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Abstract. Multispectral pedestrian detection is an important and chal-
lenging task, that can provide complementary information of visible
images and thermal images for high-precision and robust object detec-
tion results. To fully exploit the different modalities, we propose a Mul-
tiscale Cross-Modality Attention (MCA) module to efficiently extract
and fuse features. In this module, the transformer architecture is used
to extract features of two modalities. Based on these features, we design
a novel spatial attention mechanism that can adaptively enhance object
details and suppress background. Finally, the features of each branch
are fused using the channel attention mechanism and sent to the detec-
tor. To verify the effect of the MCA module, we propose the MCANet.
The MCA modules are embedded at different depths of the two-stream
network and interconnected to share multiscale information. Extensive
experimental results demonstrate that MCANet achieves state-of-the-art
detection accuracy on the challenging KAIST multispectral pedestrian
dataset.

Keywords: Multispectral detection · Cross-modality feature fusion ·
Attention mechanism

1 Introduction

In recent years, with the rapid development of computer technology, major
breakthroughs have been made in many fields of computer vision. As one of
the important object detection tasks, pedestrian detection has a wide spectrum
of application prospects, including autonomous driving, surveillance, and search
and rescue [1,2]. In real-world applications, the environment is often complex and
changeable, such as rain, fog, and low light. In these cases, pedestrian detectors
that only focus on visible images have difficulty achieving sufficient accuracy.
Thermal images can overcome these difficulties because they can be imaged
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clearly without relying on illumination conditions. However, thermal images lose
the color and texture information, cannot be imaged through transparent objects
such as glass, and do not work well when the ambient temperature is close to the
target temperature. Visible and thermal images have their own advantages and
disadvantages in different scenarios. Therefore, researchers have raised interest
in multispectral pedestrian detection technology.

Fig. 1. It can be observed that the illumination conditions are poor and thermal images
are more suitable for pedestrian detection than visible images. However, as shown in
the red box, the reflection of thermal radiation on the marble surface creates a ghostly
image of pedestrians. Adjusting the detector’s propensity for visible or thermal images
only based on illumination conditions can easily lead to false detection results. (Color
figure online)

From the difference in imaging principles, it is natural to realize that differ-
ent illumination conditions have a great impact on the imaging quality of visible
images. Therefore, some works [3,4] design an illumination-aware network to
evaluate the illumination conditions of an entire image and generate weights to
fuse the features extracted from different modalities. However, there are difficul-
ties in some scenarios, mainly for two reasons. First, the light source in the real
world is complex. In addition to sunlight, there are street lights, car lighting and
various reflections. In different spatial locations of an image, the illumination
conditions are often inconsistent, so the contribution of visible images and ther-
mal images to features cannot be simply represented by a single value. Second,
illumination conditions are not the only standard to judge whether visible or
thermal features are more conducive to pedestrian detection. For example, the
specular reflection of visible light by glass, and the reflection of thermal radiation
by the smooth marble surface will cause interference with pedestrian detection.
A specific example is shown in Fig. 1.

Based on the above considerations, we propose a novel Multiscale Cross-
Modality Attention (MCA) module to efficiently extract and fuse features. We
embed the module into the two-stream backbone, and introduce MCANet for
multispectral pedestrian detection. The main contributions of our work are as
follows:
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– We introduce an end-to-end Multiscale Cross-Modality Attention Network
(MCANet) for multispectral pedestrian detection and validate the effective-
ness of fusion for learning cross-modality features.

– We propose the Multiscale Cross-Modality Attention (MCA) module. We
develop a novel attention fusion mechanism and combine it with transformer
to enhance the saliency of objects and suppress the background. A new loss
item is introduced to the loss function for training the attention weights.

– MCANet conducts extensive experiments on the KAIST dataset, obtaining
state-of-the-art performance.

