction
depending on the establishment of vector addition.

Then, we derive the variant LINC-R to 3-D or higher dimensions. In 3-D
space, the schematic diagram is shown in Fig. 3. Similarly, we define the fitness
difference in 3-D space in Eq. (6)

s ∈ Pop :
Δfi = f(si) − f(s)
Δfj = f(sj) − f(s)
Δfk = f(sk) − f(s)

Δfijk = f(sijk) − f(s)

(6)
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Fig. 2. (a) The original LINC-R works on the separable variables (b) The variant
LINC-R works on the separable variables [19]

Fig. 3. The variant LINC-R works on 3-D space [19]

And Eq. (7) defines the variant LINC-R in 3-D space

∃s ∈ Pop :
if |Δfijk − (Δfi + Δfj + Δfk)| > 2ε

then interaction(s) exist in xi, xj , xk

(7)

Notice that the allowable error becomes 2ε. Therefore, we can reasonably infer
the variant LINC-R in n-D space on Eq. (8).

∃s ∈ Pop :
if |Δf1,2,...,n − (Δf1 + Δf2 + ... + Δfn)| > (n − 1)ε

then interaction(s) exist in x1, x2, ..., xn

(8)

Notice that we only detect the interactions based on the finite individuals,
which means when |Δf1,2,...,n − (Δf1 + Δf2 + ... + Δfn)| < (n − 1)ε is satisfied
at all individuals, then we consider this function is a fully separable function
by default. Although this strategy is limited especially for trap functions, it is
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impossible to check the interactions on the whole fitness landscape. Thus, Eq.
(9) is approximately correct in LSSOPs.

∀s ∈ Pop :
if |Δ1,2,...,n − (Δ1 + Δ2 + ... + Δn)| < (n − 1)ε

then x1, x2, ..., xn are separable

(9)

However, when Eq. (9) is not satisfied, we only know that interactions exist
in some variable pairs, but we cannot know the interactions exist in which pairs,
so we can actively detect the interactions between variables. Taking the 3-D
space as an example,

if ∃s ∈ Pop : |Δfijk − (Δfi + Δfj + Δfk)| > 2ε

and ∀s ∈ Pop : |Δfijk − (Δfij + Δfk)| < ε

then xi, xj are nonseparbale

and xk is separable from xi, xj

(10)

Therefore, Our target is to apply the heuristic algorithm to find the interactions
between all variables as much as possible. According to the above explanation,
in the n-D problem, LMF is formulated as Eq. (11)

LMF(s) =
|Δf1,2,...,n − ∑m

i,j,... Δfi,j,...|
m − 1

(11)

m is the number of subcomponents. Equation (11) calculates the detected linkage
strength. We extend Eq. (11) to LSMOPs:

MOLMF(s) =
∑

s∈Pop

M∑

j=1

wj

|Δf1,2,...,n − ∑m
i,j,... Δfi,j,..|

m − 1
,

M∑

j=1

wj = 1 (12)

wj is the weight of the jth objective function, and M is the number of objective
functions in LSMOPs. We apply averaging weights in Eq. (12).

To find a suitable decomposition, we apply the Elitist Genetic Algorithm
(EGA) [5] to optimize the Eq. (12). The elitist reservation strategy directly
replicates the best individual without crossover, mutation, and selection to the
next generation. This strategy can prevent the optimal individual from destroy-
ing the superior gene and chromosome structure during crossover and mutation.

4 Numerical Experiments

In this Section, we ran experiments to evaluate our proposal. In Sect. 4.1, we
introduce the experiment settings, including benchmark functions, comparing
methods, and parameters of algorithms. In Sect. 4.2, we provide the experiment
results. Finally, we analyze our proposal in Sect. 4.3.
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4.1 Experiment Settings

Benchmark Functions. We conduct our experiments on benchmarks of ZDT1-
6, DTLZ1-7, UF1-2, and WFG1-5, 7 up to 500-D and 1000-D. We did not apply
high-dimensional WFG6, WFG8, and WFG9 because these functions are not
suitable for extending to high dimensions due to high computational cost. All
benchmark functions are provided by geatpy [9] and pymoo [3].

Comparing Methods and Parameters. We combine our proposal in decom-
position with NSGA-II (CC-NSGA-LMM) and compare it with Random Group-
ing (CC-NSGA-G) [1], Differential Grouping (CC-NSGA-DG) [15], and Mono-
tonicity Detection (CC-NSGA-LIMD) [8] with 30 trial runs. Table 1 shows the
parameters of our proposal in the grouping stage, and Table 2 shows the param-
eters of subcomponents optimization. The total FEs include the FEs consumed
in problem decomposition and subcomponents optimization.

Table 1. The parameters of decomposition optimization

Parameter Value

Optimizer Elitist GA

Population size 20

Max iteration 20

Gene length 6 and 7

Table 2. The parameters of subcomponents optimization

Parameter Value

Dimension 500-D and 1000-D

Total FEs 750,000 and 1,500,000

Optimizer NSGA-II

Population size 50

Crossover rate 0.9

Mutation rate 0.2

4.2 Performance of CC-NSGA-LMM

In this section, the performance of CC-NSGA-LMM is studied. We randomly
choose one trial run result in 30 trial runs and draw the Pareto Front (PF)
graph within compared methods and reference sets. Due to space limitations,
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we select some representative PF graphs in Fig. 4. The mean of HV calculated
in 30 trial runs is shown in Table 3. The best solution among CC-NSGA-G,
CC-NSGA-DG, CC-NSGA-LIMD, and CC-NSGA-LMM these 4 methods is in
bold in 500-D and 1000-D respectively to show the performance of our proposed
decomposition method.

Table 3. The mean of HV among 4 methods in 30 trial runs

Func CC-NSGA-G CC-NSGA-DG CC-NSGA-LIMD CC-NSGA-LMM

500-D 1000-D 500-D 1000-D 500-D 1000-D 500-D 1000-D

ZDT1 0.27 0.22 0.60 0.57 0.32 0.21 0.99 1.35

ZDT2 0.74 0.40 1.04 0.90 0.79 0.55 1.50 1.54

ZDT3 0.46 0.22 0.75 0.44 0.52 0.23 1.13 0.79

ZDT4 1012.58 673.10 1961.57 1247.62 1085.54 630.41 2833.41 4022.32

ZDT5 752.32 2749.27 600.79 1791.75 750.34 2574.25 603.45 1786.29

ZDT6 0.75 0.44 0.42 0.14 0.66 0.37 0.46 0.24

DTLZ1 3.14e11 2.75e12 1.87e11 7.39e11 3.27e11 3.07e12 1.87e11 2.44e11

DTLZ2 2309.57 23917.32 36.70 6954.45 1720.39 23656.01 36.12 518.45

DTLZ3 2.48e12 3.57e13 1.58e13 1.29e14 2.41e12 3.75e13 1.59e13 1.43e14

DTLZ4 4235.78 35457.28 6.16 4.49 2798.33 30458.98 6.92 12.92

DTLZ5 1400.88 11725.02 12071.98 18025.29 1900.68 12555.10 12091.59 15468.05

DTLZ6 4.67e6 2.08e7 4.43e6 1.87e7 5.56e6 2.23e7 2.04e6 1.11e7

DTLZ7 0.34 0.35 1.27 1.22 0.42 0.39 1.30 1.46

UF1 0.20 0.20 1.82 1.35 0.56 0.33 1.90 1.57

UF2 0.10 0.08 0.20 0.14 0.15 0.10 0.40 0.38

WFG1 0.01 0.02 0.90 0.16 0.01 0.01 1.09 0.80

WFG2 3.11 0.50 2.48 0.58 3.20 0.65 2.84 0.69

WFG3 3.47 0.63 2.80 0.80 3.02 0.51 2.56 0.88

WFG4 0.73 1.23 2.67 2.31 0.88 0.65 2.84 2.66

WFG5 1.01 1.15 2.19 1.90 1.17 0.94 2.66 2.40

WFG7 1.86 0.55 2.00 1.36 1.60 0.94 2.12 2.01

4.3 Analysis

From Table 3, we can see our proposed CC-NSGA-LMM outperforms the com-
pared three methods in the majority of benchmark functions. This is mainly due
to the following aspects. (1). We minimize the LMF based on multiple samples.
Although this is a necessary condition for the implementation of LINC-R and
LIMD in low-dimensional space, the interactions are only possible to be identi-
fied around a sample in high-dimensional space due to the FEs limitation, such
as DG. Therefore, our proposal is more robust for solving LSMOPs based on CC.
(2). Due to the performance of EGA and limited computational resource alloca-
tion, the whole interactions cannot be detected. Thus, the individual containing
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Fig. 4. The representative PF graphs within 4 methods and reference sets in 500-D
and 1000-D.
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the strong interactions has better fitness, and the genome structure has a higher
probability to be preserved. Meanwhile, some weak interactions between vari-
ables are ignored. This process will increase the error in the optimization stage
but accelerate the subcomponents optimization, especially under the limitation
of FEs.

5 Discussion

The above analysis shows our proposal has broad prospects for solving LSMOPs,
however, there are still many aspects for improvement. Here, we list a few open
topics for potential and future research.

5.1 Self-adaptation of Weight in LMF

In this paper, we apply the averaging weights in LMF. Actually, the importance
of objective functions is different. In future research, determining the weights by
the information on the fitness landscape is a topic of our future research.

5.2 More Powerful MOEAs

The improvement of the performance of MOEAs is also one of the themes of our
research. The design of a novel search scheme or local search strategy combined
with MOEAs is an interesting topic.

5.3 The Scalability of CC-NSGA-LMM

The extension of our proposal to deal with very large-scale optimization problems
(VLSOPs), LSOPs with constraints, and LSOPs in noisy environments are our
future research topics.

6 Conclusion

In this paper, we propose a novel decomposition method for LSMOPs. we treat
the decomposition problem as a combinatorial optimization problem and design
a linkage measurement function to lead the optimization. Experiments show that
our proposal is a promising study to solve LSMOPs.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Number
JP20K11967.
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Abstract. Data-driven evolutionary multi-objective optimization
(EMO) has been recognized as an effective approach for multi-objective
optimization problems with expensive objective functions. The current
research is mainly developed for problems with a ‘regular’ triangle-like
Pareto-optimal front (PF), whereas the performance can significantly
deteriorate when the PF consists of disconnected segments. Furthermore,
the offspring reproduction in the current data-driven EMO does not fully
leverage the latent information of the surrogate model. Bearing these con-
siderations in mind, this paper proposes a data-driven EMO algorithm
based on multiple-gradient descent. By leveraging the regularity informa-
tion provided by the up-to-date surrogate model, it is able to progressively
probe a set of well distributed candidate solutions with a convergence
guarantee. In addition, its infill criterion recommends a batch of promising
candidate solutions to conduct expensive objective function evaluations.
Experiments on 33 benchmark test problem instances with disconnected
PFs fully demonstrate the effectiveness of our proposed method against
four selected peer algorithms.

Keywords: Data-driven optimization · Multiple-gradient descent ·
Evolutionary multi-objective optimization

1 Introduction

Many real-world scientific and engineering applications involve multiple conflict-
ing objectives, a.k.a. multi-objective optimization problems (MOPs). For exam-
ple, tuning a water distribution system to optimize its financial and operational
costs [22], minimizing the energy consumption while maximizing locomotion
speed in a complex robotic system [2]. In multi-objective optimization, there
does not exist a solution that optimizes all conflicting objectives simultaneously.
Instead, we are looking for a set of representative, with a promising convergence
and diversity, trade-off solutions that compromise one objective for another.
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Due to the population-based characteristics, evolutionary algorithms (EAs)
have been widely recognized as an effective approach for MO [4]. However, one of
the major criticisms of EAs is its daunting amount of function evaluations (FEs)
required to obtain a set of reasonable solutions. This is unfortunately unaccept-
able in practice since FEs are either computationally or financially demanding,
e.g., computational fluid dynamic simulations can take from minutes to hours
to carry out a single FE [16]. To mitigate this issue, data-driven evolutionary
optimization1, guided by surrogate models of computationally expensive objec-
tive functions, have become a powerful approach for solving expensive opti-
mization problems [17]. For example, some researchers considered various ways
to build a surrogate model of the expensive objective functions, either collec-
tively [1,3,11,21] or as a weighted aggregation [19,23,31,34]. According to the
ways of surrogate modeling, bespoke model management strategies are devel-
oped to select promising candidate solution(s) for conducting expensive FEs. In
particular, this can either be driven by the surrogate model directly [1,23,31]
or an acquisition function inferred from the model uncertainty [3,11,19,21,34].
There are two gaps in the current literature that hinder the further uptake of
data-driven evolutionary multi-objective optimization (EMO) in practice.

– Most, if not all, existing studies are mainly designed and validated on preva-
lent test problems (e.g., DTLZ1 to DTLZ4 [7] and WFG4 to WFG9 [13])
characterized as ‘regular’ triangle-like Pareto-optimal fronts (PFs). Unfortu-
nately, this is unrealistic in the real-world optimization scenarios [14]. On
the contrary, it is not uncommon that the PFs of real-world applications
are featured as disconnected, incomplete, degenerated, and/or badly-scaled
(partially due to the complex and nonlinear relationship between objectives),
it is surprising that the research on handling MOPs with irregular PFs is
lukewarm in the context of data-driven EMO, except for [11].

– In addition, the evolutionary operators for offspring reproduction are directly
derived from the EA (e.g., crossover and mutation [12], differential evolution
[30], particle swarm optimization [18]) or conventional mathematical program-
ming (e.g., simplex [9], Nelder-Mead [25], and trust-region methods [27]). By
this means, the regularity information of the underlying MOP embedded in the
surrogate model(s) is unfortunately yet exploited. Note that such information
can be beneficial to navigate a more effective exploration of the search space.

Bearing these considerations in mind, this paper proposes a data-driven evo-
lutionary multi-objective optimization based on multiple-gradient descent [8] for
expensive MOPs with disconnected PFs. Its basic idea is to leverage the gradient
information of the surrogate models to explore promising candidate solutions. It
consists of the following two distinctive components.

– MGD-based evolutionary search: As the main crux of our proposed algo-
rithm, it generates a set of candidate solutions guided by the multiple-gradient
descent of the surrogate model of each computationally expensive objective

1 It is also known as surrogate-assisted EA interchangeably in the literature [15].
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function. In a nutshell, these candidate solutions are first randomly sampled
in the decision space. Then, they are gradually guided to interpolate well
distributed potential solutions along the manifold of the surrogate PS.

– Infill criterion: It recommends a batch of promising candidate solutions
obtained by the MGD-based evolutionary search step to carry out expen-
sive FEs for the model management.

Our experiments on 33 benchmark test problem instances with disconnected PFs
fully demonstrate the effectiveness and outstanding performance of our proposed
D2EMO/MGD against four selected peer algorithms.

The rest of this paper is organized as follows. Section 2 gives some preliminary
knowledge pertinent to this paper. The technical details of our proposed method
are introduced in Sect. 3. The experimental setup is given in Sect. 4 and the
results are presented and discussed in Sect. 5. Section 6 concludes this paper and
sheds some lights on potential future directions.

2 Preliminaries

In this section, we give some basic definitions pertinent to this paper.

2.1 Basic Definitions in Multi-objective Optimization

The MOP considered in this paper is defined as:

minimize F(x) = (f1(x), · · · , fm(x))T

subject to x ∈ Ω
, (1)

where x = (x1, · · · , xn)T is a decision vector and F(x) is an objective vector.
Ω = [xL

i , xU
i ]ni=1 ⊆ R

n defines the search space. F : Ω → R
m defines the mapping

from the search space Ω to the objective space R
m.

Definition 1. Given two solutions x1,x2 ∈ Ω, x1 is said to Pareto dominate
x2, denoted as x1 � x2, if and only if fi(x1) ≤ fi(x2) for all i ∈ {1, · · · ,m} and
F(x1) �= F(x2).

Definition 2. A solution x∗ ∈ Ω is said to be Pareto-optimal if and only if
�x′ ∈ Ω such that x′ � x∗.

Definition 3. The set of all Pareto-optimal solutions is called the Pareto-optimal
set (PS), i.e., PS = {x∗|�x′ ∈ Ωsuch thatx′ � x∗} and their corresponding objec-
tive vectors form the Pareto-optimal front (PF), i.e., PF = {F(x∗)|x∗ ∈ PS}.

2.2 Gaussian Process Regression Model

In view of the continuously differentiable property, we consider the Gaussian
process regression (GPR) [28] as the surrogate model of each expensive objective
function. Given a set of training data D = {(xi, f(xi)}Ni=1, a GPR model aims to
learn a latent function g(x) by assuming f(xi) = g(xi) + ε where ε ∼ N (0, σ2

n)
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Fig. 1. The flow chart of the proposed D2EMO/MGD.

is an independently and identically distributed Gaussian noise. For each testing
input vector z∗ ∈ Ω, the mean and variance of the target f(z∗) are predicted as:

g(z∗) = m(z∗) + k∗T (K + σ2
nI)−1(f − m(X)), (2)

V[g(z∗)] = k(z∗, z∗) − k∗T (K + σ2
nI)−1k∗, (3)

where X = (x1, · · · ,xN )T and f = (f(x1), · · · , f(xN ))T . m(X) is the mean vec-
tor of X, k∗ is the covariance vector between X and z∗, and K is the covariance
matrix of X. In this paper, we use the radial basis function as the covariance
function to measure the similarity between a pair of two solutions x and x′ ∈ Ω:

k(x,x′) = γ exp(−‖x − x′‖2
�

), (4)

where ‖ · ‖ is the Euclidean norm and γ and length scale � are two hyperpa-
rameters. The predicted mean g(z∗) is directly used as the prediction of f(z∗),
and the predicted variance V[g(x∗)] quantifies the uncertainty. In practice, the
hyperparameters associated with the mean and covariance functions are learned
by maximizing the log marginal likelihood function as recommended in [28]. For
the sake of simplicity, here we assume that the mean function is a constant 0
and the inputs are noiseless.

3 Proposed Method

In this section, we plan to delineate the implementation of our proposed data-
driven evolutionary multi-objective optimization based on multiple-gradient
descent (dubbed D2EMO/MGD). As the flowchart shown in Fig. 1, D2EMO/MGD starts
with an initialization step based on an experimental design method such as
Latin hypercube sampling [29]. Note that these initial samples will be evaluated
based on the computationally expensive objective functions. During the main
loop, the surrogate modeling step builds a surrogate model by using the GPR
for each expensive objective function based on the data collected so far. The
other two steps will be delineated in the following paragraphs.

3.1 MGD-Based Evolutionary Search

This step aims to search for a set of promising candidate solutions P = {x̂i}Ñi=1,
which are assumed to be an appropriate approximation to the PF, based on the
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surrogate model built in the surrogate modeling step. The working mechanism
of this MGD-based evolutionary search step is given as follows.

Step 1: Initialize a candidate solution set P = {x̂i}Ñi=1 based on Latin hyper-
cube sampling upon Ω.

Step 2: For each solution x̂i ∈ P, do
Step 2.1: Calculate the gradient of the predicted mean of each objec-

tive function ∇gj(x̂i) where j ∈ {1, · · · ,m}.
Step 2.2: Find a nonnegative unit vector w∗ = (w∗

1 , · · · , w∗
m)� that

satisfies:

w∗ = argmin
w

∥
∥
∥
∥

m∑

j=1

wj∇gj(x̂
i)

∥
∥
∥
∥
, (5)

where w = (w1, · · · , wm)�,
∑m

i=1 wi = 1 and wi ≥ 0, i ∈
{1, · · · ,m}.

Step 2.3: Obtain a directional vector u∗ as:

u∗ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

argmax
1≤j≤m

∥
∥∇gj(x̂

i)
∥
∥, if

∑m
j=1 w∗

j ∇gj(x̂
i) = 0

argmin
1≤j≤m

∥
∥∇gj(x̂

i)
∥
∥, if∃i, j ∈ {1, · · · , m}, 〈∇gj(x̂

i), ∇gj(x̂
i)〉 > δ

∑m
j=1 w∗

j ∇gj(x̂
i), otherwise

(6)

where 〈∗, ∗〉 measures the acute angle between two vectors,

and δ = min
{∥

∥∇gk(x̂i)
∥
∥

}m

k=1
.

Step 2.4: Amend the updated solution to P ← P ⋃{x̂i + ηu∗}
Step 3: Remove the dominated solutions in P according to their predicted

objective functions.
Step 4: If the stopping criterion is met, then stop and output P. Otherwise, go

to Step 2.

Remark 1. As discussed in [8], the multiple-gradient descent (MGD) is a natural
extension of the single-objective gradient to finding a PF. In a nutshell, its basic
idea is to iteratively update a solution x along a ‘specified’ direction so that
all objective functions can thus be improved. Different from the linear weighted
aggregation, the MGD works for non-convex PF. Therefore, we can expect a
satisfactory diversity in case the initial population is well distributed. Note that
since the objective functions are assumed to be as a black box a priori, the MGD
is not directly applicable in our context.

Remark 2. In this paper, since the computationally expensive objective func-
tions are modeled by GPR, which is continuously differentiable, we can derive
the gradient of the predicted mean function w.r.t. a solution x as:

∂g(x)
∂x

=
∂k∗

∂x
K−1f , (7)
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Fig. 2. Illustrative examples of the calculation of u∗ in Eq. (6).

where the first-order derivative of k∗, i.e., the covariance vector between P and
x, is calculated as:

∂k∗

∂x
= −∂‖x − x′‖

∂x
g(x)

�
. (8)

Remark 3. The optimization problem in (5) is essentially equivalent to finding a
minimum-norm point in the convex hull. When m = 2, we have the closed form
solution as:

w∗
1 =

(∇g2(x̂i) − ∇g1(x̂i)
)�∇g2(x̂i)

‖∇g2(x̂i) − ∇g1(x̂i)
∥
∥
2 , w∗

2 = 1 − w∗
1 . (9)

Remark 4. Figure 2 gives an illustrative example for each of the three conditions
given in equation (6) when m = 2. More specifically, when the gradients of two
objective functions are in opposite directions as shown in Fig. 2(a), u∗ is chosen
as the one with a larger Euclidean norm. If the gradients are too close to each
other as shown in Fig. 2(b), u∗ is chosen as the one with a smaller Euclidean
norm. On the contrary, u∗ is set as the weighted aggregation of two gradients as
shown in Fig. 2(c). In particular, the weights are obtained from Step 2.2.

Remark 5. According to the Karush-Kuhn-Tucker (KKT) conditions [20], we
have ∀x∗ ∈ PS, ∃α = (α1, · · · , αm)T , where αi ≥ 0, i ∈ {1, · · · ,m} and
∑m

i=1 αi = 1, such that
∑m

i=1 αi∇fi(x∗) = 0. In this case, we come up
with Corollary 1, the proof of which can be found in the supplemental docu-
ment of this paper2.

Corollary 1. Considering the m objective functions defined in (1), ∀x ∈ PS,
∃w∗ that satisfies (5) and u∗ =

∑m
j=1 w∗

j∇fj(x) = 0, we can obtain a new
solution x′ = x + ηu∗ such that x′ is still on the PS.

Remark 6. According to Corollary 1, the MGD-based evolutionary search
step can be understood as pushing a solution towards the PS first before imple-
menting a random walk along the PS as an illustrative example shown in Fig. 3.

Remark 7. In Step 2.4, η ∈ (0, 1] is a random scaling factor along the direction
vector u∗. The stopping criterion in Step 4 is the number of iterations (here it is
set as 100 in our experiments) of this MGD-based evolutionary search step.
2 The supplemental document can be found from https://tinyurl.com/2s3takpd.

https://tinyurl.com/2s3takpd


62 R. Chen and K. Li

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

f1

f 2

0
0.5

1 0
0.5

1
0

0.5

1

x1
x2

x
3

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

f1

f 2

original point
interpolated point
moving trajectory (u > 0)
moving trajectory (u = 0)

Fig. 3. Illustrative examples of MGD w.r.t. different solutions moving towards different
(a) PS segments and (b) PF segments, and (c) the working mechanism MGD-based

evolutionary search step.

3.2 Infill Criterion

This step aims to pick up ξ ≥ 1 promising solutions from P and evaluate them by
using the computationally expensive objective functions. These newly evaluated
solutions are then used to update the training dataset for the next iteration. In
a nutshell, there are two main differences w.r.t. many existing works on data-
driven EA [17] and Bayesian optimization [10]. First, even though we use the
GPR as the surrogate model, our infill criterion does not rely on an uncertainty
quantification measure, a.k.a. acquisition function. Second, instead of recom-
mending one solution for the computationally expensive function evaluation in a
sequential manner, the infill criterion step of D2EMO/MGD proposes to select
a batch of samples at a time. Under a limited computational budget, we can
expect to reduce the number of iterations of the main loop in Fig. 1 by ξ times.
In addition, since many physical experiments can be carried out in parallel given
the availability of more than one infrastructure (e.g., the training and validation
of machine learning models are usually distributed into multiple cores or GPUs
for hyper-parameter optimization in automated machine learning), such batched
recommendation provides an actionable way for parallelization. Therefore, we
can anticipate the practical importance to save the computational overhead. In
this paper, we propose a simple infill criterion based on the individual Hyper-
volume [36] contribution (IHV). Specifically, the IHV of each candidate solution
x ∈ P is calculated as:

IHV(x) = HV(P) − HV(P \ {x}), (10)

where HV(P) evaluates the Hypervolume of P. Then, the top ξ solutions in P
with the largest IHV are picked up for the expensive function evaluations.

4 Experimental Setup

This section introduces our experimental setup including the benchmark test
problems, the peer algorithms along with their parameter settings, and the per-
formance metrics and statistical tests.
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4.1 Benchmark Test Problems

In our empirical study, we consider benchmark test problems with disconnect
PF segments to constitute our benchmark suite, including ZDT3 [35], DTLZ7 [7]
and WFG2 [13] along with their variants dubbed ZDT3�, DTLZ7� and WFG2�.
Their mathematical definitions and characteristics can be found in the sup-
plemental document. For each benchmark test problem, we set the number of
objectives as m = 2 and the number of variables as n ∈ {3, 5, 8} respectively in
our empirical study.

4.2 Peer Algorithms and Parameter Settings

To validate the competitiveness of our proposed algorithm, we compare its per-
formance with ParEGO [19], MOEA/D-EGO [34], K-RVEA [3], and HSMEA [11] widely
used in the literature. We do not intend to delineate their working mechanisms
here while interested readers are referred to their original papers for details. The
parameter settings are listed as follows.

– Number of function evaluations (FEs): The initial sample size is set to 11 ×
n − 1 for all algorithms and the maximum number of FEs is capped as 250.

– Reproduction operators: The parameters associated with the simulated
binary crossover [5] and polynomial mutation [6] are set as pc = 1.0, ηc = 20,
pm = 1/n, ηm = 20.

– Kriging models: As for the algorithms that use Kriging for surrogate model-
ing, the corresponding hyperparameters of the MATLAB Toolbox DACE [26]
is set to be within the range [10−5, 105].

– Batch size ξ: It is set as ξ = 10 for our proposed algorithms and ξ = 5 is set
in MOEA/D-EGO.

– Number of repeated runs: Each algorithm is independently run on each test
problem for 31 times with different random seeds.

4.3 Performance Metric and Statistical Tests

To have a quantitative evaluation of the performance of different algorithms,
we use the widely used HV as the performance metric. To have a statistical
interpretation of the significance of comparison results, we use the following
three statistical measures in our empirical study.

– Wilcoxon signed-rank test [33]: This is a widely used non-parametric statis-
tical test to conduct a pairwise comparison. In our experiments, we set the
significance level as p = 0.05.

– A12 effect size [32]: This is an effect size measure that evaluates the probability
of one algorithm is better than another. Specifically, given a pair of peer
algorithms, A12 = 0.5 means they are equivalent. A12 > 0.5 denotes that one
is better for more than 50% of the times. 0.56 ≤ A12 < 0.64 indicates a small
effect size while 0.64 ≤ A12 < 0.71 and A12 ≥ 0.71 mean a medium and a
large effect size, respectively.
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– Scott-knott test [24]: This is used to rank the performance of different peer
algorithms over 31 runs on each test problem. In a nutshell, it uses a sta-
tistical test and effect size to divide the performance of peer algorithms into
several clusters. In particular, the performance of peer algorithms within the
same cluster are statistically equivalent. The smaller the rank is, the better
performance of the algorithm achieves.

5 Experimental Results

In this section, our empirical study aims to investigate: 1) the performance of
our proposed D2EMO/MGD compared against the selected peer algorithms; and
2) the effectiveness of the MGD-based evolutionary search and the infill
criterion steps of D2EMO/MGD.

5.1 Performance Comparisons with the Peer Algorithms

The statistical comparison results of the Wilcoxon signed-rank test of the HV
values between our proposed D2EMO/MGD against the other peer algorithms are
given in Table 1. From these results, it is clear to see that the HV values obtained
by D2EMO/MGD are statistically significantly better than the other four peer algo-
rithms in all comparisons. As the selected results of the population distribution
obtained by different algorithms shown in Fig. 4, it is clear to see that the solu-
tions obtained by D2EMO/MGD not only have a good convergence on the PF, but
also have a descent distribution on all disconnected PF segments. In contrast,
the other peer algorithms either struggle to converge to the PF or hardly approx-
imate all segments. It is interesting to note that the performance of HSMEA and
K-RVEA are acceptable on ZDT3 and DTLZ7∗, which have a relatively small
number of disconnected segments, whereas their performance deteriorate signif-
icantly when the number of disconnected segments becomes large.

In addition to the pairwise comparisons, we apply the Scott-knott test to
classify their performance into different groups to facilitate a better ranking
among these algorithms. Due to the large number of comparisons, it will be
messy if we list all ranking results (11 × 3 = 33 in total). Instead, we pull all
the Scott-knott test results together and show their distribution and variance
as the bar charts with error bar in Fig. 5(a). From this results, we can see that
our proposed D2EMO/MGD is the best algorithm in all comparisons, which confirm
the observations from Table 1. In addition, to have a better understanding of
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the performance difference of D2EMO/MGD w.r.t. the other peer algorithms, we
investigate the comparison results of A12 effect size. From the bar charts shown
in Fig. 5(b), it is clear to see that the better results achieved by D2EMO/MGD is
consistently classified as statistically large.

Table 1. Comparison results of D2EMO/MGD with the peer algorithms

n D2EMO/MGD HSMEA K-RVEA MOEA/D-EGO ParEGO

ZDT3
3 1.3199(3.34E-3) 1.2914(5.99E-2)† 1.1814(1.77E-1)† 1.1831(9.85E-2)† 1.1549(4.84E-2)†

5 1.3271(1.52E-3) 1.2888(7.93E-2)† 1.1842(7.44E-2)† 1.0566(1.58E-1)† 1.0364(1.57E-1)†

8 1.3260(4.29E-3) 1.1901(1.53E-1)† 1.2394(1.16E-1)† 1.0050(1.14E-1)† 0.7974(1.09E-1)†

ZDT31
3 1.3813(2.64E-2) 1.3183(2.06E-1)† 1.0556(2.54E-1)† 1.0983(2.84E-1)† 1.0839(9.35E-2)†

5 1.3706(2.74E-2) 1.3064(6.99E-2)† 1.1107(1.72E-1)† 1.0351(2.13E-1)† 1.0068(8.73E-2)†

8 1.3655(7.06E-2) 1.1851(1.14E-1)† 1.1098(1.65E-1)† 0.9112(1.21E-1)† 0.8659(2.16E-1)†

ZDT32
3 1.2818(2.18E-2) 1.2309(9.73E-2)† 1.1852(7.96E-2)† 1.1265(4.74E-2)† 1.1170(1.52E-2)†

5 1.2610(8.73E-2) 1.1801(9.62E-2)† 1.1359(6.86E-2)† 1.0960(6.78E-2)† 1.0801(1.07E-1)†

8 1.2860(2.12E-2) 1.1604(9.41E-2)† 1.1550(8.02E-2)† 1.0355(1.04E-1)† 1.0175(1.15E-1)†

ZDT33
3 0.9089(6.31E-4) 0.8643(5.41E-2)† 0.8683(7.07E-2)† 0.8578(3.22E-2)† 0.8249(2.46E-2)†

5 0.9075(1.04E-3) 0.8508(3.32E-2)† 0.8845(6.85E-2)† 0.8148(1.83E-2)† 0.7487(5.64E-2)†

8 0.9036(7.43E-2) 0.8130(9.20E-2)† 0.8630(6.48E-2)† 0.7911(3.25E-2)† 0.7126(4.45E-2)†

WFG2
3 5.9298(3.99E-2) 5.7944(2.10E-1)† 5.7083(1.48E-1)† 4.9327(3.51E-1)† 4.6709(2.84E-1)†

5 5.9799(3.14E-2) 5.8221(1.11E-1)† 5.4672(1.40E-1)† 4.6521(4.99E-1)† 4.5911(6.76E-1)†

8 5.7457(6.63E-2) 5.1535(3.36E-1)† 5.1191(3.18E-1)† 4.0520(4.96E-1)† 3.8378(4.09E-1)†

WFG21
3 6.2155(4.87E-2) 5.5538(4.16E-1)† 5.5407(3.49E-1)† 4.9540(3.22E-1)† 4.8377(2.97E-1)†

5 6.2630(2.37E-2) 5.0867(5.17E-1)† 5.5867(9.45E-2)† 4.7417(4.15E-1)† 4.6174(3.08E-1)†

8 6.0309(5.79E-2) 4.5420(3.14E-1)† 5.2068(3.06E-1)† 4.0720(3.10E-1)† 3.9503(4.48E-1)†

WFG22
3 2.8400(6.29E-2) 2.8154(1.42E-1)† 2.5958(1.55E-1)† 2.0903(1.65E-1)† 2.0581(1.68E-1)†

5 2.8638(6.03E-2) 2.6386(1.21E-1)† 2.3946(6.85E-2)† 1.8671(1.47E-1)† 1.9506(1.78E-1)†

8 2.6378(1.14E-1) 2.0694(2.54E-1)† 1.8419(1.50E-1)† 1.3691(5.16E-1)† 1.3248(2.54E-1)†

WFG23
3 5.7030(3.45E-1) 5.6479(4.02E-1)† 5.4574(2.62E-1)† 4.9859(2.54E-1)† 5.0298(4.56E-1)†

5 5.9445(9.55E-2) 5.3802(3.19E-1)† 5.4525(1.42E-1)† 4.9615(2.60E-1)† 4.7642(5.69E-1)†

8 5.6221(9.38E-2) 4.7431(2.40E-1)† 4.8954(2.38E-1)† 4.2413(3.71E-1)† 4.0819(2.20E-1)†

DTLZ7
3 1.3234(7.52E-3) 1.3195(1.84E-2)† 1.2407(1.18E-2)† 1.2550(2.56E-2)† 1.2076(6.05E-2)†

5 1.3330(1.29E-3) 1.3138(1.73E-2)† 1.2371(2.14E-2)† 1.2131(1.20E-1)† 1.1303(5.55E-2)†

8 1.3297(2.99E-3) 1.3123(1.09E-2)† 1.2263(2.52E-2)† 1.1591(1.13E-1)† 1.0667(1.21E-1)†

DTLZ71
3 1.3996(2.64E-3) 1.3959(1.02E-2)† 1.3289(1.79E-2)† 1.2916(7.39E-1)† 1.2735(2.84E-2)†

5 1.4040(2.96E-3) 1.3936(9.43E-3)† 1.3190(1.26E-2)† 1.2746(3.82E-1)† 1.0609(1.67E-1)†

8 1.4034(4.42E-3) 1.3762(1.07E-1)† 1.3146(1.50E-2)† 1.0508(1.41E-1)† 0.9420(2.51E-1)†

DTLZ72
3 1.4013(9.67E-3) 1.4013(1.69E-2)† 1.3292(2.58E-2)† 1.3006(1.44E-1)† 1.2863(4.18E-2)†

5 1.4075(2.62E-3) 1.3926(1.00E-2)† 1.3313(1.72E-2)† 1.1908(1.14E-1)† 1.2150(6.59E-2)†

8 1.4052(2.34E-3) 1.3875(1.20E-1)† 1.3170(1.53E-2)† 1.0411(8.06E-2)† 0.9540(2.36E-1)†
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Fig. 4. Non-dominated solutions obtained by different algorithms (with the medium
HV values) on ZDT3∗, WFG2∗, and DTLZ7∗ (n = 8), respectively.
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Fig. 5. Statistical test results: (a) sum of the Scott-knott test results on all comparisons;
(b) percentage of the equal, large, medium and small A12 effect size, respectively, when
comparing D2EMO/MGD against the other four peer algorithms.
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Fig. 6. Non-dominated solutions (with the medium HV value) found by different vari-
ants of D2EMO/MGD on ZDT3 with n = 8.

5.2 Ablation Study

In this subsection, we empirically investigate the effectiveness of two key algo-
rithmic components of D2EMO/MGD. More specifically, we first compare the per-
formance of D2EMO/MGD w.r.t. the variant D2EMO/MGD-v1 without using the
MGD-based evolutionary search step. Instead, it applies the widely used sim-
ulated binary crossover [5] as the alternative operator for offspring reproduc-
tion. From the selected results shown in Fig. 6, we can see that D2EMO/MGD-v1
can only find a very limited number of solutions on the PF with a poor diver-
sity. Thereafter, we compare the performance of D2EMO/MGD w.r.t. the variant
D2EMO/MGD-v2 without using the infill criterion introduced in Sect. 3.2. In
particular, it uses a random selection to recommend the candidates for expensive
function evaluations. From the selected results shown in Fig. 6, we can see that
D2EMO/MGD-v2 can only find some of the disconnected PF segments.

6 Conclusion

Most, if not all, existing data-driven EMO algorithms, directly apply evolu-
tionary operators for offspring reproduction, while the regularity information
embedded in the surrogate models has been unfortunately ignored. Bearing this
consideration in mind, this paper, for the first time, investigates the use of MGD
to leverage the latent information of the surrogate models to accelerate the
convergence of the evolutionary population towards the PF. Due to the extra
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diversity provided by the exploration along the approximated PS manifold, our
proposed D2EMO/MGD has shown strong performance on the selected benchmark
test problems with disconnected PF segments. In addition, the ablation study
also confirms the usefulness of the batched infill criterion guided by the IHV.
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Abstract. The series of non-dominated sorting based genetic algo-
rithms (NSGA-series) has clearly shown their niche in solving multi-
and many-objective optimization problems since mid-nineties. Of them,
NSGA-III was designed to solve problems having three or more objec-
tives efficiently. It is well established that with an increase in number
of objectives, an increasingly large proportion of a random population
stays non-dominated, thereby making only a few population members
to remain dominated. Thus, in many-objective optimization problems,
the need for a non-dominated sorting (NDS) procedure is questionable,
except in early generations. In support of this argument, it can also be
noted that most other popular evolutionary multi- and many-objective
optimization algorithms do not use the NDS procedure. In this paper, we
investigate the effect of NDS procedure on the performance of NSGA-III.
From simulation results on two to 10-objective problems, it is observed
that an elimination of the NDS procedure from NSGA-III must accom-
pany a penalty boundary intersection (PBI) type niching method to indi-
rectly emphasize best non-dominated solutions. Elimination of the NDS
procedure from NSGA-III will open up a number of avenues for NSGA-III
to be modified for different scenarios, such as, for parallel implementa-
tions, surrogate-assisted applications, and others, more easily.

Keywords: Non-dominated sorting · Multi-objective optimization ·
Evolutionary computation · NSGA-III

1 Introduction

The first non-dominated sorting based genetic algorithm (NSGA) was proposed
in 1995 [15]. It ushered in a new era of computational optimization methods
for handling two-objective problems along with a few other contemporary algo-
rithms [6,8,9]. In 2002, an elitist and parameter-less version of NSGA, called
NSGA-II, was proposed to solve primarily two and three-objective problems
[4]. Thereafter, in 2014, a reference vector based extension, called NSGA-III,
was proposed to handle three and more objective problems. They all have one
operation in common: non-dominated sorting (NDS) of the population based on
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the partial ordering of their objective vectors. The NSGA-series of procedures
require that every population member to be classified into a different NDS level.
To achieve the sorting procedure within a population of solutions, pairwise com-
parison of solutions are made with their objective vectors to identify the set of
population members which are not dominated by any other population member.
This set of non-dominated solutions belong to the first NDS-level. To obtain the
second NDS-level members, the first NDS-level members are discounted from the
population and another round of pair-wise domination check is performed. The
members which do not get dominated by any remaining population members
belong to the second NDS-level. This process is continued until all population
members are classified into a distinct NDS level. The NSGA series of procedures
were based on these sorted classes of population members and emphasized a
lower NDS level to be infinitely more important than the next higher NDS level.
All NSGA operations were applied by keeping the hierarchy of NDS level of
population members. Thus, NDS is intricately linked to the core of NSGA series
of algorithms.

It has also been established that when many-objective optimization prob-
lems (with more than three conflicting objectives) are to solved, a randomly
created population contains increasingly more NDS-level one solutions. For a
10-objective problem, the number of non-dominated (ND) solutions in a random
population of size 100 is about 95 [6], The argument can be extended to state
that number of NDS level-two members will be significantly small compared to
NDS level-one members, and so on. Thus, the effectiveness of executing the NDS
procedure for many-objective problems can be questionable. Whether a solution
belongs to second or third level of non-domination may not matter on the over-
all progress of the search algorithm, as there are not many population members
exist in the dominated levels altogether. Moreover, two dominated solutions of
different levels may stay close in the objective space, hence a classification of
one solution to a relatively lower class and the other to a higher class may not
produce any significant difference in the performance of the search algorithm.

Thus, it is worth an investigation to eliminate NDS from the NSGA-III pro-
cedure and classify the entire population into two classes: non-dominated and
dominated classes. If the performance stays similar to the original NSGA-III pro-
cedure, the modified search procedure can be beneficial in a number of scenarios.
First, the NDS sorting procedure takes O(MN2) [4] (where M is the number of
objectives and N is the population size), which is more complex than identifying
the NDS level one members (O(MN(log N)M−2)) [13]. Second, when an EMO
or EMaO algorithm is to be implemented with surrogates for handling computa-
tionally expensive problems, the NDS procedure may have to be performed on a
population evaluated with a mix of high-fidelity and surrogate-assisted evalua-
tions. In such a scenario, a classification of every population member to a precise
NDS level may be an overkill, particularly since the objective values are noisy.

Having made the argument against a full effectiveness of NDS in a search
algorithm, the next important question pertains to the dependencies of NSGA-
III’s other operators on the NDS procedure. In this paper, we eliminate the
NDS procedure from NSGA-III and study the changes that must be introduced
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in other NSGA-III operators to bring the modified NSGA-III’s performance at
least at par to that of the original NSGA-III procedure.

In the rest of the paper, we present the modified NSGA-III procedure (with-
out NDS procedure) in Sect. 2. Results on two to 10-objective problems of the
modified NSGA-III procedure is presented and compared against the original
NSGA-III and other EMaO algorithms in Sect. 3. Conclusions are drawn in
Sect. 4.

2 Proposed Algorithm: NS̃GA-III(NSGA-III\NDS)

The basic framework of the proposed algorithm is similar to NSGA-III [7] with
significant changes in the way (i) domination check is executed, (ii) the survival
selection operator is modified, and (iii) a few other minor changes are adopted
resulting from the change in domination check procedure.

Instead of using Das-Dennis method of creating reference vectors, we use
Riesz s-Energy based method proposed in [2,3]. This allows any population size
(N) to be used for any objective dimension. Like in NSGA-III [7], first, we initial-
ize the population Pt of size N . We generate an offspring population Qt of size N
with the standard genetic operators and without care of each population mem-
ber’s association to any reference vector. However, the mating selection operator
requires the domination status of a population member, which we describe in
the next paragraph. The combined population (parent and offspring) is Rt of
size 2N . The survival selection operator then chooses N solutions from Rt and
save to Pt+1. Iterations proceed until a termination criterion is satisfied. The
overall algorithm is provided in Algorithm 1.

2.1 Classification of Pop. Members

Fig. 1. Classification of population mem-
bers into three hierarchical classes.

We classify all the population mem-
bers (Rt) into three hierarchical
classes: Class 1: non-dominated and
feasible solutions; Class 2: feasible
and dominated solutions, and Class 3:
infeasible solutions. Notice that all
feasible solutions from the second
ND front are combined into Class 2.
Figure 1 illustrates the classification
process. We use a hierarchical clas-
sification process for both mating
and survival selection operators. A
solution belonging to a lower class
is better. Thus, for binary tourna-
ment selection in the mating selection
operator above classification helps to
select the better candidate.
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2.2 Association of Population Members

Population members are normalized using the same procedure as in NSGA-III.
Thereafter, each population member is associated with a particular reference

Algorithm 1: Generation t in NS̃GA-III=NSGA-III\NDS
Data: Predefined set of reference directions Wr and parent population Pt

Result: Pt+1

1 St = ∅, no of selections remaining (nr) = N

/* offspring population generation */

2 Qt = Recombination + Mutation (Pt)

3 Rt = Pt ∪ Qt

4 I=find-non-dominated (Rt)

/* finding ideal point and nadir point for normalization of

objective space */

5 ideal, nadir=hyperplane-boundary-estimation(Rt, I)

/* Association each s in Rt with a reference direction */

6 [π(s), d2(s)]=associate-to-niches(Rt, Wr, ideal, nadir)

/* π(s)=closest reference direction, d2(s)= perpendicular distance

between π(s) and s */

7 d(s) =pbi-decomposition(Rt, Wr, θ = 5, ideal, nadir)

/* d(s) = d1 + θd2 distance between π(s) and s */

8 Set attribute to each population member non-dominated ND = 1 and dominated
ND = 0

9 Set attributes each population member Rt(CV, ND, d(s))

/* classifying population members */

10 Class 1 (C1) : Rt(CV = 0 ∩ ND = 1)
11 Class 2 (C2) : Rt(CV = 0 ∩ ND = 0)

12 Class 3 (C3) : Rt(CV > 0)

/* Class 1 selection */

13 if (|C1| ≤ N) then
14 St = St ∪ C1; nr = N − |St|
15 else

16 St, nr= class-survivor-selection(C1, St, nr, Wr, π(s), d(s));

17 Pt+1 = St, break

18 end if

/* Class 2 selection */

19 if nr > 0 then

20 St, nr= class-survivor-selection(C2, St, nr, Wr, π(s), d(s));

21 else
22 Pt+1 = St, break

23 end if

/* Class 3 selection for constrained problems */

24 if nr > 0 then
25 St= tournament-selection(C3);
26 else

27 Pt+1 = St, break

28 end if
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vector based on the d2 distance metric, which is the perpendicular distance from
the population member’s normalized objective vector to the reference line. This
association principle is followed for all classes of population members.

2.3 Class-wise Mating Selection

In mating selection, two population members are picked at random and a winner
must be selected to act as a parent for mating. A lower class member is always
the winner. This allows a feasible solution to be better than infeasible solution
and a non-dominated feasible solution to be better than a feasible dominated
solution. But if both picked members belong to Class 3, the one with smaller
overall normalized constrained violation (CV) value [6] wins. For highly con-
strained problems, it is likely that most population members are infeasible. In
this case, preferring a smaller constraint violated solution provides a good signal
to the EMO to gradually progress toward the PO front. When both solutions
belong to either Class 1 or Class 2, one is randomly chosen as a parent. This
disallows any competition between solutions from different classes. Since the
number of reference vectors (desired number of final PO solutions) is identical
to the population size (N), mating selection, involving exactly N members, must
not encourage any competition among N population members.

2.4 Reference Vector Based Niching in Survival Selection

In the survival selection, there are 2N population members and exactly N better
diverse members must be chosen as the next generation’s starting population.
Competitions between associated feasible solutions of a reference vector may
be allowed here. For this purpose, we follow a similar niching procedure as in
NSGA-III and choose a single member for each reference vector.

Fig. 2. Association of population members
to reference directions (W) and their dis-
tance metrics.

For this purpose, all associated
members of a reference vector are con-
sidered and instead of the d2 metric,
following procedure is used. Associ-
ated members are considered in a hier-
archical manner based on their class
(from Class 1 to Class 3 in the order).
Among all the members of the best
class, the best solution is chosen as
follows. If the best class is 3 (mean-
ing all infeasible associated members),
the member with smallest CV is cho-
sen. If the best class is 1 or 2, all asso-
ciated Class 1 or Class 2, as the case
may be, members are compared with
the PBI distance metric: d(s) = d1 + θd2, where d1 is the distance along ref-
erence direction to origin (equivalent to the ideal point), θ (5 used here) is a
parameter, and d2 is the perpendicular distance (see Fig. 2). We choose the one
having smaller d(s) as the winner. After performing the above process for all
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N reference vectors (note that some may not have any associated population
member), the process is repeated to pick the next round of solutions. This is
repeated until N members are selected. The reason for choosing the PBI metric
for selection can be given from Fig. 2. Since all dominated classes of solutions
are clubbed together, the association principle can allow a distant member lying
close to the reference vector may be judged to be better based on the d2 metric.
But the use if PBI metric makes a combined weighted distance of d1 and d2 and
thus, even being close to the reference vector, a near ideal-point member may
be judged better. When NDS was conducted in NSGA-III, member A was never
allowed to compare against member B for closeness to the reference vector (as
B dominates A and they will be in different non-dominated levels), hence PBI
metric was not needed. But without the NDS, a distance metric with combined
d1 and d2 is must to compare two associated population members for the same
reference vector. Hence, we replace NSGA-III’s d2 vector with the PBI metric
for choosing the winner.

3 Experimental Results

In this section, we present the simulation results of the proposed method NS̃GA-
III with NSGA-III [7,12] and MOEA/D [17] on ZDT [18], BNH [1], OSY [14],
SRN [15], TNK [16], DTLZ test suite [5] and WFG test suite [10] with objectives
ranging from 2 to 10. To support the use of the PBI metric in the survival
selection operator, we also replace it with the d2 metric (call it NS̃GA-III-d2)
and compare with NS̃GA-III.

For each problem, we run all the algorithms 31 times with different initial pop-
ulation members. The population size for the 2 and 3-objective problems is set to
100, for the 5 and 8-objective-problems to 200, and for the 10-objectives problem
to 300. Each run is executed for a maximum of 100,000 solution evaluations (SEs).
We have used the number of reference directions the same as the population size.
We have used IGD+ [11] as the performance metric, as it measures both conver-
gence and diversity. For all algorithm, the final generation members are used to
compute the IGD+ metric. We have used Wilcoxon signed-rank test with at most
p = 0.05 to determine the best and statistically similar methods.

3.1 Unconstrained Problems

Two-Objective Problems: The performance metrics for ZDT problems are
given in Table 1. The best performing method is marked in bold, and the other
methods which are statistically similar to the best method are in marked in
italics. The representative objective vectors for some representative ZDT prob-
lems are presented in Fig. 3. It can be observed that NS̃GA-III-d2 performs the
best in three out of the six problems, despite not executing NDS. Interestingly,
removal of NDS operation from NSGA-III is found to be more effective than per-
forming the NDS operation, but the use of NDS is not found too detrimental.
The bottom-right figure shows that although in initial generations NS̃GA-III-d2
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converges slowly because of the d2 metric selection but after a certain number
of generations (around 150) it performs better.

Table 1. ZDT problems IGD+ performance metrics for 31 runs. The best performing
method is in bold and the other methods which are statistically similar to the best
method are in italics with Wilcoxon signed-rank test having p = 0.05. NS̃GA-III (5-th
and 6-th column) is NSGA-III without the sorting process.

Problem M MOEA/D-TCH NSGA-III NS̃GA-III-d2 NS̃GA-III

ZDT1 2 3.9720e−3 4.2770e−3 2.8750e−3 3.2900e−3

ZDT2 2 2.6940e−3 4.2370e−3 3.0290e−3 3.7760e−3

ZDT3 2 3.2490e−3 3.1050e−3 2.1120e−3 1.9180e−3

ZDT4 2 7.4550e−3 4.0090e−3 3.0570e−3 3.9250e−3

ZDT5 2 8.7824e−2 8.3809e−2 9.1272e−2 9.6077e−2

ZDT6 2 2.7570e−3 2.3190e−3 2.3440e−3 2.3570e−3

Best/similar/total → 1/0/6 2/0/6 3/0/6 0/2/6

Fig. 3. Obtained solutions by all methods on some ZDT problems.

Three and Many-Objective Problems: The number of variables for DTLZ
test suite is chosen with k = 10 where k = (n − M + 1) and for WFG we have
chosen n = 30 with k = 2(M − 1) and k + l = n ≥ M . The performance metrics
for DTLZ and WFG problems are presented in Tables 2 and 3, respectively.
Representative solutions on some DTLZ and WFG problems are shown in Figs. 4
and 5, respectively.

It is reported (and consistent with the literature) that MOEA/D performs
better than NSGA-III on DTLZ problems mainly due to the similarly-scaled
objective values for all objectives. MOEA/D reports all ND solutions from the
final generation as an outcome, while NSGA-III reports a single best population
member for each active reference line from the final generation. While the number
of reported solutions from both these algorithms are more or less identical for
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DTLZ2 type of problems, MOEA/D will report more ND solutions for DTLZ5
(degenerate PO front dimension or constrained problems) than NSGA-III. It
is important to highlight that NSGA-III’s final population may have more ND
solutions than its reported number of solutions, but one solution per reference
vector is reported to provide a widely distributed set of ND solutions. The IGD+
values shown for DTLZ5 and DTLZ6 (degenerate problems) in Table 2 with
brackets are the IGD+ values computed by taking only PBI-metric associated
solutions for each active reference vectors instead of taking all final ND members.
Comparative IGD+ values with NS̃GA-III are now observed.

It is also clear from Table 3 that MOEA/D does not work well on WFG
problems, mainly due to non-uniform scaling of objectives in these problems.
NS̃GA-III works better than all other methods on WFG problems (26 best of 36
problems) and the combined DTLZ and WFG problems (36 best of 64 problems),
followed by NS̃GA-III-d2 method (14 best of 64 problems). Thus, it is interesting
to conclude from the two tables that NDS was not a very important operation for
NSGA-III for solving three and many-objective problems. While in two-objective
problems NS̃GA-III-d2 works better, for three and many-objective problems,
NS̃GA-III works much better with the PBI metric, rather than d2 metric.

Table 2. IGD+ performance metrics for 31 runs on DTLZ problems. NS̃GA-III (5-th
and 6-th columns) is NSGA-III without the sorting process.

Problem M MOEA/D-PBI NSGA-III NS̃GA-III-d2 NS̃GA-III

DTLZ1 3 3.4964e−2 3.3075e−2 2.7376e−2 3.0468e−2

5 1.3433e−2 2.4264e−2 2.3384e−2 9.8980e−3

8 3.5368e−2 6.8785e−2 4.4221e−2 2.0986e−2

10 8.0652e−2 1.0557e−1 7.2443e−2 5.3484e−2

DTLZ2 3 2.6866e−2 2.6114e−2 2.5251e−2 2.5400e−2

5 4.8030e−3 4.2260e−3 2.8530e−3 2.5850e−3

8 9.5400e−3 1.0530e−2 1.1239e−2 7.5900e−3

10 1.1309e−2 3.0248e−2 2.9952e−2 1.7584e−2

DTLZ3 3 4.1858e−2 3.5138e−2 2.9578e−2 3.1881e−2

5 2.6342e−2 6.3278e−2 6.0382e−2 1.9904e−2

8 6.5717e−1 1.4607e−1 9.8674e−2 3.9972e−2

10 7.6384e−1 2.4370e−1 2.2173e−1 8.2418e−2

DTLZ4 3 2.3108e−1 2.5742e−2 2.5200e−2 2.5293e−2

5 1.2806e−1 7.1360e−3 2.4350e−3 4.7470e−3

8 1.6967e−1 1.2310e−2 8.4650e−3 1.4287e−2

10 1.9387e−1 2.2136e−2 2.2127e−2 2.4918e−2

DTLZ5 3 1.0821e−2 (1.9361e−2) 1.8919e−2 8.3213e−2 7.3286e−2

5 5.4780e−3 (4.3105e−2) 1.7890e−1 1.7765e−1 5.6062e−2

8 1.4013e−2 (3.6413e−1) 3.7251e−1 3.2480e−1 9.8550e−2

10 2.0389e−2 (3.7156e−1) 3.9726e−1 3.0289e−1 8.0261e−2

DTLZ6 3 1.0750e−2 (1.8531e−2) 1.9141e−2 2.4254e−2 1.9901e−2

5 6.8450e−3 (3.2681e−2) 2.3767e+0 2.2249e+0 8.4766e−2

8 1.3850e−2 (3.6379e−1) 4.1552e+0 4.0039e+0 5.5816e−1

10 2.0448e−2 (3.7158e−1) 5.7369e+0 5.5902e+0 1.8406e+0

DTLZ7 3 5.9116e−2 3.3175e−2 3.5356e−2 3.5393e−2

5 1.3871e−1 1.1134e−1 1.1303e−1 1.0425e−1

8 1.2302e+0 1.8461e−1 1.8533e−1 1.7900e−1

10 1.6129e+0 1.8760e−1 1.8816e−1 1.8847e−1

Best/similar/total → 9/1/28 1/2/28 8/1/28 10/1/28
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With more objectives, the proportion of non-dominated members in a finite
population becomes more [6]. It also likely that at later generations, most ref-
erence vectors will have a single associated member, particularly for problems
having every reference vector leading to a distinct PO solution. In such cases,
the use of d2 or PBI metric may not matter much. However, early on, this may

Table 3. IGD+ performance metrics for 31 runs on WFG problems. NS̃GA-III (5-th
and 6-th columns) is NSGA-III without the sorting process.

Problem M MOEA/D-PBI NSGA-III NS̃GA-III-d2 NS̃GA-III

WFG1 3 4.3446e−1 4.1909e−1 3.7651e−1 3.6318e−1

5 4.5475e−1 5.1397e−1 4.8717e−1 4.7428e−1

8 4.5695e−1 5.4412e−1 5.0332e−1 4.8024e−1

10 4.8536e−1 4.8279e−1 4.3790e−1 4.1891e−1

WFG2 3 7.7834e−2 2.7083e−2 1.6556e−2 1.3154e−2

5 1.3579e−1 4.4112e−2 4.4695e−2 3.0848e−2

8 1.5377e−1 4.4840e−2 4.5205e−2 3.2744e−2

10 1.6877e−1 2.8194e−2 2.6693e−2 2.9477e−2

WFG3 3 1.6463e−1 4.7558e−2 6.1073e−2 4.4320e−2

5 2.3672e+0 3.5530e−1 2.5779e−1 2.0911e−1

8 6.5851e+1 1.9058e+0 4.9633e−1 3.7363e−1

10 5.8560e+2 2.8201e+1 4.3064e+0 3.5071e+0

WFG4 3 5.9218e−2 4.5232e−2 3.0611e−2 2.9883e−2

5 2.8312e−1 9.9648e−2 8.8945e−2 8.9776e−2

8 7.1960e−1 1.5102e−1 1.4690e−1 1.4659e−1

10 7.4449e−1 3.4704e−1 3.1872e−1 3.1720e−1

WFG5 3 6.2305e−2 5.6573e−2 4.4542e−2 4.4398e−2

5 1.8382e−1 8.3703e−2 7.5884e−2 7.6385e−2

8 8.3541e−1 1.7123e−1 1.6990e−1 1.6945e−1

10 1.9304e+0 1.8594e−1 1.8349e−1 1.8225e−1

WFG6 3 6.5468e−2 5.4180e−2 4.0747e−2 3.9925e−2

5 2.7583e−1 7.6170e−2 6.5350e−2 6.4881e−2

8 6.5052e−1 1.2266e−1 1.1600e−1 1.1656e−1

10 7.7136e−1 1.5115e−1 1.4879e−1 1.4749e−1

WFG7 3 6.9492e−2 3.8074e−2 2.7420e−2 2.7256e−2

5 2.2374e−1 5.6599e−2 4.8126e−2 4.8975e−2

8 6.3725e−1 1.1505e−1 1.1071e−1 1.1030e−1

10 7.5967e−1 1.5021e−1 1.4735e−1 1.4209e−1

WFG8 3 8.8971e−2 7.3944e−2 5.9074e−2 5.8133e−2

5 2.4557e−1 1.2901e−1 1.2277e−1 1.2269e−1

8 8.6388e−1 2.0446e−1 2.1285e−1 2.0935e−1

10 1.0092e+0 2.1857e−1 2.5549e−1 2.5674e−1

WFG9 3 9.1279e−2 6.4961e−2 4.9177e−2 4.6800e−2

5 1.8287e−1 1.1333e−1 1.1344e−1 1.0975e−1

8 5.2175e−1 1.5261e−1 1.6783e−1 1.5377e−1

10 7.2420e−1 1.9624e−1 1.9613e−1 1.9981e−1

Best/similar /total → 1/0/36 3/2/36 6/12/36 26/7/36

DTLZ + WFG → 10/1/64 4/4/64 14/13/64 36/8/64
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not be the case and the difference between d2 and PBI metric may show up. If
NS̃GA-III and NS̃GA-III-d2 IGD+ metric values are compared for the DTLZ5
problem having a few active reference vectors leading to a PO solution, many
associated population members are expected for each of the active reference vec-
tors. The performance of NS̃GA-III is better than NS̃GA-III-d2. To support this
argument, we plot the variation of IGD+ value versus generations in Fig. 6 for
five-objective DTLZ2 and DTLZ5 problems. It can observed that while the per-
formance of all three NSGA-III methods are more or less the same (with a slight
edge for NS̃GA-III), for DTLZ5, NS̃GA-III performs the best.

Fig. 4. Obtained solutions by all methods on some DTLZ problems.

3.2 Constrained Problems

Next, we apply all three NSGA-III methods to constrained problems. Since
MOEA/D is not usually used for constrained problems, we ignore it here. Our
NS̃GA-III method includes constraint violation as Class 3 solutions and are well-
equipped to solve constrained problems.

Two-Objective Problems: First, we consider two-objective test problems:
BNH, OSY, SRN and TNK [6]. Results are presented in Table 4. It is clear that
NS̃GA-III-d2 performs the best for the two-objective problems, as in the case of
unconstrained two-objective problems, shown in Table 1.
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Table 4. IGD+ performance metrics for 31 runs on two-objective constrained test
problems. NS̃GA-III (4-th and 5-th columns) is NSGA-III without the sorting process.

Problem M NSGA-III NS̃GA-III-d2 NS̃GA-III

BNH 2 2.8870e−3 2.9970e−3 5.4130e−3

OSY 2 2.4169e−2 4.7080e−3 9.3770e−3

SRN 2 2.9650e−3 3.1560e−3 2.9390e−3

TNK 2 4.3210e−3 3.5450e−3 5.1930e−3

Best/similar /total → 1/1/4 2/0/4 1/0/4

Three and Many-Objective Problems: Table 5 presents the results on three
and many-objective (5, 8 and 10-obj.) constrained optimization problems. It is
clear that both NSGA-III versions without NDS operation works better than the
original NSGA-III, with a slight edge for NS̃GA-III (10 best out of 20 problems),
followed by NS̃GA-III-d2 (8 best out of 20 problems).

Fig. 5. Obtained solutions by all methods on some WFG problems.
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Fig. 6. Convergence history of algorithms on DTLZ2-5obj and DTLZ5-5obj problems.
NS̃GA-III produces better IGD+ values.

Figure 7 shows the performance of all NSGA-III versions on the C2DTLZ2
problem with 10-objectives, showing similar distributions, but convergence by
NS̃GA-III is slightly better (see also Table 5).

Table 5. IGD+ performance metrics for 31 runs on three and many-objective con-
strained problems. NS̃GA-III (4-th and 5-th columns) is NSGA-III without the sorting
process.

Problem M NSGA-III NS̃GA-III-d2 NS̃GA-III

C1DTLZ1 3 3.8573e−2 2.3388e−2 3.7922e−2

5 6.3775e−2 5.5396e−2 4.7830e−2

8 8.0516e−2 8.3178e−2 7.7365e−2

10 1.2233e−1 1.2774e−1 1.3327e−1

C1DTLZ3 3 8.0129e+0 8.0080e+0 8.0109e+0

5 1.1587e+1 1.1583e+1 1.1570e+1

8 1.1677e+1 1.1673e+1 1.1620e+1

10 1.1726e+1 1.1721e+1 1.1665e+1

C2DTLZ2 3 1.8170e−3 3.1800e−4 8.0800e−4

5 3.8650e−3 2.1900e−3 3.1260e−3

8 5.6720e−3 5.0310e−3 1.7410e−3

10 1.3350e−2 1.2366e−2 5.4420e−3

C3DTLZ1 3 4.5512e−1 5.8319e−1 5.8754e−1

5 5.3615e−1 5.3443e−1 5.2738e−1

8 5.8136e−1 5.7790e−1 5.4731e−1

10 5.6870e−1 5.5841e−1 4.7341e−1

C3DTLZ4 3 9.7930e−3 3.3400e−3 9.3730e−3

5 1.9092e−2 1.7264e−2 2.0938e−2

8 2.5991e−2 2.5469e−2 2.8631e−2

10 3.4809e−2 3.4504e−2 3.7774e−2

Best/similar/total → 2/4/20 8/4/20 10/2/20
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Fig. 7. Obtained solutions using PCP plot for CDTLZ2 problem.

4 Conclusions

This paper has questioned the use of non-dominated sorting (NDS) operation
in NSGA-III method for solving two to 10-objective problems. Since population
members are not divided into different non-dominated levels for performing mat-
ing and survival selection operators, the choice of an appropriate solution within
the associated members for a reference direction becomes important. We have
investigated two approaches: (i) NS̃GA-III-d2, which uses the original orthogonal
distance metric d2 and (ii) NS̃GA-III, which uses the well-known PBI metric.
Based on 87 different problems, following two conclusions can be made:

– The NDS operation is not absolutely necessary and for many-objective prob-
lems, NSGA-III without NDS performs better than the original NSGA-III.

– For two objective problems, NS̃GA-III with the d2-metric has a slow progress
in the beginning, but can catch up with the performance of NS̃GA-III or the
original NSGA-III with enough generations.

These observations are important for making NSGA-III more computationally
efficient. Since NDS operation is not essential, domination check can be com-
pleted with a smaller computational time. Moreover, since convergence rate
is faster for NS̃GA-III, it can be used with more effectiveness to build better
surrogate-assisted NSGA-III methods with a limited number of solution evalua-
tions. We plan to pursue some of these extensions in the near future.
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Abstract. The use Multi-Objective Evolutionary Algorithms (MOEAs) to solve
real-world multi-objective optimization problems often finds a problem desig-
nated by the curse of dimensionality. This is mainly because the progression of
the algorithm along successive generations is based on non-dominance relations
that practically do not exist when the number of objectives is high. Also, the exis-
tence ofmany objectivesmakes the choice of a solution to the problem under study
very difficult. Several methods have been proposed in the literature to reduce the
number of objectives to use during the optimization process. In the present work, a
methodology to reduce the number of objectives is proposed. This method is based
on DAMICORE (DAta MIning of COde REpositories), a machine-learning algo-
rithm proposed by the authors. A theoretical comparison with a similar machine
learning approach is made, pointing out some advantages of using the proposed
algorithm using a benchmark problem designated byDTLZ5. Also, a real problem
is used to show the effectiveness of the methodology.

Keywords: Objectives reduction · Data mining · MOEAs · Many objectives

1 Introduction

Real-world optimization problems have very oftenmany objectives that must be satisfied
simultaneously. Multi-Objective Evolutionary Algorithms (MOEAs) showed to be very
efficient in solving this type of problems. However, the use of MOEAs to tackle these
problems suffers from a difficulty designated by the curse of dimensionality, in which
the increase of the number of objectives makes the progression towards the Pareto-
Optimal Frontier (POF) very challenging [1–4]. Also, the existence of many objectives
makes the visualization of the POF almost impossible, which puts difficult to help the
decision maker in selecting a solution and, more importantly, to explain his decision.
Associated with this, often the decision space is also of large size, which, additionally,
worsens the difficulties for the MOEAs [5]. Therefore, a scalability problem arises, not
only due to the high number of decision variables and/or objectives but also due to the
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complex interrelations existent between the decision variables, between the objectives,
and between the decision variables and the objectives.

To deal with the curse of dimensionally due to the high number of objectives several
methodologies to reduce the number of objectives during the optimization have been
proposed in the literature. This is a challenging problem in which a balance must be
made between the requirement of preserving the original (with all objectives) problem
characteristics and the possibility of obtaining acceptable solutions when the number of
objectives used during the optimization is reduced.

Another important question is to know if the individual objectives are relevant during
the entire optimization process (along the generations), i.e., it is important to know if
it is possible to start the optimization using some objectives and during the successive
generations change the objectives used. This is, as the solutions approach the POF the
complex structure between the decision variables and the objectives can change.

The objective of this work is to study the applicability of MOEAs to complex real
problems based on objectives reduction using a data mining technique, and not to com-
pare the performance of different methodologies. Thus, using the data mining method-
ology proposed the aim is to be able to use the existing complex relations inside the
problem to help the optimization process. However, must be clear that the aim is not to
obtain a reduced objective set which represents the original set without errors, but the
reduced set will be a very good approximation to the originally defined set of objec-
tives with a reduced error. This will be very useful for real problems in which it is not
possible to reduce the number of objectives due to the strong interaction between these
same objectives, but that makes it possible to facilitate the search and help the DM to
understand the considered process. In fact, real problems often have some characteristics
that are not present in benchmark problems. In such real problems, there is a complexity
associated with the relations between the decision variables and the objectives that are
not present in benchmark test problems, where those relations are placed on purpose [5].

This text is organized as follows: in Sect. 2 a state-of-the-art related to objectives
reduction will be made, in Sect. 3 the data mining technique used will be presented and
discussed, in Sect. 4 the real-world problem to study is presented, in Sect. 5 the results
are presented and discussed, and in Sect. 6 the conclusions and some suggestion for
further work will be stated.

2 Related Work with Objectives Reduction

Brockoff and Zitzler [1, 2] proposed two different algorithms for objectives reduction
based on the definition of two types of problems, the first, to obtain the minimum
objective subset that produces a certain error, and the second, to obtain an objective
subset of a predefined size with the minimum possible error. Deb and Saxena [3, 4]
based on principal component analysis proposed a method for reducing the number
of objectives by maintaining the objectives that can explain most of the variance in
the objective space, but without explaining clearly how the objective reduction alters
the dominance structure. Jaimes et al. [6] proposed two algorithms to address the two
problems identified by Brockoff and Zitzler above based on a feature selection method.
The algorithms were validated by comparing the results with the algorithms of Brockoff
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and Zitzler. Saxena et al. [7] presented a framework for using both linear and nonlinear
objective reduction algorithms. The authors proposed to develop a general framework,
taking into account the possibility of the data being noisy, to reduce the number of
algorithms parameters and to propose an error measure. The algorithms were applied to
a broad range of problems and the results were compared with others in the literature.
Sinha et al. [8] proposed a methodology to reduce the objectives before presenting the
solutions to the decisionmaker that iteratively chose the best solutions. Themethodology
was applied to solve some real world problems. Finally, Duro et al. [9] proposed a
machine learningmethodologywith the aimof learning the preference-structure different
objectives present in the problem in order to obtain the smallest set of objectives that
can originate the same POF, the smallest objective set corresponding to a minimum
pre-defined error and the objective sets of a certain size that originates a minimum error.
The characteristics of this methodology were compared with the one proposed in the
present paper at the end of the next section.

3 Approach Based on Data Mining

3.1 Data Mining Methodology Adopted - FS-OPA

Main concepts. First introduced by Sanches et al. [10], DAMICORE, borrowed from
Theory, Complex Networks, and Phylogenetic Inference, aiming at revealing the hidden
hierarchical relationship of objects from an unstructured (raw) dataset. It uses three
principal steps: S1) given a metric of similarity, build a distance matrix comparing every
two objects; S2) convert the matrix into a phylogenetic tree by connecting close objects
according to hierarchical levels of similarity; S3) apply a community detection process
to group close subtrees into clusters. Figure 1 shows a set of objects xi, the elements dij of
the distance matrix correspond to a measure of dissimilarities between objects xi and xj,
according to some givenmetric. Thematrix is broken down into a tree, where the distance
between any two objects (leaves) corresponds to the sum of the lengths of the branches
connecting them. Finally, the third step groups the objects that are strongly connected
(according to the tree topology) into a community, generating a set of distinguishable
similarity clusters. The original DAMICORE method selects three specific algorithms
for the Steps S1, S2, and S3 (Fig. 1), respectively, Normalized Compression Distance
(NCD) [12, 13] (since it works with any data type and mixed types); Neighbor Joining
[14] (NJ) (widely employed in bioinformatics), and Fast Newman (FN) (that constructs
a graph partition by a greedy algorithm that uses a bottom-up strategy to maximize the
graph modularity function [15]).

The pipeline with NCD,NJ, possesses relevant properties. NCDmakes DAMICORE
a data-type agnostic method, in the sense that it works with any kind of object (texts,
images, audio, etc.) and mixed data types. Moreover, DAMICORE can be used without
any data pre-processing, such as filtering, outlier detection, feature extraction, parameter
setup and knowledge of the problem domain. DAMICORE requires no parameters setup
to run (although some execution options may improve its performance). DAMICORE
has been successfully employed in a variety of fields, for example, software-hardware
co-design [16–18], compiler optimization [19, 20], student profiling in e-learning envi-
ronments [21, 22], identification of phytopathology from sensor data [18], systematic
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literature review, identification of cross-cut concerns [23], electrical distribution systems
[24], and novel methods in bioinformatics [25].

Fig. 1. The tree-steps pipeline called DAMICORE (reproduced with permission from [11]).

Feature Sensitivity Analysis. A Feature Sensitivity (FS) analysis aims at salienting the
principal features of a problem, taking into account common real-world challenges (such
as the quality of data acquired and the database consistency and representativeness), its
feature interactions, and their contribution to a target or objective. Such a scope differs
from those where the standard feature selection algorithms have succeeded. In other
words, an FS strategy is expected to benefit the learning of a problem from scratch. Such
learning can induce a model for optimization algorithms (such as Estimation of Distri-
bution Algorithms). We use phylogram-based models since they can work with small
datasets and there is an optimization approach prepared to use suchmodels:Optimization
based on Phylogram Analysis (OPA).

Figure 2 shows a diagram synthesizingOPAwith the use of the FS analysis by it; such
a combination is called FS-OPA. The two principal FS steps are: A) Salienting Samples
(SS) according to a criterion; and B) applying DAMICORE to construct a phylogram-
basedmodel. SS ranks the samples according to each of theM criteria (or non-dominated
fronts), producing the sets of selected samples (Fig. 3), denoted BC1 (the samples in
the best quantile according to Criterion 1), BC2, …, BCM. DAMICORE constructs
a phylogram (a rough model) from BCi, i = 1, …, M, generating M models (BC1-
based model, …, BCM-based model). Then, a consensus strategy produces a unified

Fig. 2. Diagram of the optimization based on phylogram analysis - OPA.
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phylogram-based model. An OPA cycle completes when the unified model generates
new samples.

This paper instantiates the procedures from Steps A and B for the modelling of
polymer extrusion (Sect. 4). The learned model is expected to benefit the optimization
problem associated with polymer extrusion. However, the sampling from the unified
model (the last OPA step) is not performed, thus, not a complete optimization cycle is
run.

Fig. 3. SS procedure that obtains the selected samples shown in Fig. 2.

Soares et al. [24] and Martins et al. [18] show some experimental results and proofs
related to the performance of OPA for challenging combinatorial mono- and multi-
objective optimization problems. The main mechanisms of FS-OPA, relevant to the
scope of a data-driven design of an extruder concentrated on the DAMICORE method,
are introduced in Sect. 3.2.

3.2 Comparison of FS-OPA with NL-MVU-PCA for MaOPs Data-Driven
Structural Learning

NL-MVU-PCA (Non Linear – Maximum Variance Unfolding - Principal Component
Analysis) is the main method investigated for MaOPs by [9]. The non-linear (NL) app-
roach performs the optimization of the Kernel (Gram) matrix values by minimizing
the Maximum Variance Unfolding (MVU) to find the best mapping (that preserves the
geometric properties of local neighbourhoods; while linear methods aim at keeping the
Euclidean distances between all pairs of data points). Table 1 summarizes the relevant
properties of both NL-MVU-PCA and FS-OPA for MaOPs. The latter investigates three
types of associations: variable-variable (producing results similar to the Gibbs measure
for Ising Models, or Markov Random fields [26]), objective-objective (the dissimilari-
ties when found can favour the construction of (non-dominated) front distributions [25]),
and the variable-objective (that may benefit inference as Markov Blankets [27]). The
former only works on the objective space for the exclusive purpose of space reduction
to determine the essential objective set [9]. Moreover, the FS-OPA preserves the origi-
nal variable space, which favours non-expert human interpretability (relevant for some
classes of real-world problems); it also has a relatively low-time complexity and has
shown beneficial results when applied to small datasets [10, 16–23].
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The Feature Sensitivity (FS) analysis of FS-OPA aims at finding the variable and/or
objective interactions that benefit inferences through structural (graph-based) and prob-
abilistic modelling. Probabilistic results are fundamental due to the odds of bias in
observed data or small-data sampling. Interpretability is fundamental for some classes
of real-world problems, mainly involving decisions by experts from an application
domain. Variable-variable and variable-objective interactions also benefit practitioners’
comprehension of founds (The Why), increasing their confidence in a decision.

Table 1. NL-MVU-PCA and DAMICORE for multidimensional data-driven structural learning
applied to MaOPs.

Category Types NL-MVU-PCA FS-OPA

Analyses Objective-objective X X

Variable-variable X

Variable-objective X

Objective space reduction X

Sensitivity X

Priors Kernel function choice X Not necessary

Parameter optimization X Not necessary

Interpretability - The
Why

Non-expert practitioner X

Scalability Time-complexity Usual cases O(M3q3)* O(l3)**

The worst case O(M6) O(n l2 + l2)

Sample-size support Empirical Theoretical
and empirical

*M is the number of objectives and q is the number of clusters.
** l is the number of variables and objectives, and n is the number of data resamples.

The time complexity for usual cases and the worst-case estimates the overhead of the
two procedures for the multidimensional data-driven structural learning when applied to
MaOPs. The number of clusters in NL-MVU-PCA relates to the number of constraints to
maintain the local isometry (Mq; in the worst case, q =M−1 andM2) [9]. FS-OPA with
usual resampling is O(l3) since n ≤ l (as in leave-one-out resampling) [24]. Moreover, l
= M for a space analysis only uses objectives. Thus, the time complexities of FS-OPA
and NL-MVU-PCA have a ratio of (n + M)/M4 (1/q3) of running time for l = M in the
worst case (in the usual case).

Another relevant factor for reliable results is theminimal amount of samples required.
Usually, the sample size for PCA is empirically obtained. FS-OPAhas a theoreticalmodel
to determine the minimal amount of samples to reach reliable results [24], which can
also be empirically corroborated.
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Figure 4 illustrates an FS-OPA output for DTLZ5 (2,10), also used by Duro et al. [9]
for explaining the capacity of themethod of them to find redundant objectives (objectives
f1, f2, f3, f4, f5, f6, f7, f8, and f9 are linearly correlated in DTLZ5(2,10)). A random
population of size 31with samples normalized and Euclidian distance was used to obtain
a distance matrix. SS procedure in Fig. 3 was not applied. The output of Fig. 4 shows
variables and objectives arranged into a phylogram with leaf nodes (the objects under
analysis) composing clusters (similarly to the end of the pipeline in Fig. 1) - they are
identified by the same colour.

Objective functions f1, …, f9 are partitioned into three neighbour clusters ({f1, f2},
{f3, f4, f5, f6} and {f7, f8, f9}) in the phylogram structure; while f10 is together with the
leaf nodes corresponding to variables. The phylogram structure aggregates f1,…, and f9
into the same subtree, while f10 is isolated from the other objectives in the complemen-
tary subtree. The unique node with the label “100” (another type of result from a tree
consensus) splits the phylogram into those two subtrees. Such a label (“100”) means that
the leaf nodes f10 and x1,.., x10, and f10 were in the same subtree (with the remaining
leaf nodes in the complementary subtree) in 100% of all the constructed phylograms,
independently on each subtree topology in a phylogram. Such an interpretation suggests
a hypothesis: f10 is weakly correlated to the other objectives, which are significantly
associated with themselves. Thus, f10 and one of the other objectives could compose an
essential objective set; this result is consistent with the DTLZ5(2,10) problem structure.
The FS-OPA also produces other outputs (useful for human comprehension of some
classes of real-world problems), which are explored in Sections related to the extrusion
problem.

Fig. 4. Phylogram and clustering found for DTLZ5(2,10) with 10 variables in decision space.
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4 Case Study

Themethodology proposed will be applied to a real-world problem in polymer extrusion
in which the complex thermomechanical environment involved is described in detail in
Gaspar-Cunha and Covas [28, 29] encompassing the possibility of using inside the same
extruder alternately two different types of screws, a conventional and a Maillefer barrier
screw. The complexity of the thermomechanical phenomena taking place, including the
flow of solid pellets and melted polymer and the coexistence of both, is described in
detail in reference [28], while in reference [29] the numerical model used was assessed
experimentally. Table 2 shows the geometrical parameters involved in the description
of both types of screws. Considering that only one screw can be used in the machine,
an additional decision variable was added, case, to activate the decision variables cor-
respondent to one of the types of screws, i.e., when case ranges in the interval [0.0,0.5]
the decision variables of the conventional screw are used while when case ranges in
the interval]0.5,1.0] the other screw is considered. Thus, the total number of decision
variables is 15.

Table 2. Geometrical parameters of both conventional and Maillefer barrier screws.

Screw type Decision variables

Conventional
screw

Case L1 L2 H1 H3 P e

Maillefer
barrier screw

L1_ L2_ H1_ H3_ P_ e_ Hf wf

Range of
variation

[0,1] [100,400] [170.400] [18,
22]

[22,
26]

[25,35] [3,
4]

[0.1,0.6] [3,
4]

In the extrusion system, the performance of the process depends on the polymer prop-
erties, machine operating conditions and geometry. In the present example, a Low Den-
sity Polyethylene (LDPE) is used and the operating conditions were fixed and include:
screw rotational speed (N= 40 rpm) and barrel temperature profile in three zones (Tb1=
140 ºC, Tb2 = 150 ºC and Tb3 = 160 ºC ). The geometrical parameters are the decision
variables defined randomly by the optimization methodology in the range identified in
Table 3. The performance of the machine was quantified using six objectives, two to
maximize (machine output, Q (kg/hr) and degree of mixing, WATS) and four to mini-
mize (length of screw required to melt the polymer, L (m), melt temperature at the exit,
T (ºC), mechanical power consumption required to rotate the screw, Power (W), and
viscous dissipation quantified as the ratio between the melt temperature and the fixed
barrel temperature, TTb). Due to a lack of space, more details about this process and all
the decision variables and objectives involved the reader is referred to references [28,
29].

The optimizations were made using the SMS- EMOA algorithms. For comparison,
and due to the stochastic nature, 11 independent runs with different random numbers
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were done. For all test runs the population size and the maximum number of generations
were set to 50 and 100, respectively.

5 Results and Discussion

The following strategy for analyzing the potentiality of DAMICORE in reducing the
number of objectives required for optimization will be pursued:

1. Perform 11 optimization runs using 6 objectives;
2. Apply DAMICORE to the initial population of one of the previous runs;
3. Obtain the phylogram and the distance tables;
4. Perform an analysis of the phylogram and tables and select the minimum number of

objectives;
5. Perform 11 optimization runs using the minimum number of objectives;
6. Taking into account the distance between the objectives check if some other

objectives can be added;
7. Perform 11 optimization runs using the number of objectives defined in 6;
8. Compare the optimization results using the hypervolume metric.

The application of DAMICORE to the random initial population of one of the opti-
mization runs (steps 2 and 3 above) produces the results presented in Fig. 5 and in
Tables 2 and 3. Table 3 shows the distances between the decision variables and the
objectives obtained from the phylogram of Fig. 5. The average distance can quantify the
degree of influence of each decision variable in the objectives.

Figure 5 shows the complex relations existent between the decision variables and the
objectives, but also between the different objectives. The objectives, identified by black
boxes, are assembled in different clusters and in pairs, having the minimum distance
between themselves, specifically (Q, L), (Power, WATS) and (T, TTb). Simultaneously,
it is possible to see that some decision variables are grouped together with these pairs
of objectives, respectively (Q, L, L1, L2), (Power, WATS, L1_, L2_) and (T, TTb, Hf).
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Fig. 5. Phylogram and clustering found for the extrusion problem – initial optimization of the
optimization run (the cluster are identified by different colours).

Taking into account the knowledge about the process those relations are not easy to
explain. In fact, if only the conventional screw is considered, Q and L depend mainly on
the value of H3. Therefore, the application of DAMICORE constitutes, in this apparently
simple example, a methodology that is able to capture some other information when the
Maillefer barrier screw is also considered. This is, the technique applied is able to capture
the indirect influence of the H3 on Q and L through the value of L1 and L2 because
these variables (and also L1_ and L2_ for Power andWATS) determine the length of the
barrier (since it finishes after L1 + L2) and as consequence, the location of the screw
were H3 acts.
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Table 3. Distances between the decision variables and the objectives for the phylogram of Fig. 5.

'Q' 'L' 'T' 'Power' 'WATS' 'TTb' Average

'L2' 0.20 0.20 0.73 0.27 0.27 0.73 0.40

'L2_' 0.33 0.33 0.60 0.27 0.27 0.60 0.40
'L1_' 0.33 0.33 0.60 0.27 0.27 0.60 0.40

'L1' 0.20 0.20 0.73 0.27 0.27 0.73 0.40
'case' 0.40 0.40 0.53 0.33 0.33 0.53 0.42

'N' 0.40 0.40 0.53 0.33 0.33 0.53 0.42
'e' 0.47 0.47 0.47 0.40 0.40 0.47 0.44

'P' 0.47 0.47 0.47 0.40 0.40 0.47 0.44
'e_' 0.53 0.53 0.40 0.47 0.47 0.4 0.46

'P_' 0.53 0.53 0.40 0.47 0.47 0.4 0.46
'H3_' 0.60 0.60 0.33 0.53 0.53 0.33 0.48

'H1_' 0.60 0.60 0.33 0.53 0.53 0.33 0.48
'H3' 0.67 0.67 0.27 0.60 0.60 0.27 0.51

'H1' 0.67 0.67 0.27 0.60 0.60 0.27 0.51
'Hf' 0.73 0.73 0.20 0.67 0.67 0.20 0.53

'wf' 0.80 0.8 0.27 0.73 0.73 0.27 0.60
'Tb3' 0.87 0.87 0.33 0.80 0.80 0.33 0.66

'Tb1' 0.93 0.93 0.40 0.87 0.87 0.40 0.73
'Tb2' 1.00 1.00 0.47 0.93 0.93 0.47 0.80

Average 0.5647 0.5647 0.4384 0.5126 0.5126 0.4384

Some other relations can be explained, for example, the cluster (T, TTb, Hf) exists
because the melt temperature (T) value is controlled by the viscous dissipation generated
in the gap with size Hf.

A conclusion from the simultaneous analysis of Fig. 5 and Table 4 is that, instead of
using the 6 objectives, can be possible to use during the optimization only one objective
of each pair (steps 4 and 5 above), for example, Q,WATS and T, given that the objectives
belonging to the same cluster are strongly related.

Finally, an analysis of Table 4 (steps 6 and 7 above) shows that theminimum distance
between objectives is 0.325 for Power and WATS. This clearly means that these two
objectives (and also Q and L, since their distance is also low, 0.345) have a strong
connection with all the others, i.e., they aggregate more information of all objectives
and, as a consequence, of the decision variables. The idea is to include one of these
objectives in the optimization process. In the end, instead of having 6 objectives, the
optimization can be performed with three of four objectives.
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Therefore, the following cases were selected to perform 11 optimization runs using
SMS-EMO to compare the corresponding performance using the hypervolume metric:

Case 1- 6 objectives, Q, L, Power, WATS, T and TTb;
Case 2- 4 objectives: Q, L, WATS and T;
Case 3- 4 objectives: Q, Power, WATS and T;
Case 4: 3 objectives: Q, WATS and T.

The idea is to conclude what information is lost when the number of objectives is
reduced taking into account the methodology proposed here.

Table 4. Distances between the objectives for the phylogram of Fig. 5.

'Q' 'L' 'T' 'Power' 'WATS' 'TTb' Average
'Q' 0.00 0.07 0.73 0.27 0.27 0.73 0.345
'L' 0.07 0.00 0.73 0.27 0.27 0.73 0.345
'T' 0.73 0.73 0.00 0.67 0.67 0.07 0.478

'Power' 0.27 0.27 0.67 0.00 0.07 0.67 0.325
'WATS' 0.27 0.27 0.67 0.07 0.00 0.67 0.325
'TTb' 0.73 0.73 0.07 0.67 0.67 0.00 0.478

6 Conclusions

Amethodology based onmachine learning was presented and applied in the reduction of
the number of objectives for multiobjective optimization using MOEAs. This approach
has some important characteristics that are an important improvement concerning sim-
ilar state-of-the-art methodologies, namely: it allows analysis of the relations variable-
variable and variable-objectives (and not only objective-objective), does not need kernel
function choice and parameters optimization, allows to interpret of the results to help
the decision maker, its time complexity is low and supports theoretical and empirical
sample-size.

The application of the methodology to the well-known DTZL5(2,10) benchmark
problemshowed its potential to reduce the number of objectives by capturing the complex
relations between the different objectives, with an additional possibility that is to capture
the relations objectives-variables.

The resolution of a difficult real-world problem using the approach proposed has
proven that almost automatically it is possible to reduce the number of objectives by
losing only less than ten per cent of the Pareto-optimal frontier obtained.Additionally, the
intervention of the decision maker during the process, e.g., when selecting the objectives
to be considered in the optimization, can be very useful because the person interested
is able to see how the process works and to interpret the results obtained. Finally, an
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Fig. 6. Pareto-optimal fronts for the 4 cases studies: i) 6 objectives; ii) 4 objectives (Q, L, WATS,
T), iii) 4 objectives (Q, Power, WATS, T); iv) 3 objectives (Q, WATS, T).
important characteristic of the method proposed is the capacity to explain the results
obtained.

As a future work, the methodology will be compared with other approaches in the
literature (Fig. 6 and Table 5).

Table 5. Hypervolume for the 4 cases studied and relative loss percentage.

6 Objectives 4 Objectives (Q, L,
WATS, T)

4 Objectives (Q, Power,
WATS, T)

3 Objectives (Q, WATS,
T)

0.24636 0.22754 0.22215 0.02117

– –– 7.6% 9.8% 91.4%
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Abstract. Real-world problems are often multi-objective, with decision-
makers unable to specify a priori which trade-off between the conflicting
objectives is preferable. Intuitively, building machine learning solutions
in such cases would entail providing multiple predictions that span and
uniformly cover the Pareto front of all optimal trade-off solutions. We
propose a novel approach for multi-objective training of neural networks
to approximate the Pareto front during inference. In our approach, we
train the neural networks multi-objectively using a dynamic loss function,
wherein each network’s losses (corresponding to multiple objectives) are
weighted by their hypervolume maximizing gradients. Experiments on
different multi-objective problems show that our approach returns well-
spread outputs across different trade-offs on the approximated Pareto
front without requiring the trade-off vectors to be specified a priori. Fur-
ther, results of comparisons with the state-of-the-art approaches high-
light the added value of our proposed approach, especially in cases where
the Pareto front is asymmetric.

Keywords: Multi-objective optimization · Neural networks · Pareto
front · Hypervolume · Multi-objective learning

1 Introduction

Multi-objective (MO) optimization refers to finding Pareto optimal solutions
for multiple, often conflicting, objectives. In MO optimization, a solution is
Pareto optimal if none of the objectives can be improved without a simulta-
neous detriment in performance on at least one of the other objectives [35]. MO
optimization is used for MO decision-making in many real-world applications
[32] e.g., e-commerce recommendation [21], treatment plan optimization [25,27],
and aerospace engineering [29]. In this paper, we focus on learning-based MO
decision-making i.e., MO training of machine learning (ML) models so that MO
decision-making is possible during inference. Specifically, we focus on training
neural networks to generate a finite number of Pareto optimal solutions for each
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sample1, so that they together provide a discrete approximation of the Pareto
front2.

The most straightforward approach for MO optimization is linear scalariza-
tion, i.e., optimizing a linear combination of different objectives according to
scalarization weights. The scalarization weights are based on the desired trade-
off between multiple objectives which is often referred to as ‘user preference’. A
major issue with linear scalarization is that user preferences cannot always be
straightforwardly translated to linear scalarization weights. Recently proposed
approaches have tackled this issue and find solutions on the average Pareto
front for conflicting objectives according to a pre-specified user preference vec-
tor [20,23]. However, in many real-world problems, the user preference vector
cannot be known a priori and decision-making is only possible a posteriori, i.e.,
after multiple solutions are generated that are (near) Pareto optimal for a specific
sample3. For example, in neural style transfer [11] where photos are manipulated
to imitate an art style from a selected painting, the user preference between the
amount of semantic information (the photo’s content) and artistic style can
only be decided by looking at multiple different resultant images on the Pareto
front (Fig. 5). Moreover, defining multiple trade-offs, typically by defining mul-
tiple scalarizations, to evenly cover the Pareto front is far from trivial, e.g., if
the Pareto front is asymmetric. Here, we define asymmetry in Pareto fronts as
asymmetry in the distribution of Pareto optimal solutions in the objective space
on either side of the 45◦-line, the line which represents the trade-off of equal
marginal benefit along all objectives (see Pareto fronts in Fig. 1). We demon-
strate and discuss this further in Sect. 4. To enable a posteriori decision-making
per sample, multiple solutions spanning the Pareto front need to be generated
without requiring the user preference vectors beforehand.

Despite many developments in the direction of MO training of neural net-
works with pre-specified user preferences, research on MO learning allowing for
a posteriori decision-making is still scarce. Here, we present a novel method
to multi-objectively train a set of neural networks to this end, leveraging the
concept of hypervolume. Although we present our approach for training neural
networks, the proposed formulation can be used for a wide range of ML models.

The hypervolume (HV) – the objective space dominated by a given set of
solutions – is a popular metric to compare the quality of different sets of solu-
tions approximating the Pareto front. It has its origins in the field of evolutionary
algorithms [39], which are commonly accepted to be state of the art for multi-
objective optimization. Theoretically, if the HV is maximal for a set of solutions,
these solutions are on the Pareto front [9]. Additionally, HV not only encodes the
proximity of a set of solutions to the Pareto front but also their diversity, which
means that HV maximization provides a straightforward way for finding diverse
solutions on the Pareto front. Therefore, we use hypervolume maximization for

1 Note that, during inference, only near Pareto optimal solutions can be generated
due to the generalization gap between training and inference.

2 The Pareto front is the set of all Pareto optimal solutions in objective space.
3 For more information on a posteriori decision-making, please refer to [14].
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MO training of neural networks. We train the set of neural networks with a
dynamically weighted combination of loss functions corresponding to multiple
objectives, wherein the weight of each loss is based on the HV-maximizing gra-
dients. In summary, our paper has the following main contributions:

– An MO approach for training neural networks
• using gradient-based HV maximization
• predicting Pareto optimal and diverse solutions on the Pareto front per

sample without requiring specification of user preferences
• enabling learning-based a posteriori decision-making.

– Experiments to demonstrate the added value of the proposed approach, specif-
ically in asymmetric Pareto fronts.

2 Related Work

MO optimization has been used in machine learning for hyperparam-
eter tuning of machine learning models [2,18], multi-objective classification of
imbalanced data [33], and discovering the complete Pareto set starting from a
single Pareto optimal solution [22]. [15] used MO optimization for finding con-
figurations of deep neural networks for conflicting objectives. [13] proposed opti-
mizing the weights of an autoencoder multi-objectively for finding the Pareto
front of sparsity and reconstruction error. [24] used the Tchebycheff procedure
for multi-objective optimization of a single neural network with multiple heads
for multi-task text classification. Although we do not focus on these directions,
our proposed approach can be used in similar applications.

MO training of a set of neural networks such that their predictions approx-
imate the Pareto front of multiple objectives is closely related to the work
presented in this paper. Similar to our work, [20,23] describe approaches with
dynamic loss formulations to train multiple networks such that the predictions
from these multiple networks together approximate the Pareto front. However,
in these approaches, the trade-offs between conflicting objectives are required
to be known in advance whereas our proposed approach does not require know-
ing the set of trade-offs beforehand. Other approaches [19,28] involve training
a “hypernetwork” to predict the weights of another neural network based on
a user-specified trade-off. Recently, it has been proposed to condition a neu-
ral network for an input user preference vector to allow for predicting multiple
points near the Pareto front during inference [31]. While these approaches can
approximate the Pareto front by iteratively predicting neural network weights or
outputs based on multiple user preference vectors, the process of sampling the
user preference vectors may still be intensive for an unknown Pareto front shape.
Another approach proposes growing dense Pareto fronts from sparse Pareto opti-
mal solutions [22], for which our approach can provide baseline solutions.

Gradient-based HV maximization is a key component of our approach. [26]
have described gradient-based HV maximization for single networks and formu-
lated a dynamic loss function treating each sample’s error as a separate loss. [1]
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applied this concept for training in generative adversarial networks. HV maxi-
mization is also applied in reinforcement learning [34,38]. While these approaches
use HV maximizing gradients to optimize the weights of a single neural network,
our proposed approach formulates a dynamic loss based on HV maximizing gra-
dients for a set of neural networks. Different from our approach, other concurrent
approaches for HV maximization are based on transformation to (m−1)D (where
m is the number of objectives) integrals by use of polar coordinates [7], random
scalarization [12], and a q-Expected hypervolume improvement function [3].

3 Approach

MO learning of a network parameterized by a vector θ can be formulated as
minimizing a vector of n losses L(θ, sk) = [L1(θ, sk), . . . , Ln(θ, sk)] for a given
set of samples S = {s1, . . . , sk, . . . , s|S|}. These loss functions form the loss
space, wherein the subspace attainable by a sample’s losses is bounded by its
Pareto front. To learn multiple networks with loss vectors on each sample’s
Pareto front, we replace θ by a set of parameters Θ = {θ1, . . . , θp}, where each
parameter vector θi represents a network. The corresponding set of loss vectors is
{L(θ1, sk), . . . ,L(θp, sk)} and is represented by a stacked loss vector L(Θ, sk) =
[L(θ1, sk), . . . ,L(θp, sk)]. Our goal is to learn a set of p networks such that
loss vectors in L(Θ, sk) corresponding to the networks’ predictions for
sample sk lie on and span the Pareto front of loss functions for sample
sk. In other words, each network’s loss vector is Pareto optimal and lies in a
distinct subsection of the Pareto front for each sample. To achieve this goal,
we train networks so that the loss subspace Pareto dominated by the networks’
predictions (i.e., the HV) is maximal.

The HV of a loss vector L(θi, sk) for a sample sk is the volume of the subspace
Dr(L(θi, sk)) in loss space dominated by L(θi, sk). This is illustrated in Fig. 1a.
To keep this volume finite, the HV is computed with respect to a reference point
r which bounds the space to the region of interest4. Subsequently, the HV of
multiple loss vectors L(Θ, sk) is the HV of the union of dominated subspaces
Dr(L(θi, sk)),∀i ∈ {1, 2, ..., p}. The MO learning problem to maximize the mean
HV of all |S| samples is as follows:

maximize
1

|S|
|S|∑

k=1

HV (L(Θ, sk)) (1)

The update direction of gradient ascent for parameter vector θi of network i is:

∂ 1
|S|

∑|S|
k=1 HV(L(Θ, sk))

∂θi
(2)

4 The reference point is generally set to large coordinates in loss space to ensure that
it is always dominated by all loss vectors.
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(c) Domination-ranked
fronts

Fig. 1. (a) Three Pareto optimal loss vectors L(θi, s) on the Pareto front (green)
with dominated subspaces Dr(L(θi, sk)) with respect to reference point r. The union
of dominated subspaces is the dominated hypervolume (HV) of L(Θ, sk). (b) Gray

markings illustrate the computation of the HV gradients ∂HV(L(Θ,s))
∂L(θi,s)

(gray arrows)

in the three non-dominated solutions. (c) The same five solutions grouped into two
domination-ranked fronts Θ0 and Θ1 with corresponding HV, equal to their dominated
subspaces Dr(L(θi, sk)), and HV gradients. (Color figure online)

By exploiting the chain rule decomposition of HV gradients as described in [8],
the update direction in Eq. (2) for parameter vector θi of network i can be
written as follows:

1
|S|

|S|∑

k=1

∂HV (L(Θ, sk))
∂L(θi, sk)

· ∂L(θi, sk)
∂θi

∀i ∈ {1, . . . , p} (3)

The dot product of ∂HV(L(Θ,sk))
∂L(θi,sk)

(the HV gradients with respect to loss vector

L(θi, sk)) in loss space, and ∂L(θi,sk)
∂θi

(the matrix of loss vector gradients in the
network i’s parameters θi) in parameter space, can be decomposed to

1
|S|

|S|∑

k=1

n∑

j=1

∂HV (L(Θ, sk))
∂Lj(θi, sk)

∂Lj(θi, sk)
∂θi

∀i ∈ {1, . . . , p} (4)

where ∂HV(L(Θ,sk))
∂Lj(θi,sk)

is the scalar HV gradient in the single loss function Lj(θi, sk),

and ∂Lj(θi,sk)
∂θi

are the gradients used in gradient descent for single-objective
training of network i for loss Lj(θi, sk). Based on Eq. (4), one can observe that
mean HV maximization of loss vectors from a set of p networks for |S| samples
can be achieved by weighting their gradient descent directions for loss functions
Lj(θi, sk) with their corresponding HV gradients ∂HV(L(Θ,sk))

∂Lj(θi,sk)
for all i, j. In other

terms, the MO learning of a set of p networks can be achieved by minimizing5

the following dynamic loss function for each network i:
5 Minimizing the dynamic loss function maximizes the HV because the reference point

r is in the positive quadrant (“to the right and above 0”).
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1
|S|

|S|∑

k=1

n∑

j=1

∂HV (L(Θ, sk))
∂Lj(θi, sk)

Lj(θi, sk) ∀i ∈ {1, . . . , p} (5)

The computation of the HV gradients ∂HV(L(Θ,sk))
∂Lj(θi,sk)

is illustrated in Fig. 1b. These
HV gradients are equal to the marginal decrease in the subspace dominated only
by L(θi, sk) when increasing Lj(θi, sk).

Note that Eq. 5 maximizes the HV for each sample’s losses instead of first
averaging losses on the set of samples as commonly done in learning tasks. Conse-
quently, the neural networks are trained on each sample’s Pareto front separately,
instead of on the front of averages losses. In [5], we experimentally illustrate that
learning an average front may lead to undesired results for non-convex fronts.

3.1 HV Maximization of Domination-Ranked Fronts

A relevant caveat of gradient-based HV maximization is that HV gradients
∂HV(L(Θ,sk))

∂Lj(θi,sk)
in strongly dominated solutions are zero (because no movement

in any direction will affect the HV, Fig. 1b) and in weakly dominated solutions
are undefined [8]. To resolve this issue, we follow [37]’s approach, which avoids
the problem of dominated solutions by sorting all loss vectors into separate fronts
Θl of mutually non-dominated loss vectors and optimizing each front separately
(Fig. 1c). l is the domination rank, and q(i) is the mapping of network i to
domination rank l. By maximizing the HV of each front, trailing fronts with
domination rank > 0 eventually merge with the non-dominated front Θ0 and a
single front is maximized by determining optimal locations for each loss vector
on the Pareto front.

Furthermore, we normalize the HV gradients
∂HV(L(Θq(i),sk))

∂L(θi,sk)
as in [6] such

that their length in loss space is 1. The dynamic loss function with domination-
ranking of fronts and HV gradient normalization is:

1
|S|

|S|∑

k=1

n∑

j=1

1
wi

∂HV
(
L(Θq(i), sk)

)

∂Lj(θi, sk)
Lj(θi, sk) ∀i ∈ {1, . . . , p} (6)

where wi =
∥∥∥∥

∂HV(L(Θq(i),sk))
∂L(θi,sk)

∥∥∥∥.

3.2 Implementation

We implemented the HV maximization of losses from multiple networks, as
defined in Eq. (6), in Python6. The neural networks were implemented using
the PyTorch framework [30]. We used [10]’s HV computation reimplemented

by Simon Wessing, available from [36]. The HV gradients
∂HV(L(Θq(i),sk))

∂Lj(θi,sk)
were

6 Code is available at https://github.com/timodeist/multi objective learning.

https://github.com/timodeist/multi_objective_learning
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computed following the algorithm by [8]. Networks with identical losses were
assigned the same HV gradients. For non-dominated networks with one or more
identical losses (which can occur in training with three or more losses), the left-
and right-sided limits of the HV function derivatives are not the same [8], and
they were set to zero. Non-dominated sorting was implemented based on [4].

3.3 A Toy Example

Consider an example of MO regression with two conflicting objectives: given
a sample xk ∈ S, from input variable X ∈ [0, 2π], predict the corresponding
output zk that matches y1

k from target variable Y1 and y2
k from target variable

Y2, simultaneously. The relation between X, Y1, and Y2 is as follows:

Y1 = cos(X), Y2 = sin(X)

The corresponding mean square error formulations for loss functions are Lj =
1

|S|
∑|S|

k=1(y
j
k − zk)2; j ∈ {1, 2}. We generated 200 samples of input and target

variables for training and validation each. We trained five neural networks for
20000 iterations each with two fully connected linear layers of 100 neurons fol-
lowed by ReLU nonlinearities. Figure 2a shows the HV over training iterations for
the set of networks, which stabilizes visibly. Figure 2b shows predictions (y-axis)
for validation samples evenly sampled from [0, 2π] (x-axis). These predictions by
five neural networks constitute Pareto front approximations for each sampled
xk, and correspond to precise predictions for cos(X) and sin(X), and trade-offs
between both target functions. A network may generate predictions with chang-
ing trade-offs for different samples, as demonstrated Networks 2–5 in Fig. 2b
for x ∈ [ 3/2

π , 2π]. Figure 2c shows the predictions for the highlighted samples in
Fig. 2b in loss space, wherein they seem to be evenly distributed on the approx-
imated Pareto front. It becomes clear from Figs. 2b & 2c that each xk has a
differently sized Pareto front which the networks are able to predict. Figure 2c
also demonstrates an a posteriori decision-making scenario. Upon visualizing
the different Pareto fronts per sample, a user might decide to select predictions
corresponding to different trade-offs for different samples.

4 Experiments

We performed experiments with two MO problems: MO regression with differently
shaped Pareto fronts and neural style transfer.7 We compared the performance
of our approach with linear scalarization and two state-of-the-art approaches:

7 Additional experiments are provided in [5]: multi-observer medical image segmenta-
tion, MO regression with three losses, multi-style transfer, and a counter-example for
initial loss normalization.
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Fig. 2. MO regression on two losses. (a) HV values for a set of networks over training
iterations. (b) Network outputs for X ∈ [0, 2π]. (c) Generated Pareto front predictions
for a selection of six samples from [ 1

4
π, 3

4
π] in loss space.

ParetoMTL [20] andEPO [23]. Pareto MTL and EPO try to find Pareto optimal
solutions on the average Pareto front for a given trade-off vector using dynamic loss
functions. For a consistent comparison, we used the trade-offs used in the original
experiments of EPO for Pareto MTL, EPO, and as fixed weights in linear scalar-
ization.

Experiments were run on systems using Intel(R) Xeon(R) Silver 4110 CPU
@ 2.10 GHz with NVIDIA GeForce RTX 2080Ti, or Intel(R) Core(R) i5-3570K
@ 3.40 Ghz with NVIDIA GeForce GTX 1060 6 GB. For training, the Adam
optimizer [17] was used. The learning rate and β1 of Adam were tuned for each
approach separately based on the maximal HV of validation loss vectors.

4.1 MO Regression

We considered three cases for the MO regression toy problem described in
Sect. 3.3 each demonstrating a different Pareto front shape: the symmetric case
with two MSE losses as in Fig. 2, and two asymmetric cases each with MSE as
one loss and L1-norm or MSE scaled by 1

100 as the second loss. The reference
point for our proposed approach was set to (20, 20).

Figure 3 shows Pareto front approximations for all three cases. Figures 3a & 3c
show that fixed linear scalarizations and EPO produce networks generating well-
distributed outputs with low losses that predict a sample’s symmetric Pareto front
for two conflicting MSE losses. The positions on the front approximated by linear
scalarization seem to be far from the pre-specified trade-offs (gray lines). This is
expected because, by definition of linear scalarization, the solutions should lie on
the approximated Pareto front where the tangent is perpendicular to the search
direction specified by the trade-offs. For Pareto MTL, networks are clustered closer
to the center of the approximated Pareto front.

Optimizing MSE and L1-Norm (Figs. 3e–3h) results in an asymmetric Pareto
front approximation. The predictions by our HV maximization-based approach
remain well distributed across the fronts. EPO also still provides a decent spread
albeit less uniform across samples whereas linear scalarization and Pareto MTL
tend to both or mostly the lower extrema, respectively.
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Fig. 3. Pareto front approximations on a random subset of validation samples by sets
of five neural networks trained using four approaches. Three different pairs of loss
functions are used: (a–d) MSE and MSE, (e–h) MSE and L1-Norm, and (i–l) MSE and
scaled MSE.

The difficulty of manually pre-specifying the trade-offs without knowledge
of the Pareto front becomes more evident when optimizing losses with highly
different scales (Figs. 3i–3l). The pre-specified trade-offs do not evenly cover the
Pareto fronts. Consequently, the networks trained by EPO do not cover the
Pareto front evenly despite following the pre-specified trade-offs. Further, the
networks optimized by Pareto MTL cover only the upper part of the fronts.
Networks trained with fixed linear scalarizations tend towards both extrema. On
the other hand, our approach trains networks that follow well-distributed trade-
offs on the Pareto front. Normalizing losses from differing scales as in Figs. 3i–3l
might not sufficiently improve methods based on pre-specified trade-offs (Pareto
MTL, EPO) or fixed linear scalarizations [5].

The mean HV over 200 validation samples is computed for all approaches
and Table 1 displays the median and inter-quartile ranges (IQR) over 25 runs.
The magnitude of the HV is largely determined by the position of the reference
point. For r = (20, 20) the maximal HV equals 400 minus the area bounded by
the utopian point (0, 0) and a sample’s Pareto front. Even poor approximations
of a sample’s Pareto front can yield a HV ≥ 390. For these reasons, HVs in
Table 1 appear large and minuscule differences between HVs are relevant. As
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Table 1. Comparison of HV across different approaches. The maximal median HV in
each column is highlighted. Small increases in HV close to the maximum (106 or 400)
matter: see Sect. 4.1. A statistically significant one-sided Wilcoxon signed rank test
with correction for multiple comparison is indicated by: LS vs HV max. (∗), PMTL
vs HV max. (†), and EPO vs HV max. (‡). Columns 1–3: Median (inter-quartile
range) values of the mean HV of the approximated Pareto fronts for 200 validation
samples from 25 runs of MO regression problem are reported. Column 4: Median
(inter-quartile range) HV of the approximated Pareto fronts for the 25 image sets used
in neural style transfer are reported.

MSE & MSE MSE &
L1-Norm

MSE & scaled
MSE

Style & content

Linear
scalarization
(LS)

399.5929∗

(399.5776,
399.6018)

399.2909
(399.2738,
399.3045)

399.9859
(399.9857,
399.9864)

999990.7699
(999988.6580,
999992.5850)

Pareto MTL
(PMTL)

397.1356
(396.3212,
397.6288)

392.2956
(392.0377,
393.4942)

398.3159
(397.4799,
398.6699)

997723.8748
(997583.5152,
998155.6837)

EPO 399.5135
(399.5051,
399.5348)

399.0884
(398.998,
399.1743)

399.9885
(399.9883,
399.9889)

999988.4297
(999984.4808,
999989.8338)

HV
maximization

399.5823† ‡

(399.5619,
399.6005)

399.3795∗ † ‡

(399.3481,
399.4039)

399.9954∗ † ‡

(399.9927,
399.9957)

999999.7069
(999999.4543,
999999.8266)∗ † ‡

expected, our approach finds higher HV values for the case of asymmetric front
shapes (Table 1 columns 2 and 3, and Figs. 3e–3l). In case of the symmetric front
shape (Fig. 3a), since the pre-specified trade-offs appear to span the Pareto front
shape well, linear scalarization’s training based on fixed loss weights is more
efficient than training on a dynamic loss with varying weights as used by HV
maximization. This increased efficiency of training using fixed weights that are
suitable for symmetric MSE losses presumably results in a slightly higher HV
for linear scalarization (Table 1 column 1).

4.2 Neural Style Transfer

We further considered the MO optimization problem of neural style transfer as
defined in [11] (we reused and adjusted Pytorch’s neural style transfer imple-
mentation [16]), where pixels of an image are optimized to minimize content loss
(semantic similarity with a target image) and style loss (artistic similarity with
a style image) simultaneously. We performed experiments with 25 image pairs
(image sources as in [5]), obtained by combining 5 content and 10 style images
to generate 6 solutions on the Pareto front. The reference point in our approach
was chosen as (100, 10000) based on preliminary runs.

Figure 4 shows the obtained Pareto front estimates for 25 image sets by each
approach. Linear scalarization (a) and EPO (c) determine solutions close to
or on the chosen user preferences which, however, do not diversely cover the
range of possible trade-offs. Pareto MTL (b) achieves sets of clustered and partly
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Fig. 4. Pareto front estimates in loss space by different approaches for neural style
transfer using four approaches: (a) Linear scalarization (b) Pareto MTL, (c) EPO, and
(d) HV maximization. Sections within the black frames are magnified.

dominated solutions, which do not cover trade-offs with low content loss. On the
other hand, HV maximization (d) returns Pareto front estimates that broadly
cover diverse trade-offs between style and content loss across different image
sets without having to specify user preferences. This is also reflected in the
significantly larger median HVs reported in Table 1.

Fig. 5. Neural style transfer example by all four approaches for one image set.

Figure 5 shows the images generated by each approach for one of the image
sets. This case was manually selected for its aesthetic appeal.8 The images seen
here match observations from Fig. 4, e.g., Pareto MTL’s images show little diver-
sity in style and content, many images by linear scalarization of EPO have too
little style match (‘uninteresting’ images), and images by HV maximization show
most interesting diversity.
8 Generated images for all 25 image sets are available at https://github.com/

timodeist/multi objective learning.

https://github.com/timodeist/multi_objective_learning
https://github.com/timodeist/multi_objective_learning
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5 Discussion

We have proposed an approach to train a set of neural networks such that they
jointly predict Pareto front approximations for each sample during inference,
without requiring user-specified trade-offs. Our approach translates the concept
of gradient-based HV maximization from MO optimization to MO learning. We
provide experimental comparisons with existing approaches that require a priori
specification of the trade-offs. The results highlight the advantage of our HV
maximization approach, especially in MO problems that exhibit asymmetric
Pareto front.

Our HV maximization based approach does not require specifying p trade-
offs a priori (based on the number of predictions, p, required on the Pareto front),
which essentially are p(n−1) hyperparameters of the learning process for n losses.
Choosing these trade-offs well requires knowledge of the Pareto front shapes,
which is often not known a priori. HV maximization, however, introduces the n-
dimensional reference point r and thus n additional hyperparameters. However,
choosing a reference point such that the entire Pareto front gets approximated
is not complex. It often suffices to use losses of randomly initialized networks
rescaled by a factor ≥1 as the reference point. If only a specific section of the
Pareto front is relevant and this is known a priori, the reference point can be
chosen so that the Pareto front approximation only spans the chosen section.

HV-based training for sets of neural networks can, in theory, be applied to
any number of networks, p, and loss functions, n. In practice, the time com-
plexity of exact HV (exponential in n, [10]) and HV gradient (quadratic in p
with n ≤ 4, [8]) computations is limiting but may be overcome by algorith-
mic improvements using, e.g., HV approximations. Further, we train a separate
network corresponding to each prediction. This increases computational load
linearly if more predictions on the Pareto front are desired. We train separate
networks instead of one multi-headed network for the sake of simplicity in exper-
imentation and clarity when demonstrating our approach. It is expected that the
HV maximization formulation would work similarly if the parameters of some of
the neural network layers are shared, which would decrease computational load.

In conclusion, we describe MO training of neural networks using HV max-
imization for learning-based a posteriori MO decision-making. Our approach
provided the desired well-spread Pareto front approximations on artificial MO
regression problems. On the MO style transfer problem, our method yielded
encouraging results that emphasize its usefulness for a posteriori decision-
making.
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Abstract. Neural classifiers have achieved near human level perfor-
mances when applied to several real-world tasks. Despite their suc-
cesses, recent works have demonstrated their vulnerability to adversarial
attacks. In particular, image classifiers have shown to be vulnerable to
fine-tuned noise that perturb a small number of pixels, known as sparse
attacks. To generate such perturbations current works either prioritise
query efficiency by allowing the size of the perturbation to be unbounded
or the minimization of its size by allowing a large number of pixels to
be perturbed. Addressing the drawbacks of both approaches we propose
a method of conducting query efficient sparse adversarial attacks that
minimizes the number of perturbed pixels by formulating the attack
as a constrained bi-objective optimization problem. Within the single
objective unbounded query-efficient scenario our method is able to out-
perform state-of-the-art sparse attack algorithms in terms of success rate
and query efficiency. When also minimizing the number of perturbed pix-
els in the bi-objective setting, the proposed method is able to generate
adversarial perturbations that impact a fewer number of pixels than its
state-of-the-art competitors.

Keywords: Adversarial attack · Multi-objective optimization ·
Evolutionary algorithms

1 Introduction

Deep neural networks (DNNs) have achieved state-of-the-art performance in
various tasks and have been applied successfully to several real-world prob-
lems [5,7,34]. In particular, for image classification tasks they have been able to
achieve near human-level accuracy [18,24,25,27,33,44,45,55]. Despite their suc-
cess, works in the literature [19,30,38,48] have demonstrated that adding small
optimized perturbations to correctly classified images can cause trained DNNs to
misclassify. Such images are commonly referred to as adversarial images. Further-
more, specific adversarial images have demonstrated the ability to cause DNNs
to misclassify to a particular class [1,40] and have shown to exist within the
physical world [30]. Due to these vulnerabilities many concerns have been raised
about their application to security-critical tasks [1]. It has been stated that a key
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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area of addressing these concerns is the development of attack algorithms that
generate strong adversarial images [3]. Consequently, there is a growing interest
in developing new attack algorithms that generate such images. By formulating
the attack as an optimization problem, many works apply existing and novel
optimization methods to solving this particular task. Many works assume full
access to an attacked model [9,10,19,30,35,42,48] i.e. white-box attacks, how-
ever attention must also be given to the black-box setting where the attacker
can only access the outputs of the attacked neural network classifier.

Current black-box attack algorithms can be classified by the constraints they
apply to the perturbation. Many works assume no limit to the number of pix-
els a perturbation can modify and therefore constrain its size by its l∞ or l2
norm. Such works include those that use surrogate models [13,22,38], where
the surrogate is assumed to be highly similar to the targeted model. However,
this strong assumption questions the validity of such attacks in a real-world
scenario. Other approaches do not make such an assumption and adjust the
perturbation solely based on the outputs of the targeted classification model.
Some works estimate the gradient of the targeted model’s loss function using
finite-differences [4,11,26,52,53] and make use of gradient-based optimization
algorithms. Meta-heuristics such as evolutionary algorithms [1,36,39] or random
search [2] have also shown to have success when attacking DNNs.

Conversely, sparse-attacks [14,15,37,41,47,54] constrain the perturbation by
its l0 norm which limits the number of pixels it can modify. Prioritising query-
efficiency [14,47], attacks in the literature constrain the l0 norm of the pertur-
bation to a small percentage of the total number of pixels and allow the size of
the modifications to be unbounded. Despite the argument that these unbounded
modifications do not alter the semantic content of the original image, they are
easily detectable to the human eye. Alternatively, works have aimed to address
this drawback by proposing methods of generating sparse perturbations with
constrained size, namely sparse and imperceptible attacks [15,49,54]. By con-
straining the size of the perturbation by either its l∞ or l2 norm, sparse and
imperceptible attacks aim to minimize the number of pixels that are modified.
Despite their efforts, results have shown attack algorithms using this approach
still perturb a large number of pixels and require a large number of model queries.

From the works in the current literature, it is clear that there is a trade-
off between the efficiency of the sparse-attack and the imperceptibility of the
perturbation. To address this trade-off we formulate the sparse attack as a bi-
objective optimization problem such that the generated perturbation causes the
desired misclassification whilst also minimally impacting the original image. To
handle this bi-objective problem we adapt the NSGA-II algorithm of Deb et
al. [16] to the adversarial attack setting.

Contributions. Motivated by works in the literature, we propose a bi-objective
approach that aims to generate adversarial perturbations whose impact on the
original image is minimal. To address our formulated task we adapt the NSGA-
II [16] algorithm by proposing novel crossover and mutation operators as well as
an updated domination definition to reflect our priorities of the task. From our
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experiments, we show that the proposed method outperforms current state-of-
the-art sparse-attack algorithms and can generate adversarial images with less
perturbed pixels than its competitors.

The rest of this paper is organized as follows. Section 2 provides a summary
of related works and details the attack setting we address. Section 3 outlines
the proposed attack method and gives details of its implementation. Description
of the experimental setup is given in Sect. 4 with the results of our conducted
experiments shown in Sect. 5. We conclude this paper in Sect. 6 with a discussion
of the proposed method and directions for future work.

2 Preliminaries

2.1 Adversarial Attack

Let f : X ⊆ [0, 1]h×w×3 → R
K be a classifier that takes an image x ∈ X with

height h and width w, and assigns it a class y = arg max
r=1,··· ,K

fr(x) where fr is

the probability of input x being of class r. An untargeted attack aims to find a
perturbation δ ∈ R

h×w×3 such that

arg max
r=1,··· ,K

fr(x + δ) �= y, g(δ) ≤ ε (1)

where y is the correctly predicted label of the input x, g is the constraint function
of δ and K is the total number of classes. To ensure the adversarial image is close
to its original counterpart, works in literature constrain δ by its lp norm. Hence
the discovery of a δ that satisfies Eq. (1) can be described by the optimization
of

arg min
δ∈Rh×w×3

L(f(x + δ), y), ||δ||p ≤ ε (2)

where the minimization of L leads to the desired misclassification. Setting xadv =
x + δ, we consider the untargeted attack scenario and define our loss function L
as the following,

Lu(xadv) = log fy(xadv) − log fq(xadv) (3)

where fq(·) = arg max
r �=y

fr(xadv) and r = 1 · · · ,K.

2.2 Related Works

l2 and l∞ constrained adversarial attacks aim to find adversarial images xadv

that satisfy Eq. (2) where ||xadv − x||2 ≤ ε and ||xadv − x||∞ ≤ ε respec-
tively. Within the white-box setting [9,10,15,19,30,35,42,48] it is assumed that
the attacker has access to the architecture, weights and gradients of f . Using
back-propagation for gradient computation the attacker formulates the attack
as an optimization problem and solves using gradient-based methods. A more
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restricted scenario is the black-box setting where only the outputted class prob-
abilities of the attacked classifier is accessible. Most works addressing the black-
box setting aim to discover a perturbation value for each pixel by flattening
δ to form a high-dimensional vector and generates xadv = x + δ by reshap-
ing δ to match x. Some works in the literature estimate the gradient of Eq. (2)
using finite-differences [4,11,26,52,53], these estimations are then applied within
gradient-based optimization algorithms. In particular, the ZOO [11] algorithm
proposed by Chen et. al makes use of the Adam [28] optimization algorithm
with estimated gradients to generate adversarial images. A core issue with these
approaches is the number of model queries required to estimate the gradient of
the current perturbation δ within the high-dimensional image space. To overcome
the computational cost many works reduce the dimension of the search space
through the use of bi-linear interpolation [1,11,26,52] or auto-encoders [52].
Despite embeddings reducing the dimension of the search space, they have been
shown to warp the search space such that it may not contain the optimum
solution [31]. Alternatively, works have attempted to alleviate the computa-
tional cost by using natural evolutionary search approach’s. Such works [26,52]
sample points from zero-mean Gaussian distributions with unit-variances and
have achieved competitive performances. Meta-heuristics such as evolutionary
approaches [1,21,36,39] and random search [2] have also shown to be efficient
mechanisms for conducting adversarial attacks and have shown to outperform
gradient estimation algorithms in the literature. In particular, the GenAttack [1]
algorithm evolves a population of adversarial images using genetic operators and
applies adaptive parameter scaling with bi-linear interpolation to handle the high
dimension of the search space. Despite their success, the performance of meta-
heuristics have shown to suffer in high dimensional search spaces. Li et al. [32]
propose a novel method for handling the high dimension of the image space by
assuming an adversarial image can be constructed by a weighted sum of neigh-
bouring images with differential evolution [46] and CMA-ES [23] being applied
by the authors to optimize their values. Attacks making use of Bayesian opti-
mization have also been proposed [40,43] and have shown good performance in
the low-query availability setting. Other approaches make use of substitute mod-
els [13,22,38] trained on similar data sets to the attacked model. By conducting
white-box attacks on the substitute model a series of adversarial images are gen-
erated which are used to attack the originally attacked model. In a real-world
scenario, the availability of a similar model is unlikely within the black-box set-
ting. Other addressed scenarios include the limited information scenario where
only a subset of outputs are accessible to the attacker [26]. This setting is a
generalization of the decision-based attack [6,8,12,20] where only the classified
class probability is returned.

The number of works addressing the l0 constrained attack is far fewer than
those constrained by the l2 and l∞ norms, such sparse attacks aim to generate
adversarial images by perturbing at most k pixels. Many existing l0 bounded
attacks prioritise the minimization of the perturbation size over query effi-
ciency [15,37,41,50,54] and so require many model queries whilst also allowing
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k to be large. Alternatively, other works prioritise query efficiency and set k to
be small whilst allowing the size of the perturbation to be unbounded [14,47].
The work of Su et. al [47] represents a solution as a k×5 dimensional vector that
consists of the x, y position of each pixel and its perturbed r, g, b value. Applying
differential evolution [46], the values are adjusted to solve Eq. (2). Su et al. were
able to generate adversarial images even under the extreme condition of setting
k = 1. Croce et. al [14] proposed a random search algorithm that outperformed
all compared black-box and white-box attack algorithms by iteratively sampled a
changing distribution of pixel positions and RGB values. For comparison, Croce
et al. [14] modified the PGD0 algorithm [15] to the black-box setting by apply-
ing the gradient estimation mechanism proposed by Ilyas et. al [26]. The vast
majority of works addressing sparse and imperceptible attacks [15,37,41,49,54]
initially allow all pixels to be perturbed and aim to reduce their l0 norm during
the optimization process. Notable works include the white-box attack algorithm
of Zhu et al. [54] who apply an evolutionary-inspired homotopy algorithm with
a gradient based optimizer to minimize the l0 norm of the perturbation whilst
constraining its l∞ norm. Addressing the black-box setting, the work of Tian et
al. [51] proposes a dual-population co-evolutionary algorithm where one popula-
tion is evolved to find successful adversarial examples and the other to minimize
the l0 and l2 norm of the perturbation, named DCEA-ISA.

Considered Adversarial Attack Scenario. As outlined in Sect. 2.1, works
addressing the l0 constrained attack consider one of two approaches, perturbation
size minimization [15,37,41,54] or query efficiency [14,47]. In a real world sce-
nario the ability to conduct several thousand model queries within the black-box
setting is questionable, however allowing the perturbation size to be unbounded
results in them being easily visible to the human-eye. Therefore we propose a
method of conducting query efficient attacks that generate images with a min-
imal number of perturbed pixels. To achieve this, we formulate the adversarial
attack as the following problem:

minimize F(δ) = (Lu(xadv), ||xadv − x||2)T

subject to ||δ||0 ≤ k
(4)

where xadv = x + δ is the adversarial image and F(·) is the objective vector.

3 Proposed Method

The flowchart of our proposed algorithm for sparse adversarial attack is shown
in Fig. 1. To attack an image classification model f we first generate an initial
population of N solutions by randomly sampling a set of k pixel positions and
corresponding RGB values. We constrain the RGB value of the perturbation to
the set {−1, 1, 0} ∈ R where the probability of sampling 0 is described by Pr0.
During the main loop of the algorithm, a population of offsprings Qt is generated
using crossover and mutation operations. Combining the current population Pt
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Fig. 1. Flowchart of the NSGA-II algorithm for sparse and imperceptible adversarial
attack

and the offspring population Qt, the next population Pt+1 is constructed through
non-dominated sorting. For the rest of this section, we give explicit detail about
the implemented offspring generation and solution evaluation operators. The
non-dominated sorting method follows that of Deb et al. with a modified domi-
nation operator defined in Sect. 3.2. We conclude this section by outlining how
the minimization of the perturbations l2 norms leads to the minimzation of its
l0 when we constrain its values to the set {−1, 1, 0}.

3.1 Solution Evaluation

Given a solution si that contains of a set of k pixel positions {p0, p1, · · · , pk}
and corresponding perturbations {rgb0, rgb1, · · · , rgbk} ∈ R

k×3, we iteratively
adjust each pixel pi of the target image x by adding rgbi, i.e. xpi

+rgbi. Finally,
we project xadv by applying the l∞ clipping mechanism

Proj(x)∞ =

⎧
⎨

⎩

1 x > 1
0 x < 0
x otherwise,

(5)

once xadv is constructed we evaluate using Eq. (4).

3.2 Offspring Population Generation

Given a population Pt of solutions, we generate a population of offspring solu-
tions by applying crossover and mutation operators onto a set of parents selected
by tournament selection.

Tournament Selection: We make use of binary tournament selection for
selecting parents to crossover. Specifically, we generate two non-overlapping solu-
tion sets and select a non-dominated solution from each set as parents. Whereas
the original NSGA-II algorithm gives equal weight to each objective in their
domination definition [16], our primary goal is to generate adversarial images
and secondly to minimize its l2 norm. To reflect our priorities, we define our
domination criterion as follows;
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Algorithm 1: Crossover Operator
Input: Parent 1 set of pixel locations {p10, p11 · · · p1k}, Parent 1 set of RGB

perturbation {rgb10, rgb11 · · · rgb1k}, Parent 2 set of pixel locations
{p20, p21 · · · p2k}, Parent 2 set of RGB perturbation
{rgb20, rgb21 · · · rgb2k}, Probability of crossover Pc

1 for i = 0 · · · k do
2 if rand() < Pc then
3 pixeltemp ← p1i
4 rgbtemp ← rgb1i

5 if p2i not in {p10, p11 · · · p1k} then
6 pixeltemp ← p2i
7 rgbtemp ← rgb2i

8 if p1i not in {p20, p21 · · · p2k} then
9 p2i ← p1i

10 rgb2i ← rgb1i

11 p1i ← pixeltemp

12 rgb1i ← rgbtemp

Definition 1 (Domination). Given two solutions s1, s2 that generate images
x1

adv and x2
adv, s1 is said to dominate s2 if one of the following conditions is

satisfied:

– x1
adv satisfies Eq. (1) and x2

adv does not
– Both x1

adv and x2
adv satisfy equation (1) and ||x1

adv − x||2 < ||x2
adv − x||2

– Both x1
adv and x2

adv do not satisfy Eq. (1) and Lu(x1
adv) < Lu(x2

adv).

If neither solution dominates the other we select the solution with the greater
crowding distance as proposed by Deb et al. [16]. Once two parents are chosen, we
generate two offspring solutions by applying crossover and mutation operations.
We note that the use of this domination mechanism reduces Eq. (4) to the single-
objective problem of l2 norm minimization under the criterion that xi

adv satisfies
Eq. (2).

Crossover: Given two parent solutions, we generate two offspring solutions by
exchanging a subset of each solution’s pixel locations and corresponding RGB
perturbations. For each perturbed pixel in the two solutions, the crossover oper-
ator exchanges the respective pixel position and RGB perturbation between the
two solutions with a probability of Pc. To avoid duplicate pixels within a single
solution, a pixel exchange is only conducted if the solution does not already per-
turb the inserted pixel. We provide the pseudo-code of the operator in Algorithm
1. Once completed, the mutation operator is applied to both offspring solutions.
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Algorithm 2: Mutation Operator
Input: Solution set of pixel locations {p0, p1 · · · pk}, Solution set of RGB

perturbations {rgb0, rgb1 · · · rgbk}, Zero sampling probability Pr0,
Probability of mutation Pm, Set of all pixel positions U

1 M ← {0 · · · k}
2 d ← Pm × k

3 A ← U(M)k−d // uniformly sample k − d−pixels to remain unchanged
4 pnew ← pA // store unchanged pixel positions to new set
5 rgbnew ← rgbA // store unchanged RGB perturbations to new set

6 B ← U(M\{p0, p1 · · · pk})d // uniformly randomly d−new pixel positions

7 Pr1 ← 1−Pr0
2

8 for i = 0 · · · d do
9 rgbB ← {}

10 for j = 0 · · · 3 do
11 v ← rand()
12 if v < Pr0 then
13 rgbBj ← 0

14 else if v < Pr0 + Pr1 then
15 rgbBj ← 1

16 else
17 rgbBj ← −1

18 rgbnew ← rgbnew ∪ {rgbB}
19 pnew ← pnew ∪ B
20 return pnew, rgbnew

Mutation Operator. To mutate a solution with pixel positions and RGB
perturbations, we first determine the severity of the mutation by setting the
number of changed pixel positions to d = Pm × k, where Pm is the probability
of mutation and k is the l0 constraint. Once determined, the operator randomly
selects k−d pixel positions to be copied into the final offspring in addition to their
corresponding RGB perturbations. To fill the remaining d pixel positions, the
operator samples from the set B ← U(M\{p0, p1 · · · pk})d of all other possible
pixel positions that can be sampled. For each sampled pixel position from the
set B, we sample an RGB perturbation from the set {−1, 1, 0} where Pr0 is the
probability of sampling 0. By sampling 0 we reduce the l2 distance between the
adversarial and targeted image. Hence, the introduction of Pr0 gives us increased
control when defining the priority of the attack.

3.3 l2 Minimization Leads to l0 Minimization

To minimize the l2 distance between the adversarial and target image, the per-
turbation values rgbi require to be close to 0. As the value of each perturbation
is constrained to the set {−1, 1, 0}, the algorithm aims to generate a solution
where its rgb values are mostly 0 whilst still satisfying Eq. (2). As a perturbation
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of all zeros removes its impact on a pixel, the minimization of the perturbations
l2 norms leads to the minimization of its l0 norm.

4 Experimental Setup

This section introduces the experimental setting for validating the effectiveness
of our proposed adversarial attack method against state-of-the-art algorithms.

4.1 Attack Setting

Fig. 2. Adversarial images gener-
ated by the proposed and Sparse-
rs methods by attacking the
ResNet50 ImageNet model.

We attack two models trained on the Cifar-
10 [29] and ImageNet [17] data-sets. The Cifar-
10 data-set contains 60,000 images of size
(32, 32, 3) from 10 categories, with 50,000 of
the images coming from the training set and
10,000 images from the test set. ImageNet is a
far larger data-set that contains 1,000 classes
with each class containing 1300 images which
are resized to (224, 224, 3). For the Cifar-10
data set, we attack two commonly used net-
works in the literature, the All Convolutional
Network (AllConvNet) [45] and the Network in
Network (NiN) [33] which achieve test accura-
cies of 87% and 85% respectively. For the Ima-
geNet data set, we attack the Efficient Convo-
lutional Neural Network (MobileNet) [25] and
the Deep Residual Network [24] with 50 layers
(ResNet50). The MobileNet achieves a top-1
accuracy of 70% and a top-5 accuracy of 89%
with ResNet50 achieving 76% top-1 accuracy
and a 93% top-5 accuracy.

