
Quantum Circuit Compilation
for the Graph Coloring Problem

Angelo Oddi1(B) , Riccardo Rasconi1 , Marco Baioletti2(B) ,
Vieri Giuliano Santucci1 , and Hamish Beck3

1 Institute of Cognitive Sciences and Technologies (ISTC-CNR), Rome, Italy
{angelo.oddi,riccardo.rasconi,vieri.santucci}@istc.cnr.it

2 University of Perugia, Perugia, Italy
marco.baioletti@unipg.it

3 Advanced Concepts Team, ESA European Space Research and Technology Centre,
Noordwijk, The Netherlands

Abstract. In this work we investigate the performance of greedy ran-
domised search (GRS) techniques to the problem of compiling quan-
tum circuits that solve instances of the Graph Coloring problem. Quan-
tum computing uses quantum gates that manipulate multi-valued bits
(qubits). A quantum circuit is composed of a number of qubits and a
series of quantum gates that operate on those qubits, and whose execu-
tion realises a specific quantum algorithm.

Current quantum computing technologies limit the qubit interac-
tion distance allowing the execution of gates between adjacent qubits
only. This has opened the way to the exploration of possible techniques
aimed at guaranteeing nearest-neighbor (NN) compliance in any quan-
tum circuit through the addition of a number of so-called swap gates
between adjacent qubits. In addition, technological limitations (decoher-
ence effect) impose that the overall duration (i.e., depth) of the quantum
circuit realization be minimized.

One core contribution of the paper is the application of an upgraded
version of the greedy randomized search (GRS) technique originally
introduced in the literature that synthesises NN-compliant quantum cir-
cuits realizations, starting from a set of benchmark instances of differ-
ent size belonging to the Quantum Approximate Optimization Algorithm
(QAOA) class tailored for the Graph Coloring problem. We propose a
comparison between the presented method and the SABRE compiler,
one of the best-performing compilation procedures present in Qiskit, an
open-source SDK for quantum development, both from the CPU effi-
ciency and from the solution quality standpoint.

Keywords: Randomized search · Quantum circuit compilation ·
Planning · Scheduling · Optimization

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Dovier et al. (Eds.): AIxIA 2022, LNAI 13796, pp. 374–386, 2023.
https://doi.org/10.1007/978-3-031-27181-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27181-6_26&domain=pdf
http://orcid.org/0000-0003-4370-7156
http://orcid.org/0000-0003-2420-4713
http://orcid.org/0000-0001-5630-7173
http://orcid.org/0000-0002-8748-9632
https://doi.org/10.1007/978-3-031-27181-6_26

Quantum Circuit Compilation for the Graph Coloring Problem 375

1 Introduction

Quantum algorithms process information represented as qubits, the basic unit
of quantum information, and quantum operations (called gates) are the building
blocks of quantum algorithms. In order to be run on real quantum comput-
ing hardware, quantum algorithms must be compiled into a set of elementary
machine instructions (or gates). Since currently available quantum devices suffer
a number of technological problems such as noise and decoherence, it is important
that the process that carries out the quantum computation be somehow adapted
to the physical limitations of the quantum hardware of interest, by means of a
proper compilation.

For practical applications, it is essential to make quantum computation able
to tackle problem instances of more and more realistic size. To this aim, the
ability to produce compiled quantum circuits of good quality is of paramount
importance. In this paper, we focus our efforts on the so-called Quantum Alter-
nate Operator Ansatz (QAOA) algorithms [9] applied on the gate-model noisy
intermediate-scale quantum (NISQ) processor units [18]. Our approach intends
to improve over the compilation algorithms employed in the Qiskit quantum
computing software development kit [1], and devise solutions that are easily
adaptable to different classes of problems. In the NISQ era, the leading quan-
tum processors are characterized by about 50 to a few hundred qubits but are
not advanced enough to reach fault tolerance, nor large or sophisticated enough
to continuously implement quantum error correction. The term “noisy” refers to
the fact that quantum processors are very sensitive to the environment and may
lose their quantum state due to quantum decoherence. The term “intermediate-
scale” refers to the relatively small number of qubits and moderate gate fidelity.
The term NISQ algorithms refers to algorithms designed for NISQ quantum
processors. For example, the Variational Quantum Eigensolver (VQE) or the
Quantum Alternate Operator Ansatz (QAOA) (and its sub-class, the Quan-
tum Approximate Optimization Algorithm [6,8]) are hybrid algorithms that use
NISQ devices but reduce the calculation load by implementing some parts of the
algorithm in usual classical processors.

