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Abstract. Fish species recognition is an integral part of sustainable
marine biodiversity and aquaculture. The rapid emergence of deep learn-
ing methods has shown great potential on classification and recognition
tasks when trained on a large scale dataset. Nevertheless, some practical
challenges remain for automating the task, e.g., the lack of appropriate
methods applied to a complicated fish habitat. In addition, most publicly
accessible fish datasets have small-scale and low resolution, imbalanced
data distributions, or limited labels and annotations, etc. In this work, we
aim to overcome the aforementioned challenges. First, we construct the
OceanFish database with higher image quality and resolution that covers
a large scale and diversity of marine-domain fish species in East China
sea. The current version covers 63, 622 pictures of 136 fine-grained fish
species. Accompanying the dataset, we propose a fish recognition testbed
by incorporating two widely applied deep neural network based object
detection models to exploit the facility of the enlarged dataset, which
achieves a convincing performance in detection precision and speed. The
scale and hierarchy of OceanFish can be further enlarged by enrolling
new fish species and annotations. Interested readers may ask for access
and re-use this benchmark datasets for their own classification tasks upon
inquiries. We hope that the OceanFish database and the fish recognition
testbed can serve as a generalized benchmark that motivates further
development in related research communities.
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1 Introduction

The rapid emergence of computer vision and machine learning technologies is
expected to offer new tools for exploring the ocean. Observation of the popu-
lation and distribution of marine species are among the important tasks which
give valuable insights to address marine biodiversity in terms of the variety, dis-
tinctiveness, and complexity of marine life [1]. Reliable algorithms that assist
and automatize the recognition of marine species are in great demand. Fish
species classification and recognition is a compelling research field with poten-
tial applications that cover a broad range of industries, including but not limited
to fishery.

Traditional methods of identifying fish species are in general using shape and
texture feature extraction [2–4]. However, the main drawbacks of feature based
approach comes from its sensitivity to background noise, lack of generalization
and difficulties of finding discriminating features, especially when the task deals
with recognizing sub-ordinate object classes. In recent years, deep convolutional
neural networks (CNN) have shown impressive results and large potential for
identifying fish species. A deep-learning architecture that is composed of two
principal component analysis (PCA) based convolutional layers, spatial pyramid
pooling, and a linear SVM classifier was proposed in [5] to recognize fish from
ocean surveillance videos, and it achieved 98.64% accuracy. In [6], AlexNet [7]
was trained via transfer learning for automatic fish species classification from
underwater video source, achieving an accuracy of 99.45%. Deep learning meth-
ods have been applied to fish recognition competition on the Kaggle challenge
named “The Nature Conservancy Fisheries Monitoring” [8], whereas the deployed
fish benchmarks are, however, small-scale and of poor image quality. There are
some practical challenges remaining for identifying fish species. First, fish recog-
nition is hindered by the poor image quality, uncontrolled objects and uncon-
strained natural habitat especially in wild circumstances. Second, the number of
fish species in marine ecology is very large, and the distribution of fish species
is highly characterized by regions or territories. Third, in real-world applica-
tions, data assessment, e.g. labeling and annotation, is expensive as it involves
time-consuming and labour-intensive process.

The success of deep learning in classification and recognition tasks lies in the
enormous explosion of data, as proven by the significant achievements leveraged
by large-scale open datasets, such as ImageNet [9], COCO [10], and VOC [11]
before being fine-tuned to new applications. However, most large-scale visual
databases are not dedicated to fish species. For example, ImageNet provides a
hierarchical framework that contains over 14 million hand-annotated images and
20 thousand ambiguous categories. However, it contains little fishery data, and
the hierarchical architecture and label annotations do not align with our study.
Similar limitation was addressed by Microsoft COCO, which shows the limita-
tions of dataset in terms of volume and category. Other widely used datasets,
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e.g. TinyImage [12], ESPdataset [13] either only provide low-quality fish subsets,
or most of the dataset is not publicly accessible.

To the best of our knowledge, the scale, accuracy and diversity of most open
fish image datasets is insufficient. One popular fish database is Fish4Knowledge
[14], where the fish data is acquired from a live video dataset resulting in 27, 370
verified fish images covering 23 representative species. The dataset has been
used by the 2015 Sea Clef contest [15] for fish species classification [24]. How-
ever, the video quality (640 × 480 pixels) and the number of species (mainly
coral reef fishes in Southern China Sea) remain quite limited. QUT fish dataset,
mostly collected in a constrained and plain environment [16], consists of only
3, 960 labelled images of 468 species. DeepFish dataset, proposed in [17], con-
tains approximately 40, 000 underwater images from 20 habitats in the marine-
environments of tropical Australia. However, the main purpose of the dataset
is to assess fish-habitat associations in challenging, even inaccessible environ-
ments, thus with limited generalization. Another open fishery images database
lately proposed by [18] contains 86, 029 images of 34 object classes, making it
the largest and most diverse public dataset of fisheries EM imagery to-date,
as claimed by the author. However, the resolution restriction of EM images can
inhibit further comprehensive progress. Therefore, there is a need of constructing
a reliable fish dataset of large scale, accuracy and diversity of species.