We allocate a maximum budget of 1000
queries when attacking Cifar-10 models and
5000 queries for ImageNet models due to their larger images. For each Cifar-
10 model, we randomly select 500 correctly classified test-set images to attack
and 500 correctly classified validation-set images for ImageNet models.

4.2 Performance Metric

In our experiments we use an algorithm’s attack success rate (ASR) to assess its
performance. Given a set of Atotal attacked images with As being successfully
attacked, we define the ASR value as

ASR =
As

Atotal
. (6)
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We additionally compare algorithms using the average number of queries and
l0, l2 distances of the adversarial images in Atotal. In the scenario where the
proposed method returns a set of adversarial solutions, we make use of the
solution with the smallest l2 norm that satisfies Eq. (1) within the performance
metric.

4.3 Parameter Settings

The proposed algorithm contains several parameters that are set before attacking
a model, unless otherwise stated we maintain the following setup;

– N: We set the population size to N = 5 for all runs of the proposed algorithm.
– Pc: The probability of exchanging a pixel between two parents is set to Pc =

0.5.
– Pm: The probability of replacing each pixel with a randomly sampled pixel

outside the current solution is set to Pm = 0.3.
– Pr0: The probability of sampling a 0 perturbation value for each RGB channel

is set to Pr0 = 0.3.

5 Experimental Results

We evaluate the performance of the proposed method when applied to the query
efficiency and minimization of perturbed pixels in the subsequent sections.

Table 1. ASR and Queries of attacking Cifar-10
(top) and ImageNet (bottom) models with k = 24
and k = 150 respectively.

Method AllConvNet NiN
ASR l0 l2 ASR l0 l2

QSA-NSGA-II (ours) 100% 22.41 2.98 100% 16.96 2.03
Homotopy-Attack 100% 52.67 0.421 100% 43.25 0.382

DCEA-ISA 100% 92.73 0.319 100% 78.82 0.278

Method MobileNet ResNet50
ASR l0 l2 ASR l0 l2

QSA-NSGA-II (ours) 100% 53.38 19.87 100% 57.49 20.77
Homotopy-Attack 100% 2773.83 2.134 100% 2981.22 2.662

DCEA-ISA 100% 174.23 0.46 100% 226.02 0.57

Query Efficient Setting.
To apply the proposed algo-
rithm to the single objec-
tive query efficient setting we
ignore the l2 distance objec-
tive function and set the prob-
ability of sampling zero Pr0 =
0. We set the l0 constraint
k = 24 when attacking Cifar-
10 models and k = 150 when
attacking ImageNet models
which is 2.34% and 0.299% of the image’s total number of pixels, respectively.

Competitors. As outlined by Croce et al. [14], many existing l0-attacks do not
aim at query efficiency and alternatively aim to minimize the size of the pertur-
bations. Hence, we compare our proposed method to the Sparse-rs algorithm of
Croce et al. [14] that demonstrated superior performance over its competition
and is considered state-of-the-art. We additionally compare with the one-pixel
attack method of Su et al. [47] with a population size N = 50 and the black-box
version of the PGD0 [14,15].
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Results. From the results in Table 1 we see the proposed method achieves better
or equal success rate compared to its competitors. Where an improved success
rate is not possible the proposed algorithm on average requires fewer model
queries to generate adversarial images apart from the One Pixel Attack algorithm
when attacking ImageNet models. Despite the better efficiency, the One Pixel
Attack algorithm struggles to successfully attack both ImageNet models which
lead us to believe that its low number of queries is only due to its ability to
succeed when attacking easily attacked images. We compare adversarial images
generated by the proposed and Sparse-rs algorithm in Fig. 2.

Fig. 3. Comparison of adversarial images
generated with and without l2 minimization.

Perturbation Minimization Set-
ting. Incorporating the l2 distance
between the adversarial and origi-
nal image into our objective, we aim
to generate adversarial images that
have a minimal number of perturbed
pixels. Following the query efficient
scenario, we set the maximum num-
ber of perturbed pixels k = 24 and
k = 150 when attacking Cifar-10 and
ImageNet models, respectively. We
keep the budget constant with that
described in Sect. 5 when attacking each model.

Competitors. As previously outlined the majority of works aiming to minmize
the perturbation size allow a large number of pixels to be initial perturbed. In
this work we compare the proposed method with the DCEA-ISA and Homotopy
algorithms of Tian et al. [50] and Zhu et al. [54] respectively. We allow each
algorithm to use the full query budget of 1000 and 5000 model queries for Cifar-
10 and ImageNet models, respectively.

Table 2. ASR, and average l0 and l2 norms of adver-
sarial images generated by attacking Cifar-10 (top)
and ImageNet (bottom) models.

Method AllConvNet NiN
ASR Queries ASR Queries

Sparse-rs 100% 44.33 100% 20.65
PGD0 84.2% 182.72 95.2% 94.24

One Pixel Attack 43.34% 57.51 68.64% 53.92
QSA-NSGA-II (ours) 100% 25.36 100% 13.85

Method MobileNet ResNet50
ASR Queries ASR Queries

Sparse-rs 98.64 520.34 98.33 459.34
PGD0 85.89% 1163.67 82.1% 1045.89

One Pixel Attack 24.64% 54.01 26.11% 57.41
QSA-NSGA-II (ours) 99.81 358.18 99.43 319.06

Results. The convergence
plots shown in Fig. 4 demon-
strate the ability of the
proposed method to mini-
mize the l2 distance between
the adversarial and original
image once an adversarial
perturbation has been gener-
ated. When attacking Cifar-
10 trained models the l2 dis-
tance plateau’s before the
budget is exhausted. In con-
trast, when attacking the ImageNet models we see that the l2 distance is still
decreasing as the budget is exhausted, this leads us to believe that the proposed
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method would be able to further minimize the distance given a larger budget.
We show an example of an adversarial image generated with and without l2
minimization in Fig. 3.

In comparison to state-of-the-art attack algorithms shown in Table 2 we see
that all algorithms were able to successfully attack every image on all models,
however the proposed method was able to generate adversarial images by per-
turbing fewer pixels. Compared with peer algorithms, the adversarial images
generated by the proposed algorithm have greater l2 distances from the origi-
nal. A possible reason for this comes as a result of the difference in priorities
between the algorithms. Whereas the proposed algorithm constrains the number
of initially adjusted pixels the compared algorithms constrain the size of the
perturbation added to each pixel whilst allowing a large number of pixels to be
perturbed which results in a greater number of pixels being adjusted.

6 Conclusion and Future Directions

Fig. 4. Plots showing the average and standard deviation
of the minimum loss (bottom) and l2 distance (top) during
the attacking process on Cifar-10 (right) and ImageNet (left)
models.

We propose an evolu-
tionary method of con-
ducting sparse adver-
sarial attacks that
minimize number of
perturbed pixels by
considering the task
as a bi-objective prob-
lem. By conducting a
series of attacks on
four models, we show
the proposed method’s
ability to quickly loc-
ate adversarial images
and minimize their l2
distance from the orig-
inal. Despite its suc-
cess, there are two
areas of research we
feel are prosperous directions for future work.

1. l∞ Minimization: The current version of the algorithm minimizes the l2 dis-
tance by sampling an increased number of zeros for each channel of a pertur-
bation until a pixel perturbation vanishes. By jointly reducing the l∞ norm
of the perturbation the l2 distance of a solution would be minimized further.

2. Multi-Task Optimization: A natural conclusion from our experiments is that
it is difficult to generate adversarial images with minimal l0 and l2 norms. By
considering the minimization of each norm as an individual task, applying a
multi-task optimization algorithm to jointly solve both problems could bring
additional benefits by sharing information between them.
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Abstract. Recent studies have demonstrated that the performance of
Reference vector (RV) based Evolutionary Multi- and Many-objective
Optimization algorithms could be improved, through the intervention of
Machine Learning (ML) methods. These studies have shown how learning
efficient search directions from the intermittent generations’ solutions,
could be utilized to create pro-convergence and pro-diversity offspring,
leading to better convergence and diversity, respectively. The entailing
steps of data-set preparation, training of ML models, and utilization
of these models, have been encapsulated as Innovized Progress opera-
tors, namely, IP2 (for convergence improvement) and IP3 (for diversity
improvement). Evidently, the focus in these studies has been on proof-of-
the-concept, and no exploratory analysis has been done to investigate, if
and how drastically the operators’ performance may be impacted, if their
underlying ML methods (Random Forest for IP2, and kNN for IP3) are
varied. This paper seeks to bridge this gap, through an exploratory anal-
ysis for both IP2 and IP3, based on eight different ML methods, tested
against an exhaustive test suite comprising of seven multi-objective and
32 many-objective test instances. While the results broadly endorse the
robustness of the existing IP2 and IP3 operators, they also reveal inter-
esting tradeoffs across different ML methods, in terms of the Hyper-
volume (HV) metric and corresponding run-time. Notably, within the
gambit of the considered test suite and different ML methods adopted,
kNN emerges as a winner for both IP2 and IP3, based on conjunct con-
sideration of HV metric and run-time.

Keywords: Multi-objective optimization · Many-objective
optimization · Machine learning assisted optimization · Innovized
Progress
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important class of algorithms, that seek to find a set of well-distributed Pareto
optimal solutions. RV-EMâOAs rely on the use of different dominance principles
for convergence, within an RV-based framework which facilitates diversity [17].

Recent studies have shown that RV-EMâOAs are quite conducive for integra-
tion with Machine Learning (ML) methods, owing to the availability of multiple
solution sets over successive generations, and also their tractability along and
across the RVs. These studies leading to the proposition of innovized progress
operators, namely, IP2 [13] and IP3 [14] have demonstrated as how the conver-
gence and diversity capabilities of RV-EMâOAs, respectively, could be enhanced
through ML intervention. Adopting a common template (Fig. 1), these operators
have demonstrated that a judicious mapping of solutions in the objective (F )
space, enables learning of efficient search directions in the variable (X) space,
which could be utilized to create pro-convergence/diversity offspring. In that:

• IP2 operator: constructs a training-dataset by mapping inter -generational
solutions along the RVs in the F space; trains a Random Forest (RF) [1]
towards learning pro-convergence search directions in X space; and utilizes
this learning for creation of pro-convergence offspring.

• IP3 operator: constructs a training-dataset by mapping intra-generational
solutions across the RVs in the F space; trains a kNN [5] towards learning pro-
diversity search directions in X space; and utilizes this learning for creation
of pro-diversity offspring.

Fig. 1. The constitutive modules for the existing IP2 and IP3 operators

Notably, the focus in the above studies has been on proof-of-the-concept, and
no exploratory analysis has been performed to analyze if and how drastically
the performance of IP2 and IP3 operators may be impacted, if their underlying
ML methods are changed. This paper recognizes this gap, and evaluates the
performance of each of the IP2 and IP3 operators, based on seven alternative
ML methods, against 39 multi- and many-objective test instances. The remaining
paper is organized as follows. Section 2 shares more details about the existing
IP2 and IP3 operators, and their integration with an RV-EMâOA. Then, Sect. 3
highlights the ML methods chosen to serve as alternatives to those being used
in the existing IP2 and IP3 operators. The experimental settings are highlighted
in Sect. 4, following which the experimental results are presented in Sect. 5. The
paper concludes with Sect. 6.
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2 Background

This section shares more facts on the IP2 and IP3 operators, in sequence, and
how they integrate with an RV-EMâOA, leading to RV-EMâO-IP2 and RV-
EMâO-IP3, respectively.

In any generation t of an RV-EMâO-IP2, the training-dataset is based on the
mapping of (i) the target solutions: best-found solutions so far along different
RVs, and (ii) the archive solutions: solutions from some earlier generations, along
the respective RVs. Hence, the parent population Pt is used to update the target
solutions. While the above mapping is depicted in Fig. 2a with respect to the F
space, the mapping of the X vectors underlying the target and archive solutions
constitutes the training-dataset, which is then used to train an ML (RF) model.
First, all offspring are created from Pt using the natural variation operators, and
then the trained ML model is used to advance 50% randomly picked offspring,
creating 50% offspring towards better convergence. The advancement of a natural
offspring using the trained ML model is symbolically depicted in Fig. 2b.

Fig. 2. Depicting the training-dataset construction and offspring advancement for the
IP2 operator (M = 2).

It must be noted that unlike the case of RV-EMâO-IP2 (where a single ML
model per generation sufficed), a generation t of RV-EMâO-IP3 requires as many
ML models as the number of objectives (M). This was considered necessary
towards a generic approach that could help address both aspects of diversity,
namely, the spread of solutions, and their uniform distribution. The need for M
ML models, in turn necessitate M training-datasets. As justified in [14], each
dataset is designed to eventually empower any solution to undergo improvement
in a distinct objective. For an illustration in a three-objective scenario (M = 3),
Fig. 3a shows the projections of a handful of solutions in Pt, onto the unit simplex
on which the RVs are sampled (rationale in [14]). Consider S1 as the input
solution whose contributory mappings to the training-dataset are to be identified.
Hence, w.r.t. f1, S1 is mapped onto S3 - that neighbouring solution (bounded
by the dotted circles around S1) which offers maximum improvement in f1.
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Similarly, S1 gets mapped onto S2 and S4, w.r.t. f2 and f3, respectively. This
process, when repeated for each solution, ideally leads to N × M mappings, of
which M datasets are constituted (each, sized N × 1), and correspondingly, M
ML (kNN) models are trained. These models are used to advance 50% of the
solutions in Pt, which are judiciously picked so that the resulting offspring equally
contribute to a better spread and distribution. This could be appreciated through
Fig. 3b. In that, the better spread could be achieved by advancing the boundary
solution SB , beyond the current unit-simplex. This can easily be realized by
treating SB as the input solution and subjecting it to the second ML model, so
it gets advanced in the direction of improvement in f2. Similarly, an improvement
in distribution could be achieved by advancing SG onto the empty RV RG (which
has no solution associated with it). This can be realized by treating SG as the
input solution and subjecting it to the third ML model, so it gets advanced in
the direction of improvement in f3.

Fig. 3. Depicting the training-dataset construction and offspring creation for the IP3
operator (M = 3). The two dotted circles in (a) and (b) depict the neighbourhood for
S1 and RG, respectively.

Given the above, the flow of an RV-EMâOA generation, when integrated
with the IP2/IP3 operator, is schematically depicted in Fig. 4. In that:

• first 100% (N) offspring are created using natural variation operators, denoted
by QV (in boxes (a) and (b) under ‘Offspring Population’).

• if the underlying RV-EMâOA is integrated with the IP2 operator, it creates
50% pro-convergence offspring QIP2 (in box (c)), by advancing 50% of ran-
domly picked QV. The resulting offspring population is the collective set of
solutions in boxes (b) and (c).

• if the underlying RV-EMâOA is integrated with the IP3 operator, it cre-
ates 50% pro-diversity offspring QIP3 (in box (d)), by advancing 50% of the
judiciously picked parent solutions. The resulting offspring population is the
collective set of solutions in boxes (a) and (d).

• the resulting offspring population (sized N) is combined with the parent pop-
ulation, leading to the combined population, sized 2N .
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• finally, the survival selection of the underlying RV-EMâOA is executed, lead-
ing to the survived population (sized N), which serves as the parent popula-
tion for the next generation.

Fig. 4. A schematic for an RV-EMâOA generation, when integrated with the IP2/IP3
operator.

While a brief background on the IP2 and IP3 operators and their integra-
tion with an RV-EMâOA has been presented above, some notable points are
highlighted below.

• the IP2 and IP3 operators are not invoked in every generation of an RV-
EMâOA run. Instead, their invocation along intermittent generations is deter-
mined through a frequency parameter (determined on-the-fly).

• whenever IP2 is invoked, the creation of 50% pro-convergence offspring along
the intermittent generations, eventually leads to improved convergence [13].

• whenever IP3 is invoked, the creation of 50% pro-diversity offspring along the
intermittent generations, eventually leads to improved diversity [14].

• the hallmark of the ML-based IP2 and IP3 operators is that an RV-EMâOA
integrated with either of these operators, does not necessitate any additional
solution evaluations, compared to the base RV-EMâOA (completely relying
on offspring produced by natural variation operators).

3 Alternative ML Methods for IP2 and IP3 Operators

This paper considers eight different ML methods, covering Linear and Non-linear
Modeling, Boosting, and Trees, to investigate their suitability for the IP2 and IP3
operators. The chosen methods are highlighted below:
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• from the family of linear methods - standard Linear Regression, Ridge Regres-
sion and Elastic Net Regression are included. The Linear Regression based
on the least squares approach is used as the base model, but it can also be
fitted in other ways, such as by minimizing the lack of fit through a penalized
version of the least squares cost function as in Ridge Regression (L2-norm
penalty) and Lasso (L1-norm penalty). Since Lasso is known to suffer where
there are correlated features [10], it has not been considered. Hence, Ridge
Regression, and Elastic Net Regression [15] based on a linear combination of
the L2-norm and L1-norm penalties, are included.

• from the family of trees - Extra Trees Regressor and Random Forests are
included, owing to their ability to efficiently handle complex, non-linear, high-
dimensional data, with a lower tendency for overfitting [9]. Notably, Random
Forests aggregate the results from many decision trees, each generated from
a bootstrap sample of the data. Here, at each node, one feature is selected to
split on, from a random subset of all features. While in the case of Random
Forests, the optimum split is chosen, Extra Trees do it randomly.

• from the family of boosting algorithms - XGBoost is included. It is an imple-
mentation of gradient boosting that is scalable and optimized for execution
speed and model performance. This is an ensemble technique, where each new
model added sequentially learns from the previous models’ errors [3].

• other non-linear methods such as k-Nearest Neighbours Regression and Sup-
port Vector Regression, are included. The former method identifies the k
nearest inputs of the test instance in the original training dataset and returns
the average of their respective targets [5]. The latter method seeks to find the
hyperplane with the maximum number of points that lies within a threshold
distance from the boundary line (unlike other Regression models that try to
minimize the error between the real and predicted value).

For ease of reference in the subsequent sections (including Tables and Figures),
the chosen ML methods have been abbreviated, as follows: Linear Regression
(LR), Ridge Regression (Ridge), Elastic Net Regression (ENet), Extra Trees
Regressor (ExTree), Random Forests (RF), XGBoost (XGB), k-Nearest Neigh-
bours (kNN), and Support Vector Regression (SVR).

4 Experimental Settings

This section presents the experimental settings for the used - test suite; base
RV-EMâOA; and performance indicator.

4.1 Test Suite and the Base RV-EMâOA

The considered test suite covers problems with a wide range of characteristics,
including, bias, multi-modality, variable-linkages, and different PF shapes (con-
vex, concave, mixed, inverted and disconnected). It includes the following:

• Multi-objective problems: these include: (a) Z̃DT [12] that are variants of
ZDT [19] with modified g(X)-functions, leading to the PO solutions at xk =
0.5, for k = 2, . . . , 30, and (b) L1/L2 [12] with variables nvar = 10.
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• Many-objective problems: these include: (a) DTLZ [7] with distance variables
k = 20 and M = 5, 10, and (b) MaF [4] with k = 20 and M = 5, 10.

In this paper, NSGA-III has been used as the base RV-EMâOA, for which the
SBX crossover (pc = 0.9 and ηc = 20) and polynomial mutation (pm = 1/nvar

and ηm = 20) are used. NSGA-III when integrated with the IP2 and IP3 oper-
ators, is referred to as NSGA-III-IP2 and NSGA-III-IP3, respectively.

4.2 Performance Indicator

The performance of NSGA-III-IP2 is to be compared amidst its eight variants
corresponding to eight different ML methods (identified in Sect. 3). Since RF is
the base method for the existing IP2 operator, NSGA-III-IP2-RF can be dis-
tinguished from the other NSGA-III-IP2-ML variants. Similarly NSGA-III-IP3-
kNN can be distinguished from the remaining NSGA-III-IP3-ML variants. Since
in this paper, NSGA-III is the sole RV-EMâOA, its name can be avoided for
brevity, and the task in this paper translates to comparing the performance of:
(a) IP2-RF with all other IP2-ML, and (b) IP3-kNN with all other IP3-ML, for
which the Hypervolume (HV) measures are used. In that:

• the used Reference Points are given by R1×M = [1 + 1
p , . . . , 1 + 1

p ], where p is
the number of gaps set for the RV generating Das-Dennis method [14].

• first IP2-RF is run for 21 different seeds, and termination of each such run at
say tTM generations is governed by the stabilization tracking algorithm [16]
with parameter settings, given by ψTM ≡ {3, 50} [14]. Then the average of
all 21 tTM generations are computed, say t̂TM. Subsequently, each IP2-ML
is run for 21 seeds until termination at t̂TM. Finally, the 21 HV measures
available for IP2-RF are subjected to Wilcoxon ranksum test (for statistical
significance) with a p-value of 0.05, against the 21 HV measures available for
each IP2-ML. This test only infers if the difference between IP2-RF and any
IP2-ML is statistically insignificant (denoted by =). If not, then their respec-
tive median values are directly compared, and the better/worse performing
method is denoted by a +/− sign (as in Tables 1 and 2). Similar procedure
is adopted for comparison of IP3-kNN with each IP3-ML.

5 Experimental Results

This section presents the comparative performance of: (a) seven IP2-ML vari-
ants versus IP2-RF (Table 1), and (b) seven IP3-ML variants versus IP3-kNN
(Table 2), across multi- and many-objectives test instances. The dominant trend
in both Tables 1 and 2, is that even if the ML methods underlying the IP2 and
IP3 operators are changed, the performance largely remains statistically equiv-
alent (with a few exceptions, discussed later). This indicates that the original
propositions of IP2 and IP3 are reasonably robust, and their performance may
neither drastically deteriorate nor improve with a change in the underlying ML
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Table 1. HV-based comparison of IP2 with eight different ML methods, where RF is
the base for pairwise comparisons. The symbols “+”, “=” or “–” indicate whether the
corresponding ML method is statistically better, equivalent, or worse, than RF. Here,
t̂TM denotes the average of the termination generations for 21 runs of the base RF.

Problem M t̂TM kNN ExTree SVR ENet Ridge LR XGB RF

L1 2 1058 0.520038+ 0.510975= 0.490729= 0.487142– 0.492145= 0.488027= 0.505394= 0.506494

L2 2 1114 0.673404+ 0.673393+ 0.641642– 0.639171– 0.642941– 0.642229– 0.649486– 0.658637

Z̃DT1 2 1187 0.681860= 0.681859= 0.681860= 0.681860= 0.681860= 0.681860= 0.681860= 0.681860

Z̃DT2 2 1289 0.348794= 0.348794= 0.348794= 0.348794= 0.348794= 0.348794= 0.348794= 0.348794

Z̃DT3 2 1013 1.068370= 1.068457= 1.068402= 1.068368= 1.068490= 1.068559= 1.068454= 1.068502

Z̃DT4 2 1770 0.681860= 0.681860= 0.681860= 0.681860= 0.681860= 0.681859= 0.681859= 0.681860

Z̃DT6 2 1779 0.326889+ 0.321376= 0.327059+ 0.317623= 0.319643= 0.323048= 0.317781= 0.320871

Total (+/=/–) 3/4/0 1/6/0 1/5/1 0/5/2 0/6/1 0/6/1 0/6/1 of 7 probs.

DTLZ1
5 1206 2.485633= 2.486744= 2.486437= 2.486802= 2.486921= 2.486951= 2.486755= 2.479388

10 2076 17.757704= 17.757704= 17.757704= 17.757707= 17.757711+ 17.757708= 17.75771+ 17.757703

DTLZ2
5 903 2.172478= 2.172430= 2.172397= 2.172605= 2.172648= 2.17262= 2.172606= 2.172439

10 797 17.667911= 17.668915= 17.668607= 17.668416= 17.670702+ 17.670357+ 17.670246+ 17.668409

DTLZ3
5 1196 2.111525= 2.110038= 2.086116= 2.103797= 2.102734= 2.109105= 2.083618= 0.975718

10 1914 17.665819= 17.663740= 17.661898– 17.659894– 17.667285= 17.666322= 17.667097= 17.667027

DTLZ4
5 901 2.173324= 2.173321= 2.173259= 2.173090= 2.173194= 2.173259= 2.173285= 2.173402

10 873 17.679661– 17.679996= 17.679292– 17.677214– 17.679034– 17.678961– 17.679912= 17.679992

MaF1
5 852 0.060541= 0.060107= 0.059505= 0.059808= 0.060784= 0.059723= 0.060170= 0.061855

10 938 0.001951= 0.001928= 0.001968= 0.001973= 0.002021+ 0.002039= 0.001882– 0.001984

MaF2
5 362 1.002621= 0.998740= 1.002171= 0.999238= 1.003607= 1.001332= 1.000969= 1.000973

10 492 7.823111= 7.836465= 7.814538= 7.829009= 7.850499+ 7.810496= 7.837603= 7.808070

MaF3
5 2509 2.488320= 2.488320= 2.488320= 2.488320= 2.488320= 2.488320= 2.488320= 2.488320

10 1912 17.757727+ 17.757727+ 17.757727+ 17.757727+ 17.757727+ 17.757727+ 17.757727+ 0

MaF4
5 646 2.475006= 2.474046= 2.483075+ 2.472548= 2.466242= 2.477218= 2.480569= 2.462381

10 1106 17.481657= 17.487127= 17.487090= 17.488453= 17.483530= 17.484489= 17.476629– 17.482483

MaF5
5 1117 2.487940= 2.487937= 2.487936= 2.487937– 2.487939= 2.487938= 2.487937= 2.487940

10 1180 17.757727= 17.757727= 17.757727= 17.757727= 17.757727= 17.757727= 17.757727= 17.757727

MaF7
5 1095 0.968628= 0.970901= 0.969541= 0.969176= 0.969783= 0.972155= 0.970013= 0.971900

10 746 7.634033= 7.626016= 7.620365= 7.579781= 7.637727= 7.631401= 7.619364= 7.611451

MaF8
5 1361 0.000504= 0.000456= 0.000491= 0.000495= 0.000475= 0.000506= 0.000481= 0.000509

10 1041 0.000087= 0.000087= 0.000082= 0.000082= 0.000081= 0.000080= 0.000084= 0.000085

MaF9
5 2996 0.025761= 0.027336= 0.026762= 0.027222= 0.026980= 0.026736= 0.028677= 0.027412

10 689 0.000303= 0.000282= 0.000317= 0.000324= 0.000322= 0.000319= 0.000332+ 0.000296

MaF10
5 909 0.933306= 0.901095= 0.901880= 0.896384= 0.889783= 0.926323= 0.891255= 0.930609

10 753 6.298122= 6.102056= 6.318167= 6.310587= 6.247213= 6.255246= 6.269511= 6.225195

MaF11
5 1006 2.452302+ 2.442642= 2.449517+ 2.437614= 2.421567– 2.420182– 2.448075+ 2.439245

10 1066 17.482878= 17.484652= 17.642898+ 17.590201+ 17.552494+ 17.534068= 17.512623= 17.418106

MaF12
5 539 1.790848= 1.791929= 1.790169= 1.836252= 1.808378= 1.817218= 1.793968= 1.785985

10 478 13.241563= 13.288255= 13.235779= 13.19385= 13.303345= 13.313089= 13.346762= 13.366043

MaF13
5 871 0.218946= 0.218760= 0.225984= 0.233687+ 0.216365= 0.223561= 0.221912= 0.220197

10 921 0.164408= 0.162449= 0.161884= 0.155932= 0.095460– 0.121185– 0.151681= 0.189759

Total (+/=/–) 2/29/1 1/31/0 4/26/2 3/26/3 6/23/3 2/27/3 5/25/2 of 32 probs.

method (Module 2, Fig. 1). Hence, future attempts to strengthen the Innovized
Progress operators may need to focus on improving the other modules, namely,
training-dataset generation and offspring creation.

For further insights into the results reported in Tables 1 and 2, the notion of
Hypervolume factor is proposed for each ML method in conjunction with the
multi-objective and many-objective test suite. For instance, in Table 1, intersec-
tion of Column 3 and shaded Row 9 with the +/ = /− entries as 3/4/0, suggests
that for the multi-objective test suite comprising of seven problem instances,
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Table 2. HV-based comparison of IP3 with eight different ML methods, where kNN
is the base for pairwise comparisons. The symbols “+”, “=” or “–” indicate whether
the corresponding ML method is statistically better, equivalent, or worse, than kNN.
Here, t̂TM denotes the average of the termination generations for 21 runs of the base
kNN.

Problem M t̂TM RF ExTree SVR ENet Ridge LR XGB kNN

L1 2 1036 0.529465– 0.535453= 0.524300– 0.541379= 0.581979+ 0.531304= 0.507512– 0.557609

L2 2 1157 0.661312– 0.658540– 0.659964– 0.659488– 0.661387– 0.664115+ 0.660775– 0.662832

Z̃DT1 2 1200 0.681860= 0.681860= 0.681860= 0.681860= 0.681860= 0.681861= 0.681859= 0.681860

Z̃DT2 2 1263 0.348794= 0.348794= 0.348794= 0.348794= 0.348794= 0.348794= 0.348794= 0.348794

Z̃DT3 2 1003 1.068499= 1.068395= 1.068444= 1.068469= 1.068446= 1.068464= 1.068577+ 1.068348

Z̃DT4 2 1755 0.681860= 0.681860= 0.681860= 0.681860= 0.681860= 0.681860= 0.681860= 0.681860

Z̃DT6 2 1812 0.332970= 0.330529= 0.327835– 0.328804= 0.336573= 0.328397– 0.336123= 0.333947

Total (+/=/–) −→ 0/5/2 0/6/1 0/4/3 0/6/1 1/5/1 1/5/1 1/4/2 of 7 probs.

DTLZ1
5 1402 2.486749= 2.486892= 2.486839= 2.486717= 2.486795= 2.486833= 2.486964= 2.486885

10 2023 17.757703= 17.757702= 17.757693= 17.757704= 17.757690= 17.757684= 17.757683= 17.757696

DTLZ2
5 866 2.171945= 2.172083+ 2.171872= 2.172031+ 2.172102+ 2.172082+ 2.172134+ 2.171782

10 757 17.664176= 17.664258= 17.664655= 17.664885= 17.664505= 17.664448= 17.664356= 17.664525

DTLZ3
5 1198 2.083931= 2.079724= 2.049543– 2.057957– 2.033053– 2.055357– 2.099911= 2.09651

10 1851 17.659759= 17.660024= 17.658199– 17.658355= 17.656276– 17.659139= 17.663084= 17.660877

DTLZ4
5 915 2.173070– 2.173172= 2.173212= 2.173206= 2.173125= 2.173185= 2.173211= 2.173235

10 800 17.676593– 17.67686= 17.67699= 17.676891= 17.676909= 17.676767= 17.677003= 17.676834

MaF1
5 853 0.059759= 0.059340= 0.059473= 0.059903= 0.059967= 0.059876= 0.05956= 0.060380

10 1059 0.002074+ 0.002155+ 0.001959= 0.001957= 0.002004= 0.002149+ 0.002159+ 0.002000

MaF2
5 361 0.999336= 0.997776= 0.999999= 1.000740+ 1.002444+ 0.998881= 0.999796= 0.995748

10 484 7.877194= 7.865008= 7.850738= 7.883851+ 7.827113= 7.833383= 7.827931= 7.830099

MaF3
5 2416 2.488320= 2.488320= 2.488320= 2.488320= 2.488320= 2.488320= 2.488320= 2.488320

10 3658 17.757727= 17.757727= 17.757727= 17.757727= 17.757727= 17.757727= 17.757727= 17.757727

MaF4
5 649 2.480958= 2.469060= 2.482613= 2.481608= 2.475904= 2.479125= 2.482338= 2.477745

10 1094 17.529054= 17.534092= 17.541146= 17.497915– 17.565631= 17.535149= 17.542442= 17.557395

MaF5
5 1113 2.487942= 2.487944= 2.487942= 2.487946= 2.487946= 2.487943= 2.487947= 2.487944

10 1197 17.757727= 17.757727= 17.757727= 17.757727= 17.757727= 17.757727= 17.757727= 17.757727

MaF7
5 1074 0.968845= 0.972045= 0.967674= 0.969739= 0.968382= 0.968788= 0.969065= 0.969353

10 734 7.598982= 7.578182= 7.590612= 7.585287= 7.615941= 7.594704= 7.592734= 7.584186

MaF8
5 1361 0.000551= 0.000477= 0.000426– 0.000450– 0.000410- 0.000470= 0.000449– 0.000495

10 1046 0.000065= 0.000067= 0.000076+ 0.000077+ 0.000074+ 0.000069= 0.000076+ 0.000068

MaF9
5 1820 0.028026= 0.028181= 0.025498– 0.026383– 0.027629= 0.028588= 0.026612– 0.028363

10 725 0.000065= 0.000080= 0.000099= 0.000056= 0.000035= 0.000061= 0.000072= 0.000080

MaF10
5 1069 0.964888= 0.957266= 0.967990+ 0.965795= 0.968337+ 0.959917= 0.964241+ 0.961056

10 783 6.060485= 5.912519= 5.959022= 6.296865+ 5.875247= 5.879183= 6.002479= 5.908347

MaF11
5 960 2.448849= 2.449593= 2.450035= 2.449182= 2.449345= 2.449839= 2.450457= 2.446909

10 1231 17.561243= 17.571667= 17.567886= 17.551676= 17.550847= 17.558191= 17.549476= 17.557456

MaF12
5 546 1.782436= 1.784627= 1.785285= 1.782553= 1.783997= 1.78398= 1.785365= 1.784192

10 481 13.118814= 13.118862= 13.130149= 13.165706= 13.122503= 13.077448= 13.243644+ 13.041259

MaF13
5 911 0.246188= 0.246621= 0.237909= 0.242349= 0.236794= 0.238086= 0.241078= 0.236727

10 904 0.237637= 0.236821= 0.230929= 0.192100= 0.225026= 0.229397= 0.235592= 0.226286

Total (+/=/–) −→ 1/29/2 2/30/0 2/26/4 5/23/4 4/25/3 2/29/1 5/25/2 of 32 probs.

kNN performed statistically better in three, equivalent in four, and worse in
none. In general, for both Tables 1 and 2, if the performance (+/ = /−) of any
alternative ML method vis-à-vis the base method, for a multi or many-objective
problem suite, is given by B/E/W , then it is proposed that the Hypervolume
factor be defined as below.

Hypervolume factor =
B − W

B + E + W
. (1)
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Table 3. Run-time comparison for IP2 and IP3 operators, with eight different ML
methods each. Here, RF and kNN are the base methods for the pairwise comparisons
within IP2 and IP3, respectively. The entries in the format H/L indicates the number
of times an ML method has a Higher/Lower run-time compared to the base method.

RF ExTree SVR ENet Ridge LR XGB kNN

IP2 Multi-objective – 1/6 0/7 1/6 0/7 1/6 5/2 1/6

Many-objective 6/26 5/27 4/28 4/28 8/24 14/18 8/24

IP3 Multi-objective 5/2 4/3 6/1 3/4 5/2 5/2 7/0 –

Many-objective 27/5 12/20 17/15 9/23 14/18 10/22 29/3

Hence, for any alternative ML method and a specific problem suite: a pos-
itive/negative Hypervolume factor would represent the percentage instances,
where it is relatively better/worse than the base method.

Furthermore, the notion of Hypervolume factor is extended to computation of
Run-time factor. As a precursor, it may be noted that the run-time for only the
seed underlying the median HV run for each ML method was recorded1. Their
relative summary formatted as H/L in Table 3, indicates the number of times an
ML method has a Higher/Lower run-time compared to the base method. Given
this, it is proposed that the Run-time factor be defined as below.

Run-time factor =
H − L

H + L
. (2)

Hence, for any alternative ML method and a specific problem suite: a posi-
tive/negative Run-time factor would represent the percentage instances, where
it is relatively worse/better than the base method in terms of run-time.

In the wake of the above, the performance of different ML methods at the
level of multi- and many-objective problem-suite is captured in Fig. 5. Under-
standably, RF being the base method for IP2, occupies the origin in Figs. 5a
and 5b. Similarly, kNN being the base method for IP3, occupies the origin in
Figs. 5c and 5d. Importantly, if any alternative ML method was to dominate
the base method in case of IP2 or IP3, in terms of both HV and run-time, then
it should occupy the fourth quadrant. However, such occurrences are quite rare,
as highlighted below :

• For the IP2 operator applied to multi-objective suite: kNN and ExTree out-
perform the base RF, and seem to offer reasonably better HV in reasonably
lower run-time.

• For the IP2 operator applied to many-objective suite: XGB, kNN, ExTree,
SVR, and Ridge seem to offer only a marginally better HV than the base RF,
but in reducing order of run-time.

1 For this paper, the 21 seed runs were executed in parallel to save the overall run-time,
given which the exact run-time for each seed was not traceable. Hence, for run-time
estimate, only the seed corresponding to the median hypervolume was executed again.
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(b) IP2 (Many-objective problems)
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(c) IP3 (Multi-objective problems)
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Fig. 5. Plots comparing HV factor and Run-time factor across the multi-objective and
many-objective problem suite for IP2 and IP3 operators.

• For the IP3 operator applied to multi-objective suite: the base kNN seems to
be the best choice, as it outperforms all other alternative ML methods.

• For the IP3 operator applied to many-objective suite: Ridge, ExTree, LR and
ENet offer insignificantly better HV, but in reducing order of run-time.

Overall, if one winner has to be picked across all scenarios, then kNN can be
inferred as the one.

The presented results also endorse the known characteristics of some the con-
sidered ML methods, as highlighted below. It can be observed that the considered
linear ML models, namely LR, Ridge, and ENet have a comparable performance,
particularly in terms of the HV measures. Within the family of trees, RF has a
higher run-time than ExTree. This is consistent with the expectation, since RF
chooses the optimal split, while ExTree relies on random split, saving some time.
Overall, the boosting algorithm, namely, XGB is seen to have a higher run-time
compared to the other ML methods. This could be attributed to the fact that
during each split finding process, XGB iterates over all entries in the input data,
making the process slower.
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6 Conclusion

This paper sought to analyze, as to how sensitive the existing Innovized Progress
operators (IP2 for convergence-improvement and IP3 for diversity-improvement)
are to the choice of the underlying ML method. In that, the key concern was to
investigate if by changing the underlying ML methods, the performance of these
operators may drastically deteriorate, or if it could be significantly improved.
Exhaustive experiments based on eight ML methods, tested against seven multi-
objective and 32 many-objective test instances, suggest that the performance of
IP2 could be marginally improved by replacing its base ML method, namely,
Random forests, with kNN. However, on the whole, both the existing IP2 and IP3
operators are reasonably robust, and not too sensitive to the choice of underlying
ML method. Besides the above inference, the results in this paper also endorsed
some of the known characteristics of the considered ML methods. Finally, if
one ML method is to be recommended for use, within the gambit of the existing
IP2 and IP3 operators; considered test suite; and chosen ML methods, then kNN
could be considered as the best performing method. Overall, this paper presents a
systematic methodology to investigate the tradeoff associated with different ML
methods in terms of their potential for performance enhancement of Evolution-
ary Multi- and Many-objective Optimization algorithms vis-à-vis the associated
computational cost. It is hoped that this shall pave way for similar investigations
in other existing ML-based enhancements, such as surrogate-modeling methods.
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Abstract. The facility location problems (FLPs) are a typical class of
NP-hard combinatorial optimization problems, which are widely seen in
the supply chain and logistics. Many mathematical and heuristic algo-
rithms have been developed for optimizing the FLP. In addition to the
transportation cost, there are usually multiple conflicting objectives in
realistic applications. It is therefore desirable to design algorithms that
approximate a set of Pareto solutions efficiently without enormous search
cost. In this paper, we consider the multi-objective facility location prob-
lem (MO-FLP) that simultaneously minimizes the overall cost and max-
imizes the system reliability. We develop a learning-based approach to
predicting the distribution probability of the entire Pareto set for a given
problem. To this end, the MO-FLP is modeled as a bipartite graph opti-
mization problem and two graph neural networks are constructed to learn
the implicit graph representation on nodes and edges. The network out-
puts are then converted into the probability distribution of the Pareto
set, from which a set of non-dominated solutions can be sampled non-
autoregressively. Experimental results on MO-FLP instances of different
scales show that the proposed approach achieves a comparable perfor-
mance to a widely used multi-objective evolutionary algorithm in terms
of the solution quality while significantly reducing the computational cost
for search.

Keywords: Combinatorial optimization · Multi-objective
optimization · Graph neural network

1 Introduction

Multi-objective combinatorial optimization (MOCO) has received considerable
attention over the past few decades due to its wide applications in the real-world.
In MOCO, there are multiple conflicting objectives, and it is often non-trivial to
optimize them simultaneously [1]. The multi-objective facility location problem
(MO-FLP) is a typical NP-hard MOCO problem [23]. It aims to determine
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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an optimal set of facility locations that can satisfy all the customer demands
within certain constraints, while minimizing the total costs and maximizing the
system reliability. Decisions made in facility location have a long-term impact
on numerous operational and logistical strategies and are critical to both private
and public firms [14].

A lot of work has been devoted to developing mathematical methods or hand-
crafted heuristic algorithms for solving MOCO problems. An intuitive approach
is to reduce a multi-objective problem to a single-objective problem by calcu-
lating the weighted sum of multiple objectives. However, assigning a suitable
weight to each objective introduces an additional hyperparameter optimization
problem. Evolutionary algorithms (EAs) have been successful in approximat-
ing the Pareto set of MOCOs by maintaining and updating a set of solutions
[6,7,34]. However, EAs and other population-based methods often require a large
number of function evaluations during the search process, incurring prohibitive
computing overhead when the objective functions are expensive to evaluate [17].
Moreover, it is difficult to reuse the knowledge about the optimal sets of solutions
for other instances of the same problem that have already been solved.

Most existing work considers MOCO as constrained mixed-integer linear pro-
gramming, overlooking the highly structured nature of the combinatorial optimi-
sation problems. For example in the facility location problem (FLP), the loca-
tions of all facilities and customers can be represented by a set of nodes separately,
and the transport overhead is the weight of the edge connecting two nodes from
different sets. Generally, permutation-based COPs can be formulated as sequen-
tial decision-making tasks on graphs [18], and matching-based COPs can be con-
sidered as node and edge classification or prediction tasks on graphs. Therefore,
machine learning methods can be used to extract high-dimensional characteris-
tics of the graph-based problems and learn optimal policies to solve COPs instead
of relying on handcrafted heuristics [1,31]. Graph neural networks (GNNs) can
exploit the message passing scheme to learn the structural information of nodes
and edges efficiently according to the graph topology. Consequently, GNNs are
well-suited for tackling the MOCO problems [4,11,16]. However, most existing
methods focus on solving permutation-based problems and only consider one sin-
gle objective, neglecting the study of more commonly seen matching-based multi-
objective COPs [9].

In this paper, we propose a learning-based approach leveraging graph con-
volutional networks (GCNs) to approximate the Pareto set distribution of the
multi-objective facility location problem. The overall framework is shown in
Fig. 1. The problem is formulated as a bipartite graph with edge connections
between two independent sets of nodes. The model consists of two different
residual gated GCNs for node classification and edge prediction tasks, respec-
tively. The model takes bipartite graphs as the input, and transforms the original
node and edge features into high-dimensional embeddings. Several residual gated
graph convolutional layers are used to learn the structural information from the
graph topology and update the embeddings iteratively. The output of the first
GCN is a prediction of the probability of each factory being selected in the Pareto
optimal solutions. The output of the second GCN is a probabilistic model in the
form of an adjacency matrix, denoting the probability of each customer being
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Fig. 1. An overview of the proposed approach. The MO-FLP instance is converted
into a bipartite graph as the input to the GCNs. The two GCN models perform node
classification and edge prediction and output the probability models, which are co-
sampled to generate a set of non-dominated solutions in a one-shot manner.

assigned to each selected factory. The output probability models can be sam-
pled directly to predict a set of Pareto solutions in a one-shot manner. The two
networks are trained coordinately by supervised learning. The training data is a
large set of MO-FLP instances with various approximated Pareto optimal solu-
tions generated by a multi-objective evolutionary algorithm, e.g., the fast elitism
non-dominated sorting genetic algorithm (NSGA-II) [7]. The main contributions
of this paper include:

1. We formulate the MO-FLP as a bipartite graph optimization task and develop
a novel learning-based combinatorial optimization method to directly approx-
imate the Pareto set of new instances of the same problem without extra
search.

2. We propose an end-to-end probabilistic prediction model based on two GCNs
for node and edge predictions, respectively, and train the model with a super-
vised learning using data generated by a multi-objective evolutionary algo-
rithm.

3. We demonstrate the efficiency of our proposed method for solving MO-
FLP instances with different scales. Our experimental results show that the
learning-based approach can approximate a set of Pareto optimal solutions
without additional search, significantly reducing the computational cost com-
pared to population-based algorithms.

2 Related Work

2.1 Facility Location Problem

FLPs are a typical class of NP-hard combinatorial problems in operations
research [23]. FLPs consider choosing an optimal set of facilities among all the
potential sites and determine an allocation scheme for all customers, under the
constraints that all customer demands must be satisfied by the constructed facil-
ities. A common objective of FLPs is to minimize the total costs, which consist
of the transportation cost and the fixed cost.
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FLPs have several variants depending on different constraint settings and
objective functions. Each candidate facility may have a limited or unlimited
maximum capacity, which classifies the problems into capacitated and uncapac-
itated facility location problems. When the number of established facilities is
fixed to k, there are two variants, namely the k-median problem [30] and the k-
center problem [5]. The k-median problem minimizes the sum of distances from
each customer to the closest facility, while the k-center problem minimizes the
maximum value of a distance from a customer to the closest facility. Another
category of variants is the covering problem, where the problems share a prop-
erty that a customer can receive the service only if it is located with a certain
distance from the nearest facility [10]. The set covering problem aims to find a set
of facilities with the minimum number that can satisfy all customers’ demands.
The maximum covering problem intends to find a set of facilities with a fixed
number to maximize the total demands it covers. From an objective perspective,
FLPs and its variants can be divided into single- and multi-objective problems.
In addition to the overall costs, multi-objective facility location problems may
also include other practical objectives such as the system reliability in logistics,
which is quite desirable in real-world applications [9].

2.2 Graph Representation Learning

Graph-structured data is ubiquitous in daily life. Various kinds of data can be
naturally expressed as graphs, such as social relationships, telecommunication
networks, chemical molecules, and also combinatorial optimization tasks [33].
Generally, a graph is a collection of objects (nodes) along with a set of interac-
tions (edges) between pairs of them [15]. With the development of machine learn-
ing techniques, graph representation learning has attracted increasing attention
for in-depth analysis and effective utilization of graph data. Graph representa-
tion learning derives node and edge embeddings based on the graph topology
for a variety of downstream tasks in machine learning, such as node classifi-
cation [32], edge prediction [21], and graph clustering. The traditional graph
representation methods neither use the node features nor share parameters in
the encoder, and are not able to generalize to unseen nodes after training. To
alleviate these limitations, graph neural networks are proposed to learn node
embeddings in a more explainable way based on the topology and attributes of
the input graph [33,36]. Early attempts made by Sperduti and Starita [29] dealt
with arbitrary structured data as directed acyclic graphs with recursive neural
networks. Gori [13] and Scarselli [28] generalized the recursive neural networks
for other types of graph structures and introduced the concept of graph neural
networks. With the compelling performance shown by convolutional neural net-
works in computer vision tasks, a lot of work has been devoted to the transfer
of convolution operators to graph domain [35], which can be categorized into
spectral-based methods [3,8,24] and spatial-based methods [12,25,26]. GNNs
have been practically applied to various domains and achieved encouraging per-
formance [11,16,18].
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2.3 Machine Learning for Combinatorial Optimization on Graphs

NP-hard combinatorial optimization problems are non-trivial to solve, but the
instances are relatively easy to generate. In many practical scenarios, decision-
makers need to solve different instances of the same optimization task, where the
instances share the same problem structure and only differ in data [1,4,20]. Tra-
ditional heuristic methods require extensive expert knowledge and a huge com-
putational cost, and their solutions cannot be transferred to other instances. To
address this limitation, recent years have seen a surge in research on machine learn-
ing approaches to combinatorial optimization to automate the solution of different
instances of combinatorial optimization problems [4,31]. Combinatorial optimiza-
tion problems often depict a collection of entities and their relations, which are
graph-structured data in essence. Therefore, many GNN-based machine learning
methods are proposed to solve combinatorial optimization problems [18–20]. Kool
et al. developed a GNN model in an encoder-decoder architecture based on atten-
tion layers, and trained it using REINFORCE for solving routing problems [22]. In
addition to solving COPs directly, machine learning techniques can also be used
to provide valuable information to operation research algorithms [11]. Although
a lot of effort has been devoted to developing ML methods for COPs, most work
has focused on single-objective permutation-based problems, and little research
on multi-objective matching-based problems has been reported.

3 Problem Formulation

This section begins with a formal definition of the multi-objective uncapacitated
facility location problem, which is mathematically formulated as integer linear
programming. Subsequently, we discuss how to measure the logistics system
reliability in facility location problems.

Multi-objective Uncapacitated Facility Location. Consider a set of candi-
date facility locations and a set of demand points (customers) with fixed locations.
Every customer has its own quantity of demand to be satisfied. Each potential facil-
ity has its own fixed cost for construction, and there are different transportation
costs between facilities and customers associated with their distances. Each cus-
tomer should be served by only one facility, while each facility can serve multiple
customers simultaneously. The target is to identify the selected collection of facil-
ities for construction and assign an allocation plan for all customers, in order to
minimize the total costs and maximize the system reliability.

Mathematical Formulation. With the minimization of the total costs (includ-
ing fixed costs and transportation costs) and the maximization of the system reli-
ability as the two objectives, the multi-objective uncapacitated facility location
problem can be defined as follows:

min Ctotal =
∑

i∈M

fiXi +
∑

i∈M

∑

j∈N

qjdijcijYij (1)
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max Rsys =

∑
i∈M

∑
j∈N qjXi

[
1 − FVij

(
dij

tj

)]

∑
j∈N qj

(2)

s.t.
∑

i∈M

Yij = 1 j ∈ N (3)

Xi, Yij = {0, 1}, Yij ≤ Xi i ∈ M, j ∈ N (4)

In the MO-FLP, assume there are m candidate facility locations denoted as a
set M = {1, 2, . . . ,m}, and n customer points denoted as a set N = {1, 2, . . . , n}.
fi ∈ R

+ denotes the fixed cost of constructing the facility at candidate location
i (i ∈ M), and qj ∈ R

+ is the demand volume of customer j (j ∈ N). dij ∈ R
+

and cij ∈ R
+ are the distance and the unit transportation cost between facility

i and customer j respectively. Vij denotes the speed for vehicles travelling from
facility i to customer j, and FVij

(·) is a statistically regular velocity distribution.
tj is the delivery timescale required by customer j.

The decision variables are Xi ∈ {0, 1}, which denotes whether facility location
j is selected (Xi = 1) or not (Xi = 0), and Yij ∈ {0, 1}, which denotes whether
customer j is served by facility i (Yij = 1) or not (Yij = 0). The two objectives
are the minimization of the total costs Ctotal and maximization of the system
reliability Rsys.

Logistics System Reliability. Reliability is the probability that a system per-
forms its intended function under the stated conditions [27]. Logistics system
reliability is defined as the probability at which the system will successfully pro-
vide services to customers under certain conditions and within a specified time.
System reliability is a common metric for assessing service levels in modern logis-
tics. The service reliability Rij between factory i and customer j is defined as:

Rij = P (Tij ≤ tj) = P

(
dij
Vij

≤ tj

)
= P

(
Vij ≥ dij

tj

)
= 1 − FVij

(
dij
tj

)
(5)

where Tij is the time cost for delivery from facility i to customer j, and FVij
(·) is

a statistically regular velocity distribution function that usually follows the char-
acteristics of a normal distribution. Based on this, the logistics system reliability
of facilities serving multiple customers is calculated by:

Rsys =

∑
i∈M

∑
j∈N qjRij∑

j∈N qj
=

∑
i∈M

∑
j∈N qj

[
1 − FVij

(
dij

tj

)]

∑
j∈N qj

(6)

4 Method

We first convert an MO-FLP instance to a bipartite graph based on its inherent
structural properties, and then train a dual GCN-based model to directly out-
put the probabilistic model of the Pareto optimal solutions for the given task.
The proposed model consists of two graph convolutional networks GCNnode and
GCNedge. GCNnode learns high-dimensional representations of nodes and out-
puts a probabilistic prediction for each node via a simple multi-layer perceptron
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(MLP) classifier. Meanwhile, GCNedge learns high-dimensional edge representa-
tions and predicts the probability of each edge appearing in the Pareto optimal
solutions in the form of an adjacency matrix. The entire model is trained in
an end-to-end manner by minimizing the loss between predictions and ground-
truth labels. During the test, the output probabilistic model is sampled and
converted into a set of non-dominated solutions in a non-autoregressive manner,
eliminating the requirement of further search when solving new instances.

4.1 Bipartite Optimization on MO-FLP

An instance of the MO-FLP is transformed into a bipartite graph G = (U, V,E),
whose vertices are divided into two independent sets U (including all candidate
facilities) and V (including all customers), and these two parts are connected by
a set of edges E. Within the graph, each facility in U contains the information
of its fixed cost, while each customer in V contains its demand and delivery
timescale information. The features of each edge in E contain the Euclidean
distance, the transportation cost and the reliability between the facility and the
customer it connects. The aim of converting the MO-FLP into a bipartite opti-
mization is to derive high-dimensional embeddings in the latent space through
graph representation learning, in order to predict optimal solutions by means of
machine learning.

4.2 The Dual GCN-Based Model

Overall Framework. Note that a solution to an MO-FLP problem consists of
two parts: X = {Xi | i ∈ M} and Y = {Yij | i ∈ M, j ∈ N}. The decision
variable X first determines a subset of facilities to be constructed from all can-
didate locations, then the decision variable Y identifies the allocation scheme
between customers and the selected locations in X. According to the mathemat-
ical formulation in Sect. 3, the calculation of objective Ctotal in Eq. 1 requires
both X and Y as the decision variables, while the second objective Rsys in Eq. 2
is only determined by X. Leveraging the structural properties of the MO-FLP
problem discussed above, we propose to predict the two components X and Y
by designing two GCN models, one for node prediction and the other for edge
prediction.

As shown in Fig. 1, the proposed model consists of GCNnode and GCNedge,
which take the same bipartite graph as their input. More specifically, GCNnode

loads node and edge information and computes H-dimensional representations
for each node via iterative graph convolution operators. The last graph convo-
lution layer is followed by a multi-layer perceptron (MLP) classifier, where the
updated node embeddings are taken as its inputs to compute the probability
of each node being selected in decision variable X. The output of the classifier
is represented as a probabilistic model P (X) ∈ R

M , where M is the number
of all candidate facilities. Simultaneously, GCNedge takes the same node and
edge information as input attributes and derives H-dimensional representations
for each edge. A following edge classifier is used to predict the probability of
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each edge occurring in the Pareto optimal solutions in the form of a heat-map
over the adjacency matrix P (Y ) ∈ R

M×N , where N is the number of all cus-
tomers. The outputs of the two GCN models indicate the information of X and
Y , respectively, which together constitute an approximation of the Pareto opti-
mal solutions. The GCN architectures adopted in the proposed model consist
of three building blocks: an embedding block, a graph convolution block and an
MLP classifier.

Embedding Block. The inputs to the embedding block are a set of origi-
nal node features hn = {�u1, �u2, . . . , �uM , �v1, �v2, . . . , �vN} , �ui ∈ R

Fu , �vj ∈ R
Fv

and edge features he = {�w11, �w12, . . . , �wMN} , �wij ∈ R
Fe . M and N are the

numbers of facilities and customers, and Fu, Fv and Fe are the numbers of
features for different nodes and edges. The outputs of the embedding block
are node embeddings n = {�n1, �n2, . . . , �nM+N} , �ni ∈ R

H and edge embeddings
e = {�e11, �e12, . . . , �eMN} , �eij ∈ R

H , where H is the dimension of the hidden
space.

For node embeddings, each feature a ∈ R is first embedded in a d-dimensional
vector �α ∈ R

d by a learnable linear transformation to get adequate expressive
power. Then all the feature vectors are concatenated together to get an embed-
ding �ni for node i:

�ni = concatFn

k=1

(
�αk
i

)
(7)

Similarly, the edge embedding �eij for the edge between node i and node j is
the concatenation of all the edge feature vectors:

�eij = concatFe

k=1

(
�βk
ij

)
(8)

The selection of node and edge features as the input to the embedding layers
depends on the problem’s characteristics, which should have a significant impact
on the objective function values. For the MO-FLP problem investigated in this
work, there are several candidate node features of the bipartite graph served as
input: the node category of the binary classification (i.e., whether a node belongs
to the facility set or the customer set), the demand volume of a customer, the
fixed cost of constructing a facility, the transportation costs and the reliability of
all edges connected to a node. And the input edge features include the adjacency
matrix of the bipartite graph, the transportation cost, and the reliability of an
edge.

Graph Convolution Block. The message passing process mainly occurs in
the graph convolution block by stacking several graph convolution layers sequen-
tially. It leverages the structure and properties of the input graph in order to
exchange information between neighbors and update node and edge embeddings
without changing the connectivity. The graph convolution adopted in our model
follows the framework of residual gated graph convolutional neural network [2],
where additional edge features and residual gated operators are integrated to
introduce heterogeneity in the message passing process.

In the graph convolution block, the inputs to the k-th layer are a set of
node embeddings nk =

{
�nk
1 , �n

k
2 , . . . , �n

k
M+N

}
and a set of edge embeddings ek =
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{
�ek11, �e

k
12, . . . , �e

k
MN

}
where �ni, �eij ∈ R

H . The k-th layer outputs an update set of
both node and edge embeddings with the same dimension H.

Let �ekij denote the edge embedding between node i and node j at the k-
th GCN layer. In the message passing of �eij (the superscript k is omitted for
simplicity), we first gather the associated node embeddings �ni and �nj as neigh-
borhood information, and aggregate all the messages as �e ′

ij . Then �e ′
ij is passed

through a batch normalization layer BN and the rectified linear unit ReLU, to
form the updated edge embedding �ek+1

ij together with the original input �ekij :

�ek+1
ij = �ekij + ReLU

(
BN

(
U�ekij + V

(
�nk
i + �nk

j

)))
(9)

where U,V ∈ R
H×H are linear transformations. Suppose �nk

i denotes the node
embedding of node i at the k-th layer. For updating �ni, we first calculate the
weight vector ωij of each neighbor node j as:

ωij =
σ (�eij)∑

j∈Ni
σ (�eij) + δ

(10)

where Ni denotes all the first-order neighbors of node i. σ represents the sigmoid
function, and δ > 0 is a small value. Then we gather the neighbor embeddings
�nj (j ∈ Ni) and define the output of the k-th convolution layer as:

�nk+1
i = �nk

i + ReLU
(
BN

(
P�ni + Q

∑

j∈Ni

ωij�nj

))
(11)

where P,Q ∈ R
H×H are linear transformations. The stack of graph convolution

layers enables neighborhood messages to be progressively transferred within the
graph. The dimensionality of the embeddings remains the same, however, the
representation of each node and edge contains more local information in addition
to its original features.

MLP Classifier. The updated representations are taken as inputs to an MLP
for classification tasks. For node prediction in GCNnode, we consider �ni (i ∈ M)
as the high-dimensional embedding of node i from the facility set M . For edge
prediction in GCNedge, we consider �eij (i ∈ M, j ∈ N) as the embedding of edge
between facility i and customer j. The probability p̂i ∈ [0, 1] of node i being
selected as a constructed facility and the probability p̂ij ∈ [0, 1] of facility i
serving customer j are predicted by:

p̂i = MLP(�ni), p̂ij = MLP(�eij) (12)

The weight parameters are trained in an end-to-end manner by minimizing
the mean square error between the prediction P̂ (X) = {p̂i | i ∈ M} and the
ground-truth label P (X) = {pi | i ∈ M} via gradient descent methods.

Since each customer must be served by only one facility, we consider the
edge prediction for each customer as a multi-class classification task and train
the network parameters by minimizing the cross entropy loss between the
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prediction P̂ (Y ) = {p̂ij | i ∈ M, j ∈ N} and the ground-truth label P (Y ) =
{pij | i ∈ M, j ∈ N}, where P (X) and P (Y ) are both derived from the approxi-
mated Pareto optimal solutions.

End-to-End Training. The dataset for training and testing the proposed model
is generated by a multi-objective evolutionary algorithm. We generate MO-FLP
instances of different scales (i.e., various numbers of facility and customer nodes)
and approximate their Pareto fronts via the fast elitist non-dominated sorting
genetic algorithm (NSGA-II) [7]. Then the probabilistic distributions P (X) and
P (Y ) for each instance are derived from a set of approximated Pareto optimal
solutions, which serve as ground-truth labels for training and evaluating the
proposed model.

5 Experiments

5.1 Dataset Generation and Hyperparameter Configurations

We consider MO-FLP problems with the following four different configurations:
M ×N are set to 20×50, 20×100, 50×100, and 50×200. We randomly generate
1000 instances for each problem scale and optimize them using NSGA-II until
convergence to approximate the true Pareto fronts. Then the 1000 instances
for each scale are divided into a training dataset, a validation dataset and a
test dataset with 700, 200 and 100 pairs of instances and ground-truth labels,
respectively. During each training epoch, the training data is split into mini-
batches with a batch size B = 20 instances. The Adam optimizer is used to
train the weights of the proposed model with an initial learning rate of γ = 0.001
and a maximum number of 300 epochs. Both GCNnode and GCNedge consist of
lGCN = 3 graph convolutional layers and lMLP = 3 classification layers. The
dimension of the hidden space is set to H = 128 for node and edge embeddings.
During the test, we sample 200 solutions from the output prediction for each
instance and calculate the hypervolume (HV) and IGD value of the obtained
non-dominated solution sets as the performance indicators.

5.2 Experimental Results

There are two variants of our proposed model adopted in the experiments, named
Dual A and Dual B with different input features. Dual A takes the node cate-
gory, the customer demand and the fixed cost of each facility as the original node
features, while Dual B also considers the transportation costs and the service
reliability of all the edges associated with the node. Both architectures share the
same edge features as inputs. To investigate the model performance on MO-FLP
with various scales, we compare it to NSGA-II with different numbers of func-
tion evaluations (MFEs). We set the number of independent runs to 20 for the
compared algorithm, and calculate the mean and standard deviation of HV and
IGD values as the performance indicators. The population size is set to 100 for
all experiments.
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Table 1 shows the performance of the proposed model compared to NSGA-II
in different problem scales. We train the dual GCN-based models with different
scales of the problem instances and evaluate them on test datasets. For each test
case, 200 solutions are first sampled from the predicted probability distribution
and evaluated by the objective functions to get a set of non-dominated solutions.
Then we calculate the mean HV and IGD values. Finally, for HV and IGD values
associated with each MFE configuration of NSGA-II, we count the percentage
of the cases in which the proposed model performs better than NSGA-II out of
the 100 test cases. The statistical results in Table 1 indicate that for an unseen
instance, by only sampling 200 solutions from the model, the performance of
the sampled solution set is already better than NSGA-II with more than 10000
function evaluations.

Table 1. The percentages of test instances where two variants of the proposed model
perform better than NSGA-II with different MFEs in terms of the two indicators.

MFEs 10000 20000 30000 40000 50000

20 × 50 Dual A HV 100% 98% 96% 75% 41%

IGD 100% 90% 63% 31% 20%

Dual B HV 100% 98% 88% 69% 29%

IGD 100% 86% 55% 27% 8%

20 × 100 Dual A HV 100% 100% 94% 76% 51%

IGD 100% 100% 86% 57% 45%

Dual B HV 100% 100% 100% 100% 96%

IGD 100% 100% 100% 98% 90%

50 × 100 Dual A HV 100% 100% 100% 73% 33%

IGD 100% 94% 63% 29% 2%

Dual B HV 100% 100% 96% 61% 27%

IGD 100% 96% 53% 12% 0%

50 × 200 Dual A HV 100% 100% 100% 76% 14%

IGD 100% 88% 43% 8% 0%

Dual B HV 100% 100% 100% 100% 90%

IGD 100% 100% 98% 86% 69%

Figure 2 depicts the differences between the HV values of the solution sets
obtained by NSGA-II and the proposed model for different problem scales with
different MFEs. A positive difference means that the proposed model performs
better than NSGA-II. These results reveal that the proposed model outperforms
NSGA-II when the MFEs is less than 40000 in most test cases for all scales. In
some cases the model performance is even comparable to that of NSGA-II with
50000 MFEs.
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Fig. 2. The difference in HV values between the proposed model and NSGA-II with
different MFEs.

5.3 Hyperparameter Sensitivity Analysis

We investigate the influence of different graph convolution layers and hidden
dimensions on the two performance indicators, HV and IGD. We train the pro-
posed model with different numbers of GCN layers on the 20×20 training dataset,
and evaluate them on the test dataset with 100 unseen instances. The statistics
of HV and IGD values are presented in the form of boxplots in Fig. 3(a). The
results demonstrate that the increase in the number of GCN layers has a little
impact on the model performance, and lGCN = 3 achieves a slightly better per-
formance. Similarly, we train the proposed model for different dimensions of the
hidden space and plot the statistical results of the two indicators in Fig. 3(b).
The model performance improves as the hidden dimension increases from 32 to
128. Note that a larger number of hidden layers and more GCN layers also lead
to higher computational costs in the training process.

Fig. 3. Sensitivity analysis. (a) The effect of different GCN layers. (b) The effect of
different hidden dimensions.

6 Conclusion and Future Work

This paper proposes a learning-based approach to directly predicting a set of
non-dominated solutions for multi-objective facility location. We convert the
original combinatorial optimization problem into a bipartite graph, and train
two GCN models for predicting Pareto optimal solutions for unseen instances by
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learning the distribution of Pareto optimal solutions in previously solved exam-
ples. Experimental results on different scales of MO-FLP instances demonstrate
that by only sampling hundreds of solutions, the proposed dual GCN-based
approach can achieve a performance comparable to NSGA-II using up to tens
of thousands of function evaluations. Future work will focus on improving the
model scalability and exploring the heterogeneity of the input graphs in order to
generalize the proposed approach to more complex and realistic problems with
conflicting objectives and multiple constraints.
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Abstract. Well-defined Hyper-Heuristics enhance the generalization of
MOEAs and the blind usability on complex and even dynamic real-world
application. Previous works already showed, that Hyper-Heuristics as
selectors of crossover operators improve the performance of a single algo-
rithm used on two opposing problem properties. In this paper, we present
different selection mechanisms of Hyper-Heuristics, that are able to handle
an expanded selection pool to cover more properties. We solve 20 bench-
mark problems with NSGA-II using those Hyper-Heuristics. By compar-
ing the learning behaviour and the IGD trends of fixed crossover operator
usages, we confirm that a combination of operators could outperform the
best fixed operator. From the introduced Hyper-Heuristics in this paper,
HHX-A made the best use of this advantage. It selects either all operators
or a single operator alternately and learns fast which operators to prior-
itize to optimize the production. Due to periodic resets of the score, the
Hyper-Heuristic is able to adapt fast to changes of the current state of the
solving process. Although the pool is bigger and more diverse, we are able
to show that HHX-A decides reasonably and fast. Therefore, it works well
on a bigger set of problems with different properties.

Keywords: Multi-Objective Evolutionary Algorithm ·
Hyper-Heuristics · Selection mechanism · Crossover operator

1 Introduction

Hyper-Heuristics are high-level methods to construct heuristics. Whereas, heuris-
tics are often used to find optimal solutions in a search space for a problem, a
Hyper-Heuristic are designed to find an optimal heuristic to solve a specific prob-
lem [9]. In this paper, we intend to use Hyper-Heuristics as selectors of crossover
operators in Multi-Objective Evolutionary Algorithms (MOEAs). For different
problem properties, there are different optimal MOEAs [19]. To further general-
ize them, Hyper-Heuristics are designed and added into MOEAs to make them
reliable on a wider variety of problems.

A well-known example of a problem that could benefit from the use of Hyper-
Heuristic is job scheduling [19]. Although, it can be defined as one problem class
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because the solution spaces are alike, the properties and the complexity of these
problems can differ and usually depend on the decision makers preferences. They
can even be time-dependent, and their properties can change during the optimiza-
tion process. In this case, it is nearly impossible to know which Meta-Heuristic
would work best or even good enough. A Hyper-Heuristics could improve the sit-
uation by selecting the algorithm during the optimization process [10].

Hyper-heuristics have been applied to MOEAs in the past. In [24], Venske
et al. propose a Hyper-Heuristic selection of crossover operators in MOEA/D
for Many-Objective problems and could show that the proposed approach can
improve the robustness and the quality of the algorithm. Similar to [15] by Pan
et al. or [14] by Ono et al., they use a small pool of two to three crossover
operators. Those are chosen in a way, that there is at least one good option for
a specific problem class. Further approaches on applying Hyper-Heuristics are
proposed by Pang et al. [16], who uses an offline learning to tune MOEA/D for
specific problem properties, or Hong et al. [12], who uses a Hyper-Heuristic to
generate polynomial mutation operators via training. An offline learner always
needs training data sets, which should be at least similar to the actual problem.
Both works showed, that otherwise the risk rises that the algorithm is outper-
formed by MOEAs that do not need training. Therefore, when using trained
offline learners, more knowledge about the problem is again needed.

In this paper, we use an online learning Hyper-Heuristic to enhance the
usability of the algorithm on unknown problems. We mainly focus on the selec-
tion mechanism and aim to expand the selection pool with more operators to
cover several problem classes. We propose different variations of a learning mech-
anism applied to NSGA-II [5] to investigate their influence. We perform experi-
ments on 20 test problems and compare our approach with NSGA-II using solely
Simulated Binary Crossover (SBX) [6] and Uniform Crossover (UX) [21]. The
results indicate that we could outperform the basic NSGA-II on most problems,
although their properties are diverse.

This paper is organized as follows: first, we describe the general structure
of our Hyper-Heuristics. In the second section, we propose our Hyper-Heuristics
with the two basic selection methods. Afterwards, we analyse these algorithms in
Sect. 4 and conclude that modification would be beneficial. Those modifications
are presented in Sect. 5 and analysed in Sect. 6. We conclude our results and
answer the questions about the generalization of MOEAs with Hyper-Heuristic
in the last section.

2 Background

Hyper-Heuristics are generally defined as algorithms that optimize the selection
of a heuristic or that constructs a new heuristic to solve an optimization prob-
lem. Therefore, they are part of a two-level framework. The high-level is the
Hyper-Heuristic exploring the heuristic space H, and the low-level is a heuristic
exploring the solution space S. The objective of a Hyper-Heuristic is to search in
H for the optimal heuristic configuration h∗, which generates the optimal solu-
tion s∗ [17]. Considering, that in an optimization problem solutions are evaluated
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Fig. 1. Extended evolutionary algorithm using a Hyper-Heuristic instead of single
crossover operation.

by function f , there has to be a mapping M so that M : f(s) → F (h), where
F is the objective function for the Hyper-Heuristic. This leads to the formal
definition:

F (h ∗ |h∗ → s∗, h∗ ∈ H) ← f(s∗, s∗ ∈ S) = min{f(s), s ∈ S} (1)

This general definition is applicable to multiple classes of Hyper-Heuristics.
Burke et al. [2] classifies Hyper-Heuristics by dividing the feedback procession
in online, offline and no learning and the heuristic search space into selection
and generation. In this paper, we use exclusively online learning selection Hyper-
Heuristics. These Hyper-Heuristic are applied to a MOEA to select the crossover
operator. This use case is further investigated by Drake et al. [9]. They men-
tion that in MOEAs, Hyper-Heuristics can select crossover operators so that
they produce offspring optimized for the current problem. While this “Nature of
how heuristics are grouped, chosen and applied” [9] differs for different Hyper-
Heuristics, the basic structure remains the same. Figure 1, illustrates the main
idea, which contains the application of this structure to a basic evolutionary
algorithm (EA).

For each generation, the Hyper-Heuristic selects one or more crossover oper-
ators to produce the next generation. Thus, the heuristic space H is a set of
crossover operators, the selection pool. The evaluation f of the solutions is done
by the EA. To use this information for the learning process, we use a reward func-
tion that depends on the evaluation results. This function corresponds to the
mapping M . The Hyper-Heuristic stores a cumulative score, which is updated
by the reward function in every generation. This is utilized for the selection of
a subset of operators from the selection pool for the current generation. This
selection mechanism corresponds to the Hyper-Heuristics objective function F .
Therefore, Hyper-Heuristics are mostly made up of those three exchangeable
parts: selection pool, reward function and selection mechanism. In this paper,
we focus on the selection mechanism and propose four different variants to eval-
uate its influence.



Online Learning Hyper-Heuristics in MOEAs 165

3 Selection Mechanisms: Single Selection and Distribution

In this section, we present two out of four developed Hyper-Heuristics. Both
use the same reward function and the same selection pool. We use two different
selection mechanisms: distribution and single selection. First, we introduce the
reward function and the present the crossover operators in the selection pool,
and afterwards the selection mechanisms are described.

For simplification, we use the expression products of operator to sum up the
subset of offspring that were produced by a specific crossover operator. Further-
more, the set X describes the current generation and the set Y describes the
offspring. E is the set of crossover operators, and e ∈ E is a specific operator.
Products of e are therefore Ye and becomes Xe after the environmental selection.

3.1 Reward Function

The reward function uses the survival rate of the offspring during the evolution-
ary cycle t. We consider the ratios between the latest offspring before Ye,t−1 and
after the environmental selection Xe,t, and the portion of products per operator
in the current generation Xt. The calculation is given in Eq. 2.

re =
|Xe,t|

|Ye,t−1| +
|Xe,t|
|Xt| (2)

Therefore, we use the survival of the fittest given by NSGA-II and no further
evaluation is required for the learning process.

3.2 Selection Pool

The second component of the Hyper-Heuristic is the selection pool E populated
with seven crossover operators. Simulated Binary Crossover (SBX) introduced
by Deb and Agrawal in [6] and Uniform Crossover (UX) introduced by Syswerda
and Gilbertin [21] are widely used and commonly known. We added Rotation-
Based Simulated Binary Crossover (RSBX), which is derived from SBX with a
rotational invariant property by Pan et al. [15]. We adapt two other known evo-
lutionary operators, the Differential Evolution [20] and Covariance Matrix Adap-
tion Evolutionary Strategy [11], to implement a Differential Evolution Crossover
(DEX) and a Covariance Matrix Adaption Crossover (CMAX). Additionally,
we derive from Simplex Crossover (SPX) introduced by Tsutsui et al. in [23] a
simplified form using linear combinations of three parents, which we call LCX3.
Lastly, we modified the Laplace Crossover (LX) presented by Deep et al. in [8]
to get a new variation of a distribution-based crossover. With those operators,
we cover a variety of self-adaptive behaviour as described by Beyer in [1], which
is often added by a distribution-based crossover (SBX, RSBX, LX, LCX3), and
different forms of centric production patterns, parent centric (SBX, RSBX, LX,
UX, DEX) and mean centric (CMAX, LCX3), described by Deb et al. in [4].
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Algorithm 1. Scoring Function.
� Xt: Set of Parent Individuals
� Yt−1: Set of Previous Individuals
� �s: current Score for each operator

function Scoring(Xt, Yt−1, �st−1)
�r ← RewardFunction(Xt, Yt−1)
�c ← Rank(�r) � c: positions of elements in ascending sorted r
�s ← �st−1 + (�c − avg(�c))3

return �s
end function

Algorithm 2. Hyper-Heuristic Crossover Single Selector (HHX-S).
� e ∈ E : Set of Evolutionary Operators
� Xt: Set of Parent Individuals
� Yt−1: Set of Previous Individuals
� �st: current Score for each e

function HyperHeuristicSingleSelection(E , Xt, Yt−1, �st−1)
�st ← Scoring(Xt, Yt−1, �st−1)
�p ← �st

sum(�st)
� score distribution

e ← RouletteWheel(E , �p) � common function for pobalistic selection
Yt ← e.Crossover(Xt) � execute crossover operation of selected operator
Yt−1 ← Yt

return [Yt, Yt−1, �st] � Save for next generation
end function

3.3 Selection Mechanism

The last component is the selection mechanism. We choose two different mech-
anisms to compare them and examine the impact of this part of the algorithm.
Both variants update the score of each operator in the first step. The Scoring-
Function described in Algorithm 1 utilizes the reward calculation given in Eq. 2
to measure the quality of the latest products of each crossover operator. After-
wards, the operators are ranked depending on the reward so that the score can
be calculated by using a cubic function on the rank. The score is cumulative
over the generations. We use a cubic function to ensure that the best performing
operators receives a high score, and the bad performing operators get a decreased
score. Therefore, the score enhances the online learning process.

After the update of the scores, the actual mechanism starts. We decided to
implement a selection of a single operator per generation and a distribution of
the whole generation to all operators. The selection is described in Algorithm
2 and is named HHX-S. It uses the well-known Roulette Wheel algorithm, to
select the crossover depending on the current score.

The distribution is described in Algorithm 3 and is named HHX-D. In this
case, the score is used to calculate the portions of the generation each operator
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Algorithm 3. Hyper-Heuristic Crossover Distributor (HHX-D).
� e ∈ E : Set of Evolutionary Operators
� Xt: Set of Parent Individuals
� Yt−1: Set of Previous Individuals
� �st: current Score for each e

function HyperHeuristicDistribution(E , Xt, Yt−1, �st−1)
�st ← Scoring(Xt, Yt−1, �st−1)
�p ← �st

sum(�st)
� score distribution

for all e in E do
Xe,t ← Distribute(X , pe) � subsets of parent generation for each operator
Ye,t ← e.Crossover(Xe,t) � execute crossover operation with assigned

subset
Yt ← Yt

⋃ Ye,t � merge resulting subsets to offspring generation
end for
Yt−1 ← Yt

return [Yt, Yt−1, �st] � Save for next generation
end function

receives. The decision, which individual is used with which operator, is random.
The resulting child generation produced by each operator shall be the same size
as the part of the parent generation they receive.

We compare both variants by implementing them in NSGA-II and solving
20 benchmark problems in the next section.

4 Evaluation and Experiments

In the experiments, we use 20 different benchmark problems. We compare both
Hyper-Heuristics with NSGA-II [5] and different single Crossover operators. In
prior experiments, we found out that the UX works best on most problems.
Therefore, we use this and the classic version with SBX [6] for the analysis. We
record their quality regarding the IGD [3] metric and additionally the selecting
behaviour of the Hyper-Heuristics to evaluate their learning behaviour.

We selected DTLZ1-7 [7], RM1-4 [18], which are derived from ZDT1, ZDT2,
ZDT6 [25] and DTLZ2, and WFG1-9 [13]. With these, we cover multiple variants
of non-separability, modality and rotation on two and three objectives. We mul-
tiplied the number of decision variables by four to increase the complexity and
emphasize the performance differences. We use the PlatEMO Framework [22].
It contains all the basic and many additional algorithms, benchmark problems
and quality metrics.

During the evaluation, we aim to investigate the influence of the selection
mechanism. We start with a comparison of the resulting IGD values, regard the
over time development on example problems, and compare those afterwards to
the selecting behaviour of both Hyper-Heuristics. We can figure out the advan-
tages and disadvantages of each selection mechanism by analysing this behaviour.
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Table 1. Inverted Generational Distance (IGD) of NSGA-II with HHX-D, HHX-S, UX
and SBX as crossover operators on DTLZ, RM and WFG with increased number of
dimensions.

Problem M D HHX-D HHX-S UX SBX

DTLZ1 3 28 3.9246e+1
(1.63e+1) ≈

1.5025e+2
(5.10e+1) −

2.8021e+1
(6.82e+0) +

4.1689e+1
(1.11e+1)

DTLZ2 3 48 1.1532e-1
(2.88e-2) −

8.6645e-2
(1.30e-2) +

8.4655e-2
(6.87e-3) +

1.0340e-1
(1.02e-2)

DTLZ3 3 48 4.4071e+2
(1.30e+2) ≈

1.0507e+3
(2.74e+2) −

2.6012e+2
(4.50e+1) +

3.8932e+2
(9.09e+1)

DTLZ4 3 48 1.1410e-1
(3.69e-2) ≈

1.0429e-1
(2.38e-2) +

9.1171e-2
(4.66e-1) +

1.2286e-1
(4.34e-1)

DTLZ5 3 48 3.2488e-2
(1.31e-2) +

2.0807e-2
(8.70e-3) +

2.9694e-2
(9.06e-3) +

3.8987e-2
(1.16e-2)

DTLZ6 3 48 5.9681e-3
(8.12e-1) +

8.1625e+0
(6.39e+0) +

2.7700e+1
(9.95e-1) −

1.7075e+1
(2.07e+0)

DTLZ7 3 88 9.0483e-1
(2.08e-1) ≈

4.0269e+0
(2.02e+0) −

6.3786e-1
(6.39e-2) +

8.4442e-1
(1.85e-1)

RM1 2 120 1.8299e-1
(5.90e-3) +

1.7186e-1
(1.06e-2) +

3.1063e-1
(5.89e-2) ≈

3.2392e-1
(6.06e-2)

RM2 2 120 2.9097e-1
(1.14e-2) +

2.8671e-1
(1.04e-2) +

5.0495e-1
(2.20e-2) +

5.1121e-1
(1.62e-2)

RM3 2 40 2.1076e+0
(2.04e-1) +

2.6314e+0
(3.79e-1) ≈

2.1805e+0
(3.55e-1) +

2.6871e+0
(3.79e-1)

. . . . . . .

. . . . . . .

. . . . . .
.

Problem M D HHX-D HHX-S UX SBX

. . . . . . .

. . . . . . .

. . . . . . .

RM4 3 48 5.1534e-1
(1.25e-1) +

3.5003e-1
(1.86e-1) +

5.4186e-1
(6.55e-2) ≈

5.4905e-1
(7.04e-2)

WFG1 3 48 1.2133e+0
(7.62e-2) +

1.5220e+0
(1.16e-1) −

1.5766e+0
(7.86e-2) −

1.2488e+0
(7.84e-2)

WFG2 3 48 2.7290e-1
(2.63e-2) +

2.8346e-1
(3.32e-2) ≈

2.4771e-1
(1.92e-2) +

2.9229e-1
(3.70e-2)

WFG3 3 48 3.0443e-1
(4.89e-2) +

2.8848e-1
(4.36e-2) +

2.5306e-1
(3.79e-2) +

3.2445e-1
(2.96e-2)

WFG4 3 48 3.1999e-1
(1.39e-2) ≈

3.2444e-1
(2.87e-2) ≈

2.6542e-1
(1.47e-2) +

3.1997e-1
(1.29e-2)

WFG5 3 48 2.8813e-1
(2.31e-2) +

3.7140e-1
(5.33e-2) −

3.0396e-1
(1.24e-2) +

3.4070e-1
(2.12e-2)

WFG6 3 48 3.6689e-1
(3.18e-2) +

3.7144e-1
(4.38e-2) ≈

3.2196e-1
(2.16e-2) +

3.7961e-1
(2.32e-2)

WFG7 3 48 3.7327e-1
(3.30e-2) +

3.4578e-1
(2.15e-2) +

4.1445e-1
(9.14e-2) ≈

4.3422e-1
(8.50e-2)

WFG8 3 48 4.4796e-1
(2.35e-2) −

4.3219e-1
(2.30e-2) −

3.3915e-1
(1.88e-2) +

3.8080e-1
(1.28e-2)

WFG9 3 48 3.1753e-1
(2.92e-2) +

3.0920e-1
(2.56e-2) +

3.8706e-1
(4.16e-2) ≈

4.0673e-1
(3.55e-2)

+/ − / ≈ 13/2/5 10/6/4 14/2/4

4.1 IGD Results of NSGA-II Using HHX-D, HHX-S, UX and SBX

In Table 1 our Hyper-Heuristics, HHX-S and HHX-D, implemented in NSGA-
II are compared to NSGA-II with SBX and UX. We decided to use the rank
sum test and highlight all algorithms that are considered as the best performing
algorithms per benchmark. The data depicted in the cells are the median results
of the IGD measurement over 31 runs. Furthermore, the rank sum test is used
in a one-to-all comparison, which in our case compares the original NSGA-II to
the other algorithms. The results are symbolized with markers to show, whether
the algorithm performed significantly better than the original NSGA-II (+),
significantly worse (−) or approximately equal (≈).

The data in Table 1 shows that the original NSGA-II is always dominated by
at least one other algorithm. Prior experiments already showed that the NSGA-
II with UX outperforms most other variations on most problems. A problem
feature that is hard to handle for the UX is the rotation, thus, problems RM1-4.
As RM3 is also multi-modal, most rotation invariant crossover operators still
have difficulties on this problem, and UX performs similarly well due to its
advantages on problems of this kind. Both variations with Hyper-Heuristics can
compete with UX, but often lose in a direct comparison. Nevertheless, they
outperform the original NSGA-II on most problems. On rotated problems, they
also outperform the UX which is a hint, that they picked rotational invariant
operators in those cases.

Assuming that the UX operator is the best performing operator in the pool,
online learners would need to test all operators to learn this. Thus, extra effort
is necessary, which we call Learning Offset. Due to that offset, it is very difficult
to outperform the best operator in pool with our Hyper-Heuristics. In a set-
ting, where the problem and its features are unknown, the user would also not
know which crossover operator works best. Therefore, they would benefit from
using the Hyper-Heuristic, that performs above the average. In Fig. 2 the IGD
measurements of different variations of NSGA-II on two problems with different
properties are visualized. On RM2 it is clear, that the UX and the SBX cannot
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Fig. 2. IGD trends of the median runs of NSGA-II with single crossover operators and
HHX-S and HHX-D on RM1 on the left and WFG8 on the right.

Fig. 3. Cumulative number of products of Crossover Operators selected by HHX-D on
the left and HHX-S on the right on WFG5

achieve good results, whereas the rotational invariant operators perform simi-
larly well. In this case, both Hyper-Heuristic had many suitable options to pick
in the pool and thus the learning offset is minimal, and both algorithm outper-
form the other variations. On WFG5, most operators had difficulties producing
sufficient offspring. In this case, it is not only hard to select a good operator, but
also to learn this fast. The learning offset is therefore a lot bigger, especially for
HHX-S as the learning is intrinsically slower than the learning of the HHX-D.
This is also clear in the graph, as the HHX-S cannot achieve a sufficient result
quality. HHX-D, on the other hand, outperformed the best operators on this
problem.

4.2 Selection Behaviour of HHX-D and HHX-S

The question arises, how a selection of different operators can outperform the
best operator within the selection pool. To answer this, we evaluate the behaviour
of the Hyper-Heuristics. In Fig. 3 this behaviour is visualized by giving the cumu-
lative number of products of the different crossover operators on WFG5. A differ-
ence in the selection is visible from the beginning on. Regarding the qualities of
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the single usages of the crossover operators in Fig. 2, it would be assumed that
both Hyper-Heuristics would select primarily the LX and later DEX or UX.
The HHX-D firstly prioritize the DEX, which changes to the LX after about 60
generations. Additionally, UX and SBX receive a big portion of the population
in each generation. HHX-S on the other hand selects mostly the CMAX and
changes to LX after about 50 generations. From those impressions, we assume
that there is not the one best operator for a problem, but for the current state
of the population. For example, if it is far or close to the Pareto Front. Thus,
a combination of different operators could lead to a better performance than
using a single one. This answers the question, how Hyper-Heuristics could out-
perform the best operator in their selection pool. Another problem with the
current Hyper-Heuristic arises, on the other hand, which we call the Learning
Bias. Especially the HHX-S could suffer from this, when it scores one opera-
tor too soon too high so that a correction or a change in preference would be
too slow. HHX-D can adapt faster to a new situation, but the higher the score
differences, the slower the learning process.

5 Advanced Selection Mechanisms: Evolving
and Alternating

From the learnings of the first approach to Online Learning Hyper-Heuristics,
new obstacles were defined: Leaning Offset and Learning Bias. We modify our
Hyper-Heuristics and eliminate those obstacles, to improve the algorithms fur-
ther. The learning offset is a big problem for the Hyper-Heuristic Selection,
because of its bad explorative behaviour. Nevertheless, it performs very well on
problems, where it can decide early on a good operator. Thus, the goal for a new
Hyper-Heuristic would be, to have an improved exploration phase while keeping
the exploiting of HHX-S. The first new Hyper-Heuristic uses an evolving app-
roach and is therefore called HHX-E. It starts using the HHX-D to use its good
exploration, then evolves to HHX-S to use a better exploitation and finally fully
exploits the current best crossover operator. Assuming we know the number of
the maximal function evaluations due to limited resources of the users, we can
set the intervals in relation to this. With the results from previous tests, we
decide to set the distribution portion to the first half and only use the last tenth
for the exploitation of the current best crossover operator.

This approach might improve the Learning Offset, assuming the latest learn-
ing, that there is no best operator for a whole problem, but the best combination,
the Learning Bias would not be defeated with this procedure. To fight this, a
fourth approach on Hyper-Heuristic Online Learner is introduced. It uses HHX-
D and HHX-S alternately and resets the score after each iteration. Again, we
use the maximum number of function evaluations, to set the durations of each
iteration. With the results from previous tests, we decide to use 10 iterations,
with 70% using distribution and 30% using selection.
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Table 2. Inverted Generational Distance (IGD) of NSGA-II with HHX-D, HHX-S, UX
and SBX as crossover operators on DTLZ, RM and WFG with increased number of
dimensions.

Problem M D HHX-A HHX-E HHX-D UX

DTLZ1 3 28 4.2961e+1
(2.14e+1) −

3.9691e+1
(1.56e+1) −

3.5948e+1
(1.51e+1) −

2.4737e+1
(9.57e+0)

DTLZ2 3 48 9.8555e-2
(1.48e-2) −

1.1057e-1
(2.39e-2) −

1.0440e-1
(1.81e-2) −

8.6873e-2
(6.46e-3)

DTLZ3 3 48 3.9664e+2
(1.93e+2) −

4.5935e+2
(1.11e+2) −

4.3394e+2
(1.50e+2) −

2.2892e+2
(5.21e+1)

DTLZ4 3 48 9.6731e-2
(1.34e-2) +

9.8610e-2
(2.27e-2) ≈

1.0498e-1
(2.98e-2) ≈

5.4353e-1
(4.58e-1)

DTLZ5 3 48 2.3905e-2
(7.92e-3) +

2.9282e-2
(1.04e-2) ≈

3.1162e-2
(7.59e-3) ≈

2.8337e-2
(1.18e-2)

DTLZ6 3 48 6.4028e-3
(9.52e-1) +

8.2228e-3
(9.82e-3) +

5.8280e-3
(9.30e-1) +

2.7478e+1
(8.34e-1)

DTLZ7 3 88 1.1940e+0
(2.33e-1) −

9.5052e-1
(3.62e-1) −

8.9030e-1
(2.75e-1) −

6.5082e-1
(1.09e-1)

RM1 2 120 1.7607e-1
(6.94e-3) +

1.8320e-1
(8.93e-3) +

1.8590e-1
(5.37e-3) +

2.9808e-1
(3.69e-2)

RM2 2 120 2.8288e-1
(7.22e-3) +

2.9107e-1
(6.81e-3) +

2.8974e-1
(1.12e-2) +

5.1133e-1
(1.80e-2)

RM3 2 40 2.1576e+0
(2.35e-1) ≈

2.2505e+0
(2.64e-1) ≈

2.2197e+0
(3.27e-1) ≈

2.1443e+0
(5.21e-1)

. . . . . . .

. . . . . . .

. . . . . . .

Problem M D HHX-A HHX-E HHX-D UX

. . . . . . .

. . . . . . .

. . . . . . .

RM4 3 48 5.2202e-1
(9.81e-2) ≈

5.5466e-1
(1.20e-1) ≈

5.5549e-1
(7.95e-2) ≈

5.2676e-1
(5.38e-2)

WFG1 3 48 1.2513e+0
(9.47e-2) +

1.2236e+0
(1.46e-1) +

1.2408e+0
(6.78e-2) +

1.5849e+0
(7.04e-2)

WFG2 3 48 2.7654e-1
(2.15e-2) −

2.8238e-1
(2.05e-2) −

2.8108e-1
(2.64e-2) −

2.4958e-1
(2.75e-2)

WFG3 3 48 3.1925e-1
(2.43e-2) −

3.1558e-1
(4.59e-2) −

3.1363e-1
(3.88e-2) −

2.5565e-1
(3.47e-2)

WFG4 3 48 3.1918e-1
(1.43e-2) −

3.2702e-1
(2.10e-2) −

3.1987e-1
(1.96e-2) −

2.6904e-1
(1.62e-2)

WFG5 3 48 2.8768e-1
(1.86e-2) +

2.8894e-1
(3.00e-2) +

2.9196e-1
(1.71e-2) +

3.0737e-1
(7.77e-3)

WFG6 3 48 3.4394e-1
(3.49e-2) −

3.6968e-1
(4.57e-2) −

3.7308e-1
(2.73e-2) −

3.1948e-1
(1.81e-2)

WFG7 3 48 3.5342e-1
(3.56e-2) +

3.7009e-1
(3.68e-2) +

3.6724e-1
(4.73e-2) +

4.0745e-1
(9.64e-2)

WFG8 3 48 4.4250e-1
(1.22e-2) −

4.5588e-1
(1.79e-2) −

4.4599e-1
(1.87e-2) −

3.3756e-1
(1.72e-2)

WFG9 3 48 3.1322e-1
(1.72e-2) +

3.2711e-1
(2.96e-2) +

3.1805e-1
(2.56e-2) +

3.8912e-1
(3.97e-2)

+/ − / ≈ 9/9/2 7/9/4 7/9/4

6 Comparison of All Presented Algorithms

To examine the improvements of the named obstacles, we again use pairwise
comparisons of IGD results on different benchmark problems. This time, we
compare HHX-A, HHX-E, HHX-D and UX. We exclude HHX-S as it is mostly
outperformed by HHX-D, and we still have the comparison to UX, to determine
whether the new Hyper-Heuristics can compete with it on its best problems.

The results are shown in Table 2. HHX-A-NSGA-II performed better on nine
different problems and worse on nine different problems than UX-NSGA-II. In
comparison with HHX-D-NSGA-II, an improvement is noticeable on DTLZ3
and DTLZ4 and also on RM1 and RM2, where HHX-A-NSGA-II was the best
performing algorithm between those four. HHX-E-NSGA-II, on the other hand,
only differs a little from HHX-D-NSGA-II so that we can say it performs nearly
equally well. To sum this up, HHX-A-NSGA-II is the best performing variant
of all four Hyper-Heuristics. According to the IGD results, HHX-A performs
nearly equally good to the UX operator. UX also has weaknesses on different
problems, on which HHX-A finds the better option. To give an outlook and the
possibilities of Hyper-Heuristics, we also examine the learning behaviour of all
four Hyper-Heuristics. In Fig. 4 an exemplary development of the distribution of
the scores on WFG5 are visualized.

According to the graphs given in Fig. 2 the use of DEX, LX, and UX led to the
best results. It is remarkable, that HHX-D reaches a fixed distribution within the
first third. HHX-S, on the other hand, changes its score distribution dramatically
after about 40 generations. It weighted the LCX3 and the RSBX more than the
UX operator on that point, although both did not perform well in the single
usages. The development of the scores of HHX-E is similar to HHX-D. The most
considerable changes happen in the first third. After the 50th generation, the
selection mechanism changes to selection and the score behaves similar to HHX-
S. Since the distribution mechanism weighted the SBX operator highly and the
selection mechanism is very sensitive to biases, the SBX operator is still the
most rewarded operator in the 90th generation and is solely selected for the last
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Fig. 4. Distribution of the Scores for each Crossover Operator during solving of WFG5
with NSGA-II using Hyper-Heuristics.

evolution of HHX-E. The HHX-A resets the scores in every 10th generation.
Different phases of the problem are here more visible than in the other graphs.
In the first iteration, DEX, LX and SBX achieve the highest rewards. In the
second iteration the focus lies more on LX, UX and CMAX. In the following
iterations, the tendency in choosing UX with some spikes on SBX and LXC3 is
recognizable. This matches the trends illustrated in Fig. 2.

Considering the IGD measurements, HHX-A, HHX-D and HHX-E all per-
formed similar well on WFG5. All of them have a distribution trend that matches
the IGD trend in Fig. 2. Considering their functionality, HHX-E embraces the
learning bias, which is an advantage on this problem because most operators
perform well on it. It also resolves the problem with the learning offset, as it
finds a good distribution as soon as HHX-D. HHX-A fulfils the expectations,
that there is no bias, as it chooses in each phase the best option. The learning
offset is also minimized, as the HHX-D gathers the necessary information very
fast. Regarding, that there are still problems, where HHX-A does not perform as
well as expected, the iterations might be too small. On some problems, the dis-
tribution might need more time gathering the information, so a better balancing
of iterations and their lengths in this approach could still improve the perfor-
mance. Nevertheless, HHX-A-NSGA-II offers a very well performing algorithm,
that could be used on a variety of problems without knowing their properties.

7 Conclusion

In this paper, we proposed four different forms of Hyper-Heuristics as selectors
of crossover operators in NSGA-II. We use two different selection mechanisms:
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the selection of one operator per generation and the distribution of the gener-
ation to all operators. With the first, we build the HHX-S algorithm and with
the latter, we build the HHX-D algorithm. In a first experimental evaluation,
we concluded, that the distribution has a well explorative behaviour and the
selection has a well exploiting behaviour. We named two different problems:
The Learning Bias and the Learning Offset, which could both be minimized by
using a combination of both algorithm. Therefore, we used an evolving approach
with three stages (distribution, selection, exploitation) named HHX-E and an
alternating approach with resets of the score in every 10th generation, named
HHX-A. In a second experimental evaluation, we concluded that HHX-A is the
most successful algorithm out of the presented four. It has a fast learning due
to the distribution part, but it is not biased in different phases, so that new
obstacles are faced without information that are not applicable any more.

We consider HHX-A as a successful Hyper-Heuristic, as it selects well per-
forming crossover operators in every situation. As the learning offset is not
resolved, it is still a difficulty to outperform the best crossover operator in the
pool. Nevertheless, this method prevents the user from deciding about the opera-
tor by themselves and makes it easier to work with problems without any known
properties.

Our future work is to look more into the other parts of the Hyper-Heuristic.
The crossover operators in the pool could be further examined to select a better
variety with fewer operators. The smaller the number of operators, the faster
the Hyper-Heuristic can learn. Thus, it could be another method to minimize
the learning offset.
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Abstract. Surrogate-assisted optimization algorithms are a commonly
used technique to solve expensive-evaluation problems, in which a regres-
sion model is built to replace an expensive function. In some acquisition
functions, the only requirement for a regression model is the predictions.
However, some other acquisition functions also require a regression model
to estimate the “uncertainty” of the prediction, instead of merely provid-
ing predictions. Unfortunately, very few statistical modeling techniques
can achieve this, such as Kriging/Gaussian processes, and recently pro-
posed genetic programming-based (GP-based) symbolic regression with
Kriging (GP2). Another method is to use a bootstrapping technique
in GP-based symbolic regression to estimate prediction and its corre-
sponding uncertainty. This paper proposes to use GP-based symbolic
regression and its variants to solve multi-objective optimization prob-
lems (MOPs), which are under the framework of a surrogate-assisted
multi-objective optimization algorithm (SMOA). Kriging and random
forest are also compared with GP-based symbolic regression and GP2.
Experiment results demonstrate that the surrogate models using the GP2
strategy can improve SMOA’s performance.

Keywords: Multi-objective optimization · Genetic programming ·
Symbolic regression · Surrogate model

1 Introduction

A common remedy to expensive optimization problems is to replace exact eval-
uations with approximations learned from past evaluations. Theoretically, any
supervised learning techniques can be used for building up surrogate models, for
instance, Gaussian processes or Kriging [16], random forest [7], supported vector
machine [4], genetic programming based (GP-based) symbolic regression [9], to
name a few. Among these techniques, the Kriging/Gaussian process is appealing
both in academic studies and in applications due to its estimation of both pre-
diction and the corresponding uncertainty as outputs. The utilization of these
c© The Author(s), 2023
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two outputs allows a balancing property of exploitation and exploration in an
acquisition function (a.k.a infill criteria in some papers) during the optimization
processes.

Compared with the black-box modeling technique of Kriging, the
transparent-box modeling technique has been a hot topic recently due to its
ability to interpret the relationship between inputs and predictions. Among
many techniques of transparent-box modeling, GP-based symbolic regression
(SR) attracts many researchers’ attention, as it searches the space of all possible
mathematical formulas for concise or closed-form mathematical expressions that
best fit a dataset [1]. To quantify prediction uncertainty in GP-based symbolic
regression, a simple technique is to utilize bootstrapping, which is widely used in
the machine learning field. Bootstrapping is usually used in ensemble methods
to reduce the bias of a (simple) predictor by using several predictors on different
samples of a dataset and averaging their predictions. The set of predictions from
each predictor can be used to estimate the properties of a predictor (such as
prediction mean and its variance) by measuring those properties when sampling
from an approximating distribution. For example, this technique is incorporated
into a random forest (RF) in Sequential Model-Based Algorithm Configuration
(SMAC) [12], where the variance is calculated using the predictions of the trees
of the random forest. Following the same idea, the prediction variance of GP-
based symbolic regression can also be estimated by the method of bootstrapping.
Such similar works can be found in [2,8,10]. Another technique to quantify the
uncertainty of the prediction’s residual is achieved in [19], in which a so-called
GP-based symbolic regression with Kriging (GP2) was proposed by summing a
GP-based symbolic expression and one additional residual term to regulate the
predictions of the symbolic expression, where the residual term follows a normal
distribution and is estimated by Kriging.

The techniques mentioned above allow GP-based symbolic regression to
employ acquisition functions that balance exploration and exploitation dur-
ing the optimization process. Under the framework of surrogate-assisted multi-
objective optimization algorithm (SMOA), this paper utilizes the most recently
modeling technique GP2 [19] and GP-based symbolic regression incorporated
with a bootstrapping technique as the surrogate models to solve multi-objective
optimization problems (MOPs). These modeling techniques are compared with
two state-of-the-art modeling techniques, Kriging, and random forest.

The main contribution of this paper is extending the surrogate models that
allow an acquisition function’s ability to balance exploration and exploitation
in the field of SMOA. This paper is structured as follows: Sect. 2 describes
the preliminaries of multi-objective optimization problems, and introduces the
framework of surrogate-assisted multi-objective optimization algorithm; Sect. 3
explains three different techniques for surrogate models; Sect. 4 introduces the
definition of upper confidence bound (UCB) [6,17] and its relating concepts;
Sect. 5 shows the parameter settings and discusses the experiment results.
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2 Surrogate-Assisted Multi-objective Optimization

This section introduces the preliminaries of the SMOA, including the MOP’s
definition in Sect. 2.1, and the framework of SMOA in Sect. 2.2.

2.1 Multi-objective Optimization Problem

A continuous MOP1 is defined as minimizing multiple objective functions simul-
taneously and can be formulated as:

arg min
x

f(x) :=
(
f1(x), · · · , fm(x)

)
, x ∈ X ⊆ R

d (1)

where m is the number of objective functions, fi stands for the i-th objective
functions fi : X → R, i = 1, . . . ,m, and X is a decision vector subset.

2.2 Framework of Surrogate-Assisted Multi-objective Optimization

The fundamental concept of SMOA is to firstly build a surrogate model M to
reflect the relationship between a decision vector x = (x1, · · · , xd) and its each
corresponding objective value yi = fi(x), i ∈ {1, · · · ,m} for each objective. In
SMOA, it is usually assumed that objective functions are mutually independent
in an objective space2.

SMOA starts with sampling an initial design of experiment (DoE) with
a size of η (line 2 in Algorithm 1), X = {x(1),x(2), . . . ,x(η)} ⊆ X .
By using the initial DoE, X and its corresponding objective values, Y =
{f(x(1)), f(x(2)), · · · , f(x(η))} ⊆ R

m×η (line 3 in Algorithm 1), can be then uti-
lized to construct surrogate models Mi. Then, an SMOA starts with searching
for a decision vector set x′ in the search space X by maximizing the acquisition
function A with parameters of γ and surrogate models M (line 7 in Algorithm
1). Here, an acquisition function quantifies how good or bad a point x is in objec-
tive space. In this paper, A is the upper confidence bound (described in Sec.
4) due to its ability to balance exploration and exploitation, low computational
complexity, and popularity in the deep learning fields.

By maximizing the acquisition function, a single-objective optimization algo-
rithm is deployed to search for the optimal decision vector x∗. In this paper, we
use BI-population CMA-ES to search for the optimal x∗ due to the favorable
performance on BBOB function testbed [11]. The optimal decision vector x∗ will
then be evaluated by the ‘true’ objective functions f . The surrogate models M
will be retrained by using the updated X and Y. The main loop (as shown in
Algorithm 1 from line 6 to line 12) will not stop until a stopping criterion is
satisfied. Common stopping criteria include a number of iterations, convergence
velocity, etc. In this paper, we specify the stopping criterion (Tc) as a number
of function evaluations.
1 Constraints are not considered in this paper.
2 Recently, some work has considered the dependency in constructing the surrogate

models, such as the so-called dependent Gaussian processes [3]. This paper does not
consider a dependency between objectives for simplicity.
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Algorithm 1: Surrogate-assisted Multi-objective Optimization Algorithm
1 SMOA(f ,A ,X ,M, γ, η, Tc)
/* f: objective functions, A : acquisition function, X:

search space, γ: parameters of A , M: a surrogate model
to train, Tc: maximum number of function evaluation */

2 Generate the initial DoE: X = {x(1),x(2), . . . ,x(η)} ⊂ X ;
3 Evaluate Y ←

{
f(x(1)), f(x(2)), . . . , f(x(η))

}
;

4 Train surrogate models Mi on (X,Yi), where i ∈ {1, · · · ,m};
5 g ← η;
6 while g < Tc do
7 x∗ ← arg max

x
A (x;M, γ), where M = {M1, · · · ,Mm} and x ∈ X ;

8 Y∗ ← f(x∗);
9 X ← X ∪ {x∗};

10 Y ← Y ∪ {Y∗};
11 Re-train the surrogate models Mi on (X,Yi), where i ∈ {1, · · · ,m};
12 g ← g + 1

3 Surrogate Models

This section introduces a common surrogate model, Kriging in Sect. 3.1; a
canonical GP-based symbolic regression in Sect. 3.2; and the GP-based sym-
bolic regression with Kriging (GP2) in Sect. 3.3. Additionally, the method of
quantifying prediction uncertainty is introduced in each subsection.

3.1 Kriging

Kriging is a statistical interpolation method and has been proven to be a pop-
ular surrogate model to approximate noise-free data in computer experiments.
Considering a realization of y at n locations, expressed as the following vector
f(X) = (f(x(1)) · · · , f(x(n))) and X = {x(1), · · · ,x(n)} ⊆ X , Kriging assumes
f(X) to be a realization of a random process f of the following form [5,13]:

f(x) = μ(x) + ε(x), (2)

where μ(x) is the estimated mean value and ε(x) is a realization of a Gaussian
process with zero mean and variance σ2.

The regression part μ(x) approximates the function f(.) globally. The Gaus-
sian process ε(x) takes local variations into account and estimates the uncer-
tainty quantification. The correlation between the deviations at two decision
vectors (x and x′) is defined as:

Corr[ε(x), ε(x′)] = R(x,x′) =
m∏

i=1

Ri(xi, x
′
i),
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where R(., .) is the correlation function that decreases with the distance between
two points (x and x′).

It is common practice to use a Gaussian correlation function (a.k.a., a squared
exponential kernel):

R(x,x′) =
m∏

i=1

exp(−θi(xi − x′
i)

2),

where θi ≥ 0 are parameters of the correlation model to reflect the variables’
importance [21]. The covariance matrix can then be expressed through the cor-
relation function: Cov(ε(x)) = σ2Σ, where Σi,j = R(xi,xj).

When μ(x) is assumed to be an unknown constant, the unbiased prediction is
called ordinary Kriging (OK). In OK, the Kriging model determines the hyper-
parameters θ = (θ1, θ2, · · · , θn) by maximizing the likelihood over the observed
dataset. The expression of the likelihood function is: L = −n

2 ln(σ2) − 1
2 ln(|Σ|).

Uncertainty Quantification: The maximum likelihood estimations of the
mean μ̂ and the variance σ̂2 can be expressed by: μ̂ = 1�

n Σ−1y
1�
n Σ−11n

and σ̂2 =
1
n (y − 1nμ̂)�Σ−1(y − 1nμ̂). Then the prediction of the mean and the variance
of an OK’s prediction at a target point xt can be derived as follows [13,20]:

μok(xt) =μ̂ + c�Σ−1(y − μ̂1n), (3)

σ2
ok(xt) = σ̂2[1 − c�Σ−1c +

1 − c�Σ�c
1�

n Σ−11n
], (4)

where c = (Corr(y(xt), y(x1)), · · · , Corr(y(xt), y(xn)))�.

3.2 Genetic Programming Based Symbolic Regression

Genetic programming (GP) [15] is a typical evolutionary algorithm to solve
optimization problems that can be formulated as: arg min

x
f(x),x ∈ X , where

x = (x1, · · · , xn) represents a decision vector (also known as individual) in evo-
lutionary algorithms (EAs). Similar to other EAs, GP evolves a population of
solution candidates Pop(.) by following the principle of the survival of the fittest
and utilizing biologically-inspired operators. Algorithm 2 is the pseudocode of
GP, where Variation operator includes crossover/recombination and mutation
operators.

The feature that distinguishes GP from other evolutionary algorithms is
the variable-length representation for x. The search space of GP-based sym-
bolic regression problems is a union of a function space F and a terminal space
T = {S ∪ R}, where S represents a variable symbol space (e.g., x1) and c ∈ R

represents a constant number. The function set F includes available symbolic
functions (e.g., {+,−,×,÷, exp, log}).

To distinguish the objective function and decision variables in MOPs, fsr(·)
and t are used to represent the objective function in GP-based symbolic regres-
sion and a GP individual for symbolic regression problems, respectively. The
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Algorithm 2: Pseudocode of canonical genetic programming
Input: objective function f(.), population size npop, crossover rate pc,

mutation rate pm, maximum number of generation maxg ;
Output: optimal solution x∗

1 g ←− 0;
2 Pop(g) ←− InitializePopulation (npop) ;
3 Evaluate(Pop(g), f);
4 while termination criterion is not satisfied do
5 Pop′(g) ←− MatingSelection(Pop(g)) ;
6 Pop′′(g) ←− Variation(Pop′(g), pc, pm) ;
7 Evaluate(Pop′′(g), f) ;
8 Pop(g + 1) ←− EnviornmentalSelection(Pop′′(g) ∪ Pop(g)) ;
9 g ←− g + 1;

10 x∗ ←− argmin f(x) where x ∈ Pop(g);

objective function fsr(·) can be any performance metrics for supervised learning
problems. For instance, mean squared error (MSE), the Pearson correlation coef-
ficient (PCC), Coefficient of determination (R2), etc. In this paper, MSE, PCC,
and R2 are used as the objective functions in GP-based symbolic regression, and
they are defined as:

MSE = 1
n

∑n
i=1(yi − ŷi)2, PCC =

∑n
i=1(yi−ȳ)(ŷi−¯̂y)√∑n

i=1(yi−ȳ)2
√∑n

i=1(ŷi−¯̂y)2
, R2 = 1 −

∑n
i=1(yi−ŷi)

2
∑n

i=1(yi−ȳ)2 ,
where n is the number of samples, yi and ŷi represent the real response and
predicted response of the i-th sample, ȳ = 1

n

∑n
i=1 yi, and ¯̂y = 1

n

∑n
i=1 ŷi.

Therefore, a GP-based symbolic regression problem in this paper can be well
formulated as:

arg max
t

fsr(t), ti ∈ {F ∪ T }|i=1,2,··· if fsr ∈ {PCC,R2} or

arg min
t

fsr(t), ti ∈ {F ∪ T }|i=1,2,··· if fsr = MSE.

Uncertainty Quantification: Similar to other bootstrapping techniques, each
individual in the population of the GP-based symbolic regression is trained on a
list of bootstrap samples. The variance error is estimated according to the error
on the bootstrap samples. In this paper, the detailed procedure of bootstrapping
for GP-based symbolic regression is as follows:

1. Resampling nb ≤ n samples (to form a new dataset D′) from original training
dataset D of n samples;

2. Train the GP-based symbolic regression model (t) based on dataset D′;
3. Repeat (1) to (2) for npop times;
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4. The bagging prediction and variance at a query vector xt are then computed
by the mean and variance over all npop predictions:

μsr(xt) =
1

npop

npop∑

i=1

ti(xt) (5)

σ2
sr(x

t) =
1

npop

npop∑

i=1

(
ti(xt) − μsr(xt)

)2 (6)

3.3 GP-Based Symbolic Regression with Kriging

GP-based symbolic regression with Kriging (GP2) integrates GP-based symbolic
regression and Kriging by summing a best-fitted expression (symreg(x)) on a
training dataset and a residual term. The prediction of GP2 can be expressed
as:

GP2
symreg(x) = symreg(x) + res(x), (7)

where res(x) is the residual-regulating term that follows a normal distribution
and is obtained by Kriging.

The pseudocode of the GP2 is shown in Algorithm 3. The algorithm starts
from generating the training dataset D by computing the real responses Y of
the decision set X. The best-fitted symbolic expression symreg(x) on dataset
D is generated by GP-based symbolic regression (at line 4 in Algorithm 3).
The residuals of the best-fitted symbolic expression symreg(x) on X can be
computed by Y − Ŷ. Xgp (line 6 in Algorithm 3) represents the variables that
affect the residuals of symreg(x). The most intuitive way is to set Xgp as X. In
addition, it is also reasonable to set Xgp as Ŷ and {X∪ Ŷ}, due to the fact that
residual of symreg(x) highly depends on the the prediction Ŷ. Then, Kriging
models the relationship between the Xgp and the residuals of symreg(x) in the
dataset D (at line 7 in Algorithm 3). The residual of symreg(x), noted as res(x),
also depends on X, as Xgp depends on X. The final surrogate model built by
the GP2, noted as GP2

symreg(x), is the sum of symreg(x) and its corresponding
residual distribution res(x).

Uncertainty Quantification: The prediction of the symbolic expression of
GP2 is a sum of symbolic expression and residual term that follows a normal
distribution. The prediction and variance at a query vector xt by using the GP2
strategy are:

μGP2(xt) = symreg(xt) + μok(xt), (8)

σ2
GP2(x

t) = s2sr(x
t) + σ2

ok(xt), (9)

where s2sr(x
t) is the variance of the symbolic regression expression symreg(x)

at xt.
In this paper, we argued s2sr(x) = 0 due to the fact that symreg(x) is an

explicit mathematical expression and there is no variance to symreg(x) at an
arbitrary point x. Therefore, Eq. (9) can be simplified as σ2

GP2(x
t) = σ2

ok(xt).
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Algorithm 3: GP2-based symbolic regression
Input: test problem y(.), objective function f(.), function set F , terminal space

T ;
Output: GP 2

symreg

1 X ←− {x(1), · · · ,x(n)};
2 Y ←− {y(x(1)), · · · , y(x(n))};
3 D ←− {X,Y} ;
4 symreg(x) ←− argmax

t
fsr(t;D) or argmin

t
fsr(t;D);

5 Ŷ ←− {symreg(x(1)), · · · , symreg(x(n))} ;
6 Xgp ←− Choosing(X, Ŷ) ;
7 res(x) ←− Kriging({Xgp,Y − Ŷ}) ;
8 GP2

symreg(x) ←− symreg(x) + res(x) ;

4 Acquisition Functions

The Hypervolume Indicator (HV), introduced in [22], is an essentially unary indi-
cator for evaluating the quality of a Pareto-front approximation set in MOPs due
to its Pareto compliant property3 and no requirement of in-advance knowledge
of the Pareto front. The maximization of HV leads to a high-qualified and diverse
Pareto-front approximation set. The Hypervolume Indicator is defined as follows:

HV(PF , r) := λm(∪y∈PF [y, r]), (10)

where λm is the Lebesgue measure and the reference point r clips the space to
ensure a finite volume.

The Hypervolume improvement (HVI) measures the improvement of a new
solution in terms of HV and is defined as:

HVI(y;PF , r) := HV(PF ∪ {y}; r) − HV(PF ; r)

The Upper confidence bound of the HVI (UCB) [6,17] is an indicator based
on the HVI and prediction uncertainty in a naïve way. Denoting μ(x) =
(μ1(x), . . . , μm(x)) as the prediction and σ(x) = (σ1(x), . . . , σm(x)) as the
uncertainty of m independent surrogate models, the hypervolume improvement
of upper confidence bound of a solution at x, i.e., μ(x)−ωσ(x), ω ∈ R≥0 specifies
the confidence level:

UCB(x;PF , r, ω) := HVI(μ(x) − ωσ(x);PF , r). (11)

The parameter ω controls the balancing weight between exploration and
exploitation, and a positive ω rewards the high prediction uncertainty.

Example 1. Two examples of the landscape of HVI and UCB are shown in Fig. 1.
The Pareto-front approximation set is denoted as PF = {y(1) = (1, 3), y(2) =
3 ∀A, B ⊆ R

m : HV(A, r) > HV(B, r) =⇒ A ≺ B.
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(2, 2),y(3) = (3, 1)}, the reference point is r = (4, 4), and the same uncertainty
(σ = (1, 1)) is used for every point in the objective space, and ω is set as 1
for the UCB. The left and right figures show the landscape of HVI and UCB,
respectively, in the objective space that ranges from −1 to 5 for both f1 and f2.

Fig. 1. Landscape of HVI and UCB.

5 Experiments

In this paper, the algorithms are performed on ZDT series problems [23] with
the parameters of d = 5, m = 2, and a fixed reference point r = [15, 15]. In this
paper, four categories of surrogate models are compared, including Kriging (in
Alg. I), five different GP2 variants by using different configurations (in Alg. II
− VI), random forest (in Alg. VII), and GP-based symbolic regression (in Alg.
VIII and IX). Each experiment consists of 15 independent runs.

5.1 Parameter Settings

The common parameters in all algorithms include DoE size η = 30 and the
function evaluation budget Tc = 200. The stopping criteria of fsr is 0.1, 0.99,
0.99 for MSE, PCC, and R2 metrics, respectively. The function evaluation of
genetic programming in GP-based symbolic regression and GP2 is 4E3 [19] and
2E4 [18], respectively.

The parameter ω of UCB is set as
√

g/ log(g) [14], where g is the num-
ber of function evaluation. The function space F for symbolic regression is
{+,−,×,÷, sin, cos,pow}. The acquisition function is the UCB and is optimized
by CMA-ES in all algorithms. The hyper-parameters of CMA-ES follow: the
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number of restarts is 3, the number of initialized population size is 7, the maxi-
mum generation number is 2000, and the remaining parameters are set in default.

Table 1 shows other parameter settings in each algorithm, where npop repre-
sents the number of estimators in a random forest. The other parameters (e.g.,
pm, pc, etc.) are set as default values in GPLearn [18].

Table 1. Algorithm Parameter Configuration

Alg. I Alg. II Alg. III Alg. IV Alg. V Alg. VI Alg. VII Alg. VIII Alg. IX

M Kriging GP2 GP2 GP2 GP2 GP2 RF GP-based SR GP-based SR
npop n.a 400 400 400 400 400 100 100 100
Xgp n.a X X X {X ∪ Ŷ} Y − Ŷ n.a n.a n.a
fsr n.a MSE PCC R2 R2 PCC n.a MSE R2

5.2 Empirical Results

In this section, we evaluate the Pareto-front approximation sets by using the HV
indicator. Figure 2 shows the HV convergence curves of 15 independent runs on
ZDT problems. To depict a slight difference in HV values, we discuss the average
log(ΔHV ) convergence of HV relative to the reference HV value of 250 in this
paper. Notice that the scale varies in different problems since all problems have
different ranges of the Pareto fronts.

Fig. 2. Average log(ΔHV) convergence on ZDT1 – ZDT6. The shaded region represents
the variance.

From Fig. 2, it is clear to see that Alg. VII of using the random forest as
the surrogate model yields the worst experiment results w.r.t. mean HV and its
corresponding standard deviation. Compared with Alg. I and other algorithms,
the poor performance of Alg. VII is expected, because of the introduction of
Kriging in other algorithms (except for Alg. VIII and IX), of which prediction is
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more accurate than that of the random forest when the training dataset has few
samples. Compared with GP-based symbolic regression algorithms (Alg. VIII
and IX), which use ‘plain’ GP, Alg. VII still can not outperform them, due to
the efficient optimization mechanism in genetic programming.

On single-modal convex Pareto-front problem ZDT1, Fig. 2 shows that GP-
based symbolic regression algorithms (Alg. VIII and IX) are only slightly better
than random forest in Alg. VII, but are worse than the other algorithms of using
Kriging. The performances of the algorithms (Alg. I – VI) are similar w.r.t.
mean HV value over 15 runs. In addition, Alg. I, which merely uses Kriging
as the surrogate model, converges the fastest at the early stage of optimization
among all the test algorithms. Similarly, Alg. I also converges much faster than
most of the test algorithms on the other two single-modal concave Pareto-front
problems (ZDT2 and ZDT6). An explanation is the relatively simple landscape
of these three test problems.

On discontinued Pareto-front problem ZDT3 and a multi-modal Pareto-front
problem ZDT4, the algorithms’ performance differs greatly. Firstly, the conver-
gence of Alg. I is much slower than the other algorithms at the beginning stage
of optimization. Since a relatively large4 reference point is used in this paper,
the HVI introduced by extreme solutions is definitely much larger than that of
a knee point. Thus, we can conclude that the strategy of Kriging with UCB is
difficult to search for extreme solutions at the early stage of optimization. Con-
sequently, this will slow the convergence of Alg. I. Additionally, another intuitive
explanation is that the landscape of the UCB based on Kriging models on ZDT3
and ZDT4 is not smooth enough to allow the optimizer CMA-ES to jump out
of local optima. In other words, the UCB is hard to measure slight differences
around the local optima based on Kriging’s prediction because of the landscape’s
roughness.

Table 2. Algorithms ranking.

Alg. I Alg. II Alg. III Alg. IV Alg. V Alg. VI Alg. VII Alg. VIII Alg. IX

ZDT1 6 2 3 5 1 4 9 8 7

ZDT2 2 4 5 3 1 8 9 7 6

ZDT3 7 2 4 1 3 5 9 6 8

ZDT4 8 6 5 2 1 7 9 4 3

ZDT6 3 7 1 5 2 4 9 6 8

Sum Rank 26 21 18 16 8 28 45 31 32

All algorithms’ ranking (w.r.t. mean HV value over 15 runs) on each problem
is shown in Table 2. From this table, it is easy to conclude that Alg. V, which
utilizes GP2 method of Xgp = {X ∪ Ŷ} and fsr = R2, outperforms the other
algorithms, and Alg. IV (GP2 method of Xgp = {X} and fsr = R2) is the
second best algorithm. Since the search space of x of surrogate models in Alg.
IV is the same search space of the objective function f(x) of MOPs, Alg. IV
4 The ideal Pareto fronts on ZDT problems hold: max

(
f1(x)

) ≤ 1,max
(
f2(x)

) ≤ 1.
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is more reasonable to interpret the residual regulation term res(x) (in Eq. (7))
when it is compared with Alg. V. Additionally, there is no significant difference
between the performance of Alg. IV and Alg. V on the test problems, see Table 3
for details. Considering these two aspects, it is recommended to use Alg. IV when
the acquisition function is the UCB.

Table 3. The pairwise Wilcoxon’s Rank-Sum test (+/ ≈ /−) matrix at a 0.05 signif-
icance level was performed among all the test algorithms, where algorithms in all the
columns (except the first column) are pairwise compared with the algorithms in the
first column.

Alg. I Alg. II Alg. III Alg. IV Alg. V Alg. VI Alg. VII Alg. VIII Alg. IX

Alg. I 0/0/0 2/3/0 3/2/0 3/2/0 3/2/0 1/3/1 0/1/4 1/2/2 2/2/1
Alg. II 0/3/2 0/0/0 1/4/0 2/2/1 2/3/0 0/3/2 0/1/4 0/3/2 1/1/3
Alg. III 0/2/3 0/4/1 0/0/0 1/3/1 2/2/1 0/4/1 0/1/4 0/2/3 1/1/3
Alg. IV 0/2/3 1/2/2 1/3/1 0/0/0 0/5/0 0/3/2 0/0/5 0/4/1 0/3/2
Alg. V 0/2/3 0/3/2 1/2/2 0/5/0 0/0/0 0/1/4 0/0/5 0/1/4 0/2/3
Alg. VI 1/3/1 2/3/0 1/4/0 2/3/0 4/1/0 0/0/0 0/1/4 0/4/1 1/3/1
Alg. VII 4/1/0 4/1/0 4/1/0 5/0/0 5/0/0 4/1/0 0/0/0 4/1/0 5/0/0
Alg. VIII 2/2/1 2/3/0 3/2/0 1/4/0 4/1/0 1/4/0 0/1/4 0/0/0 1/3/1
Alg. IX 1/2/2 3/1/1 3/1/1 2/3/0 3/2/0 1/3/1 0/0/5 1/3/1 0/0/0
Sum of +/ ≈ /− 8/17/15 14/20/6 17/19/4 16/22/2 23/16/1 7/22/11 0/5/35 6/20/14 11/15/14

Table 3 shows the performance of pairwise Wilcoxon’s Rank-Sum test (+/ ≈
/−) matrix among all test algorithms on the test problems. The sum of
Wilcoxon’s Rank-Sum test (sum of +/ ≈ /−) confirms that Alg. V performs
best, as it significantly outperforms 23 pairwise instances between algorithms
and problems. Besides, compared with Algo. I, most of the GP2 methods (Alg.
II – Alg. V) perform at least similar to or significantly better than Alg. I.

6 Conclusion and Future Work

This paper utilizes two different techniques to quantify the prediction uncer-
tainty of GP-based symbolic regression, namely, a bootstrapping technique in
GP-based symbolic regression and using the Kriging to estimate the residual
uncertainty in GP2. Two surrogate modeling techniques, GP-based symbolic
regression, and GP2 of different configurations, are compared with Kriging and
random forest on five state-of-the-art MOP benchmarks. The statistical results
show the effectiveness of GP2 w.r.t. mean ΔHV convergence. Among five dif-
ferent variants of GP2, we recommend the usage of the GP2 by employing X
or {X ∪ Ŷ} to predict residuals by setting R2 as the fitness function in genetic
programming, because of their good statistical performance.

For future work, it is recommended to compare the performance of bootstrap-
ping and Jackknife to estimate the variance of GP-based symbolic regression. It
is also worthwhile to investigate the performance of the proposed methods on
real-world applications.
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Abstract. Evolutionary Multi-objective optimization (EMO) algo-
rithms attempt to find a well-converged and well-diversified set close
to true Pareto-optimal solutions. However, due to stochasticity involved
in EMO algorithms, the uniformity in distribution of solutions cannot
be guaranteed. Moreover, the follow-up decision-making activities may
demand finding more solutions in specific regions on the Pareto-optimal
front which may not be well-represented by the obtained EMO solutions.
In this paper, we train machine learning algorithms to capture the rela-
tionship between pseudo-weight vectors, derived from location of EMO-
obtained non-dominated objective vectors, and their respective decision
variable vectors. The learnt system can then be utilized to predict the
corresponding variable vector for any desired pseudo-weight vector. The
proposed methodology is applied to a number of problem instances to
demonstrate its working and usefulness in arriving at a desired distribu-
tion of near Pareto-optimal solutions. The methodology has the poten-
tial to be embedded within an EMO algorithm to produce a better dis-
tributed set of solutions, check the validity of apparent gaps in obtained
fronts, and also to help find more non-dominated solutions at the pre-
ferred regions of the Pareto-optimal front for effective decision-making
purposes.

Keywords: Deep neural networks · Multi-objective optimization ·
Pseudo-weights · Multi-criterion decision-making

1 Introduction

Evolutionary multi-objective optimization (EMO) algorithms are capable of find-
ing multiple trade-off solutions near or on the Pareto-optimal (PO) front [2,5] for
multi-objective optimization problems having more than one objective functions
and multiple constraint functions. The algorithms have been extended to han-
dle more than three-objective problems – known as many-objective optimization
(MaO) problems [3,10,15]. However, EMO or EMaO algorithms are stochastic
in nature and despite a great deal of effort in finding a well-distributed set of
trade-off solutions, they often fail to find the desired distribution. Besides the
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M. Emmerich et al. (Eds.): EMO 2023, LNCS 13970, pp. 191–204, 2023.
https://doi.org/10.1007/978-3-031-27250-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27250-9_14&domain=pdf
http://orcid.org/0000-0001-7402-9939
https://doi.org/10.1007/978-3-031-27250-9_14


192 K. Deb et al.

stochasticity inherent in the algorithms, the complexity offered by a problem
near the PO front is another reason for not arriving at a uniformly distributed
set of trade-off solutions.

Moreover, the ensuing decision-making (DM) task in choosing a single pre-
ferred trade-off solution must focus on a specific region on the obtained trade-off
solutions. It is not guaranteed that the EMO or EMaO-obtained trade-off solu-
tions have enough solutions corresponding to the preferred region by the decision-
makers. Often, the DM task cannot be pursued before the EMO or EMaO run is
executed, as DMs may not be certain about the preference information without
the knowledge of an optimized trade-off solution set.

Both the above scenarios demand that a computationally quick and simple
procedure of creating a new trade-off solution easily at any part of the optimized
front. This task is akin to various machine learning tasks in which input-output
relationships are learnt from a set of training data and the learnt system is
then used to predict output from a given and unseen input. In our task, the
input-output training data are the EMO or EMaO-obtained trade-off solutions
for which input is a unique indicator of a solution on the front and the output
is the solution vector (x). In this study, we use the pseudo-weight vector [5] as
a unique indicator of a trade-off solution on the front. An advantage of using a
pseudo-weight vector is that every component is normalized to lie in [0, 1]. After
a machine learning system is learnt, any new pseudo-weight vector can be used
as an input to find the respective x-vector for which the corresponding f -vector
can be computed using the given objective functions.

In the remainder of this proof-of-principle study, we briefly outline a number
of existing studies related to finding a uniformly distributed set of Pareto-optimal
(PO) solutions, focusing on filling gaps in obtained fronts in Sect. 2. The proposed
machine learning procedure for the post-optimality study is described in Sect. 3.
Results on multi-objective and many-objective constrained and unconstrained
test problems and engineering problems are presented in Sect. 4. Finally, Sect. 5
summarizes the findings of this study and proposes a number of viable extensions.

2 Existing Studies

Use of machine learning methods in EMO is well studied in recent literature.
Machine learning methods are used for surrogate modeling (x to f mapping)
[6], innovization (x to x mapping) [12], and as genetic operators (sampling in x
space) [9].

Surrogate assisted optimization methods use machine learning methods as a
computationally cheap alternative to expensive function evaluations. Exploita-
tive optimization is performed using the surrogate function and high-fidelity
evaluations are computed sparsely. Surrogate functions map from x to f , thereby
not helping our cause here. Inverse models [8] map f to x, but require knowledge
of true f -vector to produce the requisite x-vector, causing difficulties in DM
efforts. Our proposed method maps w to x (where w are pseudo-weights [5],
which represent place-holder information of a solution in the PO front), making
it convenient for DM purposes.
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Machine learning methods have been used to aid EMO algorithms in achiev-
ing better convergence. Mittal et al. [12] proposed a number of innovization-
based progress operators that uses machine learning to learn meaningful search
advances. These operators are based on intra-generational solutions that aid in
diversity and convergence. He et al. [9] proposed a Generative Adversarial Net-
work (GAN) driven optimization algorithm, where a GAN is trained on current
solutions and is then used to sample off-spring. In our proposed method, the
machine learning models are conditioned on pseudo-weights and hence lead to a
more targeted approach for finding non-dominated solutions directly.

Gaps often exist on obtained PO front. It is important for DMs to confirm
if the gap really exists or is a shortcoming of the chosen EMO algorithm. If
a gap truly exists, it becomes interesting for DMs to know what causes a gap
and what properties of x-vector enables a gap on a PO front. Pellicer et al. [14]
proposed a novel multi-step gap-finding method where converged solutions are
clustered into gaps and a reference-direction based method [7] is used to validate
lack of solutions in the gap. This method requires repeated runs of optimization
algorithm, contrary to our proposed method where we do not need to optimize
again to find new points in the apparent gaps.

3 Proposed Machine Learning Based EMO Procedure

An application of an EMO/EMaO algorithm can produce a set of H non-
dominated (ND) solutions (x(k) ∈ R

n, for k = 1, 2, . . . , H). Each of these
solutions can then be evaluated to compute the respective objective vectors
f (k) ∈ R

M , for k = 1, 2, . . . ,H. From the position of each objective vector on the
entire ND set, the respective pseudo-weight vector w(k) =
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The pseudo-weight vector for a ND solution can be viewed as a representative
identity on the ND set. For a two-objective problem the best f1 solution corre-
sponds to a pseudo-vector of (1, 0), meaning that the solution is 100% importance
for f1 and no importance for f2.

Clearly, Eq. 1 indicates that pseudo-weights are derived from the objective
values of ND set. If the ND solutions are sorted according to objective vectors,
the respective w-vectors will also get sorted in a similar manner. The studies on
“innovization” concept [4] have revealed Pareto-optimal (PO) solutions usually
possess certain patterns or constancy with respect to certain variables. Thus,
when the ND solutions are close enough to the true Pareto-optimal (PO) set, it is
expected that for practical problems the respective x-vectors would be somehow
related to the pseudo-weight vectors. This then motivates us to capture the
relationships between the derived w-vectors and respective x-vectors of the ND
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set using a machine learning method. Once the patterns, if any, are captured, a
new ND solution (x̄-vector) is expected to be found by using a desired w̄-vector.

Figure 1 illustrates the training and testing procedure for developing a
machine learning method. The procedure is presented in steps below:

Fig. 1. Training data generation and test data to create new Pareto-optimal solution.

Step 1: From an EMO/EMaO-obtained ND set, calculate the pseudo-weight
(w(k))-vector for each solution (k) of the set using Eq. 1.

Step 2: Prepare training data (w(k),x(k)) for k = 1, 2, . . . ,H, with w(k) as
input and x(k) as output.

Step 3: Train a ML method using the training data.
Step 4: Use the trained ML model to find x̄ for any specific desired w̄ vector.

Then, compute f̄ from x̄.

The resulting trained model can be used for various purposes.

Task 1: It can be used to check the validity of the obtained trained model.
Pseudo-weights can be chosen at random from the entire PO set for testing
purposes. Care is taken to not choose a training data as a test data.

Task 2: It can also be used to find new ND solutions in the apparent gaps in
the EMO/EMaO-obtained ND set. This can be achieved by creating pseudo-
weights in the gaps of the pseudo-weight space and then creating ND points
by the trained model.

