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Series Preface

Applications and modelling and their learning and teaching in school and university
have been a prominent topic for several decades now in view of the growing world-
wide relevance of the usage of mathematics in science, technology, and everyday
life. There is consensus that modelling should play an important role in mathe-
matics education, and the situation in schools and university is slowly changing to
include real-world aspects, frequently withmodelling as real-world problem solving,
in several educational jurisdictions. Given the worldwide continuing shortage of
students who are interested in mathematics and science, it is essential to discuss
changes of mathematics education in school and tertiary education towards the
inclusion of real-world examples and the competencies to use mathematics to solve
real-world problems.

This innovative book series established by Springer, International Perspectives on
the Teaching and Learning of Mathematical Modelling, aims at promoting academic
discussion on the teaching and learning of mathematical modelling at various educa-
tional levels all over the world. The series will publish books from different theo-
retical perspectives from around the world dealing with Teaching and Learning of
Mathematical Modelling in Schooling and at Tertiary level. In addition, this series
will enable the International Community of Teachers of Mathematical Modelling
and Applications (ICTMA), an International Commission on Mathematical Instruc-
tion affiliated Study Group, to publish books arising from its biennial conference
series. ICTMA is a unique worldwide educational research group where not only
mathematics educators dealing with education at school level are included but also
appliedmathematicians interested in teaching and learningmodelling at tertiary level
are represented as well. Seven of these books from ICTMA, published by Springer,
have already appeared. An eighth book deals with a test instrument for measuring
professional competence for teaching mathematical modelling.

The planned books display the worldwide state-of-the-art in this field, most recent
educational research results and new theoretical developments and will be of interest
for awide audience.Themesdealtwith in the books focus on the teaching and learning
of mathematical modelling in schooling from the early years and at tertiary level
including the usage of technology in modelling, psychological, social, historical, and
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vi Series Preface

cultural aspects of modelling and its teaching, learning and assessment, modelling
competencies, curricular aspects, teacher education, and teacher education courses.
The book series aims to support the discussion on mathematical modelling and its
teaching internationally. It will promote the teaching and learning of mathematical
modelling and researching of this field all over the world in schools and universities.

The series is supported by an editorial board of internationally well-known
scholars, who bring in their long experience in the field as well as their expertise
to this series. The members of the editorial board are: Maria Salett Biembengut
(Brazil), Werner Blum (Germany), Helen Doerr (USA), Peter Galbraith (Australia),
Toshikazu Ikeda (Japan), Mogens Niss (Denmark), and Jinxing Xie (China).

We hope this book series will inspire readers in the present and the future to
promote the teaching and learning of mathematical modelling all over the world.

Series Editors
Hamburg, Germany
Ballarat, Australia

Gabriele Kaiser
Gloria Ann Stillman
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Part I 
Overview



Chapter 1 
Advancing Mathematical Modelling 
and Applications Educational Research 
and Practice 

Gilbert Greefrath , Susana Carreira , and Gloria Ann Stillman 

Abstract This volume provides a snapshot of the current state-of-the-art in theory, 
research, and practice in the area of mathematical modelling in education. Recog-
nising at the outset the important development of the subfield of mathematical 
modelling in mathematics education in the last decades, this chapter presents the 
main themes of a set of contributions concerning educational research and practice on 
the teaching and learning of mathematical modelling. The various chapters reflect the 
work carried out at ICME-14 held in Shanghai in July 2021, within the scope of Topic 
Study Group 22 and Survey Team 4, whose mission was to systematise the current 
state-of-the-art on the teaching and learning of mathematical modelling considering 
interdisciplinary aspects. In the collection are systematic literature reviews that offer 
an overview of mathematical modelling in mathematics education, and empirical 
studies adopting different theoretical perspectives and research aims addressing key 
issues that fall within the learning of mathematical modelling at the school level 
and the tertiary level, teacher education in modelling and teaching methods. This 
set of studies is an indicator of the consistency of ongoing research in mathematical 
modelling and applications. Diversity and complementarity are evident. Opportuni-
ties for international cooperation are apparent and key for the advancement of the 
subfield of mathematical modelling in mathematics education. 

Keywords Assessment · Interdisciplinary ·Mathematics ·Mathematical 
modelling ·Modelling competencies · Teacher education · Technology · STEM
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4 G. Greefrath et al.

1.1 Introduction 

The research on teaching and learning of mathematical applications and modelling 
is an expanding subfield of mathematics education research. It has been an important 
theme for teachers and researchers especially during the last 50 years, and its profile 
has been growing worldwide during the last decade. This prominence is evident, for 
example, in the International Congress on Mathematical Education (ICME) regular 
topic study groups and lectures on applications and modelling, and in the series 
of conferences of the International Community on the Teaching of Mathematical 
Modelling and Applications (ICTMA) since 1983, as well as in the publications 
arising from both. Other well-known international forums, such as the Congresses of 
the European Society for Research in Mathematics Education (CERME), have hosted 
continuous research and debate on the topic of applications and modelling in mathe-
matics education (Carreira et al., 2019). This increasing interest is a consequence of 
several factors. There is public demand for the usefulness of mathematics outside the 
discipline (Brez & Allen, 2016; Vos,  2020), and there has been an increasing number 
of research projects (e.g. Achmetli et al., 2019; Greefrath 2020; Vincent Geiger et al., 
2018) and empirical studies (Schukajlow et al., 2018) which focus on specific aspects 
of applications and modelling in mathematics teaching and learning at all levels of 
education, from the early years (e.g. Suh et al., 2021) to tertiary (e.g. Durandt et al., 
2022). The case for curricular changes in mathematics around the world explicitly 
targeting the modelling process (e.g. Greefrath & Vorhölter, 2016; Lo et al., 2022; 
OECD, 2018) as well as the concomitant challenge of assessing modelling in stan-
dardised tests or rubrics (e.g. Greefrath & Frenken, 2021; Kohen & Gharra-Badran, 
2022) have increased the visibility of modelling and also extended the research field. 
In addition, there is an increasing number of conceptual and theoretical works (e.g. 
Barquero et al., 2019; Blomhøj & Niss, 2021) which act as starting points for new 
lines of research inquiry and development. 

Many recent qualitative and quantitative research studies on mathematical 
modelling in school and higher education have focused on students (e.g. Baioa & 
Carreira, 2021; Carreira et al., 2020; Durandt et al., 2022) and their modelling 
processes (e.g. Czocher et al., 2022; Stillman & Brown, 2021); however, teachers 
clearly play an important role in implementing and fostering students’ modelling in 
classrooms (see, e.g., Cetinkaya et al., 2016; Greefrath et al., 2022; Wendt et al., 
2022). Furthermore, classroom settings also play an important role (Schukajlow & 
Blum, 2018). Setting the focus on teacher practice in proposing and implementing 
intervention activities, there has been research on the design of single modelling 
lessons (Beckschulte, 2020) as well as whole modelling learning environments (Orey 
& Rosa  2018) at different school levels. 

At ICME-14 held in Shanghai in July 2021, Topic Study Group 22 (Greefrath 
and Carreira in press) considered the importance of exploring relations between 
mathematics and the real world that occur in educational environments. The value 
of examining the discussion in research and development on mathematical applica-
tions and modelling issues at school and university, including mathematics teacher
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education and the interplay between research and development of modelling learning 
environments, were also seen as important and timely. In addition, ICME-14 Survey 
Team 4 reviewed the current state-of-the-art on the teaching and learning of mathe-
matical modelling considering interdisciplinary aspects (Stillman et al. in press). In 
particular, the importance of a well-understood relation between mathematics and 
the real world was in their focus. 

Following the Congress, a number of authors were invited to contribute to a volume 
in order to produce a snapshot of the current state-of-the-art in theory, research, and 
practice in the area of mathematical modelling in education. After a rigorous review 
process, the remaining chapters from this selection have been collated into this edited 
collection. 

1.2 Overviewing Mathematical Modelling in Education 

The promotion of mathematical modelling competencies is recognised worldwide 
as an important goal of mathematics teaching. Researchers have taken different 
approaches to this integration and are still in the process of developing empirical 
evidence on the impact of these approaches on the integration of modelling in school 
practice (Kaiser, 2017). Stillman (2019) has seen as an important impetus theoret-
ical approaches to research on mathematical modelling, among others, the study 
of modelling frameworks, modelling competence, and metacognition. The current 
research landscape shows a variety of case study approaches and cognitively oriented 
studies. Somewhat less frequently, one finds studies that use quantitative research 
methods or focus on affect-related topics (Schukajlow et al., 2018). There have been 
a number of meta-studies on mathematical modelling, including on specific topics 
such as modalities of assessment of modelling (Frejd, 2013), the role of technology 
in mathematical modelling (Molina-Toro et al., 2019), and modelling competencies 
(Cevikbas et al., 2022; Hidayat et al., 2022). Overall, this shows the need for further 
theoretical work on mathematical modelling competencies. Currently, however, a 
wealth of developed empirical approaches and their implementation at different 
educational levels can already be identified (Cevikbas et al., 2022). A review chapter 
on the analysis of current literature is part of this book. 

ICME-14 survey team 4 was asked to review the literature from the last ICME 
in 2016 to the current state-of-the-art on the teaching and learning of mathematical 
modelling considering interdisciplinary aspects. In particular, the importance of a 
well-understood relation between mathematics and the real world was in the focus 
brief. The aim was to establish an in-depth review of the most important develop-
ments and contributions and current tendencies and trends to July 2021, including 
new perspectives and emerging challenges. Based on a systematic, qualitative, analyt-
ical review of literature (Newman & Gough, 2020) from this time period, Stillman, 
Ikeda, Schukajlow, Araújo, and Ärlebäck identified four major threads of contri-
butions relating to schooling. These threads were: the continued importance of a
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well-understood relation between mathematics and the real world supporting inter-
disciplinary work in mathematics education; the contribution to knowledge about 
modelling of interdisciplinary research and teaching teams; issues and challenges in 
the relationships among mathematical modelling, mathematics, the real world and 
interdisciplinarity; and, mathematical modelling providing critical high-leverage to 
ensure mathematical depth in STEM integration. Each thread is exemplified with 
purposively selected examples from their research synthesis. The authors suggest 
that it is timely to reconsider the rather loosely used notion in both research and 
curriculum documents that mathematical modelling is a common-sense enabler of 
interdisciplinarity as well as how mathematical modelling educational and STEM 
research communities interact. One emergent question thus concerns the clarification 
of the connection between modelling and integrated STEM, in school and university 
curricula. This discussion may be traced back to the seminal work of Blum and Niss 
(1991), where various possibilities of linking mathematics to other subjects were 
raised and differentiated, namely the mathematics curriculum integrated approach 
and the interdisciplinary integrated approach. More work on modelling from a 
curriculum point of view is apparently needed. 

Preciado Babb, Peña Acuña, Ortiz Rocha, and Solares Rojas analysed a selec-
tion of recent mathematical modelling literature identifying local and global tenden-
cies and the diversity of approaches to mathematical modelling. The systematic 
literature review comprised more than 500 documents from articles published in a 
selection of journals and selected books from ICTMA (2010–2020), the ICMI-14 
study volume (Blum et al., 2007) and the volume from ICME-13 TSG with a focus 
on mathematical applications and modelling (Stillman & Brown, 2019). Babb et al. 
identified six countries with significant numbers of publications and present rela-
tive percentage distributions corresponding to mathematical modelling perspective, 
educational content, and unit of analysis (school level, job, or profession). The review 
showed that authors from Germany, United States, and Australia contributed half of 
the publications and that the educational content played a different role depending 
on the corresponding modelling perspective in specific countries. 

1.3 Learning Mathematical Modelling at School 

In recent decades, the potential of integrating mathematical modelling into math-
ematics education has been widely investigated (Kaiser, 2017). There are various 
approaches to possible meaningful measures to support learning mathematical 
modelling. For example, knowledge about the modelling cycle (Galbraith & Clat-
worthy, 1990), the provision of heuristic solution examples (Zöttl et al., 2010), or 
the use of a strategic solution plan (Beckschulte, 2020) can support and promote 
modelling processes. Furthermore, the creation of mathematical drawings (Rellens-
mann et al., 2017) and the use of technological tools and resources (Galbraith et al.,
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2003; Greefrath et al., 2018) can also contribute to an increase in modelling compe-
tence. In this section, we summarise a number of contributions that approach math-
ematical modelling in school in different ways. These chapters present results of 
studies concerning several questions ranging from elementary to secondary school: 
the value of whole-class discussions and reflections on solutions to modelling prob-
lems; the use of technological environments in modelling tasks and its relation-
ship with self-regulated learning; the student’s modelling activity within interdisci-
plinary tasks; changes in students’ beliefs about mathematics and problem-solving 
after experience with modelling challenges; and the interplay between modelling 
competence and the mathematics competence of elementary school students. 

A key distinction among traditions in modelling research, according to Brady, 
Jung McLean, Dominguez, and Glancy, is whether modelling is primarily viewed 
as a curricular topic to be learnt or as a favourable context for supporting and studying 
mathematical thinking. For modelling-as-context traditions, modelling tasks can be 
designed to illuminate student thinking; to position groups of students as inventive 
creators of mathematics; or to spur them on to engage in forms of mathematising 
that are valued in the discipline of mathematics. In this chapter, Brady et al. argue 
that whole-class presentations of solutions to modelling tasks can be particularly 
rich settings to research such topics. Their focus is on how presentation sessions 
offer opportunities to engage in reflective discourse, in which the class can convert 
modelling actions that various student teams have engaged in into objects of collective 
discussion. To illustrate this point, Brady et al. analyse three episodes of reflective 
discourse from a mathematical modelling summer camp for students aged 10–13. For 
each episode, they describe the specific mathematical value of reflective discourse 
as it emerged in the context. 

Modelling processes can be supported, enriched, and made more authentic 
using ICT which can be combined in a computer-based learning environment. The 
pre-structured form of computer-based learning environments has the potential to 
promote and stimulate self-regulated learning. However, as Frenken points out, from 
a theoretical perspective, we can anticipate that modelling within such environments 
can also pose difficulties for student modellers. In an exploratory study, two Year 9 
classes worked independently within a computer-based learning environment for two 
weeks during distance learning. In that learning environment, students started with 
tutorials, including videos and applets, to learn about the tools and solve exercises in 
GeoGebra. Afterwards, they were invited to solve modelling tasks using GeoGebra 
applets provided in the computer-based learning environment. The results on the rela-
tionship between performance in modelling tasks and self-regulated learning were 
obtained with cluster analysis. The interpretation of the clusters showed that math-
ematical modelling-specific performance in an independent learning environment 
is strongly related to self-regulatory skills. More precisely, students who achieved 
high success in the modelling tasks, made frequent use of the help and the possibil-
ities offered by the environment. On the contrary, those who spent very little time 
in the computer-based learning environment and did not use help were the ones 
who had less success in the modelling tasks. In subsequent studies, it is suggested
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that data collected from navigation and performance on the computer-based learning 
environment be complemented with video recordings and student interviews. 

It has been known for some time that students’ beliefs about the nature of math-
ematics greatly influence their interests and attitudes towards school mathematics 
(Schukajlow et al., 2017). Common beliefs such as mathematics problems always 
having a unique and exact answer can become obstacles to student learning. Research 
has found that mathematical modelling experiences could help students see the rele-
vance of mathematics in the real world and their lives, but more attention is needed 
as to whether they affect other beliefs. Guiñez and González focus on exploring 
high-school students’ views about mathematics when they work independently on 
solving real-world mathematical modelling problems during the selection process of 
the teams that represented Chile at the International Mathematical Modelling Chal-
lenge. The findings suggest that exposure to these modelling tasks has the potential 
to modify participants’ beliefs, for instance, with regard to the existence of many 
solutions and correct procedures for mathematical problem-solving. 

Moutet shows that the extended Mathematical Working Space (MWS) framework 
makes it possible to analyse school tasks by considering the relationships between 
the cognitive plane of students, and the epistemological planes of mathematics and 
of physics according to stages of the Blum and Leiß modelling cycle (2007). He anal-
ysed a problem-solving activity incorporating a multidisciplinary approach involving 
physics and mathematics. The problem-solving activity investigates the possibilities 
of using a solenoid formed by winding copper wire covered with an insulating film 
to produce an intense magnetic field as might be required for a medical imaging 
device, for example. A group of 12th grade volunteer students in France completed 
the online activity. In line with the empirical results of other studies, this investigation 
led to the conclusion that the epistemological planes of physics and mathematics are 
mobilised in different ways, depending on the stage of the modelling cycle that is 
being carried out by students. 

Wang, Xie, and Liu explored 298 grade four Chinese students’ competence 
in mathematical modelling and its relationship to their mathematics competence. 
Descriptive analysis, t-tests, and correlation coefficients were used and reported 
to describe the mathematical modelling competence and sub-competencies of the 
students and to analyse the relationship between mathematics competence and these 
sub-competencies. The results indicated that the students hardly engaged mathe-
matical modelling and that of the sub-competencies of mathematical modelling, 
the competence of mathematical working was the best in comparison. In addi-
tion, a strong positive correlation between mathematical modelling competence and 
mathematics competence was found in the data collected. 

1.4 Mathematical Modelling at University 

Engineering, science, and technology applications in undergraduate courses are in 
many cases difficult for students to understand. Even those studying STEM subjects
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are often unable to connect the mathematical world with the real world (Crouch & 
Haines, 2004). It is furthermore clear that there are strong institutional constraints to 
the widespread diffusion of mathematics as a modelling activity, especially in univer-
sities as compared to schools (Barquero et al., 2013). One approach at university is 
to make basic content such as linear algebra more accessible with the help of mathe-
matical modelling and Realistic Mathematics Education (Stewart et al., 2019). This 
is one of the issues dealt with in this section, together with the need for validating 
assessment instruments on students’ modelling competencies, tensions arising from 
interdisciplinary projects where mathematics and other scientific fields intervene, 
and engaging students in projects where citizenship is emphasised, namely implying 
the statistical analysis of messy data. 

Ramirez-Montes, Carreira, and Henriques report on a study of two classes of 
undergraduate students participating in a linear algebra course at a university in Costa 
Rica. They attempted different versions of a modelling task using digital coordinate 
geometry technological tools. The modelling problem involved the manipulation 
of an image of Big Ben that is transformed and incorporates the concept of linear 
transformation. This qualitative study focused on students’ modelling processes and 
the influence of technology use on their linear transformation models. Students’ use 
of technology was rather rudimentary, being used mainly for constructing a math-
ematical model of the real situation. Students’ modelling also exhibited difficulties 
in interpreting the real situation as a case of geometrical transformations, in using 
linear transformation properties, and in validating results of their models. There 
was no evidence that the technology enabled these students to relate algebraic and 
geometrical meanings of a linear transformation. Further research is suggested to 
better understand how technology may help students in interpreting linear algebra 
models in terms of geometrical representations and in solving real-world problems 
involving linear transformations. 

As part of a larger project focused on exploring development of mathematical 
modelling competencies among post-secondary STEM majors enrolled in advanced 
mathematics, Czocher, Kularajan, Roan, and Sigley developed a pair of parallel 
multiple-choice modelling competencies assessments. The chapter provides a tech-
nical report of item development, scale calibration, and validation of the assessment. 
Multiple statistical approaches used included classical test theory, item response 
theory, and principal component analysis. These documented item behaviours, scale 
properties, and dimensionality of the developing multiple-choice assessment of 
mathematical modelling competencies designed for post-secondary STEM majors. 
Czocher et al. share analyses and inferences, making recommendations for the field 
in pursuing such assessments. The authors were able to ensure the validity of the two 
multiple-choice instruments to assess collective gains in students’ modelling compe-
tencies resulting from pedagogical interventions. This represents a step towards 
obtaining a valid and reliable instrument to generate the empirical basis to evaluate 
pedagogical interventions, possibly at all levels of education. 

Rogovchenko used Activity Theory to analyse the work of biology undergradu-
ates at a Norwegian university with biologically meaningful mathematical modelling
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tasks. Tensions related to collaboration in an interdisciplinary team, students’ engage-
ment, understanding of a modelling task, comprehension of its mathematical content 
and solution manifest multiple primary and secondary contradictions in the activity 
system. Rogovchenko identifies these contradictions and discusses possibilities for 
their resolution through expansive learning. While the contradictions that could be 
identified remained unresolved, the motivation of the project team and the posi-
tive feedback from the student group opened promising perspectives for expansive 
learning. For example, the students’ statements about assumptions in modelling were 
very promising despite the difficulties involved. 

Citizen Science (Crain et al., 2014) provides the means for students to engage in 
collecting and analysing data important to their local environments. McLean, Brady, 
Jung, Dominguez, and Glancy describe how undergraduate students in the United 
States participated in a model-eliciting activity to make sense of large, complex, and 
messy datasets gathered in connection with a citizen science project. Focusing on the 
data moves that students performed to manipulate the data into a manageable form 
they showed how student groups oriented towards the data as capturing a phenomenon 
in the records. They assert that filtering is a key component of the modelling process, 
especially when citizen science often involves using large datasets to solve a real-
world problem. McLean et al. argue that model-eliciting activities offer entry points 
to appreciate the complexity of citizen science as a practice and the value of the 
scientific questions that citizen science projects are engaging. 

1.5 Teacher Education in Mathematical Modelling 

Teachers are faced with a variety of demands, especially in mathematical modelling 
(Berget, 2022; Vince Geiger et al., 2022; Wendt et al., 2022). International research 
in teacher education could provide the coherence needed to develop a knowledge 
base for effective pedagogical interventions in teaching mathematics through appli-
cations and modelling (Doerr, 2007). In teacher education research, there is a focus 
on the development of professional competencies, building on different dimen-
sions of knowledge (Kaiser et al., 2020). This is composed of different areas of 
knowledge such as mathematical content knowledge, pedagogical content knowl-
edge, and pedagogical-psychological knowledge. Furthermore, professional compe-
tence includes affective-value-oriented aspects in addition to the cognitively oriented 
knowledge dimensions mentioned. In a comprehensive model by Blömeke et al. 
(2015) of teacher knowledge, in which the analytical and holistic approaches to 
conceptualising and measuring competence are combined to represent competence 
as a process, the so-called situation-specific skills (perceiving, interpreting, and 
internalising) serve as a link to performance (Sherin et al., 2011). In this section, 
we summarise five contributions that approach teacher education in mathematical 
modelling in different ways. 

In classrooms, students can use metacognitive strategies to overcome obstacles 
and to ensure smooth working when independently solving complex problems, such
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as mathematical modelling problems. Thus, it is important for teachers to know about 
metacognition and to be able to perceive and interpret students’ use, or lack of use, 
of metacognitive modelling strategies. Alwast and Vorhölter analysed the develop-
ment of 52 pre-service teachers’ knowledge and noticing competencies for teaching 
mathematical modelling with respect to students’ use of metacognitive strategies 
as well as the relationship between these. While the pre-service teachers’ knowl-
edge regarding metacognition significantly improved during a university modelling 
seminar, pre-service teachers’ noticing competencies barely changed. There was, 
however, a correlation between them. 

Ekol reports a small study aimed at understanding the contribution of assessment 
for learning in a pre-service secondary teacher mathematical modelling course at a 
university in South Africa. A matched-pairs design was adopted to analyse assess-
ment data collected during and at the end of the course. Descriptive and inferential 
data analysis detected no statistically significant increase in the mean score from the 
formative phase to the final assessment at the end of the course. The study contributes 
to research on different assessment approaches in pre-service mathematics educa-
tion courses that include mathematical modelling and understanding their practical 
contributions to the learning gains at the end of the courses. 

Saeki, Kaneko, Kawakami, and Ikeda focus on Japanese in-service teachers 
with less experience in teaching mathematical modelling. They describe and analyse 
the novices’ activities to design modelling tasks based on mathematised tasks. 
Results of analysis of the in-service teachers’ activities and artefacts revealed that 
Lesson Study enabled novice modelling teachers to understand the characteristics 
of each criterion of the modelling task through activities that transform familiar 
textbook mathematised tasks into modelling tasks; and to develop and implement 
modelling lessons incorporating examples from students’ realities. This arose during 
discussions between teachers from different backgrounds and researchers. 

Siller, Greefrath, Wess, and Klock focus on the professionalisation of pre-
service teachers through reflective practice when they participated in a 12-session 
university seminar about mathematical modelling over one semester. They consider 
the pre-service teachers’ self-efficacy beliefs as an important aspect of professional 
competence for teaching mathematical modelling. A quasi-experimental study with 
a pre-post design was used to examine the extent to which self-efficacy of mathe-
matics pre-service teachers for mathematical modelling can be increased through a 
variety of different teaching–learning laboratories (i.e. a focus on task self-design or 
a focus on diagnostic and intervention competencies). Clearer effects were seen when 
the pre-service teachers themselves created modelling tasks for use with grade nine 
students. The study contributes to research on the possibilities for teaching–learning 
laboratories in teacher education that focus on the acquisition of competencies by 
pre-service teachers. 

Project-based instruction focuses on real-world tasks as a vehicle for learning, 
which Park proposes as a platform to drive the teaching of mathematical modelling. 
She reports a case study of the task design and implementation for a mathematical 
modelling 5-lesson sequence in project-based instruction of a team of two pre-service 
teachers. Data sources were open-ended questionnaires, pre-service teachers’ lesson
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plans, and video-recorded classroom observations. Example lessons designed by 
two pre-service teachers are examined. How the lessons were designed and imple-
mented is discussed with a view to informing future research on pre-service teachers’ 
preparation for problem-based instruction with mathematical modelling. 

1.6 Teaching Mathematical Modelling at School 

There are increasing demands on the teaching of mathematical modelling. For 
example, prospective teachers should gain experience with stochastic models in 
their preparation programmes; such a change would mean a move away from the 
current dominance of deterministic models in mathematical teacher preparation 
(Doerr, 2007). However, teaching can also take into account the diversity of cultural 
forms of mathematics (Rosa & Orey, 2013). Teaching methods can also be of central 
importance for the teaching of modelling, which can have an effect not only on the 
students’ achievement but also on their affect (Schukajlow et al., 2012). 

Ärlebäck and Kawakami present arguments and examples highlighting the simi-
larities and differences between statistics, statistical modelling, and mathematical 
modelling. They elaborate on the potentially productive connections for the develop-
ment of, and research on, the teaching and learning of statistics, statistical modelling, 
and mathematical modelling. They outline their development of an ongoing research 
agenda that pursues a framework for conceptualising connections between statis-
tics and statistical modelling and mathematical modelling. In addition, they suggest 
how to extend this emerging framework to provide a richer, more nuanced, and useful 
picture of the relationships between statistics, statistical modelling, and mathematical 
modelling. 

Ethnomodelling is an alternative methodological approach suited to diverse socio-
cultural realities and proposes the rediscovery of mathematical knowledge systems 
developed, accumulated, adopted, and adapted in other cultural contexts. Orey and 
Rosa focus on the glocal (dialogic) approach of ethnomodelling and how the inter-
action between local (emic) and global (etic) approaches can promote understanding 
of cultural dynamism through the elaboration of ethnomodels. It is important to 
discuss epistemological stances regarding how cultural aspects are integrated into 
the ethnomodelling perspective and how this integration enables showing the rele-
vance of different issues with respect to local (emic), global (etic), or glocal (dialogic) 
approaches. This confirms that the central content of ethnomodelling may represent 
a significant contribution to mathematical modelling educational research and its 
pedagogical action. 

An important goal of mathematics education is to develop and to examine methods 
for teaching modelling problems. Schukajlow and Blum identify guided instruction 
and a constructivist view of teaching as two general principles of teaching methods for 
modelling problems. They exemplify these principles by teaching methods developed 
in the DISUM (Blum, 2015) and MultiMa projects (e.g. Achmetli et al., 2019). 
These teaching methods vary in the degree of guidance given by teachers or learning
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materials and in the degree of self-regulation experienced by students. The effects of 
these teaching methods have been evaluated in prior studies. Schukajlow and Blum 
report under which conditions and pre-requisites for students these teaching methods 
worked. They also raise some challenges for future research. 

1.7 Discussion 

Activities to promote mathematical modelling in research and practice already have 
an international history of more than 50 years. In recent years, international visibility 
has increased significantly, not least through a series of relevant thematic issues in 
important research journals (Carreira & Blum, 2021a, 2021b; Kaiser & Schukajlow, 
2022; Schukajlow et al., 2018, 2021). In addition to new theoretical contributions, 
there are several empirical studies on mathematical modelling in all school levels up 
to university. Both students and teachers, as well as the context and the design of 
teaching, are considered. This spectrum was also reflected by Topic Study Group 22 
and Survey Team 4 at ICME-14 in Shanghai. 

The activities are also evident in many current review articles and meta-studies on 
the teaching and learning of mathematics. In addition to the many journal articles, 
the ICTMA books are of particular importance for these studies (see from Berry 
et al., 1984 to Leung et al., 2021). These overviews also show that not all countries 
and continents are equally represented. The chapter from the ICME survey team 
4 brings new insights onto the table regarding mathematical modelling research. 
Specifically, the often loosely used term of interdisciplinarity. Certainly, education 
and mathematical modelling education need this research as a starting point to explore 
interdisciplinary issues. The call by the survey team for more cooperation between 
the mathematical modelling and STEM research communities is an opportunity for 
the advancement of the STEM agenda, raised by many in the STEM literature (e.g. 
Bajuri et al., 2018; English, 2021; Hallström & Schönborn, 2019), to use the inherent 
interdisciplinary nature of modelling to support pedagogical innovations (Ekici & 
Alagoz, 2021). This is also an opportunity for further international collaboration 
within and between these research communities. 

Various aspects of mathematical modelling in schools are currently being 
discussed. In addition to mathematical modelling as a context of teaching, the expan-
sion of possibilities through the use of digital learning environments and the influ-
ence on learners’ attitudes are also being considered. The qualitative and quanti-
tative analysis of students’ modelling processes through appropriate frameworks 
and the measurement of modelling competencies are important research directions. 
The holistic and atomistic views of modelling competencies are also relevant here 
(Kaiser & Brand, 2015). 

Furthermore, there are a number of new approaches to mathematical modelling 
at university, such as modelling in linear algebra, and others better known, such 
as modelling with differential equations, continue to be of interest. Many studies 
involve students from STEM subjects. In some cases, approaches to investigating
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modelling skills are similar to those used at school, both through appropriate test 
instruments that are being increasingly developed and through more in-depth case 
studies. Modelling in the context of interdisciplinary projects and problems is also 
gaining prominence in tertiary education as also happens at school. 

A particularly active field of research at present is teacher education in mathemat-
ical modelling. On the basis of competence models, different areas of professional 
competence for teaching mathematical modelling are considered. These include 
knowledge aspects as well as noticing and affective aspects such as self-efficacy. 
Knowledge of diverse models and content is important for teaching mathematical 
modelling. In addition to these areas, there are also a number of research activities 
in the field of teaching methods for mathematical modelling. 

Overall, this book showcases current research activities in four areas of educa-
tional research, as summarised in Fig. 1.1, as well as more global survey and review 
research into the focusses of mathematical modelling educational research itself. The 
chapters in this book thus contribute to several lines of investigation in advancing 
and consolidating research on mathematical applications to the real-world and math-
ematical modelling in mathematics education. Many individual research activities in 
the different areas complement each other. Further international cooperation is, there-
fore, important to advance this subfield of mathematics education and at the same 
time can promote the teaching and learning of mathematical modelling worldwide. 

Learning Mathematical Modelling 
at School 
•modelling as context
•digital learning evironments
•analysis of modelling processes 

Mathematical Modelling 
at University

•new approaches
•test instruments
•case studies 

Teaching Mathematical 
Modelling at School
•diverse models
•content
•teaching methods 

Teacher Education in 
Mathematical 
Modelling
•competence models
•knowledge aspects
•noticing and affective aspects 

Overviewing 
Mathematical 
Modelling in 

Education 

Fig. 1.1 Current research activities on teaching and learning mathematical modelling
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1.8 Final Reflections and Outlook for Future Work 

The current research activities show a wide range of methods and content. There is 
theoretical and both qualitative and quantitative empirical work. Individuals from all 
school levels and also from university are studied. Both students and teachers as well 
as the context and design of teaching are taken into account. 

The contributions collected in this volume offer some advances on different lines 
of research. About the students’ modelling processes at different educational levels, 
we may see that different modalities and perspectives, namely relating mathematics to 
other subjects (physics, biology, ecology, engineering, citizen science, culture, and 
society), are focused on the potential for developing students’ modelling compe-
tencies and improving the learning and understanding of mathematical topics. The 
integration of digital resources and tools continues to be an important issue, so it 
is necessary to reconsider questions such as how to best help students master the 
power of technology to increase their ability to solve modelling problems. Teacher 
education and the central role of the teacher as a stimulator and supporter of the 
student’s modelling activity are also on the agenda. Significant issues that the studies 
brought up include the quest for effective teacher education models that attend to 
different aspects, be it the specialised knowledge for teaching modelling or practical 
issues such as monitoring, noticing and task designing, in addition to the affective 
component of the challenging work of solving modelling problems. 

International research is occurring in many countries. At present, some of the 
activities, in particular some lines of research and perspectives, are still concentrated 
on the work of researchers from certain countries. For some topics, stronger links 
could be made between the different research areas, such as university mathematics 
and school mathematics and the transition between the two. International cooperation 
is the key to success here. Conferences such as ICME and ICTMA play an important 
role as they bring together researchers with different research aims, approaches, 
and research methods and thus promote scientific exchange on the current areas of 
research on mathematical modelling and therefore on the practice of mathematical 
modelling across educational levels. 
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Abstract This survey on interdisciplinary aspects of the teaching and learning of 
mathematical modelling focuses on the period 2012–2021. Based on our review of 
research literature published during this time, following the brief we were given 
to conduct the survey, we identified four major threads of contributions as these 
relate to schooling. These threads were: the importance of a well-understood rela-
tion between mathematics and the real world supporting interdisciplinary work in 
mathematics education; the contribution to knowledge about modelling of interdis-
ciplinary research and teaching teams; issues and challenges in the relationships 
among mathematical modelling, mathematics, the real world and interdisciplinarity; 
and, mathematical modelling providing critical high leverage to ensure mathematical 
depth in STEM integration. Each thread is exemplified with relevant research. Future 
directions are offered in our final reflections. 
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2.1 Introduction 

According to Larivière et al. (2015), interdisciplinary research has higher citation 
impact than other types of research. For many, this is a motivation to do interdisci-
plinary research and is an indication of the importance of interdisciplinary research 
for scientific progress. ICME-14 survey team 4 reviewed the current state-of-the-art 
on the teaching and learning ofmathematical modelling considering interdisciplinary 
aspects. In particular, the importance of a well-understood relation between mathe-
matics and the real world was in the focus brief. The aim was to establish an in-depth 
review of the most important developments and contributions since 2012, with partic-
ular emphasis from 2016 onwards, and current tendencies and trends to July 2021, 
including new perspectives and emerging challenges. This chapter focuses on major 
threads that have been identified in our review of the relevant research literature 
published during this time span (in refereed journal articles, conference proceed-
ings, theses and edited books). Four of these threads will be discussed in the coming 
sections. 

As a working definition of interdisciplinary research, we refer to the definition 
in the US National Academies’ report on Facilitating interdisciplinary research 
(Committee on Facilitating Interdisciplinary Research, Committee on Science, 
Engineering and Public Policy, 2004): 

Interdisciplinary research is a mode of research by teams or individuals that integrates infor-
mation, data, techniques, tools, perspectives, concepts, and/or theories from two or more 
disciplines or bodies of specialized knowledge to advance fundamental understanding or 
to solve problems whose solutions are beyond the scope of a single discipline or area of 
research practice. (p. 2) 

Williams and Roth (2019) write about a spectrum of interdisciplinarity in mathe-
matical problem-solving. Given the nature of mathematical modelling, the spectrum 
can be applied to modelling as well. The spectrum starts from mono-disciplinarity 
or a single discipline moving to multi-disciplinarity where knowledge from several 
disciplines is involved, then interdisciplinarity with mathematics interacting with 
other disciplines to become something new and different (e.g. mathematical biology 
or mathematical ecology), to trans-disciplinarity where there is transcendence due to 
subsuming or fusing of the disciplines within a joint problem-solving enterprise, with 
the disciplines not necessarily being consciously identified. Finally, Williams and 
Roth see as meta-disciplinarity awareness of the nature of the discipline(s) involved 
in their relation and difference within an inquiry or problem-solving. 

With these definitions in mind, the broad research questions guiding the analysis 
the survey team conducted for this chapter are: 

(1) How does a well-understood relation between mathematics and the real world 
underpin interdisciplinary work in mathematics education? 

(2) How have interdisciplinary teams contributed to knowledge about mathematical 
modelling and the relation of mathematics to the real world?
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(3) What issues and challenges are there in the relationships among mathematical 
modelling, mathematics, the real world and interdisciplinarity in both teaching 
and research? 

(4) How could contributions from research and teaching on mathematical modelling 
and relations of mathematics to the real world contribute to ensuring mathemat-
ical depth in STEM integration? 

2.2 Relations Between Mathematics and the Real World 

To explain what is meant by a well-understood relation between mathematics and the 
real world we begin with a dressed-up problem. The following example is intended 
to teach simultaneous equations. The problem is: Jonas bought some cakes for 230 
Yen each and some muffins for 80 Yen each. The total cost was only 2000 Yen. The 
total number of cakes and muffins was ten. How many cakes and muffins did he 
buy? If students try to imagine the real-world situation of this problem, they cannot 
make sense of it. They might wonder, “Why doesn’t he know the number? He bought 
them!” In this situation, the word problem is not a well-understood relation between 
mathematics and the real world for the problem solver. Authentic problems (Palm, 
2008; Wernet, 2017) are necessary in applications and modelling. 

For authentic problems, we need to notice that part of the outcome produced 
is a mathematical model. A mathematical model consists of the domain outside of 
mathematics that is of interest, some mathematical domain and a mapping between 
the two (Niss et al., 2007, p. 4). A model is useful to describe a real-world situation. 
In such activity, on the one hand, the real world encourages a deeper understanding 
and processing of mathematics; on the other hand, mathematics encourages deeper 
understanding and processing of the real world. Each enriching the other is essential 
for a well-understood relation between mathematics and the real world. If teachers or 
researchers attend to the roles of models in the real world, already there is a focus on 
knowledge concerning other disciplines, thus teaching applications and modelling 
becomes related to interdisciplinary mathematics education. 

The purposes of use of mathematics affect which other subject disciplines are 
in focus. Niss (2008) classified such purposes as: to understand (represent, explain, 
predict) parts of the world; to subject parts of the world to some type of action 
(including making decisions and solving problems); and to design parts or aspects of 
the non-mathematical world (creating artefacts, e.g. objects, systems or structures). 
The following example of water falling when released from a dam into its spillway 
focuses on the first purpose, to understand. Looking at the process of developing 
application and modelling materials for teaching in secondary school, we distinguish 
school mathematics from the non-mathematical and mathematical worlds. A teacher 
analysing such a situation for classroom use must consider the teaching aims that 
can be set. From a mathematical point of view, the maintaining of a well-understood
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relation of any in-class modelling to the real world is a practical as well as a pedagog-
ical issue for teaching mathematics in school. Let us conduct a thought experiment 
considering the possibilities of using this example for a class. 

Kurobe Dam is the biggest dam in Japan. In Fig. 2.1, water spills into the river from 
two gates. The water from the lower gate appears to have stronger momentum than 
that from the higher gate. However, the horizontal distances from the dam wall to the 
impact point seem to be similar. From these observations, we can pose a real-world 
problem: What is the relation between the location of the gate and the horizontal 
distance of where the water lands? [There are, of course, other problems that can be 
posed.] 

Let us consider the simplest situation. We could model the dam by a cylinder 
and ask: What happens when you make three holes in a cylinder? Let us make a 
prediction. In Fig. 2.2 which of the possible scenarios is correct? The curved lines 
show the surmised trajectories of water from the holes in the cylinder. 

The correct representation is 1. Which variables affect the horizontal distance (see 
Fig. 2.3) to where the water lands on the spillway? By applying school mathematics, 
there are two variables: velocity and time. Which variables affect the velocity? Two

Fig. 2.1 Falling water at 
Kurobe Dam Spillway, Japan 

Fig. 2.2 The simplified 
situation—modelling with a 
cylinder 
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Fig. 2.3 The simplified 
situation—variables 
affecting horizontal distance 

Fig. 2.4 The simplified situation—possible variables affecting velocity 

different possibilities that could be raised by students are quantity of water and 
length, x, the depth of water above the gate to release the water (see Fig. 2.4). 
To confirm which of these is critical, we can conduct an experiment in the real 
world. By experimenting, we will be able to see that velocity is constant when 
changing the amount of water, A, in the dam above the gate. Only distance will affect 
velocity. Length x is interpreted as a relation between the quantity of water A and 
cross-sectional area. So, real-world knowledge, that is physics knowledge, could be 
developed for/by the students in this situation. 

Next, we can change the distance, x, of the gate from the top of the full dam, to 
obtain a function. By doing an experiment in the real world, students could create 
a scatterplot (Fig. 2.5) and sketch a smooth curve through it. For this curve, we can 
imagine that this function might be the square root of x. By drawing the graph of v 
versus 

√
x we can see it is almost linear. Then, we can consider that the velocity of 

the spilled water is proportional to the square root of the depth of the water from the 
top of the dam to the gate. Students can appreciate that an irrational function can be 
applied in this situation.

For the other variable affecting horizontal distance, time, we can use physics 
knowledge, to formulate the relationship between vertical height, y, of the gate from 
the bottom of the dam wall and time t, using acceleration due to gravity, y = 1 2gt2. By  

rearranging this equation, we obtain t by using the height, y, as  t = 
√  

2 
g 

√
y = l

√
y. 

Horizontal distance, D, is calculated from velocity, time and h, the height of the 
dam wall (see Fig. 2.6), as D = kl 

√
x(h − x). By setting z = x(h−x), we obtain a 

quadratic function of z which we can show is a maximum at h 
2 . From this we can 

infer that the horizontal distance, D, reaches a maximum value too when the distance
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Fig. 2.5 Irrational function 
to model situation

x from the top of the dam, is half of h, or the mid-point of the height of the cylinder 
in our experiment. If two gates are located at the same vertical distance from the 
mid-point, the horizontal distance to where the water lands on the spillway is the 
same. This property of the quadratic function will give opportunity for students to 
appreciate how mathematics enriches understanding of the real world. This can be 
verified by experiment. 

If the students were to raise further questions about the real world such as “Why 
is velocity, V, proportional to the square root of x?”, another investigation could 
start. This activity uses abduction to explain the function; this is a study of physics. 
Assumption making is quite important to explain phenomena. In this case, an essential 
assumption is that energy is constant, namely potential energy is equal to kinetic

Fig. 2.6 Maximum of horizontal distance in model situation 
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energy. By allowing this assumption, we can explain the phenomena by rearranging 
the equation to show v = k 

√
x . Thus, a further question derived from mathematical 

modelling leads to an inquiry of physics. 
From the perspective of teaching mathematics, in terms of fostering competence 

in modelling, students have opportunities to realise the importance of generating 
and selecting variables, setting up the simplified situation and validating the solution 
derived from the model by experiment. Regarding appreciation of the usefulness of 
mathematics, students have opportunity to appreciate the utility of mathematics to 
understand (represent, explain, predict) parts of the world. From a real-world point 
of view, knowledge of physics is enriched. Students learn that the velocity of the 
spilling water is proportional to the square root of the distance x from the top of the 
waterline and that the horizontal distance becomes a maximum value when the gate 
is located at the mid-point of vertical height, h, from the bottom of the dam wall to 
the waterline. If the teacher analysing this situation through the thought experiment 
has these teaching aims, then it is a suitable modelling classroom experience. 

From this thought experiment with this example, we see that two types of questions 
are crucial in solving an authentic problem. The first is concerned with mathematics: 
What kind of mathematics can be applied? The second is concerned with the real 
world, and at times can necessitate using other subject disciplines: How can the real-
world situation be conceptualised? Thus, a modelling experience for students that is 
interdisciplinary and leads to a well-understood relation between mathematics and 
the real world only occurs through the interaction between these questions when they 
enrich each other. Bearing this in mind, in keeping with the survey team’s terms of 
reference, we now present a brief synopsis of our research methodology before the 
major findings and threads coming from our analysis of the literature followed by 
final reflections. 

2.3 Methodology 

Following an initial surveying of literature (including English, German, Japanese, 
Portuguese and Swedish) from selected geographical regions conducted by different 
team members, a systematic survey of sources began in preparation for a systematic 
qualitative analytical review of literature (Newman & Gough, 2020). Our sources 
included major mathematics education journals as well as journals in other relevant 
fields such as the International Journal of STEM Education, edited books (espe-
cially in relevant book series in mathematics education and other fields such as 
STEM), conference and symposia proceedings, research projects and theses (see 
Stillman et al. (submitted) for a list of these sources). As the research questions 
were exploratory, the research protocol was developmental allowing some flexibility 
during the protracted time period when the data gathering and analysis took place, 
emerging and being refined throughout the process of the review. Literature was 
initially included if it was in the time period in focus and it was published at least on-
line first, it was in one of the languages above (although the vast majority of literature
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is in English), it addressed the teaching/learning or researched the teaching/learning 
of mathematical modelling or real-world applications, there was a mention of inter-
disciplinarity and/or relations to the real world, or it was addressing STEM projects 
that involved mathematical modelling and/or STEM integration practices involving 
mathematical modelling. Synopses of all selected sources were collated into one 
database where they were coded initially using overarching broad categories that 
were also used as column headings in a qualitative data-matrix (Thomas et al., 
2017). A detailed coding scheme was developed to ensure a systematic identification 
and record keeping from the literature being analysed. The codes were structured 
around our research questions according to four overarching categories: (a) relations 
between mathematics and the real world (RQ1), (b) interdisciplinary team contribu-
tions (RQ2), (c) issues and challenges in relationships (RQ3) and (d) mathematical 
depth in STEM integration (RQ4). Source synopses were coded by reading the orig-
inal source and the synopsis, re-reading the source and adding to the synopses when 
necessary. Sources that did not appear to be within the terms of reference for the 
survey were cross checked by two team members independently and culled if this 
was confirmed. A configurative synthesis (Newman & Gough, 2020) of the different 
literature sources was then conducted to answer our research questions, focusing on 
the research questions and problems or topics the selected literature addressed, noting 
confirmatory and contradictory findings and rival explanations of such findings. 

In configurative synthesis the different kinds of text about individual studies and their results 
are meshed and linked to produce patterns in the data, explore different configurations 
of the data and to produce new synthetic accounts of the phenomena under investigation. 
(Newman & Gough, pp. 15–16) 

To do this the data-matrix was used to assemble descriptive data from individual 
sources in a standard condensed format (Miles et al., 2014), on the basis of inclusion 
of all relevant data to answer the research questions in focus. These data were short, 
category-grounding phrases in each cell as well as sub-codes within the overarching 
broad categories above. For example, for the interdisciplinary team contribution cate-
gory, a source could be coded as having co-authorship from other domain(s) other 
than mathematics education (CoA) and contributing to knowledge transfer between 
countries (KT) (see Stillman et al. (submitted) for full coding with examples of 
this category). An iterative process of data condensation and category refinement 
followed until emergent themes were distilled through the tactic of making compar-
isons and contrasting (Miles et al., 2014) across the individual sources with the aim 
of generating new knowledge that was more than just the sum of the parts. At this 
stage of the analysis, exemplar studies were purposively selected for the reporting 
of findings and threads.
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2.4 Major Findings and Threads 

Multi-disciplinarity (e.g. Kuzuoka & Miyakawa, 2018), interdisciplinarity (e.g. 
Grafenhofer & Siller, 2017) and trans-disciplinarity (e.g. Craig, 2017) were present in 
the surveyed literature with various terms used by authors related to interdisciplinarity 
being most prominent, with only a few examples of the other two and, only one clas-
sified as monodisciplinary—a mathematical modelling support course for students in 
biology organised by three mathematics educators and a mathematician as there was 
no cooperation or collaboration between the biology and mathematics departments. 
Findings of our survey are presented in four threads where overall trends, issues 
and challenges are illustrated and exemplified. The first thread is the importance 
of a well-understood relation between mathematics and the real world underpin-
ning interdisciplinary work in mathematics education. This is related to the way 
mathematical modelling is used to describe real-world situations as well as produce 
artefacts in the non-mathematical world. Although there are overwhelming amounts 
of literature on modelling in science and mathematics education, the interdisciplinary 
position is seldom addressed explicitly (Michelsen, 2015). This remains to be the 
case, because in most of what was surveyed, rarely was interdisciplinarity mentioned 
beyond the introductory literature review and, even there, only briefly. There were, 
however, some examples in the data where interdisciplinarity was the explicit focus 
of the research (e.g. Grafenhofer & Siller, 2017; Jankvist et al., 2020). The relation 
to the real world appeared even less, but there was more evidence of this relation 
being more than a minor focus of the research in studies (e.g. Brown, 2019; Czocher, 
2018; Hankeln, 2020). The second thread addresses interdisciplinary research teams 
and teaching teams in the research literature. The composition of such teams and 
their contributions to knowledge about the effectiveness, that such interdisciplinarity 
brings to modelling research, will be illustrated. The third thread examines issues 
and challenges around relationships among mathematical modelling, mathematics, 
the real world and interdisciplinarity. The final thread focuses on the proposition 
that mathematical modelling provides critical high leverage to ensure mathematical 
depth in STEM integration and how this can motivate and support learning within 
all disciplines concerned. We now elaborate on the threads in the data. 

2.4.1 A Well-Understood Relation Between Mathematics 
and the Real World Underpinning Interdisciplinary 
Work 

The importance of a well-understood relation between mathematics and the real 
world, as we exemplified in Sect. 2.2, was reinforced in the survey data, whether 
the purpose of the modelling being discussed was to develop criticality of model 
use in society (e.g. Kacerja et al., 2017); to develop student interest and emotions 
(e.g. Hartmann & Schukajlow, 2021); or to simulate reflexive discussions about the
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role of mathematics in society (e.g. Gibbs, 2019). As seen in Sect. 2.2, in attempting 
to understand the relation between mathematics and the real world, we think about 
two worlds, the real world and the world of mathematics. On the one hand, the real 
world encourages deeper understanding and processing of mathematics. On the other 
hand, mathematics encourages deeper understanding and processing of the real-world 
situation. If both are satisfied, enriching each other, we can say the relation between 
mathematics and the real world is well-understood. 

The study by Grafenhofer and Siller (2017) investigated the effect of interdisci-
plinary preparation by teachers on the modelling actions of their secondary students 
(Years 8–11) as they worked on a task of selecting the optimal network of hydrogen 
refuelling stations across Germany during extra-curricular modelling days. The alter-
native energy topic was integrated successfully into interdisciplinary teaching, but the 
expected uptake of interdisciplinary preparations was not. The researchers expected 
groups who received interdisciplinary preparations would think about issues such 
as properties of hydrogen, using existing hydrogen pipes for distribution or the 
different types of refuelling stations as taught to them by the teachers. Instead, these 
students tried to find their own way to do their modelling, using their real-life non-
mathematical knowledge. All groups (with or without interdisciplinary preparations) 
searched for answers by studying economic and geographical contexts and population 
density. The selected groups who experienced interdisciplinary preparation preferred 
this geographical way, because they had created an optimal geographical network 
for companies in Germany in geography, 6 months previously. Rather than ideas 
coming from the interdisciplinary preparation, they took the geographical method 
into account. The interdisciplinary processes and preparations by their teachers had 
no influence on the modelling processes of these particular groups. Grafenhofer and 
Siller (2017) concluded that predicting the (mathematical) outcome of a modelling 
and interdisciplinary activity at school is difficult. Even if teachers try to influ-
ence the modelling process with specific interdisciplinary learning preparations, this 
does not ensure students will use these, rather than their real-life, non-mathematical 
knowledge. 

In the teaching of mathematical modelling, another issue is how to enable students 
to conceptualise the real-world situation. Wernet (2017), bearing this in mind, focused 
on the interaction during whole class discussions between teachers and students about 
contextual features in written tasks. Video observation of lessons in three eighth-
grade classrooms using a problem-based curriculum was conducted. Wernet found 
that the teachers and students discussed the context of written problems in multiple 
ways, which were categorised as referencing, positioning, elaborating, clarifying and 
meta-level commentary. These interactions often led to higher authenticity (Palm, 
2008) as enacted in discussions, than as written in task descriptions. 

A related question is: “How can assumptions be set up?” Regarding this question, 
Chang et al. (2020) in their study focused on making assumptions to conceptualise 
a real-world situation. They noted that “inadequate assumptions in a modelling task 
lead [sic] to an inadequate situation model, and to an inadequate mathematical model 
for the problem situation” (p. 59). In order to make assumptions, students need
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to conceptualise the real-world situation so both realistic considerations and non-
mathematical knowledge are necessarily involved. 

2.4.2 Interdisciplinary Teams in Mathematics Education 
Research and Teaching Related to the Real World 

There was evidence of several interdisciplinary research teams and interdisciplinary 
teaching teams and combinations of these in the research literature in our data. Unsur-
prisingly, mathematics education was the most prevalent discipline of members of 
these teams. Less frequently represented in teams were discipline combinations 
such as Art, general education and mathematics education (Saeki et al., 2017); 
History, general education and mathematics education (Sala et al., 2017); and Busi-
ness Studies, Commerce and mathematics education (Sawatzki & Goos, 2018), 
among others. As will be shown below, some of the interdisciplinary teams were 
multi-national, whereas others addressed topics in which interdisciplinary teams are 
essential. The latter included international comparative studies where both culture 
and language needed to be considered, knowledge transfer from one country to other 
countries and validation of results of a study across countries and cultures. 

The study by Durandt et al. (2022), for example, involved an interdisciplinary team 
of two mathematics educators and a statistics/methodology expert. Team members 
are from South Africa and Germany. The aim of the study was to compare an 
independence-oriented teaching style (focusing on a balance between students’ inde-
pendent work and teacher guidance) and a traditional teacher-guided style. Both 
teaching styles were developed in the DISUM-Project (Blum & Leiß, 2007) and 
piloted in Germany with secondary students. Challenges for the team were transfer 
of the original ideas to another cultural context (South Africa) and another partici-
pant group (first-year engineering students), as well as using contemporary statistical 
methods for analysis. The results were that all groups showed significant progress, 
but there was room for improvement. Furthermore, the group taught according to the 
independence-oriented style showed greater competency growth and more positive 
attitudes than two other groups taught by a traditional teacher-guided style. 

A second example (Krawitz et al., 2022) concerned validation of results of a 
study across regions and cultures. Year 9 students in Germany and Chinese Taipei 
participated. The aim was to analyse the role of reading comprehension in modelling 
and interest in modelling. Most measures were developed in the team (all mathe-
matics educators—2 from Germany and 2 from Chinese Taipei), and the challenge 
was developing a common understanding of what modelling is. The results were, 
firstly, the importance of reading comprehension for constructing a real model and 
interest in mathematical modelling, and secondly, reading prompts improved interest 
in Germany, but not in Chinese Taipei. The latter is an indication of the importance of 
conducting studies across regions and cultures to have a broader way of generalising 
the results of a study beyond one region or culture.
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Finally, there were limitations with respect to determining disciplines of 
researchers and who was involved in a team. It is difficult to determine from published 
work what discipline a researcher represents and how, and to what extent, a researcher 
contributed to a study. In many cases, many experts who contributed to a project are 
not visible (e.g. teachers, experts in methodology, advisers), despite reviewing project 
and personal homepages of researchers. 

2.4.3 Issues and Challenges Around Relationships Among 
Mathematical Modelling, Mathematics, the Real World 
and Interdisciplinarity 

According to Borromeo Ferri and Mousoulides (2018, p. 901), in the international 
community there is strong consensus “that mathematical modelling can be described 
as an activity that involves transitioning back and forth between reality and math-
ematics”. However, according to these authors, “the definition of interdisciplinary 
mathematics education is very vague”. The nature of “reality” and the nature of 
“mathematics” are also vague, and it is important to ask how they relate to each 
other (Araújo, 2007). For example, where is mathematics located? Is it a part of the 
real world, or is it disconnected from the real world? Some authors in the survey 
discussed this relationship between mathematics and reality in the context of the 
relationship between the real world and mathematics in mathematical modelling. 
Carreira and Baioa (2018) and English and Watson (2018) wrote about authentic 
problems, whilst Maltempi and Dalla Vecchia (2013) wrote about virtual reality. It is 
thus important to discuss this relationship from a philosophical perspective because 
what is mathematics and what is reality are proper questions from philosophy. 

At the same time, when examining mathematical modelling in mathematics educa-
tion and interdisciplinarity, it seems natural that every modelling activity is also an 
interdisciplinary activity (Borromeo Ferri & Mousoulides, 2018; Malheiros, 2012). 
However, if different conceptions of interdisciplinarity in the survey are considered, 
and modelling practices are examined, an important question arises: What do the 
authors mean by interdisciplinarity? Firstly, if interdisciplinarity is understood as a 
set of different disciplines working together in an activity, there is a strong relation-
ship between modelling and interdisciplinarity. We found examples of Mathematics 
in dialogue with Biology (Soares & Souto, 2014; Viirman & Nardi, 2019); of several 
disciplines working together, such as Mathematics, Geography, Training for Life 
Work, Technological Education, Geology, Microbiology (Esteley & Magallanes, 
2015); and Mathematics working together with History (e.g., Sala et al., 2017). 
However, sometimes the intention may be to develop mathematical competencies 
(e.g., Liakos & Viirman, 2017) or to increase students’ interest in mathematics (e.g. 
Høgheim & Reber, 2015). In these kinds of activity, it does not make sense to expect 
the authors to be writing about interdisciplinarity.
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It is important to discuss and reflect on modelling and interdisciplinarity. Magal-
lanes et al. (2017) consider interdisciplinarity as a general philosophy and a type of 
scientific practice. It implies a multidimensional conception of phenomena and, at 
the same time, recognition of the relative character of each discipline (Magallanes 
et al., 2017). The phenomenon is first considered holistically, then each discipline is 
helpful for understanding it from different viewpoints. At the same time, no disci-
pline is given the status of having “the correct” point of view. All disciplines are 
helpful to understand that the problems of the real world are important. Similarly, 
sometimes, using knowledge from a set of disciplines to understand the phenomenon 
is necessary; but at other times, considering knowledge from a context not inside a 
discipline is necessary. Different forms of knowledge contribute to understanding 
the phenomenon being discussed in a mathematical modelling activity. 

Besides disciplines and knowledge, we must consider the people involved in the 
modelling activity. According to Tomaz and David (2008), in attempting to promote 
interdisciplinarity, whether in mathematical modelling or other perspectives, there 
is a risk of placing the focus more on the task proposed and less on the activities 
of the students and teacher themselves. Consideration needs to be given equally 
to the teacher and students and the people involved in the activity. Sometimes, the 
interdisciplinary is built by the people themselves and this has a connection with 
the interdisciplinary team doing the mathematical modelling to solve a real-world 
problem in a non-disciplinary manner. 

In mathematical modelling in mathematics education, we start with a real-world 
situation or problem and consider mathematical ideas and concepts to solve this 
problem. At the same time, it is important to consider other sciences and other disci-
plines to solve it to deal with the problem. Moreover, since other kinds of knowl-
edge to deal with the phenomenon within the situation addressing the problem of 
interest are helpful to understand the situation, or to solve the problem, teachers from 
different disciplines and their students can be engaged in such disciplinary activity 
in the mathematical modelling activity. Teachers need to not only be aware of disci-
plinary differences in modelling practice (Michelsen, 2018; Tran et al., 2020) but  
also realise how modelling is inherently interdisciplinary (Hjalmarson et al., 2020). 
Students at tertiary level in different specialisations, though, will have developed 
particular ways of thinking and acting from their learning in their specialisation, 
so the same mathematical modelling activity will be approached in different ways 
(Vertuan et al., 2017). “Greater awareness of the scholarship of interdisciplinary peda-
gogy can make teaching across disciplinary boundaries manageable for a wider range 
of mathematics teachers” (Staats, 2014, p. 9). However, interdisciplinary teaching 
has challenges and, as an innovation, faces difficulty being accepted widely in prac-
tice (Kollosche, 2018). Curricula, time, lack of support from school management 
are all framed as obstacles to implementing interdisciplinary teaching (Michelsen, 
2018). Timetabling of interdisciplinary planning and enculturation into inquiry-based 
learning (Widjaja et al., 2019) are also seen as challenges.
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Mathematical modelling can, therefore, be understood as a means of enabling 
interdisciplinary practices and integrating specific disciplines of professional educa-
tion with those of school (Malheiros, 2012; Sala et al., 2017). Through interdisci-
plinary tasks, students tend to build a less fragmented and more articulated worldview 
(Matté & Sant’Ana, 2013). Modelling activities demystify the conception of math-
ematics as an exact and abstraction-laden science (Matté & Sant’Ana, 2013) and 
change students’ views of mathematics (Vieira & Thiel, 2015). 

2.4.4 Mathematical Modelling and STEM Integration 

Many, if not all, of the challenges and opportunities that come with integrating 
subjects in interdisciplinary educational work touched upon in previous sub-sections 
also apply to STEM education and STEM integration. Arguments calling for the 
strengthening of Science, Technology, Engineering and Mathematics to cope with 
the rapid increase in technological innovations and global challenges have recently 
started to permeate the political agenda as well as curricula documents in several 
countries. The arguments are varied but can be summarised as STEM education and 
STEM integration are necessary to improve scientific literacy (Hallström & Schön-
born, 2019), scientific flourishing and competitiveness (Maass, Geiger et al., 2019), 
and responsible citizenship (Maass, Doorman et al., 2019). However, STEM educa-
tion and research into STEM are new endeavours and not particularly well-developed 
fields of practice or study; hence, there is a lack of maturity and lack of theoretical 
framing. There are major challenges in implementing everyday STEM teaching due 
to the lack of materials, inadequate teacher background, time constraints and other 
institutional hindrances (Tytler et al., 2019). One tension is whether to foreground 
the individual discipline, compared to STEM being more of an interdisciplinary and 
truly integrated approach to teaching and learning. Fitzallen (2015) notes that the 
literature is not sparse when it comes to claiming that STEM education provides a 
rich context for fostering mathematics knowledge and competencies; however, how 
this should be done and achieved is still an open question. As noted by English (2016, 
p. 1), “it seems that mathematics learning benefits less than the other disciplines in 
programs claiming to focus on STEM integration”. 

Many interpretations of STEM and approaches to integration are found in the 
literature. Multidisciplinary, interdisciplinary and transdisciplinary approaches are 
general approaches, not taking the particulars of the STEM disciplines into account 
(English, 2016); however, inquiry-based pedagogy and digital tool-based pedagogy 
are rooted in the STEM disciplines (Leung, 2019). Maass, Geiger et al. (2019) fore-
front twenty-first-century skills, mathematical modelling and responsible citizenship 
as potential useful approaches to address the challenges with respect to mathematics 
teaching and learning in a STEM context. We are most interested in aspects related 
to mathematical modelling. Several empirical studies in our survey highlighted this 
connection and we selectively illustrate from these.
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English (2019) highlights students learning as designers in an integrated STEM 
activity. In this study, students in grade 4 worked on the Fancy Feet task taking on 
the roles of designers and engineers in a shoe factory. The study was framed using 
a conceptual frame called Towards Informed Design (Crismond & Adams, 2012) in  
which four interrelated core dimensions are used to structure and analyse the activity. 
These dimensions are learning while designing, making knowledge-driven decisions, 
using design strategies effectively, and connecting and reflecting on knowledge and 
skills. English (2019) discusses the students’ learning with respect to the STEM disci-
plines and the results of applying the design strategy in the integrated STEM activity. 
The Towards Informed Design approach adopted facilitated an understanding of the 
connections among the STEM disciplines and productively linked these. However, 
there is a risk that the focus of such design projects becomes the product, a pair of 
shoes, rather than the ongoing learning. The mathematical content that came to the 
fore in the project was mostly related to statistics and measurement as the students 
engaged in measuring their own feet and shoes. 

Developing a hand biometric recognition system was the focus of Carreira et al. 
(2020). This study illustrated the modelling process carried out by Year 9 and univer-
sity students using a framework that explicitly draws on engineering design ideas 
from industry. The results highlight the differences and commonalities in the models 
and solutions developed by the students and how experimentation and simulations 
in the activity influenced the students’ construction of meaning. The students typi-
cally devised a recognition system entailing the same phases as systems designed by 
professionals, namely an enrolment phase, a pre-processing phase and a verification 
phase. The mathematics employed by the students was different strategies to tackle 
margin of errors, in Year 9, absolute values, and at university level, matrices and 
determinants. 

As a third example, some studies from the KOMMS (Competence Centre for 
Mathematical Modelling in STEM Projects in Schools) group in Kaiserslautern in 
Germany are showcased. One project (Bock & Bracke, 2013) focused on bioacoustics 
for recognition of bird songs and introduced students to various representations and 
mathematical characteristics of sound. In another project (Bock et al., 2019), students 
built water fountains and light organs, projects that required the use and understanding 
of the Fourier transform. In yet another project (Bracke & Lantau, 2017), students 
modelled the principles and function of a Segway which involved working with 
complicated differential equations. The students realised their models by building 
miniature Segways using Lego © Mindstorm. These studies show how advanced 
mathematics can be made accessible to students in STEM settings. 

Looking at more theoretical work, there is a great variation in focus, often 
depending on the author’s own expertise discipline. Drawing on situated cognition 
theory, Kelley and Knowles (2016) formulated a conceptual framework for situ-
ated STEM learning in which mathematics and mathematical modelling are seen 
as important, but play a minor role compared to engineering design and science 
inquiry. In contrast, in a literature review on how to foster STEM literacy, Hallström 
and Schönborn (2019) stress that models and modelling (M&M) are instrumental 
in four out of their eight recommendations, namely that M&M: can bridge the gap
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between STEM disciplines; can promote STEM literacy and transfer skills across 
the disciplines; serve as a route to authentic STEM education; and must be taught 
rooted in the STEM disciplines. Hjalmarson et al. (2020) discuss the relationship 
between the real-world and models and modelling, departing from the four different 
STEM disciplines. From a mathematical perspective, they elaborate on modelling 
with mathematics, modelling mathematics and mathematical modelling. They also 
discuss conceptions of models and modelling in science, modelling as a design prac-
tice in engineering and models and simulations in computational thinking. Taken 
together, this results in multiple practices and activities and roles of modelling in the 
STEM disciplines. Looking across the STEM disciplines, Hjalmarson et al. identify 
as common themes that (1) M&M is connected to real-world phenomena and situa-
tions as abstractions or representations with explanatory or descriptive relevance and 
power, (2) modelling is cyclical and iterative and (3) modelling is an opportunity to 
express and develop disciplinary knowledge and ways of thinking. 

Due to the plethora of approaches to STEM integration, there may be a need to 
rethink, re-vision or at least re-situate the notion of mathematical modelling we use, 
in order to facilitate clearer communication and more fruitful collaboration with other 
disciplines. This is evident when considering the various concepts and notions applied 
in the different STEM disciplines that have now started to surface in the research on 
mathematical modelling. One suggestion put forward in the literature to integrate the 
STEM disciplines from a modelling perspective is the use of computational thinking 
as a basis for a new, integrated and modelling oriented framework (Hjalmarson et al., 
2020; LópezLeiva et al., 2019). This means rethinking the teaching of computational 
thinking with respect to the teaching and learning of modelling, building on, but 
more importantly, transcending the work that has already been done in this area. 
Also evident in the literature is the need for more empirical research, in particular 
studies that compare what is learnt with respect to the individual STEM disciplines 
in the STEM setting relative to a more traditional form of teaching, especially for 
mathematics. Lastly, the consequences and the implications for teaching practices 
with respect to mathematical modelling, if the Arts join the STEM disciplines, also 
need consideration. 

2.5 Final Reflections 

The four threads that we have identified in our survey reflect both traditional research 
interests in the teaching and learning of mathematical modelling as well as new areas 
of growth. Historicising is a methodology that scholars use for historical analysis 
devoted to challenging the common sense, with the intention of making the familiar 
strange (see Popkewitz, 2013) in order to bring change. In this instance, could we 
trouble the position mathematical modelling takes in scholarship as a common-sense 
enabler of interdisciplinarity. This would mean that those of us researching in math-
ematical modelling or STEM, or both, would have to “unthink”, rethink and most 
likely re-vision some of the things we personally treasure about these, as “to unthink
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what seems natural is to open other possibilities of schooling, teaching and teacher 
education” (Popkewitz, 2008, p. xv). The connection of mathematical modelling and 
interdisciplinarity seeming so obvious has not led to as much real uptake by interdis-
ciplinary teaching teams in classrooms and research studies with an interdisciplinary 
focus or investigating why this is so. There is also little real dialogue and interaction 
between mathematical modelling and STEM communities—there are pockets, but 
this is not as widespread as should be expected if modelling is truly understood as 
inherently interdisciplinary. As was pointed out in previous sections, the notion of 
a well-understood relation between mathematics and the real world underpins the 
exposing of interdisciplinary aspects of a mathematical modelling activity. As future 
research could we suggest that some of the issues that we have raised here be taken up, 
particularly researching the currently invisible contribution of people other than the 
researchers to the teaching, learning and doing of the modelling and problematising 
the interdisciplinary aspects of modelling to bring more interdisciplinary teams into 
modelling activities and as objects of study, in their own rights. 

References 

Araújo, J. L. (2007). Relação entre matemática e realidade em algumas perspectivas de modelagem 
matemática na educação matemática. In J. C. Barbosa, A. D. Caldeira, & J. L. Araújo (Eds.), 
Modelagem matemática na educação matemática brasileira: pesquisas e práticas educacionais 
(pp. 17–32). SBEM. 

Blum, W., & Leiß, D. (2007). How do students and teachers deal with mathematical modelling 
problems? The example Sugarloaf and the DISUM Project. In C. Haines, P. L. Galbraith, W. 
Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA12): Education, engineering and 
economics (pp. 222–231). Horwood. 

Bock, W., & Bracke, M. (2013). Project teaching and mathematical modeling in STEM subjects: 
A design based research study. In B. Ubuz, C. Haser, & M.A. Mariotti (Eds.), Proceedings of 
CERME 8 (pp. 1010–1020). 

Bock, W., Bracke, M., & Capraro, P. (2019). Mathematical modeling of musical fountains and light 
organs—Where is the M in interdisciplinary STEM projects? In U. T. Jankvist, M. van den 
Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of CERME 11 (pp. 4739–4746). 

Borromeo Ferri, R., & Mousoulides, N. (2018). Mathematical modelling as a prototype for inter-
disciplinary mathematics education? Theoretical reflections. In T. Dooley & G. Gueudet (Eds.), 
Proceedings of CERME 10 (pp. 900–907). 

Bracke, M., & Lantau, J.-M. (2017). Mathematical modelling of dynamical systems and implemen-
tation at school. In T. Dooley & G. Gueudet (Eds.), Proceedings of CERME 10 (pp. 908–915). 

Brown, J. P. (2019). Real-world task context: Meanings and roles. In G. A. Stillman & J. P. (Eds.), 
Lines of inquiry in mathematical modelling (pp. 53–81) [ICME-13 Monographs]. Springer Open. 

Carreira, S., & Baioa, A. M. (2018). Mathematical modelling with hands-on experimental tasks: 
On the student’s sense of credibility. ZDM, 50(1–2), 201–215. 

Carreira, S., Baioa, A. M., & de Almeida, L. M. W. (2020). Mathematical models and meaning by 
school and university students in a modelling task. Avances De Investigación Matemática, 17, 
67–83. 

Chang, Y., Krawitz, J., Schukajlow, S., & Yang, K.-L. (2020). Comparing German and Taiwanese 
secondary school students’ knowledge in solving mathematical modelling tasks requiring their 
assumptions. ZDM, 52(1), 59–72.



38 G. A. Stillman et al.

Committee on Facilitating Interdisciplinary Research, Committee on Science, Engineering, and 
Public Policy. (2004). Facilitating interdisciplinary research. National Academies. National 
Academy Press. 

Craig, J. C. (2017). Real fantasies in mathematics education: Numeracy, quantitative reasoners, 
and transdisciplinary wicked problems (Doctoral dissertation). Retrieved from ProQuest 
Dissertations and Theses database (UMI No. 10621502) [Michigan State University, PhD]. 

Crismond, D. P., & Adams, R. S. (2012). The informed design teaching and learning matrix. Journal 
of Engineering Education, 101(4), 738–797. 

Czocher, J. A. (2018). How does validating activity contribute to the modelling process?Educational 
Studies in Mathematics, 99(2), 137–159. https://doi.org/10.1007/s10649-018-9833-4 

Durandt, R., Blum, W., & Lindl, A. (2022). Fostering mathematical modelling competency of 
first year South African engineering students: Which influence does the teaching design have? 
Educational Studies in Mathematics, 109(2), 361–381. https://doi.org/10.1007/s10649-021-100 
68-7 

English, L. D. (2016). STEM education: K-12: Perspectives on integration. International Journal 
of STEM Education, 3, 3.  https://doi.org/10.1186/s40594-016-0036-1 

English, L. D. (2019). Learning while designing in a fourth-grade integrated STEM problem. 
International Journal of Technology and Design Education, 29(5), 1011–1032. 

English, L. D., & Watson, J. M. (2018). Modelling with authentic data in sixth grade. ZDM, 50(1–2), 
103–115. 

Esteley, C., & Magallanes, A. (2015). Una experiencia vivida en aula: enseñar y aprender a trabajar 
con estadística desde una perspectiva crítica. Yupana Revista De Educación Matemática De La 
UNL, 9, 29–46. 

Fitzallen, N. (2015). STEM education: What does mathematics have to offer? In M. Marshman, 
V. Geiger, & A. Bennison (Eds.), Proceedings of MERGA 38 (pp. 237–244). Mathematics 
Education Research Group of Australasia. 

Gibbs, A. M. (2019). Socio-critical modeling and the role of mathematics in society. Doctor of 
Philosophy in Mathematics Education, Florida Institute of Technology. https://repository.lib.fit. 
edu/handle/11141/3026 

Grafenhofer, I., & Siller, H.-S. (2017). How to build a hydrogen refuelling station infrastruc-
ture in Germany—An interdisciplinary project approach for mathematics classrooms. In G. 
A. Stillman, W. Blum, & G. Kaiser (Eds.), Mathematical modelling and applications: Crossing 
and researching boundaries in mathematics education (pp. 615–625). Springer. 

Hallström, J., & Schönborn, K. J. (2019). Models and modelling for authentic STEM education: 
Reinforcing the argument. International Journal of STEM Education, 6, 22. https://doi.org/10. 
1186/s40594-019-0178-z 

Hankeln, C. (2020). Mathematical modeling in Germany and France: A comparison of students’ 
modeling processes. Educational Studies in Mathematics, 103(2), 209–229. 

Hartmann, L.-M., & Schukajlow, S. (2021). Interest and emotions while solving real-world problems 
inside and outside the classroom. In F. K. S. Leung, G. A. Stillman, G. Kaiser, & K. L. Wong 
(Eds.), Mathematical modelling education in East and West (pp. 153–163). Springer. 

Hjalmarson, M. A., Holincheck, N., Baker, C. K., & Galanti, T. M. (2020). Learning models and 
modelling across the STEM disciplines. In C. C. Johnson, M. J. Mohr-Schroeder, T. J. Moore, & 
L. D. English (Eds.), Handbook of research on STEM education (pp. 223–233). Taylor & Francis. 

Høgheim, S., & Reber, R. (2015). Supporting interest of middle school students in mathematics 
through context personalization and example choice. Contemporary Educational Psychology, 
42, 17–25. 