2 Related Work

2.1 Multispectral Pedestrian Detection

In order to fuse visible and thermal images and greatly improve the accuracy and
robustness of pedestrian detection algorithms in different scenarios, researchers
have made many efforts. Some challenging multispectral pedestrian detection
datasets have been proposed, such as KAIST [5], LLVIP [6], etc., which have
become important references to verify the performance of the algorithm. With
the development of deep learning, convolutional neural networks have gradually
been used in multispectral pedestrian detection tasks. Liu et al. [7] design four
ConvNet fusion architectures, which fuse channel features at different ConvNet
stages and prove that the halfway fusion model can achieve better performance.
CIAN [8] proposes the cross-modality interactive attention to explicitly model
the importance of feature channels and introduces the context enhancement
blocks (CEBs) to further augment contextual information. Illumination-aware
Faster R-CNN [3] introduces an illumination-aware weighting mechanism to
adaptively weight the detection confidence of two modalities according to the
illumination measure and adaptively merge the two sub-networks to obtain final
detections. MBNet [4] designs an illumination-aware feature alignment module
to align two modality features and induce the network to be optimized adaptively
according to illumination conditions. Fang et al. [9] propose a transfomer-based
fusion approach, named Cross-Modality Fusion Transformer (CFT), to enhance
the representation capability of two-stream CNNs. Li et al. [10] propose the
dense fusion strategy to fuse information at the feature level and use Demp-
ster’s combination rule to fuse the results of different branches according to the
uncertainty.

2.2 Attention Mechanism

Multispectral fusion can be further divided into two questions: 1. How can com-
plementary features be extracted between different modalities? 2. How can the
extracted features be fused into the previous branch efficiently? For the first
question, the previous works [7] directly use the feature maps of their respective
branches for addition or concatenation operations. [4,8] adopt global pooling
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and linear layers to squeeze the spatial dimension, and then channel-wise atten-
tion based weighting is applied to the cross-modality features. [11] use convo-
lutional layers to extract features, and apply the spatial-wise attention mecha-
nism by element-wise multiplication. Considering that it is difficult to determine
whether the pixel value of the pedestrian is larger or smaller than the back-
ground, we believe that the direct use of element-wise multiplication may not
be the best fusion method. In this paper, combined with the confidence infor-
mation of pedestrians, a novel spatial attention mechanism using supervised
learning is proposed, which enhances the saliency of objects and suppresses the
background. This method can make full use of the complementary features of
different modalities.

Fig. 2. Overview of Multiscale Cross-Modality Attention Network’s backbone. Stage l
represents the convolution module of each branch. F l

rgb and F l
ir are the feature maps of

RGB and Thermal modalities. attlrgb and attlir are the extracted weights after CFEM.
F

′l
rgb and F

′l
ir are the fused feature maps after SAFM and Pl are the fused feature maps

after CAFM. Pl will be sent to YOLOv5 detectors for prediction.

3 Proposed Method

The MCANet extends the framework of YOLOv5 [12], to enable multispectral
object detection. An illustration of Multiscale Cross-Modality Attention Back-
bone is shown in Fig. 2. The MCA module consists of three basic components:
Cross-Modality Feature Extraction Module(CFEM), Spatial Attention Fusion
Module (SAFM) and Channel Attention Fusion Module (CAFM), as shown in
detail in Fig. 3. They are embedded at different depths of the network and share
information at different scales through interconnections.
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Fig. 3. The architecture of the proposed MCA module: (a) Cross-Modality Feature
Extraction Module. (b) Spatial Attention Fusion Module. (c) Channel Attention Fusion
Module.

3.1 Cross-Modality Feature Extraction Module

In CFEM, we want to obtain complementary features between different modal-
ities to provide spatial weights for later attention mechanisms. Unlike convolu-
tion, which only has a local receptive field, the transformer can take into account
global spatial information. Inspired by [8], we use Transformer for cross-modality
feature extraction. The details are shown in Fig. 3(a).

In order to reduce the parameters and computation, taking the lth layer as
an example, the RGB feature map F l

rgb and thermal feature map F l
ir are first

downsampled to f l
rgb ∈ RC×H×W and f l

ir ∈ RC×H×W by max pooling and aver-
age pooling. If the previous CFEM exists, a convolution and a pooling operation
will be performed on the previous outputs attl−1

rgb and attl−1
ir . Then the results

will be added to f l
rgb and f l

ir respectively. The sequence of embedded patches
xl
p−rgb ∈ RHW×C and xl

p−ir ∈ RHW×C is achieved by flattening the spatial
dimensions of the feature map and projecting to the transformer dimension. We
concatenate the patch embeddings of each modality and position embeddings
are added to the patch embeddings to retain positional information. The fusion
patch embeddings xl

p are obtained and passed to the Transformer Encoder which
consists of alternating layers of multiheaded self-attention (MSA) (1) and MLP
(2) blocks:

Z ′
l = xl

p + MSA(LayerNorm(xl
p)) (1)

Zl = Z ′
l + MLP (LayerNorm(Z ′

l)) (2)
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Layernorm (LN) is applied before every block, and residual connections are
applied after every block. The MLP contains two layers with a GELU non-
linearity. Finally, exploiting the inverse operation of the first step, the output
sentences Zl are converted into the results attlrgb and attlir.