Usually, NISQ algorithms require error mitigation techniques to recover use-
ful data, which however make use of precious qubits to be implemented. Thus, the
creation of a computer with tens of thousands of qubits and sufficient error cor-
rection capabilities would eventually end the NISQ era. These “beyond-NISQ”
devices would be able, for example, to implement Shor’s algorithm, for very large
numbers, and break RSA encryption. Until that point however, the need to pro-
duce circuits runnable in the current (or near-future) quantum architectures
in a reasonably reliable manner (i.e., counting on noise minimization techniques
rather than on error-correcting techniques) will stand. Hence, the need to provide
quantum circuit compilation procedures that minimize the effects of decoherence
by minimizing the circuit’s depth.

In this work, we investigate the performance of an upgraded version of the
greedy randomized search (GRS) technique [10,16,19] originally introduced in
[17] applied to the problem of compiling quantum circuits to emerging quantum

376 A. Oddi et al.

hardware. In particular, we experiment on a set of benchmark instances belong-
ing to the Quantum Alternate Operator Ansatz (QAOA) class tailored for the
Graph Coloring problem, and devised to be executed on top of a hardware archi-
tecture inspired by Rigetti Computing Inc. [20]. We compare our algorithm’s per-
formance against the SABRE compiler [13], one of the best compilers present in
the Qiskit framework, and demonstrate the superiority of our approach.

The paper is organized as follows. Section 2 provides some background infor-
mation. Section 3 formally describes the problem, whereas Sect. 4 describes the
proposed heuristic solving algorithms and the Greedy Randomised Search app-
roach. Finally, an empirical comparison with the results obtained from the
SABRE compiler [1] and some conclusions close the paper.

2 Background

Quantum computing is based on the manipulation of qubits rather than conven-
tional bits; a quantum computation is performed by executing a set of quantum
gates on the qubits. A gate whose execution involves k qubits is called k-qubit
quantum gate. Current NISQ devices only allow the direct execution of 1-qubit
and 2-qubit quantum gates. In order to be executed, a quantum circuit must be
mapped on a quantum chip which determines the circuit’s hardware architec-
ture specification [14]. The chip can be seen as an undirected multigraph whose
nodes represent the qubits (quantum physical memory locations) and whose
edges represent the types of gates that can be physically implemented between
adjacent qubits of the physical hardware (see Fig. 1 as an example of three chip
topologies of increasing size). Since a 2-qubit gate requiring two specific qstates
can only be executed on a pair of adjacent (NN) qubits, the required qstates
must be made nearest-neighbors prior to gate execution. NN-compliance can be
obtained by adding a number of swap gates so that every pair of qstates involved
in the quantum gates can be eventually made adjacent, allowing all gates to be
correctly executed.

Figure 2 shows an example of quantum circuit that only uses the first three
qubits of the chip (N = 8) of Fig. 1, which assumes that qstates q1, q2 and q3
are initially allocated to qubits n1, n2 and n3. The circuit is composed of four
generic 2-qubit gates (i.e., CNOT gates) and one generic 1-qubit gate (i.e., the
Hadamard gate). Note that the circuit is not NN-compliant as the last gate
involves two qstates resting on to two non-adjacent qbits (n1 and n3). The right
side of Fig. 2 shows the same circuit made NN-compliant through the insertion
of a swap gate.

In this work, we tackle the compilation problem of quantum circuit following
a scheduling-oriented formulation, as described in the next sections. In particu-
lar, our approach is related to a body of heuristic efforts available in the current
literature, see [11,12] for two relatively recent representative works. Even though
these papers pursue the same objective, i.e., optimizing the realization of nearest-
neighbor compliant quantum circuits, they focus on quantum circuits charac-
terized by pre-ordered non-commutative gates. On the contrary, our approach

Quantum Circuit Compilation for the Graph Coloring Problem 377

Fig. 1. Three quantum chip designs characterized by an increasing number of qubits
(N = 8, 21, 40) inspired by Rigetti Computing Inc. Every qubit is located at a different
location (node), and the integers at each node represent the qubit’s identifier.

leverages the parallel nature of the considered planning/scheduling problem,
and proposes a greedy randomized algorithm that exploits gate commutativity
through a heuristic ranking function for quantum gate selection.