Jankvist, U. T., Emmerik Damgaard Knudsen, L., & Rønn Shakoor, L. (2020). Sewing a skirt: A 
design for an interdisciplinary material activity in mathematics and arts & crafts. In A. Savard & 
R. Pearce (Eds.), MACAS in the digital era: Proceedings of the 2019 MACAS Symposium (pp. 26– 
38).

https://doi.org/10.1007/s10649-018-9833-4
https://doi.org/10.1007/s10649-021-10068-7
https://doi.org/10.1007/s10649-021-10068-7
https://doi.org/10.1186/s40594-016-0036-1
https://repository.lib.fit.edu/handle/11141/3026
https://repository.lib.fit.edu/handle/11141/3026
https://doi.org/10.1186/s40594-019-0178-z
https://doi.org/10.1186/s40594-019-0178-z


2 Survey of Interdisciplinary Aspects of the Teaching and Learning … 39

Kacerja, S., Rangnes, T. E., Herheim, R., Pohl, M., Lilland, I. E., & Hansen, R. (2017). Stimulating 
critical mathematical discussions in teacher education: Use of indices such as the BMI as entry 
points. Nordic Studies in Mathematics Education, 22(4), 43–59. 

Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. 
International Journal of STEM Education, 3, 11. https://doi.org/10.1186/s40594-016-0046-z 

Kollosche, D. (2018). Social functions of mathematics education: A framework for socio-political 
studies. Educational Studies in Mathematics, 98(3), 287–303. 

Krawitz, J., Chang, Y.-P., Yang, K.-L., & Schukajlow, S. (2022). The role of reading comprehension 
in mathematical modelling: Improving the construction of a real-world model and interest in 
Germany and Taiwan. Educational Studies in Mathematics, 109(2), 337–359. 

Kuzuoka, K., & Miyakawa, T. (2018). Mathematical activities in multidisciplinary study and 
research paths: Through a teaching experiment in Japanese junior high school. Journal of Japan 
Society of Mathematical Education: Research in Mathematics Education, 24(1), 121–133. 

Larivière, V., Haustein, S., & Börner, K. (2015). Long-distance interdisciplinarity leads to higher 
scientific impact. PLOS ONE, 10(3), Article e0122565. https://doi.org/10.1371/journal.pone. 
0122565 

Leung, A. (2019). Exploring STEM pedagogy in the mathematics classroom: A tool-based exper-
iment lesson on estimation. International Journal of Science and Mathematics Education, 17, 
1339–1358. 

Liakos, Y., & Viirman, O. (2017). The development of biology students’ mathematical competencies 
through mathematical modelling–exploring the potential of an analytical tool. Presented at 
Nordic Conference on Mathematics Education. 

LópezLeiva, C. A., Pattichis, M. S., & Celedón-Pattichis, S. (2019). Modelling and programming 
of digital video: A source for the integration of mathematics, engineering, and technology. 
In B. Doig, J. Williams, D. Swanson, R. Borromeo Ferri, & P. Drake (Eds.) Interdisciplinary 
mathematics education (pp. 51–81) [ICME-13 Monographs]. Springer Open. 

Maass, K., Doorman, M., Jonker, V., & Wijers, M. (2019). Promoting active citizenship in 
mathematics teaching. ZDM, 51(6), 991–1003. https://doi.org/10.1007/s11858-019-01048-6 

Maass, K., Geiger, V., Ariza, M. R., & Goos, M. (2019). The role of mathematics in interdisciplinary 
STEM education. ZDM, 51(6), 869–884. 

Magallanes, A. N., Dutto, D., Serafin, F. R., Vernetti, S., & Abella, F. (2017). El proyecto inter-
disciplinario en la educación matemática: una experiencia en la formación de profesores. In 
Actas del IX Congreso Iberoamericano de Educación Científica y del I Seminario de Inclusión 
Educativa y Sociodigital (pp. 115–125). 

Malheiros, A. P. S. (2012). Pesquisas em modelagem mathemática e diferentes tendências em 
educação matemática. Bolema—Boletim de Educação Matemática, 26(43), 861–882. 

Maltempi, M. V., & Dalla Vecchia, R. (2013). About mathematical modelling in the reality of the 
cybernetic world. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), Proceedings of CERME 8 
(pp. 1097–1106). 

Matté, I., & Sant’Ana, M. (2013). Mathematical modelling and temperature sensors in technical 
school. In Proceedings of 8th National Conference on Modelling in Mathematics Education 
(Conferência Nacional sobre Modelagem na Educação Matemática) CNMEM [in Portuguese]. 

Michelsen, C. (2015). Mathematical modeling is also physics—Interdisciplinary teaching between 
mathematics and physics in Danish upper secondary education. Physics Education, 50(4), 489– 
494. 

Michelsen, C. (2018). Linking mathematics and biology education by mathematical modeling— 
An in-service teacher training program. In C. Michelsen, A. Beckmann, V. Freiman, & U. T. 
Jankvist (Eds.), Mathematics as a bridge between the disciplines: Proceedings of 2017 MACAS 
Symposium (pp. 65–73). 

Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). Qualitative data analysis: A methods 
sourcebook (3rd ed.). Sage. 

Newman, M., & Gough, D. (2020). Systematic reviews in educational research: Methodology, 
perspectives and application. In O. Ritcher-Zawacki, M. Kerres, S. Bedenlier, M. Bond, &

https://doi.org/10.1186/s40594-016-0046-z
https://doi.org/10.1371/journal.pone.0122565
https://doi.org/10.1371/journal.pone.0122565
https://doi.org/10.1007/s11858-019-01048-6


40 G. A. Stillman et al.

K. Buntis. (Eds.), Systematic reviews in educational research: Methodology, perspectives and 
application (pp. 41–54). Springer VS. 

Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. L. Galbraith, H.-W. Henn, & 
M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study 
(pp. 3–32). Springer. 

Niss, M. (2008). Perspectives on the balance between applications & modelling and ‘pure’ math-
ematics in the teaching and learning of mathematics. In M. Menghini, F. Furinghetti, L. Giac-
ardi, & F. Arzarello (Eds.), The first century of the International Commission on Mathematical 
Instruction (pp. 69–84). Accademia Nazionale dei Lincei. 

Palm, T. (2008). Impact of authenticity on sense making in word problem solving. Educational 
Studies in Mathematics, 67(1), 37–58. 

Popkewitz, T. S. (2008). Cosmopolitanism and the age of school reform: Science, education, and 
making society by making the child. Routledge. 

Popkewitz, T. S. (2013). Styles of reason: Historicism, historicizing, and their historical objects in the 
history of education. In T. S. Popkewitz (Ed.), Rethinking the history of education. Transnational 
perspectives on its questions, methods, and knowledge (pp. 1–28). Palgrave Macmillan. 

Saeki, A., Kaneko, M., & Saito, D. (2017). Case study of pre-service teacher education for mathe-
matical modelling and applications connecting paintings with mathematics. In G. A. Stillman, W. 
Blum, & G. Kaiser (Eds.), Mathematical modelling and applications: Crossing and researching 
boundaries in mathematics education (pp. 313–323). Springer. 

Sala, G., Font, V., Giménez, J., & Barquero, B. (2017). Inquiry and modelling in a real archaeo-
logical context. In G. A. Stillman, W. Blum, & G. Kaiser (Eds.), Mathematical modelling and 
applications: Crossing and researching boundaries in mathematics education (pp. 325–335). 
Springer. 

Sawatzki, C., & Goos, M. (2018). Cost, price and profit: What influences students’ decisions about 
fundraising? Mathematics Education Research Journal, 30(4), 525–544. 

Schukajlow, S., Leiss, D., Pekrun, R., Blum, W., Müller, M., & Messner, R. (2012). Teaching 
methods for modelling problems and students’ task-specific enjoyment, value, interest and self-
efficacy expectations. Educational Studies in Mathematics, 79(2), 215–237. 

Soares, D. S., & Souto, D. L. P. (2014). Tensões no processo de análise de modelos em um curso 
de cálculo diferencial e integral. Rematec (Revista De Matemática Ensino e Cultura), 9(17), 
46–76. 

Staats, S. (2014). The interdisciplinary future of the mathematics curriculum. For the Learning of 
Mathematics, 34(2), 7–9. 

Stillman, G. A., Ikeda, T., Schukajlow, S., Araújo, J. L., & Ärlebäck, J. B. (in press). Interdisci-
plinary aspects of the teaching and learning of mathematical modelling in mathematics educa-
tion including relations to the real world and STEM. In J. Wang (Ed.), Proceedings of the 14th 
International Congress on Mathematical Education. World Scientific. 

Thomas, J., O’Mara-Eves, A., Harden, A., & Newman, M. (2017). Synthesis methods for combining 
and configuring textual or mixed methods data. In D. Gough, S. Oliver, & J. Thomas (Eds.), An 
introduction to systematic reviews (2nd ed., pp. 181–211). Sage. 

Tomaz, V. S., & David, M. M. M. S. (2008). Interdisciplinaridade e parendizagem da matemática 
em sala de aula. Autêntica Editora. 

Tran, N. C., Chu, C. T., Holten, K., &. Bernhausen, H. (2020). Models and modeling. In S. F. 
Kraus & E. Krause (Eds.), Comparison of mathematics and physics education I: Theoretical 
foundations for interdisciplinary collaboration (pp. 257–298). Springer Spektrum. 

Tytler, R., Williams, G., Hobbs, L., & Anderson, J. (2019). Challenges and opportunities for a 
STEM interdisciplinary agenda. In B. Doig, J. Williams, D. Swanson, R. Borromeo Ferri & 
P. Drake (Eds.), Interdisciplinary mathematics education (pp. 51–81) [ICME-13 Monographs]. 
Springer Open. 

Vertuan, R. E., Silva, K. A. P., & Borssoi, A. H. (2017). Modelagem matemática em disciplinas do 
Ensino Superior: o que manifestam os estudantes? Educere et Educare Revista de Educação, 
12(24). https://doi.org/10.17648/educare.v12i24.15391

https://doi.org/10.17648/educare.v12i24.15391


2 Survey of Interdisciplinary Aspects of the Teaching and Learning … 41

Vieira, G., & Thiel, A. (2015). Mathematics in basketball. In Proceedings of 10th National Confer-
ence on Modelling in Mathematics Education (Conferência Nacional sobre Modelagem na 
Educação Matemática) CNMEM [in Portuguese]. 

Viirman, O., & Nardi, E. (2019). Negotiating different disciplinary discourses: Biology students’ 
ritualized and exploratory participation in mathematical modeling activities. Educational Studies 
in Mathematics, 101(2), 233–252. 

Wernet, J. L. W. (2017). Classroom interactions around problem contexts and task authenticity in 
middle school mathematics. Mathematical Thinking and Learning, 19(2), 69–94. 

Widjaja, W., Hubber, P., & Aranda, G. (2019). Potential and challenges in integrating science and 
mathematics in the classroom through real-world problems: A case of implementing an inter-
disciplinary approach to STEM. In Y.-S. Hsu & Y.-F. Yeh (Eds.), Asia-Pacific STEM teaching  
practices: From theoretical frameworks to practices (pp. 157–171). Springer. 

Williams, J., & Roth, W.-M. (2019). Theoretical perspectives on interdisciplinary mathematics 
education. In B. Doig, J. Williams, D. Swanson, R. Borromeo Ferri, & P. Drake (Eds.), 
Interdisciplinary mathematics education (pp. 13–34) [ICME-13 Monographs]. Springer Open.



Chapter 3 
Diversity of Perspectives 
on Mathematical Modelling: A Review 
of the International Landscape 

Armando Paulino Preciado Babb, Fredy Peña Acuña, 
Yudi Andrea Ortiz Rocha, and Armando Solares Rojas 

Abstract We offer an analysis of the mathematical modelling literature identi-
fying local and global tendencies and the diversity of approaches to mathemat-
ical modelling. The review comprises 502 documents from two source types: 
articles published in relevant journals and specific books from the International 
Community of Teachers of Mathematical Modelling and Applications and the ICME 
conferences. We identify six top countries with significant numbers of publica-
tions and present relative distributions of percentages corresponding to mathematical 
modelling perspective, educational content, and unit of analysis (school level, job, or 
profession). The review shows that three countries account for half of the publications 
and that the educational content (mathematical or otherwise) may play a different 
role depending on the corresponding modelling perspective in specific countries. 
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3.1 Introduction 

A vast number of publications on mathematical modelling in education show diversity 
at different levels, such as different modelling perspectives (English et al., 2016; 
Kaiser & Sriraman, 2006), modes of assessment (Cevikbas et al., 2022; Frejd,  2013), 
theoretical approaches (Geiger & Frejd, 2015), and purposes (Preciado Babb et al., 
2018). Some modelling perspectives have been related to geographic locations, such 
as the socio-critical perspective associated with the work of ethnomathematics in 
Brazil and the contextual perspective described by Kaiser and Sriraman (2006) as an  
extension of the problem-solving tradition in the US partially tracing its lineage to 
“American Pragmatism” (p. 306). Such associations suggest the existence of local 
trends, representing another dimension of diversity. 

A brief account of the development of mathematical modelling provides an idea 
of the regions that have shown an interest in this topic. In Europe, such interest 
can be traced back at least seventy years (Blum et al., 2007; Blum & Niss,  1991). 
According to Niss et al. (2007), the term “mathematical modelling” began to be 
used in the 1970s; by this time, there was also a focus on mathematical modelling in 
education in Brazil (Araújo, 2010; Biembengut, 2009). The creation of the biennial 
conferences from the International Community on the Teaching of Mathematical 
Modelling and Applications (ICTMA), initially ICTM, prompted further attention to 
this topic worldwide, particularly in Europe where the conference has been hosted 
half of the time. The other hosting countries were Australia (1997 and 2011), Brazil 
(2013), China (2001), Hong Kong (2019), South Africa (2017), and the US (1993, 
2003, and 2007), with Nepal as a satellite site for the conference in 2007. Given 
that the official language of this conference is English and it had been hosted mostly 
in Europe, the US, and Australia, it is feasible to expect that some countries would 
be overrepresented in the literature and, particularly, in the publications associated 
with these conferences. Considering such countries separately can help to distinguish 
local from global trends on mathematical modelling. 

While mathematical modelling has been commonly conceptualized as a general 
process, a review of the specific content addressed in the literature can inform the 
integration of mathematical modelling in educational contexts at different levels. The 
addressed content in mathematical modelling is related to the educational level or 
professional context (e.g. university vs industry), which provides additional informa-
tion on the contexts in which mathematical modelling is, and could be, studied and 
implemented. This chapter contributes to the literature by offering a review based 
on the geographic distribution of publications, written in English, reflecting both 
global and local tendencies regarding modelling perspectives, unit of analysis (e.g. 
educational or professional context), and educational content (e.g. specific topics in 
mathematics or science). Specifically, we addressed the following questions: 

Which are the countries with more publications in the consulted documents? 
What are the corresponding frequencies for these countries? 
What are the distributions of publications, when classified by modelling perspec-
tive, educational content, and unit of analysis, when breaking down the data by 
the top countries and the rest of the countries aggregated together? 
What tendencies, global and local, can be identified in these distributions?
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The next section briefly elaborates on previous systematic reviews of the literature 
regarding mathematical modelling, contextualizing the contribution of this chapter. 

3.2 Selected Systematic Reviews of Mathematical 
Modelling 

Kaiser and Sriraman (2006) provided a summary of the state of the art in a special 
issue on mathematical modelling from ZDM Mathematics Education. This review  
presents an analysis of papers from the International Congress of Mathematics 
Education (ICME) and the International Community of Teachers of Mathematical 
Modelling and Applications (ICTMA) conferences and proposes a classification of 
modelling perspectives widely cited in the literature. Since this classification was 
used for the analysis presented in this chapter, we briefly elaborate on each of its 
categories. 

The realistic perspective addresses solutions to real-life situations beyond mere 
mathematical content, focusing on modelling as a process. The epistemolog-
ical perspective concerns the development of mathematical theory, which can 
emanate from different situations, including mathematics itself (intra-mathematical 
modelling). The educational perspective considers that education should serve prac-
tical, scientific, and mathematical purposes harmoniously. The contextual perspec-
tive, also known as model-eliciting, focuses on problem-solving learning situations 
based on a constructivist design approach. The socio-critical perspective emphasizes 
the need to develop a critical stance to the role and nature of the mathematical models 
and their applications to social issues. Finally, the cognitive perspective addresses 
cognitive features of the modelling process and is considered “transversal” to the 
other five perspectives since it can overlap with them but with a cognitive dimension. 

Early works on the state of the art of mathematical modelling present result without 
elaborating on methodological aspects of the analysis of consulted publications (e.g. 
Blum & Niss,  1991; Kaiser & Sriraman, 2006; Niss et al., 2007). However, as the 
number of publications on mathematical modelling in education grows over the 
years, conducting literature reviews becomes more challenging. Frejd (2013) recog-
nized the difficulty of reviewing the literature on mathematical modelling due to 
such an extensive amount of work published in the field, claiming that “it is very 
difficult or even not possible to examine everything” (p. 418). Thus, rather than 
attempting to be fully comprehensive, researchers can elaborate on methodological 
aspects including criteria for selecting documents and the methodology for their anal-
ysis. We offer in this section an overview of selected literature reviews with a focus 
on diversity in mathematical modelling and discussing methodological approaches. 
We acknowledge that our selection might be incomplete for the reason stated above. 

Frejd (2013) conducted a review on the assessment of modelling competencies, 
consulting documents from the special issue on mathematical modelling published 
in 2006 by ZDM Mathematics Education and the proceedings of three major confer-
ences: ICME, ICTMA, and the conference of the European Society for Research in 
Mathematics Education (ESRME). He identified 76 documents focused on mathe-
matical modelling assessment by looking into the titles, abstracts, and the index of
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the books and discarding publications not related to the topic. Documents that were 
analysed following the iterative process of open coding and axial coding (Strauss & 
Corbin, 1998) characteristic of the grounded theory methodology. Frejd argued that 
the sample has the potential to be representative of a large part of the literature as 
many authors in these sources also publish in high-ranked academic journals and 
international books. The review identified diverse forms of assessment and stressed 
the complexity and challenges of assessing modelling competencies: while written 
tests draw on an atomistic view which does not consider the full modelling process, 
issues on reliability were identified in projects based on a holistic view. His study 
concluded that the frameworks are rarely derived from theoretical analysis. 

Geiger and Frejd (2015) published a review on the nature of theoretical approaches 
used in research for mathematical applications and modelling. They analysed 252 
chapters from books that emanated from the ICTMA conference (from 2001 to 2009) 
and the 14th International Commission on Mathematics Instruction Study (Blum 
et al., 2007). An initial categorization of the chapters was discussed until the authors 
reached consistency in their analysis (more than 90% of coincidence). Then, each 
author analysed the rest of the chapters independently. Authors conducted a chrono-
logical analysis showing that the chapters were mainly oriented towards learners, 
and to a lesser extent to teachers, with few publications on contexts for learning. 
They also noticed that there has been an increasing number of chapters on applied 
theory and fewer chapters focused on purely professional settings. Their review also 
identified a large number of theoretical approaches, both specific to mathematical 
modelling (e.g. modelling perspective and modelling cycles) and general approaches 
in education (e.g. constructivism, neuroscience, and feminism). 

English et al. (2016) reviewed the progress of mathematical modelling at the 
International Group for the Psychology of Mathematics Education (PME) confer-
ence, consulting 37 manuscripts from the proceedings of the conference between 
2005 and 2015. The authors used thematic analysis as a methodology for the review 
classifying their findings into four broad categories, namely perspectives on models 
and modelling, curricular and instructional approaches in fostering modelling compe-
tence, the inclusion of generic processes, and approaches to models and modelling in 
teacher education. These categories reflect a focus on both mathematical modelling as 
a generic process and mathematical modelling competencies. The review also iden-
tified approaches to fostering mathematical modelling seldom mentioned in other 
publications, such as parent engagement and creativity. 

Stohlmann and Albarracín (2016) reviewed publications focused on the imple-
mentation of mathematical modelling in elementary grades (up to 10 years old). They 
conducted a search in Google Scholar using terms such as “mathematical modelling 
and model-eliciting activities with elementary grades, primary school, early ages, and 
young learners” (p. 3), identifying 29 publications that included seven book chap-
ters, five documents in conference proceedings, and 17 journal articles. This review 
addressed specific educational content, which was summarized in three categories: 
ratios and proportional relationships, number and operations, and measurement and 
data/statistics. They also found diverse types of assessment data collection including 
through tests, word problems, and videotapes. This study also classified publications 
by country: Australia (10), the US (6), Belgium (3), Japan (3), Brazil (2), Singapore 
(1), Portugal (1), Germany (1), Ireland (1), and Switzerland (1).
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Schukajlow et al. (2018) conducted a literature review on the teaching and learning 
of mathematical modelling for the second special issue on this topic by ZDM Mathe-
matics Education, published in 2018. The authors selected articles related to mathe-
matical modelling from three journals, Educational Studies in Mathematics, Journal 
for Research in Mathematics Education, and ZDM Mathematics Education, from 
January 2012 to November 2017. They conducted a search in each journal using the 
term “model” and screened the first authors’ relation to modelling identifying articles 
based on empirical data. They selected only 28 from a total of 874 articles, concluding 
that mathematical modelling is underrepresented in the field of mathematics educa-
tion. The authors analysed these articles and 115 papers from the proceedings of 
the ICTMA conference between 2011 and 2015. They found that while there were 
many empirical studies in the proceedings of ICTMA, only 7% reported a quantita-
tive approach. They also found that a considerable part of the research focused on 
cognitive variables, while affective variables were rare. 

Finally, Cevikbas et al. (2022) conducted a systematic review on conceptual-
izing, measuring, and fostering mathematical modelling competencies. The review 
followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis 
guidelines (Page et al., 2021), detailing searching and selection criteria for documents 
in major research databases filtering by the title (or topic depending on the database) 
of publications with terms such as “model” and “competence”, and content related to 
“math”. Seventy-five papers written in English were selected and analysed following 
the qualitative content analysis method (Miles & Huberman, 1994). The authors 
found that there is a predominant focus on the analytical, bottom-up approach for 
conceptualizing modelling competencies, distinguishing diverse sub-competencies. 
While the study showed the richness of methods for measuring modelling compe-
tencies, a focus on non-standardized tests was more prevalent. The review stressed 
the necessity for extending the work on conceptualizing mathematical modelling 
competencies. 

These reviews provide details on the diversity of perspectives, theoretical approx-
imations, and modelling competencies assessment methods. Some trends can be 
identified, such as the dominance of qualitative over quantitative methodologies, 
more studies on cognition compared to studies on attitudes, and a stronger orienta-
tion to learning than teaching. Only one article classified publications in terms of 
content and country, and only for studies at the elementary level. 

3.3 Methodology 

The main source of data for this review comprised the chapters included in six titles 
of the International Perspectives on the Teaching and Learning of Mathematical 
Modelling series, published by Springer, that emanated from the ICTMA (authors 
presenting at the conference are invited to publish in the series) and two publications 
from ICME focused on mathematical modelling (Blum et al., 2007; Stillman & 
Brown, 2019), as shown in Table 3.1, with a total of 404 chapters. These books
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Table 3.1 Consulted books International Perspectives on the Teaching and Learning of 
Mathematical Modelling series 

Trends in Teaching and Learning of Mathematical Modelling 

Modelling Students’ Mathematical Modelling Competencies 

Teaching Mathematical Modelling: Connecting to Research 
and Practice 

Mathematical Modelling in Education Research and Practice 

Mathematical Modelling and Applications 

Mathematical Modelling Education and Sense-Making 

Books from ICMI 

ICMI Study 14: Modelling and Applications in Mathematics 
Education 

ICME-13 monographs: Lines of Inquiry in Mathematical 
Modelling Research in Education 

were selected due to the relevance of ITCMA and ICME and their specialization in 
mathematical modelling. 

The second source comprised 98 articles from the most relevant journals in math-
ematics education as per Toerner and Arzarello (2012) and Williams and Leatham 
(2017):Digital Experiences in Mathematics Education;Educational Studies in Math-
ematics; International Journal of Computers for Mathematical Learning; Inter-
national Journal of Science & Mathematics Education; Journal for Research in 
Mathematics Education; Journal für Mathematik-Didaktik; Journal of Mathematics 
Teacher Education; Mathematics Education Research Journal; and ZDM Mathe-
matics Education. Articles from these journals were selected based on the identifica-
tion of mathematical modelling in the title in publications up to 2020. Similar to other 
reviews, we searched for articles with the words model, modelling, and modeling in 
the title. Then, we reviewed each article to discard book reviews and articles that did 
not focus on mathematical modelling We also included articles in special issues on 
mathematical modelling in some of these journals. 

We classified publications using both deductive and inductive approaches. We 
elaborate on each of the attributes used for this review as follows. 

Country. We used the institution’s country of the first author in each publication 
for this attribute. This classification criterion was appropriate because international 
collaborations with authors from different countries were negligible. 

Modelling Perspective. We followed Kaiser and Sriraman’s (2006) classification 
for perspectives on mathematical modelling. Except for the cognitive perspective, 
the categories are mutually exclusive. For this reason, we classified publications as 
cognitive only if there was an explicit focus on this perspective with no overlap with 
any of the other perspectives. For articles with no direct identification to a specific 
perspective, we revisited the authors cited when defining mathematical modelling 
and the purpose of modelling indicated in each article. This classification did not 
apply to some cases, such as literature reviews and theoretical papers, which were
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coded as Not Determined. We decided to keep these publications in the analysis as 
they still count towards the total number of publications by country. 

Unit of Analysis. This attribute refers to the targeted sector or population in each 
article, such as elementary school, high school, teachers and professional modellers. 
Some publications targeted a particular educational or professional context (e.g. 
revision of curricular material at the elementary school level). We used the code 
Not Determined for these cases in which this criterion did not apply, such as litera-
ture reviews and theoretical papers. The categories for this attribute were generated 
inductively following a coding process commonly used for qualitative research (e.g. 
Strauss & Corbin, 1998). We met as a team to revise, discuss, and refine the categories 
we identified from the publications. 

Content. This attribute refers to the educational content or purpose stated in 
each publication. We looked first for specific mathematical content. In some cases, 
there was no specific mathematical content indicated. Rather, the focus was on the 
modelling process or on content beyond mathematics, such as science and industry. 
For instance, the main content addressed by Kawasaki and Morija (2011) is Kepler’s 
Laws and Newton’s Law, while Yoshimura (2015) addressed the topic of secondary 
students engaged in a financial deficit problem in an electric power company. We 
used the Other code for a few publications that did not relate to any of the previous 
categories. Finally, there were other documents for which this criterion did not apply, 
such as literature reviews, theoretical papers, and revisions of curricula material. We 
also used the code Not Determined in the cases for which this criterion did not apply. 

The classification was conducted in two major stages. First, we reviewed a batch of 
10 documents independently and discussed discrepancies until reaching a consensus. 
Then we proceeded with another batch in a similar way. We continued with this 
process until we completely agreed on the classifications. In the second stage, each 
publication was reviewed by at least two people. Unexpected situations (such as the 
emergence of a new category) and disagreements for individual classifications were 
discussed and resolved by the whole team. 

For the analysis of local and global tendencies, we first classified the publications 
according to country, identifying the countries with larger numbers of publications 
and aggregating in a single group all the other countries. Then, we created tables 
for each of the other attributes showing the distribution among top countries, the 
other countries, and the total counts for the whole dataset. A comparison between 
columns and among tables served to identify local and global tendencies in the 
data, demonstrating the diversity of perspectives and approaches to mathematical 
modelling in the consulted documents. 

3.4 Findings 

After the classification by country, six countries figured in the top, ranging from 4 to 
21% of the total number of publications. The rest of the countries had one per cent



50 A. P. Preciado Babb et al.

Table 3.2 Top six countries 
publishing on mathematical 
modelling 

Country Count % 

Germany (GE) 106 21.1 

United States (US) 79 15.7 

Australia (AU) 66 13.1 

Brazil (BR) 37 7.4 

Japan (JA) 22 4.4 

United Kingdom (UK) 18 3.6 

Other 174 34.7 

Total 502 100 

or less of publications. The total counts and corresponding percentages are shown in 
Table 3.2. 

Germany, the US, and Australia together account for half of the publications 
(49.9%). For this reason, we decided to keep a close eye on these countries, bolded 
the data corresponding to these countries in the subsequent tables. Except for Japan 
and Brazil, the table also shows a prominent tendency of publications from the so-
called Western countries. As political and cultural factors might influence the way 
mathematical modelling is implemented, it would be interesting to also pay attention 
to these two countries. 

The tables presented in the following subsections are organized by columns corre-
sponding to the top six countries; the rest of the countries are aggregated in the column 
Others and the whole database in the column All. The percentages in each column 
correspond to the relative percentage of that column. As the percentages are rounded, 
their sum might not total 100% in each column. We also decided to keep a close eye 
on the Others column as a larger percentage of publications in this column would 
imply a larger number of countries for the corresponding entry. The categories in 
the following tables are sorted in descending order corresponding to the percentages 
of the whole database, presented in the last column except for the Not Determined 
category, which is presented at the bottom of each table. 

3.4.1 Classification by Modelling Perspectives 

Table 3.3 comprises the relative percentages of publications for each perspective on 
mathematical modelling, as per Kaiser and Sriraman (2006). Notice that the column 
corresponding to the UK has a large percentage, 50%, of publications classified as 
Not Determined; it will be important, therefore, to consider this fact when interpreting 
this column. This tendency continues in the rest of the tables in this chapter.

With the exception of the US and Brazil, the columns in Table 3.3 show a clear 
tendency to the Educational perspective, suggesting a global trend. Japan, however, 
stands out with the largest percentage of publications (63.6%) classified in this
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Table 3.3 Relative percentages of modelling perspective per country 

Perspective GE US AU BR JA UK Others All 

Educational 31.1 15.2 33.3 10.8 63.6 16.7 39.7 31.3 

Contextual 6.6 43.0 13.6 5.4 4.5 11.1 21.3 18.3 

Realistic 27.4 7.6 24.2 8.1 22.7 11.1 16.7 17.9 

Cognitive 10.4 7.6 3 0 4.5 11.1 6.9 6.8 

Epistemological 2.8 2.5 0 0 0 0 5.7 3.0 

Socio-critical 0 3.8 4.5 54.1 0 0 5.2 7.0 

Not determined 21.7 20.3 21.2 21.6 4.5 50 4.6 15.7

perspective. The distribution of publications corresponding to Germany, Australia, 
and Japan also shows a considerable percentage of publications in the Realistic 
perspective (27.4%, 24.2%, and 22.7%, respectively). The distribution of publica-
tions from the US shows a clear tendency to the Contextual perspective (43%) not 
shared by the other columns, suggesting a local trend. The distribution of publications 
from Brazil shows a strong tendency towards the Socio-Critical perspective (54.1%), 
contrasting with the other columns in Table 3.3. This focus is almost unique to this 
country as the percentage in the other columns is lesser than or equal to 7%, reflecting 
a local trend. The cognitive perspective is present in almost all columns, although to 
a lesser extent than the other perspectives. However, we must remember that some 
publications addressing cognitive features of mathematical modelling might be clas-
sified in one of the other perspectives. Finally, the percentages from the Epistemo-
logical perspective are very low for all columns and the Socio-Critical perspective 
only stands out in Brazil, suggesting another global tendency: scarce attention to 
these perspectives at the international level. 

3.4.1.1 Classification by Content 

Table 3.4 shows the classification of publications by content. It is important to keep 
in mind that the criteria for classifying publications as Modelling Competencies was 
the lack of specific content: either no indication of any content or addressing several 
topics in the same publication (e.g. textbook analysis). Thus, some publications with 
a focus on modelling competencies were classified into a different category if there 
was a specific content we could identify.

There is a clear representation of Modelling Competencies reflected in all the 
columns, although at different levels. Notice that for the UK there is a large percentage 
of documents classified as Not Determined (61.1%), and thus the percentage of 
publications within the Modelling Competencies category (16.7%) is relevant when 
compared with the percentage of publications with a Specific Content (22%). 

The columns corresponding to publications in Germany and Japan show a similar 
tendency regarding the balance between a focus on modelling competencies and a 
focus on specific content; that is, both countries show similar percentages for both
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Table 3.4 Relative percentages of content per country 

Content GE US AU BR JA UK Others All 

Specific content 29.2 38 19.7 35.1 36.4 22.2 46.6 35.9 

Algebra 9.4 8.9 1.5 5.4 0 0 9.2 7.2 

Calculus 3.8 6.3 1.5 10.8 9.1 11.1 10.9 7.4 

Statistics and probability 3.8 3.8 12.1 2.7 0 0 8.6 6.2 

geometry 10.4 2.5 0 8.1 9.1 0 4.6 5.2 

Arithmetic 0 10.1 1.5 0 0 0 6.3 4 

Science and industry 0.9 2.5 1.5 8.1 18.2 5.6 4.6 4 

Other 0.9 3.8 1.5 0 0 5.6 2.3 2 

Modelling competencies 33 19 34.8 24.3 36.4 16.7 40.2 32.5 

Not determined 37.7 43 45.5 40.5 27.3 61.1 13.2 31.7

categories: 33% and 29.2, respectively, for Germany; and 36.4 and 36.4, respectively, 
for Japan. This observation seems consistent with the columns Others and All, which 
show a relative balance between these two categories. The specific content in these 
countries, however, is different: while Algebra and Geometry are the most common 
content for Germany (9.4% and 10.4%, respectively), Science and Industry is the 
prevalent content in Japan (18.2%). However, there is also a considerable focus on 
Geometry in both Japan (9.1%) and Germany (10.4%). 

The columns corresponding to the US, Brazil, and the UK show a tendency towards 
specific content (38%, 35.1%, and 22.2%, respectively) at the expense of a focus 
on modelling competencies (19%, 24.3%, and 16.7%, respectively). Each of these 
countries has its own tendency regarding the specific content: Algebra (8.9%) and 
Arithmetic (10.1%) for the US, Calculus (10.8%), Geometry (8.1%), and Science 
and Industry (8.1%) for Brazil, and Calculus (11.1%) for the UK. 

The column corresponding to Australia shows a sharp tendency towards 
Modelling Competencies (34.8%) over Specific Content (19.7%). The most common 
content in publications from this country is Probability and Statistics (12.1), which 
stands out when compared with the other columns in the table. 

We did not identify a global tendency regarding a focus on content versus 
modelling competencies, nor a tendency towards specific content. However, a global 
tendency can be identified regarding the low number of publications with a focus on 
the Science and Industry (except for Japan) and the Other categories. 

3.4.1.2 Classification by Unit of Analysis 

In addition to educational settings, this attribute includes the Adults, Mathematicians, 
and Professional Modellers categories, as shown in Table 3.5. The table also shows 
a breakdown for the three major categories: High School and Elementary for K–12,
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Table 3.5 Relative percentages of unit of analysis per country 

Unit of Analysis GE US AU BR JA UK Others All 

K–12 46.3 40.6 57.6 21.6 72.7 27.8 32.2 40.7 

High School 42.5 24.1 40.9 16.2 63.6 27.8 29.3 33.3 

Elementary 3.8 16.5 16.7 5.4 9.1 0 2.9 7.4 

Teachers 19.8 21.5 24.2 18.9 9 5.6 16.1 18.4 

In-service 12.3 15.2 13.6 13.5 4.5 5.6 9.8 11.6 

Pre-service 7.5 6.3 10.6 5.4 4.5 0.0 6.3 6.8 

Post-secondary 9.4 11.4 1.5 24.3 13.6 11.1 39.1 20.4 

Undergraduate 6.6 8.9 1.5 21.6 9.1 11.1 16.7 11.2 

Graduate 2.8 2.5 0.0 2.7 4.5 0.0 22.4 9.2 

Adults 0 1.3 0 2.7 0 11.1 1.1 1.2 

Mathematicians 0 0 0 2.7 0 0 1.1 0.6 

Professional 
modellers 

0 0 0 0 0 0 1.1 0.4 

Not determined 24.5 25.3 16.7 29.7 4.5 44.4 9.2 18.5 

In-Service and Pre-Service for Teachers, and Undergraduate and Graduate for Post-
Secondary. What is considered as high school is not consistent internationally. Thus, 
we classified chapters as High School when there was an indication to high school, 
secondary school, or an equivalent range (grade 5 or grade 6 and up, depending on 
the country). 

While the column All shows predominance for the K–12 category (40.7%), the 
column Others shows a predominance towards the Post-Secondary category (39.1%), 
although still with a considerable percentage of publications focused on K–12 
(32.2%). This difference may be explained because of the tendencies of Germany, the 
US, and Australia to K–12 (46.3%, 40.6%, and 57.6%, respectively), which together 
account for almost half of all the publications in our dataset. 

Publications from Germany and the US show a similar distribution targeting K– 
12 (46.3% and 40.6%, respectively), Teachers (19.8% and 21.5%, respectively), and 
Post-Secondary (9.4% and 11.4%, respectively). This distribution differs from the 
countries in the other columns, suggesting similar local tendencies between these 
two countries. The breakdown into subcategories for Teachers and Post-Secondary 
is also similar for these two countries. However, the breakdown of subcategories in 
the K–12 category shows a contrasting difference, with 42.5% for High School and 
3.8% for Elementary in the publications from Germany, and 24.1% for High School 
and 16.5% for Elementary in the publications from the US. 

The other top countries seem to have unique distributions in the main cate-
gories with respect to Unit of Analysis. Australia shows a strong emphasis on K–12 
(57.6%), in which publications targeted to High School (40.9%) dominate publi-
cations targeted to Elementary (16.7%). The percentage of publications targeted to 
Teachers is relevant (24.2%) with more emphasis on In-Service teachers (13.6%)
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compared with the publications targeting Pre-Service teachers (10.6%). The number 
of publications targeting Post-Secondary is very low (1.5%), in contrast with the 
other columns. This lower emphasis on Post-Secondary contrasts with the other top 
countries, contrasting with the other top countries and the Others column (39.1%) 
corresponding to the data aggregated from the rest of the countries. 

Brazil has a strong tendency towards the Post-Secondary category (24.3%), which 
contrasts with the rest of the top countries, but not with the Others column. This 
country also shows a relevant percentage of publications for the K–12 (21.6%) and 
Teachers (18.9%) categories. However, the breakdown into subcategories shows a 
stronger emphasis on High School (16.2%) over Elementary (5.2%) and a stronger 
emphasis on In-Service teachers (13.5%) over Pre-Service teachers (5.4%). This 
country is also one of the few top countries that include publications not targeted at 
educational settings, such as Adults (2.7%) and Mathematicians (2.7%). 

The percentages in the column corresponding to Japan show a sharp tendency 
towards K–12 education (72.7%), from which the major emphasis is on High School 
(63.6%) over Elementary level (9.1%). The Teachers category (9%) is split evenly 
between Pre-Service (4.5%) and In-Service (4.5%) teachers. Publications at the 
Post-Secondary level (13.6%) show a tendency towards Undergraduate (9.1%) over 
Graduate (4.5%) levels. 

The column corresponding to the UK shows an emphasis on K–12 (27.8%), with 
no publications at the Elementary level, followed by the Post-Secondary (11.1%) 
category, with no publications at the Graduate level, and, lastly, publications targeting 
teachers (5.6%), with no focus on Pre-Service teachers. A characteristic that seems 
unique to this country is the focus on Adults (11.1%), which is either missing or very 
low for the other countries. 

3.5 Conclusions 

Previous literature reviews account for the diversity around mathematical modelling 
in terms of perspectives (Kaiser & Sriraman, 2006), assessment (Cevikbas et al., 
2022; Frejd,  2013), and theoretical approaches (Geiger & Frejd, 2015). This review 
contributes to the literature in terms of geographic distribution, which has had little 
attention in the literature. Splitting the analysis into the top six countries and the rest of 
the countries aggregated in a single column helped to portray a landscape showing 
local differences and suggesting potential global trends. The fact that half of the 
publications come from only three countries—Germany, the US, and Australia— 
is a warning that we need to be careful when making claims about international 
tendencies based on aggregated data. For instance, while there is a tendency for 
the educational and the realistic perspectives in the whole database, the US and 
Brazil show contrasting differences, with a stronger emphasis on the contextual 
perspective for the former and the socio-critical perspective for the latter. These 
differences are consistent with Kaiser and Sriraman’s (2006) description of modelling 
perspectives. The case of Japan is interesting as this country has an outstanding
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percentage of publications classified in the educational perspective, showing a sharp 
contrast with the rest of the top countries and the aggregated data in the rest of the 
publications. Kaiser and Sriraman’s (2006) classification is broad, nevertheless, and 
the classification of content and the unit of analysis sheds some light on differences 
among perspectives and local trends. 

The breakdown of content by country reflects local trends regarding the balance 
between modelling perspectives and specific content. Such balance might be 
explained by a predominant modelling perspective. Specifically, both the US and 
Brazil showed more publications under specific content (38% and 36.4%, respec-
tively) than publications under modelling competencies (19% and 24.3%, respec-
tively). The trend in specific content in the US might be related to its emphasis on the 
contextual perspective, whereas the trend in Brazil might be explained by its focus 
on the socio-critical perspective. The data from these two countries, contrasted with 
the rest of the data, may be an indication that the role of specific content varies across 
modelling perspectives. 

The specific content and the unit of analysis also reflect local tendencies. For 
instance, Brazil is the only country with a dominant focus on post-secondary educa-
tion and the content with more publications corresponds to calculus. Japan, on the 
other hand, is a unique case as it has the largest percentage of publications at K–12 
(72%) and the most common specific content is science and industry, which contrasts 
with the rest of the data. While Japan has a strong focus on the educational perspec-
tive, these data suggest that there might be a different approach to mathematical 
modelling in this country. 

The data regarding specific content shows a balanced distribution in the aggre-
gated data for mathematical subjects and Science and Industry, ranging from 4 
to 7.4%—although the top six countries show individual tendencies that do not 
follow this balance. This diversity can benefit researchers and educators interested 
in implementing modelling in diverse courses. However, there are other topics that 
could inform the incorporation of mathematical modelling in other courses, such 
as coding, robotics, combinatorics, and graph theory, which have multiple applica-
tions and could be considered by educators in educational institutions. Similarly, the 
scant number of publications with a unit of analysis beyond educational institutions, 
including studies on adults, professionals, and technology-based industries, suggests 
that this could be an area requiring more attention. 

It is important to recognize the limitation of the selection criteria for the inclu-
sion of documents in literature reviews. On the one hand, most of the reviews we 
have found rely on publications that emanated from international conferences, with 
English as the official language. A thorough review including such conferences could 
help to portray a more nuanced landscape of the integration and research of mathe-
matical modelling in education. On the other hand, most of the systematic reviews we 
considered include a limited number of journals published in English. For instance, 
Schukajlow et al. (2018) considered three renowned journals, conducting a detailed 
analysis of articles to identify publications related to mathematical modelling in 
education. Similarly, the review presented in this chapter consulted nine academic 
journals; however, the selection criteria focused only on the titles of publications and
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articles published in special issues, potentially missing some publications. While 
these journals are among the best ranked, a thorough review would require the inclu-
sion of journals beyond the most ranked journals written in English. Regardless of 
the limitations in the selection criteria for this review, the findings presented in this 
chapter are relevant at the international level, particularly for ICTMA as the review 
included the recent books associated with this community. 
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Mathematical Modelling at School



Chapter 4 
Student Presentations of Mathematical 
Modelling Solutions as a Setting 
for Fostering Reflective Discourse 

Corey Brady, Hyunyi Jung, Jeffrey A. McLean, Angeles Dominguez, 
and Aran W. Glancy 

Abstract A key distinction among traditions in modelling research is whether 
modelling is primarily viewed as a curricular topic to be learned or as a propitious 
context for supporting and studying mathematical thinking. For modelling-as-context 
traditions, modelling tasks can be designed to illuminate student thinking; to position 
groups of students as inventive creators of mathematics; or to spur them to engage 
in forms of mathematising that are valued in the discipline of mathematics. In this 
chapter, we argue that whole-class presentations of solutions to modelling tasks 
can be particularly rich settings for such research. We focus on how presentation 
sessions offer opportunities to engage in reflective discourse, in which the class can 
convert modelling actions that various student teams have engaged in into objects 
of collective discussion. We analyse three episodes of reflective discourse from a 
mathematical modelling Summer Camp for students aged 10–13 (n = 21). For each,
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we describe the specific mathematical value of reflective discourse as it emerged in 
context. 

Keywords Mathematical modelling · Model-eliciting activities · Whole-class 
presentations · Reflective discourse · Mathematising · Opportunities to learn ·
Educational innovation 

4.1 Purpose of the Study and Related Literature 

Mathematical modelling involves developing and refining a purposeful model that 
describes or provides insight into a real-world situation (e.g. Garfunkel & Mont-
gomery, 2016; Kaiser & Stender, 2013; Lesh & Doerr, 2003; Lesh, Hamilton et al., 
2007). Lesh and colleagues defined a model as a system used to describe another 
system, for a specific purpose (Lesh et al., 2000, p. 17). A mathematical model is a 
system whose structure consists of quantities (e.g. variables and variables); relation-
ships among these elements (e.g. equivalence relations); operations that show how 
these elements connect to one another (e.g. functions, equations); and interpretive 
mappings that enable it to describe another system (Lesh et al., 2000). Developing a 
mathematical model of reality in this way, or mathematising reality, involves multi-
faceted work to organise, interpret, quantify, and/or coordinatise a real-world context 
(Lesh, Hamilton et al., 2007). 

4.1.1 Framing Modelling as a Context for Meaningful 
Mathematical Activity 

Recognising modelling as a rich, socio-cultural practice of mathematical invention, 
educators must determine how mathematics teaching and learning will engage with 
modelling. 

4.1.1.1 Modelling as Topic 

One approach to integrating modelling treats it as an essential curricular topic, fore-
grounding the goal of teaching students to engage effectively in modelling. This view 
arises from multiple historical sources in mathematics education, and it has inspired 
an enormous range and depth of research, many aspects of which are highlighted 
in other chapters of this volume. A major source for this approach is the tradition 
of heuristics, which seeks to formulate generalisable strategies that can be utilised 
across domains (Pólya, 1945). In recent decades, a second major research tradition, 
of applications, has engaged in important ways with implementing mathematical 
modelling in classrooms. Though these implementation efforts have raised some
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issues reminiscent of the heuristics tradition, the applications tradition is distinc-
tive for its roots in Hans Freudenthal’s work, who framed the objective “to teach 
mathematics so as to be useful” (Freudenthal, 1968, p. 3, emphasis added). 

Within these approaches to teaching mathematical modelling as a topic, the 
construct of modelling competencies has played a key role (cf. Blum, 2015; Kaiser &  
Brand, 2015; Maaß, 2006). Whether they are viewed as a “holistic” constellation of 
capacities (Niss et al., 2007) or as component skills that can be addressed “atomisti-
cally” (Frejd & Ärlebäck, 2011; Zöttl et al., 2011), competencies-focused research 
aims to evaluate implementations of modelling by measuring changes in these compe-
tencies over time. That is, by assessing competencies, this research can demonstrate 
whether and to what degree students have learned modelling. Evidence of this kind 
has helped modelling-as-topic traditions to be very effective at the level of educational 
policy, spurring the adoption of national programs. 

4.1.1.2 Modelling as Context 

The research perspective of this chapter takes a slightly different tack, though we 
hope it will be seen as a complementary one. Coming from the Models and Modelling 
Perspective, or MMP (Lesh & Doerr, 2003), we view modelling tasks primarily as 
rich contexts for fostering authentic mathematical activity (cf. Julie & Mudaly, 2007; 
Zawojewski, 2016). That is, modelling for us is less a topic to be learned or even a 
practice to be taught, and more a distinctive form of designed learning environment. 
We focus on designs that create the need for students to participate in various forms 
of purposeful mathematical activity (Lesh et al., 2008). 

So, while the modelling-as-topic approach argues that modelling activities should 
be integrated into classrooms because modelling is important and these activities 
teach students how to do it, the modelling-as-context approach argues that modelling 
tasks can (1) offer valuable windows into students’ thinking, (2) position students 
as inventive creators of mathematical models, and (3) involve them in forms of 
mathematising that are valued in the discipline of mathematics. Of course, these 
two approaches are not necessarily incompatible, and we hope that they may in 
fact be seen as mutually supportive. But the emphasis among MMP researchers 
on modelling-as-context demands that we attend to design elements of modelling 
activities that will satisfy the three design goals listed above. 

4.1.1.3 Model-Eliciting Activities 

Early MMP researchers used design-based research (Kelly et al., 2008) to merge inno-
vations in teaching experiments with group-centred adaptations of Piagetian inter-
view techniques. They were thus initially interested in modelling tasks as research 
tools for understanding thinking and idea development. They found that when they 
presented student teams with situations that required them to interpret and address the 
dilemmas of realistic clients, the teams collaboratively developed increasingly viable



64 C. Brady et al.

models through rapid, iterative cycles of development. Over time, MMP researchers 
came to see these tasks as having value not only as research tools but also as envi-
ronments for learning and assessment (Lesh, Yoon et al., 2007). They produced a 
collection of these Model-Eliciting Activities (MEAs) along with a robust set of 
design principles for MEAs to meet research, learning, and assessment goals across 
a range of instructional settings (Doerr & English, 2006; Lesh et al., 2000). 

We argue that whole-class discussion of MEAs offers a valuable learning envi-
ronment that has not been adequately studied and theorised. There are many reasons 
to value presenting one’s mathematical work as a topic to be learned, whether as 
a marketable skill in itself (Barker et al., 2004) or as a means of clarifying one’s 
mathematical ideas (Dorée et al., 2007). Without discounting these views, we show 
how presentations of modelling solutions offer opportunities to engage in distinctive 
forms of meaningful mathematical activity. 

4.1.2 Reification: A Signature of Meaningful Mathematical 
Activity 

To make the case that presentations are rich environments to support and illuminate 
learning, we will show how they offer students opportunities to engage in the vital 
activity of reification (also described as integration or encapsulation). There is wide 
agreement that reification is fundamental to mathematical thinking and learning. 
Piaget (1971, 1972) was deeply inspired by the algebraic group construct and by 
group theory’s ability to convert actions into objects (e.g. the dihedral groups, which 
reframe the symmetry transformations on regular n-gons (actions) as elements in 
the group (objects)). Similarly, his analysis of reflective abstraction illustrated how 
learners convert actions at one psychological level into objects at a higher level. His 
Structuralism (Piaget, 1971) offered a sweeping view of the impact of similar cogni-
tive actions across the physical and social sciences. The APOS theory (Dubinsky & 
McDonald, 2001) is founded upon these ideas, and Harel and Kaput (2002) simi-
larly recognise it as a fundamental generative principle for learning. Across these 
accounts, learners make advances by converting what was once an action into an 
object; the new object can then participate in operational structures at a higher level. 

4.1.3 Opportunities for Reification in a Social Context: 
Reflective Discourse 

Cobb et al. (1997) analyse whole-class discussions in an early elementary mathe-
matics classroom, focusing on specific shifts in discourse that enact a social version 
of this process of reification. They found that discursive shifts during conversa-
tions about contextual problems could allow “what the students and teacher do in
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action subsequently [to become] an explicit object of discussion” (p. 258). Cobb 
and colleagues define reflective discourse as episodes of such reification: where 
“mathematical activity is objectified and becomes an explicit topic of conversation” 
(p. 258). Moreover, they argue that reflective discourse is valuable because (a) it 
gives individuals in the group opportunities to engage in supported acts of reifica-
tion and reflective abstraction; and (b) it promotes the development of a classroom 
microculture characterised by shared orientations to mathematical activity. 

We will argue that whole-class sessions in which student teams present their 
MEA solutions can also be propitious settings for supporting reflective discourse 
in Cobb et al.’s (1997) sense, bringing reification into the class’s discussion of their 
own mathematical constructions. Collaboratively solving an MEA generally involves 
negotiating among a variety of perspectives and ways of thinking that others bring 
to bear, synthesising these to create a single coherent approach. Teams interpret and 
mathematise the problem situation, creating tools and symbolic representations that 
operationalise the needs and values of the problem’s client. Elaborating a solution 
includes looking at the client’s world through the lens of the model that they create. 
Thus, in presentation sessions of such solutions, teams share their lenses, giving the 
classroom opportunities to recognise that there are multiple ways of interpreting the 
problem. This can provoke a shift to reflective discourse, as models go from being 
lenses to look through, to being (also) constructions to look at, enabling them to be 
compared, composed, or critiqued. The modelling actions that each team undertook to 
create its solution can now become objects of discussion at the level of the classroom 
group. 

Cobb and colleagues are careful to note that when a classroom group collectively 
formulates “an object of discussion” (i.e. enacts reification in the social sphere), 
this does not necessarily ensure that all participating students have constructed a 
mathematical object (i.e. enacted reification in the individual sphere). Nevertheless, 
they assert that episodes of “collective reflection” characterised by shifts to reflective 
discourse do constitute “conditions for the possibility of mathematical learning” 
for each participating individual. We have a similar caution about asserting that all 
students in our classrooms are fully mathematising at the individual level in line 
with the discursive activity that unfolds in presentation discussions; yet we assert the 
value of discussions that create opportunities to do so. 

4.1.3.1 Reflective Discourse in the Presence of a Diversity of Models 

Cobb et al. (1997) show how reflective discourse and reification can be occasioned 
and supported by novel symbolisation, as their participants explore various situations 
involving partitions of a number (e.g. 5 can be partitioned into {1,4}, {2,3}, etc.). The 
question that initiates collective reflection “Have we found all of the ways?” builds 
upon a novel tabular representation of the set of identified partitions. This table high-
lights the (single) core mathematical structure at work, shifting attention to relations 
among the notated rows. By expressing students’ work in a novel representation, the
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teacher can facilitate a shift in perspective that creates favourable conditions for a 
shift to reflective discourse. 

This symbolisation-driven approach to provoke reification is powerful, but it 
assumes that there is a single mathematical structure at play in students’ work. 
The symbolisation exposes patterns related to this structure which can then become 
objects of discussion and thought. In the modelling typical of MEAs, however, 
solutions generally involve integrating multiple mathematical structures and ideas. 
Thus, disentangling structures common across different teams’ solutions involves 
additional steps. However, we regard this as a “feature” of MEA presentations 
in producing reflective discourse, not a “bug”. Students who have participated in 
constructing a model of a real-life situation to address a client’s problem have been 
active agents in identifying mathematical structures in the world. In other words, 
students who have solved MEAs are well positioned to appreciate other groups’ 
interpretive mathematising—that is, to appreciate how they have selected and adapted 
mathematical structures to apply to the world. By identifying points of connection 
among their classmates’ modelling solutions, they can begin to transform the multiple 
actions of modelling that they engaged in, into objects of whole-class discussion, 
analysis, and further mathematising. 

4.1.3.2 Reflective Discourse and the Classroom Understanding 
of Modelling 

In addition to creating a discursive context for reification itself, Cobb and colleagues 
note the importance of reflective discourse in establishing a shared understanding 
of the nature of mathematical work. Elsewhere, we have described this function of 
presentation discourse in terms of the development and recognition of an emerging 
classroom culture of modelling (Brady & Jung, 2022). In our view, these two goals— 
promoting mathematically meaningful activity, and also promoting the emergence 
of shared classroom understandings of the meaning of “meaningful mathematical 
activity”—are intertwined and mutually supportive. In our data, taking a modelling 
solution as an object of discourse serves both ends, reifying aspects of its model to 
illuminate its membership in a mathematical family, and recognising the creative 
work of its authors as fulfilling the demands of a modelling solution. 

4.1.4 Research Question 

With the above in mind, we are interested in how whole-class presentations of solu-
tions to MEAs can support shifts to reflective discourse. More specifically, in this 
chapter we ask: 

During presentations of MEAs, how can the class shift to engage in reflective discourse— 
going from sharing the interpretive processes of their modelling work, to reifying these 
processes as objects that can themselves be mathematically analysed?
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4.2 Methods 

Our data are collected from a ten-day mathematical modelling Summer Camp led 
by the second author and a partner teacher. This teacher had taught middle and 
high school mathematics for over five years and had led a math club at her school. 
Twenty-one 10- to 13-year-old students from five schools participated in the camp, 
which was free and open to the public, with admission limited only by the capacity 
to serve a specific number of students. All the students and their parents agreed to 
participate in the research. Camp days were divided into morning and afternoon 
sessions, with a different major activity for each session. During the first week, 
modelling was interspersed with activities that supported classroom norms about 
student interaction (e.g. presenting and justifying mathematical thinking; being open 
to alternative ideas). Students worked in teams on modelling tasks, followed by 
whole-class presentation sessions. Teams were assigned randomly and re-shuffled 
each day, to support the development of a community orientation. Teachers facilitated 
discussions explicitly to foster meaningful discourse, interpreting students’ thinking, 
and supporting them to articulate their strategies (Doerr, 2006; Stein et al., 2008). 
They particularly cultivated connection-seeking, encouraging students to build on 
each other’s ideas (Boaler & Brodie, 2004; Manouchehri et al., 2020). 

The data analysed here include video recordings and transcripts of student teams’ 
presentations (5 or 6 teams, depending on the activity), as well as students’ written 
products from their work on the four MEAs of the camp, all of which took place 
in the second week. The first and second authors collaborated closely with peri-
odic feedback from the others. We used analytical-inductive methods (Strauss & 
Corbin, 1990) to describe how participants (both teachers and students) contributed 
to the whole-class discourse. In a pass of open coding (Strauss & Corbin, 1990), we 
identified episodes of intrinsic interest. We then used a constant comparative anal-
ysis (Glaser, 1965) to cluster episodes that exhibited a recurring pattern, in which 
discourse shifted from discussions of details of particular solutions to themes that 
depended on connections across teams’ work. We isolated three such episodes, occur-
ring at pivotal moments in the presentation sessions from three of the four MEAs. We 
treated these episodes as cases (Yin, 2018) of the emergence of reflective discourse. 

4.3 Findings 

We structure our findings to show how whole-class presentation sessions of MEA 
solutions can be propitious settings for shifts to reflective discourse. We selected 
three episodes where such shifts occurred, in discussions of three of the camp’s 
four MEAs. Each highlights a distinctive way of shifting to reflective discourse, 
taking students’ modelling actions as objects of whole-class discussion. Each also 
exemplifies aspects of the nature of modelling.
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4.3.1 Shift in MEA #1: Identifying Critical “Wrinkles” 
in the Problem 

A key design principle for MEAs is to provide a believable client facing a compelling 
dilemma. This motivates authentic problem solving. In such settings, students take 
the client’s dilemma as a serious occasion for interpretation and meaning-making 
(Lesh et al., 2000). This also prepares them to be perceptive audience members 
and questioners during discussions of presented solutions. In presentation sessions 
for MEAs, then, both presenters and questioners will have attended as modellers to 
“wrinkles” (details or nuances) embedded in the problem. To show how this setting 
looks in practice, we select the first MEA that the camp students solved, the Counting 
Caribou problem (Lesh & English, n.d.). We analyse the Question and Answer (or 
Q&A) session after the first team presented their solution. 

In this MEA, students are provided aerial photographs of caribou herds and 
invited to create a procedure for estimating herd populations from these and similar 
photographs. Their “client” is the Alaska Department of Fish and Game, focused on 
conservation efforts. The photographs provided (see Fig. 4.1) are designed to express 
the challenge of finding a procedure that can be generalised. The challenges include: 
(a) there are a large number of caribou in both photographs, so that direct counting is 
impractical; (b) the density of caribou herds differs both within a given photograph 
(some areas are more densely populated), and across photographs (due to scale and 
other features); and (c) there are challenges with interpreting the images, including 
visibility of caribou’s bodies and the presence of geographic features. 

Team 1 was the first to present their solution. While they provided a detailed 
account of some parts of their method, the audience’s questions revealed that they 
were curious about aspects of the solution that had been left out. Three aspects 
surfaced immediately in the first three questions. (Team 1 is Hope, Tim, and Kevin; 
Questioners’ names are shown in bold.)

Fig. 4.1 Aerial photographs of the Counting Caribou problem (Lesh & English, n.d.). (Images 
were modified from the original problem) 
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Uri: So, I really liked that yours was really exact, but it was also pretty easy 
and simple. I also have a question. What did you do with the overlapping 
caribou? Like the ones that are half on the page and... 

Hope: Oh, those ones we connected.... If it was half a body, we found another 
half body we would smush it together to make one. 

Teacher: Any other comments or questions? 
Irene: Why did you decide to do it in the most crowded.... Count the ones in the 

most crowded area? 
Hope: Well, we kind of like... All three of us, we counted different areas, so one 

of them counted up to like 110 or so, some of them counted like to 95 or 
so. We kind of just rounded them to 100. 

Tim: Yeah. 
Uri: So how did you account for...Like the second one, how did you account 

for... the instance where there was like none of them...Like the second 
picture... It’s just like... 

Kevin: We eliminated those squares so I could get an accurate estimate. 

Questions from the class not only prompted Team 1 to elaborate on aspects of 
their modelling they had left out of their presentation; they also entered these issues 
into the public forum as questions that any solution to the MEA should attend to. As 
such, they both created potential connection points with other solutions to the caribou 
problem, and they represented bids to specify the kinds of detail and justification that 
a complete solution should include. 

During their presentation, Team 1 stated that they imposed a grid on the photo-
graph and “counted the caribou in one section.” The three questions in the excerpt 
above show how classmates requested explanations of how they dealt with “wrinkles” 
in the image data, at three increasing scales. First, at the level of a single caribou, Uri 
asked for a rule to account for partial-caribou that appeared in a section. Second, in 
selecting one grid section to use as a representative, Irene asked how this grid was 
chosen, revealing that she believed Team 1 had selected the most densely populated 
section. Hope’s answer revealed that there was more to the counting strategy than 
Team 1 had presented. Rather than choosing the most crowded, they had selected a 
sample of three different crowded grid cells and taken a rough average of caribou 
counts across these sample cells. Next, Uri’s inquiry isolated the grid-selection part of 
the procedure that Irene had first attempted to highlight, this time asking a comple-
mentary question (how they accounted for the sparsity of the population in grid 
sections they did not count). Finally, Kevin’s answer revealed yet another feature of 
the model that was not mentioned—that they eliminated sparsely populated sections 
from the section count. 

All of these modelling actions are of course contestable; the relevant point here is 
that the Q&A session immediately surfaced these “wrinkles” as important features of 
the data that this solution, and other solutions, should address. As a result, in subse-
quent presentations, teams’ solutions were not only received on their own terms, 
but they were also compared to those from other teams, in terms of how the solu-
tions responded to these issues. From the perspective of reflective discourse, teams’
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decisions thus became not only interesting in themselves as actions that modellers 
took; they also became objects of discussion as mathematical features of any solution 
procedure. In terms of fostering shared understandings of modelling and a classroom 
modelling culture, these interactions substantiated an emerging stance that students 
adopted towards others’ solutions: that they involved consequential mathematical 
decisions based in coherent interpretations of the client’s situation. 

4.3.2 Shift in MEA #2: Making Connections Across 
Mathematisations 

An MEA creates the need for students to mathematise phenomena in the world. That 
is, any valid solution must involve creating a model (Lesh et al., 2000). This opens 
up the possibility for another shift to reflective discourse, when students compare 
their models as mathematical structures and as reflecting deliberate mathematisation 
choices. Thus, whereas the shift described above arose through attention to salient 
aspects of the problem situation, our next shift arose through attention to recurring 
patterns in the solutions of different teams. 

Our excerpt for this section comes from the camp’s second MEA, the Paper 
Airplanes problem (Lesh, 2010). This task asked students to develop a procedure to 
help the judges of a paper airplane contest to select (a) the most accurate flier and (b) 
the best floater. Students were provided a chart of sample data (see Fig. 4.2) from the  
prior year’s contest, showing the data from trials of four planes (A-D), each “flown” 
(thrown) by three “pilots” (1–3). 

The teachers organised the presentation session for this MEA so that the five 
teams first presented their solutions, and questions and comments were entertained 
afterwards. We focus here on the discussion of solutions for the “Best Floater” 
category. To contextualise our analysis of the Q&A session, we briefly summarise

Fig. 4.2 Data from the Paper Airplanes problem (Lesh, 2010) 
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the aspect of the solutions that became a focal point of the discussion. All five teams’ 
approaches involved strategically averaging the 144 values in the dataset of the 
problem in order to produce a smaller set of representative values, on the basis of 
which Paper Airplanes could be evaluated. All teams reported that they averaged the 
measurements for the three trials of a given plane by one pilot (reducing 144 values 
to 48). All teams also then used averaging again, to combine the results across pilots 
for a given plane (reducing 48 to 16). They then operated on the 16 values (one 
value for each of the four measurements, for each of the four planes). Note: this 
approach suppresses the “analysis of variance” aspect of the problem, but the move 
is an appropriate one for young learners to decide to take. 

Though all five teams took these initial data reduction steps, their models began 
to diverge in subsequent steps of their procedures. In particular, Teams 3, 4, and 5 
further combined these 16 aggregated data points, combining these heterogeneous 
measurements to create values that they then used to judge the planes. After all teams 
presented, the teacher asked for comparisons across solutions: 

Teacher: Which of those [rules presented by each team] are similar or different? 
Did you notice that? ((several students raised their hands.)) 

Tim: I think most of them used the average of all those different things, they 
either took the average of every single thing, or they took the average of 
most and then they just added them together to get what they needed, so 
that’s what I would say. 

Ollie: Yeah, what I noticed is that, basically, almost everybody did ... they just 
averaged everything off and then added it up and then based it off of that. 

In this exchange, the teacher opened the floor for reflection across solutions, 
taking the modelling actions of the teams as objects for discussion. The students’ 
response to this invitation highlighted the action of averaging, as an operation that 
appeared across solutions in different ways. This opening could have been taken up in 
a variety of ways to engage in reflective discourse; in the moment, Ollie entered into 
an extended reflection and critique of his own solution (Team 5) and that of teams 3 
and 4. He began by stating a problem with combining average flight distances with 
average flight times by adding: 

But then I was thinking about it, and one thing that I realized that we should, our group 
should’ve done … we should’ve weighed the criteria more evenly. 

Next, he grounded his explanation of this weakness in a particular example from 
the data: 

Because let’s say the flight time, it was 2 seconds or whatever, and we were just finding 
the average of that and then just adding it on. And then you were finding the average of the 
distance from the start, and so let’s say you got an average of 30 from the distance from the 
start, and an average of 2 or something for the flight. It doesn’t really add any points to the 
plane, so it didn’t really make any difference whether or not the plane was in [the air] for a 
longer period of time. 

Finally, Ollie offered a possible alternative method of combining the data: 
multiplying.
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So, I think one thing that our group or maybe other groups shoulda done is multiply the time 
of the flight to try to make it, like, get more points to the plane, because otherwise it mighta 
gone super far, but it might not have been in the air for a super long time. 

As with episode 1, the solution Ollie offered here is contestable. However, this 
episode shows how the shift to reflective discourse highlights the consequences of a 
mathematical operation (adding) that may be viewed as undesirable in the context of 
teams’ solutions and the problem data. By proposing an alternative operation, Ollie 
created the opportunity for teams to reflect on their solutions models as dynamic 
objects that utilised addition but might be modified to use multiplication (or other 
alternatives). Indeed, Ollie’s early mention of “weighting” is a direction (weighted 
averages) that he himself neglects. The more general need to combine quantities 
whose values have different scales arises here in a discussion, where teams’ solu-
tions are the objects of discussion. At the level of building a shared understanding 
of modelling and a classroom modelling culture, employing particular arithmetic 
operations as tools for modelling became a choice whose interpretive consequences 
students increasingly recognised and took responsibility for. 

4.3.3 Shift in MEA #3: Attending to How Key Concepts Are 
Operationalised 

MEAs involve students in operationalising concepts to interpret and address a client’s 
problem. Different operationalisations of key constructs (e.g. “fair teams”) can yield 
very different solutions, and presentation sessions offer opportunities for students to 
see how consequential their interpretive mathematising acts have been. Our episode 
for this section comes from the third MEA of the summer camp, the Fun on the 
Field problem (Chamberlin, 2000). Here, students are given data about 15 players’ 
performance on the 100-m dash, 800-m dash, and high jump (see Table 4.1). They are 
asked to help the Field Day Organizers create an enjoyable experience, by developing 
a method to divide the 15 players into three fair teams. Operationalising “fair” in 
this context involved decisions at the individual athlete level—about whether (and 
how) to combine running scores fairly, how to fairly weight running and jumping, etc. 
Then, at the team level, it involved questions about how to build up teams fairly based 
on evaluations of individual players. Discussions at both levels offered opportunities 
for a shift to reflective discourse.

Below, we show how this shift could occur in arguing around the idea of “fair”. At 
the individual level, Team 3 introduced a novel strategy for combining the 100-m and 
800-m times into a single measure: calculating average rate (in m/s). In advocating 
for this idea, they argued that it was responsive to the core value of “fairness”: 

Bashir: We thought it would be more fair because otherwise one of them would 
be worth more if we kept them at their seconds. So then we thought if we 
could break them into metres per second then the timing would be equal.
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Table 4.1 Data from the Fun 
on the Field problem (data 
from 11 players excised for 
space) 

Player 100 m 800 m High Jump 

Betsy 17.3 s 3 min  38  s 5' 3''

Caroline 16.0 s 3 min  1 s 3' 5''

… … … … 

Scott 17.0 s 3 min  30  s 4' 11''

Susan 18.3 s 3 min  0 s 5' 3''

Previous presentations had provoked debate over how the running scores could 
be combined, since the scales of the numbers were so different (cf. Paper Airplanes, 
above). Bashir’s invoking the standard of “fairness” marked an evaluative turn in the 
discussion of strategies. 

At the team level, a shift to reflective discourse occurred when Team 1 presented 
a means of quantifying the good-ness of a team: aggregating the members’ scores 
by adding. This led to a means of assessing their solution, by measuring how “even” 
the teams were: 

Ollie: So it’s a little confusing to understand, but if you add all the people from 
Team A… so we have number 1, number 4, number 7, number 12, and 
number 15. If you add all that up, you get a total of 39. 

Teacher: 39 points? 
Ollie: Yeah, 39 points. Obviously, you want to have the lower score again. If you 

have 1 and then 15, you try to balance it out. Then Team B, when you add 
all of them up, you get a score of 40. And then when you add all of the 
people up from Team C, you have a score of 41, so you get those pretty 
equal teams. 

Tim (in the audience) responded by speculating that it should be possible for all 
three teams to have an aggregate score of exactly 40. Ollie accepted Tim’s suggestion 
and the subsequent discussion turned to how players could be traded to balance the 
team scores. At both player and team levels, then, actions taken by modelling teams 
became objects of collective discussion, directing the class’s attention to consider 
the family of solutions that illuminated the impact of different choices from a diverse 
range of alternatives. At the level of building shared understanding of modelling and 
a classroom modelling culture, the group had opportunities to become increasingly 
familiar with the concept that mathematising situations necessarily involves making 
contestable, value-laden interpretations of the world.
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4.4 Discussion, Limitations, and Directions for Future 
Research 

Across three MEAs, presentation discussions shifted to reflective discourse. Actions 
that students had taken in developing solutions were re-framed as objects of discus-
sion. These shifts led to discussions that highlighted subtleties in the problem and 
data (in Counting Caribou); provoked reflection on shared limitations in strategies 
(in Paper Airplanes); and revealed the subtleties involved in operationalising key 
constructs (in Fun on the Field). 

An important limitation of this analysis is that we have backgrounded the teacher’s 
vital role in supporting reification. Indeed, as in Cobb and colleagues’ (1997) study, 
teacher facilitation generally opened the way for shifts to reflective discourse to occur. 
Moreover, because of the multi-faceted nature of the modelling actions involved in 
solving MEAs, the facilitation “moves” that encouraged shifts to reflective discourse 
in these discussions were not formulaic or procedural actions. Guidance here is 
particularly important, given that many teachers believe that they should avoid 
providing any guidance in group discussion so student thinking can be emphasised 
(cf. Chazen & Ball, 2001). However, without appropriate teacher guidance, students 
may feel they do not need to understand others’ methods (Stein et al., 2008), and 
presentation sessions can devolve into “show and tell”. Thus, the teacher’s role and 
perspective in facilitating presentation sessions are a rich area for future research. 

In addition, we have focused on MEAs in this chapter. The shifts we have iden-
tified also correspond to specific design features of MEAs (Lesh et al., 2000), 
suggesting reflective discourse is particularly well suited for this type of modelling 
task. However, we believe discussions of other kinds of modelling problems may offer 
their own distinctive opportunities for shifts to reflective discourse. For instance, more 
application-oriented modelling problems that are engineered to elicit solutions that 
employ a single mathematical structure are likely to operate more like the contextual 
problems studied by Cobb et al. (1997). In fact, there may be value for a classroom 
group to engage in reflective discourse about solutions to a diverse array of types of 
modelling tasks. The variation here in the nature of modelling may allow another step 
of collective reification, in which the composite action of modelling itself is taken 
as an object of discussion. Such second-level reification could enable connections 
between the two traditions of modelling as context and modelling as topic. 
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Chapter 5 
Students’ Processing Types 
in a Computer-Based Learning 
Environment for Mathematical 
Modelling 

Lena Frenken 

Abstract Modelling processes can be supported, enriched and made more authentic 
using ICT which can be combined in a Computer-Based Learning Environment 
(CBLE). However, from a theoretical perspective, it can be anticipated that modelling 
within a CBLE can also pose difficulties or hurdles for learners. A key aspect of this 
process is self-regulated learning. Hence, there is an empirical interest in analysing 
modelling processes within a CBLE and classifying them by using computer-
generated process data. Based on an exploratory study, it is found that five different 
processing types can be identified from a sample of two classes from secondary 
school that were asked to work independently with the CBLE for two weeks during 
distance learning in 2020. It is shown that the clusters can be characterised mainly 
by variables on the use of supportive elements which can be linked to self-regulated 
learning skills. 

Keywords Computer-based learning environment ·Mathematical modelling ·
Process data · Cluster analysis · ICT · Self-regulated learning 

5.1 Introduction 

The importance of digital tools and media in (mathematics) education has increased 
during the COVID-19 pandemic because of distance learning. During this period, 
the global educational aim of enabling students to learn in a self-regulated and inde-
pendent way has gained importance. Furthermore, society and people are changing 
because of the influence of evolving, omnipresent digital technologies so that it 
is important to foster new methodologies in mathematics education (Borba et al., 
2018) as well as in research. Nevertheless, many questions about the appropriate use 
of digital media in mathematics education remain open.
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Focusing on the competence of mathematical modelling, the integration of digital 
tools is considered to be enriching (e.g. Geraniou & Jankvist, 2019; Greefrath et al., 
2018; Molina-Toro et al., 2019). Therefore, the development of a computer-based 
learning environment (CBLE) for mathematical modelling was approached in the 
presented study, whereby digital media and tools like a calculator, a dynamic geom-
etry system (DGS), video, audio or pictures are embedded. Furthermore, learning 
processes during distance learning can be investigated by analysing generated process 
data. Concluding, in this study, the focus is on learning processes within a CBLE for 
mathematical modelling. 

5.2 Theoretical Background 

The theoretical background is divided into a section on Computer-Based Learning 
Environments and a section about self-regulated learning to clarify these broad 
terms. Afterwards, links between CBLEs, self-regulated learning and mathematical 
modelling are described by referring to theoretical concepts and current research. 

5.2.1 Computer-Based Learning Environments 

Computer-Based Learning Environment (CBLE) is a generic term for the web-based 
delivery of pre-structured learning materials (e.g. Baker et al., 2010; Isaacs & Senge, 
1992). Thus, the most characteristic aspect of CBLEs is—as the name suggests—the 
use of digital devices involving opportunities such as providing three-dimensional 
illustrations or dynamic geometry environments (Drijvers et al., 2010; Lichti & Roth, 
2018). The mentioned technical tools enable teachers to provide open-ended learning 
environments in which students can not only learn about a tool but also investigate 
mathematical relationships. In this study, digital tools are understood as a specific 
part of digital media, defined by a—not pre-defined—purposed way of use for (math-
ematical) actions and with the possibility of supporting learning processes (Greefrath 
et al., 2018; Monaghan & Trouche, 2016). Digital tools have a multi-representational 
and dynamical nature (Carreira, 2015). The appropriate use of integrated digital tools 
can be established with the theoretical concept of instrumental genesis (e.g. Artigue, 
2000; Drijvers & Ferrara, 2018; Monaghan & Trouche, 2016; Verillon & Rabardel, 
1995). 