In this work, we introduce a novel domain-specific dataset, named Ocean-
Fish, with 63, 622 high resolution (1088× 816 pixels) PASCAL VOC formatted
images [11] covering 136 categories mainly inhabiting in East China Sea. Inter-
ested readers may ask for access and re-use this benchmark datasets for their
own classification tasks upon inquiries. We hope that the scale, accuracy and
diversity of the fish dataset can offer unparalleled opportunities to researchers
in a variety of research communities and beyond. Accompanying the dataset, we
also implement a fine-tuned fish recognition model by incorporating two of the
most widely used object recognition models, Faster R-CNN [21] and Single Shot
MultiBox Detector (SSD) [23], and investigate their performance on OceanFish.
As a result, we obtain a comprehensive testbed, which can be further tailored
to include new algorithms for specialized problem setups.

In summary, the main contribution of this work lie in two folds: a large
scale, high quality dataset OceanFish, and a deep learning based framework to
recognize fish species. Specifically, the contribution of OceanFish is highlighted
in the following aspects: the dataset is domain specific, large scale, the image
quality is enhanced, and the application aspects clarified.

The remainder of the paper is structured as follows: We present OceanFish in
Sect. 2, where data augmentation mechanisms are elaborated as well. In Sect. 3,
we present our generalized fish recognition framework, and explain the experi-
mental results. Finally, we conclude in Sect. 4.
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2 OceanFish

2.1 Constructing the Dataset

One ambition of this work is to construct a high quality benchmark dataset
that covers a large scale and diversity of marine-domain fish species, and its
scale and hierarchy can be further enlarged by enrolling new fish species and
annotations. We believe that the dataset will facilitate developing advanced,
large-scale deep learning algorithms. We build our own customerized dataset
OceanFish by shooting video clips for collected fish samples from different angels
to create variation, with implementation details described as below:

1. Specify the photographing conditions and device for image acquisition. A light
background which is contrast to the fish color is required to ensure that fish’s
outline is clearly visible. We use D65 light source with a color temperature of
6500K.

2. Collect fish characteristics by shooting from various angles. The video clip is
taken from carefully chosen angles i.e., 30 or 45◦C, with the camera rotating
for about 60 s. Subsequent acquisition of images are extracted from the video
frames.

3. Categorize and annotate images according to the chosen naming convention.
4. Split the dataset into training, test, and validation parts. 60% of the entire

dataset is for training, 20% for testing, and 20% for validation.

Fig. 1. (a)Locations and territory where OceanFish categories are acquired (b)16 rep-
resentative fish categories in OceanFish

Images for OceanFish dataset were collected for 136 fish species, mainly
inhabiting in the East China Sea, and the total volume is 63, 622 pictures of
1088 × 816 pixels in PASCAL format. The locations from where the fish were
acquired and 16 different fish species as examples are shown in Fig. 1, and the
distribution of OceanFish images among categories is shown in Fig. 2.

A comparison between different fish datasets is shown in Table 1. Note that
as well as Fish4Knowledge and Rockfish, the images of OceanFish are taken in
a controlled environment which eliminate background noise, allowing a reliable
and comprehensive analysis. Overall, the OceanFish dataset achieves an overall
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upgrade in comparison to the previous fish datasets in terms of scale, accuracy,
and diversity of species.

PASCAL VOC2007 was applied to create the dataset, and LabelImg soft-
ware was used to manually label and annotate images, and to create XML files
automatically. XML files contain recorded information about the fish sample
locations and classes.

Fig. 2. OceanFish image distribution among different categories

2.2 Data Augmentation

Data augmentation, used to increase the number of training samples by applying
a set of transformation to the images, has proven to improve the performance of
the neural network models, especially when learning from small scale datasets. It
can also be beneficial in yielding faster convergence, decreasing the risk of over-
fitting, and enhancing generalization [26]. In this work, most images are shot in
the same setup environment. The similarity of image layout, background noise,
spatial properties, texture, or overall shapes can lead to a classification model
with a compromised generalization capability. To reduce the risk of overfitting,
we applied label-preserving transformations to artificially enlarge the dataset.
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Table 1. Comparison between fish dataset statistics

Dataset No. of Images Tasks Resolution Environment Type Has background

OceanFish (ours) 63,622 Detection 1088× 816 Controlled No
QUT 3,960 Classification 480× 360 Controlled No
Fish4Knowledge 1.6B Detection 352× 240 On site No
RockFish 4,307 Detection 1280× 720 On site Yes

In this work, we employed three data augmentation methods: color jitter,
random cropping, and affine transformation. Color jitter randomly changes the
brightness, contrast, and saturation of an image instead of the RGB channels.
We adopt the color jitter mechanism employed by Facebook AI Research for
the reimplementation of ResNet-101 [27]. Random cropping prevents a CNN
from overfitting to specific features by changing the apparent features in an
image. In this work, we applied Scale Jittering that is used by VGG and ResNet-
101 networks [29]. Affine transformations generate duplicate images that are
shifted, zoomed in/out, rotated, flipped, and distorted can be generated for
image augmentation. We have applied a set of affine transformations for image
augmentation, and both the original images and the duplicates were used as
input to the neural networks.