Task 3: It can be used to evaluate if an apparent gap in EMO/EMaO-obtained
ND set is truly a gap. This can be determined by first creating pseudo-weights
in the gaps and then finding resulting x using the trained model and then
computing their f vectors to identify if they are dominated by the rest of the
ND objective vectors.
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Task 4: It can be used to quickly populate the ND set in a desired part of the ND
set, mainly for decision-making or for a better visualization purposes. This
can be achieved in two ways. First, creating suitable pseudo-weight vectors
in the region of interest and then using the trained model to find new and
hopefully non-dominated points.

Task 5: It can be used at intermediate generations of an EMO/EMaO run as
an offspring creation mechanism. This can be achieved by first developing a
trained model using the current ND points and then selecting pseudo-weights
in less-dense areas of the pseudo-weight space and then using the model to
create new solution.

In this study, we demonstrate the first four tasks here and leave the fifth task as
an integral part of a new EMO algorithm requiring implementation and testing.

3.1 Training of Deep Neural Networks

Before we present results of our proposed method, we discuss machine learning
methods considered in this study for developing the trained model. The problem
here can be stated as a task of predicting an n-dimensional x-vector from an
M -dimensional pseudo-weight (w) vector (where M is the number of objectives
of the problem). Since usually M � n, the model development from a few
input parameters to a large number of output parameters is a challenging task.
We use two different machine learning methods for this purpose: (i) a deep
neural network (DNN) approach and (ii) a Gaussian process regression (GPR)
approach. In both DNN and GPR approaches, x-vectors were normalized to
zero mean and unit variance as required by the model. Pseudo-weight vectors
are already within [0, 1] and are not normalized.

For every problem, the PO front is computed using NSGA-III [3], with a
population size N = 110M + 10. These numbers are chosen with a trial-and-
error study. Of these N PO points, 100M points are used as training points,
and 10M points are taken as the test set. Finally, for the DNN, the remaining
10 points are used as a validation set, but discarded for GPR to maintain the
similarity of the training data. Understanding the effect of size of dataset and
other hyperparameters are left for future studies. Validation set was sampled
uniformly from the training set for the purposes of model selection in the case
of DNN. It is important to note that the proposed method is not conditional
on the source of the training set. Hence, the PO front based training set can
be replaced by the non-dominated set of an MOEA at the end of a particular
generation.

Deep Neural Network (DNN) Approach: Multi-layer perceptrons (MLPs)
with pseudo-weights as inputs and variables (x) as outputs are implemented
using the PyTorch [13] library and hyper-parameters are optimized using the
Optuna software [1]. Owing to proof-of-concept nature of the study, DNNs with
1 to 6 hidden layers are used with ReLU activation and trained using Adam
optimizer [11]. The complexity of the DNNs and granularity of hyper-parameters
can be increased for handling more complex problems.
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Gaussian Regression (GPR) Approach: An approach similar to surrogate
modeling is used for training GPR models. Every output, xi is modeled inde-
pendently. A sundry of kernels, mean functions and other hyper-parameters are
considered for a grid-search for finding the most suitable setting.

3.2 Handling Variable Bounds and Constraints

In an optimization problem, the variable vectors are usually bounded within
lower and upper bounds. Since a DNN or a GPR approach does not usually
restrict its output values automatically within any bound, the resulting output
values for a test input data can be out of bounds, if a proper care is not taken.
In this study, we normalize the output values as needed by the ML model. The
output value from the system is then de-normalized and clipped to within their
specified lower and upper bounds.

Constraint satisfaction is also a strict requirement in an optimization task.
The resulting x-vectors from the trained model may not guarantee to satisfy all
constraints automatically. In this study, we simply discount infeasible x solu-
tions, in case such a solution is created by the trained model; but a more sophis-
ticated constrained handling method can be used during the training process.
For example, constraint value of each constraint can be included as additional
output to the DNN or GPR process. During testing, if any w-vector (input)
produces a positive constraint value (meaning a constraint violation), the solu-
tion is simply ignored. In this case, some training data with positive constraint
violation, but non-dominated to the feasible ND set must be used to achieve a
better training process. In this proof-of-principle study, we do not use any such
sophisticated method.

4 Results

First, we present results on two-objective unconstrained and constrained test
problems. Thereafter, we show results on three-objective problems, followed by
a few many-objective problems. For each experiment, 11 runs are performed and
their mean results are presented.

Tables 1, 2, 3 and 4 show Mean Absolute Errors (MAE) of test set on multi-
and many-objective problems with different modeling approaches. The mean
x is the average MAE scaled based on variable bounds between true x-vectors
(from the PO set) and model-obtained x-vectors for the 10M test pseudo-weight
vectors. Similarly, the mean f is the average MAE scaled based on range of
objectives on the Pareto front (fnadir − f ideal) between the true f -vectors and
the model-obtained x-vectors for the test pseudo-weight vectors. Their standard
deviation values across the PO set are also presented in the table. ‘Random’
signifies that test pseudo-weight data are chosen at random on the entire PO
front (Task 1). ‘Continuous’ and ‘Edge’ signify that a continuous region of a gap
or a gap at one of the extreme parts of the PO set (Task 2) is used.
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4.1 Two-Objective Problems

Table 1 presents prediction errors in x and f -vectors of test data by the DNN
approach on two-objective unconstrained ZDT and constrained (BNH and OSY)
problems. We can see that the error values are low for all the test problems.

Table 1. Performance of DNN approach on two-objective problems.

Problem Test data Mean x Mean f Std. dev. in x Std. dev. in f

ZDT1 Continuous 6.281E−04 9.264E−03 1.051E−04 1.374E−03

Edge 2.012E−03 1.864E−02 4.350E−04 4.332E−03

Random 4.606E−04 6.918E−03 2.575E−04 3.689E−03

ZDT2 Continuous 7.387E−04 1.321E−02 1.242E−04 2.357E−03

Edge 1.313E−03 3.986E−02 1.207E−04 3.680E−03

Random 7.260E−04 1.387E−02 4.065E−04 6.786E−03

ZDT3 Continuous 1.026E−03 3.948E−02 2.030E−04 1.994E−02

Random 4.619E−04 1.757E−02 2.591E−04 1.434E−02

BNH Continuous 3.701E−03 2.760E−03 4.185E−03 5.378E−02

Random 2.491E−03 1.407E−03 4.384E−03 7.347E−02

OSY Continuous 2.172E−03 2.720E−02 3.685E−03 6.518E−01

Random 7.833E−03 3.607E−02 3.323E−02 3.521E+00

Validating Task 1: Figure 2a shows that the randomly chosen pseudo-weight
vectors produce x-vectors that make f -vectors fall on the PO front. The DNN-
generated f -vectors (shown in red filled cirles) fall almost on top of the corre-
sponding target f -vectors (shown with red open square). This is not an easy
feat, as the DNN-learnt model produces x-vectors from supplied w-vectors and
then the x-vectors are evaluated to compute f -vectors for plotting. This validates
Task 1, proposed in Sect. 3 on ZDT1 problem. Note that the test data (red) are
excluded from the training data (blue).

Next, we apply the GPR approach and results are tabulated in Table 2. Inter-
estingly, much smaller error values are observed with GPR approach on the two-
objective problems compared to the DNN approach. Figure 2b shows that GPR
also can generate PO points very close to tagret f -vectors for the same set of
pseudo-weights.

Validating Task 2: Next, we investigate if the proposed models can produce
points on continuous gaps in the PO front produced by an EMO algorithm
(Task 2). Outcome of DNN and GPR approaches are shown in the ZDT1 problem
when the PO front has a gap on one of the extreme part of the PO front, as
shown in Fig. 3. Error values are shown in Tables 1 and 2. Only blue points
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Fig. 2. DNN and GPR approaches on random test data for ZDT1 problem, demon-
strating Task 1. (Color figure online)

Table 2. Performance of GPR approach on two-objective problems.

Problem Test data Mean x Mean f Std. dev. in x Std. dev. in f

ZDT1 Continuous 2.625E−08 8.466E−08 5.694E−08 1.806E−07

Edge 1.086E−06 2.447E−05 8.081E−07 1.820E−05

Random 5.525E−09 3.462E−06 3.064E−09 7.511E−06

ZDT2 Continuous 1.083E−04 3.633E−03 3.903E−05 1.320E−03

Edge 8.651E−04 3.811E−02 2.308E−04 1.023E−02

Random 1.398E−05 4.200E−04 1.946E−05 6.093E−04

ZDT3 Continuous 3.182E−05 3.365E−03 9.706E−06 2.015E−03

Random 3.659E−06 3.098E−04 4.985E−06 8.355E−04

BNH Continuous 2.343E−03 1.274E−04 3.054E−03 2.224E−03

Random 1.890E−03 2.073E−04 3.004E−03 9.670E−03

OSY Continuous 1.471E−03 1.243E−03 4.562E−03 5.371E−02

Random 1.491E−03 1.273E−03 1.146E−02 3.407E−01

are used to train the machine learning models, but red points are used to test.
This requires ML models to learn how to extrapolate learnt relationships from
training to test data and is always a harder task. Also, note that the models
had to learn (i) how to create a suitable x-vector so that the resulting f -vector
falls on the PO front, and (ii) make the f -vector fall at a place congruent to the
chosen pseudo-weight vectors.

Figure 4 shows that GPR approach can also reproduce points at the middle
part of the PO front on ZDT2 and ZDT3 problems. Here, too, training data
did not include the points in the gap. Missing pseudo-weights at the gaps are
estimated from the training data and are used to generate PO points in the gaps.
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Fig. 3. DNN and GPR approaches in finding edge gap points on ZDT1 problem, demon-
strating Task 2.

Fig. 4. GPR approach on continuous gap in middle of PO front for ZDT2 and ZDT3
problems, demonstrating Task 2.

Validating Task 3: In ZDT3 problem, there are natural gaps in the PO front.
Thus, there will be gaps in the pseudo-weight space when they are computed
from a set of EMO-obtained PO points. Next, we investigate what our trained
DNN and GPR models would produce, if pseudo-weights in the natural gaps are
chosen to find the respective x-vectors. Towards this task (Task 3), we create
a uniform sample of 200 uniformly distributed set of pseudo-weight vectors and
apply our trained models using EMO-obtained PO points to find respective x-
vectors, compute their f -vectors, and then plot them in Fig. 5. It is clear that
for pseudo-weights resulting a PO solution, our trained models are able to find
them, but for pseudo-weights in natural gaps, trained models have produced
dominated solutions, confirming that gaps observed in EMO solutions are true
gaps and no PO solution exists there. Thus, our proposed approach can also be
used to confirm reality of gaps in EMO-obtained PO fronts.
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Fig. 5. Pseudo-weights on true gaps produce dominated solutions, but pseudo-weights
on true PO front produce PO solutions, demonstrating Task 3.

Fig. 6. GPR results showing discovery of PO points by the GPR approach on two
constrained problems, demonstrating Tasks 1 and 2.

Constrained Two-Objective Problems: Tables 1 and 2 show that the GPR
approach is able to produce PO points from pseudo-weights with smaller error
compared to DNN as well. To demonstrate, we present random and gap point
discovery tasks (Tasks 1 and 2, respectively) for BNH and OSY problems in
Fig. 6.

4.2 Three-Objective Problems

Owing to better results with GPR approach for two-objective problems, we use
only GPR for three and many objective problems. Table 3 shows x and f errors
along with their standard deviations.

Figure 7 shows random and continuous gap predictions for DTLZ2 problem.
We see that the ML model is able to reasonably predict x-vectors (hence, f -
vectors) for unseen pseudo-weights with low error.
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Table 3. Performance of GPR approach on three-objective problems.

Problem M Gap type Mean x Mean f Std. dev. in x Std. dev. in f

DTLZ2 3 Continuous 6.981E−03 3.126E−02 2.449E−03 9.535E−03

Edge 1.022E−02 5.968E−02 3.431E−03 1.962E−02

Random 3.419E−03 1.153E−02 2.494E−03 7.168E−03

Sparse 3.917E−03 2.238E−02 1.594E−03 8.891E−03

WFG2 3 Continuous 5.600E−02 6.514E−02 1.274E−01 1.703E−01

Random 4.773E−02 4.922E−02 1.220E−01 1.732E−01

Carside 3 Random 1.171E−02 3.957E−03 9.080E−03 1.471E−02

Crashworthiness 3 Sparse 1.009E−02 7.785E−03 1.388E−02 3.903E−02

Fig. 7. Random and continuous gap points by the GPR approach on three-objective
DTLZ2 problem.

Constrained Three-Objective Problems: From Table 4, we see that predic-
tion of PO solutions on constrained problems (carside impact and crashworthi-
ness) can be achieved by the GPR approach with low errors in x and f space
with low standard deviations.

Validating Task 4: Next, we consider a simulated case in which an
EMO/EMaO produces a set of PO solutions which are not uniformly distributed.
In this case as well, we can train a GPR model and supply pseudo-weights at the
part with low-density of solutions and expect our model to predict PO points
there. Figure 8 shows that the GPR approach can fill in additional points in such
low-density regions for DTLZ2 and crashworthiness problems.

4.3 Many-Objective Optimization Problems

Finally, we apply our GPR approach to two five and 10-objective DTLZ2 and
C2-DTLZ2 problems to demonstrate proof-of-principle results on many-objective
optimization problems. Table 4 shows small error and standard deviation of error
by the GPR approach.
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Figure 9 shows the parallel coordinate plot (PCP) on these two problems with
a few randomly chosen pseudo-weight vectors to demonstrate that the obtained
x-vectors (and their f -vectors) produce near PO solutions.

Table 4. Performance of GPR approach on many-objective problems.

Problem M Test data Mean x Mean f Std. dev in x Std. dev in f

DTLZ2 5 Random 9.887E−03 1.382E−02 9.155E−03 8.668E−03

DTLZ2 10 Random 4.582E−02 1.418E−02 3.716E−02 8.500E−03

C2DTLZ2 5 Random 1.020E−02 1.323E−02 1.028E−02 7.448E−03

C2DTLZ2 10 Random 4.532E−02 1.418E−02 3.552E−02 9.490E−03

Fig. 8. Additional solutions are supplied by the GPR approach for two three-objective
problems at region of low-density of solutions, demonstrating Task 4. A few blue points
were found by EMO on a part of PO front, but our ML approach has nicely replenished
them. (Color figure online)

Fig. 9. PCP plots showing true PO and GPR-trained solutions are close for a few
pseudo-weight vectors for 5-obj DTLZ2 and 10-obj. DTLZ2 problems.
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5 Conclusions

We have shown that machine-learning (ML) models can be used to learn pat-
terns between pseudo-weights and corresponding x-vectors and generate new
points on the Pareto front without doing an additional optimization. We have
demonstrated that this method is scalable to many-objective test and real-world
problems. This proof-of-concept study paves the way for using the proposed
method as part of an EMO task for generating a better distributed ND fronts.
Owing to the fact that the ML models are conditioned on pseudo-weights, the
proposed method can be readily used for decision-making by the user without
the need for further optimization.

The current study can be extended as a comparison with optimization based
gap-filling methods, like reference direction based EMO algorithms. Applica-
tions to more complex and real-world problems will fully evaluate the potential
of the proposed approach. Also, the modeling approaches can be improved to
satisfy learning of constraints and variable bounds during the training process.
For example, specific activation functions (such as, ReLU) can be used for the
output layer of DNNs to restrict outputs to variable bounds. While constraint
satisfaction was enforced in our results here, it would be a challenging task to
include constraint satisfaction in the training process, since all PO solutions
(training data) are expected to be feasible. Nevertheless, this proof-of-principle
study opens up a unique use of machine learning methods in assisting multi-
objective optimization.
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Abstract. Currently, the research on expensive optimization problems
mainly focuses on continuous problems and ignores combinatorial prob-
lems, which exist in many real-world applications. Since in surrogate
model assisted evolution algorithms (SAEAs), the surrogate models from
the community of machine learning are usually designed from continu-
ous problems, and they are not suitable from combinatorial problems. For
this reason, we propose a convolution relation model for both continuous
and combinatorial problems. In the new relation model, a sample repre-
sentation method of a relation map is proposed in the data preparation,
and the convolution neural network is used to learn the relationships
between pairs of candidate solutions. The new method is embedded into
a basic multiobjective evolutionary algorithm and applied to a set of
continuous and combinatorial problems. The experimental results sug-
gest that the relation model with the same settings can solve continuous
and combinatorial problems, and it has an advantage in terms of problem
scalability.

Keywords: Combinatorial problems · Multiobjective problem ·
Expensive optimization · Relation model

1 Introduction

Expensive multiobjective optimization problems (EMOPs) exist widely in real-
world applications [3,12]. As a kind of population-based optimization algorithm,
evolution algorithms (EAs) can obtain a set of solutions that approximate the
Pareto optimal front in a single run. Thus, EAs have been one of the most popular
methods for solving general multiobjective optimization problems. However, gen-
eral EAs are not suitable for EMOPs since EAs use a trial-and-error search strat-
egy to generate a lot of candidate solutions for fitness evaluation, which is not
affordable. For this reason, surrogate assisted evolutionary algorithms (SAEAs)
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have been proposed in the last decades. With the help of computationally effi-
cient surrogate models, SAEAs can approximate the optimum of EMOPs with
limited computational resources. SAEAs build a surrogate model based on the
evaluated solutions and appropriate some newly generated solutions. In this way,
only some promising candidate solutions will be evaluated by the real expensive
functions, and the cost can thus be saved.

There is no doubt that surrogate models line in the center of SAEAs. Based
on the type of surrogate model, SAEAs can be roughly classified into three cat-
egories, i.e., regression based SAEAs, classification based SAEAs, and relation
based SAEAs. In the first category, regression models are used to approximate
the objective value of variables. The Gaussian process (GP) [2], also known as
the Kriging model, is the most widely used method. For example, the Kriging
assisted RVEA (k-RVEA) [4] and the Kriging assigned two-archive evolution
algorithm (KTA2) [15]. Other models such as random forest (RF) [17], radial
basis function network (RBFN) [16] and neural network (NN) [11] are also used
in regression based SAEAs. In the second category, the classification preselec-
tion based MOEA (CPS-MOEA) [20] trains the k-nearest neighbor model to
distinguish good solutions from a set of trial solutions. In CSEA [14], a neural
network is used to predict new candidate solutions belonging to a non-dominated
or dominated set. In the third category, the relation model based method is a
novel idea [8,9,19], using relationships between solutions to train the model
rather than using the feature of a single point in the above methods. REMO [9]
and θ-DEA-DP [19] show obvious advantage in solving on EOPs.

Most of the current research on SAEAs focus on continuous optimization
problems. However, in real-world applications, many problems cannot be repre-
sented by continuous variables, such as the traveling salesman problem (TSP) [5]
and the knapsack problem (KP) [23]. Furthermore, the evaluation cost may be
expensive for solving these problems. As far as we know, there are very few
works that focus on expensive multiobjective combinatorial problems. For this
reason, this paper proposes a convolutional neural network based REMO algo-
rithm called CREMO. The main contributions of this paper can be summarized
as follows:

– A new perspective of relation pairs is proposed. The two solution vectors will
be stitched together based on each dimension and form a relational feature
map. The new feature map can represent richer features between each pair of
solutions.

– Convolutional neural networks are used for the construction of relational mod-
els. On the one hand, features of the same dimension between solutions can
be learned, and on the other hand, they can be learned for different input
variables.

– A relation model based SAEAs is proposed for the continuous and combina-
torial problem. To the best of our knowledge, this paper is the first to propose
SAEAs with different problem solving ability.

The rest of this paper is summarized as follows. First, some preliminaries
are presented in Sect. 2. The details of the proposed algorithm are illustrated in
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Sect. 3. Then, Sect. 4 conducts experimental studies of continuous and combina-
torial problems. Finally, Sect. 5 concludes this paper with some potential work
in the future.

2 Preliminaries

2.1 Problem Definition

This paper considers expensive multiobjective continuous and combinatorial
optimization problems, which can be defined as:

min F (x) = (f1(x), · · · , fM (x))T

s.t. x ∈ ∏D
i=1[ai, bi]

(1)

where x = (x1, · · · , xn) ∈ RD is a decision variable vector; ai < bi(i = 1, · · · ,D)
are lower and upper boundary of the feasible region respectively in search space;
F : RD → RM consists of M objective functions fi (i = 1, · · · ,M).

For combinatorial problems, the many-objective traveling salesman
problem (MOTSP) [5] and the many-objective D-item knapsack prob-
lem (MOKP) [23] are taken count into the study. The MOTSP is according
to the following mathematical program:

min F (x) = (f1(x), · · · , fM (x))T

where fk(ρ) =
D−1∑

i=1

ck
ρ(i),ρ(i+1) + ck

ρ(n),ρ(1), k = 1, 2, . . . ,M
(2)

where D denotes the number of cities visited, the cost k for traveling from city
i to city j is denoted by ck

i,j , and ρ is the cyclic permutation of cities. A tour is
defined by the cyclic permutation ρ of D cities. MOKP is defined as follows:

max F (x) = (f1(x), · · · , fM (x))T

s.t.
D∑

j=1

bijxj ≤ ci, i = 1, 2, . . . ,M

xj ∈ {0, 1}, j = 1, 2, . . . , n

where fk(x) =
n∑

j=1

aijxj , i = 1, 2, . . . ,M

(3)

where x is a D-dimensional binary vector, bij represents the weight of item j
inside knapsack i, aij is the profit of item j inside knapsack i, and ci is the
capacity of knapsack i.

Due to the conflicting nature among the objectives in Eq. (1), (2), (3), usually
no single solution can optimize all objectives at the same time. The tradeoff
solutions, called Pareto optimal solutions, form a Pareto optimal set of a MOP.
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2.2 Relation Learning

Relational learning is a novel class of methods in SAEAs [8–10,19], where rela-
tionships between solutions are used to train the model, which is different from
the training process that uses a single solution in regression or classification
based SAEAs. The basic idea of REMO [9] is to construct a relations model by
three main steps, i.e., data preparation, model training, and model usage. In data
preparation, the angle-based domination is used to split the current population
P into two sub-populations according to their fitness values. Then the training
set is denoted as D = {(〈xi,xj〉, l)|xi,xj ∈ P}, where 〈xi,xj〉 is a feature vector
combined by each two solutions and l is label of 〈xi,xj〉 that denotes the rela-
tion between xi and xj . The l has three values, namely ‘−1’, ‘0’, and ‘+1’, which
means that the categories of xi is worse than, same, and better than xj . Next,
a variety of models are suitable for data fitting. Neural Network (NN), Random
Forest (RF) and other models can learn the feature of relative good and bad for
each solution in a relation pair. Finally, based on the ‘voting-scoring’ strategy,
the model can appropriate the quality of the solution by counting some pre-
dicted results of relation pairs consisting of multiple evaluated solutions and one
unevaluated solution.

3 Proposed Method

CREMO is given in Algorithm 1. It actually follows of REMO, which contains
three main steps, which shall be introduced in detail.

– Initialization (lines 1–3): Ni initialization solutions are sampled from
the search space. For a continuous problem, the Latin hypercube sampling
method [13] is used to sample. The random initial method is used for combi-
nation problems.

– Relation data preparation (lines 4–5): The population is adaptively
divided into two subpopulations Pn and Pd. Then combine each two solutions
and assign the label according to categories. The innovation is to combine the
solutions according to the variable dimension instead of connecting them from
end to end.

– Relation model training (lines 6): A convolutional network is used to fit
the data D.

– Relation model usage (lines 8–12): The model is integrated into a local
evaluation evolutionary search without real evaluation. The newly generated
trial solutions Qt are prescreened by relation model M to form the next
population Q.

– Environment selection (lines 13–15): The promising solutions in Q′ will
be evaluated by real objective functions. Environment selection is executed
to select N solutions from P ∪ Q′ to be the new population P in the next
generation.
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Algorithm 1: Framework of CREMO
Input : N (population size);

N ′ (number of solutions for real evaluation);
Ni (initial population size);
w (maximum number of evaluations by with surrogate);

Output: P (Current population).

// Initialization
1 Initialize the population P = {x1,x2, · · · ,xDi};
2 Update fitness evaluation counter;
3 while termeination condition is not satidfied do

// Relation data preparation
4 Split population P into two subpopulations Pn,Pd and get the current

reference points Pref ;
5 Construct relation data D form Pn and Pd;

// Relation model training
6 Training a relation model M by the data set D;
7 Set Q = P, and t=0;

// Relation model usage
8 while t ≤ w do
9 Generate trial solutions Qt from {Q ∪ Pref};

10 Estimate the value s(u) of u ∈ Qt by Eq. (6) with Pn and Pd;
11 Select |Pref | solutions from Qt with the largest s(u) as the offspring

population Q into next local iteration;
12 end

// Re-evaluation and environment selection
13 Select N ′ solutions from Q with the largest s(u) as the promising solutions

Q′ for real evaluation;
14 Update fitness evaluation counter;
15 Select N solutions from {P ∪ Q′} as the next population P;
16 end

3.1 Data Preparation

The data construction method is as described in Sect. 2.2. Firstly, the P is
divided into Pn and Pd, where Pn is superior to Pd. Then the solutions in
Pn ∪ Pd come to combine to form the relationship pairs. Different from REMO,
the feature vectors of two solutions are placed in parallel to form a relation fea-
ture map, as shown in Fig. 1, so that the same dimensional information can be
incorporated into the model to improve the learning accuracy.

3.2 Model Training

The data set D has three classes, and we design a convolutional neural network
to fit the data. The network structure is shown in Fig. 1. First, the input size of
the network is 2 × n for the relational feature map. Next is the Convolutional-
Layer([2, 2], 100), Relu-Layer, Convolutional-Layer ([1, 2], 30), Relu-Layer,
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Fig. 1. Illustrations of network structure.

dropout-layer (0.2), FullyConnected-layer (30) and FullyConnected-layer (3).
Finally, the network outputs the probability of label by a softmax function.
The stochastic gradient descent with momentum (SGDM) with a 0.001 learning
rate is used to optimize the cross-entropy loss function. The learning rate is set
to 0.001, and the maximum epoch is set to 100. After the above model definition
and training, we can obtain the triple classification model as described by Eq. 4:

[s1, s2, s3] = M([xi;xj ]) (4)

where s1, s2, s3 denote probability that xi ∈ Pn,xj ∈ Pd, xi and xj are from
the same subpopulation, or xi ∈ Pd,xj ∈ Pn respectively. It also represents the
probability that xi is superior to, equal to, and inferior to xj .

3.3 Model Usage

This section introduce the ‘voting-scoring’ method [8]. For a newly generated
solution u, it combine all of the solution x ∈ P to form relation maps [u;x] and
[x;u]. According to the categories of §, there are four types of combinations. We
calculate the mean values of the four situations as follows:

[s̄I
1, s̄

I
2, s̄

I
3] = mean

x∈Pn

(M([x;u]))

[s̄II
1 , s̄II

2 , s̄II
3 ] = mean

x∈Pn

(M([u;x]))

[s̄III
1 , s̄III

2 , s̄III
3 ] = mean

x∈Pd

(M([x;u]))

[s̄IV
1 , s̄IV

2 , s̄IV
3 ] = mean

x∈Pd

(M([u;x]))

(5)

Define a quality measurement of u as:

s(u) =(s̄II
1 + s̄IV

1 + s̄I
2 + s̄II

2 + s̄I
3 + s̄III

3 )

− (s̄I
1 + s̄III

1 + s̄III
2 + s̄IV

2 + s̄II
3 + s̄IV

3 ).
(6)

s(u) denotes the confidence that u ∈ Pn via voting by the existing solutions in
P, and a higher value indicates a better quality of u.
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4 Experimental Studies

This section studies the efficiency of the CREMO. In the following sections,
Sect. 4.1 show the experimental settings. Section 4.2 compares the performances
of CREMO with the other four at the state of art SAEAs on continuous problems.
Section 4.3 studies the performances of CREMO on combinatorial problems,
including MOTSP and MOKP, with various decision and objective sizes.

4.1 Experimental Settings

For fair comparisons, the seven compared algorithms and our proposed CREMO
are all implemented in PlatEMO [18] using MATLAB. If not specified, the default
parameters are used in the study.

– Continuous problems: CREMO and four SAEAs including CPS-MOEA [20],
CSEA [14], K-RVEA [4] and KTA2 [15] are studied in DTLZ [7] and MaF [1]
test suit. These four competitors represent the famous classification and
regression based SAEAs. The decision space is set to D = 30, and the objec-
tive space is set to M = 3, 6, 10 for two test suits. The maximum fitness
evaluation budget is set to 300. The population size N is set to 50, and if the
algorithm uses the LHS method to get the initialization solution, the size of
initial solutions Ni is set to 100.

– Combinatorial problems: It is hard to find an implementation of SAEAs for
solving TSP and KP problems. Therefore, we chose three classical MOEAs,
NSGA-II [6], MOEA/D [21] and IBEA [22], representing three classes of
MOEAs. SAEAs, CPS-MOEA, and K-RVEA are chosen to represent regres-
sion and classification based methods, respectively. In order to make K-RVEA
stable, we have used the fitrgp function in MATLAB instead of the original
dacefit function. For CPS-MOEA, the reproduction operator is replaced by
the GA operator to be consistent with other algorithms. For these two algo-
rithms, we use * to indicate the modified versions. We set D = 10, 30, 50, 100
and M = 2, 3, 6, 10 for MOTSP and D = 30, 50, 100, 250, M = 2, 3, 6 for
MOKP. The maximum fitness evaluation budget is set to 500. Other param-
eter settings of algorithms not mentioned above are consistent with the con-
tinuous problem.

The inverted generational distance (IGD) and hypervolume (HV) are used
to evaluate the performance of each algorithm. Specifically, the IGD is used for
continuous problems since an inadequate search will result in HV value of 0. Due
to the lack of a real Pareto front, the HV indicator is used to measure the quality
of solutions for combinatorial problems. The Wilcoxon rank-sum test is used to
compare the experimental results, where ‘+’, ‘−’, and ‘≈’ in the tables indicate
that the value obtained by an algorithm is smaller than, greater than, or similar
to that obtained by CREMO at a 95% significance level. The best mean IGD or
HV values are highlighted by gray background for each row.
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Table 1. The statistical results of the IGD metric values obtained by five algorithms
with D = 30 on 36 test instances over 30 independent runs.

Problem M D CPS-MOEA CSEA K-RVEA KTA2 CREMO

DTLZ1
3 30 4.6991e+2≈ 4.6662e+2≈ 5.6634e+2 − 4.4598e+2 ≈ 4.4958e+2
6 30 4.6098e+2 − 3.0201e+2 ≈ 4.0149e+2 − 3.5212e+2 − 3.2230e+2
10 30 3.1911e+2 − 2.2270e+2 ≈ 2.3553e+2 ≈ 2.6764e+2 − 2.2392e+2

DTLZ2
3 30 1.0722e+0 − 8.8657e-1 ≈ 1.5288e+0 − 6.8211e-1 + 8.2374e-1
6 30 1.9690e+0 − 1.2255e+0 − 1.3797e+0 − 1.1949e+0 − 9.7444e-1
10 30 1.9124e+0 − 1.2351e+0 − 1.2588e+0 − 1.2770e+0 − 1.0349e+0

DTLZ3
3 30 1.3606e+3 − 1.3466e+3 − 1.6175e+3 − 1.2840e+3 ≈ 1.2645e+3
6 30 1.4549e+3 − 1.0669e+3 + 1.3301e+3 − 1.3212e+3 − 1.1896e+3
10 30 1.2557e+3 − 8.2882e+2 ≈ 9.2955e+2 − 1.0737e+3 − 8.2485e+2

DTLZ4
3 30 1.4305e+0 − 9.2758e-1 − 1.6944e+0 − 9.4063e-1 − 8.1190e-1
6 30 1.7952e+0 − 1.0980e+0 − 1.6091e+0 − 1.3505e+0 − 9.8425e-1
10 30 1.8002e+0 − 1.1514e+0 ≈ 1.6497e+0 − 1.3941e+0 − 1.1409e+0

DTLZ5
3 30 9.9558e-1 − 8.4869e-1 − 1.4307e+0 − 6.6019e-1 ≈ 6.4730e-1
6 30 1.5931e+0 − 8.8336e-1 − 1.0697e+0 − 1.0311e+0 − 7.5761e-1
10 30 1.5062e+0 − 6.4316e-1 − 8.2529e-1 − 9.4336e-1 − 5.6524e-1

DTLZ6
3 30 1.6548e+1 + 2.2856e+1 − 1.9742e+1 + 1.7058e+1 + 2.1172e+1
6 30 1.7377e+1 + 2.0581e+1 − 1.8992e+1 + 1.9677e+1 ≈ 1.9871e+1
10 30 1.4535e+1 + 1.6882e+1 − 1.5767e+1 ≈ 1.6911e+1 − 1.5780e+1

DTLZ7
3 30 8.1860e+0 − 5.0128e+0 − 2.1749e-1 + 8.1524e-1 + 3.5656e+0
6 30 1.5824e+1 − 1.7624e+1 − 9.1980e-1 + 3.2233e+0 + 1.1707e+1
10 30 2.5347e+1 − 3.0997e+1 − 2.4127e+0 + 6.0435e+0 + 1.9620e+1

MaF1
3 30 1.0280e+0 − 8.1909e-1 − 1.2352e+0 − 3.7407e-1 + 6.9359e-1
6 30 1.6757e+0 − 9.6509e-1 ≈ 1.7256e+0 − 6.3262e-1 + 9.9831e-1
10 30 1.7815e+0 − 1.0601e+0 ≈ 1.5515e+0 − 5.8514e-1 + 1.0619e+0

MaF2
3 30 1.6538e-1 − 1.3049e-1 − 1.4473e-1 − 8.1919e-2 + 1.2050e-1
6 30 2.2519e-1 ≈ 2.3340e-1 − 2.2539e-1 ≈ 1.4862e-1 + 2.2291e-1
10 30 2.7730e-1 + 3.4928e-1 ≈ 3.3911e-1 ≈ 2.0389e-1 + 3.4507e-1

MaF3
3 30 2.8110e+6 + 7.4636e+6 − 4.5836e+6 ≈ 1.8271e+7 − 5.3310e+6
6 30 6.2377e+6 − 6.3649e+6 ≈ 3.8457e+6 + 1.3348e+7 − 5.9000e+6
10 30 2.2473e+9 ≈ 5.1410e+6 − 3.2760e+6 ≈ 9.6262e+6 − 3.7716e+6

MaF4
3 30 4.9818e+3 − 4.1749e+3 ≈ 5.8379e+3 − 4.7260e+3 ≈ 4.4221e+3
6 30 4.3119e+4 − 3.1822e+4 − 4.1052e+4 − 3.9314e+4 − 2.8682e+4
10 30 4.8882e+5 − 3.7518e+5 ≈ 4.3565e+5 − 4.3507e+5 − 3.4962e+5

MaF5
3 30 6.0298e+0 − 3.6604e+0 ≈ 5.5427e+0 − 3.6803e+0 ≈ 3.4766e+0
6 30 2.3000e+1 − 1.4155e+1 ≈ 1.4925e+1 ≈ 1.7504e+1 − 1.4386e+1
10 30 2.2086e+2 − 1.4534e+2 ≈ 1.4694e+2 ≈ 1.5190e+2 ≈ 1.5020e+2

+/ − / ≈ 5/28/3 1/20/15 6/22/8 11/18/7

4.2 Study on Continuous Problems

The statistical results of mean IGD values archived by five algorithms on DTLZ1-
DTLZ7 and MaF1-MaF5 with n = 30 over 30 independent runs are summarized
in Table 1. From the mean result, CREMO performs better than classification
and regression based SAEAs. From the Wilcoxon rank-sum test result of all
instances, we can see that CREMO obtains 28, 20, 22, 18 better, 5, 1, 6, 11
worse, and 3, 15, 8, 7 similar IGD values than CPS-MOEA, CSEA, K-RVEA,
and KTA2 respectively.

Next, the running time versus problem size is analyzed. The KTA2, which
has the best performance in the comparison algorithm according to Table 1, is
selected as a comparator with CREMO. All algorithms are run on the same
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workstation (AMD 5800x, NVIDIA 3090Ti, and 32G Memory). We run each
algorithm on the DTLZ test suit with different decision and objective space
sizes under the same FEs. Next, the mean CPU time over DTLZ1-DTLZ7 on
each size of the problem is recorded as the time in Fig. 2. As the problem scale
expands, the running time of KTA2 grows rapidly. In contrast, the running time
of CREMO grows slowly, especially on GPUs. The running time is not sensitive
to the problem size. Experimental results show that CREMO is highly scalable
in terms of problem size.

KTA2 CREMO on CPU CREMO on GPU
algorithms
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Fig. 2. Bar plot of mean running time of KTA2 and CREMO on DTLZ1-7 with different
sizes under 300 fitness evaluations.

4.3 Study on Combinatorial Problems

This subsection compares CREMO with three representative MOEAs, i.e.,
NSGA-II, MOEA/D, and IBEA. And two variants of famous SAEAs, including
CPS-MOEA* and K-RVEA*. The experimental results of the HV value provided
by five comparison algorithms and CREMO on MOTSP are recorded in Table 2.
It can be observed that CREMO obtains better HV values in most of the 16 dif-
ferent sizes of MOTSP with other comparison problems. Specifically, CREMO
achieved the 15 best mean HV values. The same advantage also exists in MOKP,
which achieved 15 best average HV indicators on 16 test problems. The runtime
performance curves are shown in Fig. 3. The performance of CREMO shows the
best convergence performance. In contrast, K-RVEA* based on the GP model
performs poorly in boolean search space (MOKP) and many-objective (m = 6),
and CPS-MOEA shows similar performance to model-free methods. The model
does not provide adequate information in the search process. The non-dominated
solutions form runs with the median HV values obtained by the compared algo-
rithms on MOTSP and MOKP are shown in Fig. 4. For both minimization and
maximization problems, the final solutions obtained by CREMO are closer to
the ideal Pareto front (Fig. 4).
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Table 2. The statistical results of the HV metric values obtained by six algorithms
with on MOTSP test instances over 30 independent runs.

M D NSGA-II MOEA/D IBEA CPS-MOEA* KRVEA* CREMO

2 10 5.7824e-1 ≈ 5.5437e-1 − 5.7839e-1 ≈ 5.6844e-1 ≈ 5.7172e-1 ≈ 5.7381e-1
2 30 5.4747e-1 − 5.3330e-1 − 5.4250e-1 − 5.2250e-1 − 5.3687e-1 − 5.7775e-1
2 50 4.5969e-1 − 4.5604e-1 − 4.6646e-1 − 4.5268e-1 − 4.7405e-1 − 5.0763e-1
2 100 4.1938e-1 − 4.1487e-1 − 4.2406e-1 − 4.1329e-1 − 4.3744e-1 − 4.5312e-1
3 10 4.8296e-1 ≈ 4.6109e-1 − 4.8619e-1 ≈ 4.8220e-1 ≈ 4.8692e-1 ≈ 4.9087e-1
3 30 3.7656e-1 − 3.7812e-1 − 3.7439e-1 − 3.5886e-1 − 3.8176e-1 − 4.0141e-1
3 50 3.0937e-1 − 3.1345e-1 − 3.1180e-1 − 2.9888e-1 − 3.1908e-1 − 3.4313e-1
3 100 2.6244e-1 − 2.6372e-1 − 2.6508e-1 − 2.5690e-1 − 2.6649e-1 − 2.8947e-1
6 10 1.3650e-1 − 1.2884e-1 − 1.5393e-1 − 1.3621e-1 − 1.4958e-1 − 1.6255e-1
6 30 8.6283e-2 − 9.0531e-2 − 9.7552e-2 − 8.5424e-2 − 9.5488e-2 − 1.0769e-1
6 50 7.1818e-2 − 7.3563e-2 − 7.6816e-2 − 7.1977e-2 − 7.7745e-2 − 9.0388e-2
6 100 5.5199e-2 − 5.6119e-2 − 5.8226e-2 − 5.5397e-2 − 5.7436e-2 − 6.4471e-2
10 10 2.0454e-2 − 1.8063e-2 − 2.5091e-2 − 2.0404e-2 − 2.4330e-2 − 3.0166e-2
10 30 1.2022e-2 − 1.2203e-2 − 1.4670e-2 − 1.1735e-2 − 1.5785e-2 − 2.0091e-2
10 50 9.5727e-3 − 8.8091e-3 − 1.0851e-2 − 9.5608e-3 − 1.1064e-2 − 1.4016e-2
10 100 6.7511e-3 − 5.7011e-3 − 7.0844e-3 − 6.7602e-3 − 7.1847e-3 − 8.8641e-3
+/ − / ≈ 0/26/6 0/31/1 0/15/7 0/25/7 6/19/7
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Fig. 3. The median HV values FEs obtained by six algorithms on MOTSP and MPKP
over 30 independent runs.
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Table 3. The statistical results of the HV metric values obtained by six algorithms
with on MOKP test instances over 30 independent runs.

M D NSGA-II MOEA/D IBEA CPS-MOEA* K-RVEA* CREMO

2 30 5.3307e-1 − 5.0650e-1 − 5.3389e-1 − 5.2695e-1 − 5.2428e-1 − 5.4276e-1
2 50 4.8839e-1 − 4.6364e-1 − 4.8505e-1 − 4.7352e-1 − 4.2985e-1 − 4.9975e-1
2 100 4.6206e-1 − 4.3285e-1 − 4.6345e-1 − 4.4451e-1 − 3.9610e-1 − 4.7299e-1
2 250 4.2974e-1 − 4.0487e-1 − 4.2990e-1 − 4.1092e-1 − 3.5585e-1 − 4.4886e-1
3 30 2.7820e-1 ≈ 2.6751e-1 − 2.8256e-1 ≈ 2.7878e-1 ≈ 2.4964e-1 − 2.7966e-1
3 50 3.0380e-1 ≈ 2.9261e-1 − 3.0226e-1 − 2.9703e-1 − 2.6308e-1 − 3.0758e-1
3 100 2.6365e-1 − 2.6560e-1 − 2.6371e-1 − 2.5480e-1 − 2.1580e-1 − 2.7799e-1
3 250 2.5156e-1 − 2.5454e-1 − 2.5354e-1 − 2.3995e-1 − 2.0022e-1 − 2.6612e-1
6 30 5.5776e-2 ≈ 4.5850e-2 − 5.6856e-2 ≈ 5.5326e-2 − 4.7344e-2 − 5.7801e-2
6 50 5.3877e-2 − 4.8838e-2 − 5.4683e-2 − 5.1642e-2 − 4.3159e-2 − 5.6987e-2
6 100 5.5918e-2 − 5.4445e-2 − 5.8893e-2 − 5.5069e-2 − 5.0105e-2 − 6.1912e-2
6 250 4.5469e-2 − 4.4741e-2 − 4.6706e-2 ≈ 4.3712e-2 − 3.5716e-2 − 4.7343e-2
+/ − / ≈ 0/11/3 0/14/0 0/11/3 0/13/1 0/14/0
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Fig. 4. Nondominated solutions obtained by six algorithms in the run with median HV
value for MOTPS and MOKP over 30 independent runs.

5 Conclusion

In this paper, we presented a convolution relation model assisted evolution opti-
mization algorithm (CREMO), which can solve continuous and combinatorial
problems with limited fitness evaluations. It is an extension of REMO on combi-
natorial optimization problems and still performs well on continuous problems.
Specifically, in the data preparation stage, the REMO method divides the pop-
ulation into two sub-populations, and solutions are combined to construct rela-
tional data. We propose combining the features of two individuals according to
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the corresponding dimensions to form a relational feature map instead of con-
catenating from one end to another. This way, the model can capture solution
features in the same dimension and improve prediction accuracy. Two special
convolution kernels are used for feature extraction to learn relational features on
different data classes, be they real, permutation, or boolean vectors.

The performance of CREMO on DTLZ and MaF test suits proves that
CREMO performs well on continuous problems. Regarding problem scalabil-
ity, CREMO works fast over regression model-assisted methods. Experimental
studies are carried out on a set of problems from the MOTSP and MOKP test
suites for combinatorial optimization problems. Results show the high efficiency
of CREMO. Further, the proposed relation model can be embedded into other
MOEAs dedicated to solving combinatorial optimization to further improve the
algorithm’s efficiency.
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Abstract. For an efficient upconvert of the Pareto front resolution by
utilizing a known candidate solution set, this paper proposed an algo-
rithm that built the Pareto front and the Pareto set estimation models
and repeated to sample a solution from them, evaluate it, and updated
the estimation models with it. Conventional supervised multi-objective
optimization algorithm (SMOA) built the Pareto front and the Pareto
set estimation models with a known candidate solution set. SMOA sam-
pled a set of well-distributed estimated points and evaluated them to
upconvert the Pareto front resolution. However, depending on the distri-
bution of the known candidate solutions, we could not expect the accu-
racy of the estimation models and the estimated points from them. The
proposed method, the iterative SMOA (I-SMOA), gradually improved
the accuracy of the estimation models through their iterative update
with evaluated solutions. Experimental results on the DTLZ2 test prob-
lem showed that the proposed I-SMOA obtained solutions uniformly dis-
tributed more than the one by the conventional SMOA, and the proposed
I-SMOA achieved higher robustness on the initially given candidate solu-
tions.

Keywords: Pareto front estimation · Pareto set estimation · Solution
aggregation · Response surface methodology · Pareto front upconvert

1 Introduction

Real-world optimization problems often involve multiple objective functions as
conflicting concerns and require a high computational cost to evaluate each can-
didate solution. For these computationally expensive multi-objective optimiza-
tion problems, a demand approximating the Pareto front with a limited number
of objective function calls rises [1]. Also, it is not unusual that several candidate
solutions with high optimality are already known before the optimization. For
instance, they are products already developed and or released to the market. In
this situation, new solution generation utilizing the known candidate solutions
would be more efficient than a search from scratch, starting with randomized
solutions involving inferior ones.
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In evolutionary optimization, the known candidate solutions can be included
in the initial population as expert knowledge on the target problem, which is
often called the directed initialization [2]. An alternative way to utilize the known
candidate solutions was proposed as the supervised multi-objective optimization
algorithm (SMOA) [3]. SMOA employs the response surface methodology such
as Kriging [4], the radial basis neural network (RBNN) [5,6], etc., and builds the
estimation models of the Pareto front and Pareto set with the known candidate
solutions. SMOA samples a set of estimated objective vectors from the estimated
Pareto front and evaluates their estimated variable vectors on the estimated
Pareto set. As a result, the evaluated true objective vectors upconvert the Pareto
front resolution efficiently. The upconvert quality of the Pareto front with this
approach depends on the known candidate solution set, which is also called the
training data. It is important to build accurate estimation models of the Pareto
front and Pareto set as possible, even if the number of the known candidate
solutions is small or they do not fully cover the Pareto front.

To improve the upconvert quality of the Pareto front resolution by utilizing
the known candidate solutions, in this work, we propose a variant of SMOA,
iterative SMOA (I-SMOA). The proposed I-SMOA builds the estimation models
of the Pareto front and Pareto set as with the conventional SMOA. The proposed
I-SMOA repeats to sample a single pair of estimated objective and variable vec-
tors from the estimation models, evaluate it, and update the estimation models
with it. The proposed I-SMOA continuously improves the quality of the estima-
tion models through one-by-one solution evaluation and the update with it. We
expect to improve the upconvert quality of the Pareto front and the robustness
against various known candidate solutions. We verify the effects of the proposed
I-SMOA on the DTLZ2 test problem [7] by comparing it to the conventional
SMOA.

2 Multi-objective Optimization

For given variable space X , variable vector x ∈ X , and objective functions fi
(i = 1, 2, . . . ,m), a multi-objective optimization problem is defined as

Minimize f(x) = (f1(x), f2(x), . . . , fm(x)). (1)

For two solutions x,y ∈ X , x dominates y (x � y) iff ∀i ∈ {1, 2, . . . ,m} :
fi(x) ≤ fi(y) and ∃i ∈ {1, 2, . . . ,m} : fi(x) < fi(y). The goal of multi-objective
optimization is to find the Pareto optimal solutions, the Pareto set, Ps = {x ∈
X | �y ∈ X : y � x}, which are non-dominated solutions in the variable space
X . The Pareto front Pf = {f(x) | x ∈ Ps} is the objective vector set of Pareto
set Ps, which represents the optimal trade-off among objectives.

The larger number of well-distributed objective vectors of non-dominated
solutions, the higher resolution of the Pareto front. However, we generally
approximate the Pareto front with a limited number of objective vectors obtained
by a search. Especially in problems with computationally expensive objective
functions, we need to suppress the number of solutions to be evaluated.
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3 Pareto Front and Pareto Set Estimation

3.1 Overview

Pareto front estimation estimates objective value change between known objec-
tive vectors in the objective space [8–11]. The estimated Pareto front is an
upconverted high-resolution representation of the known objective vector set.
The estimated Pareto front suggests objective value change even where objective
vectors are unknown. It helps the decision-making and even the search [12–14].
Similarly, it has also been studied that the Pareto set estimation that suggests
variable values change of the Pareto set in the variable space [15].

This work picks the L1 unit hyperplane-based estimation [10] for both the
Pareto front estimation and the Pareto set estimation. The L1 unit hyperplane-
based estimation is a solution aggregation methodology that converts a set of
solutions into a model.

3.2 Pareto Front Estimation

We suppose to have a known candidate solution set P, which are all evaluated
and promising. Each in P is represented as (f ,x), which is a pair of objective
vector f and its corresponding variable vector x, i.e., f is f(x). The known set
can be represented like P = {(f1,x1), (f2,x2), . . . }.

The L1 unit hyperplane-based method [10] converts objective vector f of each
known (f ,x) ∈ P into L1 norm n =

∑m
i=1 fi and L1 unit vector e = f/n. The L1

unit vector e represents the direction of objective vector f in the objective space.
The L1 norm n represents the distance to objective vector f in the direction e.
This method trains an estimation model, f -model, by pairs of L1 unit vector e
as input and L1 norm n as output in the known set P. As the estimation model,
this work employs Kriging [4] and RBNN [5,6]. The trained f -model can output
estimated norm n̂ by inputting any L1 unit vector e, and estimated objective
vector f̂ (= n̂ · e) can be obtained. That is, for any specified direction e, the
trained f -model outputs the estimated distance n̂ to promising objective vector
f̂ . We input a large set of uniformly distributed L1 unit vectors E = {e1,e2, . . . }
covering all over directions in the objective space to the trained f -model and
obtain their estimated L1 norms {n̂1, n̂2, . . . } and estimated objective vectors
{f̂1(= n̂1 · e1), f̂2(= n̂2 · e2), . . . }, which are the estimated Pareto front.

3.3 Pareto Set Estimation

We can estimate the Pareto set in the variable space similarly. For d dimensional
variable space, we train d estimation models. For each variable element xi (i =
1, 2, . . . , d), we train an estimation model, xi-model, by pairs of L1 unit vector
e as input and variable value xi as output in the known set P. The trained
xi-model can output estimated variable value x̂i by inputting any L1 unit vector
e. That is, the estimated variable vector x̂ = (x̂1, x̂2, . . . , x̂d) can be obtained by
inputting L1 unit vector e to d kinds of xi-models (i = 1, 2, . . . , d). We input a
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Fig. 1. Conventional SMOA [3] (Color figure online)

large set of uniformly distributed L1 unit vectors E = {e1,e2, . . . } covering all
over directions in the objective space to the trained xi-models (i = 1, 2, . . . , d)
and obtain the estimated variable vectors {x̂1, x̂2, . . . }, which are the estimated
Pareto set.

3.4 Estimated Set

For given known set P with L1 unit vector set E = {e1,e2, . . . }, the Pareto front
estimation outputs the estimated objective vectors {f̂1, f̂2, . . . } and the Pareto
set estimation outputs the estimated variable vectors {x1,x2, . . . }. As a result,
the estimated set is represented as P̂ = {(f̂1, x̂1), (f̂2, x̂2), . . . }.

4 Conventional SMOA

The conventional SMOA samples and evaluates solutions by using the estimated
Pareto front and the estimated Pareto set to upconvert the Pareto front res-
olution. Figure 1 shows a conceptual figure with m = 3 objectives and d = 3
variables, and Algorithm1 shows a pseudo-code. The whole process is divided
into (1) Estimation modeling, (2) Estimation, (3) Sampling, and (4) Evaluation.

The input of SMOA is a known set P = {(f1,x1), (f2,x2), . . . }. In (1)
Estimation modeling process, we train the Pareto front estimation model, f -
model, and the Pareto set estimation model, xi-models (i = 1, 2, . . . , d), with
the known set P according to the procedure described in the previous section.
Figure 1 shows a case with |P| = 10 known candidate solutions with red points. In
(2) Estimation process, we obtain the estimated set P̂ = {(f̂1, x̂1), (f̂2, x̂2), . . . }
by inputting a large set of L1 unit vectors E = {e1,e2, . . . } to the Pareto front
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Algorithm 1 SMOA [3]
Require: Known candidate solutions (training data) P = {(f 1,x1), (f 2,x2), . . . }, L1

unit vector set E = {e1, e2, . . . }, size of upconvert solution set N
Ensure: Upscaled solution set P

(1) Estimation Modeling
1: f -model ← Train Pareto front estimation model (P)
2: for i ← 1, 2, . . . , d do
3: xi-model ← Train Pareto set estimation model (P)
4: end for

(2) Estimation
5: P̂ ← ∅ � Estimated pair set of objective and variable vectors
6: for all e ∈ E do
7: f̂ ← f -model (e) � An estimation point on Pareto front for direction e
8: for i ← 1, 2, . . . , d do � An estimation point on Pareto set for direction e
9: x̂i ← xi-model (e)

10: end for
11: P̂ ← P̂ ∪ {(f̂ , x̂ = (x̂1, x̂2, . . . , x̂d))}
12: end for

(3) Sampling
13: Q ← ∅ � Sampled pair set, Q ⊆ P̂
14: while |Q| ≤ N do � Sample N pairs

15: (f̂ , x̂) ← arg max
(f̂ ,x̂)∈P̂

min
(f ,x)∈P∪Q

√∑m
j=1(f̂j − fj)2

16: Q ← Q ∪ {(f̂ , x̂)}, P̂ ← P̂\{(f̂ , x̂)}
17: end while

(4) Evaluation
18: for all (f̂ , x̂) ∈ Q do
19: f ← Evaluate (x̂) � Calls m objective functions on estimated x̂
20: P ← P ∪ {(f , x̂)}
21: end for
22: returnP

estimation f -model and the Pareto set estimation xi-models (i = 1, 2, . . . , d).
In Fig. 1, each estimated objective vector f̂ and estimated variable vector x̂ are
respectively plotted as a small gray dot. In (3) Sampling process, we select N
pairs of estimated objective and variable vectors as the sampled set Q from the
estimated set P̂, i.e., Q ⊆ P̂. This selection focuses only on the objective space
and samples well-distributed N points as the sampled set Q. For estimated
objective vector f̂ of each estimated pair (f̂ , x̂) ∈ P̂, we find the minimum
distance to the known objective vectors in the known set P and the already
sampled set Q. We then take the estimated pair (f̂ , x̂) ∈ P̂ with the maximum
distance from the estimated set P̂ and add it to the sampled set Q. We repeat the
above N times. In (4) Evaluation process, we evaluate, call objective functions
fi (i = 1, 2, . . . ,m), on estimated x̂ of each sampled pair (f̂ , x̂) ∈ Q and add the
obtained (f , x̂) to the known set P. In this way, the known set P is upconverted.
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Fig. 2. Proposed iterative SMOA (I-SMOA) (Color figure online)

The conventional SMOA generates the estimation models once and samples
N solutions all at once based on their estimation models. If the accuracy of the
estimation models is low, the sampled points and the true evaluated points in
the objective space are distanced. As a result, the approximation quality of the
upconverted Pareto front cannot be expected.

5 Proposal: Iterative SMOA (I-SMOA)

In this work, we propose an iterative SMOA (I-SMOA) that repeats a single
solution sampling, its evaluation, and estimation model update with the newly
evaluated solution. The iteration gradually improves the accuracy of the estima-
tion models and the sampling quality. Figure 2 shows a conceptual figure, and
Algorithm2 shows a pseudo-code. The proposed I-SMOA also involves (1) Esti-
mation modeling, (2) Estimation, (3) Sampling, and (4) Evaluation processes.
Differences from the conventional SMOA shown in Fig. 1 and Algorithm1 are
highlighted in blue. The differences are sampling size in (3) Sampling process
and iterative executions of (1)–(4) processes.

In the proposed I-SMOA, the iterative loop in 1–17 lines of Algorithm 2
internally has (1)–(4) processes, which are respectively executed once in the
conventional SMOA shown in Algorithm1. The iteration is depicted as the blue
arrow in the bottom of Fig. 2. In the proposed I-SMOA, (1) Estimation modeling
and (2) Estimation processes are the same as the conventional SMOA. In (3)
Sampling of the proposed I-SMOA, we select a single estimated pair (f̂ , x̂) ∈ P̂
with the maximum distance to the nearest known set P in the objective space.
In (4) Evaluation process, we evaluate the selected estimated pair (f̂ , x̂) and add
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Algorithm 2 Proposed Iterative SMOA
Require: Known candidate solutions (training data) P = {(f 1,x1), (f 2,x2), . . . }, L1

unit vector set E = {e1, e2, . . . }, size of upconvert solution set N

Ensure: Upscaled solution set P
1: loop N times

(1) Estimation Modeling
2: f -model ← Train Pareto front estimation model (P)

3: for i ← 1, 2, . . . , d do
4: xi-model ← Train Pareto set estimation model (P)

5: end for
(2) Estimation

6: P̂ ← ∅ � Estimated pair set of objective and variable vectors
7: for all e ∈ E do
8: f̂ ← f -model (e) � An estimation point on Pareto front for direction e

9: for i ← 1, 2, . . . , d do � An estimation point on Pareto set for direction e

10: x̂i ← xi-model (e)
11: end for
12: P̂ ← P̂ ∪ {(f̂ , x̂ = (x̂1, x̂2, . . . , x̂d))}
13: end for

(3) Sampling

14: (f̂ , x̂) ← arg max
(f̂ ,x̂)∈P̂

min
(f ,x)∈P

√∑m
j=1(f̂j − fj)2 � Sample a single pair

(4) Evaluation
15: f ← Evaluate (x̂) � Calls m objective functions on estimated x̂

16: P ← P ∪ {(f , x̂)}
17: end loop
18: returnP

the obtained pair (f , x̂) to the known set P. We then go back to (1) Estimation
modeling.

In this way, the proposed I-SMOA repeats to sample and evaluate a single
solution while updating the estimation models with the evaluated result, the
pair of the true objective vector and the examined variable vector. During the
iteration, we expect the accuracy improvement of the estimation models and
sampling quality minimizing the distance between the estimated objective vector
f̂ and the true evaluated one f . On the other hand, the iterative estimation
modelings cost computationally. The proposed I-SMOA has suited to problems
in that the computational cost of evaluations is much larger than the one of the
iterative estimation modelings.
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6 Experimental Settings

We used the DTLZ2 test problem [7] with m = 3 objectives and d = 12 variables.
For the known candidate solutions P, we first generated ten points on the unit
plane by using two ways, which are the incremental lattice design (ILD) [16]
and the uniform design using the Hammersley method (UDH) [17]. ILD and
UDH provide different types of point distributions, respectively. We assumed
two types of training data with them. We mapped the ten points to the Pareto
front of DTLZ2 and employed the mapped ten points as the known objective
vectors. Their variable vectors were calculated inversely, while using the DTLZ2
characteristic that all Pareto optimal solutions have xi = 0.5 (i = 3, 4, . . . , 12).

We compare the conventional SMOA [3] and the proposed I-SMOA. As the
response surface methodology, we employed Kriging [18] and RBNN [19] in this
work. In both SMOAs, as the large L1 unit vector set E , we used uniformly
distributed 26,335 L1 unit vectors generated by ILD [16]. The upconvert size is
set to N = 150, and the size of the output solution set becomes |P|+N = 10+
150 = 160. That is, 10 solutions are upconverted to 160 solutions with N = 150
function evaluations. Since the two algorithms are deterministic methods without
random numbers, each algorithm ran once.

To evaluate the finally obtained solutions, we used Hypervolume (HV ) [20]
and IGD [21]. We utilized the PlatEMO implementation [22]. For HV , we first
divided all objective vectors by 1.1 and then calculated HV of the divided ones
and the reference point (1.0, 1.0, 1.0). The higher HV , the better the Pareto front
approximation. For IGD, we employed 9,870 reference points, which are mapped
ones of points generated by the simplex-lattice design. For IGD, we employed
9,870 reference points, which are mapped ones of uniformly distributed points
generated by the simplex-lattice design [23]. The lower IGD, the better the
Pareto front approximation.

7 Experimental Results and Discussion

7.1 Obtained Upconverted Solution Set

Figure 3 shows finally obtained solutions when we input the known candidate
solutions, the training data, generated by ILD. 10 red points are known can-
didate solutions. 150 gray points are generated solutions by the conventional
SMOA and the proposed I-SMOA, respectively. The upper four figures are m = 3
dimensional objective spaces. The lower four figures are x1 − x2 variable spaces.
The DTLZ2 problem used in this work also has variables xi (i = 3, 4, . . . , 12).
Since the optimal values of them are xi = 0.5 (i = 3, 4, . . . , 12) due to the prob-
lem characteristic and obtained values are also the same, this figures only show
the x1 − x2 variable space. Note that any point on the x1 − x2 variable space is
the Pareto optimal in DTLZ2.

These results show that all four algorithms obtain solutions with high uni-
formity in the objective space. If we generate gray solutions in other ways as
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(a) SMOA(RBNN)
HV=0.5699,
IGD=0.04108

(b) SMOA(Kriging)
HV=0.5700,
IGD=0.04071

(c) I-SMOA(RBNN)
HV=0.5730,
IGD=0.03986

(d) I-SMOA(Kriging)
HV=0.5726,
IGD=0.03990

Fig. 3. ILD-based known solutions in red and upscaled solutions in gray (Color figure
online)

mutations or perturbations based on random numbers for the upconvert, domi-
nated solutions with xi �= 0.5 (i = 3, 4, . . . , 12) are generated, and solutions with
low uniformity are generated [3]. On the other hand, we see SMOA and I-SMOA
without the random factor obtain Pareto optimal solutions with high uniformity.

Next, we focus around f3 = 1 in the objective space. In the case of the
conventional SMOA, we see some upconverted solution circles in gray overlap,
and the area is crowded with solutions. The absence of solutions in the upper
right (x1, x2) = (1, 1) and lower right (x1, x2) = (1, 0) corners in the variable
space is related to the solution distribution around f3 = 1 in the objective
space. On the other hand, in the case of the proposed I-SMOA, the distribution
uniformity of solutions around f3 = 1 in the objective space is higher than
the one of the conventional SMOA. Also, in the variable space, the proposed
I-SMOA obtained solutions near the upper and lower right corners. From the
variable space, we see only two red points are known in the range x1 > 0.5, and
the two points commonly have x2 = 0.5. The conventional SMOA trains the
estimation models just once. The trained Pareto set estimation model could not
estimate around the upper right (x1, x2) = (1, 1) and lower right (x1, x2) = (1, 0)
corners in the variable space as the Pareto set since these areas are far from the
known training data. On the other hand, the proposed I-SMOA could estimate
near these areas as the Pareto set since the estimation models are iteratively
updated.

Figure 4 shows finally obtained solutions when we input the known candidate
solutions, the training data, generated by UDH. We see the two distributions of
the known red point sets respectively by ILD in Fig. 3 and UDH in Fig. 4 are
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(a) SMOA(RBNN)
HV=0.5570,
IGD=0.04429

(b) SMOA(Kriging)
HV=0.5479,
IGD=0.04425

(c) I-SMOA(RBNN)
HV=0.5714,
IGD=0.04076

(d) I-SMOA(Kriging)
HV=0.5705,
IGD=0.04050

Fig. 4. UDH-based known solutions in red and upscaled solutions in gray (Color figure
online)

different. In the case of ILD, 6 out of 10 points are on the edge of the Pareto
front in the objective space. On the other hand, in the case of UDH, no points
are on the edge of the Pareto front in the objective space.

Figure 4 show that the conventional SMOA faces difficulty in approximating
the edge of the Pareto front. In other words, the conventional SMOA has diffi-
culty generating solutions outside the known set in the objective space. On the
other hand, the proposed I-SMOA is better than the conventional SMOA in the
edge representation of the Pareto front. I-SMOA with RBNN provides some over-
lapped gray circles, but I-SMOA with Kriging provides non-overlapped points.

Figure 3 and Fig. 4 involve HV and IGD values in each caption. We see that
results with UDH are worse than the ones with ILD in all four algorithms. That
is, the Pareto front upconvert depends on the known solutions, the training data,
and the UDH-based data is a more hard task than the ILD-based data. Also, we
see the proposed I-SMOAs achieve better HV and IGD than the conventional
SMOAs in both training data. The differences in metrics values between the two
training data suggest that the proposed I-SMOA’s dependency on the training
data is lower than the conventional SMOA’s one. That is, the proposed I-SMOA
has robustness against the known training data compared with the conventional
SMOA. Since the proposed I-SMOA iteratively updates the estimation models,
the influence of the initial known training data can be decreased.
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(a) |P|=10
(Original set)

(b) |P|=11
(1st iteration)

(c) |P|=12
(2nd iteration)

(d) |P|=13
(3rd iteration)

(e) |P|=14
(4th iteration)

Fig. 5. Iterative insertion process of the Proposed I-SMOA (Color figure online)

7.2 Transition of Iterative Solution Insertion in I-SMOA

We focus on the proposed I-SMOA with Kriging shown in Fig. 4(d) and
observe its algorithmic behavior. Figure 5 shows iterative solution insertion steps.
Figure 5(a) only shows the known red solutions, Fig. 5(b) involves one gray solu-
tion inserted at the 1st iteration, Fig. 5(c) involves one more solution inserted
at the 2nd iteration, and so on. In each figure, the estimated set is also plotted
as very small dots with a color gradient. The color represents the minimum dis-
tance to the known set P. The distance increases from blue to yellow. The most
yellow estimated point in the objective space is sampled and evaluated in the
proposed I-SMOA.

In Fig. 5(a) with P = 10, two estimated sets of the conventional SMOA and
the proposed I-SMOA are the same. The conventional SMOA and the proposed I-
SMOA sample N = 150 estimated points. In the case of the conventional SMOA,
the distance relation is changed based on the estimated values after every single
point selection. On the other hand, the distance relation is changed based on the
true values after every single point selection since the point is evaluated soon
after the selection.

From Fig. 5(a) with P = 10, we see the accuracy of the estimated Pareto front
on edge is not enough in the objective space. It is desired to cover all x1 − x2

space in the variable space with colored small dots. However, the cover area with
P = 10 is not enough. Especially around the upper right (x1, x2) = (1, 1) and the
lower right (x1, x2) = (1, 0) areas are far from the known points and recognized
as the non Pareto set areas.

From the variable spaces shown in Fig. 5(a)–(d), we see the area covered by
the colored estimated points is gradually expanded by adding new sampled and
evaluated solutions. When the diversity of the known set is low, the expansion
of the estimated area is needed to obtain widely distributed solutions.
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8 Conclusions

To improve the upconvert quality of the Pareto front by utilizing the known
candidate solutions, in this work, we proposed the iterative SMOA (I-SMOA),
which iteratively repeated to sample a single promising solution, evaluate it,
and update the estimation models with it. Experimental results using the DTLZ2
test problem with ten known candidate solutions, the training data, showed that
the proposed I-SMOA achieved higher approximation performance of the Pareto
front than the conventional SMOA. Also, the proposed I-SMOA obtained widely
distributed solutions compared with the conventional SMOA in the objective
space. The proposed I-SMOA also showed higher robustness against the initial
known solutions, the training data, than the conventional SMOA.

In future works, we will verify the effectiveness of the proposed I-SMOA on
problems with more than three objectives, a variety of Pareto front shapes, and
complex variable relations. Also, we will compare the Pareto front approxima-
tion quality of the proposed I-SMOA with other efficient search methodologies,
including the inversing model-based approach [24,25].
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Abstract. Various surrogate-based multiobjective evolutionary algori-
thms (MOEAs) have been proposed to solve expensive multiobjective
optimization problems (MOPs). However, these algorithms are usually
examined on test suites with unrealistically simple Pareto sets (e.g.,
ZDT and DTLZ test suites). Real-world MOPs usually have complicated
Pareto sets, such as a vehicle dynamic design problem and a power plant
design optimization problem. Such MOPs are challenging to construct
reliable surrogates for surrogate-based MOEAs. Constructed surrogates
with low accuracy are likely to make incorrect predictions and even mis-
lead the search direction. In this paper, we propose an improved fuzzy
classifier-based MOEA by leveraging the accuracy information of the
classifier. The proposed algorithm is compared with five state-of-the-
art algorithms on two well-known test suites with complicated Pareto
sets and four real-world problems. Experimental results demonstrate the
effectiveness of the proposed algorithm in solving realistic MOPs with
complicated Pareto sets when only a limited number of function evalua-
tions are available.

Keywords: Expensive multiobjective optimization · Evolutionary
algorithms · Fuzzy classifier · Surrogate models · Complicated Pareto
set

1 Introduction

Engineering optimization problems usually have two or more conflicting objec-
tives, known as multiobjective optimization problems (MOPs) [5,16] that
need to be optimized simultaneously. A number of multiobjective evolution-
ary algorithms (MOEAs) have been proposed to solve MOPs [45]. Typically,
MOEAs can be classified into three categories: dominance-based MOEAs [9,47],
indicator-based MOEAs [2,33,46], and decomposition-based MOEAs [27,42].
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These MOEAs usually evaluate the quality of solutions based on the evaluated
objective function values and require a large number of function evaluations
(FEs) [23,33]. However, FEs are usually computationally expensive in engineer-
ing MOPs where the evaluation of a solution requires physical simulations that
consume a large amount of time or resources [5]. The available number of FEs
is usually limited for solving these expensive MOPs.

Several methods have been proposed for solving expensive MOPs. One of the
most efficient methods is surrogate-based MOEAs [4,8,17]. Generally, surrogate-
based MOEAs use computationally cheap surrogate models to replace the orig-
inal objective functions or fitness functions to evaluate the quality of solutions.
These surrogate-based MOEAs can be classified into two categories depending
on the types of surrogate models: regression-based MOEAs [8,17,24,30] and
classification-based MOEAs [26,29,41].

– Regression-based MOEAs use regression models to approximate the original
objective functions or fitness functions of MOPs. The constructed models are
used to evaluate the quality of solutions. Generally, the number of constructed
models is the same as the number of objective functions, with one model for
each objective function [3,21,43]. Therefore, the time consumption of model
construction is high, and this consumption will increase with the increase in
the number of objectives. Some algorithms have been proposed to reduce the
number of constructed regression models [8,12].

– Classification-based MOEAs use classifiers to model the relation among solu-
tions, e.g., the Pareto dominance relation among solutions. These classifiers
are used to select promising solutions for subsequent optimization procedures.
Since classification-based MOEAs usually build one classifier to model the
relation among solutions, the number of constructed models is smaller than
that in the regression-based methods.

However, these surrogate-based algorithms have usually been examined on
test suites with simple Pareto sets. In Table 1, we summarize some typical
surrogate-based MOEAs and the test suites used in their experimental stud-
ies. We can see that ZDT [7], DTLZ [11] and WFG [14] test suites are com-
monly used to examine the performance of surrogate-based MOEAs. However,
the Pareto sets (PSs) of most of these test problems are linear and parallel to
coordinate axes, which are simple and unrealistic [22,23]. Real-world MOPs, such
as a vehicle dynamic design problem [19] and a power plant design optimization
problem [13], usually have complicated PSs [10,15,23,28] due to the linkages
between variables [10,28] and the nonlinear shape of PSs [23]. It is worth noting
that real-world MOPs with complicated PSs are challenging to construct reli-
able surrogates for surrogate-based MOEAs. Constructed surrogates with low
accuracy are likely to make incorrect predictions and even mislead the search
direction. Although the accuracy of the surrogates can be measured during model
construction, it is rarely used as an indicator to guide the search.

In this paper, we improve our previous work [39] and propose an improved
fuzzy classifier-based multiobjective evolutionary algorithm (IFCS-MOEA) by
leveraging the accuracy information of the classifier. A novel sorting mechanism
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Table 1. Typical surrogate-based MOEAs and the test suites used in their experimen-
tal studies.

Algorithm Year Test suites

Regression-based MOEAs ParEGO [21] 2006 KNO1 [21], OKA [28], VLMOP [35],

ZDT [7], DTLZ [11]

MOEA/D-EGO [3] 2010 KNO1 [21], VLMOP2 [35], ZDT [7],

LZ [23], DTLZ [11]

K-RVEA [3] 2018 DTLZ [11], WFG [14]

KTA2 [30] 2021 DTLZ [11], WFG [14]

EDN-ARMOEA [12] 2022 DTLZ [11], WFG [14]

Classification-based MOEAs CSEA [29] 2019 DTLZ [11], WFG [14]

θ-DEA-DP [36] 2022 DTLZ [11], WFG [14]

MCEA/D [31] 2022 DTLZ [11], WFG [14]

is proposed to consider the membership degree of each solution and the accu-
racy of the classifier simultaneously. The proposed algorithm is compared with
five state-of-the-art surrogate-based algorithms on two well-known test suites
with complicated PSs and four real-world optimization problems to show its
superiority in dealing with realistic expensive MOPs.

The rest of this paper is organized as follows. Section 2 presents related work
to this paper. Section 3 presents the proposed IFCS-MOEA framework in detail.
Section 4 examines the effectiveness of the proposed framework and compares it
with five state-of-the-art algorithms. Section 5 concludes this paper.

2 Related Work

2.1 Multiobjective Optimization Problems

Typically, an MOP can be expressed as follows:

Minimize F (x) = (f1(x), · · · , fM (x))T,
subject to x ∈ Ω ⊂ Rn,

(1)

where x is an n-dimensional decision vector, Ω is the decision space, F (x) is an
M -dimensional objective vector, and fi(x), i = 1, . . . ,M is the i-th objective
function.

Since the objective functions in Eq. (1) are usually in conflict with each other,
it is impossible to find a single optimal solution that can optimize all objective
functions simultaneously. Therefore, Pareto optimal solutions are defined. Let
u and v be two solutions to Eq. (1). u is said to dominate v, if fi(u) ≤ fi(v)
for i = 1, . . . , M and fj(u) < fj(v) for at least one j ∈ {1, . . . , M}. Solution
u is regarded as a Pareto optimal solution if there does not exist any solution
that dominates u. The Pareto set (PS) is defined as the set of all Pareto optimal
solutions. The Pareto front (PF) is defined as the image of the PS in the objective
space.
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2.2 Surrogate-Based MOEAs

Regression models are widely used in surrogate-based MOEAs to approximated
the objective functions of MOPs. Knowles [21] proposed to use an efficient global
optimization (EGO) algorithm [18] to solve expensive MOPs. The proposed algo-
rithm constructed a Gaussian process model to mimic the landscape of MOPs.
Zhang et al. [43] combined the EGO algorithm with MOEA/D to solve expen-
sive MOPs. The proposed algorithm constructed a Gaussian model to mimic
the landscape of each decomposed subproblem of an MOP. Chugh et al. [3] com-
bined the Kriging model with a reference vector guided evolutionary algorithm to
solve expensive MOPs. The proposed algorithm constructed each Kriging model
to mimic each objective function of an MOP. Song et al. [30] combined the
Kriging model with a two-archive evolutionary algorithm. The proposed method
constructed each Kriging model to approximate each objective function of an
MOP.

Generally, solutions in a population in MOEAs can be divided into two cat-
egories: non-dominated solutions and dominated solutions, based on the Pareto
dominance relation among them. Therefore, classifiers can be built to mimic
this relation among solutions and can be used to select promising solutions.
Loshchilov et al. [26] combined a classifier with a regression model to predict the
dominance relation between a new solution and the existing non-dominated solu-
tions. Bandaru et al. [1] applied multi-class classifiers to mimic the dominance
relation between each pair of solutions. Zhang et al. [40,41] employed classifiers
to model the dominance relation among solutions and to pre-select promising
offspring solutions. Lin et al. [25] used a classifier to pre-select promising off-
spring solutions, thereby reducing the required number of FEs of MOEA/D.
Pan et al. [29] applied a classifier to predict the dominance relation between a
new solution and the reference solutions. Zhang et al. [38,39] employed a fuzzy
classifier to assist environmental selection of MOEAs. Class labels and mem-
bership degrees were used to select promising offspring solutions for function
evaluations. Yuan et al. [36] proposed to use two feedforward neural network
models for solving expensive MOPs. One model was used to predict the Pareto
dominance relation between solutions, and another model was built to predict
the θ-dominance relation among solutions. Sonoda et al. [31] proposed to use
multiple classifiers for solving high-dimensional expensive MOPs. Each classifier
was constructed for each subproblem in the MOEA/D-DE algorithm. Zhang et
al. [37] proposed a dual fuzzy-classifier-based surrogate model. One fuzzy classi-
fier was constructed to learn the Pareto dominance relation among solutions, and
another fuzzy classifier was constructed to learn the crowdedness of solutions.

3 Our Proposed Algorithm

This section presents the details of our improved fuzzy classifier-based MOEA
(IFCS-MOEA) framework. IFCS-MOEA is proposed by using an improved fuzzy
classifier-based surrogate model (IFCS). The IFCS model is constructed for
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sorting unevaluated solutions. First, Sect. 3.1 presents the general framework
of IFCS-MOEA. Then, Sect. 3.2 describes IFCS-based sorting strategy in detail.

Algorithm 1: Framework of IFCS-MOEA

1 Initialize the population P = {x1, x2, · · · , xN}, and evaluate the solutions in P ;
2 Set Arc = P ;
3 while termination condition is not satisfied do
4 Set A+ = Non-dominated Selection(Arc) and A− = Arc\A+;
5 Construct a classifier [l, md+] = fuzzy classifier construction(x) by

using A+ and A−;
6 Validate the accuracy of the classifier Accuracy = k-fold(Arc);
7 Set Qp = ∅;
8 Mating P = P ;
9 while w < wmax do

10 Generate 2N offspring solutions Q = {y1, · · · , y2N} by using Mating P ;
11 Sort the offspring solutions Q = IFCS Sorting(Q, Accuracy);
12 Select the top N solutions Qtop from Q;
13 Qp = Qp ∪ Qtop;
14 Mating P = Qtop;
15 w = w + 1;
16 end
17 Sort all solutions in Qp by Qp = IFCS Sorting(Qp, Accuracy);
18 Select the top η solutions Qeval from Qp and evaluate them;
19 Arc = Arc ∪ Qeval;
20 P = Environmental Selection(Arc, N);
21 end

3.1 Algorithm Framework

The framework of the proposed IFCS-MOEA is presented in Algorithm 1. It is
composed of four main procedures as follows.

– Initialization: N solutions are initialized and evaluated in Line 1. All the
evaluated solutions are collected in Arc in Line 2.

– Fuzzy classifier construction: All the solutions in the archive are used as train-
ing data to construct a fuzzy classifier. The Pareto dominance relation is used
to define two classes of the training data in Line 4. The non-dominated solu-
tions are positive, and the dominated solutions are negative. A fuzzy classifier
is constructed in Line 5. This paper uses a Fuzzy-KNN classifier [20] to con-
struct the IFCS model. The fuzzy-KNN uses fuzzy similarity to predict the
class of each solution. When a fuzzy classifier is used to predict the quality
of a new solution, the class label l of the new solution and the membership
degree to each class are obtained. A membership degree indicates the degree
to the class which a new solution belongs to. A new solution’s membership
degree is calculated based on its K nearest neighbor’s membership degrees.
In this paper, we use the classifier to deal with the two-class problem. The
membership degree md+ in Line 5 is only for the positive class while the
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membership degree for the negative class is 1 − md+. md+ = 0.5 is used as
the classification boundary. If md+ ≥ 0.5, the solution is labeled as positive,
otherwise it is negative. The k-fold cross-validation method is applied to vali-
date the effectiveness of the classifier in Line 6. The accuracy of the classifier
is obtained.

– Offspring generation: 2N offspring solutions are generated by using the mat-
ing population in Line 10. Next, the IFCS model is applied to sort the 2N
offspring solutions in Line 11. The top N promising offspring solutions are
selected and stored in Line 12. Then, these selected solutions are used as
mating solutions to generate new offspring solutions. This offspring genera-
tion process is repeated wmax times.

– New population generation: The IFCS model is used to sort all selected
wmax × N offspring solutions in Line 17. The top η solutions are selected
and evaluated by the objective functions in Line 18. The archive is updated
by using the newly evaluated solutions in Line 19. Finally, the environmental
selection mechanism of an MOEA is used to select N solutions from Arc to
form the new population for the next generation in Line 20.

3.2 IFCS-Based Sorting

After the fuzzy classifier is constructed, the k-fold cross-validation method is
used to measure the reliability of the classifier. The mean accuracy (Accuracy)
of the classifier is obtained after the validation. In our algorithm framework, we
use k = 10 for experiments.

As mentioned in Sect. 3.1, for a solution, if its membership degree with respect
to the positive class is md+ ≥ 0.5, the solution is classified as a positive solution
by the classifier with small uncertainty. When the 0 ≤ md+ < 0.5, the solution is
classified as a negative solution with small uncertainty. When the md+ value is
close to 0.5, the classification result has a large uncertainty in the class prediction.

Based on the above considerations, we propose an IFCS-based sorting strat-
egy to sort solutions based on the model accuracy and membership degrees.
The details of the proposed IFCS-based sorting strategy are presented in Algo-
rithm 2. The constructed fuzzy classifier is used to predict the label l and the
membership degree md+ (with respect to the positive class) of each solution in
Q (Line 1). These solutions are ranked in different manners according to the
accuracy of the classifier and the membership degree to the positive class.

Figure 1 plots the accuracy of the fuzzy classifier at each generation through
the execution of IFCS-MOEA/D-DE on UF8 and LZ5 test problems with the
median IGD values over 21 runs. The two figures show that the accuracy of
the model is low at the beginning of optimization. The accuracy will increase
along with the increase of generations. The reason is that since the size of the
training data set is small in early generations, the model constructed by using
these data cannot approach the true relation among solutions and is hard to
make correct predictions. After several generations, the size of the training data
set increases, the model can approach the true relation among solutions and the
accuracy of the prediction increases. For this reason, we consider the following
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Algorithm 2: Q = IFCS Sorting(Q, Accuracy)

1 Predict the label and membership degree of each solution in Q by
[l, md+] = fuzzy classifier prediction(y);

2 if Accuracy ≥ 70% then
3 Sort solutions in Q with respect to their membership degrees in descending

order;
4 else if 30% ≤ Accuracy < 70% then
5 Qp = {y ∈ Q|l = 1};
6 Qn = {y ∈ Q|l �= 1};
7 Sort solutions in Qp with respect to their membership degrees in ascending

order;
8 Sort solutions in Qn with respect to their membership degrees in descending

order;
9 Q = Qp ∪ Qn, the solutions in Qp are ranked before the solutions in Qn;

10 else
11 Sort solutions in Q with respect to their membership degrees in ascending

order;
12 end

three cases according to the model accuracy. We specify the threshold values as
30% and 70% since the accuracy of the model is usually larger than 70% in our
experiments as shown in Fig. 1.
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Fig. 1. The accuracy versus generation obtained by IFCS-MOEA/D-DE on UF8 and
LZ5 with the median IGD values over 21 runs.

– Accuracy ≥ 70%: The unevaluated solutions are ranked in descending order
with respect to md+ values. This is because the model accuracy is high and
we can trust the predictions of the classifier.

– 30% ≤ Accuracy < 70%: First, positive solutions are ranked in ascending
order with respect to md+ values. This is because the model is more uncertain
for the prediction of a solution with a smaller md+ value than that with a
larger md+ value for the positive class. Evaluating uncertain solutions can
improve the model accuracy (after evaluation, these solutions will be added
to training data). Next, negative solutions are ranked in descending order
with respect to md+ values. This is because the model is more uncertain
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for the prediction of the solution with a larger md+ value than that with
a smaller md+ value for the negative class. Then, the positive solutions are
ranked before the negative solutions.

– Accuracy < 30%: The unevaluated solutions are ranked in ascending order
with respect to md+ values. This is because the model accuracy is too small
and we cannot trust the predictions of the classifier.

Table 2. Example of four unevaluated solutions.

s1 s2 s3 s4

Label predicted by the classifier 0 1 1 0
Membership degree with respect to the
positive class (md+)

0.4 0.9 0.6 0.1

For example, suppose we have four solutions in Q as shown in Table 2. Each
solution has a label and a membership degree with respect to the positive class
predicted by the classifier. When the accuracy of the classifier is larger than or
equal to 70%, these solutions are ranked in descending order with respect to their
membership degrees (i.e., s2 > s3 > s1 > s4). When the accuracy of the classifier
is larger than or equal to 30% and smaller than 70%, the positive solutions
are ranked in ascending order with respect to their membership degrees (i.e.,
s3 > s2). Next, the negative solutions are ranked in descending order with respect
to their membership degrees (i.e., s1 > s4). Then, the positive solutions are
ranked before the negative solutions (i.e., s3 > s2 > s1 > s4). When the accuracy
of the classifier is smaller than 30%, these solutions are ranked in ascending order
with respect to their membership degrees (i.e., s4 > s1 > s3 > s2).

4 Experiments

This section examines the effectiveness of the proposed IFCS-MOEA framework.
First, Sect. 4.1 presents the experimental settings. Second, Sect. 4.2 examines
the effect of IFCS on MOEA/D-DE. Then, Sect. 4.3 compares the performance
of IFCS-MOEA/D-DE with five state-of-the-art MOEAs on 19 test problems.
Finally, Sect. 4.4 compares the performance of IFCS-MOEA/D-DE with five
state-of-the-art MOEAs on four real-world application problems.

4.1 Experimental Settings

MOEA/D-DE [23] is integrated with the proposed framework for experiments,
and the resulting algorithm is named IFCS-MOEA/D-DE. Five surrogate-based
MOEAs, i.e., FCS-MOEA/D-DE [39], CPS-MOEA [41], CSEA [29], MOEA/D-
EGO [43] and EDN-ARM-OEA [12] are used for comparison. UF1–10, LZ1–9 test
problems [23,44] with complicated PSs are used for experiments. Among them,
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UF1–7, LZ1–5, and LZ7–9 have 2 objectives, UF8–10, and LZ6 have 3 objectives.
UF1–10, LZ1–5, and LZ9 are with 30 decision variables, and LZ6–8 are with 10
decision variables. The population size N is set to 45 for all compared algorithms.
The maximum number of FEs is set as 500 since the problems are viewed as
expensive MOPs [39]. For each test problem, each algorithm is executed 21 times
independently. For IFCS-MOEA/D-DE, wmax is set to 30 and η is set to 5. For
the other algorithms, we use the settings suggested in their papers. The IGD [6]
metric is used to evaluate the performance of each algorithm. All algorithms are
examined on PlatEMO [34] platform.

Table 3. The meanstd IGD values of IFCS-MOEA/D-DE and MOEA/D-DE on UF1–
10 and LZ1–9.

IFCS-MOEA/D-DE MOEA/D-DE

UF1 8.87e-011.03e−01 1.04e+001.48e−01(−)
UF2 1.88e-012.87e−02 2.17e-011.90e−02(−)
UF3 6.04e-012.57e−02 6.51e-014.11e−02(−)
UF4 1.32e-016.34e−03 1.37e-017.67e−03(∼)
UF5 4.20e+003.67e−01 4.49e+003.60e−01(−)
UF6 3.78e+005.72e−01 4.52e+004.10e−01(−)
UF7 9.50e-011.11e−01 1.11e+001.21e−01(−)
UF8 7.24e-019.32e−02 7.93e-011.34e−01(∼)
UF9 7.57e-018.23e−02 8.99e-019.73e−02(−)
UF10 4.65e+004.34e−01 5.10e+006.81e−01(−)
LZ1 1.55e-018.70e−03 1.71e-011.75e−02(−)
LZ2 8.99e-011.69e−01 1.07e+001.54e−01(−)
LZ3 2.22e-011.45e−02 2.61e-012.37e−02(−)
LZ4 2.15e-012.08e−02 2.61e-012.59e−02(−)
LZ5 2.00e-012.53e−02 2.21e-011.97e−02(−)
LZ6 4.92e-014.56e−02 5.74e-011.17e−01(−)
LZ7 1.02e+003.52e−01 1.30e+002.39e−01(−)
LZ8 8.33e-011.23e−01 8.94e-011.14e−01(∼)
LZ9 9.52e-011.43e−01 1.08e+001.22e−01(−)
+/ − / ∼ 0/16/3
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4.2 Effect of IFCS on MOEA/D-DE

This section examines the effectiveness of IFCS-MOEA framework on MOE-
A/D-DE. IFCS-MOEA is embedded with MOEA/D-DE (IFCS-MOEA/D-DE)
and compared with the original MOEA/D-DE on UF1–10 and LZ1–9 test prob-
lems.

Table 3 shows the mean IGD values obtained by IFCS-MOEA/D-DE and
MOEA/D-DE after 500 FEs on the 19 test problems. The Wilcoxon rank-sum
test at the 5% significance level is used to evaluate the statistical difference
between IFCS-MOEA/D-DE and MOEA/D-DE. In this table, “+,−,∼” denote
that the results obtained by MOEA/D-DE are better than, worse than, or similar
to those obtained by IFCS-MOEA/D-DE, respectively. Table 3 shows that IFCS-
MOEA/D-DE outperforms MOEA/D-DE on 16 test problems. On UF4, UF8,
and LZ8, the two algorithms obtain similar results.

Figure 2 plots the mean IGD versus the number of FEs obtained by IFCS-
MOEA/D-DE and MOEA/D-DE on the UF2, UF10, and LZ7 test problems.
Figure 2 shows that IFCS-MOEA/D-DE converges faster and obtains better IGD
values than MOEA/D-DE on these three test problems.

Based on the above results, we can conclude that IFCS-MOEA/D-DE is
more efficient than MOEA/D-DE in solving these 19 MOPs with complicated
PSs under a limited number of FEs.
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Fig. 2. The mean IGD values versus the number of FEs obtained by IFCS-MOEA/D-
DE and MOEA/D-DE on UF2, UF10, and LZ7.

4.3 Performance Comparison with the State-of-the-art MOEAs

This section compares the performance of IFCS-MOEA/D-DE with five state-
of-the-art surrogate-based MOEAs: FCS-MOEA/D-DE, CPS-MOEA, CSEA,
MOEA/D-EGO, and EDN-ARMOEA. These algorithms are compared on the
UF1–10 and LZ1–9 test problems.

Table 4 presents the mean IGD values obtained by the six algorithms after
500 FEs on the 19 test problems. The Wilcoxon rank-sum test is used for sta-
tistical test. The best result on each test problem is shaded. At the bottom
of the table, we summarize the number of problems on which the performance
of the compared algorithm is better than, worse than, and similar to that of
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IFCS-MOEA/D-DE, respectively. In Table 4, IFCS-MOEA/D-DE outperforms
FCS-MOEA/D-DE, CPS-MOEA, CSEA, MOEA/D-EGO, and EDN-ARMOEA
on 9, 16, 11, 15, and 12 test problems, respectively. IFCS-MOEA/D-DE per-
forms worse than FCS-MOEA/D-DE, CPS-MOEA, CSEA, MOEA/D-EGO, and
EDN-ARMOEA on 6, 0, 6, 0, and 0 test problems, respectively.

Table 4. The mean IGD values of IFCS-MOEA/D-DE, FCS-MOEA/D-DE, CPS-
MOEA, CSEA, MOEA/D-EGO, and EDN-ARMOEA on UF1–10 and LZ1–9.

IFCS-MOEA/D-DE FCS-MOEA/D-DE CPS-MOEA CSEA MOEA/D-EGO EDN-ARMOEA
UF1 8.87e-011.03e−01 5.73e-011.70e−01(+) 1.05e+001.56e−01(−) 5.98e-012.16e−01(+) 9.40e-011.68e−01(∼) 9.68e-011.69e−01(−)
UF2 1.88e-012.87e−02 3.04e-014.55e−02(−) 3.00e-013.73e−02(−) 3.26e-015.30e−02(−) 4.09e-015.39e−02(−) 4.12e-013.71e−02(−)
UF3 6.04e-012.57e−02 6.91e-015.89e−02(−) 7.30e-016.35e−02(−) 7.11e-017.26e−02(−) 7.63e-017.43e−02(−) 7.27e-015.08e−02(−)
UF4 1.32e-016.34e−03 1.70e-017.55e−03(−) 1.47e-016.80e−03(−) 1.59e-018.22e−03(−) 1.52e-018.43e−03(−) 1.72e-014.21e−03(−)
UF5 4.20e+003.67e−01 3.00e+004.19e−01(+) 4.49e+003.64e−01(−) 2.91e+005.98e−01(+) 4.90e+003.84e−01(−) 4.53e+003.80e−01(−)
UF6 3.78e+005.72e−01 2.48e+008.10e−01(+) 4.27e+006.09e−01(−) 1.79e+006.32e−01(+) 4.31e+008.82e−01(−) 4.03e+007.69e−01(∼)
UF7 9.50e-011.11e−01 6.03e-011.51e−01(+) 1.03e+001.75e−01(−) 4.21e-011.04e−01(+) 1.08e+001.88e−01(−) 1.06e+002.20e−01(∼)
UF8 7.24e-019.32e−02 1.35e+003.77e−01(−) 1.43e+002.03e−01(−) 1.40e+003.25e−01(−) 1.62e+003.32e−01(−) 1.93e+002.12e−01(−)
UF9 7.57e-018.23e−02 1.33e+002.04e−01(−) 1.38e+002.92e−01(−) 1.40e+002.99e−01(−) 1.87e+006.32e−01(−) 1.81e+002.13e−01(−)
UF10 4.65e+004.34e−01 7.13e+001.10e+00(−) 8.06e+001.20e+00(−) 7.93e+001.45e+00(−) 8.78e+001.40e+00(−) 9.72e+001.25e+00(−)
LZ1 1.55e-018.70e−03 1.59e-011.07e−02(∼) 1.52e-011.29e−02(∼) 1.62e-011.75e−02(∼) 1.75e-011.56e−02(−) 1.61e-011.41e−02(∼)
LZ2 8.99e-011.69e−01 5.54e-011.41e−01(+) 1.03e+001.31e−01(−) 4.92e-012.21e−01(+) 1.05e+001.90e−01(−) 9.98e-011.61e−01(∼)
LZ3 2.22e-011.45e−02 3.53e-014.84e−02(−) 3.49e-012.87e−02(−) 3.45e-016.22e−02(−) 4.46e-016.09e−02(−) 4.46e-013.44e−02(−)
LZ4 2.15e-012.08e−02 3.51e-015.51e−02(−) 3.40e-014.16e−02(−) 3.41e-014.85e−02(−) 4.24e-017.09e−02(−) 4.41e-014.02e−02(−)
LZ5 2.00e-012.53e−02 3.07e-014.22e−02(−) 3.10e-013.57e−02(−) 3.01e-014.34e−02(−) 4.20e-017.43e−02(−) 4.17e-014.52e−02(−)
LZ6 4.92e-014.56e−02 5.46e-011.50e−01(∼) 8.54e-012.24e−01(−) 6.32e-011.82e−01(−) 5.25e-018.00e−02(∼) 5.32e-011.07e−01(∼)
LZ7 1.02e+003.52e−01 8.12e-012.57e−01(∼) 1.52e+005.86e−01(−) 9.44e-012.66e−01(∼) 1.49e+005.47e−01(−) 1.50e+002.13e−01(−)
LZ8 8.33e-011.23e−01 7.54e-012.02e−01(∼) 8.82e-013.10e−01(∼) 9.71e-011.72e−01(−) 7.85e-012.73e−01(∼) 8.77e-018.86e−02(∼)
LZ9 9.52e-011.43e−01 5.78e-011.78e−01(+) 1.01e+001.37e−01(∼) 4.96e-011.57e−01(+) 9.46e-011.83e−01(∼) 9.50e-012.18e−01(∼)
+/ − / ∼ 6/9/4 0/16/3 6/11/2 0/15/4 0/12/7

Figure 3 plots the non-dominated solutions obtained by IFCS-MOEA/D-DE,
FCS-MOEA/D-DE, CPS-MOEA, CSEA, MOEA/D-EGO, and EDN-ARMOEA
on UF2. For each algorithm, we choose a single run with the median IGD value
over 21 runs. In this figure, the solutions obtained by each algorithm are shown
by red circles and the PF is shown by a black curve. This figure shows that
the solutions obtained by IFCS-MOEA/D-DE are closer to the PF than the
solutions obtained by other five algorithms. The above results show that IFCS-
MOEA/D-DE outperforms the five compared algorithms on most test problems.
Therefore, we can conclude that IFCS-MOEA/D-DE is efficient in solving MOPs
with complicated PSs.

4.4 Performance Comparison on Real-World Problems

This section compares the performance of IFCS-MOEA/D-DE and the five state-
of-the-art MOEAs on four real-world MOPs [32]: reinforced concrete beam design
problem (RCBD), pressure vessel design problem (PVD), coil compression spring
design problem (CCSD), and gear train design problem (GTD). The first three
MOPs have 2 objectives and the last one MOP have 3 objectives. Due to the
page limit, readers can refer to [32] for the details of these real-world MOPs. In
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Fig. 3. The non-dominated solutions obtained by the five compared algorithms on UF2
with the median IGD value.

the experiments, the population size is N = 45. The maximal number of FEs is
500. Each algorithm executes 21 times on each test problem.

Table 5 shows the mean IGD values obtained by the five compared algorithms.
The best result on each test problem is shaded. At the bottom of the table, we
summarize the number of problems on which the performance of the compared
algorithm is better than, worse than, and similar to that of IFCS-MOEA/D-
DE, respectively. In Table 5, IFCS-MOEA/D-DE outperforms all the other algo-
rithms on all test problems except for one case: there is no statistically significant
difference between IFCS-MOEA/D-DE and EDN-ARMOEA on the GTD prob-
lem whereas the best average IGD value is obtained by IFCS-MOEA/D-DE.
From the above results, we can conclude that the proposed IFCS-MOEA/D-DE
algorithms outperforms the five state-of-the-art MOEAs in solving these real-
world application problems under a limited number of FEs.

Table 5. The mean IGD values of IFCS-MOEA/D-DE, FCS-MOEA/D-DE, CPS-
MOEA, CSEA, MOEA/D-EGO, and EDN-ARMOEA on four real-world problems.

IFCS-MOEA/D-DE FCS-MOEA/D-DE CPS-MOEA CSEA MOEA/D-EGO EDN-ARMOEA
RCBD 1.26e-027.25e−03 3.09e-022.07e−02(−) 1.68e-023.09e−03(−) 2.80e-027.70e−03(−) 7.83e-023.14e−02(−) 1.89e-026.17e−03(−)
PVD 2.61e-028.53e−03 6.95e-026.66e−02(−) 1.27e-011.34e−01(−) 9.62e-023.75e−02(−) 1.16e-015.48e−02(−) 6.96e-023.52e−02(−)
CCSD 5.11e-033.80e−03 9.25e-029.78e−02(−) 3.74e-023.60e−02(−) 1.23e-017.78e−02(−) 1.78e-011.17e−01(−) 8.13e-028.42e−02(−)
GTD 5.15e-021.28e−02 1.23e-011.15e−01(−) 8.34e-023.41e−02(−) 1.56e-016.79e−02(−) 1.50e-016.07e−02(−) 9.17e-027.25e−02(∼)
+/ − / ∼ 0/4/0 0/4/0 0/4/0 0/4/0 0/3/1
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5 Conclusion

This paper proposed an improved fuzzy classifier-based multiobjective evolution-
ary algorithm framework (IFCS-MOEA) for expensive MOPs. The IFCS-MOEA
framework was developed based on an improved fuzzy classifier-based surrogate
model. The IFCS model is used to sort unevaluated solutions based on the mem-
bership degrees and the model accuracy. Then, the promising offspring solutions
are selected for function evaluations based on the sorting results. All the evalu-
ated solutions are used for fuzzy classifier construction.

The proposed IFCS-MOEA framework was embedded with MOEA/D-DE
for examination. The Fuzzy-KNN was used as the fuzzy classifier. The 10-fold
cross-validation method was used to validate the quality of the classifier. IFCS-
MOEA/D-DE was compared with the original MOEA/D-DE. The experimen-
tal results validated the effectiveness of IFCS in improving the performance of
MOEA/D-DE on solving expensive MOPs under a limited number of FEs. Then,
IFCS-MOEA/D-DE was compared with five state-of-the-art MOEAs on 19 test
problems and four real-world application problems. The experimental results
showed that IFCS-MOEA/D-DE outperformed the other five MOEAs in solving
these problems under a limited number of FEs.

This paper validated the effectiveness of the IFCS-MOEA framework by
embedding it with MOEA/D-DE. It is a future research topic to examine the
effectiveness of IFCS-MOEA by embedding it with other MOEAs. It is also
interesting to examine the performance of IFCS-MOEA/D-DE on other MOPs
with complicated PSs. This paper used 30% and 70% as the accuracy threshold
values in the proposed sorting strategy according to our preliminary results. It
is necessary to further examine these threshold values on more test problems.
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Abstract. In many real-world applications, the Pareto Set (PS) of a
continuous multiobjective optimization problem can be a piecewise con-
tinuous manifold. A decision maker may want to find a solution set that
approximates a small part of the PS and requires the solutions in this
set share some similarities. This paper makes a first attempt to address
this issue. We first develop a performance metric that considers both
optimality and variable sharing. Then we design an algorithm for find-
ing the model that minimizes the metric to meet the user’s requirements.
Experimental results illustrate that we can obtain a linear model that
approximates the mapping from the preference vectors to solutions in a
local area well.

1 Introduction

This paper considers the following continuous multiobjective optimization prob-
lem (MOP):

minimize F (x) = (f1(x), . . . , fm(x)),
subject to x ∈ Ω,

(1)

where x is the decision variable, Ω ⊆ Rn is the decision space, F : Ω → Rm con-
tains m continuous objective functions f1(x), . . . , fm(x), and Rm is the objective
space. Very often, the objectives in MOP (1) conflict with each other, and no
single solution can optimize them simultaneously [9]. Pareto optimality is used
to define the best trade-off candidate solutions. The set of all the Pareto optimal
solutions is called the Pareto Set (PS). Its image in the objective space is called
the Pareto Front (PF).

Aggregation is an important technique for solving MOPs [10]. Aggregation
methods transform (1) into some single objective optimization problems. For a
preference λ, an aggregation method aggregates all the fi’s into a scalar objective
function, optimizes it and generates a Pareto optimal solution x(λ) for the pref-
erence vector λ. Under some conditions, an aggregation method can find all the
Pareto optimal solutions. In other words, the PS can be modeled by a function
x = x(λ). Moreover, under regularity conditions, it is piecewise continuous [11].
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Given a preference vector λ0, a decision maker may be interested only in
Pareto optimal solutions around x(λ0). It is reasonable to assume that x(λ)
is linear around a small neighborhood of λ0. Let x1 = (x1

1, . . . , x
1
n) ,x2 =

(x2
1, . . . , x

2
n) ∈ Rn be two candidate solutions, if x1

i = x2
i , we say that x1 and x2

share variable xi. In many real-life applications, when the preference changes, it
is required to have an approximate Pareto optimal solution for the new prefer-
ence with as many components the same as the current Pareto optimal solution.
This requirement can be essential for reusing existing designs and reducing costs.
In engineering design, shared components can support module design [2] and sig-
nificantly reduce manufacturing costs. Deb et al. [2] advocate conducting data
mining among the obtained Pareto optimal solutions to find useful patterns. To
date, no research has been conducted on the integration of shared component
requirements into the optimization process.

This paper makes a first attempt to address the issue of shared components.
We model it as a problem to use a linear model to approximate a PS segment
under the constraint of variable sharing. Much effort has been made to model
the Pareto set using a math function [1,4,12]. However, all these existing works
aim at approximating the actual Pareto set. Our approach considers the quality
of solutions beyond Pareto optimality. We trade Pareto optimality for shared
component requirements. Our major contributions can be summarized as follows:

– We study the optimality of a solution set under some shared component
constraints instead of Pareto optimality.

– We incorporate the user’s preference and the requirement on shared compo-
nents to define a performance metric.

– We adopt the framework of MOEA/D to develop an algorithm for finding
the model that optimizes the performance metric. This model can generate
infinite solutions that satisfy the user’s requirements.

The rest of the paper is organized as follows: We propose the original ver-
sion of our performance metric and modification considering variable sharing
in Sect. 2. Then we present the form of the linear model and the connection
between variable sharing and the sparsity of the model in Sect. 3. We give out
the framework of our algorithm and implementation details in Sect. 4. In Sect. 5,
we conduct experiments to validate our algorithm. The last section summarizes
the paper and list possible future work directions.

2 Performance Metric for Local Models

In this section, we introduce our performance metric that considers both opti-
mality and variable sharing of solutions. We first define a preference vector dis-
tribution based on the user-provided preference vector. We then use the expected
aggregation value of solutions output by a model as the first part of our metric.
Finally, we implicitly define the second part of the metric with regards to vari-
able sharing. Different implementations are possible for the second part. In the
next section, we present our implementation using a linear model.
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2.1 Local Approximation Metric

Consider MOP (1). Given:

– λ0: a preference vector, from the (m − 1)-D probability simplex;
– N(λ0): a neighborhood set of λ0;
– P: a probability distribution defined on N(λ0).

The neighborhood set can have different structures. In general, the neighborhood
of λ defines a set of preference vectors that are close to λ in Euclidean space. The
distribution P enables us to sample preference vectors from the neighborhood
set. In this paper, we use a multi-variate normal distribution as the sampling
distribution P. This distribution puts more emphasis on the area that near the
user’s target solutions.

For any preference vector λ ∼ P, we can define a sub-problem using aggre-
gation functions. In this paper, we use Chebyshev aggregation. Our metric can
be generalized to other aggregation functions. The Chebyshev aggregation value
of solution x with preference vector λ is by:

g(x, λ) = max
i

λi|fi(x) − zi|, (2)

where zi is the Utopian value for the i-th objective, and λi is the i-th component
of the preference vector λ. The associated solution x∗(λ) to the above sub-
problem is as follows:

x∗(λ) = arg min
x

g(x, λ). (3)

We can denote the above mapping from the preference vector λ to the associ-
ated optimal solution as x(λ). Now, we use a model hθ(λ) parameterized by θ
to predict the associated solution to the sub-problem defined with λ. Since the
solution x∗(λ) minimizes the aggregation value g(x, λ), we can use the expected
aggregation value of the model output to evaluate its optimality. For each pref-
erence vector λ ∼ P, the aggregation value computed using the model output is
g(hθ(λ), λ). Our metric M is as follows:

M(hθ) = Eλ∼P [g(hθ(λ), λ)]. (4)

The above metric can be directly used to learn the Pareto set for different real-
world applications, such as multi-task learning [7], neural multiobjective combi-
natorial optimization [6], and multiobjective Bayesian optimization [8]. In this
work, we extend it to include the variable sharing constraint.

2.2 Shared Variable Metric

The above metric only considers the optimality of solutions under sub-problems
defined with different preference vectors. We need to add extra terms to evaluate
the model’s performance according to special requirements from the user. In this
paper, we consider variable sharing due to its importance in engineering design.
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We denote the function that measures the degree of variable sharing of the
model hθ as I(hθ), called variable sharing degree (VSD). Without loss of gener-
ality, we assume a lower value of I indicates a higher degree of variable sharing.
The explicit form of the VSD can be various, we will connect it with the sparsity
of the model in the next section.
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x2

x1

Pareto Set

Bias Vector

Basis Vectors

Tangent Space

f3

f2

f1

Image

b

a1
a2

Fig. 1. Linear Model: Column vectors (e.g. a1, a2) in A can be regarded as basis vec-
tors that span the subspace of a hyperplane. This hyperplane can be used to approx-
imate the local PS segment since we expect it to be linear under mild conditions.

Now our goal is to find the model that minimizes both M and I. We synthese
these two metrics and reload the notion M to represent our final performance
metric. The final version of the metric is as follows:

M(hθ) = Eλ∼P [g(hθ(λ), λ)] + γI(hθ), (5)

where γ is the parameter that weighs the importance of the VSD. Larger values
of γ lead to models that trade optimality for variable sharing. Our goal is to
build a linear model that can approximate the local area of the PS and produce
solutions with as many variables taking the same value across the solutions.

3 Linear Sparse Representation of the Local PS

In this section, we first give the analytical form of our linear model. Then, we
discuss the sparsity of the parameters and use it as an implementation of the
VSD.

3.1 Linear Model

Since the preference vectors are from a probability simplex, the sum of all the
elements is equal to 1. So we only use the first (m−1) elements of the preference
vectors λ, denoted as λ1:m−1 as the input. Our model designed using first-order
approximation is as follows:

hθ(λ) = A(λ1:m−1 − λ0
1:m−1) + b, (6)
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where A ∈ Rn×(m−1) and b ∈ Rn are the parameters of the model. θ = (A, b) is
still used to represent all the parameters of the model for brevity.

The interpretation of the column vectors of A can be a set of basis vectors
of the tangent space at point x0. The bias vector b is used to represent the
associated solution x0 with the preference vector w0. We give an illustrative
example of the linear model in Fig. 1.

The performance of the above model can be evaluated using metric (5).
However, the form of VSD is not explicitly defined. In the following paragraphs,
we give our implementation of VSD using sparsity of the model.

3.2 Variable Sharing and Sparsity of the Model

We notice that the linear approximation is actually a set of linear combinations of
the column vectors in A and the bias vector b. Each non-zero row in A contributes
to one dimension of output solutions the model. More “empty” rows in A lead
to more shared variables in the solutions output by hθ(λ). Therefore, we use
the row sparsity of A as an implementation of the VSD. Specifically, we use the
(2, 1)-norm of matrix A as the function to measure the degree of row sparsity.
The (2, 1)-norm of matrix A is defined as:

‖A‖2,1 =
n∑

i=1

‖ai‖2, (7)

where ai is the i-th row of matrix A.

4 Method and Algorithm

4.1 An Alternative Problem

Using the linear model defined in the previous section, the optimization problem
becomes:

min
A,b

M(hθ) = Eλ∼P [g(hθ(λ), λ)] + γ‖A‖2,1. (8)

If the explicit form of F is known, we can derive the form of g accordingly and
apply a gradient descent algorithm to solve it. However, for real-world problems,
the gradient information is often unavailable.

Our solution is to maintain a dynamic dataset of preference vector-solution
pairs during our algorithm. We update this dataset in each iteration, assuming it
converges to the local PS progressively. Then, the data from it can be regarded
as noisy samples from the true PS. We replace the first term with the mean
squared loss (MSE) between the samples and the output of the model.

Suppose we have a dataset
{
(λ1, x1), . . . , (λN , xN )

}
at any iteration of our

algorithm. We want to find a linear model to fit this dataset. More specifically,
our goal is to minimize the following loss function:

1
N

N∑

i=1

‖xi − (A(λi
1:m−1 − λ0

1:m−1) + b)‖2 + γ‖A‖2,1, (9)
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where λ0 is the user-given preference vector.
The above problem is convex and easy to solve. In fact, we can minimize

the above loss function by solving a series of simple regularized least square
regression problems for each dimension of the data.

4.2 Algorithm Framework

Initialization of the Preference Set. In the previous section, we described
how a dataset of preference vector-solution pairs is used to build the linear
model. Here we illustrate the process of initializing the preference set using the
user-given preference vector λ0:

– Use a normal distribution N (0, σ2I) to sample noise vectors.
– Sample N noise vectors from N (0, σ2I), add λ0 to them to generate N vectors.
– Project these vectors onto the probability simplex to normalize the disturbed

vectors.

Through the above generation process, we obtain a preference set of N prefer-
ence vectors. This process can also be viewed as sampling from the neighborhood
of the preference vector on the simplex, as shown in Fig. 2.

P
robablity

D
ensity

λ2

λ1

center vector λμ

3σ area

samples from (λμ, σ2I)

sampled vectors λ(i)

Fig. 2. Preference Vector Generation: This process is equivalent to sampling from
N (λ0, σI) and projecting them on the simplex.

Main Algorithm. In general, we adopt the framework of MOEA/D [10] to
design our algorithm. Details of our MOEA/D with local linear approximations,
called MOEA/D-LLA (Local Linear Approximation), are shown in Algorithm 1.
It takes the obtained preference vector set as its input. We first initialize a set of
sub-problems using the preference set under Chebyshev aggregation and assign
the value of reference point as done in MOEA/D. Then our algorithm maintains:
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– a population X of size N , where the i-th individual is used to solve the
sub-problem using λi,

– a set of decomposed value
{
g(xi, λi)|1 ≤ i ≤ N

}
,

– and a reference point z∗ = (z∗
1 , . . . , z∗

m)T .

We generally push the population towards the PS by using genetic operators and
our model to generate new solutions. We train our model by solving a regression
task on the dataset of preference vector-solution pairs.

Algorithm 1: MOEA/D-LLA
Input: preference vector set W =

{
λ1, . . . , λN

}

Parameters : regularization parameter γ, optimization step o
Output: matrix A, bias vector b, solution set X

1 Initialize matrix A, b, a population X
2 while not terminated do

// Optimization Step

3 Using MOEA/D to optimize g(x, λ1), . . . , g(x, λN ) to obtain

(λ1, x1), . . . , (λN , xN );
// Regression Step

4 for i = 1 → o do
5 A∗, b∗ =

arg minA,b
1
N

∑N
i=1

∥∥xi − (A(λi
1:m−1 − λ0

1:m−1) + b)
∥∥2

2
+ γ‖A‖2,1

6 end
// Update Population Using Linear Model

7 Generate new solutions using Algorithm 2 and use them to update

population (λ1, x1), . . . , (λN , xN ).
8 end

Sampling New Solutions. In our algorithm, we use a hybrid strategy to gen-
erate new solutions. In Line 2, we use genetic operators to sample new solutions.
In Line 6, we sample solutions from the linear model as in [12]. The sampling
method is given in Algorithm 2.

Algorithm 2: Sampling New Solutions
1 Sample N noise vectors from N (0, σ2

noiseI);

2 Add noise vectors on the preference set to obtain the noised set
{

λ̃1, . . . , λ̃N
}

;

3 Generate N solutions using

x = Aλ̃1:m−1 + b
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5 Experimental Results

In this section, we study the optimality and the variable sharing aspect of our
algorithm. Since standard test instances like ZDT [13] and DTLZ [3] naturally
have shared variables in their Pareto set, we first design a problem with no shared
variables and test our algorithm on it. Then we study the trade-off between
optimality and variable sharing for this problem. Here, we use R-metric from
[5] to incorporate the user-given preference vector into the evaluation of the
solutions. The parameter δ for R-metric is set to be 6σ to target our preferred
area.

5.1 Parameter Setting

All the experimental results are obtained from 10 independent runs of the algo-
rithm. We add extra function evaluations in MOEA/D-DE as a compensation
for not generating solutions from the model to ensure a fair comparison. The
parameters of our algorithm are set as follows:

– The population size: It is 100 for all instances.
– The variance σ2 of the sampling distribution P: It is 0.02 for all instances.
– The variance σ2

noise for sampling new solutions: It is 0.05 for all instances.
– The maximum number of generations: It is 300 for all instances.

5.2 Performance on None-shared Problem
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Fig. 3. Linear Approximation for Local PS: An illustration of the population
and the predictions of the model for a nonlinear Pareto set under different γ in both
decision space and objective space.

To evaluate the effectiveness of our algorithm in finding solutions with shared
variables, we create a new test instance, MOZDT1, by modifying ZDT1 by
replacing g(x). The form of our g(x) is as follows:

l(x) = ((1 − 2x1)2 − x2)2 + (x3 + x2 − 1)2

g(x) = 1 +
9

n − 3

n∑

i=4

|xi − x1| + l(x)
(10)
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The Pareto set for this problem is defined as:

0 ≤ x1 ≤ 1, x2 = (1 − 2x1)2, x3 = 1 − (1 − 2x1)2, and xi = x1(i = 4, . . . , n)
(11)

The Pareto optimal solutions in this set have no shared variables. Therefore,
we cannot guarantee the optimality of the solutions if we desire more shared
variables in them. As γ controls the importance of VSD in (5), we expect our
model’s output have more shared variables as γ increases.

We run our algorithms under different γ values and plot the results in Fig. 3.
Additionally, we show the optimality and the degree of variable sharing in Fig. 4.
In Fig. 4, we use R-IGD to evaluate the optimality of the solutions and the
variances of decision variables to illustrate VSD.
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Fig. 4. (a) The value of R-IGD calculated on the population from the last iteration
and the predictions given by the model. The area within one standard deviation is
shaded. (b) The variance of decision variables of the predictions. The model’s predic-
tions converge to a small area as γ increases.

Figure 4(a) shows that with a small gamma value, our algorithm is able to
find a model that can generate solutions of high quality. However, we observe a
significant deterioration of optimality when γ was increased to 5. Upon exam-
ining the predictions associated with γ = 5, we find that their variances reduce
to almost zero. This indicates that most solutions output by the model are very
similar to each other and can be considered the same solution. In future work,
We will further investigate the impact of γ on different decision variables.

5.3 Performance on Standard Test Instances

The Pareto optimal solutions of standard test instances like ZDT [13] and
DTLZ [3] have special structures in which the majority of their decision variables
are shared. Therefore, if γ is set correctly, we expect VSD to act as a regulariza-
tion term and help obtain a model that balances optimality and variable sharing.

We evaluate the quality of the solutions produced by MOEA/D-DE, our
algorithm, and the model’s predictions using the R-metric. The results are listed
in Table 1.
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Table 1. R-IGD and R-HV values obtained by MOEA/D-DE and LLA over 10 inde-
pendent runs. The value of the population and the predictions are both evaluated.

Problem MOEA/D-DE LLA Pop LLA Pred

R-IGD R-HV R-IGD R-HV R-IGD R-HV

ZDT1 1.27e-01 5.56e-01 1.27e-01 5.56e-01 7.76e-02 6.09e-01

ZDT2 1.02e-01 2.89e-01 1.02e-01 2.89e-01 6.60e-02 2.95e-01

ZDT4 1.26e-01 5.55e-01 1.26e-01 5.55e-01 7.78e-02 6.08e-01

ZDT6 1.26e-01 3.37e-01 1.16e-01 3.42e-01 8.27e-02 3.46e-01

DTLZ1 1.90e-01 5.09e-01 1.92e-01 5.05e-01 1.84e-01 6.36e-01

DTLZ2 3.24e-01 1.90e-01 3.24e-01 1.90e-01 2.82e-01 2.30e-01

DTLZ3 3.23e-01 1.90e-01 3.25e-01 1.90e-01 2.82e-01 2.29e-01

DTLZ4 3.97e-01 1.48e-01 4.22e-01 1.35e-01 4.22e-01 1.42e-01

The results in Table 1 show that LLA’s predictions achieve the best R-IGD
and R-HV values in 7 out of 8 standard test instances. Moreover, the populations
of LLA outperform those of the original MOEA/D in terms of R-metrics. This
superior performance can be attributed to the fact that the problems’ Pareto
optimal solutions naturally share most decision variables. Therefore, adding vari-
able sharing constraint does not significantly degrade the performance of the
LLA algorithm.
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Fig. 5. Mean squared errors between the true optimal solutions and the model’s pre-
dictions for ZDT1 and DTLZ1. The results are the average value of 10 independent
runs and are plotted on logarithmic axis.

Approximation Error. To further evaluate the convergence of our algorithm
on these instances, we plot the mean squared error between the output of our
model and the true optimal solutions associated with the sub-problems defined
by the preference vectors in Fig. 5. In these experiments, γ is set to be a small
value (1e-03).

From Fig. 5, we can see that the residual error of MOEA/D-DE can not be
further diminished by increasing the number of iterations. Our model’s predic-
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tions improve quickly and exceed the performance of MOEA/D-DE after around
100 iterations. Furthermore, the quality of the solution for each sub-problem con-
tinues to improve with more function evaluations.

Variable Sharing. The weighting factor γ controls the trade-off between opti-
mality and variable sharing. We plot the population from the last iteration and
the hyper-plane that represents the output of the linear model obtained with
different values of γ in Fig. 6.
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Fig. 6. The influence of γ on the variable sharing degree for ZDT1 and DTLZ1. The
shape of the approximated PS shrinks as γ becomes bigger.

With larger γ, the variance of the decision variable x2 becomes smaller in the
output of the models. We see the same phenomenon for different test instances in
Fig. 6(c) and Fig. 6(d). We can conclude now that our model has a higher degree
of variable sharing when we increase γ. Moreover, these examples illustrate an
enhancement of the influence of γ for PS in the higher-dimensional space.
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Fig. 7. An illustration of the value of R-metric of the solutions set and the predictions
of the linear model of our algorithm. The lines are the average value of 10 independent
runs, while the shaded areas reflect the variance of the value.

We further investigate the influence of γ on optimality by plotting γ against
the R-metric value of ZDT1 problem in Fig. 7. The R-metrics of the solution set
fluctuate with the value of γ. However, we observe significant deterioration of
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performance of the linear model when we increase γ. Although ZDT1’s Pareto
optimal solutions naturally share the first decision variable, higher degree of
variable sharing leads to worse optimality. We can conclude that the cost of
sharing lies in the non-shared variables.

To better understand the imapct of γ on decision variables, we calculate the
variance of each decision variable under different γ and show them in a heatmap
in Fig. 8. Smaller variances indicate a higher degree of variable sharing. With
a smaller γ, we can obtain a model that targets the correct shared decision
variables without degrading the optimality of the solutions as shown in Fig. 8.
However, when we increase γ to a large value (e.g. 5) to emphasize the importance
of variable sharing, we indeed trade the performance (Fig. 7) for variable sharing
(Fig. 8).
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Fig. 8. Illustration of the variances of decision variables under different γ. For ZDT1,
most of the decision variables are shared in the Pareto set.

6 Conclusion

In this paper, we have studied how to approximate a small part of the PS sub-
ject to the variable sharing constraint. We have defined its performance metric
as the expectation of the aggregation value under Chebyshev aggregation. Our
proposed algorithm can find the optimal linear model that minimizes this per-
formance metric and learns a sparse representation of the local PS. We have
conducted experimental studies on the trade-off between optimality and vari-
able sharing. In the future, we plan to study the following:

– We will consider more test instances where no decision variables are shared
in Pareto optimal solutions, further investigate the best trade-off between
optimality and variable sharing in different problems settings.

– Instead of using regularized least square regression to learn the model param-
eters, we will explore more efficient and intelligent approaches such as deep
learning and reinforcement learning.
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Abstract. We consider the application of machine learning techniques
to gain insights into the effect of problem features on algorithm per-
formance, and to automate the task of algorithm selection for distance-
based multi- and many-objective optimisation problems. This is the most
extensive benchmark study of such problems to date. The problem fea-
tures can be set directly by the problem generator, and include e.g. the
number of variables, objectives, local fronts, and disconnected Pareto
sets. Using 945 problem configurations (leading to 28 350 instances) of
varying complexity, we find that the problem features and the avail-
able optimisation budget (i) affect the considered algorithms (NSGA-II,
IBEA, MOEA/D, and random search) in different ways and that (ii) it is
possible to recommend a relevant algorithm based on problem features.

Keywords: Multi/many-objective distance problems · Feature-based
performance prediction · Automated algorithm selection

1 Introduction

Given a collection of problems and algorithms, the algorithm selection prob-
lem [24] is concerned with identifying an algorithm that is most suitable, in
terms of some performance criteria, for a given problem at hand. An additional
component is the availability of features characterising a problem. One can first
extract problem features to generate a feature space, and then act on it as
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opposed to on the problem space. Significant research has been carried out on
algorithm selection during the past two decades. Amongst others, tackling more
efficiently a variety of continuous and mixed discrete/continuous [12,27], combi-
natorial [26] and multi-objective (continuous) optimisation problems [19], as well
as supervised learning [22]. For algorithm selection, extracting problem features
that drive algorithm performance is critical; doing this efficiently is the focus
of fitness and exploratory landscape analysis [20,21]. Furthermore, understand-
ing which and how problem features drive algorithm performance is valuable
information when designing artificial problems of different complexity for bench-
marking and tuning of algorithms. This information can then be used, e.g., to
develop problem generators that can create test problems that meet user-defined
problem characteristics. Such generators exist, for example, for many-objective
distance-based optimisation [10] and cluster analysis [25].

Our focus is to advance the area of feature design and algorithm selection
for multi- and many-objective optimisation problems. This is motivated by the
prominence of problems in practice, combined with our limited understanding
on suitable multi-objective problem features [12,20]. The most relevant work is
given in [19], where features from landscape analysis (adapted from [17]) are
applied on a benchmark set of 1 200 randomly-generated bi-objective interpo-
lated continuous optimisation problems [30]. The study concluded that combin-
ing a classification model with a range of landscape features used as predic-
tors can deliver a similar accuracy to predicting algorithm performance based
on parameters used to generate the problems. It also investigated the relative
importance of features for performance prediction and algorithm selection.

In this paper, we follow a similar approach to investigate the predictive power
of parameters (problem features) used to generate distance-based multi/many-
objective point problems (DBMOPPs) proposed in [10]. More precisely, we
(i) generate 945 problems with different characteristics (as defined by 7 problem
features), then (ii) test the correlation between the problem features and the
performance of three popular multi-objective evolutionary algorithms and one
baseline approach (random search), and finally assess the problem features as
predictors for (iii) algorithm performance prediction and (iv) algorithm selection
on machine learning regression and classification, respectively. This is the first
study of DBMOPPs and the generator/problem features proposed in [10].

The paper is organised as follows. Section 2 introduces DBMOPPs, together
with the generator and its parameters (problem features) used to control the
generation of such problems. Section 3 gives the experimental setup and dis-
cusses algorithm performance. Section 4 presents an experimental analyses of
the problem features for automated performance prediction and algorithm selec-
tion. Finally, Sect. 5 concludes the paper and discusses further research.

2 Distance-based Multi/Many-objective Problems

In multi-objective optimisation (with 2 or 3 competing objectives) and many-
objective optimisation (with 4+ objectives), a set of solutions is typically sought
that approximates the optimal trade-off combinations between the objectives,
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given any constraints on decision vectors. Formally, the tuple of a decision
vector x, and its evaluation under the objective vector f() define a solution
s = (x, f(x)). A solution s is said to dominate another s′ if s performs better
than s′ on at least one objective, and no worse on all others. The maximal set
of non-dominated decision vectors is known as the Pareto set, and its image in
the objective space is known as the Pareto front.

A wide range of scalable test problem frameworks have been developed for
multi- and many-objective optimisation, which are used (together with set qual-
ity indicators) to assess the performance of optimisers. These encapsulate a range
of known problem characteristics (e.g. [3,6,11]). In addition, means for generat-
ing instances of problems have been created to prevent “tuning” of optimisers to
particular suites of tests, to the detriment of performance on practical problems.

Frameworks for DBMOPPs have been developed over the last decade. They
incorporate the range of features exhibited in other test suites (constraints,
neutrality, multi-modality, dominance resistance regions, local fronts, etc.) and
enable direct visualising of the search space in a plane. Initial work in this
area includes [13,14], and [10] includes a summary of the features incorporated
into this test problem design approach over the last 15 years. Arbitrarily many
objectives can be defined. If |x| > 2 the decision vector is projected into two
dimensions via a pair of orthogonal vectors prior to function evaluation. We now
describe the construction of DBMOPPs, and the generator we recently devel-
oped. We will then extensively investigate its characteristics.

Properties and Features of DBMOPPs. Point-based distance problems
are parameterised by sets of attractor vectors, where the minimum distance to
a member of the ith set, Vi, defines the ith objective value:

fi(x) = min
v∈Vi

dist(v,x). (1)

Further complexity can be added by imposing regions of constraint violation
which locally adjust the distance function, and thereby can introduce disconti-
nuities and neutrality to particular objectives, amongst other modifications.

In [10], we introduced a DBMOPP1 instance generator, where problems can
incorporate a range of properties, a subset of which are listed in Table 1 which we
consider here. An example 3-objective problem with local fronts and dominance
resistance regions is illustrated in Fig. 1, along with its local dominance landscape
[9], PLOS-net [18] and PLON [8] network visualisations. In this work, we focus
on box-constrained problems.

1 Available in Matlab (https://github.com/fieldsend/DBMOPP generator), and in
Python (https://github.com/industrial-optimization-group/desdeo-problem/tree/m
aster/desdeo problem/testproblems/DBMOPP).

https://github.com/fieldsend/DBMOPP_generator
https://github.com/industrial-optimization-group/desdeo-problem/tree/master/desdeo_problem/testproblems/DBMOPP
https://github.com/industrial-optimization-group/desdeo-problem/tree/master/desdeo_problem/testproblems/DBMOPP
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Table 1. Problem features considered from the DBMOPP generator [10].

Description Name Domain

Number of variables n var �2, 20�

Number of objectives n obj �2, 10�

Non-identical Pareto sets nonident ps {no, yes}
Varying density var density {no, yes}
Number of disconnected Pareto sets n discon ps �0, 6�

Number of local fronts n local fronts �0, 6�

Number of dominance resistance regions n resist regions �0, 6�
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Fig. 1. Top-left : an example 3-objective problem with regions creating local fronts (green
triangles), dominance resistance regions (points and lines) and Pareto set (red triangle).
Top-right : its corresponding local dominance landscape – black regions are locally domi-
nance neutral, shaded grey regions denote basins (for all basin members all neighbouring
dominating moves lead to the same dominance neutral region), and white regions denote
locations where immediate neighbours lead to different basins (saddles). Bottom-left :
PLOS-net and Bottom-right : PLON network visualisations. (Color figure online)
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3 Experimental Setup

This section describes our experimental setup covering the approach adopted to
generate problems, algorithms and their settings, and performance metrics.

3.1 Dataset

We generated 945 problems with different parameter settings. A random latin
hypercube sample [4] of size 1 000 was generated, among which 55 problems were
discarded due to restrictions in the benchmark generator. For each parameter
setting, 30 instances (folds) were independently created using the generator and
thus the total number of instances was 945 × 30 = 28 350. Features used to
create the problems are provided in Table 1. All 30 folds for a given problem had
the same complexity in terms of features. However, folds could be different from
each other because of the randomness in the generator. For each fold, we ran
different algorithms (one run per instance): NSGA-II [5], IBEA [32] with the ε
indicator, MOEA/D [31] with the Chebyshev scalarising function and random
search for up to 50 000 evaluations. For a fair comparison, we kept the same
initial population for a fold and used the same population size. It was selected
based on the number of objectives and is given in Table 2. We employed an
out of the shelf implementation with simulated binary crossover and polynomial
mutation with probability of 0.8 and 1

n var
and distribution index of 20 and 20,

respectively; κ = 0.5 for IBEA. For each algorithm, we calculated the normalised
hypervolume (hypervolume of final solutions/hypervolume of the Pareto front2)
after 5 000, 10 000, 30 000 and 50 000 evaluations for all 30 folds of each problem.
Normalised hypervolume values were then averaged for each of the 945 problems
and 4 algorithms. The code is available at: https://github.com/tichugh/Feature
Analysis DBMOPP EMO 2023, and the corresponding dataset at: https://doi.
org/10.5281/zenodo.7155803.

Table 2. Setting of the population size according to the number of objectives.

Number of objectives 2 3 4 5 6 7 8 9 10

Population size 100 105 120 126 132 112 156 90 275

3.2 Algorithm Performance

We analysed results with R [23] using the caret [15], rpart [28] and ggplot2 [29]
packages. In Fig. 2 (left), we show the average normalised hypervolume (and the
95% confidence interval) for each algorithm with respect to the search budget
over all considered 945 problems. Figure 2 (right) gives the proportion of prob-
lems where each algorithm obtained the best average performance, over the 30

2 1 000 members drawn from the Pareto front plus all non-dominated points found
by the union of the algorithms’ approximation sets for each instance. The reference
point for hypervolume was 1.1 × maximum of objective values on the Pareto front
and estimated via Monte Carlo [7] with 50 000 samples for 4+ objectives.

https://github.com/tichugh/Feature_Analysis_DBMOPP_EMO_2023
https://github.com/tichugh/Feature_Analysis_DBMOPP_EMO_2023
https://doi.org/10.5281/zenodo.7155803
https://doi.org/10.5281/zenodo.7155803
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Fig. 2. Hypervolume (left) and proportion of problems where each algorithm obtains
the best average hypervolume (right) with respect to the search budget.

folds, for the considered budgets. We observe that IBEA was consistently the
best-performing algorithm, whatever the budget, and outperformed others in
at least 50% of problems (for a budget of 5 000 evaluations), and at most 80%
(10 000 evaluations). It was followed by NSGA-II (almost as good as IBEA for
50 000 evaluations). However, one should note that NSGA-II was not significantly
better than random search for 5 000 evaluations. MOEA/D was efficient for the
budget 5 000, but the increase of budget did not improve its performance as
much as for the others. Indeed, the average hypervolume obtained by MOEA/D
went from 0.77 for a budget of 5 000 to 0.79 for 50 000. A similar observation
was reported in [10]. We conjecture that MOEA/D is significantly impacted by
an increase in local Pareto fronts and multi-modality. Random search was dom-
inated by other algorithms for the two lowest budgets. However, surprisingly, it
surpassed MOEA/D for the highest budgets. In fact, random search was even
the best for 1 problem for a budget of 30 000, and 2 problems for 50 000.

Interestingly, whatever the budget, there is no algorithm that outperforms
the others for all problems. For the smallest budgets, IBEA and MOEA/D share
the success almost equally on more than 95% of the 945 problems. For the largest
budgets, NSGA-II and IBEA share the success on more than 99% of problems.

4 Experimental Study

This section uses a machine learning perspective to investigate the relationship of
problem features and algorithm performance, the predictive power of features for
performance prediction, and classification for feature-based algorithm selection.

4.1 Problem Features vs Algorithm Performance

We first investigate how problem features impact search performance. Figure 3
shows how the normalised hypervolume of algorithms is individually impacted
by each of the 7 problem features. Due to space restrictions, we report only
two budgets. In addition, Fig. 4 gives the Spearman’s rank correlation coefficient
between each problem feature and algorithm performance for all budgets. A
larger hypervolume indicates a better performance and thus a positive correlation
means that the problem feature has a favourable effect on algorithm performance.
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Fig. 3. Hypervolume vs. each problem feature and 5 000 and 30 000 evaluations.

For a given problem feature, the trend is similar for all algorithms and budgets
(there is no feature with a positive effect for one algorithm and a negative effect
for another algorithm). The same goes for the budgets. However, the strength of
correlation is at times different. For instance, although a larger number of objec-
tives (n obj) means a worse performance for all algorithms and budgets, it is more
impactful for NSGA-II than for other algorithms for large budgets.

The more variables (n var), the worst the performance. However we see
in Fig. 3 (top-left) that, for a budget of 5 000, NSGA-II is good for a small
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Fig. 4. Correlation between problem features and algorithm performance.

number of variables, and becomes worse than random search as the number of
variables increases. Correspondingly, while the number of objectives and hav-
ing non-identical Pareto sets (nonident ps) negatively impact performance,
the number of dominance resistance regions (n resist regions) has a positive
effect. For a budget of 30 000, NSGA-II is as good as IBEA with few objec-
tives and few dominance resistance regions, but IBEA gets better as both num-
bers increase. Besides, the fewer local fronts (n local fronts) and disconnected
Pareto sets (n discon ps), the better the performance of all algorithms with all
budgets. The varying density (var density) has a minor impact on performance.
Overall, problem features in the 945 problems often imply a significant difference
between algorithms independently of other features.