Beneath the possibility of integrating digital tools into CBLEs, the pre-structured 
way of providing tasks and information is characteristic as well. Therefore, it was 
shown that self-regulated learning can be stimulated and CBLEs have great potential 
as cognitive and metacognitive tools in supporting this way of learning (Greene et al., 
2011). Summing up these studies, a link between self-regulated learning and learning 
in a CBLE could have been proven.
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5.2.2 Self-Regulated Learning 

As already pointed out in the previous section, appropriate learning processes within a 
CBLE and self-regulation abilities are related (Greene et al., 2011). Especially during 
distance learning these abilities become relevant. The term self-regulated learning 
can be understood as a way of processing the own habits, whereby an individual 
controls, stimulates or regulates cognitive processes, emotions and motivation (e.g. 
de Corte et al., 2000; Pintrich et al., 1993). The focus of this concept, therefore, is 
on fluctuating, non-static processes, which are based on decisions about individual 
perception of one’s own cognitive processes. Self-regulation includes four aspects: 
planning activities, strategy selection and use, allocation of resources, as well as voli-
tional control. In understanding mathematical activities, for instance problem-solving 
or modelling, as active and constructive processes, self-regulation is a predictive and 
influencing factor which cannot be learned spontaneously and automatically (de 
Corte et al., 2000). But self-regulated learners are able to manage their own learning 
in various ways in an active and efficient way (Azevedo, 2005; Zimmerman, 1990). 
Furthermore, the active organisation of own resources makes it possible to distin-
guish self-regulated learners from other rather passive learners (Zimmerman, 1990). 
However, this differentiation is not a dichotomous criterion, but should rather be seen 
as a continuous scale of competence whereby every person conducts self-regulative 
actions, and it is, therefore, inadequate to consider un-self-regulated persons or 
absence of self-regulation abilities (Winne, 1997). 

For mathematical learning processes, self-regulation abilities thus include both 
the facilities to make appropriate decision during problem-solving or learning math-
ematical specifics, and to keep oneself motivated as well as concentrated as long as 
a satisfying solution of a mathematical task has been achieved. This can be caused 
by evaluating the own performance and providing adequate feedback to oneself (de 
Corte et al., 2000). 

Concluding, self-regulated learning can be observed as cognitive-resulted actions 
aiming to attain personal goals within learning processes (Zeidner et al., 2000) which 
can be investigated in four different facets, namely planning activities, strategy 
selection, allocation of resources and volitional control. Thus, for instance, it is 
expressed or can be observed in time-based dimensions like pace or regular time-on-
task-intervals, continuous and purposeful actions, as well as appropriate choices of 
strategies. 

5.2.3 CBLEs, Self-Regulated Learning and Mathematical 
Modelling 

Mathematical modelling is a complex process facing real-world situations. To repre-
sent the situation in a better, more realistic way, to reduce time-intensive schemes, 
to simulate the given situation or a subproblem, to control the solution as well as
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to search for information, digital media and tools are enriching during modelling 
processes (Geraniou & Jankvist, 2019; Greefrath et al., 2018; Molina-Toro et al., 
2019). For these different purposes, it is possible to use various digital tools and 
media: dynamic geometry systems (DGS), spreadsheets, calculators and video- or 
audio-material. 

Besides a few large-scale studies on mathematical modelling with technology, 
there are few ones that investigate concrete technology-based modelling processes by 
observing or videotaping students. In the study by Greefrath et al. (2018), the impact 
of a DGS as a facilitator on the development of modelling competences is studied. 
The results of this research, which consists of comparing a four-lesson intervention 
with a DGS to such an intervention but based on paper and pencil, show that there 
are no significant differences in the development of modelling (sub)competences. 
However, as noted in the same study, other factors such as computer self-efficacy, 
motivation or metacognition may influence the acquisition of these skills. 

Within CBLEs the different possibilities of enhancing the teaching and learning 
of mathematical modelling competence by digital means can be included in 
various ways. Furthermore, by pre-structuring the modelling tasks and enabling the 
processing within an individual chosen time frame, self-regulated learning skills can 
be supported as well as they are required. 

Mathematical modelling—with or without technology—is a complex process for 
many students because of the various cognitive obstacles and difficulties that can be 
observed empirically (Blum & Borromeo Ferri, 2009). Azevedo (2005) points out that 
the understanding of complex science topics—including multiple representations of 
information, attaining a fundamental conceptual understanding and apply different 
competences like problem-solving, reasoning and communicating—requires the use 
of self-regulatory skills. 

Many studies on CBLEs indicate that especially students with lacking self-
regulation abilities do not learn successfully (Azevedo, 2005; Greene et al., 2011). 
Through the analyses of process data from digital learning environments or tech-
nology-based assessment in general, different types of learners and related cognitive 
structures have been investigated (Greiff et al., 2016). The results of these anal-
yses show that learners with a linear solution path have been more successful in 
problem-solving. 

5.3 Materials and Methods 

5.3.1 Research Questions 

Learning mathematical modelling with a CBLE in a self-regulated way produces 
observable traces. These traces can be recorded not only in the originally intended 
forms, such as in notes or the margin of a textbook, but also, and even more detailed,
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in the form of process data. Therefore, this study set forth to combining the product-
oriented visual material that was produced by the participating students with informa-
tion extracted from process data. The following research questions arise in relation to 
the resolution of a sequence of modelling tasks in the framework of a CBLE during 
the special situation of distance learning: 

RQ1: What variables can be extracted from process data to describe the behaviour 
of the sample within the CBLE on mathematical modelling? 

RQ2: What kind of processing types can be deduced within the CBLE by using the 
extracted variables? 

5.3.2 Methodology 

Regarding the above research questions students from two classes (in total 52 persons) 
were instructed via a video conference to work within a CBLE for two weeks instead 
of taking part physically in mathematics lessons at school. The special situation of the 
COVID-19 pandemic led to this setting. The possibility of asking questions during 
these two weeks was not used by the participants except to solve technical problems. 

The CBLE was constructed in the following way: On the first pages, an overview 
and general information about the project, such as a short description of modelling, 
was provided. Furthermore, demographical data (age, grade, first language and the 
use of digital tools and media) was assessed. Afterwards, the students were led to four 
pages with exercises on GeoGebra. On each page, a short video with explanations 
about special tools and a GeoGebra applet next to the video were provided so that the 
students were able to practice the presented tools directly. This was followed by five 
modelling tasks that all should be solved using GeoGebra. Each modelling task was 
presented on three pages: the modelling problem, a provided and matching GeoGebra 
applet, as well as input fields for the solution and descriptions of the own solution 
process. Four of the modelling tasks were developed, examined and deployed within 
the LIMO project at the University of Münster (Beckschulte, 2019; Hankeln, 2019). 
Within this study, those tasks were further developed to implement them completely 
digital. The fifth modelling task was created through the digital development of the 
soccer task (Skutella & Eilerts, 2018), for example by integrating a video to present 
the problem in a more realistic way (see Fig. 5.1).

The different tasks were built with the item authoring tool CBA-ItemBuilder 
(Rölke, 2012) and a new runtime technology (using contemporary frameworks for 
JavaScript) was used to deliver the items in a web browser. The last state was always 
stored so that the participants saw their last entries, constructions within GeoGebra 
and especially the last page that they worked on before closing the browser. Therefore, 
it was possible to implement a simple navigation by buttons, that lead to the next or 
the previous page (see Fig. 5.1).
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Fig. 5.1 Two pages of the soccer task within the CBLE (translated)

5.3.2.1 Description of the Sample 

The two participating classes include 52 students in total. Before working with the 
CBLE, parents or legal guardians were asked to give their permission for collecting 
the process data. This permission was not granted for all the students. Furthermore, 
a few students did not log in once and two data sets had to be excluded because of 
technical problems. In total, data of 42 participants is analysed in this study. It is 
not a random sample, since many teachers were contacted but the study could only 
be conducted in the two classes. This is partly because of the prerequisite that each 
student had to access a computer or laptop with mouse and keyboard at home. The 
two classes belong to different German high schools in grade 9 (the average age is 
14.5). Of the 42 students, 14 claimed to be female and 26 stated to be male. Two did 
not make any statement regarding the gender. 

5.3.2.2 Methods of Analysis 

The presented analysis is based on the evaluation and extraction of process data that 
was collected and stored during the study. It contains information about events that 
happened because the participants actively changed something within the CBLE. The 
events are stored with a classification and a timestamp. Example classifications are 
Login, ItemSwitch, Button or JavaScriptInjected. The latter one indicates an action 
within an embedded GeoGebra applet. 

Using R and especially the package LogFSM (Kroehne, 2020), interesting vari-
ables were extracted from the raw data by considering the above-presented theoretical 
framework. 

In detail, the following variables were extracted: number of logins, total time 
between all events, number of page switches, number of tools used in each GeoGebra 
applet (one per task), number of pressing the play button of the GeoGebra tutorials 
and number of pressing the play button within the soccer task. 

Furthermore, the last state within each GeoGebra applet was recovered with 
a custom program written in JavaScript. A visual coding of the final state was 
conducted. As done by Rellensmann et al. (2017) the modelling performance was 
assessed by estimating the accuracy of the solution on a 3-point scale. Hereby the
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last snapshot from the GeoGebra applet was representative for the final solution. A 
correct solution was coded with 2. A code of 1 was given for a solution that was 
incorrect due to estimation errors, not answering to the whole problem or the mathe-
matical model was not fully adequate. For each task, the differences between coding 
2 or 1 were described in a coding manual. The code 0 was awarded for an incor-
rect solution. By repeating the rating after 4 months the intra-rater reliability can be 
described as almost perfect with Cohen’s Kappa equal to 0.84. 

Combining the qualitative analysis of solution products and the quantitative 
extraction of variables from process data, it is possible to specialise the statistical 
analyses regarding the presented research questions. 

To answer the first research question, variables were defined. These numeric 
variables can be interpreted based on the literature. The second research question 
aims at finding different types of learning processes within the CBLE. Therefore, 
a cluster analysis was computed based on the described variables from research 
question 1 in combination with the coded modelling performance. In this case, a 
hierarchical algorithm was chosen because of the number of cases and the exploratory 
nature of this study (Antonenko et al., 2012). More specific, the Ward algorithm in 
combination with the Euclidian metric was chosen because of its proven stability in 
finding clusters (Milligan, 1989). 

5.4 Results 

The analyses of process data allow us to investigate processes within a CBLE on math-
ematical modelling from a new perspective. In this section, the results are presented 
and structured by the two research questions. 

5.4.1 Modelling Performance and Extracted Variables 

The first research question has an exploratory nature. Variables were defined based on 
recent theoretical and empirical findings. Furthermore, the coding of the snapshots, 
which are the last states of each GeoGebra applet, can give information about the 
modelling performance. As a first result, Table 5.1 shows different variables and their 
characteristics in the sample.

The definitions of the nine variables in Table 5.1 and how they were extracted 
from process data are explained in the following. The variableMath performance was 
collected by asking students to select their most recent report grade in mathematics 
from a drop-down menu prior to working in the learning environment. The choice 
to be made was between 1, which is the best grade, to 6, which is the worst grade, 
and ‘no statement’. From the variable Login it can be derived how many times the 
students logged into the system. This variable was calculated by counting the log 
entries with event name ‘UserLogin’ which received an entry whenever students used
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their username and password to open the website. The variable Total time is based on 
the calculation from the R package LogFSM which includes calculation of the time 
elapsed between two events. The just described event ‘UserLogin’ was excluded but 
all the other events, such as ‘Button’, ‘JavaScriptInjected’ or ‘TextFieldModified’ 
were included. It can be stated that this kind of time calculation must be interpreted 
carefully because it is not always equal to the time on task. For example, students 
could solve a task, take a break for 10 min but leave the website opened and proceed 
afterwards. In this case, the time on task is shorter than the calculated total time. 
Rather, the variable Total time can be understood as the maximum time spent with 
the CBLE. The variable Button is an indicator for how often the students switched 
between different pages because those switches could only be proceeded by clicking 
back or forth. Thus, a really low number of button usage is an indicator for not working 
on all tasks, a medium number can be accompanied by a linear solution process and 
a high number shows the tendency of frequent page changes and accordingly of 
non-linear working. The variable Tutorial is a count of how often the play buttons 
of GeoGebra video tutorials were activated. A high number can be interpreted as 
a low self-assessment of tool competence. Video Soccer is also based on the total 
activation rate of a video. This video was implemented in a task called Soccer and can 
provide useful information for the solution. The derivation of such information claims 
the modelling-specific sub-competence simplifying. The last two variables directly 
extracted from the process data are based on the tool usage in different GeoGebra 
applets with which the two tasks should be solved. To determine this, the tools used 
by an individual student were listed successively from all events ‘JavaScriptInjected’ 
of a task. Subsequently, the number of different tools was counted by determining 
the length of the vector formed with unique tools. The tool usage was calculated 
based on the second task and the last task. They were picked because the first task 
in the CBLE was pre-structured and guided the students more than the others. Thus, 
between the second and the last one a development can be derived best. The last 
variable in Table 5.1 is calculated as an average of the coded modelling performance 
in the five different tasks. 

Regarding the first research question, it can already be stated that different vari-
ables could be extracted from process data which are likely to describe the individual 
processes and seem to describe different aspects of the processes so that they can be 
used for a cluster analysis as described above. 

5.4.2 Processing Types 

To answer the second research question, a cluster analysis was computed with the 
nine variables shown in Table 5.1. The resulting dendrogram is shown in Fig. 5.1. 
Each number represents one participant and the distances between the vectors of 
variables are depicted by varying height. 

The dendrogram suggests different numbers of clusters which can be determined 
by cutting the figure with a horizontal line. Therefore, the first suggestion of finding
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Fig. 5.2 Dendrogram resulting from the cluster analysis 

different processing types would be to cut the dendrogram at height equal to ten 
so that two groups arise. Analysing those two groups by searching for similarities 
in each group leads to the insight that the groups are not specific enough. Thus, 
another, more fine-graded subdivision is needed. However, the groups should not be 
too small so that still types of processes can be described based on groups. As a result 
of the described analysis process, five clusters were built by cutting the dendrogram 
at height equal to six (see Fig. 5.2). These clusters can be interpreted in a meaningful 
way by using the presented empirical and theoretical considerations. Before the 
different groups and their variable characteristics are interpreted, a description is 
undertaken. 

5.4.2.1 Description of the Five Different Clusters 

The first cluster can be characterised by both high modelling performance and above-
average processing time. The 8 participants who can be assigned to this cluster spent 
an average of 426 min in the CBLE. Furthermore, they can also be described by 
having worked on both the first complete modelling task and the last modelling task, 
as the numbers of tools are on average 6 and 11, respectively. The number of buttons 
clicked and thus the frequency of page turns is also above average in this group. The 
variables also show that the participants in this cluster logged in regularly. The usage 
of the tutorial videos on GeoGebra tools varies in this cluster. Four participants did 
not watch the videos at all, but one student even clicked the play button 10 times. 

The second cluster with 5 students—where the average modelling performance is 
1.3—is characterised by the number of navigations, which with an average number of 
232 is really high. Furthermore, the average number of logins is highest in this group
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with almost 7. Compared to the previous cluster, the students spent less time with the 
CBLE but, with an average of 357 min, still more than average. The number of tools 
used varies in the group formed here, especially in the last GeoGebra applet, where 
both 14 and 0 different tools were selected, but 0 tools were selected by a participant 
who is also the most distant from the group in the dendrogram. This person also did 
not select any tools in GeoGebra in the second modelling task. 

The 7 participants fitting to the third cluster have shown a little bit less modelling 
performance with an average of 1.14. Essentially, this can be attributed to the fact 
that they did not work on the last modelling task. This can be seen in the low number 
of tools used, which is even 0 for the majority. However, all but one person logged 
in at least four times and on average the 7 participants spent 225 min in the CBLE. 
This is more than average. However, there is also a tendency for the videos to be 
clicked on less frequently than average, with half of the cluster not clicking on them 
at all. The number of navigation clicks is densely distributed around 113, which also 
corresponds to the mean value for this cluster and is higher than in the entire sample, 
but lower than in the group of the first and second cluster. 

In the fourth cluster, with four students, where the modelling performance is 1 
on average, the number of clicks on the GeoGebra tutorial videos is particularly 
prominent. On average, the four videos were clicked on a total of almost 44 times. 
More different tools were used within the first full modelling task than in the last, 
with the last task not being worked on at all using the GeoGebra applet by two of 
the four participants described here. This group tends to have good students, as their 
math scores are 1 or 2. On average, they spent 168 min in the learning environment; 
the number of logins ranges from 1 to 5. The number of page turns is 120, which is 
above the average for the entire sample. 

The last cluster is identified by a quite low modelling performance, a short time 
processing the tasks in the CBLE, in most cases only one log in and no tool usage 
in the GeoGebra applet of the last modelling task. The second modelling task was 
only processed by three elements of the group, the others did not use any tool in the 
belonging GeoGebra applet. Also, the video for the task soccer was not watched at 
all. In total, 16 participants belong to this cluster. The average of the variable math 
performance is 2.9, whereby one participant stated a 1 and five stated a 2 as last 
grade. None of the GeoGebra tutorial videos was watched by seven students of this 
cluster, four students clicked on the play button 1 to 2 times, two activated it five 
times and one even clicked the button 19 times. The average of time spent with the 
CBLE is 40 min, whereby four students did not reach the low benchmark of 10 min. 
All in all, this group is characterised by very low interaction with the CBLE. 

5.5 Discussion of Results 

The previous section described the results of the process data analysis and cluster 
analysis. First, it can be constituted that it is possible to form subject didactically 
based variables based on the process data by formulating indicators (Kroehne, 2020).
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These variables can also be used to differentiate modelling processes within a digital 
learning environment. The five different clusters will now be interpreted and linked 
to previous theoretical as well as empirical findings in order to clarify a connection 
as well as the relevance of the research results presented here. 

Cluster 1: Self-Regulation and Modelling Success 
The participants, who were assigned to the first group based on the cluster analysis, 
show self-regulatory characteristics, on the one hand, since they log in regularly, work 
on the last of the five modelling tasks, click on all videos and consume the tutorials 
more frequently in some cases (Azevedo, 2005; de Corte et al., 2000; Zimmerman, 
1990). The total amount of time that elapses while accessing the website is also high. 
All these characteristics indicate a fairly high level of self-regulatory competence 
for the fact that the students had to manage their time independently for two weeks 
and deal with the tasks in the learning environment (Greene et al., 2011; Veenman, 
2013). On the other hand, a high to medium average modelling performance in the 
form of processing the GeoGebra applets can be recorded in this group. All in all, one 
can speak of a successful learning process, which is not directly associated with very 
good performance in the previous mathematics lessons (variable math performance), 
since some students from the midfield were also assigned to this cluster. Accordingly, 
it can be assumed that the learning environment creates incentives and offers options 
to compensate for mathematical performance, for example by resorting to assisting 
tools. The reality-based tasks may also have contributed to new motivation. 

Cluster 2: Many Logins as Well as Page Switches But a Medium Modelling 
Performance 
The group belonging to this cluster cannot be described with a high self-regulation 
ability. It includes both, bored clickers (Baker et al., 2010)—which means that 
students just click on any item without aiming at solving the tasks—as well as 
low-motivated students (Efklides et al., 2017). Boredom as well as low motivation 
does not contribute to successful learning processes. In this cluster, a high number 
of logins can also be attributed to one day, so that new login processes resulted 
rather from boredom than from self-regulation or knowledge of learning strategies. 
However, the four students still reached a medium modelling performance during the 
averaged time of two hours. It can be assumed that more supervision in this group 
would have resulted in good modelling performance. 

Cluster 3: No Tutorials, But Frequent Page Turns and Moderate Modelling 
Performance 
Intermediate modelling performance was achieved in this cluster. However, it can 
be surmised that the students had a high computer-related self-efficacy, as the video 
tutorials on GeoGebra were hardly watched. This might be an influencing factor on 
not processing the modelling tasks on a high level (Greefrath et al., 2018). However, 
it can also be constituted that the motivation or self-regulatory abilities were lower 
in this group compared to the first cluster, since, first, the video on the goal shot 
task was not watched by all and, second, the last modelling task was not completed
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(Efklides et al., 2017). Nevertheless, the students logged in regularly and spent a lot 
of time in the learning environment. Since the mathematics scores are in the lower 
midrange, it can also be assumed that the participants in this group had to overcome 
hurdles to solve the complex modelling tasks and apply tool competences. 

Cluster 4: Distinctive Tutorial Use and Medium Modelling Performance 
A frequent tutorial use might be an indicator for rather low computer-related self-
efficacy. A high computer-related self-efficacy is important for a successful devel-
opment of modelling competence (Greefrath et al., 2018). The interpretation can be 
concluded by the fact that the students have to decide on their own whether and how 
often they click on the play button to watch the videos. A higher number of clicks 
could be linked to students’ self-assessment and their need of further or repeated 
instructions. This can also be interpreted as a development of digital competence 
since the students react corresponding to their lack of information. However, not 
solving the last task could also be a result of declining motivation or only moderately 
developed self-regulating abilities (Efklides et al., 2017; Veenman, 2013). 

Cluster 5: Low Interaction and Low Modelling Performance 
In the last cluster described are those who could not apply self-regulatory skills and 
consequently could not use the form of independent work to acquire modelling 
competence or solve modelling tasks which can be deduced from all extracted 
variables and their low characteristics (Efklides et al., 2017; Greefrath et al., 
2018; Veenman, 2013). However, in this group are students with mixed mathemat-
ical grades, with rather lower performance field predominating. Nevertheless, the 
heterogeneity is remarkable and shows that not only mathematically weak students 
have problems with independent work, but that self-regulation is an independent 
competence. 

5.6 Conclusion 

In the present study, data from 52 students were gathered to cluster processes from 
learning modelling within a CBLE during distance learning. In further studies, the 
sample size should be increased. The surveys should also be accompanied by video 
recordings or interviews in order to increase the significance of the analysed process 
data and thus make the measurements more valid. Nevertheless, the analysis of the 
computer-generated process data is a gain for research and could help to identify 
different types of learners. The five different clusters and the associated expressions 
of the variables show that mathematical modelling-specific performance in a work 
form with independent learning is strongly related to self-regulatory skills. This can 
be inferred both in groups that achieved high success in the modelling tasks, making 
frequent use of help or page turns, and in those groups that spent very little time 
in the CBLE, logged in only very irregularly, did not use help and could not show 
success in the modelling tasks either.
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However, through cluster analysis, it is not only possible to divide the modelling 
weak from the modelling strong students. Tool competence as well as the use of 
GeoGebra tutorials is also a differentiating factor. First, the results indicate that prior 
mathematical knowledge, measured in terms of the last school grade, is not neces-
sarily associated with tool competence for GeoGebra. Second, the results indicate 
that students varied in how they were able to build tool competence with the help of 
the videos. Thus, self-regulatory skills are relevant here as well. Likewise, computer-
related self-efficacy or self-assessment may play important roles in ensuring that help 
offers are used adequately. 
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Chapter 6 
The Impact of Real-World Mathematical 
Modelling Problems on Students’ Beliefs 
About the Nature of Mathematics 

Flavio Guiñez and Darío González 

Abstract Students’ beliefs on the nature of mathematics greatly influence their 
interests and attitudes towards the subject. Misconceptions regarding mathematics, 
such as the problems always having a unique and exact answer, can become obsta-
cles for student learning. Research has found that mathematical modelling experi-
ences could help students see the relevance of mathematics in the real world and 
their lives, but more attention is needed as to whether they affect other beliefs. This 
study focuses on exploring high school students’ views about mathematics when 
they work autonomously on solving real-world mathematical modelling problems 
during the selection process of the teams that represented Chile at the International 
Mathematical Modelling Challenge. The findings suggest that exposure to these 
modelling tasks has the potential to modify participants’ beliefs, for instance, with 
regards to the existence of many solutions and correct procedures for mathematical 
problem-solving. 

Keywords Beliefs · IMMC ·Mathematical modelling · Nature of mathematics ·
Secondary students 

6.1 Introduction 

Students’ views on the nature of mathematics shape the context in which students 
see and do mathematics and have a great influence on their attitudes towards learning 
the subject (Furinghetti & Pehkonen, 2002; Grigutsch et al., 1998; Pehkonen, 1995;
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Schoenfeld, 1989). During their time in school, they might develop several miscon-
ceptions regarding mathematics, which can include that mathematical problems 
always have a unique and exact answer, that there is only one correct procedure 
to solve them, or that it is too abstract without much relationship to their lives. These 
views can become obstacles for student learning since they shape, for instance, the 
way students approach mathematical tasks and problems. Many studies have shown 
that mathematical modelling experiences can help students see the relevance of math-
ematics in the real world and their daily life, see Stohlmann et al. (2016) for  a review  
on this. In some sense, this is expected, given mathematical modelling has to do 
with situations that involve moving back and forth between the real-world and math-
ematics. Since different models could be constructed for the same modelling problem, 
which could lead to distinct solutions and results, one might ask whether mathemat-
ical modelling could also challenge or even change students’ related misconceptions. 
In this chapter, we will present some evidence that suggests that working with real-
world modelling tasks has also the potential to modify students’ beliefs about the 
nature of mathematics and mathematical problem-solving. 

Modelling has increasingly become a focus of mathematics education in Chile. 
The curriculum of mathematics has incorporated modelling as one of the fundamental 
skills to be developed in students: first for grades 1–6 (Mineduc, 2012), and then 
extended to grades 7–10 (Mineduc, 2013). For grades 11 and 12, the new curriculum 
guidelines (Mineduc, 2020) promote modelling transversely across all the advanced 
mathematical courses. Although modelling was introduced in the curriculum almost a 
decade ago, the little evidence available and researchers’ personal experience suggest 
that teachers are not being prepared to teach it and that students have few opportunities 
to work on real-world mathematical modelling problems (Guerrero-Ortiz & Mena-
Lorca, 2015; Huincahue et al., 2018; Tapia, 2016). 

One of several initiatives that are being developed to change this situation is 
the participation of the country in the International Mathematical Modelling Chal-
lenge (IMMC), an annual school-level team-based mathematical modelling contest 
(Garfunkel et al., 2021). The interest was to encourage teachers to integrate modelling 
into their teaching and give students the possibility to face real-world modelling prob-
lems. In the challenge, teams have five days to solve a realistic and complex problem, 
which are only slightly simplified through some clues given in the statements that 
suggest, for example, assumptions that could be made, and certain approaches for 
constructing and testing the models. Therefore, IMMC could be considered part of 
the realistic or applied modelling perspective, as described in Kaiser (2017). Several 
participant countries conduct their own pre-contests to select the two representing 
teams that will participate in the international challenge (Garfunkel et al., 2021). In 
the case of Chile, a selection process by stages was adopted, in which teams have to 
solve problems of increasing difficulty. Teams that reach the last stage work on the 
IMMC problem and the two best reports are chosen to represent the country. 

For IMMC 2019, two focus groups with participating teams were conducted 
to evaluate the selection process and explore students’ motivations and opinions 
regarding their experience. Although it was not expected, throughout their discourse 
students described how the experience allowed them to change some preconceived
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ideas about the nature of mathematics and certain characteristics of mathematical 
work. In order to explore this phenomenon in greater depth, a follow-up quantitative 
study was conducted to address the following research questions: 

1. What are the beliefs about the nature of mathematics of students who participate 
in the Chilean selection process for the IMMC? 

2. Are there changes in students’ beliefs before and after participating in the 
selection process? 

Since IMMC 2020, a questionnaire of beliefs about mathematics has been applied 
as a pre- and post-test to participating students. The results suggest that the exposure 
to the realistic modelling tasks used in the process has a positive effect on changing 
students’ misconceptions about mathematics such as it is a collection of rules and 
procedures that describe how to solve a problem or that to solve a mathematical task 
one needs to know the correct procedure. 

6.2 Students’ Beliefs and Mathematical Modelling 

Students’ beliefs about mathematics have been largely investigated in the last decades 
(Furinghetti & Pehkonen, 2002; Pehkonen, 1995; Schoenfeld, 1989). According to 
Furinghetti and Pehkonen (2002), mathematical beliefs consist of relatively long-
lasting subjective knowledge about mathematics, as well as of the related attitudes 
and emotions, and can be conscious or unconscious. It is worth noting that there is 
no simple shared understanding of the concept of belief, nor a generally accepted 
definition. In addition, it is common to find beliefs in the literature used interchange-
ably with terms such as views, conceptions or attitudes (Pehkonen & Törner, 1996). 
For the purpose of this study, and to avoid the nuanced use of this and related terms, 
belief, view and conception are treated as if they share a similar meaning. 

There are many reasons to be interested in the ideas and beliefs students have 
about mathematics. Beliefs shape the ways that the individual conceptualises and 
engages in mathematical behaviour (Schoenfeld, 2016), and can be seen as a filter, 
influencing all activity and thinking (Pehkonen, 1995). In addition, their views about 
mathematics, expressed in students’ attitudes towards the discipline, offer a window 
into the mathematics education they are receiving (Grigutsch et al., 1998). In a more 
practical aspect, students’ beliefs influence the way they approach mathematical 
tasks and problems. 

An important contribution to the understanding of this topic was made by 
Grigutsch (1996), who identified four aspects to describe students’ beliefs about 
mathematics:

• Formalism: Mathematics is characterised by the rigour, accuracy and precision of 
the concepts and language used for logical reasoning, argumentation, justification 
and proving statements. Its formal attributes, related to axiomatics and the strict 
use of deductive reasoning, are dominant.
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• Scheme: Mathematics is viewed as a fixed set of procedures and rules (a toolbox) 
that specify exactly how to solve tasks. Therefore, it is only about learning, 
practising, remembering and applying routines and schemes.

• Process: Mathematics is seen as an activity of thinking about problems and 
acquiring knowledge. This process involves understanding facts, seeing connec-
tions, and creating or rediscovering mathematics to solve problems.

• Application: Mathematical knowledge is viewed as important for students’ life: 
either mathematics helps to solve everyday tasks and problems, or it will be useful 
in the future work. In addition, mathematics is considered to have a general and 
fundamental benefit for society. 

Based on empirical evidence, Grigutsch (1996) concludes that the aspects of 
formalism and scheme are positively correlated with each other and represent a static 
view of mathematics. In contrast, a dynamic view of mathematics is represented 
by the aspect of process. In addition, the application aspect of mathematics is only 
significantly related to the process aspect. In a study conducted by Maaß (2010) with 
13-year-old students in a classroom context, evidence was found that students’ beliefs 
about mathematics are mainly scheme-oriented. Students consider that a mathemat-
ical problem can be solved quickly and has only one solution and that teachers are 
supposed to explain to them how to solve it. Stohlmann et al. (2016), in a review of 
the literature of mathematical modelling in secondary grades, analysed twelve papers 
that focus on students’ beliefs regarding mathematical modelling and applications. 
In general, students show mostly positive views towards mathematical modelling 
after modelling experiences. Students claimed that mathematics is useful for the real 
world and daily life (Kaiser et al., 2011; Yanagimoto & Yoshimura, 2013) or found 
the tasks realistic and interesting (Kaiser & Stender, 2013). However, this positive 
view might depend on the belief system students have. In Kaiser and Maaß (2007), 
students with a process or application-oriented belief system had a positive attitude 
towards modelling while those with a static view of the discipline had a tendency 
to reject it. On the other hand, two studies in which pre- and post-Likert surveys 
were used to assess students’ beliefs about mathematics found little or no change 
in such beliefs (Dunne & Galbraith, 2003; Schukajlow et al., 2011). However, it 
is worth noting that the modelling tasks in these studies are simpler and of shorter 
duration than those usually presented in modelling contests such as IMMC. Finally, 
the two studies conducted outside of school settings explored whether students want 
modelling in their regular mathematics lessons, reporting positive answers (Kaiser & 
Stender, 2013; Kaiser et al., 2011). 

6.3 IMMC and Selection Process in Chile 

Chile began its participation in the IMMC in 2018. Given the lack of experience of 
Chilean students solving realistic modelling problems, the first author of this chapter, 
in charge of the selection of representative teams, decided to conduct a two-stage
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process. The premise was that the knowledge and experience achieved when solving 
the first problem could contribute to developing modelling and writing skills that 
would improve teams’ performance for the last stage, in which they had to face the 
IMMC problem. Due to the large number of participating teams, an additional initial 
stage with a simpler problem was added in the following years. Moreover, a national 
committee of professional mathematicians was formed to contribute to the design of 
the problems of the first two stages, as well as to evaluate the reports. 

In the first stage, teams have a fixed period of five days to solve a modelling 
problem whose solution must be presented in the form of a 5-page report. Then the 
solutions are reviewed by the committee to decide which teams continue. Feedback 
related to mathematical models, solutions and the quality of their report are given 
to each team. In the second stage, teams work on a more difficult problem, again 
in a five-day period, but chosen at their convenience, and the solution is presented 
in a 10-page report. Teams that continue to the next stage are invited to a short 
training session aimed to review the modelling process and give them feedback 
and recommendations for teamwork and report preparation. In this last stage, teams 
receive a Spanish translation of the IMMC problem at the beginning of their chosen 
five-day period and must send their solutions in the form of a report of nearly 20 
pages. Then the committee chooses the two best reports to represent the country. 
These are translated to English by the national organisation. Table 6.1 presents a 
brief description of the three problems for the selection process for IMMC 2019, 
2020 and 2021.

As it is mentioned above, for IMMC 2019, focus groups with two participating 
teams were conducted after the last stage. Students mostly had positive opinions 
about their experience, recognising that the initial stages and training helped them 
feel better prepared for the IMMC problem. However, an unexpected theme arose 
during the interviews: participation in the contest seemed to trigger a shift in students’ 
views, not only about the applicability of mathematics, but also about its nature. 

With the purpose to illustrate these findings, two quotes are presented. In the first 
one, a student claimed that their participation helped them question their belief that 
mathematics has to be exact and accurate: 

Before participating in this, I considered mathematics as something super exact, and super 
concrete. But now that we had to apply this to real situations, such as in the Colectiv-App 
[second stage problem] or in the carrying capacity of the Earth [IMMC problem], we learnt 
that mathematics applies much more to other fields. It is much wider and may be inaccurate. 

It also seems that the experience contributes to seeing mathematics as a more 
dynamical and evolving field, as the following quote shows: 

All this also helped us to deconstruct mathematics a bit. Like the preconceived ideas that we 
had of maths of only formulas in which everything was done. That sometimes if only one 
mixes what is already done, or tries to invent other things, like that you can reach different 
things. [...] That nothing is 100% done, that one can continue innovating within the field, 
either mixing it with another area, or mixing the same area, but different topics, so you can 
continue inventing, keep innovating.
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Table 6.1 Short description of the problems for the IMMC 2019–2021 selection processes1 

Year Stage 1 problem Stage 2 problem Stage 3 (IMMC problem) 

2019 Design a model to calculate 
the final price and estimate 
the stock of products needed 
for a retail company that 
wants to extend the regular 
3-month warranty to 1 year. 
Manufacturer’s price, 
number of products sold in 
recent years and the failure 
rates are assumed to be 
known 

Design a model to decide if 
the new service that a 
mobility app wants to 
launch, in which two 
differently located 
passengers share a car to 
travel to the same 
destination, is convenient 
for passengers and, if so, 
divide the fare in a fair way 

Design two models that 
allow choosing the “best” 
hospital among all those 
that are accessible to a 
patient, a simple model that 
considers only the evitable 
mortality rate and another 
model that also includes 
other quality criteria, such 
as the facilities and 
experience of the doctors 

2020 Describe the model for 
calculating the residential 
water bill in Chile and 
determine whether it allows 
the perverse incentive of 
increasing water 
consumption during the 
non-peak period to raise the 
overconsumption limit and 
thus reduce the bill during 
the peak period 

Design a model to distribute 
the money from a wealth tax 
on the super-rich that 
reduces as much as possible 
the Gini coefficient of Chile. 
Also, propose a different 
measure that allows 
comparing the inequality 
between countries with 
similar Gini coefficients 

Develop a model that 
identifies the Earth’s 
carrying capacity for human 
life under current conditions 
and propose how this 
carrying capacity can be 
raised accounting for 
perceived or anticipated 
human conditions; see 
Garfunkel et al. (2021) 

2021 Design two models to define 
the rate for different types of 
vehicles for a new ferry 
service that will link two 
towns in the extreme south 
of Chile: a simple model 
that only considers charging 
vehicles and another that 
also considers a charge to 
passengers 

Design a model that allows 
an online platform to choose 
the candidate to integrate the 
constitutional convention 
that best represents the 
preferences of a voter based 
on a questionnaire with 
topics relevant to the new 
constitution 

Develop a model to 
quantitatively predict the 
behaviours of the customers 
of a store during a flash sale 
event that potentially result 
in damage to products and 
propose a new store floor 
plan with optimal locations 
of departments and most 
popular sale items

In general, students’ answers suggested a move from a static view of mathematics, 
mostly associated with a traditional learning experience at school, to a more complex 
and accurate conception of the discipline. Bearing in mind these findings, it was clear 
the need for a more systematic study to explore the differences in students’ beliefs 
about mathematics that are triggered by their participation in the contest.

1 Full versions of each problem statement (in Spanish) can be found in https://www.immc.cl/rec 
ursos/problemas-immc/. IMMC problem statements (in English) can be downloaded from https:// 
www.immchallenge.org/Pages/Sample.html. 

https://www.immc.cl/recursos/problemas-immc/
https://www.immc.cl/recursos/problemas-immc/
https://www.immchallenge.org/Pages/Sample.html
https://www.immchallenge.org/Pages/Sample.html
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6.4 Methodology 

The research design involved the administration of a questionnaire that examines the 
beliefs about the nature of mathematics of students that participated in the contest in 
a pre- and post-test format. The questionnaire was developed as part of the Teacher 
Education and Development Study in Mathematics (TEDS-M). One of the purposes 
of the study was to collect information on pre-service teachers’ beliefs about math-
ematics and its learning (Tatto, 2013) and it considered three categories of beliefs: 
nature of mathematics, mathematics teaching and learning and mathematics achieve-
ment. The first category measures conceptions about mathematics as a formal, struc-
tural, procedural or applied field of knowledge, and it is based in part on the work of 
Grigutsch (1996). 

The questionnaire is a Likert scale that consists of 11 statements, each one with 
a score from 1 to 6 (1: “Strongly disagree”, 2: “Disagree”, 3: “Slightly disagree”, 
4: “Slightly agree”, 5: “Agree” and 6: “Strongly agree”). These statements assess 
the individual’s beliefs about the nature of mathematics in relation to two distinct 
scales: Mathematics as a Set of Rules and Procedures and Mathematics as a Process 
of Inquiry. The 11 statements are distributed across the two scales with 6 of them 
corresponding to the first scale and the remaining 5 to the second scale (Table 6.2). 
The statements of the first scale reflect a more static conception of mathematics, 
while the other ones could be associated with a more dynamical view of the field. It 
is worth noticing that the statements related to problems and problem-solving make 
no distinction between pure and applied mathematics problems, including modelling 
problems, and so it cannot be assumed that responders are aware of this difference 
when they answer. The reliability of this questionnaire was calculated in the TEDS-
M study using Cronbach’s alpha coefficient, which ranged between 0.78 and 0.97, 
and the items have been examined by expert panels (Tatto, 2013). This questionnaire 
has also been used in several studies to assess pre-service teachers’ and mathe-
matics educators’ beliefs (e.g. Alfaro Víquez & Joutsenlahti, 2021; Tarasenkova & 
Akulenko, 2013). Therefore, the questionnaire was an appropriate instrument given 
the study’s goals, which include measuring in a reliable way the changes in the 
students’ beliefs about mathematics as a result of the IMMC modelling experiences. 
We do recognise that this questionnaire does not provide detailed information about 
what students believe about mathematics, but this was not necessarily the goal of this 
first study. The authors decided that this questionnaire was a simple and effective 
way of assessing changes in their beliefs, and feasible to be applied considering the 
constraints of the selection process.

The present study made use of the Spanish version offered by the TEDS-M team 
as a base for the development of a questionnaire pertinent for participating students. 
It was revised and adapted to the Chilean context since some words may have slightly 
different meanings for different Spanish-speaking countries. To evaluate the accuracy 
of the translation, it was translated back into English and compared to its original 
version.



100 F. Guiñez and D. González

Table 6.2 Questionnaire statements about beliefs of the nature of mathematics 

Mathematics as a set of rules and procedures Mathematics as a process of inquiry 

1. Mathematics is a collection of rules and 
procedures that describe how to solve a 
problem 
2. Mathematics involves the remembering and 
application of definitions, formulas, 
mathematical facts and procedures 
3. When solving mathematical tasks, you need 
to know the correct procedure 
4. Logical rigour and precision are 
fundamental to mathematics 
5. Doing mathematics requires considerable 
practice, correct application of routines and 
problem-solving strategies 
6. Mathematics means learning, remembering 
and applying 

7. When doing mathematics, you can discover 
and try out many things by yourself 
8. If you engage in mathematics tasks, you can 
discover new things (connections, rules, 
concepts) 
9. Mathematical problems can be solved 
correctly in many ways 
10. Many aspects of mathematics have 
practical relevance 
11. Mathematics helps us solve everyday 
problems and tasks

The questionnaire was applied voluntarily as a pre- and post-test to three cohorts 
of IMMC participants (2020, 2021 and 2022). The volunteers were students ranging 
from grades 7 to 11 and attending different secondary schools across Chile. The 
absence of students from grade 12 is due to students having to be enrolled in school 
at the time of participating in the international challenge, and the selection process 
starts the previous academic year. It is worth mentioning that most of these students 
had a high performance in mathematics classes and showed interest and a positive 
attitude towards mathematics, although they had almost no previous experience in 
mathematical modelling. A total of 281 students responded to the questionnaire 
during the pre-testing, which took place before the students started participating in 
the first stage of the selection process. This sample was composed of 166 individuals 
who identified themselves as male, 114 who identified themselves as female and 
one individual who identified themselves as Other. The majority of individuals in 
the sample (85%) belonged to grades 10 or 11. There were some students who had 
participated in more than one version of the IMMC, hence belonging to more than 
one cohort. To avoid having repeated individuals, only the first responses to the 
questionnaire were considered for these participants. 

Out of the 281 students who completed the questionnaire during pre-testing, a 
group of 44 also completed the questionnaire during the post-testing. This subsample 
was composed of 28 individuals who identified themselves as male and 16 individuals 
who identified themselves as female. The grades ranged from grades 7 to 11 and, 
as before, the majority of these students (73%) belonged to grades 10 or 11. The 
post-testing questionnaire was administered to the students at different moments in 
time depending on the stage of the contest they reached in the selection process. 
For the purpose of the analysis, two groups of students will be considered. The first 
group (N = 36) included those students who completed the first stage of the selection 
process but did not continue to the subsequent stages, hence working on only one 
mathematical modelling task. The second group (N = 8) consists of those students
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who reached the second or last stage of the contest, hence working on two or three 
mathematical modelling tasks. 

Several steps were taken to minimise biases during the data collection and anal-
ysis. First of all, a national committee of six professional mathematicians designed 
the problems for the first two stages and selected teams for the subsequent stages. 
Although one of the authors participated in this committee, each solution is assigned 
a code to ensure a blinded evaluation and the final decision depends on the entire 
committee. Second, the two authors of the study had different roles during the selec-
tion process: One author was in charge of collecting the data, while the other author 
was in charge of the training instance prior to Stage 3 of the process. Finally, the 
application of a questionnaire based on closed items also contributed to minimising 
biases, since the quantitative analysis performed relies less on the subjectivity of the 
researchers. 

The changes in the students’ beliefs about the nature of mathematics is described 
by the differences in the average level of agreement with a specific statement (LOA) 
between the pre- and post-test, as in previous studies (Alfaro Víquez & Joutsenlahti, 
2021; Tatto, 2013). LOA is defined as the arithmetic mean of the values from the 
Likert scale that the sample of students assigned to a specific statement. Thus, the 
higher a LOA is for a specific statement, the more students agreed with such a 
statement. Because of the size of the sample, to measure the significance of the 
differences between means of the pre- and post-test, Wilcoxon signed-rank test for 
repeated measures was applied. The analysis of difference was conducted at two 
different levels. The first level corresponded to analysing the differences between 
pre- and post-test for the overall group of 44 students. Then, to assess whether longer 
exposure to mathematical modelling problems led to larger changes in students’ 
beliefs, the same analysis was applied to the previously defined two groups. Finally, 
to assess whether the changes in students’ beliefs between these two groups were 
significantly different, a Wilcoxon signed-rank test was also applied. 

6.5 Results 

We will begin the report of results by presenting a summary of the LOA corresponding 
to the overall group of students who participated in the IMMC and completed the 
pre-test (N = 281). These results offered us a general picture of how the participating 
students conceived mathematics. More specifically, these students demonstrated both 
a significantly higher LOA for those statements in the scaleMathematics as a Process 
of Inquiry than those statements in the scale Mathematics as a Set of Rules and 
Procedures (Table 6.3). This suggests that the Chilean students who participated in 
the IMMC between 2019 and 2021 might be inclined towards a dynamic conception 
of mathematics before participating in the selection process. It is worth noting this 
pattern is also seen in the results of previous studies that applied the same instrument 
as a pre- and post-test to pre-service teachers and mathematics educators (Alfaro 
Víquez & Joutsenlahti, 2021; Tarasenkova & Akulenko, 2013; Tatto, 2013).
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Table 6.3 Level of agreement (LOA) grouped by scale for all students completing the pre-test (N 
= 281) 
Statement LOA 

Mathematics as a set of rules and procedures 

1. Mathematics is a collection of rules and procedures that describe how to solve a 
problem 

4.33 

2. Mathematics involves the remembering and application of definitions, formulas, 
mathematical facts and procedures 

4.53 

3. When solving mathematical tasks, you need to know the correct procedure 4.02 

4. Logical rigour and precision are fundamental to mathematics 4.88 

5. Doing mathematics requires considerable practice, correct application of routines 
and problem-solving strategies 

5.11 

6. Mathematics means learning, remembering and applying 4.93 

Mathematics as a process of inquiry 

7. When doing mathematics, you can discover and try out many things by yourself 5.37 

8. If you engage in mathematics tasks, you can discover new things (connections, 
rules, concepts) 

5.48 

9. Mathematical problems can be solved correctly in many ways 5.30 

10. Many aspects of mathematics have practical relevance 5.24 

11. Mathematics helps us solve everyday problems and tasks 5.30 

For the group of students who completed both the pre- and the post-test, a similar 
tendency was observed: they showed significantly higher LOA in both pre- and post-
test for the statements in the scale Mathematics as a Process of Inquiry than those in 
the scale Mathematics as a Set of Rules and Procedures. Table 6.4 shows a summary 
of the LOA measures per statement corresponding to this group of students.

A more detailed analysis of the differences of the statements in the first scale, 
Mathematics as a Set of Rules and Procedures, revealed mixed results regarding 
both the LOA when comparing the pre- to the post-test. A decrease in LOA was 
observed for statements “1. Mathematics is a collection of rules and procedures 
that describe how to solve a problem” (−0.37), “3. When solving mathematical 
tasks, you need to know the correct procedure” (−0.25) and “6. Mathematics means 
learning, remembering, and applying” (−0.2). On the other hand, an increase in 
LOA was observed for the statements “2. Mathematics involves the remembering 
and application of definitions, formulas, mathematical facts, and procedures” (+0.23) 
and “4. Logical rigour and precision are fundamental to mathematics” (+0.16). The 
statement “5. Doing mathematics requires considerable practice, correct application 
of routines, and problem-solving strategies” (+0.02) showed almost no difference 
between pre- and post-test. 

It should be noted that the two largest differences in LOA were observed for 
the statements 1 and 3, which are arguably two important potential obstacles for a 
productive understanding and successful implementation of mathematical modelling. 
Although none of these differences turned out to be statistically significant, the results
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might indicate that exposure to mathematical modelling tasks during the contest could 
help students move away from the conceptions of mathematics represented by these 
two statements. 

With respect to the second scale, Mathematics as a Process of Inquiry, the  
comparison between pre- and post-test showed that the LOA increased or remained 
unchanged for all the statements. The largest increases were in the statements 
“9. Mathematical problems can be solved correctly in many ways” (+0.23), “10. 
Many aspects of mathematics have practical relevance” (+0.2) and “7. When doing 
mathematics, you can discover and try out many things by yourself” (+0.2). All 
these represent beliefs that can help students successfully complete mathematical 
modelling tasks, which refer to a relevant characteristic of modelling problems, the 
recognition of the applicability of mathematics and the creative aspect of problem-
solving. One way to interpret these results could be that working on the mathematical 
modelling tasks during the contest helps students develop desirable conceptions about 
mathematics that they are expected to acquire throughout their schooling. 

To assess whether longer exposure to solving these mathematical modelling tasks 
led to larger changes in students’ beliefs about mathematics, the differences in LOA 
between pre- and post-test for each statement were compared between those students 
who worked on only one modelling task (N = 36) and those who worked on more than 
one modelling task (N = 8). Although no significant differences were found with the 
Wilcoxon signed-rank test, it is possible to observe a contrast between the two groups. 
As shown in Table 6.4, the students who worked on only one problem showed the 
largest changes in LOA for the statements “1. Mathematics is a collection of rules and 
procedures that describe how to solve a problem” (−0.28), “2. Mathematics involves 
the remembering and application of definitions, formulas, mathematical facts, and 
procedures” (+0.28), “4. Logical rigour and precision are fundamental to mathemat-
ics” (+0.31) and “10. Many aspects of mathematics have practical relevance” (+0.25). 
In contrast, those students who worked on more than one modelling task showed, in 
general, more pronounced changes in the level of agreement. The largest differences 
were in the statements “1. Mathematics is a collection of rules and procedures that 
describe how to solve a problem” (−0.75), “3. When solving mathematical tasks, 
you need to know the correct procedure” (−1.13), “7. When doing mathematics, 
you can discover and try out many things by yourself” (+0.63) and “9. Mathematical 
problems can be solved correctly in many ways” (+0.88) (Fig. 6.1).

It is worth noticing that the students who worked on more than one task showed 
the largest decreases in LOA for the statements 1 and 3 of the scale Mathematics as 
a Set of Rules and Procedures, which could be considered as two important obsta-
cles for successful mathematical modelling: seeing mathematics as a toolbox full of 
prescriptions on how to solve a problem, and where the student’s task is just finding 
the right tool. Something similar can be said in relation to the scale Mathematics as 
a Process of Inquiry, where this group showed the largest increases in LOA for the 
statements 7 and 9, which can be considered as two characteristics of mathematical 
modelling; that is, that mathematical modelling involves discovering and trying out 
different strategies and that modelling tasks usually have many different correct solu-
tions. As a whole, these results suggest that a longer exposure to solving modelling
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Fig. 6.1 Comparison of pre-post-testing differences in LOA between Group 1 and Group 2 for 
scale 1 (left) and scale 2 (right)

tasks during the process could have a positive effect over the students’ beliefs about 
mathematics. However, this result should be taken with caution because the sample 
of students who worked on more than one modelling task was relatively small, and 
thus, more research should be conducted to assess the validity of this claim. 

6.6 Discussion and Conclusion 

Mathematical modelling contests are running internationally and in several countries 
on different educational levels. A common feature is that students are challenged to 
work autonomously and collaboratively with realistic real-world modelling prob-
lems, such as the IMMC contest (Garfunkel et al., 2021). Many authors have pointed 
out the importance for students of working on these types of problems (Bracke & 
Geiger, 2011; Kaiser & Stender, 2013). 

The results of the pre-test showed that the students participating in the selection 
process for IMMC demonstrated a high level of agreement with those statements 
in the scale Mathematics as a Process of Inquiry. This suggests that these students 
view mathematics as a dynamic discipline, where creativity, exploration and practical 
relevance play a central role. However, some beliefs associated with a static view 
of mathematics, represented by the statements of the scale Mathematics as a Set 
of Rules and Procedures, also received a noticeable level of agreement from the 
students. These findings could be partially explained by the type of student who 
participates in the contest: in general, they have a high performance in mathematics 
and a positive attitude towards the discipline. In addition, it is not surprising that 
most of the students who show interest in participating in mathematical contests 
that involve working on open problems might be precisely those who hold a more 
dynamic view of mathematics. This is consistent with the results of Kaiser and 
Maaß (2007), who found that students with an application-oriented or dynamic belief
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system had positive attitudes towards modelling. Since these authors also concluded 
that students with a static or more formalism-oriented belief system tend to reject 
mathematical modelling, it would be interesting to study the belief system of students 
from the teams’ schools who show high performance in mathematics but no interest 
in participating in IMMC. 

The type of statements for which there were changes in the level of agreement 
are related to common aspects of the work that mathematical modelling entails. 
For instance, the two largest decreases in LOA were observed for two statements 
in the scale Mathematics as a Set of Rules and Procedures: “1. Mathematics is a 
collection of rules and procedures that describe how to solve a problem” (−0.37) 
and “3. When solving mathematical tasks, you need to know the correct procedure” 
(−0.25). These two statements endorse beliefs about mathematics that are obstacles 
to mathematical modelling. A similar pattern was observed in the three statements 
in the scale Mathematics as a Process of Inquiry that showed the largest incre-
ments in their levels of agreement: “7. When doing mathematics, you can discover 
and try out many things by yourself” (+0.20), “9. Mathematical problems can be 
solved correctly in many ways (+0.23)” and “10. Many aspects of mathematics have 
practical relevance” (+0.20). These beliefs are associated with common features of 
mathematical modelling: problems with many possible solutions, creative processes 
and applications. 

The previous result suggests that the tasks students face during the IMMC selection 
process and contest have the potential to positively change the way they perceive 
mathematics. More specifically, the exposure to this type of modelling problems 
seems to challenge beliefs associated with a static conception of mathematics and 
promotes the development of others that represent a more dynamic view. Moreover, 
when comparing students who worked on one modelling problem with those who 
worked on more than one, the latter group showed a larger decrease in the level of 
agreement with statements related to a static view of mathematics than the former 
group. For example, the statement “3. When solving mathematical tasks, you need 
to know the correct procedure” showed a decrease of −1.13 and −0.06, respectively, 
and “1. Mathematics is a collection of rules and procedures that describe how to 
solve a problem” has a decrease of −0.75 and −0.28, respectively. In line with 
this, students who worked on more than one problem showed a larger increase in 
the level of agreement with statements promoting a dynamic view of mathematics 
than those who worked on only one problem. Therefore, longer exposure to realistic 
modelling problems appeared to have a greater effect over the students’ beliefs about 
mathematics. 

It is worth discussing the general tendency of the students in our sample, as well as 
those in previous studies with different populations, such as pre-service teachers and 
mathematics teacher educators (Alfaro Víquez & Joutsenlahti, 2021; Tarasenkova & 
Akulenko, 2013; Tatto, 2013), to agree more markedly with the statements in the 
scale Mathematics as a Process of Inquiry than with those in Mathematics as a Set 
of Rules and Procedures. We hypothesise that the way the statements included in 
each scale are presented may have played a role in this tendency. More specifically, 
the statements included in Mathematics as a Process of Inquiry appear to have a
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more positive sense, which may have induced the responder to agree more with them 
than with those in the other scale, which in general appear to be worded in a less 
positive sense. For instance, compare the statement “1. Mathematics is a collection 
of rules and procedures that describe how to solve a problem” to the statement “8. If 
you engage in mathematics tasks, you can discover new things (connections, rules, 
concepts)”; the former appears to have a less positive sense than the latter. Also 
consider the statements “3. When solving mathematical tasks, you need to know the 
correct procedure” and “7. When doing mathematics, you can discover and try out 
many things by yourself”, where the former has a less positive sense than the latter. 
In both examples, the statements that could be perceived as less positive belong to 
the first scale, while the more positive statements are part of the second scale. We 
believe that a detailed revision of the way that the two scales are presented might be 
beneficial. 

The results of this study are encouraging but have some limitations, one of which 
is the changes observed were not statistically significant. A reason for this could 
be the small sample (N = 44). As was previously discussed, another reason may 
be related to the potential limitations of the instrument utilised. Specifically, if the 
statements can be considered as negative or positive by the respondent, it may be 
difficult to assess possible changes since the respondent would show more agreement 
with the positive statements and more disagreement with the negative ones during 
both the pre- and post-testing. More empirical studies involving larger samples and 
perhaps other instruments could contribute to assess whether these changes actually 
occur and are significant. 

A further research question is how students’ prior beliefs about mathematics 
and mathematical work shape the manner in which they approach modelling tasks. 
Another potential future research area is related to exploring the impact of realistic 
modelling problems on the beliefs about mathematics held by students who usually 
perform poorly in mathematics classes and/or show less positive attitudes towards 
the learning of this discipline. 
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Chapter 7 
Study of a Problem-Solving Activity 
Using the Extended Mathematical 
Working Space Framework 

Laurent Moutet 

Abstract The theoretical framework of the Extended Mathematical Working Space 
(MWS) and the Blum and Leiss modelling cycle allow the analysis of a problem-
solving activity within a multidisciplinary approach (contribution of physics and 
mathematics). This problem-solving activity explores the possibility of producing 
an intense magnetic field using a wire winding for a medical imaging device. The 
different fields used are those of electromagnetism and calorimetry from physics 
and algebra from mathematics. A group of volunteer 12th grade students in France 
completed the online activity between May and June 2020. The extended MWS 
framework makes it possible to analyse school tasks by considering the relationships 
between the cognitive plane of students, the epistemological plane of mathematics 
and that of physics, according to the stage of the modelling cycle. 

Keywords Extended MWS · Interdisciplinary ·Mathematical modelling · Online 
activity · Physics 

7.1 Introduction 

The generation of a magnetic field necessary for the operation of a magnetic reso-
nance imaging spectrometer, used in human medical research, is studied by French 
grade 12 students in a problem-solving activity. The task given to the students 
concerns the concepts of electromagnetism and calorimetry commonly taught in 
the last year of high school (grade 12). The task is not particularly original. The two-
world theory described by Tiberghien (1994) and Becu-Robinault (1997) is often used 
in France as a theoretical framework in physics. It allows the analysis of modelling 
activities that are inherent to the learning of knowledge in physics, while consid-
ering students’ representations. Modelling activity is described as the link between 
the “world of objects and events” and the “world of theories and models”. This
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theoretical framework makes it possible to describe modelling activities involving 
knowledge from physics and knowledge from everyday life in relation to students’ 
representations. It, therefore, allows for the analysis of students correct and incorrect 
answers when carrying out modelling activities in physics. Nevertheless, mathe-
matics does not appear explicitly in this theoretical framework. An original analysis 
of the tasks given and performed by the students is proposed using the extended 
framework of the MWS (Moutet, 2019, 2021) and the mathematical modelling cycle 
of Blum and Leiss (2005). Indeed, it is possible to consider the points of view of 
physics or mathematics at each stage of the modelling cycle by using three types of 
interactions (namely semiotic, instrumental, or discursive). Therefore, there are three 
types of parameters that can be considered to analyse problem-solving activities (i.e. 
disciplinary aspect, type of interaction and stage in the cycle). 

7.2 Theoretical Framework 

The Mathematical Working Space (MWS) was initially developed by Kuzniak et al. 
(2016) to analyse mathematical work involved in teaching sequences. The MWS 
diagram was transformed by Moutet (2019, 2021) by adding an epistemological 
plane corresponding to physics or chemistry (Moutet, 2019). The extended MWS 
used in this chapter has three planes: one of a cognitive nature in relation to the student 
and two others of an epistemological nature in relation to the mathematical content 
studied and that involving physics (see Fig. 7.1). The cognitive plane contains a visu-
alisation process (representation of space), a construction process (function of the 
tools used) and a discursive process (justification or reasoning). The epistemological 
plane contains a set of representations (signs used), a set of artefacts (instruments 
or software) and a theoretical reference set (definitions and properties). The place-
ment of the three planes is not important here. Only the interactions between each 
epistemological plane and the cognitive plane are examined. Interactions within a 
plane or between two epistemological planes are not used. The separation between 
the epistemological plane of mathematics and that of physics depends on the task 
studied and the level of knowledge associated with it. At elementary levels, a single 
epistemological plane involving physics or mathematics concepts will be enough to 
describe a school task. At more elaborate levels, one epistemological plane of physics 
and another of mathematics may be pertinent when the representamen, artefacts or 
theoretical referential are significantly different.

The problem described in this chapter can be analysed by an extended MWS with 
three planes because the tasks performed lead to two sufficiently different epistemo-
logical planes. The theoretical referential associated with the epistemological plane 
of mathematics concerns algebra. The tasks to be carried out are associated with the 
manipulation of quantities and use of simple relations. The theoretical referential 
associated with the epistemological plane of physics is related to the concepts of 
electromagnetism and calorimetry: magnetic field, electric resistance, electric power 
and expression of heat transfer when a body is heated. The problem was chosen to
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Fig. 7.1 Extended MWS Model with the cognitive plane in the middle

keep only one cognitive plane because mathematical or physical work are analysed by 
describing the articulations between the cognitive plane and the two epistemological 
planes. There are therefore specific interactions (geneses) between each epistemo-
logical plane and the cognitive plane. They are represented by double-headed vertical 
arrows on the extended MWS model (see Fig. 7.1). 

Three geneses can be described: an instrumental genesis (operationalisation of 
artefacts), a semiotic genesis (based on the register of semiotic representations) 
and a discursive genesis (presentation of mathematical or physical reasoning). It 
is possible to associate several geneses by following the work of Kuzniak et al.
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(2016). The different phases of the mathematical or physical works associated with 
a task can be highlighted using vertical planes on the extended MWS diagram (i.e. a 
vertical plane between the cognitive plane and the epistemological plane of physics 
or between the cognitive plane and the epistemological plane of mathematics). 
Semiotic-instrumental interactions lead to a process of discovery and exploration 
of a given problem. Those of an instrumental-discursive type lead to reasoning based 
on experimental evidence. Finally, semiotic-discursive interactions are characteristic 
of reasoning that is more elaborate. 

7.3 Methodology 

The study involved five 12th grade students from a public high school located in 
the north of France, in Abbeville. They worked on “heat” transfer in grade 12 and 
studied the concepts of electrical resistance, power, energy, Joule effect and magnetic 
field sources using electric current in 11th grade. These students were involved in 
a speciality course in physics and chemistry with a particular focus on problem-
solving activities. This course is no longer available as the curriculum was changed 
in September 2020 for grade 12 in France. The sequence for the study consisted of 
five one-hour online sessions using the VIA web conference platform, which was 
one of the solutions used in the Amiens academy during the COVID-19 pandemic. 
The course took place between May and June 2020 during the COVID-19 pandemic 
containment. The volunteer students usually used this platform with the whole class, 
in their physics and chemistry lessons. 

A teaching sequence was designed using the methodological principles of didactic 
engineering described by Artigue and Perrin-Glorian (1991). It consisted of several 
phases: preliminary studies, conception and a priori analysis of the tasks to be carried 
out by the students (purely theoretical analysis), experimentation, a posteriori anal-
ysis of the tasks carried out (empirical analysis) and validation (comparison between 
the a priori and a posteriori analyses). The researcher acted on system control vari-
ables in the conception stage (number of students to work online, type of platform 
used, etc.). The a priori analysis and design consisted of developing a teaching 
sequence (possibly with one or more pilot sessions) and analysing the different tasks 
that the students had to perform using an appropriate theoretical framework. The 
experimentation phase described the data collection conditions (audio recording, 
videos, interviews or analysis of paper-and-pencil activities, etc.) as well as the 
context of the study (number of students, school level, type of school, etc.). Here, 
the teacher was also the researcher involved in the study. The researcher-practitioner 
approach with practice-based evidence was applied in this study (Fichtman Dana, 
2016). Practice-based evidence consists of the data analysed by practitioners that 
may become evidence, which the teachers can use directly in their regular teaching 
practice. 

Research using classroom experiments usually uses a comparative approach 
based on a statistical comparison of the results of the experimental and reference
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groups. Didactic engineering, on the other hand, is situated at the level of case 
study and allows the construction of a complete teaching sequence. The comparison 
between the a priori and a posteriori analyses allows the validation or invalidation 
of the hypotheses developed during the establishment of the research questions. The 
research question that guided this work is: How can the combination of the extended 
theoretical framework of the MWS and the Blum-Leiss mathematical modelling 
cycle be used to describe the multidisciplinary aspect of a problem-solving activity? 

The extended theoretical framework of the MWS (see Sect. 2) was used to carry out 
the a priori analyses. It allows specifically for analysing interactions by considering 
the cognitive aspect and epistemological aspects in physics, chemistry, or mathe-
matics. The physics problem is studied here. The data collection consisted of video 
recordings via the VIA web conferencing platform. The modelling cycle proposed by 
Blum and Leiss (2005) is used to position the teaching sequence with three successive 
modelling cycles. The real model can be considered here as an idealised model. 

The problem-solving activity was designed to be student-oriented, in order to have 
stronger effects on student enjoyment, value, interest and self-efficacy, compared to a 
“directive” teaching method. The form of teaching was “operative-strategic”. Team-
work was supported by the teacher with strategy-oriented interventions to encourage 
students to be active and independent in the construction of knowledge (by achieving 
a permanent balance between teacher guidance and student independence). The 
strategic interventions were given to students before giving them direct advice (e.g. 
“reread the task”, “make a diagram”) if necessary (Schukajlow et al., 2012). 

The purpose of the problem-solving activity is to investigate the possibilities of 
using a solenoid formed by winding copper turns covered with an insulating film 
(see Fig. 7.2) to create a required magnetic field of 11.7 T. Physics and chemistry 
teachers in French high schools often use this type of experimental device to produce 
a weak magnetic field when a continuous electric current passes through it. 

Fig. 7.2 Photo of a solenoid
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The mathematical tasks to be performed are associated with the use of propor-
tionality, the manipulation of quantities and the manipulation of simple relationships 
of volumes, areas and lengths. The physics notions used in this problem-solving 
activity are associated with the concepts of electromagnetism (magnetic field, elec-
tric resistance, electric power) and calorimetry (expression of heat transfer when a 
body is heated). 

The different physics formulas needed to solve the problems (see Fig. 7.3) were  
provided to students. R is the internal resistance of the solenoid, ρ is the electrical 
resistivity of the copper, l is the length of the copper wire and S is its cross-section. 
P is the power dissipated by Joule effect in the solenoid, I is the electrical current, Q 
is the thermal energy transferred to a mass m of copper with heat capacity c during 
time Δt and whose temperature varies by Δθ . 

Using the modelling cycle proposed by Blum and Leiss (2005), the teaching 
sequences are composed of three main tasks. The three successive modelling cycles 
are used as tools to analyse the cognitive demands of the tasks as well as the students’ 
work. 

The first modelling cycle describes what is supposed to be done in solving the 
task before handing it to the students: we start from a real situation in which the 
students have to analyse different solenoids and make measurements of the magnetic 
field and electric current. This is a graphical study that allows students to find a 
physical formula relating the generated magnetic field B to the electric current I 
that is flowing through the solenoid. For this reason, this formula is not provided 
in Fig. 7.3. They must find a relationship between the magnetic field B, the electric 
current I and the number of turns N divided by the length l of the solenoid, arriving 
at the equation B = k × N l × I as a mathematical model by manipulating different 
graphical representations B = f (I) and B = f (  N l ) which they have to draw. This 
theory shows that k must be equal to 4π × 10−7 when the units of the international 
system are used (l in metres and I in amperes). The value of k is not important in 
this graphical study. This relationship allows them to propose pairs of values (I, N l ) 
to obtain the desired magnetic field. This is an intermediate real result. Initially, 
this first part was to be carried out in the practical room. The health context and 
the confinement of students in France at the end of the 2020 school year led to an 
adjustment. An online animation was used to simulate the value of the magnetic field 
produced in a solenoid by modifying the intensity of the continuous current passing 
through it or the number of turns per unit length. A schematic representation of this 
simulation is provided in Fig. 7.4.

On the second task, the students should understand that they could deduce from 
the number of turns per unit length, the size of the copper wire making up the 
solenoid and estimate the electrical resistance of the wire. This step corresponds to

; ; ; 

Fig. 7.3 Physics formulae necessary to solve the problem 
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Generator Ampere meter 

Tesla meter 

Protective resistor 

Solenoid 

Fig. 7.4 Schematic representation of the simulation used

the real model. The mathematical work here is associated with the manipulation of 
algebraic formulae in relation to the determination of the cross-section of a cylinder 
or the perimeter of a circle. The electrical resistance of the device is calculated by the 
students estimating the cross-section of the wire. The numerical value of the electrical 
resistance of the solenoid corresponds to the intermediate real result sought. 

On the third task, the students should calculate the thermal energy dissipated in 
the wire and relate it to the temperature increase of the device. The total mass of 
copper should be estimated from the determination of the volume of a cylinder. The 
mathematical model is the result of manipulating algebraic relations to isolate the 
time variable, in order to estimate when the temperature of the copper in the solenoid 
will reach its melting point. At the end of their work, students should see that it is not 
possible to use this method to produce a magnetic field of this strength. The energy 
dissipated by the Joule effect due to the electrical resistance of the wire causes the 
copper to become very hot and quickly reach its melting point. This can be seen from 
the mathematical results, as the calculated time to melt the copper is less than one 
second. The interpretation of this result should lead the students to understand that 
the device used is destroyed almost instantaneously as it is not reasonably possible 
to put in place cooling devices for such a short period. This is the real result expected 
at the end of the problem. At the end of the activity, the teacher can show the students 
that in order to obtain strong magnetic fields, it is necessary to use superconductors 
which have no electrical resistance at very low temperatures, and which do not cause 
heating. 

The problem-solving activity given to the students is divided into three parts and 
is described next. Each task has no predefined solution. The beginning of tasks B 
and C are based on the students’ previous results: 

Part A: The magnetic field required to operate a magnetic resonance imaging 
spectrometer used in human medical research is 11.7 T. This project proposes to 
determine whether it is possible to use a solenoid, formed by winding a copper wire 
covered with an insulating film. This type of experimental device is commonly used
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in high schools to produce a weak magnetic field when a continuous electric current 
is passed through it. 

Perform simulations using the animation to find experimental conditions to 
achieve a magnetic field of 11.7 T. Use graphical representations for this. Write 
up your conclusions including screenshots of the graphs. 

Part B: In part A, we found the values of 19,200 turns per metre and 486 Amperes 
required to produce a magnetic field of 11.7 T. The diameter of the wire is 1 mm. 

Estimate the total resistance of the copper wire used in the coil. You can use the 
different formulas provided. 

Part C: In Part A, we found the values of 19,200 turns per metre and 486 Amperes 
required to produce a magnetic field of 11.7 T. 

In Part B, we found the total length of the copper wire making up the solenoid 
l = 3016 m, the cross-sectional area of the wire S = 7.85 × 10–7 m2 and the total 
resistance of the solenoid R = 65Ω. 

Find the time required for the solenoid to reach the melting point of the copper 
wire. Determine whether this device is suitable for producing a magnetic field of 
11.7 T. What other method can be used? 

Numerical values of the volume, weight, mass, heat capacity, electrical resistivity 
and melting point of copper, and the various algebraic relationships needed to solve 
the problem (see Fig. 7.3) were also provided to students. 

7.4 Results 

We carried out an a priori analysis of the different tasks that students would perform, 
considering the stages of the modelling cycle (RS: Real Situation; SM:  Situation 
Model; RM:  Real Model; MM: Mathematical Model; MR:  Mathematical Results; 
RR: Real Results). Even if the progression of the problem-solving activity is not linear 
and if there is a possibility of going back and forth (Borromeo Ferri, 2006), the mobil-
isation of the different epistemological and cognitive planes as well as the different 
genesis between the planes can be described in each step of the modelling cycle 
(see Table 7.1). The aim of these analyses is to highlight the interactions between a 
cognitive level and an epistemological level with a multidisciplinary aspect. These 
analyses inform us about the epistemological depth of the tasks and their cognitive 
requirements.

The epistemological plane of physics and the cognitive plane are mobilised at 
the beginning of the problem-solving activity through semiotic-instrumental inter-
actions, since the students have to manipulate the experimental device in order to 
understand the task to be carried out (RS, cycle 1). The students understand that 
they have to carry out experiments in order to find relationships between different 
measurable quantities. The epistemological plane of physics and the cognitive plane 
are mobilised with semiotic-discursive interactions (SM, cycle 1). A simplification 
of the problem is necessary and has to be considered in order to limit the parameters.
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Table 7.1 A priori and a posteriori task analysis according to the modelling cycle 

Cycle number Position on the cycle Planes and Genesis* Performed task 

1 RS Phy-Cog: Sem-Inst – 

1 SM Phy-Cog: Sem-Dis Very difficult 

1 RM Phy-Cog: Sem-Dis Difficult 

1 MM Phy-Cog: Sem-Inst & Math-Cog: 
Sem-Ins-Dis 

Correct 

1 MR Math-Cog: Sem-Ins-Dis Correct 

1 RR Phy-Cog: Sem-Dis & Math-Cog: 
Sem-Ins 

Correct 

2 SM Phy-Cog: Sem-Dis Very difficult 

2 RM Phy-Cog: Sem-Dis Difficult 

2 MM Math-Cog: Sem-Ins-Dis Correct 

2 MR Math-Cog: Sem-Ins Correct 

2 RR Phy-Cog: Sem Correct 

3 SM Phy-Cog: Sem-Dis Correct 

3 RM Phy-Cog: Sem-Dis Correct 

3 MM Math-Cog: Sem-Ins-Dis Correct 

3 MR Math-Cog: Sem-Inst Correct 

3 RR Phy-Cog: Sem-Dis Correct 

3 MS Phy-Cog: Sem-Dis Correct 

3 RS Phy-Cog: Sem-Dis Partially correct 

*Phy = Physics; Math = Mathematics; Cog = Cognitive; Sem = Semiotic; Inst = Instrumental; 
Dis = Discursive

The magnetic field B, the direct electric current I, the number of turns N and the 
length of the solenoid l are to be retained. Students should be aware that the different 
solenoids available here differ only in the number of turns per unit length N l , which 
change. The epistemological plane of physics and the cognitive plane are mobilised 
here with semiotic-discursive interactions (RM, cycle 1). The use of a simulated 
experimental set-up in the online experiment changed the tasks to be performed. 
Instead of starting from the real situation, the students were directly confronted 
with a real model that they did not build: the designers of the model had already 
implicitly performed a simplification of the real experimental set-up. Measurements 
of the magnetic field B can be made for different values of I with a given solenoid 
( N l is constant) or to measure the magnetic field B for different values of N l with a 
constant value of I. The epistemological plane of physics and the cognitive plane 
are here mobilised by semiotic-instrumental interactions. This step leads to model 
the graphical representations of B = f(I) at constant N l or of B = f( N l ) at constant 
I by affine representations. This can eventually lead to the development of a model 
for the determination of the magnetic field B = f(I, N l ). The epistemological plane 
of mathematics and the cognitive plane are mobilised by interactions implementing
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all the geneses (MM, cycle 1). The result of the modelling can lead to relations of 
type: B = k1 × I at constant N l or B = k2 × N l at constant I or B = k3 × N l × I. 
The epistemological plane of mathematics and the cognitive plane are also linked 
by interactions implementing all the geneses (MR, cycle 1). The value of B, which 
must be 11.7 T, leads to the determination of several values (I, N l ) which could be 
suitable. An infinite number of pairs are possible. The epistemological planes of 
physics, mathematics and the cognitive plane are mobilised (RR, cycle 1). 

In the second round of modelling, students should realise that the wire winding 
constituting the solenoid leads to the existence of a non-negligible electrical resis-
tance because the equivalent length of cable is very large (SM, cycle 2). The problem 
is then simplified by considering the electric wire as a cylinder of cross-section S 
and of length l (RM, cycle 2). The mathematical problem is then to calculate the 
area of a disc and find the length of the wire using the perimeter of a circle and the 
number of turns (MM, cycle 2). The estimated values for l and S (MR, cycle 2) lead 
to the calculation of the value of the electrical resistance R of the solenoid using the 
algebraic relation provided (RR, cycle 2). 