Most existing learning algorithms produce inductive learning bias towards
the frequent (majority) classes if training data are not balanced, resulting in
poor minority class recognition performance. Data augmentation also aims at
alleviating this problem and improving data generalizability. In this work, we
chose a data equalization mechanism inspired by the implementation of AlexNet
[7]. The procedure is described as follows:

1. Get a list of the original images, sorted by label.
2. Calculate the number of samples in each category and save the largest number

as M .
3. Generated a new list of size M for each category, and fill in the new list by

looping the original content repeatedly, until the number of samples in the
new list reaches M .

4. Random shuffle the new list with M samples.
5. To avoid overfitting, the aforementioned color jitter, scale jittering, and affine

transformations are applied for image augmentation.

3 Methods and Experiments

3.1 CNN Based Object Detection

Since the 2010 s, there has been a trend towards utilizing and continu-
ously improving CNNs in object detection tasks. CNN based object detection
algorithms can be divided into two major categories: region proposal based
approaches such as R-CNN [19], Fast R-CNN [20], and Faster R-CNN [21], which
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yield high detection accuracy in terms of mean Average Precision (mAP) in dif-
ferent object detection scenarios; and regression based end-to-end approaches
such as You Only Look Once (YOLO) [22] and Single Shot MultiBox Detec-
tor (SSD) [23], which predict bounding box coordinates and class probabilities
straight from image pixels, thus achieving fast detection at the cost of decreased
accuracy. Faster R-CNN and SSD are applied in this work, and their concepts are
depicted in Fig. 3. Note that we have focused on the original meta-architecture
for clarity and simplicity, although many improvements have been introduced to
the original architectures since their release.

Fig. 3. Two representative CNN based object detection framework (a) Faster R-CNN
(b) Single Shot MultiBox Detector (SSD)

3.2 Experiments and Performance Evaluation

In this section, we carry out a series of experiments to evaluate the performance
of Faster R-CNN and SSD on OceanFish. Both models contain a deep learning
backbone network as feature extraction module. We perform fish recognition
on OceanFish by fine-tuning the pre-trained model. TensorFlow is used for all
the experiments. Models are trained on NVIDIA GeForce GTX 1080Ti 11G
GPUs with a total batch size of four. Dataset is divided into training, validation,
and test sets in a proportion 3 : 1 : 1. The learning rate is initialized to 5 ·
10−4. Figure 4 shows a successful detection of Decapterus maruadsi, with both
classification and localization information.

First, we choose ResNet-101, ResNet-50 [27], and VGG-16 [29] as backbone
feature extractors for Faster R-CNN and evaluate their performance on a subset
of OceanFish with 20 fish species and 400 images in each category. The exper-
imental results show that ResNet-101 achieves the highest accuracy with the
mAP of 0.994, compared to ResNet-50 with the mAP of 0.988, and VGG-16
with the mAP of 0.986. Therefore, we select ResNet-101 backbone as the feature
extractor for Faster R-CNN and it applies to the following experiments.

In Fig. 5(a), we depict the total loss in respect with training iterations for
Faster R-CNN. The total loss is gradually decreasing and converging as the
number of iterations increases. The Ap value distribution of a subset of fish
species is shown in Fig. 5(b), where the average mAP for the complete dataset
is approximately 0.9712.
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Fig. 4. A successful detection of fish specie Decapterus maruadsi

Fig. 5. Faster R-CNN: (a) Total loss v.s. Number of training iterations, (b) Ap value
distribution of a subset of fish species

The results in Table 2 show that Faster R-CNN has relatively low miss rate for
all categories, which means that the framework in general detects and localizes
the target properly. We apply both false positive rate (FPR) and true positive
rate (TPR) in the confusion matrix to evaluate the classification performance.
Relatively large false positive error rate is observed for several fish species, indi-
cating that the proportion of misclassified items in the whole set cannot be
ignored. For example, among the 669 images of Thryssa kammalensis in Ocean-
Fish, 38 images are falsely detected as Thryssa dussumieri, five images as Setip-
inna tenuifilis, and two images as Pampus argenteus.