4.2 Performance Prediction by Regression

The previous results concerned the individual effect of problem features on per-
formance. We now investigate their combined effect by constructing a regression
model for predicting the hypervolume reached by the algorithms under different
budgets. We thus end up with 4 (algorithms) × 4 (budgets) = 16 models aiming
at predicting performance separately for each algorithm and budget, using the
problem features as predictors. We consider random forest [1,16] with default
parameters, a well-established state-of the-art ensemble learning method that
constructs multiple decision trees for regression. We start by evaluating the pre-
diction accuracy of the trained models using 30 independent replicates of 10-fold
cross-validation. We report the repeated cross-validated coefficient of determina-
tion (R2) for each algorithm and budget in Fig. 5. We observe that the smallest
R2 obtained over all folds and repetitions is above 0.7, and the median R2 is
always above 0.85, whatever the algorithm and budget. This suggests that more
than 85% of the variance in hypervolume values across all problems is explained
by the model, and thus by problem features. The slight drop in the prediction
accuracy for IBEA and NSGA-II as the budget increases is not significant and
the R2 values remain quite satisfactory. The prediction accuracy for random
search is particularly high, regardless of the budget.
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Fig. 5. Coefficient of determination (R2) of regression models trained by algorithm and
budget, calculated using 10-fold cross-validation with 30 repetitions.

For each regression model, we also compute the importance of predictors,
commonly measured as the mean decrease of prediction accuracy with random
forest [1,16]. The higher the value, the more important the predictor. Figure 6
shows the relative importance of problem features, scaled between 0 and 100.
Overall, the most important problem features remain quite consistent with their
correlation with algorithm performance reported in Sect. 4.1. The numbers of
variables, objectives, dominance resistance regions and the presence of non-
identical Pareto sets appear on top of the list, whereas the varying density only
has a marginal contribution to the prediction accuracy. Interestingly, the pres-
ence of non-identical Pareto sets and the number of disconnected Pareto sets get
more important as the budget increases. However, noticeable differences appear
for MOEA/D, for which the numbers of local fronts and dominance resistance
regions are highly important, regardless of the budget. They even surpass the
number of variables as the most important features for larger budgets. Thus, it
is interesting to note that even though the problem features coming from the
problem generator have a similar effect on performance overall, their strength
may be quite different depending on the considered algorithm and budget.

budget = 5000 budget = 10000 budget = 30000 budget = 50000

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
n_resist_regionsn_local_frontsn_discon_psvar_densitynonident_ps

n_obj
n_var

feature importance

NSGA−II IBEA MOEA/D Random

Fig. 6. Relative importance of problem features for regression models.
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4.3 Algorithm Selection by Classification

Random Forest Classification. We now focus on feature-based algorithm
selection to answer the following question: Given a problem, what is the recom-
mended algorithm for solving it under a particular budget? The interest is no
longer in which problem features have more impact on the performance of algo-
rithms, but which features best distinguish algorithms from each other. We still
apply random forest, this time for classification. We construct 4 classification
models (one per budget) to predict the best algorithm using problem features
as predictors. Their classification accuracy, based on 30 repetitions of 10-fold
cross-validation, is reported in Fig. 7 (left). The lowest accuracy obtained over
all folds and repetitions is 0.64, and the median accuracy is always above 0.75 for
all budgets. This means that the classifier is able to predict the best algorithm
in at least 75% of the cases, which is significantly better than a random classifier
(with an accuracy of 25%), or a dummy classifier that would always select IBEA,
the most frequent best algorithm for any budget, which outperformed other algo-
rithms in 53%, 80%, 63%, and 58% of problems respectively, for budgets of 5 000,
10 000, 30 000, and 50 000 evaluations, as reported in Sect. 3.2. The accuracy of
random forest is slightly higher for a budget of 10 000. We attribute this to the
fact that IBEA outperforms other approaches more often under this budget,
which makes the classification problem easier. We also report in Fig. 7 (right)
the relative hypervolume deviation of the feature-based random forest classi-
fier (Auto) from the virtual best algorithm, that is the ideal method, an oracle,
that always selects the best algorithm. This measure is termed regret, as it indi-
cates how far the obtained hypervolume is from an ideal classifier. It is compared
against always selecting each one of the considered algorithms. Notice the log
scale in the plot. The regret obtained by the feature-based classifier ranges from
0.0016 to 0.0044 and deviates from an ideal classifier by less than 0.5%. This is
less than IBEA, the most frequent best algorithm for all budgets, by an order of
magnitude. Compared to an ideal classifier, the relative performance of NSGA-II
increases with the budget, while MOEA/D moves away from it.

Fig. 7. Accuracy (left) and regret (right) of classification models trained by budget,
calculated using 10-fold cross-validation with 30 repetitions.
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In Fig. 8, we report the relative
importance of problem features for the
random forest classifiers. As suggested
earlier, the importance of the number of
variables decreases with the budget. By
contrast, the importance of the num-
bers of objectives and of dominance
resistance regions increases with the
budget, and even exceeds the number of
variables for larger budgets. The num-
bers of disconnected Pareto sets and
local fronts are less important for algo-
rithm selection than for performance
regression. In fact, they have a low
importance similar to the presence of
non-identical Pareto sets and to the varying density for some budgets. Thus,
although they have a significant effect on algorithm performance, the impact on
all algorithms is the same. The feature analysis for classification shows that it
is possible to recommend an algorithm based on problem features with a fairly
high accuracy. Moreover, the features have a different impact on the choice of
the algorithm depending on the budget.

Decision Trees. We conclude with a basic classifier for algorithm selection
based on a decision tree. Its construction follows the well-established CART
algorithm [2,28], whose segmentation criterion is the Gini diversity index and
which generates binary decision trees (i.e. a node has two children at most).
In Fig. 9, we show decision trees for a budget of 5 000 (left) and 30 000 eval-
uations (right). Numbers below each node are the number of times NSGA-II,
IBEA, MOEA/D and random search are each the best algorithm, respectively,
followed by the proportion of problems covered by the node. There are only three
values on the first rows for a budget of 5 000 since random search is never the
best. Although the accuracy is slightly lower than that of a random forest (0.75
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and 0.79, respectively, for a budget of 5 000 and 30 000), we argue that this can
provide a useful recommendation system for algorithm selection, with only three
levels of decision in these examples.

The tree levels are consistent with the importance of features depicted by
random forest, but their joint effect appears more explicitly. Under the smaller
budget, the first decision is based on the number of variables. For example, with
less than 13 variables, more than 2 local fronts, and less than 10 objectives, IBEA
is the best. For a larger budget, and as expected from our previous comments, the
feature that appears on top of the tree is the number of objectives. In this case,
NSGA-II is the best with few objectives and few variables or few local fronts.
Conversely, looking at the rightmost branch of the tree, IBEA is clearly the best
with 4+ objectives and 3+ dominance resistance regions. This covers 48% of the
problems. Such decision trees justify why an algorithm is recommended based
on feature values. In addition, it points out the problem characteristics for which
search mechanisms should be refined to improve performance.

5 Conclusions

We adopted a machine learning perspective to carry out the most extensive
feature-based benchmark study of distance-based multi/many-objective opti-
misation problems to date. We generated 28 350 instances based on 945 prob-
lem configurations by varying the complexity controlled by 7 features. Random
forests and decision trees were then used to understand correlations between the
problem features and algorithm performance, predict algorithm performance,
and automate the task of algorithm selection for a given problem and budget at
hand. We find that, although the considered problem features affect the perfor-
mance of algorithms in distinctive ways, when used as predictors in a random
forest classifier we can predict the best algorithm with an accuracy of 75% or
more. Thus, problem features can control the complexity of a problem, and
lend themselves to selecting an algorithm when faced with a previously unseen
problem. This is the first automated algorithm selection study for continuous
problems with more than 2 objectives. We observed that the number of objec-
tives is (i) negatively correlated with algorithm performance, (ii) one of the most
important problem features for predicting algorithm performance, especially for
larger budgets, and (iii) a key feature to making an accurate algorithm selection
when faced with an unseen problem. Future work could investigate if consid-
ering additional problem and landscape features can help increase prediction
accuracy further. Some expected algorithm behaviours with respect to specific
problem features could also be corroborated based on a fine-grained analysis of
the data produced in this work. At last, it would be worth studying the sensi-
tivity of algorithm parameters, and their joint impact with problem features on
performance.
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Abstract. Degenerate multi-objective test problems are included in test suites to
evaluate EMO algorithms on a wide variety of test problems. However, it was
pointed out in some studies that the frequently-used degenerate DTLZ5, DTLZ6
andWFG3 test problems do not have degenerate Pareto fronts. Their Pareto fronts
are different from the originally intended degenerate shapes. Actually, they are
partially degenerate test problems. Modified formulations of DTLZ5 and DTLZ6
were proposed to remove the non-degenerate parts of their Pareto fronts. However,
the original formulations of DTLZ5, DTLZ6 and WFG3 continue to be used as
degenerate test problems in many studies whereas they are not degenerate test
problems. One issue in their use as degenerate test problems is that reference
point sets for IGD calculation are sampled from the originally intended degenerate
Pareto fronts whereas they are not the true Pareto fronts. Nevertheless, the original
DTLZ5, DTLZ6 and WFG3 formulations are useful for performance evaluation
of EMO algorithms since their Pareto front shapes are similar to some real-world
problems and much more complicated than other test problems. That is, their use
helps us to evaluate the performance of EMO algorithms on a wide variety of
test problems including realistic and challenging test problems. In this paper, we
clearly demonstrate the usefulness of the original DTLZ5, DTLZ6 and WFG3
formulations. Then, after pointing out the difficulty in their use in computational
experiments, we explain how we can obtain reliable experimental results on those
test problems.

Keywords: Evolutionary multi-objective optimization · Test problems ·
Degenerate Pareto fronts · Partially degenerate Pareto fronts · IGD indicator

1 Introduction

In the field of evolutionary multi-objective optimization (EMO), the performance of
EMO algorithms is usually evaluated through computational experiments on benchmark
test suites. Thus, it is highly desirable that a benchmark test suite consists of a wide
variety of test problems with diverse characteristics including realistic test problems.
In recent two decades, several benchmark test suites (e.g., ZDT [1], DTLZ [2], WFG
[3], MaF [4], UF [5]) have been proposed to facilitate the growth of the EMO field.
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These test suites cover various problem characteristics. For example, these test suites
include test problems with various fitness landscapes such as unimodal, multimodal,
biased, and deceptive. They also include test problems with various Pareto front shapes
such as linear, convex, concave, and disconnected. In some test suites, multi-objective
test problems with degenerate Pareto fronts are included to increase the diversity of test
suites. For example, in the DTLZ test suite [2], DTLZ5 and DTLZ6 were designed as
degenerate test problems. In theWFG test suite [3], WFG3was designed as a degenerate
test problem.

An M -objective problem is generally considered degenerate if the dimension of its
Pareto front is smaller than (M− 1) [12], which can be a result of the existence of redun-
dant objectives in its problem formulation [27]. Examples of degenerate Pareto fronts
are illustrated in Fig. 1, in which the degenerate Pareto fronts of DTLZ5, DTLZ6 and
WFG3 with three objectives are shown. These three test problems have been frequently
used to demonstrate the ability of EMO algorithms to handle multi-objective problems
with degenerate Pareto fronts (e.g., see [6–10]). If a problem contains both degenerate
and non-degenerate parts of the Pareto front, it is referred to as a partially degenerate
problem in this paper. In [27], it was demonstrated that partially redundant objectives
can lead to a partially degenerate problem.

Fig. 1. The intended degenerate Pareto fronts for the three-objective DTLZ5, DTLZ6 andWFG3
test problems.

While the DTLZ5, DTLZ6 and WFG3 test problems have been frequently used to
evaluate the performance of EMO algorithms on degenerate problems, it was pointed
out in some studies that these three test problems are not degenerate test problems [3,
11, 12]. Their Pareto fronts are different from the originally intended shapes. Actually,
they are partially degenerate test problems [12]. The true Pareto fronts for DTLZ5 and
DTLZ6 have non-degenerate parts when they havemore than three objectives [3, 11, 12].
WFG3 has a non-degenerate part of the Pareto front when it has three or more objectives
[12]. In order to remove the non-degenerate parts, modified formulations of DTLZ5 and
DTLZ6 were proposed in [11]. In [12], constraint conditions were derived to remove
the non-degenerate part of the Pareto front of WFG3. Despite these efforts, the original
formulations of DTLZ5, DTLZ6 and WFG3 are still used as degenerate test problems
in many studies.
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In this paper, we point out that the original formulations of DTLZ5, DTLZ6 and
WFG3with the partially degenerate Pareto fronts are good test problems. This is because
their Pareto front shapes are similar to those of some real-world problems. This is also
because their Pareto front shapes are much more complicated than those of the other
DTLZ andWFG test problems. That is, the original formulations of DTLZ5, DTLZ6 and
WFG3 are more realistic and challenging in performance evaluation of EMO algorithms
than the other DTLZ andWFG test problems. One issue in their use is that the originally
intended Pareto front of each test problem is often used to sample reference point sets
for the inverted generational distance (IGD) [13] calculation. That is, the reference point
sets and the test problems are not consistent. In other words, the original formulations of
DTLZ5, DTLZ6 and WFG3 are not appropriately used for evaluating the performance
of EMO algorithms. In this paper, we demonstrate the usefulness of the original DTLZ5,
DTLZ6 and WFG3 test problems. We also provide suggestions on how to use them for
performance evaluation of EMO algorithms.

The organization of this paper is as follows. Section 2 provides brief discussions on
the Pareto fronts of DTLZ5, DTLZ6 andWFG3 with the original problem formulations.
In Sect. 2, we also review the availability of these three test problems and their reference
point sets for IGD calculation in frequently-used EMO experimental platforms: jMetal
[22], PlatEMO [19] and pymoo [23]. Section 3 presents our experimental results for
IGD-based performance evaluation. Section 4 concludes this paper.

2 DTLZ5, DTLZ6 and WFG3 Test Problems

2.1 Pareto Fronts of DTLZ5, DTLZ6 and WFG3

As shown in Fig. 1, the originally intended Pareto front shapes of theDTLZ5 andDTLZ6
test problems are one-dimensional curves independent of the number of objectives [2,
3, 12]. However, it was pointed out in [3, 11, 12] that the true Pareto fronts of DTLZ5
and DTLZ6 are not degenerate when the number of objectives is larger than three. The
true Pareto front shapes of DTLZ5 and DTLZ6 are unknown for the case of four or more
objectives. For WFG3, the originally intended Pareto front shape is a line as shown in
Fig. 1. However, the true Pareto front of WFG3 includes the line part and other solutions
[12], which gives rise to a flag-like shape in the three-objective case (see Fig. 2 (a)).
In Fig. 2 (b), we show an approximated Pareto front of a real-world three-objective
“reactive power optimization” problem called DDMOP5 in [24]. We can see that the
two Pareto fronts in Fig. 2 have similar shapes. A similar partially degenerate flag-shaped
Pareto front is also shown in [20] for a real-world three-objective “two-bar truss design”
problem called RE3–3-1. For the case of four or more objectives, the true Pareto front
shape of WFG3 is unknown.

To obtain clear pictures of the true Pareto front shapes of DTLZ5, DTLZ6 andWFG3
in a high-dimensional objective space, we use five EMO algorithms, i.e., MOEA/D with
the PBI function [14], NSGA-III [15], θ -DEA [16], NSGA-II/SDR [17] and PREA
[18] to approximate the Pareto front of each test problem in the five-objective space.
These five algorithms are chosen based on the following considerations. MOEA/D and
NSGA-III are frequently-used classic EMO algorithms. The other three are recently-
proposedEMOalgorithmswhich have shownpromising performance onmany-objective
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Fig. 2. The partially degenerate Pareto front of the three-objective WFG3 test problem in (a) and
an approximated Pareto front of the real-world DDMOP5 problem [24] in (b).

problems.We use PlatEMO [19] for our experiments in this paper. The population size in
each algorithm is specified as 210. Each algorithm is terminated after 1,000 generations.
For other specifications in each algorithm, the default settings in PlatEMO are used.
Each algorithm is executed 31 times on each test problem. To approximate the true
Pareto front of each test problem, we use all non-dominated solutions among obtained
solutions by 31 runs of the five algorithms (i.e., 31 × 5 = 155 runs in total).

Figure 3 shows an approximated Pareto front for the five-objective DTLZ5. Due to
the paper length limitation, approximated Pareto fronts for the other two test problems
are shown in the supplementary file (which is available from https://github.com/HisaoL
abSUSTC/EMO2023). The approximated Pareto front in Fig. 2 (b) was created in the
same manner as in Fig. 3 whereas the population size was 91 in Fig. 2 (b). As shown
in Fig. 3 (and Figs. S1-S2 in the supplementary file), the approximated Pareto fronts
of DTLZ5, DTLZ6 and WFG3 are highly irregular in the high-dimensional objective
space. They are clearly different from the other test problems in the DTLZ and WFG
test suites. Thus, their use increases the diversity of the test problems in these test suites.

A major challenge posed by DTLZ5, DTLZ6 and WFG3 is to find their entire
Pareto fronts including the non-degenerate parts. Clearly different solution sets are often
obtained by different EMOalgorithms on these test problems evenwhen almost the same
results are obtained onothermore standard test problems such asDTLZ1–4 andWFG4–9
with regular triangular Pareto fronts [21]. As an example, Fig. 4 shows the final popula-
tion of a single run with the median IGD value among 31 runs of each algorithm on the
five-objective DTLZ5 in the f1–f4 subspace (see Sect. 3 for IGD calculation). The f1–f4
subspace is shown here because it provides a clear demonstration of the search perfor-
mance of the five EMO algorithms on the five-objective DTLZ5 problemwith a partially
degenerate Pareto front. The upper left subfigure shows the approximated Pareto front in
the f1–f4 subspace, which is a copy from Fig. 3. In Fig. 4, clearly different solution sets
are obtained from the five algorithms. No algorithms find a well-distributed solution set
over the entire Pareto front. NSGA-III and PREA seem to find more diverse solutions
on the non-degenerate part of the Pareto front than the other three algorithms. The main
difference among the obtained solution sets in Fig. 4 is the diversity of solutions over
the non-degenerate part (see also Fig. 7 for the ten-objective DTLZ5 and Fig. 8 for the

https://github.com/HisaoLabSUSTC/EMO2023


Partially Degenerate Multi-objective Test Problems 281

Fig. 3. An approximated Pareto front for the five-objective DTLZ5 test problem. Solutions are
projected to the two-dimensional subspace.

ten-objective WFG3 in Sect. 3). Thus, the three partially degenerate test problems are
useful for evaluating the diversification ability of EMO algorithms.

2.2 Availability of the Test Problems

In the previous subsection, we have discussed the usefulness of the original problem
formulations of DTLZ5, DTLZ6 and WFG3 for performance evaluation of EMO algo-
rithms.Whereas the three test problems are useful, one critical issue is that the originally
intended degenerate Pareto fronts have been used to sample reference point sets for IGD
calculation. For DTLZ5, DTLZ6 and WFG3 with the original problem formulations,
IGD-based evaluation results are unreliable and misleading if reference point sets are
sampled from the originally intended degenerate Pareto fronts. Under this reference point
sampling mechanism, the calculated IGD values evaluate the approximation quality of
the obtained solution sets only for the degenerate parts of the partially degenerate Pareto
fronts.

In many EMO experimental platforms, the original formulations of DTLZ5, DTLZ6
and WFG3 are available. It is therefore necessary to check whether the reference point
set for IGD calculation is sampled from the entire partially degenerate Pareto front of
each test problem. In this subsection, we review the problem formulations of the three
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Fig. 4. A solution set obtained by a single run of each algorithm on the five-objective DTLZ5.
The final population of a single run is projected to the two-dimensional subspace with f 1 and f 4.

test problems and the corresponding reference point sets for IGD calculation used in
three commonly-used EMO experimental platforms: jMetal [22], PlatEMO [19] and
pymoo [23].

All the jMetal, PlatEMO and pymoo platforms use the original problem formulations
of DTLZ5, DTLZ6 andWFG3. Table 1 lists the reference point sets for IGD calculation
for the three test problems in each platform. In jMetal and pymoo, the reference point
sets for IGD calculation for DTLZ5, DTLZ6 andWFG3 are sampled from the originally
intended degenerate Pareto fronts when the number of objectives (i.e.,M ) is three. This
setting is appropriate for DTLZ5 and DTLZ6 since they have degenerate Pareto fronts
when M = 3. However, this setting is not appropriate for WFG3 since its Pareto front
is not degenerate when M ≥ 3. For M > 3, the reference point sets for the three test
problems are not provided in jMetal and pymoo. When reference point sets are not
available in jMetal and pymoo, they can be constructed by combining the results of
all runs of compared algorithms. This is a widely-used practice in the EMO field for
unknown Pareto fronts (whereas this does not always lead to reliable comparison results
[25]).

In PlatEMO, the provided reference point sets for IGD calculation for DTLZ5,
DTLZ6 and WFG3 are sampled from the originally intended degenerate Pareto fronts
regardless of the number of objectives. Thus, the reference points are not appropriate
for DTLZ5 and DTLZ6 for M > 3 and WFG3 for M ≥ 3. When the IGD indicator
is used to evaluate the performance of EMO algorithms in PlatEMO for the three test
problems, misleading results are likely to be obtained. It is therefore necessary to update
the reference point sets for the three test problems in order to avoid creating unreliable
IGD-based evaluation results. Moreover, it is important for users to be aware that the
original problem formulations of DTLZ5, DTLZ6 and WFG3 are partially degenerate
problems. When these three test problems are used for performance evaluation of EMO
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algorithms, we should always ensure that an appropriate reference point set for IGD
calculation is used for each test problem.

Table 1. Reference point sets used for IGD calculation in jMetal, PlatEMO and pymoo.

Test problem M Reference point sets used for IGD calculation

jMetal [22] PlatEMO [19] pymoo [23]

DTLZ5, DTLZ6,
WFG3

3 Sampled from the
intended degenerate
Pareto front

Sampled from the
intended degenerate
Pareto front

Sampled from the
intended degenerate
Pareto front

DTLZ5, DTLZ6,
WFG3

>3 Not provided Sampled from the
intended degenerate
Pareto front

Not provided

3 Performance Evaluation Results

In this section, we examine the performance of the five EMO algorithms (MOEA/D
[14], NSGA-III [15], θ -DEA [16], NSGA-II/SDR [17] and PREA [18]) on DTLZ5,
DTLZ6andWFG3with the original formulations. The population size for each algorithm
is specified as 91 for three-objective problems, 210 for five-objective problems, and
275 for ten-objective problems. The termination condition of each algorithm is 1,000
generations. Each algorithm is executed 31 times on each test problem.

We report two types of IGD-based performance evaluation results for DTLZ5,
DTLZ6 and WFG3. One is based on the reference point set sampled from the originally
intended degenerate Pareto front (i.e., the reference point set provided in PlatEMO) for
each test problem, and the other is based on the reference point set consisting of all
non-dominated solutions among obtained solutions by 31 runs of the five algorithms.
In the latter setting, the reference point set for each test problem is an approximation of
the partially degenerate (i.e., true) Pareto front. In order to examine the reliability of the
constructed reference point sets using the obtained solutions by the five algorithms, two
different termination conditions are used to construct the reference point sets. One is
1,000 generations (which is the same as the termination condition for performance eval-
uation of the five algorithms), and the other is 10,000 generations. That is, we perform
IGD-based comparison of the five algorithms using the three reference point sets for
each test problem. Figures 5–6 show the three reference point sets for the ten-objective
DTLZ5 andWFG3, respectively. The reference point sets provided in PlatEMO (i.e., the
left figures in Figs. 5–6) are clearly different from the reference point sets obtained by
the five algorithms with the two termination conditions (i.e., the center and right figures
in Figs. 5–6). The difference in the reference point sets between the two termination
conditions is small especially in Fig. 6 on the ten-objective WFG3. Reference point sets
for the other many-objective test problems (i.e., the five-objective DTLZ5, DTLZ6 and
WFG3, and the ten-objective DTLZ6) are shown in the supplementary file.
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Experimental results using the three reference point sets are summarized in Tables 2,
3 and 4 using the ranking of the five algorithms (“1” is the best and “5” is the worst).

Fig. 5. Reference point sets used for IGD calculation for the ten-objective DTLZ5: (left) pro-
vided by PlatEMO, (middle) all non-dominated solutions obtained by the five algorithms with the
termination condition of 1,000 generations, (right) all non-dominated solutions obtained by the
five algorithms with the termination condition of 10,000 generations.

Fig. 6. Reference point sets used for IGD calculation for the ten-objective WFG3: (left) provided
by PlatEMO, (middle) all non-dominated solutions obtained by the five algorithms with the ter-
mination condition of 1,000 generations, (right) all non-dominated solutions obtained by the five
algorithms with the termination condition of 10,000 generations.

Table 2 is based on the reference point sets in PlatEMO. Tables 3–4 are based on the
reference point sets obtained by the five algorithms (after 1,000 generations in Table 3
and 10,000 generations in Table 4). In each table, the best rank “1” is highlighted in
bold. The average IGD value of each algorithm on each test problem is shown in Tables
S1-S3 in the supplementary file for the three reference point sets.

In Table 2with the PlatEMO reference point sets, NSGA-II/SDR has the best average
rank over the three test problems (see the bottom line of Table 2). However, the difference
in the average ranks among the five algorithms is small. A different algorithm has the
best rank for a different test problem. For example, PREA has the best rank on the three-
objective DTLZ5, DTLZ6 andWFG3 test problems whereasMOEA/D has the best rank
on DTLZ5 and DTLZ6 with five and ten objectives.

In Tables 3–4, almost the same results are obtained. That is, Table 3 is almost the
same as Table 4. For example, PREA always has the best rank for all test problems in
these two tables. This is because similar reference point sets are obtained after 1,000



Partially Degenerate Multi-objective Test Problems 285

generations (in Table 3) and 10,000 generations (in Table 4) for each test problem as
demonstrated in Figs. 5–6 (i.e., the center and right figures).

Table 2. The rank of each algorithmbased on the average IGDvalue calculated using the reference
point sets provided in PlatEMO.

Problem M MOEA/D NSGA-III θ -DEA NSGA-II/SDR PREA

DTLZ5 3 5 2 3 4 1

5 1 3 5 2 4

10 1 4 3 2 5

DTLZ6 3 3 2 4 5 1

5 1 3 4 2 5

10 1 5 2 3 4

WFG3 3 5 3 4 2 1

5 5 3 4 1 2

10 5 4 1 3 2

Average 3.00 3.22 3.33 2.67 2.78

Table 3. The rank of each algorithmbased on the average IGDvalue calculated using the reference
point set obtained by the five algorithms after 1,000 generations.

Problem 𝑀 MOEA/D NSGA-III 𝜃 DEA NSGA-II/SDR PREA

DTLZ5
3 4 2 3 5 1
5 5 2 3 4 1
10 5 2 3 4 1

DTLZ6
3 3 2 4 5 1
5 4 2 3 5 1
10 5 3 2 4 1

WFG3
3 2 3 5 4 1
5 2 3 4 5 1
10 4 2 5 3 1

Average 3.78 2.33 3.56 4.33 1.00

One clear observation from Tables 2, 3 and 4 is that totally different results are
obtained between Table 2 and Tables 3–4. For the five test problem instances shaded
in Tables 3–4, the best algorithm on each test problem instance in Table 2 shows the
worst performance in Table 3–4. Especially, on the ten-objective DTLZ5, the totally
opposite rankings of the five algorithms are obtained between Table 2 (i.e., 1, 4, 3, 2, 5)
and Tables 3–4 (i.e., 5, 2, 3, 4, 1). These different results are obtained since Table 2 is
based on only the degenerated parts whereas Tables 3–4 are based on the entire Pareto
fronts. For example, in Fig. 4, the degenerate part of the five-objective DTLZ5 is well
covered by the solution set obtained by MOEA/D. Thus, MOEA/D is evaluated as the
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Table 4. The rank of each algorithmbased on the average IGDvalue calculated using the reference
point set obtained by the five algorithms after 10,000 generations.

Problem 𝑀 MOEA/D NSGA-III 𝜃 DEA NSGA-II/SDR PREA

DTLZ5
3 4 2 3 5 1
5 5 2 3 4 1
10 5 2 3 4 1

DTLZ6
3 3 2 4 5 1
5 4 2 3 5 1
10 5 3 2 4 1

WFG3
3 2 3 5 4 1
5 2 3 4 5 1
10 3 2 5 4 1

Average 3.67 2.33 3.56 4.44 1.00

best algorithm for the five-objective DTLZ5 in Table 2. However, the same solution
set covers only a small region of the non-degenerate part in Fig. 4. Thus, MOEA/D is
evaluated as the worst algorithm for the five-objective DTLZ5 in Tables 3–4.

To further examine the experimental results in Tables 2–4, the solution sets obtained
by the five algorithms on the ten-objective DTLZ5 and WFG3 are shown as parallel
coordinate plots in Figs. 7 and 8, respectively. For each algorithm on each test problem,
a single run with the median IGD value among 31 runs is used in these figures. The
reference point sets obtained after 10,000 generations in Table 4 are used for IGD
calculation to choose a single run in Figs. 7 and 8 (and also in Fig. 4).

In Fig. 7, the solution set obtained by MOEA/D on the ten-objective DTLZ5 is
similar to the PlatEMO reference point set in Fig. 5 (the left figure). Thus, MOEA/D
is evaluated as the best algorithm on the ten-objective DTLZ5 in Table 2. However,
the solution set obtained by MOEA/D is clearly different from the reference point sets
obtained by the five algorithms after 1,000 and 10,000 generations in Fig. 5 (the center
and right figures). Thus, MOEA/D is evaluated as the worst algorithm in Tables 3–4.
Similar observations can be obtained for the solution sets of the other algorithms in
Figs. 7–8 (e.g., the solution set by θ -DEA in Fig. 8 is similar to the PlatEMO reference
point set in Fig. 6).

Our experimental results in Tables 2, 3 and 4 and Figs. 7–8 demonstrate that the
reference point sets sampled from the originally intended degenerate Pareto front are
not appropriate for DTLZ5, DTLZ6 and WFG3 with the original problem formulations
(i.e., with the partially degenerate Pareto fronts). That is, IGD-based evaluation results on
these test problems can be misleading when the reference point sets for IGD calculation
are sampled from the originally intended degenerate Pareto front. Our suggestion is to
use all non-dominated solutions among obtained solutions by all runs of all the examined
algorithms as a reference point set for IGD calculation. Moreover, it is advisable to use
an additional performance indicator (e.g., the hypervolume indicator) together with the
IGD indicator for fair comparison of EMO algorithms. This is because performance
comparison results based on a single indicator are not always reliable [26].
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Fig. 7. The solution sets obtained by the five algorithms on the ten-objective DTLZ5 test problem.
A single run with the median IGD value is selected from 31 runs of each algorithm.

Fig. 8. The solution sets obtained by the five algorithms on the ten-objectiveWFG3 test problem.
A single run with the median IGD value is selected from 31 runs of each algorithm.
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4 Conclusions

In this paper,we showed that the partially degenerate Pareto fronts of theDTLZ5,DTLZ6
and WFG3 test problems with the original problem formulations are highly irregular
in a high-dimensional objective space, which are clearly different from the originally
intended degenerate Pareto fronts. Their Pareto fronts are similar to those of some real-
world problems. Hence, the original formulations of the three test problems can be used
to increase the diversity of test problems in the DTLZ and WFG test suites. That is,
their original formulations are good test problems to evaluate the performance of EMO
algorithms. One critical issue in their use for performance evaluation of EMO algorithms
is that the originally intendeddegenerate Pareto fronts have beenused to sample reference
point sets for IGD calculation. That is, these three test problems have not been used
appropriately in IGD-based performance evaluation. Our computational experiments in
this paper demonstrated that IGD-based evaluation results based on reference point sets
from the originally intended degenerate Pareto fronts are not reliable. Thus, it is always
necessary to ensure that an appropriate reference point set for each test problem is used
for IGD calculation in IGD-based performance evaluation of EMO algorithms on these
test problems.

Since degenerate and partially degenerate problems are common in real-world appli-
cations [27], an interesting future research study would be to investigate the possibility
of quantifying or measuring degeneracy through exploratory landscape analysis [28].
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Abstract. The design and choice of benchmark suites are ongoing topics
of discussion in the multi-objective optimization community. Some suites
provide a good understanding of their Pareto sets and fronts, such as the
well-known DTLZ and ZDT problems. However, they lack diversity in
their landscape properties and do not provide a mechanism for creat-
ing multiple distinct problem instances. Other suites, like bi-objective
BBOB, possess diverse and challenging landscape properties, but their
optima are not well understood and can only be approximated empiri-
cally without any guarantees.

This work proposes a methodology for creating complex continuous
problem landscapes by concatenating single-objective functions from ver-
sion 2 of the multiple peaks model (MPM2) generator. For the result-
ing problems, we can determine the distribution of optimal points with
arbitrary precision w.r.t. a measure such as the dominated hypervol-
ume. We show how the properties of the MPM2 generator influence the
multi-objective problem landscapes and present an experimental proof-
of-concept study demonstrating how our approach can drive well-founded
benchmarking of MO algorithms.

Keywords: Multi-objective optimization · Multimodal optimization ·
Numeric optimization · Benchmarking · Problem generator

1 Introduction

In order to adequately understand problem hardness and to specifically tailor
algorithmic approaches with respect to the criteria characterizing different facets
and levels of difficulty in multi-objective (MO) optimization, comprehensive and
carefully designed benchmark sets are an essential prerequisite [1].

An MO benchmark suite ideally should be a) comprehensive with regard
to the representativeness of relevant real-world problems, b) scalable regarding
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both decision and objective space dimensionality, c) capable of covering the most
important characteristics of MO landscape properties in relevant combinations, d)
extendable in size by providing a means to specifically generate a desired number
of problem instances with certain landscape characteristics, and most importantly
e) well understood by providing analytical expressions of both Pareto front (PF)
and Pareto sets (PS), ideally including local structures.

However, meeting all these requirements is an extremely challenging MO
problem (MOP) by itself, and we have to aim for optimal trade-off solutions.
In single-objective (SO) optimization, BBOB [13] presents a benchmark suite
that ticks off many boxes of the previously stated wish list such that, e.g., it is
well understood in terms of problem difficulties, optima are known, an arbitrary
number of instances per problem type can be generated, and scalability regarding
decision space dimensionality is provided. Moreover, a standardized algorithm
evaluation procedure exists, which is widely accepted within the community. The
community, however, is still largely debating on a).

In MO optimization, there is, unfortunately, no straightforward counterpart.
While real-world representativeness is also an issue in this domain, we are specif-
ically concerned about items d) and e) as critical issues. In our view, existing
benchmark suites turn out to be either not challenging enough, if PF and PS
are known analytically (e.g., ZDT [29] and DTLZ [7]), or extremely challenging
if requirement e) is omitted as, e.g., in the bi-objective BBOB [25]. Specifically,
algorithm performance evaluation is very challenging as no ground truth exists
for comparison. Also, item c) cannot be assessed properly as MO landscape
characteristics can only be empirically and heuristically approximated.

This paper concentrates on the MPM2 generator [26,27] and on an MO
benchmark set creation concept based thereon [16]. We will show that we can
largely contribute to understanding MOPs by providing a method for deriving
both PS and PF analytically and allowing for the approximation of optimal
Hypervolume (HV) up to an arbitrary precision. Thereby, a ground truth is
provided in combination with MPM2 being flexible regarding the generation of
different types of landscape structures and problem characteristics. So far, we
concentrate on continuous bi-objective MOPs as proof-of-concept while on top
simultaneously illustrating generalization and scalability potential.

We start by giving some background on MO benchmark suites and algorithms
in Sect. 2. Then, in Sect. 3, we introduce our methodology first for individual
pairs of unimodal functions and subsequently for multiple peaks. This is fol-
lowed by a proof-of-concept experimental study showing problem properties and
algorithm performances in Sect. 4. Section 5 concludes this work and comments
on future research perspectives building on our methodology.

2 Background

Before diving into our methodology, we will start by introducing some back-
ground on MO benchmark suites, in particular the MPM2 generator, and the
MO optimizers utilized in the experimental section later in this work.
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MO Benchmark Suites. In a recent survey on continuous multimodal MO
optimization [12], existing MO benchmark suites were discussed both in gen-
eral as well as with a dedicated focus on multimodality. Therein, it has been
concluded that the existing benchmark problems usually fall into one of two
categories. The first group comprises hand-crafted MOPs with well-understood
structural landscape properties, including analytically defined PSs. Typical rep-
resentatives of this collection are historically well-established test suites such as
DTLZ [7] or ZDT [29]. However, a severe limitation of these MOPs is, from a
multimodal perspective, their lack of challenging landscape structures, as visu-
ally demonstrated in [19,20,22]. Likewise, the MOPs of the recently proposed
MMF test suite [28] primarily exhibit extremely regular patterns; yet, struc-
turally diverse problems are crucial for meaningful algorithm benchmarking [1].
Moreover, the scalability of the aforementioned MOPs is limited w.r.t. their
number of optima and dimensionality of the decision space.

The second group of benchmark problems comprises suites based on con-
catenations of SO benchmark functions, like the bi-objective BBOB [25]. These
problem collections are usually scalable in dimensionality and they contain more
diverse MOPs with potentially complex landscapes due to the flexible concate-
nation of functions. Yet, these benefits come at the cost of poorly understood
structural properties. For instance, although the global optima of the SO BBOB
functions are analytically known [13], the PS of the corresponding bi-objective
BBOB instance must be empirically approximated.

After comparing the strengths and weaknesses of the existing MO benchmark
suites, it became evident that our community is currently lacking a sophisticated
problem generator, which is capable of constructing a scalable, comprehensive,
and diverse set of multimodal MOPs with known landscape structures.

To fill this gap, we herein utilize Wessing’s Multiple Peaks Model (MPM2)
generator [26,27] for generating SO functions with configurable topologies and
scalable dimensionality. Each of these SO functions is essentially the minimum
of a configurable number of individual peak functions, i.e., unimodal functions
with ellipsoidal structure, aligned in one of two topologies: funnel or random.
The funnel type contains a large funnel in which all optima are grouped around a
global optimum, such that the depth per peak decreases with increasing distance
from the global optimum. In contrast, the random type distributes the depths
and locations of local optima uniformly across the search space. The implemen-
tation of the MPM2 generator allows us to extract valuable information about
each of the underlying peaks, such as the covariance matrix, radius, and height
properties, which we will later use as a basis for identifying the PS of the gen-
erated MOPs. Finally, note that the decision space of a d-dimensional MPM2
problem is usually [0, 1]d and that objective values are restricted to [0, 1].

Similar to [16], we create bi-objective benchmark problems by concatenating
functions generated with MPM2. Consequently, the resulting MOPs tend to be
part of the second category of benchmark problems. Still, due to its modular
composition of multiple peaks, we can generate configurable and scalable MOPs
with known PSs (see Sect. 3). Despite their relatively simple components, the
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landscapes of the MOPs generated with this approach do not necessarily exhibit
simple, regular patterns, which are easy to exploit by an algorithm. Instead,
our approach enables the creation of diverse test functions with irregular, non-
separable landscapes, convex, concave, and/or split (globally or locally efficient)
PFs. The respective decision spaces also offer a variety of structural challenges
(see, e.g., Fig. 3). Our approach thus provides a valuable framework for creating
various configurable and scalable MOPs that will be useful for meaningfully
benchmarking MOEAs and studying their strengths and weaknesses.

Algorithms. Next to classical MOEAs such as NSGA-II [6] and SMS-EMOA
[10], which focus on the approximation of globally optimal solutions and conver-
gence in objective space, specific MOEAs exist, which are explicitly suited for
overcoming obstacles of multimodal MOPs and for exploiting local structures. A
comprehensive overview of different MOEA categories, including multimodality
aspects both from a multi-local and multi-global perspective, is given in [12,23].

Herein, we focus on specific MOEAs like Omni-Optimizer [8] and MOLE [21].
These approaches were shown to be more competitive than classical MOEAs
w.r.t. convergence in objective space while simultaneously ensuring diversity in
decision space [14,18]. Omni-Optimizer is conceptually similar to NSGA-II but
additionally comprises a diversity preservation strategy in decision space. It is
thus applicable to various types of MOPs. MOLE, however, is a gradient-based
MO optimizer that actively explores and traverses locally efficient sets. Thereby,
it exploits interactions between their respective basins of attraction for a directed
descent towards dominating local (or even global) sets.

3 On the Pareto Set of Multiple Peaks Functions

As outlined in Sect. 2, MPM functions essentially take the minimum of multiple
individual peak functions, whose shape and placement are up to the generator.
Using the MPM2 generator, the individual peak functions obtain ellipsoidal level
sets, which makes them approachable using analytical techniques. We will first
illustrate how the PS of two unimodal peak functions can be derived and then
discuss how this analysis scales with increasing numbers of peaks per function.

Bi-Objective Convex-Quadratic Problems. A theoretical analysis of the PS
between individual peak functions stemming from the MPM2 generator has been
conducted before in [16]. Here, however, we base our discussion on the results of
[24], which focus on bi-objective convex-quadratic problems. Consider the follow-
ing bi-objective convex-quadratic problem F (x) with search space X = R

d:

F (x) = (f1(x), f2(x)) → min! with fi(x) =
1
2
(x − x∗

i )
THi(x − x∗

i ), i = 1, 2,

where x∗
1, x

∗
2 ∈ R

d are the global optima of f1 and f2, respectively. Likewise,
H1,H2 ∈ R

d×d are positive definite symmetric Hessian matrices determining
the shape and orientation of the quadratic functions.
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For convex quadratic functions, the position of the global optimum is deter-
mined by the singular point at which the gradient equals the zero vector. Fur-
ther, the PF of two convex quadratic problems is convex [11], which enables us to
express all globally optimal points by linear interpolation between the problems
using a parameter t ∈ [0, 1]:

Ft(x) = (1 − t)f1(x) + tf2(x) → min!
⇒∇Ft(x) = (1 − t)∇f1(x) + t∇f2(x) = 0

(1 − t)H1(x − x∗
1) + tH2(x − x∗

2) = 0

[(1 − t)H1 + tH2]−1[(1 − t)H1x
∗
1 + tH2x

∗
2] = x

In the work of [24], some additional results are shown, e.g., monotone objec-
tive transformations do not impact the placement of the PS, while PF properties,
such as its shape, can be adjusted. As the peaks resulting from MPM2 constitute
a convex quadratic function to which a monotone transformation is applied in
the objective space only, the above analysis also describes the PS of a bi-objective
unimodal peak function. Finally, note that this does not guarantee that the PS
is contained within the usual [0, 1]d bounding box for MPM2 problems and the
decision space boundaries may need slight adjustment when this unconstrained
PS should still be reachable.

Multiple Peaks. While we can only describe the PS analytically given a com-
bination of two unimodal peak functions, we can leverage this knowledge for
constructing the PS of bi-objective MPM2 problems. The first necessary insight
is that this specific PS has to be a subset of the theoretical PSs which are gen-
erated by an exhaustive combination of each pair of peaks, cf. Fig. 1.

This leaves us with considering all pairwise peak functions, i.e., one peak
per objective, and their respective PSs, cf. Fig. 1a. While new locally efficient
solutions cannot be generated, some of the analytical PSs may become partially
or completely inactive because of being dominated by objective values of another
peak combination. Additionally, they may become globally dominated by the
PSs of other peak pairs, thereby creating complex local and global interactions.
Considering the example in Fig. 1b, the blue set (corresponding to the bottom
left image in Fig. 1a) is completely inactive, while the red and violet sets are
partially inactive, and only the green set stays fully active. These dynamics are
mirrored in the PLOT visualization (see bottom right image in Fig. 1b) [19],
which only depicts the (local) PSs and PFs, respectively.

While these local dynamics can become very complex, it is not necessary to
study them in detail, if one is only interested in deriving the PS and PF, i.e., the
globally efficient points. We propose a simple, numerical procedure for deriving
a set-based approximation building on the analytical description of the PSs of
the peak pairs (see Fig. 2). As a target, we choose to approximate the dominated
hypervolume (HV) w.r.t. the reference point (1, 1). We start by evaluating evenly
spaced points w.r.t. the parameter t for each of the pairwise theoretical fronts.
In our implementation, the minimum resolution is 4 points per set.
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Fig. 1. Here, we demonstrate the effects of combining individual peak functions to one
MPM2 problem on the Pareto set. The exemplary problem consists of two peaks per
objective with a random topology and seeds 667172 and 540835.

For each set, we then individually compute the best possible intermediate
points, i.e., the minimum of two consecutive points, that could still be contained
within the set without dominating any other point in it. When interpolating on
the same (theoretical) set, no more dominant points could be found, making the
intermediates the most optimistic estimate between two adjacent points from a
set. The (relative) HV gap is then given by the difference (percentage) of the HV
dominated by i) the best possible intermediates, and ii) the actually evaluated
points. This process is repeated with doubled resolution until the HV gap reaches
a sufficiently small target value. To save on evaluations, sets whose best possible
intermediates are fully dominated by the union of all evaluated points so far can
be excluded in the respective iteration, as they cannot contribute to the PF.

Although we can pessimistically estimate the computational complexity pro-
portional to the number of initial theoretical Pareto sets times the inverse of the
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Fig. 2. Left: Illustration of the hypervolume gap (light shaded area) for the green
front of the problem shown in Fig. 1. Middle: The hypervolume gap (gray area) for a
resolution of 4 points per set, where the black points denote the nondominated points
from the best possible intermediates for each set. Right: The same gap for a resolution
of 16 points per set. Note that the red and blue sets could be excluded as they cannot
contribute to the Pareto front.

target gap, practical computations become surprisingly efficient. This is due to
the observation that many of the theoretical local sets can be excluded early.

4 Experimental Study

In the following proof-of-concept study, we (1) demonstrate the properties of
the proposed test suite subject to its main parameters and (2) conduct first
performance analyses of several standard and multimodality-affine solvers.

Setup. We created a total of 1,280 problems using the following configura-
tion: We select the search space dimensionality d ∈ {2, 3, 5, 10} to cover an
increasing but still manageable decision space. The number of peaks np ∈
{1, 2, 4, 8, 16, 32, 64, 128} per MPM2 function is exponentially scaled to enable
analyzing the influence of SO multimodality on a log-scale. Note that np coin-
cides for both constituent MPM2 functions to obtain a meaningful amount of
unambiguous classes for further analyses. The same rationale applies to the
topology, i.e., we select a specific topology parameter t ∈ {funnel, random}
for both problems simultaneously. Finally, we choose the random seeds s ∈
{1, . . . , 20} for the first objective, while the seed for the second objective is
always set to s + 1,000. For all problems, we then approximate the HV of the
PF to a relative gap of at most 10−4, i.e., we have an uncertainty of less than
0.01% about the optimal HV of each problem. This approximation takes at most
a few seconds per problem. We set the decision space boundaries to [−0.2, 1.2]d,
ensuring all Pareto sets are fully included.

To obtain the problem characteristics and to optimize the HV, we extract the
parameters for all peaks of the MPM2 problems using an interface implemented
in the R-package smoof [4]. Our experiments and analyses are also conducted in
R and can be found at https://github.com/schaepermeier/2023-emo-mpm2.

https://github.com/schaepermeier/2023-emo-mpm2
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We run the algorithms introduced in Sect. 2 using an interface to the C
implementations of NSGA-II and Omni-Optimizer provided by the mco [17] and
omnioptr [5] packages, respectively. Further, we rely on the default implementa-
tion of SMS-EMOA provided by the ecr package [3]. Note that it uses random
parent selection rather than the tournament scheme implemented in NSGA-II
and Omni-Optimizer, which has to be taken into account in the experimental
evaluation. We use MOLE with random uniform starting points as provided by
the moleopt package in the default configuration, but setting its internal HV
target parameter to 10−3, to reduce time spent refining already found solutions.
All MOEAs have their population set to 100, which is a common default.

We run all algorithms for 10,000 evaluations, i.e., 100 generations for NSGA-
II and Omni-Optimizer. As performance measure, we consider the dominated
HV w.r.t. the reference point (1, 1) provided by the archive of evaluated points.
For performance reasons, we compute the achieved HV every 100 function eval-
uations. We perform 15 repetitions per combination of problem and algorithm
to ensure statistically reliable results.

Analysis of Problem Properties. To illustrate interesting properties of the
generated problems, we perform two separate analyses: We start by visualizing
two-dimensional problem landscapes to visually show the impact of the degrees
of multimodality and the two problem topologies. We then focus on problem
characteristics in objective space when scaling the search space dimensionality.

Figure 3 shows PLOT [19] visualizations of two-dimensional bi-objective
problems generated with funnel and random topologies for 2, 8, 32, and 128
peaks, respectively. Here, it can be observed that the degree of multimodality
greatly increases with the number of peaks used in the individual problems, as
demonstrated by the number and location of visualized locally efficient points.
Although the problems with lower multimodality still seem somewhat similar
between topologies, varying distribution of the locally and globally efficient sets
becomes apparent with an increasing number of peaks. The funnel problems tend
to cluster the globally (and to an extent locally) efficient points, while the ran-
dom problems show a much higher dispersion in the decision space, with many
smaller areas contributing to the (global) PS. These representative problems
also show a distinctive property in objective space: In random topologies the PF
rapidly approaches the ideal point (0, 0) with increasing number of peaks, while
respective closeness is limited in the funnel topology.

Figure 4 visualizes the influence of generator parameters on PS properties.
On the one hand, across dimensions and topologies, we can see that the number
of locally efficient sets contributing to the Pareto set increases with the num-
ber of peaks. However, this effect decreases with increasing dimensionality and
differences between the topologies in this regard almost vanish. Further, the
approximated HV increases with the number of peaks. While it approaches the
maximum possible HV of 1 for the random topology, funnel problems demon-
strate a much wider range of HV values and a slower increase with the number
of peaks. Again, the effect diminishes with increasing dimensionality.
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Fig. 3. PLOT visualizations of problems with 2, 8, 32 and 128 peaks per objective
(left-to-right) for funnel and random topologies. All problems use seed s = 1.

Finally, Fig. 5 shows properties of the locally and globally efficient fronts,
exemplarily for the random topology, with increasing dimension. Here, we can
see that, using otherwise identical parameters, the PF is becoming more con-
cave within our generator framework. This seems to be a property of the peak
function, and should be investigated in detail in the future.

Algorithm Comparison. Based on our knowledge of optimal HV values and
regularly conducted HV evaluations during the optimization process, we can
generate convergence plots as exemplarily provided in Fig. 6 for 5D problems. It
depicts the mean relative hypervolume gap, i.e., the mean percentage of hyper-
volume not yet covered, per problem w.r.t. function evaluations. Several insights
can be gained: Firstly, problem hardness tends to increase with an increasing
number of peaks per problem. This is particularly noticeable for the MOLE



300 L. Schäpermeier et al.

Fig. 4. Left: Number of local sets that contain globally efficient solutions. Right: Com-
puted HV of PS. Rows indicate problem dimensionality, d ∈ {2, 3, 5, 10}.

Fig. 5. Locally and globally efficient fronts for the problem with 32 peaks, s = 1 and
random topology for dimensions 2, 3, 5, and 10. Higher-dimensional problems have
fewer visible disconnects and overall a more concave front shape.

algorithm, which, as a purely local search approach, is slowed down by the
amount of locally efficient points, while the performance of the evolutionary
algorithms is less affected. Further, by comparing the achieved values at the end
of the runs for the 32 and 128 peaks problems, we see that the random problems
tend to be slightly harder to solve than the funnel problems for the EAs, while
MOLE is less affected.

Figure 7 shows critical difference plots [9] for all problem dimensions and
topologies. It validates that, in general, Omni-Optimizer and NSGA-II perform
best, though only in 10D Omni-Optimizer is clearly superior. They are followed
by SMS-EMOA and MOLE. For SMS-EMOA, the mentioned random parent
selection scheme implemented in ecr might be the reason for its comparatively
bad performance w.r.t. NSGA-II. Further, MOLE’s performance relative to SMS-
EMOA is improving with dimensionality, although they are always statistically
tied. MOLE also tends to perform slightly better on random than on funnel
topologies. Finally, while random search seems to have some merit in lower
dimensions (2, 3), it is clearly the worst performer in higher dimensions (5, 10).
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Fig. 6. Convergence plots of the aggregated algorithm performances for the 5D prob-
lems. Columns denote the number of peaks, while rows show the topology. Each algo-
rithm was evaluated with 15 repetitions on 20 problems per group.

Fig. 7. Critical differences for the mean final HV gap per problem in the random (left)
and funnel (right) topologies for dimensions 2, 3, 5, and 10 (top-to-bottom).

5 Conclusions

In this work, we introduced a new methodology for determining the globally
optimal solutions of MOPs, which are created based on multiple peak problems,
to an arbitrary precision in terms of dominated HV. We apply this methodology
for developing tools that are able to generate a wide range of benchmark prob-
lems with ground truth regarding the PS and PF while simultaneously having
complex landscape characteristics. The highly parametrizable generator facili-
tates the creation of problems with specific structural properties, which in turn
is essential for conducting structured analyses of landscape properties of MOPs.
Next to landscape analyses, the ground truth enables a systematic benchmarking
of algorithms, which we demonstrated in a proof-of-concept study.
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We consider our work fundamental to perspectively constructing diverse, yet
well-understood, MO benchmark problems in order to enhance and meaning-
fully complement existing benchmark suites. Our presented framework offers
promising perspectives for future research in various important areas ranging
from benchmark design and understanding algorithm behavior to characterizing
problem landscapes and measuring optimizer performances.

First, considering additional peak shape functions and other topologies
enables and facilitates the straightforward construction of a broader scope and
thus a more diverse set of benchmark problems. Integrating decision and objec-
tive space transformations provides an additional promising avenue for future
extensions. Such transformations could be, for instance, the introduction of
asymmetries (similar to those used in the single-objective BBOB test suite) into
the previously constructed multiple peaks functions. We would also like to point
out that the mathematical analysis of the PS can easily be extended to more
objectives. However, in this case, it is not intuitively clear how to generalize the
PS approximation.

In addition to constructing more comprehensive benchmark suites for global
MO optimization, we are also interested in facilitating investigations of the local
search dynamics. Therefore, analyzing an algorithm’s convergence to locally effi-
cient sets, e.g., using the Basin-Based Evaluation (BBE) method proposed in
[14], represents another compelling and feasible extension of our framework.
Aside from investigating the convergence of algorithms with BBE, considering
performance metrics beyond HV and providing target values for an arbitrary
precision represents another meaningful perspective for future work.

Another prospective research avenue could be the design of measurable land-
scape features to characterize (local and global) structural properties of purpose-
fully constructed problems with different complexity and known ground truth
w.r.t. efficient sets. This will be an essential intermediate step towards (i) charac-
terizing MO problems in general (including high-dimensional problems that are
not visualizable anymore), as well as (ii) developing feature-based approaches
such as automated algorithm selection.

Finally, we emphasize that our experimental study is intended to illustrate
first proof-of-concept takeaways. For future work, we envision our approach
enabling a sound and reliable comparison of MO optimizers by evaluating them
on a broader set of problems with known structural challenges and also config-
uring them via automated algorithm configuration methods [2,15,18]. This will
ultimately lead to a better understanding of algorithmic components and pave
the ground for better algorithm design.
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19. Schäpermeier, L., Grimme, C., Kerschke, P.: One PLOT to show them all: visu-
alization of efficient sets in multi-objective landscapes. In: Bäck, T., et al. (eds.)
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Abstract. The multi-agent coordination (MACO) problem is a real-
world inspired multi-objective optimization problem for evolutionary
algorithms. It recreates the challenges that are present in optimizing the
real-world multi-objective multi-agent pathfinding (MOMAPF) problem.
The MACO problem is a scalable, real-valued problem with two objec-
tive functions and a known optimal solution. Besides the base version,
three variants are proposed, which are based on different properties of the
real world MOMAPF problem. Independent sub-problems can be intro-
duced using interaction classes, the multi-modality of the problem can be
modified through a set of weights, and the interaction rate between the
variables can be altered using the p-norm to approximate the min oper-
ator present in the second objective. In our experiments, we assess the
performance of three popular multi-objective evolutionary algorithms,
both for the basic version and all proposed variations.

Keywords: Multi-objective optimization · Benchmarking · Real-world
problem · Multi-modality · Evolutionary algorithms

1 Introduction

Many real-world problems require coordinated planning for multiple agents shar-
ing the same workspace, such as automated warehouses [9] or construction of
large structures using multiple robots [14]. This type of planning is also useful
in systems with multiple human operated vehicles that follow centrally planned
routes, for example in harbors or airports. Often the problems are solved as
a single-objective problems. However, in the real world many different objec-
tives are relevant to the application, such as time, safety, travelled distance or
energy use [13,18,19]. It is possible to apply multi-objective evolutionary algo-
rithms (MOEAs) to the continuous and the discrete multi-objective multi-agent
pathfinding (MOMAPF) problem [13,21]. However, testing the performance of
different algorithms is difficult due to the high computational cost associated
with the calculation of the fitness function and the fact that the optimal solu-
tion is unknown in the continuous version of the problem [13].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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In recent years, the established, artificially created benchmark problems tra-
ditionally used to evaluate multi-objective evolutionary algorithms (MOEAs)
have been criticized, as their properties might not reflect the difficulties of real-
world problems correctly [3,11,20]. To create a benchmark that reproduces the
challenges found in the MOMAPF problem [13], we propose the multi-agent
coordination (MACO) problem, a new benchmark problem for MOEAs. Besides
the base version of the problem, three variations are introduced, which are also
based on real-world applications of MOMAPF. The MACO problem is scalable
in the number of dimensions and the Pareto-front and Pareto-sets are known.
Furthermore, the variations of the problem provide interesting possibilities and
challenges when benchmarking MOEAs. The multi-modality of the problem can
be scaled using the weights variation, and independent sub-problems that need
to be optimized at once can be created using interaction classes. This makes the
MACO problem a great addition to benchmark and evaluate MOEAs.

Fig. 1. Example plan (blue) for four agents that navigate around an obstacle. In our
benchmark problem, we only consider the position of the agents in a single dimension
at a critical location (Green Arrow). (Color figure online)

Figure 1 shows the idea of the benchmark problem presented in this paper
and how it is related to the MOMAPF problem [13,21]. In a real application the
whole trajectory needs to be optimized, which increases the solution space, as
well as the computational effort needed to compute the objective values for each
solution. In our test-problem, we optimize the position of the agents only in a
critical scenario, i.e., when they pass a narrow passage. As such, we only optimize
a single variable for each agent - the position at which the agent crosses the
narrow passage (green arrow). As objectives, we use two functions: We assume
that all agents need to take the shortest path, as it is associated with the lowest
time and energy cost. We assume the shortest path to be as close as possible
to the obstacle at position zero. The second objective function is the distance
between the agents, which we want to maximize to increase the safety of all
agents at the critical location.

The remainder of this paper is structured as follows: The next section
describes related works. In Sect. 3 we provide a mathematical definition of the
objective functions and the optimal solution to the benchmark problem. In
Sect. 4 we show how state-of-the art algorithms cope with the problem in all
four variations. In the last section, we conclude the paper.
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2 Related Works

In recent years there has been increased criticism on artificially created multi-
objective test functions, as they are the most common way to evaluate MOEAs,
but contain artificial features that do not reflect the difficulty of real-world prob-
lems in practice [3,11,20]. Many of these test problems are designed around the
Pareto-front shape. While for the performance assessment, knowledge about the
Pareto-front is very beneficial, these design choices can lead to unrealistic proper-
ties. For example, the frequently used DTLZ [5] and WFG [10] problems contain
position and distance variables. The distance variables are controlling the dis-
tance from an individual to the Pareto-front, while the position variables are
controlling the position of the individual on the Pareto-front. Furthermore, the
unusual properties of artificial test functions might be exploited by algorithms.
For example, decomposition-based algorithms, like NSGA-III [8] or MOEA/D
[23] are known to work well for problems with triangular shaped Pareto-fronts
[11,20]. Using benchmark problems which overrepresent these kinds of unrealistic
properties might lead to unfair performance advantages for algorithms exploit-
ing them. Several works address these issues and try to find more realistic test
suites. For example, Tanabe and Ishibuchi propose a benchmark suite consist-
ing of 16 real-world test problems to achieve a more reliable evaluation [20]. In
[3], Brockhoff et al. propose a multi-objective test suite based on well known
single-objective test functions to generate a benchmark more representative of
real-world problems.

In this work, we are introducing a new test problem, which tries to replicate
the real-world MOMAPF problem [13,15,21]. There are two versions of this
problem: a discrete planning problem based on a graph [15,21], which can be
solved optimally [15] or suboptimally by meta-heuristic algorithms [21]. As such,
for the discrete case, benchmark problems for evolutionary algorithms can be
generated with search-based algorithms [15,22]. In the continuous version of
the MOMAPF problem [13], no algorithm to find an optimal solution exists. A
benchmark for single agent pathfinding with multiple objectives can be found in
[22]. In addition, the evaluation of the fitness function in the real-world problem
is expensive, as the pairwise distance in between multiple agents and obstacles
need to be computed for all time-steps within the planning horizon [13]. To
create a benchmark that is fast to compute but still contains the properties
of the MOMAPF problem, we are simplifying the problem as described in the
previous section.

3 Multi-agent Coordination Problem

The multi-agent coordination problem (MACO) is a real-valued optimization
problem with two objectives. In this section, we define the base version of the
problem and its optimal solution. In addition, we propose three modifications
to the f2 objective, that are also motivated by the real world MOMAPF prob-
lem [13]. Finally, we show how the optimal set is calculated when all modifica-
tions for the second objective are used.
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[0.03, 0.45, 0.15, 0.60, 0.2]

Fig. 2. Decoding a solution �x for N = 5 agents

We assume each solution �x ∈ RN is a N -dimensional vector, where each vari-
able xi can take values 0 < xi ≤ 1. Each variable xi in a solution �x represents
the position of an agent in a narrow passage. In Fig. 2 we show an example con-
figuration with five agents at the positions �x = [0.03, 0.45, 0.15, 0.60, 0.20]. For
our test-problem, we assume that it is better for all agents to pass the obstacle
to closer to the left side, where xi = 0. As such, we define f1 as the average
distance to the zero position (Eq. 1). Therefore, the f1 objective represents the
cost objective in a real-world application, as a longer distance needs more time
and energy. The f2 objective reflects the risk of collision. If the agents are closer
to each other, risk is increased, while risk is decreased if agents are further from
each other. Because we can not offset the risk for a collision between two agents
by increasing the distance between a different pair of agents, we use the mini-
mum distance between the agents. As such, f2 is defined as described in Eq. 2. To
formulate both objectives to be minimized, we subtract the minimum distance
in f2 from the largest possible distance between two agents, which is one. In our
example (Fig. 2) the agents that relate to variables x3 and x5 are closest to each
other and define the risk in this situation, which is 1−|x3−x5| = 1−0.05 = 0.95.

f1(�x) =
∑

∀xi∈�x

xi

N
(1)

f2(�x) = 1 − min
∀i�=j∈�x

|xi − xj | (2)

For the basic version, a solution is optimal when the minimal distances from
each agent to all others are equal and one gene value is zero. We can system-
atically generate such a solution by setting the first gene value x0 = 0 and all
other genes equidistant, e.g. �x1 = (0.0, 0.1, 0.2, 0.3, 0.4). Other Pareto-optimal
solutions can be generated by modifying the distance between the elements, for
example �x2 = (0.0, 0.2, 0.4, 0.6, 0.8). Any permutation of these vectors is also an
optimal solution.

Besides the base version of the problem, we propose three variations of the
second objective that are also inspired by the MOMAPF problem. The variations
can be applied individually or in any combination simultaneously.

3.1 Variation: P-Norm

A great difficulty in optimizing f2 is, that only two variables interact at each
time. Changes in values of the variables that are not involved in the minimum
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have no impact in the f2 objective. To include the distances between all agents
we redefine f2 based on the p-norm || · ||p of a vector with all differences between
the pairs of variables xi, xj (Eq. 3). One property of the p-norm is that for
p → −∞ the p-norm is equal to the minimum of the entries. By minimizing
fP
2 , with a negative value for p, e.g. p = −10, the solutions closely approximate

those of f2, but all variables have an impact on the objective (Eq. 4).

fP
2 (�x) = 1 − ||{xi − xj |∀i �= j}||p (3)

lim
p→−∞ fP

2 (�x) = f2(�x) (4)

The p-norm should make the problem easier to solve for an algorithm, as in
the base problem only two genes in the genome affect the minimum. Using the
p-norm, all genes are now influencing fP

2 . If p is further away from 0, some effects
of the modification get lost in the floating-point precision. On the other hand,
if p is closer to 0, the effects of the modification change the intended meaning
of the base version of the f2 objective, which has negative impacts in real-world
applications (ideally, the p-norm only acts as a tiebreaker between otherwise
equal solutions). In addition, the definition of fP

2 , using the p-norm, means that
the objective has a known gradient (this property is not utilized in this paper).

While p can be chosen freely by the user, we propose p = −10 as a trade-off
between accuracy and performance, and p = −∞ as the base version of the
problem, as the two p − norm variations for the MACO problem.

3.2 Variation: Weights

The basic version of the problem is extremely multi-modal: We can apply any
permutation to the N variables in a solution �x while neither the f1 nor f2 objec-
tive values change. From the viewpoint of the multi-agent pathfinding application
that motivates our test-problem, the order in which the agents are sorted at the
narrow passage is not relevant in the objectives. In real applications, however,
the order of agents in the narrow passages does have an impact. This leads to
problems that are not multi-modal or have fewer true local solutions.

We modify the f2 objective to addresses this issue: The minimum distance
for each agent i (represented by variable xi) is weighted by a specific weight wi

in the weight vector �w ∈ RN (Eq. 5).

fW
2 (�x) = 1 − min

i

⎛

⎜⎝
wi

∑
∀j �=L

w−1
j

min
i�=j

|xi − xj |

⎞

⎟⎠ (5)

Normalization of the weights is important for the computation of the Pareto-
set (see Sect. 3.4), when we combine multiple interaction classes (see Sect. 3.3)
with weight vectors. In this case, the normalization is performed for the weights
of each class independently.
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Weights affect the multi-modality of the problem. With equal weight, the order
of the solutions in xi is arbitrary. With all different weights, only the solution with
the correct order, e.g. x1 < x2 < x3... is optimal. By choosing a set of weights,
we can tune how much the local optimal solutions differ in their objective values.
This means: If two weights in the weight vector �w are the same (wi = wj) then
there are 2! = 2 Pareto-sets that map to the same globally optimal solution. If four
weights are the same, we get 4! = 24 Pareto-sets, and so on. Furthermore, we can
choose weights very close to each other, which leads to local optima having near-
optimal performance. In this situation, algorithms will struggle to find the global
optimum, as they will likely get stuck in locally optimal solutions. In contrast,
when we use dissimilar weights, algorithms are less likely to converge to a local
optimum. However, if the true optimal solution is not found, the impact on the
fitness is more severe. Because of this effect in the multi-modality of the problem,
the weights are a key parameter in the benchmarks.

The weights can be chosen by the user of the benchmark, we propose to use
the following three settings:

Equal: All weights being equal is equivalent to the base problem. In this version,
the problem is extremely multi-modal, with N ! global optimal Pareto-sets.

Shallow: In this case, the weights are built linearly degrading from 1.0 for the
first gene to 0.9 for the last gene. The weight vector for N = 5 genes would there-
fore be �w = [1.0, 0.975, 0.95, 0.925, 0.9]. We call it shallow because we degrade
the weights only by a small amount. Using a different weight for each gene means
the problem has only one global optimum. However, it is still very difficult to
solve, as the weights being in close range to each other results in many close
local optima of the problem.

Steep: Similar to the shallow configuration, the weights are linearly degraded,
however with a more steep descent from 1.0 on the first gene to 0.1 on the last
gene. In this case, the problem has only one global optimum and the resulting
local optima are not as similar to the global optimum in their fitness value.

3.3 Variation: Interaction Classes

In many pathfinding problems, solutions are only partially coupled - i.e. some
agents have to coordinate to find working solutions, other agents move in differ-
ent areas of the workspace and do not affect each other. Ideally, the designer of a
robotic system takes those partitions into account by creating separate plans for
separated work spaces. Unfortunately, it is not always possible to know a-priori
which plans affect each other and therefore need to be planned at once. While
some algorithms (e.g. [16]), explicitly exploit the independence of those agents,
black box approaches are not aware of the coupling between agents.

There are existing algorithms for large-scale optimization that aim to find
groups of variables in a problem, which are coupled [24]. Those algorithms exploit
the variable groupings to solve problems more efficiently. Variable groupings (and
the automatic detection of those groupings) may help to solve the MOMAPF
and MACO problem more efficiently.
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In this benchmark, we create independent groups of agents by computing f1
normally and modify the visibility of each solution in f2. This also affects the
multi-modality of the problem. To model this, we assign a class to each variable
in the problem and modify f2 to f IC

2 , as shown in Eq. (6). In practical terms,
the interaction classes are stored in a vector �c which has the same size as the
genome of an individual. Each element of �c assigns a class to the given genome
at the same position. We consider the distance between two agents only if the
agents belong to the same class.

f IC
2 (�x) = 1 − min

∀i �= j ∈ �x
c(i) = c(j)

|xi − xj | (6)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x1 x2 x3 x4 x5

[0.0, 0.2, 0.5, 0.0, 0.3]

Fig. 3. Decoding a solution �x for N = 5 agents with two different interaction classes.
x1, x2, and x3 belong to the same class (labelled with ‘x’), while x4 and x5 belong to
a different class (labelled with ‘o’)

An example for this modification with the class vector �c = [1, 1, 1, 2, 2] is
visualized in Fig. 3. The genes x1, x2, and x3 belong to class 1, while the genes
x4, and x5 belong to class 2. It can be imagined that the agents of class 1 need to
navigate a different area than the agents of class 2, so there is no risk of collision
between an agent of class 1 and 2. In the example of Fig. 3, the closest two genes
are therefore x1 and x2. The distance between x2 and x5 is not considered, as
they belong to different interaction classes.

The class vector �c can be chosen freely by the user, we propose using the
following four settings:

None. Every gene having the same class yields the same result as not using
classes at all.

Half. In this configuration we assign two classes, with the first half getting class
1 and the second half class 2. If the vector length is odd, the middle element is
assigned to class 1.

G3. In this configuration we assign the first three elements class 1, the second
three elements class 2, and so on. The number of different classes assigned there-
fore depends on the number of genes. If we have N = 7 genes, the class vector
would be c = [1, 1, 1, 2, 2, 2, 3], with three different classes 1, 2 and 3, with class 1
and 2 having three elements and class 3 having one (for this element, the second
objective is always perfect).
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G4. This configuration is similar to G3, with the class is changed every 4th
element this time. Again, the number of different classes depends on the number
of genes. If we have N = 7 genes, the class vector would be c = [1, 1, 1, 1, 2, 2, 2].
As the amount of different classes is lower than for G3, the G4 configuration
might be easier to solve.

3.4 Optimal Solution

In this section, we will explain how to calculate the Pareto-set of the MACO
problem. For the base version and the p-norm variation, the optimal solutions
are the same. However, for the weight- and the interaction class variations we
need to make slight adjustments.

Base Version and P-Norm Variation. Because of the min operator in f2
and fP

2 , the minimum distance between all solutions have to be equally spaced to
achieve an optimal trade-off between the first and second objective. Therefore,
the distance between all adjacent agents min

i�=j
|xi − xj | needs to be the same.

Different solutions in the Pareto-set can be generated by scaling this distance
with a scaling factor s ∈ [0, 1]. The general form of the Pareto-set is described
by Eq. (7). A special property of our benchmark is that all permutations of
the solution vector �x lead to the same objective values, i.e., we can change
the indexing (i) of variables in an optimal solution �x and get another optimal
solution �x′.

xi = s · (i − 1) · 1
n − 1

(7)

Weights Variation. To explain the optimal solution for fW
2 , we are going to

assume (without loss of generality) that the indices of all solutions are arranged,
such that w1 ≤ w2 ≤ w3 · · · ≤ wL. We could transform the weighted problem
into the base problem by optimizing xi

1
wi

instead of xi. Hence, in the weighted
problem 1

wi
·min

i�=j
|xi −xj | takes the same value for all agents (with the exception

of wL). This relationship can be used to construct the optimal solution: The xi

in the optimal solution are sorted to best satisfy f1, i.e., larger weights lead to
smaller pairwise distances between the agents. Thus, xL = 0 can be used as a
starting point to iteratively add the agent with the next largest weight using the
pairwise distance relationship. A solution obtained in this way can be scaled by
a scaling factor s in order to generate more solutions. In case some weights are
equal, we also get ambiguity for the permutation of those values in the solution,
leading to multiple Pareto-optimal solutions.

A problem with this method of constructing the ideal solution arises, when
we use interaction classes, because different weights would couple two sub-
problems that should be independent by our definition. Therefore, we include
the normalization of the weights in Eq. (5), which leads to fixed scaling of each
(sub)problem.
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Interaction Classes Variation. In case we have multiple interaction classes
(3.3), we simply compute one optimal solution for each class in the vector sepa-
rately and append the partial solutions to the full solution vector in the correct
order of variables according to the weights.

4 Experiments

To see how different algorithms perform in the new benchmark, we implemented
the MACO problem in the pymoo framework [2]. We performed several experi-
ments, both on the base version of the problem and the variations, using their
proposed settings.

The problem was run using three common MOEAs, NSGA-II [7], NSGA-III
[8], and MOEA/D [23]. Each algorithm was configured with a population size of
100 and was run with 30.000 function evaluations, resulting in 300 generations.
For crossover, simulated binary crossover [4] was used with an η = 20, and for
mutation the polynomial mutation operator [6] was used, also with an η = 20.

For each variation, we use the proposed settings. For the p-norm variation,
we use p = −∞ as the base version and p = −10 as the approximation. For the
weights, we use the settings described in Sect. 3.2 (equal, shallow, and steep).
For the interaction classes, we use none, half , G3, and G4. Four different genome
sizes N were used (3, 5, 10, and 20). Each configuration was repeated 31 times
and was initialized with a uniformly generated population.

Fig. 4. Median IGD+ results for the base version of the MACO problem using
MOEA/D, NSGA-II, and NSGA-III. Each Graph shows a different genome size N .

Base Version. Figure 4 shows the median IGD+ results for 300 generations of
the base version of the MACO problem. Each graph shows a different genome
size N .

As it can be expected, the lower genome sizes are less difficult, starting with
a lower IGD+ value. Also, the NSGA-II and NSGA-III algorithms show a slower
convergence for larger genome sizes. Interestingly, this effect was not found with
the MOEA/D algorithm. While it also does start with a higher IGD+ value,
larger genome sizes show lower IGD+ values in the later generations, which
is unusual. In terms of convergence speed, MOEA/D is also fairly consistent,
having a fast convergence until generation 25 to 50. After this, the MOEA/D
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seems to get stuck on the same IGD+ value. This is probably due to the high
multi-modality of the MACO problem, which we can observe later in the results
of the weights variation. NSGA-II and NSGA-III on the other hand seem to
consistently find better solutions in higher generations.

In terms of the observed median IGD+ results shown in Fig. 4, there appears
to be no algorithm that is best suited to solve the base version of the MACO
problem when considering different genome sizes. After 300 generations, NSGA-
III performed the best for the genome sizes N = 3 and N = 20 and NSGA-II
for N = 5 and N = 10. When considering the larger genome sizes of N = 10
and N = 20, MOEA/D showed a very fast convergence, however getting stuck
in local optima and being overtaken by the other two algorithms eventually.

Variation: P-Norm. To compare the performance for the two p − norm vari-
ations of p = −∞ and p = −10, Fig. 5 shows the IGD+ values of generation 300
for the genome size of N = 10 as a box plot. Similar to the previously described
base version of the problem, we see NSGA-II to perform the best for this genome
size, closely followed by NSGA-III, MOEA/D being last by a more significant
margin. Using the p-norm variation of p = −10 shows better IGD+ values for
all three problems, indicating a decrease in problem complexity. This is to be
expected, as p = −∞ is equivalent to the base problem, meaning only the clos-
est two values are influencing the second objective. Two different individuals
that have the same distance on their closest genes, but different distances on
the second-closest gene pair, will still show the same value. This increases the
difficulty for the algorithm, as there is no indication that one individual will have
a better fitness if the closest gene pair is resolved. Using p = −10, however, also
takes the distances of the other genes into account, with the catch that it does
not reflect the risk of collision in the real world with full accuracy.

Fig. 5. Box plots of the IGD+ values for the two p-value variations for the genome
size of N = 10 in the last generation (300).

Variation: Interaction Classes. The results for the interaction classes vari-
ation can be found in Fig. 6. The respective class vectors for the genome size
of N = 10 are G3 = [1, 1, 1, 2, 2, 2, 3, 3, 3, 4], G4 = [1, 1, 1, 1, 2, 2, 2, 2, 3, 3],
half = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2], and none = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
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Fig. 6. Box plots of the IGD+ values for the four interaction class variations in the
last generation (300).

It can be observed that the interaction classes increase the difficulty of the
problem. All three classes increase the difficulty of the problem, with the none
configuration, representing the base version of the problem, performing the best.
However, we do not find the number of different interaction classes to be the only
factor when determining the difficulty of the problem. The configuration with the
highest number of different interaction classes, G3, was also the hardest to solve.
Interestingly though, the G4 configuration was on average performing better
than the half configuration, even though it has a higher number of interaction
classes. However, we can observe a higher spread in the solutions of the G4
problem, especially for the MOEA/D algorithm. The size or even distribution of
the classes could also be a factor, as both the G4 and G3 configurations show a
higher spread in their solutions, also having fewer elements in the last class.

Fig. 7. Box plots of the IGD+ values for the three weight variations in the last gener-
ation (300).

Variation: Weights. Finally, Fig. 7 shows the IGD+ results of the three weight
types in the final generation (300) for the genome size of N = 10. The equal
weights, which represent the base version of the problem, show the highest IGD+
values. This was to be expected, as the problem is highly multi-modal, with
N ! optimal Pareto-sets. As already seen in the evaluation of different genome
sizes in Fig. 4, MOEA/D performs the worst with the highest IGD+ value, with
NSGA-III and NSGA-III performing notably better. Results for the shallow
weights show this problem to be just slightly less complex to solve, with the
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IGD+ values of all three problems being marginally lower than for the equal
weights. While in this configuration there is only one optimal Pareto-set, there
are several near optimal solutions that make it difficult to solve. With the steep
weight distribution, the algorithms show the overall best performance. This is to
be expected, as the multi-modality of the problem is less significant, i.e., the local
optima do not achieve good objective values and algorithms are less likely to get
stuck. Interestingly, the MOEA/D algorithm, which previously was performing
the worst, now shows way better values, similar to NSGA-II and NSGA-III.
This indicates MOEA/D to struggle more with the high multi-modality when
compared to NSGA-II and NSGA-III.

5 Conclusion

This work presents the MACO problem, a multi-objective benchmark for evo-
lutionary algorithms based on the real-world MOMAPF problem. The problem
has two objectives, where f1 is to minimize the average value of all variables
and f2 relates to the minimum pairwise distances between variables. Besides the
base problem, three variations of the second objective were proposed, that are
also inspired by properties of the MOMAPF problem. The p − norm variation
increases interaction between variables. Multiple sub-problems at once (inter-
action classes) can appear in the real-world and make the problem even more
difficult to solve. Finally, the weighted variation allows us to tune the multi-
modality of the problem. While we provide multiple configurations for each vari-
ation, they can also be freely configured by the user. Furthermore, the variations
can be combined as desired.

We find that the MACO problem is easy to describe, but hard to optimize.
Difficulties arise from the multi-modality of the problem and the sparse interac-
tion between variables. A short performance evaluation with the three popular
MOEAs NSGA-II, NSGA-III and MOEA/D was done in this paper. We could
observe that tuning the multi-modality of the problem with weights or the
p−norm variation can make the problem easier to solve. Interactionclasses on
the other hand will increase the complexity of the problem. With the evalua-
tion, we could not find a single algorithm to be the best at solving the MACO
problem.

In future works, we plan to further evaluate different combinations of vari-
ations. Using the problem to evaluate the performance of different algorithms,
especially ones designed to solve multi-modal problems, like [12], or independent
sub-problems, e.g. [24], will also be interesting. Furthermore, more information
about the MACO problem and especially the proposed variants can be gained
by evaluating beyond the performance in the objective space, for example in
terms of population dynamics [1] or influence of variables [17]. Finally, using
constraints like a minimum distance between the agents or the obstacles would
be an interesting addition to the current versions of the MACO problem.
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Abstract. Multidisciplinary design optimization (MDO) involves solv-
ing problems that feature multiple subsystems or disciplines, which is an
important characteristic of many complex real-world problems. Whilst
a range of single-objective benchmark problems have been proposed for
MDO, there exists only a limited selection of multi-objective benchmarks,
with only one of these problems being scalable in the number of disci-
plines. In this paper, we propose a new multi-objective MDO test suite,
based on the popular ZDT bi-objective benchmark problems, which is
scalable in the number of disciplines and design variables. Dependencies
between disciplines can be defined directly in the problem formulation,
enabling a diverse set of multidisciplinary topologies to be constructed
that can resemble more realistic MDO problems. The new problems are
solved using a multidisciplinary feasible architecture which combines a
conventional multi-objective optimizer (NSGA-II) with a Newton-based
multidisciplinary analysis solver. Empirical findings show that it is possi-
ble to solve the proposed ZDT-MDO problems but that multimodal prob-
lem landscapes can pose a significant challenge to the optimizer. The pro-
posed test suite can help stimulate more research into the neglected but
important topic of multi-objective multidisciplinary optimization.

Keywords: Multidisciplinary design optimization · Multi-objective
optimization · Benchmark problems · Scalability

1 Introduction

Multidisciplinary design optimization (MDO) is an area of research that han-
dles optimization problems involving multiple disciplines, subsystems or com-
ponents. MDO recognises that large, complex or interwoven engineered systems
are often partitioned into smaller subsystems. This decomposition can arise for a
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number of interrelated reasons: from engineering practitioners taking a ‘divide-
and-conquer’ approach to solving complex design problems, to the way in which
engineering disciplines have emerged over time as discrete entities, to the func-
tional organisation of teams in large engineering companies and institutions.
Whilst MDO arose in the design of complex engineered products, such as exist
in the aerospace and automotive sectors, its application is not limited to engi-
neering, but is equally applicable to other complex systems contexts such as
environmental and public policy [14,18].

One important consideration in MDO is the need to model the interactions
between subsystems, because the performance of a system is not necessarily
defined just by its components, but also by the interactions between those com-
ponents. It is common to model the interactions by using linking (or coupling)
variables that are exchanged between the subsystems. However, when the sub-
systems have circular dependencies, it is not trivial to determine the values of
the linking variables, and it might be necessary to use numerical approximation
techniques, such as a multidisciplinary analysis (MDA) solver.

Several architectures have been proposed for dealing with MDO problems—
see, for example, the seminal survey paper by Martins & Lambe [17]. These
MDO architectures specify how to organize the discipline analysis models (and
other types of models) within the problem formulation, in order to facilitate
the process of finding the optimal design for the entire system. Some typical
examples are the individual discipline feasible and the multidisciplinary feasible
(MDF) architectures [4]. However, the focus of the MDO literature is primarily
on single-objective problems. Multiple conflicting objectives are often found in
real-world applications and, given that MDO problems are traditionally aimed
at engineering applications, it is perhaps surprising that, to our knowledge,
no multi-objective multidisciplinary optimization (MO-MDO) test suite has yet
been proposed. Such a test suite would provide an opportunity for researchers
and others to develop and test new optimization algorithms making them better
equipped for dealing with multi-objective MDO problems.

In earlier work, we proposed an MDO version of a bi-objective benchmark
problem known as ZDT1 [13]. This problem was then solved using an MDF archi-
tecture, encompassing a conventional multi-objective evolutionary optimization
algorithm, NSGA-II [5], as the system optimizer, and a Newton-based method
as the MDA solver. The present paper builds upon [13] and its distinctive con-
tribution is as follows:

1. the approach used to transform the original ZDT1 problem into an MDO
variant is extended to the remaining continuous ZDT problems;

2. the way the linking variables are integrated into the optimization problem is
improved, in that the deviation of the linking variables from their optimal
values is used to perturb the decision variables; and

3. two new topologies for connecting the disciplines via their linking variables are
proposed, and we show how it is possible to create arbitrary problem structures.

The scope of this work encompasses bi-objective MDO problems with both
varying number of variables and number of disciplines. The discipline analysis
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models are mutually interdependent. Although all optimization problems in this
work contain only continuous variables, discrete variables are also within scope
as long as they are supported by the optimization algorithm. We have only
considered the MDF architecture in this work, but other architectures could be
used instead as long they are compatible with the problem formulation.

The remainder of this paper is organised as follows. Section 2 discusses and
analyses the current state of multidisciplinary and multi-objective benchmark
problems. Section 3 introduces the proposed MO-MDO test suite. Several topolo-
gies for connecting the disciplines via linking variables are proposed in Sect. 4.
The experimental setup is in Sect. 5, while the obtained experimental results are
in Sect. 6. Section 7 gives a short summary of the work undertaken and proposes
directions for future work.

2 Related Literature

The MDO paradigm originated in industrial settings, where different parts of
complex engineered products are designed or optimised by different disciplinary
teams. MDO codifies this arrangement via the structure of the optimization prob-
lem, including concepts such as: global variables, which are accessible by more
than one discipline; local variables, which are used only within one discipline; and
linking variables that are exchanged between disciplines as a way to model disci-
plinary interdependencies. The MDO literature is extensive [17], and we therefore
focus our review on the benchmark problems that have been proposed for testing
MDO approaches, since this is the area most pertinent to our paper’s aims, and
contrast these to popular benchmarks for multi-objective optimization.

2.1 Multi-disciplinary Benchmarks

There are comparatively few MDO benchmark problems compared with multi-
objective benchmarks. Many of these derive from the NASA MDO test suite
[19], which contains 14 problems, including the Golinski speed reducer problem,
propane combustion and aerospike nozzle design. While some of the benchmark
problems have been expanded, such as the speed reducer problem, other prob-
lems are outdated and do not fulfil the needs of current MDO research in terms
of complexity and scalability. Further, the original test suite is no longer avail-
able from its primary source, with the suite now distributed across a number of
secondary sources, e.g. [21].

Another popular MDO benchmark problem is the Sellar (also known as the
‘analytical’) problem [20]. This problem is small, consisting of only two disciplines,
each containing one equation for the multidisciplinary analysis, one local variable,
two global variables and two linking variables. As such, the problem cannot pro-
vide an indication of how a complex MDO architecture will perform. Further MDO
problems are esoteric, having been proposed for specific applications and typically
solved only by the problem proposers; examples include building envelope design
[23], robotic fish [2], automotive design [1] and wing design [3]. These problems
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are unsuitable as benchmarks because of the narrowness of the application and/or
lack of availability of the MDA equations in the public domain.

2.2 Multi-objective Benchmarks

The literature on multi-objective benchmark problems is very extensive and
we focus only on some popular examples in this section. The ZDT test suite,
proposed by Zitzler et al. [24], consists of six two-objective test problems, five
of which are continuous and one of which is discrete. For the purposes of this
paper, we will only discuss the continuous problems. In each problem, the first
objective f1 is a function of the first design variable, and the second objective
f2 comprises the product of a so-called g(.) function, which is a variation of
the sum of all design variables except the one found in the first objective, and
an h(.) function which defines the relationship between the first design variable
(and, by extension, f1) and the remainder. The ZDT test suite can be criticised
as unrealistic or incomparable with real-world problems, with structures that
provide only a limited reflection of the challenges posed by the current state of
research in multi-objective optimization. However, the problems are also simple
to modify and are scalable in the number of design variables.

Other test suites include those with similar g(.) functions, such as the DTLZ
problems which are scalable in the number of objectives [6], modular problems
such as WFG [12], and problems with varied constraints such as those provided
by DAS-CMOP [7] and MW [16].

2.3 Multi-objective Multidisciplinary Benchmarks

All the MDO problems mentioned above contain a single objective. Existing
multi-objective multidisciplinary optimization problems are derived from single-
objective MDO benchmarks which are not scalable, such as the Golinski speed
reducer problem [8,11,15]. More recently, we proposed a MO-MDO problem
based on the bi-objective ZDT1 problem [13], which is scalable in the num-
ber of variables and disciplines but has a cost landscape that is not otherwise
challenging to an optimizer.

3 Proposed MO-MDO Test Suite: ZDT-MDO

The proposed MO-MDO test suite is based on the ZDT benchmark problems and
we therefore label it ZDT-MDO. Despite the limitations of ZDT as a test set,
the original structure of the problems makes them amenable to restructuring
into MDO problems in which the original Pareto front is recoverable (which
is highly advantageous from an analysis perspective). Here, we consider the five
continuous ZDT problems, with ZDT5 omitted because it is binary encoded. For
all problems, the first decision variable controls the position across the Pareto
front, while the others are called distance decision variables because they control
the convergence towards the Pareto front.
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The multidisciplinary system contains global variables that are shared
between the disciplines, and each discipline has its own set of local variables.
The decision variables of the original ZDT problem are partitioned into global
and local ones, where the first nz are global and are represented by the vec-
tor z = (z1, . . . , znz

)T . The remaining ones are local variables and are dis-
tributed across N disciplines as given by the vector x = (x1, . . . ,xN )T . Each
xi = (xi,1, . . . , xi,nxi

)T contains a total of nxi
local variables at the ith disci-

pline where i ∈ {1, . . . , N}.
The disciplines exchange linking variables to model the interactions of the

overall system. These linking variables are the output of an analysis conducted
by each discipline that simulates the behaviour of a particular component of the
multidisciplinary system. There is a total of nyi

output linking variables at the
ith discipline, given by the vector yi = (yi,1, . . . , yi,nyi

)T , and y = (y1, . . . ,yN )T

contains the output linking variables of all disciplines. Each discipline may
require one or more linking variables from other disciplines to conduct its own
disciplinary analysis. To keep track of the linking variable connections in the
system consider the following:

1. let npi
(1 ≤ npi

< N) denote the number of disciplines that provide linking
variables to the ith discipline;

2. the indices of the disciplines that provide linking variables to the ith disci-
pline are stored in the set pi = {pi,1, . . . , pi,npi

} where pi,j ∈ {1, . . . , N}\{i}
∀j=1,...,npi

.

For instance, for a hypothetical four-discipline system, if the second and fourth
disciplines provide linking variables to the first discipline, then p1 = {2, 4}. The
discipline analysis at the ith discipline is to find yi that satisfies the following
expression:

Ai,iyi +
npi∑

j=1

(Ai,pi,j
ypi,j

) = −Ciz̄ − Dixi, (1)

where z̄ = (z2, . . . , znz
)T excludes the first decision variable of the original ZDT

problem. The above expression only relies on the decision variables of the dis-
tance type, implying that the positional decision variable (z1) is not included to
ensure that there is a single solution to the systems of equations. The matrices
in Eq. 1 are defined as follows:

1. Ai,i ∈ R
nyi

×nyi , Ci ∈ R
nyi

×(nz−1), and Di ∈ R
nyi

×nxi ∀i=1...,N ,
2. Ai,pi,j

∈ R
nyi

×nyj ∀i=1...,N and ∀j=1,...,npi
.

An important aspect of Eq. 1 is that, depending on how the disciplines are
connected, determining the linking variables for one discipline may require know-
ing the values of the linking variables from the other disciplines. It can become
even harder to solve in case there are cyclic connections in the system. The com-
plete set of equations across disciplines can form a full system of equations as
given by:
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⎡

⎢⎢⎢⎣

A1,1 A1,2 . . . A1,N

A2,1 A2,2 . . . A2,N

...
...

. . .
...

AN,1 AN,2 . . . AN,N

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

y1

y2

...
yN

⎤

⎥⎥⎥⎦ = −

⎡

⎢⎢⎢⎣

C1

C2

...
CN

⎤

⎥⎥⎥⎦ z̄ −

⎡

⎢⎢⎢⎣

D1 0 . . . 0
0 D2 . . . 0
...

...
. . .

...
0 0 . . . DN

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x1

x2

...
xN

⎤

⎥⎥⎥⎦ (2)

or equivalently given by:
Ay = −Cz̄ − Dx. (3)

To ensure that the full system of equations has a unique solution, A needs to
be invertible. Additionally, any column in A−1C or A−1D cannot be all zeros
to ensure that there are no redundant design variables. Finding all yis for the
entire system requires the use of numerical techniques, such as Gauss–Seidel and
Newton-based methods that are often called multidisciplinary analysis solvers in
the MDO literature [17].

The linking variables are incorporated into the optimization problem by
penalising the local variables as given by the function:

ξ(xi,yi) = xi + ‖yi − y∗
i ‖1, (4)

where y∗
i are the linking variable optimal values for the ith discipline, and

the operator ‖•‖1 is the L1-norm. Let the output of Eq. 4 be the vector
x̂i = (x̂i,1, . . . , x̂i,nxi

)T , and the function that applies the same transformation
to all xis is denoted by ξ(x,y). The proposed MO-MDO problem formulation
based on ZDT1 is given by:

min f1(z) = z1

min f2(z, ξ(x,y)) = g(z, ξ(x,y))h(z, ξ(x,y))

s.t. g(z, ξ(x,y)) = 1 +
9

nv − 1

⎛

⎝
nz∑

i=2

zi +
N∑

i=1

nxi∑

j=1

x̂i,j

⎞

⎠

h(z, ξ(x,y)) = 1 −
√

f1(z)
g(z, ξ(x,y))

(5)

where nv = nz +
∑N

i=1 nxi
. For the remaining ZDT problems, f1(z) = z1, with

the exception of ZDT6 which is f1(z) = 1 − exp(−4z1) sin6(6πz1), while the
g and h functions are shown in Table 1. For optimality, all decision variables
(global and local) with the exception of z1 have to be zero for the given g(·)
functions, unless transformations are applied. This means that Eq. 2 becomes
an homogeneous system of linear equations which is solved when all the yis are
zero vectors. The benchmarks established in this section can be found in the
project’s github repository1.

1 https://github.com/vj2Sheffield/mdo zdt.

https://github.com/vj2Sheffield/mdo_zdt
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Table 1. The g and h functions of the proposed MO-MDO test suite

g h

ZDT2 1 + 9
nv−1

(∑nz
i=2 zi +

∑N
i=1

∑nxi
j=1 x̂i,j

)
1 − (f1/g)2

ZDT3
1 + 10(nv − 1) +

∑nz
i=2(zi − 10 cos(4πzi))

+
∑N

i=1

∑nxi
j=1(x̂i,j − 10 cos(4πx̂i,j))

1 − √
f1/g

ZDT4 1 + 9
nv−1

(∑nz
i=2 zi +

∑N
i=1

∑nxi
j=1 x̂i,j

)
1 − √

f1/g

ZDT6 1 + 9
nv−1

(∑nz
i=2 zi +

∑N
i=1

∑nxi
j=1 x̂i,j

)0.25

1 − (f1/g)2

4 Defining Dependencies Between Disciplines

The proposed formulation in Eq. 2 offers the flexibility to connect the disciplines
in different ways via linking variables. For instance, for a three-discipline system,
in case the second and third disciplines receive linking variables from the first
discipline, then A2,1 and A3,1 have non-zero elements. If there are no more
connections between the disciplines (except Ai,i ∀i=1...N which are set to the
identity matrix), then the remaining matrices in A are set to zero. On the other
hand, in case the first discipline receives linking variables from either the second
or third discipline (implying that A1,2 and/or A1,3 have non-zero elements), then
it can be said that the topology contains cyclic connections.

Figure 1a shows a five-discipline system where each discipline is only con-
nected to the next one, and a cyclic connection is created by connecting the
last discipline to the first one. The same topology is depicted by an extended
design structure matrix (XDSM) as shown in Fig. 1b. This technique has been
popularised by [17] to visualise the interconnections between the components of
a complex system. It is useful in particular to visualise both data dependencies
and process flow. The discipline analysis are represented in a diagonal, the input
data flows along the vertical direction, while the output data flows along the
horizontal direction. The data is labelled inside parallelograms, and the way the
data flows is shown as thick grey lines. Other possible ways of connecting the
disciplines are shown in the remaining subfigures in Fig. 1. We now propose the
following three topologies for connecting the disciplines:

1. OIOO: stands for “one-in-one-out” since each discipline only receives and
sends linking variables to a single discipline. We adopt a circular topology
where the first discipline receives linking variables from the last discipline.
This is given by p1 = {N} and pi = {i − 1} ∀i=2,...,N , and the XDSM is
shown in Fig. 1b.

2. TITO: stands for “two-in-two-out” since each discipline sends and receives
linking variables to two disciplines. This is given by p1 = {N, i + 1}, pi =
{i − 1, i + 1} and pN = {i − 1, 1}, and the XDSM is shown in Fig. 1d.

3. AIAO: stands for “all-in-all-out” since each discipline sends and receives link-
ing variables to all disciplines. This is given by pi = {1, . . . , N}\{i} ∀i=1,...,N ,
and the XDSM is shown in Fig. 1f.
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Fig. 1. Different topologies showcasing the dependencies between disciplines on a five-
discipline system.

5 Experimental Setup

The matrices in Eq. 1 are randomly generated and then row-normalised. The
only exception is Ai,i ∀i=1,...,N which is set to the identity matrix. The number
of global variables are set to 10 (nz = 10) and for all disciplines the number of
local variables and the size of the linking variables vector is set to 5 (i.e. nxi

= 5
and nyi

= 5 ∀i=1,...,N ). The lower and upper bounds for the decision variables
of all the problems are set to 0 and 1, respectively. The only exception is ZDT4
where the lower bounds are −5 and 5 for all decision variables with the exception
of z1 which takes values in the range [0, 1].

For dealing with the MO-MDO problems, we adopt an MDF architecture
involving a system optimizer and a MDA solver that conducts the disciplinary
analysis one discipline at a time. For the system optimizer we use a popular
multi-objective optimization algorithm known as NSGA-II [5]. The crossover and
mutation probabilities are set to 90% and 1/nv, respectively, while the crossover
and mutation index are both set to 20. The number of generations is set to 1000
with a population size of 100. The initial population is randomly initialised. The
MDF architecture is provided by the OpenMDAO package in Python [10], and
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NSGA-II implementation by PyOptSparse [22]. The MDA solver is also provided
by OpenMDAO and uses a combination of a nonlinear and linear solver. The
nonlinear solver is a Newton method while the linear solver relies on linear alge-
bra techniques such as LU decomposition. The MDA solver runs for a maximum
of 1000 iterations. For comparing different problem instances the hypervolume
indicator is used. To compute the hypervolume we have used a dimension-sweep
algorithm, taken from [9]. The reference point used in the hypervolume com-
putations is {1.1, 14} for ZDT1, {1.1, 13} for ZDT3, {1.1, 1620} for ZDT4, and
{1.1, 17} for ZDT6.

6 Experimental Results

In this section we show the obtained results for the MDO version of ZDT1,
ZDT3, ZDT4 and ZDT6 problems. Due to space limitations, ZDT2 results are
omitted, since they are very similar to those obtained for ZDT1. For all cases the
MDA solver has run for sufficient number of iterations to guarantee convergence,
implying that the correct linking variables were obtained for the given global (z̄)
and local variables (x). Therefore our analysis will be mostly focused on the
performance of the system optimizer (NSGA-II) in dealing with these problems.

The convergence across generations is captured by the hypervolume metric in
Fig. 2 for five and 10 discipline problems with different linking variable topolo-
gies. Figure 3 depicts the non-dominated solutions obtained at the end of the
optimization run shown alongside the Pareto optimal front (POF). In all plots,
the notation D5 and D10 denotes the number of disciplines. Good convergence is
achieved for all problems instances involving ZDT1, ZDT3 and ZDT6, although
not all solutions are co-located on the POF for ZDT6. ZDT4 shows constant
improvement in terms of hypervolume across the generations, but achieves poor
convergence overall within the given computational budget.

Fig. 2. Hypervolume across generations.
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Fig. 3. Non-dominated solutions at the end of the optimization run.
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Fig. 4. Decision variable values obtained across the generations for 5 disciplines.
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An increase in the number of disciplines from five to 10 is expected to make
the problem more difficult, since it implies an increase in the number of deci-
sion variables (30 and 60 decision variables for five and 10 disciplines, respec-
tively). This difficulty is mostly reflected on ZDT4 where the values of f2 are
relatively higher for the 10 discipline case when compared with the five disci-
pline problem. The same trend is captured by the hypervolume for ZDT4, where
the five-discipline instances show better convergence when compared with the
10-discipline instances.

The values of the global and local variables across generations are shown
in Fig. 4. We only focus on the five discipline problem since similar results are
obtained for the 10 discipline case. At the end of each NSGA-II generation, we
take the median of the variable values across the population of solutions. This
means that there are 9 lines for the global variables and 25 lines for the local
variables in these plots. Figures 4a and 4b show the global and local variable
values, respectively, for ZDT1. Both variables converge towards the optima in
less than 200 generations. The same pattern is observed for the other problems
with the exception of ZDT4, and it took slightly longer to converge for ZDT6
(Figs. 4g and 4h). The decision variables for ZDT4 become trapped in local
optima after a few generations as shown in Figs. 4c–4f. The values of the decision
variables for AIAO are relatively close to the optima when compared with OIOO,
implying that AIAO achieves better performance when compared with OIOO
as shown in Fig. 3e. Given that the MDA solver has converged in all cases, the
differences in performance observed between topologies are likely attributable to
the stochasticity of the optimizer at the system level.

7 Summary and Future Work

In this paper we have proposed an MO-MDO test suite based on the continuous
ZDT problems. The test suite is scalable in the number of disciplines, as well as
the number of global and local decision variables. It offers a flexible approach
to defining dependencies between the disciplines, allowing for the construction
of more complex systems with multiple dependencies between disciplines. This
test suite offers the opportunity for researchers and others to develop MDO
architectures in combination with multi-objective optimization techniques. The
experimental results have shown that for easier ZDT problems, such as ZDT1
and ZDT3, it can be straightforward for an optimizer like NSGA-II and an
MDA solver to find a set of solutions with good convergence across the PF.
For problems that are harder to solve, such as ZDT4, it may require using an
impractical number of generations (beyond 1000) to find a well-converged set of
solutions, or a system optimizer more capable of dealing with multimodality in
the fitness landscape.

Future work will include an expansion of MDO problems to more complex
multi-objective test suites. This will allow for greater scalability in objectives,
as well as being potentially more representative of real-world problems. Extend-
ing some of these problems to MDO formulations is not straightforward and
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will require revisions to the present architecture. Additionally, alternative MDO
architectures will be considered for application to MO-MDO benchmarks.
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Abstract. Performance of evolutionary multi-objective optimization (EMO)
algorithms is usually evaluated using artificial test problems such as DTLZ and
WFG. Every year, newEMOalgorithmswith high performance on those test prob-
lems are proposed. One question is whether they also work well on real-world
problems. In this paper, we try to find an answer to this question by examining
the performance of ten EMO algorithms including both well-known representa-
tive algorithms and recently-proposed new algorithms. First, those algorithms are
applied to five artificial test suites (DTLZ, WFG, Minus-DTLZ, Minus-WFG and
MaF) and three real-world problem suites. The performance of each algorithm
is evaluated by the hypervolume indicator. Next, the ranking of the ten EMO
algorithms is created for each problem suite. That is, eight different rankings are
obtained (each ranking is for each problem suite). Then, the eight different rank-
ings are visually compared to answer our research question. The distance between
two rankings is also calculated to support visual comparison results. Our experi-
mental results show that similar rankings of the ten EMO algorithms are obtained
for the three real-world problem suites and Minus-WFG. It is also shown that the
ranking for each of the three real-world problem suites is clearly different from
their ranking for DTLZ.

Keywords: Evolutionary multi-objective optimization · Performance
evaluation · Artificial test problems · Real-world test problems · Many-objective
optimization

1 Introduction

An m-objective minimization problem is written as

Minimize f (x) = (f1(x), f2(x), . . . , fm(x)), (1)

subject to x ∈ X, (2)
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where f i(x) is the ith objective to be minimized (i = 1, 2,..., m), x is a decision vector,
and X is the feasible region of x. Two solutions xA and xB are compared by the Pareto
dominance relation as follows: When f i(xA)≤ f i(xB) for all i and f j(xA)< f j(xB) for at
least one j, xA dominates xB (i.e., xA is better than xB). If xB is not dominated by any other
solutions in X, xB is a Pareto optimal solution. The set of all Pareto optimal solutions
is the Pareto optimal solution set. The image of the Pareto optimal solution set on the
objective space is the Pareto front. If all solutions in a solution set are non-dominatedwith
each other, the set is referred to as a non-dominated solution set. Various evolutionary
multi-objective optimization (EMO) algorithms have been proposed to search for a
non-dominated solution set which approximates the entire Pareto front.

When a new EMO algorithm is proposed, its high performance is usually demon-
strated through computational experiments in comparison with other algorithms using
well-known scalable artificial test problems such as DTLZ [1] andWFG [2]. Every year,
a number of new EMO algorithms are proposed in this manner. Recently, it is pointed out
in some studies [3–5] that test problems in the DTLZ and WFG suites have somewhat
unrealistic features. One is the use of a single common distance function in all objec-
tives. As a result, we can find a Pareto optimal solution byminimizing the single distance
function independent of the number of objectives. Another feature is that any (m−1)
objectives of an m- objective test problem can be simultaneously optimized. However,
these two artificial test suites are still frequently used for evaluating EMO algorithms in
many recent papers (e.g., [6–17]).

One question is whether high-performance EMO algorithms on artificial test prob-
lems also work well on real-world problems or not. In this paper, we try to find an answer
to this question. The performance of ten EMO algorithms is examined: NSGA-II [18],
MOEA/D-PBI [19], SMS-EMOA [20] (HypE [21] for problems with more than five
objectives), NSGA-III [22], MOEA/DD [23], RVEA [24], SparseEA [25], DEA-GNG
[26], R2HCA-EMOA [27], and PREA [28]. They are classified into three categories in
Table 1: Pareto dominance-based, decomposition-based and indicator-based algorithms.
In Table 1, we also show the test problems used in computational experiments for per-
formance evaluation in the paper where each algorithm was proposed. Constrained test
problems which were used for performance evaluation of constrained versions of these
algorithms are not shown in Table 1 for the sake of conciseness (since multi-objective
problems with only box constraints are used in this paper). In Table 1, each algorithm
is numbered based on the publication year of the related paper. The ID number of
each algorithm is used in all figures in this paper for concise presentation. Except for
SparseEA (which is a large-scale sparsemulti-objective optimization algorithmproposed
in 2020), EMO algorithms in Table 1 proposed in the 2010s and 2020s were evaluated
by many-objective test problems.

The rankingof these tenEMOalgorithms is created for eachoffive artificial test suites
(DTLZ1–7 [1], WFG1–9 [2], Minus-DTLZ1–7 [3], Minus-WFG1–9 [3], and MaF1–15
[4]) through computational experiments on problem instances with 3, 5 and 8 objectives.
Thus, five different rankings are created. The ranking of the ten EMO algorithms is also
created for each of three real-world problem suites: Tanabe & Ishibuchi [29], He et al.
[30], and Kumar et al. [31]. As a result, eight different rankings are created in total. Then,
they are compared with each other in order to analyze the difference between artificial
test problem-based and real-world problem-based comparison results.
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Table 1. Ten algorithms examined in this paper and some related information. Each algorithm is
numbered based on the publication year of the related paper. The ID number of each algorithm is
used in all figures in this paper.

ID Algorithm Year Algorithm category Test problems used in algorithm’s
original paper

Number of
objectives

1 NSGA-II [18] 2002 Pareto
dominance-based
algorithm

SCH, FON, POL, KUR
ZDT1–4, 6

2
2

2 MOEA/D-PBI
[19]

2007 Decomposition-based
algorithm

ZDT1–4, 6
DTLZ1–2
Knapsack

2
3
2, 3, 4

3a SMS-EMOA
[20]

2007 Indicator-based
algorithm

ZDT1–4, 6
DTLZ1–4, Airfoil design

2
3

3b HypE [21] 2011 Indicator-based
algorithm

DTLZ1–7, WFG1–9, Knapsack 2, 3, 5, 7, 10,
25, 50

4 NSGA-III [22] 2014 Decomposition-based
algorithm

DTLZ1–4, Scaled DTLZ1–2
Convex DTLZ2
Crash-worthiness problem
Car cab design

3, 5, 8, 10, 15
3, 5, 8, 10, 15
3
9

5 MOEA/DD [23] 2015 Decomposition-based
algorithm

DTLZ1–4, WFG1–9 3, 5, 8, 10, 15

6 RVEA [24] 2016 Decomposition-based
algorithm

DTLZ1–7, WFG1–9
Scaled DTLZ1, 3

3, 6, 8, 10
3, 6, 8, 10

7 SparseEA [25] 2020 Pareto
dominance-based
algorithm

Sparse MOPs (MOP1–8)
ML application problems

2
2

8 DEA-GNG [26] 2020 Decomposition-based
algorithm

Scaled DTLZ2, Convex DTLZ2
Minus-DTLZ2, DTLZ2BZ
DTLZ7, WFG1–2
DTLZ5, Polygon problems

2, 3, 5, 8
2, 3, 5, 8
2, 3, 5, 8
3, 5, 8

9 R2HCA-EMOA
[27]

2020 Indicator-based
algorithm

DTLZ1–4, Minus-DTLZ1–4
WFG1–9, Minus-WFG1–9

5, 10, 15
5, 10, 15

10 PREA [28] 2021 Indicator-based
algorithm

DTLZ1–4, WFG4–9
WFG1–3, MaF1, 3, 4, 6, 7

3, 5, 10
3, 5, 10, 15,
20

This paper is organized as follows. In Sect. 2, we briefly explain five artificial test
suites and three real-world problem suites used in this paper. In Sect. 3, the ranking of
the ten EMO algorithms for each problem suite is shown and compared. Experimental
results demonstrate that the obtained ranking of the ten EMO algorithms is strongly
problem suite dependent. In Sect. 4, this paper is concluded and some future research
topics are explained.

2 Artificial Test Problems and Real-World Problems

In the 1990s, simple two-objective artificial test problemswere often utilized for explain-
ing the usefulness of non-elitist EMO algorithms (e.g., Schaffer’s test problem in the
NPGA [32] and NSGA [33] papers, and F3 in [33]). As shown in [34], randomly gen-
erated initial solutions for those test problems are on the Pareto front or very close to
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the Pareto front. Thus, no strong convergence ability to push the population towards the
Pareto front is needed in EMO algorithms for those test problems.

In 2000, the first well-known artificial test suite ZDT [35] with six two-objective
problems (ZDT1–6) was proposed. One challenge in solving ZDT is that no randomly
generated initial solutions are close to the Pareto front [34]. That is, the initial population
is not close to the Pareto front. Thus, strong convergence ability is needed to push the
population towards the Pareto front. Slow convergence of the population by non-elitist
EMO algorithms was clearly demonstrated in the ZDT paper [35]. As shown in Table 1,
ZDT was often used for performance evaluation of elitist EMO algorithms such as
NSGA-II [18], MOEA/D [19] and SMS-EMOA [20] in the 2000s.

In 2002, the first well-known scalable artificial test suite DTLZ [1] with seven prob-
lems (DTLZ1–7) was proposed. One advantage of DTLZ over ZDT is that the number
of objectives can be arbitrarily specified. Thus, DTLZ has been frequently used for per-
formance evaluation of EMO algorithms for many-objective optimization (see Table 1).
One feature of DTLZ is that the feasible region in the objective space spreads out from
the Pareto front towards all non-negative directions as shown in Fig. 1 (a). As a result, the
diversity maximization of the population totally conflicts with its convergence towards
the Pareto front. Moreover, when a Pareto dominance-based EMO algorithm is applied
to DTLZ, the current population often includes dominance resistant solutions (DRSs
[36, 37]) which have near optimal values for some objectives and very bad values for
other objectives. Thanks to some near optimal values, DRSs are hardly dominated by
other solutions in the population. Due to some very bad values, they are evaluated as hav-
ing large diversity. As a result, they have high fitness in Pareto dominance-based EMO
algorithms (i.e., they can survive over many generations and create other DRSs). DTLZ
was often used to demonstrate poor performance of dominance-based EMO algorithms
(and good performance of other EMO algorithms) on many-objective test problems with
four or more objectives [38, 39].

(a) DTLZ2-4 (b) WFG4-9 in the normalized space.

Fig. 1. Feasible region of each test problem in the objective space.

Another feature of DTLZ is that the Pareto front shape of DTLZ1–4 is triangular.
Decomposition-basedEMOalgorithmsworkwell on these test problems since theweight
vector distribution is also triangular (i.e., since theweight vector distribution is consistent
with the Pareto front shape [3]). In this paper, we useDTLZ1–7with 3, 5 and 8 objectives
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(i.e., 21 problem instances in total). Since its proposal in 2002, some modifications have
been made on DTLZ (i.e., there exist different versions of DTLZ). In this paper, we use
DTLZ1–7 in PlatEMO [40].

In 2006, anotherwell-known scalable artificial test suiteWFG [2]with nine problems
(WFG1–9) was proposed. One additional challenge in solvingWFG in comparison with
DTLZ is that each objective has a different scale. More specifically, the ideal and nadir
points of the m-objective WFG problems are (0, 0,..., 0) and (2, 4,..., 2m), respectively
(whereas they are (0, 0,..., 0) and (1, 1,..., 1), respectively, in most DTLZ problems). This
means that a uniformly distributed weight vector set cannot find a uniformly distributed
solution set on the Pareto front. As a result, decomposition-based EMO algorithms
with no normalization mechanism of the objective space such as MOEA/D [19] and
MOEA/DD [23] do not work well. The feasible region of WFG spreads out along the
center vector (1, 1,..., 1) in the normalized objective space as shown in Fig. 1 (b). Thus,
there exist no dominance resistant solutions (DRSs) in WFG since very bad values of
some objectives mean very bad values of the other objectives in Fig. 1 (b). As a result,
many-objectiveWFG is easier for Pareto dominance-based EMO algorithms thanmany-
objective DTLZ [41]. In this paper, we use WFG1–9 with 3, 5 and 8 objectives (i.e., 27
problem instances in total).

In 2017, theminus versions of DTLZ andWFGwere formulated by simply assigning
a minus sign to all objectives in DTLZ and WFG [3]. The assignment of a minus sign is
equivalent to the change from “minimization” to “maximization”. Thus, the Pareto front
is the opposite side of the feasible region in comparison with DTLZ and WFG (i.e., the
top-right boundary of the feasible region in each figure in Fig. 1). This simple change
has large effects on the problem features of DTLZ and WFG. For example, whereas
DTLZ2–4 and WFG4–9 have concave triangular Pareto fronts, their minus versions
have convex inverted triangular Pareto fronts. Since inverted triangular Pareto fronts are
not consistent with the weight vector distribution [3], Minus-DTLZ and Minus-WFG
are difficult for decomposition-based EMO algorithms with the fixed weight vectors
such as MOEA/D [19], NSGA-III [22] and MOEA/DD [23]. They are also difficult
for hypervolume-based EMO algorithms (e.g., SMS-EMOA [20] and HypE [21]) since
the reference point specification for hypervolume calculation has a large effect on their
performance when test problems have inverted triangular Pareto fronts [42]. For Pareto
dominance-based EMO algorithms, Minus-DTLZ is easier than DTLZ since (i) the
population can be driven towards the Pareto front by diversity maximization and (ii)
Minus-DTLZ has no DRSs [41]. In this paper, we use Minus-DTLZ1–7 with 3, 5 and 8
objectives (21 problem instances in total) andMinus-WFG1–9 with 3, 5 and 8 objectives
(27 problem instances in total).

In 2017,MaFwas proposed as a newmany-objective test suite [4]. Its main feature is
that all of its 15 test problems (i.e., MaF1–15) are collected from the literature instead of
designing new test problems. For example, MaF3 is the convex DTLZ3 problem in [22],
andMaF10, 11, 12 are the same asWFG1, 2, 9, respectively. MaF includes test problems
with various Pareto front shapes (e.g., concave, convex, disconnected, triangular, and
inverted triangular Pareto fronts). In this paper, we use MaF1–15 with 3, 5, 8 objectives
(45 problem instances in total).
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Recently, some real-world problem suites have been proposed in the literature. In
this paper, three suites in Table 2 are used: RE problems in Tanabe & Ishibuchi [29],
DDMOP problems in He et al. [30], and RCM problems in Kumar et al. [31]. Tanabe &
Ishibuchi [29] has 16 problems (RE2-4-1, RE2-3-2,..., RE9-7-1). He et al. [30] has seven
problems (DDMOP1,..., DDMOP7). Among them, DDMOP2 is the same as RE3-5-4.
Kumar et al. [31] has 50 problems (RCM01,..., RCM50) which are classified into five
categories: (i) mechanical design problems, (ii) chemical engineering problems, (iii)
process, design and synthesis problems, (iv) power electronics problems, and (v) power
system optimization problems. Among them, six problems are also included in the RE
suite [29]. Most problems in the original RCM suite [31] are constrained multi-objective
problems. In the RE suite [29], all constraint conditions of each problem were combined
into an additional objective to minimize the total constraint violation. In this paper,
we apply the same reformulation method to the original RCM problems. As a result,
except for some problems with no constraint conditions (e.g., RCM09), the number of
objectives in RCM in Table 2 is larger than that in the original RCM suite [31]. The
MATLAB code of all reformulated problems is available from https://github.com/Nan
y12345/EMO-2023-Performance-Comparison.

We can see thatmany problems in Table 2 have only two or three objectives. Only five
problems have six ormore objectives. These observations suggest that Pareto dominance-
based algorithms (e.g., NSGA-II [18]) will work well onmost problems.We can also see
that no problems in Table 2 have more than 34 decision variables. This observation sug-
gests that no special mechanisms to handle large-scale problems (e.g., SparseEA [25])
are needed. As shown in Tanabe & Ishibuchi [29] and He et al. [30], many real-world
problems have complicated Pareto front shapes. This suggests that decomposition-based
EMOalgorithmswith the fixedweight vectors (e.g.,MOEA/D-PBI [19], NSGA-III [22],
MOEA/DD [23]) will have some difficulties. It was also shown in [29] and [30] that
each objective in many real-world problems has a totally different scale. For example,
the range of each objective in the approximated Pareto front of RE3-4-2 [29] is f 1: [0.01,
35], f 2: [0.004, 20,000], and f 3: [0.02, 1,000,000,000]. This observation suggests the
necessity of objective space normalization. Among the examined algorithms, the fol-
lowing five do not have any objective space normalization mechanism: MOEA/D-PBI
[19], SMS-EMOA [20], HypE [21], MOEA/DD [23], and RVEA [24]. These algo-
rithms will have some difficulties in handling badly scaled real-world problems. Objec-
tive space normalization will improve the performance of decomposition-based EMO
algorithms (i.e., MOEA/D-PBI [19], MOEA/DD [23] and RVEA [24]) since it helps to
find uniformly distributed solutions using uniformly distributed weight vectors [43]. In
hypervolume-based EMO algorithms (i.e., SMS-EMOA [20] and HypE [21]), objective
space normalization is needed to appropriately specify the reference point for hyper-
volume calculation [44]. For example, in SMS-EMOA, the reference point is specified
by adding (1, 1,..., 1) to the estimated nadir point. In this specification, the effect of
“+1” on hypervolume calculation can be totally different depending on the scale of each
objective (e.g., the effect of “+1” is totally different between “1 + 1” and “1,000,000 +
1”).

https://github.com/Nany12345/EMO-2023-Performance-Comparison


Performance Evaluation of Multi-objective Evolutionary Algorithms 339

Table 2. Three real-world problem suites used in this paper. In this table, m is the number of
objectives, and n is the number of decision variables.

RE [29] DDMOP [30] RCM [31]

Problem m n Problem m n Problem m n Problem m n

RE2-4-1 2 4 DDMOP1 9 11 RCM1 3 4 RCM26 3 3

RE2-3-2 2 3 DDMOP2 3 5 RCM2 3 5 RCM27 3 3

RE2-4-3 2 4 DDMOP3 3 6 RCM3 3 3 RCM28 3 7

RE2-2-4 2 2 DDMOP4 10 13 RCM4 3 4 RCM29 3 7

RE2-3-5 2 3 DDMOP5 3 11 RCM5 3 4 RCM30 3 25

RE3-3-1 3 3 DDMOP6 2 10 RCM6 3 7 RCM31 3 25

RE3-4-2 3 4 DDMOP7 2 17 RCM7 3 4 RCM32 3 25

RE3-4-3 3 4 RCM8 4 7 RCM33 3 30

RE3-5-4 3 5 RCM9 2 4 RCM34 3 30

RE3-7-5 3 7 RCM10 3 2 RCM35 3 30

RE3-4-6 3 4 RCM11 6 3 RCM36 3 28

RE3-4-7 3 4 RCM12 3 4 RCM37 3 28

RE4-7-1 4 7 RCM13 4 7 RCM38 3 28

RE4-6-2 4 6 RCM14 3 5 RCM39 4 28

RE6-3-1 6 3 RCM15 3 3 RCM40 3 34

RE9-7-1 9 7 RCM16 3 2 RCM41 4 34

RCM17 4 6 RCM42 3 34

RCM18 3 3 RCM43 3 34

RCM19 4 10 RCM44 4 34

RCM20 3 4 RCM45 4 34

RCM21 3 6 RCM46 5 34

RCM22 3 9 RCM47 3 18

RCM23 3 6 RCM48 3 18

RCM24 4 9 RCM49 4 18

RCM25 3 2 RCM50 3 6

3 Results of Computational Experiments

In our computational experiments, the ten EMO algorithms in Table 1 are compared
using the eight problem suites explained in Sect. 2. We use the standard specification
with respect to the number of decision variables in each artificial test problem. More
specifically, we use the same specification as in PlatEMO [40] for DTLZ, WFG and
MaF. The specifications for Minus-DTLZ and Minus-WFG are the same as those for
DTLZ and WFG, respectively. All algorithms are applied to all problems under the
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same termination condition: 200 generations (in the case of steady state algorithms, the
number of generations is adjusted so that the total number of examined solutions is the
same). Different population size is used depending on the number of objectives as shown
in Table 3. This is because the population size cannot be arbitrarily specified in most
decomposition-based EMO algorithms.

Table 3. Population size specifications.

Number of objectives (m) 2 3 4 5 6 8 9 10

Population size 100 91 120 210 112 156 174 275

In all EMO algorithms except for SparseEA [25], the same crossover and mutation
operators are used with the same crossover and mutation probabilities as follows: The
simulated binary crossover (SBX) with the distribution index 20 and the crossover prob-
ability 1.0, and the polynomial mutation with the distribution index 20 and the mutation
probability 1/n where n is the number of decision variables. SparseEA uses its own
method to generate offspring. All other parameters in each algorithm are the same as
in the related paper and the authors’ code. For example, the penalty parameter θ in
MOEA/D-PBI is specified as θ = 5 as in the MOEA/D paper [19]. The number of sam-
ples in HypE for approximating hypervolume contribution is 10,000, and the number of
direction vectors in R2HCA-EMOA [27] is 100.

Each algorithm is applied to each problem instance (e.g., 3-objective DTLZ1) 31
times. Then the average hypervolume value is calculated over 31 runs. The reference
point is specified as (1+ 1/H)(1, 1,..., 1) in the normalized objective space with the ideal
point (0, 0,..., 0) and the nadir point (1, 1,..., 1) as suggested in [42] where H = 99, 12,
7, 6, 3, 3, 3, 3 for m = 2, 3, 4, 5, 6, 8, 9, 10, respectively. The true ideal and nadir points
are unknown in the real-world problem suites (i.e., RE, DDMOP and RCM) and some
Minus problems (i.e., Minus-DTLZ5–7 and Minus-WFG1–3). For those problems, the
ideal and nadir points are estimated using all non-dominated solutions obtained from all
runs of all algorithms in our computational experiments.

The ranking of the ten algorithms is created for each problem instance simply using
the average hypervolume value over 31 runs of each algorithm. Such a ranking is created
for all problem instances in each problem suite. For example, 27 different rankings are
created for theWFG test suite (each ranking is for eachWFGproblem instance). Then the
average ranking is calculated for each problem suite simply by calculating the average
of the rankings over the problem instances. For example, the average ranking for WFG
is calculated as the average over its 27 problem instances. In this manner, we have eight
different average rankings in Fig. 2, each of which is for each problem suite. In each
figure in Fig. 2, the best rank is 1, and the worst rank is 10. If one algorithm is always the
best for all problem instances, its average rank is 1.0. If another algorithm is always the
worst for all problem instances, its average rank is 10.0. When different algorithms work
well on different problem instances in a problem suite, their average ranks tend to be
around 5.5 as in the ranking for MaF in Fig. 2. From a quick visual comparison among
the eight rankings, we can see that the three rankings for the real-world problems are
similar to the ranking for Minus-WFG and clearly different from the ranking for DTLZ.
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1: NSGA-II 3: SMS-EMOA & HypE 5: MOEA/DD 7: SparseEA 9: R2HCA-EMOA 
2: MOEA/D-PBI 4: NSGA-III  6: RVEA  8: DEA-GNG  10: PREA 

Fig. 2. Average ranking of the examined ten algorithms on each problem suite. Smaller ranks
mean better algorithms. The final population of each run is used for comparison.

To confirm these visual observations, we calculate the distance between two average
rankings using the Manhattan distance by handling each average ranking in Fig. 2 as a
10-dimensional vector. That is, the distance of two average rankings RA = (RA1, RA2,...,
RA10) and RB = (RB1, RB2,..., RB10) is calculated as follows:

Distance(RA,RB) = |RA1 − RB1| + |RA2 − RB2| + . . . + |RA10 − RB10|. (3)

The calculated distance is summarized in Table 4. Similar pairs of average rankings
with the Manhattan distance smaller than 10 are highlighted by bold font and yellow
shade (e.g., between WFG and MaF). Dissimilar pairs of average rankings with the
Manhattan distance larger than 15 are highlighted by gray shade.
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Table 4. Manhattan distance between two average rankings of the compared ten algorithms
in Fig. 2. Distances smaller than 10 are highlighted by bold font and yellow shade (i.e., high
similarity), and distances larger than 15 are highlighted by gray shade (i.e., low similarity).

DTLZ WFG Minus-
DTLZ

Minus-
WFG MaF RE DDMOP RCM

DTLZ - 14.34 21.07 27.28 11.02 22.46 27.79 19.50
WFG 14.34 - 16.48 17.83 9.48 13.38 16.11 10.15

M-DTLZ 21.07 16.48 - 13.56 10.55 9.93 11.86 10.63
M-WFG 27.28 17.83 13.56 - 16.36 6.67 5.83 11.31
MaF 11.02 9.48 10.55 16.36 - 11.63 16.77 10.65
RE 22.46 13.38 9.93 6.67 11.63 - 7.39 6.72

DDMOP 27.79 16.11 11.86 5.83 16.77 7.39 - 9.21
RCM 19.50 10.15 10.63 11.31 10.65 6.72 9.21 -

In Table 4, we can obtain the same observations as in Fig. 2. That is, the three
rankings for the real-world problems are similar to the ranking for Minus-WFG and
clearly different from the ranking for DTLZ. Table 4 (and Fig. 2) also shows that the
three rankings for the real-world problems are not similar to the rankings for WFG
and MaF. These observations imply that the performance evaluation results of EMO
algorithms based on the frequently-used test problem suites (e.g., DTLZ, WFG and
MaF) can be totally different from their performance on real-world problems.

Let us further discuss the experimental results in Fig. 2. On DTLZ, the two Pareto
dominance-based algorithms (1:NSGA-II, 7: SparseEA)donotworkwell due to the exis-
tence of dominance resistant solutions (DRSs). However, their performance on Minus-
DTLZ and Minus-WFG is not bad. This is because these test problems have no DRSs
and have additional difficulty for other algorithms (i.e., irregular Pareto fronts). For
the same reason, the performance of the two Pareto dominance-based algorithms on
the real-world problems is not bad. The three decomposition-based algorithms with no
objective space normalization mechanisms (2: MOEA/D-PBI, 5: MOEA/DD, 6: RVEA)
do not work well on the real-world problems in Fig. 2 whereas their performance on
DTLZ is not bad. This is because each objective in real-world problems has a totally
different scale. For the same reason, the other decomposition-based algorithms with
normalization mechanisms (4: NSGA-III, 8: DEA-GNG) show better performance on
the real-world problems. The difference in the performance between these two algo-
rithms is not clear whereas NSGA-III has a fixed reference vector set and DEA-GNG
has a reference vector adaptation mechanism. This is due to the termination condition
specification: 200 generations. The number of generations is not enough for carefully
adjusting the reference vector in DEA-GNG (and also in RVEA).

In Fig. 2, the hypervolume-based EMO algorithms (3: SMS-EMOA & HypE, 9:
R2HCA-EMOA) show the best results on DTLZ andWFG. However, they do not always
show the best results on the real-world problems. For example, in Fig. 2, algorithm 3
(SMS-EMOA & HypE) is outperformed by some other algorithms (e.g., algorithm 1:
NSGA-II) on DDMOP. This is because the reference point specification mechanisms
in SMS-EMOA & HypE are not suitable for real-world problems with complicated
Pareto fronts and totally different scales in objective spaces. By specifying the reference
point in the normalized objective space, their performance can be improved [44]. PREA
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(algorithm 10) is based on a distance indicator (instead of the hypervolume indicator). It
shows the best performance on the real-world problems (since the other algorithms have
some difficulties) whereas its performance is not good on DTLZ. From the experimental
results in Fig. 2, we can say that high-performance algorithms on the frequently-used
artificial test suites DTLZ and WFG do not always work well on real-world problems.
We can also see from Fig. 2 that a wide variety of test problems are needed for reliable
performance comparison [45].

One possible reason for the large differences in the average rankings between the
artificial test suites and the real-world problem suites is the difference in the number
of objectives. Whereas almost all the examined real-world problems have only 2–4
objectives, the artificial test problems have 3, 5 and 8 objectives in Fig. 2 and Table 4.
We recalculate the average ranking for each of the five artificial test suites using only
the three-objective problem instances. The results are shown in Fig. 3 and Table 5.

1: NSGA-II 3: SMS-EMOA & HypE 5: MOEA/DD 7: SparseEA 9: R2HCA-EMOA 
2: MOEA/D-PBI 4: NSGA-III  6: RVEA  8: DEA-GNG  10: PREA 

Fig. 3. Average ranking of the examined ten algorithms on each problem suite. Only three-
objective artificial test problems are used for ranking whereas all real-world problems are
used.
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Table 5. Manhattan distance between two rankings of the compared ten algorithms in Fig. 3.
Distances smaller than 10 are highlighted by bold font and yellow shade (i.e., high similarity),
and distances larger than 15 are highlighted by gray shade (i.e., low similarity).

DTLZ WFG Minus-
DTLZ

Minus-
WFG MaF RE DDMOP RCM

DTLZ - 13.86 12.71 20.38 3.40 14.43 19.14 14.23
WFG 13.86 - 16.06 18.89 11.80 15.39 19.02 13.64

M-DTLZ 12.71 16.06 - 19.81 10.46 12.68 16.57 12.25
M-WFG 20.38 18.89 19.81 - 18.60 13.26 14.63 13.32
MaF 3.40 11.80 10.46 18.60 - 11.67 16.97 11.27
RE 14.43 15.39 12.68 13.26 11.67 - 7.39 6.72

DDMOP 19.14 19.02 16.57 14.63 16.97 7.39 - 9.21
RCM 14.23 13.64 12.25 13.32 11.27 6.72 9.21 -

From Fig. 3 and Table 5, we can obtain similar observations to those from Fig. 2 and
Table 4. That is, there exist large differences in the average rankings of the ten EMO
algorithms between the artificial test suites and the real-world problem suites. Among
the five artificial test suites, DTLZ and WFG have larger distances than the other three
suites to the real-world problem suites in Table 4.

4 Concluding Remarks

In this paper, we examined the performance of ten EMO algorithms using eight problem
suites to discuss the following issue: Whether high-performance EMO algorithms on
artificial test problems also work well on real-world problems or not. Our experimental
results showed that performance comparison results are totally problem-dependent (i.e.,
high-performanceEMOalgorithms on artificial test problems donot alwaysworkwell on
real-world problems). Totally different comparison results were obtained from different
problem suites. For example, the average rankings of the ten EMO algorithms for the
two frequently-used artificial test suites DTLZ andWFG are clearly different from those
for the three real-world problem suites.

As explained in Sect. 2, each artificial test suite has posed new challenges (e.g., many
objectives and dominance resistant solutions by DTLZ, different scales of objectives by
WFG, inverted triangular Pareto fronts by Minus-DTLZ and Minus-WFG, and various
Pareto front shapes byMaF). To address these challenges, a number of high-performance
EMO algorithms have been proposed in the literature. Our experimental results showed
that new EMO algorithms do not always outperform old algorithms on the three real-
world problem suites (e.g., NSGA-II worked well). At the same time, it was also shown
that all the four algorithms in the 2020s (i.e., algorithms 7–10) worked well on all the
three real-world problem suites.

In this paper, we used a very simple method to calculate the ranking of EMO algo-
rithms for each problem instance, which was simply based on the average hypervolume
values.More rigorous rankingmechanismsmay be needed to evaluate their performance
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in future studies. Another future research direction is to use various settings in compu-
tational experiments for performance comparison of EMO algorithms. This direction
includes the use of other termination conditions (e.g., 100, 500 and 1000 generations in
addition to 200 generations), multiple performance indicators, and other problem suites
such as a traditional artificial test suite ZDT [35] and a large-scale artificial test suite
LSMOP [46, 47].
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Abstract. Evaluating the performance of Multi-Objective Evolutionary
Algorithms is complex since we have to assess different characteristics of
the approximation sets that they generate. Over the years, a variety
of performance indicators have been proposed to fulfill this task. One
of the most popular performance indicators has been the hypervolume
because it can assess both convergence and spread of a set of solutions
and it is fully Pareto compliant. However, its computational cost grows
exponentially with the number of objectives. A good alternative is the R2
indicator which has a similar behavior but a much lower computational
cost. Nevertheless, R2 sometimes is unable to differentiate two sets with
different distributions. In this work, we propose a novel performance
indicator based on the linear assignment problem called “ILAP”, which
offers advantages over R2. To illustrate this, we include an example in
which the ILAP can differentiate two sets when the R2 indicator cannot
do it. Furthermore, our experimental analysis shows that our proposed
indicator correctly ranks solution sets with different distributions and
shapes.

Keywords: Indicator · Linear assignment problem · Multi-objective
optimization

1 Introduction

The solution to a multi-objective optimization problem consists of a set of non-
dominated solutions which can not be easily evaluated as in the case of single-
objective problems. Therefore, the performance assessment of Multi-Objective
Evolutionary Algorithms (MOEAs) is an essential research topic. Over the years,
a variety of indicators have been proposed to assess different characteristics of
the Pareto Front approximations [1,7,12]. One of the most popular indicators
has been the hypervolume [12], which measures the space covered by an approx-
imation set given a reference point. This indicator is Pareto compliant and can
assess both convergence and spread of the approximations produced by a MOEA.
However, its computational cost becomes unaffordable as the number of objec-
tives increases.
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Another commonly used performance indicator is R2 [1]. This indicator can
assess the convergence and diversity of the solutions by using a set of weight
vectors and a scalarizing function. Moreover, the behavior of the R2 indicator
is similar to that of the hypervolume (although R2 is weakly Pareto compliant)
but has a significantly lower computational cost [1]. Nevertheless, as we will see
later on, the R2 indicator may obtain the same value for approximation sets
with different distributions.

