
Transformer Based Motion In-Betweening

Pavithra Sridhar(B), V. Aananth, Madhav Aggarwal, and R. Leela Velusamy

National Institute of Technology - Tiruchirappalli, Tiruchirappalli 620015, TN, India

pavisri99@gmail.com, leela@nitt.edu

Abstract. In-betweening is the process of drawing transition frames
between temporally-sparse keyframes to create a smooth animation
sequence. This work presents a novel transformer-based in-betweening
technique that serves as a tool for 3D animators. We first show that
this problem can be represented as a sequence-to-sequence problem and
introduce Tween Transformers - a model that synthesizes high-quality
animations using temporally-sparse keyframes as input constraints.

We evaluate the model’s performance via two complementary meth-
ods - quantitative and qualitative evaluation. The model is compared
quantitatively with the state-of-the-art models using LaFAN1, a high-
quality animation dataset. Mean-squared metrics like L2P, L2Q, and
NPSS are used for evaluation. Qualitatively, we provide two straightfor-
ward methods to assess the model’s output. First, we implement a cus-
tom ThreeJs-based motion visualizer to render the ground truth, input,
and output sequences side by side for comparison. The visualizer renders
custom sequences by specifying skeletal positions at temporally-sparse
keyframes in JSON format. Second, we build a motion generator to gen-
erate custom motion sequences using the model.

Keywords: Motion in-betweening · Kinematics · Transformer ·
LAFAN1

1 Introduction

Realistic and accurate animation generation is an important but challeng-
ing problem with many applications, including animating 3D characters in
films, real-time character motion synthesis in Video Games, and Educational
applications. One widely used method to generate animations is motion in-
betweening, commonly known as tweening. It generates intermediate frames
called in-betweens between two temporally sparse keyframes to deliver an illusion
of movement by smoothly transitioning from one position to another.

In traditional animation pipelines, animators manually draw motion frames
between a set of still keyframes indicative of the most critical positions the body
must be at during its motion sequence. Recent improvements include Motion
Capture (MOCAP) technologies [9] and query-based methods [15,19] to generate
animations. However, MOCAP technology is expensive, and human-drawn ani-
mations are preferred. With the rise of computer-aided animation, deep learning-
based algorithms have enabled the smooth generation of keyframes from sparse
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Dovier et al. (Eds.): AIxIA 2022, LNAI 13796, pp. 299–312, 2023.
https://doi.org/10.1007/978-3-031-27181-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27181-6_21&domain=pdf
https://doi.org/10.1007/978-3-031-27181-6_21


300 P. Sridhar et al.

frames by learning from large-scale motion capture data. Existing models cur-
rently use Recurrent Neural Networks (RNNs) [7,10], Long Short Term Memory
Networks (LSTMs) [8], and BERT-based models [3,4].

The complexity of generating character animations includes

1. Replicating complex human behavior to create realistic characters
2. Predominantly used transition generation methods are either expensive or

inefficient
3. RNNs/LSTMs, though they can capture long-term dependencies, cannot be

parallelized due to the sequential processing of input, resulting in longer train-
ing times

4. RNNs/LSTMs do not support transfer learning making it hard to use pre-
trained models

Inspired by the concept of self-attention to capture long-term dependencies,
this paper proposes a transformer-based model to generate realistic animation
sequences. Model generalization constitutes the main effort this framework puts
into improving the performance of machine learning predictions. This would be
analogous to large text transformer models like GPT-3 [2]. This work not only
eases the effort put in by the animators but also helps researchers by unblock-
ing transfer learning for the task of in-betweening, thus introducing a level of
generalization into the model.

Overall, the contributions in this paper can be summarized as follows:1

1. Represent motion in-betweening as a sequence to sequence problem where
the input sequence consists of keyframes and the output sequence represents
the complete and smoothed motion sequence.

2. Set a baseline for the input sequence by filling the frames between the
keyframes with interpolated values.

3. Experiment with the efficiency and viability of using transformers to achieve
sequence to sequence translation for human motion and compare them with
the existing results.

4. Evaluate the model against other state-of-the-art models [4,8,16] for the same
task using L2P, L2Q, and NPSS metrics.

5. Build a visualizer and a motion generator that qualitatively evaluates the
output of the model in comparison to the ground truth and input sequences.