In the second part of the experiments, we apply VGG-16 as SSD backbone
network. Figure 6(a) shows that the total loss is gradually decreasing and con-
verging as the number of iterations increases. After 70,000 iterations, the SSD
model yields the recognition accuracy with mAP of 0.8156 over the complete
OceanFish dataset, which indicates a slight performance degradation in compar-
ison with Faster R-CNN. Moreover, the Ap value of fish species demonstrates
more variance among categories, as shown in Fig. 6(b).

As shown in Table 3, SSD and Faster R-CNN achieve satisfactory localization
accuracy, since both detection algorithms have utilized bounding box regression
for fine-tuning of object locations. It has also been observed that SSD and Faster
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Table 2. Fish species with top 10 highest error rate classified by Faster R-CNN

Category Name No. of Images Miss Rate False Positive

19 Johnius carouna 313 0 16.6%
3 Thryssa kammalensis 669 0.89% 7.3%

120 Johnius trewavasae 269 0.37% 15.2%
10 Pennahia argentatus 460 1.3% 8.9%
9 Larimichthys crocea 549 1.4% 4.9%

61 Saurida tumbil 116 0% 18.1%
20 Collichthys lucidus 181 0.55% 7.7%
16 Saurida elongata 223 0.9% 4.9%
24 Cynoglossus abbreviatus 238 1.3% 4.6%
22 Cynoglossus sibogae 148 1.4% 7.4%

Table 3. Fish species with top 10 highest error rate classified by SSD

Category Name Total Images Miss Rate False Positive

19 Thryssa kammalensis 669 0.9% 33%
3 Trachinocephalus myops 389 0.77% 49.9%

120 Pennahia argentatus 460 1.3% 39.6%
10 Odontamblyopus lacepedii 433 0.46% 31.2%
9 Saurida elongata 223 2.2% 130%

61 Johnius carouna 313 0% 58.2%
20 Lagocephalus wheeleri 406 0.49% 28.8%
16 Chelidonichthys kumu 297 % 37.4%
24 Upeneus bensasi 431 0.46% 23.2%
22 Decapterus maruadsi 257 0% 36.6%

Fig. 6. SSD: (a) Total loss v.s. Number of training iterations (b)Ap value distribution
among selected fish species
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R-CNN present the accuracy/speed tradeoff due to the essential architecture dif-
ference. Although SSD shows faster speed in comparison with Faster R-CNN, it
introduces a certain performance degradation. For example, among the total 669
images of Thryssa kammalensis in OceanFish, 221 images were falsely detected
as other fish species, yielding false positive error rate exceeding 30%.

Table 4 shows the performance of our testbed in terms of mAP value. Note
that Faster R-CNN and SSD has achieved mAP of 97.12% and 81.56% respec-
tively when applied to OceanFish dataset. It can be seen that the overall
detection performance improves significantly, noting that previous models, i.e.,
AlexNet and CIFAR-10 [28] only accomplish mAP of 60.90% and 71.10% for
classifying the fish subset of ImageNet. The result shows that our proposed
testbed together with fine-grained dataset yield satisfactory results, matching
our observed trends that large-scale fine-grained datasets play a vital role in
deep learning tasks.

Table 4. Performance of our testbed in terms of mAP value based on OceanFish

Model Dataset Pre-processing Backbone network Precision rate

Faster R-CNN (ours) 63622 images
136 categories

Data augmentation ResNet-101 97.12%

SSD (ours) 63622 images
136 categories

Data augmentation VGG-16 81.56%

4 Conclusion

In this work, we introduced a novel domain-specific dataset named OceanFish
and tailored to marine domain fish classification and recognition tasks. The
dataset consists of 63, 622 high resolution images covering 136 clusters, and it
is therefore much larger than the earlier publicly accessible fish datasets. The
dataset can be further enlarged by enrolling new fish species and annotations.
We hope that the OceanFish database can serve as a benchmark that motivates
further development in related research communities.

We implemented a deep learning based fish recognition testbed by incorporat-
ing Faster R-CNN and SSD, and investigated their performance on OceanFish
dataset comprehensively. We demonstrated through extensive experiments that
the model achieves satisfactory classification accuracy and speed. It can be fur-
ther tailored and used to create specialized algorithms in different problem setups,
and thus it has provided us with potential of applying the generalized approach
together with domain specific large scale dataset to smart farming and aquacul-
ture production in terms of productivity, food security, and sustainability.

Experimental results show that our model may introduce false detections
in some fish categories, and the Ap values demonstrate certain variance among
categories. The reason behind might lie in the model architecture and inad-
equate examples of some categories. To improve the performance further, we
may improve model architecture, or refine training procedure, including changes
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in loss functions, data preprocessing, and optimization methods etc., in our
future work. Last while not least, we encourage researchers to enlarge OceanFish
dataset, in both scale and hierarchy, to provide upgraded capability.
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