This work introduces a performance indicator based on the linear assignment
problem [2]: ILAP. In a linear assignment problem, we have to assign a set of
agents to a set of tasks. The assignment of an agent to a task corresponds to
a cost. Therefore, the aim is to find an assignment with the lowest cost. In the
case of the ILAP, we use a set of weight vectors and a set of individuals, where
the assignment cost is computed using a scalarizing function. Thus, we use the
cost of the best assignment as the indicator value.

Our experimental results show that ILAP correctly ranks solution sets with
different distributions and shapes. Moreover, we present an example in which
ILAP distinguishes two approximation sets in a better way than the R2 indicator.

The remainder of the paper is organized in the following way. First, we intro-
duce the necessary concepts to understand this paper in Sect. 2. Then, we present
in Sect. 3 our proposed indicator. After that, in Sect. 4, we discuss the differences
and similarities between our approach and the R2 indicator. In Sect. 5, we eval-
uate our proposed ILAP. Finally, we present the conclusions and some possible
paths for future research in Sect. 6.

2 Background

2.1 Multi-objective Optimization

A Multi-objective Optimization Problem (MOP) is defined as follows1:

minimize F (x) = [f1(x), . . . , fm(x)]T (1)
subject to gi(x) ≤ 0 i = 1, . . . , p, (2)

hj(x) = 0 j = 1, . . . , q (3)

where x = [x1, . . . , xn] is the vector of decision variables, fi : IRn → IR for
i = 1, . . . ,m are the objective functions, and gi, hi : IRn → IR for i = 1, . . . , p,
j = 1, . . . , q are the constraints of the problem. We denote Ω as the decision
space and F as the feasible region.

In a MOP, we cannot easily compare the solutions because the objective
functions are usually in conflict with each other. Therefore, we use the Pareto
dominance relation to define a partial order of the solutions:

Definition 1. A vector x ∈ Ω is said to dominate y ∈ Ω (denoted as x ≺ y),
if fi(x) ≤ fi(y) for all i = 1, . . . ,m, and fj(x) < fj(y) in at least one j.

1 without loss of generality, we assume minimization problems.
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Pareto optimality, which is the most commonly used notion of optimality
adopted in multi-objective optimization, is formally defined as follows:

Definition 2. A vector x ∈ F is Pareto optimal if there does not exist another
vector y ∈ F such that y ≺ x.

Moreover, we also adopt the following definitions commonly used in multi-
objective optimization:

Definition 3. The Pareto Optimal Set P∗ is defined as:

P∗ := {x | x is Pareto optimal}
Definition 4. The Pareto Optimal Front PF∗ is defined as:

PF∗ := {F (x) ∈ IRm | x ∈ P∗}
Definition 5. Given a predefined weight vector w ∈ IRm, a scalarizing func-
tion s transforms a multi-objective problem into a single-objective problem of the
following form:

minimize s(f ′(x),w) (4)
subject to x ∈ F , (5)

where x is the decision vector, F ∈ IRn is the feasible region, f ∈ IRm is the
vector of m objective functions, f ′(x) := f(x) − z, and z ∈ IRm is a reference
point.

2.2 Linear Assignment Problem

A Linear Assignment Problem (LAP) comprises a set of agents and a set of
tasks where assigning an agent to a task involves a cost. Therefore, the aim is
to find an assignment that minimizes the overall cost. Formally, a LAP can be
formulated as follows.

Definition 6. Given a set of agents A = {a1, . . . , an}, a set of tasks T =
{t1, . . . , tn}, and the cost function C : A × T → IR. Let Φ : A → T the set
of all possible bijections between A and T , the linear assignment problem (LAP)
can then be stated as

minimize
φ∈Φ

∑

a∈A

C(a, φ(a)) (6)

Usually, the cost function can be expressed as a real-valued matrix C with
elements Cij = C(ai, tj). Moreover, the set Φ of all possible bijections can be
viewed as a set of permutation matrices X where each matrix x ∈ X holds

xij =

{
1 if agent i is assigned to task j,

0 otherwise.
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Therefore, a LAP can be modeled as [2]:

minimize
x∈X

n∑

i=1

n∑

j=1

Cijxij (7)

such that
n∑

j=1

xij = 1 (i = 1, 2, . . . , n), (8)

n∑

i=1

xij = 1 (j = 1, 2, . . . , n), (9)

xij ∈ {0, 1} (i, j = 1, 2, . . . , n). (10)

This problem can be solved using the so-called Hungarian algorithm, which has
an O(n3) computational complexity [2].

3 Our Proposed Indicator

Molinet Berenguer and Coello Coello [9] transformed the selection process of a
MOEA into a LAP. In this proposal, the authors consider a set of individuals
and a set of weight vectors representing different regions of the Pareto front.
Moreover, the cost of assigning an individual to a weight vector is computed
using a scalarizing function. Therefore, after solving the LAP, the individuals
assigned to a weight vector are selected for the next generation. The authors
proposed an algorithm called Hungarian Differential Evolution (HDE) that uses
the LAP selection scheme. The experimental results show that the HDE is very
competitive with respect to state-of-the-art algorithms.

In the case of the LAP selection process, the size of the set of individuals is
bigger than the set of weight vectors. Therefore, the Hungarian algorithm finds
the subset of individuals that minimizes the overall assignment cost and discards
the subsets with the worst values. Hence, we can deduce that the minimum
overall assignment cost gives us an estimation of how good or bad a set is. Using
this idea, we propose an indicator based on the LAP. The ILAP indicator is
defined in the following.

Definition 7. Given a set of uniformly distributed weight vectors W =
{w1, . . . ,wn}, an approximation set A = {a1, . . . ,an}, and a cost matrix C
such that Cij = s(wi,aj) where s is a scalarizing function. Then, the ILAP is
defined as:

ILAP =
1
n

min
x∈X

{
n∑

i=1

n∑

j=1

Cijxij

}
(11)

where X is the set of permutation matrices.

We compute the ILAP by obtaining a cost matrix C using s, A, and W . Then,
we solve the LAP defined by C employing the Hungarian algorithm. Finally,
the indicator value is the best assignment’s cost divided by n. The cost matrix
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computation is performed in O(mn2), where m is the number of objectives.
Moreover, the LAP problem is solved in O(n3). Therefore the computational
complexity of computing the ILAP is O(mn2 + n3).

In the ILAP, each weight vector must be assigned to a currently unassigned
solution while minimizing the cost. In the ideal case, each weight vector is
assigned to a solution where it obtains its lowest cost. However, let’s assume
that more than one weight vector obtains its lowest cost with the same solution.
In that case, the indicator will assign the solution to the vector with the lowest
value and will use the second-best solutions for the remaining vectors.

This process allows the ILAP to assess convergence and diversity at the same
time. On the one hand, it measures convergence by always considering the best
values of the scalarizing functions. On the other hand, it measures diversity
because it tries to quantify how much the solutions cover the regions of the
weight vectors. Examples of these two cases are shown in Fig. 1a and Fig. 1b,
where the ILAP successfully ranks the sets. We used the Achievement Scalarizing
Function (ASF) [10] for these examples and for the rest of the paper.

Fig. 1. Examples where the ILAP assesses both convergence and diversity. A lower
value is preferred; therefore, the ILAP ranks the sets correctly in both cases.

4 Comparison Between Our Approach
and the R2-indicator

The R2 indicator is a performance indicator that assesses the convergence and
the diversity of a solution set. It assesses performance by mapping the candidate
solutions from objective space into utility space. Given a reference set A, a set
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of reference vectors V , and a scalarizing function2 s. The R2 indicator is defined
as follows [1]:

R2(A, V ) =
1

|V |
∑

v∈V

min
a∈A

{s(a,v)}

The ILAP and R2 indicators have some similarities. Both use scalarizing
functions and weight vectors to assess the performance of an approximation set.
Moreover, the indicators will obtain the same value when the regions given by
the weight vectors are equally covered (as shown in Fig. 2).

Fig. 2. Example of a case where ILAP and R2 obtain the same values: ILAP = R2 =
10000.3875

However, the R2 indicator only considers the solutions with the best values
of the scalarizing function, discarding the information provided by the solu-
tions with the worst values. Therefore, the R2 indicator may not evaluate the
performance of the whole set and may obtain the same value for two different
approximations. On the other hand, the ILAP indicator considers the whole
set since it assigns each weight vector with a different solution and obtains the
indicator’s value from this assignment.

An example of the previous situation is shown in Fig. 3a and Fig. 3b. Given
two different approximation sets, the R2 indicator obtains the same value, while
the ILAP obtains distinct values. Furthermore, the ILAP prefers the approxi-
mation set with a solution nearer an uncovered vector.

2 also known as utility function.
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Fig. 3. The R2 indicator obtains the same value for two sets with distinct distributions,
while the ILAP indicator obtains different values.

5 Experimental Analysis

5.1 Evaluation in Artificial Many-Objective Pareto Fronts

In this section, we study the performance of the ILAP in artificial Pareto fronts.
We employed three types of solutions sets generated in a unit m-simplex:

– C1. The solutions are concentrated in one corner of the simplex.
– C2. The solutions are randomly generated.
– C3. The solutions are uniformly distributed. We employ the method proposed

in [5] for this type of set.

Moreover, the set size for each dimension is shown in Table 1, and Fig. 4a to
Fig. 5l show the parallel coordinates graphs of the sets. Regarding the ILAP, we
use the ASF, and the Uniform Design with the Hammersley method (UDH) [9]
for generating the weight vectors.

Table 1. Set size for each dimension

m 3 4 5 6 7 8 9 10

Set size 100 110 120 130 140 150 160 170

The results are shown in Tables 2a and 2b. Moreover, we include the results
of the hypervolume indicator (HV) [12] as a reference. We can observe that
the ILAP consistently ranks the C3 sets in first place, the C2 sets in second
place, and the C1 sets in last place. Furthermore, HV obtains the same ranking.
Therefore, the ILAP can correctly rank a set of solutions in 3 to 10 dimensions.
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Table 2. ILAP and HV values of the sets C1, C2, and C3 for each dimension m. Darker
cells imply better values.

m C1 C2 C3

3 5.0453 1.5322 1.1263

4 5.6031 1.8407 1.3157

5 5.9506 2.3113 1.5775

6 5.8495 2.6022 1.9827

7 6.0938 2.9235 2.1356

8 5.9524 3.0488 2.4045

9 5.8106 3.2949 2.9855

10 5.5003 3.4681 3.1862

(a) ILAP

m C1 C2 C3

3 0.77462 1.076862 1.11977

4 0.906105 1.32058 1.369026

5 1.036677 1.49916 1.560266

6 1.197589 1.659354 1.737507

7 1.284942 1.862622 1.920832

8 1.400768 2.057528 2.111709

9 1.586619 2.252491 2.328822

10 1.805137 2.501373 2.563038

(b) HV

5.2 Evaluation in Pareto Front Approximations

In this section, we use the ILAP, the hypervolume, and the R2 indicator to
evaluate the performance of two well-known MOEAs: the NSGA-II [3] and the
MOEA/D [11]. For this purpose, we ran each algorithm 30 times using different
problems. We adopted the DTLZ1, DTLZ2, and DTLZ7 problems from the Deb-
Thiele-Laumanns-Zitzler (DTLZ) [4] test suite, the DTLZ1−1 from the Minus-
DTLZ test problems [8], and the WFG1-WFG3 from the Walking-Fish-Group
(WFG) [6] test suite with m = 3, 5, 8, and 10 objectives. Regarding the DTLZ
problems, we set the number of decision variables to n = m + k − 1, where
k = 5 for DTLZ1, k = 10 for DTLZ2, and k = 20 for DTLZ7. In the case of
the WFG problems, we set the position-related parameters to 2 × (m − 1) and
the distance-related parameters to 20. Finally, we use the same configuration of
DTLZ1 for DTLZ1−1.

In the case of the algorithm’s parameters, we set the population sizes to
100 for three objectives, 120 for five, 140 for eight, and 160 for ten. We set the
crossover and mutation parameters to pc = 1.0, pm = 1/number of variables,
nc = 20, and nm = 20. Regarding the MOEA/D parameters, we used a neigh-
borhood size T = 20, the ASF function, and the UDH weight vectors. Finally,
the ILAP and the R2 indicators adopted the ASF function and UDH weight
vectors.

Tables 3a, 3b, and 3c display the average and the standard deviation of each
indicator. We can observe that the three indicators obtain the same results for
DTLZ1, DTLZ2, DTLZ7, WFG1, WFG2, and DTLZ1−1. In the case of the
WFG3 problem, the R2 and the hypervolume get the same rank in 5 and 8
objectives. In contrast, the ILAP and the hypervolume get the same rank in
3 and 5 objectives. This situation could happen because the WFG3 is a linear
problem that hardly fits the shape of a simplex. Therefore, the R2 and ILAP
indicators may have some trouble with the performance assessment because they
employ reference vectors sampled in a simplex.
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Table 3. Average and standard deviation of the hypervolume, R2, and ILAP indi-
cators. Gray cells imply better values. Moreover, the symbol “*” represents that the
algorithm is statistically better according to the Wilcoxon rank sum test.

(a) HV

M MOEAD NSGA-II

DTLZ1

3 1.324e+0 (8.5e-4) *1.331e+0 (3.1e-6)

5 *1.610e+0 (7.5e-6) 1.610e+0 (1.4e-4)

8 *2.144e+0 (6.2e-6) 2.143e+0 (4.4e-4)

10 *2.594e+0 (8.3e-6) 2.593e+0 (1.4e-4)

DTLZ2

3 *8.330e-1 (9.3e-4) 8.169e-1 (5.1e-3)

5 *1.593e+0 (2.1e-3) 1.584e+0 (5.5e-3)

8 *2.139e+0 (1.2e-3) 2.002e+0 (4.2e-2)

10 *2.589e+0 (1.2e-3) 2.454e+0 (3.9e-2)

DTLZ7

3 6.436e-1 (5.e-2) *6.908e-1 (2.6e-2)

5 6.136e-1 (5.6e-2) *8.222e-1 (1.9e-2)

8 2.e-1 (1.2e-1) *7.608e-1 (9.4e-2)

10 1.102e-1 (9.4e-2) *5.378e-1 (1.3e-1)

WFG1

3 *1.197e+0 (2.7e-2) 1.108e+0 (2.5e-2)

5 *1.526e+0 (3.6e-2) 1.273e+0 (2.9e-2)

8 *2.055e+0 (5.0e-2) 1.495e+0 (3.6e-2)

10 *2.465e+0 (3.5e-2) 1.378e+0 (3.8e-2)

WFG2

3 1.072e+0 (8.e-2) *1.155e+0 (8.2e-2)

5 1.328e+0 (1.1e-1) *1.58e+0 (6.9e-3)

8 1.711e+0 (1.4e-1) *2.129e+0 (6.3e-3)

10 2.074e+0 (2.1e-1) *2.576e+0 (7.8e-3)

WFG3

3 8.132e-1 (7.8e-3) 8.162e-1 (4.e-3)

5 1.140e+0 (1.4e-2) 1.134e+0 (1.4e-2)

8 1.472e+0 (2.9e-2) *1.501e+0 (2.7e-2)

10 1.518e+0 (5.1e-2) *1.798e+0 (3.5e-2)

DTLZ1−1

3 *2.775e-1 (2.9e-5) 2.733e-1 (2.2e-3)

5 1.224e-2 (9.e-5) 1.215e-2 (5.3e-4)

8 *3.472e-5 (1.3e-6) 3.167e-5 (2.3e-6)

10 4.988e-7 (3.8e-8) 4.924e-7 (3.6e-8)

(b) R2

M MOEAD NSGA-II

DTLZ1

3 7.692e-2 (7.e-3) *2.856e-2 (6.e-4)

5 *1.155e-3 (3.1e-5) 2.388e-1 (1.2e-1)

8 *1.318e-3 (5.5e-5) 8.6e-1 (3.1e-1)

10 *1.574e-3 (9.5e-5) 1.165e+0 (2.6e-1)

DTLZ2

3 *1.360e+0 (2.5e-4) 1.446e+0 (3.8e-2)

5 *8.176e-1 (5.2e-3) 1.196e+0 (5.9e-2)

8 *6.764e-1 (2.4e-2) 2.832e+0 (2.4e-1)

10 *8.836e-1 (1.0e-1) 3.216e+0 (2.0e-1)

DTLZ7

3 3.517e+0 (1.1e+0) *3.074e+0 (5.8e-1)

5 7.344e+0 (9.4e-1) *6.085e+0 (1.7e-1)

8 1.702e+1 (2.2e+0) *1.098e+1 (4.8e-1)

10 2.339e+1 (3.5e+0) *1.487e+1 (9.1e-1)

WFG1

3 *1.076e+0 (1.6e-1) 1.493e+0 (2.7e-1)

5 *1.375e+0 (2.2e-1) 2.922e+0 (2.6e-1)

8 *1.412e+0 (2.3e-1) 4.859e+0 (2.3e-1)

10 *1.797e+0 (2.1e-1) 8.452e+0 (2.7e-1)

WFG2

3 2.126e+0 (7.0e-1) *1.488e+0 (7.6e-1)

5 3.305e+0 (1.1e+0) *1.174e+0 (5.4e-2)

8 5.121e+0 (1.5e+0) *1.425e+0 (5.4e-2)

10 5.187e+0 (2.3e+0) *1.533e+0 (6.7e-2)

WFG3

3 *2.667e+0 (2.5e-2) 2.673e+0 (2.0e-2)

5 *3.724e+0 (6.2e-2) 3.796e+0 (6.2e-2)

8 *5.617e+0 (8.1e-2) 5.711e+0 (7.7e-2)

10 6.985e+0 (2.2e-1) *6.594e+0 (1.1e-1)

DTLZ1−1

3 *5.014e+0 (2.0e-4) 5.46e+0 (6.4e-2)

5 *1.349e+1 (3.2e-2) 1.581e+1 (1.4e-1)

8 *3.073e+1 (8.9e-2) 3.825e+1 (3.5e-1)

10 *4.034e+1 (1.2e-1) 5.187e+1 (4.4e-1)

(c) ILAP

M MOEAD NSGA-II

DTLZ1

3 6.127e-1 (1.0e-3) *5.061e-1 (5.9e-2)

5 *1.155e-3 (3.0e-5) 9.361e-1 (1.0e-1)

8 *1.318e-3 (5.6e-5) 1.800e+0 (1.1e-1)

10 *1.577e-3 (9.8e-5) 2.105e+0 (6.0e-2)

DTLZ2

3 *1.363e+0 (3.4e-4) 1.958e+0 (7.2e-2)

5 *8.181e-1 (5.2e-3) 1.478e+0 (6.5e-2)

8 *6.765e-1 (2.5e-2) 4.292e+0 (2.2e-1)

10 *8.851e-1 (1.1e-1) 5.212e+0 (1.8e-1)

DTLZ7

3 4.797e+0 (1.1e+0) *3.298e+0 (6.3e-1)

5 1.257e+1 (1.2e+0) *6.904e+0 (1.7e-1)

8 2.834e+1 (3.0e+0) *1.333e+1 (4.4e-1)

10 3.711e+1 (6.0e+0) *1.825e+1 (6.9e-1)

WFG1

3 *1.359e+0 (1.7e-1) 1.721e+0 (3.8e-1)

5 *1.62e+0 (3.1e-1) 3.338e+0 (3.3e-1)

8 *1.727e+0 (2.9e-1) 5.834e+0 (4.5e-1)

10 *2.213e+0 (2.8e-1) 1.021e+1 (4.6e-1)

WFG2

3 2.377e+0 (6.3e-1) *1.75e+0 (8.5e-1)

5 3.568e+0 (1.1e+0) *1.954e+0 (2.3e-1)

8 5.302e+0 (1.5e+0) *2.953e+0 (2.5e-1)

10 5.314e+0 (2.2e+0) *3.271e+0 (3.0e-1)

WFG3

3 3.276e+0 (3.7e-2) *2.929e+0 (5.6e-2)

5 *4.172e+0 (1.2e-1) 4.804e+0 (1.3e-1)

8 *6.833e+0 (1.6e-1) 7.874e+0 (2.3e-1)

10 *9.165e+0 (2.5e-1) 9.488e+0 (2.6e-1)

DTLZ1−1

3 *5.014e+0 (2.0e-4) 5.627e+0 (6.7e-2)

5 *1.349e+1 (3.2e-2) 1.637e+1 (1.9e-1)

8 *3.076e+1 (7.4e-2) 3.915e+1 (3.e-1)

10 *4.037e+1 (1.2e-1) 5.325e+1 (3.7e-1)
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Fig. 4. Artificial solution sets generated in a unit simplex. Solutions in C1 are concen-
trated in a corner, in C2 are randomly generated, and in C3 are uniformly distributed.
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Fig. 5. Artificial solution sets generated in a unit simplex (continuation)

6 Conclusions and Future Work

We proposed a novel performance indicator based on the Linear Assignment
Problem, called ILAP. The experimental results showed that our proposed ILAP
could successfully rank the solutions sets using different distributions and Pareto
Front shapes of many-objective problems. Moreover, we described an example
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where the R2 indicator (the performance indicator with the most significant sim-
ilarity with the ILAP) can not distinguish between two different approximation
sets. And our proposed ILAP can differentiate them and prefers the one with a
solution near an uncovered region. As part of our future work, we would like to
analyze the mathematical properties of our proposed indicator.
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360 D. C. Valencia-Rodŕıguez and C. A. Coello Coello

11. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

12. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and
applications. Ph.D. thesis, Swiss Federal Institute of Technology (ETH), Zurich,
Suiza (1999)



A Test Suite for Multi-objective Multi-fidelity
Optimization

Angus Kenny1, Tapabrata Ray1, Hemant Kumar Singh1(B), and Xiaodong Li2

1 School of Engineering and IT, The University of New South Wales, Canberra, ACT, Australia
{angus.kenny,t.ray,h.singh}@adfa.edu.au

2 School of Computing Technologies, RMIT University, Melbourne, VIC, Australia
xiaodong.li@rmit.edu.au

Abstract. Multi-objective optimization problems (MOP) are frequently encoun-
tered in practice. In some cases, different computationally expensive analyses
may be independently used for computing different objectives of the MOP.
Additionally, the analyses may be executed to obtain estimates with different
fidelity, typically higher fidelity requiring a longer run-time. For instance, in
automotive design, the aerodynamic drag is computed using computational fluid
dynamic (CFD) analysis and its crashworthiness/strength is assessed using finite
element analysis (FEA). Both the objectives can be independently computed
and the underlying fidelity of each analysis can also be controlled using dif-
ferent mesh sizes/thresholds on the residual errors. While there exist a number
of generic MOP benchmark problems in the literature, there is scarce work on
constructing MOPs with multi-fidelity (MF) analyses to support the develop-
ment of multi-fidelity, multi-objective optimization algorithms. The existing MF
benchmarks are limited to unconstrained, single-objective optimization problems
only. Towards addressing this gap, in this paper, we introduce a test suite for
multi-objective, multi-fidelity optimization (MOMF). The problems are derived
by combining existing unconstrained, multi-objective design optimization prob-
lems with resolution/stochastic/instability errors that are common manifestations
of MF simulations. The method allows for the construction of any number of
low-fidelity functions with desired level of correlations for a given high-fidelity
objective function. We hope that the test suite would motivate novel algorithmic
developments to support optimization involving computationally expensive and
independently evaluable objectives.

1 Background

Evolutionary multi-objective optimization has been an active area of research with a
number of efficient algorithms developed over the last three decades. The fundamental
development of the algorithms is often supplemented by numerical benchmark prob-
lems. Benchmark problems are designed to pose specific challenges to the algorithms
and provide a systematic documentation of the strengths and weaknesses of the algo-
rithms. The benchmarks have themselves evolved over time to capture new and previ-
ously unsolved challenges. For example, among the older generation of benchmarks, the
ZDT test suite was introduced in 2000 [17], followed by scalable DTLZ and WFG test
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suites in 2002 [4,5] and 2005 [7], respectively. Further challenges were introduced later
by designing problems with more irregular Pareto front shapes, such as inverted [8] and
those with extremely convex/non-convex fronts [15,16]. While all of the above bench-
marks have led to improved optimization algorithms over time, one of the criticisms has
been regarding whether these synthetic benchmarks capture important aspects of the
optimization problems found in real-world settings. To address this issue, a benchmark
suite derived from real-world multi-objective optimization problems (MOP) compris-
ing 16 real-world, mixed-variable optimization problems was presented in [13]. The
problems in the set are computationally cheap to evaluate and capture some of the
complexity and nuance that is missed by the synthetic test functions. Of the 16 test
problems, 3 of them are unconstrained multi-objective optimization problems, while
for the remaining 13, the sum of constraint violation has been considered as the second
objective. The unconstrained problems (four-bar truss design, vehicle crashworthiness
design, and rocket injector design) from this set are later built upon in this study to
construct multi-fidelity versions of these test problems.

In a number of practical applications, computational cost of evaluating a design is a
significant consideration. A high evaluation cost translates to fewer design evaluations
available to conduct the optimization in a reasonable time-frame, requiring innovative
and efficient strategies to sample designs during optimization. One of the strategies
relies on evaluating the designs in different fidelities, so called multi-fidelity (MF) opti-
mization [3,10], which attempts to prudently balance the computational effort invested
in evaluating candidate designs in low-fidelity (LF) vs high-fidelity (HF). A higher
fidelity analysis is more accurate and comes with a higher computational cost. A lower
fidelity analysis on the other hand is less accurate albeit computationally cheap. MF
approaches are particularly attractive when iterative numerical simulations such as com-
putational fluid dynamics (CFD) or finite element analysis (FEA) are involved in evalu-
ating the objectives, since there is a potential to evaluate the designs in different fideli-
ties by, e.g., using different mesh sizes (coarse vs fine), or using different thresholds on
residual errors for terminating the simulations [3].

Most studies on MF optimization have focused on two levels of fidelity (high and
low) although in principle there could potentially be many more levels of fidelity. In an
attempt to develop a test suite to assess the performance of evolutionary multi-fidelity
optimization algorithms, Wang et al. [14] analyzed a number of CFD simulations and
identified three main types of error that manifest in different fidelity settings: resolution
errors, when there is a discrepancy between local and global errors, e.g., due to dif-
ferent FEA mesh-sizes; stochastic errors, where the fitness of a given sample can vary
from simulation to simulation; and instability errors, which represent failed simulations.
These behaviors, referred to as error functions, were used to generate a MF test suite for
unconstrained, single-objective optimization [14]. However, there do not exist similar
generalizable instances for multi-objective scenarios that can be used to benchmark MF
algorithms. In the few such works that currently exist, e.g., [6], a few specific synthetic
instances are generated to demonstrate the performance. For such cases, there is low
flexibility in terms of modifying the instances to match desirable correlations between
different objectives; unlike the test suite proposed later in this paper.

Another related research gap in the literature is the lack of optimization algorithms
that allow for selective evaluation of specific objective(s) or constraint(s) during the
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course of search, without the need to evaluate all of them [1,11,12]. For overwhelming
majority of existing studies, it is implicitly assumed that a call to the design evaluation
yields the values of all objectives and constraints concurrently. However, the paradigm
of selective evaluation is relevant to study in practice since there may exist problems
where different analyses independently compute the different objectives/constraints.
This provides an opportunity to make an algorithmic choice, based on the cost vs ben-
efit in evaluating an additional objective/constraint when the additional information is
not likely to change the ranking of the solution. For example, for the design of a wing,
the value of drag (computed via CFD) may be irrelevant to the ranking of the design if it
violates structural constraints (computed via FEA). While design of such algorithms, as
well as those that deal with heterogeneous cost of objectives [2] are increasingly gaining
attention, there currently do not exist benchmarks targeted towards such developments.

In this paper, we attempt to make a contribution at the confluence of the above
two research gaps. Towards this end, we construct an improvised multi-objective test
suite where each of the objectives can be evaluated in a different fidelity, independent
of others. To construct the proposed multi-objective, multi-fidelity (MOMF) problems,
we combine a subset of the problems presented in [13] with a subset of the error func-
tions introduced in [14]. The proposed MOMF test problems are presented in Sect. 2.
Furthermore, some baseline results obtained using different fidelities of objective eval-
uation are presented in Sect. 3. Some key directions for future development of efficient
MOMF algorithms are presented in Sect. 4. The problem suite itself is available for
download at http://www.mdolab.net/research resources.html.

2 The Proposed MOMF Problem Suite

Many of the problems presented by Tanabe and Ishibuchi in [13] are originally con-
strained, single-objective optimization problems which have been converted into an
unconstrained form by adding an extra objective which minimises the sum of all con-
straint violations. This would effectively mean that the additional objective would have
a value of 0 for all feasible solutions and a value greater than 0 for all infeasible solu-
tions. Furthermore, it can be argued that the additional objective does not reflect the
properties of objectives in real life settings. We wanted to keep this method as problem-
independent as possible and thus have opted to treat the objective functions as “black-
boxes”, the output of which is modulated by adding error to produce a low-fidelity
versions. For these two reasons, we selected three problems RE2-4-1, RE3-4-7 and
RE3-5-4, from [13] as the baseline, which are natively unconstrained, multi-objective
problems. The functions are reproduced here for convenience:

Four Bar Truss: The four bar truss design problem (RE2-4-1) involves minimization
of the structural volume f1 and the joint displacement f2. The variables x1, x2, x3 and
x4 are the lengths of the four bars.

f1(x) =L
(
2x1 +

√
2x2 +

√
x3 + x4

)
, f2(x) =

FL

E

(
2

x1
+

2
√
2

x2
− 2

√
2

x3
+

2

x4

)
,

(1)

http://www.mdolab.net/research_resources.html
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where, x1, x4 ∈ [a, 3a], x2, x3 ∈ [
√
2, 3a], and a = F

σ . The parameters are given as:
F = 10 kN, E = 2 × 105 kN, L = 200 cm and σ = 10 kN/cm2.

Rocket Injector: The rocket injector design problem (RE3-4-7) involves minimization
of the maximum temperature of the injector face f1, the distance from the inlet f2 and
the maximum temperature of the post tip f3. The variables x1, x2, x3 and x4 denote
the hydrogen flow angle (α), the hydrogen area (ΔHA), the oxygen area (ΔOA) and the
oxidiser post tip thickness (OPTT ).

f1(x) = 0.692 + 0.477x1 − 0.687x2 − 0.080x3 − 0.0650x4 − 0.167x1
2

− 0.0129x2x1 + 0.0796x2
2 − 0.0634x3x1 − 0.0257x3x2 + 0.0877x3

2

− 0.0521x4x1 + 0.00156x4x2 + 0.00198x4x3 + 0.0184x4
2, (2)

f2(x) = 0.153 − 0.322x1 + 0.396x2 + 0.424x3 + 0.0226x4 + 0.175x1
2 + 0.0185x2x1

− 0.0701x2
2 − 0.251x3x1 + 0.179x3x2 + 0.0150x3

2 + 0.0134x4x1

+ 0.0296x4x2 + 0.0752x4x3 + 0.0192x4
2, (3)

f3(x) = 0.370 − 0.205x1 + 0.0307x2 + 0.108x3 + 1.019x4 − 0.135x1
2 + 0.0141x2x1

+ 0.0998x2
2 + 0.208x3x1 − 0.0301x3x2 − 0.226x3

2 + 0.353x4x1

− 0.0497x4x3 − 0.423x4
2 + 0.202x2x1

2 − 0.281x3x1
2 − 0.342x1x2

2

− 0.245x2
2x3 + 0.281x2x3

2 − 0.184x1x4
2 − 0.281x1x2x3, (4)

where xi ∈ [0, 1] for each i ∈ {1, . . . , 4}.
Vehicle Crashworthiness: The vehicle crashworthiness design problem (RE3-5-4)
involves minimization of the weight f1, acceleration characteristics f2 and toe-board
instruction of the vehicle f3. The variables x1, x2, x3, x4 and x5 are all real-valued and
specify the thickness of the five reinforced members around the frontal structure of the
vehicle.

f1(x) = 1640.2823 + 2.3573285x1 + 2.3220035x2

+ 4.5688768x3 + 7.7213633x4 + 4.4559504x5, (5)

f2(x) = 6.5856 + 1.15x1 − 1.0427x2 + 0.9738x3 + 0.8364x4 − 0.3695x1x4

+ 0.0861x1x5 + 0.3628x2x4 − 0.1106x1
2 − 0.3437x3

2 + 0.1764x4
2, (6)

f3(x) = − 0.0551 + 0.0181x1 + 0.1024x2 + 0.0421x3 − 0.0073x1x2 + 0.024x2x3

− 0.0118x2x4 − 0.0204x3x4 − 0.008x3x5 − 0.0241x2
2 + 0.0109x4

2, (7)

where xi ∈ [1, 3] for each i ∈ {1, . . . , 5}.
In order to transform the above standard formulations to MF instances, we add error

functions to the objective functions to yield various low fidelity estimates. Each error
function is problem-independent and is a function of the decision variables, x, and a
user-specified parameter (φ ∈ [0, 10000]) which represents the fidelity. Because of this
problem-independent property, any test function f can be transformed into its lower-
fidelity counterpart f̃ :

f̃(x, φ) = f(x) + e(x, φ), (8)
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where x is a vector with D decision variables, such that li ≤ xi ≤ ui ∀i ∈ [D], where
l,u ∈ R

D are the lower- and upper-bounds, respectively1 and φ is the fidelity factor,
with f̃(x, 10000) = f(x) and f̃(x, 0) having the worst possible correlation to f(x).

When transforming these multi-objective problems into multi-fidelity ones, noise is
introduced using the error functions given in [14]. Here, ten functions were presented
in [14] modelling different characteristic errors that can occur in CFD simulations. The
first set models so-called resolution errors er, when there is an inconsistency between
local and global errors; the second set models stochastic errors es, where the fitness
value of the same solution can vary across different simulations; and the final set models
instability errors eins, when failure occurs during a simulation. For this set of problems
we use seven of this ten, having excluded er4, which requires prior knowledge of the
global optimum, and both eins1 and eins2 as we are not modelling instability errors.

These error functions depend on the decision variables x and a user-specified
parameter φ ∈ [0, 10000], which determines how much noise is introduced. This gives
the user a fine-grained control over the fidelity of a given analysis. However, from an
algorithmic design standpoint, it is more practical to discretize these continuous fidelity
values to several so-called fidelity levels. The fidelity level Φ is a given value of φ,

such that the correlation rf = cor
(
f(x), f̃(x, φ)

)
is some specific value. Here we

present the problems where each objective can be evaluated in four fidelity levels, with
Φ0 : rf = 1 indicating the highest fidelity, and the rest being: Φ1 : rf = 0.966,
Φ2 : rf = 0.933 and Φ3 : rf = 0.9, when all the functions are considered to be per-
fectly correlated across the entire search space (Φ0 : rf = 1.0); and Φ1 : rf = 0.9,
Φ2 : rf = 0.8 and Φ3 : rf = 0.7, otherwise2.

In [14], error functions were applied to a modified Rastrigin function with vari-
able bounds x ∈ [−1, 1]D. Due to the intended problem-independent nature of these
functions, it is important to ensure the scale of the noise being added is appropriate to
produce the desired correlation between estimates in various fidelities. This is achieved
through the use of a scaling factor, sf , which is applied to the output of the error func-
tion such that Eq. (8) becomes:

f̃(x, φ, sf ) = f(x) + sf · e(x′, φ), (9)

where x′ ∈ [−1, 1]D is a scaled version of x. Each error and objective function pair
must have its own scaling factor sf , which is determined experimentally.

Irrespective of the choice of fidelity levels and their respective correlation values,
in order for each fidelity level Φ to have the desired correlation, the values of sf and
φ must be computed. For each problem, we set Φ3 = 5000 as a base line3 We then
generate 100,000 samples using Latin hypercube sampling and for any given error and
objective function pair, we solve a minimization problem to find the scaling factor sf

1 To conserve space, the following shorthand is used in this paper: [k] = {1, 2, . . . , k} and
[k∗] = {0, 1, . . . , k − 1}. As is conventional, [i, j] indicates the real interval between (and
including) endpoints i and j.

2 It is helpful to think of the index to Φ as indicating the degree of noise introduced, e.g., Φ0 has
no noise and thus the highest fidelity, whereas Φ3 has a more noise and thus lower fidelity.

3 We use Φ3 as a baseline here, because we have 4 levels of fidelity. If 5 levels of fidelity were
required, the baseline would be Φ4 = 5000.
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Table 1. Table of correlation values. Given are the fidelity factors φ and their resultant Kendall-
Tau correlations rf for each objective function of each problem in the MOMF suite, for each
error function e and prescribed fidelity level Φ.

Φ MOMF2-4-1a MOMF2-4-1b MOMF2-4-1c MOMF2-4-1d MOMF3-4-1 MOMF3-5-1

φ rf1 rf2 φ rf1 rf2 φ rf1 rf2 φ rf1 rf2 φ rf1 rf2 rf3 φ rf1 rf2 rf3

er1 1 8436 0.90 0.90 8426 0.97 0.90 8436 0.90 0.97 8286 0.97 0.97 8286 0.90 0.90 0.89 8436 0.92 0.90 0.91

2 7064 0.83 0.80 7054 0.94 0.80 6663 0.80 0.93 6653 0.93 0.93 6823 0.80 0.80 0.80 6583 0.80 0.80 0.80

3 5000 0.70 0.70 5000 0.90 0.70 5000 0.70 0.90 5000 0.90 0.90 5000 0.70 0.70 0.70 5000 0.70 0.70 0.70

er2 1 9178 0.92 0.87 9879 0.99 0.90 9028 0.90 0.97 9028 0.97 0.97 9368 0.90 0.90 0.90 7995 0.90 0.90 0.90

2 6893 0.78 0.80 6913 0.94 0.80 7304 0.80 0.95 6673 0.93 0.93 6643 0.80 0.81 0.79 6012 0.80 0.77 0.79

3 5000 0.70 0.70 5000 0.90 0.70 5000 0.70 0.90 5000 0.90 0.90 5000 0.70 0.70 0.70 5000 0.70 0.70 0.70

er3 1 8266 0.90 0.89 8476 0.98 0.90 8266 0.90 0.97 8256 0.97 0.97 8386 0.90 0.90 0.90 8246 0.91 0.90 0.90

2 6583 0.80 0.76 6993 0.95 0.80 6673 0.80 0.93 6683 0.93 0.93 6733 0.80 0.80 0.81 6633 0.80 0.80 0.80

3 5000 0.70 0.70 5000 0.90 0.70 5000 0.70 0.90 5000 0.90 0.90 5000 0.70 0.70 0.70 5000 0.70 0.70 0.70

es1 1 8697 0.92 0.90 8757 0.97 0.90 8416 0.90 0.97 8396 0.97 0.97 8436 0.90 0.90 0.90 8426 0.90 0.90 0.90

2 6853 0.80 0.79 7224 0.94 0.80 6773 0.80 0.93 6683 0.93 0.93 6803 0.80 0.80 0.80 6783 0.80 0.80 0.80

3 5000 0.70 0.70 5000 0.90 0.69 5000 0.70 0.90 5000 0.90 0.90 5000 0.70 0.70 0.70 5000 0.70 0.70 0.70

es2 1 7715 0.92 0.90 7725 0.97 0.90 7304 0.90 0.97 7254 0.97 0.97 7324 0.90 0.90 0.90 7304 0.90 0.90 0.90

2 5891 0.80 0.78 6122 0.94 0.80 5881 0.80 0.93 5851 0.93 0.93 5891 0.80 0.80 0.80 5881 0.80 0.80 0.80

3 5000 0.70 0.70 5000 0.90 0.70 5000 0.70 0.90 5000 0.90 0.90 5000 0.70 0.70 0.70 5000 0.70 0.70 0.70

es3 1 8697 0.90 0.91 8577 0.97 0.90 8717 0.90 0.97 8376 0.97 0.97 8426 0.90 0.90 0.90 8567 0.89 0.90 0.90

2 7014 0.79 0.80 6983 0.94 0.80 7134 0.80 0.94 6723 0.93 0.93 6793 0.80 0.80 0.80 6943 0.79 0.80 0.80

3 5000 0.70 0.70 5000 0.90 0.70 5000 0.70 0.90 5000 0.90 0.90 5000 0.70 0.70 0.70 5000 0.70 0.70 0.70

es4 1 7605 0.89 0.90 7525 0.97 0.90 7715 0.90 0.97 7254 0.97 0.97 7314 0.90 0.90 0.90 7525 0.89 0.90 0.90

2 6102 0.80 0.81 6022 0.94 0.80 6112 0.80 0.94 5851 0.93 0.93 5891 0.80 0.80 0.80 5991 0.79 0.80 0.80

3 5000 0.70 0.70 5000 0.90 0.70 5000 0.70 0.90 5000 0.90 0.90 5000 0.70 0.70 0.70 5000 0.70 0.70 0.70

which gives the smallest absolute difference between the Kendall-Tau correlation [9]

rf = cor
(
f(x), f̃(x, φ, sf )

)
and the required correlation (0.9 for highly correlated

and 0.7 otherwise) at φ = 5000. The remaining values for φ were chosen as those
that minimize the distance between the correlation values for all objectives and the
target correlation value for a given level Φ. Table 1 presents these φ values and their
associated correlations for each fidelity level Φ, and Table 2 lists the scaling factors for
each combination of problem and error function.

In this suite, the problems MOMF2-4-1a to MOMF2-4-1d are based on RE2-4-1.
The variants present different scenarios: in MOMF2-4-1a, f1 and f2 have positive cor-
relations from 0.7 through to 1; in MOMF2-4-1b, f1 is highly correlated across all
fidelity levels and f2 correlations vary between 0.7 and 1; in MOMF2-4-1c, f1 correla-
tions vary between 0.7 and 1 and f2 is highly correlated across all fidelity levels; and
in MOMF2-4-1d, both f1 and f2 are highly correlated across all fidelity levels. The
other two problems, i.e., MOMF3-4-1 and MOMF3-5-1 involve three objectives and
are based on RE3-4-7 and RE3-5-4 respectively. They have been designed, along with
MOMF2-4-1a to have a correlation between 0.7 and 1.0 for all the objectives.

As discussed earlier, we have used 7 error functions in this study. Thus, for the 2-
objective four-bar truss design problem, 3 low fidelity functions have been constructed
for each of the objectives. One can observe from Table 2 (MOMF2-4-1a), that the corre-
lations of the lowest fidelity i.e., Φ3 is set to 0.7 for both objectives. Subsequent higher
fidelities i.e., Φ2 and Φ1 have correlations close to 0.8 and 0.9 with the corresponding
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Table 2. Table of scaling factors. Given are the scalar values sf which produce the correlations

in Table 1, where rf = cor
(
f(x), f̃(x, φ, sf )

)
. This value is given for each combination of

objective and error functions, respectively.

MOMF2-4-1a MOMF2-4-1b MOMF2-4-1c MOMF2-4-1d

sf1 sf2 sf1 sf2 sf1 sf2 sf1 sf2

er1 1.10e+02 1.64e-01 3.51e+01 1.64e-01 1.10e+02 3.91e-02 3.52e+01 3.90e-02

er2 2.01e+02 3.09e-01 6.34e+01 3.12e-01 2.02e+02 7.20e-02 6.36e+01 7.14e-02

er3 1.31e+02 2.17e-01 4.30e+01 2.17e-01 1.31e+02 5.09e-02 4.32e+01 5.07e-02

es1 5.39e+03 7.25e+00 1.74e+03 7.45e+00 5.35e+03 1.87e+00 1.69e+03 1.86e+00

es2 3.26e+04 4.42e+01 1.03e+04 4.41e+01 3.26e+04 1.14e+01 1.03e+04 1.13e+01

es3 6.93e+03 5.61e+00 1.77e+03 5.59e+00 6.92e+03 1.60e+00 1.78e+03 1.59e+00

es4 4.23e+04 3.44e+01 1.08e+04 3.42e+01 4.22e+04 9.70e+00 1.08e+04 9.61e+00

MOMF3-4-1 MOMF3-5-1

sf1 sf2 sf3 sf1 sf2 sf3

er1 1.44e-01 1.50e-01 1.67e-01 2.03e+00 3.30e-01 1.78e-02

er2 2.54e-01 2.64e-01 2.96e-01 3.54e+00 5.84e-01 3.08e-02

er3 1.87e-01 1.99e-01 2.05e-01 2.31e+00 3.86e-01 2.09e-02

es1 7.04e+00 7.40e+00 7.94e+00 1.07e+02 1.74e+01 9.50e-01

es2 4.30e+01 4.51e+01 4.84e+01 6.49e+02 1.05e+02 5.75e+00

es3 6.41e+00 6.55e+00 7.22e+00 1.31e+02 1.79e+01 1.03e+00

es4 3.89e+01 4.00e+01 4.39e+01 8.01e+02 1.09e+02 6.29e+00

scaling factors listed in Table 2. The correlations for different values of Φ using each of
the error functions for MOMF2-4-1a are presented in Fig. 1. It is perfectly possible to
use this information to choose different Φ3, Φ2 and Φ1 values for each of the objectives
to reflect different scenarios. For example, as shown in Fig. 2, low fidelity estimates of
f1 have a higher correlation overall (say, varying between 0.9 and 1) than those of f2
(say, varying between 0.7 and 1).

3 Numerical Experiments and Discussion

In all, there are 6 problems MOMF2-4-1a to MOMF2-4-1d, MOMF3-4-1a and
MOMF2-5-1a, each of which can be modified using error functions er1, er2, er3, er4,
es1, es2 and es3 resulting in 42 possible instances. For a preliminary assessment of prob-
lem behavior and algorithm performance, we use the well established non-dominated
sorting genetic algorithm (NSGA-II) [4] as a canonical optimization method to solve
these instances. A population of 200 individuals is evolved over 1000 generations. The
probability of crossover and mutation was set to 0.9 1/|x|, respectively, with the dis-
tribution index of both the simulated binary crossover (SBX) and polynomial muta-
tion (PM) set as 20.

We first focus on MOMF2-4-1a with the error function er1 with correlations of
both objectives varying between 0.7 and 1. The non-dominated set of solutions obtained
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Fig. 1. Plots of φ value against rf = cor
(
f(x), f̃(x, φ, sf )

)
for problem MOMF2-4-1a. Values

for f1 and f2 are shown in red and blue, respectively. The φ values for each fidelity level Φ are
indicated by vertical dotted lines. (Color figure online)

Fig. 2. Correlation plot of problem MOMF2-4-1b with error function er1. This variant has corre-
lation ranges of rf ∈ [0.9, 1] for f1 and rf ∈ [0.7, 1] for f2.

using Φ0/Φ0 i.e., highest fidelity analysis for both objectives is marked in blue in Fig. 3.
The normalized variable values of the non-dominated solutions are in blue and are pre-
sented next to it. It can be observed that the non-dominated solutions span a continuous
convex curve. The variables x1, x2 and x4 span the entire variable range, while variable
x3 is at its lower bound. If one opts to solve the above problem using Φ0/Φ1, i.e., using
a lower fidelity analysis for the second objective, the obtained solutions would be far
from optimal (Fig. 3a). On the other hand, if one uses Φ1/Φ0, i.e., using a lower fidelity
analysis for the first objective, the obtained set of solutions would be close to optimal as
evidenced by Fig. 3b. The results obtained using Φ0/Φ2, Φ0/Φ3, Φ2/Φ0, Φ3/Φ0 are also
presented in Fig. 3 which suggests that for this problem, the second objective should be
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Fig. 3. Objective value (left) and parallel axis (right) plots for MOMF2-4-1a with error function
er1. For f1/f2, blue indicates Φ0/Φ0 and red is given in the captions. (Color figure online)

always be evaluated in highest fidelity, while the choice of lower fidelity analysis for
the first objective will have low impact on the convergence and diversity.

To observe a case where the second objective needs to be evaluated in HF for a better
performance, one may consider MOMF2-4-1c where the correlations of the second
objective across the design space is between 0.9 and 1. Results of Φ0/Φ1, Φ0/Φ2, and
Φ0/Φ3 are presented in Fig. 4 which does show some improvement, although only parts
of the PF are uncovered or pre-converged solutions are delivered with the variables
spanning limited ranges. It is important to note that although correlations of f2 are high
and vary between 0.9 and 1, they are computed based on 100,000 LHS samples over
the variable range. A denser sampling may be considered for more accurate estimates.

Next, we observe the three-objective problems MOMF3-4-1 and MOMF3-5-1.
We focus on cases when all objectives are evaluated in the same fidelity level, i.e.,
Φ1/Φ1/Φ1, Φ2/Φ2/Φ2, and Φ3/Φ3/Φ3 with error function er1. One can observe that
the choice of lower fidelity levels can lead to (i) identification of subsets of PF instead of
a good spread over whole PF, and (ii) poorly converged solutions. As an easily observ-
able example, use of Φ3/Φ3/Φ3 for MOMF3-5-1 fails to identify solutions in the right
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Fig. 4. Objective values (left) and parallel axis plots (right) for MOMF2-4-1c with error function
er1 for various fidelity combinations. For f1/f2, blue indicates Φ0/Φ0 and red is given in the
captions. (Color figure online)

bottom patch (Fig. 5f). We also wanted to highlight that different error functions induce
different challenges even where the correlations are in the similar ranges. For exam-
ple, as discussed above, for MOMF3-5-1 with er1, Φ3/Φ3/Φ3 fails to identify solutions
in the right bottom patch (Fig. 5f), whereas Φ3/Φ3/Φ3 based on es2 may still deliver
competitive results as can be observed from Fig. 6). In all these examples, we have
considered 4 levels of fidelity for the objective functions and the correlations increased
in an uniform manner either between 0.7 and 1 or between 0.9 and 1. However, it is
worth mentioning that the flexibility of the presented approach allows for creation of
any number of fidelities for any of the objectives.

Since the problems presented above are derived from real world problems, the the-
oretical Pareto Front (PF) or the Pareto Set (PS) are unknown, which makes it difficult
to ascertain the performance relative to the theoretical optimum. Therefore, as a last
experiment, and also to emphasize the generalizability of the proposed approach, we
present here the cases using some synthetic benchmarks with known PF. For this exer-
cise, we selected two problems, namely, DTLZ2 [5] and minus DTLZ2 [8]. We con-
sider 3-objective formulations of both problems involving 7 variables. Furthermore,
we consider 5 fidelity levels with non-uniform increment in correlation values i.e.,
rf ∈ {0.7, 0.8, 0.9, 0.95, 1.0} based on error function es3 as shown in Fig. 7.

The results obtained using for DTLZ2 with Φ1/Φ1/Φ1, Φ2/Φ2/Φ2, and Φ3/Φ3/Φ3,
and Φ4/Φ4/Φ4 are presented in (a) to (d) in Fig. 8. One can clearly observe that the
obtained PF approximation becomes worse in quality as lower fidelity analysis is used.
For example, Φ1/Φ1/Φ1 still has some solutions close to the optimal albeit a few solu-
tions in dominance resistant regions (axial directions). When the lowest fidelity analysis
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Fig. 5. Objective values for MOMF3-4-1 (top row) and MOMF3-5-1 (bottom row) using error
function er1 for various fidelity combinations. For f1/f2/f3, blue indicates Φ0/Φ0/Φ0 and red
is given in the captions. (Color figure online)

is used for all the objective functions, only solutions along axial directions are obtained,
with none in the vicinity of the PF.

For the inverted DTLZ2 problem with es3 as the error function, the use of lower
fidelity functions yield poorly converged solutions with the distribution biased towards
the edges (and far from the PF) as can be observed from (e) to (h) of Fig. 8. This again
reinforces the poorer performance obtained when lower fidelities are used.

Fig. 6. Objective value for MOMF3-5-1. For
f1/f2/f3, blue indicates Φ0/Φ0/Φ0 and red
indicates Φ3/Φ3/Φ3. (Color figure online)

Fig. 7. Correlation of problem MOMF3-7-
1 with error function es3. Here we have
used 5 fidelity levels such that rf ∈
{0.7, 0.8, 0.9, 0.95, 1.0}.
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Fig. 8. Objective values for DTLZ2 (top row) and DTLZ2-1 (bottom row) using error function es3
for various fidelity combinations. For f1/f2/f3, blue indicates Φ0/Φ0/Φ0 and red is given in the
captions. (Color figure online)

4 Conclusion and Future Work

Multi-objective optimization problems involving independently evaluable objectives
are often encountered in practice. The objective computations in such problems may
involve different iterative numerical solvers such as FEA, CFD etc. that can be invoked
with various levels of fidelity. The lack of benchmarks has been one of the factors limit-
ing the fundamental development of efficient optimization algorithms to deal with such
classes of problems. In this paper, we present an approach and a test suite for multi-
objective multi-fidelity optimization problems. The problems are derived by combin-
ing existing unconstrained, multi-objective design optimization problems with resolu-
tion/stochastic/instability errors that are common manifestations of multi-fidelity sim-
ulations. The method allows for the construction of any number of LF functions with
desired level of correlations for any given HF objective function. We hope that the test
suite would motivate novel algorithmic developments to support optimization involving
computationally expensive and independently evaluable objectives.

Acknowledgement. The authors acknowledge the support from the Australian Research Council
through the Discovery Project grant DP190101271.
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Abstract. Promoting and maintaining diversity of candidate solutions
is a key requirement of evolutionary algorithms. In this paper, we use the
recently developed theory of magnitude to construct a gradient flow that
systematically manipulates finite subsets of Euclidean space to enhance
their diversity, and we apply the ideas in service of multi-objective evo-
lutionary algorithms. We demonstrate diversity enhancement on bench-
mark problems using leading algorithms.

1 Introduction

Promoting and maintaining diversity of candidate solutions is a key requirement
of evolutionary algorithms (EAs) in general and multi-objective EAs (MOEAs)
in particular [1,2]. Many ways of measuring diversity have been considered,
and many shortcomings identified [3]. Perhaps the most theoretically attractive
diversity measure, used by [4,5], is the Solow-Polasky diversity [6]. It turns out
that a recently systematized theory of diversity in generalized metric spaces [7]
singles out the Solow-Polasky diversity or magnitude of a (certain frequently total
subset of a) finite metric space as equal to the maximum value of the “correct”
definition (1) of diversity that uniquely satisfies various natural desiderata. While
the notion of magnitude was implicit in the mathematical ecology literature
over 25 years ago, an underlying notion of a diversity-maximizing probability
distribution is much more recent and has not yet been applied to EAs.

In the context of MOEAs, a practical shortcoming associated with magnitude
is its O(n3) algorithmic cost. To avoid this, [4,5] use an efficient approximation
to merely measure diversity rather than attempting to enhance it.

However, it can be profitable to incur the marginal cost of computing a
so-called weighting en route to the magnitude, since we can use it to enhance
diversity near the boundary of the image of the candidate solution set under the
objective functions. The nondominated part of this image is the current approx-
imation to the Pareto front; the ability of weightings to couple both diversity
and convergence to the Pareto front dovetails with recent indicator-based EA
approaches to Pareto-dominance based MOEAs [8,9]. Moreover, the agnosticism
of weightings to dimension further enhances their suitability for such applica-
tions.

In this paper, we construct a gradient flow that systematically manipulates
finite subsets of Euclidean space to enhance their diversity, which provides a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Emmerich et al. (Eds.): EMO 2023, LNCS 13970, pp. 377–390, 2023.
https://doi.org/10.1007/978-3-031-27250-9_27
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useful primitive for quality diversity [10]. We then apply this primitive in service
of MOEAs by diversifying solution data through local mutations. For the sake
of illustration, we only perform these mutations on the results already obtained
by a MOEA, though they can be performed during evolution.

The paper is organized as follows. In Sect. 2, we sketch the concepts of weight-
ings, magnitude, and diversity, and describe an efficiently computable scale above
which a weighting is guaranteed to be proportional to the unique diversity-
maximizing distribution. In Sect. 3, we develop a notion of a weighting gradi-
ent (estimate) and an associated flow. In Sect. 4, we use this gradient flow to
demonstrate diversity enhancement on a toy problem before turning to bench-
mark problems in Sect. 5. Finally, we discuss algorithmic extensions in Sect. 6
before remarks in Sect. 7.

2 Weightings, Magnitude, and Diversity

For details on the ideas in this section, see §6 of [7] and also [16,30].
Call a square matrix Z ≥ 0 a similarity matrix if diag(Z) > 0. A motivating

class of examples is Z = exp[−td] where square brackets indicate entrywise
function application, t ∈ (0,∞), and d is a square dissimilarity matrix (e.g.,
the matrix encoding a finite metric space). A weighting w is a column vector
satisfying Zw = 1, where the vector of all ones is indicated on the right. A
coweighting is the transpose of a weighting for ZT . If Z admits both a weighting
w and a coweighting, then its magnitude is defined via 1T w =

∑
j wj , which also

turns out to equal the sum of the coweighting components.
In the case Z = exp[−td] and d is the distance matrix corresponding to

a finite subset of Euclidean space, Z is positive definite [11], hence invertible,
and so its weighting and magnitude are well-defined and unique. More generally,
if Z is invertible then its magnitude is 1T Z−11. For d as specified above, the
magnitude function is defined as the map t �→ 1T (exp[−td])−11.

Weightings are excellent scale-dependent boundary detectors in Euclidean
space (see, e.g., Fig. 2 and [12,13]). Meanwhile, magnitude is a very general
notion of size that encompasses rich scale-dependent geometrical data [14].

Example 1. Consider a three-point space with d12 = d13 = 1 = d21 = d31 and
d23 = δ = d32. A routine calculation yields that

w1 =
e(δ+2)t − 2e(δ+1)t + e2t

e(δ+2)t − 2eδt + e2t
; w2 = w3 =

e(δ+2)t − e(δ+1)t

e(δ+2)t − 2eδt + e2t
.

For δ = 10−3, Fig. 1 shows that at t = 10−2, the “effective size” of the nearby
points is ≈0.25; that of the distal point is ≈0.5, so the “effective number of
points” is ≈1. At t = 10, these effective sizes are respectively ≈0.5 and ≈1, so
the effective number of points is ≈2. Finally, at t = 104, the effective sizes are
all ≈1, so the effective number of points is ≈3.
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Fig. 1. Weighting components for an “isoceles” metric space. The magnitude function
w1 + w2 + w3 gives a scale-dependent “effective number of points.”

For a probability distribution p and similarity matrix Z, the diversity DZ
q (p)

is defined for 1 < q < ∞ (and via limits for q = 1,∞) via

log DZ
q (p) :=

1
1 − q

log
∑

j:pj>0

pj(Zp)q−1
j . (1)

This is the “correct” measure of diversity in essentially the same way that Shan-
non entropy is the “correct” measure of information [7]. (In fact, the expression
(1) is a generalization of the Rényi entropy of order q. In the event Z = I,
the usual Rényi entropy is recovered, with Shannon entropy as the case q = 1.)
We therefore restrict our attention to it versus other measures such as those
discussed in [2,3].

Recent mathematical developments [7,15] have clarified the role of magni-
tude in maximizing (1) versus merely computing it. Specifically, if Z = exp[−td]
is positive definite with d symmetric, nonnegative, and with zero diagonal, and if
Z admits a positive weighting w = Z−11, then this (unique) weighting is propor-
tional to the diversity-maximizing distribution. This situation holds automati-
cally if d is the distance matrix of a finite subset of Euclidean space and if Z is
diagonally dominant (i.e., Zjj >

∑
k �=j Zjk).

For d with zero diagonal and all other entries positive, there is a least td > 0
such that exp[−td] is diagonally dominant for any t > td. Because exp[−td] is
diagonally dominant iff 1 > maxj

∑
k �=j exp(−tdjk), we can efficiently estimate

td using the following elementary bounds and a binary search:

Lemma 1. For d ∈ Mn as above, log(n−1)
minj maxk djk

≤ td ≤ log(n−1)
minj mink �=j djk

.

More importantly, we can also use Lemma 1 to find the least t+ < td such that
exp[−td] admits a positive weighting for t > t+.
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3 The Weighting Gradient Flow

We now define a gradient flow that (for t ≥ t+) increases the diversity of finite
subsets of Euclidean space and thereby provides a useful primitive for EAs.
Although there are various sophisticated approaches to estimating gradients on
point clouds (see, e.g., [17]), a reasonable heuristic estimate for the specific case
of the gradient of a weighting w on {xj}j in Euclidean space is

(∇̂w)j :=
∑

k �=j

Zjk∑
k′ �=j Zjk′

wk − wj

djk
ejk, (2)

where ejk := xk−xj

djk
. The weighting gradient flow induced by (2) is

ẋ = ∇̂w. (3)

Example 2. Figure 2 illustrates how weightings identify boundaries at various
scales, and the corresponding weighting gradient estimates (2).

0 0.1436 0 0.2439 0 0.4815

Fig. 2. (Top) Weighting components for 500 points sampled without replacement from
a probability distribution on Z

2 that is approximately uniform on its support. From left
to right, various scale factors t defining Z = exp[−td] (with d = Euclidean distance)
are shown in terms of the intrinsic scales td and t+. Both the color and size of a point
indicate its weighting component; the nonzero color axis tick mark is at half maximum.
(Bottom) Weighting gradient estimate (2) for the data above. The gradient vectors are
scaled uniformly in each panel for visualization purposes. Note that for the largest
value of t the large gradient vectors have basepoints near other large gradient vectors.
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4 Enhancing Diversity

Following [18], we apply the ideas sketched above to a toy problem where the
objective function f has three components, each measuring the distance to a
vertex of a regular triangle with vertices in S1. The application is mostly con-
ceptually straightforward, but we mention a few implementation details:

– We begin with a uniformly distributed sample of n0 = 103 points in the disk
of radius 1.25, and retain n points that are dominated by ≤ δ = 0.1;

– Replace misbehaving points (e.g., out of bounds or NaNs) with predecessors;
– Set Sj := 1−2 domj

maxk domk
, where domj = |{points dominating the jth point}|;

– Evolve the n points under a modulated version of (3) on the objective space
with t = t+ as dyj = ds · Sj(∇̂w)j for only N = 10 steps and step size ds =√〈mink �=j(df )jk〉/n, where the pullback metric is df (x, x′) := d(f(x), f(x′));

– Pull back the weighting gradient flow from objective to solution space using
the Jacobian’s pseudoinverse, then recompute points in objective space.

The result of this experiment is depicted in Figs. 3 and 4. The salutary effect
on diversity in objective (and solution) space is apparent. This can be quantified
via the objective space magnitude functions, as shown in Fig. 5.

Fig. 3. Comparision of initial (red; left) and terminal (blue; right) locations of points
in the solution space. The weighting gradient flow produces more evenly distributed
terminal points. The triangle defining objective components (by distance to vertices)
is shown. The actual Pareto front is the interior of the triangle; the area displayed
is [−1, 1]2. Bottom: comparision of initial (red; left) and terminal (blue; right) points
in the objective space. The terminal points are more evenly distributed. (Color figure
online)
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Fig. 4. Comparision of initial (red; left) and terminal (blue; right) points in the objec-
tive space. The terminal points are more evenly distributed. (Color figure online)

Fig. 5. Magnitude increases for the experiment of Sect. 4 at scales above t+, where
magnitude equals diversity. (Top) Magnitude function quotients at various timesteps
for feasible points under the evolution of the (modulated) weighting gradient flow. The
horizontal axis t indicates the scale parameter; timesteps of numerators are indicated
via color, going from red at the initial timestep (0) to blue at the final timestep (10):
the denominator is the function at the initial timestep. Circles indicate the scales t+.
(Bottom) As above, but for non-dominated points. (Color figure online)

5 Performance on Benchmarks

The effectiveness of the (modulated) weighting gradient flow approach hinges
on the ability to cover and thereby “keep pressure on” the Pareto front. A
straightforward way to do this is to use a MOEA to produce an initial over-
approximation of the Pareto front as in [19], and then improve the diversity of
the overapproximation via the weighting gradient flow. We proceed to detail the
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results of an experiment along these lines. For the experiment we considered two
leading MOEAs (NSGA-II [20] and SPEA2 [21]) and two leading benchmark
problem sets (DTLZ [22]1 and WFG [24]), all implemented in PlatEMO version
2.9 [25]. For each problem, we used 10 decision variables, three objectives (to
enable visualization), and performed 10 runs (which appears quite adequate for
characterization purposes) with population size 250 and 104 fitness evaluations.
We then took N = 10 timesteps for the weighting gradient flow as before.

Figure 6 (cf. Fig. 5) shows magnitude functions at various timesteps of the
(modulated) weighting gradient flow applied to the results of NSGA-II on the
WFG2 benchmark. Feasible points show a diversity (as measured by magnitude
at scale t+ for the feasible objective points) increase of about 10%, whereas non-
dominated points show a diversity increase of several percent as well, even as
the total number of non-dominated points decreases by about 15%.

Fig. 6. As in Fig. 5, but for a solution of the WFG2 benchmark via NSGA-II.

We produce an ensemble characterization in Fig. 7. The figure shows that
the number of non-dominated points decreases since the weighting gradient flow
pushes some points a short distance away from the Pareto front (as illustrated in
Fig. 9) before they are halted or reversed. The figure also shows that the diversity
of non-dominated points generally increases slightly, and the diversity of feasible
points increases significantly. As a consequence, the diversity contributions of
individual solutions (as measured by the average weighting, i.e., the magnitude
of non-dominated points divided by their cardinality) also increases significantly.
For less challenging problems such as in Fig. 3, the number of non-dominated
points will decrease less, and the diversity gains will be enhanced.
1 For DTLZ, we considered only the two most relevant problems, viz. DTLZ4 and

DTLZ7. DTLZ4 was formulated “to investigate an MOEA’s ability to maintain a
good distribution of solutions” and DTLZ7 was formulated to “test an algorithm’s
ability to maintain subpopulation in different Pareto-optimal regions” [22]. (NB. One
approach for the latter, not pursued here, is to resample points so that the diversity
per point in each connected component of the Pareto front is approximately equal.
For the application of topological data analysis to Pareto fronts, see [23].).
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On the other hand, the effects of the weighting gradient flow are considerably
reduced in the case of SPEA2, which produces a visibly more uniform distribu-
tion in objective space than NSGA-II: see Fig. 11. The weighting gradient flow
appears to decrease this uniformity; the formation of a gap just behind the
boundary along with a slight increase in the population near the boundary are
the main visible indicators that something useful (at least for DTLZ4, WFG2,
WFG3, WFG6, and WFG8, per Fig. 7) is actually happening.

Fig. 7. Diversity of solutions increases markedly under the weighting gradient flow,
even as some points become slightly dominated. (Top) Average diversity quotients of
feasible (blue) and non-dominated (red) points under the weighting gradient flow along
with proportion of population that remains non-dominated (black). Here the diversity
is the magnitude at scale t+. Shaded bands indicate one standard deviation. All panels
have the same horizontal axis, viz., the number of timesteps (from 0 to N = 10). The
vertical axes are [1 − Δ, 1 + Δ], with Δ shown below each panel. Not shown explicitly
is the average weighting of non-dominated points, i.e., the red curve divided by the
black one, but so long as the colored bands already shown are visibly separate, this
consistently lies above the blue band. (Bottom) As for the top panels, but for SPEA2.
(Color figure online)

Although Figs. 7 and 8 shows that the weighting gradient flow causes a sig-
nificant proportion of points to become dominated, Fig. 9 uses the inverted gen-
erational distance (IGD) relative to uniformly distributed reference points on
Pareto fronts [26] to show that this qualitative change in dominance is belied by
only minor quantitative changes in the distance to Pareto fronts.2 (Note that
the relatively large increases in IGD for DTLZ4 and DTLZ7 are consequences of
starting from a low baseline.) That is, feasible points give a better quantitative
sense of diversification performance than nondominated points, especially in light
of use cases in which the weighting gradient flow is not limited to postprocessing.

2 Recall that the IGD for X relative to reference set R is 1
|R|

∑
r∈R minx∈X d(x, r).
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Fig. 8. As in Fig. 7, but for diversity taken as the magnitude at the scale maximizing
the quotient by the initial timestep.

Rather than relying solely on a delicate characterization of diversity, we also
visualize some of the results directly: this is the rationale for three-objective prob-
lems. Figure 10 shows how diversity in objective space is promoted for WFG2-3.
Figure 11 shows analogous results for SPEA2.

Careful inspection reveals that the weighting gradient flow tends to induce a
gap between the boundary of the non-dominated region and its interior, which is
consistent with the generally observed phenomenon that the largest weights in
finite subsets of Euclidean space tend to occur on boundaries and the smallest
weights immediately “behind” the boundary. Meanwhile, the boundary region
tends to become slightly more populated.3 From the perspective of a MOEA,
this is frequently a benefit, since extremal and non-extremal points on the non-
dominated approximation of the Pareto front differ in practical significance.4

6 Algorithmic Extensions

6.1 Multi-objective Weighting Gradient Flow

We can combine the weighting gradient flow with a multi-gradient descent strat-
egy in a way somewhat akin to [28]. The basic additional ideas are:

– Introduce variable regularizing terms λw and λf for the weighting and func-
tion gradient flows, respectively;

3 This highlights the need to distinguish between diversity and uniformity. The maxi-
mally diverse probability distribution on the interval [0, L] is 1

2+L
(δ0 + λ|[0,L] + δL),

where Dirac and restricted Lebesgue measures are indicated on the right hand side
[27]. Only in a suitable limit can boundary effects be ignored in relation to diversity.

4 Using a scale t > t+ for the weighting gradient flow would tend to diminish the
distinction between uniformity (which is not a function of scale) and diversity (which
is). That is, our experiments make this distinction to the greatest possible extent.
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Fig. 9. The weighting gradient flow only slightly affects the quantitative dominance
behavior of points, as measured by IGD. (Top) IGD under the weighting gradient flow
starting from the results of NSGA-II runs, using uniformly distributed reference points
on Pareto fronts. Shaded bands indicate one standard deviation. All panels have the
same horizontal axis, viz., the number of timesteps (from 0 to N = 10). The vertical
axes are [0, y], where y is shown below each panel. (Bottom) As above, but for SPEA2.

– Form the objective-space differentials dyj = ds · [λwSj(∇̂w)j + λf

∑
�(∇̂f)�],

where the sum is over � such that 〈(∇̂w)j , (∇̂f�)j〉 > 0.

While we have tried this technique in isolation on MOEA benchmarks, the results
are poor. However, this is unsurprising: the benchmarks are designed to frustrate
MOEAs, much less multi-objective techniques relying on gradients.

6.2 Recycling Function Evaluations

In our experiments with post-processing the output of MOEAs, the weighting
gradient flow evolution took time comparable to (and in the case of NSGA-II,
slightly more than) the MOEA itself. Most of the time is spent evaluating the
fitness function: apart from an initialization step, the evaluations are performed
to compute Jacobians in service of pullback operations, and a lesser number are
performed to compute pushforwards to maintain consistency.

However, our motivating problems require significant time (on the order of a
second) for function evaluations. This demands a more efficient pullback scheme
that minimizes or avoids function evaluations, even if the results are substantially
worse. A reasonable idea is “recycling” in a sense similar to that employed in
some modern Monte Carlo algorithms [29]. Specifically, rather than computing a
good approximation to the Jacobian by evaluating functions afresh at very close
points along coordinate axes, we settle instead for an approximation of lesser
quality that exploits existing function evaluations. We have implemented this
in concert with a de novo computation of the Jacobian in the event that this
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Fig. 10. (Far left) Initial configuration in objective space for WFG2 after a NSGA-
II run. (Center left) Configuration after subsequently evolving under the weighting
gradient flow. Dominated points are gray. (Right panels) As on the left, but for WFG3.

Fig. 11. As in Fig. 10, but for SPEA2. Note the formation of gaps behind the boundary.

initial Jacobian estimate does not have full rank. Our experiments suggest that
this works reasonably well: for a typical run from Sect. 5, the number of function
evaluations is reduced from 30250 to 2750, and the actual results are broadly
comparable (sometimes better, sometimes worse): see Figs. 12 and 13.

This strategy will work poorly if evaluation points lie on a manifold of nonzero
codimension or low curvature, because in such cases a matrix that transforms
vectors from a base point to evaluation points into (a small multiple of) the
standard basis will have a large condition number. However, these situations
are relatively unlikely to present major problems in practice, and the recycling
approach is likely to be useful when function evaluations are expensive.

7 Remarks

Although our experiments have focused on the results of applying the weighting
gradient flow and related constructions after a MOEA has been applied, the more
natural application is in the course of a MOEA. As mentioned in Sect. 6, there
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Fig. 12. As in the top panel of Fig. 7, but for a Jacobian approximation that uses
existing function evaluations, increasing speed at the cost of accuracy.

Fig. 13. As in Fig. 9, but for a Jacobian approximation that uses existing function
evaluations, increasing speed at the cost of accuracy.

is ample scope to refine and build on ideas for increasing weighting components
in specific contexts. It is nevertheless clear that the theory of magnitude informs
principled and practical diversity-promoting mechanisms that can already be
usefully applied to benchmark multi-objective problems.
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Abstract. Recently, it has been demonstrated that a solution set that
is better than the final population can be obtained by subset selection
in some studies on evolutionary multi-objective optimization. The main
challenge in this type of subset selection is how to efficiently handle a
huge candidate solution set, especially when the hypervolume-based sub-
set selection is used for many-objective optimization. In this paper, we
propose an efficient two-stage greedy algorithm for hypervolume-based
subset selection. In each iteration of the proposed greedy algorithm, a
small number of promising candidate solutions are selected in the first
stage using the rough hypervolume contribution approximation. In the
second stage, a single solution among them is selected using the more pre-
cise approximation. Experimental results show that the proposed algo-
rithm is much faster than state-of-the-art hypervolume-based greedy sub-
set selection algorithms at the cost of a slight deterioration of the selected
subset quality.

Keywords: Evolutionary multi-objective optimization · Hypervolume
subset selection · Two-stage hypervolume contribution approximation

1 Introduction

Recently, the use of an unbounded external archive was examined in many stud-
ies [1–10] in the evolutionary multi-objective optimization (EMO) community. It
was shown in [6–8] that the selected subset from the unbounded external archive
is usually better than the final population. This is because in general the final
population is not the best subset of all examined solutions. For example, final
solutions can be dominated by other generated and discarded solutions in previ-
ous generations [10]. The main difficulty in subset selection from the unbounded
external archive is a huge candidate solution set. For example, more than two
million non-dominated solutions are included in a candidate solution set in [7].
Thus, efficient subset selection algorithms are needed.

Hypervolume subset selection (HSS) is a popular research topic since the
hypervolume indicator [11] is the only performance indicator with Pareto com-
pliant property [12]. In general, the HSS problem is to select a subset Ssub from
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Emmerich et al. (Eds.): EMO 2023, LNCS 13970, pp. 391–404, 2023.
https://doi.org/10.1007/978-3-031-27250-9_28
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a candidate set Sc so that the hypervolume of Ssub is maximized. Thus, the HSS
problem can be formalized as follows:

S∗
sub = arg max

Ssub⊂Sc,|Ssub|=k

HV (Ssub), (1)

where S∗
sub is the optimal subset with k solutions, Sc is the given set of n can-

didate solutions (i.e., |Sc| = n), and HV (Ssub) is the hypervolume of Ssub. HSS
methods can be classified into four categories [13]: exact methods, evolutionary
methods, local search methods, and greedy methods.

Among them, the greedy methods [14–18] are the most well-known since
they can obtain a near optimal subset (i.e., (1 − 1/e) to the optimal subset is
guaranteed [19]) within a reasonable computation time. Bradstreet et al. [14,15]
proposed two basic greedy HSS methods: the greedy reduction and the greedy
inclusion. However, the efficiency of the basic greedy HSS methods is low. Jiang
et al. [16] proposed a hypervolume contribution update strategy that can signifi-
cantly reduce the computation time of the basic greedy HSS methods. To further
improve the efficiency of the greedy HSS method, Chen et al. [17] proposed a
lazy greedy inclusion HSS method. In the lazy greedy HSS method, the submod-
ular property of the hypervolume indicator [20] is utilized to avoid unnecessary
hypervolume contribution calculations. Currently, the lazy greedy HSS method
is the most efficient greedy HSS method.

Since the above-mentioned greedy HSS methods use the exact hypervol-
ume contribution calculation, their computation time is very large in high-
dimensional cases (i.e., many-objective problems). This is because the time com-
plexity of the exact hypervolume contribution calculation is O(km−1) [13] where
k is the number of solutions involved in hypervolume contribution calculation
and m is the dimension of solutions (i.e., the number of objectives). To address
this issue, Shang et al. [18] proposed a greedy approximated HSS method which
uses an R2-based hypervolume contribution approximation method [21] instead
of the exact calculation. As a result, the greedy approximated HSS method is
much faster than the exact greedy HSS methods (including the lazy greedy HSS
method). The selected subset quality (i.e., hypervolume value) by the approxi-
mated method is slightly worse than that by the exact HSS methods.

As pointed out in [22], the computation time of the greedy HSS methods
(both the exact and approximated methods) severely increases as the number
of candidate solutions increases. This is because the greedy methods need to
examine all the unselected candidate solutions in each iteration. Thus, the above-
mentioned greedy methods are not applicable to the large-scale subset selection
where the number of candidate solutions is huge (e.g., more than 2,000,000 non-
dominated solutions in the unbounded external archive [7]).

In this paper, we propose a two-stage greedy approximated HSS method to effi-
ciently select a subset from a huge candidate solution set. In the proposed method,
we use a two-stage hypervolume contribution approximation method [23] for a
hypervolume-based EMO algorithm to select a good solution in each iteration of
greedy inclusion. Each iteration is divided into two stages. In the first stage, we
roughly approximate the hypervolume contribution of each unselected candidate
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solution. Then, we preselect only a small number of promising candidate solutions.
In the second stage, the hypervolume contribution of each preselected promis-
ing solution is more precisely approximated and one of them is selected. In this
manner, we do not have to precisely approximate the hypervolume contribution
of each candidate solution. Thus, the proposed two-stage method is much faster
than other greedy methods for large-scale subset selection.

The remainder of this paper is organized as follows. In Sect. 2, the exist-
ing greedy HSS methods are briefly reviewed. The proposed two-stage greedy
approximated HSS method is described in Sect. 3. Experimental results are
reported in Sect. 4 to demonstrate the superiority of the proposed method.
Finally, the conclusion is given in Sect. 5.

2 Greedy Hypervolume Subset Selection

For a large candidate set (i.e., k � n), the use of greedy reduction is unrealistic.
Thus, in this paper, we focus only on greedy inclusion HSS methods where k
solutions are selected from the candidate set Sc with n solutions one by one. In
this section, we explain greedy exact and greedy approximated HSS methods.

2.1 Greedy Exact HSS Methods

Basic Greedy Inclusion HSS (GI-HSS [14]). The framework of the basic
greedy inclusion HSS method (GI-HSS) is shown in Algorithm 1, which is also
the framework of all greedy HSS methods. As explained in Sect. 1, the size of
the candidate solution set Sc is n (i.e., |Sc| = n) and the size of the subset Ssub

to be selected is k (i.e., |Ssub| = k). First, Ssub is empty. Then, a candidate
solution is selected from Sc and added to Ssub in each iteration one by one. GI-
HSS is terminated when |Ssub| reaches k. In each iteration, GI-HSS calculates
the hypervolume contribution of each unselected candidate solution. Then, the
candidate solution with the largest hypervolume contribution is added to Ssub.
Since the hypervolume contribution calculation is time-consuming, the efficiency
of GI-HSS is low, especially when n is large (i.e., k � n).

Algorithm 1: Basic framework of greedy methods
input : Sc (candidate solution set), k (selected subset size)
output: Ssub (selected subset)
begin

1 Ssub ←− ∅;
2 while |Ssub| < k do
3 Calculate the hypervolume contribution to Ssub of each solution s in Sc;
4 Select the best candidate solution a with the largest hypervolume

contribution to Ssub from Sc;
5 Ssub ←− Ssub ∪ {a}; Sc ←− Sc\{a};
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Greedy Inclusion HSS with Hypervolume Contribution Updating
(UGI-HSS [16]). To improve the efficiency of the basic greedy HSS method,
Jiang et al. [16] proposed a hypervolume update strategy. In each iteration, GI-
HSS calculates the hypervolume contribution of each candidate solution whereas
UGI-HSS updates their hypervolume contribution more efficiently. As a result,
UGI-HSS is much faster than GI-HSS.

Lazy Greedy Inclusion HSS (LGI-HSS [17]). The UGI-HSS method
improves the efficiency of the basic greedy HSS method by reducing the com-
putation time of the hypervolume contribution calculation for each candidate
solution. In contrast, the LGI-HSS method improves the efficiency of GI-HSS by
reducing the number of hypervolume contribution calculations. That is, LGI-HSS
uses the submodular property of the hypervolume indicator [20] to avoid unnec-
essary hypervolume contribution calculations. Currently, the LGI-HSS method
is the most efficient greedy exact HSS method.

2.2 Greedy Approximated HSS Method

Since the time complexity of hypervolume contribution calculation increases
exponentially as the number of objectives m increases [13], the greedy exact HSS
methods are impractical in high-dimensional cases (e.g., m > 10). To overcome
this issue, a greedy approximated HSS method (GAHSS [18]) was proposed.
In GAHSS, the hypervolume contribution of each candidate solution is approxi-
mated using the R2-based hypervolume contribution approximation method [21].
In this subsection, we briefly explain the mechanism of the R2-based hypervol-
ume contribution approximation method and the framework of GAHSS.

1

2

Fig. 1. Illustration of R2-based hypervolume contribution approximation
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R2-Based Hypervolume Contribution Approximation (R2-HVC [21]).
Figure 1 illustrates the R2-based hypervolume contribution approximation
method. Solutions s1, s2 and s form a solution set Sc, and r is the reference
point. To approximate the hypervolume contribution of the solution s, R2-HVC
uses a vector set Λ (i.e., Λ = {v1,v2} in Fig. 1) to detect the boundary of the
hypervolume contribution region of s (i.e., shaded region in Fig. 1). The average
length of the line segment for each vector from s to the boundary (e.g., d1,1 for
v1 and d2,2 for v2) is used as the hypervolume contribution approximation for
s. Thus, the computation time and the approximation quality directly depends
on the number of vectors in Λ.

For each vector, to obtain the corresponding line segment (e.g., d1,1 for v1 in
Fig. 1), we calculate the length of each of all line segments determined by other
solutions in Sc and the reference point (e.g., d1,1, d2,1 and dr ,1 in Fig. 1). The
line segment with the minimum length (e.g., d1,1 for v1) is the corresponding
line segment and is used for hypervolume contribution approximation.

To approximate the hypervolume contribution of each candidate solution
si ∈ Sc to the subset Ssub (i.e., HV C(si, Ssub, r)), we need to calculate the
length of each of all related line segments and store them in a matrix Mi as

Mi =

⎡
⎢⎢⎢⎢⎢⎢⎣

di
1,1 di

1,2 · · · di
1,|Λ|

di
2,1 di

2,2 · · · di
2,|Λ|

...
...

. . .
...

di
|Ssub|,1 di

|Ssub|,2 · · · di
|Ssub|,|Λ|

di
r ,1 di

r ,2 · · · di
r ,|Λ|

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2)

In this matrix Mi, each row refers to the corresponding solution in Ssub or
the reference point r, and each column refers to the corresponding vector in the
vector set Λ. The hypervolume contribution of si is approximated by the average
of the minimum value in each column (i.e., min(di

j) = min{di
1,j , ..., d

i
|Ssub|,j , d

i
r ,j})

as (min(di
1) + . . . +min(di

|Λ|))/|Λ|. For more details, see [21].

Greedy Approximated HSS (GAHSS [18]). In GAHSS, a tensor Tmin is
used to calculate the approximated hypervolume contribution of each candidate
solution. Its structure is

Tmin =

⎡
⎢⎢⎣

min(d11) min(d12) · · · min(d1|Λ|)
...

...
. . .

...
min(d|Sc|

1 ) min(d|Sc|
2 ) · · · min(d|Sc|

|Λ| )

⎤
⎥⎥⎦. (3)

Each row of Tmin refers to the corresponding candidate solution (from Mi in
Eq. (2)), and each column of Tmin refers to the corresponding vector. For a
candidate solution si ∈ Sc, each value min(di

j) in Tmin is the minimum value
of the j-th column of Mi (i.e., min(di

j) = min{di
1,j , . . . , d

i
|Ssub|,j , d

i
r ,j}). Then,

each row of Tmin is used to approximate the hypervolume contribution of each
candidate solution in Sc.
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Algorithm 2: Greedy approximated HSS
input : Sc (candidate solution set), k (selected subset size), Λ (vector set)
output: Ssub (selected subset)
begin

1 Ssub ←− ∅;
2 Calculate the tensor Tmin in (3) using the reference point r for all candidate

solutions in Sc and all vectors in Λ;
3 while |Ssub| < k do
4 Approximate the hypervolume contribution to Ssub of each candidate

solution in Sc using Tmin;
5 Select the best candidate solution a with the largest hypervolume

contribution from Sc;
6 Ssub ←− Ssub ∪ {a}; Sc ←− Sc\{a};
7 Calculate the tensor T in (4) using a for all candidate solutions in Sc

and all vectors in Λ;
8 Update Tmin using Tmin and T ;

When a new solution a is added to the subset Ssub, we first calculate a tensor
T using a for all candidate solutions in Sc and all vectors in Λ as:

T =

⎡
⎢⎢⎣

d1a,1 d1a,2 · · · d1a,|Λ|
...

...
. . .

...
d

|Sc|
a,1 d

|Sc|
a,2 · · · d

|Sc|
a,|Λ|

⎤
⎥⎥⎦. (4)

Similar to Tmin, each row of T refers to the corresponding candidate solution,
and each column of T refers to the corresponding vector. The i-th row of T is a
new row of Mi: (di

a,1, . . . , d
i
a,|Λ|). In this manner, each element of Tmin is updated

as min(di
j) = min{min(di

j), d
i
a,j}.

The framework of GAHSS is shown in Algorithm 2. As in GI-HSS, we first
initialize the subset Ssub as an empty set. Then, the tensor Tmin is initialized
as the tensor using the reference point r for each candidate solution i and each
vector j (i.e., min(di

j) = di
r ,j , where di

r ,j is an element of Mi). In each itera-
tion, we first use Tmin to calculate the approximated hypervolume contribution
of each candidate solution. Then, the best candidate solution with the largest
approximated hypervolume contribution is added to Ssub, and the tensor T is
calculated based on the newly added solution. Finally, the tensor Tmin is updated
using Tmin and T .

3 Proposed Two-Stage Greedy Approximated HSS

As shown in Algorithm 2, GAHSS calculates the tensor T using the newly added
solution a for all candidate solutions in Sc and all vectors in Λ in each iteration.
Thus, its computation time can be unacceptably large when the size of the
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candidate set is huge. To address this issue, we propose a two-stage GAHSS
(TGAHSS) method in this paper. In each iteration of TGAHSS, we select a small
number of promising candidate solutions from Sc in the first stage. Then, we
select a single candidate solution from them in the second stage. The basic idea
of the proposed two-stage method is to use a different vector set for hypervolume
contribution approximation in each stage. By using a small vector set (i.e., only
a small number of vectors) in the first stage, we can significantly decrease the
computation time without severely degrading the quality of the selected subset.

We need two tensors T 1
min and T 2

min in TGAHSS for the first and second
stages, respectively. Let the two vector sets for the first and second stages be
Λ1 and Λ2 (where |Λ1| > |Λ2|), respectively. The number of candidate solutions
used in the second stage is n2. T 1

min and T 2
min in TGAHSS are described as:

T 1
min =

⎡
⎢⎢⎣

min(d11) · · · min(d1|Λ1|)
...

. . .
...

min(d|Sc|
1 ) · · · min(d|Sc|

|Λ1|)

⎤
⎥⎥⎦ , T 2

min =

⎡
⎢⎢⎣

min(d11) · · · min(d1|Λ2|)
...

. . .
...

min(d|Sc|
1 ) · · · min(d|Sc|

|Λ2|)

⎤
⎥⎥⎦. (5)

Each row of T 1
min and T 2

min refers to the corresponding candidate solution, and
each column of T 1

min and T 2
min refers to the corresponding vector in Λ1 and Λ2,

respectively. In each iteration of TGAHSS, we update the entire T 1
min and only

a small part of T 2
min.

The framework of TGAHSS is shown in Algorithm 3. Different from GAHSS,
we need to initialize two tensors T 1

min and T 2
min at the beginning (Line 2 in

Algorithm3). In each iteration, we first use T 1
min to roughly approximate the

hypervolume contribution of each candidate solution and select n2 promising
candidate solutions (Lines 4–5 in Algorithm3). In the second stage, we only
need to update a small part of T 2

min, instead of the entire T 2
min. That is, only

n2 rows of T 2
min, which are related to the n2 promising candidate solutions,

need to be updated. After that, the hypervolume contribution of each of the
n2 candidate solutions is approximated (using much more vectors in the second
stage than those in the first stage: |Λ1| > |Λ2|) from the n2 rows of T 2

min (Lines
6–7 in Algorithm3). Then, the best solution a with the largest approximated
hypervolume contribution is selected from the n2 promising candidate solutions,
and added to the subset Ssub (Line 9 in Algorithm 3). Finally, the first tensor
T 1
min is updated using the newly added solution a (Lines 10, 11 in Algorithm 3).

4 Experimental Results

In this section, we first examine the proposed two-stage greedy approximated
HSS (TGAHSS) method under different parameter settings. Then, the proposed
method is compared with two state-of-the-art methods: the greedy approximated
HSS (GAHSS [18]) and the lazy greedy inclusion HSS (LGI-HSS [17]).
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Algorithm 3: Two-stage greedy approximated HSS
input : Sc (candidate solution set), k (selected subset size), Λ1 (first-stage

vector set), Λ2 (second-stage vector set)
output: Ssub (selected subset)
begin

1 Ssub ←− ∅;
2 Calculate the tensor T 1

min and T 2
min in (5) using the reference point r for all

candidate solutions in Sc and all vectors in Λ1 and Λ2, respectively;
3 while |Ssub| < k do
4 /* First stage */
5 Approximate the hypervolume contribution to Ssub of each candidate

solution in Sc using T 1
min;

6 Select n2 candidate solutions with the largest hypervolume
contributions from Sc;

7 /* Second stage */
8 Update the corresponding n2 rows of T 2

min which are related to the n2
candidate solutions;

9 Approximate the hypervolume contribution of each of the n2 candidate
solutions to Ssub using the corresponding rows of T 2

min;
10 Select the best solution a with the largest approximated hypervolume

contribution from the n2 candidate solutions;
11 Ssub ←− Ssub ∪ {a}; Sc ←− Sc\{a};
12 /* Update of T 1

min */
13 Calculate the tensor T 1 using a for all the candidate solutions and all

vectors in Λ1;
14 Update T 1

min using T 1
min and T 1;

4.1 Experimental Settings

We use eight candidate solution sets in [24]1, which are generated in the follow-
ing manner. First, under the termination condition of 100,000 solution evalua-
tions, NSGA-III [25] is applied to eight test problems: DTLZ1-2 [26] and Minus-
DTLZ1-2 [27] with five and ten objectives (i.e., m = 5, 10). Next, all examined
solutions (i.e., 100,000 solutions) are stored for each test problem. Then, all non-
dominated solutions among the stored solutions are used as a candidate solution
set for each test problem. The size of each candidate solution set (i.e., n) is
shown in Table 1.

The selected subset size k is set to 100. As suggested in [28], the reference
point for hypervolume subset selection is specified as (1 + 1/H) × nadir where
nadir is the estimated nadir point of the candidate set and H = 4, 2 for m =
5, 10, respectively. For performance evaluation, the reference point is set to (1+
1/H)×trueNadir where trueNadir is the true nadir point of each test problem.

In the first stage of the proposed TGAHSS method, the first vector in the
vector set Λ1 is specified as (1/

√
m, . . . , 1/

√
m). Other vectors in Λ1 are gen-

1 https://github.com/HisaoLabSUSTC/BenchSS.

https://github.com/HisaoLabSUSTC/BenchSS
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Table 1. Size of each candidate solution set

Problem m = 5 m = 10

DTLZ1 29,194 30,194
DTLZ2 45,605 62,601
Minus-DTLZ1 35,798 76,701
Minus-DTLZ2 48,741 85,631

erated using the UNV method [30]. In the second stage, the vector set Λ2 is
generated using the UNV method as suggested in [29]. In the GAHSS method,
the vector set is also generated by the UNV method as in its original paper [18].
Each HSS method is executed 21 times independently.

All experiments are performed on a machine with AMD Ryzen Threadripper
3990X 64-Core Processor 2.90GHz and Windows 10 Pro.

4.2 Performance of TGAHSS Under Different Parameter Settings

In the proposed TGAHSS, there are three parameters: the number of first-stage
vectors |Λ1|, the number of second-stage vectors |Λ2|, and the number of second-
stage solutions n2. We set the number of the second-stage vectors |Λ2| as |Λ2| =
100, which is the same setting as in GAHSS. In this subsection, we examine
the sensitivity of the performance of TGAHSS to the other two parameters.
For the number of first-stage vectors |Λ1|, we examine the settings of |Λ1| =
{1, 2, 10, 20, 30, 40, 50}. For the number of second-stage solutions n2, we examine
the settings of n2 = {1, 2, 5, 10, 20, 50, 100, 500}.

Fig. 2. Hypervolume of TGAHSS with different parameter settings compared to
GAHSS and LGI-HSS. (Color figure online)
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Table 2. Hypervolume of the subsets selected by TGAHSSUNV and TGAHSS. Λ1 in
TGAHSSUNV has a single vector generated by the UNV method.

Data Shape m TGAHSSUNV TGAHSS TGAHSS/TGAHSSUNV

DTLZ1
5 9.3800E-2 9.3888E-2 (+) 1.0009
10 5.6300E-2 5.6306E-2 (+) 1.0000

DTLZ2
5 2.6693E+0 2.7109E+0 (+) 1.0156
10 5.7368E+1 5.7431E+1 (+) 1.0011

Minus-DTLZ1
5 6.2018E+12 6.5753E+12 (+) 1.0602
10 1.4123E+26 1.6209E+26 (+) 1.1477

Minus-DTLZ2
5 2.9341E+2 3.0824E+2 (+) 1.0506
10 1.5589E+5 1.7201E+5 (+) 1.1034

(+/-/≈) (8/0/0)

Hypervolume of the Selected Subset. Figure 2 shows the average hyper-
volume of the subsets selected by TGAHSS with different parameter settings,
which are compared with the results selected by GAHSS (i.e., red lines) and
LGI-HSS (i.e., green lines). The horizontal axis of each figure is the number of
first-stage vectors (i.e., |Λ1|). For each specification of |Λ1|, experimental results
obtained by various specifications of the number of second-stage solutions (i.e.,
n2 = {1, 2, 5, 10, 20, 50, 100, 500}) are shown as a group of bars.

As shown in Fig. 2, the hypervolume of the selected subset clearly increases
as the number of first-stage vectors increases (i.e., as |Λ1| increases). When |Λ1|
is small (e.g., the left-most group of bars for |Λ1| = 1), the hypervolume of the
subset selected by TGAHSS is significantly improved by increasing the number of
solutions in the second stage (i.e., by increasing n2). In Fig. 2, the hypervolume of
the subset selected by TGAHSS is slightly worse than that selected by GAHSS
(i.e., red lines) when |Λ1| = 1 and n2 = 500 (i.e., the right-most bar in the
left-most bar group in each figure).

In our experiments, the first vector of Λ1 is specified as (1/
√

m, ..., 1/
√

m).
This is because much better results are obtained from this vector than the ran-
domly specified first vector generated by the UNV method. In Table 2, TGAHSS
is compared with its variant TGAHSSUNV under the setting of |Λ1| = 1 and
n2 = 500 (i.e., the setting of the right-most bar in the left-most bar group in
each figure in Fig. 2). TGAHSS uses the vector (1/

√
m, ..., 1/

√
m) as Λ1 and

TGAHSSUNV uses the UNV method to generate Λ1. It is clear in Table 2 that
TGAHSS outperforms TGAHSSUNV.

Computation Time of TGAHSS. As shown in Fig. 3, the computation time
of TGAHSS strongly depends on the number of first-stage vectors (i.e., |Λ1|).
When |Λ1| = 50 (i.e., the right-most bar group in each figure in Fig. 3), the
computation time of TGAHSS is about 1/3 less than that of GAHSS. However,
when |Λ1| = 1 (i.e., the left-most bar group in each figure in Fig. 3), TGAHSS
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is about ten times faster than GAHSS. This is because the computation time of
TGAHSS in the first stage is much larger than that in the second stage when
the number of candidate solutions is very large. We need to approximate the
hypervolume contribution of all candidate solutions (e.g., 85,631 solutions for
Minus-DTLZ1) in the first stage whereas we handle only a small number of
candidate solutions in the second stage (i.e., up to 500 solutions in Fig. 3). Thus,
the computation time of TGAHSS strongly depends on the number of first-stage
vectors (i.e., |Λ1|).

Fig. 3. Computation time of TGAHSS with different parameter settings compared to
GAHSS and LGI-HSS.

It is also shown in Fig. 3 that the specifications of the number of the second-
stage solutions (i.e., different bars in each bar group in each figure of Fig. 3)
have no strong effect on the computation time of TGAHSS. This is because
the computation time of the first stage is much larger than that of the second
stage. In Fig. 2 and Fig. 3, we can observe that TGAHSS (with |Λ1| = 1 and
n2 = 500) can obtain a slightly worse subset using a much smaller computation
time compared to GAHSS. We use this setting in the next subsection.

4.3 Comparison with State-of-the-Art Methods

In this section, we compare the proposed method with the two most efficient
greedy HSS methods: the greedy approximated HSS method (GAHSS [18]) and
the lazy greedy inclusion HSS method (LGI-HSS [17]). LGI-HSS is the most
efficient greedy HSS method with exact hypervolume contribution calculation.
Since GAHSS uses the approximate calculation, GAHSS is faster than LGI-HSS
but its selected subset is worse than the subset selected by LGI-HSS.

Each algorithm is applied to each test problem 21 times. Average results
over 21 runs are summarized in Fig. 4. The random method (black point in
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Fig. 4. Hypervolume and computation time of GAHSS, TGAHSS and LGI-HSS.

Fig. 4) where a subset is randomly selected from the candidate solution set is
also used as a baseline for comparison. In Fig. 4, the proposed TGAHSS method
always locates around the knee region [31] of the trade-off curve generated by
connecting the results obtained by the four methods. That is, TGAHSS is much
better than GAHSS and LGI-HSS with respect to the computation time and
slightly worse than GAHSS and LGI-HSS with respect to the subset quality
in Fig. 4. For example, for 5-objective DTLZ2, the hypervolume of the subset
selected by TGAHSS is slightly worse than that of GAHSS but TGAHSS is
about ten times faster than GAHSS.

5 Conclusion

In this paper, we proposed a two-stage greedy approximated hypervolume subset
selection method (TGAHSS) for large-scale candidate solution sets (e.g., 50,000
solutions). Experimental results showed that the proposed TGAHSS method is
much faster than the two state-of-the-art greedy HSS methods. The quality of
the subset selected by TGAHSS is slightly worse than those selected by GAHSS
and LGI-HSS in terms of the hypervolume. In the future, we will examine the
use of TGAHSS to generate an initial subset for local search HSS.
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Abstract. The problem of approximating the Pareto front of a multi-
objective optimization problem can be reformulated as the problem of
finding a set that maximizes the hypervolume indicator. This paper estab-
lishes the analytical expression of the Hessian matrix of the mapping from
a (fixed size) collection of n points in the d-dimensional decision space (or
m dimensional objective space) to the scalar hypervolume indicator value.
To define the Hessian matrix, the input set is vectorized, and the matrix
is derived by analytical differentiation of the mapping from a vectorized
set to the hypervolume indicator. The Hessian matrix plays a crucial
role in second-order methods, such as the Newton-Raphson optimization
method, and it can be used for the verification of local optimal sets. So
far, the full analytical expression was only established and analyzed for
the relatively simple bi-objective case. This paper will derive the full
expression for arbitrary dimensions (m ≥ 2 objective functions). For the
practically important three-dimensional case, we also provide an asymp-
totically efficient algorithm with time complexity in O(n logn) for the
exact computation of the Hessian Matrix’ non-zero entries. We establish
a sharp bound of 12m−6 for the number of non-zero entries. Also, for the
general m-dimensional case, a compact recursive analytical expression is
established, and its algorithmic implementation is discussed. Also, for
the general case, some sparsity results can be established; these results
are implied by the recursive expression. To validate and illustrate the
analytically derived algorithms and results, we provide a few numerical
examples using Python and Mathematica implementations. Open-source
implementations of the algorithms and testing data are made available
as a supplement to this paper.
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1 Introduction

In this paper, we delve into continuous m-dimensional multi-objective opti-
mization problems (MOPs), where multiple objective functions, e.g., f =
(f1, . . . , fm) : X ⊆ R

d → R
m are subject to minimization. Also, we assume

f is at least twice continuously differentiable. When solving such problems, it is
a common strategy to approximate the Pareto front for m-objective functions
mapping from a continuous decision space R

d to the R (or as a vector-valued
function from R

d to R
m. MOPs can be accomplished by means of a finite set

of points that distributes across the at most m − 1-dimensional manifold of the
Pareto front. The hypervolume indicator of a set of points is the m dimensional
Lebesgue measure of the space that is jointly dominated by a set of objective
function vectors in R

m and bound from above by a reference point r ∈ R
m. More

precisely, for minimization problems, the hypervolume indicator (HV) [16,17] is
defined as the Lebesgue measure of the compact set dominated by a Pareto
approximation set Y ⊂ R

m and cut from above by a reference point r:

HV(Y ; r) = λm ({p : ∃y ∈ Y (y ≺ p ∧ p ≺ r)}) ,

where λm denotes the Lebesgue measure on R
m. We will omit the reference

point for simplicity henceforth. HV is Pareto compliant, i.e., for all Y ≺ Y ′,
HV(Y ) > HV(Y ′), and is extensively used to assess the quality of approximation
sets to the Pareto front, e.g., in SMS-EMOA [1] and multiobjective Bayesian
optimization [5]. Being a set function, it is cumbersome to define the derivative
of HV. Therefore, we follow the generic set-based approach for MOPs [4], which
considers a finite set of objective points (of size n) as a single point in R

nm,
obtained via the following concatenation map (and its inverse):

concat : (Rm)n → R
nm, Y �→

(
y
(1)
1 , . . . , y

(1)
m , . . . , y

(n)
1 , . . . , y

(n)
m

)�
,

concat−1 : R
nm → (Rm)n, Y �→

{
(Y1, . . . , Ym)�, . . . , (Y(n−1)m+1, . . . , Ynm)�

}
.

The concatenation map gives rise to a hypervolume function that takes vectors
in R

nm as input (Table 1):

H : R
nm → R≥0, Y 	→ [

HV ◦ concat−1
]
(Y), (1)

Table 1. Basic notation used throughout the paper. HVI stands for “Hypervolume
Indicator”.

Symbol Domain Description

m N Number of objective functions

d N Number of decision variables

n N Number of points in the approximation set

f = (f1, . . . , fm) R
d → R

m Vector-valued objective function

X = (x(1)�
, . . . , x(n)�

)�
R
nd Concatenation of n points in the decision space

Y = (y(1)�
, . . . , y(n)�

)�
R
nm Concatenation of n points in the objective space

HV R
nm → R HVI for subsets of the objective space

H R
nm → R≥0 HVI on the product of n objective spaces

HF R
nd → R≥0 HVI on the product of n decision spaces
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Similarly, we also consider a finite set of decision points (of size n) as a sin-
gle point in R

nd, i.e., X = [x(1)�,x(2)�, . . . ,x(n)�]� ∈ R
nd. In this sense,

the objective function f is also extended to: F : X 	→ [f(X1, . . . , Xd), . . . ,
f(X(n−1)d+1, . . . , Xnd)]�. Taking F, we can express hypervolume indicator as
a function supported on R

nd:

HF : R
nd → R≥0, X 	→ [

HV ◦ concat−1 ◦F]
(X). (2)

Notably, assuming f is twice differentiable, the above hypervolume functions H
and HF are twice differentiable almost everywhere in their domains, respectively.
In our previous works [4,14], we have provided the gradient of HF w.r.t. X using
the chain rule: ∇HF(X) = (∂H/∂F)(∂F/∂X).

In this work, we investigate the hypervolume indicator Hessian matrix for
more than two objectives and propose an algorithm to compute it efficiently. The
work is structured as follows: In Sect. 2, we briefly review the general construction
of the hypervolume gradient and hypervolume Hessian HF via the chain-rule as
it has been outlined previously in [4] and, respectively, in [12]. Section 3 provides
a discussion of the 3-D hypervolume indicator Hessian matrix HV, including a
O(n log n) dimension sweep algorithm for its asymptotically optimal computa-
tion and an analysis of its sparsity, i.e., the number of its non-zero components.
Furthermore, it is argued that in the 3-D case, the hypervolume Hessian matrix
is sparse and has at most O(n) non-zero components. We provide a Mathematica
implementation for computing the 3-D Hessian matrix.

In Sect. 4, we discuss the analytical formulations of the hypervolume Hessian
for the general case of m > 1 objective functions. The result reduces the compu-
tation of the Hessian of m objective functions to the repeated computation of
the hypervolume indicator gradient for collections of vectors in R

m−1. A Python
implementation is provided for the general cases.

In Sect. 5, we provide numerical examples. In Sect. 6, we finish the paper with
a discussion of some basic properties of the hypervolume Hessian matrix, such as
its continuity, one-sidedness, and rank, and point out interesting open questions
for its further analysis. Due to the space limitation, we have excluded all proofs
to theorems in this work and point the interested readers to [2], which is the
arXiv version of this paper.

2 General Construction of Hypervolume Hessian
and Gradient via the Chain Rule

In general, the Hessian matrix of the hypervolume indicator can be expressed as
follows:

∇2HF =
∂

∂X

(
∂H
∂F

∂F
∂X

)
= ∇F� ∂2H

∂F∂F� ∇F+
∂H
∂F

∂2F
∂X∂X� . (3)

The Hessian of vector-valued objective function F, i.e., ∂2F/∂X∂X� : R
nd →

Hom(Rnd,Hom(Rnd, Rnm)), is a tensor of (1, 2) type. Let T k
i,j = ∂2Fk/∂Xi∂Xj ,

i, j ∈ [1..nd], k ∈ [1..nm], we specify the entries of T as follows:
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T k
i,j =

{
∂2fβ(x(α))/∂x

(α)
i′ ∂x

(α)
j′ , if (α − 1)d + 1 ≤ i, j ≤ αd,

0, otherwise.

α = 
k/m�, β = k − (α − 1)m, i′ = i − (α − 1)d, j′ = j − (α − 1)d.

Since the above map from k to (α, β) is bijective (its inverse is k = αβ), we will
equivalently use αβ for the contravariant index k. It is obvious that tensor T is
sparse, where for each k, only d2 entries are nonzero, giving up to nmd2 nonzero
entries in total. Using the Einstein summation convention, we can expand the
second term in Eq. (3) as:

(
∂H
∂F

∂2F
∂X∂X�

)

i,j

=
(

∂H
∂F

)

k

T k
i,j =

∂H
∂fβ(x(α))

Tαβ
i,j (4)

Notably, the above expression leads to a block-diagonal matrix containing n
matrices of shape d × d on its diagonal. Therefore, we observe a high sparsity
of the second term in Eq. (3). As for the first term, ∂2H/∂F∂F� denotes the
Hessian of the hypervolume indicator w.r.t. objective vectors, whose computation
and sparsity will be discussed in the following sections.

In our previous work [12], we have derived the analytical expression of ∇2HF

for bi-objective cases and analyzed the structure and properties of the hypervol-
ume Hessian matrix. We have shown that the Hessian ∇2HF is a tri-diagonal
block matrix in bi-objective cases and provided the non-singularity condition
thereof, which states the Hessian is only singular on a null subset of R

nd [12].

3 Hypervolume Indicator Hessian Matrix in 3-D

As with many problems related to Pareto dominance, the 2-D and 3-D cases
have a special structure that can be exploited for formulating asymptotically
efficient dimension sweep algorithms [8,9]. Next, the dimension sweep technique
will be applied to yield an asymptotically efficient algorithm for the problem
of computing the Hessian Matrix of the 3-D hypervolume indicator HV. The
basic idea is sketched in Fig. 1 and consists of computing first the facets of
the polyhedron that is measured by the hypervolume indicator by lowering a
sweeping plane along each one of the axes. The gradient components are given by
the areas of the facets (e.g., the yellow shaded area in Fig. 1, and the length of the
line segments of the ortho-convex polygon that surrounds this facet determines
the components of the Hessian matrix of HV. This can be easily verified by
studying geometrically the effect of small perturbations of the coordinates of
points in Y along the coordinate axis on the value of the hypervolume indicator
(gradient components) HV.

Without loss of generality, we first compute the derivatives with respect to
y3. By permuting the roles of y1, y2, and y3, we can get all derivatives. In the
context of the dimension sweep algorithm, we assume that points in Fig. 1 are
sorted by the 3rd coordinate y3, that is, Y is represented in such a way that
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Fig. 1. Visualization of some first and sec-
ond order derivatives of a 3-D hypervolume
approximation set (y(1),y(2),y(3)) with i1,
i2, i3 chosen such that y

(i1)
3 > y

(i2)
3 > y

(i3)
3 .

(Color figure online)

Fig. 2. Snapshot of the components of
the polygon (yellow shaded), in which
the length of each edge constitutes the
non-zero components of the Hessian
matrix of HV in a single iteration (lower-
ing of sweeping plane) t of Algorithm 1.
(Color figure online)

y
(i3)
3 < y

(i2)
3 < y

(i1)
3 . We assume that the points in Y are in general position

(otherwise, one-sided derivatives can occur, which will be discussed later).
Algorithm 1 computes all positive entries of the Hessian matrix of HV at a

point. The algorithm proceeds in three sweeps. The sweep coordinate has index
h (like height), and the other two coordinates are termed l and w (like length
and width). The first sweep sets h = 3, the second sweep h = 2, and the third
sweep h = 1. The values of l and w are set to the remaining two coordinates. The
roles of l and w are interchangeable, but here we set them to l = 1, w = 2 in the
first sweep, to l = 1, w = 3 in the second sweep, and to l = 3, w = 2 in the third
sweep. Next, we describe a single sweep in detail. Without loss of generality,
let us choose the sweep along the 3-rd coordinate, e.g., l = 1, w = 2, h = 3:
First, we introduce sentinels y(0) and y(n+1) that make sure that every point
has always a left and a lower neighbor. We use a balanced binary search tree T to
efficiently maintain a list of all non-dominated points in the lw-plane among the
points that have been visited in a single sweep so far. The sorted list represented
by tree T is initialized by the sentinels; note that the sentinels cannot become
dominated in the lw-plane because one of their coordinates is −∞. The other
coordinates are from the reference point. Next, start the loop that starts from
the highest yh coordinate and lowers the sweeping plane to the next highest
yh coordinate in each iteration t. The value of t is thus the index of the point
that is currently processed, and points are sorted in the h-direction using the
index transformation a[t], t = 1, . . . , n. In each iteration, we determine from the
sorted list the sublist starting from yd[t][0] and terminating with yd[t][Nt]. We



410 A. Deutz et al.

Algorithm 1: HVH3D Triple Dimension Sweep algorithm to Compute all
non-zero components of ∂H2/∂Y∂Y�

1 Procedure: HVH3D-TriSweep(Y);
2 Input: objective vectors Y = (y(1), . . . ,y(n)) ∈ R

m, reference point r ∈ R
m;

3 Output: Non-zero components of the Hessian matrix of HV: ∂2H/∂y
(i)
m y

(j)
k ;

// Three sweeps along the different coordinate axis.
4 for (l, w, h) ∈ ((1, 2, 3), (1, 3, 2), (3, 2, 1)) do
5 y

(0)
l = −∞, y

(0)
w = rw, y

(0)
h = rh ; � Define the sentinels

6 y
(n+1)
l = rl, y

(n+1)
l = −∞, y

(n+1)
l = rh;

7 (y(a[1]), . . . ,y(a[n])) ← Sort (y(1), . . . ,y(n)) descendingly by yh coordinate;
8 T = BSTree((y(0),y(n+1))) ; � Initialize balanced search tree
9 for t ∈ (1, . . . , n) do

� t is the position of the sweeping plane along yh axis
10 Determine N [t] and (y(d[t][0]), . . . ,y(d[t][N [t]+1])) based on y(a[t]) as

sublist of T starting from nearest lower neighbor to y(a[t]) in l direction
and terminating at nearest lower neighbor of y(a[t]) in w-direction;

11 ∂2 HV /∂y
(a[t])
h y

(a[t])
l = −(y

(d[t][0])
w − y

(a[t])
w );

12 ∂2 HV /∂y
(a[t])
h y

(a[t])
w = −(y

(d[t][Nt])
l − y

(a[t])
l );

13 if N [t] > 0 then
14 ∂2 HV /∂y

(a[t])
h y

(d[t][0])
w = y

(d[t][1])
l − y

(a[t])
l ;

15 ∂2 HV /∂y
(a[t])
h y

(d[t][Nt])
l = y

(d[t][Nt−1])
w − y

(a[t])
w ;

16 for j = 1, . . . , Nt do
17 ∂2 HV /∂y

(a[t])
h y

(d[t][Nt])
l = y

(d[t][j−1])
w − y

(d[t][j])
w ;

18 ∂2 HV /∂y
(a[t])
h y

(d[t][Nt])
w = y

(d[t][j+1])
l − y

(d[t][j])
l ;

19 Discard (y(d[t][1]), . . . ,y(d[t][N [t]])) from T;
20 Add ya[t] to tree T;

21 return ∂2H/∂y
(i)
m y

(j)
k ; � return only the O(n) computed elements

assume the list is sorted ascendingly in the l-coordinate. The point in Twith
the highest yl coordinate that does not exceed y

a[t]
l is chosen as td[t][0] and

the point with the highest yw coordinate that does not yet exceed y
(a[t])
w is

chosen as t(d[t][Nt+1]). These two points always exist because of the sentinels
we set initially. The points between these points in the list, given there exist
such points, are referred to by y(d[t][1]), . . . , y(d[t][Nt]). If no such points exist,
then Nt is set to 0. Note, that the points y(d[t][1]), . . . ,y(d[t][Nt]) are points that
become dominated by y(a[t]) in the lw-projection. They will be discarded from
T at the end of the iteration, and y(a[t]) will be inserted to T thereafter so that
the list represented by T remains a list of mutually non-dominated points in the
lw-projection. Before discarding the points from T, the new positive components
of the hypervolume Hessian are computed. This is done by computing the line
segments of the polygonal area that is marked by the points y(a[t]) and y(d[t][0]),
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. . . , y(d[t][Nt+1]) as it is indicated graphically in Fig. 2 for a single iteration of the
algorithm. This is the polygonal region that marks the area of the hypervolume
gradient ∂H/y

(a[t)]
h . Changing infinitesimally the coordinates of the corners of

this polygon adds a differential change to the area, which is the aforementioned
hypervolume indicator gradient component. The details of the assignment to
the hypervolume Hessian can be determined by computing the side-lengths of
the edges of the polygon and carefully tracing which coordinates of points in Y
determine the coordinates of the region the area of which determines the gradient
component (the yellow area in Fig. 1 and in Fig. 2).

Theorem 1 (Computation of nonzero components of the Hessian). Ass-
ume that n mutually non-dominated points in R

3 are given by a collection Y,
and assume they are in general position (no duplicate coordinates). Furthermore,
assume that all points in Y dominate the reference point r. Then Algorithm 1
that we will term HV3D-TriSweep computes all non-zero components of the
Hessian matrix HV.

Proof: see [2, Theorem 1]. Next, we analyze the time complexity of Algorithm 1
and study the number of non-zero components it computes, which corresponds
exactly to the non-zero components of the Hessian matrix of HV.

Lemma 1. In Algorithm 1 it holds that
∑n

t Nt = n − 1.

Proof: see [2, Lemma 1].

Theorem 2 (Time complexity of 3-D Hessian matrix of HV). The com-
putation of all non-zero components of the Hessian matrix of the mapping from
a set Y ∈ R

3 in the objective space to the hypervolume indicator takes computa-
tional time Θ(n log n).

Proof: see [2, Theorem 2].

Theorem 3 (Sparsity and space of 3-D Hessian matrix of HV). The
number of all non-zero components of the Hessian matrix of the mapping from a
set Y ∈ R

3 in the objective space to the hypervolume indicator does never exceed
12n − 6.

Proof: see [2, Theorem 3].

4 General N-Dimensional Expression of the Hypervolume
Hessian Matrix

For the general cases (m > 3), it suffices to compute the term ∂2H/∂F∂F�

and utilize Eq. (3) for computing the hypervolume Hessian. We sum-
marize the computation in Algorithm 2 and explain the details as fol-
lows. Let A = ∂2H/∂F∂F� ∈ R

nm×nm. Without loss of generality,
we calculate the entries of A in a column-wise manner - given indices
i ∈ [1..n] and k ∈ [1..m], column ik of A takes the following form:
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[∂(∂H∂y
(i)
k )/∂y(1), . . . , ∂(∂H∂y

(i)
k )/∂y(i), . . . , ∂(∂H∂y

(i)
k )/∂y(n)]�, which will be

discussed in two scenarios: (1) ∂/∂y(i) and (2) ∂/∂y(j), i �= j. The dominated
space of S ⊆ R

m, that is the subset of R
m dominated by y, is denoted by

Domm(S) = {p ∈ R
m : ∃y ∈ S(y ≺ p) ∧ p ≺ r}. Also, we take the canonical

basis {ei}i for R
m in our elaboration.

4.1 Partial Derivative ∂(∂H/∂y
(i)
k )/∂y(i)

Intuitively, from Fig. 1, we observe that ∂2H/∂y
(i)
k ∂y

(i)
k is always zero for the 3D

case since ∂H/∂y
(i)
k is essentially the hypervolume improvement of the projection

of y(i) along axis ek (bright yellow area in Fig. 1), ignoring the points that
dominates y(i) after the projection. In addition, ∂2H/∂y

(i)
k ∂y

(i)
α , α �= i equals

the negation of partial derivative of the hypervolume indicator w.r.t. y
(i)
α in

the m − 1-dimensional space, resulted from the projection. The computation
of this quantity has been investigated in great detail previously [4]. We prove
this argument for m > 3 as follows. First, we define the orthogonal projection
operator projk : y 	→ (. . . , yk−1, yk+1, . . .)�, which drops the k-th components of
the input point y. When applied to a subset S ⊆ R

m, projk(S) operates on each
element of S, resulting in a subset of R

m−1.

Theorem 4 (Partial derivative of H). Assume a finite approximation set
Y = {y(1), . . .y(n)} ∈ (Rm)n, where, without loss of generality, the points are
sorted in the ascending order w.r.t. the k-component, i.e., y

(1)
k < · · · y(i−1)

k <

y
(i)
k < y

(i+1)
k · · · < y

(n)
k . Let y(α)

�k = projk(y(α)), α ∈ [1..n]. The partial derivative
of H w.r.t. y

(i)
k for all i ∈ [1..n] and k ∈ [1..m] is:

∂H(Y)

∂y
(i)
k

= −HVC
(
y(i)

�k ,
{
y(α)

�k : α ∈ [1..i − 1]
})

,

where HVC(y, P ) is the hypervolume contribution of point y ∈ R
m−1 to a finite

subset P ⊂ R
m−1, i.e.,

HVC(y, P ) = HV(P ∪{y})−HV(P ) = λm−1 (Domm−1(y) \ ∪p∈P Domm−1(p)) .

Proof: see [2, Theorem 4].

Corollary 1. It follows immediately from Theorem 4 that

∂2H/∂y
(i)
k ∂y

(i)
k = 0, i ∈ [1..n], k ∈ [1..m],m ∈ N>0. (5)

For computing ∂(∂H/∂y
(i)
k )/∂y

(i)
l , l �= i, it suffices to calculate the partial deriva-

tives of the hypervolume contribution, i.e., for p = l if l < k; otherwise p = l − 1,

∂2H
∂y

(i)
l ∂y

(i)
k

= − ∂

∂y
(i)
p

(
HVC

(
y(i)

�k ,
{
y(α)

�k : α ∈ [1..i − 1]
}))

.
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Algorithm 2: General algorithm for the hypervolume Hessian matrix
1 Input: X = {x(1), . . . ,x(n)}: decision points, Y = {y(1), . . . ,y(n)}: objective

points, ∇F, ∇2F: Jacobian and Hessian of the objective function;
2 A ← 0nm×nm; � A := ∂2H/∂F∂F�

3 for i = 1, . . . , n do
4 if x(i) is dominated then continue;
5 for k = 1, . . . , m do
6 r�k ,y

(i)
�k ← projk(r), projk(y

(i));

7 Y′ ← projk

({
y ∈ Y : yk < y

(i)
k

})
;

8 Q ←
{

α ∈ [1..n] : ∀y(α)
�k ∈ Y′

�p ∈ Y′(p ≺ y
(α)
�k )

}
;

9 (v1, . . . , vm−1) ← hvc
(
y
(i)
�k ,Y′, r�k

)
; � Apply Eq. (6)

10 ∂
(
∂2H/∂y

(i)
k

)
/∂y(i) ← (v1, . . . , vk−1, 0, vk, . . . , vm−1)

� ; � Eq. (5)

11 for α = im + 1, . . . , (i + 1)m do
12 Aα,im+k ←

[
∂

(
∂ HV /∂y

(i)
k

)
/∂y(i)

]
α
;

// compute ∂(∂H/∂y
(i)
k )/∂y(j)

13 Y′ ←
{
clip(p;y(i)

�k ) : p ∈ Y′
}

;

14 for j ∈ Q do
15 y

(j)
�k ← Y′[j]; � take element j from set Y′

16 (w1, . . . , wm−1) ← hvc
(
y
(j)
�k ,Y′, r�k

)
; � Apply Eq. (8)

17 ∂
(
∂H/∂y

(i)
k

)
/∂y(j) ← (w1, . . . , wk−1, 0, wk, . . . , wm−1)

�;

18 for α = jm + 1, . . . , (j + 1)m do
19 Aα,im+k ←

[
∂

(
∂H/∂y

(i)
k

)
/∂y(j)

]
α
;

20 T ← ∂2F/∂X∂X� ← ∇2F(X);

21 H ← ∇F(X)�A∇F(X) +
∑n

α=1

∑m
β=1

(
∂HF/∂fβ(x

(α))
)

T αβ ; � Eq. (3)

22 return H;

Note that, when the perturbation on y
(i)
p is sufficiently small, the resulting change

on HV of the approximation set {y(i)
�k } ∪ {y(α)

�k : α ∈ [1..i − 1]} is equivalent
to that on HVC of y(i)

�k . Hence, we could apply Theorem 4 again to the above
equation, which involves projecting the objective points in R

m−1 along axis ep,
i.e., dropping the p-th component of {y(α)

�k }. Let I = {α ∈ [1..i− 1] : y
(α)
l < y

(i)
l },

we have:

∂2H
∂y

(i)
l ∂y

(i)
k

= HVC
(
projp(y

(i)
�k ),

{
projp(y

(α)
�k ) : α ∈ I

})
, (6)

which is m − 2-dimensional Lebesgue measure. This recursive computation is
employed by sub-procedure hvc at line 9 of Algorithm 2.
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In all, we have elaborated the method to compute ∂(∂H/∂y
(i)
k )/∂y(i), which

constitutes d entries of column ik in matrix A.

4.2 Partial Derivative ∂
(
∂H/∂y

(i)
k

)
/∂y(j), i �= j

Based on Theorem 4, we conclude that ∂(∂H/∂y
(i)
k )/∂y(j) = 0 ⇐⇒ j /∈

[1..i − 1], since ∂H/∂y
(i)
k only depends on y(i)

�k and {y(α)
�k : α ∈ [1..i − 1]}. Also,

for all j ∈ [1..i − 1], we have

∂2H/∂y
(j)
k ∂y

(i)
k = 0, (7)

due to the projection operation. Note that, ∂(∂H/∂y
(i)
k )/∂y(j) constitutes the

remaining (n−1) entries of column ik of matrix A, containing at most (i−1)(d−1)
nonzero values, where i depends on the number of points which have a smaller
kth-component than that of y(i). Hence, we can bound the nonzero elements
in A by O(n(n − 1)/2(d − 1)) = O(n2d). Note that possible a sharper bound
can be formulated by considering the technique used to prove Theorem 3 in
more than three dimensions. The remaining partial derivatives can be computed
by first clipping points in {y(α)

�k : α ∈ [1..i − 1]} by y(i)
�k from below (line 13

in Algorithm 2; sub-procedure clip): ŷ(α)
�k = clip(y(α)

�k ;y(i)
�k ), where for a,b ∈

R
m−1, CLIP(a;b) = (a1+min{0, a1 − b1}, . . . , am−1+min{0, am−1 − bm−1}})�.

Note that this clipping operation does not change the volume of Domm−1(y
(i)
�k )\

(∪α∈I Domm−1(y
(α)
�k )) since the points that clipped out are not in Domm−1(y

(i)
�k ).

Taking the clipping operation, we have the following relation:

HVC
(
y(i)

�k , {y(α)
�k : α ∈ [1..i − 1]}

)

= λm−1

(
Domm−1(y

(i)
�k ) \

(
∪α∈I Domm−1(ŷ

(α)
�k )

))

= λm−1

(
Domm−1(y

(i)
�k ) \ Domm−1({ŷ(α)

�k : α ∈ [1..i − 1]})
)

= λm−1

(
Domm−1(y

(i)
�k )

)
− λm−1

(
Domm−1({ŷ(α)

�k : α ∈ [1..i − 1]})
)

.

The last step in the above equation is due to the fact that after clipping,
Domm−1({ŷ(α)

�k : α ∈ [1..i − 1]}) ⊂ Domm−1(y
(i)
�k ). For j �= i, l �= k, let

p = l, if l < k; otherwise p = l − 1, we have:

∂2H
∂y

(j)
l ∂y

(i)
k

= − ∂

∂y
(j)
p

(
HVC

(
y(i)

�k , {y(α)
�k : α ∈ [1..i − 1]}

))

=
∂

∂y
(j)
p

λm−1

(
Domm−1({ŷ(α)

�k : α ∈ I})
)

=
∂

∂y
(j)
p

HV
({

ŷ(α)
�k : α ∈ [1..i − 1]

})
.

We can apply the result of Theorem 4 to compute the above expression.
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Corollary 2. For j �= i, l �= k, let p = l, if l < k; otherwise p = l − 1. The
partial derivative ∂(∂H/∂y

(i)
k )/∂y

(j)
l admits the following expression:

∂2H
∂y

(j)
l ∂y

(i)
k

= −HVC
(
projp(ŷ

(j)
�k ), {projp(ŷ(α)

�k ) : α ∈ I}
)

, (8)

where I = {α ∈ [1..i − 1] : [ŷ(α)
�k ]p < [ŷ(j)

�k ]p} ([·]p denotes taking the p-th compo-
nent of a vector). This recursive computation is employed by sub-procedure hvc
at line 16 of Algorithm 2.

5 Numerical Examples

In this section, we showcase some numerical examples of the computation of the
hypervolume Hessian matrix. For the sake of comprehensibility, we only compute
the Hessian w.r.t. the objective points. We specify the objective points for the
numerical problem below.

– Example 1: m = 3, n = 2, Y = [(5, 3, 7)�, (2, 1, 10)�]�, and r = (9, 10, 12)�.
– Example 2: m = 3, n = 3, Y = [(8, 7, 10)�, (4, 11, 17)�, (2, 9, 21)�]�, and
r = (10, 13, 23)�.

– Example 3: m = 3, n = 6, Y = [(16, 23, 1)�, (14, 32, 2)�, (12, 27, 3)�,
(10, 21, 4)�, (8, 33, 5)�, (6.5, 31, 6)�]�, and r = (17, 35, 7)�.

We illustrate the corresponding Hessian matrices as heatmaps in Fig. 3 of [2],
from which we see clearly a high sparsity in all cases. Moreover, for the sec-
ond example with n = 3 points in 3-D objective space, as predicted by Theo-
rem 3, we obtain exactly 12n − 6 (= 30) positive components. Also, we have
verified the above computation by comparing the results obtained from Python,
Mathematica, and automatic differentiation performed in our previous work [15].

6 Discussion and Outlook

This paper highlights two approaches for computing the components of the Hes-
sian matrix of the hypervolume indicator HV of a multi-set of points in objective
space and of a multi-set of points in the decision space HF. The approach of set-
scalarization, as originated in [3,4] for the gradient of the hypervolume indicator.
The main results of the paper are as follows:

1. the hypervolume indicator of HF can now be computed analytically not only
for the bi-objective case as in [12], but also for more than two objective
functions (Theorem 1).

2. the time complexity of computing all non-zero components of the 3-D hyper-
volume indicator HV for vectorized sets Y with n points in general position
is in Θ(n log n). (Theorem 2)
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3. The number of non-zero components of the Hessian matrix is at most 12n −
6. The space complexity of the Hessian matrix computation and the space
required to store all components is in O(n). (Theorem 3).

4. it holds that ∂H/∂yk is always the hypervolume contribution of the projection
of yk along axis k. (Theorem 4).

5. the analytical computation of the higher derivatives of the m-dimensional
hypervolume indicator HV for m > 1can be formulated by computing the
gradient of the gradient, which can be essentially achieved by the recursive
application of Theorem (Theorem 4) (computing the m − 2-dimensional pro-
jection’s contributions along the yk axis, of the m−1 dimensional projection’s
hypervolume contributions along the yk); and taking special care of the role
of the reference points and signs of non-zero components as detailed in Algo-
rithm 2.

Some interesting next steps would be to

1. investigate the rank of the hypervolume Hessian matrix and its numerical
stability of second-order methods that use the Hessian matrix of HF (or its
inverse) in their iteration, such as the hypervolume Newton method [11,12].

2. find (asymptotically) efficient algorithms for the computation of the higher-
order derivative tensors and for more than three-dimensional cases. The latter
might, however, find the asymptotical time complexity of the N-D Hessian
matrix computation might turn out to be a difficult endeavor, as it is not
even known what the asymptotical time complexity of HV is. What is more
promising is to bound the number of the non-zero components in the Hessian
matrix, which is related to the number of n − 2 dimensional facets in the
ortho-convex polyhedron that marks the measured region of HV. It is conjec-
tured that in the m-dimensional case, it also grows linearly in n (the number
of points in the approximation set) but exponentially in m (the number of
objectives). However, dimension sweep algorithms also yield high efficiency
in the 4-D case and can probably be easily adapted [6].

More generally, it is remarked that besides the hypervolume indicator, other mea-
sures have been proposed for the quality of Pareto front approximations, such as
the inverted generational distance [7] or the averaged Hausdorff distance [10,13],
with sometimes advantageous properties regarding the uniformity the point dis-
tributions in their maximum. We believe that for such measures, vectorization
of the input set is promising, and the analytical computation and subsequent
analysis of the Hessian matrix is worthwhile to delve into. The code for com-
puting analytically the Hessian matrix of HV has been validated on example
data and made available in a GitHub repository.1 The repository includes an
implementation based on Algorithm 2 in Python and in Mathematica, as well as
the data of the examples.

Remark: The authors have been listed alphabetically in this paper, and all
authors have contributed to the completion of the manuscript.
1 https://github.com/wangronin/HypervolumeDerivatives.

https://github.com/wangronin/HypervolumeDerivatives
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tion experiments; HW+AD: theoretical analysis of the general N-dimensional Hes-
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sion/editing of mathematical formulation.

References

1. Beume, N., Naujoks, B., Emmerich, M.T.M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007).
https://doi.org/10.1016/j.ejor.2006.08.008

2. Deutz, A.H., Emmerich, M., Wang, H.: The hypervolume indicator hessian matrix:
analytical expression, computational time complexity, and sparsity. arXiv preprint
arXiv:2211.04171 (2022)

3. Emmerich, M., Deutz, A., Beume, N.: Gradient-based/evolutionary relay hybrid
for computing pareto front approximations maximizing the S-metric. In: Bartz-
Beielstein, T., et al. (eds.) HM 2007. LNCS, vol. 4771, pp. 140–156. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75514-2_11

4. Emmerich, M., Deutz, A.H.: Time complexity and zeros of the hypervolume indica-
tor gradient field. In: Schuetze, O., et al. (eds.) EVOLVE - A Bridge between Proba-
bility, Set Oriented Numerics, and Evolutionary Computation III. SCI, vol. 500, pp.
169–193. Springer, Cham (2012). https://doi.org/10.1007/978-3-319-01460-9_8

5. Emmerich, M., Yang, K., Deutz, A., Wang, H., Fonseca, C.M.: A multicriteria
generalization of Bayesian global optimization. In: Pardalos, P.M., Zhigljavsky, A.,
Žilinskas, J. (eds.) Advances in Stochastic and Deterministic Global Optimization.
SOIA, vol. 107, pp. 229–242. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29975-4_12

6. Guerreiro, A.P., Fonseca, C.M., Emmerich, M.T., et al.: A fast dimension-sweep
algorithm for the hypervolume indicator in four dimensions. In: CCCG, pp. 77–82
(2012)

7. Ishibuchi, H., Masuda, H., Nojima, Y.: A study on performance evaluation ability
of a modified inverted generational distance indicator. Association for Computing
Machinery, New York (2015). https://doi.org/10.1145/2739480.2754792

8. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
J. ACM 22(4), 469–476 (1975). https://doi.org/10.1145/321906.321910

9. Paquete, L., Schulze, B., Stiglmayr, M., Lourenço, A.C.: Computing representa-
tions using hypervolume scalarizations. Comput. Oper. Res. 137, 105349 (2022)

10. Schütze, O., et al.: A scalar optimization approach for averaged Hausdorff approx-
imations of the Pareto front. Eng. Optim. 48(9), 1593–1617 (2016)

11. Sosa Hernández, V.A., Schütze, O., Emmerich, M.: Hypervolume maximization via
set based Newton’s method. In: Tantar, A.-A., et al. (eds.) EVOLVE - A Bridge
between Probability, Set Oriented Numerics, and Evolutionary Computation V.
AISC, vol. 288, pp. 15–28. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-07494-8_2

12. Sosa-Hernández, V.A., Schütze, O., Wang, H., Deutz, A.H., Emmerich, M.: The
set-based hypervolume newton method for bi-objective optimization. IEEE Trans.
Cybern. 50(5), 2186–2196 (2020). https://doi.org/10.1109/TCYB.2018.2885974

https://doi.org/10.1016/j.ejor.2006.08.008
http://arxiv.org/abs/2211.04171
https://doi.org/10.1007/978-3-540-75514-2_11
https://doi.org/10.1007/978-3-319-01460-9_8
https://doi.org/10.1007/978-3-319-29975-4_12
https://doi.org/10.1007/978-3-319-29975-4_12
https://doi.org/10.1145/2739480.2754792
https://doi.org/10.1145/321906.321910
https://doi.org/10.1007/978-3-319-07494-8_2
https://doi.org/10.1007/978-3-319-07494-8_2
https://doi.org/10.1109/TCYB.2018.2885974


418 A. Deutz et al.

13. Uribe, L., Bogoya, J.M., Vargas, A., Lara, A., Rudolph, G., Schütze, O.: A set based
newton method for the averaged Hausdorff distance for multi-objective reference
set problems. Mathematics 8(10), 1822 (2020)

14. Wang, H., Deutz, A., Bäck, T., Emmerich, M.: Hypervolume indicator gradient
ascent multi-objective optimization. In: Trautmann, H., et al. (eds.) EMO 2017.
LNCS, vol. 10173, pp. 654–669. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-54157-0_44

15. Wang, H., Emmerich, M., Deutz, A., Hernández, V.A., Schütze, O.: The Hyper-
volume Newton Method for Constrained Multi-objective Optimization Problems.
Preprints (2022). https://doi.org/10.20944/preprints202211.0103.v1

16. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—
a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-
P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0056872

17. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Perfor-
mance assessment of multiobjective optimizers: an analysis and review. IEEE Trans.
Evol. Comput. 7(2), 117–132 (2003). https://doi.org/10.1109/TEVC.2003.810758

https://doi.org/10.1007/978-3-319-54157-0_44
https://doi.org/10.1007/978-3-319-54157-0_44
https://doi.org/10.20944/preprints202211.0103.v1
https://doi.org/10.1007/BFb0056872
https://doi.org/10.1109/TEVC.2003.810758


On the Computational Complexity
of Efficient Non-dominated Sort Using

Binary Search

Ved Prakash1, Sumit Mishra1(B), and Carlos A. Coello Coello2

1 Deptartment of CSE, Indian Institute of Information Technology Guwahati,
Guwahati, India

{ved.prakash,sumit}@iiitg.ac.in
2 Departamento de Computación, CINVESTAV-IPN, Mexico City, Mexico

ccoello@cs.cinvestav.mx

Abstract. Over the years, several approaches have been proposed to
solve the problem of non-dominated sorting, which is one of the crucial
steps in Pareto dominance-based multi-objective evolutionary algorithms
(MOEAs). However, some of these approaches, even though they are
correct, lack an in-depth analysis. In this paper, we focus on an approach
known as Efficient Non-dominated Sort using Binary Search (ENS-BS)
and show that the best case scenario presented in the paper for ENS-
BS is not correct. We show this by providing a counter-example where
the number of dominance comparisons is less than that reported in the
original paper. This is done by obtaining a generic equation and getting
the scenario inspired by this equation.