3 The QCC Problem

The problem tackled in this work consists in compiling a given quantum circuit
on a specific quantum hardware architecture. To this aim, we focus on the Quan-
tum Alternating Operator Ansatz (QAOA) framework [9] a generalization of the
Quantum Approximate Optimization Algorithm (QAOA) circuits [6,8], a class
of hybrid quantum algorithms used in the literature to solve problems like the
Max-Cut, while the Graph Coloring problem has received much less attention.
The quantum hardware architecture we consider is inspired by the one proposed
by Rigetti Computing Inc. [20]. The quantum circuits that solve the bench-
mark problems considered in this work are characterized by a high number of
commuting quantum gates (i.e., gates among which no particular order is super-
imposed) that allow for great flexibility and parallelism in the solution, which
makes the corresponding optimization problem very interesting and allows for
an a significant depth minimization potential to limit circuit’s decoherence [21].

The rest of this section is devoted to: (i) describing the Graph Coloring
problem and (ii) providing a formulation of the Quantum Circuit Compilation
Problem (QCCP).

378 A. Oddi et al.

Fig. 2. Example of quantum circuit: (a) not NN-compliant; (b) NN-compliant through
the insertion of a swap gate between qbits n1 and n2 just before the last gate, which
exchanges the position of their respective qstates. It is implicitly supposed that at the
beginning, the i-th qstate is resting on the i-th qubit.

3.1 The Graph Coloring Problem

Given a graph G(V,E) with n = |V | nodes and m = |E| edges, the objective
is to maximize the number of edges in E that have end points with different
colours, using for each node one among k available colours (k > 2), see Fig. 3a.
Similarly to the MaxCut problem case, the quantum state preparation circuit
within the QAOA solving framework relative to the Graph Coloring problem is
divided in the following ordered phases: (i) initial state preparation (INIT block),
(ii) phase-shift (P-S block), and (iii) mixing (MIX block) (see Fig. 3b).

Specifically, the initial state preparation phase serves the purpose of initializ-
ing the quantum states to represent a feasible initial assignment, and its objective
is to create a superposition with equal coefficients of all the kn possible color-
ings (WN state [4]), following the one-hot encoding [7]. According to the one-hot
encoding, k qubits are required to represent the color of each vertex, where all
but the i-th qubit (1 ≤ i ≤ k) are assigned the |0〉 value and the i-th qubit, which
is assigned the |1〉 value, indicates whether that node is coloured with the colour
i. As a consequence, in order to solve a Graph Coloring instance characterized
by n nodes and k colors following the one-hot encoding, it is necessary to use
quantum machines with at least nk qubits. More concretely, the feasible initial
state assignment is obtained through the utilization of a series of controlled-G(p)
rotations followed by an inverted CNOT (WN gates, see Fig. 3c). The analysis
of the specific circuitry necessary to develop the WN quantum state is beyond
the scope of this paper; the interested reader may refer to [4].

The P-S-phase is composed of a series of phase-shift (RZZ) gates whose task
is counting the edges colored with different colors. For this purpose, an RZZ

gate (see Fig. 3c) is applied to all the (k2 − k)/2 combinations of different colors
associated to the end-points of any edge of the graph to be colored. All the
phase-shift gates are commutative, so the compilation process does not need to
worry about their order in the final circuit.

Quantum Circuit Compilation for the Graph Coloring Problem 379

Finally, the MIX phase serves the purpose of implementing the rotation of all
the k colors on every node on the graph, thus potentially allowing any possible
color assignment. The basic component of the MIX phase is the RXXRY Y (or
MIXXY) gate (see Fig. 3c), applied to each vertex of the graph to be colored, and
for each pair of adjacent colors in the graph that represents the color rotation
on each vertex. The placement of the MIXXY gates in the compiled circuit
requires some attention, as these gates are only partially commutative (see the
next section).

Fig. 3. (a) An example of Graph Coloring instance with k = 3 colors. (b) Schema
of the quantum state preparation circuit within the QAOA framework, composed of
the initialization block, P-S- (phase-shift) block and MIX block. (c) Decomposition in
terms of unary and binary basic gates of the quantum gates that respectively compose
the three previous blocks.