2 Related Work

The problem is analogous to machine translation, where sequence-to-sequence
(seq2seq) architectures are prevalent [1,18,21]. “Encoder-only” models like
BERT [3] are designed to learn the context of a word based on all its surround-
ings (left and right of the word), making them suitable for feature extraction,
sentiment classification, or span prediction tasks but not for generative tasks like
1 Code can be found in https://github.com/Pavi114/motion-completion-using-

transformers.

https://github.com/Pavi114/motion-completion-using-transformers
https://github.com/Pavi114/motion-completion-using-transformers


Transformer Based Motion In-Betweening 301

translation or sequence completion. The pre-training objectives used by encoder-
decoder transformers like T5 [17] include a fill-in-the-blank task where the model
predicts missing words within a corrupted piece of text that is analogous to in-
betweening when motion sequences replace sentences.

Early works in human motion prediction include using Conditional Restricted
Boltzmann Machines (RBMs) [20] to encode the sequence information in
latent variables and predict using decoders. More recently, many RNN-based
approaches like Encoder-Recurrent-Decoder (ERD) networks [5] propose sepa-
rating spatial encoding and decoding from the temporal dependencies. Other
recent approaches investigate new architectures like transformers [13] and loss
functions to improve human motion prediction further [6,12].

Initial approaches in motion in-betweening focused on generating missing
frames by integrating keyframe information with spacetime models [23]. The
following widely successful method for in-betweening adopted a probabilistic
approach, framing it as a Maximum A posterior Optimization problem (MAP)
[14], dynamical Gaussian process model [22], or Markov models with dynamic
auto-regressive forests [11]. The latest deep learning approaches include works
by Holden et al. [10], and Harvey et al. [7] and helped RNNs dominate this field.
The latest work using RNN focuses on augmenting a Long Short Term Mem-
ory(LSTM) based architecture with time-to-arrival embeddings and a scheduled
target noise vector, allowing the system to be robust to target distortions [8].
Some recent work includes BERT-based encoder-only models [3,4] that predict
the entire sequence in one pass and deep learning approaches for interpolation
[16]. However, BERT-based models will be less effective than encoder-decoder
models for generative tasks.

3 Methodology

The following sections detail the model architecture, Tween Transformers, to
perform motion frame completion similar to sentence completion.

3.1 Tween Transformers (TWTR)

The architecture of Tween Transformers (TWTR) consists of four main compo-
nents:

1. Input masking module
2. Input encoding neural network that encodes each motion sequence and con-

verts the input to a set of sequential tokens
3. Transition generation network that includes a standard transformer compris-

ing encoder and decoder modules with feed-forward and multi-head attention
networks.

4. Output decoding neural network that computes a sequence of character
motion.



302 P. Sridhar et al.

Fig. 1. Model architecture of TWTR

While the transition generation module learns the temporal dependencies, the
input and output encoding networks aim to learn spatial dependencies between
the different body joints for encoding and decoding motion sequences. Finally,
the model also uses multiple losses, including forward kinematics loss, to improve
the realism of the generated sequences. It is assumed that the input has both
position (x, y, z) and orientation (q0, q1, q2, q3) variables. Therefore, a single
pose can be defined with a root position coordinate P ∈ R3 and a quaternion
matrix Q ∈ RJ×4, where J represents the joint number of the input pose (here,
22). The following sections discuss the model’s architecture in detail, as indicated
in Fig. 1.

Input Masking. There are multiple keyframe gaps k specified in the model
configuration. The frames belonging to the keyframe gap are filled with interpo-
lated values derived from the frames constituting the two ends of the keyframe
gap. Two kinds of interpolations are carried out and compared. They are imple-
mented in the following ways:

– positions and rotations are linearly interpolated
– positions are linearly interpolated while rotations are spherically interpolated



Transformer Based Motion In-Betweening 303

Input Encoding. As seen in Fig. 1, model encoding has three modules - Input
Sequence Encoding, Positional Encoding, and Keyframe Embedding.