In the final stage of modelling, students should use their knowledge from the 
previous year (grade 11) to realise theoretically that the solenoid will generate heat 
during operation due to the electrical power released by the Joule effect (SM, cycle 
3). The problem is simplified by considering that all the heat released will allow the 
copper wire constituting the solenoid to heat up. The total mass of copper must be 
estimated from its volume weight and the volume of the cylinder of cross-section S 
and length l modelling the electrical cable. The problem is how long it will take the 
copper to boil, which is synonymous with the destruction of the solenoid. Whatever 
the sign, the heat released by the Joule effect during the electrical operation of the 
solenoid must therefore be equal to the heat stored by the copper (RM, cycle 3). The 
mathematical work consists of working on the algebraic relation obtained after the 
conservation of energy, in order to isolate the time parameter. It corresponds to the 
time necessary to arrive at the destruction of the solenoid after its electrical supply 
(MM, cycle 3). The calculated time (MR, cycle 3) is analysed from the point of view 
of physics (RR, cycle 3). It is very small, which leads to the conclusion that the device 
is destroyed instantaneously. Students should understand that it is not possible to use 
this method to produce a strong magnetic field (MS, cycle 3). The teacher can then 
introduce the concept of a superconducting material to make the electrical conductor 
of the solenoid (RS, cycle 3). This material has no electrical resistance below its 
critical resistance, so it does not heat up when an intense direct electrical current is 
passed through it. 

A posteriori analysis of a group of five students was carried out using the extended 
MWS theoretical framework (see “Performed task”, Table 7.1). The level of diffi-
culty indicated in the last column of Table 7.1 is related to the degree of autonomy 
of the students to perform the task. “Correct” corresponds to a task carried out 
by the students without the teacher assistance, “partially correct” corresponds to a 
task carried out with minimal assistance from the teacher (reformulation of the task 
requested), “difficult” corresponds to significant help (several elements of answers
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given to carry out the task) and “very difficult” corresponds to major help (solution 
given almost entirely). 

At the beginning of the problem-solving activity, the students found it difficult 
to get used to the video conferencing platform, especially the screen sharing which 
allowed just one member of the group to use the simulation. Exchanges were made 
via chat or audio. Only two students used their webcam. The teacher had to guide 
the group in order to re-explain the functioning of the platform and the different 
functionalities of the simulation. The students had difficulties in understanding the 
relevant parameters to be considered in solving the problem. The simulation included 
a variable DC voltage generator, a protection resistor, an ampere meter and the 
solenoid, all placed in series (see Fig. 7.4). Several solenoids were accessible and the 
number of turns N, length l and turns per metre N l were displayed. A tester showed 
the value of the magnetic field, and it was possible to move the sensor inside the 
solenoid. The simulation indicated parameters that were not relevant, such as the DC 
generator voltage or the position of the sensor, which was best placed in the middle 
of the solenoid. The students’ difficulties in understanding the task suggest that the 
beginning of the problem-solving activity is at the situation model stage, contrary to 
what was originally intended by using a simulation. 

Using the simulation, the students measured several values of the magnetic field 
B (in mT) for different intensities I (in A). The solenoid studied had N = 200 turns 
and measured l = 41.6 cm ( N l = 480 turns/m). This allowed them to plot B = f(I). 
Modelling by a linear function gave B = 0.601 × I. Replacing B by 11,700 mT, the 
students found I = 19,468 A for N l = 480 turns/m. They had to use several solenoids 
from the simulation to realise that the relevant parameter was the number N l of turns 
per unit length. With the help of the teacher, they found on the simulation that when 
N 
l is doubled (and then generalised to any factor), if I is constant then the value of B 
measured is multiplied by 2. The students later understood that when the product I 
× N l is constant then the value of B measured does not change. They then proposed 
several pairs of values (I, N l ) to obtain B = 11.7 T: (19,468, 480); (9734, 960); (4867, 
1920); (486, 19,200). 

Many students had difficulty in understanding that a wire can have resistance. 
Indeed, in all the situations studied in previous years in electricity, the resistance 
of a connecting wire was not considered because it was neglected. They also had 
difficulty understanding how to measure the length of the wire since they had to 
take initiatives to estimate the length. For example, they tended to confuse the wire 
diameter of 1 mm with the diameter of the solenoid turn, which is 5 cm, in the 
simulation. The students had already seen solenoids in the previous year (grade 
11). It was not possible for them to perform the experiment in practice as only the 
simulation could be available in the COVID-19 pandemic time. This was a problem 
for their understanding of the experimental situation. The calculation of the cross-
section of the wire as well as its length, obtained from the perimeter and the number 
of turns for 1 m of solenoid, did not pose any particular difficulties. Occasional errors 
in units were corrected collectively. The whiteboard shared with the VIA application
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Fig. 7.5 Calculation of the operating time of the device by the students 

was used by the students to perform their calculations. The value of the resistance 
was then found without much difficulty using the relationship provided. 

The end of the problem was handled fairly well, with all the formulae to be 
used provided in the document. The calculation of the copper mass of the wire was 
relatively well handled. The operating time of the device was found (see Fig. 7.5). The 
meaning was well understood by the students. They had more difficulty in imagining 
a device without resistance. One student mentioned a device with a lower resistance. 
The term “superconductor” was not mentioned by the teacher until a relatively late 
stage. 

The problem-solving activity proposed to the students allowed them to work in 
teams. The teacher intervened quite often to keep the students motivated. It was the 
stages relating to the situation model and the setting up of the real model that posed 
the most difficulties for the students. They often found it difficult to understand 
which tasks had to be carried out and which were the relevant parameters to be 
considered to find a solution to the problem. Finally, working online with simulations 
could also modify the modelling cycle used by adding a technological component 
(Siller & Greefrath, 2010) as well as the extended MWS by changing the semiotic or 
instrumental interactions. These possible modifications of the theoretical tools have 
not been studied here. 

7.5 Conclusion 

The extended MWS theoretical framework allows a detailed analysis of the tasks 
involved in each step of the modelling cycle using a multidisciplinary approach 
(mathematics and physics). It is thus possible to describe in more detail what happens
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at the level of extra-mathematical work when a task is analysed with the Blum and 
Leiss cycle (2005), or at the level of mathematical work when a task is analysed with 
the two-world theory proposed by Tiberghien (1994). These analyses inform us about 
the epistemological depth of the tasks and their cognitive requirements. The students 
had the most difficulties associated with the design of the situation models and real 
models of the Blum and Leiss cycle (cycles 1 and 2). The extended MWS framework 
allows for the analysis of these steps with semiotic-discursive interactions mobilising 
the epistemological plane of physics and the cognitive plane. These interactions are 
generally synonymous with conceptual difficulties for students. Preliminary results 
tend to show that the genesis and epistemological planes of mathematics and physics 
are not mobilised in the same way according to the stage of the modelling cycle 
(see Table 7.1), which is in accordance with Borromeo Ferri’s (2006) empirical 
results. Working online changed the tasks that students have to perform compared 
to a face-to-face activity. Additional time was needed to learn the digital tools. The 
use of the simulated manipulation was not immediate because even if the technical 
problems were no longer present, the appropriation of the experimental setting was 
not improved. Communication difficulties between students, which were not due to 
technical problems, also led to misunderstandings, which led to stronger intervention 
by the teacher in order to boost motivation and work. I plan to use this type of analysis 
later to develop a problem-solving assessment or training for beginning teachers. 
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Chapter 8 
Assessment of the Competency of Grade 
Four Students in Mathematical 
Modelling: An Example from One City 
in China 

Tian Wang, Zhiyong Xie, and Jian Liu 

Abstract This study explored 298 grade four Chinese students’ competency in 
mathematical modelling and its relationship to mathematics competency. Descriptive 
analysis, t tests and correlation coefficients were used and reported to describe the 
mathematical modelling competency and sub-competencies of grade four students 
and to analyse the relationship between mathematics competency and the sub-
competencies. The findings indicate that grade four students’ competency in mathe-
matical modelling was not proficient. However, among the subdimensions of mathe-
matical modelling, students’ competency of working mathematically was the best. In 
addition, a strong positive correlation between mathematical modelling competency 
and mathematics competency (p < 0.001) was found in the data collected. 

Keywords Assessment · Grade four student ·Mathematical modelling 
competency · Sub-competencies · China 

8.1 Introduction 

With the rapid development of information technology, the breadth and depth of the 
application of mathematics is expanding. Therefore, mathematical modelling has 
become an important way for people to use mathematics to explore practical problems 
and is an indispensable tool to be used daily (COMAP & SIAM, 2016; Smith & 
Morgan, 2016). Mathematics curriculum reform initiated at the beginning of this 
century regards cultivating students’ mathematical ideas and modelling competency
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as one of the main goals of mathematical education. In many countries, mathematical 
modelling has become an essential part of the core literacy of mathematics that 
students must gain and underlies the content of the mathematics curricula (Cai, 2017; 
Cai & Xu, 2016). In China, the Mathematics Curriculum Standard for Compulsory 
Education (2011) lists “model thinking” as one of the ten major competencies of 
students that should be developed in the content of the mathematics curriculum. The 
Mathematics Curriculum Standards of General Senior Secondary Education (2017 
Edition) lists mathematical modelling as one of the core literacy levels of the six 
major mathematics disciplines, which is the basic method of applying mathematics 
to solve practical problems and is also the driving force for the development of 
mathematics (Ministry of Education of the People’s Republic of China, 2018). 

For primary school students, it is of high importance to cultivate the awareness 
and ability of mathematical modelling, which is conducive to developing students’ 
creativity and critical thinking (Suh et al., 2017). Compared with students in higher 
grades, primary school students show more enthusiasm for mathematics. Mathemat-
ical modelling can inspire primary school students to use mathematical tools and lay 
a foundation for building more complex models in the future (COMAP & SIAM, 
2016). However, within regard to studies on mathematical modelling education, fewer 
studies have been conducted on primary school students than on middle school and 
college students (Cevikbas et al., 2022). Therefore, to explore the performance and 
characteristics of the mathematical modelling competency of primary school students 
and help teachers foster primary students’ mathematical modelling competency more 
effectively, this chapter evaluates the mathematical modelling competency of primary 
school students. 

8.2 Theoretical Framework 

8.2.1 Mathematical Modelling 

Due to the mathematics education reform advanced after the Industrial Revolution, 
the concept of mathematical modelling was gradually established from the 1970s. 
Applied mathematics have been used widely for solving complicated practical prob-
lems (Greefrath & Vorhölter, 2016). Mathematical modelling conceived as real-
world problem solving is the process of applying mathematics to solve real-world 
problems with a view to understanding it (Niss et al., 2007). The Consortium for 
Mathematics and Its Applications and Society for Industrial and Applied Mathe-
matics suggested that mathematical modelling is defined as the applied mathematics 
expression, analysing the phenomenon of the real world, prediction, or in other ways 
to delve into process (COMAP & SIAM, 2016). In effect, the concept of mathe-
matical modelling is formed from the perspective of applied mathematics, based 
on which mathematical modelling is generally regarded as an important aspect of 
problem solving (Qian, 2018). For primary school students, mathematical modelling
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is different from traditional school mathematics, which emphasizes speed and accu-
racy. Mathematical modelling is more challenging and motivating and encourages 
students to generate their own mathematical ideas (English, 2021). 

In this chapter, mathematical modelling refers to the process of applying math-
ematics to real-world problems. Specifically, it is the process of simplifying real-
world problems, transforming them into mathematical models, solving them with 
mathematical knowledge and skills, and applying the results to problems in the real 
world. 

8.2.2 Mathematical Modelling Competency 

The concept of mathematical modelling competency is produced with the atten-
tion to skill structure in pedagogy and psychology (Kaiser & Brand, 2015), and 
closely related to the process of mathematical modelling (Maaß, 2006). Competence 
refers to a person’s keen response to challenges (Blomhøj & Højgaard, 2007), while 
modelling competence refers to a person’s ability to perform required or desired 
operations to advance modelling (Niss et al., 2007). There are two approaches to 
define mathematical modelling competency: top-down and bottom-up (Niss & Blum, 
2020). In the top-down approach, mathematical modelling competency is called 
singular and considered to be a comprehensive ability that involves the ability to “de-
mathematise” the existing mathematical models and the ability to activate the model 
in a given context (Niss & Højgaard, 2011). In the bottom-up approach, mathemat-
ical modelling competencies are composed of the ability and the willingness to work 
out mathematical modelling tasks (Kaiser, 2007). Based on the bottom-up approach, 
there are global modelling competencies and sub-competencies of mathematical 
modelling (Kaiser, 2007; Maaß, 2006). Global modelling competencies are defined 
as the abilities necessary to perform the whole modelling process and include social 
competencies. The sub-competencies of mathematical modelling are composed of 
the sub-competencies required to perform each step of the modelling cycle (Cevikbas 
et al., 2022). To pay more attention to the performances of primary school students 
in each process of solving mathematical modelling tasks, the bottom-up approach 
was chosen to define mathematical modelling competency in this chapter. 

Currently, the focus on mathematical modelling competency has been increasing, 
as has the research on it, leading to the formation of four research perspectives in the 
current discourse (Kaiser & Brand, 2015): 

(1) The Danish KOM project which focused on cognitive competency of mathemat-
ical modelling was considered to be an overall comprehensive concept of compe-
tencies, identifying three dimensions of mathematical modelling competency 
(Niss & Højgaard, 2019). 

(2) Focusing on the measurement of modelling skills, a British-Australian group 
developed a set of multiple-choice questions for the measurement (Haines et al., 
1993).
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(3) From a cognitive perspective, German researchers put forward the concept of 
different modelling sub-competencies as components of modelling competency, 
proposing that modelling sub-competencies refer to the competency required to 
perform each step of the modelling cycle (Maaß, 2006). 

(4) An Australian modelling group advocated that metacognition should be 
integrated with mathematical modelling competency, emphasizing reflective 
metacognition activities at different steps of the modelling process (Stillman, 
2011). Vorhölter (2017) divided metacognitive modelling competency into three 
parts: orienting and planning, monitoring and regulating, and evaluating and 
improving. 

According to the perspective of mathematical modelling sub-competencies, 
the chapter that explores primary school students’ performance in mathemat-
ical modelling cycles is based on Kaiser’s (2007) modelling sub-competencies 
framework. 

8.2.3 Assessment of Mathematical Modelling Competency 

The evaluation research of mathematical modelling competency is based on the 
empirical research carried out on the framework of mathematical modelling compe-
tency. The evaluation of students’ mathematical modelling competency has always 
been the core topic of empirical research on mathematical modelling compe-
tency (Stillman, 2019). Similar to the two approaches to define the mathematical 
modelling competency, the modelling competency and the mathematical modelling 
sub-competencies (Lu & Kaiser, 2022), the evaluation research of mathematical 
modelling competency can be divided into two methods: Holistic Tasks and Atomistic 
Tasks (Blomhøj & Jensen, 2003). From the holistic perspective, modelling compe-
tency is considered relevant to experiencing an entire modelling process. In contrast, 
modelling competencies can be divided into sub-competencies and elements from the 
atomistic perspective (Hankeln et al., 2019). One of the most important differences 
between holistic and atomistic tasks is the design of test tasks (Blomhøj & Jensen, 
2003). When using a holistic task to measure students’ mathematical modelling 
competency, they must go through a complete mathematical modelling cycle to 
solve a problem. An atomistic task is a preconstructed mathematical problem that 
focuses on only one or two sub-competencies. 

Both of two tasks of the mathematical modelling competency assessment can be 
used in the paper–pencil test, and each has certain advantages and disadvantages. In 
the holistic task, students only have to deal directly with mathematical modelling 
problems, so the task does not capture procedural information about a person’s ability 
to complete mathematical modelling (Stillman, 2019). Atomistic tasks can effec-
tively examine students’ sub-competencies in mathematical modelling and describe 
students’ performance in each mathematical modelling process.
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Some researchers have evaluated students’ mathematical modelling competency 
but lack attention to primary school students. Lu and Kaiser (2022) measured the 
mathematical modelling competency and creativity of high school students and found 
that there was a certain correlation between mathematical modelling competency and 
creativity and that their performance of mathematical modelling competency was not 
good. Hankeln et al. (2019) tested the mathematical modelling competency of ninth 
grade students and verified the four sub-competency model with quantitative data 
analysis. Chen (2021) measured the mathematical modelling competencies of the 
sixth graders and found that they did well in the sub-competency of understanding 
and simplification, while the sub-competency of mathematical solutions needed to 
be improved. 

To evaluate the performance of primary school students in the mathematical 
modelling process, this chapter used atomistic tasks when evaluating mathematical 
modelling competency and calculating the scores of each sub-competency. 

8.3 Research Questions 

According to previous studies, there are few large-scale assessments of mathematical 
modelling competency at the primary school in China. Meanwhile, many interna-
tional large-scale educational assessments, such as TIMSS and NAEP, which focus on 
the development of students’ mathematical literacy, mostly focus on grade 4 students 
to study the future development of students’ mathematical literacy. This chapter 
assessed the mathematical modelling competency of primary school students, which 
helps to understand the current situation of primary school students and provides 
support for the cultivation of their mathematical modelling competency in the future. 
Therefore, the empirical study was conducted among grade four students in China to 
measure their mathematical modelling competency and to explore the performance 
in different modelling sub-competencies by means of large-scale assessment, aiming 
to answer the following research questions: 

Research Question 1: What is the overall performance of the mathematical 
modelling competency of grade four students? 

Research Question 2: What is the relationship between students’ mathematical 
modelling and their mathematics competency? 

8.4 Method 

8.4.1 Participants and Data Collection 

The participants of the study were four-grade students enrolled in full-time school. 
Based on a random sampling method, the current study recruited 298 students in grade 
4 from 5 primary schools in Y City, S Province, which is located in southwestern
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China. These schools include urban and rural primary schools. There were 140 boys 
(47.0%) and 158 girls (53.0%) in the sample and their ages ranged from 9 to 10. 
The primary school students had not worked on mathematical modelling problems 
before. 

The data collection was finished by the Collaborative Innovation Center of Assess-
ment towards Basic Education Quality (CICA-BEQ) at Beijing Normal University. 
The whole test process was in accordance with the national examination standards, 
and a special examination room and invigilators were set up to ensure the effective-
ness of data collection. Students needed to complete the tests within the specified 
time. 

8.4.2 Measures 

The study used the Mathematical Modelling Competency Test and Mathematics 
Competency Test as measurement tools. 

8.4.2.1 Mathematical Modelling Competency Test 

The Mathematical Modelling Competency Test was based on the theoretical frame-
work of mathematical modelling competency of Maaß (2006) and Kaiser (2007), 
which was created by CICA-BEQ (see Table 8.1). Meanwhile, the design of the 
test also conforms to the requirements of mathematics knowledge and skills for 
primary school students in the Mathematics Curriculum Standard for Compulsory 
Education (2011). To measure each sub-competency of mathematical modelling, one 
task was matched with one sub-competency. Simplification mainly includes posing 
a simplified situation to the problem, finding useful information and constructing 
relationships between variables. Mathematizing is the treatment of the relationship 
between variables mathematically and the use of mathematical symbols or graphics 
to represent the real situation. Working mathematically involves the competency of 
students to apply mathematical knowledge and skills to solve mathematical prob-
lems. Interpreting includes explaining mathematical results in contexts other than 
mathematics, generalizing solutions and so on. Validating is about examining and 
reflecting on the solution, and if necessary, modifying or proposing other solutions.

The test consisted of 10 items including single choice, multiple-choice and short 
answer questions, lasting 30 min and the score ranged from 0 to 500. The average 
scores of each sub-competency ranged from 0 to 100 and the overall score (from 
0 to 500) of mathematical modelling competency were synthesized by them. The 
development process of these items has gone through 6-person interviews, 30-person 
pretests, expert review and other steps and its Cronbach’s alpha coefficient reached 
0.80, so the reliability and validity of the test are good. An example of the test items 
that was used to measure the sub-competency of simplifying is the Milk Task (see
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Table 8.1 Five sub-competencies framework of mathematical modelling (Kaiser, 2007; Maaß, 
2006) 

Sub-competencies Description 

Simplifying: Competencies to understand 
real-world problems and to construct a reality 
model

• to make assumptions for the problem and 
simplify the situation

• to recognize quantities that influence the 
situation, to name them and to identify key 
variables

• to construct relations between the variables
• to look for available information and to 
differentiate between relevant and irrelevant 
information 

Mathematizing: Competencies to create a 
mathematical model out of a real-world model

• to mathematize relevant quantities and their 
relations

• to simplify relevant quantities and their 
relations if necessary and to reduce their 
number and complexity

• to choose appropriate mathematical notations 
and to represent situations graphically 

Working mathematically: Competencies to 
solve mathematical problems within a 
mathematical model

• to use heuristic strategies such as division of 
the problem into part problems, establishing 
relations to similar or analog problems, 
rephrasing the problem, viewing the problem 
in a different form, varying the quantities or 
the available data etc

• to use mathematical knowledge to solve the 
problem 

Interpreting: Competencies to interpret 
mathematical results in a real-world model or a 
real situation

• to interpret mathematical results in 
extra-mathematical contexts

• to generalize solutions that were developed 
for a special situation

• to view solutions to a problem by using 
appropriate mathematical language and/or to 
communicate about the solutions 

Validating: Competencies to challenge 
solutions and, if necessary, to carry out another 
modelling process

• to critically check and reflect on found 
solutions

• to review some parts of the model or again 
go through the modelling process if solutions 
do not fit the situation

• to reflect on other ways of solving the 
problem or if solutions can be developed 
differently

• to generally question the model

Fig. 8.1, translation). The item tests students’ competency “to recognize quantities 
that influence the situation, to name them and to identify key variables”.
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The Milk Task 
Milk is rich in nutrients and contains approximately 0.12 grams of calcium per 100 grams 
of milk. A Holstein cow that is producing milk has about 270 days of milk production per 
year and an average of approximately 20 kilograms of milk per day. The price of milk is 2 
yuan per kilogram. Calculate, how much can the milk produced by this cow sell for a year? 
The information needed to solve this problem is (     ). 

A. contains approximately 0.12 grams of calcium per 100 grams of milk; an average of 
approximately 20 kilograms of milk per day; the price of milk is 2 yuan per kilogram 

B. a Holstein cow that is producing milk has approximately 270 days of milk production 
per year; an average of approximately 20 kilograms of milk per day; the price of milk is 2 
yuan per kilogram 

C. an average of approximately 20 kilograms of milk per day; the price of milk is 2 yuan 
per kilogram 

D. all of them 

Fig. 8.1 The milk task 

8.4.2.2 Mathematics Competency Test 

This study took the Mathematics Competency Test created by CICA-BEQ and was 
based on the Mathematics Curriculum Standard for Compulsory Education (2011). 
The content dimensions of this test included number and algebra, graphics and geom-
etry, statistics and probability and the cognitive dimensions included knowing, under-
standing and applying. The examination paper has gone through a rigorous prepa-
ration process, which was similar to the development of mathematical modelling 
items. It included 10 single choice questions and 14 short answer questions and the 
duration of examination was 60 min. The average score of the test ranged from 0 to 
500 and its Cronbach’s alpha coefficient reached 0.80. 

8.4.3 Data Analysis 

This study mainly used descriptive statistics, t tests and correlation analysis which 
employed SPSS 20.0. First, through descriptive statistics, we analysed the overall and 
different gender primary school students’ performance in mathematical modelling 
competency and sub-competencies. Second, we used t tests to analyse the differ-
ences in students’ performance in different sub-competencies of mathematical 
modelling. Furthermore, we analysed the relationship between the competencies of 
mathematical modelling and mathematical competency through correlation analysis.
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8.5 Results 

8.5.1 The Mathematical Modelling Competency of Grade 
Four Students 

Table 8.2 demonstrated that four-grade students’ competency and sub-competencies 
of mathematical modelling. 

The results indicated that the grade four students’ competency of mathematical 
modelling was 293.98, and the scoring rate was 58.8%. Although female scores were 
higher than male, there was no significant difference between them. The poor compe-
tency of students’ mathematical modelling may be related to the lack of Chinese 
primary school mathematics teachers able to train students in applying mathematics 
to solve real problems. 

According to the results of sub-competencies, the study showed that the students’ 
competency of working mathematically was the best among all sub-competencies 
of mathematical modelling and the score was 74.62. However, the students’ compe-
tency of interpreting and validating were not very well and were much lower than 
others (see Table 8.3). This may be because Chinese teachers paid more attention 
to improving students’ working mathematically competency, regardless of training 
students’ ability to transform problems to the real-world context.

Moreover, there was no significant difference in mathematical modelling compe-
tency between male and female (p = 0.603), but female were significantly better 
than male at simplifying, interpreting and validating (p < 0.05).

Table 8.2 Descriptive information of competency of mathematical modelling 

Competency Mean SD Male (SD) Female (SD) p 

Mathematical modelling 293.98 102.02 280.36 
(106.09) 

305.97 
(97.32) 

0.603 

Simplifying 67.55 26.77 66.70 
(26.58) 

68.31 
(27.00) 

0.022 

Mathematizing 68.75 27.66 64.82 
(28.90) 

72.23 
(26.11) 

0.151 

Working mathematically 74.62 28.97 72.05 
(29.71) 

76.90 
(28.19) 

0.545 

Interpreting 50.67 26.92 49.29 
(38.40) 

51.90 
(38.65) 

0.027 

Validating 32.38 36.30 27.50 
(32.89) 

36.71 
(38.65) 

0.031 
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Table 8.3 Different scores between sub-competencies of mathematical modelling 

t p t p 

S vs. M −0.72 0.47 M vs. I 7.46 < 0.01  

S vs.  WM −3.89 < 0.01 M vs. V 15.05 < 0.01  

S vs. I 7.85 < 0.01 WM vs. I 9.61 < 0.01  

S vs. V 15.96 < 0.01 WM vs. V 17.13 < 0.01  

M vs.  WM −3.63 < 0.01 V vs. I 7.00 < 0.01  

Notes S: Simplifying; M: Mathematizing; WM: Working mathematically; I: Interpreting; V: 
Validating

8.5.2 The Relationship Between Students’ Mathematical 
Modelling and Mathematics Competency 

The correlation between mathematical modelling and mathematics competency is 
shown in the Table 8.4. 

The correlation information results indicated that there was a strong positive corre-
lation between mathematical modelling competency and mathematics competency 
(p < 0.01) and the sub-competencies of simplifying, mathematizing and working 
mathematically were more closely related to mathematics than interpreting and vali-
dating. This means that the general mathematics competency test reflects students’ 
performance in simplifying, mathematizing and working mathematically more than 
in interpreting and validating. 

Among the sub-competencies of mathematical modelling, there were significant 
positive correlations between them and interpreting and validating had lower correla-
tions with other sub-competencies. Compared with simplifying, mathematizing and 
working mathematically were less closely related to interpreting and validating.

Table 8.4 Correlation information of competency of mathematical modelling and mathematics 

Competency 1 2 3 4 5 6 7 

1 Mathematics 1.00 

2 Simplifying 0.78** 1.00 

3 Mathematizing 0.64** 0.45** 1.00 

4 Working 
Mathematically 

0.59** 0.37** 0.51** 1.00 

5 Interpreting 0.40** 0.36** 0.18** 0.16** 1.00 

6 Validating 0.40** 0.30** 0.17** 0.16** 0.24** 1.00 

7 Mathematical 
modelling 

0.83** 0.72** 0.66** 0.64** 0.64** 0.62** 1.00 

* p < 0.05; ** p < 0.01  
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8.6 Discussion and Limitations 

8.6.1 The Mathematical Modelling Competency of Grade 
Four Students Needs to Be Improved 

The mathematical modelling competency of the four-grade students was generally 
not enough, and the performance of each sub-competencies were not balanced. The 
results partly supported the results of previous studies (Chen, 2021; Lu & Kaiser,  
2022; Xie,  2021) and reflected the unique performance of primary school students in 
mathematical modelling. In China, whether primary or middle school students, their 
performance in mathematical modelling was not sufficient, which was probably due 
to China’s serious examination-oriented nature for mathematical education (Lu & 
Kaiser, 2022; Wong et al., 2004). Chinese students are better than American students 
in solving conventional problems, but worse in solving open-ended problems (Cai, 
2002). Therefore, Chinese mathematics teachers should focus on cultivating primary 
school students’ mathematical modelling competency so that they can better solve 
various unconventional problems in the real world. 

As mentioned above, grade four students performed well in simplifying, math-
ematizing and working mathematically, but their competencies of interpreting and 
validating were not good. The results of previous studies also showed that students 
have different expressions in different sub-competencies of mathematical modelling 
(Chen, 2021; Kaiser,  2007; Xie,  2021; Ye,  2018). Kaiser (2007) found that there are 
great differences between the various sub-competencies and that the students expe-
rience specific difficulties in clarifying the goal of modelling processes and selecting 
a suitable model. Chen (2021) found that Chinese primary school students’ different 
performance in mathematical modelling sub-competencies was due to their lack 
of awareness of mathematical modelling and their weak ability to express math-
ematical language. Due to their cognitive level at the stage of concrete operation, 
primary school students have developed abstract thinking, but they are still limited in 
visual representation and experience (Chen, 2013), and they are more familiar with 
and interested in situations close to their own lives and environment (Anhalt et al., 
2017). Therefore, primary school students performed well in the sub-competencies 
of simplifying and mathematizing when they solved modelling tasks in situation that 
were close to their life. 

In this chapter, primary school students had different performance levels 
in different mathematical modelling processes. Chinese students were better at 
working mathematically because Chinese teachers always train students’ numeracy 
skills through a large number of exercises tests in primary schools. Therefore, 
teachers should pay attention to the development of primary school students’ sub-
competencies in the process of mathematical modelling and avoid the situation in 
which only one of the sub-competencies is exercised.
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8.6.2 Applied Mathematics Should Be Paid Special Attention 
to in Mathematics Teaching 

In China, mathematics teaching needs to reflect the application characteristics of 
mathematics and cultivate students’ ability to apply mathematics to solve problems 
in the real world. The results showed that students do not perform well in the process 
of translating mathematical results into real results, and the competency of inter-
preting and validating were less correlated with mathematics academic achievement. 
Students could find mathematical results from the context of problems in the real 
world, but it was difficult to apply the results to the real world and verify them, 
mainly due to their lack of awareness of the rationality of models (Xu et al., 2015). 
Primary school students in the stage of concrete operation to formal operation still 
have shortcomings in monitoring and introspecting their own actions (Chen, 2013). 
Therefore, primary school students can simply evaluate their own results, but it is 
difficult to find new ideas for solving problems or developing different solutions 
through reflection. 

To develop students’ competency in mathematical modelling and enhance their 
awareness of mathematical application, the following three aspects should be consid-
ered in mathematics teaching. First, mathematical teachers need to focus on the 
limitations of word problems in developing mathematical modelling competency. 
Although word problems could improve students’ mathematical modelling compe-
tency, they had some limitations on the development of some sub-competencies (Niu, 
2019). Primary school students’ difficulties in interpreting and validating were prob-
ably related to the fact that the results of word problems are often closed (COMAP 
& SIAM,  2016). Second, mathematical teachers should create situations for students 
to apply mathematics and guide them to use mathematics to solve real problems. In 
China, because of the still grade-oriented teaching, mathematical teachers paid more 
attention to students’ mastery of mathematics knowledge, but lack of understanding 
of how to use mathematics in real problems. Moreover, from the primary school 
level, mathematical teachers should begin to permeate students with the awareness 
and ideas of mathematical modelling. Learning mathematical modelling could inspire 
primary school students to use mathematical tools and lay a foundation for building 
more complex models in the future (COMAP & SIAM, 2016). 

8.6.3 Limitations 

This chapter evaluated Chinese four-grade students’ mathematical modelling compe-
tence by means of large-scale assessment but there were several limitations in the 
current study that require consideration. First, the student samples selected in this 
study were only concentrated in one city in China and lacked sample representative-
ness. Therefore, it is necessary to select student samples from different regions and 
grades in the future research. Second, due to the limitation of the test duration, the



8 Assessment of the Competency of Grade Four Students inMathematical… 137

number of questions in this mathematical modelling competency test was not large, 
which may affect the accuracy of the description of students’ mathematical modelling 
competency. More test items could improve the validity of students’ mathematical 
modelling sub-competencies. Moreover, this chapter used a paper-and-pencil test, 
and therefore only focused on the students’ summative performance. In the future, 
online assessment could collect students’ process data so that it would describe 
students’ mathematical modelling competency in a more comprehensive way. 

8.7 Conclusion 

In China, the levels of mathematical modelling competency of the four-grade students 
were not enough, and although students performed well in working mathemati-
cally, they did not well in other sub-competencies, especially in interpreting and 
validating. Therefore, mathematics teachers should pay attention to and cultivate 
students’ mathematical modelling competency from the primary school and enhance 
students’ awareness of applying mathematics to solve problems in the real world. 
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Chapter 9 
Learning of Linear Transformations 
Involving Mathematical Modelling 
Supported by Technology: A Study 
with Undergraduate Students 

Guillermo Ramirez-Montes, Susana Carreira, and Ana Henriques 

Abstract This chapter reports part of an ongoing study based on a linear algebra 
course taking place at a Costa Rican university, which aims i) to support under-
standing of linear algebra concepts through introducing modelling tasks, ii) to 
promote students’ modelling competencies, and iii) to highlight potential difficul-
ties. The current qualitative study focused on examining undergraduate students’ 
modelling processes and the difficulties revealed when working on a modelling task 
using technology. Two classes worked on different versions of a modelling problem 
concerning photo manipulation that is consistent with applying linear transforma-
tions to the points of a picture. The study showed that the students’ use of technology 
was embryonic and almost only in constructing a mathematical model of the real 
situation. Several difficulties observed in the students’ modelling occurred in inter-
preting the real situation as a case of geometrical transformations, in using linear 
transformation properties, and in validating results of their models. 
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9.1 Introduction 

The concept of linear transformation is considered one of the most abstract concepts 
in the learning of linear algebra at university level (Oktaç, 2018). Even though 
students have studied real variable functions in secondary school, including finding 
the analytical expression of linear and other functions, the learning of linear trans-
formations as a general case of linear functions remains a difficult topic for under-
graduate students (Bagley et al., 2015; Oktaç, 2018; Trigueros et al., 2015). Several 
studies involving didactic interventions and proposing diagnostic instruments have 
been conducted with the aims of promoting the learning of linear transformations 
and identifying difficulties that students reveal around this topic (Bianchini et al., 
2019; Stewart et al., 2019; Trigueros et al., 2015). However, more studies are needed 
focusing on the role of technology for encouraging the visualization of linear algebra 
concepts, such as linear transformations, and on the use of application and modelling 
tasks that require more complex computational tools (Stewart et al., 2019). 

Taking this recommendation into account, we designed a set of modelling tasks in a 
linear algebra course for Costa Rican undergraduate students, where technology was 
intended to be a resource for the modelling activity. The pedagogical aims involved 
the consolidation of linear algebra concepts previously taught and the identification 
of students’ difficulties in solving such tasks. We proposed similar modelling tasks 
to two different classes taking the same linear algebra course, each one in a different 
semester. This study aims to characterize the modelling processes and the difficulties 
shown by the two classes when they resorted to technology to solve a modelling task 
involving linear transformation in a context of image manipulation. 

9.2 Studies Addressing Modelling and Technology Use 
in Learning Linear Transformations 

The learning of linear algebra has been a topic of interest for researchers in recent 
years, namely concerning the learning of some fundamental concepts, such as vector 
spaces and linear transformations (e.g. Trigueros & Bianchini, 2016). Some studies 
on the learning of the concept of linear transformation emphasize that its formal 
approach encourages students to focus on the algebraic representations of linear 
transformations. Consequently, it has been observed that students may succeed in 
using linear properties to find an analytical expression of a linear transformation and 
to solve other routine questions without fully understanding the meaning of a linear 
transformation (Bagley et al., 2015; Bianchini et al., 2019). The emphasis on such 
a formal and analytical approach tends to be seen as one reason students may find 
difficulties when they work on more complex situations, such as modelling tasks. 
Those difficulties are also directly related to the cognitive demands of modelling 
problems when compared to other types of mathematical tasks, namely to standard 
routine mathematical questions (Blum & Borromeo Ferri, 2009).
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Some previous studies have already addressed the learning of linear transfor-
mation concepts and looked at the difficulties that students face when they work 
on different types of tasks, including modelling tasks. Trigueros and Bianchini 
(2016) used the APOS theory (Action-Processes-Objects-Schemes) in the context 
of a didactical intervention involving mathematical modelling, with Brazilian and 
Mexican undergraduate students in engineering and mathematics. The proposed 
task was designed to lead students to relate the geometrical representation and the 
algebraic expression of a linear transformation. Their findings showed that students 
used geometrical representations (vectors) and numerical representations (tables of 
values) to find the algebraic expression of a linear transformation. Moreover, they 
concluded that the modelling context played an important role in the way students 
understood the linear transformation concept and even in the way they reframed 
this concept, despite the difficulties that some students initially showed on working 
with linear transformations. More specifically, the opportunity to make connections 
between different representations helped the students to successfully explore scaling 
and translation transformations, but the same did not happen with rotation transforma-
tions. Several students at the beginning had also presented difficulties in recognizing 
a linear transformation as a function. 

The same kind of difficulty was also pointed out by Oktaç (2018), who provided a 
state-of-the-art on the research around the learning of linear transformations, where 
several topics within the subject were discussed and considered. As part of the review, 
a study by Romero and Oktaç (2015) emphasized the role of dynamic geometry envi-
ronments, namely in offering an aid for students’ understanding of the concept of 
image of a linear transformation. This was shown to be a useful resource to overcome 
the common situation of students mostly thinking of the images of particular vectors 
instead of thinking of the image of a region. Furthermore, the research reviewed 
showed that students often looked for the algebraic expression of a linear transfor-
mation before starting to work on a task, even when the algebraic expression was not 
necessary for solving it. This was found to be a consequence of students avoiding 
visualizing the concept of linear transformation and its geometrical representations, 
instead hastening into the algebraic manipulation. 

Other recent literature reviews were performed by Bianchini et al. (2019) and 
Stewart et al. (2019). The first refers to a selection of papers concerning the teaching 
and learning of linear algebra in Brazil and Latin America, from 2000 to 2018. In 
particular, Bianchini et al. (2019) examined three studies about linear transforma-
tions. The first study, based on APOS theory, aimed to know the conceptions of linear 
transformations held by Brazilian students, by asking them to identify the necessary 
elements for defining a linear transformation. The second study focused on under-
standing how Colombian and Chilean students learned the concept of matrix associ-
ated with a linear transformation. The third study offered an analysis of linear algebra 
textbooks focused on linear transformations. The following conclusions from those 
studies stood out: students were generally able to acquire a procedural knowledge 
of linear transformations but were not equally successful in identifying the object
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resulting from a linear transformation; and textbooks showed little evidence of graph-
ical representations and conversions between graphical and algebraic representations 
of linear transformations. 

Stewart et al. (2019) conducted a more extensive review of studies, working 
with a selection of 54 papers about linear algebra education developed between 
2008 and 2017. The review included some studies about linear transformations 
where modelling environments and/or technological resources were part of the study 
design. A study by Dominguez-Garcia et al. (2016) with future engineers introduced 
modelling combined with Matlab as a technological resource for applying linear 
algebra concepts in the context of problems involving Newton’s law of heating and 
the heating equation. However, the focus was not the linear transformation concept 
but rather the use of linear transformations for approximating discrete linear dynamic 
systems. According to Stewart et al. (2019), several studies on the learning and 
teaching of linear transformations have addressed the algebraic approach or the rela-
tionship between the geometric and the algebraic representations, but few studies 
have suggested exploring the specific properties of linear transformations as part of 
the learning of the concept. 

9.3 Modelling Supported by Technology and Potential 
Difficulties 

For several years, it has been argued that technology should be included in the 
work on modelling tasks, at all stages of the modelling process, either in helping 
students with data processing, including graphing, simulating or calculating, or in 
allowing access to models that would be unattainable to them if only manual reso-
lution methods were used (Galbraith & Stillman, 2006; Galbraith & Fisher, 2021). 
As such, competencies in the use of relevant technology are highly important, since 
“using technology broadens the possibilities to solve certain mathematical models, 
which would not be used and solved if technology would not be available” (Siller 
& Greefrath, 2010, p. 2138). Moreover, technology offers tools that help students 
to carry out mathematical activities in their modelling process, such as: visualizing, 
exploring, organizing or evaluating a large amount of data. For example, the use 
of GeoGebra, may contribute to developing students’ modelling competencies (e.g. 
making calculations, working mathematically on the model, making measurements, 
drawing objects, plotting graphs, exploring several representations associated with a 
mathematical concept), but this requires working on modelling tasks where the use 
of technology becomes indispensable to solving the task (Greefrath et al., 2018). 

There are different viewpoints about how to account for the role of technology in 
the modelling process. One possibility consists in looking at a technological envi-
ronment as a third world in the modelling cycle, according to which the modelling 
cycle describes the modelling process as a sequence of transitions from a real world 
to a mathematical world and to a technological world (e.g. Siller & Greefrath, 2010).
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Table 9.1 Transitions in the 
modelling process (Galbraith 
& Stillman, 2006) 

Modelling transitions 

1. Real-world situation → Real-world problem statement 

2. Real-world problem statement → Mathematical model 

3. Mathematical model → Mathematical solution 

4. Mathematical solution → Real-world meaning of solution 

5. Real-world meaning of solution → Revise model or accept 
solution 

From another point of view, Galbraith and Stillman (2006) consider the technological 
world as taking part in the transitions between a real world and a mathematical world 
and also in several actions occurring inside the mathematical world. Galbraith and 
Stillman have thoroughly examined the five transitions between stages through which 
solvers must progress in order to be successful in getting a solution to a modelling 
task (see Table 9.1), where several difficulties may originate and eventually prevent 
students moving to the next stage of the process. 

For each transition, Galbraith and Stillman (2006) describe the modelling skills 
that students must develop to be able to make the transition and proceed to the next 
stage. They also observed that such modelling competencies depend on students’ 
previous knowledge, both in mathematics and in technology use. As they highlight, 
“A lesson for didactics from our project is the importance of ensuring the prior 
competence of students with both the mathematics that will be involved in a model, 
and an understanding of, and facility with, technical procedures involved in using 
appropriate technology” (p. 160). Other critical aspects of modelling are related to the 
student’s ability and readiness to make assumptions and to check if a mathematical 
solution makes sense in the real-world situation (Blum, 2015). 

9.4 Methodology 

9.4.1 Context, Participants and Research Questions 

This study is based on a teaching experiment which is part of a broader ongoing 
research project on the learning of linear algebra concepts, within a linear algebra 
course at the University of Costa Rica. The project aims at improving the learning of 
linear algebra concepts, promoting modelling competencies and reflecting on ways 
of taking advantage of technology in a mathematical modelling task. In this chapter, 
the focus is on the undergraduate students’ modelling processes and the difficulties 
they showed when attempting to solve a modelling task with technology. 

Throughout the research project several modelling tasks supported by tech-
nology (Wolfram Mathematica, Matlab, Excel, GeoGebra) were implemented, each 
involving different linear algebra concepts and topics. Students had no experience in
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solving modelling tasks before this linear algebra course; so, they were not familiar 
with extra-mathematical contexts for using and applying linear algebra concepts and 
had not developed specific modelling competencies, namely interpreting or validating 
mathematical results in a real-world situation. 

There were two teaching experiments in solving modelling tasks: the first, in 
2019, with one class of 21 students (called Class S), and the second, in 2021, with 
another class of 15 students (called Class Z). The two sets of students undertook 
the same linear algebra course, and the lesson structure was similar in both cases, 
with students working in small groups (pairs or trios) on the modelling tasks. From 
the first to the second experiment, only small changes and upgrades were made on 
the set of developed modelling tasks. Having obtained the agreement of the course 
teacher, the first author implemented the modelling tasks in the course lessons. Before 
the modelling tasks were presented, students had already worked on fundamental 
linear algebra content during the course. Wolfram Alpha and Matlab were the only 
technology the teacher used in the course and only to ease calculations. In both 
experiments, the students first learnt a specific linear algebra concept, then solved 
examples, worked with theorems, and practised on purely mathematical exercises. 
After that, they were given a mathematical modelling task where they had to use and 
apply the linear algebra concepts learnt, possibly having to search for information 
about the real situation presented. 

Here, we report on the work done in both classes on a real-world problem involving 
the concept of linear transformation. At that time, both classes had already solved two 
modelling problems, where they used Wolfram Mathematica and Excel, requiring 
matrix operations and linear combination of vectors, respectively. They had not 
previously worked with GeoGebra, which was suggested as a tool for solving the 
task involving linear transformations. The task was given after the teaching of the 
unit on linear transformations, which was the strategy agreed for the introduction of 
all modelling tasks. 

The following research questions were set, according to the aim of the study: 

1) how are students’ modelling processes characterized and what difficulties do the 
students reveal? 

2) how does the context of the task and the use of technology influence the modelling 
processes and the student’s difficulties? 

9.4.2 The Modelling Task (in Two Versions) 

We created two versions of the modelling task (Big Ben I and Big Ben II) related to 
a real-world situation of geometric image transformation. That context was seen as 
adequate to apply linear transformation concepts for describing an image manipu-
lation based on i) removing perspective and enlargement (given to Class S) and ii) 
image distortion by scaling and rotating (given to Class Z). It was expected that 
students would integrate concepts like vector coordinates, linear transformation, 
matrix associated with a linear transformation, vector bases, etcetera. The use of
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Fig. 9.1 Big Ben face from afar (a); Big Ben face after manipulation (b) 

GeoGebra seemed appropriate, for example, to use vector coordinates or to perform 
transformations on simple geometric elements from the image. The two versions of 
the problem are presented in Fig. 9.1 (Big Ben I) and Fig. 9.2 (Big Ben II). 

Big Ben Task I (First class—Class S) 
Suppose that a photo and imaging studio needs to develop a mathematical 
system that will allow changing an obtained image so that it becomes repre-
sented in another plane and in a different size. You are asked to develop a 
mathematical system that allows using the clock of Big Ben in image (a) for 
getting the clock of Big Ben in image (b). Explain the process. 

Big Ben Task II (Second class—Class Z) 
Suppose that a photo and imaging studio needs to develop a mathematical 
system that will allow changing an image by relocating the pixels that form 
the picture. You are asked to develop a mathematical system that describes the 
relationship between the pixels in the given image of the Big Ben face (a) and 
the manipulated image of the Big Ben face (b). Explain the process and results.

9.4.3 Data Collection and Analysis 

Data collection in Class S was in person; it included participant observation, with 
audio recording of the students’ active discussions within their groups, and students’



150 G. Ramirez-Montes et al.

Fig. 9.2 Big Ben face (a); Big Ben face after manipulation (b)

digital GeoGebra files and written work on the proposed task. In Class Z, the data 
collection was conducted by email, due to the COVID-19 pandemics and it included 
students’ digital files and written work on the proposed task. 

The descriptive and interpretative data analysis (Cohen et al., 2011) draws  on  
Table 9.2, where Galbraith and Stillman’s (2006) framework proposal of modelling 
transitions was used, in identifying the modelling competencies and the specific 
decisions of the students in each transition, and also the difficulties that took place 
in moving to the next modelling stage. The various actions and decisions listed in 
the table were observed and identified in the solutions collected for each task. Based 
on Galbraith and Stillman’s proposal, we analysed the content of each solution and 
made a complete list of the various decisions and steps performed by the students 
during the successive stages of the modelling process. Finally, we identified those 
that were common to most responses. We isolated and described the categories, by 
following the adopted framework and seeking an equivalent structure while adapting 
them to the context of each of the tasks. Between square brackets, we list the actions 
and decisions taken in the different steps of the process.

9.5 Results 

9.5.1 General Characteristics of Students’ Models 

In Table 9.3, we present a summary of the characteristics observed in the models 
achieved by the different groups, from Classes S and Z, concerning the more general 
or the more particular nature of the models produced, and the way technology took 
part in the solutions obtained. We use the abbreviations S# and Z# for naming a 
specific group from Class S (10 groups) and Class Z (7 groups), respectively.

Six groups from Class S (S1, S2, S3, S4, S7, S9) used the notion of parallel 
vectors when comparing the two images or assumed a geometrical transformation of
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Table 9.2 Decisions taken by students of both classes (S and Z) in solving the assigned task 

1. Real-world situation → Real-world 
problem statement 
S.1.1 Making assumptions about the problem 
and simplifying the situation [Real situation as 
a geometrical transformation problem; consider 
each image as a set of points in the plane] 
S.1.2 Identifying strategic entities [Set points 
on images to define vectors and line segments; 
decide that corresponding vectors in the two 
images are parallel; length as a useful entity; 
use length to compare the two images] 

1. Real-world situation → Real-world 
problem statement 
Z.1.1 Making assumptions about the problem 
and simplify the situation [Real situation as a 
geometrical transformation problem; consider 
each image as a set of points in the plane] 
Z.1.2 Identifying strategic entities [Set points 

on images to define vectors in R2; recognize 
that corresponding vectors in the two images 
are not parallel; coordinates of vectors as a 
useful entity; working with original vectors 
and transformed vectors] 

2. Real-world problem statement → 
Mathematical model 
S.2.1 Constructing relations between variables 
[Recognize length as a variable; consider the 
problem as a change of scale between the 
original and the modified image of Big Ben] 
S.2.2 Making relevant assumptions [Angles are 
preserved; consider uniform scaling by a factor] 
S.2.3 Mathematizing relevant quantities and 
their relations [Use a coordinate system; use 

standard basis of R2; draw original segment 
and enlarged segment, original vector and 
transformed vector; consider a linear 
transformation; define a parameter for the 
scaling factor; use ratio between length of 
segments or vectors] 
S.2.4 Choosing technology for visualizing or 
manipulating graphical representations 
[Edit/manipulate pictures of the Big Ben; set 
coordinates on images; visualize a linear 
transformation] 
S.2.5 Choosing technology for making 
measurements or computations [Measure 
length of segments or vectors; do computations; 
determine value of enlargement factor] 

2. Real-world problem statement → 
Mathematical model 
Z.2.1 Constructing relations between variables 
[Recognize geometrical transformations 
between the original and the modified image of 
Big Ben; consider the problem as the result of 
a linear transformation of the original Big Ben] 
Z.2.2 Making relevant assumptions [Angles 
are not preserved; consider the problem as a 
composition of a rotation transformation and a 
scaling transformation; consider vector spaces 
and vectors] 
Z.2.3 Mathematizing relevant quantities and 
their relations [Use a coordinate system; set 
the origin in both images; use standard or 

non-standard basis of R2; define original 
vector and transformed vector by a linear 
transformation] find angle of rotation and find 
scaling factor] 
Z.2.4 Choosing technology for visualizing or 
manipulating graphical representations 
[Edit/manipulate pictures of the Big Ben; set 
coordinates on images; visualize a linear 
transformation] 
Z.2.5 Choosing technology for making 
measures or computations [Measure length of 
segments or vectors; measure angles between 
vectors; do computations] 
Z.2.6 Choosing technology to look at 
examples of solutions to similar problems [Use 
Internet as a resource for observing similar 
problems about image manipulation]

(continued)
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Table 9.2 (continued)

3. Mathematical model → Mathematical 
solution 
S.3.1 Using mathematical knowledge to solve 
the problem [Apply distance formula between 
two points; get scaling factor; create algorithm 
to find a linear transformation given a vector 
basis and the transformed vectors; use 
properties of linear transformation or scaling 
transformation; find transformation matrix] 

3. Mathematical model → Mathematical 
solution 
Z.3.1 Using mathematical knowledge to solve 
the problem [Apply the definition of linear 
transformation; find matrix associated to a 
linear transformation with respect to a given 
basis; use properties of linear transformations; 
use dot product of vectors; determine angle 
between two vectors] 

4. Mathematical solution → Real-world 
meaning of solution 
S.4.1 Identifying mathematical results with 
their real-world counterparts [Take the constant 
of proportionality as a measure of the zoom 
in/out of the original image] 
S.4.2 Integrating arguments to justify 
interpretations [Conclude that original and 
modified image have a similarity relation] 

4. Mathematical solution → Real-world 
meaning of solution 
Z.4.1 Identifying mathematical results with 
their real-world counterparts [Take the linear 
transformation as the geometrical 
transformation that changed the original image 
of Big Ben] 

5. Real-world meaning of solution → Revise 
model 
S.5.1 Checking and reflecting on found 
solutions [Obtain the transformation of a vector 
with the constructed model] 

5. Real-world meaning of solution → Revise 
model 
(No evidence of further reflection on the 
solution)

Table 9.3 Main characteristics of the groups’ modelling processes on the Big Ben Tasks 

Class Type of constructed mathematical model Use of technology in the task 

Class S S1, S2, S3, S5, S6, S9 (General models, 
i.e. models depending on parameters 
referring to an arbitrary scale factor) 
S4, S7, S8, S10 (Specific models, i.e. 
particular models obtained by using 
numerical data) 

S4 (Identify vector coordinates in the 
original and modified figure, measure the 
length of the vectors and determine the 
scale factor) 

Class Z Z1, Z2, Z4, Z5 (General models, i.e. 
models depending on parameters referring 
to an arbitrary angle and/or scale factor) 
Z3, Z6, Z7 (Specific models, i.e. particular 
models obtained by using numerical data) 

Z3, Z6, Z7 (Identify vector coordinates in 
the original and modified image to find the 
algebraic expression of a linear 
transformation)

uniform scaling, which led to constructing models such as α
−→
AB  = −→CD  or T (x, y) = 

α(x, y); therefore, they established a scalar factor α to relate the vectors in image 
(a) and the transformed vectors in image (b). Some of them considered a scale 
factor without calculating the value of α (general models) and others calculated α 
(specific models). The other groups from Class S used algebraic relationships, such 
as T (−→v )  = aT (−→v1 ) + bT (−→v2 ) and concepts of linear independence and coordinate 
vectors, but taking approximate vectors−→v1 and −→v2 in image (a) and the corresponding 
vectors T

(−→v1
)
and T

(−→v2
)
in image (b); therefore, they produced imprecise models.
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In turn, all the groups from Class Z used a linear transformation relationship and/or 
concepts such as linear independence, angle between vectors, length of a vector and 
vector coordinates. The more general models created in Class Z (Z1, Z2, Z4, Z5) 
presented similar characteristics to the general models of Class S, while the specific 
models were the consequence of the use of GeoGebra, or other similar software 
package, to find the exact vector coordinates of homologous points in image (a) 
and image (b). Globally, these were more detailed although they were not entirely 
satisfactory models. This was mainly due to conceptual difficulties related to ensuring 

the linear property T
(−→
0 V

)
= −→0 W when the students added a coordinate system 

to each of the images. Furthermore, only one group from Class S and none from 
Class Z were able to validate their results, thus revealing students’ clear difficulties 
in moving from the mathematical world to the real world. 

From the data and the overall outcomes, we found that in Class S four groups 
developed specific models and only group S4 constructed a more consistent model, 
despite its limitations in describing the transformed image. In Class Z, the most 
consistent models were constructed by the groups who used technology, namely 
GeoGebra or a similar software. Only group Z7 worked with non-standard vector 

bases, but the group failed to ensure the property T
(−→
0 V

)
= −→0 W of linear trans-

formations, when choosing the origin of the coordinate system in each of the two 
images. So, the most sophisticated models were constructed by S4 and Z7, but both 
groups showed difficulties in generating an adequate linear transformation model. In 
the following, we characterize the modelling processes of the groups S4 and Z7 and 
identify their main difficulties, as exemplary cases. To support our analysis, we will 
base ourselves on the above categorization of actions and decisions taken by these 
groups of students in their modelling processes and we will refer to the codes estab-
lished in Table 9.2 to justify the interpretations made in our analysis in a convenient 
and abbreviated way. 

9.5.2 The Case of Group S4 

Initially, group S4 associated the real situation with the possibility of considering an 
image as a set of points where it is possible to define line segments between points 
and measure their lengths; the students thought about enlarging the length of a line 
segment in the original image to obtain the corresponding enlarged segment in the 
changed image [S.1.1, S.1.2]. This led to the idea that the “zoom” could be defined 
by the ratio between the magnitudes of the two corresponding segments [S.2.1]. 
Therefore, they decided to define two corresponding segments AB  and CD  to find 
the width of the Big Ben face in each of the images provided, thus systematizing a 
real model, as shown in the following dialogue: 

Professor: So, what did you notice about the relationship between the photos?
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Henrique: We are looking at the distance from here to there (pointing to the two 
points on the smaller Big Ben) and at the distance from here to there 
(pointing to the corresponding points on the larger Big Ben), so here we 
are observing an enlarging factor. 

To build the mathematical model, group S4 mathematized the real model by 
deciding to find out how many times the segment AB  fitted into the corresponding 
segment CD, and thus defining the value CD  

AB  as the scale factor associated with the 
“zoom in”. In doing so, they focused on the relationship between the magnitudes of 
the corresponding vectors but without any reference to the directions of those vectors, 
then constructing a mathematical model that described the situation of a uniform 
scaling of the face of the Big Ben [S.2.2, S.2.3]. This reveals that the students did not 
fully conceive of their model as a more complex linear transformation of the original 
image, mostly because they did not take the perspective distortion on the original 
image into account. To obtain the scale factor, the students resorted to GeoGebra, 
where they inserted the images given in the task statement and then defined the two 
pairs of points A, B and C, D on the top of Big Ben face [S.2.4], as shown in Fig. 9.3. 

Working on GeoGebra, the students obtained the values AB  = 1.77 and CD  = 
14.90 and thus obtained the mathematical result 8.41 for the scale factor CD/AB  (see 
Fig. 9.4), which was taken as the magnifying factor between the two photos [S.2.5]. 
So, the group used GeoGebra to get a specific mathematical model of uniform scaling 
of the original image with a specific enlargement factor [S.3.1]. The students were 
able to interpret this value by stating, “to make 

−→
AB  look like the size of 

−→
CD, , the  

value of the zoom should be 8.41” [S.4.1]. After that, the students answered the 
problem by mentioning that the enlargement of the image was the result of applying 
the scale factor found, although they did not go through the process of validating 
their model by performing the transformation of the image in GeoGebra [S.4.2].

Fig. 9.3 Approach to the task in GeoGebra by the group S4 (the angles of the segments AB  and 
CD were ignored) 
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Fig. 9.4 Scale factor 
computed by the group S4 

The fact that S4’s model focused on a uniform scale factor could be seen as a 
difficulty related to the validation of model results [S.5.1]. In fact, the students were 
not able to take advantage of the technological tool to perform the transformation 
described by their model, which would allow them to check if there was agree-
ment between the result of their transformation and the actual transformed image 
(where perspective distortion was removed). Since their model was not based on an 
algebraic expression of a linear transformation, they seemed to have no criteria to 
verify if a particular point of the original image was mapped to the correct point 
of the transformed image. They just accepted that corresponding segments satisfied 
the similarity ratio given by the uniform scaling, and readily assumed preserved 
angles and proportions. This may be a consequence of a commonsensical notion 
that enlarging or reducing a photograph means to perform a uniform scaling. More-
over, the nature of the task may explain why S4 and other groups did not choose to 
construct a model based on an algebraic expression for a linear transformation. Their 
previous mathematical knowledge on similar figures and similarity ratio and their 
understanding of “zooming” as equivalent to the enlargement or reduction of photos 
apparently overrode other ways of thinking about the linear transformation model. 

9.5.3 The Case of Group Z7 

Group Z7 started to solve the problem and soon the students were talking about a way 
to formulate their goal: “To imagine a linear transformation that transforms picture 
1 into picture 2 and try to figure out the transformation matrix AT ” [Z.1.1]. This 
statement shows that students formulated a mental representation of the situation, 
making connections between the change of the original picture and a linear transfor-
mation T on the plane and its associated matrix AT . The points of the transformed 
picture would be obtained by applying the function T to the points of the original 
one [Z.1.2]. After that, the students thought about the way to create that matrix and 
decided to use an image editing software: “with the help of an editor and putting 
down the same coordinate axis on both images, we get the points before and after 
the linear transformation” [Z.2.1]. The points were represented by the students in a 
coordinate system (Fig. 9.5), by using blue dots marked on the grid (green arrows 
are added to indicate the blue dots in the image) [Z.2.4]. The students used a techno-
logical tool other than GeoGebra but worked with it in a similar way to group S4, in
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identifying points and vector coordinates in both images and using them to construct 
the mathematical model [Z.2.4, Z.2.5]. 

In Fig. 9.5, the vector coordinates for both points located in the original image are 
(1, 2) and (3, 7), and for the modified image the coordinates are (1, 2) and (4, 6), 
respectively. Such coordinates refer to the coordinate system that was fixed to each 
of the images with the use of the graphical tool. However, the group wrongly set the 
lower left corner of each of the images as the origin. By making that decision, they 
failed to realize that the two corners (in image (a) and image (b)) did not correspond 
to the same point of Big Ben. Consequently, the fact that any linear transformation 
maps the origin of V to the origin of W was overlooked. This indicates a difficulty 
of group Z7 in applying the concept of linear transformation to a concrete situation, 
namely in visualizing its geometric representation. Despite this difficulty in identi-
fying a correct coordinate system in both images, the group worked mathematically 
with the coordinates to obtain the analytical expression of a complex linear transfor-
mation [Z.2.3]. The mathematization carried out and the model obtained are shown 
in Fig. 9.6.

As shown in Fig. 9.6a, the group Z7 identified the vector coordinates of the blue 
points in the original image (with respect to the standard basis) and recognized them 
as linear independent vectors, so they used the vectors v1 = (1, 2) and v2 = (3, 7) as 
a basis B2 for the domain and the codomain of the linear transformation T. Then, they 
considered the transformation T (v1) = (1, 2) and T (v2) = (4, 6) and solved systems 
of linear equations to find the matrix AT of the linear transformation [Z.3.1]. In the 
second part of their solution (Fig. 9.6b), they considered a general point (x, y) on the 
plane of the original image and looked for a way of obtaining the corresponding point 
of the transformed image under the linear transformation. Using a system of linear 
equations, they established the process of expressing a general vector v = (x, y) in 
terms of its coordinates (a, b) in the basis B2. After that, they used the relationship

Fig. 9.5 Two points on the original image (a); Two points on the transformed image (b) 
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Fig. 9.6 Mathematization to obtain the matrix associated with the linear transformation (a); 
Analytical expression of the linear transformation (b)

[T (v)]B2 
= [T ]B2 

· [v]B2 
to get the transformation of a general vector with respect to 

that basis [Z.3.1]. Finally, the standard coordinates (z, p) of the resulting vector were 
determined, which could be used to locate the corresponding point in the transformed 
picture. 

As in the case of S4, group Z7 managed to interpret the results of their model, 
particularly by writing “new points in figure 2” when referring to the resulting point 
(z, p). Thus, they concluded that an arbitrary point (x, y) in the image on the left 
was mapped onto a point (z, p) in the image on the right, under that specific linear 
transformation [Z.4.1]. However, similarly to S4, this group did not perform a vali-
dation of the model results in the real problem context. Apparently, the students 
were convinced of the correctness of their results, probably because they felt that 
the algebraic work was identical to what they had done before in some theoretical 
exercises, where the need to validate mathematical results in a real situation never 
occurred. 

9.6 Conclusions 

The results observed in the two classes provide evidence of the actions and decisions 
taken by students in their modelling processes and of their difficulties in moving from 
one stage to the next in the modelling cycle. Concerning their modelling processes, 
one clear finding is that students have used linear transformation concepts and vector 
geometry concepts to construct their models in both classes. The real situations 
presented in the two versions of the Big Ben task, though not considerably different, 
seem to have had some influence on the way students interpreted the pictures and 
the transformations involved. The students of Class S, solving Big Ben I, were more 
inclined to create vector geometry models, while the students of Class Z, solving 
Big Ben II, were more willing to obtain algebraic models. We presume this was 
a consequence of a more usual manipulation of the photo in the first version than 
in the second. We also noticed that because there are more noticeable distortions
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in the photo of the second version, the students of Class Z were more ready to 
use technology, especially in the transition from the real world to the mathematical 
model, as they saw it as a useful resource for dealing with this (Galbraith & Fisher, 
2021; Greefrath et al., 2018). 

Regarding the role of technology, we conclude that it helped students in both 
classes to engage in the construction of more detailed and specific models, involving 
the actual photos presented in the tasks. Therefore, technology seemed to have pushed 
some student groups to go beyond abstract models with general parameters that more 
closely resembled the strictly mathematical questions they had solved in the course. 
GeoGebra allowed students to work with specific vector coordinates and to calculate 
lengths of vectors, angles, etcetera, which were needed to work mathematically on 
a mathematical model associated with a particular linear transformation. In general, 
we suggest a moderate influence of the use of technology on students’ modelling 
processes, particularly tenuous in pushing their own manipulation of the images 
provided. It encouraged them to engage in thinking about image transformation as a 
geometrical (or vector-based) process, involving vectors and points on the plane. It 
also seems to have motivated students to use coordinate systems to describe the two 
images (i.e. original and transformed). The second version of the task, in proposing 
a somewhat less subtle transformation, as the manipulated image clearly showed a 
distortion of the original, led students to bring up several concepts, namely rotation 
and scaling along the axes. 

Concerning difficulties observed across the transitions in the modelling cycle, 
students of both classes faced obstacles in moving from the real situation to a math-
ematical problem (Blum, 2015; Galbraith & Stillman, 2006). It was clear that the 
real situation of the manipulated photos brought to light the notion of linear trans-
formation. However, for many students the geometric transformations involved were 
not evident, which leads to the speculation that the geometric effect of applying 
a linear transformation is not an easy matter for students (Trigueros & Bianchini, 
2016). For example, we found that students of Class S oversimplified the problem, 
choosing to ignore the distortion caused by perspective in the original Big Ben photo. 
In addition, we observed several Class Z students failing to introduce an adequate 
coordinate system in both pictures to describe the change from one photo to the next. 
This showed that, although students had learnt the properties of linear transforma-
tions, namely that a linear transformation takes the zero vector to the zero vector, 
this property was not verified when creating the axes systems in the original and 
transformed images, indicating that the geometrical meaning of the property was not 
fully understood (Oktaç, 2018). 

Concerning technology use, students made only rudimentary use of the tools at 
their disposal. For instance, they made little use of the possibility of performing 
geometric transformations in GeoGebra (rotations, dilations, etc.) and they did not 
sketch the pictures by means of geometric objects such as squares, rectangles, or 
circles. Another clear difficulty was the validation of their models, since the students 
of both classes did not show validating their solutions by performing the transforma-
tion of the real images provided, using technology, for example. As such, we conclude 
that the students need more experience using technology in applying linear algebra
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concepts to real-world contexts (Galbraith & Stillman, 2006), particularly to gain 
insights into the relationship between the algebraic and geometrical representations 
of linear transformations. 

As noted by Oktaç (2018), technology can help students in improving their under-
standing and give meaning to the concepts involved in the learning of linear trans-
formations. Based on the results of our study, we may corroborate that the role 
of technology in validating mathematical models involving linear transformations 
must be emphasized. However, we argue that more studies are needed involving 
both modelling tasks and the use of technology, in particular aiming to know how 
technological tools may help students in interpreting linear algebra models in terms 
of geometrical representations, and how the use of technology may be effective in 
solving real-world problems involving linear transformations. 
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Chapter 10 
Validating a Multiple-Choice Modelling 
Competencies Assessment 

Jennifer A. Czocher, Sindura Subanemy Kularajan, Elizabeth Roan, 
and Robert Sigley 

Abstract As part of a larger project focused on exploring development of mathe-
matical modelling competencies among post-secondary STEM majors enrolled in 
advanced mathematics, we developed a pair of parallel multiple-choice modelling 
competencies assessments. In this chapter, we provide a technical report of item 
development, scale calibration, and validation of the assessment. We used multiple 
statistical approaches, including classical test theory (CTT), item response theory 
(IRT), and principal component analysis (PCA) to document item behaviours, scale 
properties, and dimensionality of a developing multiple-choice assessment of math-
ematical modelling competencies designed for post-secondary STEM majors. We 
share analyses and inferences, making recommendations for the field in pursuing 
such assessments. 

Keywords Assessment · Competencies ·Mathematical Modelling ·
Post-secondary · Item Response Theory · Classical Test theory 

10.1 Introduction 

As scholarly and pedagogical interest increases in teaching mathematics with (or 
through) mathematical modelling, so do stakeholder interests in assessing growth 
in modelling skills. Many assessments for mathematical modelling knowledge and 
skills have been independently created; however, the majority are based on ad hoc
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constructions or small-scale studies of student work (Frejd, 2013). As the majority 
of assessment tools serve only local needs without providing broader evidence 
of validity, the field faces difficulty synthesizing results about efficacy of various 
learning environments. This observation indicates a clear need for a valid, reliable 
instrument capable of measuring gains associated with instructional interventions. 

At the same time, there have been increasing calls for instruments in mathematics 
education research to undergo evidence-based validity assessments. The rationale is 
that documenting properties of tests and test-takers can aid the field in synthesizing, 
and thus building upon an abundance of research results. However, theoretically and 
methodologically, assessing learning of mathematical modelling is uniquely diffi-
cult because the modelling process is itself idiosyncratic. It is difficult to plan modes 
of assessment that can target instructional objectives when the target skills are not 
unidimensional. It is with these sensitivities to empirical and theoretical foundations 
of the genre that we share efforts to develop an instrument targeting modelling skills 
of post-secondary STEM majors. The instrument is intended for evaluating inter-
ventions that aim to improve post-secondary students’ modelling skills. To facilitate 
scholarship in this area, the instrument is intended to support research designs based 
on a pre/post-intervention paradigm. Thus, the project goal has been to develop a 
pair of parallel forms of an assessment appropriate to targeting modelling skills of 
post-secondary STEM students. This chapter presents the psychometric properties 
of the items and the scales as part of a validation study. Our research questions are: 
(i) What are the psychometric properties of the instrument and do the items behave 
as intended? and (ii) How do previously published items perform with a broader 
sample? 

10.2 Conceptual and Assessment Frameworks 

This work is part of a broader project examining how to leverage modelling and appli-
cations problems to help post-secondary STEM majors develop modelling skills. For 
this project, we adopt a view of mathematical modelling as a process of rendering 
a non-mathematical problem about a real-world phenomenon of interest as a well-
posed mathematical problem to be solved. We focus on the cognitive activities that 
facilitate the process (Kaiser, 2017) and operationalize these activities as skills or 
competencies (Czocher, 2016; Maaß, 2006), summarized in Table 10.1.

Attending to real-world considerations corresponds to understanding and simpli-
fying/structuring (hereafter: simplifying): specifying a problem and separating the 
relevant factors from ones that can be safely ignored. Sometimes the assumptions 
students introduce warrant mathematics that may not be accessible to them in the 
moment. Success also requires mathematizing appropriate quantities, identifying 
relations among them, and representations to compose them. Models need to be 
analysed, but that is typically handled in mathematics classes; we do not address 
it here. Finally, students may struggle to interpret and validate their results, which 
involves recontextualizing any mathematical results or representations, checking that
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Table 10.1 Content framework: Modelling competencies 

Competency Description 

Understanding Forming an idea of the real-world problem or identifying a real-world 
phenomenon worth investigating 

Simplifying/Structuring Identifying (ir)relevant quantities and variables; making assumptions 
to simplify the problem 

Mathematizing Expressing relations among the variables using a mathematical 
representation 

Working mathematically Solving the mathematical problem, using techniques learned in 
mathematics classes 

Interpreting Interpreting the mathematical results with reference to the context of 
the real-world problem 

Validating Evaluating whether the model represents the situation; verifying the 
analysis; establishing limitations

the model is representative of the situation, and articulating its limitations. As compe-
tencies are interconnected, potential interventions and assessments should target the 
reasoning underscoring student decision-making. 

Our assessment framework is a synthesis of instrument development frameworks 
(American Educational Research Association et al., 2014) as a set of validity criteria 
advanced as part of the Validity Evidence for Measurement in Mathematics Educa-
tion project. Validity of an instrument should reflect empirical evidence to support 
its (1) content validity, (2) response process validity, (3) relations to other measures, 
and (4) internal structure. Content validity is established through expert evaluations 
and literature-informed item development. Seeking evidence of response process 
validity ensures that both items and distractors tap into students’ reasoning patterns. 
Typically, evidence for response process validity is sought through direct student 
feedback on the items. Checking relations to other measures can mean calibrating 
the instrument against other assessments of the same content or instruments assessing 
distinct constructs. Finally, internal structure validity involves checks on dimension-
ality, internal consistency, and other psychometric properties for the items and scale. 
These evidence-based validity criteria guided our instrument development process. 
In the next section, we briefly summarise development and validity efforts for criteria 
(1)-(3) which are published elsewhere (Czocher et al., 2020, 2021). We then report 
on (4) to address the research questions. 

10.3 Prior Work on Multiple-Choice Instrument 
Development 

Frejd (2013) observed that about one-third of assessments were written multiple-
choice tests based on Haines et al. (2000). In Haines et al.’s work, items were 
designed to target a single aspect of the modelling process (e.g. asking clarifying
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questions, identifying variables) and distractor responses were, from the researchers’ 
perspective, irrelevant to the construction of a model or consider only the real-world 
constraints. The “best” answer choices considered both real-world constraints and 
relevant mathematics. Despite the promise of the instrument, critiques have been 
raised. First, the question set was tested on a small sample of students, so its prop-
erties are unknown. Second, there is some disagreement whether the parallel forms 
are indeed comparable. Third, previous multiple-choice instruments have not demon-
strated that the distractor choices are informed by empirical evidence of how students 
reason, instead relying on the researchers’ guesses at what might be appealing. 
Fourth, although Haines’ research group used Rasch analysis, psychometric models 
for item analysis have become more accessible and reliable, allowing for more vali-
dation studies. We sought to improve upon Haines et al.’s approach, building on 
research done since. 

10.3.1 Item Creation Approach 

We chose a multiple-choice question (MCQ) format to facilitate creating two parallel 
forms that could support research designs intending to measure gains in competen-
cies before and after an intervention. To address the limitations mentioned above 
regarding previous attempts at designing multiple-choice assessments, we adhered to 
the following constraints: (Table 10.2): (a) base problems were relevant and authentic, 
in the sense that they emulated problems encountered in the students’ studies or public 
discourse, (b) phrasing of question stems and items appealed to multiple sources of 
student content knowledge (see Stillman, 2000), (c) question stems should target 
aspects of competencies via alignment to specific indicators of modelling activity 
(see Czocher, 2016), and (d) distractor choices were based in empirical studies of 
students’ reasoning during modelling. 

We developed a pool of 118 multiple-choice questions (MCQs) for 9 real-world 
scenarios based in research reports on students’ thinking during modelling and extant 
pedagogical materials. We also included selections from Haines et al. (2000) items

Table 10.2 Design principles for item development 

Constraint Researcher course of action 

Base scenarios for the items should be relevant 
and authentic 

Use problems from academic coursework or 
public discourse 

Phrasing should appeal to multiple sources of 
content knowledge 

Account for Stillman (2000)’s tripartite 
framework 

Question stems should target aspects of 
competencies 

Develop questions from specific indicators of 
modelling competencies from prior work 
(Czocher, 2016) 

Distractors should emulate actual student 
reasoning 

Consult previous research on student rationales 
for decision-making 
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targeting modelling competencies dealing with model formulation and validation (i.e. 
excludingworking mathematically). Sample items are in Fig. 10.1 and 10.2. The real-
world scenarios were drawn from research and educational materials (e.g. GAIMME 
report, textbooks, published research, faculty syllabi) appropriate to STEM post-
secondary students who have completed Calculus 2. We sought scenarios that treated 
prevalent societal issues, involved situations in the sciences where differential equa-
tions might be used, or were suggested by informal interviews with STEM professors. 
Mathematical content included: arithmetic, algebra, calculus, and differential equa-
tions. We then drafted MCQs from each scenario, balancing information provided in 
the scenario set-up to situate the items with readability. Various question stems were 
used (e.g. select the most/best/least, indicate the choice consistent with the assump-
tions) and we developed responses with a single “best” answer with four distractors 
at varying degrees of reasonability. For example, reasonability for a simplifying 
MCQ might address (un)helpful assumptions to make. Across multiple field-testing 
rounds, we solicited feedback from an expert panel of mathematicians and mathe-
matics educators regarding accuracy of mathematical content and the extent to which 
items targeted intended competencies. We implemented revisions, culling items that 
failed to be correct or sensible. 