Keywords: Non-dominated sorting · Dominance comparisons · Time
complexity

1 Introduction

Pareto dominance-based multi-objective evolutionary algorithms (MOEAs) rank
the solutions in their population based on the Pareto-dominance relation. This
ranking of solutions is done using non-dominated sorting. Non-dominated sorting
is defined for points that belong to an M -dimensional space R

M . In the field of
evolutionary computation, each such M -dimensional point is an objective vector
associated with some solution to an optimization problem. The set of such points
is known as a MOEA’s population.

The approaches for non-dominated sorting do not use any problem-related
information such as the structure of an individual. Hence, we are not making any
difference between the individuals and their objective vectors. Without loss of
generality, let us assume that all objectives that correspond to the coordinates of
the points need to be minimized. In such conditions, Pareto dominance is defined
as follows: a point p = 〈p1, p2, . . . , pM 〉 dominates a point q = 〈q1, q2, . . . , qM 〉,
denoted as p ≺ q, if the two following conditions are satisfied:
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• ∀m ∈ {1, 2, . . . ,M} pm ≤ qm
• ∃m ∈ {1, 2, . . . ,M} pm < qm.

When neither p ≺ q nor q ≺ p, then points p and q are said to be non-
dominated. Let P = {P1,P2, . . . ,PN} be a population of size N where each
point in the population is represented using a vector of size M . In non-dominated
sorting, the population P is divided into different fronts {F1, F2, . . . , FK} where
1 ≤ K ≤ N , such that:

• The union of all the fronts is equal to the population.
• All the fronts are disjoint.
• All the points in a particular front are non-dominated with each other.
• All the points of the first front are not dominated by any other point.
• For every point p ∈ Fk where 2 ≤ k ≤ K, ∃q ∈ Fk−1 such that q ≺ p.

Non-dominated sorting provides a unique partition. A point is said to have
rank k if it belongs to front Fk. Let the cardinality of a front Fk be nk, so
N =

∑K
k=1 nk.

In the last 20 years, non-dominated sorting has attracted a lot of attention
from the research community and the Fast non-dominated sorting algorithm [2]
is one of the approaches which made it popular. The full complexity of the non-
dominated sorting problem is not well understood. Unfortunately, the analysis
of some of the approaches for non-dominated sorting is imperfect.

An approach based on the divide-and-conquer paradigm was proposed by
Jensen [5] with time complexity O(N logM−1 N). Jensen’s approach is built on
the approach proposed by Kung et al. [6] where it has been shown that the
non-dominated points can be obtained in O(N log N) time for M = 2, 3 and in
O(N logM−2 N) time for M ≥ 4. This same time complexity has been discussed
in [1]. Jensen’s approach has a limitation that the points cannot share the same
value for any objective. The author claimed that this limitation can be easily
removed. However, Fortin et al. [3] showed that removing this limitation will lead
to an increase in the worst-case time complexity. In recent years, there has been
some work on the analysis of some of these approaches. In [9], it has been proved
that the worst-case time complexity of Deductive Sort [7] is Θ(MN3) contrary to
the claimed worst-case time complexity of Θ(MN2). It has also been shown that,
after shuffling the input, the worst-case expected running time comes down to
O(MN2). Similarly, in [12], the best case time complexity of Deductive Sort [7]
is shown to be O(MN

√
N + N2) as opposed to the claimed O(MN

√
N) time

complexity. The worst-case time complexity of the Dominance Degree Approach
for Non-dominated Sorting (DDA-NS) [20] is Θ(MN2) in its original paper.
However, the worst-case time complexity of DDA-NS has been proved to be
Θ(MN2 + N3) in [10]. Recently, Filter Sort [17] has been proposed for non-
dominated sorting. However, the authors of this paper have not performed its
complexity analysis. In [8], it has been proved that Filter Sort has a worst-case
complexity of Ω(N3). In particular, a scenario has been presented which requires
Filter Sort to perform Θ(N3) dominance comparisons.
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Recently, Nigam et al. [16] presented a scenario where the number of domi-
nance comparisons performed by ENS-SS (sequential search version of Efficient
Non-dominated Sort) is less than that reported in the original paper [19] in the
best case scenario. However, the authors have not provided the best-case sce-
nario. In this paper, we show the number of dominance comparisons between
the points in the best case of ENS-BS (binary search version of Efficient Non-
dominated Sort) [19], is not correct. For this purpose, we have obtained a generic
equation that shows the number of dominance comparisons in the best case.
Based on this equation, we have identified a scenario where ENS-BS performs a
lower number of dominance comparisons than that reported in [19]. It is impor-
tant to clarify that, in this paper, we are not claiming that the scenario which
we have identified represents the best-case scenario.

2 Approach

The ENS approach works in two phases: (i) Presorting Phase and (ii) Ranking
Phase. ENS is summarized in Algorithm 1. In the first phase, the points are
sorted lexicographically based on the first objective. After presorting, the point
which comes later in the sorted list will never dominate the former points. Thus,
when two points p and q are compared, such that when q comes later than p in
the sorted list, then there are only two possibilities: (i) p dominates q and (ii) p
and q are non-dominated. In the second phase, the points are assigned a rank.
ENS takes the points from the sorted list one by one and ranks them.

Algorithm 1. ENS Framework

Input: P = {P1,P2, . . . ,PN}: A population of size N in M -dimensional space
Output: {F1, F2, . . .}: Set of fronts
1: Sort P in lexicographic order based on the first objective
2: NF ← 0 � Number of fronts; Initially it is 0
3: F ← ∅ � Set of fronts; Initially it is empty as no front has been obtained
4: for each point p ∈ P do
5: F ← Insert-BS(F, p)

6: return F = {F1, F2, . . .} � Set of non-dominated fronts

In this approach, if a point p ∈ Fk, then p is dominated by at least one point
in the preceding front. As discussed in the Presorting Phase, a point can never
be dominated by any succeeding point in the sorted population. Hence, a point
needs to be only compared with those points which have already been assigned
to some front.

The first point is assigned to the first front without any comparison. Any
subsequent point is assigned to a front Fk if it is dominated by at least one
point of all its previous fronts F1, F2, . . . , Fk−1 and is not dominated by all the
previously assigned points of front Fk. Here, one important thing to note is that it
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Algorithm 2. Insert-BS(F, p)
Input: F {F1, F2, . . . , FNF}: Set of non-dominated fronts, p: Point for insertion into set

of fronts
Output: Updated set of fronts after insertion of p
1: min ← 1
2: max ← NF

3: mid ←
⌊

(1+NF)
2

⌋

4: while True do � p has not been ranked yet
5: isDominated ← False
6: for u ← nmid down to 1 do � Check for each point in Fmid sequentially

starting from the last point
7: if Fmid(u) ≺ p then
8: isDominated ← True � p is dominated by Fmid(u)
9: Break � p cannot be added to Fmid

10: if isDominated = False then � p is not dominated by any of the point in Fmid

11: if mid = min then � Front at leaf is explored
12: Fmid ← Fmid ∪ {p} � Add p to Fmid

13: Break � p has been ranked
14: else
15: max ← mid

16: mid ←
⌊

(min+max)
2

⌋
� Explore left sub-tree

17: else
18: if min = NF then � Front at rightmost leaf is explored
19: NF ← NF + 1 � Increment the number of fronts
20: FNF ← ∅ � Create a new front
21: FNF ← FNF ∪ {p} � Add p to the newly created front
22: F ← F ∪ {FNF} � Add new front to the set of fronts
23: Break � p has been ranked
24: else if mid = min then � Front at leaf is explored
25: Fmid+1 ← Fmid+1 ∪ {p} � Add p to Fmid+1

26: Break � p has been ranked
27: else
28: min ← mid + 1

29: mid ←
⌊

(min+max)
2

⌋
� Explore right sub-tree

30: return F � Updated set of fronts after insertion of p

is not necessary to compare a point with the points of all the previously obtained
fronts. Thus, unnecessary comparisons can be avoided using the binary search
based technique. This is because of the transitivity nature of the dominance
relationship, i.e., if point p ≺ q and q ≺ r then p ≺ r. In this manner, a point
can be assigned to front Fk by comparing it with the points of the already
obtained log k fronts. The manner in which points are ranked using the binary
search based strategy is summarized in Algorithm 2.
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3 Best Case Analysis of ENS-BS

In the best case of ENS-BS, if a point p ∈ Fk, then p is dominated by the first
point (to which it is compared) of all the k − 1 previous fronts. As a binary
search based strategy is used, the point p is compared with �log k� previous
fronts. Since, there are nk points in Fk, so the number of dominance comparisons
between points of different fronts to obtain front Fk is �log k�nk. There are a total
of K fronts, and therefore, the number of dominance comparisons between points
of different fronts, in the best case is given by Eq. (1).

dCdiff =
K∑

k=1

�log k�nk (1)

Each of the nk points of a front Fk should be compared with the already
assigned points of the same front Fk. This means that the first point of Fk is
not compared with any of the points of Fk. The second point of Fk is compared
with the first point of Fk. The third point of Fk is compared with the (already
assigned) two points of Fk and so on. So, the number of dominance comparisons
between points of the same front, in the best case, to produce front Fk is obtained
using Eq. (2).

dCk =
nk∑

i=1

(i − 1) =
1
2
nk(nk − 1) (2)

As there are a total of K fronts, therefore, the number of dominance com-
parisons between points of the same front is given by Eq. (3).

dCsame =
K∑

k=1

1
2
nk(nk − 1) =

1
2

K∑

k=1

n2
k − 1

2

K∑

k=1

nk =
1
2

[
K∑

k=1

n2
k

]

− 1
2
N (3)

The number of dominance comparisons in the best case of ENS-BS is the sum
of the dominance comparisons between points of different fronts and the domi-
nance comparisons between points of the same front. The number of dominance
comparisons in the best case of ENS-BS is given by Eq. (4).

dC = dCsame + dCdiff

=
1
2

[
K∑

k=1

n2
k

]

− 1
2
N +

K∑

k=1

�log k�nk (4)

For a minimum number of dominance comparisons, the value of Eq. (4)
should be minimum. For this, we need to know the number of fronts and the
number of points per front. In [19], the authors claim that the minimum num-
ber of dominance comparisons occurs when all the points are in different fronts.
This means that the number of fronts K = N and the cardinality of each front
is 1. When there is only one point in each front, then the number of dominance
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comparisons between points of the same front is 0. The total number of dom-
inance comparisons is equal to the dominance comparisons between points of
different fronts and is given by Eq. (5) [19]. In this analysis, we are assuming
that N = 2x −1 where x ≥ 1. The reason is that the scenario which we obtain is
based on N = 2x − 1. However, the scenario can be generalized for any positive
value of N .

dCorig =
N∑
i=1

�log i�

= 0 + 1 + [2 + 2]︸ ︷︷ ︸
2 times

+ [3 + 3 + 3 + 3]︸ ︷︷ ︸
4 times

+ [4 + 4 + · · · + 4]︸ ︷︷ ︸
8 times

+ [5 + 5 + · · · + 5]︸ ︷︷ ︸
16 times

+ · · · +

[{log(N + 1) − 1} + {log(N + 1) − 1} + · · · + {log(N + 1) − 1}]︸ ︷︷ ︸
2log(N+1)−2 times

+

[{log(N + 1)} + {log(N + 1)} + · · · + {log(N + 1)}]︸ ︷︷ ︸
2log(N+1)−1−1 times

= 0 + 1 · 20 + 2 · 21 + 3 · 22 + 4 · 23 + 5 · 24 + · · · +
[log(N + 1) − 1] ·

[
2log(N+1)−2

]
+ log(N + 1) ·

[
2log(N+1)−1 − 1

]

= 0 + 1 · 20 + 2 · 21 + 3 · 22 + 4 · 23 + 5 · 24 + · · · +
[log(N + 1) − 1] ·

[
2log(N+1)−2

]
+ log(N + 1) ·

[
2log(N+1)−1

]
− log(N + 1)

=

⎡
⎣

log(N+1)∑
i=1

i · 2i−1

⎤
⎦ − log(N + 1)

=

[
x∑

i=1

i · 2i−1

]
− x As N = 2x − 1 =⇒ x = log(N + 1)

= [(x − 1)2x + 1] − x (From Eq. (12))

= x2x − 2x + 1 − x

= x(2x − 1) − (2x − 1)

= (x − 1)(2x − 1)

= [log(N + 1) − 1] N

= N log(N + 1) − N (5)

4 Identified Scenario

There are three terms in Eq. (4). The second term is fixed for a particular value
of N . So, the first and third term play a role in obtaining the minimum number
of dominance comparisons and thus determining the best-case scenario. Given
a set of cardinalities of fronts, the first term will give the same value for any
of the permutations of these cardinalities. However, the value of the third term
will vary depending on the permutation. From the third term, it is clear that
the cardinality of later fronts should be smaller than the cardinality of former
fronts because a larger value is being multiplied with the cardinality of later
fronts than with the former fronts.
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The value of �log k� in Eq. (4) for the first front is 0(= �log 1�). The same
value for the second front is 1(= �log 2�). The value of �log k� for the third
and the fourth front is 2(= �log 3� = �log 4�). Similarly, the value of �log k�
for F5, F6, F7, F8 is 3. The value of �log k� for F9, F10, . . . , F16 is 4 and so on.
This means that the same value of �log k� is multiplied with the cardinality of
multiple fronts.

The value 0 is multiplied with the cardinality of one front (i.e., F1). The
value 1 is also multiplied with the cardinality of one front (i.e., F2). The value
2 is multiplied with the cardinality of two fronts (i.e., F3, F4). The value 3 is
multiplied with the cardinality of four fronts (i.e., F5, F6, F7, F8). The value 4
is also multiplied with the cardinality of eight fronts (i.e., F9, F10, . . . , F16) and
so on. In general, the value x ≥ 1 is multiplied with the cardinality of 2x−1

fronts. So, we will keep the cardinality of multiple fronts the same. All those
fronts whose cardinality is multiplied with the same value of �log k�, will have
the same cardinality.

Based on this aforementioned discussion, in our scenario, the number of fronts
is K = N+1

2 . For simplicity of the analysis, we assume that N = 2x − 1 where
x ≥ 1. So x = log(N + 1). In this scenario, the cardinality of the fronts is as
follows.

• The cardinality of F1 is x
• The cardinality of F2 is x − 1
• The cardinality of F3, F4 is x − 2
• The cardinality of F5, F6, F7, F8 is x − 3
• The cardinality of F9, F10, . . . , F16 is x − 4
• The cardinality of F17, F18, . . . , F32 is x − 5

...
• The cardinality of FK

2
, FK

2 +1, . . . , FK is 1

In our scenario also, each point in a front is dominated by all the points in its
preceding front which means that a point p ∈ Fk will be only compared with one
point in its previous fronts. The cardinality of all the fronts for the population
size

{
23 − 1, 24 − 1, 25 − 1, 26 − 1

}
is shown in Table 1. The process to obtain

the cardinality of the fronts is summarized in Algorithm 3. In this Algorithm,
card[k] stores the cardinality of front Fk.

Table 1. Cardinality of the population for ENS-BS

N n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 n16 n17, n18, . . . , n32

7 3 2 1 1

15 4 3 2 2 1 1 1 1

31 5 4 3 3 2 2 2 2 1 1 1 1 1 1 1 1

63 6 5 4 4 3 3 3 3 2 2 2 2 2 2 2 2 1, 1, . . . , 1
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Algorithm 3. Cardinality of Fronts

Require: N : Number of points in the population
Ensure: card[ ]: Cardinality of each front in the population
1: K ← N+1

2
� Number of fronts

2: card[1...K] ← ∅ � Array to store the cardinality of the fronts
3: x ← log(N + 1)
4: index ← 1
5: card[index] ← log(N + 1) � Cardinality of first front
6: index ← index + 1
7: card[index] ← log(N + 1) − 1 � Cardinality of second front

� Obtain the cardinality of remaining fronts
8: for i ← 1 to x − 2 do
9: for j ← 1 to 2i do

10: card[index] ← log(N + 1) − 1 − i
11: index ← index + 1

12: Return card[ ] � Return the cardinality of each front in the population

Now, we obtain the number of dominance comparisons in our identified sce-
nario. The number of dominance comparison consists of two factors: (1) the
number of dominance comparisons between points of the same front and (2) the
number of dominance comparisons between points of different fronts.

4.1 Dominance Comparisons Between Points of the Same Front

There is one front with cardinality x. Similarly, there is one front with cardi-
nality x − 1. There are two fronts with cardinality x − 2. There are four fronts
with cardinality x − 3. There are eight fronts with cardinality x − 4. There are
sixteen fronts with cardinality x−5 and so on. At the end, there are 2x−2 fronts
with cardinality 1. For a front having cardinality z, the number of dominance
comparisons among the points of such front is 1

2z(z − 1) as all the points are
compared with each other. Thus, the number of dominance comparisons between
points of the same front, is given by Eq. (6).

dCsame =
1

2
n1(n1 − 1) +

1

2
n2(n2 − 2) + · · · +

1

2
nK(nK − 1)

=
1

2
x(x − 1) +

1

2
(x − 1)(x − 2) + 2

[
1

2
(x − 2)(x − 3)

]
+

22

[
1

2
(x − 3)(x − 4)

]
+ 23

[
1

2
(x − 4)(x − 5)

]
+ 24

[
1

2
(x − 5)(x − 6)

]
+

· · · + 2x−2

[
1

2
(x − (x − 1))(x − x)

]

=
1

2
x(x − 1) +

x−1∑
i=1

2i−1

{
1

2
(x − i)(x − i − 1)

}
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=
1

2
x(x − 1) +

1

4

x−1∑
i=1

2i(x − i)(x − i − 1)

=
1

2
x(x − 1) +

1

4

x−1∑
i=1

2i(x2 − x + i2 − 2xi + i)

=
1

2
x(x − 1) +

1

4
(x2 − x)

[
x−1∑
i=1

2i

]

︸ ︷︷ ︸
A

+
1

4

[
x−1∑
i=1

i22i

]

︸ ︷︷ ︸
B

−1

4
(2x − 1)

[
x−1∑
i=1

i2i

]

︸ ︷︷ ︸
C

=
1

2
x(x − 1) +

1

4
(x2 − x)(2x − 2) +

1

4
(x22x + 3 · 2x+1 − x2x+2 − 6)−

1

4
(2x − 1)(x2x − 2x+1 + 2) From Eq. (13), (16) and (19)

=
1

2
x(x − 1) +

1

4
(x22x − 2 · x2 − x2x + 2x) +

1

4
(x22x + 3 · 2x+1 − x2x+2 − 6)−

1

4
(x22x+1 − x2x+2 + 4x − x2x + 2x+1 − 2)

=
1

2
x(x − 1) +

1

4

[
(x22x + x22x − x22x+1) − (x2x + x2x+2 − x2x+2 − x2x)−

2x2 + 2x + 3 · 2x+1 − 6 − 4x − 2x+1 + 2
]

=
1

2
x(x − 1) +

1

2

(
2x+1 − x2 − x − 2

)

=
1

2

(
x2 − x + 2x+1 − x2 − x − 2

)
=

1

2

[
2x+1 − 2x − 2

]

= 2x − x − 1 = (N + 1) − log(N + 1) − 1 = N − log(N + 1) (6)

4.2 Dominance Comparisons Between Points of Different Fronts

The number of dominance comparisons between points of different fronts is given
by Eq. (7).

dCdiff =
K∑

k=1

�log k�nk

= 0 · n1 + 1 · n2 + 2(n3 + n4) + 3(n5 + n6 + n7 + n8) + 4(n9 + n10 + · · · + n16) + · · ·+
logK(nK

2
+ nK

2 +1
+ · · · + nK)

= 0 · x+ 1 · (x − 1) + 2 [(x − 2) + (x − 2)]︸ ︷︷ ︸
2 times

+3 [(x − 3) + (x − 3) + (x − 3) + (x − 3)]︸ ︷︷ ︸
4 times

+

4 [(x − 4) + (x − 4) + · · · + (x − 4)]︸ ︷︷ ︸
8 times

+ · · ·+

logK [1 + 1 + · · · + 1]︸ ︷︷ ︸
K
2 times

= (x − 1) + 2 · 2 · (x − 2) + 3 · 22 · (x − 3) + 4 · 23 · (x − 4) + · · ·+
(x − 1) · 2x−2 · 1

=

x−1∑

i=1

i · 2i−1 · (x − i)
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=
1

2

x−1∑

i=1

x · i · 2i − 1

2

x−1∑

i=1

i22i

=
1

2
x

[
x−1∑

i=1

i2i

]

︸ ︷︷ ︸
C

−1

2

[
x−1∑

i=1

i22i

]

︸ ︷︷ ︸
B

=
1

2
x

[
x2x − 2x+1 + 2

] − 1

2

[
x22x + 3 · 2x+1 − x2x+2 − 6

]
From Eq. (16) and (19)

=
1

2

[
x22x − x2x+1 + 2x − x22x − 3 · 2x+1 + x2x+2 + 6

]

=
1

2

[−x2x+1 + 2x − 3 · 2x+1 + x2x+2 + 6
]

=
1

2

[
x2x+1 − 3 · 2x+1 + 2x+ 6

]

=
1

2
[2(N + 1) log(N + 1) − 6(N + 1) + 2 log(N + 1) + 6]

= (N + 1) log(N + 1) − 3N + log(N + 1) (7)

Thus, the number of dominance comparisons in our identified scenario by
ENS-BS is given by Eq. (8).

dCident = dCsame + dCdiff

= [N − log(N + 1)] + [(N + 1) log(N + 1) − 3N + log(N + 1)]
= (N + 1) log(N + 1) − 2N (8)

We have obtained the number of dominance comparisons in the identified
scenario for population sizes

{
23 − 1, 24 − 1, 25 − 1, . . . , 220 − 1

}
using Eq. (8).

We have also obtained the number of dominance comparisons for the same pop-
ulation size using Eq. (5). These two dominance comparisons are shown in Fig. 1.
From this figure, it is evident that the number of dominance comparisons in the
identified scenario is less than that reported in [19]. The difference between the
number of dominance comparisons in our identified scenario and the scenario
reported in [19] is given by Eq. (9).

diff = dCorig − dCident

= [N log(N + 1) − N ] − [(N + 1) log(N + 1) − 2N ]
= N − log(N + 1) (9)
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Fig. 1. Number of dominance comparisons performed by ENS-BS in the identified
scenario and in the scenario reported in [19].

5 Conclusion and Future Work

In this paper, we have shown a scenario where the number of dominance compar-
isons performed by ENS-BS is less than that reported in the original paper [19]
for the best case. Here, we are not claiming that the scenario which we have
identified represents the best-case scenario. We have obtained an equation whose
value provides the minimum number of dominance comparisons once we obtain
the best-case scenario. Based on this equation, the scenario has been identified.
Although the best-case time complexity does not matter much in most cases,
still for the sake of completeness it is better to analyze such case properly as
well. There have been some approaches like T-ENS [18] ENS-NDT [4], DCNS-
BS [13,14], DCNSRC-BS [15], and Generalized Best Order Sort [11] which also
follow the binary search based strategy to assign a point to its particular front.
So, we will investigate whether the time complexity analysis of these approaches
has some issues or not. Also, identifying the best-case scenario can be another
research path that can be carried out in the future.

Acknowledgements. Carlos A. Coello Coello gratefully acknowledges support from
CONACyT grant no. 2016-01-1920 (Investigación en Fronteras de la Ciencia 2016).
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Appendix

S =
x∑

i=1

i · 2i−1

= 1 · 20 + 2 · 21 + · · · + (x − 1) · 2x−2 + x · 2x−1 (10)

2S = 1 · 21 + 2 · 22 + · · · + (x − 1) · 2x−1 + x · 2x (11)

Subtract Eq. (11) from Eq. (10),

−S = 1 · 20 + 1 · 21 + 1 · 22 + · · · + 1 · 2x−1 − x · 2x

=
20 (2x − 1)

2 − 1
− x · 2x

= 2x − 1 − x · 2x

S = x · 2x − 2x + 1
= (x − 1)2x + 1 (12)

A =
x−1∑

i=1

2i = 2
(
2x−1 − 1

)
= 2x − 2 (13)

B =
x−1∑

i=1

i22i

= 1 · 2 + 22 · 22 + 32 · 23 + · · · + (x − 1)2 · 2x−1 (14)

2B = 1 · 22 + 22 · 23 + 32 · 24 + · · · + (x − 2)2 · 2x−1 + (x − 1)2 · 2x (15)

Subtract Eq. (15) from (14),

−B = 1 · 2 + 3 · 22 + 5 · 23 + · · · + (2x − 3) · 2x−1 − (x − 1)2 · 2x

= 2
[
1 + 3 · 2 + 5 · 22 + · · · + (2x − 3) · 2x−2

] − (x − 1)2 · 2x

= 2
[
x2x − 2x − 3 · 2x−1 + 3

] − (x2 − 2x + 1) · 2x

= x2x+1 − 2x+1 − 3 · 2x + 6 − x22x + x2x+1 − 2x

= x2x+2 − 2x+1 − 2x+2 − x22x + 6

B = x22x + 2x+2 + 2x+1 − x2x+2 − 6

= x22x + 3 · 2x+1 − x2x+2 − 6 (16)

C =
x−1∑

i=1

i2i

= 1 · 2 + 2 · 22 + 3 · 23 + · · · + (x − 1)2x−1 (17)

2C = 1 · 22 + 2 · 23 + 3 · 24 + · · · + (x − 2)2x−1 + (x − 1)2x (18)
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Subtract Eq. (18) from (17),

−C = 2 + 22 + 23 + · · · + 2x−1 − (x − 1)2x

= 2(2x−1 − 1) − (x − 1)2x

= 2x − 2 − x2x + 2x

= 2x+1 − 2 − x2x

C = x2x − 2x+1 + 2 (19)
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Abstract. This paper studies the use of machine learning models for
multiobjective optimization of vaccinations used to control an epidemic
spreading in a graph representing contacts between individuals. Graph
nodes are parameterized by attributes which are known to affect the
susceptibility of people to influenza and the disease transmission prob-
ability depends on the attributes of the node which can get infected.
Instead of directly optimizing the assignment of vaccine doses to graph
nodes, in the proposed approach an evolutionary algorithm is used to
train a neural network, which is subsequently used to make decisions
about vaccinating the nodes of the graph. In the paper, both a classifier
and a regression model are used to select graph nodes for vaccination.
The results obtained using the machine learning models improve over the
results obtained by optimizing the assignment of vaccine doses to graph
nodes. Importantly, the models trained on a certain problem instance
can be used for selecting graph nodes for vaccination when other prob-
lem instances are solved.

Keywords: Vaccination optimization · DPEC · Neural networks ·
Graph-based optimization

1 Introduction

This paper studies the application of evolutionary algorithms to multiobjective
optimization of vaccinations with the goal of limiting the spread of an epidemic
which is simulated on a graph. The graph-based formalism can be used for
representing threats spreading in various systems, such as epidemics, financial
crises, wildfires and cascading failures in the infrastructure. Attempts to control
spreading threats give rise to a number of optimization problems ranging from
high-level abstractions to real-life applications. For example, in the Firefighter
Problem (FFP) [9] the spreading of fire is simulated in discrete time steps on
an undirected graph G = 〈V,E〉 with Nv nodes. The nodes can be in one of the
states ‘B’ - burning, ‘D’ - defended and ‘U’ - untouched (neither burning nor
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https://doi.org/10.1007/978-3-031-27250-9_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27250-9_31&domain=pdf
http://orcid.org/0000-0003-4994-9930
https://doi.org/10.1007/978-3-031-27250-9_31


436 K. Michalak

defended). In each time step, a limited number of nodes Nf can be defended
(set to the ‘D’ state), which makes them resistant to fire until the end of the
simulation. The spreading of fire is, typically, deterministic: a node catches on
fire if it is not defended and is adjacent to an already burning node. In most
publications, solutions to the FFP are represented as permutations of Nv graph
nodes, but other representations have also been studied in the literature [10,15].
In order to evaluate a solution π ∈ ΠNv

, the spreading of fire is simulated on
the graph G and in each time step the first Nf yet untouched nodes are selected
from the permutation π and set to the ‘D’ state. In the original version of the
problem, the objective function is the number of nodes protected from fire at
the end of the simulation, but FFP with a non-uniform node cost [14] as well as
the multiobjective [13] version were also studied.

Another phenomenon observed in real-life networks which gives rise to opti-
mization problems is the financial contagion [21]. Financial contagion is the
spread of disturbances in the market caused by the fact that failing companies
are unable to meet their obligations towards other companies leading to more
and more companies failing following some initial shock. In order to simulate the
spreading of bankruptcies on a graph, a threshold failure mechanism proposed
by Watts [20] and used, among others, by Burkholz et al. [2] can be employed.
Graph nodes can be protected by adjusting thresholds Θv ∈ [0, 1] (for v ∈ V ),
which can be interpreted as the fractions of the assets set aside by companies as
reserves for difficult times. Limiting the impact of the financial contagion can be
studied as a multiobjective optimization problem in which the level of reserves
has to be minimized along with the number of companies which fail as a result
of the spreading wave of bankruptcies.

Last, but not least, the graph-based formalism can be used for studying
epidemics. When an epidemic is simulated on a graph, the nodes can be set to
states such as ‘S’ - susceptible, ‘I’ - infected, or ‘R’ - recovered. The outbreak
of an epidemic is simulated by setting some nodes to the ‘I’ state and then the
disease spreads via contacts represented as graph edges. Typically, the spreading
of the disease is non-deterministic. For example, a node in the ‘S’ state can
catch the disease from each infected (‘I’) node to which it is connected by an
edge with the probability γ per a simulation time step. Based on such epidemic
spreading model, the effectiveness of various epidemic control measures can be
studied. For example, the possibility of vaccinating the nodes can be added to the
model, by allowing the nodes to be set to the ‘V’ - vaccinated state [8,17]. Using
the Susceptible-Vaccinated-Infected-Recovered (SVIR) model [18], vaccination
optimization can be studied as a multiobjective optimization problem in which
both the number of vaccine doses and the number of infected individuals are to
be minimized. Studying such optimization problem is interesting from a practical
perspective, because the obtained solutions can tell us how many disease cases
we can expect when a given number of vaccine doses are distributed. Conversely,
by studying the Pareto front produced by the optimization algorithm, we can
determine how many vaccine doses we need to distribute, at least, to prevent
the number of infected individuals from exceeding a certain limit. This, on the
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other hand is important, in order not to allow the epidemic to grow to such size
that exceeds the capacity of the healthcare system. Also, Pareto fronts obtained
when solving the vaccination optimization problem often show the effects of
herd immunity - an effect which causes more nodes to be protected than just the
vaccinated ones, because they are cut off from the infection source. Vaccination
optimization using individual-based simulations is competitive to optimization
using compartmental models, as some studies show [3]. Another advantage of
this approach is that it allows assigning multiple attributes to graph nodes, such
as the age, gender, or occupation, etc. in the case of people, and species in the
case of animals.

In this paper, the multiobjective vaccination optimization problem is studied
on graphs in which attributes known to affect the probability of getting influenza
[7] are assigned to the nodes. This optimization problem is solved using evolution-
ary algorithms augmented by machine learning models. The paper is organized
as follows. Section 2 defines the optimization problem along with the description
of the attributes assigned to graph nodes. Section 3 describes the optimization
algorithms studied in the paper. Section 4 presents the experimental setup and
discusses the results. Section 5 concludes the paper.

2 Optimization Problem

The optimization problem studied in this paper is the bi-objective minimiza-
tion of the number of vaccine doses and the number of individuals infected in
a simulated epidemic. Because vaccinations are administered before the epi-
demic outbreak, the optimization problem represents a preemptive, rather than
reactive, vaccination campaign. In such case, some well-known counter-epidemic
strategies, such as ring vaccinations and acquaintance vaccinations, cannot be
used, because at the time the vaccine is administered it is not known who will
become infected when the epidemic starts. The Pareto front obtained by solv-
ing this optimization problems represents the best known trade-offs between the
size of the vaccination campaign and the size of an epidemic outbreak. Natu-
rally, it would be best to minimize both, because the vaccinations cost money
and require organizational effort and the illnesses cause multiple problems, but,
unfortunately, these objectives cannot be optimized at the same time. Therefore,
a bi-objective optimization problem is defined, using simulations of epidemic
outbreaks on a graph G = 〈V,E〉 with Nv nodes to determine the number of
infected individuals. Solutions to this optimization problem are binary vectors of
length Nv in which each element corresponds to one graph node and determines
if this node should be vaccinated (elements equal 1) or not (elements equal 0).
Formally, the problem is defined as:

minimize F (x) = (f1(x), f2(x))
subject to x ∈ Ω,

(1)

where Ω = {0, 1}Nv is the solution space of this optimization problem.
The first objective is the number of vaccinated nodes: f1 =

∑Nv

i=1 xi. The sec-
ond objective is the number of nodes infected in a simulated epidemic outbreak.
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2.1 Simulation-Based Calculation of the Objective f2

In order to determine the value of the objective f2(x), Nsim = 10 independent
simulations are performed, each starting with a fraction αinf = 0.01 of initially
infected nodes. In each run, the infected nodes are randomly selected with the
uniform probability from all the nodes in V , so the solutions have to be general
enough to stop the epidemic outbreak regardless of where it starts. The epidemic
is simulated according to the Susceptible-Vaccinated-Infected-Recovered (SVIR)
model [18]. At the beginning of the simulation run, nodes for which the elements
of x equal 1 are set to the vaccinated (‘V’) state. Subsequently, αinf · Nv nodes
are randomly selected with the uniform probability from all the nodes in V and
if they were not vaccinated they are set to the infected (‘I’) state. All the other
nodes remain in the susceptible (‘S’) state. Then, the epidemic is simulated in
discrete time steps. The state of the graph at a time step t is represented as the
vector of node states st ∈ {‘S’, ‘V’, ‘I’, ‘R’}Nv and the state of a node v ∈ V
at a time step t is the element of that vector st[v] ∈ {‘S’, ‘V’, ‘I’, ‘R’}. In each
time step, the disease spreads from infected (‘I’) nodes to susceptible nodes (‘S’).
The disease transmission probability is calculated for each node as described in
Sect. 2.3 using the real-life attributes described in Sect. 2.2. During the simula-
tion, infected nodes recover from the disease with the probability β = 0.1 per
a time step. Recovered nodes are set to the ‘R’ state and they are immune to the
disease until the end of the simulation. Therefore, the epidemic is guaranteed to
stop within a finite time period, which makes this model convenient for evalu-
ating solutions to the optimization problem. After the simulation run number
s ∈ {1, . . . , Nsim} stops, the value f

(s)
2 (x) is calculated as the number of nodes

that got infected in that simulation run (technically, it suffices to count the nodes
in the ‘R’ state at the end of the simulation). The value of the f2 objective for
the solution x is calculated by averaging the results of Nsim simulation runs:
f2(x) = 1

Nsim

∑Nsim

s=1 f
(s)
2 (x).

2.2 Real-Life Attributes Affecting the Susceptibility to the Disease

Graph nodes are parameterized by attributes which are known to affect the
susceptibility of people to influenza and the disease transmission probability
depends on the attributes of the node which can get infected. The attributes
used in this paper are based on the findings presented in the work of Guer-
risi et al. [7], which discusses the results of a cohort study from 2012/13 to
2017/18. Consider an attribute, for example the ‘Age’. For each value ai of this
attribute, the number of people for whom this value was recorded N(ai) is given
in the aforementioned paper [7, Table 3], as well as the number of influenza
cases n(ai) reported among people with the attribute value ai. From the N(ai)
and n(ai) values the probability of observing the attribute value ai can be cal-
culated as P (ai) = N(ai)∑

i N(ai)
and the conditional probability of observing the

attribute value ai if the person is in the infected group can be calculated as
P (ai|inf) = n(ai)∑

i n(ai)
. In Table 1, the attributes used in this paper are presented,
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along with the probabilities P (ai), P (ai|inf) and the ratio P (ai|inf)
P (ai)

which is used
for determining the infection probability in Sect. 2.3.

Table 1. Real-life attributes affecting the susceptibility to the disease. Probabilities
calculated using frequencies presented in [7, Table 3].

Attribute P (ai) P (ai|inf) P (ai|inf)
P (ai)

name/value

Gender

Male 0.3952 0.3459 0.8754

Female 0.6048 0.6541 1.0814

Age

[0 − 5) 0.0124 0.0237 1.9054

[5 − 15) 0.0460 0.0595 1.2935

[15 − 45) 0.2415 0.2792 1.1560

[45 − 65) 0.4036 0.4178 1.0352

[65 − 75) 0.2437 0.1887 0.7744

≥ 75 0.0528 0.0311 0.5899

Household

Alone 0.1593 0.1562 0.9805

Child 0.3137 0.3663 1.1676

Adults 0.5269 0.4775 0.9061

Occupation

Working 0.4778 0.5284 1.1057

Student 0.0892 0.1180 1.3231

Unemployed 0.0237 0.0300 1.2643

Retired 0.3683 0.2822 0.7661

Sick leave 0.0410 0.0415 1.0133

Residency

Rural 0.1963 0.1931 0.9835

Urban 0.8037 0.8069 1.0040

Public transport

No 0.8455 0.8216 0.9718

Yes 0.1545 0.1784 1.1543

Pets

No 0.5482 0.5070 0.9249

Yes 0.4518 0.4930 1.0912

Contacts: patients

No 0.8990 0.8853 0.9848

Yes 0.1010 0.1147 1.1353

Attribute P (ai) P (ai|inf) P (ai|inf)
P (ai)

name/value

Contacts: elderly

No 0.8987 0.9024 1.0041

Yes 0.1013 0.0976 0.9640

Contacts: group

No 0.6813 0.6494 0.9532

Yes 0.3187 0.3506 1.0999

Contacts: children

No 0.7594 0.7123 0.9379

Yes 0.2406 0.2877 1.1960

Vaccination (last season)

No 0.6201 0.6619 1.0673

Yes 0.3799 0.3381 0.8901

Smoking

No 0.8932 0.8904 0.9969

Yes 0.1068 0.1096 1.0261

Comorbidity

None 0.7550 0.7395 0.9795

Asthma 0.0563 0.0778 1.3823

Diabetes 0.0366 0.0316 0.8647

Heart 0.0961 0.0851 0.8858

Kidney 0.0059 0.0049 0.8236

Immunosup. 0.0255 0.0284 1.1148

Pulmonary 0.0247 0.0326 1.3225

Respiratory allergy

No 0.6652 0.6153 0.9249

Yes 0.3348 0.3847 1.1492

BMI

Underweight 0.0434 0.0438 1.0084

Normal 0.5772 0.5583 0.9671

Overweight 0.2709 0.2703 0.9977

Obese 0.1084 0.1276 1.1775

In order to assign the attributes to the graph nodes, Nv attribute vectors are
randomly generated. Each value of an attribute is selected with the probability
P (ai) given in Table 1, so, for example, the rural area of residency is assigned
with the probability 0.1963, and urban area with the probability 0.8037. Because
some of the attributes represent contacts, for each attribute vector the contacts
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intensity Ncontacts is calculated. The value of Ncontacts is set to the sum of values
of attributes representing contacts (with patients, elderly, group, and children),
so each of these attributes set to 1 increases Ncontacts by 1. The value of the
‘Household’ attribute increases Ncontacts by 1 if the value is ‘Adults’ and by 2
if the value is ‘Child’. Attributes are assigned to graph nodes by sorting the
attribute vectors in the ascending order with respect to the Ncontacts value, and
sorting the graph nodes in the ascending order with respect to the node degree
(the number of incident edges). Sorted attribute vectors are matched with sorted
graph nodes, thereby ensuring that if the attributes indicate a low intensity of
contacts the attribute vector is assigned to a low-degree graph node and if the
attributes indicate a high intensity of contacts the attribute vector is assigned
to a high-degree graph node.

2.3 Modelling Disease Transmission Probability Using Graph Node
Attributes

When an epidemic is simulated, the disease spreads from infected (‘I’) nodes
to susceptible nodes (‘S’) with a certain probability per a time step. The aver-
age transmission probability is γ = 0.1 per a time step and per each contact
(graph edge connecting a susceptible node to an infected neighbour). However,
the probability of contracting the disease by a node v depends on the attributes
assigned to this node. Denote the vector of attributes assigned to the node v

as A(v) = [a(1)
i1

, . . . , a
(k)
ik

, . . . , a
(16)
i16

], where a
(k)
ik

is the ik-th value of the k-th
attribute. The probability γ(v) of transmitting the disease to the node v from
each of its infected neighbours (per a time step) can be calculated using the
Bayes’ theorem as:

γ(v) =
γ · P (A(v)|inf)

P (A(v))
, (2)

where P (A(v)|inf) is the probability of observing the attribute vector A(v)
among infected individuals and P (A(v)) is the probability of observing the
attribute vector A(v) in the general population.

Because in the paper [7] only univariate frequencies are given, the probabili-
ties P (A(v)|inf) and P (A(v)) are approximated using the Näıve Bayes approach
(assuming independence of the attributes), which is commonly used in machine
learning for simplifying probabilistic modelling:

γ(v) =
γ · ∏16

k=1 P (a(k)
ik

|inf)
∏16

k=1 P (a(k)
ik

)
= γ ·

16∏

k=1

P (a(k)
ik

|inf)

P (a(k)
ik

)
, (3)

where P (a(k)
ik

|inf) is the probability of observing the ik-th value of the k-th

attribute among infected individuals and P (a(k)
ik

) is the probability of observing
the ik-th value of the k-th attribute in the general population. Using Eq. (3),
the probability γ(v) of transmitting the disease to the node v from each of its
neighbours (per a time step) can be calculated from the ratios P (ai|inf)

P (ai)
given in

the last column of Table 1 and the average transmission probability γ. Denoting
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by N (v) the set of neighbours of the node v in the graph G, that is, N (v) =
{u ∈ V : 〈u, v〉 ∈ E}, the overall probability γ(v) of the node v being infected
at a given time step t can be calculated depending on the number of its infected
neighbours:

γ(v) = 1 − (1 − γ(v))|{u∈N (v):st[u]=
′I′}| . (4)

In simulations, infection probabilities calculated in this section are used for
determining if a node should transition from the ‘S’ (susceptible) to the ‘I’
(infected) state.

3 Optimization Algorithms

Optimization algorithms studied in this paper solve the optimization problem
described in Sect. 2 simulating epidemics on graphs in which nodes have real-life
attributes described in Sect. 2.2. The attributes of the nodes affect the proba-
bility of transmitting the disease, as described in Sect. 2.3. Some combinations
of attribute values make the disease transmission more likely than the average
transmission probability γ and some make it less likely. Also, the ‘Contact’ and
the ‘Household’ attributes are correlated with the node degree in the graph,
because attribute vectors with higher values of the contacts intensity Ncontacts

are assigned to higher-degree nodes, as described in Sect. 2.2. Therefore, it can be
expected, that the attributes assigned to graph nodes can be used to determine
the best nodes to vaccinate (clearly, we prefer to vaccinate those nodes that are
the most likely to contract the disease).

The solution space for the optimization problem studied in this paper is
Ω = {0, 1}Nv . Each element in a solution x ∈ Ω corresponds to one node in the
graph G on which the epidemic is simulated and determines if the node should
be vaccinated (x[v] = 1) or not (x[v] = 0). In this paper, three optimization
algorithms are compared, two of which use machine learning models (a classifier
and a regression model) to decide which nodes to vaccinate.

3.1 EA-C

The EA-C algorithm uses a neural network as a classifier to determine which
nodes to vaccinate. The network has Nin = 18 input neurons corresponding to
16 attributes listed in Table 1 and two elements of a weight vector λ used to
direct the search towards different parts of the Pareto front in a similar manner
as in the MOEA/D multiobjective evolutionary algorithm [11,22]. Because the
weight vector λ is provided, the neural network can produce different results for
solutions generated for different weights assigned to the objectives. The network
has Nhid = 10 hidden neurons and produces one output which is used to classify
the nodes. A solution for a given weight vector λ is obtained by feeding the
attributes of each node v ∈ V to the neural network along with the weight
vector λ. If the output value is larger than 0.5 the node v is vaccinated and if
the output value is smaller or equal 0.5 the node v is not vaccinated. In order to
obtain the Pareto front, the weight vector is varied from [0, 1] to [1, 0] in 101 steps
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and for each λ one solution is generated. The algorithm generating solutions for
the Pareto front in the EA-C algorithm is presented in Algorithm 1. The EA-
C algorithm is a single objective evolutionary algorithm based on the Simple
Genetic Algorithm (SGA) [19], that optimizes the weights of the neural network
used for classifying the graph nodes. The number of weights (and biases) in this
network is Nin · Nhid + Nhid + Nhid · Nout + Nout = 201, so the search space the
EA-C algorithm operates on is R

201. The EA-C uses four crossover operators:
the single-point, the two-point and the uniform crossover [6, p. 52–53] along with
the Simulated Binary Crossover (SBX) dedicated to real-valued genotypes [4].
For mutation, five operators reordering the elements of the genotype are used:
displacement, insertion, inversion, scramble and transpose [12] along with two
mutation operators dedicated to real-valued genotypes: the uniform mutation
and the polynomial mutation [5]. The genetic operators are selected using an
autoadaptation mechanism based on operator success rates [13]. The evaluation
of each solution x ∈ R

201 is obtained by using the elements of the vector x as
weights for a neural network, generating a Pareto front using Algorithm 1, and
evaluating this Pareto front using the hypervolume (HV) indicator [23].

Algorithm 1: Generating solutions for the Pareto front in EA-C.
Inputs:

x ∈ R
201 - weights of the neural network

Output:
PF - the Pareto front

// A neural network with weights taken from x
M := MLP.Init(x)
// Generate solutions for the PF using different weight vectors
PF := ∅
for h := 0, . . . , 100 do

λ := [ h
100

, 1 − h
100

]
// Initially, each solution is a vector of Nv zeros
s := [0, . . . , 0]
// Classify each node
for v ∈ V do

// Forward the attributes of the node v and the weight vector λ
// through the network
c := M([A[v], λ])
if c > 0.5 then

s[v] := 1

PF := PF ∪ {s}

PF := RemoveDominated(PF )
return PF
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3.2 EA-R

The EA-R algorithm uses a neural network as a regression model to rank the
nodes with respect to the estimated preference for vaccination. Contrary to EA-
C, a weight vector is not needed in this approach, so the network has Nin = 16
input neurons corresponding to 16 attributes listed in Table 1. The network has
Nhid = 10 hidden neurons and produces one output which is used to rank the
nodes. In order to obtain the Pareto front, the nodes are ranked by feeding the
attributes corresponding to the nodes to the network. Then, 0%, 1%, . . . , 100% of
the nodes are vaccinated in the order determined by the ranking. The algorithm
generating solutions for the Pareto front in the EA-R algorithm is presented in
Algorithm 2. The EA-R algorithm is a single objective evolutionary algorithm
based on the Simple Genetic Algorithm (SGA) [19], that optimizes the weights
of the neural network used for ranking the graph nodes. The number of weights
(and biases) in this network is Nin · Nhid + Nhid + Nhid · Nout + Nout = 181, so
the search space the EA-R algorithm operates on is R

181. The EA-R uses the
same genetic operators and autoadaptation mechanism as the EA-C algorithm.
The evaluation of each solution x ∈ R

181 is obtained by using the elements of
the vector x as weights for a neural network, generating a Pareto front using
Algorithm 2, and evaluating this Pareto front using the hypervolume indicator.

3.3 MOEA/D

The algorithm used as a baseline for comparison is the MOEA/D multiobjective
evolutionary algorithm [11,22] performing the search directly on the solution
space Ω = {0, 1}Nv . This algorithm uses three crossover operators: the single-
point, the two-point and the uniform crossover [6, p. 52–53]. For mutation, five
operators reordering the elements of the genotype are used: displacement, inser-
tion, inversion, scramble and transpose [12] along with the classical bit-flip muta-
tion [6, p. 40] mutating each position in the genotype independently of the others
with the probability inversely proportional to the length of the genotype. As in
the case of other algorithms studied in this paper, the genetic operators are
selected using an autoadaptation mechanism [13].

4 Experiments and Results

In the experiments, REDS graphs [1] were used with real-life attributes described
in Sect. 2.2 assigned to the nodes. The REDS graphs resemble naturally forming
networks of contacts, because they are generated taking into account spatial
relationships and the synergy effect. Nodes are uniformly placed on the unit
square [0, 1] × [0, 1] with the R parameter controlling the radius within which
the edges can be formed. Each node has the initial amount E of “social energy”,
and forming an edge incurs a cost proportional to its length D. The cost is
discounted by the synergy factor S multiplied by the number of neighbours the
two connected nodes have in common. In this paper, REDS graphs with Nv =
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Algorithm 2: Generating solutions for the Pareto front in EA-R.
Inputs:

x ∈ R
181 - weights of the neural network

V - graph nodes
Output:

PF - the Pareto front

// A neural network with weights taken from x
M := MLP.Init(x)
// Rank graph nodes using the neural network
// The matrix A contains attributes of all nodes (one per row)
R := M(A)
V ′ := Sort(V , R);
// Generate solutions for the PF by vaccinating a different number of nodes
PF := ∅
for h := 0, . . . , 100 do

n := � h
100

· Nv�
// Vaccinate n nodes in the order in which they are sorted in V ′

s := [0, . . . , 0]
for i := 1, . . . n do

s[V ′[i]] := 1

PF := PF ∪ {s}

PF := RemoveDominated(PF )
return PF

1000, . . . , 10000 were used with the remaining parameters set to R = 0.1√
Nv/1000

,

E = 0.5, R = 1.0√
Nv/1000

. These parameter settings keep the average degree k

of the obtained graphs at more or less the same level, which allows obtaining
a similar epidemic dynamics on graphs of a different size (in this paper k varies
from 28.9 for Nv = 1000 to 30.6 for Nv = 10000). The experiments presented
here consisted of three phases:

1. Parameter tuning aimed at obtaining the best values of the parameters for
each of the tested algorithms. The tuning was performed on a set of 10 prob-
lem instances with Nv = 1000 using the grid search approach with candidate
values of the parameters: population size Npop ∈ {50, 100, 200, 500}, crossover
probability Pcross ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, and mutation probability
P

(p)
mut ∈ { 0.2

Nv
, 0.5

Nv
, 1.0

Nv
, 2.0

Nv
, 5.0

Nv
} for mutation operators applied to individual

positions in the genotype (e.g. the bit-flip mutation), and P
(g)
mut ∈ {0.02, 0.04,

0.06, 0.08, 0.10} for mutation operators applied to the whole genotype (e.g.
the scramble mutation). For each set of parameter values each algorithm was
run 10 times and the median hypervolume (HV) was calculated from these
runs. Table 2 presents the values of parameters for which each of the algo-
rithms attained the best results.
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2. Comparison of the three tested algorithms, with the parameters set to the
best values obtained in the previous phase, on 30 different problem instances
with Nv = 1000, . . . , 10000. For each graph size Nv each algorithm was run
30 times and the median HV was calculated from these runs. Table 3 presents
the HV and the results of the Wilcoxon statistical test [16] with the null
hypothesis stating the equality of the medians between EA-C and MOEA/D
(and, respectively, EA-R and MOEA/D). The best result for each number of
nodes Nv is underlined and the results of statistical comparison to MOEA/D
as the reference method are shown. The (+) signs indicate results of the
statistical test which rejected the null hypothesis stating the equality of the
medians at the confidence level α = 0.05 and thereby confirmed that EA-
C (or EA-R) produced results superior to MOEA/D. The (–) signs indicate
statistically significant results which were worse for EA-C (or EA-R) than for
MOEA/D. The (=) signs indicate results for which the statistical test was
not able to reject the null hypothesis at the confidence level α = 0.05. Clearly,
the EA-R was superior to MOEA/D in all the tests, while EA-C was better
for larger graphs and for the smallest ones was worse than MOEA/D.

3. Testing the generalization capability of the neural networks produced by the
EA-C and EA-R algorithms, which is desirable, because a good generalization
capability means, that the models can be optimized once, and reused for many
problem instances at no additional computational cost. For each of the 30
problem instances Ii, i ∈ {1, . . . , 30} with a given graph size Nv, 29 Pareto
fronts were generated using each of the neural networks obtained during the
run of EA-C (and, respectively, EA-R) for the other 29 problem instances
with the same graph size Nv (i.e. Ij , j ∈ {1, . . . , 30}\{i}). Each of these 29
fronts was evaluated using the HV and the average of these 29 values was
recorded as the result for the problem instance Ii. This way, classifiers (and,
respectively, regression models) pre-trained on each of the problem instances
Ij , j �= i were tested on the problem instance Ii. Table 4 presents the median
of the results obtained for problem instances Ii, i ∈ {1, . . . , 30} for each
graph size Nv compared to the results produced by MOEA/D. Results of
the Wilcoxon statistical test are marked in this table in the same way as in
Table 3. The results show, that pre-trained models are better than MOEA/D
for Nv ≥ 2000 (classification) and Nv ≥ 1500 (regression).

Table 2. The values of the parameters obtained using the grid search approach.

Parameter name EA-C EA-R MOEA/D

Population size Npop 50 50 500

Crossover probability Pcross 0.8 0.6 0.6

Mutation probability per position P
(p)
mut

2.0
Nv

2.0
Nv

0.2
Nv

Mutation probability per genotype P
(g)
mut 0.08 0.08 0.02
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Table 3. Comparison of the evolutionary algorithms on graphs with Nv =
1000, . . . , 10000 using the hypervolume indicator.

Nv MOEA/D EA-C EA-R Nv MOEA/D EA-C EA-R

1000 543330 533953 (−) 546081 (+) 2250 2633062 2673574 (+) 2716803 (+)

1250 836386 834414 (=) 849148 (+) 2500 3238913 3300603 (+) 3345401 (+)

1500 1183341 1196044 (+) 1216436 (+) 5000 12815375 13128431 (+) 13293698 (+)

1750 1600337 1621174 (+) 1648210 (+) 7500 28793532 29450989 (+) 29793720 (+)

2000 2078613 2117360 (+) 2151108 (+) 10000 50975073 52287150 (+) 52863685 (+)

Table 4. Comparison of the results obtained using pre-trained machine learning models
to the results obtained by MOEA/D.

Nv MOEA/D Classifier Regression Nv MOEA/D Classifier Regression

1000 543330 526838 (−) 536572 (−) 2250 2633062 2646497 (+) 2687114 (+)

1250 836386 821170 (−) 835245 (=) 2500 3238913 3272524 (+) 3314139 (+)

1500 1183341 1181147 (−) 1199050 (+) 5000 12815375 13074891 (+) 13210911 (+)

1750 1600337 1602026 (=) 1626966 (+) 7500 28793532 29370464 (+) 29665459 (+)

2000 2078613 2097411 (+) 2124237 (+) 10000 50975073 52151266 (+) 52695523 (+)

In all three phases of the experiments, the stopping condition was set to
maxFE = 10000 solution evaluations. Even though the algorithms worked on
different search spaces (weights of a neural network vs. binary vectors repre-
senting vaccine assignments to graph nodes), setting the same budget for all of
them was motivated by the fact, that evaluating solutions using simulations is
expensive and thus the number of solution evaluations is a good measure for
representing the computational cost in this study.

5 Conclusion

In this paper, algorithms using machine learning models for the bi-objective
optimization of vaccination assignments were studied. Instead of determining
the assignment of vaccine doses to graph nodes, they optimize weights of a neu-
ral network which is subsequently used for selecting nodes to vaccinate. Pro-
posed algorithms, especially EA-R which uses a regression model, outperformed
the MOEA/D used as a reference method. Also, the optimized models show
good generalization capability: on larger graphs they produce better results than
MOEA/D, when applied to different problem instances than the ones for which
they were optimized. Further work may include studying more machine learning
models, different real-life attributes for diseases other than influenza, as well as
comparing different metaheuristic optimization methods.
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Abstract. Pricing is a key lever used by e-commerce companies to
achieve “growth with profitability”. Given the huge catalog size in
e-commerce, most products have very close substitutes and comple-
ments. These complementary/substitute products result in influencing
the demand for one another. Moreover, in the context of fashion, the
utility of a product is mostly subjective. In categories like electronics, it’s
relatively easy to define the utility of a product based on its attributes,
but the same is not directly applicable to fashion. Products with simi-
lar attributes can have different utilities for the customer and therefore
can be priced differently. Taking these things into consideration we base
our pricing strategy on the following 3-stage decision-making process:
1) identifying the items which influence each other 2) building demand
models that include effects of demand transference 3) joint optimization
of the prices to achieve revenue or profit margin targets. We discuss our
contributions to building a real-world system that implements these 3
stages in the specific context of fashion e-commerce. Fashion e-commerce
has its nuances when it comes to pricing compared to general e-commerce
and we explain how we dealt with these difficulties. Moreover, in addition
to the formulations, we also describe challenges faced in building working
systems that scale to millions of products and hundreds of categories. In
addition, we describe a unique approach to quantifying the dollar benefit
under scenarios where true A/B testing is not possible for legal reasons.
Lastly, we explain how this work has resulted in significant incremental
revenue for a large fashion e-commerce company.

Keywords: E-commerce · Pricing · Optimization

1 Introduction

In the fashion e-commerce setting, millions of products are live on the platform
every day. The discounts provided on these products are flexible and can be
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changed periodically, under certain business restrictions to meet revenue and
gross-margin targets. Manual pricing strategies mostly rely on business heuris-
tics that are derived from experience through trial and error. This requires a
lot of manual effort that still leads to a loss of revenue due to sub-optimal pric-
ing decisions. In this work, we propose a data-driven automatic pricing system
that optimizes the revenue while meeting the business constraints for a large
set of products across various product categories related to fashion. Products in
the fashion category lack a distinctive name or any unique identification. Users
typically describe their intent in a search query using product attributes, like,
for purchasing a Tshirt user could search for {tshirt} or {<brand >t-shirts} or
{<color >t-shirts}. Each of these queries would typically result in thousands of
relevant products from the catalogue as opposed to queries in hard goods cate-
gories with well-defined products like “iPhone X 64 Gb” which would result in
few relevant products. Since the intent isn’t very specific, the user has a long list
of products to choose from and hence price becomes a strong factor in influencing
the purchase pattern of a user. For example, having a lower price can increase the
demand for an item. But, this extra demand can be due to demand transference
from other items which may lead to an overall reduction in the revenue. There-
fore, we would want to consider the cross-product price sensitivities as well and
perform a joint optimization. Our approach consists of 3 main stages namely,
clustering, demand forecasting, and price optimization. In the clustering phase,
we identify sets of products that affect each other’s demand. Since fashion is an
abstract domain, it becomes challenging to know the dependencies apriori and
therefore we rely on customer interaction data to derive such groups of influ-
encing products. Next, using the past sales data we train a demand forecasting
model that can predict the sales of a product at any given price configuration.
Finally, we use the parameters of the demand forecasting model and formulate
the revenue maximization (subject to business constraints) problem as a Binary
Quadratic Program (BQP). Although BQP problems are NP-hard, we use a
standard mixed-integer linear programming (MILP) relaxation which is solved
using an open-source MILP solver for hundreds of products within a practical
computational time. In addition to the revenue and gross margin requirements,
a major challenge lies in considering the age and current inventory of a prod-
uct while pricing for it. Ideally, a product with low inventory can be priced less
aggressively, i.e., with less discount, as compared to a product with high inven-
tory, which would help to maintain a healthy inventory balance. Similarly, older
products should be discounted higher than fresher products. To account for the
age and inventory while generating the prices, we formulate a new objective for
minimizing stockpiling at the end of the season. Since this objective is non-linear,
we solve a multi-objective optimization problem using a genetic algorithm based
approach and compare its efficacy with the MILP solutions.

Online experimentation is another challenge in our work. The standard A/B
tests are not feasible in this scenario, as offering the same products at different
prices to different customers would lead to legal issues. In the paper [11], authors
propose a framework where a set of similar products are randomly divided into
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two buckets and each bucket gets a different treatment. After the experiment,
the performance of both buckets is evaluated. In our case, this framework is
not applicable because we consider products influencing each others demand.
Therefore, the test and the control environments can influence each other. To
solve this, we propose a novel framework that nullifies the interaction between
the test and control environments thus approximating an A/B test. The main
contributions of this work are summarized as follows:

– Novel pipeline for price optimization in the fashion e-commerce domain.
– Method to identify clusters of products that influence each other’s demand.
– Demand forecasting models that fit in the proposed MILP optimization

framework and compare their performances with each other.
– Multi-objective genetic algorithm based price optimization for inventory and

age-aware pricing.
– Novel test framework for conducting on-field large-scale experiments and

empirically demonstrating the effectiveness of the proposed method.

2 Related Work

Pricing optimization in general has been a heavily researched topic for the past
few decades. The book by [14] provides a comprehensive survey of pricing meth-
ods used in various industries. Our work is closely related to works in static
multi-product pricing for online retail. These frameworks typically include a
demand forecasting step followed by revenue or profit maximization. Some recent
works using this framework include [15] and [4]. Our optimization formulation is
inspired by [8], but we apply it to the domain of fashion e-commerce with several
differences in the overall framework. In the context of pricing decision support
tools for retailers, there are works such as that of [2] for inventory clearance,
[12] for dynamic retail pricing, and promotion planning. Our work is also closely
related to myopic pricing policies which combine greedy price optimization with
sequential estimation. In this framework, before making a price allocation in
each time period, the seller first estimates the parameters of a demand model
and then sets the prices that maximize the revenue or profit according to the
most recent estimates of the parameters of the demand model. This framework
has been theoretically shown [6,10] to suffer from the problem of “incomplete
learning” because when this myopic pricing policy is repeated over several time
periods, there is a threat that the demand model parameters do not converge to
their true estimates with time due to lack of enough price dispersion. In our case,
this problem is mitigated to a large extent because of parameter sharing between
items and price experimentation in some parts of the inventory for which the
pricing is controlled by external vendors.

3 Methodology

Demand Forecast is the most crucial element while pricing. The demand for a
product can be influenced by its own price and the prices of other products on
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the platform. Apart from price, there would be several other factors influencing
the demand. We model all these factors using the following generalized demand
equation.

sm(p) = αm +
M∑

m′=1

D∑

d=1

βmm′dId(pm′) (1)

where sm(p) denotes the forecasted sales for the mth item, p denotes the price
allocation vector for the given set of influencing products, pm′ denotes the price
of product m′ and M denotes the number of products in the given set. αm,
βmm′d, are the demand model parameters that are estimated from the past
data. αm captures the effect of non-price features like past sales, attributes of
the product and any other external factors which do not depend on price and
thus are constant as a function of p. βmm′d denotes the price coefficients of
the model, i.e., both the self price coefficients (for m = m′) and influencer price
coefficients (for m �= m′). The Id functions denote the type of dependence of sales
on price, for example, linear, quadratic, and logarithmic, to list a few. However,
in this work, we have restricted our experiments to a linear dependence function
for better interpretability.

According to the generalized form of demand as described above, the revenue
forecast for the mth product can be given as:

revm(p) = pmsm =
M∑

m′=1

pm[
αm

M
+

D∑

d=1

βmm′dId(pm′)] (2)

Now, the total revenue for the set of products would be:

rev(p) =
M∑

m=1

M∑

m′=1

pm[
αm

M
+

D∑

d=1

βmm′dId(pm′)]

=
M∑

m=1

M∑

m′=1

ηmm′(pm, pm′)

(3)

Prices on the platform cannot be varied continuously. They should be mod-
ified in the steps of either the discounts or a fixed value. Hence, the basic opti-
mization problem to maximize expected revenue becomes:

Maximize rev(p) (4)
subject to pm ∈ {Pm1, . . . , PmK}

where m = 1, . . . ,M

In the above formulation, Pm1, . . . , PmK , refers to the K possible price points for
the product m. In our pipeline, we receive a set of base (initial) discounts from
the business for each item and then we form the price points using the discount
window [base−10, base−5, base, base+5, base+10]. The initial price configura-
tion when the items are at base discounts is called the base price allocation.
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3.1 Optimization

Once we have the demand for every product in the form described in Eq. 1, we
need to optimize the revenue as discussed in the Eq. 4. The pricing strategy also
needs to satisfy certain business requirements which can be modelled as described
in the following sections. An exhaustive or a brute-force search would require
Θ(KM )-time computation, and hence would be computationally intractable even
if M is of the order of a few hundred. Hence we reformulate the problem to make
it computationally tractable.

Binary Quadratic Program Formulation. Consider the binary variables
zm1, . . . , zmK ∈ {0, 1} satisfying

∑K
k=1 zmk = 1. Here, zmk = 1 and zmk = 0

refers to pm = Pmk and pm �= Pmk, respectively. Now, ηmm′(pm, pm′) in Eq. 3
can be rewritten as follows:

ηmm′(pm, pm′) = z�
mQmm′zm′ , (5)

where zm = [zm1, . . . , zmK ]� ∈ R
K×1, and Qmm′ ∈ R

K×K is defined as:

Qmm′ =

⎡

⎢⎢⎢⎢⎣

ηmm′(Pm1, Pm′1) · · · ηmm′(Pm1, Pm′K)
ηmm′(Pm2, Pm′1) · · · ηmm′(Pm2, Pm′K)

...
. . .

...
ηmm′(PmK , Pm′1) · · · ηmm′(PmK , Pm′K)

⎤

⎥⎥⎥⎥⎦
. (6)

Therefore, the overall optimization problem, given in Eq. 4, can be rewritten as
follows:

Maximize f(z) := z�Qz (7)

subject to z ∈ {0, 1}MK ,

K∑

k=1

zmk = 1 (m = 1, . . . , M),

where z = [z11, . . . , z1K , z21, . . . , z2K , . . . , zM1, . . . , zMK ] and Q ∈ R
MK×MK is

given by

Q =

⎡

⎢⎢⎢⎢⎣

Q11 Q12 · · · Q1n

Q21 Q22 · · · Q2n

...
...

. . .
...

Qn1 Qn2 · · · Qnn

⎤

⎥⎥⎥⎥⎦
. (8)

MILP Relaxation Method. For formulating a Mixed Integer Linear Pro-
gramming (MILP) relaxation to the above-stated BQP, we introduce auxiliary
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variables z̄ij∀ (1 ≤ i < j ≤ KM) corresponding to z̄ij = zizj . Using these new
auxiliary variables, Eq. 7 can be re-formulated as:

Maximize
KM∑

i=1

qiizi +
KM∑

i=1

KM∑

j=i+1

(qij + qji)z̄ij (9)

subject to
mK+K∑

i=mK+1

zi = 1, (0 ≤ m ≤ M − 1),

z̄ij = 0, (mK + 1 ≤ i < j ≤ mK + K)
mK+K∑

i=mK+1

z̄ij = zj(mK + 1 ≤ i ≤ mK + K < j)

zi ∈ {0, 1}, z̄ij ∈ {0, 1}
where qij are the entries of the matrix Q. We use the open-source CBC solver
[9] to solve the above MILP using the cutting-plane methods.

Business Requirements. While the solver can explore any combination of
prices, the business has certain constraints such as guardrails around the prices,
gross-margin percentage, etc. All such constraints can be expressed in a linear
form and therefore can be handled in the MILP formulation. While the clustering
and demand forecasting modules are agnostic of the business constraints, the
optimization module has to be re-run on an ad-hoc basis whenever there is any
change in business goals. Hence, the optimizer needs to have limited latency. In
our case, a one-hour duration is the agreed upper limit for price generation from
a business point of view.

Inventory and Age Aware Pricing. Typically in fashion e-commerce, items
are seasonal. The perceived value of an item decreases with time as the fashion
season progresses. For example, winter wears such as sweatshirts would be less
often required and sold in the summer season. Therefore, generally, a discount
gradient is followed such that the older items are sold at higher discounts than
the new-coming fresh items. This avoids stockpiling at the end of the season.
Other than the age of an item, the current inventory of the product must also
be considered while pricing the item such that an item with a higher stock
of inventory should be discounted more than an item with a lower stock of
inventory, but of the same age. These business heuristics ensure that the current
season products are more or less sold off before the end of the season. Taking
all this into account we define a new objective called “aggregate estimated days
spillover” denoted by agg eds. Before defining this quantity we define another
quantity called doh which stands for “days on hand” for a particular item’s stock.
It is defined as follows:

dohi(p) =
current number of units of item available

estimated rate of sales at price allocation p
=

Ii
si(p)

(10)
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where i denotes the index of the ith item and p is the vector of price allocations.
Having defined the doh, agg eds is defined as follows:

agg eds(p) =
M∑

i=1

max(0, agei + dohi(p) − 180) (11)

where agei is the current age of item i and 180 (days) is considered the typical
season length. Intuitively, agg eds(p) approximately calculates the sum of the
number of days by which an item will spill over into the next season across all
the items in a cluster of size M , which ideally should be minimized. Since this
objective is not linear with respect to the optimization variables, we cannot opti-
mize for it in the MILP framework discussed previously. Therefore, we resort to
a genetic algorithm (GA) based multi-objective optimization approach where we
maximize revenue and gross margin and minimize agg eds. We use the DEAP
library [5] for implementing this solution. Specifically, each price allocation vec-
tor is an individual in the population of several solutions. We use a custom
mutation function to ensure that each product has a unique price allocation. For
crossover, we use the default two-point crossover function as provided in DEAP.
The selection algorithm used is NSGA-II [3]. From the set of Pareto optimal
solutions, we filter out those which don’t satisfy the gross margin business con-
straints. We also filter out the solutions where the agg eds objective is more
than that of the base price allocation. Finally, from the set of filtered solutions,
we select the one with the highest expected revenue.

3.2 Product Clusters

The problem formulation allows us the flexibility to assume that the demand
for any product is dependent on the prices of all the products on the platform.
However, in practice, products influence each other’s demand within subsets.
Clustering aims to identify such groups of products where there is demand trans-
ference amongst the products within a group but the demand transference across
the groups is minimal. This reduces the number of optimization variables thus
decreasing the compute time. Since the clusters can be optimized in parallel, it
becomes possible to horizontally scale the optimization for pricing a very large
number of products. Forming the product clusters consists of the following steps:

– Forming an item-item co-browse graph from user click-stream data where
nodes represent items and edge weights are their co-browse frequencies.

– Learning item embeddings by applying the Deepwalk algorithm [13] to this
item-item co-browse graph.

– Applying a constrained KMeans algorithm [1] on the item embeddings, gen-
erated in the previous step, and obtaining the final product clusters.

3.3 Demand Model

The next step after clustering involves predicting the future sales for a product,
referred to as demand forecasting. Equation 1 represents the generalized form
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for the demand model that performs demand forecasting. We train the demand
model using the historic sales data as the target variable and a relevant set
of selected features. We consider broadly 2 types of features to predict sales,
namely, the non-price features such as past sales of the item, the brand of the
product, and list-views, to name a few, and price features such as the price of the
product and the respective prices of its influencers. Ideally, we can assume that
the demand for every item in a cluster is influenced by all the other items in that
cluster. However, that significantly increases the number of parameters which
might lead to overfitting. Hence, we choose the n nearest influencer products, in
a way that ensures every item in the cluster has a direct or indirect influence on
the demand for every other item in the cluster using the connected component
analysis. We find n = 5 to be the most optimal value that satisfies the criterion
through our offline analysis.

Regression Models. In this paper, we restrict the demand model to a linear
form, i.e., the linear relation of the price features with the target variable is
preserved. However, as an upper baseline, we also demonstrate the results of a
fully connected neural network (FCN), which doesn’t guarantee to preserve the
linear relation. We train the following different types of demand forecasting mod-
els: 1) Linear Regression (LR), 2) FCN, 3) Linear Regression L1 Regularization
(LRL1), 4) Linear Regression L2 Regularization (LRL2), and 5) Price-Linear
Neural Network (PLN). As FCN cannot ensure the linear relation of the price
features to the sales (target variable), so we customize the FCN to build PLN. In
PLN, all the non-price features go as an input in the first layer and the price fea-
tures are passed only in the penultimate layer, thereby ensuring a linear relation
of the price features with the output.

3.4 Overall Price Recommendation Pipeline

In this section, we describe the flow of the overall price recommendation pipeline
that is illustrated in Fig. 1. The pipeline starts with the ingestion of the user-
browsing logs and the creation of an item-item co-occurrence graph using PyS-
park. The next step is to create the item embeddings within each ATG (Article-
Type-Gender; example, Men’s T-shirts) using the Deepwalk algorithm on which
constrained K-Means is applied to obtain clusters within each ATG. We then
identify the top n nearest neighbors for each item within its cluster. In the next
step, we train a demand forecasting model to predict future sales. Using the
learned demand model parameters, we derive the αms and βmm′s which eventu-
ally are fed in the optimization. The optimization module takes these parameters
for each product (as seen in Eq. 1) along with several business constraints. Since
the clusters can be optimized independently of each other, we parallelize the opti-
mization across spark clusters using PySpark. Finally, the output prices of the
optimizer module are aggregated into a CSV file and consumed by the business
team.



Joint Price Optimization Across a Portfolio of Fashion E-Commerce Products 457

Fig. 1. Flow diagram

4 Offline Demand Model Evaluation

4.1 Data Preparation

The experiments were conducted on data with a volume of 2.96 million records
for 4 ATGs. Each row in the data set represents a product, wherein the total
sales of the product for the next T days serves as the target variable. The data
spanned a total of 72k items across the 4 ATGs. The train and the test data
sets are divided such that test data has only the date range that falls after a
complete date range (gap of T days) in train data ensuring no data leakage. Here,
the data was split into three sets: training set with 9 weeks of data, validation
data of 1 week, and test set with 1 week of data. Here, we choose T = 7 for the
experiments.

Performance Analysis. We use the Weighted Mean Absolute Percentage
Error (WMAPE) as a metric to evaluate the performance of the demand models.
WMAPE is one of the widely used metrics to measure the accuracy of demand
predictions, which is calculated as the average of the absolute forecast errors
for all products weighted by their actual sales. Table 1 shows the performance of
various demand models in terms of their respective WMAPEs. Smaller WMAPE
values indicate better forecast values. We see from Table 1 that PLN is highly
competitive with FCN, which is an unrestricted model whereas PLN is bound
to preserve the linear relation of price features with the target variable. There
is just a minimal drop in the WMAPE going from FCN to PLN.
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Table 1. WMAPE comparison of various demand forecasting models for 4 ATGs

Model ATG-1 ATG-2 ATG-3 ATG-4

Linear regression 41.93 52.79 42.42 48.88

Lasso regression 43.09 52.79 43.90 49.70

Ridge regression 42.18 52.70 42.24 48.78

FCN 33.10 35.23 35.98 42.56

PLN 33.12 35.25 36.08 42.62

Table 2. Comparison between GA and MILP solutions.

Cluster AT name Revenue increment RGM increment GM increment agg eds reduction

MILP GA MILP GA MILP GA MILP GA

Jackets 11.59% 11.06% 50.65% 49.46% 9.2% 9.09% 7.95% 10.34%

Sweaters 14.56% 13.95% 23.15% 22.19% 3.35% 3.23% −6.78% 3.81%

Dresses 42.38% 41.65% 42.53% 41.71% 0.03% 0.01% 1.9% 3.49%

Sweatshirts 19.9% 19.35% 63.45% 61.43% 10.46% 10.16% 1.94% 4.33%

Tops 16.28% 16.17% 52.59% 52.24% 9.24% 9.18% 0.69% 3.84%

5 Comparing GA Solutions to MILP Solutions

In Table 2, we broadcast the GA solutions, which are obtained considering multi-
ple objectives, i.e., maximizing revenue and profits and minimizing the agg eds,
and compare them with the MILP solutions obtained using the MILP formula-
tion for 5 random clusters. We report the percentage change of estimated (as per
the demand model) revenue, gross margin and agg eds metrics as compared to
the base price allocation. We observe that the GA solution is quite competitive
with the MILP solution in terms of revenue and gross margin. On the other hand,
the GA solution consistently beats the MILP solution in terms of the agg eds
metric and thus comes out as a better approach for inventory and age-aware
pricing.

6 Online Evaluation

A/B test is the usual way to measure the on-field performance of any new algo-
rithm in the e-commerce domain. The users coming to the platform get uniformly
allotted to test and control buckets and the performance of the buckets is com-
pared. However, we are not allowed to show different prices for the same product
to different customers at the same time. Hence, the possibility of doing an A/B
test in our scenario gets eliminated. This persists as a huge obstacle in measuring
the on-field impact of the algorithm.
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6.1 Test Framework

We propose a framework where we would be evaluating performance across time.
We need to consider the change in the environment over time and eliminate its
impact on the experiment. As a first step, we randomly divide the clusters into
two sets - A and B. We consider a time duration of 2t to perform one cycle of the
experiment. The time duration 2t is divided into two equal segments t1 and t2
sequentially. During t1, products in SetA are priced using the algorithm described
in this paper whereas products in SetB are priced using the existing control
algorithm. Later during t2, we swap the treatments, i.e., SetB products get priced
through the test algorithm, and SetA products are given the control treatment.
The time period should be carefully chosen to reduce the impact of external
factors (ex: day of the week, day of the month, etc) and also give enough time
for the price effects to reflect in the demand. After consulting with the business
teams, we arrived at the optimal time period of t = 7 days, which eliminates the
“day of the week” effects on the demand. So, one cycle of testing takes two weeks
to complete and such cycles are repeated several times to eliminate the effect of
any external factors. We performed 4 such cycles of testing and evaluated the
metrics.

6.2 Results

Revenue is the primary evaluation metric and the objective of the optimization
module is set to be the same. But as we are testing across time periods, there
can be external factors that may impact the test. Therefore we normalized the
revenue by the number of impressions (list-views) since external factors that
are not controlled by our pricing module can impact the impressions. Hence,
normalizing by impressions will give a more accurate picture of our method’s
performance. The final metric used to evaluate the online performance is Revenue
per impression (RPI), which is defined as:

RPItest = (RAt1 + RBt2)/(IAt1 + IBt2) (12)

RPIControl = (RBt1 + RAt2)/(IBt1 + IAt2) (13)

ICi
= ((RPItest/RPIControl) − 1) ∗ 100 (14)

where Rxtk is the revenue generated from products of set x during time period
tk. Ixtk represents the impressions of the products of set x during time period
tk and ICi

is the percentage improvement in RPI in the test cycle i.
Table 3 gives an overview of the performance improvement in all the test

cycles. Final improvement, IC is computed as the average of all ICi
of all test

cycles. We can see improvement in all the cycles, with an average improvement
of 3.58% overall.
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Table 3. Percentage of RPI Improvement for test cycles

Test cycle ICi

1 4.16%

2 2.30%

3 4.86%

4 3.00%

IC 3.58%

Statistical Validation. Since every product has been part of both the test
and control algorithms at different time periods, we have the test and control
RPI for each. We conduct two popular tests for comparing the significance of
matched samples - paired t-test [7] and Wilcoxon signed-rank test [16]. While
paired t-test assumes the difference of the samples follows a normal distribution,
Wilcoxon test doesn’t have such assumptions. Each cycle has three columns,
namely, product, test RPI, and control RPI, wherein the p-value is computed for
each cycle and averaged across all the test cycles. The p-values average across
the 4 test cycles are 3.91e−112 and 6.04e−169 for the paired t-test and the
Wilcoxon signed-rank test respectively, therefore indicating 100% significance in
both the statistical tests.

7 Conclusion and Future Work

In this work, we propose a practical framework for revenue maximization through
price optimization in the real-world setting of a fashion e-commerce company.
Our framework is easily scalable to millions of products and can also handle
practical business constraints. We discuss how non-linear regression methods
can be applied in the MILP optimization framework and also report significant
forecasting error reduction through such methods. We also propose a GA-based
multi-objective inventory and age-aware pricing technique and compare its effi-
cacy to the MILP solutions. We discuss challenges in evaluating the overall
system due to legal issues with A/B testing and therefore propose an alternate
method for evaluating such a system. The proposed framework has achieved sig-
nificant revenue gains in several test cycles and is currently deployed as a price
recommendation system on the platform for several months.

The current work applies to usual business (non-sale) days. Forecasting
demand on sale days is challenging due to the multiple factors such as pro-
motions, external events, holidays, etc. shaping the demand. In future, we would
want to extend the model to sale days by adopting techniques from the dynamic
pricing literature. Since demand forecasting accuracy is one of the crucial com-
ponents of the framework, we would want to adopt more advanced deep learning-
based demand forecasting techniques to our current optimization framework and
thereby improve performance and robustness.
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Abstract. Knowledge Discovery (KD) mechanisms (e.g. data mining,
neural networks) receive more and more interest over the years. A KD
mechanism uses an extraction procedure, namely Kext, to discover knowl-
edge, and an injection procedure, namely Kinj, to exploit knowledge.
However such mechanisms are not often applied to multi-objective com-
binatorial problems, due to the optimization of many objectives, which
can lead to learning conflicting knowledge. The key is to know how the
components of the KD mechanism should coexist and interact with the
knowledge. In this article, we work with the MOEA/D algorithm, and
existing Kinj and Kext components. We propose different interactions
between the components of the KD mechanism, by using different num-
bers of knowledge groups (dedicated to the storage of the knowledge) and
different strategies for the injection component. The variants are evalu-
ated through the bi-objective Vehicle Routing Problem with Time Win-
dows (bVRPTW). Our results show, that using five knowledge groups
and an intensification strategy for the injection procedure leads to better
results.

Keywords: Multi-objective optimisation · MOEA/D · Knowledge
discovery · Routing problem

1 Introduction

When solving a discrete optimization problem, large parts of the search space
are explored during the execution of the algorithm. However, most of the solu-
tions encountered are simply ignored, while they can bring interesting knowledge
about the search space. Indeed, this knowledge can guide the algorithm towards
more interesting solutions [1]. On the other hand, it can also help the algorithm
to avoid getting stuck in local optima, as explicitly defined in Tabu Search meth-
ods [10].
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In multi-objective problems, at least two conflicting functions are simultane-
ously optimized and the objective is to find the Pareto front of solutions. Over
the years, many metaheuristics based on local search techniques and using evo-
lutionary algorithms [6] have been designed to tackle these problems. Among
the most popular algorithms, there are MOEA/D [28], NSGA-II [8], and their
variants.

Using knowledge from explored solutions is helpful to reduce the search space
or to focus on interesting parts of the space, and can improve the performances of
the algorithms mentioned above. However extracting knowledge from solutions
and then using it to guide the search is a complex task, which has not been
highly explored in the literature. Considering the papers on that subject leads
to the following terminology for Knowledge Discovery (KD) processes. A KD
process is built upon two main procedures called Knowledge Extraction (Kext)
and Knowledge Injection (Kinj). The Kext procedure aims to extract problem-
related knowledge from one or several solutions. Then the extracted knowledge
can be used by the Kinj procedure to build new solutions taking into account
past iterations. However, given extraction and injection procedures for a specific
problem, there exist a plethora of ways to integrate them within a metaheuristic.

In this article, we investigate how a KD mechanism can be integrated into
MOEA/D. To that purpose, we consider a bi-objective Vehicle Routing Problem
with Time Windows (bVRPTW). In this problem, we minimize both the total
traveling time and the total waiting time of drivers. With these two objectives,
we obtain more diverse and bigger fronts (in terms of cardinality) than those
obtained when minimizing the number of vehicles and the total traveling time,
which are the original optimized objectives. Moreover, considering the waiting
time can lead to different applications (e.g. food delivery, medical transporta-
tion). We propose a large number of hybridization variants that are evaluated,
showing that one, in particular, is statistically better than the others.

The remaining of the paper is organized as follows: Sect. 2 focuses on KD
mechanisms and their link with combinatorial optimization. We present new
strategies for the components of a KD process in Sect. 3. The KD mechanism is
integrated into MOEA/D in Sect. 4. The bVRPTW is described in Sect. 5. Our
experimental setup is presented in Sect. 6, and our protocol in Sect. 7. We show
and discuss our results in Sect. 8. Finally, we conclude in Sect. 9.

2 Scientific Context

2.1 Knowledge Discovery in Metaheuristics

Hybridizing machine learning methods and metaheuristics has become quite
common to solve combinatorial problems. The survey of Talbi [21] reviews a
large panel of hybridizations that are frequently used in the literature. These
hybridizations are divided into three categories depending on where the inte-
gration is performed: at a problem level, at a low level, or at a high level. A
problem-level integration takes into account the characteristics of the problem
itself (e.g. data relative to the instance considered) to guide the algorithm. A



464 C. Legrand et al.

low-level integration focuses on solutions produced by algorithms. A relevant
mechanism is able to analyze the structure of the solutions, learn from them,
and then use this knowledge to improve the next steps. A high-level integration
is interesting when several operators are available to solve a problem. A possible
interest is to design automatically a problem-specific heuristic by selecting the
most relevant operators to apply. In the following, we focus on low-level integra-
tion and learning from solutions, also called knowledge discovery (KD). KD can
be realized either online or offline [7]. It is called online when it uses resources
generated during the execution. Otherwise, it is called offline. Both of them have
pros and cons. Online KD are often more adaptive and based on unsupervised
methods, which may lead to a slow convergence rate. While offline methods are
often supervised, and thus require huge amounts of data to be efficient.

Most KD processes are composed of an extraction mechanism (Kext), where
something is learned, and an injection mechanism (Kinj), which uses the
extracted knowledge to find new promising solutions. A study of existing works
in KD and its hybridization with metaheuristics [21] leads to four main questions:
What/Where/When/How is the knowledge extracted/injected?

The question What is problem-dependent, since each problem may have spe-
cific relevant knowledge. In the context of this article, this question is answered
in Sect. 5, where the problem is presented. Questions Where and When are
algorithm-dependent since the extraction and injection steps have to be inte-
grated into the process of the algorithm. Both of these questions are not the
subject of this article, and thus not discussed here at length. However, these
questions are answered in Sect. 4 for the specific case of our study. The ques-
tion How deals with overall strategies used during the KD mechanism (e.g.
intensification or diversification). The answer to this question should be adapted
according to the category of the problem studied (multi-objective in our case).
Our contribution focuses on this question and is detailed in Sects. 3 and 4.

2.2 Knowledge Integration in Multi-objective Optimization

In the literature, KD processes have received various interests mainly in single-
objective optimization contexts. Especially in routing problems [1–3,15]. How-
ever, using KD processes in multi-objective combinatorial optimization is quite
new and has not been widely investigated. Among the first works on this subject,
we cite the paper of Wattanapornprom et al. [26]. In order to solve a bi-objective
TSP they learn probabilities of arcs belonging to good solutions by using a
reward and punishment system based on the solutions visited during the execu-
tion. The authors show that their learning procedure improves the performance
of NSGA-II. The survey of Bandaru [4] regroups different data mining methods
that can be used in multi-objective optimization. Recently, Moradi et al. [16]
and Legrand et al. [12] proposed algorithms enhanced with learning mechanisms
to solve routing problems. The former presented the MODLEM algorithm which
uses decision trees updated during the execution to guide the algorithm through
the search space. The latter designed a MOEA/D using a KD mechanism, that
extracts sequences of customers from generated solutions and injects the most
frequent ones in solutions to improve them.
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3 Knowledge Discovery for Multi-objective Optimization

In this section, we propose an answer to the question How presented in Sect. 2.1.
This question focuses on the interaction of the extraction and injection compo-
nents with the knowledge itself. First, we present how knowledge groups are
defined in Sect. 3.1. These groups allow the storage and the use of knowledge
by the extraction and injection mechanisms. Section 3.2 is more focused on the
possible strategies followed by both extraction and injection when interacting
with the knowledge groups.

3.1 Definition of Knowledge Groups

One issue of KD mechanisms concerns the structure used to store the extracted
knowledge to be injected. In multi-objective optimization, the fitness space is
not in 1-Dimension and generally, the best solutions for one objective are not
the same as for the other ones. We make the assumption that solutions sharing
some similarities are more likely to be in the same region of the fitness space.

We propose to divide the fitness space into kG regions each representing a
knowledge group. The set of knowledge groups is denoted as G. Therefore, a
knowledge group is defined by a delimited region of the fitness space. The region
can be either explicit (represented by equations) or implicit (represented by sets).
If a solution belongs to the region of a knowledge group, then its associated
knowledge is added to that group.

The number of knowledge groups and their construction within MOEA/D is
discussed in Sect. 4.4.

3.2 Intensification and Diversification Strategies

Evolutionary algorithms use intensification and diversification mechanisms to
explore the search space more in-depth or more largely. We propose to trans-
pose these mechanisms of intensification and diversification to the KD for the
extraction and injection mechanisms. On the one hand, we propose an intensifi-
cation strategy, where the procedure has access to a small number of groups. The
objective of the procedure is to focus on the same region of the fitness space, by
exploring close regions. In that case, the knowledge is not widely shared between
the groups. On the other hand, with a diversification strategy, the procedure has
access to a large number of groups. The objective of the procedure is to explore
different regions of the fitness space, by bringing diversity to the solutions. In
that case, the knowledge can travel through the groups. The definition of these
strategies for the integration of the KD into MOEA/D is discussed in Sect. 4.4.

4 MOEA/D Enhanced with Knowledge Discovery

4.1 MOEA/D

MOEA/D [28] is a genetic algorithm that approximates the Pareto front by
decomposing the multi-objective problem into M several scalar objective sub-
problems. The scalarization is obtained by weighting each of the n objectives fk
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with a weight wk ∈ [0, 1]. Thus the fitness of a solution x for the subproblem i
is the following quantity: f(x|wi) =

∑n
k=1 wi

k · fk(x).
During an iteration, MOEA/D minimizes the i-th subproblem by using the

solutions of its closest neighbors. The neighborhood, of size m, of a weight vec-
tor wi is defined as the set of its m closest (for the euclidean distance) weight
vectors among {w1, . . . , wM}. Then the neighborhood Nm(i) of the i-th sub-
problem consists of the m subproblems defined with a weight vector belonging
to the neighborhood of wi. Note that each subproblem is associated with its best
solution found during the execution.

At the start of MOEA/D, M weight vectors are given, then it works as fol-
lows. Initially, a random population (of size M) is generated and evaluated. The
neighborhood (of size m) of each subproblem is also computed. When optimizing
subproblem i, a random pair of solutions is selected from its neighborhood. The
Partially Mapped crossover (PMX) is applied with probability pcro, and only
one solution is randomly kept. Then a Local Search (LS), described in Sect. 5,
is applied with probability pmut. Indeed the mutation is frequently replaced by
an LS [11] in genetic algorithms. Finally, the resulting solution is added to the
set S of solutions generated during the iteration, and a few neighbors of the
subproblem i are updated. When all subproblems have been seen, S is merged
with the archive A. If the termination criterion is reached, the nondominated
solutions of A are returned, otherwise, a new iteration is started.

4.2 Construction of the Knowledge Groups and Strategies

As explained in Sect. 3.1, we use knowledge groups to store the extracted knowl-
edge. Since we work with MOEA/D, we use the underlying subproblems to
delimit the kG groups. Note that regions are defined implicitly. We propose to
characterize each knowledge group Gk ∈ G by a vector gk = (gk1 , . . . , gkn) ∈ [0, 1]n

satisfying gk1 + . . . + gkn = 1. Since the weight vectors of subproblems are chosen
uniformly in that hyperplane, we also choose kG uniformly distributed vectors in
the same hyperplane, so that groups are balanced. In the following, we assume
that we work in a bi-dimensional case. If kG = 1, then the group is associ-
ated with all the subproblems, thus the vector characterizing the group does
not matter, and we set g1 = (0.5, 0.5). In the general case, when kG ≥ 2, for
k ∈ {1, . . . , kG}, we characterize Gk with gk = ( k−1

kG−1 , 1 − k−1
kG−1 ).

The definition of the regions of the groups is linked to the strategy followed
by the extraction. We consider the M subproblems and their associated weight
vectors defined in MOEA/D. Given a subproblem i of weight vector wi, we can
compute the set NG(i) = {d(wi, gk)|1 ≤ k ≤ kG}, where d(wi, gk) represents the
Euclidean distance between the i-th subproblem and the group Gk. With this
set, we can know how far each group is from the i-th subproblem. We propose
to associate each subproblem with its mext

G closest groups. Therefore, the region
of a group is the set of subproblems that are associated with that group. The
smaller the value of mext

G , the more intensive the extraction. We decide to keep
only the most intensive strategy (mext

G = 1) for the extraction. More precisely, if
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x is a solution obtained while optimizing the subproblem i, then only the closest
group to i (regarding NG(i)) receives the knowledge extracted from x.

Concerning the injection, we introduce similarly a parameter minj
G . It repre-

sents the number of groups that can provide the knowledge to be injected. The
diversity increases along with the value of minj

G . For the study, we keep only the
two extreme values being 1 (for intensification) and M (for diversification). More
precisely, when minj

G = 1, only the closest group to the subproblem can provide
the knowledge, and when minj

G = M , it can be any group (chosen at random).

4.3 MOEA/D with Knowledge Discovery

In this section, we combine the elements described in the former section to obtain
the framework shown in Algorithm 1. If lines 4, 12, and 17 are removed, then the
algorithm becomes the variant of MOEA/D described in Sect. 4.1. At line 4, the
procedure createGroups is called to create the vector of each group, as explained
in Sect. 4.2. At line 12, the injection procedure Kinj is applied to the current
solution x, using either an intensification (minj

G = 1) or a diversification (minj
G =

kG) strategy as explained in Sect. 4.2. At line 17, the extraction procedure Kext

is used to extract the knowledge from the set of solutions generated during the
iteration. Then it updates the closest group (mext

G = 1) of the subproblem being
optimized as explained in Sect. 4.2. In the following section, we instantiate the
Algorithm 1 with different values of kG .

4.4 Experimental Variants

In this section, we present and discuss the different values of kG retained for
the study. Since the extraction is performed in an intensive manner, only the
strategies for the injection are considered.

First of all, we consider the simplest case, where there is only one group
(kG = 1). In that case, the intensification is equivalent to the diversification,
leading to only one variant, the so-called Base algorithm.

It is known that solutions in the middle of the front (i.e. solutions that have
an equivalent trade-off between the objectives) are the most difficult to obtain.
Therefore we need to create at least kG = 3 to obtain a relevant decomposition. In
this article, we limit the investigation to the case where the groups are uniformly
spread along the front. Thus, two groups are focused on a specific objective, and
an intermediate group gathers trade-off solutions. Hence there are two variants
using three groups: A3

int (resp. A3
div), which uses an intensification (resp. diver-

sification) strategy for the injection. Then we can refine the process to obtain
kG = 5 (uniformly spread) groups in the decomposition, leading to two other
variants: A5

int and A5
div. Moreover, we keep the extreme case where kG = M ,

creating as many groups as subproblems since it has been studied in [12]. In
this case, each group is dedicated to one specific aggregation. More precisely, for
k ∈ {1, . . . , kG}, gk = wk. However, it may lead to a waste of resources since
a lot of redundant knowledge between groups may exist. The last two variants
are: AM

int and AM
div.
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Algorithm 1: Knowledge Discovery MOEA/D Framework.
Input: M weight vectors w1, . . . , wM . The number kG of knowledge groups and

the strategy minj
G (resp. mext

G ) for Kinj (resp. Kext).
Output: The external archive A
/* Initialisation */

1 A ← ∅; S ← ∅
2 P ← random initial population (xi for the i-th subproblem)
3 G ← createGroups(kG)
4 for i ∈ {1, . . . , M} do
5 N (i) ← indexes of the m closest weight vectors to wi

6 Obji ← {fj(x
i) | 1 ≤ j ≤ n}

/* Core of the algorithm */

7 while not stopping criterion satisfied do
8 for i ∈ {1, . . . , M} do
9 (i1, i2) ← Select(N (i))

10 x ← PMX(xi1 , xi2)

11 x ← Kinj(x, G, i, minj
G )

12 x ← LS(x)
13 S ← S ∪ {x}
14 updateNeighbors(P, N (i), x)

15 A ← updateArchive(A, S)
16 G ← Kext(G, S, mext

G )
17 S ← ∅
18 return A

5 Bi-Objective Vehicle Routing Problem with Time
Windows (bVRPTW)

5.1 Problem Description

The bVRPTW [23] is defined on a graph G = (V,E), where V = {0, 1, . . . , N}
is the set of vertices and E = {(i, j) | i, j ∈ V } is the set of arcs. It is possible
to travel from i to j, incurring a travel cost cij and a travel time tij . Vertex 0
represents the depot where a fleet of K identical vehicles with limited capacity
Q is based. Vertices 1, . . . , N represent the customers to be served, each one
having a demand qi and a time window [ai, bi] during which service must occur.
Vehicles may arrive before ai. In that case, the driver has to wait until ai to
accomplish service incurring a waiting time. Arriving later than bi is not allowed.
It is assumed that all inputs are nonnegative integers. The bVRPTW calls for
the determination of at most K routes such that the traveling cost and waiting
time are simultaneously minimized and the following conditions are satisfied: (a)
each route starts and ends at the depot, (b) each customer is visited by exactly
one route, (c) the sum of the demands of the customers in any route does not
exceed Q, (d) time windows are respected.
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5.2 Related Works

The original VRPTW aims to minimize the number of vehicles and the total trav-
eling cost. In the literature, we find many lexicographic approaches that minimize
the number of vehicles first and then the traveling cost. Nowadays, all Solomon’s
instances [20] can be optimally solved using an exact algorithm [17], however,
the computational cost grows exponentially with the size of the instances. In
practice, meta-heuristic algorithms can obtain a “good enough” solution in a
short time and have the capacity to solve large-scale complex problems, which is
more suitable for applications. Schneider et al. [19] proposed different granular
neighborhoods to improve the local search performed. More recently Zhang et
al. [27] designed a new Evolutionary Scatter Search with Particle Swarm Opti-
mization, the so-called ESS-PSO, able to reach very good results on Solomon’s
instances in a small amount of time. Considering the multi-objective approaches,
the literature is more sparse. Qi et al. [18] proposed a memetic algorithm based
on MOEA/D to solve a bi-objective VRPTW. More recently, Moradi [16] inte-
grated a learnable evolutionary model into a Pareto evolutionary algorithm.

5.3 Local Search and Knowledge Operators

The LS performed in Algorithm 1 is the same as described in [13]. Briefly, three
neighborhood operators are used: swap, relocate, and 2-opt∗. Initially, we shuffle
the list of operators, so that they are not always applied in the same order.
Then, for a given operator, we try to insert each customer to its best location,
considering the possible moves allowed by the operator. If a better location is
found for the customer, the process is repeated with another customer. When
no more improving moves are found for all customers, the search stops, and the
next operator is picked up.

Now we define the Kinj and Kext mechanisms related to the bVRPTW. Both
mechanisms are based on the work of Arnold et al. [1]. They introduced PILS, an
optimization strategy that uses frequent patterns from high-quality solutions, to
explore high-order local-search neighborhoods. PILS has been hybridized with
the Hybrid Genetic Search (HGS) of Vidal et al. [25] and the Guided Local
Search (GLS) of Arnold and Sörensen [2] to solve the Capacitated Vehicle Rout-
ing Problem (CVRP) with good results. Given a solution x of the problem,
Kext extracts all patterns of x with a size between 2 and sizep, a user-defined
parameter. The depot is not considered inside patterns. Patterns are sequences
of consecutive customers in a route. For instance, a route r = (0, v1, . . . , v|r|, 0),
contains max(|r| − k + 1, 0) patterns of size k. Then for each extracted pattern,
its frequency inside the groups updated is incremented. Kinj tentatively injects
NInj patterns in the current solution x. Only improving patterns are kept in
the solution, leading to a kind of elitism selection for patterns. To select a pat-
tern we proceed as follows. First, the size of the pattern is randomly chosen
among {2, . . . , sizep}. It allows to not bias the selection towards smaller, more
numerous, patterns. Then the pattern is randomly chosen among the NFrequent

most frequent patterns of the same size. Here NFrequent is also a parameter of



470 C. Legrand et al.

the algorithm. When all the NInj patterns have been selected, they are injected
one by one according to the following steps. Firstly arcs incident to a node of
the pattern are removed and the nodes of the pattern are connected. This step
creates several pieces of routes, that are reconnected to form a feasible solution.
The reconnection is optimal, in the sense that all possibilities are tested. Because
of time windows, we do not consider reversed patterns in our mechanism.

6 Experimental Setup

6.1 Solomon’s Benchmark

We use Solomon’s instances [20], of size 100, to evaluate the performance of
all the seven variants presented in Sect. 4. This set is frequently used in the
literature to evaluate the performance of multi-objective algorithms [9,16,18].
The set contains 56 instances divided into three categories according to the
type of generation used, either R (random), C (clustered), or RC (random-
clustered). The generation R (23 instances) randomly places customers in the
grid, while the generation C (17 instances) tends to create clusters of customers.
The generation RC (16 instances) mixes both generations. Each category is itself
divided into two classes, either 1XX or 2XX, according to the width of time
windows. Instances of class 1XX have wider time windows than instances of
class 2XX, meaning that instances 2XX are more constrained.

6.2 Termination Criterion and Performance Assessment

The termination criterion of all the variants is set to 720 s. It allows us to obtain
accurate and robust results. The quality of the fronts is evaluated with the
unary hypervolume [29] (uHV), which measures the volume of the area dom-
inated by the solutions of the front. Indeed, true Pareto fronts of the prob-
lem are not known, thus we can not use metrics that rely on them. For each
instance, the two extreme points used to normalize the objectives of the solu-
tions, are obtained through our experiments and are automatically updated
when a new point is found. To compute the uHV we use the point (1.001, 1.001)
as a reference. The experiments are run on two computers “Intel(R) Xeon(R)
CPU E5-2687W v4 @ 3.00 GHz”, with 24 cores each. The variants have
been implemented using the jMetalPy framework [5]. The code is available at
https://github.com/Clegrandlixon/kdmoopy.

6.3 Tuning

Each algorithm is tuned with irace [14] to find a good setting of the parame-
ters. To perform the tuning, we generated 96 new instances of size 100, by using
the method described by Uchoa et al. [24] to mimic Solomon’s instances. Each

https://github.com/Clegrandlixon/kdmoopy
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variant uses the following parameters: M , the number of subproblems consid-
ered, and m the size of the neighborhood of each subproblem. The probabilities
associated with each mechanism are pcro for the crossover, pinj for the injec-
tion, and pmut for the LS. The granularity parameter δ [22] is used to prune
the neighborhood during LS. The maximal size sizep of the patterns extracted,
and the number NInj of patterns injected, chosen among the NFrequent most
frequent patterns. According to a preliminary study and existing works, we set
m = 1/4 × M and NFrequent = 100. We do not consider the number of groups
kG in the tuning, because we want to highlight its influence on the algorithm.
We propose a different range of values for the seven remaining parameters (cf.
Table 1), to define the configuration space in irace. We granted a budget of 2000
configurations over 8 iterations to irace. Each configuration is evaluated with
the uHV metric. The best configurations are presented in Table 2.

We can remark that the number of subproblems is always below 60, which
makes sense since small populations are often preferred in genetic algorithms.
The granularity is almost always set to 25, which is coherent with existing studies
in the literature on routing problems. The maximal size of patterns alternates
between 5 and 7, which is close to the value recommended in [1]. Moreover, the
probability of applying the LS seems low, but the LS is the most time-consuming
step of the algorithm, mainly in the beginning when solutions are not optimized.
With pmut = 0.10 the LS represents already 50% of the running time. However,
it represents only 60% when pmut = 0.25. The second most time-consuming
step is the injection mechanism. When pinj = 1.00, it represents around 25% of
the total running time, but this mechanism requires a constant cost during the
execution contrarily to the LS.

Table 1. Parameter’s space given to irace. The space contains 77175 configurations.

Name Range

Population size: M (20, 40, 60, 80, 100)

Granularity: δ (10, 25, 50, 75, 100)

Probability of crossover: pcro (0.00, 0.10, 0.25, 0.50, 0.75, 0.90, 1.00)

Probability of mutation: pmut (0.00, 0.10, 0.25, 0.50, 0.75, 0.90, 1.00)

Maximum size of pattern: sizep (5, 7, 10)

Number of patterns injected: NInj (20, 40, 60)

Probability of injection: pinj (0.00, 0.10, 0.25, 0.50, 0.75, 0.90, 1.00)

7 Experimental Protocol

In our experiments, we investigate how the number of groups and the strategy
followed by the injection impact the quality of the solutions returned.
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Table 2. Best elite configurations returned by irace for each variant.

Params Base A3
int A3

div A5
int A5

div AM
int AM

div

M 60 60 40 40 20 40 20

m 15 15 10 10 5 10 5

δ 50 25 25 25 25 25 25

pcro 0.50 0.50 0.90 0.50 0.90 0.50 0.75

pmut 0.10 0.10 0.10 0.25 0.10 0.10 0.25

sizep 5 5 7 7 5 5 5

NInj 60 20 40 60 60 40 40

pinj 0.75 0.75 1.00 1.00 0.90 1.00 0.90

To that aim, each variant is executed 30 times on the 56 instances of size
100 of Solomon’s benchmark. For each algorithm, the k-th run of an instance
is executed with the seed 10(k − 1), to compare the algorithms with the same
seeds. We recall that the termination criterion is set to 720 s for all variants.

For each category of instance (either R, RC, or C), we compute the average
uHV obtained over the 30 runs. Then we rank each variant on each instance and
we compute the average rank on all the categories. We perform a Friedman test
on the average uHV, to know if all algorithms are equivalent, and if it is not the
case, we apply a pairwise Wilcoxon test with the Bonferroni correction to know
which algorithms are statistically better. Finally, we define a fourth category
All, containing all the instances, and we compute similarly the average ranks of
each variant in that case.

8 Experimental Results and Discussion

In previous studies [12,13], we compared different instantiations of the frame-
work with the original MOEA/D (i.e. without using the knowledge groups). It
shows that using the knowledge discovery framework is beneficial. Table 3 (resp.
Table 4) shows the average rank (resp. uHV) of each variant on each category
of instance. The variant A5

int always leads to the best average rank (1.46) and
average uHV (0.828). Moreover, this variant returns statistically better results
than the other variants. Hence it is interesting to use more than one group in a
multi-objective context.

Using the diversification strategy with five groups worsen a lot the returned
results. Indeed, A5

div ranks 5.73 on average, which is the second highest rank.
Only A3

int has a higher rank. The other variant A3
div has also a high rank, meaning

that using three groups is clearly a wrong choice in that context.
The variants AM

int and AM
div provide average uHV that are close in value. It

is 0.767 for AM
int and 0.770 for AM

div. The conclusion is similar if we look at each
category separately. Hence, when many groups are used, there is not a significant
difference between intensification and diversification strategies for the injection.
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Surprisingly, the Base variant returns good results, except on clustered
instances. Hence it is not interesting to use a too-large or a too-small num-
ber of groups. The goal is to provide a “good” intermediate value. Here, the best
results are obtained with five groups, but further studies should investigate the
behavior of the procedure with different numbers of groups or that consider the
possibility to adapt the number of groups during execution.

Table 3. Average ranks of the variants according to their average uHV over the dif-
ferent categories of instance. Bold results are statistically significant.

Category Base A3
int A3

div A5
int A5

div AM
int AM

div

R 2.52 6.65 4.09 1.26 5.59 4.61 3.28

RC 2.16 6.94 4.72 1.56 5.53 3.53 3.56

C 4.09 5.29 5.50 1.62 6.12 2.21 3.18

All 2.89 6.32 4.70 1.46 5.73 3.57 3.33

Table 4. Average uHV of the variants according to their average uHV over the different
categories of instance. Bold results are statistically significant.

Category Base A3
int A3

div A5
int A5

div AM
int AM

div

R 0.730 0.627 0.703 0.764 0.667 0.682 0.706

RC 0.738 0.590 0.695 0.781 0.665 0.713 0.705

C 0.889 0.848 0.848 0.959 0.831 0.934 0.919

All 0.780 0.684 0.745 0.828 0.716 0.767 0.770

9 Conclusion

Integrating a knowledge discovery mechanism into a metaheuristic requires tak-
ing into account a lot of design aspects, summarized by the questions: What,
Where, When, and How should the knowledge be extracted and injected. In this
article, we mainly focused on the question How, while we considered existing
works to answer the other questions. In particular, to answer the How question
we have to consider how should interact the extraction and injection components
of the KD mechanism, to be as efficient as possible.

As a contribution, we defined the notion of knowledge groups, studied in the
literature, by giving a construction for any number of groups in a bi-objective
context. Moreover, we formalized the strategies that extraction and injection can
follow, and we instantiated them to obtain an intensification and a diversification
strategy. We integrated our propositions into a MOEA/D framework, and we
tested them on a bVRPTW. The results showed that the variant using five
knowledge groups with an intensification strategy for both the injection and
extraction was statistically better than the others.
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In the near future, our framework will be compared to different state-of-the-
art algorithms (e.g. NSGA-II, MODLEM), and different problems will also be
investigated (e.g. bTSP). The tuning phase performed by irace provided similar
configurations for each of the variants. Hence it will be interesting to investigate,
whether with the same parameter configuration for all variants similar conclu-
sions can be reached. Moreover, the number of groups will be considered as a
parameter to be tuned in future works, to see if irace achieves similar conclu-
sions. We would also like to investigate more deeply the impact of the strategies
presented for injection and extraction. Finally, we aim to create an adaptive
algorithm, which automatically adapts the number of groups and the strategies
followed by the operators.
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6. Blot, A., Kessaci, M.É., Jourdan, L.: Survey and unification of local search tech-
niques in metaheuristics for multi-objective combinatorial optimisation. J. Heuris-
tics 24(6), 853–877 (2018). https://doi.org/10.1007/s10732-018-9381-1

7. Corne, D., Dhaenens, C., Jourdan, L.: Synergies between operations research and
data mining: the emerging use of multi-objective approaches. Eur. J. Oper. Res.
221(3), 469–479 (2012)

8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-ii. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)

9. Ghoseiri, K., Ghannadpour, S.F.: Multi-objective vehicle routing problem with
time windows using goal programming and genetic algorithm. Appl. Soft Comput.
10(4), 1096–1107 (2010)

10. Glover, F., Laguna, M.: Tabu Search. In: Du, DZ., Pardalos, P.M. (eds.) Hand-
book of Combinatorial Optimization, pp. 2093–2229. Springer, Boston, MA (1998).
https://doi.org/10.1007/978-1-4613-0303-9 33

11. Knowles, J.D.: Local-search and hybrid evolutionary algorithms for Pareto opti-
mization. PhD thesis, University of Reading Reading (2002)

12. Legrand, C., Cattaruzza, D., Jourdan, L., Kessaci, M.-E.: Enhancing moea/d with
learning: application to routing problems with time windows. In: Proceedings of
the GECCO Companion (2022)

13. Legrand, C., Cattaruzza, D., Jourdan, L., Kessaci, M.-E.: New neighborhood
strategies for the bi-objective vehicle routing problem with time windows. In: Pro-
ceedings of MIC 2022 (2022)

https://doi.org/10.1007/s10732-018-9381-1
https://doi.org/10.1007/978-1-4613-0303-9_33


Improving MOEA/D with Knowledge Discovery 475
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Abstract. A building spatial design (BSD) determines external and
internal walls and ceilings of a building. The design space has a hier-
archical structure, in which decisions on the existence or non-existence
of spatial components determine the existence of variables related to
these spaces, such as sizing and angles. In the optimization of BSDs it is
envisioned to optimize various performance indicators from multiple dis-
ciplines in concert, such as structural, functional, thermal, and daylight
performance. Existing representations of design spaces suffer from severe
limitations, such as only representing orthogonal designs or representing
the structures in parametric superstructure, allowing only for limited
design variations. This paper proposes prism nets - a new way of repre-
senting the search space of BSDs based on triangulations defining space
filling collections of triangular prisms that can be combined via coloring
parameters to spaces. Prism nets can accommodate for non-orthogonal
designs and are flexible in terms of topological variations. We follow the
guidelines for representation and operator design proposed in the frame-
work of metric-based evolutionary algorithms. The main contribution of
the paper is a detailed discussion of the search space representation and
corresponding mutation operators. Moreover, a proof of concept exam-
ple demonstrates the integration into multi-objective evolutionary algo-
rithms and provides first results on a simple, but reproducible, bench-
mark problem.

Keywords: Building spatial design · Mutation operators · Geometry
optimization · Non-standard representations · Multi-disciplinary design

1 Introduction

One of the advantages of evolutionary algorithms, compared to most classical
optimization algorithms, is that they can accommodate complex search spaces
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with variable dimension, such as the space of mathematical expressions [19], the
chemical space consisting of molecules represented by chemical graphs [20], or
various types of structures in engineering design [14] or neural architectures [15].
In the following we propose a non-standard representation of a search space for
multi-objective BSD optimization.

The domain of building spatial design (BSD) is concerned with finding opti-
mal layouts for buildings, including internal and external walls, floors and ceil-
ings. The building spatial design crucially governs the performance of a build-
ing in terms of various performance indicators (objectives), such as energy per-
formance (which is related to the outer surface area), structural performance
(strength, stiffness, and stability), and daylight performance (related to the size
and positioning of windows). In a previous project, an open source building
spatial design optimization toolbox (BSO toolbox [4,7]) has been developed by
researchers of the Eindhoven University of Technology, The Netherlands, and of
Leiden University, The Netherlands. The toolbox supports the human designer in
the task of multi-criteria and multi-disciplinary building spatial design. So far it
is restricted to BSDs based on orthogonal space partitioning and it features build-
ing physics (energy performance) and structural engineering disciplines (struc-
tural performance) [6]. The BSO toolbox uses a collection of quad-hexahedrons
to represent a Building Spatial Design (BSD). It then includes adaptive gram-
mars that provide a discipline related design to the BSD (e.g. a structure system
with among others flat shells, loads, and boundary conditions) including the
properties for discipline specific analysis. The grammars can also function via
evolutionary algorithms as described in Boonstra et al. [5]. Finally, the toolbox
includes a Finite Element Method (FEM) simulation-based evaluation of the
structural performance of BSDs, a Resistor Capacitor (RC) network based eval-
uation of thermal performance, and various design modification and constraint
handling techniques. Another example of approach to BSD is generating floor-
plan designs [13]. Main features of this approach is simplicity of usage in practice
and a new model of human-computer interaction. However, our approach allows
more automation, non-orthogonal shapes, and optimization based on energy and
structural performance of a building. The multiobjective optimization is accom-
plished by Pareto optimization using state-of-the-art optimization algorithms.
The main optimization algorithm is a hybrid memetic multi-objective optimiza-
tion algorithm [3] that is used to optimize layout choices, discrete variables as
well as continuous variables (using local hypervolume gradient-based search [3]).
Optimization is further explored by hybrid approaches that combine the algo-
rithm with design process simulations [6]. The data generated during the opti-
mization process can be interpreted by an explainability engine, which relates
regions on the Pareto front to features of the building spacial design that are
expressed in terms of the decision variables. A major downside of this system
was that it was limited to orthogonal spatial designs, however, progress is made
in allowing non-orthogonal BSD constrained to a collection of horizontal floor
and vertical walls quad-hexahedrons [11]. Our vision in this new paper is to also
represent more complex geometries of buildings in the BSO toolbox, namely,
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BSDs with vertical walls but non-orthogonal floorplans or angles between walls.
See Fig. 1 for examples of orthogonal designs, a realization of a design by the
Dutch company ‘De Twee Snoeken’, and a non-orthogonal BSD.

To accomplish search spaces that comprise BSDs with more complex geome-
tries we are going to propose the new prism-net representation. The prism-net
search space accommodates all multi-floor building spatial designs with vertical
and straight walls and horizontal floors and ceilings, and it can be integrated into
evolutionary algorithms by augmenting it with mutation operators that will also
be described in this paper. Importantly, the angles of corners of spaces are not
restricted to right angles, allowing for more architectural freedom in the design
and potentially a further improvement of the various design objectives. Together
with the new prism-net representation we present a hierarchical mutation opera-
tor that encodes a scalable random modification of the building and is guided by
the principles of mutation operator design as stated in Rudolph [18] for integer
spaces and later refined in Droste and Wiesmann for metric spaces [10]. In brief,
the principles are accessibility (every point should be accessible by a finite num-
ber of mutations from any other point), symmetry (reversibility), unbiasedness
(maximum entropy), and scalability (of the mutation strength). They proved
to lead to excellent results in evolutionary optimization when applied to non-
standard search spaces such as integer vectors [18], binary decision diagrams [10]
and (variable-dimensional) mixed-integer search spaces [16]. Our representation
(the prism networks) consists of three levels - topological (triangulation of levels),
categorical integer (assignment of prisms to spaces), and continuous (placement
of corners or nodes of the triangulation). Constraints are introduced to express
the concept of space in a building spatial design, and to accommodate practical
needs, such as the avoidance of sharp corners, other geometrical preferences, and
the connectivity of the building to the ground. Note that this paper focuses on
building representation for optimization, and not on benchmarking, since there
is no system with similar functionality to compare the results with.

Fig. 1. Orthogonal BSDs (left) and a model of a building (middle), and BSDs based
on quadrilateral floorplans with non-orthogonal elements (right).

The paper is structured as follows: In Sect. 2 we introduce the new search
space representation for BSDs) and analyse its theoretical properties. In Sect. 3
we propose an hierarchical and scalable mutation operator for the BSDs that
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generates neighboring solutions in the search space. In Sect. 4 we show how the
new representation can be integrated into existing evolutionary multi-objective
optimization algorithms. Also first, reproducible, Pareto optimization results
with simple to encode performance indicators are presented. We conclude this
work with an outline to future research steps needed to fully integrate the BSD
representation into real-world computer aided design optimization environments,
such as the BSO toolbox (Sect. 5).

2 Search Space Representation

Firstly, let us introduce the three-dimensional Cartesian coordinate system R
3.

Each point can be described through three coordinates p = (x, y, z) with origin
O = (0, 0, 0). The plane (x, y, 0), x ∈ R, y ∈ R will be denoted by xOy.

The first assumption we make is that all ceilings and floors are parallel to
the plane xOy and all walls are parallel to the z-axis. Hence we can express
the building layout through a set of two-dimensional projections onto the plane
xOy for each level. The number of levels L and the heights of levels are given
by the variables: (h0, h1, . . . , hL). Representation implies that the building can
be devided into levels, but at the same time a space can be located on several
levels. Note, that these are building spatial designs with flat roofs and ceilings.

The second assumption is that we are given a 3-D cuboid (more specifically,
an axis aligned 3-D orthogonal polyhedron) V in which the building is posi-
tioned. For clarity of presentation, we might for now consider that the cuboid
has sides parallel to the axes and one of the vertices coincides with the origin:
V = {(x, y, z) : x ∈ [0, xV ], y ∈ [0, yV ], z ∈ [0, zV ]}, where xV , yV and zV
are the predefined maximal width, depth and height of a building correspond-
ingly. Subsequently, the entire specified volume will be partitioned into prism
shaped cells, of which some will be selected (active cells) and define the build-
ing, whereas non-selected cells partition the space not part of the building. Cells
in the interior of the building can be combined to spaces, i.e., compartments
of the BSDs the points of which are not separated by walls. Each cell is a tri-
angular prism fully located on one of the levels. We will denote the number of
cells as Ncells and the set of cells as C = {ci}, i ∈ {1, 2, . . . , Ncells}. Because of
the first assumption we made and the fact that we require the triangular prisms
to be confined to two adjacent levels, it is possible to describe each cell ci in
the following way: ci = [(x1i, y1i), (x2i, y2i), (x3i, y3i), li, si], where (xki, yki), –
coordinates of the vertices of a triangular prism, k ∈ {1, 2, 3}, li ∈ {1, 2, . . . , L}
– level on which the cell ci is located (L denotes total number of levels), and
si ∈ {0, 1, . . . , Nspaces} – integer categorical variables referred to as ’colors’,
defined further in the text (Nspaces is the maximum number of spaces to be
represented). The set of prisms should form a partition of V and the sets of
prisms for a given level should form a partition of that level, and all prisms
should have non-zero volume, meaning that the vectors (x1i, y1i), (x2i, y2i), and
(x3i, y3i) are not allowed to be co-linear. It is desirable to be able to create build-
ing designs having an external shape other than the outer volume V (e.g, a box),
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and spaces to have other shapes than triangular prisms. We introduce coloring
scheme of triangular prisms to combine them into polygon-shaped spaces and
hence building. Each cell ci is associated with a non-negative integer variable
si ∈ {0, . . . , Ncolors}. We will call the values of these integer variables ‘colors’,
and they denote the space (an interior compartment that is not separated by
walls) to which a cell belongs. The user-defined maximum for the number of
spaces in the building is denoted by Ncolors. If si = 0, then cell ci is inactive,
meaning that it does not belong to the building. If si ∈ {1, . . . , Ncolors}, then it
is part of the building. If si = sj = n �= 0, i �= j, n ∈ N then both cells ci and
cj are parts of the same space sn. See the example of one level in Fig. 2 (left).
Here we see that only cells c2, c3, c4, c5, c6, c7, c8, and c10 represent actual
parts of the level. And cells c2 and c6 are combined into the space with color
equal to 4 (red), cells c5 and c8 are combined into the space with color equal
to 2 (yellow), cells c7 and c10 are combined into the space with color equal to
1 (green), and cells c3 and c4 are combined into the space with color equal to 3
(purple). Other cells are technically present in the representation of this floor,
but do not represent any part of the building.

Next we will define prism-nets as a data-structure and search space repre-
sentation that is based on collections of triangular prisms of the aforementioned
type and satisfy certain elementary constraints, given below. Here and further,
“triangle” means the projection of triangular prisms (cells) on the xOy plane.

Fig. 2. Projection of one particular level to the plane xOy (left). Connectedness for
the projection of one particular level to the plane xOy (right). (Color figure online)

Constraint 1: Non Overlap. Two cells on the same level should not overlap
each other. It means that two triangles can intersect each other only in two
cases: their intersection is a common vertex, or it is a common side of both
triangles. Recall, that previously, we said that the space is partitioned by the
prisms. However, this is not exactly true, because we allow the overlap to be of
zero measure (that is overlap at the boundary). This way we can view prisms as
closed sets.
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Constraint 2: Complete Coverage. Every point in the volume V is covered
by at least one cell.

Constraint 3: Connectivity of Spaces. As described earlier the color of a cell
is a non-negative integer parameter which represents the space to which the cell
belongs (positive values), or is zero for cells outside the building. It is necessary
to prevent cases where cells with the same positive color are not connected to
each other. Next, we consider separately two situations: when cells are on the
same level and when they are not. To check if cells located on the same level with
the same color are connected, we introduce a test based on the idea of a dual
graph (see Fig. 2 (right)). The dual graph is constructed in the following way:
nodes of the graph represent cells, and two nodes are connected if corresponding
cells are connected (their intersection is either a face, a vertical edge, a vertex
or a horizontal edge). We suggest to check if the dual graph is connected. The
second condition is that the space has the same projection on every level, i.e.
if we consider parts of the space belonging to the same level, or ”layers” of the
space, then all layers should have the same shape and location in 2-dimensional
view. And moreover, a space should be located on adjacent levels.

Remark: Constraints 1–3 are intrinsic constraints, which means that they define
constraints of the prism net representation. Constraint 1 and 2 guarantee that
the projection of the prism net to the xOy plane is a triangulation for some set
of nodes, which partitions the region V . Constraint 3 is intrinsic to the definition
of spaces, making sure that spaces (regions of cells with the same color) are not
separated by means of walls, floors or ceilings internally.

Definition 1. (Properly colored) prism net: A prism net is a list of colored
triangular prism cells ci = [(x1i, y1i), (x2i, y2i), (x3i, y3i), li, si], i = 1, . . . , Ncells

positioned on level planes that are parallel to the ground-floor (z = 0) of a
given outer cuboid V , li ∈ {1, . . . , Nlevels}, with colors si ∈ {0, . . . , Ncolors} and
contained in the cuboid V . The height of each triangular prism is the height dif-
ference of two consecutive level planes, of which li is the index of the lower of the
two consecutive planes. In addition, in a prism-net also the ’partitioning’ con-
straints 1 and 2 must be satisfied. – A properly colored prism net (PCPN)
also satisfies constraint 3 (connectivity of spaces).

Next we will define some further constraints on prism nets that turn out to be
useful when implementing constraint checking or that are motivated by practical
constraints for real buildings.

Constraint 4: Convex Polygon. Projections of spaces should form convex
polygons. This constraint was added to keep the overall BSDs simple and to avoid
costly constraint checking procedures. From a building engineering perspective,
however, it is also possible to realize non-convex spaces, such as L-shaped spaces.
In the current toolbox, only spaces can be handled with 4 corners. An L-shaped
building can be exactly (or approximately) partitioned by triangular cells.
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Constraint 5: Spaces should be Connected to the Ground. The next
considered constraint is connectivity to the ground. Figure 3 illustrates different
types of connection of the spaces. For our example problem we allow all types of
connection except for the connection between the red space and all other spaces.
To formulate this constraint more strictly we need to introduce a dual graph
G = (N,E). The set of nodes N corresponds to the set of spaces. Two nodes ni,
nj ∈ N are connected by an edge eij ∈ E if the intersection of two correspond-
ing spaces is not an empty set. Black lines in Fig. 3 (left) represent edges of the
graph G. Constraint 5 is considered violated if there is no path from any space
to at least one space on the ground level.

Remark: Note that here we allow the connection of spaces via a single point.
Although this solution is feasible it is expected to perform poorly for a structural
objective function.

Constraint 6: No Cavities. In this representation we would like to exclude
the possibility of cavities. An example of a cavity mentioned above is illustrated
in Fig. 3 (right) (the cell between “blue”, “pink” and “green” spaces is the cavity).
To perform such a check, it is necessary to determine the cells with a color value
of zero which have a side on the border of the building, and make sure that all
other cells with zero color value are connected to them. To do it we need to
introduce a dual graph G0 = (N0, E0). The set of nodes N0 corresponds to the
set of cells with zero color value. Two nodes ni, nj ∈ N are connected by an
edge eij ∈ E0 if the intersection of two corresponding cells has two vertices, i.e.
the whole side (See Fig. 6). Constraint 6 is met if there is a path from every cell
with zero color value to at least one cell with zero color value located on the
boundary of the building. Remark: If constraint 4 and constraint 6 are met then
on each level all cells belonging to the same space are connected and there are
no cavities present in the building structure, and therefore external boundaries
on each level of each space is one of a closed chain of sides.

Fig. 3. Types of space connections (left). Allowed and not allowed location of cells
with zero color value (right).

Constraint 7: Non Sharp Angles (optional). In addition we introduce a
constraint that can be switched off by a user. This constraint avoids spaces
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with angles less than some threshold. A user selects the minimal allowable angle
and after that we calculate each angle in each space and check it against the
threshold.

3 Mutation Operators

In order to formulate search algorithms, it is essential to define operators that
generate neighbors of a given design. Next we introduce hierarchical mutation
operators that can be used in (multi-objective) evolutionary optimization to
create variations of a given design in the prism-network representation. It con-
sists of the three following main operations. (1) Topological mutation of the
cell partitioning, (2) Changing the discrete s-values (‘colors’), (3) Changing the
continuous coordinates of the vertices.

By topological mutation we will refer to a building layout transformation
that changes the triangulation of a convex quadrilateral space without changing
the boundaries of spaces. We need to define possible operations of mutation in
such a way that no constraint becomes violated. There are three topological
mutations suggested: diagonal ‘flip’ (change of diagonal), adding a vertex, and
deleting a vertex. The probability of applying each of them is determined by
mutation rate. Next, we will focus on each of them in more detail. Diagonal flip
chooses randomly one of the convex quadrilaterals formed by two triangle cells
belonging to the same space and the same level. The common edge of two cells
is the diagonal of mentioned quadrilateral. The mutation is a changing of this
diagonal to the other diagonal of the quadrilateral as shown in Fig. 4a).

Adding a vertex splits into two cases: adding a vertex to an edge and adding
a vertex to the interior of a cell. When adding a vertex occurs, first type of
adding appears with probability 0.9 and the second one with probability 0.1.
This ratio was picked empirically. For adding a vertex to an edge we randomly
choose a side of a triangle. If two triangles have coinciding sides, we count them
as one. Then we uniformly choose a point belonging to this side and add it as a
vertex. And finally we split adjacent cells to avoid constraints violation. If the
chosen side was on the boundary of two spaces (Fig. 4, c)) or if it was on the
side inside a space (Fig. 4, e)), then we need to add two sides coming out of
the selected vertex and corresponding cells. If the side was on the outer contour
of the building structure (Fig. 4, d)), then we need to add only one side and
corresponding cells. The second possible case is adding a vertex to the interior
of a cell. We randomly choose a cell and uniformly select a point inside of it
which becomes a vertex. And finally we add three sides and corresponding cells
(see Fig. 4 b)).

Deleting a Vertex. Since we include the operation of adding a vertex then we
also need a possibility of deleting a vertex so that the mutation operator is sym-
metrical. Firstly we determine the type of each vertex of the building structure.
If the vertex is on the corner of the outer contour, then we cannot delete it. If
the vertex is on the outer contour, but not on the corner, (Fig. 4, d) we allow
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Fig. 4. Topological mutation: a) diagonal flip, b) adding a vertex to the interior of a
cell, c)–g) adding a vertex to an edge/deleting a vertex.

to delete it only if it belongs exactly to one space (zero or non-zero space). If
a vertex is in the building interior, then we allow to delete it only if it belongs
to one (Fig. 4, e) or two (Fig. 4, c)) different spaces (zero or non-zero spaces).
These conditions are justified by necessity of leaving only the unfolded angles
after deleting a vertex. Secondly, we randomly select one of the vertices which
are allowed to be deleted, we delete the vertex and combine the cells in a way
that no constraint is violated as it is shown in Fig. 4 (c, d and e) for allowed
cases. But sometimes additional triangulation might be needed. In Fig. 4 there
are two cases when it is needed: f) with involvement of two spaces, g) in the
interior of one space. We use standard Delaunay triangulation [8].

Next, we describe the Discrete variable mutation for the s-values (i.e.
the ‘colors’): Firstly we randomly choose the integer number from the set
{0, . . . , Nspaces}. If the chosen number is 0, then we randomly choose a cell
with non-zero s-value and change it to 0. If the chosen number is not 0, we
consider the space with s-value equal to the chosen number. From the set of
cells belonging to other spaces and connected to the chosen space we pick a
random number of cells and “color” them into the chosen color (s-value). After
performing one of these two colorings, we check if all constraints are met. If one
of them is violated, we skip this mutation. Finally, let us describe the continu-
ous parameter mutation: The vertices of the triangulation can be moved to
introduce topological changes on a particular level if the vertices are not on the
corner of the building projection. If a randomly chosen vertex does not belong
to the surface of polyhedron V , it is restricted to the space that is defined by
the polygon formed by the triangles that are adjacent to the vertex. To move
the vertex we randomly choose the angle from the half-open interval [0, 360),
calculate the distance along the selected angle between the vertex and the poly-
gon side, and use a truncated normal distribution with standard deviation equal
to the obtained distance divided by 3 to generate the updated location for the
vertex. If a randomly chosen vertex belongs to the surface of V , we identify the
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segment of the border on the projection to which the vertex belongs, randomly
choose one of two directions, and similarly move the vertex according to the
truncated normal distribution.

4 Integration to NSGA-II and SMS-EMOA

In order to test the new representation, we integrated it into two state-of-the-
art evolutionary multi-objective optimization algorithms1, the NSGA-II [9] and
SMS-EMOA [1] algorithms, and performed multi-objective optimizations with
two easy-to-reproduce example objective functions (see Github repository [17]
for Python codes): (1) Minimize the external surface area, excluding the floor
area (f1). f1 := Sv +Sh −→ min, where Sv - surface area of all vertical external
sides of the building, Sh =

∑L
i=2(si − si−1), si – surface area of level i, L –

number of levels. (2) Minimize the sum of deviations of space volumes from target
predefined volumes. Here we specify the sizes of spaces and seek to minimize the
absolute deviation from the prescribed sizes (f2).f2 =

∑Nspaces

j=1 |V a
j − V d

j | −→
min, where V a

j – actual volume of space j, V d
j – predefined volume of space j.

These objective functions are motivated by resource efficient light-weight
constructions. However, the ambition of the overall project is to state objectives
that also include energy performance, which can for instance be measured using
resistor networks, and structural performance, which can be computed using
FEM simulations [6]. However, we would like to abstain in this paper from the
details of simulation and are more interested in a problem that is reproducible
and easy to understand for non-domain experts.

Three experiments were carried out with the described objectives with differ-
ent values of the mutation rate. Each of the experiments contained 30 repeated
runs. The NSGA-II and SMS-EMOA algorithm were tested. For all runs the
same initial population (size: 10) was used. The initial population was set man-
ually since randomized generation of building designs is to be done in future
work. In the proposed experiment there are several invariants: the number of
levels of the building is 2, the height of the building is 2 (1 for each floor), and
the number of spaces is 3. The box V inside which the building is contained has
dimensions xV = 5, yV = 3, and zV = 2. Throughout the experiments, variables
were limited by these values. The values of 100, 5 and 30 were chosen as the
required space volumes for calculation of the second objective as V d

1 , V d
2 , and

V d
3 correspondingly, and the value of 50 degrees was chosen as the minimum

allowable angle of a space.
Since the values of the objectives differ significantly from each other, normal-

ization is needed. The value of the surface area of no more than 75 was obtained
experimentally, so it was decided to divide the absolute value of this objective

1 Both algorithms feature parameterless selection in the bi-objective case. SMS-EMOA
is highly competitive across a wide range of bi-objective problems [2]. NSGA-II is
considered to be a commonly used algorithm for bi-objective optimization, whereas,
for problems with more objectives, we would rather consider NSGA-III.
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Fig. 5. Summary Pareto fronts (Empirical Attainment Levels [12]). Full red points are
attained by all runs, full blue points by just one run, and for points with sliding shades
of the color between blue and red are attained by 2 or more runs and less than 30 runs.
The black curve marks the median attainment curve. (Color figure online)

by 150, and the value of the deviation from the specified volumes was divided
by twice the sum of the required volumes. Thus, for the value of both objectives
to lie in the interval (0, 1) was achieved.