Fig. 4. (a) The grayscale image example. (b) The mean of image (a) is shifted to 127.
(c) The partitioned grids and bboxes. (d) The fused image after SAFM and the mean
of it is also shifted to 127.

Specifically, we want attlrgb and attlir to give the approximate position where
the object is located in the feature map. For the sake of illustration and visual-
ization, we take Fig. 4 as an example. We convert the image from RGB to gray
as the extracted feature map F l

rgb in Fig. 4(a). Suppose we resize it to f l
rgb with

shape h × w and obtain output attlrgb. Then each element of attlrgb corresponds
to the region with shape H/h × W/w in feature map F l

rgb, i.e. the green grid in
Fig. 4(c). The red box represents the bounding box of the object. The value of
the green grids that intersect with the bounding box is set to 1, and the rest are
set to 0. We take it as the ground truth, denoted as gt_attl. During training,
we apply a piecewise activation function σ′(x) on attlrgb to restrict its range to
(0,1). The σ′(x) is formulated as:

σ′(x) =

⎧
⎪⎨

⎪⎩

1 σ(x) > 0.7
σ(x) 0.3 < σ(x) < 0.7
0 σ(x) < 0.3

(3)

where σ(x) denotes the Sigmoid function. When σ(x) is greater than 0.7 or less
than 0.3, the value is directly set to 1 or 0, respectively. In this way, during
backward propagation, while having the ability to roughly describe the object
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location, attlrgb can concentrate on receiving the gradients propagated by the
backbone network and learn more representations.

Then we compute a Binary Cross Entropy Loss with gt_attl. The same
operation is performed for attlir and the final loss is the average of them.

BCELoss(x, y)= − 1
whc

w∑

i=1

h∑

j=1

c∑

k=1

−[yi,j · log xi,j,k + (1− yi,j) · log(1− xi,j,k)]

(4)

Latt =
∑

l=1,2,3

1
2
[BECLoss(σ′(attlrgb), gt_attl) + BECLoss(σ′(attlir), gt_attl)]

(5)
The total loss function uses 4 components: box, class, objectness and attention
as follows:

L = λobjLobj + λboxLbox + λclsLcls + λattLatt (6)

The first three items are the same as in YOLOv5. Four parameters are used to
balance different losses. In the task of multispectral pedestrian detection, the
classification loss is equal to 0. In our experiment, λobj , λbox, and λatt are set to
0.05, 1, and 0.015, respectively.

3.2 Spatial Attention Fusion Module

In the spatial attention fusion module (SAFM), we do not use the traditional
spatial attention mechanism in which the feature maps are multiplied directly
with the weights. We note that pedestrians in visible images may have lower pixel
values than the background due to wearing dark clothes, or higher pixel values
than the background at night due to insufficient illumination conditions. In the
thermal image, the pixel values of pedestrians are generally higher than that of
the background. However, it is also possible that the pixel values of pedestrians
are lower due to wearing thick clothes, or the ground and vehicle shell being
exposed to high temperature for a long time, especially in summer. The pixel
values of different parts of pedestrians may also vary greatly. Therefore, it is not
always possible to extract better features if the spatial weights are multiplied
with feature maps directly. We think it may be better to zoom in on the difference
between the object and the background.

Therefore we design the SAFM as shown in Fig. 3(b). Similar to Sect. 3.1, we
divide the input feature F l

rgb into w×h green grids, as shown in Fig. 4(c). Within
each grid, we average all pixel values and reassign all pixels with the mean. The
offsets are obtained by subtracting the mean from the original feature maps as
follows:

Offsetlrgb = F l
rgb − Mean(F l

rgb) (7)
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Table 1. Comparisons with the state-of-the-art methods on the KAIST dataset

Methods Reasonable All
Rea. Rea.Day Rea.Night All Day Night

ACF [5] 47.32 42.57 56.17 67.74 64.31 75.06
Halfway Fusion [7] 25.75 24.88 26.59 49.18 47.58 52.35
FusionRPN+BF [13] 18.29 19.57 16.27 51.70 52.33 51.09
IAF R-CNN [3] 15.73 14.55 18.26 44.23 42.46 47.70
IATDNN+IASS [14] 14.95 14.67 15.72 48.96 49.02 49.37
CIAN [8] 14.12 14.77 11.13 35.53 36.02 32.38
MSDS-RCNN [15] 11.34 10.53 12.94 34.15 32.06 38.83
AR-CNN [16] 9.34 9.94 8.38 34.95 34.36 36.12
MBNet [4] 8.13 8.28 7.86 31.87 32.37 30.95
CMPD [10] 8.16 8.77 7.31 28.98 28.3 30.56

MCANet 8.24 8.97 7.00 26.07 27.07 24.3

In Sect. 3.1, we already have the information about the possible locations of
the objects. Then we resize it to W ×H by nearest-neighbor sampling and apply
a Sigmoid activation to it, denoting the result as Attlrgb.