Figure 3a shows an example of the graph G that represents a Graph Coloring
problem instance composed of 5 vertices, 8 edges and k = 3 colors. Figure 3b,
presents the quantum state preparation schema of the QAOA framework, typi-
cally composed of the initial qubit allocation block (state initialization), the P-S
(phase-shift) block and the MIX block. In the Graph Coloring problem case, each
of the previous three blocks are composed of particular quantum gate aggrega-
tions, the WN , the RZZ (phase-shift), and the MIXXY gates respectively, shown
in Fig. 3c. Generally, the P-S and the MIX blocks within the QAOA framework
can be executed along multiple passes (p) in order to obtain more accurate
results; in the context of this work, we consider quantum circuits composed of
two passes (p = 2).

3.2 Quantum Gate Compilation Problem

Formally, the Quantum Circuit Compilation Problem (QCCP) is a tuple P =
〈C0, L0, QM〉, where C0 is the input quantum circuit, representing the execution

380 A. Oddi et al.

of the Graph Coloring algorithm, L0 is the initial assignment of the i-th qstate
qi to the i-th qubit ni, and QM is a representation of the quantum hardware as
a multigraph.

– The input quantum circuit is a tuple C0 = 〈Q,VC0 , TC0〉, where: (1) Q =
{q1, q2, . . . , qN} is the set of qstates which, from a planning & scheduling
perspective, represent the resources necessary for each gate’s execution (see
for example [15], Chap. 15); (2) VC0 = WN ∪ P-S ∪ MIXXY ∪ {gstart, gend}
represents the set of state initialization, phase-shift and mix gate operations
that have to be scheduled. Note that all the previous gates are binary, in
the sense that they require two qstates. Note also that gstart and gend are
two fictitious reference gate operations requiring no qstates. The execution
of every quantum gate requires the uninterrupted use of the involved qstates
during its processing time, and each qstate qi can process at most one quan-
tum gate at a time. (3) Finally, TC0 is a set of simple precedence constraints
imposed on the WN , P-S, MIXXY and {gstart, gend} sets, such that: (i) each
gate in the three sets WN , P-S, MIXXY occurs after gstart and before gend;
moreover, within the same pass: (ii) every P-S gate must follow any WN gate
with which it shares a qstate; (iii) any MIXXY gate must follow any P-S
gate with which it shares a qstate; (iv) all the P-S are totally commutative;
(v) a partial ordering exists in the MIXXY set, as follows: the MIXXY is
initially partitioned in two sets called MIXodd and MIXeven depending on
the numbering of their initial qstate; all the gates mix ∈ MIXodd can com-
mute as they have no qstate in common, and the same applies to all the
gates mix ∈ MIXeven, while there exists a precedence imposed between a
mix ∈ MIXodd and a mix ∈ MIXeven if and only if they share at least one
qstate.
Between two consecutive passes, no P-S gate that belongs to the i+1-th pass
can be executed before any MIXXY gate that belongs to the i-th pass if they
share at least one qstate.

– L0 is the initial assignment at the time origin t = 0 of qstates qi to qubits ni.
– QM is a representation of the quantum hardware as an undirected multi-

graph QM = 〈VN , EWN
, Ep-s, Eswap〉, where VN = {n1, n2, . . . , nN} is the

set of qubits (nodes), Ep-s, Eswap or EWN
is a set of undirected edges (ni, nj)

representing the set of adjacent locations the qstates qi and qj of the gates
p-s(qi, qj), swap(qi, qj) or WN (qi, qj) can potentially be allocated to. Figure 1
shows an example of quantum hardware.

A feasible solution is a tuple S = 〈SWAP, TC〉, which extends the initial
circuit C0 to a circuit CS = 〈Q,VCS

, TCS〉, such that VCS
= SWAP ∪ WN ∪

P-S ∪ MIX ∪ {gstart, gend} and TCS = TC0 ∪ TC where: (i) SWAP is a set of
additional swap(qi, qj) gates added to guarantee the adjacency constraints for
the set of WN , P-S and MIXXY gates, and (ii) TC is a set of additional simple
precedence constraints such that:

– for each qstate qi, a total order �i is imposed among the set Qi of operations
requiring qi, with Qi = {op ∈ WN ∪P-S∪ MIXXY ∪ SWAP : op requires qi};