Given all of the assumptions below, which equation best models growth for 
a population? 
1. The birth rate is proportional to the population. 
2. There are sufficient resources for the population to thrive. 
3. Members die of unnatural causes, like murders. 
4. Unnatural deaths are proportional to the number of two-party 

interactions. 
5. 1 and 2 are proportionality constants. 

Fig. 10.1 Sample item for mathematizing (expressing relationships in mathematical terms), based 
in population growth scenario 

of the deer in this area. One team member suggests using the exponential growth model = ⋅ , where r 
is the growth rate and is the population of deer. Your team then discusses whether using this model 
would be appropriate. What statement is the most useful critique to be made for or against the model 
during this debate? 

a. The model is correct because that is what is used for population growth scenarios. 
b. The model is correct because it assumes that the growth rate is constant. 
c. The model is incorrect because that is what is used for population growth scenarios, and this is not 

a population growth scenario. 
d. The model is incorrect because it is too simple. 
e. The model is incorrect because it assumes that the growth rate is constant. * 

Consider a population of white-tailed deer in a protected area where they are not hunted by humans or by 
natural predators. You are assigned as team leader to a research team tasked with modelling the population 

Fig. 10.2 Abridged sample item for validating (evaluating appropriateness) from the carrying 
capacity scenario
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10.3.2 Response Process Validity 

To establish response process validity, we carried out three rounds of field testing: (i) 
feasibility, (ii) difficulty and distractors, and (iii) discrimination (Czocher et al., 2020, 
2021). In the feasibility round, we solicited feedback on the items from a group of 
12 STEM post-secondary students, asking them to evaluate the items, scenarios, and 
response options for authenticity, sense making, and rationale for selecting distrac-
tors. In the difficulty round, we administered 63 promising items on two forms to 35 
and 43 STEM post-secondary students, respectively. Item difficulty was measured 
as a proportion of correct responses. Items with difficulty 0.20 < p < 0.70 were 
retained. Items that did not perform well were restructured or culled. We anal-
ysed distractor efficacy, ensuring each distractor was selected by at least 5% of 
respondents. In the discrimination round, 30 items were sorted onto two forms and 
administered to a sample of 25 secondary and 289 post-secondary students partic-
ipating in an international modelling competition focusing on applying differen-
tial equations (competition details are described below). The mean item difficulties 
were p = 0.39 and p = 0.41 for the two forms. An independent sample t test 
(t = −0.811, d f  = 144, p = 0.419) confirmed no significant difference in mean 
score across the forms and Levene’s test (F = 0.412, p = 0.522) confirmed equal 
variances. A set of point-biserial correlations (rPBIS) were computed to identify 
high- and low-discriminating items. When the rPBIS is positive but small, it does not 
discriminate sufficiently among higher- and lower-scoring examinees to contribute to 
the overall quality of the assessment (DiBattista & Kurzawa, 2011). We restructured 
one item, which negatively correlated with the total score of its form. We estimated 
reliability using Revelle’s Omega Total (ωT ) as a measure of internal consistency, 
which is appropriate where multiple items contribute to predicting the construct of 
interest and when individual items measure the latent construct with differing degrees 
of precision (see Raykov, 1997). The two forms had ωT = 0.67 and ωT = 0.63, 
respectively, approaching the typically acceptable estimate of reliability, 0.7. 

10.3.3 Relations to Other Measures 

To study relations to other measures, we investigated correlations between the instru-
ment’s measure of modelling competencies and a related instrument’s measure of 
self-efficacy to carry out those competencies (Czocher et al., 2021). Following 
Hackett and Betz (1989) and Bandura (2006), the Modelling Self-Efficacy (MSE) 
instrument used a 0–100 rating scale to measure an “individual’s perceived capacity 
to carry out the interrelated activities that make up mathematical modelling” (Czocher 
et al., 2019, p. 13). Of the 314 students who took the MCQ in the discrimination 
round, 144 also completed the MSE instrument. For these students, we found that 
MSE was a highly significant predictor of modelling competency, as measured by 
these two instruments (standardized coefficient0.252,t(144) = 3.130, p = 0.002).
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We interpret the strong positive association between modelling competency and 
modelling self-efficacy as evidence of relation validity since a positive correlation 
between mathematics self-efficacy and performance is expected. 

10.4 Methods 

To address the research questions, we report on a field test to equate two parallel 
forms and investigate internal structure validity. We selected Rasch analysis, an 
item response theory (IRT) approach used by Haines et al. (2000) and Zöttl et al. 
(2011). One advantage of IRT over CTT (classical test theory) is that it estimates 
falsifiable models of standardized participant ability scores (typically

∣
∣θp

∣
∣ < 4) and 

item difficulty ratings (β). The analytic procedure enabled our goal to estimate the 
likelihood that persons with differing skill levels would provide differing response 
patterns by fitting a Rasch curve to item difficulty and person ability scores from the 
sample. Items that do not fit the model are dropped; similarly, mis-fitting persons 
are provisionally suspended from the analysis to achieve a model that optimizes fit. 
Non-identical forms are equated by anchoring the difficulties of anchor items to the 
same values on a common scale. Scale reliability scores estimate the extent to which 
the assessment discriminates among levels of ability and yield a lower bound for 
reliability. After Rasch model calibration, all persons are included in the analysis. 
Individual ability scores can be used to compute gains. Ability scores for a sample are 
visualized using Wright maps with reference to the items appearing on the instrument 
(Boone, 2016). 

We constructed Ruby and Sapphire forms, each with 20 items and with 11 items 
in common. As structuring, mathematizing, and validating are the most difficult 
competencies for students, we represented them more heavily than understanding 
and interpreting. Each form had 3 understanding, 5 structuring, 5 mathematizing, 
2 interpreting, and 5 validating items. Using results from earlier testing rounds, 
we balanced anticipated difficulty and content coverage in terms of competencies 
targeted across forms. The expected mean item difficulties were Ruby p = 0.472 
and Sapphirep = 0.475. Each form was organized so that items from the same 
scenario were presented together, to decrease the overall instrument length and 
reading required. 

We administered the forms to a sample of secondary and post-secondary STEM 
students participating in an international challenge using differential equations to 
mathematically model real-world problems. The challenge took place remotely 
during the COVID-19 pandemic at the end of Autumn 2020 semester, depressing 
participation in the data collection. In total, 89 students responded to the items (see 
Table 10.3 for demographics), and some response sets were incomplete (detailed 
below). Additionally, over 90% reported typically earning B’s or higher in both their 
mathematics and major classes.

We checked that all items had positive item-total correlations. To calibrate items 
and person abilities to the Rasch model, we calculated model-fit assumptions and



168 J. A. Czocher et al.

Table 10.3 Participant demographics 

Gender Major Previous mathematics 

Male 64% Science 21.3% Diff Eq 81.8% 

Female 33.7% Mathematics 46.1% No Diff Eq 18.2% 

Non-binary 2.3% Engineering 25.8% 

Other 6.7%

conducted dimensionality analysis, respectively. Fit statistics indicate how closely 
the model tracks the data. Outfit has larger values when item difficulty is not well-
matched to person ability. Infit accounts for response pattern variance when item 
difficulty and person ability are more closely matched. Item-pairs with higher residual 
correlations (Yen’s Q3 > 0.2) were examined for patterns in their relationships. 
We excluded mis-fitting items and persons (< 0.5 or > 1.5) and re-calibrated the 
remaining dataset to the Rasch model. Due to small subgroup size (e.g. type of school, 
major), a Differential Item Functioning (DIF) analysis to assess potential bias was 
not feasible. 

10.5 Results and Discussion 

10.5.1 Interpretation of Rasch Analysis 

On the Ruby form, between 29 to 38 students responded to each item. We flagged 
10 students as having too many missing responses and therefore not fitting model 
expectations. One item had large outfit and its distractor options had positive item-
total correlations. Given the messy response pattern, we excluded that item from 
further analysis and re-calibrated Ruby. Two further items exhibited large outfit 
values (close to 3) but were kept because the test length would be short for the 
number of respondents. The Rasch item reliability score was 0.88 (Adj. SD = 0.63) 
and the person reliability score was 0.63 (Adj. SD = 1.39). We examined pairwise 
correlation of item residuals (Yen’s Q3) and Principal Component Analysis (PCA) of 
standardized residuals. Multiple item pairs had residual correlations > 0.20 and the 
first eigenvalue was λ = 3.05, suggesting underlying multidimensionality. On the 
Sapphire form, between 32 and 41 students responded to each item. On Items 2 and 
7, students chose more often than the intended choice a distractor mathematically 
correct choice that was not optimal for modelling. These response patterns were not 
observed on previous rounds of testing for these items, and so they were scored with 
partial credit. Most items showed satisfactory fit statistics. One item (Sapphire Item 7, 
validating) had an outfit value of 1.74 and another (Sapphire Item 5, simplifying) was  
underfitting (outfit 0.66, infit 0.73). Because the test is short, underfitting items were 
kept. After recalibration, one common item (Ruby Item 15, simplifying) was removed
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Fig. 10.3 Final anchored Wright (item-person) maps for Ruby (left) and Sapphire (right), ordered 
by item number. For each panel, participants’ ability level is left and item difficulty is right. Items 
with intervals (indicated by vertical line) correspond to items scored with partial credit 

from only the Sapphire test. Although it performed well on the Ruby form, it had 
high outfit on Sapphire and its residuals were highly correlated with Sapphire Item 
6 (simplifying). We excluded the two problematic items and re-calibrated Sapphire, 
obtaining a Rasch item reliability score 0.88 (Adjusted SD = 1.22) and the person 
reliability estimate of 0.64 (Adjusted SD = 0.89). The high reliability scores suggest 
it is likely that those with higher scores have a higher level of ability and that the 
items have hierarchy, supporting construct validity claims. Both forms showed high 
item separation indices (Ruby 2.72, Sapphire 3.08), suggesting a difficulty hierarchy 
and spacing among items capable of discriminating among person ability levels. The 
comparatively lower person separation indices (Ruby 1.3, Sapphire 0.83) may reflect 
testing a niche population with less variability in their abilities considering that they 
self-selected into an extra-curricular modelling challenge. 

We used Sapphire as the anchor form during equating because: it had higher item 
separation index, lower person ability standard deviation, and item-pair correlations 
and PCA of residuals warranted less concern about multidimensionality than for 
Ruby form. The two forms were re-calibrated from the 10 remaining common items 
(excluding Ruby Item 15) and anchored to Sapphire’s final calibration values. Thus, 
all Ruby and Sapphire item difficulties could be placed on a common scale. As is 
customary in mathematics education, we report the Cronbach’s alpha as well, for 
Ruby, α = 0.91 and for Sapphire α = 0.85. Values exceeding 0.7 are typically 
considered acceptable. Table 10.4 contains the breakdown of each item on the final 
version of both tests with the competency they target, the context, and the difficulty. 
The Wright Maps (item-person map) shown in Fig. 10.3 order the ability of the 
students who took the tests on the left side and the difficulty of the questions on 
the right side. Outside of items 9, 10, and 11, the distribution of the difficulty of 
the items is good. Items with high difficulty relative to the ability distribution are 
Sapphire 9, Ruby 9, Sapphire 10, and Ruby 10. These items target interpreting in two
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different contexts (disease and recycling). Item 11 on Ruby and Sapphire, targeting 
understanding within the context of a wastewater tank, had the lowest difficulty across 
both tests. Understanding items varied in difficulty across the different problems, 
with Ruby Item 1 being difficult and Ruby and Sapphire Item 12 having a small 
negative difficulty (−0.75). Mathematizing (excluding Ruby Item 2), simplifying, 
and validating items had difficulty levels clustered around an ability level of 0. 

We conducted a PCA on the responses for the final forms to investigate any empir-
ically evident dimensionality. The first Ruby component (19.3% variance explained) 
contained items 2, 5, 6, 8, 11, 13, 17, 18, and 19. These are all but one from the 
Wastewater Tank context and as a set possess a wide range of difficulties. The items

Table 10.4 Rasch model difficulties (δ) for Ruby (R) and Sapphire (S) forms 

Item #, R Item #, S δ, R δ, S Competency Context 

1 1.81 Understanding Decay 

2 −2.17 Mathematizing Disease 

3 −0.31 Mathematizing Population 

4 0.32 Simplifying Recycling 

5 −0.06 Simplifying Wastewater Tank 

6 1.09 Simplifying Wastewater Tank 

7 −2.36 Validating Carrying Capacity 

8 −0.94 Validating Wastewater Tank 

9 9 2.57 2.57 Interpreting Disease 

10 10 2.06 0.98 Interpreting Recycling 

11 11 −3.35 −3.35 Understanding Wastewater Tank 

12 12 −0.75 −0.75 Understanding Disease 

13 13 −0.36 −0.36 Mathematizing Wastewater Tank 

14 14 0.87 0.87 Mathematizing Recycling 

15 0.67 Simplifying Recycling 

16 15 −0.98 −0.98 Simplifying Haines & Crouch* 

17 16 −0.21 −0.21 Validating Wastewater Tank 

18 17 0.53 0.53 Validating Wastewater Tank 

19 18 0.67 0.67 Validating Wastewater Tank 

1 0.32 Understanding Recycling 

2 1.08 Mathematizing Wastewater Tank 

3 −1.56 Mathematizing Carrying Capacity 

4 −1.13 Simplifying Recycling 

5 0.24 Simplifying Wastewater Tank 

6 0.32 Simplifying Recycling 

7 −0.2 Validating Carrying Capacity 

8 −0.11 Validating Disease 
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comprise four of the five competencies (4 validating, 2  mathematizing, 2  simpli-
fying, 1  understanding) suggesting these competencies vary together. The second 
Ruby component (16.8% variance explained) contained items 9, 10, 12, 13, and 15, 
two of which (9, 10) were the difficult interpreting items already mentioned. The 
first Ruby principal component correlates most with simplifying (r = 0.701) and 
validating (r = 0.512) while the second component correlates most with simpli-
fying (r = 0.253). The first Sapphire component (15.8% of the explained vari-
ance) includes items 3, 4, 5, 9, 12, and 16, from many contexts (2 Disease, 2 
Wastewater Tank, 1 Recycling, 1 Carrying Capacity) and competencies (1 each: vali-
dating, understanding, interpreting, and mathematizing, 2 simplifying). The second 
Sapphire component (15.6% of the explained variance) included items 2, 14, and 
17 (2 mathematizing and 1 validating). Two were Wastewater Tank context and one 
was from Recycling. Both Sapphire components correlated most with validating 
(firstr = 0.638, secondr = 0.259). 

10.5.2 Difficulty Analysis for Existing Items 
from the Literature 

As, to date, the items developed by Haines et al. are the only items targeting both 
differential equations and mathematical modelling, it is important to evaluate their 
performance with additional samples. During Round 2, we tested 8 items using CTT 
(samples in Fig. 10.4 and 10.5) from Crouch and Haines (2004) Haines et al. (2000) 
as listed in Table 10.5. 

Of the 8 items, 3 were too easy (p > 0.70). These items targeted simplifying,math-
ematizing, and understanding competencies from the following scenarios, respec-
tively: aircraft evacuation, grocery store checkout, and display of street name signs. 
One item had p = .19 and was flagged as having near-chance difficulty levels. While 
only 18.8% of the students selected the keyed option (option b) for this item, 62.5% 
of the students selected a distractor (option e) as the answer. The remaining 4 items 
had 0.20 < p < 0.70. Of these four, two items had p = 0.23 but had a noticeable 
advantage (>0.15) for those who had studied differential equations. At the same

Consider the real world problem (do not try to solve it!): 
There are two lines at a grocery checkout. In the first line, there are 1 customers each with 1 items in 
their baskets. In the second line there are 2 customers each with 2 items in their baskets. It takes 
seconds to process each item and seconds for each person to pay. Customers wish to know which line to 
join. Which one of these options gives the condition for the first line to be better than the second line? 

a. 1( + 1 ) = 2( + 2 )
b. 2( + 2 ) ≤ 1( + 1 )
c. 2( + 2 ) < 1( + 1 )
d. 
e. 

Fig. 10.4 Sample item for mathematizing (identifying variables), appearing in Haines et al. (2000), 
referenced as H&C14 in Table 10.5 below
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Consider the real world problem (do not try to solve it!): 
How thick should bicycle wheels be? 
Which one of the following clarifying questions is most helpful when modelling smoothness of the ride? 

a. Are the wheels connected to the pedals by a chain? 
b. How tall is the rider? 
c. Does the bicycle have gears? 
d. How high is the highest curb or bump that the rider will go over?* 
e. Does terrain matter? 

Fig. 10.5 Sample item for understanding (clarifying question), appearing in Haines et al. (2000), 
referenced as H&C5 in Table 10.5 

Table 10.5 Difficulty and distractor analysis of Haines, et al. items 

Item label Competency P-value % selecting 
key/distractor 

DE advantage Item origin 

H&C1 Mathematizing 0.42 40.6 0.02 QB in H&C 2004 

H&C2 Understanding 0.84 84.4 −0.10 QC in H&C 2004 

H&C3 Interpreting 0.53 51.6 −0.27 QD in H&C 2004 

H&C5 Understanding 0.23 22.6 (key)/ 64.5 
(distractor) 

0.33 Test  1 Q2 in H&C  
2001 

H&C7 Understanding 0.23 22.6 key/32.3 
(distractor) 

0.20 QA in H&C 2004 

H&C11 Understanding 0.19 18.8 key/62.5 
(distractor) 

−0.08 Test  2 Q2 in H&C  
2000 

H&C13 Simplifying 0.83 80.6 0.07 Test  2 Q4 in H&C  
2000 

H&C14 Mathematizing 0.71 68.8 0.10 Test  2 Q5 in H&C  
2000

time, two items gave a noticeable advantage to those who did not take differential 
equations. Of these 8 items, only one (H&C11, size for stroller wheels) was tested 
again in Round 3 and had p = 0.177, again being flagged as too difficult (17.7% 
selecting the keyed option versus 54.6% selecting the same distractor as in Round 
2). It is worth recalling that the H&C items were developed to have a very tempting 
distractor (i.e. considering only mathematical or only real-world issues) for partial 
credit. It is possible that because the distractor related to the “smoothness of the ride 
as felt by the child” posed in the question stem that it was more popular than the 
keyed option, which is problematic from an assessment perspective. The question is 
possibly ambiguous since it is not clear to which attribute of the tyre (e.g. radius or 
thickness) “size” is referring to.
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10.5.3 Discussion 

This project assessed participants’ abilities related to modelling competencies and 
differential equations, very difficult subjects, across a range of contexts. We created 
two parallel forms targeting modelling competencies appropriate for post-secondary 
STEM majors studying advanced mathematics. A test performs best when the average 
item difficulty matches average student ability. On the calibrated scale, most items 
had difficulties |δ| < 1 and the Wright map showed a good distribution of diffi-
culty, suggesting that the scales are balanced. The easiest items (δ <  −1.5) had a 
clearly correct answer and could be addressed using test taking strategies to rule out 
distractors. Items 9 and 10, the most difficult (δ >  1.5), both targeted interpreting 
and required comparison among lengthy response options. We expect that a higher 
cognitive load may contribute to their relative difficulty, besides modelling compe-
tence. While some items were very difficult for the sample, the short test length 
meant additional difficult items could not be excluded. We are not pessimistic about 
this interpretation since the forms were administered as a pre-test to an intervention 
where students could practice these skills. Thus, it is sensible that their ability levels 
would be low, as measured by this instrument. Indeed, no individual’s score was 
too high and, on some items, students scored below chance. Taken together, this 
information suggests there is room for interventions to target the competencies in 
thoughtful ways and that the items will discriminate well based on ability. 

Due to COVID-19, administration was online, allowing us to reach a larger, more 
diverse sample from a small population, but may have introduced additional chal-
lenges. The moderate person reliability score was due to a large standard error, 
reflecting sample heterogeneity, and a low sample size to test length ratio. Partic-
ipants were at different points in their academic careers, from different countries, 
and using different curricula with different instructors. Constructing items and forms 
that consistently place students on the same achievement scale is difficult in these 
circumstances. 

We are cautious, but optimistic, for interpreting the reliability and utility of the 
scale. The small sample sizes and low item numbers provide a major underestimate 
of Cronbach’s alpha, which is already quite high, and the psychometric properties of 
the scale and items, as measured by IRT procedures also exceed common guidelines. 
We emphasize caution, because the instrument evidenced multidimensionality which 
can affect both estimates of reliability and fit of the Rasch model. We recognize that 
the construct “modelling competence” is not unidimensional because it draws from 
multiple domains of real-world knowledge, multiple mathematical domains, and 
targets potentially distinct competencies. Though we did conduct PCA to examine 
this kind of dimensionality, we did not find clear empirical evidence of items loading 
according to this theoretical dimensionality according to a priori constructs like 
mathematical content, modelling context, or modelling competency. It is possible 
that competencies or contexts may form dimensions, but the sample of students was 
so diverse in terms of their personal characteristics and prior knowledge that the 
instrument could not detect it. Observed dimensions may also include aspects of
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guessing, English comprehension, test fatigue, or reflect item stems that required 
judgment rather than offering a clear correct answer. One notable exception was 
that the PCA on responses revealed all the Wastewater Tank items loading to Ruby 
Component 1 and the Wastewater Tank context also was strongly represented on 
Sapphire Component 2. We also suspect that other constructs, such as facility with 
quantitative reasoning, may play a role. In any case, since the breadth of competencies 
was well-represented on the extracted components, we infer that no one item type 
is responsible for all the variance. Instead, variance is distributed among item types, 
which is desirable. 

The utility of the instrument lies in its potential measure collective gains in compe-
tencies, as constructed and as conceptually construed, for post-secondary STEM 
students who have taken or are enrolled in differential equations. We chose to struc-
ture items to target individual modelling competencies operationalized by previous 
work using observational rubrics of modelling activity (Ärlebäck & Bergsten, 2010; 
Czocher, 2016), an approach the field refers to as “atomistic” (Blomhöj and Jensen 
2003), because it would support development of a MC assessment that would be more 
straightforward for stakeholders to implement and score. This instrument would be 
well suited to measuring gains from interventions that direct mathematics instruction 
towards ways of reasoning and justifying that are strongly connected to independent, 
autonomous modelling of complex situations. The fact that the item distractors are 
based in empirical studies of students’ reasoning during mathematical modelling is 
a strength of the instrument. 

We would not recommend using this, or any, modelling competency instrument 
to assess gains in individual competencies for two reasons. First, in the interest of 
keeping test length manageable, there were a small number of items per compe-
tency. Full coverage of the breadth of a single competency and psychometric anal-
ysis of a competency subscale would require more items. Second, from the cognitive 
perspective on modelling, competencies are largely presumed to work together, not in 
isolation. For example, validating happens throughout the modelling cycle (Czocher, 
2018) and can rely on real-world data or on agreement with assumptions made earlier 
in the modelling process. Similarly, it may be the case that aspects of understanding 
(e.g. asking clarifying questions) are more closely related to the cognitive activities 
of simplifying (e.g. prioritizing important variables). Grouping the validating opera-
tionalizations together while separating aspects of understanding and simplifying is a 
limitation of the content framework that is reflected in the instrument. In any case, as 
a practical matter, ensuring that students “actually did mathematizing” or “only did 
mathematizing” in response to an item is relevant only for research seeking to estab-
lish that an intervention was specifically effective for increasing students’ capacity 
for mathematization. For such research, collecting additional observational informa-
tion would be optimal. We recommend that the instrument (and others like it) be used 
to generally assess modelling-related gains to inform on instructional interventions 
rather than whether individuals improved on specific competencies or achieved at 
threshold levels. 

The set of items we tested performed well, despite a small sample and niche 
population. We observe that large sample sizes (common to IRT studies) are not
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requisite for learning about item properties. IRT methodologies are rarely used in 
mathematics education, but advances in software accessibility could support a shift 
away from CTT methods which cannot separate the test taker from the test item. 
That is, CTT prioritizes the test whereas IRT prioritizes information about items and 
therefore allows a better understanding of interaction between knowledge (ability) 
and items. Future work could develop a large bank of items whose psychometric 
properties are known, allowing stakeholders to select items from the pool to make 
meaningful assessments for interventions targeting modelling competencies. 

10.6 Conclusions 

We have provided an evidence-based validity evaluation of the internal structure of 
the parallel forms to evaluate pedagogical interventions. This effort is integral for 
moving towards a valid and reliable instrument for measuring growth in modelling 
skills of post-secondary students, and more broadly towards establishing a shared 
empirical basis for interpreting results of studies of student’s modelling across educa-
tion levels. Our approach to target each item to a specific competency facilitated the 
multiple-choice format, but more testing would be necessary to explore the instru-
ment’s capacity to assess modelling as a composition of those competences. Such 
testing would require a comparison to other, validated measures with known psycho-
metric properties. More broadly, future work developing and validating assessments 
should explore an instrument’s suitability as a measure of individuals’ modelling 
capacity. 
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Chapter 11 
A Mathematical Modelling Project 
with Biology Undergraduates: Using 
Activity Theory to Understand Tensions 

Yuriy Rogovchenko 

Abstract We use Activity Theory to analyse the work of biology undergradu-
ates with biologically meaningful mathematical modelling tasks. Tensions related 
to collaboration in an interdisciplinary team, students’ engagement, understanding 
of a modelling task, comprehension of its mathematical content and solution of a 
modelling task manifest multiple primary and secondary contradictions in the activity 
system. We identify these contradictions and discuss possibilities for their resolution 
through expansive learning. 

Keywords Mathematical modelling · Biology undergraduates · Activity theory ·
Tensions · Contradictions · Expansive learning 

11.1 Introduction 

Nowadays, mathematics plays an increasingly important role in life sciences. 
Professor May, the author of two authoritative volumes in mathematical biology, 
pointed out that 

Mathematics has been less intrusive in the life sciences, possibly because they have until 
recently been largely descriptive, lacking the invariance principles and fundamental natural 
constants of physics. Increasingly in recent decades, however, mathematics has become 
pervasive in biology, taking many different forms: statistics in experimental design; pattern 
seeking in bioinformatics; models in evolution, ecology, and epidemiology; and much else. 
(May, 2004, p. 790) 

Cohen (2004) argued that “today’s biologists increasingly recognize that appro-
priate mathematics can help interpret any kind of data. In this sense, mathematics 
is biology’s next microscope, only better” (p. 2017). Echoing Cohen’s words, Steen 
(2005) acknowledged that “after a century’s struggle, mathematics has become the 
language of biology” (p. 22). Although the importance of mathematics for life
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sciences is no longer disputed, “biology education is burdened by habits from a 
past where biology was seen as a safe harbor for math-averse science students” 
(Steen, 2005, p. 14). 

Williams et al. (2016) contextualise interdisciplinary integration in tertiary educa-
tion of non-mathematicians as “mathematics and other subjects come together around 
a particular topic or theme, while each retains their disciplinary nature” (p. 19). Many 
authors contributed recently to educational research on the use of mathematics in 
biology education (Chiel et al., 2010; Gaff et al., 2011; Hester et al., 2014; Koch-
Noble, 2011; Madlung et al., 2011; Neuhauser & Stanley, 2011; Rheinlander & 
Wallace, 2011; Usher et al., 2010). Mathematical modelling (MM) is the process of 
describing real-world problems in mathematical terms to make predictions or provide 
insight. Several papers acknowledge MM as one of the core competencies in life 
sciences and address its teaching to undergraduate students in life sciences with little 
to no prior modelling experience (Gaff et al., 2011; Koch-Noble, 2011; Neuhauser & 
Stanley, 2011; Rogovchenko 2021). One of the main difficulties encountered is an 
“immensely frustrating” mismatch between instructors’ expectations and students’ 
mathematical skills (Hester et al., 2014), “students can have a difficult time spon-
taneously transferring even relatively simple mathematics skills to novel contexts”, 
but the situation can be improved by “making quantitative reasoning an explicit 
objective of our course design” (p. 62). Chiel et al. (2010) emphasised a cultural 
gap between students in quantitatively oriented sciences and future biologists—the 
training process for the latter cohort “tends to attract students who are good at memo-
rization” and “repels students who are most interested in abstract principles” (p. 250). 
Furthermore, 

For a few students the uncertainties of not having a concrete answer and working with a big 
messy problem, even if fully acceptable in science, are not comfortable for them in math. 
For these students mathematics is about learning more math content and not how to apply 
the math they know in a creative, integrated and precise way. (Rheinlander & Wallace, 2011, 
p. 15) 

Chiel et al.  (2010) admitted that “it is somewhat disappointing that biology 
students showed no significant improvement in their attitudes toward and their sense 
of competence in mathematics” (p. 262). On the other hand, Weisstein (2011) reported 
that the use of MM tasks in an introductory biology course led to “(i) improved 
equation literacy, (ii) greater conceptual and descriptive precision, (iii) formation of 
conceptual connections within and among disciplines, and (iv) more mature scientific 
judgment” (p. 208). 

Bridging abstract mathematics and realistic applications is very important for the 
education of students in engineering, economics, natural, social and life sciences. 
This is also a difficult task, and the project presented in this chapter set out to explore 
issues that can arise when biology undergraduates are introduced to MM. Williams 
et al. (2016) argued that case studies exploring “student’s views, motivations or 
performance, while learning in interdisciplinary lessons, are very helpful” (p. 22). 
We selected modelling tasks to illustrate possible uses of mathematics in life sciences 
and to encourage students’ better engagement in mathematics learning in general.
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The format of the project, its organisation and MM tasks were new and challenging 
both for students and for the project team, so some tensions arose. We employ Activity 
Theory to analyse these tensions and relate them to the system’s contradictions which 
affect students’ learning experience. We also reflect on the possible resolution of 
contradictions and their impact on the evolution of two interacting systems. 

11.2 Activity Theory 

Activity Theory (AT) is a “psychological and multidisciplinary theory with a natu-
ralistic emphasis that offers a framework for describing activity and provides a set of 
perspectives on practice that interlink individual and social levels” (Barab et al., 2003, 
pp. 199–200). It originates from the work of Soviet psychologists Vygotsky, Luria and 
Leont’ev and is grounded on the three fundamental ideas: (i) humans act collectively 
and learn by doing; (ii) humans act and operate on their environment, think, commu-
nicate and learn through the mediation of material and psychological tools (made 
or adapted); and (iii) social engagement is central to communication and learning. 
Every human activity engages a community in interactive labour processes which 
are essentially mediated by the entire system of production that evolved historically. 
Activity, which Leont’ev (1974) describes as the “molar unit of life”, takes place over 
and through time in the form of actions and operations that occur as events within 
the flow of time. The third generation of AT (Engeström, 1987) offers a powerful and 
versatile tool for the analysis of continuously evolving activity systems of different 
levels of complexity. In Engeström’s model, a subject’s object-oriented activity is 
mediated by tools, rules, community and division of labour. Several activity systems 
may interact; this is the case in our project where we have two interacting activity 
systems, the project team and the student group, see Fig. 11.1. 

3 

Project Team Student Group 

Community Community 
Division 

of 
Labour 

Division 
of 

Labour 
Rules Rules 

Instruments, tools & signs Instruments, tools & signs 

SubjectSubject Object ObjectOutcome 
Goal 

1 

24 

Fig. 11.1 The structure of the project activity system (After Engeström, 1987) Contradictions 
shown as numerals in circles, “1” Primary, “2” Secondary, etc.
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The subject is an individual or a subgroup whose position and point of view 
are chosen as the perspective of the analysis (project team/person or student 
group/individual). Object is the raw material or problem space at which the activity 
is directed (a MM task presented, or a task to be done in class); it differs for students 
and teachers/researchers. The object is durable and changes continuously shaping 
activity’s identity and direction; it is turned into outcomes with the help of instru-
ments, “the (reciprocal) relationship between the subject and the object of activity is 
mediated by a tool, into which the historical development of the relationship between 
subject and object thus far is condensed” (Kuutti, 1995, p. 27). 

Community comprises the individuals and subgroups who share the same general 
object. Division of labour refers to the horizontal division of tasks and vertical divi-
sion of power and status. Rules refer to the explicit and implicit regulations, norms, 
conventions and standards that constrain actions within the activity system. The circle 
around the object “indicates at the same time the focal role and inherent ambiguity 
of the object of activity. The object is an invitation to interpretation, personal sense 
making and societal transformation” (Engeström & Sannino, 2018, p. 45). It is crucial 
that 

Objects can be transformed in the course of an activity; they are not immutable structures. 
… Objects do not, however, change on a moment-by-moment basis. There is some stability 
over time, and changes in objects are not trivial; they can change the nature of an activity. 
(Nardi, 1996, p. 74) 

11.3 Contradictions and Development 

Contradictions are structural tensions historically accumulated within the activity 
system or between different activity systems, “a misfit within elements [of an activity 
system], between them, between different activities, or between different develop-
mental phases of a single activity…. [and so] manifest themselves as problems, 
ruptures, breakdowns, and clashes” (Kuutti, 1995, p. 34). Contradictions are present 
in every collective activity and may originate from multiple perspectives, cultural 
and historical traditions, interests of different members of an activity system (Foot, 
2014). They are the key constituents of AT indicating emergent opportunities for the 
activity’s development. Engeström and Sannino (2018) argued that “contradiction 
is a foundational philosophical concept that should not be equated with paradox, 
tension, inconsistency, conflict or dilemma” and must be “approached through their 
manifestations” (p. 49). In what follows, the term “tensions” refers to manifestations 
of contradictions observed in our activity system. Contradictions can be identified 
through their discursive manifestations summarised in Table 11.1.

Possible locations of contradictions in our activity system are indicated in Fig. 11.1 
only for the student group (which is the focus of this report) by double headed bent 
arrows labelled (1)–(4). Primary contradictions (1) between the use of an activity 
(understood as the direct benefits of the activities outcomes for the participants) and 
its exchange value (the worth of the activity when it is exchanged for something)
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Table 11.1 Types of discursive manifestations of contradictions (Adapted from Engeström & 
Sannino, 2011, p. 375) 

Manifestation Features Linguistic cues 

Dilemma Expression or exchange of 
incompatible evaluations 

“On the one hand […] on the other 
hand”, “yes, but” 

Conflict Arguing, criticising “no”, “I disagree”, “this is not true” 

Critical conflict Facing contradictory motives in social 
interaction, feeling violated or guilty 

Personal, emotional, moral accounts, 
narrative structure, vivid metaphors 

Double bind Facing pressing and equally 
unacceptable alternatives in an activity 
system 

“we”, “us”, “we must”, “we have to”, 
pressing rhetorical questions, 
expressions of helplessness

exist within each of the six constituent components of the activity. An example could 
be a student’s wrong choice of mathematical tools to mediate the achievement of the 
object of finding a solution to a MM task (such as the use of the computational knowl-
edge engine Wolfram alpha or computer algebra in the solution; this undermines the 
opportunity to understand a procedure). 

In addition to primary contradictions, the AT distinguishes three more levels 
of contradictions (Engeström, 1987). Secondary contradictions (2) between the 
constituents of the activity arise as new elements enter the activity system from 
the outside. For instance, the use of a new strategy or method of problem-solving 
introduced in the class may contradict established rules of working mathematically. 
Tertiary contradictions (3) arise when the object or motive of the activity interacts 
with their counterparts from a more culturally advanced form of the activity (e.g. 
between analytic and computer-assisted numerical approaches to solving differential 
equations). Quaternary contradictions (4) emerge between several activity systems 
when, for instance, changes to a mathematical activity result in conflicts with estab-
lished biological activities. Although contradictions tend to destabilise the system, 
they should not be viewed as deficiencies or weaknesses but rather as signs of system’s 
richness. Contradictions reveal the potential for an activity to develop because “equi-
librium is an exception, and tensions, disturbances, and local innovations are the rule 
and the engine of change” (Cole & Engeström, 1993, p. 8).  

The research question we address in this chapter is: What contradictions emerged 
in an extra-curriculum MM project with biology undergraduates and how they were 
manifested? 

11.4 Planning and Organisation of a MM Project 

The project comprised five three-hour sessions with a group of 12 volunteer students 
(9 female and 3 male). Two students previously took university mathematics courses 
and ten were concurrently enrolled in a compulsory first-semester mathematics
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course MAT101 for natural and life sciences emphasising practical uses of math-
ematics and dealing with basic properties of functions, limits, continuity, derivatives 
and integrals. An extra-curricular MM project led by the author and three mathematics 
education researchers (Project Team) was organised with several complementary 
goals. We expected that the students will (i) learn to use mathematics for solving 
biologically meaningful tasks, including work with unstructured, messy problems, 
(ii) develop individual and teamwork skills and (iii) gain additional motivation for 
learning mathematics. It should be noted that these were the goals of the Project 
Team, the Student Group could have had other goals (unstated, maybe as prosaic 
as receiving the promised bookstore voucher (value approximately e50,00) at the 
end of the session). Our plans for the organisation of the project were motivated 
by a challenging question posed by Koch-Noble (2011, p. 228): “as we teach our 
students various topics in mathematics, how often do we give them the opportunity 
to really participate and do mathematics?” From the very beginning when the idea 
of the project was only discussed, we knew that MM is difficult to teach and learn. 
In fact, 

Mathematical modelling is a cognitively demanding activity since several competencies 
involved, also non-mathematical ones, extra-mathematical knowledge is required, mathe-
matical knowledge and, in particular for translations, conceptual ideas … are necessary …, 
and appropriate beliefs and attitude are required, especially for more complex modelling 
activities. These cognitive demands are responsible for empirical difficulty.” (Blum, 2015, 
p. 78, emphasis in original) 

Empirical studies indicate that modelling competency amounts to being able 
to successfully perform all steps in a modelling cycle. Comprehensive seven-step 
schemes for a modelling cycle were suggested to guide research into student learning 
of MM (Blum & Leiß, 2007; Stillman et al., 2007). A simpler four-step schema 
(Blum & Borromeo Ferri, 2009) includes (i) understanding the task, (ii) establishing 
a model, (iii) using mathematics and (iv) explaining the results. Planning students’ 
work on the MM tasks, we kept in mind that “all these steps are potential cognitive 
barriers for students” (Blum & Borromeo Ferri, 2009, p. 47). The latter model helped 
us to organise students’ work on modelling tasks in the project by guiding both the 
problem selection and the presentation of a modelling cycle to students. 

Blum and Borromeo Ferri (2009) argued that to overcome difficulties in student 
learning of MM, instruction should include “a demanding orchestration of teaching 
the mathematical subject matter”, “permanent cognitive activation of the learn-
ers” and “an effective and learner-oriented classroom management”. Furthermore, 
“it is crucial that a permanent balance between (minimal) teacher’s guidance and 
(maximal) students’ independence is maintained” (Blum & Borromeo Ferri, 2009, 
p. 52). Otherwise, teacher’s interventions in a MM class might significantly reduce 
students’ independence because “a common feature of many of our observations 
was that the teacher’s own favourite solution of a given task was often imposed on 
the students through his interventions, mostly without even noticing it” (Blum & 
Borromeo Ferri, 2009, p. 53). 

Therefore, in the project we paid attention to creating a friendly, productive atmo-
sphere in the class and maintaining the right level of students’ independence. All
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sessions took place outside regular class hours and were organised into several 
blocks combining theory and practice. In each block, the author presented relevant 
theoretical material on MM and discussed complete solutions to selected problems. 
Then students worked in small groups on modelling tasks of various difficulty. To 
ensure maximal student autonomy during their work on MM tasks, the project team 
offered only content-related or organisational support, occasionally acknowledging 
successful completion of intermediate steps and encouraging students to proceed. At 
the end of each session, group solutions were presented by students and discussed 
along with “expert” ones. Students received take home assignments; solutions were 
discussed during the next meeting. We collected video recordings of all sessions 
and transcribed them verbatim. The data set includes samples of students’ written 
work (not analysed here) and complete answers to two self-administered question-
naires on a 5-point Likert scale inquiring about students’ perception of importance 
of mathematics in biology and relevance of mathematics courses for biology. We 
also asked to rate the project as interesting, enjoyable, challenging, meeting expec-
tations, contributing to understanding of mathematics, biology and applications of 
mathematics to biology. 

Our choice of problems for the project relied on the principles of effective teaching 
suggesting that “the tasks we use should be accessible, extendable, encourage 
decision-making, promote discussion, encourage creativity, encourage ‘what if’ and 
‘what if not?’ questions” (Swan & Burkhardt, 2014, p. 16). Two sample tasks anal-
ysed in this chapter require certain skills in processing the data but no sophisticated 
mathematical tools; they are accessible for the first-year biology students. For more 
details regarding the selection of tasks and organisation of students’ independent 
work in the project, see Rogovchenko (2021). An open-ended Problem A (Harte, 
1988, pp. 211–213) was offered to students in the first session after some fundamental 
ideas of MM were presented. The problem requires careful mathematisation where 
the choice of assumptions influences both the solution process and its outcomes; this 
is exactly what we wanted to test at the start of the project. 

Driving across Nevada, you count 97 dead but still easily recognizable jackrabbits on a 
200-km stretch of Highway 50. Along the same stretch of highway, 28 vehicles passed you 
going the opposite way. What is the approximate density of the rabbit population to which 
the killed ones belonged? 

Problem B was adapted from Harte (1988, pp. 28–29); it asks to evaluate residence 
times of carbon in marine and continental vegetation using the data provided in Table 
11.2. The notion of residence time was introduced during the session in the lake 
pollution problem where a steady-state concentration of the pollutant was computed. 
This task was selected to test students’ understanding of the concept and their ability 
to process real data.
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Table 11.2 Global biomass 
and productivity (all values in 

the first two rows are in 1012 

kg(C) and in the third in 1012 

kg(C)/year) 

Location Continental Oceanic 

Living biomass stocks 560 + 300 
−100 

2,000 ± 1,000 

Dead organic matter 1,500 ± 1,000 2 ± 1 
Net primary productivity 50 ± 15 25 ± 10 

11.5 Contextualisation of the Activity System 

To analyse contradictions that occurred during our MM project within the AT frame-
work, we consider two interacting activity systems, of the project team and the student 
group (Fig. 11.1). In the description of our activity system, we use the term “bucket” 
introduced by Barab et al. (2003) who compared the six elements of an activity 
system to “buckets for arranging data collected from needs and task analyses, evalu-
ations, and research” (p. 207). The subject-buckets include the student cohort and the 
project team with their teaching/learning experience, attitude, knowledge and skills. 
Considering the student group and project team as subjects, we influence the content 
of other buckets that have both common and specific subject-oriented components. 

The object-bucket for student group relates to both short-term goals (engaging 
conceptually in a MM activity, learning new mathematical practices and skills, 
solving assigned problems and enhancing specific learning outcomes in relation to 
the effort they are prepared to expend) and long-term goals (preparing for the exam, 
acquiring knowledge useful for the employment and professional life). Students’ 
responses to the questions “What are your expectations of today’s activity?” and 
“Why did you choose to participate in today’s activity?” partly confirm this descrip-
tion: “Know more mathematics than what I did before I came” and “Have failed 
MAT101 2 times. Need all the help I can pass on my 3rd and last attempt” (S1). “I 
expect to have some fun and to learn something new” and “I thought that I might 
enhance my mathematical skills and that is always a good thing” (S2). There were 
other opinions too: “I expect to learn all about mathematics, but maybe have some 
fun solving problems” and “Mainly the gift card but biology + math sounded inter-
esting” (S3). “I do not have a lot of expectations; I do however expect to learn … 
how mathematics can be used in biology” and “I chose to participate mostly because 
of the gift card and because I didn’t have anything else to do today” (S4). For the 
project team, the object-bucket is filled with the short-term goals targeting students 
learning (engage students conceptually with MM, enculturate students into a way of 
doing mathematics in the ways professional mathematicians do, develop students’ 
motivational and technical skills) and long-term goals (gaining a new experience, 
expanding own teaching repertoire, improving own teaching for mathematician, 
exploring the impact of MM tasks on students’ interest in mathematics learning, 
analysing mathematician’s teaching for ME). 

The tools-buckets include mediating artefacts directly related to classroom 
discourse, communications and management. Common parts for students and project 
team include time allocation for the sessions, MM tasks (new and previously
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seen), problem-solving strategies, small groups, MM project, mathematical symbols, 
concepts, results and procedures, language, discourse and gestures, relations of 
trust and comfort within the classroom. Group-specific parts include pedagogical 
tools, strategic planning, professional literature and teaching materials, theoretical 
concepts underpinning the innovation, mathematician’s reflections on teaching and 
learning sessions and educators’ feedback for the project team, social life, other 
students, parallel coursework and related academic demands for students and varia-
tions of common elements (mathematical symbols, concepts, results and procedures, 
language). The tools-buckets dynamically expand during the project and should even-
tually contain all intellectual tools comprising the relevant knowledge of advanced 
mathematics and its applications along with the acquired experience of MM. 

Two communities in AT are brought together by a shared object which “gener-
ates a perspective for possible actions within the activity” (Engeström & Sannino, 
2018, p. 46). A wider community includes fellow students, librarians, family, friends, 
educational officials and policymakers. Relations within and between the commu-
nities are mediated through common rules (study curriculum, departmental and 
university regulations and procedures, expectations of teachers and students by the 
university and wider education system, socio-mathematical norms, class culture, 
conventions for decision-making, behaviour, expectations of peers) and specific rules 
(educator’s pedagogy, probing and questioning techniques, scaffolding, assessment 
criteria for students’ work, class grouping by ability and social ties). Communi-
ties and object interact through the division of labour with well-defined roles and 
responsibilities of educators and students who also have certain expectations of each 
other’s roles. These buckets are filled with task distribution and cooperation within 
the project team, planning, preparation and reviewing of activity by the project team, 
support of administration, student-centred pedagogy, educator’s interventions, vali-
dation of solutions to MM tasks, student collaborative agreements. AT views all 
components of the activity systems as dynamic, continuously interacting with each 
other and not as their simple collection. Two interacting activity systems in Fig. 11.2 
capture the complexity of our MM project in its wholeness and allow us to examine 
specific elements of the activity systems, the interaction between the systems and 
the elements within the systems, as well as their contributions to the whole.

11.6 Methodology 

The implementation of novel teaching methods and technologies in activity systems 
creates tensions expressed as resistance to achieving the object. In our project, 
students’ traditional views on mathematics were challenged by introducing new ideas 
and techniques of MM. Conventional solution routines were confronted by the tasks 
where approaches to solution were either new or unusual, or both. The organisation 
of the problem-solving blocks with minimal or no scaffolding challenged students’ 
views of a mathematics class. We expected contradictions to arise, their signs were
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Fig. 11.2 Methodological onion for analysing the discursive manifestations of contradictions (from 
Engeström & Sannino, 2011, p. 375)

discussed by the project team already during the project and recorded in the observa-
tion notes. These mainly fall into three categories: (i) mediating artefacts—students’ 
mathematical language and tools, solution strategies, ways of communication; (ii) 
communities (teacher-students) rules and expectations from the MM project in the 
students group and project team; and (iii) division of labour in terms of students’ 
understanding of the roles for the students group and the project team. 

Since several kinds of tensions were anticipated, deductive thematic analysis of the 
data was conducted to identify the presence of contradictions in our activity system. 
When the list of tensions-related themes was generated, we looked for discursive 
manifestations of contradictions employing descriptions and linguistic cues in Table 
3.1 or simple linguistic cues shown in Fig. 11.2. Full session transcripts were analysed 
for Problem A (two groups, 5,074 and 7,873 words) and Problem B (three groups 
with 919, 1,514 and 2,420 words, respectively1 ). Seven vignettes for this chapter 
were selected from five parts of transcripts to illustrate tensions they succinctly 
demonstrate through discursive manifestations. For the sake of the readers, rudi-
mental linguistic cues (RLC) identified in the analysis of students’ work are marked 
in the vignettes that follow. The units were coded with respect to the nature of 
tensions (student engagement, understanding of MM task, etc.) and also according to 
their relation to primary contradictions within the nodes or secondary contradictions 
between the nodes of the activity system (object, division of labour, etc.).

1 Word count includes speaker labels (Student 1, Teacher), time stamps (01:00, 01:26–01:38) and 
transcript writer’s comments (“inaudible”, “students work silently”). 
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11.7 Identification of Tensions 

As expected, tension of working in an interdisciplinary team was felt due to the 
lack of previous collaboration between mathematicians, mathematics educators and 
biologists and the lack of experience in the organisation of similar activities; tensions 
sparked when the project team could not agree on all details ahead of sessions. The 
author did not always favour critique targeting the tasks selected for the sessions and 
the ways the sessions were conducted; mathematics educators had certain difficulties 
with the mathematical content. These tensions are not reflected in transcripts; they 
would have settled rather smoothly in a longer run; yet they point towards primary 
contradictions within the subject in the project team activity system and secondary 
contradictions between different communities. 

On several occasions, the tension of students’ engagement was observed—with 
the lack of progress, enthusiasm vanished. Most students did not engage with home 
assignments and did not prepare for the sessions as expected; working on challenging 
MM problems, some students could remain engaged during the entire problem-
solving session but others did not sustain lasting interest and became less active over 
time. At certain point, students started getting annoyed and bored by the lack of 
progress, as illustrated in the following vignettes.2 

A4: I kind of don’t see the math… 
A1: No, me neither. But can we come up with an answer? [RLC: double bind] 
A2: No. 

B4: I am really just looking forward to getting the answer because this was damn 
annoying! [RLC: critical conflict] 

B2: Hmm, but I think I will be just as annoyed then, because there is no final 
decision. But what can be assumed it will be fun to hear. 

C1: This is not fun math, this is boring. [RLC: critical conflict] 
C4: It is kind of interesting. 
C2: Yes, it is. 
C1: Yes, it is interesting, but it is not fun. [RLC: dilemma] 
C2: But when you have to invent so much, it is like that! 

We observed the tension of the understanding of the modelling task by students, 
like understanding of the meaning of “easily recognizable jackrabbits” along 
a highway in Task A (illustrated in the following vignette) or the meaning of “resi-
dence time” in Task B. In the beginning, students often could not understand what 
they were supposed to do in the tasks. 

D1: It says that they are a kind of “easily recognizable”, so then they have been 
dissolved or eaten, or something like that.

2 Author’s translation from Norwegian. In each episode, students are identified with different capital 
letters and numbers because the size and composition of small groups in sessions differ. The data 
were anonymised, so E1 and C4 may well be the same person. 
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D5: No. [RLC: conflict] 
D1: So, we say then that it is a day that is the limit for it? 

We also acknowledge the tension of the students’ comprehension of mathematical 
content which was not always matching their previous experience. Students faced 
difficulties with the understanding of mathematical terminology, interpretation of 
graphical and numerical information, as illustrated in the following vignette where 
Problem B is discussed. 

E1: Oh? Do we have to figure it out? I thought we should just evaluate [eval-
uere/verdere in Norwegian] somehow. 

E2: No, we have to calculate [beregne/regn ut in Norwegian] something, we have 
to get the residence time. [Double bind] 

F2: What the hell is this with plus minus and the stuff there. Is there uncertainty? 
[RLC: critical conflict] 

F1: There is an uncertainty about… 
F2: Yes, but then, plus three hundred minus one hundred... [RLC: dilemma] 
F1: Then it is two hundred. 
F4: Why does it [the task] say that? 
F1: I do not know... 
F4: I would understand it if it were a sort of uncertainty, but plus three hundred 

minus one hundred makes something like plus two hundred? 
F3: I do not understand what we are doing. [Double bind] 
F4: It may be that it is just a typing error. 

Finally, the tension of working on a modelling task was noticeable—students had 
difficulties making assumptions and choosing solution strategies. They sometimes 
replaced analysis by guessing and ignored material introduced during the sessions. 
Students relied more on (biological) intuition rather than on mathematical methods 
and ideas explained to them in the sessions. Their experience with numerical data, 
discrete models and statistical methods in biology courses influenced approaches to 
the solution of MM tasks. On the one hand, students felt less comfortable working 
with continuous models based on differential equations and preferred discrete ones. 
On the other hand, students faced difficulties with open-ended tasks with insufficient 
data where additional assumptions are needed or missing data should be added. For 
example, in Task A, students made meaningful assumptions about traffic intensity 
during the day, expected highway’s width and vehicle’s speed on a highway. However, 
without a clear solutions strategy, they eventually gave up construction of a mean-
ingful mathematical model and opted for guessing the percentage of rabbits that are 
hit on a highway by passing vehicles. In agreement with the empirical research 
on teaching and learning of MM—“learners are afraid of making assumptions” 
(Blum 2015, p. 79), understanding of what assumptions should be made to advance 
towards solution remains the biggest stumbling block for students, as illustrated in 
the following vignette. 

H1: Yes, you have to estimate something then.
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H2: Yes. (pause) Yes… Difficult. Hmm. 
H1: No, because we do not have all the information we need, in a way, so we have 

to estimate that … to make the best possible model. [RLC: conflict] 
H2: There will be so many assumptions […] One is so used to doing assignments 

which say this should be like this and like that. 
H3: Just have to assume one more time then, just make it even more uncertain. 
H1: No, you have to assume then as they [the project team] say, and somehow the 

whole model is based on how well you have assumed things. But if you are to 
assume that percentage correctly, you almost have to stand up and count how 
many rabbits cross the road and how many are run down. [RLC: conflict] […] 

H1: Everything is assumptions. 
H3: There are only assumptions here. […] Yes, we can put a lot of assumptions 

more, but it just makes one even more lost somehow. [RLC: dilemma] 
H1: Yes, but it will not be more secure, it will only be uncertain… [RLC: dilemma] 

11.8 Contradictions and Expansive Learning 

Contradictions can potentially result in the transformation of the activity system, 
but this may not necessarily happen. When individuals or subgroups (the subject) 
experience problems, conflicts, disturbances originating from the contradictions 
in the activity system, they attempt to change the system to alleviate tensions. 
However, contradictions cannot be resolved by individual actions alone, crucial 
changes require cooperative actions that result in the development of a historically 
new form of activity. Ultimately, “an expansive transformation is accomplished when 
the object and motive of the activity are reconceptualized to embrace a radically wider 
horizon of possibilities than in the previous mode of the activity” (Engeström, 2001, 
p. 137). The process of using contradictions for promoting change, known as expan-
sive learning, should be understood as “construction and resolution of successively 
evolving contradictions” (Engeström & Sannino, 2010, p. 7), and as the learning of 
“what is not yet there” (Engeström & Sannino, 2011, p. 374). 

In our MM project, primary contradictions were observed within the subject 
(engaged learners vs passive participants), tools (new methods of population 
dynamics vs student’s traditional mathematics toolkit), rules (student-oriented 
learning in MM sessions vs teacher-centred pedagogy in regular classes), object 
(scientifically grounded understanding of phenomena vs naïve, intuitive interpreta-
tion of the reality), division of labour (minimised teacher’s scaffolding vs increased 
independent students’ work). Secondary contradictions were manifested between the 
rules and object (students’ need to be mathematically literate and acquire skills useful 
for professional life vs the need to perform well in the exam; instructor’s wish to infuse 
teaching innovations vs curriculum constraints, time and performance pressure), 
between the tools and division of labour (originating from the new thinking required 
by MM tasks vs intentional minimalistic scaffolding clashing with learners’ expecta-
tions from the ways the learning of mathematics should be organised), and between
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the community and object (in the form of a conflict between the object of creating 
numerate mathematicians and students’ conventional perceptions of mathematics 
and their previous bad experience with it). 

The project was sufficiently long to spot the tensions prompting contradictions in 
our activity system, but not long enough to resolve them. However, we can recognise 
possibilities for the expansion of our activity system, a transition process from actions 
performed by the project team and students to a new collective activity (Engeström, 
2001). After the second session, students stopped working on take-away assignments; 
this required on-spot action. We recognise the change of the strategy in response to 
students’ reluctance to work with assignments at home, author’s experiments with 
“unstructured” and “overstructured” tasks as clear signs of expansive learning. The 
expansion originates from the tensions experienced in the first part of the project 
during which multiple primary contradictions were manifested within the subject 
(students were less engaged when they did not know how to approach the task), 
tools (adaptation of new solution techniques was not easy but known methods failed 
to work), rules and division of labour (traditional lecturing and problem-solving 
sessions students were replaced with a small group work without support). 

Contradictions manifested in the project remained unresolved, but the motivation 
of the project team and the positive feedback from the student group prompted 
promising perspectives for expansive learning. For instance, student difficulties with 
assumptions in MM are well documented (Blum, 2015; Blum & Borromeo Ferri, 
2009; Blum & Leiß, 2007) and were also clearly visible in the project. However, many 
students mentioned the work with assumptions as the best thing in the project: “It 
made me think in a different way than usual and it was exciting. Making assumptions 
was new to me” (S5). “The way we got explained how we can make assumptions and 
overlook and add variables” (S6). “The assumptions. To understand what assumption 
is important and which is not” (S7). There were many answers confirming that the use 
of MM in teaching biology undergraduates stimulates their interest in mathematics 
and its interdisciplinary applications: “It was interesting to try to solve problems 
without knowing all about them” (S8) and “It was social and challenging; it was also 
very interesting to experience new educational methods” (S9). We leave aside two 
personal aspects that may both create tensions in the activity system and pave the way 
to its expansion: the author’s passionate way of teaching mathematics might not be 
suitable for some students and his belief that in the process of learning mathematics 
thinking as a mathematician is more important than getting correct answers does not 
align well with the current university pedagogies. 
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Chapter 12 
Seeing the Forest for the Trees: 
Investigating Students’ Data Moves 
in a Citizen Science Based 
Model-Eliciting Activity 

Jeffrey A. McLean, Corey Brady, Hyunyi Jung, Angeles Dominguez, 
and Aran W. Glancy 

Abstract Citizen Science provides the means for students to engage in collecting 
and analysing data important to their local environments. In this chapter, undergrad-
uate students in the United States participated in a model-eliciting activity to make 
sense of large, complex, and messy data sets gathered in connection with a citizen 
science project. We focus on the data moves that students performed to manipulate 
the data into a manageable form. These data moves showed how student groups 
oriented towards the data as capturing a phenomenon in the records. We argue that 
model-eliciting activities offer entry points to appreciate the complexity of citizen 
science as a practice and the value of the scientific questions that citizen science 
projects are engaging. This has merit not only in providing an “application context” 
but also in providing a gateway into participating in citizen science efforts.
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Keywords Data moves · Citizen science ·Model-eliciting activity ·Models and 
modelling perspective · Statistics education 

12.1 Purpose of the Study and Related Literature 

In citizen science, communities of volunteers participate as creators of valuable 
datasets that can both support and motivate scientific research into topics that are 
important to those communities (Crain et al., 2014; Haywood, 2013). In turn, this 
research can provide both support and motivation for informed community action. 
The cyclic relation between these phases of research and action offers opportunities 
for unique combinations of learning, agency, and community connectedness. 

In addition to this virtuous cycle linking knowing and doing, citizen science 
allows scientists the opportunity to work with volunteers to collect large multivariable 
datasets with potentially large spatial or temporal scales (Aceves-Bueno et al., 2017; 
Brossard et al., 2005). The challenge of making sense of these complex datasets offers 
rich opportunities for building data literacy (Wolff et al., 2016) and incorporating the 
full range of data moves (Erickson et al., 2019) necessary to gather, construct, clean, 
operate upon, and make meaning from data. Moreover, the shift towards modelling 
in statistics education (Pfannkuch et al., 2018) connects with the stance of citizen 
science towards acting and understanding as dialectically linked. Connecting these 
complex data with context, which is required in citizen science, is a key component 
in statistical modelling. Pfannkuch et al. (2018) described how modelling can be a 
rich research site in which to promote learners’ statistical reasoning processes. The 
modelling process in statistics education would benefit citizen science that often 
involves understanding of large, complex datasets. 

12.1.1 Models and Modelling Perspective 

The framing of this chapter is within the Models and Modelling Perspective, which 
posits that ideas are developed through conceptual entities called models, defined 
as conceptual systems “that are expressed using external notation systems, and that 
are used to construct, describe, or explain the behaviors of other system(s)” (Lesh & 
Doerr, 2003, p. 10). Model eliciting activities, or MEAs, are constructed to encourage 
students to generate descriptions, explanations, and constructions to reveal how they 
are interpreting and mathematizing problematic situations. This affords a context for 
researchers to investigate students’ developing mathematical constructs (Lesh et al., 
2000). 

The Models and Modelling Perspective and model-eliciting activities (Doerr & 
English, 2003) provide environments for serving these goals, as they offer simulations 
of realistically complex modelling challenges that occur in the world (and in this case, 
in the enterprise of citizen science). Model-eliciting activities encourage students to
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generate descriptions, explanations, and constructions in order to reveal how they 
have interpreted situations (Lesh et al., 2000). 

While the Models and Modelling Perspective is rooted in mathematical modelling, 
there is much similarity between mathematical and statistical modelling. Both forms 
of modelling emphasize a real-world context that involves generating, using, evalu-
ating, and revising models and yet, there are differences. Often central to statistical 
modelling is an understanding of uncertainty, which may not be a focus of mathemat-
ical modelling (Langrall et al., 2017). Recent work has extended the use of model 
eliciting activities into the area of statistics education, with focuses on students’ 
development of the uncertainty and variability inherent in data (Ärlebäck & Frejd, 
2021) and leveraging this uncertainty to draw informal inferences between groups 
of data (Doerr et al., 2017). Aymerich et al. (2017) argue that the structure of model-
eliciting activities allows for modifications of the activities to focus on different 
concepts, such as increasing the amount of data available to students, thus creating 
a data-rich activity, where students would have to first choose what aspects and 
structure of the are necessary to form and complement their conceived models. The 
multi-vocal nature of large datasets raises the question of what phenomena are being 
described and what are the focus of the modelling attention. 

Citizen science provides a means for students (and members of communities 
more broadly) to use data collection, statistical thinking, and modelling to engage 
with their local environments around issues and questions that concern them. It 
thus uses the power of quantification, as a framework for promoting and structuring 
civic understanding and participation. Model-eliciting activities provide a means for 
students to use mathematizing and modelling to engage with realistic situations in 
which they assist a real or imagined client in interpreting a dilemma mathematically 
and addressing it. MEAs thus also can use the power of quantification, as a framework 
for promoting and structuring collaborative modelling in service to a client. This 
chapter explores the intersection of citizen science and model-eliciting activities. 

In this chapter, we aimed to address the question, how can a data-rich model-
eliciting activity connected to a citizen science effort provide an environment for 
making meaningful data moves with an appreciation of their consequences? 

12.1.2 Data Moves 

Many have argued for the need for students to work with multivariate and complex 
data sets (Carver et al., 2016; Engel, 2017; Kaplan, 2018; Lee et al., 2021). With 
large complex datasets, the data preparation component of data analysis warrants 
more attention in curricula (Wilkerson et al., 2021). The data preparation action of 
a data move is defined as “an action that alters the dataset’s contents, structure, or 
values”. Erickson et al. (2019) assert that there are six core data moves: filtering, 
grouping, summarizing, calculating, merging/joining, and making hierarchy.
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• Filtering—removing extraneous or irrelevant cases, or reducing the complexity 
or quantity of data to aid in drawing insights

• Grouping—grouping or categorizing subgroups of the data in order to set up 
comparisons

• Summarizing—producing a summary or aggregate value
• Calculating—creation of a new attribute in the data involving a calculation using 

other values in the data.
• Merging/Joining—combining multiple datasets to analyse the same phenomenon 

using data from different sources.
• Making Hierarchy—construction of nested structures in the data in order to 

explore relationships between the parent and child structures. 

For this chapter, we are not asserting that the use of these data moves when 
investigating data have value on their own. These are tools that are used to manipulate 
data, which would serve a valuable role in citizen science when considering a large 
amount of complex data. In addition, it is the meaning and the thought behind the 
use of these tools with respect to the data at hand that shows the complexity of their 
use. 

While the concept of a data move could be generalized to broader manipula-
tions of data to draw meaning, such as the creation of visualizations, we are explic-
itly excluding this broader definition. Wild and Pfannkuch (1999) put forth another 
conceptualization of manipulating data in their discussion of transnumeration, as the 
“dynamic process of changing representations to engender understanding” (p. 227). 
We are viewing data moves as a needed precursor to such a change in representation 
and possibly a first step in the process of creating a visualization, which would be a 
beneficial process in citizen science. 

12.1.3 Monitor My Maple 

This chapter will focus on student work associated with a model-eliciting activity 
developed in partnership with a local organization’s citizen science project. Nature Up 
North (https://natureupnorth.org/) is a community-based organization in the North-
eastern United States, whose mission is to foster a deeper sense of appreciation for, 
and connection to, the local environment. The organization marshals citizen science 
projects that engage the community to collect data that is meaningful for local and 
global communities, contributing to research by expanding the understanding of 
local and global issues such as climate change, invasive species, and more. One such 
citizen science project is Monitor My Maple, which focuses on sugar maple trees 
(acer saccharum). 

Since 2013, residents of a community in the Northeastern United States, of all 
ages, have participated in the Monitor My Maple project to observe the phenology, or 
timing of seasonal changes, in local maple trees. This project is motivated by research 
that has noted a decline in sugar maple tree growth (Minorsky, 2003). Sugar maple

https://natureupnorth.org/
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trees have been observed to be suffering from a series of decline symptoms including 
branch dieback, leaf discoloration, and sparse foliage. Factors suggested as possible 
contributors to the exacerbation of this decline are global warming, soil conditions, 
pollution, acid rain, and invasive species. Understanding the data collected in this 
project could ultimately lead to an understanding of the causes of changes in the 
maple tree population. From the perspective of a model-eliciting activity, Monitor 
My Maple offers rich opportunities for interpreting data and providing data-based 
evidence for claims. 

12.2 Methods 

The data for this study were collected from students in three introductory statistics 
classes at a small university in the Northeastern United States. Eighty-four students 
were enrolled in total among the three classes, working together in randomly assigned 
groups of three to four students. Approximately one-third of the way through the 
semester students were assigned the model-eliciting activity, after covering statistics 
coursework on descriptive statistics. 

12.2.1 Model-Eliciting Activity 

The activity introduces the students to the Monitor My Maple project with Nature Up 
North “hiring” them as statistics consultants (Williams & McLean, 2017). Students 
are told that over the previous five years, the project has gathered data from thousands 
of local maple trees involving dozens of variables. As the data were gathered by 
volunteers of all ages, it is a large, complex, and messy data set that may not be in 
an optimal format for the analyses students wish to perform. Nature Up North asks 
the groups of students to produce a memo for them that includes the methods that 
they used to create a useful format of the data for analysis, any assumptions that 
they made, additional requests for information that would aid in their methodology, 
and their investigation of relationships in the data, including any statistics or figures 
that they have created to make sense of sugar maples’ health in the North Country. 
Students worked for approximately one month outside of class on the assignment, 
submitting a written final report to Nature Up North containing their methodology 
for analysing the data, and their analysis. 

The participants were given two data sets, with data divided into being collected 
in the fall (autumn) and during the spring. The fall data were collected over the years 
2013 to 2015 over 24 variables with 1479 observations of local trees. The spring data 
were collected over the years 2014 to 2016 over 23 variables with 606 observations 
of local trees (See Fig. 12.1). Some variables, such as the location and species of 
maple tree, were collected in both data sets, but many of the variables were specific 
to the season in which they were collected, such as the stage of trees’ leaves dropping
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Fig. 12.1 Snapshot of a selection of the cases and variables in the spring maple tree data 

in the fall and flowering and leaf growth in the spring. Some trees in the data sets 
were given a unique tree identification number, allowing students to compare those 
trees across years and seasons. 

12.2.2 Data Analysis 

Participant groups’ submitted reports, with their choices of approaches to the MEA, 
were analysed using the six core data moves (Erikson et al., 2019) as a lens to view 
groups’ perspectives. Initial coding of the submissions identified which data moves 
were demonstrated in the work of each of the submissions. We recognized that the 
choices groups made when using filtering data moves formed a basis for their future 
analysis of the data. Submissions were thus grouped by the forms of filtering data 
moves used to analyse the data. In our findings, we describe three major approaches 
that show various ways in which students made meaningful filtering data moves with 
an appreciation of their consequences. 

12.3 Findings 

Students worked with large, messy, and complex data sets during this model-eliciting 
activity, which included data such as trees’ habitat, information regarding the timing 
for when trees’ leaves changed colour and dropped in the fall, notable disease and 
damage of the trees, and the trees’ trunk circumference. This offered students a 
variety of questions to pursue and ample data to use in answering these questions. 
These findings will focus specifically on the data moves that students made in the 
initial formulation of their problems. A first step, before analysing the data, was to 
determine what data to analyse. We provide sample episodes from three groups to 
illustrate different forms of filtering data moves, with increasing levels of complexity 
that emerged as a means of manipulating the data for analyses. We assert that that
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filtering is a key component of modelling process, especially when citizen science 
often involves the use of large sets of data to solve a real-world problem. 

12.3.1 Filtering for Convenience 

The first group of students focused on analysing a broad range of relationships across 
the datasets and variables with minimal collaboration on the filtering of the data. 

...we assigned half the group members to analyze fall data and half to analyze spring data. 
We believed that this would allow each group member to make specific discoveries about 
maple trees that correlate with a particular season rather than coming to general conclusions 
about both seasons. Due to the vast amount of data provided, each group member had the 
freedom to choose whatever part of the data they wanted to analyze as long as they felt it 
would sufficiently represent the general health or “status” of the maple trees. 

This group does propose the data move of filtering by restricting the variables in 
the data that they believe can be seen as a proxy for the health or status of the maple 
trees. We view this as the least complex of the moves discussed in this chapter, since 
the group divided the data amongst members for individual analysis for convenience, 
while sacrificing the value of collaboration as a whole team across the data. Each 
group member had the freedom to choose whatever part of the data they wanted to 
analyse, which might have led them to assume the data variables were independent 
or prevented them from constructing statistics that drew on multiple variables. 

12.3.2 Filtering for Robustness 

In the second group, students focused on the robustness of the structure of the data 
itself, without consideration of the context or relevance of specific variables. This 
included identifying variables with few missing cases spanning the available data, 
variables that existed across both datasets, and categorical variables with many cases 
for each category. The students drew on relationships between the existing data and 
what they viewed as needed for data analysis yet did not yet consider how this choice 
impacted possible research questions or conclusions that they could draw from the 
data. 

Given the vast yet categorically sparse amount of data, our group decided to focus on two 
variables that were not only present to a significant degree (i.e. sample size was significant 
and or data was available over three or more periods of time). 

This group was responsive to the quality and depth of the data first, deferring 
questions of the data’s meaning for their inquiry until later. We see this filtering 
move, restricting the data set to its most dimensionally robust elements, as “cleaning 
by filtering”. Next the group of students filtered the remaining data with purpose, in
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order to identify the variables that they did not believe had an impact on the health 
of the maple trees. 

Other data offered such as the location of the sugar maple trees (longitude and latitude), 
habitat and shade although consequential in the development of the trees was of minimal 
significance in data processing and analysis as data on them was relatively sparse. It was the 
general assumption that all the trees grew under the same conditions- for ease of categorizing 
under other variables to yield a significant sample size. 

In the case of the data for trees’ habitat, the citizen scientists collecting the data 
had the option of predefined habitat descriptors, such as school or home lawn, paved 
area, park, or natural setting. This group chose to filter out this variable without 
analysing the habitat data not only because of the assumption of minimal impact on 
tree health, but also because it led to grouping across multiple other variables having 
small sizes. The group of students again returned to robustness of the data as the 
driving force in their data preparation. 

After the data were filtered, the group of students then proposed applying the data 
moves of grouping and summarizing to further analyse the circumferences of the 
trees by year. 

Data on circumference of sugar maples was tabulated in three categories: fall 2015, spring 
2016 and fall 2016. The count for each year was noted as 296 and 293 trees respectively. 
Note that the count for the year 2017 was ignored as data for two trees only was available-
this was too small a sample size. The count for the year 2016 was further divided into spring 
and fall and separate counts made manually. Averages were then obtained and a bar graph 
created to illustrate the decline in average circumference. Standard deviation was calculated 
but not added to the graph. Note however that the standard deviation for 2015 was much 
higher than that of 2016 therefore despite obtaining a graph that showed a slow decline, the 
decline could potentially be higher if one considers the significantly larger width interval of 
data from 2015 

They now filtered out certain groups of trees that as before had a small sample 
that the students believed impacted the robustness of the data. By summarising the 
circumferences with measures of centre and spread, the group could begin to make 
inferences about the population parameters of the trees based on the variability of 
the data. 

12.3.3 Filtering with Purpose 

The third group drew connections between self-generated research questions and 
identified aspects in the data that could serve as proxies to give insight to their 
specific research question. 

Our group’s approach was to focus specifically on the effect of human development (i.e. 
roads, buildings, etc.) on sugar maples and to conclude whether or not these factors contribute 
to any decline in sugar maple growth rate. We supposed that development of this nature 
leads to pollution and poor soil conditions, two possible contributors to the decline in sugar 
maples. We used this approach with the assumption that, over time, human developments
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have expanded in the North Country, thus showing adverse effects of this development will 
imply a decline in sugar maple growth. We wanted to investigate maple tree health by looking 
at trees’ sugar content. Unhealthy maple trees produce less sugar, which causes the leaves 
to turn more yellow and brown and fall off of the trees earlier in the fall season. Although 
we did not have data pertaining to the sugar content of the sugar maples, we did have access 
to data on the time leaves change color as well as the time leaves started dropping. 

This group made and clearly stated their own assumptions and described their 
interpretations of the situation with the purpose and rationale. This data move reflex-
ively identified meaning and robustness in the data set. It defined and refined questions 
of interest responsively with a search for the data’s potential to support inferences 
about those questions. The students filtered the data with meaning and intended to 
group and summarise the variables that they believed would address their research 
questions. 

These students also used the data move of calculating to recode a variable in the 
dataset to allow for comparison between groups, the grouping and summarizing data 
moves. They discussed the possibility of various calculations that could be done on 
the data to form this grouping, and they used the context of the data, along with 
their knowledge of the phenology of the maples tree, to decide on the most practical 
calculation. 

As our response variables, we checked tree circumference and whether or not the tree had any 
visible damage. In order to use the damage data, it was necessary to take a random sample 
from the data set and use damage as a binary categorical variable. This is because surveyors 
made notes as to the damage done to the tree, so sifting through 1,470 notes would have 
been tedious. If a surveyor made any note of damage, we recorded it as a positive result. It 
would have been preferable to use leaf color and leaf dropping data as our response variables, 
however, it did not seem practical. To accurately use this data, it would have been necessary 
to take into account the date on which the data was recorded, as time is a confounding 
variable in this instance. Our group only used the Fall_Maples data set for the sake of ease, 
because in theory, none of the variables we tested would have yielded different results in the 
spring 

The students recognized that they could have grouped and summarized the data 
in a manner that did not require calculation but understood that in this situation 
these data moves would not have provided them with a robust conclusion about the 
data. The choice of taking a random sample of the data could be considered a data 
move related to filtering. In this case, the choice of the trees to consider was random, 
rather than purposeful. The students asserted that this was due to the nature of the 
calculation, and a lack of the tools to automate this process. 

12.4 Discussion and Conclusion 

Model-eliciting activities at the intersection of statistical modelling and citizen 
science offer rich opportunities to engage with and hence appreciate both the strengths 
and the challenges of citizen science projects. In this study, we have focused on 
students’ initial approach—performing data moves that determine the match between
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further statistical analysis on the one hand and the meanings and inferences they wish 
to produce from the data on the other. These moves are fundamental to a modelling 
approach to statistics education, and the consequentiality of these moves is high-
lighted in the citizen science context. Moreover, they provoked students’ reflections 
on procedural changes in the citizen science work and protocols that could enhance 
the data set’s quality and utility. Viewing the data as the (on-going) product of a 
social process opens that process to design and refinement as well as making it real 
and tangible. 