1. Input Sequence Encoding:
The input sequence encoder network is a set of three Linear encoders fully
connected to two-layer Feed-Forward Networks (FFN) with ReLU activations.
The input sequence encoder takes in the global root position root p, local
quaternions q, and global root velocity root v and outputs a set of “sequential
tokens”. The hidden sizes of the FFNs are 16, 8, and 8 for q, root p, and
root v, respectively. The embedding hyperparameter defines the output sizes
of the FFNs. The outputs from the FFNs are concatenated to form the output
of the input sequence encoding network. Equation (1) describes the Linear
Encoder, and Eq. (2) describes the Input Sequence Encoder.

L(x) = Linear(ReLU(Linear(x))) (1)

I(root p, root v, q) = Lp(root p) ‖ Lv(root v)
‖Lq(q1) ‖ ... ‖ Lq(qJ )

(2)

where root p ∈ R3, root v ∈ R3, qi ∈ R4, I denotes the Input Sequence
Encoder, and L denotes the Linear Encoder.

2. Positional Encoding: Positional encoding, a popular method introduced by
Vaswani et al. [21], involves adding a set of predefined sinusoidal and cosine
signals to introduce temporal knowledge to the transformer model. The posi-
tional encoding for source Zs = [ztta,2i] and target Zt = [ztta,2i] is computed
using Eq. (3)

ztta,2i = sin(
tta

basis2i/d
)

ztta,2i+1 = cos(
tta

basis2i/d
)

(3)

where tta is the number of timesteps until arrival and the basis component
influences the rate of change in frequencies along the embedding dimension
d. A basis of 10,000 is used.

3. Keyframe Embedding: Following previous works [4], the model incorporates
additive keyframe embeddings. The keyframe embeddings Ekf classify the
frames in the sequence into keyframes, unknown frames, and ignored frames.
They’re represented by learnable embedding vectors {ê0, ê1, ê2} respectively.
The keyframe embeddings are represented by Eq. (4), where etkf ∈ {ê0, ê1, ê2}
and T is the sequence length. The embeddings are added to the input
sequence, similar to positional encodings.

Ekf = [e1kf , e2kf , ..., eTkf ] (4)



304 P. Sridhar et al.

Transformer. A transformer consists of multiple encoder and decoder layers.
Each encoder includes a multi-head self-attention layer (MHSA) and a feed-
forward network (FFN), and each decoder consists of a masked multi-head self-
attention layer (MMHSA), multi-head attention layer (MHA) and a feed-forward
network. The attention function leveraged in the transformer maps a query and
a set of key-value pairs - all vectors - to an output. The processing of a single
attention head can be represented as follows:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (5)

where Q = WqA represents a query matrix, K = WkA represents a key matrix,
and V = WvA represents a value matrix. Wq, Wk, and Wv are the corresponding
weight matrices, and dk represents the dimension of the key matrix. The Query
matrix can be interpreted as the keyframe for which Attention is calculated. The
Key and Value matrices represent the keyframes that are “attended to”, i.e.,
how relevant that keyframe is to the query keyframe. In MMHSA, the target is
masked before applying the attention mechanism. All the attention outputs are
concatenated and sent to the FFN.

Output Decoding. The decoder takes in the concatenated “sequential tokens”
outputted by the Input Sequence Encoder and outputs the global root position
root p, local quaternions q, and global root velocity root v. To reverse engineer
the spatial dependencies, each of the three FFNs, one for each output, comprises
two linear layers with ReLU activation. The hidden sizes of the FFNs are the
same as in the Input Sequence Encoder, and the output sizes are defined by the
original dimensions of the three parameters. Equation (6) describes the Output
Decoder.

O(x) = (Lp(x[: dp]),Lv(x[dp : dp + dv), Q) (6)

Q =

⎡
⎢⎢⎣

Lq(x [ dp + dv : dp + dv + dq])
Lq(x [ dp + dv + dq : dp + dv + 2 × dq]

...
Lq(x [ dp + dv + (J − 1) × dq : dp + dv + J × dq]

⎤
⎥⎥⎦

where dp, dv, and dq are embedding dimensions for p, v, and q. x[i : j] represents
a tensor containing the values in x from the ith index to the (j − 1)th index. J
denotes the number of joints in the skeleton, Q ∈ RJ×4 denotes the tensor of
stacked quaternions, O denotes the Output Decoder, and L denotes the Linear
Encoder.

3.2 Loss Computation

Given a collection of predicted motion sequences and the ground truth, in-
betweening loss is computed as the scaled sum of two individual losses - Recon-
struction loss and Forward Kinematics (FK) loss.