Each run of the NSGA-II algorithm was given a budget of 60 generations,
within each the proposed mutation operator was used. The recombination oper-
ator was not used. Mutation rate in this case determined the probability of
applying each of the mutations in the following sequence: topological muta-
tion, discrete parameter mutation, continuous parameter mutation. If any of the
mutations did not occur, the algorithm moved on to the next mutations in the
list.

In the first of the experiments, the probability of using each of the mutations
is 0.99, in the second with probability 0.3, and the third experiment can be
considered as local search, in which the probability of topological and discrete
mutations was 0.1, and continuous – 0.8. Firstly, points in objective space of all
runs from 60 generations were combined and then sorted by means of Pareto
dominance. Figure 5 (a)–(c) depicts the obtained Pareto non-dominated. We use
attainment curves [12] in the plot (Attained by all runs (best), attained by half
runs (median), attained by one run (worst)). The hyperparameter optimization
is to be done in future work.

There are three examples of building designs presented in Fig. 6. Mutation
rate 0.99 was set in order to obtain these designs. The knee point was chosen as
the solution for which the objective 1 and objective 2 are closer to each other
than for any other solutions among all 30 runs of the algorithm. Figure 6 also
shows two extreme values: a design with a minimum value of objective 1 among
all solutions and a design with a minimum value of objective 2. As you can see
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Fig. 6. Building design examples for NSGA-II with mutation rate 0.99: knee point and
optimal solution in f1 and in f2.

from Fig. 6, optimization allows you to get extreme solutions corresponding to
the objectives. Thus, for instance, to minimize the deviation of space volumes
from the values of 100, 5 and 30 (for pink, blue and green spaces correspond-
ingly), and for the maximum surface area, the algorithm outputs a design with
a fully occupied volume V (Fig. 6, c)). And for minimal surface area the algo-
rithm obtained a building design with a very small red space on level 0. None
of the spaces disappeared, as the number of spaces was required to be constant.
Three experiments were carried out with the described objectives with different
values of the mutation rate. Each of the experiments contained 30 runs of the
SMS-EMOA algorithm. Inputs used were completely the same as for NSGA-II
algorithm. Obtained Pareto fronts are illustrated in Fig. 5 (d)–(f). Both algo-
rithms produced almost linear Pareto fronts, however, Fig. 5 shows that the
SMS-EMOA algorithm takes into account Objective 2 more than Objective 1
during optimization, unlike NSGA-II, where the solutions on Pareto fronts are
distributed more evenly. Besides, for both algorithms Pareto fronts vary for dif-
ferent mutation rates. So, for the NSGA-II Pareto algorithm, the local search
front is more sparse than for the mutation rate of 0.99 and 0.3, and for the
SMS-EMOA algorithm, on the contrary, it is less sparse. The reasons for this
behavior have yet to be understood. A promising idea is also to adapt mutation
rates for the different mutation types by reinforcement learning [15].

5 Summary and Outlook

A new, non-orthogonal BSD representation was developed, equipped with a
domain-specific hierarchical mutation operator, and integrated into MOEAs. The
result forms an important step towards extending the design support systems
(e.g. the BSO toolbox [4,7]). All data and a detailed description of algorithms
are available in the GitHub repository [17].
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Abstract. The first step in drug design is the identification and opti-
mization of lead molecules for therapeutic and diagnostic interventions.
The analysis of molecular properties requires high laboratory evaluation
costs. Computer-aided drug design provides effective approaches to opti-
mize molecules with two general aims: firstly, the identification of candi-
date targets with several optimized physiochemical properties. Secondly,
lead libraries have to be build with a broad range of compounds revealing
a high genetic diversity among themselves with an at most similar behav-
ior in bioactivity. MOEAs are nowadays established in vitro processes for
molecular optimization problems with a continuous complexity increase.
Therefore, MOEAs solving multi- and many-objective optimization prob-
lems with a suitable balance of convergence and genetic dissimilarity are
challenging. For this purpose, a MOEA especially evolved for molecular
optimization is enhanced by optionally two balancing survival selection
strategies: a Pareto-based strategy is applied on a two-dimensional indi-
cator problem consisting of a convergence and genetic diversity measure.
The second strategy uses truncation selection based on a ranking mea-
sure referring to the convergence and genetic diversity measure. These
configurations are compared to the recently proposed ad-MOEA with a
specific environmental survival selection for multi- and many-objective
optimization on four molecular optimization problems from 3 up to 6
objectives.

Keywords: Evolutionary algorithm · Balancing selection · Molecular
optimization · Genetic diversity

1 Introduction

The aim of drug design in its first stage is the identification and optimization of
lead molecules interacting with the disease-related target. Potential therapeutic
leads have to provide a promising toxicity profile, have to bind - and only to bind
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- on the disease target without any adverse effects and possess a suitable 3D-
structure to access ‘drugability’ [1]. For this purpose, computer-aided drug design
is used to predict physiochemical properties of molecules. These methods are
fast and cost-effective processes to identify and optimize promising therapeutic
leads [2].

A single-objective Evolutionary algorithm (EA) for molecular optimization
in a combined in vitro and in silico process has been evolved to reduce labo-
ratory resources [3]. This algorithm provides exponential fitness improvement
within the first 10 iterations and the convergence is slowed down to a linear
improvement afterwards. This convergence behavior is further termed early con-
vergence. Molecular optimization often require a simultaneous optimization of
several physiochemical properties. For this purpose, a sophisticated version of
this single-objective approach, termed COmponent-Specific Evolutionary Algo-
rithm for Molecular Optimization (COSEA-MO), has been published and bench-
marked on a 3- and 4-dimensional molecular optimization problem [4]. COSEA-
MO also reveals exponential fitness improvement within the first 10 iterations
decreasing afterwards. This is a mandatory feature for the application in a com-
bined in vitro and in silico process since maximally 10 cycles of this combined
process are usually performed in the laboratory. Furthermore, COSEA-MO has
been enhanced for the application on many-objective molecular optimization
problems by a winning-score based ranking method as survival selection pro-
viding again exponential fitness improvement within 10 iterations [5]. Further
advantages of the this approach are parameter-free components. Thus, no param-
eter settings have to be done by the user which have a high impact on the perfor-
mance. This is another important feature for the application in the laboratory.

The general aim of multi- and many-objective optimization is a suitable bal-
ance of convergence and diversity. This trade-off mainly depends on the survival
selection strategy [7]. Diversity as the second main aim in an evolutionary pro-
cess has to be interpreted differently in the context of molecular optimization
[6]. Diversity in this application field refers to the variety of the genetic material
among the candidate molecules which is further termed as Genetic Dissimilarity
(GD). Therefore, the design of an enhanced version of COSEA-MO by option-
ally two balancing survival selection strategies referring to the aspect of early
convergence and GD for multi- and many-objective molecular optimization is
the main contribution of this work.

COSEA-MO optionally uses two different types of survival selection based
on a convergence and GD indicator. The first strategy applies the Pareto domi-
nance principle on a two-dimensional indicator problem instead of the common
application on objective functions of the Multi- or Many-objective Optimiza-
tion Problem (MOP or MaOP). This strategy directly optimizes the two generic
aspects of molecular optimization problems, namely convergence and GD. A
Winning Score Values (WSV) is used as convergence indicator [15] and a genetic
diversity measure based on the matrix of Sneath [21] is applied to calculate the
dissimilarity of the genetic material compared to a predefined reference peptid
set. The second selection strategy of COSEA-MO uses a truncation strategy
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as directional selection concept based on a weighted summation of WSV and
GD values. The COSEA-MO configurations with these two selection strategies
are compared to ad-MOEA [7] with an environmental selection strategy on four
molecular optimization problems. The evolution of this strategy is motivated
by a trade-off between convergence and diversity for muti- and many-objective
optimization and therefore has the same general aim as COSEA-MO. The envi-
ronmental selection applies the Pareto dominance principle in combination with
the convergence measure Sum of Normalized oBjectives (SoNB) and Crowding
Distance (CD) promoting diversity.

The outline of this work is as follows: Sect. 2 gives an overview of the
related and preliminary work. The proposed algorithm COSEA-MO with the
two optional selection strategies as well as the recently published ad-MOEA are
introduced in Sect. 3. Section 4 presents the simulation onsets and experiments.
Section 5 concludes this work and gives an outlook on future work.

2 Preliminary Work

The performance of most Pareto-based MOEAs is significantly reduced with an
increase of the objective number above three, commonly known as MaOP [8].
This fact is caused by an increase of non-dominated solutions. Obviously, these
solutions become more and more incomparable regarding the Pareto dominance
principle and the search behavior of those MOEA adapt a random search [9]. Fur-
thermore, diversity as second aim in multi-objective optimization is less straight-
forward to define for MaOP. Numerous work has been done to improve MOEA
for solving MaOP. These approaches can be classified as follows: algorithms with
relaxing or alternative dominance relation [10,11], algorithms combining Pareto
dominance and decomposition-based approaches [12] and algorithms combining
the Pareto dominance principle with additional metrics, as in [7,13,14]. In the
COmpressed-Objective Genetic Algorithm (COGA) [15], the increasing number
of non-dominated solutions are further classified by a rank assignment based on
the metric winning-score value. This value reflects the difference of the number of
superior and inferior objectives between two solutions. The survival selection of
COGA is applied on preference objectives consisting of the winning score values
and a vicinity index which is used as density measure and reflects the level of
solution clustering around a search location. The model of winning score value
is used as convergence indicator in the proposed approach.

Less work has done to focus diversity in MaOPs. Diversity plays a central role
in MOP and MaOP to prevent premature convergence to suboptimal solutions.
In [20], a measure inspired by biodiversity has been introduced to accumulate
dissimilarity in a population, especially for MaOPs. In [6], diversity has been
re-interpreted in the application field of molecular optimization. Instead of the
general diversity aspect, diversity of the genetic material among the candidate
solutions on genotype level is focused. This works discusses different strategies
to control and promote GD on various stages of an application-specific EA.
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3 Proposed Approach and ad-MOEA

This section introduces the general framework of COSEA-MO and ad-MOEA.
Both algorithms have the same general framework which is presented in Algo-
rithm 1. Furthermore, COSEA-MO and ad-MOEA use the same variation oper-
ators and only differ in the components mating and survival selection.

Algorithm 1: General framework of COSEA-MO and ad-MOEA
Input: Population Pt, population size N , number of optimal solutions m, total

number of generations T
Output: Next generation Pt+1

1: Random initialization of P0;
2: while t < T do

Qt ← MatingAndVariation(Pt);
Ut ← Pt ∪ Qt;
Pt+1 ← SelectionStrategy(Ut);
t ← t+ 1;

end

The start population P0 of size N is randomly initialized in both algorithms.
The individuals represent peptides encoded as character strings symbolizing the
20 canonical amino acids. The offspring generation Qt of size N is determined by
selecting two parents of Pt for variation. COSEA-MO selects the parent individ-
uals randomly, whereas ad-MOEA uses an adaptive mating selection strategy
that is based on an assigned Weighted Rank (WK). The calculation of WK
requires two sorting steps according to the Pareto rank and SoNB as well as the
Pareto rank and CD. WK is the weighted summation of the two rank positions
using a self-adaptive weight w. This weight is updated in each generation using
the current weight, the number of non-dominated solutions, population size and
objective number. Thereby, the mating strategy passes an adequate probability
to appropriate solutions to participate in the offspring population. The varia-
tion operators are motivated by a suitable balance of global and local search.
Deterministic dynamic variation operators are suitable operators to achieve this
purpose. These operators are applied in the framework af COSEA-MO as well as
ad-MOEA for a better performance comparison. A linear dynamic recombination
operator and an adapted version of the deterministic dynamic mutation opera-
tor of Bäck and Schütz [22] is used to generate offspring (MatingAndVariation).
The variation rates are adapted dynamically by predefined decreasing functions
with the iteration progress: the recombination operator varies the number of
recombination points by a linearly decreasing function

xR(t) =
l

4
− l/4

T
· t,

where l is the peptide length, T the total number of the generations and t the
index of the current generation. The adapted mutation operator determines the
mutation probabilities via
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pBS = (a+
l − 2
T − 1

t)−1

with a = 5. The mutation rates of the traditional operator are reduced by a
higher value for a. After that, Pt and Qt are combined to a population Ut of
size 2N . The succeeding generation Pt+1 of size N in COSEA-MO is optionally
determined by an Aspect-based Selection (AS) or Weighted-sum-based Selection
(WS). ad-MOEA uses an environmental selection strategy (SelectionStrategy).
These strategies are described in the following.

Aspect-Based Selection. The procedure of AS is described in Algorithm 2.
The Pareto ranking principle of NSGA-II [16] is applied on a two-dimensional
indicator-based maximization problem (line 3). Firstly, an average WSV is calcu-
lated and assigned to each individual in the population (line 1). This indicator
reflects the individuals’ quality. A WSV of the i-th solution is determined by
summarizing the number of objectives m of the solution i that are superior to
the corresponding objectives in a solution j minus the number of objectives in i
that are inferior to j. The average WSV of a solution i is the sum of WSVs to
each individual j in the population. This assignment ensures that solutions with
high WSVs are close to the true Pareto front.

The average genetic dissimilarity (GD) of each solution to a predefined ref-
erence peptide set of size k is used as the second indicator to ensure genetic
diversity in the population. GD of a peptide is calculated by averaging the dis-
similarity values D(ij , rj) of a peptide i to each peptide r in the reference set
according to the dissmilarity matrix of Sneath (line 2). Here, GD of a peptide i
to a peptide j is the sum of the dissimilarity values of all amino acid positions
j. Since amino acids at each position of both peptides are compared, they have
to be of the same length l. The values of WSV and GD are scaled to a range of
0 to 1 ensuring an equal impact on the fitness value.

The N -best individuals are selected in the succeeding generation based on the
Pareto rank (line 4) and the volume dominance principle via binary tournament
selection (line 5). The configuration of COSEA-MO with aspect-based selection
is further termed COSEA-MO-AS.

Weighted-Sum-Based Selection. The selection procedure starts with assign-
ing a fitness value to each individual of Ut by the following linear combination:

FV (i) = a ·WSV (i) + (1− a) ·GD(i) (1)

with weight a reflecting the ratio of selection by convergence or GD indicator.
The terms WSV and GD have to be maximized: peptides with an average high
number of superior objectives relative to other members of the population and a
high genetic diversity of the material to a predefined reference peptide set at the
same time are preferred. The default value is a = 0.5 ensuring an equal impact
of WSV and GD on the selection measure and providing a suitable balance of
convergence and genetic diversity. Afterwards, the peptides in the population
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Algorithm 2: Pseudo code of Aspect-based selection strategy
Input: Current population Pt with |Pt| = 2N , Pt+1 = {}
Calculation of the two indicator values for each solution i:
1: WSV (i) =

∑N
j=1 wij with wij = supij − infij ;

2: GD(i) =
∑k

r=1(
1
l

∑l
j=1 D(ij , rj));

Selection process:
3: Ranking of Pt according to (WSV,GD) into fronts Fi;
4: while |Pt+1| + |Fi| < N do

Pt+1 = Pt+1 ∪ Fi; i++;
end
5: binary tournament selection: while |Pt+1| < N do

select p1, p2 ∈ Pt \ {Pt+1}:
if WSV (p1) · GD(p1) < WSV (p2) · GD(p2) add p2 to Pt+1 ;
else add p1 to Pt+1;

end

are ordered according to FV (i) and the best N candidates are selected for the
succeeding generation. The configuration of COSEA-MO with WSV is further
termed COSEA-MO-WS.

Environmental Selection. ad-MOEA uses an environmental selection strat-
egy based on the concept of SoNB to promote converging capabilities. The selec-
tion process is mainly similar to NSGA-II [16] and performs as follows: Firstly,
the Pareto dominance principle is applied on the combined parent and child
population. SoNB and CD are calculated for each peptide. The first fronts Fi

are included in the succeeding population as long as the population size N is
not exceeded. The remaining peptides are selected from Fi+1 based on the self-
adaptive parameter w. Therefore, peptides are sorted in ascending order accord-
ing to SoNB and are selected with a percentage of w·100%·|Fi+1| based on SoNB.
The remaining peptides are selected with a percentage of (1−w · 100%) · |Fi+1|
based on CD.

In the experiments, we analyze a further configuration of ad-MOEA. In this
configuration we substitute CD to GD to promote genetic dissimilarity instead of
the general evolutionary aspect of diversity. This configuration is further termed
ad-MOEA-GD.

Table 1 gives an overview of the algorithm configurations with their abbrevi-
ations used in the experiments.

4 Experimental Setup

The performance of the configurations COSEA-MO-AS and COSEA-MO-WS
are compared to ad-MOEA and the adaptive configuration ad-MOEA-GD on
four differently dimensional molecular optimization problems according to the
convergence behavior and average GD to a reference peptide. All experiments
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Table 1. Algorithm configurations an their abbreviations

Algorithm Selection strategy Abbr. Parameter

COSEA-MO Aspect-based COSEA-MO-AS –
Weighted-sum-based COSEA-MO-WS(a) Weight a in Eq. (1)

ad-MOEA Environmental ad-MOEA –
Environmental with GD ad-MOEA-GD –

are implemented in the open source jMetal library 4.5. [23] and uses the open
source BioJava framework 4.2.0 [17]. Each experiment is run 30 times on each
molecular optimization problem with 10 iterations and a population size of 100.
The individuals are 20-mer peptides composed of the 20 canonical amino acids.
Short peptides of length 20 are of specific interest because of their favorable
properties as drugs.

In ad-MOEA, the initial self-adaptive weight value is chosen as 0.8. This
has an impact on the WR value and more individuals are selected according
to SoNB. Therefore, the aspect of convergence is stronger promoted than the
aspect of diversity, represented by CD or GD respectively.

4.1 Molecular Optimization Problems

Four molecular optimization problems with 3 to 6 objective functions predict-
ing physiochemical properties are used as experimental studies. Table 2 presents
the composed physiochemical optimization problems with the used abbrevia-
tions: Needleman Wunsch Algorithm (NMW), Molecular Weight (MW), Average
Hydrophilicity (Hydro), Instability Index (InstInd), Isoelectric Point (pI) and
Aliphatic Index (aI). These molecular functions are provided by the BioJava
library [24]. The physiochemical functions are shortly described in the following:

Table 2. Physiochemical functions of the different optimization problems

Dim. Abbr. Objective functions

3D 3D-MOP NMW, MW, Hydro
4D 4D-MaOP NMW, MW, Hydro, InstInd
5D 5D-MaOP NMW, MW, Hydro, InstInd, pI
6D 6D-MaOP NMW, MW, Hydro, InstInd, pI, aI

NMW is a method for the global sequence alignment of a solution to a pre-
defined reference individual. It is used based on the common hypothesis that a
high similarity between molecules refers to similar molecular properties.
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MW is an important peptide property to ensure a good cell permeability.
MW of a peptide sequence a of length l is calculated summarizing the mass of
each amino acid (ai) plus a water molecule:

MW (a) =
∑l

i=1
mass(ai) + 17.0073(OH) + 1.0079(H),

where O (oxygen) and H (hydrogen) are the elements of the periodic system.
A common challenge of peptides in drug design is the solubility in aqueous

solutions, especially peptides with stretches of hydrophobic amino acids. There-
fore, Hydro is calculated by the hydrophilicity scale of Hopp and Woods [18] with
a window size equal to the peptide length l. An average hydrophilicity value is
assigned to each candidate peptide a using the scales for each amino acid ai:

Hydro(a) =
1
l
· (

l∑

i=1

hydro(ai)).

The use of peptides as therapeutic agents is restricted by their instability.
The InstInd is an indicator for this property and determined by the Dipeptide
Instability Weight Values (DIWV) of each two consecutive amino acids in a
peptide sequence. DIWV are provided by the GRP-Matrix [19]. These values
are summarized and the final sum is normalized by the peptide length l:

InstInd(a) =
10
l

l−1∑

i=1

DIWV (ai, ai+1).

pI of a peptide is characterized as the pH-value at which a peptide has a
net charge of zero. A peptide has its lowest solubility in aqueous solutions at its
pI. The pI value is calculated as follows: Firstly, the net charge for pH = 7.0 is
determined. If this charge is positive, the pH at 7 + 3.5 is calculated; otherwise
the pH at 7 − 3.5 is determined. This process is repeated until the modules of
the charge is less or equal 0.0001.

aI of a peptide is characterized as the relative volume occupied by aliphatic
side chains consisting of the amino acids alanine (Ala), valine (Val), isoleucine
(Ile) and leucine (Leu). aI is regarded as a positive factor for the increase of
thermostability. aI is calculated according to the formula:
aI = X(Ala)+d·X(V al)+e·(X(Ile)+X(Leu)), where X(Ala), X(V al), X(Ile)
und X(Leu) are mole percent of the amino acids. The coefficients d and e are
the relative volume at the valine side chain (d = 2.9) and Lei, Ile side chains
(e = 3.9) to the side chain Ala.

These six objective functions comparatively act to reflect the similarity of a
particular peptide and a pre-defined reference peptide:

f(CandidatePept.) := |f(CandidatePept.)− f(ReferencePept.)|.
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Therefore, the objective functions have to be minimized and the optimization
problems are minimization problems. Furthermore, the objective values are nor-
malized by the theoretical maximal value of each objective: f̄k(xi) =

fk(xi)
Maxk

for
the k-objectives.

4.2 Performance Metrics

Two statistical metrics are chosen to evaluate the convergence performance and
the average GD to a reference peptide set. In the experiments, this set comprises
only one predefined individual. These metrics are applied on 20% approximately
optimal individuals in each iteration for all algorithms. In the case of COSEA-
MO-AS, the optimal individuals are selected by WSV in each generation. In
COSEA-MO-WS, the optimal individuals are chosen by FV. The optimal indi-
viduals in the configurations of ad-MOEA are determined according to WR.

The Average Cuboid Volume (ACV) is used to measure the convergence
behavior [25]. ACV calculates the averaged spanned space of each solution to
an ideal reference point, which is usually known in real-world applications. The
ACV indicator is given by

ACV =
1
n

n∑

i=1

(
k∏

j=1

(xij − rj)), (2)

where n is the number of individuals that are evaluated, k the number of objec-
tives and rj the ideal point. The lower the ACV values, the better the conver-
gence behavior since the molecular optimization problems have to be minimized.
ACV as a simple statistical measure is preferred over traditional convergence
metrics since it is independent of Pareto optimal solution sets which are usually
unknown in real-world applications, of low computation cost, independent of the
problem dimension and relative to the number of solutions allowing a comparison
of differently sized candidate solution sets.

The genetic diversity performance is measured by averaging the GD values
of each approximate candidate individual to the predefined reference peptide.
Here, the averaged GD-values as genetic diversity indicator are not normalized.

4.3 Experimental Results

The performance results of COSEA-MO and ad-MOEA configurations are
depicted in Fig. 1, 2. In the case of COSEA-MO-WS(0.7), the weight of FV is
chosen as a = 0.7, which provided optimal performance results reffering to a suit-
able convergence and GD trade-off in previous experiments. Those experiments
reveal that a higher value for weight a improves the convergence performance
in MOP, whereas the default value is advisable for MaOPs. COSEA-MO-AS
reveals the highest and therefore worst ACV-values with the highest average GD
values at the same time. The other configurations are very similar in their con-
vergence behavior, whereas COSEA-MO-WS(0.7) reveals slightly better results
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Fig. 1. 3D-MOP: ACV results Fig. 2. 3D-MOP: average GD results

Fig. 3. 4D-MaOP: ACV results Fig. 4. 4D-MaOP: average GD results

with the second highest GD values. ad-MOEA has the worst GD values which
are marginally improved for ad-MOEA-GD as a direct consequence of the sub-
stitution of CD with GD. A further performance improvement of ad-MOEA with
a decrease of the self-adaptive weight w was impossible. This is a consequence of
the survival selection strategy, where individuals are mainly Pareto front-based
selected.

The 4D-MaOP performance results are generally comparable to 3D-MOP
results (Fig. 3, 4). The optimal weight of FV is reduced to a = 0.6 in the case of
COSEA-MO-WS(0.6). An adjusting of the GD values in the case of the COSEA-
MO configurations is observable. Moreover, ad-MOEA-GD has noticeable higher
GD values than ad-MOEA. In the case of ad-MOEA, it is observable that the
identified Pareo front number in each generation is halved compared to the 3D-
performance results with a higher individual number in each front. As a direct
consequence, a higher individual number is selected by SoNB and CD or GD
respectively compared to 3D-MOP.

The convergence results of the configruations in the case of the 5D-MaOP
(Fig. 5, 6) as well as 6D-MaOP (Fig. 7, 8) are once again comparable to the
previous ones: COSEA-MO-AS provides the worst ACV-values. The remaining
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Fig. 5. 5D-MaOP: ACV results Fig. 6. 5D-MaOP: average GD results

Fig. 7. 6D-MaOP: ACV results Fig. 8. 6D-MaOP: average GD results

configurations are comparable, whereas COSEA-MO-WS(0.5) provides merely
better convergence results. The optimal weight of FV is default value a = 0.5
in COSEA-MO-WS(0.6) for both MaOPs. The ACV-values of ad-MOEA are
more and more oscillating. In the case of the average GD values, COSEA-MO-
WS(0.5) reveals the best results followed by COSEA-MO-AS and ad-MOEA-
GD. The GD performance of ad-MOEA-GD is remarkably improved compared
to the 3D-MOP and 4D-MaOP. It is recognizable that the number of Pareto
fronts in the case of ad-MOEA is further decreased with an increase of the
dimension number and the number of individuals in the first front. Especially in
6D-MaOP, the number of individuals in the first front exceeds the population
number and therefore the individuals are mainly selected by SoNB and CD or GD
respectively. Summerizing, the configuration COSEA-MO-WS reveals the best
overall performance, but this optimal performance depends on the weights in FV.
Promising results are also observable for ad-MOEA-GD in the case of 5D- and
6D-MaOP. This is a consequence of the fact, that the selection process is based
on SoNB and GD, where the probability of selecting by SoNB and GD is given by
the self-adaptive weight w. Generally, w is reduced from 0.8 to approximately 0.7
with an increase of the generation number. The configuration COSEA-MO-AS
generally reveals the lowest convergence performance with the highest average
GD values. Obviously, selecting individuals according to Pareto ranking based on
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the two indicator values WSV and GD does not result in an optimal convergence
and genetic diversity balance. Thus, the weighted sum-based selection strategy
or a probabilistic selection of individuals according to indicator values are more
suitable strategies. However, ad-MOEA is generally of higher computation costs
than COSEA-MO due to the two sortings for calculating WR.

5 Conclusion

This work presents a comparative study of three selection strategy types in EAs
for molecular multi- and many-objective optimization: an aspect-based selection
strategy which applies the Pareto-dominance principle on a two-dimension indi-
cator problem reflecting the two aims convergence and diversity, a directional
strategy as weighted summation of these two indicators and an environmental
strategy combining Pareto-dominance principle with convergence and diversity
indicators. Diversity as the second general aim in MOP and MaOP has been re-
interpreted as GD in this specific application field of molecular optimization since
GD among the candidate molecules is an important feature in drug design. The
aspect-based and directional selection of COSEA-MO is compared to the original
as well as adapted version of environmental selection in ad-MOEA. Generally,
both algorithms only differ in their mating and survival selection strategies.
The different configurations have been benchmarked on four multi- and many-
objective molecular optimization problems. The experiments reveal an optimal
balance of convergence and GD in the case of COSEA-MO with directional
selection for all test cases. The configuration of ad-MOEA with GD instead of
CD achieves second best performance results. ad-MOEA with CD as diversity
indicator achieved the lowest GD results. These results highlight the difference
of diversity in solution space in contrast to the required diversity in genotype
space. COSEA-MO with aspect-based selection generally reveals lowest conver-
gence performance, consequently a further indicator is required in this selection
process for a better difference of the solutions quality. Though the results of
ad-MOEA are very promising, the selection strategy is of higher computation
cost due to two sorting steps of the combined children and parent population to
assign rank values. Summarizing, the directional selection strategy outperforms
the Pareto-based selection approaches.

For future work, the potential of improvement and generalization of the
approaches aspect-based and directional selection in terms of higher dimensional
MaOP as well as further application fields is focused, based on a deeper algo-
rithm analysis of all approaches. Furthermore, these approaches will be com-
pared to further evolutionary concepts promoting diversity, e.g. niching-based
techniques. Since the optimal performance of the directional approach depends
on a pre-defined weight, an improvement of this approach with a self-adaptive
strategy is intended. A more theoretical aspect will be a deeper understanding
of genotype diversity and amino acid dissimilarity in molecular optimization and
its impact on molecular landscapes. These analytical results allow the control
and improvement of the search behavior in further evolutionary strategies.
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Abstract. Dengue infection threatens a significant proportion of the
population of the world. The Dengue virus is an arthropod-borne single-
stranded RNA virus. There are two main types of Dengue infection:
Dengue Fever (DF) and Dengue Hemorrhagic Fever (DHF). Since only
supportive clinical treatment is available for this endemic disease, the
mortality rate due to Dengue hemorrhagic fever is relatively high. In
the present work, a disease stage-specific differentially co-expressed gene
module identification algorithm is developed to explore the relationship
between the virus genomic particle and the host genomic substance for
different stages of Dengue infection. The proposed algorithm is applied
to a real-life Dengue patient expression dataset. Our algorithm uses a
multi-objective framework and simultaneously optimizes topological dis-
similarity and biological similarity among the genes for detecting dis-
ease stage-specific gene modules. Subsequently, we apply a disease stage-
specific marker identification technique and found 16 and 13 potential
markers for DF and DHF, respectively. The biological significance of the
identified gene modules and stage-specific markers is also established.

Keywords: Multi-objective evolutionary optimization · Pareto
optimality · Dengue virus · Differential gene co-expression ·
Stage-specific gene marker · Gene ontology

1 Introduction

Dengue has become a significant threat to humankind in tropical and subtropical
regions. According to the World Health Organization (WHO), yearly, more than
390 million people are infected by this mosquito-borne Dengue virus (DENV)
[1]. Each year, almost 500,000 cases of Dengue Hemorrhagic Fever (DHF)
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are reported worldwide with a 5% mortality rate (https://www.worldmosqui
toprogram.org/en/learn/mosquito-borne-diseases/Dengue). Initially, all Dengue
patients are febrile, and only a few progress to lethal infection. Early detection
of DHF infection is difficult because the symptoms of DF and DHF are similar.
The acute febrile disease can only be treated with supportive medical treat-
ment, according to WHO guidelines. Dengue viruses contain one strand of RNA
[6]. This RNA is referred to as positive-sense RNA because it can be trans-
lated directly into proteins. Dengue virus seizes the host’s cellular mechanism
for this RNA replication process. Therefore normal cellular activities of the host
cell remain suspended. Patients’ bodies further develop disease symptoms as a
result. Antiviral drug development is necessary for healing the symptoms. This
requires understanding how the virus genomic particles interact with the host
cell’s human genetic molecules.

A host cell’s topological characteristics and functional cooperation among
genes are crucial to gaining novel insights into viral pathogenesis. Therefore,
biological network reconstruction for disease-related information retrieval can be
posed as a multi-objective optimization problem [11]. We propose a method for
detecting differentially expressed modules across disease stages. For this exper-
iment, we used a real-life Dengue dataset with three different samples: normal
human samples, DF patient samples, and DHF patient samples. We developed
two differential co-expression networks using normal and DF samples. Subse-
quently, a multi-objective evolutionary module detection algorithm has been
developed to identify genes with the highest degree of dissonance across normal
and diseased states. We have customized the popular multi-objective genetic
algorithm NSGA-II (Deb2002fast) to meet this need. Our proposed algorithm
utilizes two important properties of a gene co-expression network as its objec-
tive functions. Identifying extreme topological dissimilarity within gene subsets
across different co-expression networks is the first objective of our algorithm.
This also aids in detecting how gene-gene interaction changes across different
disease stages. We can also find which genes cooperate during disease progres-
sion this way. The functional similarity is another metric for measuring gene
cooperation or dependencies. Hence, our second objective is to find functionally
similar genes to ensure that the modules have similar functionalities. Having
functionally coherent genes in a module shows that they can cooperate in dis-
ease progression. Detecting the changes in gene-gene interactions across different
disease stages, and finding the functional responsibilities of interacting genes are
equally important objective functions. Our algorithm optimizes both objectives
simultaneously to identify disease-specific gene modules.

In the literature, there are several methods for detecting differentially
expressed modules. Most of them optimize topological dissimilarity for differ-
entially co-expressed module identification. Functional coherence between genes
in modules may not be captured by topological dissimilarity alone. The proposed
method identifies gene modules with high topological dissimilarity across differ-
ent co-expression networks and significant functional cooperation among them.
The identified modules and genetic markers were finally analyzed for biological
relevance.

https://www.worldmosquitoprogram.org/en/learn/mosquito-borne-diseases/Dengue
https://www.worldmosquitoprogram.org/en/learn/mosquito-borne-diseases/Dengue
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2 Methods

The proposed algorithm is illustrated in Fig. 1. In the figure, Control, DF, and
DHF represent three phenotypic expression data. Co-expression networks related
to control and DF and control and DHF are represented as network 1 and net-
work 2, respectively. The NSGA-II-based module detection approach is applied
separately to both networks. Modules are biologically validated with GO enrich-
ment analysis and literature curation. We describe below how disease stage-
specific modules are identified.

2.1 Computation of Co-expression Similarity of Genes

The co-expression analysis of genes indicates the dependency between genes
for phenotypic traits. For each phenotype, a gene co-expression network was
prepared. Nodes represent genes in gene co-expression networks. Each edge rep-
resents an association between two genes. Each edge is weighted according to
its degree of association. To measure the strength of the association between
gene pairs, Pearson correlation is used. It gives a completely connected network
for each phenotype. The network is represented by an adjacency matrix. This
is a similarity matrix Simn×n and each cell gij of this matrix represents the
association strength between each gene pair i and j.

2.2 Computation of Differential Similarity of Genes for Different
Disease States

We aim to identify disease stage-specific groups of genes in this article. Therefore,
we need to build and study differential gene co-expression networks. Here we
have studied how the neighbourhood associations of genes are changed in two
different phenotypes. Correlation analysis’s similarity matrix is hard thresholded,

Fig. 1. Schematic representation of our Dengue stage-specific module detection and
validation approach.
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and gene pair co-expression values are further mapped into binary values using
Eq. 1. From Fig. 2 it is clearly visible that the correlation value is equal to 0.5
giving a reasonable amount of highly correlated gene pairs. Hence we choose 0.5
as the hard threshold to binarize the data.

Sim(gi, gj) =
{

1 if Sim(gi, gj) ≥ 0.5,
0 if Sim(gi, gj) < 0.5. (1)

Jaccard Index is used here to measure the topological changes of a gene in
different phenotypes. Here topological change indicates how the neighbourhood
association strength of a gene changes across different phenotypic traits. The
computation procedure is given in Eq. 2:

Diffsimi =

∣∣∣Simp1
i

⋂
Simp2

i

∣∣∣∣∣∣Simp1
i

⋃
Simp2

i

∣∣∣ , (2)

where Simp1
i and Simp2

i represents the set of strongly associated neighbours
of gene i in phenotype condition p1 and p2 respectively. If the neighbourhood
association of a particular gene does not change in the mentioned phenotype
conditions, it suggests that it has not actively taken part in disease progression.
On the other hand, an extremely low neighbourhood association score of a gene
suggests that the gene significantly contributes to the disease progression.

2.3 Computation of Semantic Similarity of Genes

The GO database provides a large set of biological and biochemical terms that
describe the gene functionalities in a cell [17]. Here we have used a corpus-
based semantic similarity computation approach proposed by Jiang and Conrath.
Their proposed technique uses lexical taxonomies for calculating the semantic
distance between the words and concepts [8]. Initially, a Directed Acyclic Graph
(DAG) is created from the interrelated GO terms [15]. In the DAG, GO terms
in different levels are linked by the relation “is a” or “part of” which indicate

Fig. 2. Number of the gene pairs with respect to their correlation scores
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a child GO term as a component or subclass of a parent GO term. The value
of the information content (IC) of a GO term is obtained by estimating the
probability of occurrence of this term in a large text corpus. The (IC) of a given
term c is given by IC(c) = − ln p(c), where p(c) is the probability of encountering
the term c in the protein annotation dataset under consideration [9]. Jiang and
Conrath proposed the simplified distance function to compute the dissimilarity
between two genes (g1, g2) as given in Eq. 3.

Sdist(g1, g2) = IC(c1) + IC(c2) − 2 × IC(LS(c1, c2)). (3)

Genes’ functional similarity depends on their GO terms’ semantic distance. GO
terms are retrieved from GO annotation database and organized as a Directed
Acyclic Graph (DAG). In the DAG representation, p and c denote parent and
child nodes respectively. GO1 and GO2 are the set of GO terms associated with
genes g1 and g2, respectively. c1 and c2 are any arbitrary GO terms related to
g1 (gene1) and g2 (gene2), respectively. path(c1, c2) is the set of all the nodes
in the shortest path from c1 to c2 in the DAG. LS(c1, c2) represents the lowest
subsumer of c1 and c2. In a taxonomy, the lowest subsumer of two concepts is
the most specific common ancestor. Equation 3 shows the combined effect of
the information contents only and ignores the factors related to local density,
node depth, and link types. The Sdist value will be low when two genes are well
annotated and share high information content (related by precise GO term) [15].
This means that two genes are more functionally similar. Conversely, the larger
value of Sdist signifies functional dissimilarity between the genes.

2.4 Differentially Co-expressed Module Identification

The stage-specific differentially co-expressed module identification algorithm is
discussed in this section. This algorithm is developed in three parts. In the first
part, two objective functions are designed for finding the similarity between the
genes. Next, a multi-objective optimization-based clustering technique is used
to identify the optimized group of objects. Subsequently, the module hub is
detected in the last part of the algorithm.

Representation of Two Objective Functions: The first objective func-
tion is designed to measure the topological changes of a gene in two different
conditions. The first objective function Diffsim is defined in Eq. 2. Diffsim
values lie between 0 and 1. Diffsimi value closer to 0 suggests that the gene
i shows a greater topological change in two different conditions. Therefore, our
first objective is to identify the group objects with lower differential similarity
across two conditions.

Diffsimavg =
1
N

∑
g∈M

Diffsimg. (4)

Equation 4 calculates the average differential similarity or topological dissimilar-
ity of gene g within a module M . N denotes the number of genes in module M .
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The second objective function is designed to measure the semantic simi-
larity between the genes based on their corpus statistical information. The second
objective function Sdist is defined in Eq. 3, and its values range between 0 and
1. Our objective is to identify genes with a higher semantic similarity score or
lower Sdist score.

Sdistavg =
1
N

∑
g1,g2∈M

Sdistg1,g2 . (5)

The above equation calculates the average semantic dissimilarity between genes
g1 and g2 within a module M . N denotes the number of genes in module M .

Multi-objective Evolutionary Optimization: A Multi-objective optimiza-
tion problem [5] aims to obtain a vector of decision variables X which sat-
isfies the m inequality constraints gi(X) � 0, i = 1, 2, . . . ,m, and p equal-
ity constraints hi(X) = 0, i = 1, 2, . . . , p, and optimizes k objective functions
f(X) = [f1(X), f2(X), . . . , fk(X)]T [10]. A decision vector X∗ is called a fea-
sible solution if it satisfies all the constraints. The feasible solution space is
denoted by F . A multi-objective optimization technique is usually unable to
provide a single feasible solution that optimizes all the objective functions simul-
taneously. Therefore Pareto-optimality and domination concepts are very use-
ful for multi-objective optimization problems. The term domination for mini-
mization problem can be stated as follows: let x1 and x2 be two solutions in
F . Then x1 dominates x2 if and only if ∀i ∈ 1, 2, . . . , k, fi(x1) � fi(x2), and
∃i ∈ 1, 2, . . . , k, fi(x1) < fi(x2). A solution x∗ ∈ F is called Pareto-optimal
if there exists no solution x ∈ F that dominates x∗ [10]. It is impossible to
improve a Pareto-optimal solution for one objective without affecting the other
objectives [10]. The set of Pareto-optimal solutions is a non-dominated set.

NSGA-II-Based Module Identification: This work aims to identify dengue
stage-specific gene modules. Therefore the construction of the objective functions
is the most important part of this article. Here one objective function detects the
topological differences of the gene modules across two different disease stages.
Another objective function finds the functional similarities among the gene pairs
within the modules. The second objective function inspects the functional coor-
dination among genes during disease progression. Here we use Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) to set up a multi-objective framework
to optimize the objective functions simultaneously. In our approach, each solu-
tion (chromosome) of the population is encoded as a binary string of length
equal to the number of genes in the dataset. In a chromosome, a bit ‘1’ indi-
cates that the corresponding gene is selected, whereas a bit ‘0’ indicates that
the corresponding gene is not selected. Thus each chromosome represents a set
of selected genes. The initial population set is populated with random binary
strings. A set of non-dominated solutions is produced after a set of fitness compu-
tations, selections, crossovers, and mutations are carried out for a given number
of generations. Each detected module’s average differential dissimilarity score
and average semantic similarity score are listed in Table 1.
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Table 1. The average differential dissimilarity (Diff Dissim) score and the average
semantic similarity (Sem Sim) score of each identified module in two datasets are listed
below.

Module No.

for

Dataset 1

Average

Diff Dissim

Score

Average

Sem Sim

Score

Module No.

for

Dataset 2

Average

Diff Dissim

Score

Average

Sem Sim

Score

1 0.933 0.866 1 0.907 0.812

2 0.938 0.854 2 0.902 0.808

3 0.939 0.855 3 0.907 0.808

4 0.949 0.877 4 0.899 0.875

5 0.946 0.847 5 0.904 0.886

6 0.964 0.862 6 0.904 0.886

7 0.945 0.851 7 0.910 0.886

8 0.936 0.849 8 0.900 0.889

9 0.907 0.861

2.5 Most Promising Gene Identification

We obtained 8 and 9 stage-specific modules in dataset1 and dataset2, respec-
tively. After a careful inspection of each module, we have found that 16 and 19
genes are present in all of the stage-specific modules of dataset1 and dataset2,
respectively. These 16 and 19 genes share 6 genes. On inspection, it appears that
the selected promising genes show high differential dissimilarity between normal
and disease samples. The 16 genes from dataset1 have shown high differential
dissimilarity scores in normal versus DF samples, but their differential dissim-
ilarity scores are relatively lower in normal versus DHF samples. Similarly, 13
genes from dataset2 have shown higher differential dissimilarity scores in normal
versus DHF samples than in normal vs DF samples. These genes appear to play a
significant role in stage-specific disease progression. The differential dissimilarity
scores of DF and DHF markers are listed in Table 2.

2.6 Statistical Significance of the Identified Modules

We have performed statistical tests to establish that the identified disease stage-
specific gene modules and the disease stage related gene markers are not random;
they significantly contribute to Dengue fever progression. We prepared simulated
modules containing the same number of genes randomly selected from dataset1
and dataset2. We repeat the same process 100 times. We observe that randomly
selected modules either showed high differential dissimilarity or high semantic
similarity but failed to achieve both at a time. The simulated modules with their
differential dissimilarity and semantic similarity scores are given in a supplemen-
tary file (https://sites.google.com/apccollege.ac.in/paramita/dengue-modules).
A t-test was performed between the modules detected by our algorithm and
randomly constructed modules. The t-test outcomes regarding both datasets

https://sites.google.com/apccollege.ac.in/paramita/dengue-modules
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Table 2. DF and DHF related markers and their differential dissimilarity sore accord-
ing to our experiment.

Sl.

No.

DF Related

Markers

Differential

Dissimilarity

Score

Sl.

No.

DHF Related

Markers

Differential

Dissimilarity

Score

1. USP9X 0.978 1. TOX4 0.925

2. TSG101 0.981 2. TAF15 0.872

3. PKD1 0.979 3. TRAF4 0.858

4. OXSR1 0.972 4. KAT5 0.903

5. GOLGA2 0.970 5. BAAT 1.000

6. FGA 0.957 6. PAIP1 0.905

7. RNF125 0.982 7. UBE2I 0.912

8. HECW1 1.000 8. CHD3 0.857

9. FN1 0.981 9. CAMK2B 0.968

10 TCF7L2 0.932 10. SMU1 0.960

11. ZBTB17 0.950 11. ZBTB17 0.885

12. ZNF135 1.000 12. ZNF135 0.927

13. ZNF365 0.986 13. ZNF365 0.920

14. EVI1 0.923 14. EVI1 0.896

15. C19orf21 0.933 15. C19orf21 0.900

16. NKAPL 0.982 16. NKAPL 0.901

17. ARID2 0.927

18. OXNAD1 0.834

19. UBXD4 0.973

are summarized in Table 3. According to the very small p-values generated by
t-tests, it is clear that our algorithm detects statistically significant gene mod-
ules. We have used the Jennrich test to investigate whether our identified dis-
ease stage-specific gene markers are truly differentially co-expressed or not. This
test compared two correlation matrices of DF-related markers corresponding to
normal and DF stages. A similar process is followed for DHF-related markers.
We have observed that the Jennrich test returned p-values 1.408 × 10−40 and
1.001 × 10−17 for DF-related markers and DHF-related markers, respectively.
These low p-values are statistical evidence that identified disease stage-specific
gene markers are truly differentially co-expressed.
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Table 3. The t-test result for each differentially co-expressed module detected from
dataset1 and dataset2 corresponds to their objective function values.

Module No.

for

dataset1

p-value

for

Objective1

p-value

for

Objective2

Module No.

for

dataset2

p-value

for

Objective1

p-value

for

Objective2

1 3.27e−13 1.03e−7 1 9.76e−12 5.86e−5

2 1.77e−14 9.55e−6 2 4.20e−10 2.81e−5

3 1.12e−16 7.77e−7 3 7.10e−10 6.97e−4

4 6.57e−14 3.35e−5 4 4.84e−10 3.29e−8

5 1.34e−14 4.02e−6 5 1.39e−8 1.69e−6

6 1.91e−13 2.62e−4 6 3.55e−9 9.88e−7

7 5.27e−13 3.61e−6 7 1.55e−9 6.09e−7

8 1.01e−15 9.97e−7 8 4.32e−8 1.48e−6

9 2.72e−11 4.25e−6

2.7 Comparison with Existing Methods

This method is compared with other popular differentially co-expressed module
identification methods (CoXpress, DiffCoEx, DiffCoMO). In the study by Wat-
son et al. [18] co-expression patterns from different phenotypic traits are detected
first with an unsupervised network biology approach. CoXpress method applied
a re-sampling approach to detect differentially co-expressed modules in one sam-
ple group but not in another. In DiffCoEx [16] topological dissimilarity between
the co-expression networks is examined to obtain the differentially co-expressed
modules. To develop a co-expressed network for each disease condition, DiffCoEx
utilizes WGCNA (Weighted Gene Coexpression Network Analysis) framework.
DiffCoMO identifies gene modules with higher module-wise distances between
two co-expression networks and greater intra-module gene membership values
over two infection stages [13]. These algorithms mostly focused on identifying
the group of genes based on their differential signature across two disease condi-
tions. In contrast, our algorithm not only detects the differentially co-expressed
modules but also detects the modules having extreme functional similarities. For
a fair comparison, we have chosen the two most important parameters: topolog-
ical dissimilarity and semantic similarity of the gene modules.

In Fig. 3(a) and 3(b), the X-axis represents the topological dissimilarity, and
the Y-axis represents the distribution of the topological dissimilarity within the
detected modules. We can see from the figures above that our method can suc-
cessfully detect the most dissimilar modules for parameter 1. Higher seman-
tic dissimilarity within the gene modules indicates extreme biological similarity
between the genes within the modules. Therefore, the second parameter is criti-
cal for detecting differentially co-expressed gene modules. In Fig. 3(c) and 3(d),
the X-axis represents the semantic similarity, and the Y-axis represents the dis-
tribution of the semantic similarity within the detected modules. From Fig. 3(c),
it appears that DiffCoMo and our method both successfully detect semanti-
cally similar gene modules from dataset1. However, in Fig. 3(d), our method
more effectively identifies semantically similar gene modules from dataset2. It is
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obvious from these four figures that our proposed method detects differentially
co-expressed gene modules across both disease conditions and performs better
for both parameters than existing algorithms.

3 Biological Significance Study of the Identified Modules

Differentially co-expressed gene modules that the proposed algorithm has
detected are studied further using DAVID database to reveal their biological
significance. The significant GO terms related to differentially co-expressed DF
and DHF gene modules are identified from dataset1 and dataset2 respectively,
are listed in Table 4. We can observe that the DF gene modules 1, 2, 3, 4, 5, 6
& 7 and the DHF gene modules 4, 5, 6, 8 & 9 in Table 4 are related to several

Fig. 3. (a) & (b) show the distribution of topological dissimilarity and (c) & (d) show
the distribution of semantic similarity for CoXpress, DiffCoEx, DiffCoMO and our
proposed algorithm for dataset1 and dataset2 respectively.
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biological processes like Cellular protein complex assembly, Transcription, Reg-
ulation of transcription and Regulation of cell-cell adhesion. This observation
suggests that the identified modules are actively taking part in the RNA synthe-
sis process. Researchers have already found that DENV enters the host cell and
replicates itself by using its cellular components. DENV tries to synthesize its
viral RNA in the host cell. Therefore DENV targets the host factors related to
the RNA synthesis process. This discussion biologically validates that identified
gene modules are the potential targets of DENV in the host cell. In Table 4 the
DF gene module 8 and the DHF gene modules 1, 2, 3 & 7 are related by the GO
terms like Platelet activation and Platelet degranulation. Platelets or Throm-
bocytes are tiny blood cells. If blood vessels get damaged due to some injury,
thrombocytes initiate the hemostasis process, preventing bleeding and fixing the
damage. In a human body, if platelets are destroyed, or bone marrow makes very
few of them, this condition is known as Thrombocytopenia. According to WHO
guidelines, Thrombocytopenia is a potential indicator of Dengue severity in the
patient’s body [4,12]. Therefore it is evident that the functionalities of the genes
in the modules get tampered in the host cell due to DENV infection. This also
validates the biological significance of the identified modules.

3.1 Significance of the Identified Markers

In this section, we have performed a literature survey to know the significance of
these identified markers from their association with other diseases. For example,

Table 4. Gene ontology terms of the identified modules of dataset1 and dataset2 is
listed below along with p-values in brackets.

DF Module

No.
# Genes GO terms (BP)

DHF Module

No.
# Genes GO terms (BP)

1 29
Cellular protein complex assembly

(GO:0043623)(4.04E−04)
1 43

Platelet degranulation

(GO:0002576)(8.39E−05)

2 37

Negative regulation of transcription,

DNA-templated

(GO:0045892)(6.10E−04)

2 39
Platelet degranulation

(GO:0002576)(5.37E−05)

3 37
Cellular protein complex assembly

(GO:0043623) (6.69E−04)
3 39

Platelet activation

(GO:0030168) (1.60E−03)

4 19
Calcium-independent cell-matrix

adhesion (GO:0007161) (8.91E−04)
4 30

Negative regulation of

transcription, DNA-templated

(GO:0045892) (8.91E−04)

5 28

Positive regulation of heterotypic

cell-cell adhesion

(GO:0034116) (1.36E−04)

5 23
Transcription, DNA-templated

(GO:0006351) (5.62E−03)

6 18
Calcium-independent cell-matrix

adhesion (GO:0007161) (4.14E−03)
6 23

Transcription, DNA-templated

(GO:0006351) (4.05E−03)

7 34
Cellular protein complex assembly

(GO:0043623)(5.62E−04)
7 31

Platelet degranulation

(GO:0002576)(6.57E−04)

8 36
Platelet degranulation

(GO:0002576) (2.21E−06)
8 23

Transcription, DNA-templated

(GO:0006351) (1.95E−04)

9 33
Transcription, DNA-templated

(GO:0006351) (4.39E−03)



A Multi-objective Evolutionary Framework 515

Table 5. Different types of disease associated with DF and DHF markers.

DF Markers
Viral Disease

Association

Other Disease

Association
DHF Markers

Virus Disease

Association

Other Disease

Association

USP9X
DENV, ZIKV,

HPV, HIV-I

Breast Cancer,

Prostate Cancer
TOX4 DENV, HIV-1 Breast Cancer

TSG101
DENV, JEV,

HIV-1

Breast Cancer,

Uterine CC
TAF15

DENV, ALKV,

HIV-1, HCV

HCC, ALS,

Frontotemporal dementia

PKD1
DENV, HCV ,

INFV
ADPKD TRAF4

DENV, ZIKV,

CHIKV

Breast Cancer, SCLC,

Ovarian Cancer,

CRC, Prostate Cancer.

OXSR1 DENV, ANDV OSCC, PD KAT5

DENV, HIV-1,

HBV, HCV,

CHIKV

HCC

ZBTB17
DENV, HPV-16 ,

ALKV
HCC, Hepatoblastoma BAAT

DENV, WNV,

HCV
HCC

GOLGA2
DENV, HCV,

INFV, HIV-I
AD, Prostate Cancer PAIP1 DENV, INFV

Breast Cancer, CC,

Prostate Cancer

FGA

DENV, HIV,

INFV, HCV ,

ZIKV

GC, CRC UBE2I
DENV, HIV,

INFV, HCV

AD, Ovarian Cancer,

Prostate Cancer

ZNF135
DENV, ALKV,

HPV16
HNC, CC CHD3

DENV, HIV-1,

INFV

ZNF365
DENV, EBV,

HPV16 , HSV
Breast Cancer CAMK2B DENV, INFV Breast Cancer

RNF125
DENV, JEV,

HIV
GBC, RCC SMU1

DENV, INFV,

HIV-1
Adenocarcinoma

EVI1
DENV, HBV,

HCV, Malaria

HCC, Cholangiocarcinoma,

Ovarian and Lung cancer
ARID2

DENV, ALKV,

HBV, HCV
HCC, Type-2 Diabetes

HECW1 DENV, HIV-I AD OXNAD1 DENV, HPV16 OSCC, Skin Cancer

FN1
DENV, HIV-I,

HCV
RCC UBXN2A

DENV, ZIKV,

WNV

TCF7L2

DENV, HIV-I,

HCV, HBV,

SARS-CoV-2

Type-2 Diabetes, CRC

C19orf21
DENV, ALKV,

ZIKV

NKAPL DENV, CHB HCC, Schizophrenia

gene USP9X has shown more than 97% differential dissimilarity in its expression
across normal vs DF samples. This gene is also present in each disease stage-
specific module of dataset1. Therefore we have studied other works of literature
that already have established the fact that the proteins related to these genes
are significantly affected by the proteins of several viruses like ZIKV, HPV, and
HIV-I [2,3,19]. Similarly, gene TAF15 has shown 87% differential dissimilarity
across normal vs DHF samples in our experiment, and it is present in all the 9
disease stage-specific modules of dataset2. During the literature survey we have
observed that protein products of TAF15 not only interact with DENV protein
NS5 [6], but also take a crucial role in the progression of other viral diseases
(e.g., ALKV, HIV-1, HCV) in the human body [7,14]. Literature survey findings
of different types of disease associations with our identified disease stage-specific
(DF and DHF) markers are summarized in Table 5. The evidential literature
regarding each gene-disease association is given in a supplementary file (https://
sites.google.com/apccollege.ac.in/paramita/dengue-modules). This significance

https://sites.google.com/apccollege.ac.in/paramita/dengue-modules
https://sites.google.com/apccollege.ac.in/paramita/dengue-modules
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study has shown that the most promising predicted marker genes are relevant to
DENV infected disease progression and also related to other viral diseases. This
confirms the importance and disease associations of the identified marker genes.

4 Conclusion

In this article, a multi-objective optimization-based disease stage-specific mod-
ule detection algorithm has been proposed. This algorithm has been studied
on a Dengue dataset with three samples (normal, DF and DHF). Our algorithm
utilizes an NSGA-II-based multi-objective framework to detect topologically dis-
similar but functionally similar genes modules.

The performance of our module detection algorithm has been compared with
that of three popular module detection algorithms such as CoXpress, DiffCoEx
and DiffCoMO. Our algorithm outperforms other methods in identifying biolog-
ically relevant modules and gene markers. The identified modules and the gene
markers have been validated through gene ontology enrichment analysis. More-
over, we have performed a literature survey to reveal the disease associations of
several identified markers. There is a lack of unified indication to measure the
trade-off between different objective functions at the same time. In future, we
try to design a unified indicator to measure the performance of our algorithm
with other existing MOO algorithms. Moreover, our application to Dengue data
demonstrates that it is capable of unlocking novel insights into other biological
problems. Therefore, this may further help identify novel signalling pathways,
biomarkers, and drug targets in other complex biological systems and diseases.
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Abstract. Airline crew pairing optimization problem (CPOP) aims to find a set
of flight sequences (crew pairings) that cover all flights in an airline’s highly
constrained flight schedule at minimum cost. Since crew cost is second only to
the fuel cost, CPOP solutioning is critically important for an airline. However,
CPOP is NP-hard, and tackling it is quite challenging. The literature suggests,
that when the CPOP’s scale and complexity is reasonably limited, and an enu-
meration of all crew pairings is possible, then Metaheuristics are used, predom-
inantly Genetic Algorithms (GAs). Else, Column Generation (CG) based Mixed
Integer Programming techniques are used. Notably, as per the literature, a maxi-
mum of 45,000 crew pairings have been tackled by GAs. In a significant depar-
ture, this paper considers over 800 flights of a US-based large airline (with a
monthly network of over 33,000 flights), and tests the efficacy of GAs by enu-
merating all 400,000+ crew pairings, apriori. Towards it, this paper proposes a
domain-knowledge-driven customized-GA. The utility of incorporating domain-
knowledge in GA operations, particularly initialization and crossover, is high-
lighted through suitable experiments. Finally, the proposed GA’s performance
is compared with a CG-based approach (developed in-house by the authors).
Though the latter is found to perform better in terms of solution’s cost-quality and
run time, it is hoped that this paper will help in better understanding the strengths
and limitations of domain-knowledge-driven customizations in GAs, for solving
combinatorial optimization problems, including CPOPs.

Keywords: Airline crew pairing optimization · Combinatorial optimization ·
Genetic algorithms · Mixed integer programming · Column generation

1 Introduction

In Airline Scheduling Process, Airline Crew Scheduling (CS) is considered as one of
the most important planning activities, since crew operating cost is the second largest
after the fuel cost and even its marginal improvements may translate to millions of dol-
lars annually. Over the past three decades, the Operations Research (OR) Society has
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given unprecedented attention to airline CS and proposed numerous optimization-based
solution approaches. To meet the exponentially increasing demand over these years, the
expansion of airline operations has lead to a tremendous increase in the number of
flights, aircraft, and crew members to be scheduled, leaving the state-of-the-practices
obsolete. Given this, it has become imperative to improve existing practices by leverag-
ing recent technological advancements and enhanced computational resources.

Airline crew scheduling is a combination of challenging (NP-hard [13]) combina-
torial optimization problems, namely, crew pairing optimization and crew assignment
problems, which are tackled sequentially. The former problem aims to generate a set
of flight sequences (each called a crew pairing) to cover all given flights at minimum
cost, while satisfying several legality constraints linked to the federations’ rules, airline-
specific regulations, labor laws, etc. The latter problem aims to assign crew members
to these optimally-generated pairings while satisfying the pairing and crew require-
ments. The scope of this research is limited to Airline Crew Pairing Optimization Prob-
lem (CPOP). Interested readers are referred to Aggarwal et al. [1] for a comprehensive
review of the integration of other components of the airline scheduling process.

In CPOP, crew pairings have to satisfy multiple constraints to be classified as legal,
and it is imperative to generate legal pairings in a time-efficient manner to assist the
subsequent optimization search. Several legal pairing generation approaches, either
based on a flight-network or a duty-network, have been proposed in the literature [2].
Based upon the scale of the CPOP being tackled, the pairing generation module can
be invoked using two possible architectures– one wherein all pairings are enumerated
a priori CPOP-solutioning, and the other wherein pairings are enumerated as and when
required during the CPOP-solutioning. Regarding solution-methodologies, mathemati-
cal programming techniques and metaheuristics, are commonly employed. In the for-
mer category, Column Generation (CG) [20,21] is the most widely adopted technique,
which is proven for efficiently solving large-scale CPOPs. It is an efficient search-space
exploration technique, that iteratively generates only the pairings having a high poten-
tial of bringing in the associated cost benefits. In that, the original CPOP is relaxed into
a Linear Programming Problem (LP/LPP); which is then solved iteratively by invoking
an LP solver and generating new pairings by solving the corresponding pricing sub-
problem(s) [16,20]. Finally, the resulting LPP solution is integerized using an integer
programming (IP/IPP) solver or connection-fixing heuristics [29,32]. For more details,
interested readers are referred to [3,10,31,32].

Among meta-heuristics, the most successful and widely adopted technique is
Genetic Algorithms (GAs), which are population-based probabilistic-search heuris-
tics, inspired by the theory of natural evolution [15]. GAs with customized operators
are known to be successful in solving a variety of combinatorial optimization prob-
lems [7,8,22,23]. Several GA-based CPOP solution approaches, proposed in the lit-
erature, are broadly reviewed in Table 1. [31] is the first instance to customize a GA
(using guided GA-operators) for solving a general class of SCPs. In that, the authors
validated their proposed approach on small-scale synthetic test cases (with over 1,000
rows and just 10,000 columns). Notably, the literature review in the table could be sum-
marised in two-fold. First, GAs presented by some instances– [7,11,18,27,33], have
been validated using the flight networks of smaller airlines, operating in low-demand
regions such as Greece, Turkey, etc. (leading to only a handful of all possible legal pair-
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Table 1. An overview of the GA-based CPOP solution approaches from the literature

Literature
Instances

Formulation+ Airline timetable Flight data* Airlines
# Flights # Pairings

[7] SCP Did not solve
CPOP

1,000 10,000 –

[18] SPP – 823 43,749 –

[27] SCP Daily 380 21,308 Multiple airlines

[17] SCP Monthly 2,100 11,981 Olympic airways

[33] SCP Monthly 710 3,308 Turkish airlines

[11] – – 506 11,116 Turkish airlines

[12] SCP – 714 43,091 Turkish airlines
+ SCP stands for Set-Covering Problem formulation and SPP stands for Set-Partitioning Prob-
lem formulation. * The provided values are the maximum among all the test-cases being used
for validation.

ings, up to 45,000 pairings). These GAs become obsolete when scaled to even small
flight networks of bigger airlines, operating in large geographical regions such as the
USA, etc. Second, the results presented in some of these instances– [12,17], have been
obtained by solving CPOPs formulated using only a subset of the original search-space
(up to 12,000 pairings), i.e., all possible legal pairings are not used. In addition, [12]
demonstrated that despite customizations, GAs failed to solve large-scale CPOPs with
the same search-efficiency as small-scale CPOPs. Hence, it is imperative to develop
GAs that can efficiently tackle CPOPs with bigger pairing-space, say up to a million.

In a significant departure from the existing GA-based approaches, this paper pro-
poses a domain-knowledge-driven customized GA to efficiently tackle a CPOP with
over 800 flights of a US-based large airline (operating over 33,000 monthly flights),
by enumerating all possible crew pairings (over 400,000 pairings) a priori. In that, the
GA operations, particularly initialization and crossover, are enhanced using domain-
knowledge. Through suitable experiments, it is demonstrated that the proposed-GA is
able to generate crew pairing solutions with varying characteristics such as low num-
ber of deadhead flights, crew-hotel-nights, etc., which are important KPIs used by air-
lines along with the crew pairing cost to evaluate the performance of their schedules.
Another contribution of this paper is the insights shared on how well the proposed GA
performs in comparison to a mathematical programming-based CPOP solution app-
roach, on which the literature is mostly silent upon. For this comparison, a CG-based
large-scale airline crew pairing optimizer (CG-Optimizer), developed in-house by the
authors and validated by the research consortium’s industrial sponsor– GE Aviation has
been utilized. Though the CG-Optimizer is found to perform well in terms of the solu-
tion’s cost quality and runtime, it is hoped that this paper will help better understand
the strengths and limitations of domain-knowledge-driven customizations in GAs, for
solving challenging combinatorial problems like CPOPs.

2 Airline Crew Pairing Optimization Problem

In CPOP, the input data includes an airline flight schedule with a finite number of flights,
the pairings’ costing criterion, and legality rules & regulations. As introduced before,
a crew pairing is a sequence of flights to be flown by a crew member, beginning and
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ending at the same crew base. Other associated terminologies of CPOP are explained
with the help of an example of a crew pairing, shown in Fig. 1. At times, a crew is
required to be transported to an airport to fly their next flight. In such situations, the
crew is transported as passengers in another flight, flown by another crew. Such a flight
is called a deadhead or a deadhead flight for the transported crew. The presence of
deadhead flights affects an airline’s profit in two ways. First, the airline has to bear the
loss of revenue on the passenger seats being occupied by the deadhead-ing crew, and the
other is it has to pay the hourly wages to the deadhead-ing crew even when they are not
servicing the flight. To maximize profits, airlines desire to minimize these deadheads as
much as possible (ideally zero).

As mentioned in Sect. 1, it is imperative to develop a legal crew pairing generation
approach to facilitate legal pairings to the optimization phase. In small- and medium-
scale CPOPs, all legal pairings are generated explicitly before the optimization phase.
The same approach is adopted in this work, and a duty-network-based parallel legal
pairing generation algorithm [2] is used for generating all legal pairings explicitly. Inter-
ested readers are referred to [2] for an extensive review of the pairing generation litera-
ture too.

The goal of the optimization phase is to find a pairing subset from the generated
set of all legal pairings to cover the given flights with the minimum cost possible. In
literature, the CPOP is modeled either as a set-partitioning problem (SPP; each flight leg
is allowed to be covered only once) or as a set-covering problem (SCP; over-coverage
of flight legs i.e. deadheads are allowed). In this paper, the SCP formulation is adapted
and modified to define the optimization problem for the proposed GA. Its mathematical
model is presented in Sect. 3.2.

Fig. 1. A crew pairing beginning from Dallas (DAL) crew base

3 Genetic Algorithm

A customized-GA is proposed in this work to solve CPOPs for which enumeration
and handling of the entire pairing set is computationally-tractable. Before starting the
GA-search, the entire pairing set, denoted by AllPairings, is enumerated a priori. After
pairing enumeration, the proposed GA tackles CPOP by formulating a fitness function
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based on its SCP formulation (given in Sect. 3.2). The GA-search starts by initializing
the population using efficient pairing sets (each set ⊂ AllPairings) by employing a
novel initialization heuristic. Iteratively, the population is improved upon, each iteration
referred to as a generation, by bringing-in new pairings from the remaining pairings’
space using enhanced genetic operators.

The working of the proposed GA is explained in conjunction with the enhance-
ment of its genetic operators, as described in the upcoming subsections. Notably, these
genetic operators have either been enhanced or adopted from the GA-variants proposed
in [7,17,28]. Now, the high-level pseudocode of the proposed GA, formalized in lines
1–13 of Algorithm 1, is explained below. In line 2, a set of chromosomes, notated as
InitialPop, is generated by applying the novel initialization heuristic on AllPairings.
In line 3, the fitness function value of chromosomes ∈ InitialPop is computed. Lines
4–12 constitute GA-generations, which terminate as soon as the user-specific termi-
nation criterion is satisfied. This is followed by the selection of best-fit chromosomes
∈ InitialPop (for generation = 1) or ∈ BestPop (for generations > 1) that constitutes
the parent population, notated as ParentPop (line 5). Subsequently, in line 6, the parent
chromosomes reproduce to generate child chromosomes (set notated as ChildPop) via
crossover operation. In line 7, child chromosomes ∈ChildPop are mutated to promote
diversity in the solutions’ pool. Notably, here, two different crossover and mutation
operators are interchangeably used according to different settings of the proposed GA,
as mentioned in Sect. 4. Being a combinatorial optimization problem, the generated
child chromosomes may be infeasible with respect to flight coverage constraints. To
re-install their feasibility, a feasibility-repair heuristic along with a redundant-pairing
removal heuristic is applied to ChildPop (lines 8–9). Next, the fitness of chromosomes
∈ChildPop is computed (line 10). Finally, the chromosomes ∈ChildPop are combined
with chromosomes ∈ ParentPop using a population replacement operator, resulting in
BestPop and forming the input for the next generation.

3.1 Novel Chromosome Representation

The proposed GA utilizes an architecture wherein all possible legal pairings, set denoted
by AllPairings, are enumerated explicitly. Given that AllPairings may contain thou-
sands of pairings, conventional binary-chromosome structure, containing genes corre-
sponding to each pairing, will become impractical. As a result, a chromosome with 2-
bits gene-encoding is proposed here, whose structure is illustrated in Fig. 2. In that, the
first bit, notated as b1i, is an integer representing the index of a pairing pi ∈ AllPairings,
which constitutes the chromosome. And the second bit, notated as b2i, is a binary num-
ber representing the participation of the corresponding pairing for fitness evaluation
(= 1, or = 0 otherwise). Moreover, to maintain diversity in the chromosome and pre-
vent premature convergence, the chromosome structure, used in [28], is adapted here.
As a result, a chromosome contains two parts, namely expressed and unexpressed parts,
notated as Be : (be1,b

e
2) and Bu : (bu1,b

u
2), respectively. The former part involves pair-

ings that participate in the fitness evaluation of the chromosome, whereas the latter part
involves pairings that are not considered. However, these pairings (∈ unexpressed part)
are utilized to preserve diversity with respect to the pairings in expressed part, so that
diverse pairings can participate in the reproduction of child chromosomes. Moreover,
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Algorithm 1: Pseudocode of the proposed GA and its constituting operators

1 begin
2 Proposed GA:
3 InitialPop ← Call Minimal-deadhead Initialization Heuristic(AllPairings)
4 Evaluate Fitness of InitialPop
5 while Termination criterion is not met do
6 ParentPop ← Selection operator(InitialPop/BestPop)
7 (Child1, Child2) ← Crossover(Parent1, Parent2)

/* Crossover1 or Crossover2 */
8 Mutation(ChildPop) /* Mutation1 or Mutation2 */
9 Feasibility-repair Heuristic(ChildPop)

10 Redundant-pairing Removal Heuristic(ChildPop)
11 Fitness Evaluation(ChildPop)
12 BestPop ← Population Replacement(ParentPop∪ChildPop)
13 end
14 Minimal-deadhead Initialization Heuristic:
15 foreach chromosome ∈ InitialPop do
16 for expressed part do
17 Randomly select a zero-deadhead solution from AllPairings
18 if —all flights are not covered— then
19 Select pairings from AllPairings w.r.t. the number of deadheads they are

bringing into the solution
20 end
21 for unexpressed part do
22 Randomly select pairings from AllPairings without replacement
23 end
24 end
25 Crossover2:
26 CombinedPairings ← Combined list of pairings in Parent1 and Parent2
27 foreach child chromosome do
28 for expressed part do
29 Randomly select a zero-deadhead solution from CombinedPairings
30 end
31 for unexpressed part do
32 Select pairings from CombinedPairings based on their dissimilarity with

expressed part (number of non-intersecting flights)
33 end
34 end
35 Procedure Redundant-pairing Removal Heuristic (ChildPop):
36 foreach pairing corresponding to index be1i of each chromosome ∈ChildPop do
37 if—be2i = 1— then
38 set be2i = 0
39 if —all flights are not covered in chromosome then
40 set be2i = 1
41 end
42 end
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contrary to the chromosome structure used in [28], the length of the chromosome is
kept fixed, and the length of expressed and unexpressed parts is allowed to vary during
generations, making this a novel adaptation.

Fig. 2. Chromosome structure

3.2 Fitness Evaluation

CPOP aims to minimize total crew pairing cost while covering all flights by at least
one pairing. To evaluate the fitness of a chromosome, the fitness function is constructed
using the set-covering problem formulation (SCP) of the airline CPOP [3,4], which is
given as follows:

min

⎧
⎨

⎩ ∑
be1 j∈be1

c j.b
e
2 j+ψD. ∑

i∈SF

⎛

⎝ ∑
be1 j∈be1

ai j.b
e
2 j −1

⎞

⎠

⎫
⎬

⎭
, s.t. ∑

be1 j∈be1
ai j.b

e
2 j ≥ 1 ∀i∈ SF (1)

In that, Eq. 1 represents the objective function and feasibility constraint of the airline
CPOP. In that, SF is the flight set to be covered; c j is the cost of pairing p j given by be1 j;
ψD is the deadhead penalty-cost set by airlines; ai j is a binary constant representing the
coverage of flight fi by pairing p j (= 1, or = 0 otherwise); and be2 j is the binary decision
variable (given by the binary bit of the expressed part of the chromosome), represent-
ing the selection of pairing p j in the solution (= 1, or = 0 otherwise). Notably, the
pairing and deadhead costs (objective function components in Eq. 1) are two objectives
to be minimized. Here, a weighted scalarization approach is used for combining them,
wherein deadhead flights are penalized using the penalty cost assigned by the industrial
sponsors.

3.3 Minimal-Deadhead Initialization Heuristic

Generally, chromosomes in the initial population are generated using randomly selected
genes to allow for exploratory search upfront. However, in single-objective problems
like CPOP, it is imperative to constitute the initial population with diverse and reason-
ably good-quality chromosomes, supporting the initial-exploration stage while expe-
diting the convergence. In this work, an effective initialization heuristic, referred to as
Minimal-deadhead Initialization Heuristic (lines 14–24 of Algorithm 1), is proposed,
which induces pairings that bring a lesser number of deadhead-flights into the solu-
tion. To generate the expressed part, first, a zero-deadhead pairing set (⊂ AllPairings)
is chosen randomly (lines 16–20). If all flights are not covered in the expressed part,
then more pairings (from AllPairings) are introduced in the increasing order of the
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number of deadhead flights they bring in. The unexpressed part is initialized using ran-
domly selected pairings from AllPairings until the finite length of the chromosome is
exhausted (lines 21–23).

3.4 Selection

This operator selects parent chromosomes from the input population according to their
fitness-function values. Here, a binary tournament selection operator [14] is utilized. It
creates N sets of two randomly-selected chromosomes (N being the population size) and
selects the fittest chromosome to constitute the resulting parent population– ParentPop.

3.5 Crossover

In crossover, new child chromosomes are reproduced by transforming genetic informa-
tion from parent chromosomes using different strategies, such as one-point crossover,
two-point crossover, uniform crossover, fusion crossover [7], etc. Here, two specific
crossovers are studied and compared, namely Crossover1 and Crossover2. The former
is the fusion crossover [7] that has been widely adopted in CPOP’s literature. In that, a
fitness-based probability is used to decide the gene of which parent chromosome will
pass on to the child chromosome. The latter is an adaption of a domain-knowledge-
driven greedy crossover [28], which was originally proposed to improve the conver-
gence of the GA-search. Its pseudocode is given in lines 26–35 of Algorithm 1. In that,
the child chromosome’s expressed part is constructed using a zero-deadhead pairing set,
which is selected randomly from the combined pool of pairings in the parent chromo-
somes. And, its unexpressed part is formed using the remaining pairings on the basis of
their dissimilarity with the expressed part, i.e., the flights they are covering differently
compared to the expressed part.

3.6 Mutation

In mutation, certain genes of the child chromosomes (from crossover) are altered to pre-
vent premature convergence. Here, two widely-adopted mutation strategies are studied
and compared. The first is a bit-flip mutation, referred to as Mutation1, and the other
is the mutation proposed in [17], referred as Mutation2, which utilizes density of the
fittest solution in the population. In Mutation1, if an ith gene gets selected for muta-
tion, then b2i bit is flipped from 0 to 1 or vice-versa. Whereas in Mutation2, if an ith

gene is selected for mutation, then b2i is mutated from 0 to 1 or vice-versa, based on a
probability equivalent to the percentage of 1s in the fittest individual.

3.7 Feasibility-Repair Heuristic

It is well-known that in combinatorial optimization problems such as CPOP, crossover
and mutation operations may render the child chromosomes infeasible, leading to the
requirement of a feasibility-repair step. A heuristic, proposed in [7], is adapted in this
work by adding a redundant-pairing removal step. In that, for each uncovered flight in
the infeasible chromosome, a pairing (∈ AllPairings) with minimum value of a quality
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index (defined as Cost of pairing/Number of uncovered flights the pairing covers) is
selected. After this, a redundant-pairing removal heuristic is proposed (lines 37–43 of
Algorithm 1), which finds and removes the pairings with zero contribution in the overall
flight coverage of the chromosome.

3.8 Population Replacement

The last step is the population replacement step wherein ParentPop & ChildPop are
combined to select the ParentPop for next generation, notated as BestPop. There exists
two main strategies, namely generational and steady-state. Here, generational strategy is
adopted in which selects best N chromosomes out of N parent and N child chromosomes
to constitute BestPop.

4 Computational Experiments

All the computational experiments in this research work are performed with a real-
world test-case, which includes 839 flights and crew based on a single home base–
Dallas, USA (DAL). This test-case has been extracted from the networks of US-based
big airlines (operating upto 33,000 monthly flights with upto 15 crew bases), provided
by the research consortium’s industrial sponsors– GE Aviation. It is found that 430,873
legal crew pairings are possible for this test-case, which is enormously huge in com-
parison to the amount of pairings dealt in the existing GA-based approaches (Sect. 1).
In this research work, all the algorithms are implemented using Python and executed
using just-in time (JIT) compiler– PyPy, improving the computational speeds by a great
extent. All computations are performed on a HP Z640 workstation (2 X Intel� Xeon�

Processor E5-2630v3 @2.40 GHz and 8-Cores/16-Threads, enabled with parallelization
capabilities).

The parameter settings of the proposed GA, used for the experiments in this
research, are given in Table 2. It is observed that on increasing the GA’s population
size, the number of GA-generations may decrease as it may bring more diversity in the
population’s solution-quality at each generation. However, each generation’s time may
increase proportionately. Overall, this may not drastically degrade the final runtime-
performance. Hence, the population size here is selected accordingly. For the termi-
nation of the proposed GA, its overall runtime is selected as the termination criterion

Table 2. GA parameter settings

Parameters Value

Population size 24

Termination 5000 s

Chromosome length 100+MaxLen(InitialPop)

Crossover rate 0.9

Mutation rate 3 · (1/ChromosomeLen)

Table 3. GA configurations

Operators GA1 GA2 GA3 GA4

Initialization

Mutation1

Mutation2

Crossover1

Crossover2
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instead of the number of generations, given different strategies being used in differ-
ent settings of GAs being compared here. The chromosome length has been selected
in accordance to the best practice solutions. In [6], (1/ChromosomeLen) is proposed
as the lower bound for the optimal mutation rate. However, during experiments, it is
observed that this lower bound shall be inflated by some factor (here, 3) in order to
prevent premature convergence. This is also in alignment with the observations of the
authors in [31] with variable mutation rate.

In this research work, variants of GA-operators are proposed which are either devel-
oped by the authors or adapted from the variants present in the literature. To solve the
above-mentioned airline test-case and similar problems, it is imperative to find the most
effective combination of these operators. Towards this, four configurations of the GA
are implemented and tested in this work, the structure of whom are shown in Table 3.
For each of these GA-configurations, ten runs, initialized with different random seeds
(uniformly distributed between 0 and 1), are performed. The experimental results of
these runs are summarized in Table 4 and the comparative plots are shown in Fig. 3.
First, the merits of using the proposed minimal-deadhead initialization heuristic are
assessed. For this, the best solution among the initial populations generated in GA1-runs
(using random initialization) and GA2-runs (using the proposed initialized heuristic),
are compared, as recorded in first two rows of Table 4. It is observed that the characteris-
tics of the best initial solution from the GA2-runs (number of deadheads and total cost)
are reasonably very good compared to those of GA1-runs. Notably, the initialization
runtime for these GA-configurations are similar, as the additional runtime consumed by
the proposed heuristic is compensated by the runtime required to repair the infeasible
solutions obtained using random initialization in GA1-runs. Moreover, GA2-runs lead
to a better-cost crew pairing solution (best solution across all seeds) compared to the
GA1-runs. These observations endorse the effectiveness of using the proposed initial-
ization heuristic.

Second, the merits of the proposed mutation strategies are assessed. For this, the
GA-configurations– GA2 (using Mutation1) and GA3 (using Mutation2) are compared.
From the results recorded in Table 4, it is observed that GA3-runs lead to a better crew
pairing solution (in terms of both cost and number of deadheads) compared to the GA2-
runs. However, the difference between them is marginal, equalizing the effects of both
mutation strategies. Consecutively, Mutation2 is considered for the subsequent experi-
ments.

Table 4. Experimental results of the GA-runs

Runtime
(sec)

GAs Crew pairing cost (USD) # Deadheads

x±σ Best Worst x±σ Best Worst

70 GA1 2,649,823 ± 57,559 2,494,649 2,710,084 1,095 ± 45 977 1,151

GA2 1,417,223 ± 9,380 1,398,427 1,430,115 156 ± 06 149 164

5000 GA1 980,226 ± 23,091 964,857 1,037,504 40 ± 04 35 49

GA2 1,195,229 ± 225,555 957,832 1,430,115 98 ± 61 35 164

GA3 1,192,104 ± 228,745 949,591 1,430,115 98 ± 61 30 164

GA4 993,209 ± 5,337 987,638 1,001,487 09 ± 04 06 21
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Fig. 3. Characteristic plots of the GA-runs

Third, the merits of the proposed crossover strategies are assessed. For this, the GA-
configurations– GA3 (using Crossover1) and GA4 (using Crossover2), are compared.
From the tabulated results and plot of GA4 in Fig. 3, it is quite evident that the proposed
Crossover2 strategy is highly effective in reducing the number of deadheads that too in
a very less runtime. However, the cost of the final crew pairing solution from GA4-
runs is marginally poorer than those of the GA3-runs. On further analyzing the crew
pairings of best solution from GA4-runs, it is observed that the majority of pairings
contain very less number of flight legs, each referred to as a short-pairing. Hence, with
such short-pairings, the solution contains a large number of pairings to cover all 839
flights. Moreover, during the GA search, the current best solution, dominated by large
number of short-pairings, becomes too rigid to allow any large-pairing (covering a large
number of flights, contrary to a short-pairing) to enter the solution, hence, stopping the
search at local optima.

As mentioned before, a large-scale column generation based airline crew pairing
optimizer (CG-Optimizer) is used in this research to assess the performance of the pro-
posed GA-configurations, and to share the insights on how well a highly-customized
GA performs in comparison to advanced mathematical programming techniques. CG-
Optimizer is developed in-house by the authors as part of the overall research project,
and has been tested and validated on real-world, large-scale and complex flight net-
works provided by GE Aviation. The exhaustive details of CG-Optimizer are presented
in the technical report– [3]. The final crew pairing solution of CG-Optimizer is com-
pared with the best solutions of the proposed GA configurations, and the results are
recorded in Table 5. From the tabulated results, it is quite evident that the crew pairing

Table 5. Crew pairing solutions of CG-Optimizer and proposed GA configurations

Algorithms Total cost (USD) # Deadheads # Pairings %age cost gap

CG-Optimizer 850,303 02 142 0

GA1 964,858 39 169 13.47

GA2 957,833 35 172 12.65

GA3 949,592 30 171 11.68

GA4 987,639 09 242 16.15
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solution offered by CG-Optimizer is of superior quality than any of the solutions offered
by the proposed GA configurations, with minimum percentage cost difference being
11.7%. Moreover, the number of deadheads as well as the number of pairings involved
are minimal in the solution offered by CG-Optimizer. This endorses the fact that CG-
based (mathematical programming) CPOP solution approaches are highly effective in
solving CPOPs with moderately sized flight networks, compared to a GA-based solu-
tion approach despite several domain-knowledge-driven enhancements.

5 Conclusion

This paper proposes a domain-knowledge-driven customized GA, with enhanced
genetic operations, particularly initialization and crossover, to efficiently tackle a CPOP
with over 800 flights of a US-based large airline (operating over 33,000 monthly
flights), by enumerating all 400,000+ crew pairings a priori. The proposed minimal-
deadhead initialization heuristic is effective in achieving a better-initial solution com-
pared to a random initialization strategy (with 78% better cost and 555% lesser dead-
heads) in approximately similar runtime. On assessing the performance of two widely-
adopted mutation operators, it is found that both perform similarly with Mutation2 per-
forming marginally better than Mutation1. A deadhead-minimizing crossover operator,
Crossov-er2, is also proposed which is found to be effective in reducing the number of
deadheads significantly within a short runtime.

In addition to the above, this paper shares insights on the comparison of customized
GAs with CG-based CPOP solution approaches. For this, the performance of the pro-
posed GA is compared viz-a-viz CG-based large-scale optimizer (CG-Optimizer, devel-
oped by the authors) to solve large-scale CPOPs with over billion-plus legal pairings,
4,000 flights, and 15 crew bases. Though it is found that the crew pairing solution
offered by CG-Optimizer is of superior quality than any of the solutions offered by the
proposed GA (with minimum percentage cost difference being 11.7%), it is believed
that this paper will serve as a template to better understand the strengths and limitations
of domain-knowledge-driven customizations in GAs (other metaheuristics) for solving
combinatorial optimization problems, including CPOPs.

Notably, Crossover2 favors deadhead minimization, leading to the selection of
short-pairings and driving the GA-search towards local optima. Towards it, search-
space expansion heuristics [9], and variable mutation rates [7] could be adapted. This
work paves the way for a detailed multi-objective study of the airline CPOP under real-
istic assumptions. Moreover, an important future direction is to investigate the trade-off
between crew operating cost and robustness against delays (by adding slack time to
the duration of given flights). This slack time can be based on the likelihood of delays
(obtained using a machine learning model) and/or based on the systemic importance of
flight connections. Lastly, the emergent trend of utilizing machine learning capabilities
to assist combinatorial optimization using metaheuristics or mathematical programming
may also hold promise to improve the current propositions [5,19,24–26,30].



530 D. Aggarwal et al.

Acknowledgement. This research work is supported by MEITY, India [grant 13(4)/2015-
CC&BT]; NWO, the Netherlands; and GE Aviation, India. Thanks to the industrial sponsor’s (GE
Aviation) team members: Saaju Paulose, Arioli Arumugam and Rajesh Alla for their invaluable
support in successfully completing this research. Notably, during this research, the first author
(Divyam Aggarwal) was a Ph.D. Candidate at IIT Roorkee, India.

References

1. Aggarwal, D., Saxena, D.K., Emmerich, M.: Interdependence and integration among compo-
nents of the airline scheduling process. In: Paper presented at the 21st World Conference of
the Air Transport Research Society (ATRS 2017), Antwerp, Belgium, 5–8 July 2017 (2017).
http://www.optimization-online.org/DB FILE/2020/05/7774.pdf

2. Aggarwal, D., Saxena, D.K., Emmerich, M., Paulose, S.: On large-scale airline crew pairing
generation. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp.
593–600. IEEE (2018)
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21. Lübbecke, M.E., Desrosiers, J.: Selected topics in column generation. Oper. Res. 53(6),
1007–1023 (2005)

22. Maskooki, A., Deb, K., Kallio, M.: A customized genetic algorithm for bi-objective routing
in a dynamic network. Eur. J. Oper. Res. 297(2), 615–629 (2022)

23. Mittal, S., Aggarwal, D., Saxena, D.K.: Innovative design of hydraulic actuation sys-
tem for operator fatigue reduction and its optimization. In: Salagame, R.R., Ramu, P.,
Narayanaswamy, I., Saxena, D.K. (eds.) Advances in Multidisciplinary Analysis and Opti-
mization. LNME, pp. 225–233. Springer, Singapore (2020). https://doi.org/10.1007/978-
981-15-5432-2 19

24. Mittal, S., Saxena, D.K., Deb, K., Goodman, E.D.: A learning-based innovized progress
operator for faster convergence in evolutionary multi-objective optimization. ACM Trans.
Evol. Learn. Optim. (TELO) 2(1), 1–29 (2021)

25. Morabit, M., Desaulniers, G., Lodi, A.: Machine-learning-based column selection for col-
umn generation. Transp. Sci. 55(4), 815–831 (2021)

26. Morabit, M., Desaulniers, G., Lodi, A.: Machine-learning-based arc selection for constrained
shortest path problems in column generation. arXiv preprint arXiv:2201.02535 (2022)

27. Ozdemir, H.T., Mohan, C.K.: Flight graph based genetic algorithm for crew scheduling in
airlines. Proc. Joint Conf. Inf. Sci. 5(3–4), 1003–1006 (2000)

28. Park, T., Ryu, K.R.: Crew pairing optimization by a genetic algorithm with unexpressed
genes. J. Intell. Manuf. 17(4), 375–383 (2006)

29. Parmentier, A., Meunier, F.: Aircraft routing and crew pairing: updated algorithms at air
france. Omega 93, 102073 (2020)

30. Shen, Y., Sun, Y., Li, X., Eberhard, A., Ernst, A.: Enhancing column generation by a
machine-learning-based pricing heuristic for graph coloring. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, pp. 9926–9934 (2022)

31. Vance, P., et al.: A heuristic branch-and-price approach for the airline crew pairing problem.
Technical report lec-97-06, Georgia Institute of Technology, Atlanta (1997)
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Abstract. The analysis of animal trade movements plays a crucial role
in understanding the spreading of zoonotic diseases in livestock. This
article addresses the problem of predicting sending or receiving ani-
mal transports by farms and other premises. Two recurrent neural net-
work models are used for this task: classical Recurrent Neural Networks
(RNNs) and Long Short-Term Memory (LSTM) networks. Optimization
of neural network weights is performed using the MOEA/D algorithm
with the goal of obtaining good trade-offs between the false positive
(FP) and true positive (TP) rates. The results show, that neural clas-
sifiers optimized on historical data (in this article taken from the years
2017–2019) can be used for making predictions on future data (in this
article taken from the year 2020) without a serious degradation of the
classification quality. In the experiments, the overall performance of the
RNN model was better than that of the LSTM model, however, the
LSTM performed slightly better than the RNN in the range of lower
FP rates. The results of this study motivate further research on using
predictive models for optimizing counter-epidemic measures, for example
vaccination campaigns.

Keywords: Dynamic networks · RNN · LSTM · Zoonotic diseases

1 Introduction

This article presents an application of evolutionary neural networks to predic-
tion of animal trade movements. Transporting animals is important from busi-
ness perspective, but it also constitutes a way for animal diseases to spread [4].
Therefore, analyzing the patterns of the movements is of interest for researchers
studying zoonotic diseases [1]. Analyzing the movements can help understand-
ing the disease spread [4] and restricting the movements can be used as an
epidemic control measure [11,12]. Even though some authors attempt to ana-
lyze the network of movements using static models [5], important aspects of the
transportation network are discovered using dynamic network modelling [23].
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To date, various tools have been applied to the prediction of animal trade
movements, such as Random Forests [16] and linear regression models [24]. In
this article, recurrent neural networks (RNNs) [20] are used for predicting when
a transport of animals is sent or received by a premise. Recurrent neural networks
are well-suited for handling temporal data [19]. Applications of RNNs include
language modelling [7], prediction of power consumption in buildings [21], load
forecasting in power grids [25], prediction of delays in computer networks [2],
modelling human mobility [6] and stress detection [22]. Importantly, RNNs have
been shown to be able to predict rare events, such as earthquakes [3]. This
capability of RNNs is important for the application shown in this article, because
sending or receiving of animal transports by any given premise can be separated
by long intervals of inactivity.

This article is structured as follows. Section 2 describes the problem of pre-
dicting transports sent and received by farms and other premises and formulates
this problem as a classification task. Section 3 presents neural networks used for
performing the classification along with the description of attribute encoding.
Section 4 describes the optimization problem studied in this article. Section 5
describes the experiments and presents the results. Section 6 concludes the arti-
cle.

2 Prediction of Animal Transports

The problem studied in this article is a problem of predicting sending and receiv-
ing of animal transports by premises (farms, pastures and lairage centers). The
study is based on a real life dataset of animal trade movements in Italy in years
2017–2020. The dynamic network of animal transports described by this dataset
forms a graph G = 〈V,E〉 in which nodes (premises) are described by attributes
listed in Table 1 and edges (transports) are described by attributes listed in
Table 2. Because the dates of the movements are not always precisely recorded
(there can be a delay between the real transport and the recorded date), the
movements are aggregated in 7-day periods, which is a commonly followed prac-
tice [1]. It is important to note, that the edges in graph G only exist for a short
period of time, which makes this network different from other dynamic networks,
such as social networks, in which contacts can appear and disappear, but usu-
ally last for a longer period of time. This characteristic of the animal transport
network is of importance when studying the spreading of infectious diseases,
because the disease can spread only when a transport of animals occurs between
two given premises.

For each time instant t and node v ∈ V incoming and outgoing transports
can occur. In this article, such events are predicted independently, which gives
rise to a two-label classification problem:

〈A(v), {M(t′) : t′ = 1, . . . , t − 1}〉 �→ 〈Cin, Cout〉, (1)

where the labels Cin, Cout ∈ {0, 1} represent the occurrence of incoming and
outgoing transports, respectively, in the time instant t. The attributes of the
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node v (constant in time) are denoted A(v) and the sequence of movements that
occurred at the node v before the time instant t is denoted {M(t′) : t′ = 1, . . . , t−
1}. The 〈, 〉 symbol represents elements treated jointly as inputs (attributes of
the node v and the sequence of movements that occurred at that node) and
outputs (Cin, Cout labels) of the classification model.

Table 1. Attributes describing nodes (premises).

Name Type Values Num. nodes

Premise type Enum Farm 238666

Pasture 14924

Lairage 670

Production profile Enum Meat 111828

Milk 37926

Mixed 43487

Wool 196

Rearing 276

RearingAndSlaughter 203

Slaughter 125

SelfConsumption 11888

Zoo 61

Unknown 48270

Species Enum Buffalo 2543

Cattle 141038

Goat 13767

Sheep 81988

Unknown 14924

Reproductors Bool No 122453

Yes 131807

Lat Real [2.594194, 18.50745]

Lon Real [32.20722, 47.5927]

3 Neural Networks

In this article, two neural models are used for performing the classification
described in Sect. 2: the classical Recurrent Neural Network (RNN) [15] and
the Long Short-Term Memory (LSTM) neural network [27]. In both networks,
the hidden state h(t) is kept and the LSTM additionally keeps the cell state c(t).
Both networks take a sequence of inputs x(t), t = 1, . . . and produce a sequence
of outputs y(t). The input vectors x(t) contain attributes A(v) of the node v ∈ V
for which the predictions are made (constant in time) and the attributes of
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Table 2. Attributes describing edges (movements).

Name Type Values

Movement date Date

Number of animals Int

Transported animal species Enum Buffalo

Cattle

Goat

Sheep

Unknown

The other premise∗) type Enum Farm

Pasture

Lairage
∗) Source premise for incoming transports, des-
tination premise for outgoing transports.

incoming and outgoing movements at the timestep t (see Tables 1 and 2). For
movements, the date attribute is not used, because it is represented by the time
step t, and the number of movements that occurred in the timestep t at the
node v and number of transported animals are added to the input vector. The
nominal (enum) attributes are encoded using the one-hot encoding, that is, for
each of those attributes a binary vector is formed with a value of one set at
the position corresponding to the value of the attribute (e.g. ‘Buffalo’ species is
encoded as 10000 and ‘Goat’ species as 00100). The number of inputs is Nin =
74 for both networks. Because the problem studied in this article is a multilabel
(two-label) classification problem, Nout = 2 outputs are produced using sigmoid
(logistic) activation functions in the output layer of the RNN, and by adding
a layer with sigmoid activation functions on top of the LSTM layer. One of the
outputs corresponds to an incoming transport predicted at the time step t + 1,
and the other output corresponds to an outgoing transport predicted at the time
step t + 1. The calculations for the classical Recurrent Neural Network (RNN)
are performed according to the equations:

a
(t)
1 = W1x

(t) + Uh(t−1) + b1 (2)

h(t) = tanh
(
a
(t)
1

)
(3)

a
(t)
2 = W2h

(t) + b2 (4)

y(t) = sigmoid
(
a
(t)
2

)
(5)

where:

x(t) - the network input,
a
(t)
1 , a

(t)
2 - activations of the hidden and output layer, respectively,

h(t) - the hidden state,
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y(t) - the network output,
W1 - an Nhid × Nin matrix of input-to-hidden layer connections weights,
W2 - an Nout × Nhid matrix of hidden-to-output layer connections weights,
U - an Nhid × Nhid matrix of recurrent connections weights,
b1 - a vector with Nhid elements, containing the biases for the hidden layer,
b2 - a vector with Nout elements, containing the biases for the output layer.

In the RNN network, the weights are W1, W2, U , b1, and b2, so the total
number of adjustable parameters is k = Nhid · (Nin + Nhid + Nout + 1) + Nout.
Substituting the number of inputs Nin = 74 and outputs Nout = 2 we get
k = (Nhid)2 + 77Nhid + 2.

The calculations for the Long Short-Term Memory (LSTM) neural network
are performed according to the equations:

f (t) = sigmoid
(
Wfx(t) + Ufh(t−1) + bf

)
(6)

i(t) = sigmoid
(
Wix

(t) + Uih
(t−1) + bi

)
(7)

o(t) = sigmoid
(
Wox

(t) + Uoh
(t−1) + bo

)
(8)

c(t) = f (t) ◦ c(t−1) + i(t) ◦ tanh
(
Wcx

(t) + Uch
(t−1) + bc

)
(9)

h(t) = o(t) ◦ tanh
(
c(t)

)
(10)

y(t) = sigmoid
(
Wyh

(t) + by

)
(11)

where:
x(t) - the network input,
f (t) - the forget gate state,
i(t) - the input gate state,
o(t) - the output gate state,
c(t) - the cell state,
h(t) - the hidden state,
y(t) - the network output,
Wf , Wi, Wo, Wc - Nhid × Nin weight matrices,
Uf , Ui, Uo, Uc - Nhid × Nhid weight matrices,
bf , bi, bo, bc - bias vectors with Nhid elements,
Wy - an Nout × Nhid weight matrix,
by - a bias vector with Nout elements,

and the ◦ symbol denotes the element-wise multiplication of vectors. The LSTM
has k = 4 · Nhid · (Nin + Nhid + 1) + Nout · (Nhid + 1) adjustable parameters.
Substituting the number of inputs Nin = 74 and outputs Nout = 2 we get
k = 4(Nhid)2 + 302Nhid + 2. Clearly, the LSTM model has roughly four times
more parameters than the RNN model.
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4 Optimization Problem

In the experiments, multiobjective optimization of weights of neural networks
was performed with the goals of minimizing f1 - the false positive (FP) rate of
classification performed by the optimized neural network and maximizing f2 -
the true positive (TP) rate. The search space for this optimization problem is
Ω = R

k, where k = (Nhid)2 +77Nhid +2 for the classical Recurrent Neural Net-
work (RNN) with Nhid hidden neurons and k = 4(Nhid)2 + 302Nhid + 2 for the
Long Short-Term Memory (LSTM) neural network with Nhid hidden neurons.
In order to evaluate a solution x ∈ Ω, the elements of the real vector x are used
as weights for a neural network (an RNN or an LSTM) and the network is used
to perform classification for each premise (graph node v ∈ V ) and time instant
t = 1, . . . in the time interval used for optimization (years 2017–2019 in this
article). For each time instant t, the network gets the attributes A of the node
v (constant in time) and incoming and outgoing movements at the node v in
the time instant t as inputs. It produces two outputs y

(t)
incoming, y

(t)
outgoing ∈ [0, 1],

which are used for predicting the occurrence of incoming and outgoing move-
ments at the node v in the time instant t + 1. If the value of y

(t)
incoming (respec-

tively, y
(t)
outgoing) is smaller than 0.5 it is predicted that incoming (respectively,

outgoing) movements will not occur at the node v in the time instant t+1. If the
value of y

(t)
incoming (respectively, y

(t)
outgoing) is larger or equal 0.5 it is predicted

that incoming (respectively, outgoing) movements will occur at the node v in
the time instant t + 1. The predictions are compared to the actual movements,
that is, the movements that indeed occurred at the node v in the time instant
t + 1. By calculating the fraction of classifications (nodes and time instants)
which correctly or incorrectly predicted the incoming or outgoing movements,
the two objectives are calculated:

f1 - the false positive (FP) rate: the fraction of situations when no movement
has occurred for which the classifier predicted a movement,
f2 - the true positive (TP) rate: the fraction of situations when a movement
has occurred for which the classifier predicted a movement.

Obviously, the f1 objective has to be minimized, because it represents situ-
ations when the classifier mistakenly predicts a movement and in reality there
is none. The f2 objective has to be maximized, because it represents situations
when a movement is correctly predicted.

5 Experiments and Results

In the experiments, multiobjective optimization described in Sect. 4 was per-
formed using the MOEA/D multiobjective evolutionary algorithm [13,28] with
solutions represented as real vectors in Ω = R

k. The evolutionary algorithm used
four crossover operators: the single-point crossover, the two-point crossover, the
uniform crossover [10, p. 52–53], and the Simulated Binary Crossover (SBX) [8].
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Seven mutation operators were used: five operators reordering the elements of
the genotype: displacement, insertion, inversion, scramble and transpose [14] and
two operators dedicated to real-valued genotypes: the uniform mutation and the
polynomial mutation [9]. When a genetic operator had to be selected, an autoad-
aptation mechanism based on operator success rates [17] was used. Because the
discussed optimization problem is a multiobjective one, the optimization algo-
rithm produced Pareto fronts containing solutions non-dominated with respect
to two objectives: f1 - the false positive rate (minimized) and f2 - the true posi-
tive rate (maximized). The quality of the Pareto fronts was measured using the
hypervolume (HV) quality indicator [29].

The experiments consisted of two phases:

1. Tuning of the number of hidden neurons Nhid in the neural networks, and
the parameters of the evolutionary algorithm.

2. Testing the generalization capability of the neural models optimized for the
time interval 2017–2019 on data from the year 2020.

5.1 Parameter Tuning

In the first phase of the experiments, the best number of hidden neurons Nhid

in the neural networks was selected, and the parameters of the evolutionary
algorithm were tuned. The number of hidden neurons was selected from four
possible values Nhid ∈ {2, 5, 10, 20}. For each neural model (RNN and LSTM),
and the number of hidden neurons Nhid, the parameters of the evolutionary
algorithm were tuned using the grid search approach with the following candidate
values:

– Population size Npop ∈ {50, 100, 200, 500}.
– Crossover probability Pcross ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.
– Mutation probability P

(p)
mut ∈ {0.2

k , 0.5
k , 1.0

k , 2.0
k , 5.0

k } (where k is the geno-
type length) for mutation operators applied to individual positions in the
genotype (e.g. the uniform mutation), and P

(g)
mut ∈ {0.02, 0.04, 0.06, 0.08,

0.10} for mutation operators applied to the whole genotype (e.g. the scram-
ble mutation).

For each set of values of these parameters, 10 runs of the optimization algo-
rithm were performed with the stopping condition of maxFE = 10000 solution
evaluations, and the set of parameter values for which the best (highest) median
hypervolume was obtained was selected. In this phase of the experiments no
additional validation of the obtained results (such as the cross-validation) was
performed. Instead, in the experiments described in Sect. 5.2, the neural models
were optimized using data from years 2017–2019 and were subsequently used for
making predictions on data from the year 2020 (unseen during training). The
values of parameters for which the best results were attained for each neural
model are presented in Table 3. Figure 1 shows the median hypervolume values
attained in the parameter tuning phase. Each plot shows the results for varying
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values of one of the parameters with the remaining parameters set to the best
values obtained for a given neural model (Table 3). Clearly, the smallest number
of hidden neurons (Nhid = 2) was suitable for both the LSTM and the RNN. As
for the population size, both models produced the best results when optimized
using an evolutionary algorithm running with the population of Npop = 100
solutions. For crossover and mutation probabilities it is harder to draw a firm
conclusion, as the quality of the results varies and different settings seem to be
the most suitable for different models.

Table 3. The best values of the network size and evolutionary algorithm parameters
obtained using the grid search approach for the two neural network models studied in
this article.

Parameter name Neural model

RNN LSTM

Number of hidden neurons Nhid 2 2

Population size Npop 100 100

Crossover probability Pcross 0.9 1.0

Mutation probability per position P
(p)
mut

5.0
k

1.0
k

Mutation probability per genotype P
(g)
mut 0.10 0.06

Obtained median hypervolume (HV) 0.8328 0.8282

Standard deviation 0.0090 0.0206

From this phase of experiments, it can be concluded, that small neural net-
works (with Nhid = 2 hidden neurons) perform best for the studied problem.
Classical Recurrent Neural Networks (RNNs) performed somewhat better than
Long Short-Term Memory (LSTM) networks as indicated by a slightly higher
hypervolume (0.8328 vs. 0.8282). Also, the dispersion of the results (measured
using the standard deviation) was smaller for the RNNs than for the LSTMs.

5.2 Testing the Generalization Capability of the Neural Models

In this phase of the experiments, the neural models were optimized using data
from years 2017–2019 and were subsequently used for making predictions on data
from the year 2020. This phase of the experiments was performed in order to
test the generalization capability of the neural models, that is, the capability to
perform well on data not seen during training (optimization). The optimization
of neural networks was performed using the parameters obtained in Sect. 5.1
using movements from years 2017–2019 as a continuous sequence in time. After
the weights of the neural networks had been optimized using the evolutionary
algorithm, the networks made predictions on movements from the year 2020,
which were fed to the neural networks as a new sequence, starting from t = 1.
Each neural model (RNN and LSTM) was optimized 30 times with the stopping
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Fig. 1. The median hypervolume values attained in the parameter tuning phase. Each
plot shows the results for varying values of one of the parameters with the remaining
parameters set to the best values obtained for a given neural model (Table 3).

condition of maxFE = 10000 solution evaluations, and was subsequently used
for making predictions. The evolutionary algorithm produces an entire Pareto
front of solutions (neural networks) which differ with respect to the values of the
false positive (FP) rate (objective f1) and the true positive (TP) rate (objective
f2) attained on data from years 2017–2019. When these solutions are used for
setting weights of neural networks which make predictions for the year 2020,
each solution attains some other values of the FP rate (objective f1) and the
TP rate (objective f2). It is worth noticing, that, because the objectives in the
optimization problem studied in this article are the FP rate and the TP rate, the
Pareto fronts can be interpreted as the Receiver Operating Characteristic (ROC)
of the neural classifiers generated by the evolutionary algorithm. Similarly, the
hypervolume indicator calculated for these fronts is the equivalent of the Area
Under Curve (AUC) classification quality measure. The hypervolume (AUC)
value calculated from non-dominated solutions generated for the year 2020 when
using the RNNs was 0.6904 and when using LSTMs was 0.6777.

Figures 2 and 3 show the Pareto fronts (ROC curves) for both neural network
models tested in this article obtained by taking non-dominated solutions from
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the union of results from 30 runs performed for each neural model. The FP and
TP rates for solutions optimized on data from years 2017–2019 are marked by
black dots and the FP and TP rates attained when making predictions for the
year 2020 are marked by red dots. Naturally, the results for data on which the
models were optimized (years 2017–2019) are better than the results obtained
when making prediction on future data (year 2020), but the degradation of
classification quality is not very large.

Fig. 2. The Pareto fronts (ROC curves) for the LSTM neural network.

Figure 4 shows a comparison of the results obtained when using the LSTM
(orange) and RNN (blue) neural networks on future movements taken from the
year 2020. Interestingly, the LSTM produced better results than the RNN for
medium values of the FP rate (in the range [0.2, 0.4], approximately). As noted
above, the hypervolume was better for the RNNs (0.6904 vs. 0.6777), which can
be attributed to slightly better RNN performance for very large values of the
FP rate (top-right corner in Fig. 4). However, from practical perspective, it is
more important to obtain better TP rate values for possibly low FP rate values,
because when FP rate gets close to 1.0 the classifier generates an enormous
number of false alarms. Therefore, the LSTM model can be expected to be
better-suited for practical applications than the RNN model.
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Fig. 3. The Pareto fronts (ROC curves) for the RNN neural network.

Fig. 4. The Pareto fronts (ROC curves) obtained using both neural models for the
data from the year 2020.
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6 Conclusion

In this article, multiobjective optimization of evolutionary neural networks was
studied, with the goal of predicting animal trade movements for farms and
other premises, which send and receive animals when running their businesses.
Two neural models were optimized using the MOEA/D algorithm: the Long
Short-Term Memory (LSTM) model and the classical Recurrent Neural Network
(RNN) model. Both neural models used in the experiments shown a similar per-
formance, with the LSTM performing slightly better on future data in the lower
range of the false positive rate values, which probably makes it better-suited for
practical applications.

Because animal movements allow infectious diseases to spread, predicting
these movements is important from the epidemics control perspective. This arti-
cle is a first stepping stone in the direction of using predictive models for planning
future counter-epidemic actions based on historical records of animal movements.
Future work may include using recurrent neural networks as predictive models
for optimizing counter-epidemic measures, such as vaccination campaigns. Other
directions for extended studies in the area presented in this article were suggested
by one of the reviewers. These suggestions are interesting, but, because of lim-
ited space, they had to be left for future work. One of the possibilities is to
compare the evolutionary training of neural networks with canonical algorithms
such as the Scaled Conjugate Gradient (SCG) algorithm [18]. Another direction
of work could be to use larger (deep) neural networks for classification. Evolu-
tionary algorithms can work with large search spaces effectively, so evolutionary
optimization of graph-to-sequence neural models such as Graph2Seq [26] can
be considered. On the other hand, in this article, smaller neural models worked
better for the studied problem. Thus, further studies are necessary to assess
the applicability of deep neural networks to the animal movements prediction
problem.
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Abstract. The conflict between computational budget and quality of
found solutions is crucial when dealing with expensive black-box optimiza-
tion problems from the industry. We show that through multi-objective
parameter tuning of the Covariance Matrix Adaptation Evolution Strat-
egy on benchmark functions different optimal algorithm configurations
can be found for specific computational budgets and solution qualities.
With the obtained Pareto front, tuned parameter sets are selected and
transferred to a real-world optimization problem from vehicle dynamics,
improving the solution quality and budget needed. The benchmark func-
tions for tuning are selected based on their similarity to a real-world prob-
lem in terms of Exploratory Landscape Analysis features.
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1 Introduction

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [16,18] is
a class of iterative heuristic algorithms for solving generally non-linear, non-
convex, single objective, continuous optimization problems by finding a solution
within the feasible set X ⊂ R

n that minimizes the objective function f [27]
(Sect. 2). CMA-ES has been successfully applied to many real-world optimization
problems including topology optimization [13] and hyperparameter optimization
of neural networks [30].

Apart from the landscape of the objective function, the performance of CMA-
ES on a specific optimization problem is determined by several parameters, and
also, by the variant of CMA-ES [5]. In order not to concern the user with the
task of selecting the appropriate parameters of an algorithm from a wide range
of different settings and variants, automatic parameter tuning as an optimiza-
tion problem itself was proposed [4,14]. Hence, two optimization problems can
be distinguished: solving the original problem and parameter tuning [12]. Com-
ponents of the former optimization problems are the original problem and the
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algorithm to find an optimal solution for this problem; while the latter consists
of the algorithm and a meta-algorithm to find optimal parameters for the algo-
rithm to solve the original problem. The quality of solutions for the original
problem is called fitness and the quality of the parameters of the algorithm is
called utility [12].

When measuring the utility two main metrics can be formulated: finding the
best possible solution within a given budget (fixed-budget) and finding a solution
as quickly as possible with a given target quality (fixed-target) [6]. In this paper
we investigate the conflict of these two objectives when tuning the parameters
of an algorithm: solution quality and used budget. We perform multi-objective
parameter tuning to obtain a Pareto front, also called “performance front” [11],
consisting of non-dominated parameter sets that satisfy both the quality and
budget objective (Sect. 5). Since the real-world black-box optimization problem
from vehicle dynamics design (Sect. 3) is computationally expensive to evaluate,
we conduct and investigate the parameter tuning on similar functions from the
black-box optimization benchmark (BBOB) [17].

Relating the performance of an algorithm on synthetic benchmark functions
to real-world optimization problems for transfer learning is a difficult task [41].
One way is to assess the similarity between the real-world problem and the bench-
mark functions. Therefore, we use the same approach as in previous work [45]
by performing Exploratory Landscape Analysis (ELA) [32] (Sect. 4).

2 Covariance Matrix Adaptation Evolution Strategy

In every generation g of the CMA-ES [16], a population x consisting of λ offspring
is sampled from a multivariate normal distribution with mean value m(g) ∈ R

n,
covariance matrix C(g) ∈ R

n×n and standard deviation σ(g) ∈ R>0:

x
(g+1)
k ∼ m(g) + σ(g)N (0, C(g)) ∀ k = 1, ..., λ. (1)

Moreover, the mean value m(g), the covariance matrix C(g) and the standard
deviation σ(g) are adapted in each generation as described below. With the given
weights wi, the new mean value m(g+1) is calculated as the weighted average of
μ selected parents from the population:

m(g+1) = m(g) + cm

μ∑

i=1

wi(x
(g+1)
i:λ − m(g)). (2)

The covariance matrix C(g) is updated with the evolution path p
(g)
c ∈ R

n:

C(g+1) = (1 − c1 − cμ

λ∑

i=1

wi)C(g)

+ c1 p(g+1)
c p(g+1)T

c︸ ︷︷ ︸
rank-one update

+cμ

λ∑

i=1

wi y
(g+1)
i:λ (y(g+1)

i:λ )T

︸ ︷︷ ︸
rank-μ update

, (3)
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p(g+1)
c = (1 − cc)p(g)c +

√
cc(2 − cc)μeff

m(g+1) − m(g)

σ(g)
, (4)

μeff = (
μ∑

i=1

w2
i )−1, y

(g+1)
i:λ =

x
(g+1)
i:λ − m(g)

σ(g)
, (5)

and the standard deviation σ(g) is updated with the conjugate evolution path
p
(g)
σ ∈ R

n:

σ(g+1) = σ(g) exp

⎛

⎝ cσ

dσ

⎛

⎝

∥∥∥p
(g+1)
σ

∥∥∥
E ‖N (0, I)‖ − 1

⎞

⎠

⎞

⎠ , (6)

p(g+1)
σ = (1 − cσ)p(g)σ +

√
cσ(2 − cσ)μeffC(g)−

1
2 m(g+1) − m(g)

σ(g)
. (7)

The strategy parameters λ, μ, c1, cc, cmu, cσ define the optimization behavior
of CMA-ES and can themselves be optimized for specific functions or groups of
functions [3,51].

Several CMA-ES variants have been developed so far. In this paper the fol-
lowing variants are considered [36,46]:

1. Active Update [23]: Extends the adaptation of the covariance matrix with
the most successful individuals by also considering the least successful indi-
viduals with a negative factor and therefore actively reducing the probability
of searching in unpromising directions.

2. Elitism [46]: In the standard (μ, λ)-CMA-ES the μ children replace the λ
parents. In the (μ + λ)-CMA-ES the children and parents together form the
next population.

3. Mirrored Sampling [8]: Only half of the search points of a new popula-
tion are sampled from a multivariate normal distribution, the other half is
the mirror image of the first one. Mirrored sampling increases the uniform
distribution of the search points.

4. Orthogonal Sampling [48]: Orthonormalizes the vectors of the search
points with the Gram-Schmidt process [7].

5. Threshold Convergence: [39]: Prevents the algorithm from getting stuck in
a local optimum by requiring the mutation vectors to reach a length threshold.
The threshold decreases after each generation.

6. Step-Size Adaptation: The standard step-size control in CMA-ES is Cumu-
lative Step-Size Adaptation (CSA) [16]. Two-Point Step-Size Adaptation
(TPA) [15] uses two search points from the population and Median Success
Rule (MSR) [1] uses the median fitness of the offspring to an individual from
the previous iteration to adjust the step-size.

7. Weighted Recombination [19]: Recombination is accomplished in CMA-
ES by adjusting the mean values m with a weight vector wi.

The combination of the different variants with respect to the optimization prob-
lem can improve the performance of CMA-ES [46,47].
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3 Real-World Problem Description

The anti-lock braking system (ABS) [26] and the variable damper control (VDC)
[35] can significantly improve driving safety by reducing the braking distance.
The ABS adjusts the brake pressure so that the brake slip remains within the
optimal range, thus preventing the wheels from locking and increasing the brake
performance. The VDC improves brake performance by adjusting the damper
constants of the shock absorbers, which influence the wheel load and, therefore,
the braking force.

The emergency straight-line full-stop braking maneuver with ABS fully
engaged [21] is a standard maneuver in the automotive industry for assessing
the braking performance of a vehicle. The braking distance y is defined as the
integral of the vehicle longitudinal velocity over time from velocity vs = 100 km/h
at time ts to ve = 0 km/h at time te:

y =
∫ te

ts

v(t) dt. (8)

Mechanical vehicle and its control systems, the driver and the environment
can be simulated via a two-track model implemented in Simulink [44]. To accu-
rately model the steady-state and transient behavior of the tires under slip condi-
tions the MF-Tyre/MF-Swift tire model [42], which is based on Pacejka’s Magic
Formula [38] is used. On a standard workstation1, one full simulation run takes
about 15 to 20 min.

The objective is to find a parameter setting x within the lower bound Blb

and upper bound Bub that minimizes the braking distance y(x). In total 28 ABS
and two VDC parameters are considered.

4 Exploratory Landscape Analysis for Transfer Learning

Exploratory Landscape Analysis. (ELA) [32] quantifies high-level properties of
the landscape of an optimization problem [33]. The flacco package provides a
wide collection of ELA features [25]. The total of 68 single features, structured in
six sets, are appropriate for the considered real-world problem (Sect. 3): classical
ELA (distribution, level, meta) [32], information content [34], dispersion [31],
linear model, nearest better clustering [24,40] and principal component.

We use the instance-generating mechanism of the BBOB function suite [17]
and consider five instances of each function. To calculate the features, a Sobol’
design [37,43] with 16384 samples in [−5, 5]30 is used. The resulting set of com-
puted features is filtered [29] to exclude features with zero standard deviation
across all problems and feature pairs with Spearman’s rank correlation [28] above
0.99. This leaves 39 features. The feature values are then min-max-scaled to [0, 1]
for equal weighting.

1 HP Workstation Z4 G4 Intel Xeon W-2125 4.00 GHz/4.50 GHz 8.25MB 2666 4C
32GB DDR4-2666 ECC SDRAM.
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Fig. 1. Euclidean distances in the 39-dimensional ELA feature space between the con-
sidered real-world problem and 24 BBOB functions. The five instances {0, 1, 2, 3, 4}
of each BBOB function are considered.

We define the similarity of two problems p1 and p2 as the Euclidean distance
d between their feature vectors Fp1 and Fp2 :

d(p1, p2) = ‖Fp1 − Fp2‖2 . (9)

Using such distance, we investigate the similarity between the real-world problem
and the five instances of each BBOB function based on the 39-dimensional fea-
ture vectors and conclude that such distances vary across functions and instances
(Fig. 1). BBOB functions f17, f21 are selected as similar to the considered real-
world problem. Furthermore, to test the transferability of optimal parameters
across functions, we augment the tuning reference with BBOB’s sphere function
f1 as an example of a dissimilar reference.

5 Multi-objective Tuning of Algorithm’s Parameters
on Reference Functions

We define as a meta-algorithm an algorithm used to find the optimal set of
parameters θ∗ for an optimization algorithm A to solve the original real-world
problem. Since the real-world problem is computationally expensive to evaluate,
such meta-optimization can be performed on another (similar) problem or to
increase generalisability on a set of problems – both such tasks exemplify transfer
learning. In the following, we call such a function set a tuning reference Π. For
each considered BBOB function fj we use the five instances i ∈ {0, ..., 4} as a
tuning reference: Πfj

= {fj0 , ..., fj4}.
To compare the quality of a solution found by an algorithm across different

problem instances and functions, we consider the distance Δf = f − f∗ to the
known optimum f∗ of a BBOB function f as cost function C:
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C = Δf = f − f∗. (10)

Considering the probabilistic nature of the algorithms, to obtain statistically
meaningful results, we conduct nopt = 100 optimization runs on each problem
of the tuning reference Π. A performance measure over the obtained cost val-
ues (c1, ..., cnopt

) can then be calculated by a statistic h (e.g., mean, median).
To focus more on average performance than peak performance and reduce the
variance, we consider the median and the standard deviation across the nopt

optimization runs for each problem in the tuning reference:

h(c1, ..., cnopt
) = median(c1, ..., cnopt

) + std(c1, ..., cnopt
). (11)

The quality of a parameter set θ for an algorithm A on the tuning reference Π,
in the following referred to as utility u(θ,Π), is then assessed as the average
performance measure h over the np problems in the tuning reference Π:

u(θ,Π) =
1
np

np∑

i=1

h(C(A(θ),Πi)). (12)

In addition to the quality of the solution found across several optimization
runs, the wall-clock time spent to find this solution is another crucial performance
criterion of an optimization algorithm. On the real-world problem, the wall-clock
time needed by the algorithm to generate the next population is negligible. The
wall-clock time can be reduced mainly by running several simulations in parallel.
Thus, the time for an optimization run correlates not directly with the evaluation
budget neval, but with the number of serial iterations niter. In each iteration
nparallel solution candidates can be evaluated simultaneously. The number of
iterations depends on the population size λ, if λ = nparallel, niter is equal to the
number of generations neval

λ :

niter =
neval

λ

⌈
λ

nparallel

⌉
. (13)

We assess a parameter set of CMA-ES based on two conflicting objectives:
the utility u (Eq. 12) as a measurement of the quality of found solutions and
the iteration budget niter (Eq. 13). Many algorithms exist for multi-objective
hyperparameter optimization [20]. We employ the NSGA-II [10] implementation
from the hyper-parameter optimization tool Optuna [2] as the meta-algorithm.
To find a so-called performance front of Pareto optimal parameter sets for the
CMA-ES algorithm, the meta-algorithm has a budget of 10,000 evaluations.

The set of algorithm’s parameters being searched and assessed via multi-
objective parameter tuning is specified in Table 1, based on the modular CMA-
ES implementation [36,46]. Because of practical limitations in software licenses
and computational resources required for the considered real-world problem, a
maximum of 30 simulations can be executed in parallel. Therefore, only pop-
ulation sizes which are multiples of 30 are considered for CMA-ES. Infeasible
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Table 1. Parameters and variants of CMA-ES with their value space for multi-objective
parameter tuning with NSGA-II.

Hyperparameter Description Space

λ Number of children derived from parents {30, 60, 90}
μr Ratio of parents selected from population [0.2, 0.8]

σ0 Initial standard deviation ]0, 1]

C1 Learning rate rank-one update ]0, 1]

Cc Learning rate covariance matrix adaption ]0, 1]

Cμ Learning rate rank-μ update ]0, 1]

Cσ Learning rate step size control ]0, 1[

Active update Covariance matrix update variation {on, off}
Elitism Strategy of the evolutionary algorithm {(μ, λ), (μ + λ)}
Mirrored sampling Mutations are the mirror image of another {on, off}
Orthogonal Orthogonal sampling {on, off}
Threshold Length threshold for mutation vectors {on, off}
Adaptation σ How to adapt the step size σ {CSA, TPA, MSR}
Weights Weights for recombination {default, equal, 1

2

λ}

solutions generated during the run of CMA-ES are corrected using the “satu-
rate” method [9].

We set the iteration budget to 4200 function evaluations to practically be able
to use the same budget once optimized parameters are transferred to the real-
world problem (where such budget translates to about two days of simulations
for one optimization run). The meta-algorithm can select the following iteration
budgets: {10, 20, 30, 40, 60, 80, 100, 140}.

5.1 Results

A set of parameters θ is tuned based on the quality of found solutions u(θ,Π)
on the tuning reference Π and the iteration budget niter. We obtained k Pareto
optimal parameter sets θ∗

Πfj
,i, i ∈ {1, ..., k} from each tuning reference Πfj

,
j ∈ {1, 17, 21}. For further investigations, we assess these parameter sets on the
tuning references Πf17 and Πf21 (Fig. 2).

The resulting tuned parameter sets are shown in Table 2. It is important
to mention that across all tuned parameter sets CSA is used, mirrored and
orthogonal sampling are on and “elitist” is off.

Optimal parameter sets for 140 and 10 iterations on Πf17 and Πf21 are addi-
tionally assessed for all considered intermediate iteration budgets (marked with
circles in Fig. 2). If the optimization run is stopped earlier or continued beyond
the optimal iteration budget, another tuned parameter set would have performed
better on average. It turns out that performance of the tuned parameter sets is
very sensitive to the iteration budget – runs of the algorithm with parameters
tuned for one budget result in significantly worse performance on other budgets.
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Fig. 2. Values of the quality of found solutions u(θ, Π) (Eq. 12) and the iteration bud-
gets niter on the tuning references Πf17 (left) and Πf21 (right) for the obtained k
Pareto optimal parameter sets θ∗

Πfj
,i, i ∈ {1, ..., k} from each tuning reference Πfj ,

j ∈ {1, 17, 21} (Table 2). Each tuning reference consists of five instances of the corre-
sponding BBOB function. Setting θdefault refers to a default parameter set (not tuned)
recommended in the modular CMA-ES implementation with an adjusted population
size of 30. The optimal parameter sets for 140 and 10 iterations on Πf17 , Πf21 and
θdefault are assessed for all considered iteration budgets. Symbols are connected with
dotted lines when the same CMA-ES parameter set is used.

For example, θ∗
Πf17 ,8 (marked with yellow circles in Fig. 2, left) is tuned for 10

iterations and performs worse than the default parameters for iteration budgets
grater than 30 (shown as rhombi). The other way around, θ∗

Πf21 ,1 (marked with
silver circles in Fig. 2, right) is tuned for 140 iterations and is worse than the
default parameters (shown as rhombi) for iteration budgets less than 80. Thus,
a tuned parameter set performs better only for a specific iteration budget.

The obtained Pareto front from the multi-objective parameter tuning in Fig. 2
shows the conflict between the budget spent and the solution quality found on a
set of optimization problems. With increasing the number of iterations the qual-
ity of the found solutions generally increases, exceptions can occur because of the
variance across the nopt optimization runs. However, the improvement decreases
as the number of iterations increases. In particular, on Πf21 , the quality of the
solutions found does not increase significantly beyond 60 iterations, both for
the tuned parameter sets and for the default parameter set. Thus, the obtained
Pareto front indicates which number of iterations is suitable and at what point
even a tuned parameter set for a larger iteration budget is not recommended.

Despite the dissimilarity of the landscapes of f1, f17 and f21, a transfer
of CMA-ES parameters tuned on reference Πf1 improves the performance of
CMA-ES compared to the default parameter set on Πf17 and Πf21 (marked
with triangles and diamonds in Fig. 2). Also, transferring the parameter sets
tuned on Πf17 improves the performance of CMA-ES on Πf21 and vice versa,
except for θ∗

Πf21 ,1 on Πf17 (marked with crosses and stars in Fig. 2).
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Table 2. Parameter values for CMA-ES of the default parameter set θdefault and
Pareto optimal parameter sets θ∗

Πfj
,i on the tuning references Πfj , j ∈ {1, 17, 21}.

Each tuning reference consists of five instances of the BBOB function fj . The search
space of the parameters is given in Table 1. CSA, mirrored, orthogonal sampling is used
and elitist is not across all tuned parameter sets. In the default settings these variants
are all off. For parameter values between zero and one, higher values are shaded darker.

CMA-ES niter λ μr σ0 c1 cc cμ cσ active threshold weights
θdefault - 30 0.5000 0.2000 0.0020 0.1208 0.0049 0.1600 off off default
θ∗

Πf17 ,1 140 30 0.4506 0.3151 0.0038 0.0060 0.0241 0.3038 off on default

θ∗
Πf17 ,2 100 30 0.5282 0.3277 0.0038 0.0060 0.0241 0.4072 off on default

θ∗
Πf17 ,3 80 30 0.4506 0.3249 0.0038 0.0060 0.0241 0.4502 off on default

θ∗
Πf17 ,4 60 30 0.4506 0.2819 0.0038 0.0060 0.0241 0.6545 off on default

θ∗
Πf17 ,5 40 30 0.4506 0.4409 0.0038 0.2904 0.0246 0.9613 on off default

θ∗
Πf17 ,6 30 30 0.4506 0.4409 0.0038 0.2904 0.0246 0.9613 on off default

θ∗
Πf17 ,7 20 30 0.7140 0.5780 0.0852 0.0060 0.0246 0.9712 on off default

θ∗
Πf17 ,8 10 30 0.7140 0.7145 0.2886 0.0060 0.0246 0.9327 on off default

θ∗
Πf21 ,1 140 60 0.7208 0.8618 0.0026 0.7898 0.1301 0.1266 on on default

θ∗
Πf21 ,2 80 60 0.7208 0.8618 0.0026 0.7133 0.1254 0.5105 off on default

θ∗
Πf21 ,3 60 60 0.7208 0.8618 0.0026 0.7898 0.1301 0.8456 on on default

θ∗
Πf21 ,4 40 30 0.7208 0.7145 0.0852 0.0135 0.0173 0.9817 off on default

θ∗
Πf21 ,5 30 30 0.7751 0.7145 0.0852 0.0135 0.0173 0.9817 off on default

θ∗
Πf21 ,6 20 30 0.7208 0.7145 0.0852 0.0135 0.0173 0.9448 off on default

θ∗
Πf21 ,7 10 30 0.7208 0.2824 0.2761 0.0060 0.0173 0.9145 off on 1

2

λ

θ∗
Πf1 ,1 140 30 0.4651 0.6867 0.0096 0.5414 0.0056 0.7292 off off default

θ∗
Πf1 ,2 100 30 0.4651 0.4948 0.0096 0.0021 0.0056 0.9712 off off default

θ∗
Πf1 ,3 80 30 0.4651 0.4948 0.0096 0.0021 0.0056 0.9712 off off default

θ∗
Πf1 ,4 60 30 0.4651 0.4948 0.0330 0.0021 0.0056 0.9712 off off default

θ∗
Πf1 ,5 40 30 0.4651 0.4948 0.0429 0.0021 0.0056 0.9712 on off default

θ∗
Πf1 ,6 30 30 0.4651 0.5557 0.1044 0.0021 0.0056 0.9712 on off default

θ∗
Πf1 ,7 20 30 0.4651 0.5557 0.1044 0.0021 0.0056 0.9712 on off default

θ∗
Πf1 ,8 10 30 0.4651 0.5852 0.3947 0.0021 0.0056 0.9712 off on default

Looking at individual values in the tuned parameter sets, the used variants
mirrored and orthogonal sampling across all tuned parameter sets indicate a
general increase in utility of CMA-ES for different problems. The population
size was increased from the default value of 14 to at least 30 because of the num-
ber of parallel evaluations. In accordance with [48,49], mirrored and orthogonal
sampling especially improves the exploration effects of a large population. The
initial step size σ0 is higher than the default step size for all tuned parameter
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sets using the larger population size for an initial higher exploration. The tuned
parameters are also adjusted to features of the problem and the algorithm that
are identical or similar on the other problems like dimension and population size.
Transfer learning thus can improve the performance of the algorithm.

A major difference between Πf17 and Πf21 is the comparatively worse utility
of the solutions found regardless of the parameter set. On Πf21 the algorithm
often gets stuck in a local optimum and does not find a solution near the global
optimum. Therefore, exploration is especially important on Πf21 , resulting in
significant differences in parameter values of θ∗

Πf21 ,i to θ∗
Πf1 ,i and θ∗

Πf17 ,i. An
open question is whether, instead of one single long run, two or three shorter
runs result in better peak performance.

It is of interest to note that the learning rates mostly decrease or increase
constantly across the iterations for the tuned parameter sets, especially cσ. Also
active covariance matrix update variation is mostly on for lower number of iter-
ations and length threshold for mutation vectors is set to on for higher numbers
of iterations. This highlights the need to conduct more research in the direction
of landscape-aware adaptive parameter tuning [22].

5.2 Transfer of Tuned Parameters to the Real-World Problem

We transfer parameter sets obtained from the tuning references to the real-world
problem from vehicle dynamics design and analyze whether they also improve
the search performance of CMA-ES compared to the default parameter set.
One optimization run with 140 iterations on the real-world problem takes about
two days. Therefore, only two optimization runs for the same parameter set
are conducted and only 40 and 140 iterations are considered as budget for one
optimization run. Thus, we transfer the optimal parameter sets on the considered
tuning references Πf1 , Πf17 , Πf21 for 140 iterations θ∗

Πf1 ,1, θ∗
Πf17 ,1, θ∗

Πf21 ,1 and
for 40 iterations θ∗

Πf1 ,5, θ∗
Πf17 ,5, θ∗

Πf21 ,4 to the real-world problem (Fig. 3). The
initialization of the mean value m(0) is set to the default parametrization of the
control parameters for all optimizations runs.

Overall, small differences between the curves can be observed. For an itera-
tion budget of 140 (Fig. 3, left), the solutions found with θ∗

Πf21 ,1 tend to be worse
compared to the other parameter sets, especially at the beginning of the opti-
mization run. This is the price for the higher exploration of the search-space.
Unexpectedly, by far the shortest braking distance is found by the first run
of CMA-ES with the parameter set θ∗

Πf1 ,1 (tuned on a dissimilar function f1)
within only 41 iterations and the second run can compete with the others as
well. This confirms the observations on the tuning references (Sect. 5.1), where
a transfer of θ∗

Πf1 ,i also improved the performance of CMA-ES compared to the
default parameter set. Tuning the parameters of CMA-ES to general problem
characteristics and algorithm settings like problem dimension and population
size improves the search behavior.

With an iteration budget of only 40, the variance across the found braking
distances increases compared to 140 iterations. Overall, the best parameter sets
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Fig. 3. Distance to the best known braking distance attainable on the considered real-
world problem within intermediate computational budgets by CMA-ES configurations
tuned for iteration budgets of 140 (left) and 40 (right). Line colours define the tuning
reference Πfj (where index j ∈ {1, 17, 21} defines the BBOB function, five instances
were considered) on which CMA-ES (Table 2) has been tuned. Two independent runs
are shown for each CMA-ES parameter set. Setting θdefault refers to a default param-
eter set recommended in the modular CMA-ES implementation with an adjusted pop-
ulation size of 30 (not tuned). (Color figure online)

for 40 iterations tend to find shorter braking distances faster than the default
parameter set θdefault.

In summary, similar phenomena in the performance of CMA-ES on bench-
mark functions can also be observed on the real-world problem, encouraging
further investigation of transfer learning.

6 Conclusion

In this paper, we tuned different parameters and variants of CMA-ES with the
two objectives of computational budget needed and quality of the solution found
on functions taken from the BBOB benchmark test set. A tuned parameter
set is only optimal for a given budget and problem or set of problems, so a
Pareto front consisting of different parameter sets for each set of problems was
derived. In order not to tune the parameters to a specific budget, the area under
the empirical cumulative distribution function curve could be an alternative
objective [50].

The use of certain variants of CMA-ES results in an improvement across all
problems considered. One reason for this is the adaptation to general problem
characteristics and algorithm settings. For example, orthogonal and mirrored
sampling generally improve search performance for relatively large populations,
while a higher initial step size and “threshold” improve exploration of the large
search space. A simple solution besides tuning variants of CMA-ES would be to
provide simple heuristics and recommendations (rules of thumb).