Attlrgb = σ(UpSampling(attlrgb)) (8)

The offset is scaled by multiplying by Attlrgb and coefficient α, and then added
to the mean of the input feature to obtain the final output F

′l
rgb.

F
′l
rgb = α · Attlrgb · Offsetlrgb + Mean(F l

rgb) (9)

Take Fig. 4(b) and Fig. 4(d) as an intuitive comparison of the fusion effect.
Figure 4(b) is the grayscale image and Fig. 4(d) is the ideal fusion result F

′l
rgb. Due

to the poor illumination conditions, we move the mean values of both Fig. 4(b)
and Fig. 4(d) to 127 for easier comparison. Ideally, the value of pixels which
represent the background in gtlatt is 0. As a result, the background values after
fusion are all equal to the mean of each grid. In contrast, the variance of pixel
values becomes larger for regions containing objects. The pedestrians in Fig. 4(d)
are more salient than those in Fig. 4(b), and the background regions are greatly
suppressed. The two pedestrians on the left are much brighter than the back-
ground, and the clothes of the pedestrian in the middle of the picture are much
darker and easier to distinguish. It should be noted that since the pixel values
of Fig. 4(d) may be out of range (0–255) after being scaled up, in order to dis-
play normally, the excess parts have to be truncated, resulting in some details
in Fig. 4(d) becoming blurred. In fact, there is no truncation operation during
the training and inference, so all texture details are preserved without concerns
about the loss of information.
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3.3 Channel Attention Fusion Module

In the Channel Attention Fusion Module (CAFM), we make a small modification
to the traditional channel attention mechanism for multi-modality fusion, as
shown in Fig. 3(c). We apply the Global Average Pooling (GAP) to attlrgb and
attlir and concatenate them. After that, they are sent to the MLP block and a
Sigmoid function to generate the weights of channels as follows:

ch_attl = σ(MLP (Concat(GAP (attlrgb), GAP (attlir)))) (10)

The ch_attl is separated into two parts ch_attlrgb and ch_attlir. The fusion
result Pl for later prediction can be formulated as:

Pl = ch_attlrgb · F
′l
rgb + ch_attlir · F

′l
ir (11)

Table 2. Evaluations on the KAIST dataset under six subsets.

Methods Near Medium Far None Partial Heavy All

ACF [5] 28.74 53.67 88.2 62.94 81.40 88.08 67.74
Halfway Fusion [7] 8.13 30.34 75.70 43.13 65.21 74.36 49.18
FusionRPN+BF [13] 0.04 30.87 88.86 47.45 56.10 72.20 51.70
IAF R-CNN [3] 0.96 25.54 77.84 40.17 48.40 69.76 44.23
IATDNN+IASS [14] 0.04 28.55 83.42 45.43 46.25 64.57 48.96
CIAN [8] 3.71 19.04 55.82 30.31 41.57 62.48 35.53
MSDS-RCNN [15] 1.29 16.19 63.73 29.86 38.71 63.37 34.15
AR-CNN [16] 0.00 16.08 69.00 31.40 38.63 55.73 34.95
ASPFFNet [11] 0.01 16.27 45.42 25.60 34.90 57.53 –
MBNet [4] 0.00 16.07 55.99 27.74 35.43 59.14 31.87
CMPD [10] 0.00 12.99 51.22 24.04 33.88 59.37 28.98

MCANet 0.00 12.22 42.40 21.37 29.78 56.52 26.07

4 Experiments

4.1 Dataset and Metric

The KAIST multispectral pedestrian detection dataset [5] contains 95,328 pairs
of aligned visible and thermal images. It contains a variety of scenes acquired
during the day and night to cover changes in diverse lighting conditions. The
test set consists of 2, 252 frames sampled every 20th frame from video, among
which 1,455 images are captured during daytime and the remaining 797 images
are captured during nighttime. Due to the problematic annotations in the orig-
inal training data, we adopt the annotations improved by Zhang et al. [16] for
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training. All the detection performances are evaluated on the KAIST test set
with annotations improved by Liu et al. [7]. The evaluation metric follows the
standard KAIST evaluation [5]: log-average Miss Rate over False Positive Per
Image (FPPI) range of [10−2, 100] (denoted as MR−2). A lower score indicates
better performance.