Investigating the different data moves performed between the three groups 
provided an insight into how the six core data moves can constitute an analytical 
tool for researchers to explore students’ engagement in the integration of a model-
eliciting activity and citizen science. With the illustration of students’ major forma-
tion of problems, instructors learn about students’ initial approaches to data moves. 
This information can help instructors to provide a follow-up task. For example, 
instructors may open up a whole-class discussion with students and ask the following 
questions: “Which data did you remove to reduce the complexity of data, and why?” 
(Filtering), “How did you categorize subgroups of the data?” (Grouping), “How 
did you use data summaries to make sense of your data?” (Summarising), “Did any 
group create a new attribute in the data using other values in the data?” (Calculating), 
“How did you combine multiple datasets and data from other sources to answer your 
question?” (Merging/Joining), and “Can you develop a concept map of the character-
istics of the data that shows relationships between the parent and child structures?” 
(Making hierarchy). These questions could be also used as a written guideline for 
students to refine their draft ideas. Future studies may develop a list of sub-questions 
around the six core data moves (Erikson et al., 2019) that can be used to provide 
feedback to students (for instruction) and to provide new lenses to analyse a data-rich 
model-eliciting activity connected to citizen science. 

Finally, our experience also suggests that the data moves students enact in citizen 
science model-eliciting activities may provide them with contact with a figured world 
(Holland et al., 2001) of participation in citizen science efforts. Engaging with the 
design challenges of these social practices provides a conceptual entry point for 
learners. This possibility could offer an extremely rich area for future research, 
particularly in the light of the fact that citizen science intersects increasingly with 
school-based learning at younger levels, providing a powerful context for identity-
building work. 

References 

Aceves-Bueno, E., Adeleye, A. S., Feraud, M., Huang, Y., Tao, M., Yang, Y., & Anderson, S. E. 
(2017). The accuracy of citizen science data: A quantitative review. Bulletin of the Ecological 
Society of America, 98, 278–290. 

Ärlebäck, J. B., & Frejd, P. (2021). The red book activity: A model eliciting activity to introduce 
and initiate a section on statistics focusing on variability and sampling. In F. K. S. Leung, G. A. 
Stillman, G. Kaiser, & K. L. Wong (Eds.), Mathematical modelling education in East and West:



12 Seeing the Forest for the Trees: Investigating Students’ Data Moves … 203

International perspectives on the teaching and learning of mathematical modelling. Springer, 
Cham. https://doi.org/10.1007/978-3-030-66996-6_50 

Aymerich, À., Gorgorió, N., & Albarracín, L. (2017). Modelling with statistical data: Characteri-
sation of student models. In G. Kaiser & G. A. Stillman (Eds.), Mathematical modelling and 
applications (pp. 37–47). Springer. 

Brossard, D., Lewenstein, B., & Bonney, R. (2005). Scientific knowledge and attitude change: 
The impact of a citizen science project. International Journal of Science Education, 27(9), 
1099–1121. 

Carver, R., Everson, M., Gabrosek, J., Rowell, G. H., Horton, N., Lock, R., Mocko, M., Rossman, 
A., Velleman, P., Witmer, J., & Wood, B. (2016). Guidelines for assessment and instruction 
in statistics education (GAISE): College report 2016. American Statistical Association. http:// 
www.amstat.org/asa/files/pdfs/GAISE/GaiseCollege_Full.pdf 

Crain, R., Cooper, C., & Dickinson, J. L. (2014). Citizen science: A tool for integrating studies of 
human and natural systems. Annual Review of Environment and Resources, 39, 641–665. 

Doerr, H. M., Delmas, R. C., & Makar, K. (2017). A modeling approach to the development of 
students’ informal inferential reasoning. Statistics Education Research Journal, 16, 86–115. 

Doerr, H. M., & English, L. D. (2003). A modeling perspective on students’ mathematical reasoning 
about data. Journal for Research in Mathematics Education, 34(2), 110–136. 

Erickson, T., Wilkerson, M., Finzer, W., & Reichsman, F. (2019). Data moves. Technology 
Innovations in Statistics Education, 12(1), 1–24. 

Engel, J. (2017). Statistical literacy for active citizenship: A call for data science education. Statistics 
Education Research Journal, 16(1), 44–49. 

Haywood, B. K. (2013). A “sense of place” in public participation in scientific research. Science 
Education, 98(1), 64–83. 

Holland, D. C., Lachicotte, W., Jr., Skinner, D., & Cain, C. (2001). Identity and agency in cultural 
worlds. Harvard University Press. 

Kaplan, D. (2018). Teaching stats for data science. The American Statistician, 72(1), 89–96. https:// 
doi.org/10.1080/00031305.2017.1398107 

Langrall, C., Makar, K., Nilsson, P., & Shaughnessy, J. M. (2017). Teaching and learning prob-
ability and statistics: An integrated perspective. In J. Cai (Ed.), Compendium for research in 
mathematics education (pp. 490–525). NCTM. 

Lee, V. R., Wilkerson, M. H., & Lanouette, K. (2021). A call for a humanistic stance toward K–12 
data science education. Educational Researcher, 50(9), 664–672. 

Lesh, R., & Doerr, H. M. (2003). Foundations of models and modeling perspective on mathe-
matics teaching, learning, and problem solving. In R. Lesh & H. M. Doerr (Eds.), Beyond 
constructivism: Models and modeling perspectives on mathematics problem solving, learning, 
and teaching (pp. 3–33). Erlbaum. 

Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought 
revealing activities for students and teachers. In A. Kelly & R. Lesh (Eds.), Handbook of research 
design in mathematics and science education (pp. 591–645). Lawrence Erlbaum Associates. 

Minorsky, V. P. (2003). The decline of sugar maples (Acer saccharum). Plant Physiology, 133(2), 
441–442. https://doi.org/10.1104/pp.900091 

Pfannkuch, M., Ben-Zvi, D., & Budgett, S. (2018). Innovations in statistical modeling to connect 
data, chance and context. ZDM, 50(7), 1113–1123. 

Wild, C., & Pfannkuch, M. (1999). Statistical thinking in empirical inquiry. International Statistical 
Review, 67(3), 223–265. https://doi.org/10.1111/j.1751-5823.1999.tb00442.x 

Wilkerson, M. H., Lanouette, K., & Shareff, R. L. (2021). Exploring variability during data prepa-
ration: A way to connect data, chance, and context when working with complex public datasets. 
Mathematical Thinking and Learning. https://doi.org/10.1080/10986065.2021.1922838 

Williams, N., & McLean, J. A. (2017). Promoting active learning with maple trees. Family weekend: 
Honors reception. St Lawrence University, Canton, New York.

https://doi.org/10.1007/978-3-030-66996-6_50
http://www.amstat.org/asa/files/pdfs/GAISE/GaiseCollege_Full.pdf
http://www.amstat.org/asa/files/pdfs/GAISE/GaiseCollege_Full.pdf
https://doi.org/10.1080/00031305.2017.1398107
https://doi.org/10.1080/00031305.2017.1398107
https://doi.org/10.1104/pp.900091
https://doi.org/10.1111/j.1751-5823.1999.tb00442.x
https://doi.org/10.1080/10986065.2021.1922838


204 J. A. McLean et al.

Wolff, A., Gooch, D., Montaner, J. J. C., Rashid, U., & Kortuem, G. (2016). Creating an under-
standing of data literacy for a data-driven society. Journal of Community Informatics, 12(3), 
9–26.



Part IV 
Teacher Education in Mathematical 

Modelling



Chapter 13 
Pre-service Teachers’ Knowledge 
and Noticing Competencies for Teaching 
Mathematical Modelling Regarding 
Students’ Use of Metacognitive Strategies 

Alina Alwast and Katrin Vorhölter 

Abstract To independently solve complex problems, such as a mathematical 
modelling problem, students can use metacognitive strategies to overcome obsta-
cles and to ensure a smooth working process. Therefore, it is important for teachers 
to have knowledge on metacognition on the one hand and perceive and interpret 
the students’ (lack of) use of metacognitive modelling strategies on the other hand. 
In this chapter, we analyse the development of 52 pre-service teachers’ knowledge 
and noticing competencies for teaching mathematical modelling regarding students’ 
use of metacognitive strategies as well as the relationship between the two aspects. 
While the pre-service teachers’ knowledge regarding metacognition significantly 
improved during a modelling seminar, pre-service teachers’ noticing competen-
cies barely changed. A correlation between both aspects (r = 0.38***) could be 
demonstrated. 

Keywords Mathematical modelling ·Metacognition ·Metacognitive strategies ·
Noticing · Pedagogical content knowledge · Teacher education 

13.1 Introduction 

It is commonly acknowledged that teaching mathematical modelling is a challenge 
for students as well as for teachers (Blum, 2015). To independently carry out a 
modelling process, students not only need modelling sub-competencies required to 
get from one step of a modelling process to the next (Kaiser, 2007), but moreover 
metacognitive competencies are, among others, essential (Maaß, 2006; Stillman, 
2011). Metacognition describes thinking and reflecting about one’s own cognition 
and is used during the modelling process, for example, to plan the procedure, monitor
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one’s own as well as other group members’ approaches, or evaluate the modelling 
process in order to improve next time (Vorhölter, 2018). 

To support students in using metacognitive strategies during the modelling 
process, teachers need both knowledge about the concept of metacognition and to be 
able to react accordingly in a specific situation, i.e. notice students’ use or lack of use 
of metacognitive strategies. According to the model “competence as a continuum” 
(Blömeke et al., 2015), professional competence for teaching can be viewed as a 
process: Underlying dispositions influence situation-specific skills (noticing), which 
leads to an observable behaviour. Noticing describes the situation-specific cognitive 
processes needed to selectively perceive noteworthy situations, interpret them based 
on knowledge, experience and beliefs, and come to a decision about an appropriate 
reaction (Sherin et al., 2011). 

In this chapter, we will take a closer look at the competencies needed to support 
students’ use of metacognitive strategies in a mathematical modelling process 
(in short: metacognitive modelling strategies), especially teachers’ knowledge and 
noticing competencies accordingly. For this purpose, we will examine the devel-
opment of pre-service teachers’ knowledge and noticing competencies regarding 
students’ metacognitive modelling strategies during a modelling seminar and analyse 
the relation of these competence facets. 

13.2 Theoretical Framework 

13.2.1 Competencies for Teaching Mathematical Modelling 

Apart from the general competencies for teaching mathematics, teaching mathe-
matical modelling requires to be able to support students in following their indi-
vidual and sometimes unanticipated approaches to solve a modelling problem and 
adaptively react to a variety of difficulties. Niss and Blum (2020) stress the impor-
tance of common principles for teaching mathematics that also apply to mathemat-
ical modelling. Specifically for mathematical modelling, Borromeo Ferri and Blum 
(2010) conceptualize the knowledge and skills needed for teaching mathematical 
modelling in four dimensions, that is the theoretical dimension, the task dimension, 
the instructional dimension, and the diagnostic dimension.1 Using an instrument, 
which is based on the COACTIV model (Kunter et al., 2013) and the four-dimensional 
model by Borromeo Ferri and Blum (2010), Greefrath et al. (2021) showed, in partic-
ular, that pre-service teachers’ knowledge of modelling tasks, modelling processes, 
and interventions developed significantly during different types of modelling semi-
nars with medium to large effect sizes. Moreover, teachers’ own modelling compe-
tencies (as, for example, conceptualized by Kaiser, 2007) can be seen as dispositions. 
To support students in developing modelling competencies and independently solve

1 A fifth dimension regarding assessment is also mentioned, but considered as more relevant for 
in-service, less for pre-service teachers and therefore not further used in teacher education. 
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a modelling problem, teachers also need to recognize and foster students’ use of 
metacognitive strategies (Stillman, 2011). Newer conceptualizations of competence 
for teaching not only focus on teachers’ knowledge (as conceptualized by Shulman, 
1987) but also include situation-specific skills, or so-called noticing competencies. 
“Noticing is a natural part of human sense making. In our daily lives, we see and 
interpret based on our own orientations and goals. However, the noticing entailed by 
teaching is specialized to its purposes” (Ball, 2011, p. xx). Accordingly, noticing can 
be described as attending to a noteworthy aspect in a classroom setting (perception), 
making sense of it (interpretation) and coming to a decision about further actions 
(Sherin et al., 2011). The model “competence as a continuum” (Blömeke et al., 
2015) incorporates this concept and thus closes the gap between an analytic and 
holistic approach to teachers’ competence and thereby connects dispositions, noticing 
competencies and performance. In this model, a cause-effect relation from knowl-
edge on noticing is theoretically assumed. Few studies with different methods and 
designs achieved varying results regarding this relationship. For example, König et al. 
(2014) found evidence that interpreting depends on general pedagogical knowledge. 

We adapted this model and specified the concept of noticing competencies for a 
mathematical modelling context (Alwast & Vorhölter, 2021; see Fig. 13.1). Noticing 
within a mathematical modelling context requires looking through a specific lens to 
adaptively react to modelling-specific situations. It thus includes (1) perceiving class-
room situations relevant for mathematical modelling (such as students’ modelling-
specific difficulties, diverse approaches to solving the problem, and students’ (lack of) 
use of metacognitive strategies); (2) interpreting the perceived events based on meta-
knowledge about the characteristics of modelling problems and modelling processes; 
and (3) coming to a decision about an appropriate reaction based on the interpreta-
tion. Noticing modelling-specific incidents is dependent on one’s dispositions (i.e. 
modelling-specific pedagogical content knowledge, mathematical content knowl-
edge, own modelling competencies, and modelling-specific beliefs) in order to be 
able to adequately and adaptively intervene (see also Leiß, 2007; Stender, 2016) and 
competently promote students’ modelling competencies.

13.2.2 Metacognitive Strategies in Modelling Processes 

Metacognition is not defined consistently but was influentially described as 
comprising “one’s knowledge concerning one’s own cognitive processes and prod-
ucts or anything related to them … [and] the active monitoring and consequent regu-
lation and orchestration of these processes” (Flavell, 1976, p. 232). In general, it is 
theoretically distinguished into metacognitive knowledge, metacognitive strategies, 
and affective-motivational components (e.g. Veenman et al., 2006). In this chapter, 
we will only focus on metacognitive modelling strategies, which usually include 
planning (e.g. to weight different possibilities), monitoring (oneself or others) and 
regulation, and evaluation (of the working process, of strategies chosen, of the group 
work) (for example Veenman, 2011; Vorhölter, 2021).
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Fig. 13.1 Noticing within a mathematical modelling context (Alwast & Vorhölter, 2021) based on 
Blömeke et al. (2015)

As metacognition is especially important when working on complex problems 
(Hattie et al., 1996), the use of metacognitive strategies is essential for working 
independently and successfully solving a modelling problem. Therefore, metacogni-
tion is seen as a component of global modelling competencies (Kaiser, 2007; Maaß, 
2006). Frejd and Vos (2021) theoretically describe metacognition as an overarching 
layer over the modelling cycle in their framework for analysing modelling activities, 
which is closely connected to the cognitive dimension. Vorhölter et al. (2019, p. 5)  
distinguishes metacognitive modelling strategies into:

• strategies for planning the solution process considering 

– the task that has to be worked on, 
– the involved persons, 
– specific circumstances

• strategies for monitoring and, if necessary, regulating the working process, which 
can for example be done by 

– using the modelling cycle as a tool, 
– applying strategies systemically and goal-orientated 
– realizing cognitive barriers
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• strategies for evaluating the modelling process in order to improve the modelling 
process. 

According to Veenman et al. (2006), most students acquire metacognitive strate-
gies from their social environment. However, directly addressing those strategies by 
the teacher can foster their goal-oriented use. Furthermore, the use of metacognitive 
strategies is cognitively demanding for students and needs to be supported by the 
teacher. For this purpose, it is necessary to recognize which strategies the students use 
on their own and why these strategies are sometimes not effective, that is, teachers 
must engage in the process of meta-metacognition, as Stillman (2011, p. 4) defines 
it: 

During mathematical modelling activities in class, the teacher must monitor the progress 
of individuals or groups to intervene strategically only when necessary if the ultimate goal 
is to facilitate independent modelling. Thus, the teacher has to appraise the enactment of 
metacognitive activities by students […]. The teacher reflects on the students’ metacognitive 
activity both within the specific situation and with respect to its role in the modelling process. 
The teacher is thus engaging in a meta-metacognitive process. 

In the project MeMo, which was designed to foster students’ use of metacognitive 
modelling strategies and included three teacher trainings, teachers were interviewed 
and reflected on students’ use of metacognitive modelling strategies: The qualitative 
study was able to distinguish different types of teachers and their different levels 
of reflection. Moreover, the study showed that the teachers’ ability to perceive and 
reflect on students’ metacognitive modelling strategies could be fostered (Wendt, 
2021). 

13.3 Research Questions 

The use of metacognitive strategies is important for students to independently solve 
a modelling problem or other complex problems. To support the students in using 
metacognitive strategies, the teacher needs to know about metacognitive strategies 
and indicators for the students’ use or lack of use of metacognitive strategies on 
the one hand. On the other hand, the teacher also needs to perceive and interpret 
students’ actions in the moment and draw conclusions about their use of metacog-
nitive strategies. The model “competence as a continuum” theoretically suggests a 
cause-effect relationship, which empirical studies have confirmed more or less effec-
tively. Moreover, the study by Wendt (2021) showed that in-service teachers were 
able to improve their perception and reflection regarding students’ use of metacog-
nitive modelling strategies. Therefore, we analyse pre-service teachers’ knowledge 
and noticing competencies for teaching mathematical modelling regarding students’ 
use of metacognitive strategies and pose the following questions: 

1. To what extend did pre-service teachers’ knowledge about metacognitive 
modelling strategies develop during an intervention?
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2. To what extend did pre-service teachers’ noticing competencies regarding 
students’ usage of metacognitive modelling strategies develop during an inter-
vention? 

3. How does knowledge about metacognition relate to noticing competencies 
regarding metacognition? 

13.4 Study Design and Methods 

In the following, we outline the design of the study and describe the two instruments 
used. Furthermore, the sample consisting of 52 pre-service teachers is characterized 
and the modelling seminar, which served as intervention, is presented. 

13.4.1 Design of the Study 

The study followed a pre- and post-test design. A seminar at the master’s level with 
a focus on mathematical modelling (see Sect. 4.4) served as intervention. At the 
beginning and at the end of the seminar, two instruments were used to assess pre-
service teachers’ noticing competencies regarding mathematical modelling as well 
as their pedagogical content knowledge. The answers were collected in writing with 
the help of a digital questionnaire during the seminar. 

13.4.2 Instruments 

Two instruments were used: Whereas one assesses pre-service teachers’ pedagogical 
content knowledge for teaching mathematical modelling, the other measures pre-
service teachers’ noticing competencies for mathematical modelling. 

13.4.2.1 Instrument for Assessing Pedagogical Content Knowledge 

The instrument was developed to assess pre-service teachers’ pedagogical content 
knowledge regarding mathematical modelling, with one section focusing on 
metacognition. It contains mostly multiple-choice questions and some open ques-
tions. Some of the items were adapted from Wess et al. (2021). More specifically, 
knowing different metacognitive strategies and identifying indicators for students’ 
use of a metacognitive strategy are required. In total, 15 true–false items are included 
regarding metacognition (see Fig. 13.2).
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14.2 Which of the following students’ statements are clear 
signs of metacognitive processes? correct wrong 

„Let’s discuss how to proceed so that everyone knows what to do” x 

Felix said that this is how it’s done. That’s why I am calculating this 
way now. 

x 

Fig. 13.2 Exemplary item for measuring knowledge regarding metacognition 

13.4.2.2 Video-Based Instrument for Assessing Noticing Competencies 

The other instrument includes two-staged videos that simulate real classroom situa-
tions as prompts with about three minutes each. A detailed description of the video-
based instrument and its validation can be found in Alwast and Vorhölter (2019, 
2021). Videos as prompts were chosen to capture the simultaneity and overflow of 
information of real classroom situations. Two videos are used with two versions each 
to minimize memory effects. They contain the same content, but different actors play 
a role. A group of four students in ninth grade is shown, which works on the modelling 
problem “Uwe Seeler’s Foot”. The modelling problem asks the students to verify or 
falsify a newspaper statement about the relation of the volume of a statue showing 
Uwe Seeler’s foot and the volume of his real foot (Vorhölter et al., 2019). A picture 
of the statue and person next to it is included. To solve the problem, it is necessary 
to find out the measures of the statue and of a real foot with a shoe size of 42 first. 

The videos used in the video-based test were developed to include specific aspects, 
for example regarding metacognition. On a theoretical level, we chose to display the 
metacognitive strategies’ planning, monitoring, and regulation. Based on recordings 
of students’ use of metacognitive strategies during a modelling process with the 
task “Uwe Seelers’s foot”, we created authentic situations, where students use these 
strategies. Expert ratings were used to ensure the use of metacognitive strategies is 
emphasized in the videos enough to be visible for the participants (see Alwast & 
Vorhölter, 2021). Metacognitive strategies can be found in the following situations 
in the two videos: 

– Planning: The students do not plan their procedure at first but directly start working 
mathematically without a clear goal. After this approach has failed, they discuss, 
which information given in the task is relevant and what needs to be found out 
to further understand the task and start to approach the problem: “If we knew 
this, we could do that”. Only at the end of the first video the students discuss 
different ideas to solve the problem and plan how to implement them specifically 
(planning). 

– Monitoring: There are two students in the group (out of four), who monitor the 
process and each other. After a wrong approach one of them stops the group from 
continuing and asks them, if this result is even possible (monitoring1). They keep 
monitoring, which can be seen in comments such as “Are you sure? I think this 
doesn’t make sense.” or “I think there is something wrong. Could you explain your
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calculation again?”. Furthermore, they note that the other two group members are 
less interested in working on the problem (monitoring2). 

– Regulation: Regulation results from monitoring and is used by the students to get 
back on track. This could either be going a step back and checking the approach 
again or trying something different straight away: For example, when the students 
realize that they do not know if shoe size equals the length in centimetres, one 
student measures her own foot (regulation1). Moreover, regulation also manifests 
itself through deciding to ask the teacher for help, when they notice something is 
wrong, but they feel unable to solve the problem themselves (regulation2). 

The video-based instrument uses open questions, which should be answered 
after watching the video once. Participants are asked to perceive and interpret 
students’ difficulties, students’ approaches to solving the problem, and students’ 
use of metacognitive strategies, where the latter is of importance for this chapter. 
Some background information is given to the participants, such as the students’ 
grade, before watching the videos. 

13.4.3 Sample 

Pre-service teachers in the first semester of their master’s programme took part in the 
study. The data were collected in modelling seminars in the winter terms 2019/20 
and 2020/21. Only participants, who took part in both the knowledge and the video-
based test at both points of measurement, were selected for data analysis. Altogether, 
52 pre-service teachers (11 male, 41 female2 ) participated, who range in age from 
22 to 47. They attend different courses of study to become either primary and lower 
secondary teachers (33) or teachers for higher track schools (15); only a few also 
aim at becoming a teacher for special education (2) or for vocational schools (2). 
They had a university entrance qualification with an average of 2.0 (good), ranging 
from 1.3 (excellent) to 3.3 (satisfactory). Prior to the modelling seminar, participants 
took only part in one lecture (90 min) about mathematical modelling during their 
bachelor’s programme, which offers an overview about the topic. Furthermore, they 
knew the modelling problem, on which the videos are based, and possible approaches 
to solve the problem. 

13.4.4 Modelling Seminar 

The modelling seminar contained 13 sessions with 2.5 hours each (one semester). 
It included theoretical input needed for teaching mathematical modelling as well as 
practice-oriented tasks (see Vorhölter & Freiwald, 2022). Most aspects of the four

2 This represents the common distribution in teacher education courses in Hamburg. 
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dimensions by Borromeo Ferri and Blum (2010) were covered: Knowledge on, for 
example, modelling cycles, modelling competencies, metacognition, and modelling 
problems was conveyed (theoretical dimension). Furthermore, several smaller, but 
authentic modelling problems were solved by the pre-service teachers as well as 
two very complex problems (see Vorhölter & Freiwald, 2022). Different ways to 
solve these problems, their potential to foster specific sub-competencies, or holistic 
modelling competencies were discussed, and potential difficulties were analysed 
(task dimension). Possibilities to implement these problems were reviewed, ways 
to adaptively intervene were examined and lessons were planned for the modelling 
days (instructional dimension). This knowledge was applied to practice-oriented 
tasks. Student artefacts, such as students’ written solution, posters, or videos (staged 
and videotaped), were used for analysing the behaviour and the solution process of 
students (diagnostic dimension). Therefore, the application of theoretical knowledge 
in situations that are typical for modelling lessons was fostered in order to promote 
noticing competencies. 

13.4.5 Data Analysis 

For the test assessing participants’ knowledge about students’ use of metacogni-
tive strategies, correct answers to the 15 items are added to form a scale. For the 
video-based test, participants’ answers to the open questions were coded using the 
evaluative qualitative content analysis (Kuckartz, 2014) and quantified subsequently. 
Consensual coding was used: Two raters coded and discussed the coded answers until 
a common understanding was reached. A pure description was coded as level 1; an 
interpretation, which included some analytic parts, as level 2; and a coherent analysis 
as level 3. All codes regarding noticing of metacognitive strategies were summed up 
to form a scale for pre-service teachers’ noticing competencies regarding students’ 
use of metacognitive strategies (see Alwast & Vorhölter, 2021). 

Descriptive statistics are used to analyse both parts of the data, which focus on 
metacognitive strategies. For testing the significance of the development, a T-Test 
for paired samples is used. Furthermore, Pearson’s correlation for knowledge and 
noticing competencies is checked.
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Fig. 13.3 a Knowledge about metacognitive strategies. b Noticing competencies regarding 
students’ use of metacognitive strategies 

13.5 Results 

13.5.1 Pre-Service Teachers’ Knowledge About 
Metacognitive Modelling Strategies 

Regarding the knowledge about students’ use of metacognitive strategies (see 
Fig. 13.3a), pre-service teachers already showed a high level in the pre-test. A signif-
icant increase with a moderate effect (r = 0.35) can be noted from pre- to post-test, 
where the average increases from 9.6 to 11.1. The maximum score is 15, which is 
reached in the post-test, but not in the pre-test. The range from minimum to maximum 
stays the same, although fewer outliers are detected in the post-test. 

At first glance, the high scores regarding the knowledge about metacognition are 
surprising, because metacognition is usually a concept, which pre-service teachers 
are not familiar with—even less in the context of mathematical modelling. However, 
the constitution of the items as true–false tasks allows a greater chance to select the 
correct answer by chance. 

The increase from pre- to post-test is in line with the concept of the seminar, 
in which metacognition was regularly treated: On the one hand, knowledge about 
the concept of metacognition was conveyed, and on the other hand, indicators for 
student’s use of metacognitive modelling strategies were discussed. 

13.5.2 Pre-service Teachers’ Noticing Competencies 
Regarding Metacognitive Modelling Strategies 

In the pre-test, participants showed a low level of noticing competencies (see 
Fig. 13.3b), which did not significantly increase in the post-test. The average only
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Fig. 13.4 Noticing competencies regarding the individual metacognitive strategies 

slightly changed from 3.0 to 3.4. In total, a score of 14 could have been achieved. 
The sum score was calculated by adding the level of interpretation (1–3) of each 
perceived aspect. The scores of participants in the upper quartile increased: in the 
post-test, it ranges to 10, while in the pre-test only to 8. An outlier in the post-test 
even reaches a score of 12. 

This is in line with the common assumption that changes in noticing only happen 
slowly (Schoenfeld, 2011). Moreover, metacognition is not an easy concept and to 
apply this to a real-world situation might be very challenging. As we cannot see 
many changes here, we will take a closer look at the results regarding the specific 
metacognitive strategies (see Fig. 13.4). 

Planning strategies are perceived by a majority of the participants. While the total 
number of participants, who mention this aspect, slightly decreases, interpretations 
on level 3 increase. Here is an example of an interpretation on level 3: 

At the beginning, the group does not plan how to solve the problem, they do not even under-
stand the goal correctly, which means that no steps can be planned, they just start calculating. 
After realizing that they have not worked on the task correctly, she tries to convince the group 
of this by referring to the task, so she regulates the approach by emphasizing the question. 
Only now the group begins to plan the solution of the modelling problem, the goal is deter-
mined, because they know that they should check whether the small foot fits into the large 
one just under 4000 times. In determining the partial steps, they at least get as far as thinking 
about how big a foot with shoe size 42 actually is. 

It should be stressed that in this comment, several situations regarding planning 
are mentioned and linked. Also, a lack of planning is perceived and the resulting 
problem is outlined. The beginning of a discussion, where planning takes place, is 
noted, and linked to the specific situation, i.e. the specific requirements of the task.
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Furthermore, the pre-service teacher analyses the planning strategy as only regarding 
parts of the solution process. 

Monitoring strategies can be found in both videos (monitoring1 and monitoring2). 
Both are perceived by more than half of the participants. Participants especially 
improved their level of interpretation regarding monitoring2. More than 36% of 
the participants interpreted the aspects regarding this strategy on level 2 or 3, which 
means they were able to give specific indicators for the use of the strategy monitoring 
in this specific situation. For example: 

The two sitting on the right do not use any metacognitive strategies at all, because they are 
not interested in the task at all. The student on the left in front uses a monitoring strategy 
by asking the student on the right in the back if she can see her approach again. This is her 
way of checking the solution. The teacher encourages the student to check her solution by 
having her read the task again, which again leads to regulation. At the end, the student at 
the back left once again shares the two results and realizes herself that something can’t be 
right. She wants to discuss her solution with the group. However, they refuse, so she asks 
for help from the teacher to check. So, she wants to monitor her work step and regulate it if 
necessary. 

In this quote, several incidents, where monitoring is initiated through a metacog-
nitive feeling, are mentioned and also linked to the resulting regulation of the 
process. 

It is striking that regulation is only perceived by few participants. This could 
be due to two reasons: on the one hand, regulation strategies might not be obvious 
enough in the staged videos. We think that this is not the case as this was reflected 
by experts. We rather assume that the concept of regulation is hard to grasp, and 
it is therefore difficult to implement this knowledge. Most participants’ answers 
regarding regulation were coded as level 1, as they only describe the strategy use 
in a situation without further reasoning or reference to the theoretical concept. For 
example: “When in doubt, they measure their own foot to check”. 

All in all, the analysis of the results of the individual strategies shows that there 
is a decrease in planning and monitoring1, which were already perceived by many 
in the pre-test. At the same time, there is an increase regarding the other strategies. 
This explains why there is little change in the sum score. 

13.5.3 Relation of Pre-service Teachers’ Knowledge 
and Noticing Competencies 

According to the model, “competence as a continuum” dispositions have an impact 
on the situation-specific perception, interpretation, and decision-making. Therefore, 
we were interested in the correlation of the pedagogical content knowledge regarding 
metacognition and pre-service teachers’ noticing competencies regarding metacog-
nition. We found a medium positive correlation between knowledge and noticing 
competencies regarding metacognition (0.38***), which indicates that participants 
with a higher degree of knowledge about metacognition were also more competent
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Fig. 13.5 Relationship of knowledge and noticing competencies regarding students’ use of 
metacognitive modelling strategies 

in noticing students’ use of metacognitive strategies. Figure 13.5 also illustrates the 
tendency to gain better results concerning the noticing of metacognitive strategies 
with an increased knowledge of metacognitive strategies. In addition, there are no 
cases shown, where a participant gained low results concerning knowledge but high 
results concerning noticing. Having knowledge seems to be a necessary but not suffi-
cient condition. This result is in line with the expectation, that noticing on the one 
hand is based on knowledge but is still a competence on its own, that cannot only be 
explained through dispositions alone. 

13.6 Conclusion, Limitations and Looking Ahead 

Fostering students’ use of metacognitive strategies is important when supporting 
them in solving mathematical modelling problems. We were thus interested to see, 
how pre-service teachers’ knowledge and noticing competencies regarding students’ 
use of metacognitive modelling strategies evolved during a modelling seminar, which 
used practice-oriented tasks to foster the application of knowledge. 

A significant increase in pre-service teachers’ knowledge was found (see 
Fig. 13.3a), while noticing competencies, assessed through a video-based instru-
ment, only slightly changed (see Fig. 13.3b). This is in line with literature on noticing 
though (e.g., Schoenfeld, 2011), stating that noticing only improves slowly. Taking a 
closer look at pre-service teachers’ answers, we can see that some were already able 
to offer analytic evaluations regarding a certain strategy use and we did not expect
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participants to be on such a high level for all strategies, which might explain the 
lower results here. 

Moreover, the model “competence as a continuum” (Blömeke et al., 2015) 
suggests a cause-effect relationship, where knowledge affects noticing competencies. 
Therefore, we analysed the correlation of these two aspects regarding metacognition 
and found a relationship between knowledge and noticing competencies, as theo-
retically assumed (see Fig. 13.1). The nature of this relationship is not empirically 
verified though, as the analyses presented do not allow any statement about a possible 
direction of a causal relation. However, based on the theoretical assumptions, this 
causal relationship is plausible. For future analysis, it would also be worthwhile 
to take a closer look at the influence of one’s own modelling competencies on the 
development of noticing competencies regarding mathematical modelling. 

As we found indicators that noticing cannot be explained through knowledge 
alone and is a competence on its own, it would also be intriguing to assess an overall 
noticing competence independent of the specific content. For future analysis, it will 
be also interesting to see if similar results can be obtained for other aspects measured 
with our instrument—such as knowing about and noticing students’ difficulties. 
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Chapter 14 
Using an Assessment for Learning 
Framework to Support Pre-service 
Teachers’ Mathematical Modelling 
Activities 

George Ekol 

Abstract Assessment for learning is discussed within the broader framework of 
formative assessments. The aim of the study is to understand the contributions of 
assessment for learning in a pre-service secondary teacher mathematical modelling 
course at a university in South Africa. A matched pairs design was adopted to analyse 
assessment data collected during the course, and data collected at the end of the 
course. Descriptive and inferential data analysis detected no statistically significant 
increase in the mean score from the formative phase (M = 78.33, SD  = 8.86) 
and the scores obtained from the final assessment at the end of the course (M = 
81.52, SD  = 10.97), t (62) = 1.728, p = .089, η2 = 0.218. The study contributes 
to research on various assessment approaches in pre-service mathematics educa-
tion courses that include mathematical modelling and understanding their practical 
contributions to the learning gains at the end of the courses. 

Keywords Mathematical modelling · Assessment for learning ·Matched pairs 
design · Formative assessment · Pre-service teachers ·Modelling tasks 

14.1 Introduction 

14.1.1 Mathematical Modelling 

Many countries worldwide have introduced mathematical modelling in their school 
curricula, in part due to the awareness that has been created over the last forty years 
through various platforms including the International Conference for Mathematical 
Education (ICME) and the International Community of Teachers of Mathematical 
Modelling and Applications (ICTMA) conferences and publications. Modelling is 
understood differently among various communities. In this study, I adopt Niss et al. 
and’s (2007, p. 4) representation of a mathematical model, consisting of a domain
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D of interest outside mathematics (extra-mathematical), a mathematical domain M, 
and a link from outside mathematics to the mathematical domain. Questions from 
outside mathematics that need to be understood are identified and linked to the math-
ematical domain, where elaborate mathematical treatment and inferences are made, 
the outcomes of which are then translated back to D. In D, interpretations and vali-
dations are made in response to the original question. The back-and-forth movement 
(modelling cycle) between D and M can be done according to the need, and as many 
times as possible until a satisfactory conclusion concerning the original question 
from D is reached. The whole process comprising of structuring D, to deciding upon 
a suitable mathematical domain M and a suitable mapping from D to M, to working 
mathematically within M, to interpreting and evaluating the conclusions with regard 
to D is the modelling process (Blum, 2015; Greefrath & Vorholter, 2016; Niss et al., 
2007; see also detailed explanation in Wess et al., 2021, p. 6).  

Figure 14.1 (Blum & Leiß, 2007) represents complex cognitive processes and the 
associated affective processes that students undergo when they engage in modelling 
tasks (see later an elaboration of modelling tasks). Students should be able to translate 
between reality-based problems into mathematical models and to work within the 
mathematical model to gain understanding of the problem. The ability of students 
to perform such modelling tasks is an indication of their modelling competence 
(Kaiser, 2007; Geiger et al., 2022). Promoting the students’ ability to process real-
world problems with mathematical tools is an important goal of modelling in school 
mathematics. 

The seven sub-competencies in Fig. 14.1 have been elaborated in several research 
publications (e.g., Greefrath et al., 2013; Greefrath & Vorhölter, 2016; Wess et al., 
2021). Descriptions of the modelling sub-competencies are briefly presented in 
Table 14.1.

According to Niss et al. (2007), mathematical modelling competence implies:

Fig. 14.1 Modelling cycle (Blum & Leiß, 2007, p. 221) 
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Table 14.1 Sub-competencies involved in modelling 

Sub-competency Description 

Constructing Students construct their own mental model from a given problem 
and thus formulate an understanding of the problem 

Simplifying Students identify relevant and irrelevant information from a real 
problem 

Mathematizing Students translate specific, simplified real situations into 
mathematical models (e.g., terms, equations, figures, diagrams, 
functions) 

Working mathematically Students work with mathematical methods in the mathematical 
model and get mathematical solutions 

Interpreting Students relate results obtained from manipulation within the 
model to the real situation and thus obtain real results 

Validating Students judge the real results obtained in terms of plausibility 

Exposing Students relate the results obtained in the situational model to the 
real situation, and thus obtain an answer to the problem

the ability to identify relevant questions, variables, relations or assumptions in a given real 
world situation, to translate these into mathematics and to interpret and validate the solution 
of the resulting mathematical problem in relation to the given situation, as well as the ability 
to analyse or compare given models by investigating the assumptions being made, checking 
properties and scope of a given model etc. (Niss et al., 2007, p. 12) 

Supporting students to solve real-world problems using mathematical tools avail-
able to them is therefore a central goal of modelling in school curricula, for example in 
South Africa (DBE, 2011, p. 8).  Blum  (2015) conceptualized the modelling compe-
tence as being able to construct or adapt mathematical models by conducting process 
steps adequately and being able to compare and analyse different models. However, 
the challenge has remained in assessing students’ sub-competencies in classroom 
environments when they solve different modelling tasks. 

14.1.2 Mathematical Modelling Assessment 

The debate about performance assessment and how it can be used in the classroom 
is ongoing among educational researchers, schoolteachers, and the mathematical 
modelling community globally. Many mathematical modelling related assessment 
frameworks have been developed over the years (e.g., Alagoz & Ekici, 2020; Besser 
et al., 2013; Rakoczy et al., 2017). Besser et al. (2013) investigated how assessing 
and reporting students’ performances in mathematics can be arranged in everyday 
teaching in such a way that teachers are able to analyse students’ outcomes appro-
priately. Their mathematical tasks focused on technical and modelling competen-
cies of students. Besser et al. premised the study on the assumption that assessing, 
and reporting students’ outcomes regularly would foster learning processes and
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improve performance for the experimental group. However, they found no signif-
icant differences between a control group and an experimental group in a post-
test. In another project, ‘Conditions and Consequences of Classroom Assessment’ 
consisting of four studies, Rakoczy et al. (2017) successively investigated the impact 
of formative assessment in mathematics instruction. The project comprised a survey 
study, an experimental study, an intervention study, and a transfer study to make 
the results applicable in educational practice through teacher training in forma-
tive assessment. Concerning the impact of teacher training on pedagogical content 
knowledge, Rakoczy et al. (2017) concluded that knowledge about formative assess-
ment in competence-oriented mathematics instruction with a focus on mathematical 
modelling was significantly higher when teachers participated in training on forma-
tive assessment, compared to teachers who trained in general aspects of competence-
oriented mathematics instruction and problem solving. A study by Alagoz and Ekici 
(2020) involved a mathematical modelling assessment approach designed to provide 
feedback regarding the performance of each learner and on the task itself. One benefit 
of Alagoz and Ekici’s (2020) study was that it enabled the authors to identify profes-
sional development needs for teaching mathematical modelling and applications. 
For example, their data analysis indicated that teachers had difficulty in connecting 
between different concepts, with fewer teachers demonstrating mastery than other 
attributes, whereas problem solving was where they performed best. As making 
connections was the weakest aspect of mathematical modelling performance, Alagoz 
and Ekici (2020) proposed that more training and support were needed for teachers. 
To support interdisciplinary connections, the researchers recommended interdis-
ciplinary professional development programmes where mathematics and science 
teachers can support each other to develop richer and more meaningful connections 
and interpretations with modelling and applications. Communications and represen-
tations as performance attributes were other areas where the teachers showed need for 
improvement as well. As these three studies reviewed show, assessment findings vary 
according to design objectives and context within which a study is situated. Never-
theless, lessons can be selected from one assessment setting and tried in another with 
modifications. 

Since the 1980s, successive assessment criteria have been developed that incor-
porate the seven modelling sub-competencies in Table 14.1 (e.g., Berry & Masurier, 
1984; Haines & Dunthrone, 1996; Hall., 1984; Hankeln et al.,. 2019; Hidayat et al., 
2022; Houston, 2007; Izard et al., 2003; Leong, 2012; Penrose, 1978). The assess-
ment criteria developed have, in general, favoured holistic assessment—assessing 
modelling. Micro-assessment of individual sub-competencies have been reported by 
Hankeln et al. (2019). Using psychometric models, Hankeln et al. (2019) showed  
that the sub-competencies of modelling, simplifying, mathematizing, interpreting, 
and validating, can be treated as separate dimensions, rather than being subsumed 
into a two-dimensional model, in which simplifying and mathematizing, as well as 
interpreting and validating, have been combined. Although much progress has been 
made, assessing modelling activities in pre-service courses and at the school level is 
still a big challenge.
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The recent review of modelling research worldwide by Hidayat et al. (2022) 
revealed that the three dominant approaches used in assessing modelling competency 
are projects (50%); written tests (28%); and questionnaire (22%). Almost one-third of 
the published papers employed the qualitative approach as a method of data collection 
with the highest percentage of participants being pre-service teachers. Assessment 
involving project work seemed a preferred approach because modelling is commonly 
thought of as a collaborative process (Houston, 2007), so a comprehensive approach 
was seen as the best method to assess students’ modelling competency. It is not 
surprising therefore that pre-service teachers dominated the papers because at the 
undergraduate level, some flexibility is assumed for them to complete project work 
on their own. However, flexibility at undergraduate or even graduate level, cannot 
be assumed if institutional cultural variations are considered up to the microlevel of 
timetabling or sharing the available teaching resources. In cases where timetables are 
fully booked for teaching other subjects, project work will be difficult to find time for. 
Hence, the written assessments have remained the more preferred approach. Yet, there 
are indeed other assessment approaches that can be incorporated without changing the 
existing structures of timetables. The question is, “When mathematical modelling 
is introduced into traditional courses at school or university, how should existing 
assessment procedures be adapted?” (Blum & Leiß, 2007, p. 23). One possibility is 
assessment for learning. 

14.1.3 Assessment for Learning 

Summative and formative assessments are two frequently used assessments in 
schools worldwide. Summative assessments (also sometimes referred to as assess-
ment of learning) are types of assessments that are used to measure what students 
have learnt at the end of a unit for purposes of promoting a student to the next grade, or 
for certification after completing school. Assessment for learning (also often called 
formative assessment) is assessment that puts emphasis on the processes of teaching 
and learning and aims at actively involving students in those processes. Assessment 
for learning (AfL) also aims to build students’ skills for self-assessment and helping 
them to understand their own learning, and to develop appropriate strategies for 
lifelong learning (OECD, 2008). 

AfL also prioritizes the regulation of learning processes. The assumption is that 
with the regulation of processes, classroom assessment can be used to improve 
learning. Regulation involves four main processes: goal setting; monitoring of 
progress towards the goal; interpreting feedback derived from monitoring; and 
adjusting goal-directed action where adjustment is needed at the time (Allal, 2010). 
It is this orientation that is most often referred to when speaking of “formative assess-
ment,” but I use AfL with an emphasis on the process of learning than on the product 
of learning although both are important. Since AfL is also the orientation that forms 
the foundation of this study, it will be discussed in more detail.
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Research and practice in classroom assessment emphasize similar regulatory goals 
and processes (e.g., Andrade & Heritage, 2018; McMillan, 2013; OECD, 2008). 
Defined as a process of collecting, evaluating, and using evidence of student learning 
to monitor and improve learning (McMillan, 2013), effective classroom assessment 
makes clear the learning targets, provides feedback to teachers and to students about 
where they are in relation to those targets, and prompts adjustments to instruction 
by the teachers to meet students’ learning needs (Andrade & Heritage, 2018). Hattie 
and Timperley (2007) summarize this regulatory process in terms of three questions 
to be asked by students: (i) Where am I going? (ii) How am I going? and (iii) Where 
to next? The three questions are also asked by the teachers in reference to their 
students’ learning. Starting with clear learning goals and task criteria, collecting and 
interpreting evidence of progress towards those goals and criteria, and finally acting 
by adjusting instruction or learning processes, the regulatory processes of AfL are 
implemented. Particular attention is placed on the third stage, the where next? The 
stage involves taking action to move students towards the learning goals (Andrade & 
Heritage, 2018). It involves drawing on feedback from the students to revise the 
learning activities (Wiliam, 2010). 

Assessment for learning incorporates lifelong learning (OECD, 2008). Teachers 
using formative assessment approaches guide students towards developing their own 
“learning to learn” (p. 2) skills—being flexible and inquisitive about learning current 
ideas and methods of solving a problem—that are increasingly necessary as knowl-
edge quickly becomes out of date in today’s volatile information environment. Six 
key elements of AfL that emerged from studies conducted by OECD (2008) are:  
(i) A classroom culture that encourages interaction and the use of assessment tools; 
(ii) setting up of learning goals, and tracking of individual student progress towards 
those goals; (iii) use of varied instruction methods to meet diverse student needs; 
(iv) use of varied approaches to assessing student understanding; (v) feedback on 
student performance and adaptation of instruction to meet identified needs; and (vi) 
active involvement of students in the learning process. OECD highlights the tension 
between formative assessment and summative assessment. Summative tests—that 
is, large-scale national or regional assessments of student performance hold schools 
accountable for meeting the set standards. The consequences of such highly summa-
tive tests take up much of the resources that would otherwise be directed to supporting 
the assessing for learning. 

AfL is also regarded as an avenue for improving student learning and enhancing 
their course achievements (Gan et al., 2019). The AfL movement has historical 
links with the Assessment Reform Group (Black & Wiliam, 1998) which proposed 
a distinction between assessment of learning for the purposes of grading and 
reporting, and assessment for learning which promotes providing information for 
both the student and the teacher to improve learning and to adjust teaching. AfL 
has been defined as: “part of everyday practice by students, teachers and peers that 
seeks, reflects upon and responds to information from dialogue, demonstration and 
observation in ways that enhance ongoing learning” (Klenowski, 2009, p. 264). 

Building on socio-constructivist theories of learning, AfL puts the focus on what is 
being learned and on the quality of classroom interactions and relationships (Stobart,
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2008), starting from the learner’s existing knowledge, and emphasizes the need 
for active and responsible involvement of the learner and the value of developing 
metacognition (Black, 2015). AfL is also characterized by a process of continual 
interaction between teachers and individual learners, in which feedback provision 
and its acceptance and utilization are key elements (Black & Wiliam, 1998). By feed-
back ‘acceptance and utilization’, Black and Wiliam suggest that the student must act 
upon the feedback he or she has received from the teacher for the required change to 
materialize (Wiliam, 2011). The teacher-student interaction during the course unit is 
iterative in that a student’s response provides additional information for the teacher 
to act upon and adjust teaching (Kennedy et al., 2008). 

14.1.4 Modelling Activities 

Modelling activities refer to the modelling tasks that the pre-service teachers are 
engaged with during the course. The activities require more preparation by the teacher 
than in traditional teaching approaches (e.g., Antonius et al., 2007). In modelling 
activities, teachers plan for, and students spend more time on substantial tasks. 
Depending on the teaching arrangement, the modelling activities by students include 
discussing mathematics with each other; exploring alternative solutions to a given 
task; choosing appropriate mathematical artefacts (e.g., sketches, graphs, formula) to 
use in solving a task; reasoning about the solution of a task; and checking strategies 
to ensure that the solution is valid (Antonius et al., 2007, p. 296). Overall, students 
take more responsibilities, and the teacher’s role is to monitor the progress and 
intervene where such intervention would move the learning forward. The modelling 
activities framework proposed by Antonius et al. (2007) completely agrees with the 
frameworks of the assessment for learning discussed in this study. 

The modelling tasks in this course are familiar curricula tasks of various lengths, 
based on mathematics and applications. The broad curriculum coverage of the course 
includes modelling with linear functions, modelling with polynomials, and modelling 
with exponential and power functions. The course is aimed at preparing secondary 
school teachers. Two examples of short modelling tasks with linear and quadratic 
functions follow: 

Example 1. A property owner wants to fence a rectangular garden plot adjacent to 
a main road. The fencing next to the road must be strong and costs $5 per metre, 
but the fencing for the rest of the field costs just $3 per metre. The garden has an 
area of 1200 square metres. Find the garden dimensions that minimize the cost of 
fencing. If the owner has a budget of $600 to spend on fencing, find the range of 
lengths that she can fence along the road. 
Example 2. A national soccer team plays in a stadium with maximum capacity 
of 60,000 fans. With a ticket priced at $10, the average attendance at the recent 
games has been 30,000 fans. A survey conducted to gain an understanding of 
ticket pricing and its links to games attendance revealed that for every dollar that
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the ticket price was lowered, the attendance would increase by 4000 fans. What 
ticket pricing would maximise the revenue collection? (Adapted from Stewart 
et al., 2015). 

These questions allow students to construct mental models of real situations. Also 
very important are the assumptions that students need to make in each case to simplify 
the problem. Experience shows that students tend to approach the above questions as 
purely mathematical problems, not modelling problems. For instance, many students 
ignore the role of assumptions in simplifying complex problems. Although a sketch 
would help a student to develop a mathematical model, some students are not used 
to drawing sketches. Solving tasks such as these relatively easy problems evoke 
nearly all the modelling sub-competencies in Table 14.1, with the obvious ones being, 
constructing, simplifying, mathematizing, working mathematically, interpreting, and 
validating. 

I have used the terms “activities”, “tasks”, or “problem” in a broader sense to mean 
learning activities of varying difficulties that are assigned to the students during 
modelling. Such tasks require several or all steps of the modelling cycle to solve 
(Durandt et al., 2022). The use of “problem” in a more strict interpretation in problem 
solving (e.g., Schoenfeld, 2013; Lester,  2013, p. 248), has not been applied in this 
case. 

14.2 The Study 

Fourth year pre-service secondary mathematics teachers (N = 63) at a university in 
South Africa participated in the study. The selection of participants was purposive in 
that it targeted this group of students taking mathematical modelling in their mathe-
matics content course. The students had already covered other mathematics content 
courses such as, algebra, functions, geometry, financial mathematics, probability and 
statistics, linear algebra, and calculus during the four years of their B.Ed. programme. 
Modelling is the last course that the students take to complete their mathematics 
content courses. Assessment for learning has been reported in numerous studies to 
offer opportunities for “high-performance, high equity [in] student outcomes, and 
for providing students with knowledge and skills for lifelong learning” (OECD, 
2008, p. 5). Assessment scores obtained by students during coursework and one final 
assessment administered at the end of the course, were analysed using matched pairs 
t-procedures. For this study, five course assessments from the course for pre-service 
secondary teachers incorporating a variety of modelling tasks were assigned and 
graded throughout the course. The mean mark in the course assessments for each 
student constituted one set of measurement data for the assessment for learning. The 
second measurement data were obtained from the final written assessment at the end 
of the course. From those two data sets, the matched pairs t-procedures were applied 
to check if the difference between the two means was statistically significant, and if 
so, to what effect? Hence, the measurement of the effect size was also considered.
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The research questions for the study were: 

1. Is there a significant change in the pre-service teachers’ mathematical modelling 
scores at the end of a teaching plan that applies an assessment for learning (AfL) 
framework? 

2. What is the impact of such a change, if any? 

14.2.1 Research Design 

14.2.1.1 Matched Pairs Design 

Matched pairs design compares two treatments. Pairs of participants that are as 
closely matched as possible are chosen and matched. Chance is used to decide which 
participant in a pair is allocated to the first treatment and who to the second (Fig. 14.2). 
A paired-sample t-test is used to measure whether the difference in the mean scores 
after two different treatments at various times on a pair is statistically significant. 
The basic assumption is that the difference between the two scores obtained for each 
subject is normally distributed. With a sample size of more than 30 cases, violation 
of this assumption if any, is considered not to be severe (Pallant, 2020). 

Another situation calling for matched pairs is the so-called before and after obser-
vations (Moore et al., 2013) but on the same participant. That means each participant 
is his or her own pair. An individual is assessed several times during the course and 
the mean score is recorded. The same individual is also assessed at the end of the 
course. To compare the responses to the two ‘treatments’ before and after, the differ-
ence between the responses within each ‘pair’ is obtained. A response to treatment 
refers to the mean score that a student obtains during the assessment for learning 
phase as well as the score from writing the final assessment at the end of the course. 
The one-sample t procedures are then applied to the differences between the scores 
(Moore et al., 2013).

Random 
Assignment 

Group 1 
n Students 

Treatment 1 

Treatment 2 

Compare 
Scores 

Group 2 
n Students 

Fig. 14.2 Matched pairs design (Adapted from Moore et al., 2013, p. 236) 
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Taking μ to be the mean difference in scores (in the population of pre-service 
teachers) during the course and the score obtained in final assessment, the null 
hypothesis (H0) tested was that the assessment for learning (AfL) has no effect on 
students’ final grade. In other words, the difference between the scores obtained from 
the two assessments is zero. The alternative hypothesis (Ha) was that AfL makes a 
statistically significant contribution to the students’ final score. Mathematically, the 
hypotheses are: H0 : μ = 0 and Ha : μ >  0. 

The parameter μ in matched pairs t-test procedure is the mean difference in the 
responses to the two treatments within matched pairs in the population. In this study, I 
have adopted the before and after observations and collected data in two phases. Phase 
one was the coursework duration where assessment for learning principles discussed 
earlier, were implemented. Phase two was a 3-h written assessment (examination) 
taken at the end of the course. The observed mean obtained from the assessment of 
learning and that from the written examination are compared using descriptive and 
inferential statistics in Sect. 3. 

The matched pairs one-sample design was adopted mainly because the proce-
dure fitted the one semester period that was available for the course. The design, 
for instance, did not require using a random procedure to split the class into two 
equal groups and teaching them separately. Adopting the procedure not only enabled 
uniformity in the content delivered to the students, but also it complied with the 
assessment guidelines provided by the institution such as having the end of course 
materials internally and externally moderated before assessing students on the mate-
rials. Finally, another important design principle that was implemented in the study 
was varying the assessment content given to the students during the course and at 
the end of the course. 

14.2.1.2 Sample 

Seventy-five (Male = 56, Female = 19) final year pre-service mathematics teachers 
enrolled in the eight-week long modelling course in 2021. Non-probability sampling 
was adopted where all final year pre-service secondary mathematics teachers regis-
tered in the modelling course automatically qualified to participate in the study. 
However, 12 students did not have complete data, so they were excluded from the 
analysis leaving 63 (Male = 44, Female = 9) cases. 

14.2.2 Data Gathering and Analysis 

The data consisted of two sets: one set was collected based on assessment for learning 
principles (as discussed in Sect. 1.3). Students’ active involvement in the learning 
activities through interactions (OECD, 2008) was prioritized. Interactions included 
students sharing their solutions with peers and with the teacher on different platforms; 
teacher follow up with individual students; providing feedback to the group while



14 Using an Assessment for Learning Framework to Support Pre-service … 233

also attending to specific individual needs; varying the assessment methods such 
as asking students to present their solutions in words, in graphical format, and to 
present their solutions to peers in class. Finally, the course facilitators ensured that 
each student responded to the feedback given to them at different stages during the 
course. A total of five AfL assessments were completed and graded during the course, 
and one final assessment written at the very end of the course was also graded. 

The mean scores obtained from the five assessments for learning (AfL) constituted 
the first measurement data set (T1) for each student. The scores obtained from the 
end of course assessment constituted the second measurement data set (T2) for each 
student. For the AfL framework to have contributed significantly to the pre-service 
teachers’ learning gains, the following four assumptions (A1–A4) were tested using 
the quantitative data. 

(i) A1: The mean score obtained from the AfL phase is higher than the middle 
score of 50%. The 50% was arbitrarily chosen as a reference mark, but also 
used in the study as pass mark. 

(ii) A2: The mean score in the final assessment is higher than the mean score 
obtained from the AfL sessions. 

(iii) A3: The difference between the mean scores in (ii) and (i) for each student, is 
normally distributed. 

(iv) A4: There is no statistically significant difference between the mean scores 
obtained in the AfL phase and in the final assessment. Alternatively, there is a 
statistically significant difference in the mean scores obtained in the AfL phase, 
and the final assessment. If the latter is true, then we conclude that the AfL 
contributed significantly to the pre-service teachers’ learning gains at the end 
of the modelling course. 

14.3 Results 

To answer the research questions, quantitative data were analysed using IBM SPSS 28 
software to check the four assumptions. The findings related to the four assumptions 
are now presented. 

A1: The mean scores from AfL assessments are above pass mark: The mean score 
from AfL scores was found to be 78% (SD= 8.86, N= 63). The distribution of scores 
was reasonably normal (Fig. 14.3) for the mean to be used as a unit of measurement. 
Moreover, with a sample size of 63 (N > 30) cases, the normality requirement was 
not considered as a serious threat to the mean being used as a unit of measurement 
(Pallant, 2020).

A2: The mean score in the final assessment is higher than the mean from the AfL: 
The mean score obtained by the pre-service teachers in the final assessment was 
81.52% (SD = 10.97, N = 63) showing a higher mean than that obtained during the 
course. Hence, assumption (ii) is also satisfied. As in the formative assessments, the 
final scores are also reasonably normally distributed (Fig. 14.4).
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Fig. 14.3 The distribution of the mean of assessment scores during the AfL phase

Fig. 14.4 The distribution of the mean of assessment scores in the final exam
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Fig. 14.5 The distribution of the difference between the two assessment scores for each student 

Figure 14.5 shows the distribution of the difference between the two assessment 
scores for each student. The difference between the scores for each student is normally 
distributed (M = 3.19, SD 14.673, N = 63) which also satisfies assumption (iii). 

With assumption (iii) satisfied, the remaining test is whether the difference 
between the two mean scores is statistically significant, and to what effect. Matched 
pairs t-test procedures were implemented on the IBM SPSS Statistics 28 to evaluate 
the impact of the assessment for learning instruction methods on students’ final scores 
in the mathematical modelling course. Inferential procedures on the data revealed that 
there was no statistically significant increase in the assessment scores obtained during 
the AfL phase (M = 78.33, SD = 8.86) and the scores obtained from the assessment 
given at the end of the course (M = 81.52, SD = 10.97), t (62) = 1.728, p = .089, 
η2 = 0.218. Using Cohen’s (1988) conventions of 0.20, 0.50, and 0.80, respectively, 
for small, medium, and large effect sizes, the effect size of 0.22 corresponds to a 
small effect in practice. 

14.4 Discussion and Conclusion 

This chapter used a mixed pairs-study with pre-service secondary mathematics 
teachers as participants, to measure changes that would take place in their perfor-
mance scores during the course and at the end, if assessment for learning, was used. 
Four assumptions A1-A4 above were tested using the quantitative data gathered
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during the course (formative) and at the end of the course (summative). The study 
shows that, although the mean score for summative assessment is higher 81.52% 
(SD = 10.97, n = 63) than the mean score obtained during the formative assessment 
obtained during the AfL phase (M = 78.33, SD = 8.86), inferential statistical anal-
ysis revealed no significant increase in the assessment scores obtained during the 
AfL. This finding agrees with the study by Besser et al. (2013) who also found no 
significant difference between their control and experimental groups in their post-test 
data. However, Besser et al. reported that the control group performed significantly 
better in the pre-test than the experimental group, but in the post-test, the differences 
were no longer visible. 

The findings in this pilot study proffer the idea that there is a difficulty in finding 
an assessment protocol in mathematics education in general, and mathematical 
modelling in particular, that is not only theoretically supported, but also effective in 
practice. While research output in mathematics education generally favours construc-
tivist theoretical frameworks, often the assessments that would match such innova-
tions are context-specific and difficult to replicate in other jurisdictions, leaving 
teachers in a dilemma. 

A matched pairs design was adopted in this study to minimize the logistical 
requirements of splitting a one semester pre-service teachers modelling class into 
two and teaching them differently, one in the experimental and one in the control 
group. Instead, the same group was taught the same content, assessed at different 
times throughout the course with the overall aim of improving learning throughout 
the course up to its end. The findings revealed relatively higher mean scores both 
in the formative assessment and in the summative assessment, but the difference 
between the two mean assessments was not statistically significant. Also, the impact 
of the assessment for learning on the final score in terms of the effect size is small. 

Was there a notable change in the pre-service teachers’ mathematical modelling 
scores following a teaching plan that applies the assessment for learning (AfL) frame-
work? Yes, the findings are encouraging in two main aspects. First, the AfL approach 
offers a very strong possibility of improving the students’ gains during the learning 
sessions and also at the end of the sessions. Moreover, while the difference between 
the two assessment scores T1 and T2 was not statistically significant, both T1 and 
T2 showed relatively high mean scores suggesting good performance overall by pre-
service teachers enrolled in the course. The high means in the two measurements can 
be considered as a contribution of AfL to the individual students’ grades. The fact that 
the effect size was also found to be small is not surprising given that the difference 
between the two means was already not statistically significant. The current study 
contributes to research into assessment methods in pre-service mathematics educa-
tion courses which include mathematical modelling courses and to understanding 
their practical contributions to the teachers’ learning gains at the end of such courses.
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Chapter 15 
In-Service Teachers’ Transformation 
of a Mathematised Task into Modelling 
Tasks 

Akihiko Saeki, Masafumi Kaneko, Takashi Kawakami, and Toshikazu Ikeda 

Abstract In many countries, incorporating modelling as a part of day-to-day classes 
has been demonstrated to be a major challenge. This chapter focuses on in-service 
teachers with less experience in modelling teaching (‘novices’). This chapter aims to 
describe and analyse the novices’ activities to design modelling tasks based on math-
ematised tasks. The analysis results of the in-service teachers’ activities and artefacts 
revealed the following. It enables novice modelling teachers to (1) understand the 
characteristics of each criterion of the modelling task through activities that trans-
form familiar textbook mathematised tasks into modelling tasks; and (2) develop 
and implement modelling lessons incorporating examples from students’ realities 
through Lesson Study during discussions with teachers from different backgrounds 
and researchers. 
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15.1 Introduction 

In many countries, practical and theoretical studies on mathematical modelling have 
been conducted, and modelling has become a common topic in mathematics educa-
tion curricula. The role of the teacher is important for incorporating modelling 
into daily mathematics classes and promoting modelling among students (e.g., Cai 
et al., 2014). However, it has been noted that modelling is not incorporated daily 
while teaching, which is a major challenge. Professional development for teaching 
modelling is crucial for pre-service and in-service teachers (e.g., Blum, 2015), and 
mathematics teachers must acquire modelling-specific pedagogical content knowl-
edge (e.g., Borromeo Ferri, 2018; Stillman, 2019; Wess et al., 2021). Subsequently, 
several programs and materials for supporting pre-service and in-service teachers 
have been developed to teach modelling (e.g., Cai et al., 2014). While these programs 
focus on pre-service and in-service teachers’ awareness of teaching modelling, they 
may not be useful in helping teachers initiate the preparation and implementation of 
a modelling lesson in everyday classrooms (e.g., Ang, 2018). 

Modelling activities are emphasised in the new Japanese Courses of Study for 
2020 for primary to high school mathematics. However, most Japanese teachers 
have little experience in modelling, and little research exists on teacher training in 
modelling in Japan (e.g., Ikeda, 2015; Kawakami et al., 2018; Saeki et al., 2019). 
Therefore, we developed a professional development (PD) program focusing on the 
barriers to developing and selecting modelling materials among several barriers for 
teachers in modelling practice. This program aims to improve teachers’ competencies 
related to modelling teaching through activities designed to develop and practice 
modelling lessons by transforming a mathematised task in mathematics textbooks 
into mathematical modelling tasks. We considered that the conditions of teachers 
in these activities need to be clarified to develop and implement an effective PD 
program for novices in teaching modelling. 

This chapter aims to describe and analyse novices’ activities to design modelling 
tasks based on mathematised tasks. For this purpose, the theoretical background, 
outline of the implementation of the PD program, results, and discussion of the 
analysis are presented. 

15.2 A Framework for Describing and Analysing Teachers’ 
Activities to Design and Implement Modelling Tasks 

Researchers have pointed out that traditional word problems (also referred to 
as ‘dress-up problems’) in textbooks and other educational materials differ from 
modelling tasks (e.g., Blum, 2015; Kaiser,  2017). The difference between the two is 
that these problems deal with unrealistic events or lack a phase for making real-world
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assumptions (mathematisation) or a phase for interpretation or validation. Neverthe-
less, it has been proposed that such word problems have the potential to be trans-
formed into modelling tasks by making real-world assumptions and adding phases 
for interpretation or validation (e.g., Kaiser, 2017). Furthermore, recent research 
has increasingly proposed transforming a mathematised task into modelling tasks in 
pre-service and in-service teacher education (e.g., Borromeo Ferri, 2018; Kawakami 
et al., 2018; Sevinc & Lesh,  2018). 

Lesson Study in Japan takes place at the individual school, district/regional, and 
national levels (e.g., Fujii, 2015). In particular, almost all teachers are engaged in 
Lesson Study at the individual school level in their daily classes to achieve the theme 
of each school. Teachers usually design tasks using familiar tasks from a textbook 
with slight modifications based on the theme. In addition, teachers implement lessons 
based on the modified tasks, considering students’ learning trajectories, students’ 
solution expectations and interventions, and assessment of the lessons (e.g., Fujii, 
2015; Melville & Corey, 2021). Accordingly, for Japanese teachers who are novices 
in teaching mathematical modelling, it is important to engage in a modelling PD 
program that is initiated with tasks involving transforming familiar mathematised 
textbook tasks into modelling tasks to enable them to consider modelling lessons 
as an extension of their daily lessons. However, previous research has not clarified 
how teachers transform a mathematised task into modelling tasks and implement a 
modelling lesson. Subsequently, clarifying this would also provide suggestions for 
the design of the PD program. 

We developed a framework for describing and analysing teachers’ activities to 
design and implement modelling tasks based on mathematised tasks (Fig. 15.1) 
based on the notions of both design as intention and design as implementation 
(e.g., Czocher, 2017; Geiger et al., 2022). This framework consists of two major 
components, ‘Design of Modelling Tasks by Transforming Mathematised Tasks’ 
and ‘Development and Implementation of a Modelling Lesson’, each containing 
several phases. These two components are not independent of each other but are 
interrelated and are illustrated by two-way arrows in Fig. 15.1. The former compo-
nent is concerned with the development of the modelling tasks, which are designed 
as intention based on domain-specific theories related to mathematical modelling 
processes (e.g., Czocher, 2017; Geiger et al., 2022) and is also situated in designing 
a task of Lesson Study (e.g., Fujii, 2015; Lewis & Hurd, 2011). We set up three 
phases within the ‘Design of Modelling Tasks by Transforming Mathematised Tasks’ 
component: ‘Selection of a Mathematised Task’, ‘Analysis of the Mathematised 
Task’, and ‘Design of the Modelling Task’. Although the three phases are more or 
less linear from Phase 1 to Phase 3, these have been indicated by two-way arrows in 
case the teacher wants to verify and refine the modelling tasks by reflecting on the 
contents of the phases already conducted.

The latter component is designed as an implementation, in which the transformed 
modelling tasks are progressively refined according to the classroom environment 
in which they are implemented, such as students’ learning performance, the purpose 
of the class, and the teacher’s perspective on teaching (e.g., Czocher, 2017; Geiger 
et al., 2022) and is also situated in implementing and reflecting a research lesson
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Fig. 15.1 A framework for describing and analysing teachers’ activities to design and implement 
modelling tasks

of Lesson Study (e.g., Fujii, 2015; Lewis & Hurd, 2011). We set up two phases 
within this component: ‘Development of a Modelling Lesson’ and ‘Implementation 
of the Modelling Lesson’. Although the two phases are more or less linear from 
Phase 4 to Phase 5, they are represented by two-way arrows because it is important 
to revise, improve, and re-implement the modelling lesson based on reflection after 
implementation. 

Due to limited space, we will describe Phases 2, 3, and 4 of the framework 
(Fig. 15.1), which are relevant to the research question of this chapter (see below). 
Phase 2 includes three activities (A-2.1, A-2.2, and A-2.3) for analysing a math-
ematised task and is the stage in which the textbook task selected in Phase 1 is 
analysed. This is according to the criteria pertaining to the mathematical modelling 
tasks (e.g., Maaß, 2010; Siller & Greefrath, 2020) and the sub-competencies of math-
ematical modelling (e.g., Greefrath & Vorhölter, 2016; Kaiser & Brand, 2015). In 
A-2.1, teachers analyse whether the authenticity and relevance of the criteria for the 
modelling tasks for the students are included in the content of the mathematised tasks. 
In A-2.2, teachers analyse the task with regard to the mathematical modelling sub-
competencies of simplification and mathematisation of the criteria for the modelling 
tasks. While in A-2.3, teachers analyse the task regarding the sub-competencies 
pertaining to interpretation and validation of the criteria. 

Phase 3, which includes three activities (A-3.1, A-3.2, and A-3.3), is the stage in 
which the textbook task is transformed into modelling tasks based on the analysis 
results in Phase 2. Teachers transform the textbook task into modelling tasks by 
considering the criteria of the mathematical modelling task and the elements of the 
sub-competencies that need to be focused on by the students. 

Phase 4, which includes three activities (A-4.1, A-4.2, and A-4.3), is the stage in 
which participating teachers, academic researchers, and practical researchers collab-
orate to develop a modelling research lesson with transformed modelling tasks based
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on the classroom environment in which the lesson is to be conducted, the purpose of 
the lesson, the performance of the students, and the teacher’s view of teaching. This 
phase is the ‘PLAN’ stage of the Lesson Study cycle (e.g., Fujii, 2015; Lewis & Hurd, 
2011), which is implemented in daily school activities in Japan. In A-4.1, teachers 
set the central aim of the modelling lesson, that is, whether it should be modelling as 
a vehicle to make students understand a specific mathematical content or modelling 
as content to improve the sub-competency of modelling processes (Julie & Mudaly, 
2007). In A-4.2, teachers set up the pedagogical architecture (e.g., Geiger et al., 
2022) to achieve the aim of the modelling lesson using the transformed modelling 
task. In A-4.3, teachers anticipate the modelling activities in the students’ lesson flow 
in the pedagogical architecture setup in A-4.2 and make decisions about appropriate 
interventions that the teachers can take to facilitate the modelling activities of the 
students (e.g., Leiß & Wiegand, 2005). 

For teachers who are novices in teaching modelling, a guideline for devel-
oping modelling tasks and designing modelling lessons is needed (e.g., Ang, 2018). 
Although the framework was developed based on the characteristics of Japanese 
teachers, we consider that it can contribute as a useful and practical guideline (lens) 
for developing and designing modelling lessons for teachers in other countries who 
are new to teaching modelling. Furthermore, for academic researchers who are 
pursuing teacher education in modelling for the first time, we assume that this frame-
work can provide a critical lens for the design, implementation, and improvement of 
PD programs. 

To achieve the objectives of the study, we formulated the following research 
question: 

RQ: How do novice teachers in modelling instruction continuously transform 
modelling tasks through the PD program with the perspectives of each phase 
in the framework, which focuses on transforming mathematised tasks into 
modelling tasks? 

15.3 Method 

In this section, we present a PD program with the perspectives of each phase in the 
framework (Fig. 15.1) and the outline of its implementation in 2019. 

15.3.1 Participants and Teacher Educators 

The participants in this program were teachers teaching elementary, junior, and senior 
high schools in Tokushima Prefecture, Japan, and graduate students (in-service and 
pre-service teachers) from the Naruto University of Education. They had little knowl-
edge of the theory of mathematical modelling and its teaching. The first and second 
authors were able to teach the PD program and, depending on the program content,
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academic researchers from the fields of mathematics and science education, and 
modelling practice researchers (middle and high school teachers), had opportunities 
to discuss the program with the participants. 

15.3.2 Design of the PD Program 

Table 15.1 indicates the PD program for modelling that we designed and imple-
mented. It depicts the main activities in each module, phases in the framework 
(Fig. 15.1), date of implementation, and number of participants. As Japanese teachers 
are busy not only with daily lessons and student guidance but also with club activi-
ties and school duties during long holidays such as summer holidays, it is difficult to 
conduct a program with a long duration. Therefore, we divided the program into four 
modules, with the duration being six hours a day. The schedule for each module was 
selected once every two months on a weekend that was relatively easy for teachers 
to attend. Nevertheless, as illustrated in Table 15.1, the number of participants in 
each module varied because some teachers could not participate due to coaching 
weekend club activities. The theme of this program was to transform the tasks from 
the mathematics textbooks and develop lessons from the perspective of switching 
back and forth between ‘Real world’ and ‘Mathematical world’. The purpose of 
Modules 1 and 2 is to develop teachers’ competencies in transforming mathematised 
tasks into modelling tasks through activities carried out during Phases 1–3 (selec-
tion, analysis, and design) in the framework. The purpose of Modules 3.1–3.3 is 
to develop teachers’ competencies to implement a modelling lesson by developing 
research lessons based on the problems transformed into modelling tasks through 
activities carried out during Phase 4 in the framework. The purpose of Module 4 is to 
further develop teachers’ competencies in developing and implementing modelling 
lessons that involve delivering research lessons and post-lesson discussions through 
activities carried out during Phase 5 in the framework.

15.3.3 Overview of the Implementation of Modules 3.1–3.3 

Due to limited space, we will describe an overview of the implementation of Modules 
3.1–3.3 (Table 15.1), which are relevant to the research question of this chapter. After 
completing Module 2, we asked the participants if they wished to conduct research 
classes. Four teachers agreed to this. Mr A, an in-service elementary school teacher 
and Mr B, a graduate student and in-service elementary school teacher, developed a 
modelling research lesson for Grade 6. Ms C, a graduate student and in-service junior 
high school teacher, developed a research lesson for Grade 7. Mr D, an in-service 
senior high school teacher, developed a research lesson for Grade 10. 

In Module 3.1, the teachers of each research lesson and the academic researchers 
(the first and second authors) had several meetings of about 1.5 h to prepare the lesson
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Table 15.1 Major activities of the PD program 

Modules 
(Duration) 

Major activities included in the 
modules 

Phases Date N 

1 
(6 h) 

Identify the teachers’ perspectives 
on making modelling tasks 
through activities transforming 
the textbook tasks into modelling 
tasks 

2,3 19/5/2019 13 (2) 

13/7/2019 6 (2)  

2 
(6 h) 

Understanding the theoretical 
background and the modelling 
diagram through activities 
transforming the textbook tasks 
into modelling tasks 

1, 2, 3 28/9/2019 16 (7) 

3.1 Preparation of a lesson plan for a 
research lesson using the 
transformed modelling task 

1, 2, 3, 4 19/11/2019 ~ 24/12 6 (2)  

3.2 
(6 h) 

Identification of ways to improve 
modelling lessons by sharing and 
discussing lesson plans for the 
research lesson 

2, 3, 4 11/1/2020 16 (7) 

Discussion on improvement 
policies based on items to be 
improved considering the school 
type 

3.3 Improvement in lesson planning 
for the research lesson, based on 
the improvement policies 

2, 3, 4 23/1/2020 ~ 17/3 6 (2)  

4 
(4 h) 

Conducting the research lesson in 
the class 

2, 3, 4, 5 20/2/2020 8 (3)  

Evaluation and improvement of 
research lesson through 
post-lesson discussion 

28/2/2020 11 (2) 

Note The number of participants in each module is shown in the column for the number of partic-
ipants. The number of academic researchers (including the teaching staff) and modelling practice 
researchers is mentioned in parentheses.

plan for the modelling research lesson. The role of the two teacher educators was to 
intervene to discuss the teacher-created tasks and lesson plan from the criteria for 
modelling tasks and the perspective of the modelling process because the teachers had 
insufficient skills and competencies regarding modelling tasks and lessons. However, 
the teacher educators tried to provide as little direct guidance as possible to encourage 
the teachers to think independently about how to improve their tasks and lesson plans. 
For example, the tasks that were initially transformed by the teachers based on the 
tasks in the textbooks, although they incorporated real-life events, often had dress-
up tasks that were aimed at acquiring mathematical knowledge and skills and not 
at solving realistic tasks for the students. Therefore, the teacher educators shifted
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the focus of the discussion to improving the teacher-created materials based on the 
perspectives of A-3.1 of the framework. As the teachers were developing lesson plans 
incorporating modelling tasks for the first time, the teacher educators were facilitated 
to reconsider the lesson plans based on the perspectives of the three activities (A-4.1, 
A-4.2, and A-4.3) of Phase 4 of the framework on the lesson plans developed by the 
teachers on their own initiative. 