Transformer Based Motion In-Betweening 305

L = αrLR + αfkLFK (7)

where αr and αFK are constants to balance the disparity of individual losses.
For training we use αr = 100 and αFK = 1.

Reconstruction Loss LR. Reconstruction loss evaluates the ability of the
model to “reconstruct” the target sequence from the input sequence. Recon-
struction loss accounts for the difference in output and target quaternions values
and is computed using an L1 norm. While Harvey et al. [8] compute and sum
reconstruction losses for q, x, and contacts, they acknowledge that the most
important component is q. Reconstruction loss is computed using Eq. (8).

LR =
1

NT

N−1∑
n=0

T−1∑
t=0

q̂tn − qtn (8)

where q̂tn is the rotational quaternion of the predicted motion sequence n at time
t. q refers to the ground truth quaternion. N refers to the number of sequences,
and T refers to the length of each motion sequence.

Forward Kinematics Loss LFK . Forward Kinematics loss compares the differ-
ence in the global positions of joints between the ground truth and the model’s
output. Forward Kinematics loss evaluates the ability of the model to “under-
stand” the relationships between relative angles and global positions. Although
the offsets of various joints in the skeleton are not provided to the model, it
learns to respect human geometry and maintain correct posture by minimizing
the Forward Kinematics loss. The Forward Kinematics loss is computed using
Eq. (9).

LFK = ||p̂global − pglobal||1 + ||q̂global − qglobal||1 (9)

where p̂global and q̂global can be derived from the local coordinates using Forward
Kinematics FK(p̂local, q̂local) and, similarly pglobal and qglobal can be derived
from the local coordinates using Forward Kinematics FK(plocal, qlocal).

3.3 Training

Following previous works [8,16], the entire dataset was split into windows of
maximum length Tmax = 65. To construct each batch, the number of start
keyframes are set to 10 and the number of end keyframes to 1. The number of
in-between frames is sampled from the range [5, 44] without replacement.

The weight associated with the number of in-between frames nin is set to be
inversely proportional to it, wnin

= 1
nin

. This prevents overfitting on the windows
with a large number of in-between frames. Shorter windows are sampled more
often as they are more abundant and hence harder to overfit. Therefore, the
number of unique non-overlapping sequences of a given total length 10+1+nin

is approximately inversely proportional to nin. Finally, given the total sampled
sequence length, the sequence start index is sampled uniformly at random in the
range [0, Tmax − (1 + 10 + nin)].



306 P. Sridhar et al.

Fig. 2. Stills from the Ground Truth, LERP, Model Output, and Smoothed Output
sequences at different timestamps for the action “Aiming2” performed by subject “Sub-
ject5”. Considering the frames at t = 20, it is clear that the output produced by our
model resembles the ground truth more than the interpolated sequence.

4 Setup and Experimental Results

4.1 Dataset

The publicly available Ubisoft La Forge Animation (LaFAN1) Dataset was used
for all the experiments. Introduced by Harvey et al. [8] in Ubisoft, LaFAN1
consists of general motion capture clips in high definition. The motion sequences
are in BVH format. The LaFAN1 dataset comprises five subjects, 77 sequences,
and 496,672 motion frames at 30 fps for a total of 4.6 h. There are around 15
themes, from everyday actions like walking, sprinting, and falling to uncommon
actions like crawling, aiming, and a few sports movements. Similar to other works
[4,8,16], all sequences of subject five were used for testing and benchmarking,
with the remaining used for training.

4.2 Evaluation Metrics

The model is evaluated against the L2P, L2Q, and NPSS metrics used in previous
studies on the subject five sequences of the LAFAN1 dataset. The L2P defines the
average L2 distances of the positions between the predicted motion sequence and
the ground truth sequence. Equation 10 shows the L2P calculation. Similarly, the
L2Q defines the average L2 distances of the global quaternions. A combination of
local quaternions, positions, and motion sequence properties is used to compute
these metrics. Equation 11 shows the L2Q calculation.