Quantum Circuit Compilation for the Graph Coloring Problem 381

Algorithm 1. Greedy Randomized Search
Require: An problem P , stop criterion

Sbest ← CompileCircuit(P)
while (stopping criterion not satisfied) do

S ← CompileCircuit(P)
if (depth(S) < depth(Sbest)) then

Sbest ← S
end if

end while
return (Sbest)

– all the wN (qi, qj), p-s(qi, qj), mixXY (qi, qj) and swap(qi, qj) gate operations
are allocated on adjacent qubits in QM ;

– the graph 〈VCS
, TCS〉 does not contain cycles.

Given a solution S, a path between the two fictitious gates gstart and gend is a
sequence of gates gstart, op1, op2, . . . , opk, gend, with opj ∈ WN∪P-S∪MIXXY ∪
SWAP , such that gstart � op1, op1 � op2, . . . , opk � gend ∈ TC0 ∪ TCS . The
length of the path is the number of all the path’s gates and depth(S) is the
length of the longest path from gstart to gend. An optimal solution S is a feasible
solution characterized by the minimum depth.

4 A Greedy Randomized Search Algorithm

In this section we provide a detailed description of the Greedy Randomized Search
(GRS) procedure used to compile the circuit introduced in previous Sect. 3. GRS
has traditionally proved to be a very effective method for the resolution of com-
plex optimization problems (such as the QCCP), as it realizes a simple optimiza-
tion process that quickly guides the search towards good solutions [10,16,19]).
The GRS is particularly useful in cases where a high-quality solution is needed
in a relatively short time. Among other applications, it is particularly suitable
for constraint-based scheduling problems; since the QCCP can be reduced to a
Planning and Scheduling (P&S) problem [17,21].

Algorithm 1 depicts the complete randomized search algorithm for generating
a near-optimal solutions, which is designed to invoke theCompileCircuit() pro-
cedure until a stop criterion is satisfied. It essentially realizes an optimization cycle
in which a new solution S is computed at each iteration through the Compile-
Circuit() algorithm, and its depth (depth(S)) is compared with the best depth
found so far (depth(Sbest)) in the iterative process. In case depth(S) is smaller than
depth(Sbest), then the current solution S becomes the new best solution Sbest. The
optimization process continues until a stopping condition (generally a max time
limit) is met, where the GRS procedure returns the best solution found. As can
be readily observed, the efficacy of the GRS mainly depends on the efficacy of the

382 A. Oddi et al.

Algorithm 2. Compile Circuit
Require: A problem P = 〈C0, L0, QM〉

S ← InitSolution(P);
t ← 0
while not all the P-S and MIX operations are inserted in S do

op ← SelectExecutableGate(P , S, t)
if op �= nil then

S ← InsertGate(op, S, t)
else

t ← t + 1
end if

end while
return S

CompileCircuit() procedure (described in the following section), which has the
task of synthesizing increasingly better solutions.

4.1 Compile Circuit Algorithm

Algorithm 2 is a randomized algorithm, it operates on macro-gates containing
primitive gates that use two qstates at most. Indeed, Algorithm 2 is in itself a
heuristically-based iterative algorithm that implements a constructive methodol-
ogy where a solution is built from scratch using a randomized ranking heuristic.
This heuristic returns a ranking among the gates that takes into account the
“neighbouring cost” of all the gates that have yet to be inserted in the solution.
At each iteration, a subset of gates that guarantee the fastest realization of the
neighbouring conditions of all the remaining gates is generated and one gate is
selected at random from this subset, for insertion in the current partial solution.

Algorithm 2 takes as input a QCCP problem P = 〈C0, L0, QM〉, and pro-
ceeds by chronologically inserting in the partial solution S one gate operation
at a time until all the gates in the set WN ∪ P-S ∪ MIXXY are in S. Let
op ∈ Qi be a general gate operation that involves qstate qi, we define a chain
chi = {op ∈ Qi : op ∈ S} as the set of gates involving qi and currently present
in the partial solution S, among which a total order is imposed. Let us also
define last(chi) as the last gate in the chain chi according to the imposed
total order and nlast(chi) as the QM node at which the last operation in
the chain chi terminates its execution. Finally, we define the state of a par-
tial solution as follows. Given a partial solution S, the state LS is the tuple
LS = 〈nlast(ch1), nlast(ch2), . . . , nlast(chN)〉 of QM locations (nodes) where
each last chain operation last(chi) terminates its execution. The first step of
Algorithm 2 is the initialisation of the partial solution S; in particular, it sets
the current state LS to the init value L0 by initialising the locations of every
qstate qi (i.e., for every chain chi) at the time origin1 t = 0.