4.2 Implementation Details

Throughout this paper, we extend the framework of YOLOv5l, to enable mul-
tispectral object detection. The anchors are set to [10,13, 16,30, 33,23], [30,61,
62,45, 59,119], and [116,90, 156,198, 373,326] on three detectors with different
scales. We use the Stochastic Gradient Descent (SGD) optimizer with an initial
learning rate of 1e-2, a momentum of 0.937, and a weight decay of 0.0005. To
avoid optimization instabilities, we use the first three epochs for warmup. The
warmup initial momentum is set to 0.8 and the warmup initial bias learning rate
is set to 0.1. For data augmentation, we use the mosaic method which mixes
four training images into one image. The MCANet is developed on an Ubuntu
18.04 platform with PyTorch 1.12.0 and two NVIDIA 3090 GPUs. The network
is trained for 20 epochs and the batch size is 32.

Fig. 5. Comparisons of detection results on KAIST.

4.3 Quantitative Evaluation

As shown in Table 1, we present the experimental results in terms of MR−2

under reasonable and all-dataset settings, respectively, as in existing works. In
reasonable setting, only pedestrians taller than 55 pixels under no or partial
occlusions are considered in the evaluation. Instead, all the labels, including
small pedestrians and heavy occlusions, are used for evaluation in all-dataset
setting. Therefore, it is obvious that all-dataset setting is more challenging than
the reasonable setting. In the all-dataset setting, Table 1 shows that our proposed
method achieves approximately 2.91% lower on MR−2 which implies that the
MCANet has a substantially better localization accuracy compared with CMPD.
The results show that our model can better extract and fuse complementary
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features of multiple modalities to improve the detection accuracy. The FPPI-
MR curve on the all-dataset setting is shown in Fig. 5, which also demonstrates
the superiority of our method.

In order to have a comprehensive understanding of detector performance,
we also make an evaluation under other six subsets including the pedestrian
distances and occlusion levels. As shown in Table 2, the MCANet ranks first in
all six subsets. Especially in the Far subset, MCANet achieves 8.82% lower on
MR−2, which indicates that MCANet performs satisfactorily in detecting small
targets.

Fig. 6. Comparisons of detection results on KAIST with MBNet.

Table 3. The ablation experiments of the MCANet on the KAIST dataset

Method All Day Night

CFEM+element-wise product+element-wise sum 9.39 10.29 7.45
CFEM+SAFM+element-wise sum 8.55 9.11 7.24
CFEM+SAFM+CAFM 8.24 8.97 7.00

4.4 Qualitative Evaluation

In order to further demonstrate the effectiveness of the proposed MCANet, the
detection results are compared with MBNet, which is one of the state-of-the-art
algorithms that have been open sourced, as shown in Fig. 6. The first row is
the original images and the green rectangles are manually labeled ground truth.
The second and third rows are the detection results of MBNet and our method,
respectively. It can be clearly seen from Fig. 6 that MCANet can effectively
solve the problem of missed detection. Due to the efficient feature extraction
and saliency enhancement functions of MCANet, the detection accuracy of small
targets can be effectively improved.
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4.5 Ablation Study

Ablation experiments are performed on the KAIST dataset to demonstrate the
effectiveness of the components of our MCA module. We test three different
fusion strategies as shown in Table 3. All of them use CFEM to extract the
features. The first method replaces the SAFM and CAFM with element-wise
product and element-wise sum respectively. And the second method replaces
the CAFM with element-wise sum. The third method uses all of the proposed
components. The experiments show that the final version with all three designed
components outperforms the other versions. The results of the ablation study
demonstrate the effectiveness of the proposed components.

5 Conclusion

In this work, we propose a novel MCA module to efficiently extract and fuse
features. The MCA modules are embedded into two-stream backbone and the
MCANet is introduced. We explore how to effectively enhance the saliency of
objects and suppress the background. Specifically, the transformer architecture is
used to extract Cross-Modality complementary features. Then a novel attention
fusion mechanism is developed. The multiscale information is shared between
different depths of the network to ensure the robustness of the detector. The
experiments demonstrate that the proposed MCANet outperforms the state-of-
the-art on the challenging KAIST dataset in terms of the accuracy.
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