L2P =
1

NT

N−1∑
n=0

T−1∑
t=0

p̂tn − pn
t (10)



Transformer Based Motion In-Betweening 307

Fig. 3. Stills from the Ground Truth, LERP, Model Output, and Smoothed Output
sequences at different timestamps for the action “Dance2” performed by subject “Sub-
ject5”. The dance action is unconventional and full of seemingly random movements.
Considering the frames at t = 10, t = 20, and t = 30, the output produced by the
model is better at t = 10, the output produced by interpolation is better at t = 20,
and neither come close at t = 30.

L2Q =
1

NT

N−1∑
n=0

T−1∑
t=0

q̂tn − qn
t (11)

where q̂ is the rotational quaternion of the predicted motion sequence n at time
t. q refers to the ground truth quaternion. Similarly, p̂ refers to the position of
the predicted motion sequence p refers to the ground truth position. N refers to
the number of sequences, and T refers to the length of each motion sequence.

Normalized Power Spectrum Similarity (NPSS) is an approach comparing
angular frequencies with the ground truth. It is an Earth Mover Distance (EMD)
based metric over the power spectrum, which uses the squared magnitude spec-
trum values of the Discrete Fourier Transform coefficients. Equation (12) com-
putes the NPSS metric.

NPSS =

∑N−1
i=0

∑T−1
j=0 wi,j ∗ emdi,j∑N−1

i=0

∑T−1
j=0 wi,j

(12)

where emdi,j refers to the EMD distance, and wi,j refers to the weights.
Harvey et al. [8] state that the L2P metric is a better metric than any angular

loss for assessing the visual quality of transitions with global displacements as
it helps us weigh the positions of the bones and joints. Hence, they argue that
L2P is a much more critical metric than L2Q and NPSS.



308 P. Sridhar et al.

Fig. 4. Still from the motion generator

4.3 Data Preprocessing

First, the local position and orientation values from the BVH files provided in
the LaFAN1 dataset [7] are extracted. Twenty-two joints are considered for the
skeleton model. Forward Kinematics was used to compute the absolute positions
of each joint from the relative positions (relative to hip) given in the dataset.
Positions are modeled as standard matrices, and orientations are modeled using
quaternions. Further, global position and root velocity are computed from local
positions using Forward kinematics.

4.4 Hyperparameters

Most hyperparameters from previous baselines are retained to show the relative
improvement in performance using Transformers. This study presents a novel
hyperparameter comparison using different interpolation techniques - Linear and
Spherical, to compare the performance of several baseline studies. A batch size
of 64 for 100 epochs was used. Adam optimizer with a learning rate of 10−4

along with a constant dropout of 0.2 was utilized. Keyframe gaps of 5, 15, and
30 were tested to compare the performance of the transformer over higher frame
gaps.

4.5 Visualizer and Motion Generator

To qualitatively evaluate the model, a visualizer was built using Node and
ThreeJs that juxtaposed the ground truth, interpolated sequence, output
sequence, and a smoothed output sequence of the transformer model. The
model’s output is stored in JSON format and rendered using a custom web-
based visualizer. The visualizer was built from scratch using Typescript, NodeJs,
Express, and ThreeJs. Figures 2 and 3 show a sample output of the model gener-
ated using the visualizer. Further, the motion generator was built using Python,



Transformer Based Motion In-Betweening 309

Fig. 5. (a) Comparision of model performance at keyframe gap = 30 with three com-
monly used metrics - L2P, L2Q, and NPSS, (b) Comparison of L2P losses at various
keyframe gaps of the motion in-betweening methods included in this study, (c) Com-
parison of NPSS losses at various keyframe gaps of the motion in-betweening methods
included in this study, (d) Comparison of L2Q losses at various keyframe gaps of the
motion in-betweening methods included in this study.

Flask, Node, and ThreeJs using the visualizer module as a base. The motion gen-
erator allows a user to modify keyframes in a given motion sequence and generate
in-between frames for the same. The plugin consists of a backend Flask server
that uses an instance of our model to generate the in-between frames. Figure 4
shows a still from the motion generator where the stick model is animating a
generated custom motion sequence.

4.6 Inferences

As expected, SLERP performs better than LERP. However, it is observed that
the performance at 30 fps is almost comparable, as seen in Fig. 5a. This is because
the spherical motion becomes almost linear for very short timescales. As seen
in Table 1, it is inferred that the Tween Transformer model outperforms the
interpolation model and performs closely with the baseline models. Figures 5b,
5d, and 5c confirm that Tween Transformers follow a similar trend to that of



310 P. Sridhar et al.

Table 1. The Tween Transformer model is compared with baseline Motion In-
betweening methods using L2P, L2Q, and NPSS metrics for various sequence lengths.
The Interpolation based methods are included as part of the study. TT (Ours) refers
to the Tween Transformer model.