1 It is implicitly supposed that at the beginning, the i-th qstate is initialized at the
i-th location.

Quantum Circuit Compilation for the Graph Coloring Problem 383

The core of the algorithm is the function SelectExecutableGate(), which
returns at each iteration either one of the gates in the set WN ∪ P-S ∪ MIXXY

or a swap(qi, qj) gate in the SWAP set necessary to guarantee NN-compliance
as described in the previous Sect. 3.

Indeed, it is a random algorithm targeted to minimize the solution depth, in
particular its implementation is inspired to [3], such that the selection of a gate
is based on two criteria: (i) the earliest start time gate selection (a value corre-
lated to depth minimization); (ii) a metric to minimize the number of swaps. At
each iteration, SelectExecutableGate(P , S, t) selects the next gate to be
inserted in the solution by means of the InsertGate(op, S, t) method. In all
time instants t where no quantum gate can be selected for insertion, the current
time t is increased (t = t+1). In particular, SelectExecutableGate() resem-
bles Algorithm 3 (see [2], page 8) with the following important difference: while
the cited Algorithm 3 generates a set of eligible gates Ω and then selects a gate at
random on the basis the proposed pheromone model (see [2]), the SelectEx-
ecutableGate() procedure chooses one gate at random following the same
strategy proposed in [17], so that a set of equivalent gates Ω∗ is extracted from
Ω by identifying one gate op∗ associated with the minimal lexicographic heuris-
tic value Δsum(op∗) (see [17] for further details on its definition) and by con-
sidering equivalent to op∗ all the gates op such that Δsum(op) = Δsum(op∗),
Ω∗ = {op : op ∈ Ω,Δsum(op) = Δsum(op∗)}. A full description of the proce-
dure SelectExecutableGate() is given in [2]. The randomly selected gate
op ∈ Ω∗ is inserted in the partial solution S at the earliest feasible time as the
last operation of the chains relative to the qstates involved in op: last(chi) ← op;
subsequently, the state LS of the partial solution is updated accordingly. Algo-
rithm 2 proceeds until a complete solution is built.

5 Experimental Evaluation

We have implemented and tested the proposed ideas leveraging the Qiskit open-
source quantum-related framework [1]. Qiskit is a known open-source Software
Development Kit for working with quantum computers at the level of pulses,
circuits and application modules. It allows for the creation, modification, sim-
ulation, and optimization of quantum circuits on a set of both simulated and
real quantum architectures, as well as allowing the possibility to test mapping
algorithms on arbitrary quantum hardware topologies.

Our contribution for this study focuses on the process of quantum circuit
compilation with reference to a given hardware topology with the aim of mini-
mizing the circuit’s depth. The proposed procedure was implemented in Python
in order to allow its integration within Qiskit. The performance of the algorithm
was tested on a benchmark set specifically created to represent the application
of quantum computing to the Graph Coloring problem.

5.1 Setup

The benchmark set for the graph colouring circuits is obtained as an extension
of part of the N8 benchmark set for the Max-Cut problem [21]. Following the

384 A. Oddi et al.

Fig. 4. Comparison between GRS and SABRE

approach in [21], the graph G for which the optimal coloring assignment needs
to be found are randomly generated as Erdös-Rényi graphs [5]. In particular,
100 graphs are generated for the N = 8 qubit case. Half (50 problems) are
generated by choosing N of N(N − 1)/2 edges over 7 qstates randomly located
on the circuit of size 8 qubits (referred as ‘Utilization’ u = 90%). The other
50 problems are generated by choosing N edges over 8 qstates - referred as
utilization u = 100%). For the graph colouring benchmark, we only consider
the N8 problems with utilization u = 100%, and such that the connected graph
contains exactly 7 nodes, assigning three colours (k = 3) to each node of the
graph, for a total of 22 graph instance problems. Hence, quantum processors
with at least 21 qubits (7 nodes times 3 colours) are necessary for the execution
of such instances (see Sect. 3.1). More specifically, we consider a Rigetti-inspired
21 qubit processor and set p = 2 (two PS-mixing passes).