In Module 3.2, a total of 16 participants (four lesson teachers, three in-
service teachers, two teacher training teachers, five academic researchers, and two 
researchers in modelling practice) participated in the discussion on the improvement 
of the three modelling lessons for about 6 h. First, each teacher shared the outline 
of the research class based on the lesson plan with the participants, which included 
academic researchers and modelling practice researchers, and the issues pertaining to 
the modelling lessons were identified through discussions. The academic researchers 
and the practical modelling researchers questioned each instructional plan from 
academic and practical viewpoints, respectively. Next, all participants were divided 
into each research lesson group, and the policies for improving the identified issues 
were discussed. Subsequently, the improvement policies were shared among all 
members through presentations and question–answer sessions. 

In Module 3.3, the teachers in charge of each research lesson and the academic 
researchers (the first and second authors) participated in several review meetings of 
about 1.5 h to recreate the lesson plan for the modelling research lesson based on 
the proposed guidelines for improvement policies. The roles of the teacher educators 
were the same as in Module 3.1. 

15.3.4 Data Collection and Analysis 

All modules, including the research lessons and post-lesson discussions, were video-
taped, audio-recorded, and transcribed. In addition, the participants’ worksheets, 
questionnaires pertaining to each module, and lesson plans developed and refined 
for the research lesson were collected. To explore the research question, we selected 
the module designed for the research lesson of Grade 6 based on three criteria: 
(1) mathematised tasks in the textbook chosen by the teachers are commonly used 
in the application of proportion, (2) the modelling research lesson is significantly 
improved through collaborative discussions between the teacher and the researcher, 
and (3) Mr A and Mr B, who implemented the research lesson had gained in-depth the 
modelling-specific pedagogical content knowledge through this PD program. Mr A, 
who conducted the lesson, had 27 years of experience in elementary school, and Mr 
B, who supported the lesson plan, had 11 years of experience in elementary school 
teaching. The lesson discussed here is not special or fundamentally different from 
the lessons of the other groups that participated in this program. 

The results of the teachers’ analysis of the task selected by them at the beginning 
of Module 3.1 were analysed based on Phase 2 of the framework. Next, the teachers’ 
initial modelling tasks, which they transformed based on the results of the analysis of
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the mathematised tasks in the textbook, and the modelling tasks that they improved 
upon for the research lessons, were analysed according to Phase 3 of the framework. 
Furthermore, the final lesson plan used by the teachers in the modelling research 
lesson in Module 4 was analysed according to Phase 4 of the framework. Based 
on the results of these analyses, we identified how the novice teachers executed the 
modelling lessons in Phases 2, 3, and 4 of the framework to design modelling tasks and 
implement modelling lessons. Finally, the changes in the teachers’ modelling tasks 
during Module 3 were analysed based on the criteria pertaining to the mathematical 
modelling tasks (Siller & Greefrath, 2020). The second author conducted a qualita-
tive analysis of the protocol content, transformed modelling tasks, and lesson plans 
discussed in each meeting of Module 3.1–3.3. The first author verified these results, 
and after careful discussion among all the authors, the final analysis results were 
finalised on consensus. The results revealed that the teachers’ knowledge pertaining 
to the modelling tasks developed as they progressed through Phases 2, 3, and 4 of 
framework. 

15.4 Results 

In the first meeting of Module 3.1, Mr A and Mr B transformed the Grade 6 math-
ematised task ‘counting the number of sheets of paper’ in the textbook selected 
and analysed by Mr B into a mathematical modelling task and developed their own 
research lesson. In a subsequent meeting, Mr A and Mr B collaborated to improve 
their modelling task and lesson plan for the modelling research lesson for the students 
at Mr A’s school. 

15.4.1 Mr B’s Selection and Analysis of the Mathematised 
Task at the Beginning of Module 3.1 

Figure 15.2a and b illustrate the results of the analysis of the task ‘application of 
proportions’ (Sugiyama et al., 2007, p. 55) presented by Mr B in the first meeting 
of Module 3.1. From the analysis results at the A-2.1 stage, it was proposed that 
measuring a large amount of paper is not authentic for the students (#1). The analysis 
of A-2.2 revealed that the procedure and the mathematical model used to solve the 
task were presented (#2 and #4), and that weight was selected as the variable to solve 
the problem, and the related quantities were also presented (#3 and #5). The results 
of the analysis of stage A-2.3 revealed that no interventional measures were adopted 
to interpret or validate the entire process of problem solving and the obtained results 
(#6).
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Fig. 15.2 Selected mathematised task (a) and analysed results (b) by Mr B: translated by the  first  
author 

15.4.2 Transformation and Improvement of the Modelling 
Tasks of Mr A and Mr B Through Module 3 

To develop a modelling lesson with the transformed modelling task, keeping the 
classroom environment in mind, Mr A and Mr B, the first and second authors, had 
five meetings to discuss Modules 3.1–3.3. Here, we describe the first modelling task 
created by Mr B and the final modelling task used in the research lesson. 

Figure 15.3a illustrates the modelling task made by the two teachers based on 
the results of Mr B’s analysis at the beginning of Module 3.1. From A-3.1, Mr B 
thought that by presenting the students with paper in bulk, the task would become 
more authentic for them (#1). During the A-3.2 stage, Mr B removed the problem-
solving process, mathematical model, and number table of paper weights from the 
tasks in the textbook (#2, #4, and #5). In addition, he decided to present students with 
a 1 kg scale, an electronic scale, a 30 cm ruler, and a non-slip finger sack to provide 
opportunities for the students to choose the variables needed to solve the modelling 
task (#3). During the A-3.3 stage, the teachers discussed how to interpret or validate 
the problem-solving process and results of the weights and heights selected by the 
students, respectively (#6).

Figure 15.3b illustrates the final version of the modelling task developed by Mr 
A and Mr B for use in the research lesson. During A-3.1, which makes the task 
more authentic for the students, the teachers modified their modelling task to include 
whether the number of sheets of paper presented to the students would be sufficient to 
create students’ graduation texts. In most elementary schools in Japan, when students 
graduate, they create a graduation text in which they write about their own memories 
of their school life or their dreams for the future. Since the students in the research
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Fig. 15.3 Modelling task at the beginning of Module 3.1 (a) and the task in the research lesson 
(b): translated by the first author

lesson would be graduating in two weeks, the two teachers thought that this task 
would be an authentic task for them. Moreover, Mr A set the number of sheets of 
paper to be addressed in the task as 1,300, which was based on the number of sheets 
of writing created by the students. During A-3.2, the teachers removed the tools 
presented to the students to share the various variable settings and solutions to the 
problem. Instead, the teachers decided to conduct the research lesson in a science 
laboratory to allow the students to choose the tools or instruments in the laboratory 
according to their needs. With respect to A-3.3, no significant changes were made. 

15.4.3 Final Lesson Plan for the Modelling Lesson 
at the End of Module 3.3 

Mr A and Mr B collaboratively improved the lesson plan for the modelling research 
class as the modelling task was improved. Due to limited space, Table 15.2 illustrates 
the outline of the final lesson plan for the 6th-grade modelling research lessons 
(45 min × 2 lessons). This lesson was designed for six girls in a small elementary 
school in a mountain village in Tokushima prefecture. In the initial Module 3.1 
phase, the lesson was designed as a single 45-min lesson, but due to the students’ 
low performance in mathematics and lack of experience in modelling, the teachers 
decided to take two 45-min lessons in a sequence. Furthermore, considering the 
modelling processes, the lesson sequence was gradually modified to be structured 
in six phases. In the Grasp phase, the students grasp the purpose of the modelling 
task and predict whether the number of sheets of paper in front of them was enough 
for their graduation texts. In the Plan phase, the students set up and execute a plan 
for simplification and mathematisation to create their own mathematical model. In 
the Work phase, the students worked mathematically according to their plan and 
prepared a presentation of their process and results. In the Discussion phase, the
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students share and discuss the solution provided by each group regarding the process 
and result for interpretation or validation. In the Reflection phase, the students reflect 
on the learning activities of this lesson. 

Table 15.2 Outline of the Grade 6 modelling lesson plan (translated by the first author) 

Phase Learning activities and teacher 
interventions or feedback 

Anticipated students’ reactions 

Grasp 1. Grasping the meaning of the task and 
predicting the number of sheets of paper 
(Grasp modelling task)
• Providing sheets of paper in bulk to 
the students

• To encourage the students to grasp the 
task by asking, “We need 1,300 sheets 
of paper for our graduation texts, will 
there be enough here?”

• Not enough, maybe 1,000 sheets
• There are more than 1,300 sheets
• We will have to divide and count them 

Plan 2. Planning for counting the paper 
(simplifying, mathematising)
• To set up the variables by asking, 
“What else will change if the number 
of sheets of paper changes?”

• Divide into groups with the same way 
of solving the task

• Tell students that they are free to use 
any tool in the classroom

• Find the number of sheets by 
measuring the height of the bundle of 
sheets with a ruler

• Find the number of sheets by weighing 
them with a scale 

Work 3. Solving the task using their plan 
(working mathematically)
• Ask students to write their 
measurements and solutions on the 
worksheet

• Encourage the students to measure 
more data

• Ask the groups to prepare a 
presentation of their solution and 
results

• Count the number of pieces of paper in 
a 1 cm bundle, and measure the height 
of the entire bundle of paper

• Weigh 10 sheets and the whole bundle 
of paper 

Discussion 4. Sharing and discussing each group’s 
solution and results (interpreting and 
validating)
• Recognise the benefits of using 
proportional thinking to solve a task

• Discuss the similarities between and 
validity of the different solutions and 
results

• The solutions were different, but the 
results were almost the same

• Both solutions use the same idea of 
proportionality 

Reflection 5. Reflecting on the learning activities of 
this lesson
• Encourage students to reflect on the 
content of the lesson using the 
mathematical term ‘proportion’

• Proportional relations can help in 
counting the sheets of paper
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15.4.4 Changes in Teachers’ Modelling Tasks Through 
Module 3 

Five meetings were held for Module 3 before the modelling lesson was conducted. 
In the two meetings for Module 3.1, Mr A, Mr B, and the two teacher educators 
(the first and second authors) jointly discussed preparing the lesson plan for the 
modelling lesson. In Module 3.2 meeting, the lesson plans were shared with teachers 
of other grades, academic researchers, and practice researchers, and suggestions 
for improvements were discussed. In the fourth and fifth meetings for Module 3.3 
(the fifth meeting by email), Mr A, Mr B, and the two teacher educators improved 
the lesson plans. Table 15.3 illustrates the changes made in the modelling tasks after 
analysing the discussed protocols and the lesson plans developed in each meeting for 
Module 3, according to the criteria for the modelling tasks (Siller & Greefrath, 2020). 
The results revealed qualitative improvements in the content related to each criterion 
of the modelling tasks, except for the criteria ‘Relation to reality’ and ‘Simplifying’. 
At the fifth meeting on Module 3.3, there was a significant qualitative improvement in 
the modelling task and lesson plan developed. The main reason for this could be the 
deliberate discussion of the improvements pointed out by teachers of other grades, 
academic researchers, and practice researchers during Module 3.2. For example, in 
response to the suggestion that the task setting was not necessarily relevant for the 
students, the content of the task was changed to ensure relevance by adopting the 
context of students’ graduation text. As for the openness to multiple solutions, by 
introducing the method of allowing students to select tools in the science laboratory 
based on their own decisions, the task was changed to be open based on the students’ 
intentions. In the first lesson plan, the interpretation of the results obtained by the 
students was made by comparing them with the results prepared in advance by the 
teacher. However, after the fourth meeting, the teacher changed the lesson plan to 
verify the students’ results based on the printed results after the lesson. Furthermore, 
the teachers decided to adopt validity in the modelling process (e.g., Blum, 2015) in  
the reflection of the lesson.

15.5 Discussion and Conclusion 

In this chapter, by analysing the activities of novice teachers teaching modelling in 
Module 3 of the PD program with the perspectives of each phase in the framework 
(Fig. 15.1), which focused on transforming mathematised tasks into modelling tasks, 
we revealed aspects of the continuous transformation and improvement of modelling 
tasks and lessons. This section presents two findings from the research question. 

The first finding is that through the activities of transforming the mathematised 
tasks of familiar textbooks into modelling tasks through Modules 3.1–3.3 of the PD 
program (Phases 2–4 of the framework), novice modelling teachers were able to 
improve their modelling tasks and lessons, as illustrated in Tables 15.2 and 15.3. For
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the modelling task, the analysis based on the respective criteria of the modelling task 
(Siller & Greefrath, 2020), as illustrated in Table 15.3, revealed that the teachers’ 
modelling tasks were modified in each criterion. For example, with regard to ‘Authen-
ticity’, by incorporating the context of the graduation texts into the task, we consid-
ered that the teachers had transformed it into an authentic modelling task that was of 
common concern to the students and the teachers as they approached graduation, and 
that was also relevant to stakeholders such as former teachers and their families (Vos, 
2011). For the openness of the solution, the teachers incorporated nonverbal inter-
vention methods in their lesson plan, such as placing various measuring instruments 
for weight and length in the classroom, to have the students independently decide 
on the variables and mathematical models for the solution by their own intentions 
(Stender et al., 2017). We considered that the reason the novice modelling teachers 
were able to gradually improve their modelling tasks and lesson plan was because 
they discussed the results of Mr B’s analysis of the textbook’s tasks based on Phase 
2 of the framework (see Fig. 15.2). From the above, we found that novice modelling 
teachers could understand the characteristics of each criterion of the modelling task, 
through activities that transform familiar textbook mathematised tasks into modelling 
tasks. 

The second finding is that the PD program enables novice modelling teachers 
to develop and implement modelling lessons based on real-life experiences by 
conducting discussion sessions to study the lessons with teachers from different 
backgrounds and researchers and by developing and implementing lesson plans for 
their own students (Phases 3 and 4 of the framework). Adopting a Lesson Study 
style to implement the research lessons in this study helped the teachers design appro-
priate modelling tasks considering the classroom environment in which the modelling 
lessons were to be implemented (e.g., students’ performance, lesson objectives, and 
teachers’ views on teaching). Furthermore, Japanese teachers are used to collab-
orating on the design and improvement of tasks and lesson plans by performing 
lesson studies (Lewis & Hurd, 2011, pp. 10–11); hence, they accept suggestions 
for improvement from others (teachers from other grades, academic researchers, 
and practice researchers) during the five meetings for Module 3. Additionally, the 
Japanese teachers emphasise designing a task not only in Lesson Study but also 
in their daily teaching. In designing a task, with the intention of implementing a 
lesson, teachers examine teaching materials and tasks from a mathematised and 
educational perspective and from the perspective of students, and students solve the 
tasks by themselves (Fujii, 2015, p. 5). In other words, we found that Phases 2 and 
3 of the framework apply to designing a task from a mathematised perspective and 
a modelling-specific educational perspective, and Phase 4 is applicable to imple-
menting a lesson from a pedagogical perspective (including modelling) and student 
perspective. 

Two issues must be addressed in future studies. One is to verify whether the PD 
program in this study can also be applied to teachers with experience in modelling 
teaching. The other is to qualitatively analyse and discuss the changes in teachers’ 
modelling-specific pedagogical content knowledge (Wess et al., 2021) developed
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by in-service teachers while improving the modelling task and the lesson plan in 
Modules 3.1–3.3. 
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Chapter 16 
Pre-service Teachers’ Self-Efficacy 
for Teaching Mathematical Modelling 

Hans-Stefan Siller , Gilbert Greefrath , Raphael Wess , 
and Heiner Klock 

Abstract We focus on the professionalisation of pre-service teachers through reflec-
tive practice when they train for mathematical modelling. To do so, we consider their 
self-efficacy beliefs as an important aspect of professional competence for teaching 
mathematical modelling. A pre-post design was used to examine the extent to which 
self-efficacy of mathematics pre-service teachers for mathematical modelling can 
be increased through a variety of different teaching–learning laboratories. Clearer 
effects could be seen when the pre-service teachers themselves created modelling 
tasks for use with grade nine students. 

Keywords Mathematical modelling · Professional competence · Self-efficacy ·
Pre-service teacher · Teacher training · Teaching–learning laboratories 

16.1 Introduction 

Self-efficacy expectations represent an empirically founded characteristic of profes-
sional competence (Kunter, 2013). The term self-efficacy expectancy is understood 
as an evaluation of one’s own effectiveness in certain situations. Tschannen-Moran 
and Woolfolk Hoy (2001, p. 783) characterise this as follows: “A teacher’s efficacy 
belief is a judgement of his or her capabilities to bring about desired outcomes of
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student engagement and learning, even among those students who may be difficult 
or unmotivated”. 

Self-efficacy expectations can be concretised in terms of teachers’ beliefs about 
their own efficacy in teaching mathematical modelling processes. Activities occur-
ring in such processes are determined in terms of content by the facets of modelling-
specific subject didactic knowledge. One of the main activities of the teacher during 
cooperative modelling processes is the diagnosis of the solution process. Since the 
diagnostic component has connections to both the intervention- and task-related 
knowledge facets, self-efficacy expectations are operationalised via the assessment 
of one’s own ability to diagnose learners’ performance potential in the modelling 
process (Wess et al., 2021a). 

Learners’ modelling process is characterised by different activities and cogni-
tive processes in the different phases of the modelling process. Therefore, different 
diagnostic processes by the teachers are necessary in the different modelling phases 
the learners are currently in. This justifies the assumption that the teacher’s self-
efficacy also differs depending on the modelling phase. With regard to the learners’ 
activities and the associated diagnostics, phases that are unspecific to the modelling 
process and in which the activities can be comprehended on the basis of written 
materials (mathematical work) can be distinguished from phases that are specific 
to the modelling process and in which cognitive processes predominate (simpli-
fying/structuring; mathematising; interpreting; validating). The self-efficacy expec-
tations for mathematical modelling are therefore conceptualised for the diagnosis of 
performance potentials for the learners’ activities in the modelling process. 

16.2 Theoretical Background 

16.2.1 Modelling Competence 

In recent years, numerous ideas about mathematical modelling and its associated 
translation processes have emerged in the mathematics education discussion about 
teaching close to reality. 

The entire modelling process is often idealised as a modelling cycle. The literature 
therefore contains various modelling cycles. Blum and Leiß (2007) created such a 
modelling cycle from a cognitive perspective (see Fig. 16.1). For this purpose, a 
modelling cycle previously created by Blum (Blum & Kirsch, 1989) and further 
developed by different researchers was extended by the situation model. The situation 
model describes the mental representation of the situation by the individual. The 
creation of a mathematical model was addressed in detail, and the process of the 
individual creating the model was set out in greater detail.

This modelling cycle (Fig. 16.1) describes the various sub-processes of modelling 
more accurately and in greater detail than many other modelling cycles. Therefore,
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Fig. 16.1 Modelling cycle according to Blum and Leiß (2007, p. 221)

we use this cycle for our further consideration. The ability to perform such a sub-
process can be seen as a special competence of modelling (Kaiser, 2007; Maaß, 2006). 
Students should be able to translate between reality and mathematics in both direc-
tions and work within the mathematical model. Niss et al. (2007) defined modelling 
competence as follows: 

Mathematical modelling competency means the ability to identify relevant questions, vari-
ables, relations or assumptions in a given real world situation, to translate these into math-
ematics and to interpret and validate the solution of the resulting mathematical problem in 
relation to the given situation, as well as the ability to analyse or compare given models by 
investigating the assumptions being made, checking properties and scope of a given model, 
etc. (Niss et al., 2007, p. 12) 

Promoting the ability to process real-world problems with mathematical tools is 
therefore a central goal of modelling in school. 

The definition describes the so-called global modelling competence by which 
specific sub-processes can be identified by means of an atomistic perspective. Thus, 
Blum (2015) understood modelling competence as the ability to construct, use or 
adapt mathematical models by carrying out process steps adequately and appropriate 
to the problem, as well as analysing or comparing given models. Modelling compe-
tence is therefore not a one-dimensional construct but one that can be interpreted as a 
combination of different sub-competencies. These sub-competencies could be char-
acterised as presented in Table 16.1. By means of detailed descriptions, the definition 
of sub-competencies becomes obvious. Thus, an extensive list of modelling compe-
tencies can be obtained. Working mathematically has been included in the list of 
sub-competencies for the sake of completeness. However, it should be remembered 
that mathematical work is not as typical for modelling processes as, for example,
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Table 16.1 Sub-competencies involved in modelling 

Sub-competency Description 

Constructing Students construct their own mental model from a given problem 
and thus formulate an understanding of the problem 

Simplifying Students identify relevant and irrelevant information from a real 
problem 

Mathematising Students translate specific, simplified real situations into 
mathematical models (e.g. terms, equations, figures, diagrams, 
functions) 

Working mathematically Students work with mathematical methods in the mathematical 
model and get mathematical solutions 

Interpreting Students relate results obtained from manipulation within the 
model to the real situation and thus obtain real results 

Validating Students judge the real results obtained in terms of plausibility 

Exposing Students relate the results obtained in the situational model to the 
real situation, and thus obtain an answer to the problem 

Source Greefrath et al. (2013) and Greefrath and Vorhölter (2016) 

mathematising or validating. By using different modelling cycles, other competen-
cies emphasising other aspects of modelling could occur (Greefrath & Vorhölter, 
2016). 

In addition, metacognitive competences are necessary for the appropriate perfor-
mance of modelling processes (Stillman, 2011). Lack of metacognition, such as 
controlling the solution process (Kaiser, 2007) or reflecting its appropriateness 
(Blomhøj & Jensen, 2003), can lead to problems in the modelling process. 

The question of how modelling processes can be designed is closely related to 
perspectives on mathematical modelling as well as the goals pursued with the inte-
gration of mathematical modelling into mathematics education by using modelling 
tasks. 

For teacher training in modelling, modelling tasks play an important role. Looking 
back at the modelling-specific task categories, it can be seen, according to Maaß 
(2010), that the nature of the relationship with reality—more precisely the context 
of the situation, its authenticity, and its relevance for students—seems to be very 
important for an adequate analysis of reality-related tasks. At the interface of the 
special and general task criteria, the dimension of the cognitive elements of the 
modelling cycle—in particular, the partial steps of modelling—is highlighted as a 
characteristic examination feature. 

Modelling tasks include an authentic context (Maaß, 2010; Siller & Greefrath, 
2020). Realistic contexts, which should be relevant to learners’ present or future 
life, enable learners to use their everyday knowledge to find a solution. Furthermore, 
modelling tasks can stimulate various activities when they are being solved. The 
more sub-competencies (Kaiser, 2007) are addressed, and the more clearly this is 
done, the greater the opportunity for students to find their own solutions. Hence we 
can summarise various criteria for modelling tasks (Greefrath et al., 2017; Wess &



16 Pre-service Teachers’ Self-Efficacy for Teaching Mathematical Modelling 263

Greefrath, 2019). The first of these is openness. The problem allows for different 
solutions and approaches at different levels. The openness of a task, in the sense of 
multiple approaches and solutions (Schukajlow et al., 2015), is an essential feature 
of modelling tasks. The second is authenticity. This is the question of whether the 
context is really related to an actual situation and if the task is authentic with regard to 
the application of mathematics in a concrete situation. The third criterion, relevance, 
is about the question of whether the context is relevant to the students themselves. The 
task is then seen by the students as interesting, closely related to their everyday life or 
relevant to it. Fourthly, it is desirable that as many sub-competencies of mathematical 
modelling as possible are taken into account. The problem then promotes cognitive 
elements in the form of sub-competencies of mathematical modelling. 

16.2.2 Professional Competence 

Professional competence is a much discussed topic (Cochran-Smith & Fries, 2001; 
Darling-Hammond & Bransford, 2005) and has been measured globally in various 
large-scale studies (Blömeke et al., 2014; Kunter et al., 2013). The dimensions for 
the subject of mathematics range from knowledge of mathematical content to peda-
gogical knowledge and affective aspects of teachers with the aim of bringing them 
together. 

The professional competence of a teacher is to be understood within this concept 
of competence, which is based on different professional requirements, since motiva-
tional, volitional and social aspects play a role, in addition to cognitive performance 
dispositions (Weinert, 2001). 

Professional competence is a concept used to describe the skills teachers need 
to meet their professional requirements. Several aspects are emphasised, including 
a commitment to service to others, as in a “calling”, and an understanding of a 
scientific or theoretical nature. It also emphasises the exercise of judgement under 
conditions of unavoidable uncertainty. Thus, the need to learn from experience also 
arises when theory and practice interact (Shulman, 1998). Building on Shulman 
(1986, 1987), a distinction in the aspect of a teacher’s professional knowledge is made 
between content knowledge, pedagogical content knowledge, curricular knowledge, 
and pedagogical-psychological knowledge. 

Teachers’ perspectives, however, are not assigned to professional knowledge in 
the currently discussed conceptualisations, but to certain constructs, beliefs, atti-
tudes, or values (Baumert & Kunter, 2013). Pre-service teachers acquire a basic 
scientific knowledge in their own subject. They serve society in their respective field 
of education through their activity and have a significant influence on the individuals 
they educate. They see themselves as lifelong learners and work professionally with 
colleagues to ensure the quality of school education. According to these characteris-
tics, teaching can be clearly described as a profession, and professional competence 
can be seen, in terms of the concept of competence, as a combination of specific 
declarative and procedural knowledge, professional values, beliefs and goals, as
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well as motivational orientations and professional self-regulation skills (Baumert & 
Kunter, 2013). 

Specific competences in this way have been described differently in various 
conceptualisations. In principle, these models have the goal of covering the central 
areas of teachers’ competence. 

In the context of the professionalisation of mathematics pre-service teachers, the 
question of the existence and structure of specific professional competence is also 
raised to verify skill gains in specific areas. Due to the numerous requirements in 
the care of cooperative modelling processes and “the strong implantation of real-
world problem solving […] into the curricula” (Schwarz et al., 2008, p. 788), it 
makes sense to differentiate professional competence in the field of mathematical 
modelling (Borromeo Ferri & Blum, 2010). In this way, the conceptualisation of a 
structural model for teaching mathematical modelling will be presented. A structural 
model describing and relating professional competence for teaching mathematical 
modelling has been developed and empirically confirmed. With regard to profes-
sional knowledge, an interpretation of the facets of the pedagogical content knowl-
edge can be made taking into account Borromeo Ferri and Blum’s (2010) compe-
tence dimensions. Thus, a description of pre-service teachers’ modelling-specific 
professional competence can be achieved with the help of a structural model and 
associated empirical validation (Wess et al., 2021b). Regarding the necessary profes-
sional competences for the teaching of mathematical modelling (cf. Fig. 16.2), in 
addition to beliefs/values/goals and motivational orientations, pedagogical content 
knowledge, as a part of professional knowledge, is characterised, in particular by 
modelling-specific content. In contrast, self-regulatory skills tend not to contain any 
modelling-specific aspects and are therefore not considered more closely.

It has already been shown that the pedagogical content knowledge of mathematical 
modelling as part of the professional competence of pre-service teachers can be 
promoted through appropriate university seminars. The results of the study show 
that certain aspects (namely, knowledge of modelling tasks, modelling processes 
and interventions) have significantly increased (Greefrathet al., 2022). 

Teachers’ professional competence is composed of cognitive (professional knowl-
edge) and affective (beliefs and motivational orientations) components. In the 
COACTIV study, teachers’ self-efficacy was assigned to motivational orientations 
and described according to the concept of general self-efficacy (Bandura, 1997), 
as “a judgement of his or her capabilities to bring about desired outcomes of 
student engagement and learning, even among those students who may be difficult 
or unmotivated” (Tschannen-Moran & Woolfolk Hoy, 2001, p. 783). 

Accordingly, self-efficacy is considered an empirically founded feature of profes-
sional competence (Kunter, 2013) that relates to specific domains. It is thus suitable 
for understanding perceptions of teachers’ own individual capabilities for teaching 
mathematical modelling. In particular, performance, convictions, and the motivation 
of trainees are influenced through their self-efficacy (Philippou & Pantziara, 2015). It 
is thus pivotal for the actions of teachers and goes hand in hand with higher teaching 
quality, the use of more innovative and effective methods in class, and a higher level 
of commitment from the teachers (Kunter, 2013).
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Fig. 16.2 Structural model of professional competence for the teaching of mathematical modelling

It is generally assumed that the different components of professional compe-
tence are interrelated and have an impact on teaching practice. It has been shown 
that teachers’ self-efficacy expectancy significantly predicts reported teaching prac-
tices (Depaepe & König, 2018). Such self-efficacy varies depending on topic and 
context and therefore needs to be defined in an appropriately adapted manner (Yoon 
et al., 2014). For this reason, only limited use can be made of existing instruments 
(Stohlmann & Yang, 2021). 

As already mentioned, knowledge about modelling processes from a theoretical 
perspective as a diagnostic component of modelling-specific pedagogical content 
knowledge has a strong influence on students’ learning processes (Brunner et al., 
2013). Accordingly, it forms a decisive facet of competence for teaching mathemat-
ical modelling. For this reason, our structural model operationalises self-efficacy by 
assessing pre-service teachers’ own ability to diagnose the performance potential of 
learners in the modelling process. We assume that the diagnostic requirements for 
teachers differ depending on the modelling phase in which their learners work. Thus, 
the self-efficacy of (pre-service) teachers can also be differentiated according to the 
phase. Furthermore, scaling analyses indicate that a distinction can be made between 
phases specific to the modelling process (simplifying, mathematising, interpreting, 
validating) and unspecific ones (working mathematically) (Wess et al., 2021b).
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16.2.3 Test Instrument for Self-Efficacy 

A test instrument for pre-service teachers has been developed and evaluated based 
on the theoretical model mentioned above (Wess et al., 2021a). Wess et al. (2021b) 
confirmed the construct validity of the whole test instrument with the help of a 
structural equation analysis. Further they checked the one-dimensionality of the 
scales of the constructs by means of both confirmatory factor and Rasch analyses. 
Two scales were used to capture teachers’ self-efficacy. All items were assigned a 
five-point Likert scale (from 1 = “Strongly disagree” to 5 = “Strongly agree”), and 
both scales exhibited a good Cronbach’s α (see Table 16.2). 

16.3 Research Question 

There are findings that provide a differentiated insight for changes in pre-service 
teachers’ self-efficacy during the study (Bilali, 2013; Schüle et al., 2017). Most of 
them reconstruct a u-shaped progression of self-efficacy throughout the course of 
studies, which is explained by excessive expectations at the start of them, the reduc-
tion in individuals’ own evaluation benchmark due to first practical experiences 
(Tschannen-Moran & Woolfolk Hoy, 2007) and then an increase due to successful 
experiences in internship. Accordingly, both successful self-performed and observed 
successful actions, together with positive emotions, contribute to an enhancement 
(Bandura, 1977). Since there is most probably an increase in self-efficacy in connec-
tion with reflective practice, a positive development in both facets of self-efficacy 
for mathematical modelling can be assumed. Thus, the following research question 
is of interest: 

Can self-efficacy of mathematics pre-service teachers for mathematical modelling be 
meaningfully and significantly increased through a teaching–learning laboratory?

Table 16.2 Scales for self-efficacy 

Scale Item number Example item Cronbach’s α 
Self-efficacy for working 
mathematically 

8 It is easy for me to recognise the 
different abilities of the students 
using their handling of the 
mathematical symbols and 
operators used in modelling 

0.84 

Self-efficacy for modelling 13 It is easy for me to recognise the 
different abilities of students 
using their translation of 
mathematical results into reality 

0.88 
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16.4 Research Design 

The quasi-experimental study was conducted in a pre-post design to measure 
the self-efficacy expectations of the participating pre-service teachers. The treat-
ment consisted of a 12-session teaching–learning-laboratory-seminar for pre-service 
teachers in one semester. This seminar on teaching mathematical modelling with 
integrated practical elements was designed in two variants for this study (task 
experimental group and intervention experimental group). 

The seminar for the task experimental group comprises 12 sessions and additional 
blended learning formats. In this treatment, there is a special focus on the concep-
tion of own modelling tasks. The seminar consists of a theory-based preparation 
phase, a practical phase, and a reflection phase. The structure of the seminar for the 
intervention experimental group is similar to that of the task experimental group. 
The differences are, on the one hand, that students work in teams of two on given, 
selectable complex modelling tasks. The results are then discussed in plenary and 
potential solutions and difficulties of the students are anticipated. Another differ-
ence is the focus on interventions in mathematical modelling processes. In addition, 
there was a baseline group without thematic reference to mathematical modelling. 
The pre-service teachers completed the same test instrument before and after the 
treatment. 

After piloting in the 2017 summer semester, the treatments were integrated into 
the regular seminar of mathematics pre-service teachers across three consecutive 
semesters (winter 2017/2018, summer 2018, winter 2018/2019)—see Fig. 16.3. 

Fig. 16.3 Study design
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16.4.1 Treatment Design: Teaching–Learning Laboratories 

A teaching–learning laboratory encompasses a seminar with 12 seminar sessions for 
the pre-service teachers (see Fig. 16.3). It is comprised of a theory-based prepara-
tory phase, a practical phase, and a reflection phase. Modelling processes form the 
core content of all phases in the experimental groups at the universities of Koblenz-
Landau and Münster in Germany. The preparatory phase of the seminars, starting 
with an introduction to the fundamental notions, includes selected didactic and theo-
retical backgrounds of mathematical modelling through to pre-service teachers’ own 
modelling and the associated assessment of individual modelling routes (Borromeo 
Ferri, 2018). It is not always easy to select or develop the right modelling task. As 
an indication, characteristics may be specified of what a modelling task should fulfil 
(see Sect. 16.2.3). 

With respect to the focus on modelling activity, sub-competencies of modelling 
are observed closely. As regards the relation to reality, the relevance and authenticity 
of the context are also examined closely. An example of a modelling task used in the 
seminar is illustrated in Fig. 16.4. 

Criteria and indicators were created for the set modelling sub-processes, to be 
able to observe and diagnose the learning processes of the schoolchildren in the

Fig. 16.4 Hot air balloon 
task: “How many litres of air 
are in this hot air balloon?” 
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project sessions. During these sessions, a team of three pre-service teachers (Master 
of Education) supports a small group of grade nine students with the processing of 
the modelling tasks. The teams monitor the competencies of mathematical modelling 
in a targeted manner and record these in the previously created monitoring sheet. The 
grade nine students work on content that would enhance the curriculum in motivating 
project contexts. This interlacing of theory and practice in the context of diagnostic 
actions and tasks represents the practical promotion of modelling-specific diagnostic 
and task-based competence. 

While the task experimental group created the tasks used in the practical sessions 
themselves, the intervention experimental group used predefined tasks and focused 
on adaptive interventions. In the reflection phase, the project sessions were first 
discussed in the form of written reflection discussions so that pre-service teachers 
could benefit from the experiences of other seminar participants. Cross-task, theory-
based group reflections on the respective areas of focus of the monitoring were carried 
out, considering in particular the heterogeneity aspects of the learning groups moni-
tored. The pre-service teachers added to their diagnostic assessments the feedback 
from their colleagues. The knowledge obtained was then used to professionalise 
the participants’ own teaching activities and evaluate the modelling tasks they had 
created. The pre-service teachers also reflected on and, where necessary, adapted 
the modelling tasks in light of the criteria for good modelling tasks drawn up in 
the preparatory phase. The experience and knowledge gained were summarised in a 
reflection report. 

16.4.2 Data Acquisition and Analysis 

To answer the question posed, a paper–pencil questionnaire in pre-post design was 
used to collect data from 198 pre-service teachers at grammar/comprehensive schools 
by the universities of Koblenz-Landau and Münster. In addition to the task experi-
mental group in Münster (4 courses, N = 76) and the intervention experimental group 
in Koblenz (3 courses, N = 55), a baseline group in Münster (5 courses, N = 67) 
was also recorded. Since the students were reached via participation in seminars, no 
randomised assignment of the subjects to the treatments was possible. All students 
took part in both the pre-test and the post-test. The gender, age, subject-semester, and 
Abitur grade of the students examined were recorded (cf. Table 16.3). The differ-
ences in the subject-semester can primarily be attributed to the different structures of 
the subject teacher training programme at the two locations. This must be taken into 
account when interpreting the results, as must the differences in the average Abitur 
grades.

Paired t-tests were used to ascertain gains within each group. To investigate differ-
ences in the developments of self-efficacy between the experimental groups repeated 
measures analysis of variance (ANOVA) were used.
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Table 16.3 Description of groups 

Number Gender Age Semester Abitur-grade 

m/w M SD M SD M SD 

Task experimental group 76 37/39 22.99 1.70 7.58 2.47 1.82 0.48 

Intervention experimental 
group 

55 25/30 22.87 2.91 5.69 2.59 2.40 0.63 

Baseline-group 67 22/45 22.88 1.79 7.33 2.11 1.72 0.37 

Total 198 84/114 22.91 2.12 6.97 2.50 1.94 0.57

16.5 Results 

The self-efficacy of mathematics pre-service teachers for the diagnosis of perfor-
mance potential for working mathematically (t =−7.058, p < 0.001; 1 − β = 0.99; 
d = 0.53; n = 131), as well as for modelling (t = −7.251, p < 0.001; 1 − β = 
0.99; d = 0.55; n = 131), can be meaningfully and significantly increased through 
a teaching–learning laboratory. The pre-service teachers assessed their own capa-
bilities for the diagnosis of performance potential as significantly higher after the 
treatment. In the baseline group, as expected, there were no significant changes (t = 
0.465, p = 0.644; t = −0.655, p = 0.514; n = 67). 

In the seminar of a repeated measures analysis of variance, it can also be ascer-
tained that differences in the development of the self-efficacy for working mathe-
matically (F(1,128) = 11.007, p < 0.001; 1 − β = 0.93; η2 = 0.079; n = 131), as 
well as for modelling (F(1,128) = 6.436, p < 0.05; 1 − β = 0.89; η2 = 0.049; n = 
131), existed between the two experimental groups. These manifested themselves in 
significant interactions, which is why the group affiliation of the pre-service teachers 
had a clear and meaningful influence on the changes in their self-efficacy from the 
first to the second time of measurement. Thus, the metrics for the diagnosis of perfor-
mance potential for mathematical modelling or for working mathematically consid-
ered here could each be significantly and more effectively increased in a teaching– 
learning laboratory in which the modelling tasks for use with students are created 
by pre-service teachers themselves (task experimental group) than was the case in 
a teaching–learning laboratory in which predefined tasks were used (intervention 
experimental group). 

16.6 Discussion 

The results of the study provide a first impression of the contribution that teaching– 
learning laboratories can make to the professionalisation of pre-service teachers. In 
particular, it is apparent that such laboratories for mathematical modelling repre-
sent a beneficial learning environment. Self-efficacy for mathematical modelling as
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part of professional competence could be increased and differences in the develop-
ment could be seen. These will be investigated in further studies. Furthermore, it 
can be assumed that intensive involvement in modelling tasks facilitates a significant 
increase in self-efficacy in this area. It is also possible that there are correlations 
between the development of self-efficacy and the other components of professional 
competence (Depaepe & König, 2018; Kunter, 2013). Pedagogical content knowl-
edge also developed slightly differently between the two groups, even though it 
increased overall (Greefrath et al., 2022). Therefore, there may be correlations here 
that should be investigated further. 

The above is in line with findings from professional research that system-
atic and reflected practice experiences represent profitable opportunities for the 
development of affective-motivational components of (modelling-specific) teacher 
professionalism (Tschannen-Moran & Woolfolk Hoy, 2001). 

Accordingly, also in the case of self-efficacy, the necessary theoretical-formal 
foundation, the integration of experiential knowledge, the systematic reflection of 
experiences from practice, and the university coaching in authentic teaching–learning 
arrangements may prove to be conducive to competence in their respective modelling-
specific design as well as in their concrete implementation. Furthermore, it is conceiv-
able that the characteristics of the motivational orientations of the pre-service teachers 
will increase because of working with students in the teaching–learning laboratory. 

However, due to the low proportion of subject didactics in the study programmes 
considered and the associated high failure rates, follow-up testing had to be dispensed. 
Consequently, no statements can be made regarding the sustainability of the teaching 
formats regarding the affective-motivational aspects. It would also be desirable to 
monitor the competence acquisition of the grade nine students in the teaching– 
learning laboratory; however, due to the short interventions in this study, this was 
not done. There may also be connections here to the professional competence of 
teachers, especially to their self-efficacy. 

Based on a common concept of competence and an established structural model 
of professional competence, a test instrument focused on the teaching of mathemat-
ical modelling was successfully applied to pre-service teachers in teaching–learning 
laboratories. It should be noted that self-efficacy was only measured at two points 
in time and that the measurement was done with the help of a questionnaire. In this 
way, not all areas of professional competence could be measured. Nevertheless, it is 
very useful that another measurement instrument for modelling-specific professional 
competence, including self-efficacy expectations, is now available. 

Overall, the study provides a well-founded insight into the development of the 
professional knowledge of prospective teachers for a special sub-area of mathematics 
didactics. This is done within the framework of an approach in which theory and 
practice phases are interlocked in such a way that the promotion of professional 
competence in teaching mathematical modelling is made possible.
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Chapter 17 
A Case Study of Pre-service Teachers’ 
Task Design and Implementation 
for a Mathematical Modelling Lesson 
Sequence in Project-Based Instruction 

Joo Young Park 

Abstract Project-based Instruction (PBI) focuses on real-world tasks as a vehicle 
for learning, which can be a platform to drive the teaching of mathematical modelling. 
This case study aimed to understand how PBI can be a method for guiding struc-
tured mathematical modelling activities through pre-service teachers’ intended and 
enacted lessons. It addresses the overarching question: What does a mathematical 
modelling lesson look like in project-based instruction? Data sources were open-
ended questionnaires, pre-service teachers’ lesson plans, and video-recorded class-
room observations. This chapter examines example lessons designed by two pre-
service teachers. It discusses how the lessons were designed and implemented as 
intended, which may inform future research on pre-service teachers’ preparation for 
PBI with mathematical modelling. 

Keywords Project-based instruction · Mathematical modelling · Pre-service 
teachers · Task-design principles 

17.1 Introduction 

Project-Based Instruction (PBI) supports students’ learning through active engage-
ment and exploration of real-world problems and challenges (Marshall et al., 2010; 
Pellegrino & Hilton, 2012; Prince & Felder, 2006). Mathematical modelling is a 
process that has a real-world situation as the starting point for students to represent the 
problem or situation through mathematics. The mathematical models and solutions 
are then used to interpret the real-world situation and validated (Galbraith & Stillman, 
2006). Mathematical modelling activities and the PBI can be seen as compatible 
approaches to learning the subject matter. As modelling plays a prominent role in 
the Common Core State Standards for Mathematics (CCSSM) in the USA (National 
Governors Association [NGA] Center for Best Practices, Council of Chief State
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School Officers [CCSSO], 2010), the reformed curriculum challenged teachers to 
be able to model mathematics and design effective mathematical modelling tasks 
to promote students’ learning. Designing mathematical tasks is seen as an impor-
tant process in both pre-service and in-service teachers’ development and learning 
(Paolucci & Wessels, 2017). Studies have suggested that it is essential for pre-service 
teachers (PSTs) to be exposed to and supported through problem posing experi-
ences, especially exploring non-traditional mathematical problems with collaborative 
problem posing during their initial training (Crespo, 2003; Ellerton, 2015; Osana & 
Pelczer, 2015; Paolucci & Wessels, 2017; Rosli et al., 2015). 

PBI in mathematics education may not have been studied as much as in other 
disciplines (e.g., science, engineering, social science). This is partly due to the incom-
patibility of PBI with mathematics teachers’ goal orientation to meet students’ needs 
for learning, which are primarily content and achievement-focused, and the struggle 
associated with helping students adjust to a PBI approach (Rogers et al., 2011). The 
teacher needs to be comfortable both in the non-mathematical content addressed in 
the project and in their abilities to be in a facilitator’s role (Condliffe et al., 2017; 
Ertmer et al., 2014; Greenes, 2008). Some studies have shown the efficacy of project-
based instruction in mathematics (Boaler, 2002; Petrosino et al., 2003), but studies 
on PSTs’ PBI for teaching mathematics are lacking. 

There is a need for a study on how teachers adapt externally developed PBI 
curricula and the best ways to support adaptations that improve students’ learning 
(Condliffe et al., 2017). Little is known about how pre-service teachers design and 
implement project-based instruction for teaching mathematics, in particular, through 
mathematical modelling activities. With an overarching goal of informing pre-service 
teacher preparation for PBI, the underlying questions for this study were how PBI 
lessons could be designed and implemented with mathematical modelling activities. 

17.2 Theoretical Framework for Project-Based Modelling 
Lesson Plans and Implementation 

As a framework for interpreting PSTs’ lessons (Barron et al., 1998; Condliffe et al., 
2017; Polman, 2000), the study identified well-defined, research-based components 
of PBI in the literature: essential elements were varied, but there were substantial 
overlaps among several. The following are the key elements of research-based instan-
tiations of project-based instruction (Barron et al., 1998; Condliffe et al., 2017; Park, 
2022; Polman, 2000): 

a. Driving question: a guiding question for a project that connects activities and 
underlying concepts, broad, and authentic open-ended, real-world problems; 

b. Learner product: a project outcome that can be tangible or applicable in real-
world settings; 

c. Investigation: a project component that aims to lead students’ authentic practice 
with complex inquiry;
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d. Assessment: ongoing formative assessments that reflect PBI design principles; 
e. Tools: technologies and cognitive tools that can help students to understand 

complex problems and concepts; 
f. Collaboration: students are encouraged to create learning communities and 

engage in collaborative activities while completing projects; 
g. Scaffolding: teachers provide students with simulated and constrained problems 

to help students unstick any blockages that they may encounter in completing 
projects. 

For designing and implementing mathematical modelling activities, PSTs used 
the guiding principles of Galbraith (2006) to identify a potential situation as suitable 
for model development and task design. These principles were later refined and 
elaborated further with the uppercase codes shown in Galbraith et al. (2010, pp. 135– 
136) as: 

• Principle 1: There is some genuine link with the real world of the students 
(RELEVANCE AND MOTIVATION). 

• Principle 2: It is possible to identify and specify mathematically tractable 
questions from a general problem statement (ACCESSIBILITY). 

• Principle 3: Formulation of a solution process is feasible, involving (a) the use of 
mathematics available to students, (b) the making of necessary assumptions, and 
(c) the assembly of necessary data (FEASIBILITY OF APPROACH). 

• Principle 4: Solution of the mathematics for a basic problem is possible for the 
students, together with interpretation (FEASIBILITY OF OUTCOME). 

• Principle 5: An evaluation procedure is available that enables solution(s) to be 
checked for (a) mathematical accuracy and (b) appropriateness with respect to the 
contextual setting (VALIDITY). 

• Principle 6: The problem may be structured into sequential questions that retain 
the integrity of the real situation (DIDACTICAL FLEXIBILITY). 

These principles were further refined and developed as a design and implementa-
tion framework for mathematical modelling tasks by Geiger et al. (2022) with peda-
gogical strategies (e.g., providing students with a diagram of the modelling process, a 
simple modelling problem with modelling phases as a structure of problem solutions, 
and suggestions for initial teacher presentation of problems). 

PSTs scaffolded modelling lessons based on the following modelling process 
are shown in Table 17.1, particularly to predict where in given problems, cognitive 
blockages might be expected, ultimately to identify prerequisite knowledge and skills 
and to prepare a scaffold of interventions (Galbraith & Stillman, 2006).

17.3 Method 

This case study was conducted in an interpretive paradigm by using document anal-
ysis (Creswell, 2003), focusing on two pre-service mathematics teachers’ PBI lesson
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Table 17.1 A framework for scaffolding and identifying students’ blockage in transitions (Modified 
from Galbraith & Stillman, 2006) 

Transitions Cognitive Activities 

1. Messy real-world situation → Real-world 
problem statement 

Clarifying context of problem; Making 
simplifying assumptions; Identifying strategic 
entities 

2. Real-world problem statement → 
Mathematical model 

Identifying variables for inclusion in algebraic 
model and representing elements 
mathematically; Making relevant assumptions; 
Calculation; Verifying algebraic equation 

3. Mathematical model → Mathematical 
solution 

Applying appropriate symbolic formulae; Using 
technology/mathematical tables to perform 
calculation and verifying of algebraic model 
using technology; Obtaining additional results 
to enable interpretation of solutions 

4. Mathematical solution → Real-world 
meaning of solution 

Identifying mathematical results with their 
real-world counterparts; Contextualizing final 
mathematical results in terms of real-world 
situation; Integrating arguments to justify 
interpretations 

5. Real-world meaning of solution → Revise 
model or accept solution 

Considering real-world implications of 
mathematical results; Reconciling mathematical 
and real-world aspects of the problem

plan and enacted lessons with mathematical modelling activities. Case study research 
is well suited to addressing the critical problems of practice (e.g., implementing 
project-based mathematics in secondary schools) and extending the knowledge base 
of various aspects of education (Merriam, 1998). A case study consists of a detailed 
investigation, often with empirical material collected over a period from a well-
defined case to analyze the context and processes involved in the phenomenon 
(Merriam, 1998). The unit of analysis is defined by what the case is (Yin, 2009), 
in this instance, the pre-service teachers’ intended, and enacted PBI mathematical 
modelling lessons designed by the pre-service teachers themselves. An individual 
case was selected based on convenience. 

Data sources for this study were open-ended questionnaires, lesson plans, and 
video-recorded classroom observation notes. Participants’ modelling lesson units 
were examined for how closely their planning linked to the ideas represented in 
frameworks and their experiences in the PBI class. Open-ended questions were given 
to the participants asking them to describe some of the challenges they encountered 
during planning and implementing the lessons reflecting on their instruction and task 
design. Collected artifacts included lesson plans and students’ handouts. Observation 
field notes provided detailed descriptions of activities and patterns of pre-service 
teachers’ engagement and participation. Data from these documents was subjected 
to qualitative analysis using a coding process. The PBI lesson units were coded 
by applying criteria that were synthesized from the literature (Barron et al., 1998; 
Condliffe et al., 2017; Galbraith et al., 2010; Polman, 2000). Two researchers coded
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each rubric item and then the coding was compared for every lesson unit, and any 
discrepancies were discussed until a consensus was reached. 

17.3.1 The Case 

The PSTs designed and implemented their PBI lessons as a team. The focus of this 
study is not on individual teachers’ pedagogical capacity but rather on the design of 
the team lesson and its implementation. The team chosen, Mary and David, were 
mathematics pre-service teachers who enrolled in a Project-Based Instruction class, 
which is a required method course for STEM pre-service teachers at their univer-
sity. Both were mathematics majors and enrolled in STEM education dual degree 
programs. The PSTs designed and implemented their PBI lessons as a team. For the 
purpose of this study, the project aimed to guide students to learn the central concepts 
through the project, rather than providing enrichment or application of prior learning. 
The project was student-driven, with the teacher acting as a facilitator. These two 
PSTs were chosen as part of this study since their lessons were based on mathe-
matics topics and modelling with PBI. Given the provided guiding principles of PBI 
and modelling lessons (Sect. 17.2), the participating pre-service teachers developed 
project-based mathematical modelling units as part of the course requirements. The 
lesson units were developed over a three-week period, and the participants imple-
mented them for five days in high school classrooms as apprentice teachers. Students 
were asked to present their project product based on a guided rubric that the PSTs 
designed on the final day of the PBI lesson. 

17.3.2 PBI Lessons 

The participating PSTs’ lessons (see Fig. 17.1 for the overview) were aligned with 
the Common Core State Standards State Standards for Mathematics (NGA Center 
for Best Practice and CCSSO, 2010) as below:

1. CCSSM.MATH.CONTENT.HSG-SRT.C.8: Use trigonometric ratios and 
Pythagorean Theorem to solve right triangles in applied problems (p. 77). 

2. CCSSM.MATH.CONTENT.HSG-MG.A.3: Apply geometric methods to solve 
design problems (e.g., designing an object or structure to satisfy physical 
constraints or minimize cost; working with typographic grid systems based on 
ratios) (p.78). 

The big idea of these standards is for students to be able to completely solve 
a triangle with missing sides or missing angles. Both trigonometric ratios and the 
Pythagorean Theorem provide students with the tools needed to solve a right triangle 
given different forms of information.
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How Can We Design a Family Friendly Zip-Line Course for a local Zoo’s 
Treetop Trek Aerial Adventures? 

The goal of the lessons is to answer the driving question above. High 
school geometry honours students will work in teams of two to four 
members for five days. Students will be introduced to zip-lining and be 
given some basic knowledge of the factors included in the zip-lining 
building. As a class, we will decide on some of the additional factors 
required in the project. Teams will do their individual research and will be 
allowed to add in whatever they believe is necessary to complete the 
project. 
After completion, students will present their zip-line designs to the class. 
Presentations will be part of their final grade of the project. 

Fig. 17.1 Project overview of the PSTs’ lesson

17.4 Results 

Table 17.2 provides an overview of how lesson components align with the framework 
of PBI and mathematical modelling task design.

The following excerpts from video-recorded lesson observation notes highlight 
discussions Mary and David engaged in with students about the driving question. 
Mary and David emphasized the driving question in their intended lessons and 
enacted lessons so that students could elaborate, explore, and answer the question 
throughout the project. Some of those highlights were discussions that took place 
as a whole class. As an introduction and overview of the project lesson, the PSTs 
and students spent half of the lesson time discussing and elaborating on the driving 
question and possible assumptions. After showing video clips of the zip-line activity, 
the following exchange took place:

Mary: Have you done a zipline activity at the Zoo? What does it mean “family-
friendly” in the driving question? 

Student A: For kids, kids friendly. 

Mary: How old? What age group? 

Student B: Perhaps 6-11 year old? 

Mary: What do we need to consider for the “family-friendly” design? 

Student C: Not too high.
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Fig. 17.2 Clinometer 
outdoor activity

Student D: [We] have to use a soft platform. 

David simulated a simple zip-line model for students. He called for a volunteer student to 
assist him. The volunteer came to the front of the classroom and held one end of the string. 
David held the other end then hung an object on it. 

David: Watch to see how far and fast this [the object] can travel. 

As he released the object, it went only halfway along the string. Then David asked: 

David: How can we adjust this then? 

Students: Lower the other end. 

As suggested, the student volunteer sat down holding the string to lower its height; the object 
traveled faster and made it to the end of the line. At the end of the demonstration, David 
posed a question to the students to explore the relationship between the angle, the height, 
and the slope of the line. 

David: What factors are involved in designing a zip-line course? 

Students: Angle, heights of trees. 

David: Anything else? 

Students: The length of the zip-line and distance. 

Students: Materials […] for friction, animals below [the zip-line]. 

David and Mary reported the main key elements of the modelling project were the 
driving question: they spent much time elaborating and discussing on each compo-
nent of the driving question that can be meaningful to students and student-driven 
‘investigation’. After the implementation, scaffolding was reported as one of the key 
elements, but neither David nor Mary identified it as a key component of PBI before 
implementing it. During the implementation, David and Mary noticeably spent much 
more time answering students’ scaffolding questions, conducting the content review, 
and using a calculator as a guide for scaffolding questions. Each scaffolding lesson
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and series of questions were designed based on Galbraith and Stillman’s modelling 
cycle and transition framework (2006) (see Table 17.2). Each day’s lesson began 
with a whole group discussion introducing the contexts of the problem and teaching 
new mathematical concepts, guiding each transition of the modelling cycle, followed 
by a group discussion. With the given framework (Table 17.2), scaffolding questions 
and activities were planned as below (see Table 17.3).

17.5 Discussion and Conclusion 

In the current study, Mary and David’s implementation of PBI with mathematical 
modelling activities was nearly aligned with the design and implementation frame-
work of Galbraith et al. (2010). For example, in the initial problem presentation 
stage, they provided a general description of the project and modelling task scenario 
by introducing the project’s driving question. Students were organized into a small 
group of two to four. The pre-service teachers’ classroom discussions of the problem 
context and the driving question helped students’ understanding of the problems, 
possible direction to tackle them, and assumptions relevant to the driving question 
and mathematical modelling. Students engaged in exploring and creating models in 
their groups, especially the simulation problem with a clinometer was an excellent 
source for students to examine the nature of the project and make their models. This 
gave rise to productive student–student collaboration. As trigonometry was a new 
topic for the students, Mary and David spent most of the whole group instruction time 
teaching the topics (e.g., trigonometrical ratios, inverse trigonometric functions, etc.). 
During the implementation, the lessons were modified slightly to provide students 
with more scaffolding questions and a graphing calculator to accommodate students’ 
needs and background knowledge. 

Studies have previously noted the role of the driving questions in designing a 
lesson unit (Condliffe et al., 2017; Krajcik & Shin, 2014; Parker et al., 2011, 2013). 
David and Mary revisited the project’s driving question throughout the five days 
while working on the lessons for the unit. Driving questions provide “continuity and 
coherence to the full range of project activities” (Krajcik & Shin, 2014, p. 281). 

Researchers have noted that pre-service teachers have difficulty engaging in 
problem posing (Crespo & Sinclair, 2008). The problems they pose tend to lack 
cognitive complexity and often do not align with targeted mathematical concepts 
(Osana & Royea, 2011). However, this study highlights pre-service teachers planning 
and implementing PBI lessons that were linked to targeted mathematical concepts and 
the curriculum content and show how a real-life problem context incorporated partic-
ular mathematical content. Each lesson included activities aligned with modelling 
transitions as shown in Table 17.3. As seen in Table 17.2, the pre-service teachers’ 
intended and enacted lessons engaged in each of the mathematical modelling cycles: 
however, this study could not capture to what extent the pre-service teachers involved 
in the process of model validation (see Table 17.1: transition 5) toward students’
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Table 17.3 Scaffolding components from PSTs’ lessons based on the framework by Galbraith and 
Stillman (2006) 

Modelling transitions Identified activities from PSTs’ modelling 
lessons 

1. Messy real-world situation → 
Real-world problem statement 

Clarifying context of problem; Making 
simplifying assumptions. Identifying strategic 
entities 
Finding factors associated with the zip-line 
course (e.g., the slope of the zip-line, a speed of 
ascending from the top, for “family-friendly”, 
what do we need to consider, etc.)—Excerpts 
from Day1 lesson plan 

2. Real-world problem statement → 
Mathematical model 

Identifying variables for inclusion in algebraic 
model and representing elements 
mathematically; Making relevant assumptions; 
Calculation; Verify algebraic equation 
“A zip-line can be broken into its height 
component and its length component forming a 
right triangle. Students will not be breaking 
down a zip-line into its components but, will be 
building one starting with the components. 
Using trigonometric ratios and Pythagorean 
Theorem, students will be able to find the length 
of their zip-lines and the angle at which a rider 
will be dropped. Students are also given an 
abstract constraint (e.g., family-friendly) which 
their designs must satisfy”—Excerpts from the 
lesson overview 

3. Mathematical model → Mathematical 
solution 

Applying appropriate symbolic formula; Using 
technology/mathematical tables to perform 
calculation and verifying of algebraic model 
using technology; Obtaining additional results 
to enable interpretation of solutions 
Students are expected to find Missing Sides & 
Angles of Right Triangles (e.g., How is the 
hypotenuse of a right triangle related to the side 
lengths of the triangle? The angles of the 
triangle?)—Excerpts from Day 3 lesson plan 

4. Mathematical solution → Real-world 
meaning of solution 

Identifying mathematical results with their 
real-world counterparts; Contextualising final 
mathematical results in terms of real-world 
situation; Integrating arguments to justify 
interpretations 
Do you know each location of the tree, heights 
of trees, heights of each ending points, how did 
you determine each of those and what are the 
outcomes? [Students check the trig functions 
and measure scales using clinometers and 
graphing calculators]—Excerpts from Day 4 
lesson

(continued)
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Table 17.3 (continued)

Modelling transitions Identified activities from PSTs’ modelling
lessons

5. Real-world meaning of solution → Revise 
model or accept solution 

Considering real-world implications of 
mathematical results; Reconciling mathematical 
and real-world aspects of the problem 
A diagram of the zip-line course with 
determined scale and angles along with the 
sketch of the surroundings (e.g., with the height 
of trees and structure of the Treetop Trek), 
evaluate scales, and justify if it’s “family 
friendly”—group activity/student presentation

final outcome model, in part due to the lack of instructional time and the pre-
service teachers’ individual feedback on students’ model development. Student 
presentation rubrics can be refined to evaluate and validate their models, checking 
calculations/solutions. 

The pre-service teachers encountered obstacles such as the lack of lesson time, 
students’ difficulties in solving a particular set of questions based on prior knowledge, 
and unexpectedly prolonged instructional time for teaching how to use a calculator. 
As a result, the pre-service teachers became more focused on content delivery toward 
the end of the lesson sequence. Due to the designated schedules and times allocated 
for the apprentice teachers, the pre-service teachers could not expand the duration 
of the project lessons to more than five days, but in-service teachers using PBI may 
need to extend this project’s duration. 

This study explored how pre-service teachers can plan and enact project-based 
instruction (PBI) in mathematics with mathematical modelling activities, which 
provided an example lesson sequence designed with modelling task design and PBI 
principles. PBI implementation research has strongly suggested that it will be difficult 
for any PBL model to be implemented with fidelity (Condliffe et al., 2017). Exposing 
pre-service teachers to authentic PBI learning experiences where they plan and imple-
ment a short lesson sequence based on a project seems a promising strategy to help 
teachers design and implement mathematics lessons with open-ended mathematics 
problem situations (Park, 2022). The findings of this study are limited to lessons 
created and enacted by one pair of pre-service teachers, a team selected for a case 
study of their task design and implementation practices based on convenience. The 
literature suggested that teachers’ task design and implementation could be affected 
by teachers’ views and belief systems. Cases with the team selected based on the 
pre-service teachers’ views and belief system about mathematics and the efficacy of 
project-based instruction should be examined in future to see how the findings are 
altered in these circumstances.
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Part V 
Teaching Mathematical Modelling



Chapter 18 
The Relationships Between Statistics, 
Statistical Modelling and Mathematical 
Modelling 

Jonas Bergman Ärlebäck and Takashi Kawakami 

Abstract This chapter presents arguments and examples highlighting the simi-
larities and differences between statistics, statistical modelling and mathematical 
modelling. Based on educational research that focuses on statistical modelling and 
mathematical modelling, we elaborate on the potentially productive connections for 
the development of, and research on, the teaching and learning of statistics, statistical 
modelling and mathematical modelling. We outline the development of an ongoing 
research agenda that pursues a framework for how to conceptualise the connec-
tion between statistics and statistical modelling on the one hand, and mathematical 
modelling on the other, as well as suggest how to further develop this emerging frame-
work in order to provide a richer, more nuanced and useful picture of the relationship 
between statistics, statistical modelling and mathematical modelling. 

Keywords Mathematics ·Mathematical modelling education ·Mathematical 
modelling · Statistics · Statistics education · Statistical modelling 

18.1 Introduction 

Focusing on the notion of modelling, this chapter elaborates on the various oppor-
tunities for collaborative and crossover work between the teaching and learning of 
statistics on the one hand, and the teaching and learning of mathematical modelling, 
as both a vehicle for learning mathematical content and a goal in its own right (cf., 
Julie & Mudaly, 2007) on the other. Indeed, similar proposals and ideas have recently 
been given voice by the statistics education community. For instance, Langrall et al. 
(2017) wrote that.

J. B. Ärlebäck (B) 
Department of Mathematics, Linköping University, Linköping, Sweden 
e-mail: jonas.bergman.arleback@liu.se 

T. Kawakami 
Cooperative Faculty of Education, Utsunomiya University, Utsunomiya, Japan 
e-mail: t-kawakami@cc.utsunomiya-u.ac.jp 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
G. Greefrath et al. (eds.), Advancing and Consolidating Mathematical Modelling, 
International Perspectives on the Teaching and Learning of Mathematical Modelling, 
https://doi.org/10.1007/978-3-031-27115-1_18 

293

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27115-1_18&domain=pdf
mailto:jonas.bergman.arleback@liu.se
mailto:t-kawakami@cc.utsunomiya-u.ac.jp
https://doi.org/10.1007/978-3-031-27115-1_18


294 J. B. Ärlebäck and T. Kawakami

there are also commonalities and parallels in the aims, challenges, theories, practices, and 
strategies in research between mathematical modeling and statistical modeling … both 
communities are interested in issues pertaining to the integration of context and content 
knowledge and the application of a modeling cycle and would benefit from sharing research. 
(p. 502) 

We aim to elaborate on these ideas from a general and generic mathematical 
modelling perspective in order to start taking the first steps towards formulating a 
framework for how to conceptualise the relationships between statistics, statistical 
modelling and mathematical modelling. We achieve this by (i) providing a brief 
background regarding the disciplines of statistics and mathematics in terms of the 
differences and commonalities between the two, and how models and modelling 
have been viewed from a statistical and mathematical perspective, respectively; (ii) 
an initial basis for starting to theorise the relationships between statistics, statis-
tical modelling and mathematical modelling. In the light of this foundation, we (iii) 
discuss some recent and initial research that can be seen to focus on one or more 
aspects of the similarities and/or differences between statistics, statistical modelling 
and mathematical modelling, and outline (iv) how an analysis of the rationales of 
statistical modelling in education research can be understood as a complementary 
conceptualisation of this basis, as well as (v) how this analysis of rationales and the 
discussed literature suggest how to approach the further development of the emerging 
theoretical framework in order to provide a richer and more nuanced picture of the 
relationship between statistics, statistical modelling and mathematical modelling. 

18.2 Background 

Current technologies make vast quantities of data available to collect and analyse. 
However, data in itself do not tell us anything, but need to be organised, processed, 
visualised and interpreted using models. Now more than ever, people need models to 
address, interpret and make critical sense of data in various forms in their private and 
professional lives (Ben-Zvi & Garfield, 2004; Geiger et al., 2015; Manyika et al., 
2011). When solving real-world problems, it is important to develop models and 
skills that facilitate the ability to critically look beyond the collected or available 
data. This includes acknowledging and learning to tackle the limitations of different 
models, diagrams and data plots, as well as how these facilitate the attributes of the 
data that become discernible and the attributes that are suppressed—all important 
areas and topics for teaching and learning. 

Research on the teaching and learning of, and through, mathematical modelling 
can partially be characterised as multidisciplinary work, as well as research on 
the teaching and learning of various mathematical content (Stillman et al., 2017; 
Stillman et al., THIS BOOK). Much, but not all, of the developments in the educa-
tional research field of mathematical modelling takes place in or associated with the 
(partially overlapping) communities of the International Community of Teachers of 
Mathematical Modelling and Applications (ICTMA), the thematic working group on
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Applications and modelling in the Congresses of the European Society for Research 
in Mathematics Education (CERME) and the topic study group on Mathematical 
applications and modelling in mathematics education as part of the International 
Congresses on Mathematics Education (ICMEs). Indeed, in the resulting volume 
produced after ICTMA-17, Stillman et al. (2017) noted that “several chapter authors 
use the opportunity to strengthen and build our research practices by reaching out to 
others in educational research, beyond the boundaries of our community, and those 
in fields other than education” (p. 1). In this context, there seems to be many potential 
synergies between the research community of statistics education and the modelling 
education community. In order to discuss and elaborate on the connections, bound-
aries and boundary crossings between research on the teaching and learning of math-
ematical models and modelling to solve real-world problems, and how models and 
modelling are understood and applied in the growing field of statistics education, we 
now provide some background by (i) discussing statistics education and modelling 
education from a statistical perspective; (ii) discussing statistics as a discipline from 
a mathematical perspective; and (iii) elaborating on the similarities and differences 
between mathematics and statistics education—with a special emphasis on the notion 
and role of modelling in these two research fields and in education. 

18.2.1 Statistics and Modelling from a Statistical Perspective 

Statistics education is a relatively young research field that has gained momentum 
in the last 20–25 years. This is partially due to the growing need for, and impor-
tance of, understanding, interpreting and critically judging statistical data, statistical 
facts and statistical arguments in a society that is increasingly overwhelmed by data 
(Franklin et al., 2007; OECD, 2013). Statistics provide valuable tools that informed 
citizens need in order to make decisions and act responsibly in response to quanti-
tative information in their professional and private lives (Ben-Zvi & Garfield, 2004; 
Gal, 2004). However, statistics education research has shown that understanding 
statistical concepts (such as data distributions, variability, sample, sampling and 
sampling distributions, inference and covariation) and statistical reasoning are more 
complex and challenging to teach and learn than initially believed (Batanero et al., 
2011; Shaughnessy, 2007). These challenges have led to an increasing interest in 
the potential of technology in teaching and supporting students’ statistical learning 
(Stohl & Tarr, 2002; Wilson et al., 2011), as well as in informal ways to reason statis-
tically and make informal statistical inferences as a stepping stone towards making 
more formal statistical inferences (Bakker & Derry, 2011; Gal,  2004). A number 
of frameworks have been proposed (e.g. Makar & Rubin, 2009; Pfannkuch, 2005; 
Zieffler et al., 2008) to help students develop their statistical reasoning and statistical 
literacy (Gal, 2002; Watson & Callingham, 2003). 

Although progress is steadily being made and statistical education research find-
ings have started to accumulate, there has been limited research on teaching practices 
that involve the use of modelling to teach and learn statistics. This is true even though
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Table 18.1 Facets of statistical modelling, as organised in Kawakami (2019, p. 16) 

Characteristics Activities Overview—brief description

• Create models
• Data  driven
• Describe distributions
• Informal statistical inferences 

Data modelling Creating an empirical model of 
the distribution that describes the 
variability of the data to make it 
easier to make inferences about 
the real-world situation (e.g. the 
PPDAC cycle—Problem, Plan, 
Data, Analysis, Conclusion) 

Software modelling Using software (e.g. TinkerPlots) 
to create probability distribution 
models and theoretical models 
that generate data similar to the 
behaviour of actual data 
variations

• Objectify and use pre-built 
models

• Theory driven
• Formal statistical inferences 

Exploring the output of 
pre-built models 

Exploring the patterns generated 
by a probability distribution 
model 

Model recognition Identifying a probability 
distribution model that can 
describe or estimate variation 
behaviour well and fit it to data 
and situations 

statistics has been described as the science of models and modelling through which 
people make sense of the world using theory-driven interpretations of data (Shaugh-
nessy, 1992). Indeed, it is argued that the essence of statistical thinking is centred 
around developing, testing, interpreting and revising models in order to understand 
our world and the diverse phenomena within it (Horvath & Lehrer, 1998). In statis-
tics education research, Pfannkuch et al. (2018) reframe statistics as modelling and, 
drawing on this conceptualisation, Kawakami (2019) summarises how the notion of 
modelling has been used in the statistics education literature, see Table 18.1. We will 
refer back to this table later in the chapter. 

18.2.2 Statistics as a Discipline from a Mathematical 
Perspective 

From an intra-mathematical perspective, MSC2010, or the Mathematics 
Subject Classification revised in 2010, is a classification scheme used for 
mathematical research to organise research publications into more specialised 
subjects in mathematics (http://msc2010.org/mediawiki/index.php?title=MSC 
2010). MSC2010 divides 64 mathematical disciplines into five major fields: 
general/foundational; discrete mathematics/algebra; analysis; geometry and 
topology; and applied mathematics/other. Here, statistics and probability (as well

http://msc2010.org/mediawiki/index.php?title=MSC2010
http://msc2010.org/mediawiki/index.php?title=MSC2010
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as mathematics education) are understood as (sub)disciplines of mathematics found 
in the main field of applied mathematics/other. For comparison, note that subject 
matter such as numerical analysis, computer science, quantum theory, astronomy 
and biology also belong to the main field of applied mathematics. 

An example of a definition of statistics reflecting this intra-mathematical view is 
the following by Capaldi (2019, p. 149) who, on the one hand, defines mathematics as 
the “science of numbers: operations, interrelations, combinations, generalizations, 
and abstractions” and, on the other hand, statistics as a “branch of mathematics: 
collection, analysis, interpretation, and presentation of masses of numerical data”. 
Although statistics as an applied mathematical discipline in the sense of MSC2010 
and Capaldi (2019) can be understood to use mathematical tools and language to 
study data (mostly derived from non-mathematical sources), it has also evolved 
into the study of statistical techniques (studying aspects of the work conducted in 
the discipline). Indeed, in the academic traditions of some countries, statistics as a 
discipline is separated into Statistics, with a strong connection to the social sciences, 
and Mathematical Statistics, with emphasis on the more pure mathematical aspects of 
the discipline (Guttorp & Lindgren, 2019). Although mathematics and statistics can 
be seen as two separate disciplines, they are often organised by the same department 
at university level. Also, when it comes to how these disciplines are organised in 
schools, Burrill (2011) notes that “near universally, statistics is incorporated into the 
mathematics curriculum” (p. 1). 

18.2.3 Mathematics vs. Statistics—Differences 
and Commonalities Focusing on the Notion and Role 
of Modelling in the Disciplines and in Education 

Weiland (2019) notes that “there is a strong literature base that discusses the differ-
ences between the discipline of mathematics and that of statistics” (p. 398), namely: 
(i) context; (ii) variability; (iii) uncertainty; and (iv) inductive vs. deductive reasoning. 
The core of statistics, in contrast to most mathematics in general, is based on data 
from the real world and Cobb and Moore (1997) emphasised that “data are not just 
numbers, they are numbers with a context” (p. 801). With data comes undoubtedly 
variability as an omnipresent aspect that fundamentally affects the generation of 
information based on data, and therefore requires special techniques, methods and 
ways of reasoning. However, due to the omnipresence of variability, the informa-
tion extracted from the data always comes with a degree of uncertainty, and, more 
often than not, is arrived at using inductive methods and inductive reasoning. In  
contrast, overall, mathematics more often addresses abstract objects and determin-
istic situations, and reasoning is mainly deductive and is based on definitions, axioms, 
propositions and theorems (Weiland, 2019). 

However, mathematics and statistics are similar in the sense that both disciplines 
have an inert dual nature: on the one hand, they study objects that the disciplines
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themselves have created (mathematics has the field of number theory studying prime 
numbers etc., and statistics has, for example, different theories of sampling and 
the design of survey instruments). However, additionally, both mathematics and 
statistics offer language and tools to assist other disciplines. Also, and although 
many researchers argue for the case that mathematics and statistics—despite their 
similarities—are two distinct disciplines (e.g. Cobb & Moore, 1997; delMas, 2004), 
Weiland (2019) points out that the disciplines have some common denominators, 
such as probability and measure theory. 

18.2.3.1 Mathematical Modelling vs. Statistical Modelling 

Focusing on the notion of modelling, it can first be noted that modelling is used in 
both statistics and mathematics education in a multitude of ways. The modelling 
discourses of ICTMA and CERME have several different perspectives of mathemat-
ical modelling adopted and used in both teaching and research (Kaiser & Sriraman, 
2006). The same can be said of statistical modelling in statistics education, as 
illustrated in Table 18.1 and discussed by Kawakami (2019). 