Length L2Q L2P NPSS

5 15 30 5 15 30 5 15 30

Zero Velocity 0.56 1.10 1.51 1.52 3.69 6.60 0.0053 0.0522 0.2318

SLERP 0.22 0.62 0.98 0.37 1.25 2.32 0.0023 0.0391 0.2013

TGrec 0.21 0.48 0.83 0.32 0.85 1.82 0.0025 0.0304 0.1608

TGcomplete 0.17 0.42 0.69 0.23 0.65 1.28 0.0020 0.0258 0.1328

SSMCTlocal 0.17 0.44 0.71 0.23 0.74 1.37 0.0019 0.0291 0.143

SSMCTGlobal 0.14 0.36 0.61 0.22 0.56 1.1 0.0016 0.0234 0.1222

Δ-Interpolator 0.11 0.32 0.57 0.13 0.47 1.00 0.0014 0.0217 0.1217

TT (Ours) 0.16 0.39 0.65 0.21 0.59 1.21 0.0019 0.0261 0.1358

other models. Experiments show that training is crucial to obtain a visually
smooth output. Moving Average Smoothing was observed to have minimal effect
on the output sequence as the model trains.

5 Conclusion

This work presents the Tween Transformer, a novel, robust, transformer-based
motion in-betweening technique that serves as a tool for 3D animators and
overcomes the challenges faced by existing RNN-based models [8,16], includ-
ing sequential training, capturing long-term dependencies, and transfer learn-
ing. The generic model treats the application of in-betweening as a sequence-
to-sequence problem and solves it using a transformer-based encoder-decoder
architecture. It unboxes the potential of robust Transformer-based models for
motion in-betweening applications. To conclude, the results encourage the appli-
cation of low-resource cost-efficient models and enable further developments with
the scope of transfer learning on the generalized implementation.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Con-
ference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May
2015, Conference Track Proceedings (2015). https://arxiv.org/abs/1409.0473

2. Brown, T., et al.: Language models are few-shot learners. In: Larochelle, H., Ran-
zato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information
Processing Systems, vol. 33, pp. 1877–1901. Curran Associates, Inc. (2020).
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f6
4a-Paper.pdf

https://arxiv.org/abs/1409.0473
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf


Transformer Based Motion In-Betweening 311

3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis,
Minnesota (2019). https://doi.org/10.18653/v1/N19-1423, https://aclanthology.
org/N19-1423

4. Duan, Y., et al.: Single-shot motion completion with transformer. arXiv preprint
arXiv:2103.00776 (2021)

5. Fragkiadaki, K., Levine, S., Malik, J.: Recurrent network models for kinematic
tracking. CoRR abs/1508.00271 (2015). https://arxiv.org/abs/1508.00271

6. Gopalakrishnan, A., Mali, A.A., Kifer, D., Giles, C.L., II, A.G.O.: A neural tem-
poral model for human motion prediction. CoRR abs/1809.03036 (2018). https://
arxiv.org/abs/1809.03036

7. Harvey, F.G., Pal, C.: Recurrent transition networks for character locomotion.
In: SIGGRAPH Asia 2018 Technical Briefs. SA 2018, Association for Computing
Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3283254.3283277

8. Harvey, F.G., Yurick, M., Nowrouzezahrai, D., Pal, C.: Robust motion in-
betweening. ACM Trans. Graph. 39(4), 1–12 (2020). https://doi.org/10.1145/
3386569.3392480

9. Holden, D.: Robust solving of optical motion capture data by denoising. ACM
Trans. Graph. 37(4), 1–12 (2018). https://doi.org/10.1145/3197517.3201302

10. Holden, D., Saito, J., Komura, T.: A deep learning framework for character motion
synthesis and editing. ACM Trans. Graph. 35(4), 1–11 (2016). https://doi.org/10.
1145/2897824.2925975

11. Lehrmann, A.M., Gehler, P.V., Nowozin, S.: Efficient nonlinear Markov models for
human motion. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2014)