5.2 Results

The Python version of the proposed greedy randomized search (GRS) algorithm
compiles a QAOA circuit with the following choices: (i) a one-hot encoding to
represent the graph-coloring problems [7], and (ii) a decomposition procedure
for the QAOA blocks based on the identification of odd and even MIXXY gates
[9,22], as explained in Sect. 3.2.

Figure 4 compares the proposed GRS algorithm with the SABRE com-
piler available in Qiskit (SabreSwap), launched according to its three different

Quantum Circuit Compilation for the Graph Coloring Problem 385

heuristics (basic, lookahead, and decay). The algorithms are compared with
respect to the depth of the compiled circuits (the circuit’s depth represents the
longest path in the compiled circuit graph). For each algorithm, a CPU time
limit of 10 seconds is imposed on each run.

From the results in Fig. 4 it is clear that GRS outperforms SABRE in all the
latter’s execution modes. One possible explanation for the superiority of GRS is
its capability to better exploit the commutativity rules of the gates in the QAOA-
based Graph Coloring quantum circuit instances. Indeed, our algorithm imposes
no particular order in the selection of the WN , P-S, and MIXXY macro-gates
as the solution is built, beyond the precedence constraints originally present
in the input quantum circuit, contained in the TC0 set described in Sect. 3.2.
As opposed to GRS, SABRE performs the SWAP addition process reasoning
directly on the circuit expressed in terms of basic gates, and it is not capable of
changing the order of such gates after the circuit is loaded.

6 Conclusions

This study focused on quantum computing as an accelerator for optimization
problem resolution. We have considered the compilation techniques for Noisy
Intermediate-Scale Quantum (NISQ) devices [18]. In particular, we have explored
the Quantum Alternating Operator Ansatz (QAOA) framework [9] for solving
optimization problems and studied the quantum circuits for the Graph Coloring
reference problem. We have proposed a greedy randomized search (GRS) algo-
rithm targeted at optimizing the compilation of quantum circuits and defined an
original benchmark set for testing compilation algorithms. On the basis of our
empirical validation the proposed GRS algorithm outperforms other compilation
algorithms available in the Qiskit framework.

Acknowledgement. This work is the result of an Ariadna study, a joint collabora-
tive research project with the Advanced Concepts Team (ACT) of the European Space
Agency (ESA): Meta-Heuristic Algorithms for the Quantum Circuit Compilation Prob-
lem, ESA Contract No. 4000134995/21/NL/GLC/my.

References

1. Qiskit: an open-source framework for quantum computing (2021). https://doi.org/
10.5281/zenodo.2573505

2. Baioletti, M., Rasconi, R., Oddi, A.: A novel ant colony optimization strategy for
the quantum circuit compilation problem. In: Zarges, C., Verel, S. (eds.) EvoCOP
2021. LNCS, vol. 12692, pp. 1–16. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-72904-2 1

3. Chand, S., Singh, H.K., Ray, T., Ryan, M.: Rollout based heuristics for the quan-
tum circuit compilation problem. In: 2019 IEEE Congress on Evolutionary Com-
putation (CEC), pp. 974–981 (2019)

4. Cruz, D., et al.: Efficient quantum algorithms for GHZ and w states, and imple-
mentation on the IBM quantum computer. Adv. Quant. Technol. 2(5–6), 1900015
(2019)

https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.1007/978-3-030-72904-2_1
https://doi.org/10.1007/978-3-030-72904-2_1

386 A. Oddi et al.

5. Erdos, P., Renyi, A.: On the evolution of random graphs. Publ. Math. Inst. Hun-
gary. Acad. Sci. 5, 17–61 (1960)

6. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algo-
rithm. arXiv preprint arXiv:1411.4028 (2014)

7. Fuchs, F.G., Kolden, H.Ø., Aase, N.H., Sartor, G.: Efficient encoding of the
weighted max $$k$$-cut on a quantum computer using QAOA. SN Comput. Sci.
2(2), 89 (2021). https://doi.org/10.1007/s42979-020-00437-z