Transfer of Multi-objectively Tuned CMA-ES Parameters 557

The values of the parameter sets tuned on different sets of problems differ
significantly, but lead to similar results on the real-world problem from vehicle
dynamics. A new best solution on the real-world problem was found by a tuned
parameter set on the sphere function f1. The improvement of this solution is
1.8 times better than the improvement of the best solution in a Sobol’ design
with 16384 samples compared to the default parameterization of the real-world
problem.

The similarity of the considered benchmark functions to the real-world prob-
lem was quantified by the Euclidean distance of Exploratory Landscape Analysis
feature values. The assumption of correlation between similarity of two problems
quantified by ELA features and the difficulty for an algorithm configuration of
solving them needs further investigations.
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11. Dréo, J.: Using Performance Fronts for Parameter Setting of Stochastic Meta-
heuristics. In: Proceedings of the 11th Annual Conference Companion on Genetic
and Evolutionary Computation Conference: Late Breaking Papers, pp. 2197–
2200. ACM Conferences, Association for Computing Machinery, New York (2009).
https://doi.org/10.1145/1570256.1570301

12. Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolu-
tionary algorithms. Swarm Evol. Comput. 1(1), 19–31 (2011). https://doi.org/10.
1016/j.swevo.2011.02.001

13. Fujii, G., Takahashi, M., Akimoto, Y.: CMA-ES-based structural topology opti-
mization using a level set boundary expression-application to optical and carpet
cloaks. Comput. Methods Appl. Mech. Eng. 332, 624–643 (2018). https://doi.org/
10.1016/j.cma.2018.01.008

14. Grefenstette, J.: Optimization of control parameters for genetic algorithms. IEEE
Trans. Syst. Man Cybern. 16(1), 122–128 (1986). https://doi.org/10.1109/TSMC.
1986.289288

15. Hansen, N.: CMA-ES with Two-Point Step-Size Adaptation. Technical report RR-
6527, INRIA (2008). https://www.hal.inserm.fr/INRIA/inria-00276854

16. Hansen, N.: The CMA Evolution Strategy: A Tutorial. Technical report (2016).
https://arxiv.org/pdf/1604.00772

17. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-Parameter Black-Box Optimization
Benchmarking 2009: Noiseless Functions Definitions. Technical report RR-6829,
INRIA (2009). https://hal.inria.fr/inria-00362633/

18. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions
in evolution strategies: the covariance matrix adaptation. In: Proceedings of the
IEEE International Conference on Evolutionary Computation, pp. 312–317 (1996).
https://doi.org/10.1109/ICEC.1996.542381

19. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evo-
lution strategies. Evol. Comput. 9(2), 159–195 (2001). https://doi.org/10.1162/
106365601750190398

20. Hernández, A.M., van Nieuwenhuyse, I., Rojas-Gonzalez, S.: A survey on multi-
objective hyperparameter optimization algorithms for Machine Learning. ArXiv
(2021). https://arxiv.org/pdf/2111.13755.pdf

21. International Organization for Standardization: ISO 21994:2007 - Passenger cars
- Stopping distance at straight-line braking with ABS - Open-loop test method
(2007)

22. Jankovic, A., Eftimov, T., Doerr, C.: Towards feature-based performance regression
using trajectory data. In: Castillo, P.A., Jiménez Laredo, J.L. (eds.) EvoApplica-
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S.: Evolution strategies with thresheld convergence. In: 2015 IEEE Congress on
Evolutionary Computation (CEC), pp. 2097–2104 (2015). https://doi.org/10.1109/
CEC.2015.7257143

40. Preuss, M.: Improved topological niching for real-valued global optimization. In:
Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 386–395.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29178-4 39

41. Sala, R., Müller, R.: Benchmarking for metaheuristic black-box optimization: per-
spectives and open challenges. In: 2020 IEEE Congress on Evolutionary Com-
putation (CEC), pp. 1–8. IEEE (2020). https://doi.org/10.1109/CEC48606.2020.
9185724

42. Siemens Digital Industries Software: Tire Simulation & Testing (2020). https://
www.plm.automation.siemens.com/global/en/products/simulation-test/tire-
simulation-testing.html

43. Sobol’, I.M.: On the distribution of points in a cube and the approximate evaluation
of integrals. Comput. Math. Math. Phys. 7(4), 86–112 (1967). https://doi.org/10.
1016/0041-5553(67)90144-9

44. The MathWorks Inc: Simulink (2015). https://www.mathworks.com/’
45. Thomaser, A., Kononova, A.V., Vogt, M.E., Bäck, T.: One-shot optimization for
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Abstract. Normalization is commonly used in multiobjective evolution-
ary algorithms (MOEAs) in order to handle multiobjective optimization
problems with differently-scaled objectives. The goal of normalization is
to obtain uniformly-distributed solutions over the entire Pareto front.
However, in practice, such a uniform solution set may not be a well-
distributed solution set for decision making when the desired distribution
of solutions is not uniform. To obtain a well-distributed solution set that
meets the desired distribution, in this paper, we propose a preference-
based nonlinear normalization method that transforms the objective
space based on the probability integral transform theorem. As a result,
the use of a standard MOEA to search for uniformly-distributed solutions
in the transformed objective space leads to a desired well-distributed
solution set. The proposed method is incorporated in three different
MOEAs (i.e., a Pareto dominance-based MOEA, a decomposition-based
MOEA, and an indicator-based MOEA). Experimental results demon-
strate the flexibility and effectiveness of the proposed method. Our code
is available at https://github.com/linjunhe/moea-pn.

Keywords: Evolutionary multiobjective optimization (EMO) ·
Preference incorporation · Decision making · Normalization

1 Introduction

Real-world multiobjective optimization problems (MOPs) usually have multi-
ple conflicting and differently-scaled objectives [20,29]. To solve such problems,
various multiobjective evolutionary algorithms (MOEAs) have been proposed in
recent years [21]. In recently proposed MOEAs, normalization is usually used
before environmental selection to handle badly-scaled MOPs [6,15,23,24,38].
Various studies have been conducted to examine and improve normalization
methods (see Section II-B). In such studies on normalization, researchers usually
implicitly assume that the desired distribution of solutions on each objective is
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uniform. As a result, the goal of normalization is to obtain uniformly-distributed
solutions over the entire Pareto front in a normalized objective space.

However, for some real-world applications where the law of diminishing
returns holds, a uniformly-distributed solution set may not be a well-distributed
solution set for decision making [10]. For example, let us assume that we are
looking for a car for our personal use based on the following two objectives:
maximization of the maximum speed and minimization of the price. For the first
objective, presentation of uniformly-distributed solutions to the decision maker
may be acceptable when he/she does not articulate any preferences. However,
for the second objective, the price distribution of available cars is generally not
uniform but positively skewed [10,34] as illustrated in Fig. 1(a). This naturally
raises a question: which is a better solution set between the following two sets
of prices (×1000$) of 10 candidate cars for decision making?

• Positively skewed distribution (see Fig. 1(b)): A = {40, 70, 90, 100, 120, 140,
170, 210, 270, 400}.

• Uniform distribution (see Fig. 1(c)): B = {40, 80, 120, 160, 200, 240, 280, 320,
360, 400}.

Fig. 1. Illustration of (a) histogram of car price, (b) positively skewed solutions (well-
distributed for decision making), and (c) uniformly-distributed solutions.

As pointed out in [34], the presentation of candidate car set A with a biased
distribution will be more useful for most people than candidate car set B with
a uniform distribution. This is because the distribution of A is similar to the
distribution of cars in the car market.

To obtain a well-distributed solution set like A for decision making, in this
paper, a preference-based nonlinear normalization method is proposed. The con-
tributions of this paper can be summarized as follows.

• We propose a preference-based nonlinear normalization method. Based on
the preference (i.e., the desired distribution of solutions based on collected
data), the objective space is transformed according to the probability integral
transform theorem, such that the search of uniformly-distributed solutions
in the transformed space results in well-distributed solutions in the original
objective space for decision making.
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• We discuss the relation between the proposed normalization method and the
conventional linear normalization method. Experimental results show that
the conventional linear normalization method is a special case of the proposed
method.

• The proposed method can be incorporated in any existing MOEAs in a plug-in
manner. This is different from existing preference incorporation methods (see
Section II-C) that need a specific modification in the environmental selection
mechanism of each MOEA. We incorporate the proposed method in different
MOEAs to demonstrate its flexibility and effectiveness.

The rest of the paper is organized as follows. Preliminary knowledge on mul-
tiobjective optimization, linear normalization, and preference-based MOEAs are
presented in Sect. 2. In Sect. 3, the proposed preference-based nonlinear nor-
malization is presented, and its relation to linear normalization is discussed. In
Sect. 4, comprehensive experiments are conducted to verify the discussed rela-
tion and to demonstrate the flexibility and effectiveness of the proposed method.
In Sect. 5, we conclude the paper.

2 Preliminaries

2.1 Multiobjective Optimization Problem

A multiobjective optimization problem (MOP), which aims to minimize m con-
flicting objectives at the same time, can be written as follows.

Minimize f(x) = (f1(x), f2(x), . . . , fm(x))T ,
subject to x ∈ Ω,

(1)

where fi(x) is the i-th objective function and x is an n-dimensional decision
vector in the feasible region Ω ⊆ R

n. Due to the conflicting nature of the objec-
tives, the MOP has a set of Pareto optimal solutions, called the Pareto set. The
image of the Pareto set in the objective space is called the Pareto front (PF).

2.2 Linear Normalization

To deal with MOPs with differently-scaled objectives, objective space normal-
ization is usually performed before environmental selection of an MOEA. Each
objective function in (1) is usually linearly transformed as follows.

˜fi(x) =
fi(x) − zlbi
zubi − zlbi

, i ∈ {1, 2, . . . ,m}, (2)

where ˜fi(x) is the i-th normalized objective function, and zlbi and zubi are the
lower and upper bounds of the i-th objective function, respectively.

Investigation on normalization has attracted a lot of researchers’ attention.
As pointed out in [16,18], normalization methods can affect the performance of
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decomposition-based MOEAs in both positive and negative ways. Fukumoto and
Oyama [12] and Liu et al. [25] investigated the impact of normalization methods
for constrained decomposition-based MOEAs and multi-modal MOEAs, respec-
tively. He et al. [17] analyzed the relation between normalization methods and
weight vector scaling methods for decomposition-based MOEAs. A metric was
proposed in [13] for investigating normalization methods. To make use of the
advantages of normalization and reduce its negative effects, several new nor-
malization methods were proposed. Blank et al. [3] proposed a normalization
method characterized by extreme point preservation. Dynamic normalization
methods were designed based on a sigmoid function in [14] or a step function
in [28]. Wang et al. [36] proposed to use surrogate-based search to improve nor-
malization bounds. Among these studies on normalization, researchers usually
implicitly assume that the desired distribution of solutions on each objective is
uniform. The proposed preference-based nonlinear normalization method in this
paper does not rely on this assumption.

2.3 Preference Incorporation

Generally, decision makers are often interested in a small region of the PF instead
of the entire PF, known as the region of interest (ROI). To search for the ROI,
various approaches have been proposed to incorporate preference into MOEAs.
These approaches can be roughly divided into the following four categories.

• Objective Comparison-based Approaches. Relative importance of each objec-
tive can be described by weights specified by the decision maker, by linguistic
labels obtained from pairwise comparisons between objectives, or by pair-
wise trade-off information provided by the decision maker. This information
is then used to modify the Pareto dominance [5,11], crowding operator [27],
or quality indicator [40] to bias the population towards the ROI.

• Solution Ranking-based Approaches. Pairwise comparisons between solutions
are made by the decision maker to learn a utility function. The learned util-
ity function is then used to modify the dominance relation [7,19], crowding
operator [1], or both of them [4] in order to identity the ROI.

• Reference Point-based Approaches. The decision maker’s preference is articu-
lated by a reference point or a set of reference points. Solutions close to the
reference point(s) are then prioritized by modifying the crowding operator
[8,26], dominance [39], or quality indicator [30] to guide the search towards
the reference point(s).

• Desirability Function-based Approaches. For each objective, two thresholds
(i.e., an absolutely satisfying objective value and a marginally infeasible objec-
tive value) are provided by the decision maker. These thresholds serve as
parameters of desirability functions, by which the objective functions are
transformed [35].

Most existing approaches directly incorporate preference information into the
environmental selection mechanisms of MOEAs (e.g., modifying the dominance
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relation, the crowding operator, and the quality indicator). The proposed method
focuses on the normalization part of MOEAs. The preference is incorporated
by nonlinearly normalizing the objective space without any modifications on
the environmental selection mechanisms of the original MOEAs. Note that the
desirability function-based approach [35] also transforms the objective space.
However, our method is different from [35] as follows.

1. The transformation in [35] is based on a desirability function and the deci-
sion maker is asked to provide an absolutely satisfying objective value and
a marginally infeasible objective value. Our method transforms the objective
space based on the probability integral transform theorem when the desired
distribution of solutions (i.e., the distribution of collected data) is available.

2. The goal of [35] is to search for uniformly-distributed solutions in the ROI.
Our method targets for a well-distributed solution set that meets the desired
distribution of solutions for decision making.

3. The approach in [35] is designed for hypervolume-based MOEAs while our
method can be integrated with any existing MOEAs.

3 Proposed Preference-Based Nonlinear Normalization

In this section, the proposed preference-based nonlinear normalization method
is presented. The goal of the proposed method is to adjust the distribution
of solutions for each objective. For each objective, the desired distribution of
solutions can be either inferred from collected data or specified by the decision
maker.

With the desired distribution, the objective is transformed by the corre-
sponding cumulative distribution function (CDF). This transformation can be
understood by the probability integral transform theorem [33]: Suppose that
a random variable X has a continuous distribution for which the CDF is Φ.
Then Φ(X) is a random variable having a standard uniform distribution. This
theorem ensures that the desired distribution of solutions for the original objec-
tive function is converted into a uniform distribution after such transformation.
As a result, we can use a standard MOEA to search for uniformly-distributed
solutions in the transformed objective space. The obtained solutions are well-
distributed in the original objective space. The details of the proposed nonlinear
transformation are presented as follows.

Collected Data. The desired distribution of solutions can be modeled by col-
lected data like Fig. 1(a). Since the original distribution of collected data is usu-
ally unknown, we cannot compute the exact CDF. Instead, we compute the
empirical CDF. The empirical CDF is an estimate of the CDF that generates
the points in the sample, and it converges with the probability of one to the
original distribution according to the Glivenko-Cantelli theorem [32]. For a data
set {x1, x2, ..., xn}, the empirical CDF is calculated as follows:

Φ(x) =
1
n

|{xi|xi ≤ x, i = 1, 2, . . . , n}| , (3)
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where | · | measures the cardinality of a set. In other words, the value of the
empirical CDF at a given point x is the proportion of observations that are less
than or equal to x.

Note that the empirical CDF is a step function that makes a discrete jump
of size 1/n at each of the n data points. Due to its discreteness, the empirical
CDF cannot be directly used as a continuous transformation function for each
objective. To transform objective values at points other than the original data
points, linear interpolation is performed by connecting each midpoint of adjacent
two jumps (e.g., adjacent data points) in the empirical CDF to smooth the step
function.

Preference Distribution. When data are unavailable, the distribution can
be specified by the decision maker. We use the beta distribution to model the
decision maker’s preference due to its ability to take a great diversity of shapes
using only two positive real number parameters α and β. By specifying the two
parameters, the decision maker can express his/her preference for the desired
distribution of solutions for each objective as shown in Fig. 2(a). For example,
the distribution with α = 1 and β = 10 means that the decision maker prefers to
have more solutions with small objective values. As an extreme case, α = β = 1
means that the decision maker has no preference about the distribution of desired
solutions.

Fig. 2. Example of (a) probability density functions (PDFs) and (b) their correspond-
ing cumulative distribution functions (CDFs) of the beta distribution with different
values of α and β.

With the articulated preference distribution as a beta distribution, the objec-
tive function is transformed by the following transformation function:

Φ(x | α, β) =
1

B(α, β)

∫ x

0

tα−1(1 − t)β−1dt, (4)

where B(·) is the beta function. In practice, Eq. (4) is the cumulative distribution
function (CDF) of the beta distribution. Figure 2(b) shows the corresponding
CDFs for the PDFs in Fig. 2(a). The slope in each CDF shows how quickly the
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objective value is changing after transformation. A steeper slope in the CDF
means that more solutions are preferred while a gentler slope means that less
solutions are preferred.

If the decision maker has no preference for an objective, the desired distri-
bution is specified as a uniform distribution (i.e., α = β = 1). For the uniform
distribution U(a, b), where a and b are the minimum and maximum values, its
CDF is Φ(x) = (x−a)/(b−a) for a ≤ x ≤ b. By replacing x with fi(x), we have
Φ(fi(x)) = (fi(x) − a)/(b − a). When a and b are the lower and upper bounds
as in (2), such transformation is exactly the same as the linear normalization.
As shown in Fig. 2(b), the CDF of the uniform distribution (i.e., α = β = 1) is
linear. The proposed transformation performs a linear mapping from the origi-
nal objective values to the range [0, 1], which is exactly the same as the linear
normalization. That is, when the uniform distribution is specified, the proposed
normalization method is equivalent to the common linear normalization method.

Incorporation in MOEAs and Indicators. The proposed nonlinear nor-
malization method can be easily incorporated into any MOEAs in a plug-in
manner. This is because the proposed method focuses on the normalization part
of MOEAs, which is an independent algorithmic component. In most existing
preference-based MOEAs, the environmental selection mechanism of each algo-
rithm is modified from its base MOEA. Such modification only works for that
specific MOEA. On the contrary, the proposed method enables any MOEAs
to search in a transformed objective space. In this paper, we incorporate the
proposed normalization method into three MOEAs, one from each categories:
SPEA2 [42] (a Pareto dominance-based MOEA), NSGA-III [6] (a decomposition-
based MOEA), and SMS-EMOA [2] (an indicator-based MOEA). The result-
ing algorithms are denoted as SPEA2-PN, NSGA-III-PN, and SMS-EMOA-PN,
respectively.

To evaluate the solutions obtained by preference-based MOEAs using refer-
ence points, Li et al. [22] transforms the obtained solutions using reference points,
and the standard performance indicators are used. Inspired by [22], we use the
proposed normalization method to transform the obtained solutions. After the
transformation, the standard performance indicators can be used directly to
evaluate the obtained solutions. In this paper, we use the hypervolume (HV)
[43] and pure diversity (PD) [37] indicators. In the transformed objective space,
these indicators are referred to as P-HV and P-PD.

4 Experimental Studies

In this section, we experimentally examine the proposed normalization method.
First, the relation between the proposed method and the conventional linear nor-
malization method is examined. Then, the proposed method is incorporated into
different MOEAs and is examined on test problems under different preferences.
We also visually examine the obtained solutions in the original and transformed
objective spaces. Our experiments are conducted on PlatEMO [31]. In all the
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Table 1. Average P-HV values over 51 runs obtained by the original SPEA2 and its
two variants with different normalization methods.

Problem SPEA2 SPEA2-N SPEA2-PN

SZDT1 6.9959e-1 (2.39e-3) − 7.0343e-1 (1.04e-3) ≈ - 7.0383e-1 (3.06e-4)

SZDT2 4.2694e-1 (8.65e-4) − - 4.2935e-1 (2.65e-4) ≈ 4.2923e-1 (4.06e-4)

SZDT3 5.5570e-1 (4.68e-2) − - 5.7666e-1 (2.25e-2) ≈ 5.7659e-1 (3.01e-2)

+/ − / ≈ 0/3/0 0/0/3

examined algorithms, the population size is set to 20 in order to clearly show
the effect of preference incorporation. The evaluation of 50, 000 solutions is used
as the termination condition. Each algorithm is executed 51 times on each test
problem. The Wilcoxon rank-sum test with a significance level of 0.05 is used
to validate the statistical significance. The three symbols “+”, “−”, and “≈”
mean that an algorithm is significantly better than, significantly worse than, or
statistically similar to the baseline algorithm, respectively.

4.1 Relation to Linear Normalization

We have discussed the relation between the conventional linear normalization
method and the proposed preference-based normalization method in Sect. 3.
To experimentally demonstrate such relation, we compare the original SPEA2,
SPEA2 with the linear normalization (denoted as SPEA2-N), and SPEA2 with
the proposed preference-based normalization (SPEA2-PN). In SPEA2-PN, a uni-
form distribution (i.e., α = β = 1) is applied to each objective. Since the pro-
posed method does not modify the original SPEA2 and introduces no additional
parameters, the algorithm parameters recommended in the original SPEA2 are
used.

We choose ZDT1-3 [41] to examine the three algorithms. ZDT1 and ZDT2
have connected convex and connected concave PFs, respectively. ZDT3 has a
disconnected PF with both concave and convex parts. Since our focus in this
paper is badly-scaled MOPs, we modified the objectives of each test problem
such that the first objective has the range [0, 1000] and the second objective has
the range [0, 1]. The modified MOPs with badly-scaled PFs are called SZDT1-3.

The average P-HV values and the standard deviation values are presented in
Table 1. The original SPEA2 is significantly worse than SPEA2-PN (i.e., with the
proposed normalization method) on the three badly-scaled test problems, while
the results obtained by SPEA2-PN are statistically similar to these obtained by
SPEA2-N (i.e., with the linear normalization method).

In Fig. 3, we show the the final population obtained by each algorithm on
SZDT1 in a single run with the medium P-HV value. We can see that the orig-
inal SPEA2 is not able to obtain uniformly distributed solutions on the PF
of SZDT1, while SPEA2 with each normalization method obtains a uniform
solution set. This is because the original SPEA2 maintains the diversity only
relying the objective f1 with a large scale since the value of the other objec-
tive f2 is neglectable due to the lack of normalization. Theoretically, the same
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Fig. 3. Solutions obtained by the original SPEA2 and its two variants with different
normalization methods on SZDT1.

results will be obtained from SPAE2-N and SPEA2-PN with α = β = 1. Minor
differences between Fig. 3(a) and (b) are due to randomness (e.g., different ini-
tial populations). These results clearly show that the proposed preference-based
normalization method performs similarly as the conventional linear normaliza-
tion method when the uniform distribution is applied for each objective in the
proposed method.

4.2 Incorporation into Different MOEAs

In order to show the flexibility and effectiveness of the proposed normalization
method, we incorporate it into SPEA2, NSGA-III, and SMS-EMOA. The result-
ing algorithms are denoted as SPEA2-PN, NSGA-III-PN, and SMS-EMOA-PN,
respectively. We consider three specifications of preference (α, β) (see Fig. 2):

• Pref 1: (1, 10) for f1 and (1, 1) for f2,
• Pref 2: (10, 10) for f1 and (1, 1) for f2,
• Pref 3: (10, 1) for f1 and car price data [9] (see Fig. 1(a)) for f2.

The MOEAs are examined by comparing their original version with its vari-
ant using the proposed normalization method. We use P-HV and P-PD to evalu-
ate the ability of each algorithm to obtain solutions with the desired distribution.
The results are presented in Tables 2 and 3. Compared with the baseline algo-
rithms, we can see that MOEAs with the proposed method is able to find better
solutions under different preferences in terms of both P-HV and P-PD. That
is, the proposed normalization method is able to change the search behavior
of different MOEAs and enables them to search for solutions with the desired
distribution and good convergence.

The obtained solutions in a single run with the median P-HV values among
51 runs of SMS-EMOA-PN under each preference setting are shown in Fig. 4 for
SZDT1-3. We can see that solutions with different distributions are found when
different preference settings are used regardless of the PF shape. For example,
with the first type of preference, the obtained solutions concentrate on the upper
left corner of the PF as shown in Fig. 4.
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Fig. 4. Solutions obtained by SMS-EMOA-PN on SZDT1-3 with different preferences.

Table 2. Average P-HV values over 51 runs obtained by SPEA2, NSGA-III, SMS-
EMOA and their variants incorporated with the proposed method.

Problem SPEA2 NSGA-III SMS-EMOA

Original Proposed Original Proposed Original Proposed

Pref 1 SZDT1 3.6668e–1 − 3.8084e–1 3.4133e–1 − 3.7897e–1 3.5272e–1 − 3.8395e–1

SZDT2 1.8173e–1 − 1.8256e–1 1.8217e–1 − 1.8255e–1 1.8035e–1 − 1.8438e–1

SZDT3 2.7447e–1 − 2.7805e–1 2.6290e–1 − 2.7609e–1 2.7270e–1 ≈ 2.7527e–1

Pref 2 SZDT1 7.3480e–1 − 7.4153e–1 7.2809e–1 − 7.3734e–1 7.3669e–1 − 7.4386e–1

SZDT2 3.6777e–1 − 3.7531e–1 3.6882e–1 − 3.7541e–1 3.7044e–1 − 3.8079e–1

SZDT3 5.9604e–1 ≈ 5.9973e–1 5.9299e–1 − 5.9639e–1 5.9323e–1 − 6.0059e–1

Pref 3 SZDT1 7.6441e–1 − 8.2860e–1 7.0662e–1 − 8.1430e–1 7.6629e–1 − 8.2969e–1

SZDT2 3.8772e–1 − 4.8247e–1 4.1563e–1 − 4.7781e–1 3.8747e–1 − 4.8571e–1

SZDT3 2.5070e–1 − 3.5554e–1 2.3818e–1 − 3.2576e–1 1.8924e–1 − 3.1968e–1

+/ − / ≈ 0/8/1 0/9/0 0/8/1
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Table 3. Average P-PD values over 51 runs obtained by SPEA2, NSGA-III, SMS-
EMOA and their variants incorporated with the proposed method.

Problem SPEA2 NSGA-III SMS-EMOA

Original Proposed Original Proposed Original Proposed

Pref 1 SZDT1 1.0294e+3 − 1.2592e+3 0.8314e+3 − 1.2403e+3 0.7924e+3 − 1.1645e+3

SZDT2 3.7400e+2 − 6.2384e+2 3.6494e+2 − 6.0748e+2 3.5841e+2 − 4.5318e+2

SZDT3 7.1915e+2 − 8.3424e+2 7.2647e+2 − 9.7171e+2 6.8284e+2 − 8.8513e+2

Pref 2 SZDT1 1.0118e+3 − 1.2125e+3 0.9623e+3 − 1.0573e+3 0.9885e+3 − 0.9909e+3

SZDT2 1.2875e+3 − 1.2915e+3 1.3405e+3 − 1.4146e+3 1.0512e+3 − 1.1568e+3

SZDT3 6.6243e+2 ≈ 6.7921e+2 6.6102e+2 − 7.6149e+2 6.2770e+2 − 7.3463e+2

Pref 3 SZDT1 1.0248e+3 − 1.2914e+3 1.0318e+3 − 1.2765e+3 0.8897e+3 − 1.0341e+3

SZDT2 1.0297e+3 − 1.5667e+3 1.0449e+3 − 1.3278e+3 0.9596e+3 − 1.2921e+3

SZDT3 3.7906e+2 − 8.3445e+2 4.6532e+2 − 8.1875e+2 3.1576e+2 − 8.5598e+2

+/ − / ≈ 0/8/1 0/9/0 0/9/0

4.3 Analysis in the Transformed Objective Space

In the previous subsection, we demonstrated the effectiveness and flexibility of
the proposed normalization method. Here, we analyze the search behavior in
the transformed objective space. The solution set obtained by each of the three
algorithms (SPEA2-PN, NSGA-III-PN and SMS-EMOA-PN) on SZDT1 with
Pref 2 is shown in each figure in Fig. 5 in the original and transformed spaces.

Fig. 5. Solutions obtained by (a) SPEA2-PN, (b) NSGA-III-PN, and (c) SMS-EMOA-
PN on SZDT1 with Pref 2 in the original and transformed spaces.

To understand the search behavior of the proposed algorithms, we can take
a look at the transformed objective space (with the top x-axis labeled as Φ(f1))
in Fig. 5. The true PF of SZDT1 (dark gray curve) is transformed to the light
gray curve by the proposed nonlinear normalization method. Since the linear
normalization is used for f2, the f2 value of each solution has no change whereas
the location of each solution (i.e., f1 value) is changed by the nonlinear trans-
formation (see the dark dotted arrow in Fig. 5(a)). Uniformly-distributed blue
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solutions are obtained by SPEA2 in the transformed objective space. That is,
by searching for the uniformly distributed blue solutions using SPEA2 with no
modification in the transformed objective space, we can obtain the red solutions
with desired distribution in the original space.

In addition, we can see that the distributions of the blue solutions by different
algorithms are slightly different in Fig. 5. For SPEA2-PN, the obtained blue solu-
tions are uniformly distributed due to the k-th nearest distance used in SPEA2.
For NSGA-III-PN, the blue solutions close to each weight vector in NSGA-III
are obtained. For SMS-EMOA-PN, the blue solutions that maximizes the HV
value are obtained. This explains why different solution sets are obtained by the
three algorithms in the original objective space even with the same preference.

5 Conclusion

In this paper, we proposed a preference-based nonlinear normalization method.
Different from existing preference incorporation methods where the preference is
incorporated by modifying the environmental selection mechanisms of existing
MOEAs, we related preference with normalization. The preference is articulated
in the form of a desired distribution of solutions, and then is incorporated into
the proposed normalization method to transform the objective space accord-
ing to the probability integral transform theorem. The proposed method enables
any MOEAs to search for uniformly-distributed solutions in a transformed objec-
tive space and results in solutions with the desired distribution in the original
objective space. We discussed the relation between the proposed normalization
method and the conventional linear normalization method. We showed that when
a uniform distribution is applied to each objective, the proposed method is the
same as the linear normalization method. To show the flexibility of the proposed
normalization method, we incorporated it into three MOEAs: SPEA2, NSGA-
III, and SMS-EMOA. Experimental results showed that the standard MOEAs
can find solutions of interest after incorporating the proposed method. We also
analyzed the obtained solutions in the transformed space to clearly explain why
the proposed method is effective. In this preliminary work, we only reported the
results on two-objective MOPs. It is an interesting future research direction to
examine the proposed method on MOPs with more than two objectives.
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Abstract. Real-world multiobjective optimization problems involve
decision makers interested in a subset of solutions that meet their prefer-
ences. Decomposition-based multiobjective evolutionary algorithms (or
MOEAs) have gained the research community’s attention because of
their good performance in problems with many objectives. Some efforts
have been made to propose variants of these methods that incorporate
the decision maker’s preferences, directing the search toward regions of
interest. Typically, such variants adapt the reference vectors according to
the decision maker’s preferences. However, most of them can consider a
single type of preference, the most common being reference points. Inter-
active MOEAs aim to let decision-makers provide preference information
progressively, allowing them to learn about the trade-offs between objec-
tives in each iteration. In such methods, decision makers can provide
preferences in multiple ways, and it is desirable to allow them to select
the type of preference for each iteration according to their knowledge.
This article compares three interactive versions of NSGA-III utilizing
multiple types of preferences. The first version incorporates a mecha-
nism that adapts the reference vectors differently according to the type
of preferences. The other two versions convert the preferences from the
type selected by the decision maker to reference points, which are then
utilized in two different reference vector adaptation techniques that have
been used in a priori MOEAs. According to the results, we identify the
advantages and drawbacks of the compared methods.

Keywords: Multiobjective optimization · Interactive methods ·
Decision making · Multiobjective evolutionary algorithms ·
Decomposition-based MOEAs · NSGA-III

1 Introduction

Real-world problems typically involve multiple conflicting objective functions
to be optimized simultaneously. Because of such conflict among the objectives,
the so-called multiobjective optimization problems (MOPs) do not have a single
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solution, but a set of trade-off solutions called Pareto front. However, solving
these problems aims to help a DM, which is a domain expert, to find their most
preferred solution.

In the operations research field, multiobjective optimization methods have
been classified according to the role of the DM during the solution process [25].
No preference methods do not involve the DM at all, being suitable when the
DM does not have clear expectations of the final solution. A priori methods only
ask for preference information from the DM at the beginning of the solution
process. These methods are mainly utilized when the DM already knows the
trade-offs between the objectives and their preferences are clear. A posteriori
methods consider the DM’s preferences after approximating the Pareto optimal
set. Finally, interactive methods allow the DM to provide preference information
iteratively during the solution process. In each iteration, the DM can learn about
the trade-offs among the objectives and utilize this new insight for updating the
preference information.

DMs can express their preferences in multiple ways, e.g., by providing desir-
able values for each objective function, specifying desirable ranges for each objec-
tive function, comparing pairs of solutions, etc. The type of preferences utilized
in the solution process should depend on the DM, as according to their expe-
rience, they may feel more comfortable using a specific type of preference. In
interactive methods, there should also be possible to allow the DM to change
the type of preferences according to their needs [1].

MOEAs have been successfully applied to approximate the Pareto front of
multiobjective optimization problems. There are mainly three types of MOEAs
[35]: dominance-based, indicator-based, and decomposition-based. Decomposi-
tion-based MOEAs have received much attention from the research community
in recent years for maintaining a good performance even when the number of
objectives is increased, as opposed to domination-based methods [18]. These
methods decompose an MOP into multiple single-objective optimization prob-
lems or multiple simpler MOPs, which are then optimized collaboratively. Such
decomposition is performed using a set of reference vectors (RVs)1 and a scalar-
ization function. To find a representative set of near-Pareto optimal solutions,
the RVs are generated uniformly in a simplex. The most popular decomposition-
based MOEAs are MOEA/D [36], RVEA [5], and NSGA-III [10]. These methods
typically do not consider the preferences of the DM during the solution process.
However, multiple variants of such methods have been proposed that utilize
preference information a priori or interactively (e.g., [14,15,19,33]).

Decomposition-based MOEAs with preference incorporation generally utilize
the preferences to adapt the RVs, directing the search toward the region of
interest. However, most of them work with a single type of preference, reference
points being the most common. Interactive RVEA [15] is the only decomposition-
based MOEA that can handle multiple types of preferences. This method allows
DM to choose among four types of preferences: reference points, preferred ranges,

1 RVs also known as weight vectors or reference points in different MOEAs. To avoid
confusion, we will continue to use the term “RVs” only.
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and preferred and non-preferred solutions. Then, the RVs are adapted according
to the selected type of preference. As this approach does not need any other
modification in the structure of the MOEA, the RV adaptation technique can
be used in other decomposition-based MOEAs (e.g., MOEA/D [17]).

The performance of interactive RVEA using multiple types of preferences
has been analyzed in various articles [2,17]. From the results, it has been shown
that the method’s performance decreases when preferred ranges are utilized in
most of the test instances. However, it is difficult to identify the reason behind
this behavior, as the method has not been compared with other MOEAs using
different types of preferences.

In this article, we compare three interactive versions of NSGA-III. All of them
work by adapting the RVs using the preference information. However, the adap-
tation technique is performed differently in all versions. The first version utilizes
the RV adaptation techniques employed in interactive RVEA. In this case, the
RVs are adapted differently depending on the type of preference. The other two
versions incorporate an intermediate step that converts the preferences from the
type given by the DM to reference points. We do this, as reference points are
the most common type of preference utilized by the RV adaptation techniques.
This preference conversion allows us to adopt the existing RV adaptation tech-
niques allowing the DM to select between multiple types of preferences. The
main contributions of this article are the following:

– We incorporate the RVs adaptation technique from interactive RVEA into
NSGA-III. Both methods are compared utilizing reference points and pre-
ferred ranges in different benchmark problems to identify their main advan-
tages and disadvantages.

– We propose a simple conversion technique for transforming preferred ranges
and preferred solutions into reference points. The resulting reference points
are utilized as input for two different RV adaptation techniques: the one
employed by R-NSGA-III [33] and NUMS [19]. In addition, we utilize these
techniques in an interactive method for the first time.

– We compare three interactive versions of NSGA-III utilizing multiple types
of preference information. These methods are tested with various benchmark
problems considering 5, 7, and 9 objective functions. As involving real DMs
will be very time consuming, the experimentation was conducted using an
artificial DM [2], which enabled inexpensive comparison of interactive meth-
ods without real DMs.

The rest of the article is organized as follows. Section 2 discusses the back-
ground of multiobjective optimization and evolutionary algorithms. A brief
overview of the a priori and interactive versions of NSGA-III available in the
literature is presented in Sect. 3. Interactive RVEA, RNSGA-III, and NUMS are
also described in the same section. The proposed interactive versions of NSGA-
III and the mechanism to convert preferred ranges and preferred solutions into
reference points are described in Sect. 4. Section 5 compares the three interactive
versions of NSGA-III presented in this article using various benchmark problems.
Finally, we conclude this article in Sect. 6.



Interactiv NSGA-III by the Adaptation of Reference Vectors 581

2 Background

2.1 Multiobjective Optimization

A multiobjective optimization problem can be mathematically formulated as
follows:

minimize F(x) = (f1(x), . . . , fk(x))
subject to x ∈ S,

(1)

where fi (i = 1, . . . , k) are the k conflicting objective functions (with k ≥ 2).
S ⊂ R

n is the feasible set of decision vectors x = (x1, ..., xn)T with n deci-
sion variables. There is a corresponding objective vector F(x) for every feasible
decision vector x. The problem can involve equality and inequality constraints
that must be satisfied by the decision vectors for them to be feasible. It is not
possible for all of the objective functions in (1) to reach their optimal values
simultaneously due to the conflicts between them. Given two solutions x∗ ∈ S
and x′ ∈ S, x∗ dominates x′ if and only if fi(x∗) ≤ fi(x′) for all i = 1, . . . k,
and fj(x∗) < fj(x′) for at least one index j = 1, . . . , k. If there is no solution
x ∈ S that dominates solution x∗ ∈ S, then x∗ is Pareto optimal. The set of all
Pareto optimal solutions is known as Pareto optimal set, and the corresponding
objective vectors compose the Pareto front.

The best and worst objective function values in the Pareto front are known as
ideal z∗ and a nadir znad points, respectively. The ideal point can be computed
by minimizing each objective function separately. Usually, calculating the nadir
point requires computing the whole Pareto set. However, it can be approximated
using a pay-off table [25], or other means [11].

In real-world problems, a DM is usually involved in the solution process. A
DM is typically interested in a part of the Pareto front close to their preferences,
named region of interest. DM can express their preference information in multiple
ways [3,23]. In this article, we are interested in the following types of preferences:

– Giving a reference point r = (r1, ..., rk), where each ri is a desirable value
(also known as aspiration level) for the objective function fi (i = 1, ..., k).

– Selecting t (with t ≥ 1) most preferred solutions from a solution set. We
denote them by PS = [ps1, ...,pst].

– Specifying preferred ranges for the objective functions. The preferred range
for an objective fi (i = 1, ..., k) is denoted by [f l

i , f
u
i ], being f l

i and fu
i the

lower and upper bounds, respectively. Then, the preferred ranges for all the
objectives is a k-dimensional hyper-box PR = [f l

1, f
u
1 ]×, ...,×[f l

k, f
u
k ].

In interactive methods, the DM provides preference information progres-
sively. The intervals in which MOEAs ask for preference information from the
DM are known as iterations. In most cases, iterations take place every Ngen

generations, where Ngen is a parameter that is set before the method begins.
Typically, two stages can be observed in an interactive solution process: the
learning and decision phases [24]. During the learning phase, the DM explores
different parts of the Pareto front until they find a region of interest. Then, in the
decision phase, the DM tries to fine-tune the solutions in the region of interest
until finding the most preferred solution.
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2.2 Evolutionary Algorithms

MOEAs are capable of generating an approximation of the Pareto optimal front
in a single run [9]. They can be classified [35] according to their structure into:
dominance-based MOEAs, which compare solutions utilizing Pareto dominance-
based mechanisms; indicator-based MOEAs that use quality indicators as selec-
tion criteria; and decomposition-based MOEAs, which decompose the MOP into
multiple single objective optimization problems or a set of simpler MOPs, which
are optimized collaboratively.

In this article, we are interested in decomposition-based MOEAs. These
methods need two main components: a set of RVs (typically uniformly dis-
tributed in the objective space) and a scalarization function. RVs can be gener-
ated using a simplex lattice design [7]. The number of vectors generated by such
a method is given by

(
q+k−1
k−1

)
, where q is a parameter to control the density of

the solutions and k is the number of objective functions. Scalarizing functions
map objective vectors to real-value scalars and are used to evaluate the solu-
tions of a section of the objective space. Such sections evolve in the direction of
the RV associated with them. Among the most well-known decomposition-based
MOEAs are MOEA/D [36], RVEA [5], and NSGA-III [10].

3 Related Work

Multiple versions of NSGA-III with a priori and interactive preference incorpo-
ration have been proposed in the literature. Such methods typically modify the
distribution of the RVs according to the preferences provided by the DM. As a
result, the method does not provide an approximation of the complete Pareto
front, but the obtained solutions focus on a region of interest. In this section,
we describe the existing versions of NSGA-III that consider the preferences of
the DM. We classify these methods according to the type of preference incorpo-
ration: a priori and interactive. We also describe some methods utilized in the
rest of the article: interactive RVEA, R-NSGA-III, and NUMS.

A Priori Methods: In the article where NSGA-III was proposed [10], the
authors suggested a mechanism to incorporate preferences a priori by filtering
the RVs utilized by the method. A similar approach was used by Yan et al. [34]
and da Silva et al. [8,30,31]. Cheng et al. [6] proposed an a priori version of
NSGA-III that requires the DM to specify a central RV, which is utilized to adapt
the complete set of RVs. P-NSGA-III [4] also modifies the RVs according to the
preference information, but it asks the DM for information about the importance
of objectives. Finally, R-NSGA-III [33] receives one or multiple reference points
from the DM, which are used to adapt the RVs toward one or multiple regions
of interest. The RVs are updated at each generation, as the process involves
normalizing the reference points utilizing an approximation of the ideal and
nadir points, which change depending on the obtained solutions.

Interactive Methods: Mnasri et al. [27] proposed PI-NSGAIII-VF, the first
interactive version of NSGA-III. This method is a hybrid of NSGA-III and a
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strategy for incorporating DM’s preferences on any MOEA: PI-EMO-VF [12].
PI-NSGAIII-VF asks the DM to classify a set of solutions during each iteration.
Such information is utilized to approximate a value function progressively. Then,
a stopping condition is set up according to this value function. T-NSGA-III [22]
modifies the selection procedure of NSGA-III to incorporate the DM’s prefer-
ences in the form of preferred ranges. Such ranges are utilized to transform the
objective values into a new coordinate system defined by the upper and lower
bounds for each objective function specified by the DM. I-NSGA-III-PLVF [20]
asks the DM to score a set of solutions. The method learns a value function
using the provided scores, which is then employed to model the DM’s prefer-
ences. IOPIS-NSGA-III [29] asks the DM for a reference point, which is utilized
to create a (typically lower-dimensional) preference-incorporated space (consist-
ing of a set of scalarization functions) to reformulate the optimization problem.
Finally, PI-NSGA-III-PC-INK [26] modifies the dominance relation using poly-
hedral cones constructed using the preference information. This method shows
a set of solutions in each iteration, from which the DM can select the preferred
one.

Interactive RVEA. Interactive RVEA [15] is the only decomposition-based
MOEA that provides the DM with multiple options to give preferences. The
method initializes a set of uniformly distributed RVs, which are adapted dif-
ferently according to the type of preferences selected by the DM. For reference
points and preferred solutions, the RVs are redirected toward the preference.
For non-preferred solutions, the RVs closer to such solutions are removed, while
the rest are kept. A Latin hyper-cube sampling is utilized for preferred ranges.
Then, the obtained vectors are normalized into unit vectors, which replace the
initial RVs. This method needs a parameter v ∈ (0, 1) to control the spread of
the RVs. A small value of v results in RVs close to the preference information,
while a value close to 1 will produce more sparse RVs. In the rest of this article,
we will refer to this RV adaptation technique as IRA.

R-NSGA-III. R-NSGA-III [33] is an a priori method that requires the DM to
provide one or multiple reference points. As a result, the method will provide
one set of solutions close to each of the provided reference points. R-NSGA-
III adapts the RVs at each generation to incorporate the preferences of the
DM. First, the reference points provided by the DM are normalized using the
normalization procedure of NSGA-III. Then, a set of uniformly distributed RVs
is generated and shrunk using a spread parameter that controls the size of the
region of interest. The intercepts of the unit hyperplane and the vectors from
the ideal point to each normalized reference point are computed. Finally, the
obtained values are utilized to shift the shrunken RVs to the unit hyperplane.
The same procedure is performed for each reference point provided by the DM.
In addition, the extreme points of the hyperplane are also added to the set of
RVs. In the rest of this article, we will refer to this technique as RPA.

NUMS. Li et al. [19] proposed a nonuniform mapping scheme (NUMS) to map
a set of uniformly distributed RVs on a canonical simplex to new positions close
to a reference point provided by the DM. In this case, the mapping function is
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nonlinear and is determined by an RV’s position in relation to the pivot point.
A pivot point represents the region of interest on a simplex and determines its
position. The nonuniform mapping is utilized to bias the RVs toward the pivot
point. The method gives the option of keeping the boundary of the simplex or
not. In addition, a spread parameter is needed for this method, which is a value
between 0 and 1, representing the relative ratio of the size of the region of interest
with respect to the Pareto front. This method has been applied to MOEA/D
both a priori and interactively.

4 Proposal

In this article, we propose three interactive versions of NSGA-III that can utilize
multiple types of preference information: reference points, preferred ranges, and
preferred solutions. The proposed methods do not change the structure of NSGA-
III but only modify the distribution of the RVs to obtain solutions in a region
of interest.

The first interactive NSGA-III proposed on this article incorporates the IRA
technique to handle multiple types of preferences. We will refer to this method
as iNSGA-III-IRA. It is worth noting that the possibility of having this type of
method has been mentioned in [29]. However, the authors compared this method
with interactive RVEA using only reference points. Although some experiments
with interactive RVEA have shown a lower performance when using preferred
ranges [2], it is difficult to identify if this behavior is related to the performance
of RVEA or the IRA technique. In this article, we compare iNSGA-III-IRA with
interactive RVEA utilizing reference points, preferred ranges, and preferred solu-
tions to identify the potential and drawbacks of the IRA technique in problems
with different features.

The second and third methods proposed in this article adopt a preference con-
version layer that converts preferred ranges and preferred solutions into reference
points. The preference conversion layer allows us to utilize reference-point-based
RV adaptation techniques from the literature but with other types of preference.
In a real-world scenario, the DM is unaware of the preferences conversion, as it is
an intermediate layer between the user interface and the method. The conversion
of the preference information is performed as follows:

– Preferred ranges: Let PR = [[f l
i , f

u
i ], . . . , [f l

k, f
u
k ]] be a preferred range given

by the DM. We can obtain a reference point r = [f l
1, f

l
2, . . . , f

l
k], or alterna-

tively r = [fu
1 , f

u
2 , . . . , f

u
k ].

– Preferred solutions: If the DM selects a single solution (ps) in an iteration,
it can be directly utilized as a reference point. If more than one solution
is selected (PS), a reference point can be computed as r = [max(PS1),
max(PS2), . . . ,max(PSk)].

It is worth noting that when selecting a set of preferred solutions, the DM
can provide preferences with different ideologies in mind. The case we considered
here is the simplest one, where the DM chooses solutions close to each other,
indicating that they are interested in a specific region of interest. However, this
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is not always the case, as it is also possible that the DM selects solutions on
different parts of the Pareto front. The interpretation in such a case can be
divided into two. The first option is that the DM is interested in multiple regions
of interest and wants to obtain more solutions for all of them. In such a case,
the conversion would not lead to a single reference point but a set of them. This
can easily be handled by the RPA technique, as it can distribute the RVs among
multiple regions of interest. However, if a technique such as NUMS is utilized, it
would be necessary to make separate runs for each reference point. The second
cause is related to the learning process of the DM. Suppose the solutions are
too sparse in the Pareto front. In that case, it can also mean that the DM still
does not have a clear idea of their preferences and that the method should keep
providing solutions in a region of interest that cover most of the Pareto front.
Both types of interpretations together with different mechanisms to compute a
suitable reference point are subject to further research.

In this article, we utilize two reference point-based RV adaptation techniques
with NSGA-III: NUMS, and RPA (we refer to these algorithms as iNSGA-III-
NUMS and iNSGA-III-RPA, respectively). To make these methods interactive,
we run them multiple times changing the preference information. As the exper-
iments only involve benchmark problems, no further changes are needed. How-
ever, it is worth noting that when utilizing interactive methods in real-world
problems, some general properties need to be considered to reduce the cognitive
load of the DM [1,16,32].

Figure 1 illustrates the structure of one iteration for each proposed method.
The yellow line represents the stages involved in iNSGA-III-IRA. In this case,
the preferences of the DM are received directly by the IRA method, as it can
already handle multiple types of preference. Then, both iNSGA-III-NUMS (blue
line) and iNSGA-III-RPA (red line) convert the preferences into reference points,
which are utilized as input for the RV adaptation technique. For all the proposed
methods, the adapted reference vectors are used by NSGA-III to direct the search
toward a region of interest.

Fig. 1. Structure of an iteration of each of the methods proposed in this article.

Our proposal is the first attempt to unify preference information provided
by the DM, which is an important research topic for both a priori and inter-
active methods [28]. In addition, although we only consider two RV adaptation
techniques, a similar structure can be utilized with other methods.
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5 Algorithmic Comparison

In this section, we compare the three interactive versions of NSGA-III presented
in this article utilizing ADM-II [2], an artificial DM capable of comparing inter-
active methods using reference points, preferred ranges, and preferred and non-
preferred solutions. The performance evaluation using ADM-II is divided into
two stages: one for the learning phase and another for the decision phase. The
main difference between the two stages is how ADM-II computes the preference
information. For the learning phase, the preferences are distributed on the Pareto
front, indicating that the DM is still exploring multiple regions of interest. For
the decision phase, the preferences are closer to a specific region of interest,
fine-tuning the solutions belonging to it. Each iteration, ADM-II generates a
reference point that is utilized in the method and when applying some of the
performance indicators (e.g., R-IGD). If the method requires preferred ranges,
they are obtained by perturbing the reference point. This feature of ADM-II will
allow us to evaluate if the solutions provided by the proposed methods are in
the same region of interest after changing the type of preferences.

For the experimentation, we considered four iterations for the learning phase
and three for the decision phase. After each iteration, ADM-II computes the per-
formance indicators for the solutions obtained by the methods. Then, a cumula-
tive indicator value is calculated for each phase as suggested in [2]. We run the
methods 15 times for each problem with a given number of objectives. We con-
sidered two problems of the DTLZ benchmark [13] in the experiments: DTLZ1
and DTLZ3, with 5, 7, and 9 objectives. The number of variables is given by
10 + k − 1. The maximum number of generations for each iteration was set to
200 for each method. The spread parameter was set to 0.2 for all the methods.

We utilized two performance indicators with ADM-II: R-IGD [21] and the
composite front contribution (CFC) [2]. R-IGD measures the convergence and
diversity of the obtained solutions. On the other hand, CFC measures the num-
ber of non-dominated solutions provided by each method when constructing a
composite front. The more non-dominated solutions a method has contributed
to constructing the composite front, the better the performance of this method
is.

First, we compared interactive RVEA (referred as iRVEA in Table 1 and 2)
and iNSGA-III-IRA using reference points and preferred ranges. Table 1 and 2
show the obtained cumulative R-IGD and CFC, respectively. The best results
are highlighted in boldface. When utilizing reference points, the iRVEA out-
performs iNSGA-III-IRA in most of the test instances, both in the learning and
decision phase, according to the cumulative R-IGD and CFC. Such values mean
that the solutions obtained by iRVEA are closer to the preference information
and that this method produces more non-dominated solutions than iNSGA-III-
IRA. When using preferred ranges, the R-IGD values indicate a better perfor-
mance of iNSGA-III-IRA in DTLZ1, while iRVEA obtained better results for
DTLZ3. However, according to the cumulative CFC, iNSGA-III-IRA obtained
more non-dominated solutions in most test instances.
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Table 1. Cumulative R-IGD for iRVEA and iNSGA-III using reference points and
preferred ranges.

Problem k Phase Reference points Preferred ranges

iRVEA iNSGA-III-IRA iRVEA iNSGA-III-IRA

Mean Std Mean Std Mean Std Mean Std

DTLZ1 5 Learning 2.5333 0.1772 2.5910 0.2128 2.7213 0.3402 2.6263 0.3677

Decision 1.9421 0.2115 1.8894 0.2673 2.1656 0.2291 1.9068 0.4622

7 Learning 2.7599 0.1845 3.1748 0.4511 3.1315 0.6090 3.0019 0.8780

Decision 2.0264 0.3609 3.0600 1.1414 3.0205 0.5322 2.5845 1.1048

9 Learning 2.6071 0.1974 2.7505 0.2968 3.2852 0.5054 2.9947 0.5919

Decision 1.8139 0.1492 2.5000 0.6562 3.1749 0.6887 2.3387 1.0481

DTLZ3 5 Learning 0.2460 0.2358 0.3289 0.3686 0.5332 0.1669 1.0590 0.7600

Decision 0.3913 0.6630 0.4887 1.1339 0.2312 0.2518 0.9985 0.9803

7 Learning 0.6357 0.5161 0.7592 0.2355 1.9082 0.4623 3.6905 1.4945

Decision 0.6928 0.7482 0.7321 0.7137 0.7134 0.4282 3.3938 1.4959

9 Learning 0.6371 0.3334 0.8224 0.4365 0.2361 0.7682 3.6308 1.3574

Decision 0.4576 0.3578 0.8221 0.7066 0.4497 0.3196 3.4340 1.9351

Then we compared iNSGA-III-IRA, iNSGA-III-NUMS, and iNSGA-III-RPA
using reference points, preferred ranges, and preferred solutions. It is worth not-
ing that R-IGD cannot be utilized to compare methods using preferred solutions.
For this reason, we only considered the cumulative CFC for that type of prefer-
ence. The obtained results are shown in Table 3. The best results are highlighted
in boldface. According to the cumulative R-IGD and CFC, iNSGA-III-IRA
showed a better performance than the compared methods in most test instances
when utilizing reference points. For preferred ranges, the solutions obtained by
iNSGA-III-RPA are closer to the preference information and provide more non-
dominated solutions than the compared methods. For preferred solutions, we
selected five solutions as preferences for each iteration. According to the results,
iNSGA-III-IRA obtained many more non-dominated solutions. However, this is
due to how the IRA technique handles sets of preferred solutions. It computes
a region of interest for each solution the DM selects without considering if they
overlap. The other compared methods convert the preferred solutions into a
reference point, making it easier to compare their performance. Among them,
iNSGA-III-RPA obtained more non-dominated solutions in most test instances.

5.1 Discussion

When comparing iNSGA-III-IRA and interactive RVEA we could notice that the
latter obtained better results when using reference points. Although iNSGA-III-
IRA obtained better R-IGD values only on DTLZ1 utilizing preferred ranges, we
can notice that it produces more non-dominated solutions than the compared
method in both DTLZ1 and DTLZ3. A more extensive experimentation is needed
to have a clearer idea of the features of the problems in which iNSGA-III-IRA
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Table 2. Cumulative CFC for iRVEA and iNSGA-III using reference points and pre-
ferred ranges.

Problem k Phase Reference points Preferred ranges

iRVEA iNSGA-III-IRA iRVEA iNSGA-III-IRA

Mean Std Mean Std Mean Std Mean Std

DTLZ1 5 Learning 443.2 68.0835 454.8 53.7788 111.6 112.6634 485.6 31.7055

Decision 387.6 2.2000 369.1 8.1664 283.5 206.3745 357.9 34.0307

7 Learning 343.5 18.7150 138.5 57.1896 116.2 99.8637 261.4 60.8805

Decision 269.7 0.6403 199.1 79.6485 168.0 183.7145 235.4 22.0191

9 Learning 671.1 40.2006 257.8 149.4957 218.4 187.6205 574.7 60.7339

Decision 517.4 1.6248 465.0 71.8053 249.4 293.6914 443.5 56.3777

DTLZ3 5 Learning 367.4 111.3240 441.2 85.5871 413.3 128.8682 477.0 43.0976

Decision 309.8 148.9495 334.6 72.7010 202.3 89.5255 358.0 40.9072

7 Learning 292.7 62.9842 169.6 95.9252 346.1 109.1040 221.0 91.3893

Decision 214.5 98.5792 192.7 52.2323 131.1 172.7637 176.4 66.6381

9 Learning 611.2 75.5299 415.0 130.3580 698.8 96.7831 532.0 102.3426

Decision 407.2 180.1426 367.8 132.7764 301.2 222.4984 409.1 92.2339

outperforms interactive RVEA. Also, at the moment it is not possible to compare
the performance of these methods using preferred and non-preferred solutions
due to the lack of performance indicators utilizing these types of preferences.

After comparing iNSGA-III-NUMS and iNSGA-III-RPA with iNSGA-III-
IRA we could notice that the preference conversion did not affect the quality of
the solutions. According to the obtained results, the IRA method performs best
using reference points. However, utilizing the preference conversion mechanism
helps get better results with preferred ranges and preferred solutions. It is worth
noting that iNSGA-III-RPA performed better than iNSGA-III-NUMS in most
test instances. Considering other types of preference conversions and more RV
adaptation techniques are interesting future research directions.

Using ADM-II enabled inexpensive comparison of interactive methods with-
out real DMs. However, it needs performance indicators to evaluate the solu-
tions provided by each method. There are only a few performance indicators for
MOEAs with preference incorporation. In addition, most of them can only com-
pare methods that utilize reference points. ADM-II can use R-IGD for preferred
ranges due to the mechanism utilized to generate the preference information.
When generating the preferred ranges, ADM-II employs an equivalent reference
point, which is then used in the performance indicator. Comparing methods
that utilize preferred solutions is still an open problem. In this case, although
the cumulative CFC gives us an idea of the number of non-dominated solutions
provided by each method, it is difficult to measure the quality of such solutions
without an additional quality indicator.
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Table 3. Cumulative R-IGD and CFC for iNSGA-III-IRA, iNSGA-III-NUMS, and
iNSGA-III-RPA. Column k indicates the number of objectives, P is the phase of the
solution process (L: learning, D: decision), and the method names are shorten as IRA,
NUMS, and RPA.

R-IGD CFC

IRA NUMS RPA IRA NUMS RPAProblem k P

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Reference points

DTLZ1 5 L 2.5171 0.1017 3.5837 0.6634 2.5746 0.1360 425.0 81.0086 452.2 65.0443 409.9 113.7580

D 1.9301 0.1754 2.0761 0.2814 1.9064 0.1693 387.1 3.4482 360.2 7.3185 367.6 7.5657

7 L 2.5484 0.1501 9.2395 1.0619 2.7300 0.3176 329.4 39.0620 108.8 66.5219 132.3 49.3053

D 1.8378 0.1492 6.0133 2.2759 1.9784 0.3551 269.0 1.5492 47.8 38.6000 190.5 79.6382

9 L 2.5164 0.1352 5.6678 1.1235 2.5593 0.1840 655.8 63.3574 1.9 3.2696 422.4 133.4820

D 1.8940 0.3560 4.7159 1.2630 1.9412 0.4530 517.6 2.1541 2.2 4.9759 493.3 4.4508

DTLZ3 5 L 0.3032 0.1339 0.4785 0.0955 0.2405 0.0782 336.6 117.5884 444.7 66.8581 412.4 79.1052

D 0.4480 0.6420 0.2555 0.1301 0.1335 0.0482 293.5 146.2315 363.4 3.2311 370.2 6.9397

7 L 0.6406 0.2752 6.7688 2.5678 0.6795 0.6611 257.4 80.5409 67.7 27.7995 157.5 72.7451

D 0.4848 0.4233 4.4562 3.2389 1.3165 1.9153 199.3 96.5578 13.5 10.1316 178.5 60.7260

9 L 0.5366 0.2089 9.0865 1.2953 0.6724 0.3866 629.7 60.9230 94.6 46.7979 497.1 63.9022

D 0.3523 0.2050 7.4008 0.6856 0.8317 1.1832 514.5 8.9917 24.2 16.7021 435.7 69.2272

Preferred ranges

DTLZ1 5 L 2.9547 0.3119 2.9987 0.4754 2.4959 0.1699 91.5 118.4924 482.6 18.3314 443.9 66.3151

D 1.9964 0.1886 2.1821 0.5939 1.8669 0.2768 101.0 135.5699 363.1 10.2806 362.0 20.7605

7 L 3.0137 0.3383 8.2075 1.6523 2.4159 0.1714 49.3 51.7012 76.1 57.9473 312.6 48.8512

D 2.7146 0.9704 4.4261 2.8460 1.7150 0.0142 35.6 68.3728 12.4 21.7127 251.6 1.3565

9 L 3.2866 0.3085 6.1723 1.6570 2.5955 0.2913 294.8 141.4205 25.2 42.2583 644.0 46.4909

D 2.1963 0.5379 4.4676 1.2529 1.7571 0.1213 202.8 276.1850 17.5 42.3019 492.9 4.7634

DTLZ3 5 L 0.3937 0.1353 1.6153 0.2997 0.1137 0.0433 215.7 135.9059 446.4 70.3210 464.3 57.3882

D 0.3835 0.3890 1.0444 0.1871 0.1062 0.0416 122.7 95.7831 365.0 4.5826 368.2 13.3626

7 L 1.7638 0.4380 8.2372 2.0041 1.0111 0.6701 331.8 122.8184 73.2 25.4982 284.8 32.3691

D 0.6916 0.8202 5.9940 2.4421 0.2821 0.1333 113.1 124.3627 20.7 18.9634 192.7 51.9077

9 L 1.7413 0.3917 9.8321 0.6294 1.1918 0.7182 695.1 104.4581 152.9 74.4613 595.2 50.4892

D 0.5013 0.5152 6.8605 2.0710 0.2970 0.1104 261.0 217.8454 31.9 26.4290 422.9 76.1294

Preferred solutions

DTLZ1 5 L - - - - - - 1205.2 407.4918 398.3 96.2310 440.6 80.3308

D - - - - - - 1866.3 37.4514 349.6 36.9681 377.5 2.2472

7 L - - - - - - 1237.9 307.3807 101.1 59.6899 300.3 76.0514

D - - - - - - 1267.5 12.3713 48.4 39.4416 254.0 1.5492

9 L - - - - - - 4053.6 753.0172 16.7 47.4406 560.6 103.1079

D - - - - - - 2492.2 5.4000 11.9 34.3874 485.7 21.8406

DTLZ3 5 L - - - - - - 1599.5 345.5605 404.2 107.6362 463.5 54.9877

D - - - - - - 1895.4 3.3226 348.7 21.6474 378.6 1.4967

7 L - - - - - - 1508.1 409.6194 65.6 33.4610 194.3 91.0066

D - - - - - - 1263.8 24.1031 28.8 20.4392 245.7 21.9456

9 L - - - - - - 4075.1 704.5970 136.7 60.7833 583.7 96.0532

D - - - - - - 2472.6 25.2198 51.2 42.5977 485.4 15.6729

6 Conclusions

In this article, we proposed three interactive versions of NSGA-III. These meth-
ods incorporate the preferences of the DM by adapting the set of RVs. iNSGA-
III-IRA utilizes the RV adaptation technique used by interactive RVEA. How-
ever, when comparing both methods, we could identify that the performance
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of interactive RVEA is better when utilizing reference points. However, when
using preferred ranges, iNSGA-III-IRA obtained better results for one of the
test problems with 5, 7, and 9 objectives. Extended experimentation consid-
ering more realistic problems is needed to identify the types of problems in
which each method performs better. We also proposed a mechanism to convert
preferred ranges and preferred solutions into reference points. The obtained ref-
erence points were utilized as input for the NUMS and RPA techniques. The
performance of iNSGA-III-NUMS and iNSGA-III-RPA compared with iNSGA-
III-IRA suggest that the obtained results still reflect the preferences after the
conversion. In addition, iNSGA-III-RPA obtained better results than the com-
pared methods using preferred ranges. Converting between more types of pref-
erences is subject to further research and also considering other types of RV
adaptation techniques.
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Abstract. In recent decades, the benefits of applying multiobjective
optimization (MOO) methods in real-world applications have rapidly
increased. The MOO literature mostly focuses on problem-solving, typi-
cally assuming the problem has already been correctly formulated. The
necessity of verifying the MOO problem and the potential impacts of
having an incorrect problem formulation on the optimization results are
not emphasized enough in the literature. However, verification is crucial
since the optimization results will not be meaningful without an accurate
problem formulation, not to mention the resources spent in the optimiza-
tion process being wasted.

In this paper, we focus on the MOO problem structuring, which we
believe deserves more attention. The novel contribution is the proposed
systematic way of structuring MOO problems that leverages problem
structuring approaches from the literature on multiple criteria decision
analysis (MCDA). They are not directly applicable to the formulation
of MOO problems since the objective functions in the MOO problem
depend on decision variables and constraint functions, whereas MCDA
problems have a given set of solution alternatives characterized by crite-
rion values. Therefore, we propose to elicit expert knowledge to identify
decision variables and constraint functions, in addition to the objective
functions, to construct a MOO problem appropriately. Our approach also
enables the verification and validation of the problem before the actual
decision making process.

Keywords: Problem structuring · MOO problem formulation ·
Eliciting expert knowledge · Identifying objectives · Decision making ·
Stakeholder interviews

1 Introduction

The concept of optimization refers to making the best use of a given situation
and resources. In particular, optimization is the process of determining the values
of decision variables to optimize (minimize or maximize) the values of objective
functions since, in real-world problems, we are typically faced with multiple con-
flicting objective functions, such as decreasing expenses and maximizing profit.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Emmerich et al. (Eds.): EMO 2023, LNCS 13970, pp. 593–605, 2023.
https://doi.org/10.1007/978-3-031-27250-9_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27250-9_42&domain=pdf
http://orcid.org/0000-0003-3643-2342
http://orcid.org/0000-0002-0763-0297
http://orcid.org/0000-0003-1013-4689
https://doi.org/10.1007/978-3-031-27250-9_42


594 B. Afsar et al.

Such problems are known as multiobjective optimization (MOO) problems, and
they involve two or more conflicting objective functions that must be minimized
or maximized simultaneously. Typically, several compromise solutions with vary-
ing tradeoffs exist, and the preference information of a decision maker (DM), who
is an expert in the problem domain, is required to identify the most preferred
solution [37].

A MOO problem typically consists of three main components [40]: Objective
functions define the mathematical representations of aspects what characterize
the goodness of the decision to be made. Decision variables represent the choices
that must be made. Constraint functions (constraints) are, e.g., (in)equality con-
straints or lower and upper bounds that limit the values of the decision variables.
Real-world problems may have many objective functions, decision variables, and
constraints. Identifying all these components at once may be difficult for a DM or
an analyst (who is an expert in modeling MOO problems and can apply optimiza-
tion methods to solve MOO problems). Based on experiences (e.g., [13,23,43]),
several iterations are often needed in which the optimization is performed based
on some initial versions of the MOO problem, and some objective functions,
decision variables, and (or) constraints are eliminated or modified, or new ones
added based on the initial results. Furthermore, some objective functions may
sometimes be converted to constraints or vice versa. In this paper, we consider
deterministic MOO problems.

For real-world MOO problems, the problem formulation is essential, where
the three components mentioned above are to be identified. However, the impor-
tance of problem formulation is often neglected in the literature [28] while the
focus is on developing methods for solving MOO problems, assuming that the
problem has already been formulated. Often, benchmark problems are used to
demonstrate the use of the proposed methods. Accordingly, most studies lack
information on how the problems have been formulated, i.e., without sufficient
information on how the functions involved and decision variables have been iden-
tified.

Multiple criteria decision analysis (MCDA) is a sub-discipline of operation
research that facilitates the systematic evaluation of alternatives in terms of
multiple, conflicting criteria (e.g., [7,31]). The criteria in MCDA and the objec-
tive functions in MOO problems basically mean the same. In practice, however,
the problems are very different since alternatives in MCDA are explicitly given,
while in MOO, they are implicitly described with objective functions and deci-
sion variables. Thus, the approaches developed to structure MCDA problems are
not directly applicable to formulating MOO problems.

Modeling an accurate and adequate MOO problem may need many brain-
storming sessions between domain experts (whom we here refer to as DMs or
stakeholders even though there may be many domain experts involved in the
problem formulation) and the analyst. In some cases, it can take a lot of time
to formulate an appropriate MOO problem. For example, it is mentioned in [13]
that three iterations with different problem formulations were needed to meet
the needs of a shape optimization problem in an air intake ventilation system
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of a tractor cabin. Among other changes, the number of objective functions var-
ied. Besides, some objective functions may be first incorrectly formulated (e.g.,
[23,43]). Thus, having a verified and validated MOO problem is crucial, as it
directly affects the decision. In other words, a poorly formulated MOO problem
may result in erroneous or misleading solutions.

In this paper, we propose a generic systematic way of structuring determin-
istic real-world MOO problems. Our systematic approach consists of a four-step
methodology, with each step showing the corresponding methods and tools for
obtaining a verified and validated MOO problem prior to solving it (i.e., conduct-
ing the real decision making process). We begin by eliciting the DM’s knowledge
to identify the decisions that must be made and the objectives that must be met.
Importantly, we list explicit questions to be asked in structuring the problem.
We then verify and validate the MOO problem after constructing it based on the
identified objective functions, decision variables, and constraints. This process
is iterative, where the DM and the analyst are involved.

The remainder of this paper is organized as follows: In Sect. 2, we introduce
the basic concepts and provide a brief literature review. Section 3 is devoted to
the proposed systematic way of structuring real-world optimization problems.
We discuss the possible ways of analyzing the qualitative data gathered through
stakeholder interviews and mention the limitations of applying the proposed
approach in different application domains in Sect. 4. Finally, we draw conclusions
in Sect. 5.

2 Background

In this section, we present the basic concepts required to understand the pro-
posed systematic way of structuring MOO problems. In addition, we provide a
brief literature review to demonstrate the gap in the literature as well as the
differences in problem structuring for the MOO and MCDA problems.

2.1 Basic Concepts

In real-world applications, we may have different ways to evaluate the identi-
fied objectives. An analytical objective function can be described analytically by
a mathematical expression and is evaluated by solving the mathematical func-
tion formulation. However, this is not always possible in real-world applications,
where the objective function may not be known or cannot be represented as
a mathematical function [28]. In this case, the collected data (e.g., from phys-
ical experiments or from past performance) can be used to formulate objec-
tive functions, and we refer to them as data-driven objective function. On the
other hand, some objectives are evaluated using computer simulations, called
simulation-based objective functions. This means that the output of a simulator
is needed for objective function evaluation. In what follows, we use the shorter
term objectives instead of objective functions (and the same for constraints).
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As previously stated, a MOO problem involves a set of conflicting objectives
(to be minimized or maximized) as characteristics of a good decision that the
DM wants to make. A set of feasible solutions can be generated by a set of deci-
sion variable values in the feasible region, subject to constraints. Constraints are
the conditions that should be satisfied and can be represented by mathemat-
ical functions. Sometimes, the values of the decision variables are also limited
by lower and upper values, known as boundary constraints. A solution is called
feasible if it satisfies the constraints. Typically, no solution exists to optimize all
objectives simultaneously. Instead, we have so-called Pareto optimal solutions
[37]. A feasible solution is called Pareto optimal if it is not dominated by any
other feasible solution, i.e., improving any objective value always implies sacrific-
ing in at least one of the others. Thus, there are tradeoffs among the objectives.
Pareto optimal solutions are mathematically incomparable, and to identify the
most preferred solution as the final decision, we need preference information
of a DM. By a solution (decision making) process, we mean finding the most
preferred solution.

MOO methods can be divided into three classes based on when preference
information is incorporated in the decision making process [26,37]. In a priori
methods, the DM first provides preference information before the optimization,
and solutions reflecting the DM’s preferences are generated. On the other hand,
in a posteriori methods, a representative set of Pareto optimal solutions is gen-
erated first, and then the preference information of the DM is used to select
the most preferred one among them. Finally, in interactive methods, the DM
provides preference information iteratively to direct the solution process and to
obtain specific Pareto optimal solutions that reflect their preference information.
Interactive methods are useful because they allow the DM to participate in the
decision making process iteratively while also learning about tradeoffs among
the objectives and available solutions, as well as the feasibility of the preferences
[38].

2.2 Brief Literature Review

Structuring MCDA problems is a well-studied research field. Similar to MOO
problem formulation, identifying criteria is an important phase, as different sets
of criteria result in different decisions [11]. In problem structuring, analysts (often
called facilitators in MCDA) ask DMs to list their criteria. On the other hand,
this is often considered more of an art than a science [29]. While many MCDA
studies have assumed that a well-structured problem is available [8], in the late
1990s, Keeney’s work on value-focused thinking emphasized the need for effective
problem structuring [30]. Accordingly, the general problem structuring methods
presented for rational analysis [41] were integrated with MCDA (e.g., [3,6,17]).

Furthermore, experimental studies were conducted to structure MCDA prob-
lems in practice (see, e.g., [8,20], and the survey [36] and references therein). For
meaningful analysis, identifying key and fundamental criteria instead of having
a large set of criteria was emphasized in [35], and the characteristics of good
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criteria including, e.g., completeness, conciseness, non-redundancy, understand-
ability, measurability and preferential independence, were listed. Moreover, some
recent studies used online surveys to elicit criteria from a large number of indi-
viduals without the assistance of an analyst (or facilitator) (see, e.g., [2,22]).

The proposed methods (e.g., in [36] and references therein) first ask stake-
holders to state criteria in the domain in brainstorming sessions. Then, a facil-
itator shows a master list (pre-generated set of criteria) and asks stakeholders
to select and match some of the criteria in the master list with their stated cri-
teria. Finally, they select the final set of criteria from the self-generated criteria
in addition to the recognized ones from the master list. To apply this kind of
method, we need at least a master list which may not be the case for a new
problem domain. How to create a list of criteria from scratch is still an open
research question.

A few real-world studies focusing on MOO problem formulation have been
published. The authors of [47] proposed a holistic approach allowing the re-
formulation of the constructed initial optimization problem by adding or remov-
ing objectives and (or) decision variables. Their approach was applied to a com-
plex real-world problem for the conceptual design of indoor sports buildings.
They utilized simulators in building design, and the objectives were identified
according to the output data of the simulators. Similarly, in [46], the objectives
of the MOO problem were identified for chemical processes by utilizing the avail-
able data, and machine learning model(s) for some or all objectives are fitted
whenever applicable.

In [24], several (semi)structured interviews with stakeholders were used to
formulate a preliminary design problem of wood-based insulating materials. In
[5], the same method was applied in formulating the MOO problem of microfil-
tration of skim milk. Unfortunately, the complete set of questions used in stake-
holder interviews was not shared. Thus, published studies in the MOO literature
lack information on how the MOO problem was formulated through stakeholder
interviews. To advance research in structuring MOO problems, the procedures
must be fully published and reported in detail in order to increase reliability and
reproducibility so that others can utilize them in other application domains.

3 Systematic Way of Structuring MOO Problems

We propose a generic systematic way of structuring MOO problems, which is
not application-specific. With the proposed approach, one can identify the com-
ponents of MOO problems through structured interviews with stakeholders and
then construct the MOO problem by utilizing the existing knowledge in the
domain. Since ensuring the correctness of the MOO problem at once is not easy,
especially for large-scale problems, i.e., with many objectives and decision vari-
ables, we propose an iterative process that is repeated until the MOO problem is
verified and validated. In what follows, we first present the main steps in general
and then provide further details for each step. Overall, the main steps of the
proposed systematic approach are the following:
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– Step 1: Identify components of the MOO problem (objectives, decision vari-
ables, and constraints) through stakeholder interviews.

– Step 2: Construct the MOO problem. (It should be noted that some con-
straints can also be constructed using the options indicated below.)
• Analytical objectives: Formulate the mathematical functions repre-

senting the objectives.
• Data-driven objectives: Construct surrogate models based on the data

available to derive data-driven objectives.
• Simulation-based objectives: Configure the simulator using identified

components of the MOO problem. Basically, the input of the simulator is
decision variables, and simulation results are used to evaluate objectives.

– Step 3: Verify the (overall) applicability of the MOO problem via a prelimi-
nary assessment by the analyst. (The analyst generates random points in the
feasible region for the decision variables, evaluates objectives and constraints,
and checks the generated results.) If verification fails, go to Step 2.

– Step 4: Validate the MOO problem until the DM is convinced of the correct-
ness of the MOO problem. (The analyst generates nondominated solutions
via some selected (a posteriori) MOO methods and presents them to the
DM. The analyst then asks if the tradeoffs among the objectives are clear
and meaningful.) If the validation fails, go to Step 2. Otherwise, terminate
the process.

In what follows, we discuss each step of the proposed approach. For Step 1,
we propose a list of interview questions in Table 1 to be used in the structured
interviews with the domain experts (or stakeholders) to identify the objectives,
decision variables, and constraints. We cannot ask for these details directly (it
would be highly difficult to verbalize and define the problem to be solved straight
as objectives, decision variables, and constraints), but we need to elicit the knowl-
edge of domain experts and understand their needs and requirements. The key
aim is to understand the decision to be made and the data availability. Typ-
ically, analysts ask casual (informal) questions to domain experts and try to
formulate the MOO problem based on their understanding. However, this pro-
cess is up to the analysts’ capabilities and the way they ask questions. We,
therefore, propose a systematic and comprehensive list of interview questions.
We have selected some of the questions proposed in [30] and added some new
ones to obtain information for decision variables and constraints (they are not
considered in structuring MCDA problems). The interview questions first aim
to get a general overview and understanding of the problem and then seek to
formulate the problem technically. For example, the decision to be made is an
abstract thought at a general level at the beginning; on the other hand, decision
variables try to capture the decision to be made at a technical level.

Step 1 starts with a round of interviews. First, we propose to apply these
interview questions to each stakeholder individually to ensure that each stake-
holder’s perspectives are considered in structuring the problem. The interview
method utilized can vary if changes to the order of the questions are to be made
to be able to elicit the required expert knowledge. If the question list is utilized
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Table 1. Proposed list of interview questions to be used in stakeholder interviews.
Note: Questions written in italics are from [30].

Aim Questions

A wish list What do you want? What do you value? What
should you want?

Decisions What is the nature of the decision you must
make? What kind of actions are to be taken?

Available information What information is needed for you to take the
decision? How do you get that information?
What kind of data is available?

Goals What perspectives characterize the goodness of
your decision? What are your aspirations?

Strategic objectives What are your ultimate objectives? What are
your values that are fundamental?

Generic objectives What environmental, social, economic or safety
objectives are important?

Structuring objectives Why is that objective important? How can you
achieve it? What do you mean by this objective?

Quantification of objectives How would you measure achievement of an
objective?

Decision variables How can these objectives be accomplished?
What kind of information do you need to
evaluate your objectives? What factors/variables
affect your objective values?

Structuring decision variables Which decision variables influence which
objectives?

Constraints What are the limiting factors of your objectives
and (or) decision variables? Are there any lower
and (or) upper bounds for decision variables?

in the depicted order, a method of a structured interview can be used (e.g.,
[21]). The output lists problem characteristics from each stakeholder’s point of
view once the qualitative data (responses given to the interview questions) are
analyzed. The interview data needs to be transcribed into the textual format
and can be analyzed with various analysis methods depending on the context of
the study, such as with conventional, directed, or summative qualitative content
analysis [25] or with thematic analysis, e.g., [10]. We then propose to have a joint
workshop, including all the stakeholders, to adjust and finalize the components
of the MOO problem.

In Step 2, the analyst constructs the MOO problem utilizing the output of
Step 1. According to the responses given to the question of available information,
the analyst can understand which objectives and constraints have to be mod-
eled based on 1) mathematical function formulations, 2) the available data, or
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3) calling a simulator. For the first option, 1), the analyst writes a piece of pro-
gramming code that represents the mathematical function. In the second option,
2), if we have data originating from the problem domain for some objectives and
constraints, the analyst constructs surrogate models based on the data available.
In this, the analyst first pre-processes the data since it can be incomplete, noisy,
and heterogeneous [28] and then needs to select the best-suited surrogate model
based on their previous experiences. Another option is to apply an automatic
surrogate model selector (e.g., [42]) on the available data. In [42], the authors use
the data from known optimization problems to train several surrogate models
(e.g., polynomials [34], neural networks [4], radial basis functions [12], support
vector machines [44] and stochastic models such as Kriging [33] or Bayesian
modeling [45]) and extract features from the trained surrogate models. These
features are then used to identify the best surrogate modeling technique for a
given new data set. If some of the objectives and constraints are to be evaluated
based on the output of a simulator, 3), the analyst may set up the simulator
based on the identified components for the objective and constraint in question,
which may involve pre- and post-processing. Pre-processing is needed to config-
ure the input of the simulator using the decision variables, while post-processing
is necessary to evaluate the corresponding objective and constraint values from
the output of the simulator.

Step 3 is applied to technically verify the MOO problem before solving it.
First, the analyst generates random decision variable values (e.g., uniform ran-
dom distribution or normal distribution with some mean and standard deviation
in the feasible region) and evaluates and checks the feasibility of objectives and
generated results to verify the MOO problem. Here, a MOO problem is said
to be verified if the MOO problem is correctly programmed, different types of
objectives and constraints (e.g., analytical, data-based, or simulator-based) are
appropriately constructed, and generated results are meaningful considering the
given input values. If this step fails, the analyst goes to Step 2, checks the details
of the MOO problem to see whether there is an error, and fixes errors (e.g., the
code is corrected or the post-processing of the simulator is restored). This pro-
cess terminates when the MOO problem appears to be constructed correctly to
the best knowledge of the analyst.

Finally, in Step 4, the analyst generates a set of nondominated solutions
using some optimization methods (e.g., a posteriori evolutionary MOO methods
[14,28]) and presents these solutions to the DM. The DM can select some solu-
tions to study the tradeoffs among the objectives. A MOO problem is said to be
validated if the tradeoffs among the objectives are meaningful. If the DM is not
happy with the generated solutions, the DM can decide to ask the analyst to
revisit the constructed MOO problem. If any error is found, the analyst fixes the
MOO problem formulation. Furthermore, if the DM so desires, the analyst con-
verts some objectives into constraints (or vice versa). The analyst then generates
new nondominated solutions using the revisited MOO problem. Besides validat-
ing the MOO problem, the analyst can also study the time spent in generating
nondominated solutions. If the MOO problem is computationally demanding,
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computationally inexpensive surrogate models can be used to replace expensive
(objective or constraint) functions. This process continues until the DM is happy
with the generated solutions and sure about the correctness of the solutions to
the best of their knowledge.

Once these steps in the proposed systematic approach are carried out suc-
cessfully, we have a verified and validated MOO problem, which can be trusted
and used in the actual decision making process. After this, the analyst and the
DM can decide which type of method is applied to solve the problem. They can
apply, e.g., any interactive multiobjective optimization method [38], including
interactive evolutionary ones [27] if the DM wants to direct the solution process
with one’s preference information.

One can also apply interactive methods as a part of the verification process
as proposed in [43]. There, a so-called augmented interactive MOO method is
introduced, which incorporates verification and solution processes.

4 Discussion

The results of the qualitative content analysis based on the listed interview
questions can be further considered to be analyzed with different method com-
binations to support the structuring of the problem. One possibility is to utilize
cognitive mapping and causal maps. Next, we discuss the logic and main benefits
of these kinds of approaches.

After obtaining results from the stakeholder interview transcripts with a
chosen qualitative content analysis method, the results (commonly in the form of
descriptive categories with sub-categories) can be further elaborated with causal
maps for the group discussion (negotiation) purposes to enable understandability
and fluency within the group in structuring the MOO problem. Causal maps
are efficient in structuring problems as they enable rich representation of ideas
modeled as exhaustive networks of argument chains [39]. A causal map can
be constructed with the aid of an analyst (or a facilitator) directly from the
negotiation process. However, for a detailed understanding of the problem and
its reliable formulation, a more in-depth data collection and analysis method
combination can be used [16]. As causal maps are often constructed in a group
setting, they can precede the procedure of cognitive mapping and construction of
individual cognitive maps [15]. A cognitive map is a representation of thoughts
of a problem that is derived from the process of cognitive mapping (i.e., mapping
an individual’s thinking structure and contents about a problem [15]). Cognitive
mapping is based on Kelly’s personal construct theory [32] (for instructions on
how to conduct cognitive mapping, see [1]). Usually, cognitive maps are based on
interview data [15] and are presented as networks of nodes and arrows indicating
relations represented by an individual.

Thus, the whole procedure of formulating MOO problems could benefit from
utilizing a combination of research methods, for example, from interviews to
different mappings. The starting point of the problem structuring procedure
is beneficial to be based on eliciting expert knowledge of the problem domain
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through verbalizations to gain a reliable understanding of the phenomenon under
investigation. Often this is done via expert interviews (see, e.g., [9]). In addi-
tion, thinking-aloud protocols are an efficient way of eliciting expert knowledge
through verbalizations [18,19], from which cognitive maps can be created for
further problem formulation. Also, from interview data, cognitive maps can be
created via cognitive mapping from each interviewee separately and then via
integration into an initial group map to be elaborated as a causal map in a
group discussion, searching for a consensus for structuring the problem.

The applicability of the proposed approach in different application domains
depends on the resources dedicated to the problem structuring. We assume that
the stakeholders are convinced that having a verified and validated MOO prob-
lem to get reliable results is more important than merely solving the problems
based on unstructured foundations that might not reflect the problem in real-
life. However, since the main foundation of the proposed approach is getting the
experts’ knowledge to identify the components of the MOO problem, it is lim-
ited by the experts’ reliability and willingness to participate in different steps. In
addition, analysts lacking enough knowledge of qualitative data analysis (e.g., in
compiling cognitive maps) may be another challenge to applying the proposed
approach.

5 Conclusions

We have observed that structuring a MOO problem has not been studied enough
in the literature. In this paper, we have proposed a systematic way of structuring
verified and validated MOO problems. The proposed approach identifies which
objectives to optimize and how decision variables and constraints affect each
objective. We first identify the objectives, decision variables, and constraints
of a MOO problem through structured stakeholder interviews. To support this
interview in a concrete manner, we have proposed a list of interview questions. In
the second step, the analyst constructs the MOO problem utilizing the results
of the qualitative analysis of the interview responses. We have also proposed
possible qualitative content analysis methods to be utilized as well as further
analysis methods of cognitive mapping and causal maps to structure the problem
based on the interview data. Third, the analyst verifies the MOO problem with
randomly generated values for decision variables. Finally, the DM validates the
MOO problem by studying some generated solutions with the help of the analyst.
This is an iterative process. In this way, the DM gains enough confidence in the
formulated MOO problem as it is verified and validated.

This paper is aimed at supporting the task of structuring MOO problems.
Our approach covers all aspects of constructing MOO problems, from identify-
ing components to modeling and testing before the actual solution process. We
have presented our approach in a general manner, and it can be applied in any
real application domain. Because of space limitations, we could not consider an
example to apply the proposed approach. However, we plan future studies on
applying it in different case studies to demonstrate its applicability.
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Abstract. The knowledge and intuition of experienced users for practi-
cal optimization problems are often underutilized in academic research.
Such knowledge, formulated as inter-variable relationships, can assist an
optimization algorithm in finding good solutions faster. User-provided
information can be utilized at the beginning of the optimization, or dur-
ing the optimization in an interactive fashion. In this paper, we pro-
pose IK-EMOViz, a software framework to allow discovery and use of
knowledge from and to an EMO algorithm interactively. Key knowledge
common to current non-dominated solutions are extracted using rule
learning methods and shared with the decision-makers (DMs) through a
easy-to-comprehend visualization tool. Learned knowledge are then fil-
tered and vetted by DMs are communicated to the EMO algorithm using
the same visualization tool. EMO algorithm then processes the filtered
knowledge and integrates them with its search operators. Repeated such
interactions have resulted in faster convergence to the final trade-off set
on a large-scale engineering design problem. In addition, the effect of
asynchronous and synchronous interactivity is also evaluated to make
the proposed interactive optimization procedure more pragmatic.

Keywords: Interactive optimization · Knowledge extraction ·
Graphical user interface · Multi-objective optimization

1 Introduction

For practical multi-objective optimization problems (MOPs), keeping the user
in the loop may be beneficial because of several reasons. First, user’s knowl-
edge accrued over many years of dedicated time spent on the problem can be
suitably leveraged. An algorithm may find it time-consuming or simply difficult
to gather an equivalent amount of knowledge from scratch. Second, consulting
the user intermittently during the optimization process may generate a natural
interest through ownership by the user on the final solution, thereby resulting
in a willful acceptance of the final solution. Besides the practical importance of
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co-solving a problem with human users, computational researchers often dismiss
such collaborative methodologies as subjective and of lesser quality research.
However, there is merit for both types of studies. If problem-solving is the main
goal, the use of algorithmic rigor and human expertise, if available, should both
be embraced. This study is an attempt to involve human users to interact with
evolutionary multi-objective optimization (EMO) algorithms in solving problems
quickly by utilizing an appropriate combination of their acquired knowledge.

An obvious way to involve users is to develop an interactive optimization
framework, where the user can provide guidance during the optimization run.
Users can provide information in multiple ways, such as aspiration levels [5], rela-
tive importance of objective functions [14], pairwise solution comparison [12], etc.
Decision support system software like NAUTILUS Navigator [17] and FACTS
Analyzer [15,18] play an important role in ensuring a smooth user experience
while interacting with the optimization algorithm.

Problem knowledge can also be learned automatically. Innovization studies
[2,4] are good examples, where additional problem information were extracted
from high-performing solutions in the form of simple mathematical rules such
as power laws (xix

b
j = c). Such rules can also be found during the optimization

run and used to speed up convergence [6–9,16].
The IK-EMO method [8] uses an automatic knowledge extraction method in

an interactive optimization framework in order to achieve faster convergence and
take user feedback into account. In order for IK-EMO to be effective in practice,
a user-friendly visualization software is necessary. This paper introduces such a
software framework (IK-EMOViz) and demonstrates its visualization features on
120 and 820-member truss design problems. In addition, this study evaluates a
practicality providing the decision-makers time to analyze obtained knowledge,
while the algorithm is allowed to continue to run in the background.

In the remainder of the paper, we provide a detailed description of the pro-
posed IK-EMOViz in Sect. 2. Section 3 describes the scalable 3D truss design
problem with two objectives and presents the results of the IK-EMOViz proce-
dure. Conclusions are drawn in Sect. 4.

2 Proposed IK-EMO Visualizer (IK-EMOViz)

IK-EMO Visualizer, or IK-EMOViz is a software implementation of user inter-
activity in the IK-EMO [8] framework. In this section, we briefly cover the basic
IK-EMO components shown in Fig. 1 and how they relate to IK-EMOViz.

2.1 User-Provided Knowledge Before the Optimization

An n-variable problem, we can have n(n−1)
2 pairwise variable interactions. The

IK-EMO framework seeks to reduce the number of interactions that needs to be
learned by defining variable clusters or groups [7–9]. As an example, consider a
seven-variable problem with two non-interacting variable groups, G1 = {1, 4, 6},
and G2 = {3, 5}. For G1, all three pairwise combinations (x1, x4), (x4, x6), and
(x1, x6) can be checked for existence of any possible relationships. A similar



608 A. Ghosh et al.

Fig. 1. Interactive knowledge-based EMO framework (IK-EMO), adapted from [8].
Blue blocks represent a normal EMO. Green blocks represent the automated knowledge
extraction and application. Information from the learning agents and variable relation
graphs is presented to the user using IK-EMOViz. The user, in turn, can provide
feedback using the same interface. (Color figure online)

process is repeated for G2. Since x2 and x7 are not part of any group, they
are assumed to not exhibit any significant pattern, and can be ignored from
knowledge extraction analysis.

2.2 Automatic Knowledge-Extraction During Optimization

Any automated knowledge-extraction method or a learning agent, used as a part
of the IK-EMO framework, needs to analyze high-performing non-dominated
(ND) solutions obtained by the EMO algorithm for knowledge extraction. A
learning interval (TL) is defined as the number of generations or solution evalu-
ations (SEs) after which a new set of rules are learned. Knowledge in this case
are mathematical relations or rules existing between one or more variable pairs
among the ND solutions. The learned rules are stored by IK-EMO in a data
structure known as a variable relation graph (VRG) [8].

In this paper, we restrict the rules to simple power laws [4], however the
concept can be extended to extract other structures of rules [1,10] as well. For
example, xix

b
j = c represents a power law rule between two variables xi and xj ,

where b and c are constants. Power laws are able to represent a wide variety
of rules, such as proportionate (b = −1) or inversely proportionate (b = 1)
relationships among two variables. A special case of the power law where b = 0
is referred to as a constant rule, since it involves only one variable taking a
constant value (xi = c). This type of rule can occur if multiple high-performing
solutions are expected to have in common a fixed value of a specific variable [11].

2.3 Knowledge Application Through Repair Operators

After a learning agent learns the constant rules and power laws, the next step
is to apply these rules to newly-generated solutions using a repair agent. An
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important issue is to determine how much to adhere to each learned rule [8].
Three repair operators with different rule adherence schemes are used in this
study: tight to loose adherence RA1 to RA3, described in the next paragraph. A
repair interval (TR) is defined as the number of generations or SEs between any
two repair operations. The order of repair for each new solution is determined
by a graph-traversal algorithm [8] which generates a variant of the VRG created
by the learning agent.

A constant rule repair agent applies the rule xi = κi to a particular solution
x(k) by setting the variable x

(k)
i to κi. Constant rules are always implemented

with tight adherence. For a power law rule xixj
b = c, either xi or xj is selected

as the base (independent) variable based on which the other variable will be
repaired in the VRG. If, for a particular solution x, xj is selected as the base
variable, xi is set as follows: xi = c

xb
j

. Depending on the rule adherence scheme,

the c-value used for repair may be modified to xixj
b = cr. RA1 uses cr = c

(tight adherence); RA2 uses cr ∈ N (c, σc) (medium adherence), and RA3 uses
cr ∈ N (c, 2σc) (loose adherence), where σc is the standard deviation of learned
c-values from current ND solutions.

An ensemble approach (RA-E) combining the above three options (RA1,
RA2, and RA3) is also included [8]. RA-E can switch adherence schemes based
on the successful survival of solutions repaired using each of the three schemes,
with a fourth option added where no repair to an offspring is performed.

2.4 User Feedback Through IK-EMOViz’s Graphical User Interface

IK-EMOViz is implemented in Python using Plotly and Dash [13], which pro-
vides a browser-based graphical user interface (GUI) for the IK-EMO framework.
IK-EMOViz allows the user to access real-time data about the optimization run
such as convergence indicators, scatter plots, and parallel coordinate plots (PCP)
through separate widgets. Figure 2 shows an example instance of IK-EMOViz
where the user wants to analyze the results of a bi-objective optimization prob-
lem after 60 generations. The optimization progress in this case is represented
by a hypervolume (HV) [19] evolution plot (left-most plot in Fig. 2) over the
generations completed. The plot is dynamically updated as each generation is
completed. Indicators other than HV can also be used, if desired. The scatter
plot widget (middle plot) shows the entire population in the objective space with
the ND solutions marked in orange and dominated solutions marked in blue. By
using the generator slider shown below the plot, the user can also check the
objective vectors of the population in any earlier generation. The software saves
all earlier populations and can display any earlier population, if desired. The
PCP plot (right-most plot) gives a visualization of the objective and decision
variable values together. An additional widget is available whereby the user can
visualize any solution from the Pareto front scatter plot, but for brevity, it is
not shown here.

The ‘IK-EMO Controls’ widget has three buttons (not shown here). The first
button can pause or resume the optimization run. This is used if the user wants
the algorithm to wait till he/she analyzes the results and provides feedback, also
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Fig. 2. IK-EMOViz graphical user interface showing the optimization progress, scat-
ter plots, and parallel coordinate plot widgets describing the results of a bi-objective
optimization problem which was terminated after 60 generations.

known as ‘synchronous interaction’. The second button is used to refresh all the
widgets except the one showing optimization progress to get the latest data. This
functionality is necessary if the user did not pause the optimization run (‘asyn-
chronous interaction’) and wants to see the updated results and their associated
rules. The third button saves any user feedback which will be considered by
IK-EMO in subsequent generations.

Another important widget displays the latest rules and the corresponding
VRGs generated by the learning agent for all variable groups. A group selector
menu allows the user to switch among multiple groups. Figure 3 shows the rule
list and VRG for Group 2 variables of the example problem. Two variables found
to possess a significant relation are connected by a gray edge whose thickness
is proportional to the rule score. Nodes are colored on the basis of their degree,
with reddish nodes indicating a high number of connected edges, and bluish
nodes representing a low number of connected edges.

Fig. 3. IK-EMOViz graphical user interface showing the full VRG for variable group 2
for a specific optimization problem.
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After analyzing the VRG and associated rules, the user provides feedback
by modifying one or more nodes in the VRG. The following operations can be
performed on the learned rules.

– Exclusion: The user may select to remove certain rules provided by the algo-
rithm, based on their knowledge of the problem. The VRG will be updated
by removing the corresponding edges.

– Selection: The user may wants to keep only certain rules. In that case, the
corresponding VRG edges will be retained and the rest will be deleted.

– Filtering: If there are a large number of rules, the user can choose to filter
them based on criteria like rule scores, variable correlations, etc.

– Ranking: The user may provide a ranking of rules (rank 1 is most preferred)
provided by the algorithm. The algorithm will then try to implement the rules
according to the ranks, as demonstrated in [8].

Figure 3 shows a portion of the IK-EMOViz GUI for the example problem con-
sidered previously. For Group 2, the list of power laws obtained is shown on
the left and the corresponding VRG is shown on the right. Figure 4 shows the
selected rules by the user achieved by clicking the corresponding check-boxes.
On clicking the green tick button (top corner in right plot), the VRG is updated
with only the selected rules. For example, Node 12 in Fig. 3 is now absent in
Fig. 4, since the user did not select any rule involving variable x12. This type of
operation can be useful when the user only wants to select a few rules involving
a few important variables.

Fig. 4. IK-EMOViz graphical user interface showing a rule selection operation.

Figure 5 shows the resulting VRG when some rules are excluded from Fig. 3
by selecting them in the rule list and clicking the cross button on the top right
of the VRG. This is useful when the user only wants to exclude specific rules
provided by the algorithm.

2.5 Synchronous vs Asynchronous User Interaction

Pausing the optimization until the user finishes providing feedback ensures the
user always has access to the latest data. This is also referred to as synchronous
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Fig. 5. IK-EMOViz graphical user interface showing a rule exclusion operation.

interaction. However, the user can take a longer time to analyze the results
and provide his/her feedback. It can be more practical to continue running the
optimization in the background while the user analyzes the intermediate solu-
tions and their associated rules. This is known as asynchronous interaction. In
the previous section, the pause optimization functionality of IK-EMOViz was
introduced. It allows the user to switch between synchronous and asynchronous
interaction modes.

Apart from the learning interval (TL) and repair interval (TR), we introduce
another quantity, the user feedback time (TU ). This is defined as the number of
generations or SEs that can be performed during the time the user is analyzing
the results and preparing the feedback. TU is undefined for synchronous user
interaction. Figure 6 illustrates the asynchronous user interaction mechanism
of IK-EMOViz, assuming TL = TR. After every TL SEs, the learning agent
generates a new VRG for each variable group, marked by the blue vertical dashed
lines. IK-EMOViz allows the user to provide feedback at any point thereafter
during the optimization run. The green dashed lines represent a user interaction
phase lasting for TU SEs. In the example shown in Fig. 6, the user launches
IK-EMOViz between learning rounds 2 and 3. Since user interaction is active,
no repair is performed during learning rounds 3 and 4. Once user feedback is
complete, the user-modified VRG (VRG(U)) is merged with the last learned VRG
(VRG(4)) using the method specified elsewhere [8], and the combined VRG is
used by the repair agent. Thus, a larger TU means the user is making a decision
based on potentially outdated information and may not be as efficient as using
the latest knowledge.

3 Truss Design Problem

For this study, a scalable truss optimization problem [8] is used. The aim is to
minimize two objectives: (a) weight, and (b) compliance of a truss subject to a
load on all the top nodes of the truss. Member radii (r), and length of the vertical
members (Lv) are the two types of decision variables. Stress and displacement
in each member is constrained to lie below threshold values.
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Fig. 6. Asynchronous user interaction example with TL = TR. Blue dashed lines rep-
resent the learning phases taking place at intervals of TL SEs. Green dashed lines
represent a user interaction phase. (Color figure online)

3.1 Experimental Settings

In this paper, we use two instances of the truss design problem, a truss with 120
members, 36 nodes, 129 decision variables and 156 non-linear constraints, and
another larger truss with 820 members, 236 nodes, 879 decision variables, and
1056 non-linear constraints. Variable groups were created similar to [8] according
to the physical orientation of the truss beams, shown in Table 1. The 120-member
truss is used to illustrate how IK-EMOViz can allow the user to obtain insights
about an optimization problem. NSGA-II [3] is chosen as the optimization algo-
rithm of IK-EMO in this paper. Population size is set as 40 and the maxi-
mum number of generations is set as 100. After 100 generations, IK-EMOViz is
launched. The results are presented in the next section.

Table 1. Variable groups for the 120 and 820-member truss design problems.

Group Variable type Variable indices

120-member truss 820-member truss

G1 li of vertical members [120 − 128] [820 − 878]

G2 ri of top longitudinal members [8 − 15], [24 − 31] [0 − 57], [116 − 173]

G3 ri of bottom longitudinal members [0 − 7], [16 − 23] [58 − 115], [174 − 231]

G4 ri of vertical members [36 − 53] [236 − 353]

The 820-member truss design problem is used to illustrate the power of IK-
EMO in finding good solutions with periodic user interactions. NSGA-II is run
for a maximum number of generations of 12,500 (set by trial-and-error process
and required to work with 879 variables), thus giving a total computational
budget of 500,000. To ensure consistency, three artificial users – U1, U2, and
U3 are created to select rules from the all the generated rules by our rule learn-
ing method with scores above 0.9, 0.7, and 0.5, respectively. Thus, user U1
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chooses fewer rules compared to U2 and U3. For each user, four rule adherence
schemes (RA1, RA2, RA3, and RA-E) are considered, making a total of 12 sep-
arate optimization runs. Moreover, two different scenarios are considered: syn-
chronous interaction, where optimization is paused when user interaction takes
place, and asynchronous interaction, in which the optimization does not wait for
the analysis process by the user. Since we would like to complete the runs after a
fixed execution time is achieved, the synchornous interaction cases are allocated
less overall SEs (for each round of user analysis, TU SEs are discounted). For
each user-repair agent combination, 20 runs are performed, involving a total of
480 optimization runs. The hypervolume (HV) [19] metric value for each run is
recorded.

3.2 Experimental Results and Discussion on the 120-Member Truss

For the 120-member truss, the Pareto front and HV evolution plots are shown
in Fig. 7. The figures are extracted from IK-EMOViz. From the Pareto-optimal
solutions found till now, power law rules are extracted. Group G1 representing
the length of the vertical members are shown in Fig. 8 highlighted in green. From

Fig. 7. Pareto front and hypervolume plot for a 120-member truss optimization prob-
lem obtained from IK-EMOViz.

Fig. 8. A Pareto-optimal truss design with group G1 highlighted in green and the
corresponding variable relation graph obtained from IK-EMOViz. (Color figure online)
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Fig. 8b, it can be seen that all the variables are related to each other through
some significant power law. However, through the functionality of IK-EMOViz
we can perform some simplifications. Variables 120–128 represent consecutive
vertical members shown in Fig. 8a from right to left. So we perform rule selection
and select rules of the form xix

b
i+1 = c where i = 120, 121, . . . , 127. The reduced

set of power law rules thus obtained for G1 along with their rule compliance
values are given in Table 2. Rule compliance is defined as the proportion of ND
solutions that follow a power law. The corresponding VRG is shown in Fig. 9a.

Table 2. Power law rules found for group G1.

Rule no Power law Rule compliance

1 x120x
−0.57
121 = 0.92 1.00

2 x121x
−1.00
122 = 0.87 1.00

3 x122x
−0.92
123 = 0.96 1.00

4 x123x
−0.82
124 = 1.05 1.00

5 x124x
−1.13
125 = 0.98 1.00

6 x125x
−0.78
126 = 1.14 1.00

7 x126x
−1.06
127 = 1.10 1.00

8 x127x
−1.72
128 = 1.03 1.00

Fig. 9. Simplified variable relation graph of group G2 and power laws between pairs
of variables (x120, x121) and (x127, x128) obtained from IK-EMOViz.

From Table 2, let us consider two power laws φ1(x) = x120x
−0.57
121 − 0.92 = 0

and φ2(x) = x127x
−1.72
128 − 1.03 = 0. x120 and x128 represent the length of the

vertical members at each end, and x121 and x127 represent the adjacent vertical
members, respectively. Figure 9b obtained from IK-EMOViz plots the two power
laws over the normalized variable range of [1, 2] and plots another line xi = xj .
The variables of the ND set from which the power laws are extracted are also
shown. An interesting observation is that the φ1(x) lies above and φ2(x) lies



616 A. Ghosh et al.

below the xi = xj line. This indicates that x120 < x121 and x127 > x128 among
good solutions. Analyzing the rest of the power laws in Table 2 and the loading
condition of the truss, we observe that x120 < x121 < . . . < x124 and x124 >
x125 > . . . > x128. This indicates that the length of the vertical members increase
from the end to the middle of the truss, which is an expected from an engineering
intuition for the specific support and loading conditions [7]. IK-EMO is able to
successfully extract these rules and IK-EMOViz provides useful functionality to
the user to understand the rules. Such a knowledge derived from intermediate
iterations of an optimization run will be reassuring to an inquisitive user.

3.3 Experimental Results and Discussion on the 820-Member Truss

The final median HV obtained at the end of 500k SEs for each user-repair agent
combination are shown in Table 3. The row-wise best is marked in bold with
the statistically similar performing algorithms marked in italics. The column-
wise best is marked by a gray box. It can be seen that user U2 who selects a
moderate amount of rules (supported by 70% or more ND solutions) is the best
performer for all the repair agents. Moreover, for each user, RA2 with medium
adherence scheme is the best algorithmic strategy in 4 out of 6 cases, and RA-E
(ensemble scheme) has a the best performance in 3 out of 6 cases. This shows
that an intermediate amount of rule usage combined with a medium level of
rule adherence works the best, as was also observed in another study [8]. In all
cases, asynchronous interaction results in a better performance due to the use
of more SEs. While asynchronous interaction runs the risk of the user making
a decision based on outdated rules, the built-in safeguards of IK-EMO against
incorrect user information [8] mitigate some of the risks, thereby allowing the
optimization to run in the background while the user deliberates on the available
information. The asynchronous interaction in an interactive framework is also
practical and does not keep the computing system ideal, and provide users time
to grasp and prepare feedback for the algorithm.

Table 3. Final median HV obtained at the end of 500k SEs for the 820-member
truss optimization problem. Best-performing algorithm in each row is marked in bold.
Statistically similar performance to the best in each row is marked in italics. The gray
boxes represent the column-wise best.

Repair agent
U1 U2 U3

Sync Async Sync Async Sync Async

None (base) 0.79 0.79 0.79 0.79 0.79 0.79

RA1 0.81 0.98 0.88 1.01 0.82 0.95

RA2 0.84 1.06 0.91 1.08 0.77 0.99

RA3 0.81 0.96 0.86 0.98 0.79 0.90

RA-E 0.85 1.02 0.88 1.08 0.79 0.99
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For user U2 and repair agent RA2, the PF and HV plots comparing syn-
chronous and asynchronous interaction cases are shown in Fig. 10. Figure 10a
shows how asynchronous interaction can provide better solutions compared to
synchronous interaction. The HV plot in Fig. 10b shows a portion of the opti-
mization run between 50 k and 200 k SEs with user interaction instances being
marked in red. Asynchronous interaction results in a better median HV.

Fig. 10. Pareto fronts and median hypervolume plots obtained by IK-EMO with U2,
RA2, and asynchronous interaction for 820-member truss design problem.

4 Conclusions and Future Work

This study has introduced a knowledge-based interactive optimization tool IK-
EMOViz for executing a better-informed optimization study. Through a 120-
member truss design problem, we have shown how IK-EMOViz can help the
user to obtain useful insights about an optimization problem in the form of sim-
plistic relationships among variables and visualization of the interaction through
relationship graphs. In addition, the user can also provide their own feedback by
providing their preferences on obtained relationships using the tool. IK-EMOViz
also allows the user to perform an asynchronous interaction by utilizing comput-
ing resources in the background while understanding and analyzing the obtained
relationships. As demonstrated on an 820-member truss problem, the option of
asynchronous interaction can result in a better performance. Moreover, mod-
erately few relationships chosen by the user applied with moderate adherence
within the EMO algorithm have found to produce better results.

Our future work will focus on enhancing the functionality of IK-EMOViz by
allowing direct modification of rule parameters. The user should also be able to
introduce new rules if they are not present in the rule set extracted by the learn-
ing agents. Other modifications can include introduction of new repair agents or
disabling existing ones. The VRG widget can also be made interactive by turning
it into a 3D model, allowing the user to directly modify the VRG. Nevertheless,
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this study provides evidence of the importance of a robust software implemen-
tation for any knowledge-based interactive optimization method that combines
human knowledge and machine intelligence in executing an optimization task
faster than either of them alone. IK-EMOViz opens a communication channel
between the user and the optimization algorithm through scientific visualiza-
tion and analytics. This will benefit users desiring greater involvement in the
optimization process, especially for practical problems.
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Abstract. Recent research using machine decision makers has revealed
that some leading interactive evolutionary multi-objective optimization
algorithms do not perform robustly with respect to interactions with
preference models (and biases) posited to be representative of human
Decision Makers (DMs). In order to model preferences better, we propose
an explainable interactive method that uses decision trees to automate
(fast) pairwise comparisons based on trade-offs of two given solutions. To
cancel out possible biases and errors in estimations, we use the trained
tree in holistic comparisons to determine solutions that survive each gen-
eration. We test our new method with respect to two different preference
models (Tchebychef and Sigmoid) on problems from 2 to 10 objectives,
and control both the number of interactions available and various biases.
The results suggest the superiority of our method in learning the DM’s
preferences and in terms of the utility value of the final solution returned
by the algorithm compared with some well-known interactive methods.

Keywords: Interactive evolutionary multi-objective optimization ·
Decision tree · Machine decision maker · Preference learning · Bias

1 Introduction

Many real-life optimization problems have several conflicting objectives to be
optimized simultaneously [22]. Due to the conflicting nature of objective func-
tions in such Multi-Objective Optimization Problems (MOOPs), it is generally
not possible to have a single solution where all the objectives attain their optimal
values. Instead, the general goal of solving MOOPs is to reach a small subset
of Pareto-optimal solutions with interesting trade-offs or the most preferred one
thereof. Evolutionary Multi-Objective Optimization Algorithms (EMOAs) nat-
urally work with a population of solutions and can generate a representation
of the Pareto Front (PF) in a single run. Hence they are well aligned to the
requirements of MOOPs. However, with an increase in the number of objectives,
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EMOAs lose their selection pressure, and their performance declines exponen-
tially [7,16,17]. Interactive algorithms compensate for this issue by building a
preference model of the Decision Maker (DM) and generating only those parts of
the PF that are interesting to the DM [1,5]. Such interactive EMOAs (iEMOAs)
alternate between the decision-making and optimization phase in order to reduce
computational costs and support the DM in reaching a desirable solution, while
incurring minimal cognitive effort.

Despite the potential of iEMOAs as described above, unfortunately scant
evidence exists to date to attest to how well such algorithms perform under
realistic conditions [1,19]. The difficulty is partly due to the challenge of testing
with human DMs. Rather, recent studies, exploiting a Machine DM (MDM) to
enable statistical testing over sufficient interactive runs [19,25], have indicated
that iEMOAs may not perform as expected under realistic conditions. Specif-
ically, their performance declines with a higher number of objectives or when
the elicited preference information is affected by human-specific biases, such as
inconsistent decisions [25] and fatigue [31]. Thus, even the algorithms that per-
form well under ideal conditions seem to lack much robustness to biases and other
complications that are typical in real-life situations. The primary sources of the
problem should be traced back to the core features of an interactive method,
which include interaction style, preference model, and the way the preferences
are exploited inside the method to direct the search towards the Most Preferred
Solution (MPS) [28].

In re-designing these components, we suggest adopting Decision Trees (DTs).
DTs have been widely used in learning user preferences [9,10,27,29], but not,
to our knowledge, in interactive methods. As non-parametric supervised learn-
ing methods, DTs can be seen as a piece-wise constant approximation [6] that
delivers classification by recursive partitioning of the solutions space. Utilizing
DTs does not require any assumptions about the DM’s preference model. DTs
are competitive with other learning methods in terms of accuracy and speed,
superior in terms of interpretability and comprehensiveness [9], and thus, are
very popular among classification techniques [30]. DTs are easy to understand,
interpret and visualize (compared with black-box models). This characteristic is
particularly beneficial in helping human DMs understand and trust the process
and final results [2]. Recently, there have been an emphasis on the explainabil-
ity of the learning methods in interactive methods and particularly it has been
encouraged to employ explainable learning methods, such as DTs for preference
learning [20]. DTs do not require any pre-processing or scaling of the data, which
can be a tricky task in MOOPs with an unknown PF, and they can work with
different types of data, from categorical to continuous [2]. DTs naturally detect
relevant features and simplify the learned model [27,29].

We use binary classification DTs to learn the desirable trade-offs in pairwise
comparisons and to predict the preferred solution from the DM’s perspective.
DTs overcome problems of other learning-to-rank algorithms, which are suscep-
tible to significant errors when confronted with small biases and non-idealities
such as inconsistent decisions [9]. The learned preferences are local to the area of
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the PF that is being explored in that stage of the interaction, which is a desirable
property. The experimental results indicate that the proposed algorithm, which
we call DT-based EMOA (DTEMOA), achieves competitive performance when
compared with other iEMOAs in terms of the desirability of the final solution
returned and robustness to biased or inconsistent preferences.

In what follows, our proposed DTEMOA algorithm, and the way DTs are
utilized in it, are explained in Sect. 2. Our experimental setup is laid out in
Sect. 3, and the results are discussed in Sect. 4. Finally, conclusions and future
research directions are provided in Sect. 5.

2 Methods

We focus on indirect preference elicitation in our method, where the DM is asked
to provide a ranking of a subset of non-dominated solutions at each interaction.
We do not attempt to learn a complete ordering of a set of solutions. Instead,
similar to [23], we try to learn how the DM performs pairwise comparisons. As
in [14], the preferences of the DM are modeled by simple rules. We use DTs
to generate such rules to predict the preferred (winner) solution in pairwise
comparisons.

DTs consist of nodes that partition data according to a rule. Our method is
based on the DT known as CART [6] using a Gini impurity measure to identify
good partitions of the data.

2.1 Decision Tree-Based EMOA (DTEMOA)

Preference Elicitation. In each interaction, a small sample of solutions is
randomly selected from the population (S ⊆ pop, |S| = N sol) and their objective
vectors Z = {z =f(x)| x ∈ S} are presented to the DM. The DM ranks the
options based on their utility. There is no requirement for a complete ordering of
the solutions; the algorithm can handle a partial ordering. However, we assume
the DM provides a complete ordering for simplicity. Let a � b denote that
a is preferred over b. We represent the total order provided by the DM with
the vector r such that the rank of zi is ri (lower rank values are better) and
zi � zj ⇐⇒ ri < rj .

Preference Learning. We aim to learn a DM’s preferences from the ranking
provided as well as predicting (simulating) her preference when evaluating the
trade-offs of two objective vectors. DTEMOA infers pairwise orderings from the
elicited preference information that can be in the form of complete or partial
ranking of a subset of solutions. To construct the training set T , we use the
well-known pairwise transformation [15], i.e., for each pair of objective vectors
zi, zj ∈ Z, we create a training example zi − zj labeled with:

φ(zi − zj) = sign(rj − ri) =

{
+1 if zi � zj

−1 otherwise;
(1)
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Fig. 1. Construction of the training set from the ranked solutions over a problem with
2 objectives. The number of solutions ranked by the DM is |Z| = 3. For each pair of
ranked solution (zi, zj ∈ Z) an example, labeled by φ(zi −zj), is added to the training
set. The size of the training set is

(|Z|
2

)
.

i.e., an example is labeled +1 if the first solution is preferred over the second one,
and −1, otherwise. An instance of such a process is given in Fig. 1, where Z ⊂ R

2,
|Z| = 3, and each possible pairwise comparison of the ranked set generates an
example of the training set T .

In the next step, T is used to train the DT to predict the preferred solution
in pairwise comparisons of unseen data as well as the probability of such a
decision. Subsequent interactions add more training examples to T , increasing
the accuracy of the model. To predict the preferred solution when comparing
two objective vectors z and z′, the trade-off vector z−z′ is given as the input to
the trained DT, which predicts its class (label) φ(z − z′) ∈ {+1,−1} indicating
whether z is preferred over z′. The probability of the sample being in class
c ∈ {+1,−1} at leaf node o is calculated by Nc

o

No
, where N c

o is the number of
samples of class c in node o, and No is the total number of samples in o.

Determination of Solution Score for Sorting. Each solution in the popu-
lation is given a score used to sort solutions. To calculate the score of a solution
x, it is compared with all other solutions in the population and the probability
that it is preferred over the compared one is calculated using the trained DT.
The sum of all such probabilities is the score of the solution x:

score(x) =
∑

x′∈pop
x�=x′

Pr {f(x) � f(x′)} =
∑

x′∈pop
x�=x′

Pr {φ(f(x) − f(x′)) = 1} (2)

Integrating DTs into EMOAs. Given the above steps, let us explain how the
preferences of the DM are considered in an EMOA to guide the search toward
the most preferred parts of the PF. We use NSGA-II [11] as the underlying opti-
mizer. After some generations of the NSGA-II, the algorithm stops to make the
first interaction, elicits a ranking from a subset of solutions and consequently
builds the training set T as explained above. A DT is trained using T to predict
the preferred solution in pairwise comparisons. In the following generations, the
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Algorithm 1: DTEMOA
Input: N int : Total number of interactions

N sol : Number of solutions evaluated by the DM per interaction
pop : Population of solutions
gen1 : Generations before first interaction
geni : Generations between two interactions

Output: The most preferred solution
1 T ← ∅
2 pop ← run NSGA-II for gen1 generations

3 for 1 to N int do

4 Z ← select N sol solutions
5 r ← ask the DM to rank the solutions in Z
6 T ← T ∪ {(zi − zj , φ(zi − zj)) | ∀zi, zj ∈ Z, φ(zi − zj) = sign(rj − ri)}
7 Train DT using T
8 pop ← run NSGA-II for geni generations

replacing crowding distance with score (Eq. 2)

9 return best x ∈ pop ranked first by non-dominated sorting and then score

DT is used to calculate the scores of the solutions (Eq. 2) to sort solutions with
the same non-dominated sorting rank, i.e., the solution scores replace the crowd-
ing distance of NSGA-II to differentiate between non-dominated solutions. The
solutions with a higher score have a better chance of survival and participation
in mating and the generation of new offspring. The pseudo-code of the algorithm
is illustrated in Algorithm 1.

When dealing with DMs, it is crucial to gain the DM’s trust and confidence in
the process and the results. When using DTs, learned trees can be conveniently
visualized, summarizing all the rules elicited from the data set. Such a visual-
ization is illustrated in Fig. 2, showing a DT that was built based on preference
information elicited from the DM in an experiment on the DTLZ1 problem.

3 Experimental Design

This section outlines details pertaining to the Machine DM (MDM) we use to
simulate a real DM, the benchmark problems, algorithms considered, perfor-
mance metrics, and algorithm parameters settings as used in the subsequent
experimental study.

3.1 Machine Decision Maker (MDM)

To simulate a real DM in the experiments, we have used the MDM introduced
in [19] and improved in [25]. The MDM is composed of a utility function (UF)
that simulates the true preferences of the DM and simulations of cognitive biases
and other non-ideal decision-making behaviors that can happen in interactions
with the DM. Shavarani et al. [25] proposed using a version of the Sigmoid
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Fig. 2. A decision tree example built on the information elicited in one interaction on
problem DTLZ1 with m = 2 objectives. Here objective l indicates the trade-off value
for lth objective, i.e., zil − zjl when comparing solution i with solution j. The samples
field indicates the number of samples that fall on that node. The cth element of value
in each node o indicates Nc

o , the number of samples that belong to the cth class. Gini
impurity is a measure (from 0 to 0.5) of the quality of the split.

UF introduced by Stewart [26] for experimenting on iEMOAs and modified it
for minimization problems without violating any of its underlying assumptions.
The modified UF used here (and hereafter called Stewart UF) is formulated as
follows:

U ′(z) =
m∑

i=1

wiui(zi) (3)

ui(zi) =

⎧⎪⎪⎨
⎪⎪⎩

λi +
(1 − λi)(1 − e−βi(τi−zi))

1 − e−βiτi
if 0 ≤ zi ≤ τi

λi · (eαi(1−zi) − 1)
eαi(1−τi) − 1

if τi < zi ≤ 1
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Table 1. Description of different DM behaviors simulated by combinations of τi and
λi for minimization problems (based on its counterpart for maximization [26]).

Type τi λi Description

1 [0.6, 0.9] [0.1, 0.4] Mainly compensatory preferences

2 [0.6, 0.9] [0.6, 0.9] Mainly compensatory preferences, but with
sharp preference threshold

3 [0.1, 0.4] [0.1, 0.4] Limited range of compensation, all higher values
nearly equally undesirable

4 [0.1, 0.4] [0.6, 0.9] Limited range of compensation,
plus sharp preference threshold

There are four parameters in Eq. 3 that control the shape of this UF:

τi: Reference level, i.e., the point where losses are separated from gains with a
steep inflation rate (loss can be interpreted as those values of the objective
that are not satisfying to the DM).

λi: The utility value at the reference level.
αi: The non-linearity of the function over losses.
βi: The non-linearity of the function over the gains. Having αi > βi > 0 satisfies

various assumptions about the behavior of human DMs [25,26].

One of the benefits of Stewart UF is the ability to simulate different decision-
making behaviors, as depicted in Table 1. It has been shown that Stewart UF
imposes more difficulties on the algorithms [25].

We also make use of a Tchebychef UF, which is formulated as follows:

U(z = f(x)) = max
i=1,...,m

wi|zi − z∗
i |, (4)

where wi is the weight of each objective function, and z∗ is the ideal or Utopian
point. Since the selected benchmark problems are to be minimized and preserve
consistency, it is assumed that the DM prefers solutions with lower utility values.

Aside from the tests under ideal conditions, we use the MDM capability
of simulation of inconsistencies in the decisions of the DM. The MDM adds a
normally distributed random noise with mean 0 and variance σ. The variance
σ controls the amount of noise. To investigate the robustness of the algorithms,
we test with σ ∈ {0.005, 0.01, 0.1, 0.2}.

3.2 Benchmark Problems

We follow [3,18] and perform our experiments on well-known DTLZ benchmark
problems [12]. DTLZ1, DTLZ2, DTLZ7 are selected from the DTLZ test suite.
Each of these problems exposes different difficulties to the algorithm and allows
one to investigate its performance from various aspects. DTLZ1 contains 11k −1
local PFs, and each of them can attract an EMOA before reaching the global PF.
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DTLZ2 investigates the performance of an EMOA in getting close to true PF.
Finally, DTLZ7 has 2m−1 disconnected Pareto-optimal regions in the objective
space. It is used to check the diversity of the solutions. The problem dimension
n and the dimension of the objective space m are selected in a way that n
is m + 4 for DTLZ1, m + 9 for DTLZ2 and m + 19 for DTLZ7, as suggested
in [12]; we consider m ∈ {2, 4, 10}. Also to make the problems more challenging,
for DTLZ1 we follow [3] and limit xi to [0.25, 0.75], and for DTLZ2 we map
xi to xi/2 + 0.25 as suggested by [8]. We consider all possible combinations of
different problem sets, number of objective functions, different value functions
and different decision-making behaviors. Full details about the set of 45 test
configurations can be found in the supplementary materials [24].

3.3 Evaluating Performance and Competing Algorithms

Interactive methods are supposed to develop the best solution or a small subset
of non-dominated solutions that maximize the DM’s satisfaction. Thus, it makes
sense to evaluate the performance of the interactive methods based on the utility
value of the returned solution [1]. We compare the performance of DTEMOA
against two state-of-the-art algorithms: BCEMOA [3] and iTDEA [18]. Prefer-
ence learning in BCEMOA is similar to the way it is done by DTEMOA in that
both learn to rank solutions, however, BCEMOA uses support vector machines
(SVM) for preference learning. iTDEA uses a completely different preference
learning scheme, where the preferences of the DM are reflected in the search pro-
cess by prioritizing solutions in the proximity of the DM’s selected solution. Both
BCEMOA and DTEMOA use NSGA-II as their underlying optimizer. iTDEA
still uses the same non-domination and mating methods, but in each generation
only one solution is created and whether or not it is accepted to the population
depends on the position of that solution in the objective space and its distance
to its closest solution in the population. The iTDEA is sensitive to the threshold
parameter that controls the acceptable distance for the new solution. A large
threshold would prevent solutions to enter the population, while a small one
would make the population grow uncontrolled and increase computational costs,
specially in many-objective problems. These similarities and differences were the
main motivation behind selecting these two algorithms.

3.4 Algorithm Parameter Settings

The parameters of the selected algorithms are illustrated in Table 2. iTDEA
generates and evaluates only one solution per generation. Thus, the number
of generations is set to Ngen = 80 000 to have an equal number of objective
evaluations in all compared algorithms. As suggested in [18], the first interac-
tion of iTDEA happens after Ngen

3 generations, and the number of generations
between each subsequent interaction is given by geni = Ngen

2(N int−1)
. Thus, with

a larger number of interactions, gen1 becomes smaller. The experimental study
will investigate the impact of different numbers of interactions, N int. The initial
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Table 2. Parameter settings of the iEMOAs. In addition, total solution evaluations is
80 000, the population size |pop| = 200, the number of iterations is N int ∈ {2, 3, 4}, and
the DM ranks N sol = 5 solutions per interaction. After N int interactions, the algorithms
continue running without further interaction until reaching Ngen generations.

Parameter iTDEA BCEMOA DTEMOA

Total generations (Ngen) 80 000 400 400

Generations before 1st interaction
(gen1)

Ngen/3 200 200

Generations between further
interactions (geni)

Ngen

2(N int−1)
20 20

and final territory parameters of iTDEA are respectively set to 0.1 and 0.00001
in problems with two objectives, which was one of the alternatives suggested
in [18]. For problems with m = 4 and 10 objectives, these values change to 0.5
and 0.25, respectively. Any smaller values for these parameters would make the
size of the archive population large and the computational costs unaffordable.
Other parameters for BCEMOA and iTDEA are set as suggested in [3,18]. The
hyper-parameters of the DT in DTEMOA and SVM in BCEMOA are tuned by
grid search cross-validation at each interaction [24].

We run experiments with a different number of interactions N int∈ {2, 3, 4}
to test the effect of interactions on the results. Our initial experiments indicate
that a higher number of interactions does not seem to increase the quality of
the solutions substantially. Each experiment is repeated 40 times with different
random seeds.

Implementations. BCEMOA, DTEMOA, iTDEA, MDM and utility functions
are implemented in Python version 3.7.6. The NSGA-II and DTLZ benchmark
implementations were acquired from the Pygmo library 2.16.0 [4], the SVM
ranking model from the Preference Learning Toolbox [13] powered by scikit-
learn 0.23.1 [21]. Scikit-learn is also used to implement the DT models.

4 Results and Discussion

This section is divided into two parts. In the first part, we focus on our proposed
preference learning technique and provide some insight into its performance. In
the second part, the performance of the proposed DTEMOA is compared with
iTDEA and BCEMOA.

4.1 Assessing Ranking Performance

One of the main differentiating characteristics of iEMOAs is the way they adapt
to the DM’s preferences and the way they learn and model the preferences [28].
The methods compared in our study differ significantly in how they interact
and adapt to the DM. Both BCEMOA and DTEMOA try to learn a model
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Table 3. Mean accuracy (and standard deviation) of preference learning in DTE-
MOA and BCEMOA on the DTLZ7 problem for different UFs. The different number
of interactions indicate how the algorithms exploit the accumulated preference data
over interactions. The number of solutions presented to the DM at each interaction is
N sol = 5. The best accuracy for each UF, m and N int is highlighted in bold face.

UF N int m = 2 m = 4 m = 10

BCEMOA DTEMOA BCEMOA DTEMOA BCEMOA DTEMOA

Stewart 2 79.4(11.3) 84.8(12.1) 84.2(7.1) 83(7.2) 68.1(7.2) 62.2(6.5)

3 82.9(9) 84.9(11.4) 82.2(7) 82.9(5.7) 69.5(5.8) 67(6)

4 85.7(7.7) 86.5(5.5) 81.6(7.1) 83.5(2.9) 71.1(6.1) 69.3(6.3)

5 87.5(8.1) 84(11.3) 81(6.7) 81.8(6.5) 70.3(4.5) 71.3(7.1)

Tchebychef 2 100(0) 99.9(0.2) 75.5(11.4) 95(10.1) 67.3(5.8) 96.4(8.5)

3 100(0) 99.7(1.1) 74(7.8) 96.8(8.8) 67.1(6.5) 98.8(3.4)

4 100(0) 100(0) 75.6(5.8) 97(9.6) 67.7(5.8) 97.2(9.9)

5 100(0) 100(0) 76.7(5.1) 98.2(9.9) 68.3(6) 100(0)

to rank solutions but use different learning techniques. We can directly com-
pare their accuracy independently of other algorithmic aspects. We evaluate the
accuracy of the preference learning models of BCEMOA and DTEMOA on a
randomly-generated population of 400 solutions for DTLZ7 problem with differ-
ent number of objectives m ∈ {2, 4, 10}. It is also interesting to see how each algo-
rithm exploits accumulated information elicited in different interactions. Thus,
we simulate 5 interactions. Before each interaction, NSGA-II is used to evolve
the population for 20 generations, and 5 solutions are selected randomly from
the non-dominated front and ranked by a UF. The preference learning of both
algorithms is applied to the elicited data. Then the accuracy of each model in
ranking the non-dominated solutions in the population is measured by counting
the proportion of correct pairwise rankings to all possible pairwise rankings:

Acc = 100 ·
∑|pop|−1

i=1

∑|pop|
j=i+1 I{ri < rj ∧ r̂i < r̂j}∑|pop|−1

i=1

∑|pop|
j=i+1 I{ri < rj}

, (5)

where I is the indicator function which is equal to 1 if the given condition is true,
otherwise 0; ri = U(f(xi)) is the true rank of the solution xi ∈ pop according
to the UF, and r̂i is the rank predicted by the learning models for the same
solution. The experiments are repeated 40 times for each problem.

Table 3 summarizes the results. In particular, the accuracy of both meth-
ods is similar with 2 objectives. However, the preference learning technique in
DTEMOA performs better when the number of objectives increases.
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Table 4. Performance of the algorithms over different number of interactions under
ideal conditions. The utility values are averaged over all tests with all possible combina-
tions of different problems, number of objective functions, different UFs and different
decision-making behaviors. The results are rounded to 3 decimal places. The p-values
obtained from the Wilcoxon test using Holm’s method to adjust for multiple compar-
isons are also reported.

N int Mean utility value Wilcoxon test’s p-values

BCEMOA DTEMOA iTDEA DTEMOA vs.
BCEMOA

DTEMOA vs.
iTDEA

BCEMOA
vs. iTDEA

2 0.206 0.184 0.214 0.000 0.032 0.192

3 0.206 0.179 0.259 0.000 0.000 0.000

4 0.203 0.177 0.278 0.000 0.000 0.000

4.2 Comparison of the Performance with Other iEMOAs

The overall performance of the algorithms, measured in terms of the true utility
of the returned solution (lower values are better), over all tests is illustrated
in Tables 4 and 5. Table 4 summarizes the performance of the algorithms over
different number of interactions. Table 5 show the results over different num-
ber of objective functions categorized into experiments under ideal conditions
and those with simulation of inconsistent decisions. The results of this table are
over experiments with 3 interactions, which is reasonable number of interactions
based on the observations in Table 4. The results are aggregated over all tests
with different UFs, problems and decision making behaviors. DTEMOA gener-
ally returns a solution with a better true utility than BCEMOA and iTDEA.
The Wilcoxon test indicates that the differences in utility are significant (p-value
≈ 0). The second important observation, as illustrated in Table 5, is the robust-
ness of the DTEMOA towards inconsistencies in the DM’s decisions. Considering
all the results over all tests, the performance of DTEMOA has declined by 1.6%
when inconsistent decisions are simulated; this change is insignificant compared
to the deterioration in the performance of BCEMOA (17%) and iTDEA (3.5%).
Furthermore, the superiority of DTEMOA becomes more significant when the
number of objectives increases.

Due to space limitations, we have not presented results for each test but
reported only the aggregated results. The interested reader is referred to the
supplementary materials [24] for the full set of results.
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Table 5. Comparing the performance of algorithms over various number of objective
functions (m). The utility values are averaged over all tests with all possible combina-
tions of different problem sets, different UFs and different decision-making behaviors
(N int= 3). The results are rounded to 3 decimal places. Algorithms are compared
pairwise, reporting the p-value for a Wilcoxon test using Holm’s method to adjust for
multiple comparisons.

Under ideal conditions With simulation of DM inconsistencies

mean utility value p-value mean utility value p-value
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2 0.270 0.270 0.256 1.000 1.000 1.000 0.292 0.266 0.268 0.000 0.012 0.055

4 0.215 0.193 0.319 0.002 0.000 0.000 0.244 0.200 0.328 0.000 0.000 0.000

10 0.122 0.077 0.097 0.000 0.652 0.000 0.116 0.081 0.103 0.000 0.158 0.000

5 Conclusions

There have been many improvements in the field of interactive methods, and
yet it seems there is room for more. Recent research on benchmarking of these
methods has revealed that they may not perform as expected when confronted
with non-ideal conditions that were not anticipated in their development [1,25].
At present, the field has little idea of how to explain or predict which compo-
nents of iEMOA methods are most vulnerable to non-idealities or what condi-
tions affect their performance the most. However, we believe the core of any
interactive method is the preference model and the accuracy of these models in
reflecting the DM’s preferences is crucial in the optimization process. With these
observations, this study proposed an innovative preference model and learning
approach using decision trees to predict the result of pairwise comparisons from
the DM’s perspective to manage the convergence direction of the population.
The method’s performance is found to be stable in many-objective problems
because more objectives translate to more attributes that can participate in
classification. Further, when the number of objectives increases, DTs can nat-
urally identify the most important ones. Our method is also found to be more
robust to biases as we make holistic comparisons to cancel out any estimation
errors in single predictions. In contrast, other learning methods such as SVM
rely on kernel performance, and complications such as higher dimensions, non-
linearity, and biases make kernel selection an intensive task and generally less
accurate.

Another critical advantage of DTs in this context is their intuitive interpre-
tation and ease of visualization, both being essential elements in gaining the
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DM’s trust in the process and the results. We used the suggested experimental
design of [25] to evaluate the performance of the algorithm and examine the
efficiency of the method. Further research may extend this study by investigat-
ing the application of weighted decision trees to emphasize the most recently
elicited information. Another interesting research direction is to explore the use
of decision tree regressors instead of classifiers in the preference model.

Reproducibility. We make source code and data for reproducing our results pub-
licly available as supplementary materials [24] to motivate further research in
this direction.
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