Secondly, modelling in both disciplines is generally described or characterised in 
terms of one or more processes or practices. A typical and general conceptualisation 
of the processes and activities involved in mathematical modelling can be illustrated 
by the following description of modelling by Niss et al. (2007, pp. 9–10) as “the 
entire process consisting of structuring, generating real world facts and data, mathe-
matising, working mathematically and interpreting/validating (perhaps several times 
round the loop)”. An example of what statistical modelling encompasses is provided 
by Langrall et al. (2017, p. 502) who write that modelling in statistics is “any one 
of a number of practices: the development of a distribution (empirical or descriptive 
model) from data; the process of creating a theoretical (probability) model from an 
empirical model; and the practice of sampling from a theoretical model (simulation)”. 

Thirdly, both mathematical modelling and statistical modelling—as fundamen-
tally being about the purposeful development and use of models to explain, predict, 
understand and describe a situation or phenomena—typically result in outputs that 
display the output or product of the modelling process using a plethora of repre-
sentations and visualisations. Some of these representations and visualisations are 
more typically found in mathematical modelling contexts (such as directed or undi-
rected graphs, vectors and functions written algebraically), whilst others are more 
specialised and typical for instances in which statistical modelling is employed, such 
as bar graphs, scatter plots, box plots, polar charts and bubble charts. 

Another similarity is the importance and emphasis on context in mathematical 
modelling and statistical modelling (Groth, 2015; Langrall et al., 2017), and this 
is related to the fact that engaging in either mathematical modelling or statistical 
modelling is very similar to engaging in real research practices. Indeed, mathemat-
ical modelling and statistical modelling are research tools which, in the case of 
statistics, Cobb and Moore (1997) describe as follows: “Statistics is a methodolog-
ical discipline. It exists not for itself but rather to offer to other fields of study a
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coherent set of ideas and tools for dealing with data” (p. 801). As argued in Ärlebäck 
et al. (2015), this view of statistics has many parallels with the general view and 
ongoing discussion on the use and role of mathematical modelling in the teaching 
and learning of mathematics—especially in connection with the underpinning ideas 
of the models and modelling perspective (Lesh & Doerr, 2003). Both statistics and 
mathematical modelling have been described as being increasingly important for 
students to learn, in order to cope with, and be productive in their everyday and 
professional lives (OECD, 2013): in the case of mathematical modelling, see Niss 
et al. (2007); in the case of statistics, see Gal (2002) and Franklin et al. (2007). 
Statistics potentially provides a rich and productive arena for learning mathematical 
modelling on the one hand, and on the other, that statistics may advantageously be 
learned through mathematical modelling (English & Sriraman, 2010). 

These parallels are also evident when examining how modelling is depicted in the 
two disciplines, see Fig. 18.1a and 18.1b below. In mathematics education research, 
modelling is often represented as a cyclic process (Niss & Blum, 2020) and there 
are a plethora of different so-called modelling cycles in the literature that depict 
the idealised process of mathematical modelling (Perrenet & Zwaneveld, 2012). For 
our purposes, we choose to showcase a mathematical modelling cycle that explic-
itly mentions data to further emphasise the connections we are making, but we 
acknowledge that other options exist. 

Apart from the fact that both these representations are cyclical in nature, Fig. 18.1a 
shows that statistical aspects come into play both explicitly and implicitly in the 
modelling cycle presented by Blomhøj and Jensen (2007): Explicitly because Data 
are part of the diagram and influence the whole modelling process, and implicitly 
through the potential influence of Theory, which in this context also includes statis-
tical theories, tools and methods. In this sense, mathematical modelling can be seen to 
encompass statistics and statistical modelling as described by Langrall et al. (2017). 
However, examining the representation of statistical modelling processes by Lehrer 
and English in Fig. 18.1b, analogous modelling enters this diagram both explicitly 
and implicitly: Explicitly in relation to how to approach modelling variability in data,

Fig. 18.1 a A cyclic representation of mathematical modelling (Blomhøj & Jensen, 2007, p. 48); 
b Statistical modelling processes as depicted by Lehrer and English (2018, p. 232) 
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and implicitly in the way inferences are made (which is possible, but not necessarily 
based on some given mathematical model or mathematical argument). From this 
perspective, statistics or statistical modelling (cf. Pfannkuch et al., 2018) can be seen 
to encompass mathematical modelling. 

18.3 Towards a Framework Conceptualising 
the Relationships Between Statistics, Statistical 
Modelling and Mathematical Modelling 

In what follows, we draw on Pfannkuch’s et al. (2018) conceptualisation and use the 
notions of statistics and statistical modelling synonymously to economise our writing 
without losing any generalisability in the aspects and arguments being discussed. 
Based on the previous discussion, particularly regarding the diagrams presented in 
Fig. 18.1, two overarching perspectives on the relationship between mathematical 
modelling and statistics emerge, see Fig. 18.2. From a mathematical point of view, 
statistics is part of mathematics as an applied discipline (i.e. one area of mathemat-
ical modelling). From a statistics (education) perspective, mathematical modelling 
is part of statistics as a tool to address issues and challenges regarding, for example, 
variability. However, regardless of these two ways of addressing the two disciplines, 
this chapter points to the many mutual aspects and similarities between mathemat-
ical modelling and statistics. Below we briefly summarise some selected and recent 
research studies that address different aspects related to the similarities and differ-
ences between mathematical modelling and statistics, and that have influenced our 
thinking. In doing so, our intention is to seek to highlight in different ways research 
findings that are beneficial to both disciplines and discuss what emerges from exam-
ining such findings holistically. This discussion was inspired by the research sympo-
sium, Learning to solve real life problems through statistical models and modelling, 
held at ICMTA-19 in Hong Kong (Ärlebäck & Kawakami, 2019) and, in turn, led to 
our joint contribution to ICME-14 in Shanghai (Kawakami & Ärlebäck, 2021). 

Fig. 18.2 The relationship between mathematical modelling and statistics from a a general and 
generic mathematical modelling point of view, and b a statistics (education) perspective
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18.3.1 Recent Research Focusing on Aspects Integrating 
Statistical and Mathematical Modelling 

Frejd and Ärlebäck (2021) present a literature review that focuses on how the notion 
of statistics has been used in research on mathematical modelling education, as 
discussed and described in books from ICTMA and ICTMA-related conferences. 
Using a grounded theory-inspired approach, all 17 ICTMA books published before 
2019, as well as the books resulting from ICME-6 and the 14th ICMI study, were 
analysed. The review was structured around two major foci, both aligned with the 
perspective represented in Fig. 18.2a insofar as a mathematical point of view is taken 
as their departure point. The two foci are: (i) epistemological aspects and different 
roles of how the notion/word, statistics, is used in the context of the teaching and 
learning of mathematical modelling; (ii) aspects of how the teaching and learning of 
statistical concepts, ideas and models come to the fore using mathematical modelling 
as a vehicle (cf. Julie & Mudaly, 2007). The results show that the word statistics is 
used and associated with multiple themes such as research methodology; teaching, 
learning and modelling, as well as statistics; curriculum aspects and assessment; 
teachers’ and students’ knowledge; and theory discussions and incidentally (such 
as in the titles of referenced books). The analysis provides suggestions for how to 
teach statistics in which modelling to some extent is part of the teaching approach, 
but also shows that the relationship between mathematical modelling and statistical 
modelling is very rarely discussed from a theoretical point of view. The identified 
themes and the analysed reviewed research are used to discuss the role of modelling in 
statistics education and mathematics education, as well as to identify the connections, 
boundaries and boundary crossings between the two research fields, highlighting both 
perspectives in Fig. 18.2. The review by Frejd and Ärlebäck (2021) can be seen as 
acknowledging the potential of investigating the productive connections between 
mathematical models and statistics, as well as the need for a theoretical foundation 
and framework that link and tie them together. 

In an empirical study, Vos and Frejd (2020, 2021) reported on a project that seeks 
to better connect school mathematics to real workplace practices and how numerical 
data are used and described in context. This research describes how Year 8 students 
visited a local enterprise and were offered Sankey diagrams to use as a statistical 
graphical representation to model and visualise industrial and other processes. Vos 
and Frejd (2020, 2021) analysed and discussed the students’ competencies in creating 
Sankey diagrams such as (i) mathematising competencies (collecting data); (ii) math-
ematical competencies (calculating widths); and (iii) communication competencies 
(deciding on the appearance). The project provided a clear example of how the 
powerful visualisation of quantitative data can be used to convey complex multi-
step processes and relations. The results show how the students easily mastered the 
Sankey diagrams, successfully created a Sankey diagram for an authentic task on 
improving the sorting of waste at their school and, using their Sankey diagrams, 
visualised how 90% of the waste was wrongly thrown away and then successfully 
convinced the school management to increase the number of recycling bins at the
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school. In particular, the work by Vos and Frejd (2020, 2021) illustrates how statis-
tical tools are part of the modelling toolbox and are therefore representative of the 
approach in Fig. 18.2a. 

Kawakami and Mineno (2021) explored the work of Year 9 students on a task that 
models the population of Japan. The design of the activity centres around a data-based 
modelling approach used to estimate the previous and unknown Japanese population 
in terms of combining mathematical, statistical and contextual approaches. Two main 
results were found from the analysis of the models developed by groups of students, 
as well as by individual students. Firstly, the data-based modelling in which the 
students engaged had the potential to help the students to construct, validate and revise 
various models, whilst also flexibly combining mathematical, statistical and contex-
tual approaches generated from real-world data. Secondly, data-based modelling as 
an approach functioned as a vehicle (cf. Julie & Mudaly, 2007) for understanding 
the relationship between data and models on the one hand, and the roles of data in 
solving real-world problems based on these approaches and authentic experiences 
on the other. One of the conclusions of the study is that data-based modelling as 
understood by Kawakami and Mineno can mediate mathematical modelling from 
a mathematical point of view, as well as modelling from a statistical perspective. 
Thus, the research by Kawakami and Mineno (2021) illustrates a dynamic and flex-
ible approach in line with either Fig. 18.2a or  18.2b, depending on which perspec-
tive is adopted. This implies that a qualification for a theoretical framework that 
encompasses both mathematical modelling and statistics is that the framework is 
dynamic and flexible regarding what is in the foreground (mathematical modelling 
or statistics), and the extent to which one or the other is given precedence. 

In Ärlebäck and Frejd (2021), the work of nine groups of upper secondary students 
on the question: “How many red books are there in the library?” was analysed in 
order to investigate the potential of the activity to form the basis of multiple learning 
goals in a section of statistics. Ärlebäck and Frejd used mathematical modelling in 
line with Fig. 18.2a and as understood from the models and modelling perspective 
(cf. Lesh & Doerr, 2003) as a vehicle (cf. Julie & Mudaly, 2007) in the context of 
a task design to evaluate the task’s potential to elicit different sources and types of 
variability. The results illustrate that the models developed by the students utilised 
different measuring and sampling strategies to estimate the number of books in the 
library, and that the students’ work encompassed multiple sources of, as well as 
different types of, variability. Further, Ärlebäck and Frejd (2021) discussed how key 
statistical ideas such as variability elicited and manifested in students’ work can be 
used to organise successive activities as the nexus of an entire section of statistics at 
this level. This suggests that a component of a theoretical framework that connects 
mathematical modelling and statistics can, at least partially, be based in a modelling 
perspective or approach as at tool for the design and organisation of students’ learning 
opportunities regarding both statistics and mathematical modelling. 

The aforementioned studies suggest potentially fundamental aspects and compo-
nents required from a theoretical framework that bridges statistics and mathematical 
modelling. However, another approach to identifying sound theoretical underpin-
nings of such a framework was proposed and reported by Kawakami and Ärlebäck



18 The Relationships Between Statistics, Statistical Modelling … 303

(2021) in the topic study group on applications and modelling at ICME-14. This 
approach will now be elaborated. 

18.4 Rationales for Statistical Modelling in Education 
Research from a Mathematical Modelling Perspective 

At ICME-14, we departed from the simple relationship between mathematical 
modelling and statistics in Fig. 18.2 and explored the observation already high-
lighted, that there are commonalities in the rationales, goals, theories and research 
practices between mathematical modelling, statistics and statistical modelling with 
respect to modelling (e.g. Langrall et al., 2017). More precisely, the approach taken 
was to investigate what can be said in particular about the rationales proposed for 
the teaching and learning of statistical modelling, and how these relate to corre-
sponding rationales for mathematical modelling. The literature has previously noted 
various rationales for teaching and learning statistical modelling (Kawakami, 2019; 
Pfannkuch et al., 2018) but to our knowledge, no previous systematic analysis or 
organisation of these has been attempted. 

In line with the potential presented in previous sections of this chapter, as well as 
in line with our overall research goal (e.g. Ärlebäck & Kawakami, 2019) to elabo-
rate on the connections, boundaries and boundary crossings between mathematical 
modelling, statistics and statistical modelling, the first conceptualisation of rationales 
was based on literature on both mathematical modelling and statistical modelling. 
From a mathematical modelling perspective, and similar to Julie and Mudaly (2007), 
Niss and Blum (2020) use the expressions modelling as an independent goal and 
modelling as a means of learning mathematics to discuss the dual rationales for 
incorporating mathematical modelling in mathematics teaching. These two ratio-
nales resonate and are analogous to the arguments about why statistical modelling 
should be included in the teaching and learning of statistics: (i) developing statistical 
competencies such as statistical thinking, reasoning and literacy and (ii) promoting 
the learning of statistical content such as statistical knowledge and concepts (see 
Table. 18.1). A third rationale identified focuses on using models to examine and 
understand real world and social contexts, and to develop a critical understanding of 
the use and role of mathematics (e.g. Barbosa, 2006) and statistics (e.g. Pfannkuch 
et al., 2018) in these contexts. These three identified rationales relate to the use and 
implementation of mathematical and statistical modelling in teaching and learning 
that are summarised in Table 18.2, and which were used as the analytical lens in 
order to address the following question: What rationales for Statistical Modelling 
(SM) can be discerned in statistics education research?

The results presented in Kawakami and Ärlebäck (2021) were based on a system-
atic literature review of 48 peer-reviewed empirical research papers that were iden-
tified as using or investigating statistical modelling in mathematics and statistics 
education research: five from Educational Studies in Mathematics; 16 from  ZDM:
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Table 18.2 The three rationales for statistical modelling (SM) 

# Rationale Short descriptive 

R1 Competency-oriented SM Developing statistical competencies through SM 

R2 Content-oriented SM Promoting the learning of statistical content through SM 

R3 Society-oriented SM Promoting the examination of real world and social contexts 
through SM

Fig. 18.3 The distribution of the three characteristics R1–R3 in the 48 analysed papers 

Mathematics Education; two  from  Mathematical Thinking and Learning; one from 
the Journal for Research in Mathematics Education, 14 from the  Statistics Educa-
tion Research Journal; and 10 from the Journal of Statistics Education. Figure 18.3 
presents the results of the identified rationales for using statistical modelling in the 
analysed literature with the frequency within, and combinations of each, category. 

With approximately 79% (n = 38), competency-oriented SM (R1) was the most 
identified rationale in the 48 analysed papers. R1 was the sole rationale in around 
31% (n = 15) of the papers and was found together with R2 or/and R3 in around 
48% (n = 23) of the papers. Papers with rationale R1 typically used SM to develop 
statistical competencies (statistical literacy, reasoning and thinking) and statistical 
processes (statistical inquiry and informal statistical inference) in which statistical 
models/modelling was an integral component. R1-coded papers often described 
SM as real-world problem solving and stressed the applied nature of statistics, 
emphasising the use of real and authentic data in educational settings. 

Content-oriented SM (R2) was the second most frequently found rationale in the 
papers (approximately 58%, n = 28). It was the sole rationale in nine of the papers 
(19%) and was used with R1 or/and R3 in around 40% (n = 19) of the papers. The 
studies that employed R2 used SM to elicit, develop and deepen the understanding of 
a wide range of statistical content, including an aggregate view of data, measures of 
distribution, signal and noise, variation, population, sample and sampling, theoretical
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distributions, statistical models, causality, as well as statistical inference. In 17 of 
the 28 papers, statistical reasoning (R1) and statistical content (R2) were integrated 
to promote, for example, aggregate or covariational reasoning. R2-coded papers 
often described SM as an epistemic practice of statistics and a pedagogical tool, 
emphasising, for example, the relationship between statistical content and chance or 
probability. 

Society-oriented SM (R3) was the least commonly discerned rationale in the 48 
analysed papers (approximately 15%, n = 7). The papers that adopted R3 used SM 
to enhance critical thinking about real-life, social and societal contexts, as well as 
to examine the power and limitations of statistical models/modelling embedded in 
these contexts. R3-coded papers often described SM as a means and object of social 
criticism and decision-making based on data, and often emphasised the use of social 
issues and contexts in education. 

To summarise, the analysis by Kawakami and Ärlebäck (2021) shows that all 
three rationales for using statistical modelling were invoked in empirical studies in 
statistics education research. The society-oriented rationale (R3) was only found in 
combination with one or both of the other rationales. However, the results show that 
statistical modelling can be seen as a means of achieving applied, epistemic and 
social-critical-related goals in statistics education. Moreover, based on the analysis 
using R1, R2 and R3, one of the conclusions is that statistical modelling can also be 
understood more holistically in terms of a component of statistical competencies; 
an integrated aspect of statistical content; and important for real-life, social and 
societal decision-making. The work presented in Kawakami and Ärlebäck (2021) 
has been further developed and the analysis expanded, see Kawakami and Ärlebäck 
(2022) for details. 

18.5 Conclusion, Suggestions and Outlook 

This chapter has discussed the relations between statistics, statistical modelling and 
mathematical modelling. We have identified the differences and the similarities at 
both the discipline level and more specifically regarding the notion of modelling in 
the two (educational) disciplines. Firstly, our discussion of the literature converged 
in two outlined principal perspectives: (i) seeing mathematical modelling as encom-
passing statistics and statistical modelling as an applied branch of mathematics on the 
one hand; (ii) seeing statistics or statistical modelling as encompassing mathematical 
modelling as a tool when engaging in statistical analysis on the other. Secondly, we 
discussed the results we presented at ICME-14 (cf. Kawakami & Ärlebäck, 2021), 
which analysed empirical education research focusing on statistical modelling in 
terms of the rationales that were invoked for statistical modelling. By examining 
the rationales for the teaching and learning of mathematical modelling on the one 
hand, and statistical modelling on the other, we were able to connect and bring the 
perspective illustrated in Fig. 18.2. closer together on a more fundamental level.



306 J. B. Ärlebäck and T. Kawakami

Indeed, the three rationales used as analytical tools (R1—the development of statis-
tical competencies; R2—the learning of statistical content; and R3—the study of real 
world and social contexts using statistical modelling) have corresponding rationales 
in the discourse on mathematical modelling (e.g. Barbosa, 2006; Julie & Mudaly, 
2007; Niss & Blum,  2020). Importantly, the research also showed that statistical 
modelling can be understood more holistically as: a component of statistical compe-
tencies; integrating aspects of statistical content; and important for real-life, social 
and societal decision-making. 

The brief review of the research by Frejd and Ärlebäck (2021), Vos and Frejd 
(2020, 2021), Kawakami and Mineno (2021), and Ärlebäck and Frejd (2021), respec-
tively, provides different examples of research that is potentially beneficial to the 
teaching and learning of statistics and statistical modelling, as well as to the teaching 
and learning of, as well as through, mathematical modelling. Indeed, the connecting 
aspects that these studies highlight between mathematical modelling and statistical 
modelling seem to align with the different elements or dimensions of various literacy 
frameworks: mathematical literacy (Geiger et al., 2015; Jablonka, 2003); statistical 
literacy (Gal, 2002; Watson & Callingham, 2003); and probability literacy (Gal, 
2005). As a next step in seeking a common theoretical foundation for mathematical 
modelling, statistics and statistical modelling, it might be productive to analyse and 
compare these literacy frameworks to further identify potential similarities and differ-
ences between mathematical and statistical modelling. Here, it might be especially 
interesting to conduct a closer dissection of probability literacy (Gal, 2005), since 
probability theory can fundamentally be seen as a field that provides a boundary 
crossing between mathematics and statistics. A first overview-oriented attempt to 
look more closely at these literacy frameworks has been initiated by and undertaken 
in Ärlebäck et al. (2023). However, much work remains to be done. 

We are optimistic that this type of joint research that focuses on statistics educa-
tion and mathematical modelling education could provide new insights and devel-
opments—in terms of both practice and theory—and we concur with the following 
quote from the statistics education community: 

A focus on modeling also provides an opportunity for collaboration between the math educa-
tion and statistics education communities, as mathematical models may act as ‘boundary 
objects’ that support conversation between the communities without requiring a single defi-
nition of ‘model’ (Groth, 2015). Since modelling is a tool in mathematics as well as in 
statistics that allows us to understand empirical situations better, there are obvious over-
laps between the research concerns of mathematics and statistics educators with respect to 
modelling. (Makar & Rubin, 2018, p. 289) 

This chapter has accounted for the first steps towards theorising this connection, 
as well as suggested a potential direction for future research that aims to achieve this 
goal.
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Chapter 19 
The Dialogic Approach 
of Ethnomodelling and Its Cultural 
Dynamics 

Daniel Clark Orey and Milton Rosa 

Abstract Ethnomodelling is an alternative methodological approach suited to 
diverse sociocultural realities, and proposes the rediscovery of mathematical knowl-
edge systems developed, accumulated, adopted, and adapted in other cultural 
contexts. The purpose of this chapter is to focus on the glocal (dialogic) approach 
of ethnomodelling and how the interaction between local (emic) and global (etic) 
approaches can promote the understanding of cultural dynamism through the elab-
oration of ethnomodels. It is important to discuss epistemological stances regarding 
how cultural aspects are integrated into the ethnomodelling perspective and how this 
integration enables to show the relevance of different issues with respect to local 
(emic), global (etic), or glocal (dialogic) approaches in order to show that the central 
content of ethnomodelling may represent a significant contribution to mathematical 
modelling educational research and its pedagogical action. 

Keywords Ethnomodelling · Ethnomodels · Global Approach (Etic) · Glocal 
Approach (Dialogic) · Local Approach (Emic) · Sociocultural Influences 

19.1 Initial Considerations 

For any research involving innovative methodologies, is better served when it records 
historical forms of mathematical ideas, procedures, and techniques that have occurred 
in diverse sociocultural contexts. This allows researchers and educators to examine 
emerging forms of glocalization and related mathematical processes and the many 
cultural aspects therein. By exploring and documenting the many mathematical 
practices rooted in diverse cultural contexts, we acknowledge and enjoy exploring
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the many connections between mathematical phenomena and culture through the 
pedagogical action of ethnomodelling. 

Innovative methodologies investigate mathematical practices developed both 
locally and globally. The emerging body of knowledge is identifying and developing 
glocal mathematical practices. This is how ethnomodelling differs from traditional 
definitions of mathematical modelling and its pedagogical action. For example, the 
results of the study conducted by Cortes and Orey (2020) show that ethnomodelling 
provided an integrative approach to the school mathematics curriculum, as it consid-
ered both emic (local) and etic (global) mathematical knowledge so that educators 
and students could understand in a more holistic way, mathematical practices devel-
oped by members of distinct cultural groups that make up the school community 
population (dialogic, glocal). 

The pedagogical action of ethnomodelling seeks to understand the traditions, 
ideologies, cosmologies, and beliefs of a particular culture by advocating the rele-
vance of, indeed the complementarity between, local (emic) and global (etic) forms of 
mathematics into a glocal (dialogic) approach through the development of a cultural 
dynamism (Rosa & Orey, 2021). For example, Chiu and Hong (2006) called the local 
approach the investigative emphasis of specific cultural systems by considering it 
complementary to the global approach that discusses the universality of ideas, proce-
dures, and practices, and recognizes the cultural dimensions that comprises human 
knowledge and behavior. In this process, the anthropological terms emic and etic are 
used as an analogy between observers from the inside (emic, local) and observers 
from the outside (etic, global) (Rosa & Orey, 2019). 

Global (etic) approaches are related to extrinsic worldviews of outside observers 
in relation to the mathematical experience and knowledge developed by members 
of distinct cultural entities. It refers to an interpretation of characteristics of other 
cultures from the application of analytical categories developed by professionals 
who observe them externally. This approach is considered as the external view of 
observers, who are looking at a specific culture from the outside perspective, in  
a cross-cultural, comparative, and prescriptive stance, which can be equated with 
the objective explanation of sociocultural phenomena. In general, researchers and 
educators who consider a global (etic) approach in the development of daily activities 
apply universal concepts and theories, valid for members of all cultures by comparing 
them in order to determine how these practices differ or resemble each other (Rosa 
& Orey,  2019). 

Local (emic) approaches aim to understand the characteristics of a given culture 
based on the intrinsic references developed by its members. It is related to their 
own worldview and cosmologies regarding the development of their own mathemat-
ical knowledge (Rosa & Orey, 2021). This approach is considered as the internal 
and presents a view by those who are looking at their own culture from the inside 
perspective, in an intracultural, particular, and descriptive stance, which is identified 
with the understanding of subjective experiences they have acquired, developed, and 
accumulated through history (Harris, 1980). In this regard, researchers and educators 
who consider a local (emic) approach understand that many mathematical practices
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are rooted in the daily activities developed in a given culture whose unique cultural 
characteristics are inherent to its members (Geertz, 1973). 

These approaches are related to mathematical ideas, procedures, and practices 
linked to everyday phenomena, which can be organized, interpreted, and evaluated 
through the elaboration of ethnomodels, which are representations of systems taken 
from the reality of members of distinct cultures. They enable these members to 
communicate, diffuse, and transmit their mathematization processes across genera-
tions by helping them in attributing meaning to the sociocultural context in which 
they perform their daily activities. Thus, ethnomodels are small units of information 
that link the development of mathematical practices developed by these members 
who use their own sociocultural heritage to holistically understand and comprehend 
their surroundings (Rosa & Orey, 2019). 

By applying ethnomodelling, researchers and educators value and respect ethno-
mathematical knowledge (local, emic), as well its interpretations and contributions to 
mathematical systematization through modelling (etic, global) in a glocal (dialogic) 
manner. In this context, Rosa and Orey (2021) state that ethnomodelling is an alter-
native methodological approach suited to different sociocultural realities, which 
proposes the rediscovery of mathematical knowledge systems developed, accumu-
lated, adopted, and adapted in other contexts. Thus, this chapter focuses on the 
glocal (dialogic) approaches of ethnomodelling and how the interaction between 
local (emic) and global (etic) approaches promotes cultural dynamism through the 
elaboration of ethnomodelling. 

It is important to discuss epistemological stances regarding the cultural aspects 
integrated into ethnomodelling perspectives, and how this integration enables us to 
show the relevance of different issues with respect to local (emic), global (etic), 
or glocal (dialogic) approaches to this research program in order to show that the 
central content of ethnomodelling represents a significant contribution to mathemat-
ical modelling and educational research. And finally, it is important to demonstrate 
the originality of this chapter by presenting a cultural perspective on modelling in 
the form of ethnomodelling. 

19.2 Ethnomodelling 

Ethnomodelling is the study of mathematical procedures, techniques, and practices 
developed by members of distinct cultural groups, which enable them to mathematize 
and solve problems they face daily by adding the cultural perspective (ethnomathe-
matics) to the mathematical modelling process. Thus, there is a need for researchers 
and educators to become aware that many forms of mathematical knowledge stem 
from practices rooted in sociocultural relations, which allows for the exploration of 
diverse mathematical ideas by both valuing and respecting the knowledge acquired 
when these members interact with distinct environments (Rosa & Orey, 2010). 

According to Rosa and Orey (2019), ethnomodelling aims to show that math-
ematics is a cultural and humanist enterprise, rooted in tradition, and which has
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enabled the development of different ways of members of distinct cultural groups 
develop systems of measurement, quantification, comparison, classification, infer-
ence, mathematization, and modelling. These techniques can be considered as the 
basic tools used by these members that allow them to translate a particular problem 
or situation between local (emic) and global (etic) approaches through dialog (glocal, 
cultural dynamism). 

The term translation to establish relations between local (emic) and global (etic) 
mathematical knowledge aims to solve problems and situations faced in the daily 
life of members of distinct cultures through the elaboration of ethnomodels that 
appears to work best (Rosa & Orey, 2021). Consequently, there is a need to use 
translation in order to describe the modelling process of local (emic) mathematical 
systems that may have a sociocultural representation in other mathematical systems, 
such as academic knowledge. According to Moscovici and Markova (1998), these 
representations result from social and cultural interactions regarding the translations 
that are related to cultural dynamism in relation to the encounter of distinct cultures. 

However, Esmonde and Saxe (2004) affirm that for these translations to occur, 
there is a need to establish a certain synergy between mathematical knowledge used in 
the academic context (etic/global) and the distinct cultural identities of mathematical 
knowledge developed by members of distinct cultures (emic/local). Therefore, in the 
process of translating between mathematical systems, the elaboration of ethnomodels 
takes place through the use of culturally mediated tools, which seek to approximate 
local mathematical (emic) practices with those used in academic context (etic) (Rosa 
& Orey,  2010). 

It is necessary to highlight that, in some cases, this translational process can be 
developed straightforward as working with counting systems and designing calen-
dars. In other cases, mathematical ideas and procedures are embedded in culturally 
rooted procedures. For example, the use of counting techniques in numerical systems 
regarding mathematical procedures used in crafts and architecture enable the transla-
tion of these practices to other mathematical knowledge systems (Eglash et al., 2006). 
Thus, translation refers to a process whereby local (emic) and global (etic) mathemat-
ical knowledge systems are mutually influenced and synergized. This translational 
process is exemplified by the predominance of four-fold symmetry (Fig. 19.1) used  
as patterns of fabrics made by indigenous peoples of North America.

According to Eglash (2009), this mathematical practice is related to the notion 
of the four directions, which is an indigenous analogy that can be translated to the 
Cartesian coordinate system that can be represented by the elaboration of an emic 
ethnomodel. This local mathematical knowledge can be represented by elaborating 
ethnomodels. In this regard, emic (local) approach provides insights and internal 
conceptions about mathematical ideas while global (etic) analysis is based on prede-
termined general concepts that are external to members of that cultural group (Rosa 
& Orey,  2019). 

The need to know, understand, and explain an [etic] ethnomodel, or even how 
certain people or members of distinct cultural groups used or use it [emic], can 
be significant, mainly because it offers us an opportunity to penetrate the thinking 
of a culture and attain a better understanding of their values, materials, and social
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Fig. 19.1 Relation between four-fold symmetry and the Cartesian system (Source Culturally 
Situated Design Tools1 )

basis [dialogic]. This assertion reveals that the elaboration of ethnomodels must be 
developed in accordance with the perceptions, comprehension, and understanding of 
the members of distinct cultural groups. 

According to Rosa and Orey (2013), local (emic) ethnomodels are based on char-
acteristics that represent systems taken from the daily life of members of distinct 
cultural groups. They focus on systems that represent a single culture, as it employs 
descriptive and qualitative methods to study mathematical ideas, procedures, and 
practices developed locally. Global (etic) ethnomodels are elaborated regarding 
observations and views held by external observers, who analyze systems taken from 
the reality of members of distinct cultural groups whose mathematical ideas, proce-
dures, and practices are being modeled. The elaboration of these ethnomodels starts 
with the concepts, theories, and hypotheses that are developed outside of the culture 
under study. 

The development of the glocal (dialogic) ethnomodels is triggered by the recog-
nition of the coexistence of many forms of logics in the same mathematical system 
since they are complementary and integrate the same phenomenon. In this cultural 
dynamism, local (emic) and global (etic) mathematical knowledge interact dialog-
ically in order to propose a more conciliatory stance between different points of 
view from holders of global (etic) and local (emic) knowledge, as they are comple-
mentary and inseparable (Rosa & Orey, 2019). In this glocal (dialogic) process, 
local (emic) and global (etic) approaches are elements that help researchers and 
educators to acknowledge the relevance of cultural influences in the elaboration of 
ethnomodels by considering that the interdependence and complementarity between 
both approaches can be evidenced.

1 Available at: http://csdt.rpi.edu/african/MANG_DESIGN/culture/mang_homepage.html. 

http://csdt.rpi.edu/african/MANG_DESIGN/culture/mang_homepage.html
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19.3 Ethnomodels of Measuring Plots of Land 

The struggle for Brazilian agrarian reform works to enable the access to plots of land 
so farmers can produce their own agricultural products. This allows for the devel-
opment of practices related to land measurement, a culturally relevant technique 
adopted by the members of the Landless Peoples’ Movement, in Brazil. The impor-
tance placed on sustainability and planning on agricultural production has been well 
documented by Knijnik (1993) who stated that the demarcation of land is related 
to the method of cubação (squaring) of land, which is a traditional mathematical 
practice developed by members of this movement that is used to determine the area 
of the plot of land in their settlements (occupation sites). 

The techniques showed that, despite their lack of formal schooling, they developed 
and apply sophisticated knowledge to cubação methods of their land. This is used 
to solve problems related to the measurement with irregular shapes by applying 
distinct methods to determine its area. For Knijnik (1996), this method addresses 
specific needs in order to determine land areas, to create planting areas, as well as the 
demarcation of plots of land for each family in the settlement. They also established 
logistic and production goals related to storage and drying, bagging, transport, and 
selling their products at local markets. Their land was prepared according to the type 
of farm and quantity of products they harvest and commercialize. 

As well, local (emic) knowledge regarding the development of these methods was 
orally transmitted to family members by their ancestors across generations. This is 
related to productive activities that these members performed in their daily routines. 
For example, the need for cubação with irregular shapes was in accordance with its 
accessibility depending on the local topology and the type of agricultural products 
they hoped to produce. This method is used to calculate the total area of the plots 
of land after its occupation. This enabled them to calculate the amount of money 
needed for the: (a) cleaning work, (b) preparation for planting, (c) demarcation of 
areas to be cultivated, to plan, and (d) delimitation of areas for the construction of 
houses and shelters for animals. 

Similarly, Rosa and Orey (2019) state that members of distinct cultural groups 
who work in settlements located in one of the regions in the state of Bahia, Brazil, also 
use this method to pay for jobs relating to weeding, planting, harvesting, and storing 
agricultural products, which is paid in accordance with land frames or shapes. For 
example, these techniques are related to the determination of the areas of plot of land 
with three corners or four corners in accordance with the shape of the cultivated land. 
According to D’Ambrosio (2006), the validation of these methods within agricultural 
communities and settlements results from the development of informal agreements 
of signification that results from a cumulative process of generation, accumulation, 
social organization, and diffusion of this local (emic) mathematical knowledge.
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19.3.1 Area of Plots of Land with Three Corners: Cubação 
of Land with Triangular Shapes 

Mathematical practices developed by members of Landless Peoples’ Movement 
consisted of specific ways of calculating land area in their settlements, which inter-
relations between local (emic) and global (etic) mathematical knowledge concerning 
to the upper bound estimation of the area of a tract of land with irregular shapes. 

Although most of the plots of land in Brazil have mostly a quadrilateral shape, 
they can also be triangular. For example, Senhor José, a member of Landless Peoples’ 
Movement in the Brazilian Northeast region, explained how he determines the area 
of plot of land that has a triangular shape: 

I start from one of the walls [side] of this frame that has a triangular shape [He pointed to 
one side of the sketched figure] and then I place a zero in its opposite tip [vertex]. Then, I 
add the two walls, 34 plus 38. I divide this sum by 2 and I found 36. Now, I add the other 
wall [side] with zero, 21 and zero and divided it by 2. I find 10.5, right? Then, I multiply 36 
by 10,5 and I find 378, ok? 

Figure 19.2 shows the sketch of the plot of the land with triangular shape drawn 
by Senhor José who is the member of Landless Peoples’ Movement. 

By using an etic model, they are able to determine the area of a land with a 
triangular shape by applying the formula: 

Area =
(
a + c 
2

)
x

(
b + d 
2

)

Area =
(
0 + 21 

2

)
x

(
38 + 34 

2

)

Fig. 19.2 The sketch of the plot of the triangular plot of land drawn by the member of this cultural 
group (Source Authors’ personal file) 



318 D. C. Orey and M. Rosa

Area =
(
21 

2

)
x

(
72 

2

)

Area = 10.5x36 

Area = 378 m2 

By placing a zero at one of the vertices of the triangle, the members of this 
movement are considering the vertex as a zero-size segment, then they identify a 
three-sided polygon as a quadrilateral by considering that this geometric figure has 
one of its sides that is null. For example, Knijnik (1996) affirmed that this method 
is a particular case of a rectangle in which one of the sides of the triangle measures 
zero. 

During his narrative, Senhor José used expressions or jargons (specific terms 
developed by members of distinct cultural groups according to their own sociocultural 
contexts) which is in accordance with the glocal (dialogic) approach for translating 
mathematical ideas. For example, walls (paredes) mean sides of the plot of the land 
and frame means area of a land with a triangular shape. 

This dialogic ethnomodel is a representation drawn from the reality of members 
of this specific cultural group that use both local (emic, internal) and global (etic, 
external) representations that are consistent with mathematical knowledge they elab-
orate, develop, and share throughout history. It sought to understand the mathematical 
practice of cubação of land from the perspective of the internal and external cultural 
dynamics and relations of this movement with the environment in which they live. 

19.3.2 Four Corners Plot Land Area: Cubação 
with Quadrilateral Shapes 

There are 2 (two) mathematical practices developed by members of this specific 
cultural group related in order to determine the area of plots of land with irregular 
quadrilateral shapes, which are: (a) transforming irregular quadrilateral shaped plot 
of land into a rectangle and (b) transforming irregular quadrilateral shaped plot of 
land into a square. 

a. Transforming Irregular Quadrilateral Shaped Plot of Land into a Rectangle 

Senhor Pedro, one of the members of Landless Peoples’ Movement, transforms 
the irregular quadrilateral shaped land into a rectangle by elaborating an emic 
ethnomodel: 

This is the way I use to find the area of a plot land, right? If I have this frame here [He 
showed the sketch of the plot of land] and asked to a friend of mine to weed it and I told him
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Fig. 19.3 The sketch of the plot of the land by the member of this cultural group (Source Authors’ 
personal file) 

that I will pay one thousand reais2 by the fourth. Then, he weeded the land and passed the 
rope himself to find its area. Then, he measured this wall here [He pointed to one side of the 
sketched figure], 45 meters, the other, 76 meters, 52 meters, 62 meters [He also pointed to 
other sides of the sketched figure]. The two walls that are lying down are the bases and the 
heights are those that are standing up [He was pointing again to the sides of the sketched 
figure]. Ok? My friend found the area here by doing this: he added the two walls, 76 plus 
62 and then divided its sum by 2. He found 69. So, the base is 69 meters here and 69 meters 
there. Did you understand it? So, he has the two heights here, 57 plus 45. He found 102 and 
divided it by 2. It is 51, right? Then, he multiplied 69 by 51, Ok? The area he weeded is 
3864 square meters, right? 

Figure 19.3 shows the sketch of the plot of the land drawn by the member of 
Landless Peoples’ Movement. 

This emic mathematical knowledge can be represented by an etic ethnomodel that 
transforms the shape of the given land into a rectangle of 69 m × 51 m with an area 
of 3519 square meters. 

Area =
(
a + c 
2

)
x

(
b + d 
2

)

Area =
(
76 + 62 

2

)
x

(
45 + 57 

2

)

Area =
(
238 

2

)
x

(
112 

2

)

Area = axb 

Area = 69x51 

Area = 3519 m2

2 The real ou reais (R$) is the official currency of Brazil, which is divided in 100 cents. Currently, 
US$1.00 = R$ 5,40. 
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Table 19.1 Jargons used by Senhor Pedro (Source Authors’ personal file) 

Jargon (local/emic knowledge) Meaning (global/etic knowledge 

Walls (paredes) Sides of the plot of the land 

Frame (quadro) Area of a land with a quadrilateral shape 

To weed (capinar) To clean and prepare the land for planting 

Fourth (quarta) Area measurement used in the Brazilian rural context that is 
equivalent to a quarter of a Paulista bushel that is used in the 
state of São Paulo, Brazil, which measures 24,200 square 
meters 

Pass the rope (passar a corda) To measure the sides of the land by using a rope 

The representation of this mathematical practice can be explained by the following 
etic ethnomodelling procedures: (a) transform the shape of the irregular quadrilateral 
into a rectangle whose area can be determined through the application of the area 
formula, (b) determine the dimensions of the rectangle by calculating the average of 
the two opposite sides of the irregular quadrilateral, and (c) determine the area of the 
rectangle by applying the formula: A = b x h. 

During his narrative, Senhor Pedro used expressions or jargons (specific terms 
developed by members of distinct cultural groups according to their own sociocultural 
contexts) which are in accordance with a glocal (dialogic) approach for translating 
mathematical ideas. Table 19.1 shows jargons used by Senhor Pedro. 

These terms are composed of phrases, expressions, or words that define proce-
dures, techniques, and practices specific to their culture, which are used by their 
members to develop local mathematical practices. Table 19.2 shows Senhor Pedro’s 
method of estimating an area of an irregular shaped land. 

Table 19.2 Shows Senhor Pedro’s method of estimating an area of a land with irregular shape 
(Source Authors’ personal file) 

Senhor Pedro’s explanation 
(local/emic knowledge) 

Academic explanation 
(global/etic knowledge) 

• This is a plot of land with four walls • This is a convex quadrilateral 

• First, we add two of the opposite walls and 
divide them by two 

• First, we determine the average of two 
opposite sides

(continued)
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(continued)

Senhor Pedro’s explanation
(local/emic knowledge)

Academic explanation
(global/etic knowledge)

• Second, we add the other two opposite sides 
and also divide them by two  

• Second, we determine the average of the 
other two opposite sides 

• Third, we multiply the first number obtained 
by the second one 

• Third, we determine the product of the two 
average numbers previously determined 

• That is the cubação of the land • This is the area of the rectangle whose sides 
are the average of the two pairs of opposite 
sides of the convex quadrilateral 

According to Rosa and Orey (2019), there is indeed historical evidence that the 
method of cubação in which a quadrilateral is transformed into a rectangle was used 
with the purpose of land taxation in Ptolemaic and Roman and in ancient Egypt. This 
method was developed and is still used in the Brazilian states of Bahia, Minas Gerais, 
Pernambuco, Rio Grande do Norte, Rio Grande do Sul, São Paulo, and Sergipe and 
in Chile and Nepal. 

b. Transforming the Irregular Quadrilateral Shaped Plot of Land into a Square 

Senhor Pedro who also transforms the initial irregular quadrilateral into a square 
with the same perimeter by using the same sketch explained that “Since the land 
has four different sides [irregular shape], I add all four sides: 45 m, 62 m, 57 m, 
and 76 m and the result is 240 m. Now, I divide this result by 4, which gives 60 m. 
Then, I multiply 60 by 60, which gives 3600 square meters”. Thus, the quadrilateral 
is transformed into a square whose side is the fourth part of the perimeter of the 
original polygon. This emic mathematical knowledge can be represented by an etic 
ethnomodel that transforms the quadrilateral irregular shape of plot of land into a 
square of 60 m each side. 

Side =
(
a + b + c + d 

4

)

Side =
(
76 + 45 + 62 + 57 

4

)

Side =
(
240 

4

)

Side = 60 m 

Area = axa = a2 

Area = 60x60 = 3600 m2
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The representation of this mathematical practice can be explained by the following 
global/etic ethnomodel: (a) transform the shape of the irregular quadrilateral into a 
rectangle whose area can be determined through the application of the area formula, 
(b) determine the dimensions of the rectangle by calculating the average of the two 
opposite sides of the irregular quadrilateral, and (c) determine the area of the square 
by applying the formula: A = a x a = a2. 

In a dialogic approach, Table 19.3 shows Senhor Pedro’s method of estimating 
an area of a land with irregular shape by transforming it into a square by using local 
(emic) knowledge and global (etic) knowledge through a cultural dynamism. 

This method is related to a local (emic) mathematical practice employed by rural 
workers in Brazil in order to transform irregular figures into regular ones. It is impor-
tant to state that the first method applied by Senhor Pedro shows that there is an 
increase in area in relation to the second method because among all the quadrilat-
erals with the same perimeter, the square has the largest area. However, when it 
comes to determine the area of any quadrilateral, the results of squaring the land are 
superior to those that effectively correspond to the original surface. 

In this context, Knijnik (1996) states that by considering the application of these 
techniques, the members of this movement disregard any internal angulation between 
two consecutive sides of the land by using right angles during the conversion process. 
These two methods are procedures that rural workers in this distinct cultural group 
employ in order to transform figures with irregular shapes that represent their land

Table 19.3 Senhor José’s method of estimating an area of a land with irregular shape by 
transforming it into a square. Source Authors’ personal file 

Senhor Pedro’s explanation (local/emic 
knowledge) 

Academic explanation 
(global/etic knowledge) 

• Here is a piece of land with four walls • This is a convex quadrilateral 

• First, we add all the walls • First, we determine the perimeter of this convex 
quadrilateral 

• Second, we divide the sum by four • Second, we divide the perimeter by four 

• Third, we multiply the obtained number 
by itself 

• Third, we determine the area of the square whose 
side is given by diving its perimeter by four 

•  This is the  cubação of this land • This is the area of the square obtained from the 
perimeter of the convex quadrilateral 
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into squares and rectangles, which are well-known quadrilateral geometric figures, 
which are similar to the configurations of the agricultural areas in Brazil. 

19.3.3 Some Considerations About Brazilian Plot of Land 
(Cubação) 

The local (emic) approach in these examples may be considered as an attempt to 
discover and describe a mathematical system of members of this distinct cultural 
group in its own terms by identifying its units and structural procedures, whereas 
the global (etic) approach is primarily concerned with characteristics pertaining to 
academic mathematics in a glocal (dialogic) way. This process translated procedures 
used in these mathematical practices for the understanding of those who have distinct 
cultural backgrounds, so that they are able to understand and explain these practices 
from the perspective of insider because this mathematical phenomenon is culturally 
contextualized. 

According to D’Ambrosio (2006), these local procedures (emic knowledge) used 
in these mathematical practices have been diffused and transmitted to members 
of the Landless Peoples’ Movement through generations, which helps to clarify 
intrinsic distinctions of cultural procedures. Complementing the understanding of 
these practices, global (etic) approaches provided a cross-cultural contrast, which 
employs comparative perspectives with the use of academic mathematical concepts 
by applying formulas that seek to show the objectivity of the external observations 
of these procedures. This process can be used to develop the pedagogical action of 
ethnomodelling related to its dialogic approach. 

The glocal (dialogic) mathematical knowledge of measuring plots of land and the 
academic (etic) mathematical knowledge was used to enable the translation of this 
mathematical practice between these two complementary mathematical systems in 
order to amplify the understanding of members from distinct cultural backgrounds. 
In this context, the elaboration of local (emic) and etic (global) ethnomodels provided 
an adequate approximation for the measurement of plots of land, which meets the 
needs of members of this specific cultural group. In this process, the emic (local) 
observation of this mathematical practice aims to understand it out of the relation 
of the internal dynamics that occur within this cultural group as factors that can 
influence the culture of their own culture through their own mathematical practices. 

The global (etic) approach seeks to offer a cultural contrast and a comparative 
perspective, which employs some aspects used in academic mathematical knowledge 
to enable the translation of this phenomenon, which aims to broaden the under-
standing and comprehension of researchers and educators who have a different 
cultural point of view. The emic approach intends to clarify cultural distinctions 
intrinsic to locally developed mathematical knowledge, while the etic approach seeks 
the objectivity of external observers in relation to that knowledge.
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According to Rosa and Orey (2019), the dialogic approach examines the stability 
of the existing relations between these two investigative approaches, which are essen-
tial for the comprehension of sociocultural practices that help the development of their 
mathematical knowledge. Dialogic (glocal) ethnomodels highlight the interdepen-
dencies, intersections, and complementarity between emic (local) and etic (global) 
approaches. In these ethnomodels, the etic (global) claims of mathematical practices 
developed by members of a given cultural group do not override their emic (local) 
claims and vice versa. 

By applying the pedagogical action of ethnomodelling through ethnomathematics 
and mathematical modelling, students learn how to find and work with real-life prob-
lems and daily phenomena. This context allows ethnomodelling to take into consid-
eration processes that help students to construct and develop their own mathematical 
knowledge, which includes collectivity, creativity, and inventively. 

19.4 Final Considerations 

In this chapter, we have showed how mathematical ideas, procedures, and practices 
can be studied by using different methodological approaches, such as by using an 
ethnomodelling methodology, and local (emic) and global (etic) forms of mathemat-
ical knowledge. In this regard, it is necessary to understand the relation between these 
two approaches through dialog (glocal), as they are complementary and dynamic. 
There is a need for researchers and educators to develop activities using ethnomod-
elling; by using both approaches, we can achieve a more complete understanding of 
the mathematical knowledge developed by members of different cultural groups 
through dialog. As well, learners are introduced to modelling in a form that is 
connected to their own reality and experiences. 

Neither globality nor locality is predominant over the other, as there is a dialog 
and translation that occurs when both approaches create holistic understandings of 
the studied phenomenon. It is important to recognize that all forms of mathematical 
knowledge can be explored, and that which has been developed globally by the 
academy (etic) can be supported as learners develop mathematical ideas, procedures, 
and practices developed locally by members of distinct cultures (emic) and vice versa 
(D’Ambrosio, 2006). In this context, it is necessary to point out that there are more 
questions in the field of ethnomodelling that should be discussed and explored: 

1. Can ethnomodels be elaborated at a non-conscious level that helps to provide an 
internal organization of external mathematical phenomena, which functions as 
the basis upon mathematical ideas, procedures, and practice take place? 

2. Are there culturally constructed representations of external mathematical 
phenomena that provide a comprehension of their internal organization, which 
is developed in the form of increasingly more and more complex representa-
tions that arise through formulating of the abstract and conceptual structure of 
ethnomodels?
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3. Are there correlations among different domains (cultural, social, political, 
economic, linguistic, and anthropological) that can be used in the elaboration 
of ethnomodels? 

4. Does ethnomodelling focus on a methodological approach to study intercultural 
and intracultural modelling processes? 

5. How does, indeed can, ethnomodelling lead toward the development of sophis-
ticated, formal mathematics, and mathematical modelling? 

Implications for ethnomodelling of systems taken from local realities suggest 
that ethnomodels of a cultural construct may be considered as a symbol system 
organized by internal logic of members of distinct cultural groups. Thus, researchers 
and educators, if not blinded by their prior experiences, theory, and ideologies can 
come to an informed sense of distinction that makes a difference from the point of 
view of the mathematical knowledge of members of distinct cultural groups. 

Therefore, they should be able to share the experiences that both the outsiders 
(global, etic) and insiders (local, emic) say matters to them. Thus, ethnomodelling is 
a program that aims to mediate cultural forms of mathematical development with the 
school curriculum to enable the development of the teaching and learning process in 
the field of mathematics education. 

Conducting ethnomodelling research based on these two approaches enables 
members of distinct cultural groups to achieve a broader comprehension of the math-
ematical knowledge developed by non-traditional groups of mathematical thinkers. 
One of main objectives for conducting investigations in ethnomodelling is the acquisi-
tion of emic (local) and etic (global) mathematical knowledge through dialog (glocal) 
between both approaches. 

In this context, ethnomathematics aims to emphasize the importance of knowl-
edge produced, disseminated, and accumulated in communities (emic, local) while 
modelling emphasizes mathematical knowledge acquired in academic systems 
(etic/local). Thus, ethnomodelling proposes the study of the approximations that 
exists between local (emic) and academic (etic) mathematical knowledge. 

References 

Chiu, C., & Hong, Y. (2006). Social psychology of culture. Psychology Press. 
Cortes, D. P. O., & Orey, D. C. (2020). Connecting ethnomathematics and modelling: A mixed 

methods study to understand the dialogic approach of ethnomodelling. Revemop, 2(2), 1–25. 
D’Ambrosio, U. (2006). Etnomathematics: Links between traditions and modernity. Sense  

Publishers. 
Eglash, R. (2009). Native American analogues to the cartesian coordinate system. In B. Greer, S. 

Mukhopadhyay, A. B. Powell, & S. Nelson-Barber (Eds.), Culturally responsive mathematics 
education (pp. 281–294). Routledge. 

Eglash, R., Bennett, A., O’Donnell, C., Jennings, S., & Cintorino, M. (2006). Culturally situated 
designed tools: Ethnocomputing from field site to classroom. American Anthropologist, 108(2), 
347–362.



326 D. C. Orey and M. Rosa

Esmonde, I., & Saxe, G. B. (2004). ‘Cultural mathematics’ in the Oksapmin curriculum: Continuities 
and discontinuities. In Y. B. Kafai, W. A. Sandoval, N. Enyedy, A. S. Nixon, & F. Herrera (Eds.), 
International Conference of the Learning Sciences 2004: Embracing Diversity in the Learning 
Sciences (pp. 174–181). Lawrence Erlbaum Associates. 

Geertz, C. J. (1973). Thick description: Toward an interpretative theory of culture. In C. Geertz 
(Ed.), The interpretation of culture: Selected essays (pp. 3–30). Basic Books. 

Harris, M. (1980). The epistemology of cultural materialism. In M. Harris (Ed.), Cultural 
materialism: The struggle for a science of culture (pp. 29–45). Random House. 

Knijnik, G. (1996). Exclusão e resistência: educação matemática e legitimidade cultural [Exclusion 
and resistance: mathematics education and cultural legitimacy]. Porto Alegre, Rio Grande do 
Sul, Brazil: Artes Médicas. 

Knijnik, G. (1993). An ethnomathematical approach in mathematical education: A matter of political 
power. For the Learning of Mathematics, 13(2), 23–25. 

Moscovici, S., & Markova, I. (1998). Presenting social representations: A conversation. Culture & 
Society, 4(3), 371–410. 

Rosa, M., & Orey, D. C. (2010). Ethnomodeling: An ethnomathematical holistic tool. Academic 
Exchange Quarterly, 14(3), 191–195. 

Rosa, M., & Orey, D. C. (2013). Ethnomodelling as a methodology for ethnomathematics. In G. 
A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: 
Connecting to research and practice (pp. 77–88). Springer. 

Rosa, M., & Orey, D. C. (2019). Ethnomodelling as the art of translating mathematical practices. 
For the Learning of Mathematics, 30(2), 19–24. 

Rosa, M., & Orey, D. C. (2021). Ethnomodelling as a glocalization process of mathematical practices 
through cultural dynamism. The Mathematics Enthusiast, 18(3), 438–468.



Chapter 20 
Methods for Teaching Modelling 
Problems 

Stanislaw Schukajlow and Werner Blum 

Abstract An important goal of mathematics education is to develop and examine 
methods for teaching modelling problems. In a literature review, we identify guided 
instruction and a constructivist view of teaching as two general principles of methods 
for teaching modelling problems. We exemplify these principles by means of teaching 
methods that were developed in the DISUM and MultiMa projects. These teaching 
methods vary in the degree of guidance given by teachers or learning materials and 
the extent of self-regulation the students experience. The effects of these teaching 
methods were evaluated in prior studies. We report the conditions under which these 
teaching methods worked and which prerequisites students needed for these teaching 
methods to work. Finally, we discuss some challenging points for future research. 

Keywords Instruction ·Modelling · Review · Teaching methods · Theory ·
Teacher guidance 

20.1 Introduction 

The ability to solve real-world problems with mathematics is important for secondary 
school students’ current and future lives (Niss et al., 2007). Because of the importance 
of mathematical modelling and applications, they are essential parts of mathematics 
curricula all over the world (see e.g. US Common Core Standards National Governors 
Association Center for Best Practices & Council of Chief State School Officers, 
2010). For example, primary school students in Germany are to learn to apply their 
mathematical knowledge to solve real-world problems and to identify important 
information from a real-world problem or to construct a realistic story that refers
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to a given mathematical operation or representation (KMK, 2004). In secondary 
school, students deepen their modelling competencies and increase their knowledge 
of models and modelling (KMK, 2004). 

However, despite the inclusion of modelling in primary and secondary school 
curricula, empirical studies have repeatedly demonstrated that students all over 
the world have trouble solving modelling problems (Blum, 2015). More empirical 
research is still necessary to analyse the effects of various teaching methods on 
students’ acquisition of modelling competencies (Schukajlow et al., 2018). The need 
for more research on teaching methods was affirmed in recent overviews of research 
on modelling competencies (Cevikbas et al., 2022), the teaching and learning of math-
ematical modelling (Carreira & Blum, 2021a, 2021b), and modelling from a cognitive 
perspective (Schukajlow et al., in press). Thus, an important goal of research is to find 
out which teaching methods can be used to teach mathematical modelling, how these 
methods affect students’ cognitive, strategic, and affective outcomes, and whether 
these teaching methods are successful for students with different learning prerequi-
sites. In the present contribution, the research questions are: What do we know about 
the effects of teaching methods in mathematical modelling on learning outcomes, 
and how important is a teacher’s guidance for the success of these teaching methods? 
In this contribution, we target these goals and research questions by identifying guid-
ance as a key principle in theories of teaching methods. Further, we illustrate how 
variation in guidance can be implemented in teaching practice and what the effects of 
teaching methods with varied guidance are on learning outcomes. In the final section, 
we discuss future directions for research on teaching methods. 

20.2 Guidance as a Key Principle of Instructional 
and Constructional Approaches to Learning 

20.2.1 Categorisation of Teaching Methods 

Discussions about methods for teaching modelling problems are embedded in 
research in education and particularly in mathematics education. In education, 
researchers have discussed—sometimes very controversially (Kirschner et al., 
2006)—the best ways for students to learn. As numerous variables contribute to 
the design of a lesson, and numerous lessons take place every minute all over the 
world, in one line of research, educational researchers tried to reduce this complexity. 
They grouped single lessons into a specific category, labelled them as a specific 
teaching method, developed a theoretical framework for the key principles of this 
teaching method, and analysed whether and how this method works. Prominent 
examples of teaching methods that have come up in recent decades are observa-
tional learning, discovery learning, problem-based learning, and inquiry learning. 
These teaching methods can be assigned to two broad categories that differ in the 
role of the learner: instruction-oriented versus constructivist-oriented approaches. In
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instruction-oriented approaches, the learner is essentially considered to be a recipient 
of teaching, whereas in constructivist-oriented approaches, the learner is considered 
to be an active co-organiser of the learning process (Schukajlow & Blum, 2014). 

Typical examples of the instruction-oriented approach have emerged from theo-
ries of learning developed by Gagné (1962) or Bandura (1974). Gagné suggested 
three steps for teachers to follow when preparing a lesson: “(1) identifying the compo-
nent tasks of final performance, (2) insuring that each of these component tasks is 
fully achieved, and (3) arranging the total learning situation in a sequence which 
will insure optimal mediational effects from one component to another” (Gagné, 
1962, p. 88). Bandura described another instruction-oriented approach: observational 
learning. In observational learning, students observe how an expert performs actions, 
their perceptions are then transformed into a memory, and they repeat the actions 
(Bandura, 1974). In both of these instruction-oriented approaches, the learner is a 
recipient of knowledge. A view on these approaches from the perspective of teacher-
learner interactions suggests that a teacher should prepare the best possible sequence 
of actions that help to transmit the knowledge to the student. To prepare their lessons, 
teachers should perform a comprehensive analysis of students’ learning prerequisites. 
They should estimate what knowledge students have and how this knowledge can be 
meaningfully extended in future lessons. 

In constructivist-oriented approaches, researchers often deny the possibility that 
knowledge can be transmitted and underscore the unique role of each individual. The 
constructive nature of meaningful learning implies that no two students have exactly 
the same perception of the instructional situation or end up with exactly the same 
understanding of the learning material (Shuell, 1996, p. 744). Learners improve their 
knowledge through repeated interactions with the learning object. The teacher’s goal 
is therefore to organise interactions with the learning object, with the goals of enabling 
and enhancing this improvement. Following this paradigm, researchers refer to the 
re-invention of phenomena by students in discovery learning (Abrahamson & Kapur, 
2018). In problem-based learning, students engage in solving demanding problems 
and thus learn the content, strategies, and self-directed learning skills (Hmelo-Silver 
et al., 2007). Inquiry learning implies that students should acquire knowledge in a 
scientific way (Maaß & Artigue, 2013), posing their own questions and investigating 
these questions in a kind of a research process. Thus, inquiry learning is based on 
principles similar to problem-based learning and cannot be clearly separated from it 
(Hmelo-Silver et al., 2007). 

However, the taxonomy of instruction-oriented versus constructivist-oriented 
approaches also has its limitations. In recent discussions, researchers emphasised that 
teachers ought to prepare their lessons very carefully in both approaches (Bakker, 
2018). A constructivist-oriented approach cannot be applied successfully if teachers 
simply offer students an interesting problem and only observe how they work. 
We argue that the crucial difference between these two approaches is the level of 
guidance that students receive while learning. Moreover, metacognitive reflections 
(Zimmerman, 2002) and scaffolding (Bakker et al., 2015) have been proposed as 
essential principles for learning. In the next sections, we present general principles 
of direct instruction and teaching methods oriented towards students’ self-regulation.
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20.2.2 Direct Instruction 

Researchers who underline the importance of teaching and learning via an 
instruction-oriented approach (“direct instruction”) refer to theories on human cogni-
tive architecture, such as cognitive load theory (Sweller et al., 1998, 2011). The main 
goal of learning is for the learner to store new information in long-term memory, 
and teaching methods should support the process of transferring information from 
working memory to long-term memory. Due to limitations in working memory in 
terms of capacity and the time for which the information can be stored, learners 
need careful instruction while they are learning. Direct instructional guidance can 
help students avoid cognitive overload from irrelevant information if the guidance 
focusses on the most important parts of the learning content. 

As we noted above, different theories claim that direct instruction offers benefits. 
Guided by theories of learning and teaching, researchers have created and tested 
various teaching methods that are based on the principles of direct instruction. The 
key instructional principles of direct instruction are (Bandura, 1974; Schukajlow & 
Blum, 2014; Weinert, 1996):

• The teacher offers strong guidance to help students learn.
• The teacher defines the learning goals and organises the content into small and 

meaningful units.
• The instruction focusses on explaining these units, and the teacher demonstrates 

the new content or develops new content in conversations with some students.
• The teacher presents tasks and poses questions on different levels of complexity.
• The teacher gives students tasks to practice their new knowledge, checks students’ 

progress, and helps them overcome difficulties that occur while gaining new 
knowledge. 

A large body of research has demonstrated positive effects of direct instruction on 
students’ learning (Kirschner et al., 2006). Moreover, a comprehensive meta-analysis 
that included 159 studies and 580 comparisons demonstrated that direct instruction 
had a stronger effect on students’ learning outcomes than unguided discovery learning 
(Alfieri et al., 2011). In this meta-analysis, the “direct instruction” label was given 
to teaching methods that were designed to teach strategies, procedures, or rules by 
using lectures, demonstrations, models, etc., or structured problem-solving materials. 
However, the differences between the two teaching approaches were found to be 
less strong in mathematics (d = −  0.16) than in other domains. Consequently, 
these results indicate that both direct instruction and (unguided) discovery learning 
are promising teaching approaches in STEM and more specifically in mathematics 
classrooms for gaining new knowledge. 

Effects of direct instruction on students’ affective characteristics, such as motiva-
tion, interest, emotions, or identity, have been much less investigated than effects on 
cognitive outcomes. In theories on learning, such as social-cognitive theory (Bandura, 
2003), expectancy-value theory of motivation (Eccles & Wigfield, 2020), or self-
determination theory of motivation (Ryan & Deci, 2000), researchers assume the
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importance of an individual’s perception of their past behaviour for their future 
behaviour. For example, human perceptions of autonomy, competence, and social 
relatedness have been hypothesised to be basic psychological needs that influence 
intrinsic motivation and well-being (Ryan & Deci, 2000). If teachers use strong guid-
ance, which is typical in direct instruction, their behaviour can diminish students’ 
autonomy during learning. Further, direct instruction methods focus on the transfer 
of knowledge from teacher to student or the individual learning of each student and 
ignore the importance of social learning. Such an omission might also have negative 
effects on social relatedness. However, students’ experience of competence during 
learning can be similar or even stronger in direct instruction if the teacher prepares 
the teaching unit well and offers students pieces of information that are within their 
zone of proximal development. 

20.2.3 Teaching Methods Oriented Towards Students’ 
Self-Regulation 

Design principles for teaching methods oriented towards self-regulation rely on 
assumptions from theories of self-regulated learning. One of the main assumptions 
is that students need to acquire life-long learning skills in school (Zimmerman, 
2002). Self-regulation learning skills enable students to use their cognitive abili-
ties to gain new knowledge. Teaching according to discovery, problem-based, or 
inquiry learning principles implies that teachers offer students ways to regulate their 
learning process and encourage students to follow their own individual learning 
paths. Granting students a high level of autonomy may also lead them to fail to 
solve a problem and can induce negative emotions, such as frustration. However, 
recent research has impressively demonstrated that students’ failure can even enhance 
learning, whereas students’ success in solving problems does not always improve 
their knowledge (Kapur, 2016). The development of students’ strategies is an impor-
tant goal of teaching methods oriented towards students’ self-regulation. Models of 
self-regulation emphasise that cognitive, metacognitive, and motivational strategies 
are an essential part of teaching methods oriented towards self-regulation. 

To summarise research on teaching approaches oriented towards self-regulation 
(Hmelo-Silver et al., 2007; Ryan & Deci, 2017; Schukajlow & Blum, 2014; 
Zimmerman, 2002), we have identified the following instructional principles as 
important:

• While students learn, they should be granted the autonomy to use their individual 
solution methods and learning paths.

• Students should be given opportunities to engage in social learning by encouraging 
discussion in pairs and small groups.

• Students should be taught how to use strategies to solve problems.
• Students’ metacognitive activities should be stimulated.
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In recent decades, several studies have examined how teaching students to apply 
strategies affects their performance (Leutner et al., 2007; Perels et al., 2007). One 
important result of the study by Leutner et al. (2007) is the importance of metacogni-
tive activities (e.g. planning, monitoring, and regulation) for the learning of cognitive 
strategies. Having students pose and answer their own meaningful questions that were 
focussed on the nature of the problem, on the relationship between new and prior 
knowledge, and on using appropriate strategies, were found to be effective tools for 
learning mathematics (Kramarski & Mevarech, 2003). Pure discovery learning and 
other methods with very low teacher guidance were found to have similar or even 
smaller effects on gains in students’ knowledge than direct instruction (Alfieri et al., 
2011; Kirschner et al., 2006). However, when these teaching approaches included 
more guidance, they were found to have strong effects on students’ learning. Students’ 
guidance can be realised by using scaffolding, feedback, or worked examples that 
help students gain new knowledge and strategies. 

The theory of self-regulation is more general than theories that rely on the cogni-
tive architecture of the human mind, and it includes motivational and social compo-
nents as essential components. Setting individual goals, monitoring learning progress 
and problem solving, and regulating motivation, emotions, interest, and expecta-
tions are significant parts of the phases and processes involved in self-regulation 
(Zimmerman, 2002). Similar to effects on students’ knowledge, meta-analyses have 
failed to demonstrate positive effects of unguided discovery, but they have found 
strong positive effects of guided discovery on students’ self-ratings of their moti-
vation and other affective measures (d = 1.2) (Alfieri et al., 2011). Using a large 
sample of students from PISA, a recent study that analysed the relationship between 
the frequency of students’ inquiry-based instructional practice and their achieve-
ments in science also revealed only small advantages (d = −  0.10) for students who 
were instructed according this constructivist-oriented approach (Jerrim et al., 2020). 

Summarising educational empirical research that compared direct instruction and 
discovery learning, we argue that both main principles are important for successful 
learning: guidance by the teacher and by well-designed learning materials on the 
one hand, and students’ autonomy in exploring strategies in the framework of self-
regulated activities on the other hand (see Fig. 20.1). In the next section, we present 
results of research carried out in the framework of our research projects DISUM and 
MultiMa in which we investigated methods for teaching modelling problems.

20.3 Methods for Teaching Modelling Problems 

We refer here to our own empirical studies on the teaching and learning of mathe-
matical modelling. General reviews of results on the effects of methods for teaching 
modelling problems can be found, for example, in Kaiser (2017), Niss and Blum 
(2020), and Schukajlow, Kaiser, and Stillman (in press). In our first study on 
teaching methods (in the DISUM project), we aimed to conduct a comparison of a
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Fig. 20.1 Overview of teaching methods that are ordered along the teacher guidance scale

teacher-centred (“directive”) form of instruction and a student-oriented (“operative-
strategic”) form of instruction. The guiding principles of the “directive” instruction 
were (Schukajlow et al., 2012, p. 223):

• Development of common solution patterns by the teacher in the classroom,
• Whole-class teaching, oriented towards a fictitious “average student”,
• Students do their own individual work on exercises. 

The “operative-strategic” teaching method relied on students’ independent work 
in groups according to a specific cooperation script and on whole-class discussions 
about students’ solutions. The main principles of the operative-strategic teaching 
method were derived from research on students’ self-regulated learning and included 
(Schukajlow et al., 2012, p. 223):

• Teaching aimed at supporting students’ active and independent work (realising 
a permanent balance between the teacher’s guidance and the students’ indepen-
dence); teachers ought to use strategic interventions (e.g. “read the task again”, 
“draw a sketch”) before giving, only when necessary, direct content-related hints 
to the students,

• Systematic change between independent work in groups (scaffolded by the 
teacher) and whole-class activities (especially for a comparison of different 
solutions and retrospective reflections),

• Group work consisting of three phases: (1) individual work (reading the text, 
imagining the situation, and getting a first idea about how to solve the problem); 
(2) cooperative work (exchanging ideas with other students in the group); and (3) 
individual work (writing down one’s own solution). 

Analyses of students’ responses, using a pre-post quasi-experimental design, 
demonstrated that students learned significantly more and reported greater enjoy-
ment and interest when they were taught according to the operative-strategic teaching 
method.



334 S. Schukajlow and W. Blum

In the next study, we demonstrated the advantages of scaffolding students’ learning 
by using a “solution plan” (a four-step modelling cycle) for students’ modelling 
activities in the content area of the Pythagorean theorem and for the use of strategies 
(Schukajlow, Kolter et al., 2015). In a follow-up case study, we investigated the 
effects of a “method-integrative” design, a blend of operative-strategic and directive-
based elements including the solution plan and showed that students’ learning gains 
were significantly higher than in the other designs (Blum, 2011). These studies were 
conducted with lower secondary students in units of four to ten lessons of 45 min each. 
Advantages of the “method-integrative” design for students’ modelling competencies 
and attitudes were recently confirmed for university students in a different cultural 
context in an intervention involving five lessons of 45 min each (Durandt et al., 2022). 

We continued our research programme on teaching methods by setting up a follow-
up study (in the MultiMa project) that investigated the effects of prompting students to 
construct multiple solutions on their modelling performance and affect. For effective 
learning with multiple solutions, teachers should (Schukajlow, Krug et al., 2015):

• Pose demanding mathematical problems that require students to construct 
different solutions,

• Encourage students to develop several solutions,
• Let students discuss their individual solution paths with other students,
• Encourage students to compare and contrast different solutions. 

In the first sub-study, students were prompted to make different assumptions 
for the same modelling problem with vague conditions and to develop different 
results (Schukajlow, Krug et al., 2015). In the second sub-study, students were 
asked to apply two different mathematical procedures to solve the same modelling 
problem (Achmetli et al., 2019). An analysis of students’ results revealed positive 
effects of providing multiple solutions on the development of students’ modelling 
competencies (Schukajlow, Krug et al., 2015), interest (Schukajlow & Krug, 2014), 
and self-efficacy (Schukajlow et al., 2019), as students reported feeling competent 
during the teaching unit. Detailed analyses of students’ responses demonstrated that 
constructing multiple solutions was particularly beneficial for students with low 
prior self-efficacy (Schukajlow et al., 2019), indicating the importance of students’ 
prerequisites for the effects of teaching methods. 

20.4 Consequences and Outlook 

Theories of learning and the opportunity to put the major principles of these theo-
ries into practice gave us a solid base from which to develop appropriate methods 
for teaching mathematical modelling. However, these teaching methods need to be 
evaluated further in order to gain robust results on how modelling can be effectively 
taught and learned. More studies are needed to investigate methods for teaching 
modelling and to provide the studies needed to conduct a meta-analysis and draw 
upon the results of such a meta-analysis in the future. Thus, we would like to join
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the prior call for more short-term and long-term intervention studies in the area 
of modelling (Schukajlow et al., 2018). Recently, a larger number of studies have 
examined the effects of different teaching approaches, such as prompting students’ 
strategic knowledge (Rellensmann et al., 2021), teaching metacognitive knowledge 
(Vorhölter, 2021), using a solution plan (Hankeln & Greefrath, 2021), emphasising 
reading comprehension (Krawitz et al., 2022), stimulating researcher-teacher collab-
oration (Geiger et al., 2022), using augmented reality and math trails (Cahyono et al., 
2020; Zender et al., 2020), and designing modelling tasks (Greefrath et al., 2022). 

We could not address all important aspects in this contribution. One aspect is the 
fit between the guidance teachers provide and the aims of mathematical modelling, 
such as when modelling is the mathematical content itself versus when modelling 
is a vehicle for developing mathematical knowledge (Julie & Mudaly, 2007). The 
teaching methods that we addressed in the previous section were aimed at teaching 
modelling as the mathematical content area. Further, the level of guidance might 
depend on the characteristics of modelling problems. In our review, we included 
studies on modelling problems that can be solved in regular classes. The role of 
guidance may be different for more complex problems that students typically solve 
during so-called modelling days or weeks. 

The theoretical framing of teaching methods is an important part of this research. 
Even though an assignment to one clear paradigm of learning seems to be bene-
ficial for understanding the theoretical position of a research group, we suggest a 
more differentiated theoretical embedding of teaching methods. Overcoming the 
dichotomisation of teaching approaches (instructivist vs. constructivist) is, in our 
view, essential for developing high-quality teaching methods. 

When designing teaching methods, we argue that it is particularly important for 
researchers to consider what level of guidance they would like to offer to which 
students, how the guidance will be implemented in the classroom, and what effects 
they expect for each element of guidance. The guidance tools can include worked 
examples, solution plans, peer instruction, discussions with peers, teacher interven-
tions, and many other instructional elements that can also be combined in various 
ways. 

Differentiation between the effects of certain teaching methods for students with 
different learning prerequisites is another important target for future research. Prior 
research indicates that teaching methods may have different effects on students with 
different cognitive and affective prerequisites (Schukajlow et al., 2021). By investi-
gating differential effects and by addressing these and many other factors (e.g. time 
devoted to the intervention, school level, teachers’ collaborations with researchers, 
or inter-cultural differences), we can gain new insights into both theories of learning 
and practical implications for the development of effective teaching methods. 

Another important goal in this area of research is to consider multiple outcomes of 
the evaluation of teaching methods. Modelling competency and intra-mathematical 
performance (Blum & Schukajlow, 2018; Schukajlow, Krug et al., 2015), concep-
tual and procedural knowledge (Achmetli et al., 2019), and procedural flexibility 
or possessing sub-competencies in modelling, such as mathematizing (Hankeln and
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Greefrath 2021) or validating (Czocher, 2018), might be examples of different cogni-
tive outcomes that researchers may address in their studies. Examples of strategic 
outcomes that can be addressed in research on teaching methods are students’ 
knowledge about strategies (Rellensmann et al., 2020), the accuracy of students’ 
strategy use (Rellensmann et al., 2021), and students’ metacognitive knowledge 
about modelling processes (Vorhölter, 2018). In addition, motivational and emotional 
outcomes that have rarely been addressed in research on teaching methods in the 
past can be the focus of future research studies, thus considering their importance 
for well-being, learning, and academic careers. 

We would like to end this contribution by emphasising that not every hands-on 
activity will enhance active learning, and not every instance of direct instruction will 
result in passive learning, as can often be heard in discussions on teaching methods. 
The bottom line is that an appropriate level of guidance in the classroom seems to 
be crucial for enhancing students’ learning and motivation. 
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