8. Guerreschi, G.G., Park, J.: Gate scheduling for quantum algorithms. arXiv preprint
arXiv:1708.00023 (2017)

9. Hadfield, S., Wang, Z., O’Gorman, B., Rieffel, E., Venturelli, D., Biswas, R.: From
the quantum approximate optimization algorithm to a quantum alternating oper-
ator ansatz. Algorithms 12(2), 34 (2019)

10. Hart, J., Shogan, A.: Semi-greedy heuristics: an empirical study. Oper. Res. Lett.
6, 107–114 (1987)

11. Kole, A., Datta, K., Sengupta, I.: A heuristic for linear nearest neighbor realization
of quantum circuits by swap gate insertion using n-gate lookahead. IEEE J. Emerg.
Sel. Topics Circuits Syst. 6(1), 62–72 (2016). https://doi.org/10.1109/JETCAS.
2016.2528720

12. Kole, A., Datta, K., Sengupta, I.: A new heuristic for n-dimensional nearest neigh-
bor realization of a quantum circuit. IEEE Trans. Comput. Aided Des. Integr. Cir-
cuits Syst. 37(1), 182–192 (2018). https://doi.org/10.1109/TCAD.2017.2693284

13. Li, G., Ding, Y., Xie, Y.: Tackling the qubit mapping problem for NISQ-
era quantum devices. CoRR abs/1809.02573 (2018). https://arxiv.org/1809.02573
arxiv.org/abs/1809.02573

14. Maslov, D., Falconer, S.M., Mosca, M.: Quantum circuit placement: optimizing
qubit-to-qubit interactions through mapping quantum circuits into a physical
experiment. In: Proceedings of the 44th Annual Design Automation Conference,
DAC’07, pp. 962–965. ACM, New York, NY, USA (2007). https://doi.org/10.1145/
1278480.1278717

15. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Mor-
gan Kaufmann Publishers Inc., San Francisco (2004)

16. Oddi, A., Smith, S.: Stochastic procedures for generating feasible schedules. In:
Proceedings 14th National Conference on AI (AAAI-97), pp. 308–314 (1997)

17. Oddi, A., Rasconi, R.: Greedy randomized search for scalable compilation of quan-
tum circuits. In: van Hoeve, W.J. (ed.) Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, pp. 446–461. Springer Interna-
tional Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2 32

18. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79
(2018). https://doi.org/10.22331/q-2018-08-06-79

19. Resende, M.G., Werneck, R.F.: A hybrid heuristic for the p-median problem. J.
Heuristics 10(1), 59–88 (2004)

20. Sete, E.A., Zeng, W.J., Rigetti, C.T.: A functional architecture for scalable quan-
tum computing. In: 2016 IEEE International Conference on Rebooting Computing
(ICRC), pp. 1–6 (2016).https://doi.org/10.1109/ICRC.2016.7738703

21. Venturelli, D., Do, M., Rieffel, E., Frank, J.: Temporal planning for compilation of
quantum approximate optimization circuits. In: Proceedings of the 26th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-17, pp. 4440–4446 (2017).
https://doi.org/10.24963/ijcai.2017/620

22. Wang, Z., Rubin, N.C., Dominy, J.M., Rieffel, E.G.: xy mixers: analytical and
numerical results for the quantum alternating operator ansatz. Phys. Rev. A 101,
012320 (2020)

http://arxiv.org/abs/1411.4028
https://doi.org/10.1007/s42979-020-00437-z
http://arxiv.org/abs/1708.00023
https://doi.org/10.1109/JETCAS.2016.2528720
https://doi.org/10.1109/JETCAS.2016.2528720
https://doi.org/10.1109/TCAD.2017.2693284
https://arxiv.org/1809.02573
http://arxiv.org/1809.02573
https://doi.org/10.1145/1278480.1278717
https://doi.org/10.1145/1278480.1278717
https://doi.org/10.1007/978-3-319-93031-2_32
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1109/ICRC.2016.7738703
https://doi.org/10.24963/ijcai.2017/620

	Quantum Circuit Compilation for the Graph Coloring Problem
	1 Introduction
	2 Background
	3 The QCC Problem
	3.1 The Graph Coloring Problem
	3.2 Quantum Gate Compilation Problem

	4 A Greedy Randomized Search Algorithm
	4.1 Compile Circuit Algorithm

	5 Experimental Evaluation
	5.1 Setup
	5.2 Results

	6 Conclusions
	References