12. Liu, Z., et al.: Towards natural and accurate future motion prediction of humans
and animals. In: 2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 9996–10004 (2019). https://doi.org/10.1109/CVPR.
2019.01024

13. Mart́ınez-González, Á., Villamizar, M., Odobez, J.: Pose transformers (POTR):
human motion prediction with non-autoregressive transformers. CoRR
abs/2109.07531 (2021). https://arxiv.org/abs/2109.07531

14. Min, J., Chen, Y.L., Chai, J.: Interactive generation of human animation with
deformable motion models. ACM Trans. Graph. 29(1), 1–12 (2009). https://doi.
org/10.1145/1640443.1640452

15. Müller, M., Röder, T., Clausen, M.: Efficient content-based retrieval of motion
capture data. ACM Trans. Graph. 24(3), 677–685 (2005). https://doi.org/10.1145/
1073204.1073247

16. Oreshkin, B.N., Valkanas, A., Harvey, F.G., Ménard, L.S., Bocquelet, F.,
Coates, M.J.: Motion Inbetweening via Deep Δ-Interpolator. arXiv e-prints
arXiv:2201.06701 (2022)

17. Dhariwal, P., Sastry, G., McCandlish, S.: Enct5: Fine-tuning t5 encoder for dis-
criminative tasks (2021)

18. Ren, M., Kiros, R., Zemel, R.S.: Exploring models and data for image question
answering. In: Proceedings of the 28th International Conference on Neural Infor-
mation Processing Systems, vol. 2, pp. 2953–2961. NIPS 2015, MIT Press, Cam-
bridge, MA, USA (2015)

https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
http://arxiv.org/abs/2103.00776
https://arxiv.org/abs/1508.00271
https://arxiv.org/abs/1809.03036
https://arxiv.org/abs/1809.03036
https://doi.org/10.1145/3283254.3283277
https://doi.org/10.1145/3386569.3392480
https://doi.org/10.1145/3386569.3392480
https://doi.org/10.1145/3197517.3201302
https://doi.org/10.1145/2897824.2925975
https://doi.org/10.1145/2897824.2925975
https://doi.org/10.1109/CVPR.2019.01024
https://doi.org/10.1109/CVPR.2019.01024
https://arxiv.org/abs/2109.07531
https://doi.org/10.1145/1640443.1640452
https://doi.org/10.1145/1640443.1640452
https://doi.org/10.1145/1073204.1073247
https://doi.org/10.1145/1073204.1073247
http://arxiv.org/abs/2201.06701


312 P. Sridhar et al.

19. Tanuwijaya, S., Ohno, Y.: TF-DF indexing for mocap data segments in measuring
relevance based on textual search queries. Vis. Comput. 26(6–8), 1091–1100 (2010).
https://doi.org/10.1007/s00371-010-0463-9

20. Taylor, G.W., Hinton, G.E.: Factored conditional restricted Boltzmann machines
for modeling motion style. In: Proceedings of the 26th Annual International Confer-
ence on Machine Learning ICML 2009, pp. 1025–1032. Association for Computing
Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1553374.1553505

21. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems NIPS 2017, pp.
6000–6010. Curran Associates Inc., Red Hook, NY, USA (2017)

22. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models for
human motion. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 283–298 (2008).
https://doi.org/10.1109/TPAMI.2007.1167

23. Witkin, A., Kass, M.: Spacetime constraints. In: Proceedings of the 15th Annual
Conference on Computer Graphics and Interactive Techniques SIGGRAPH 1988,
pp. 159–168. Association for Computing Machinery, New York, NY, USA (1988).
https://doi.org/10.1145/54852.378507

https://doi.org/10.1007/s00371-010-0463-9
https://doi.org/10.1145/1553374.1553505
https://doi.org/10.1109/TPAMI.2007.1167
https://doi.org/10.1145/54852.378507

	Transformer Based Motion In-Betweening
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Tween Transformers (TWTR)
	3.2 Loss Computation
	3.3 Training

	4 Setup and Experimental Results
	4.1 Dataset
	4.2 Evaluation Metrics
	4.3 Data Preprocessing
	4.4 Hyperparameters
	4.5 Visualizer and Motion Generator
	4.6 Inferences

	5 Conclusion
	References




