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Abstract. Colorectal cancer (CRC) is the second leading cause of cancer-
related death worldwide. Excision of polyps during colonoscopy helps
reduce mortality and morbidity for CRC. Powered by deep learning,
computer-aided diagnosis (CAD) systems can detect regions in the colon
overlooked by physicians during colonoscopy. Lacking high accuracy and
real-time speed are the essential obstacles to be overcome for successful
clinical integration of such systems. While literature is focused on improv-
ing accuracy, the speed parameter is often ignored. Toward this critical
need, we intend to develop a novel real-time deep learning-based archi-
tecture, DilatedSegNet, to perform polyp segmentation on the fly. Dilat-
edSegNet is an encoder-decoder network that uses pre-trained ResNet50
as the encoder from which we extract four levels of feature maps. Each
of these feature maps is passed through a dilated convolution pooling
(DCP) block. The outputs from the DCP blocks are concatenated and
passed through a series of four decoder blocks that predicts the segmenta-
tion mask. The proposed method achieves a real-time operation speed of
33.68 frames per second with an average dice coefficient (DSC) of 0.90 and
mIoU of 0.83. Additionally, we also provide heatmap along with the qual-
itative results that shows the explanation for the polyp location, which
increases the trustworthiness of the method. The results on the publicly
available Kvasir-SEG and BKAI-IGH datasets suggest that DilatedSeg-
Net can give real-time feedback while retaining a high DSC, indicating
high potential for using such models in real clinical settings in the near
future. The GitHub link of the source code can be found here: https://
github.com/nikhilroxtomar/DilatedSegNet.
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1 Introduction

Missed polyp during routine colonoscopy examination is the primary source of
interval colorectal cancer (CRC). The polyps that are not recognized within the
colonoscope are the major source contributor to this problem. Colonoscopy is
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considered the gold standard for colon cancer diagnosis and follow-up. However,
22–28% of polyps are missed during a routine examination [12]. Some of these
polyps can cause post-colonoscopy colorectal cancer (CRC). One of the reasons
for the polyp miss-rate is either the polyp was not visible during the examination
or was not recognized despite being in the visual field because of the faster
colonoscope withdrawal time. Deep learning based algorithms can highlight the
presence of pre-cancerous tissue in the colon and have the potential to improve
the diagnostic performance of endoscopists. Improving the polyp detection rate
as well as its accurate segmentation is an unmet clinical need. In practice, precise
polyp segmentation provides important information in the early detection of
colorectal cancer via their shape, texture, and location information.

Tomar et al. [17] proposed a feedback attention network for biomedical image
segmentation where they utilized the previous epoch mask with the current train-
ing epoch in an iterative fashion to further improve the performance. Fan et al. [3]
used Res2Net-based [4] backbone where they used a parallel partial decoder and
parallel reverse attention mechanism for the accurate polyp segmentation. Jha
et al. [9] proposed an efficient architecture where they utilized the strength of the
residual block, atrous spatial pyramidal pooling, with squeeze and excitation block
for polyp segmentation. Shen et al. [15] proposed a hard region enhancement net-
work (HRENet) that consists of an informative context enhancement (ICE) mod-
ule and trained the model on edge and structure consistency aware loss (ESCLoss)
to improve the polyp segmentation on the precise edge. Zhao et al. [21] proposed
a multi-scale subtraction network (MSNet) for automatic polyp segmentation.
Despite of several architectures proposed in the literature, most existing methods
often neglect the encoder and tend to focus more on the decoder part of the net-
work, which led to the loss of significant features from the encoder part. In our
proposed method, we focus more on the encoder part of the network by utiliz-
ing different scales features which are passed through multiple dilated convolu-
tions to capture more enlarged features, leading to improved polyp segmentation.
Unlike other decoders, the design of our decoder is straightforward. It utilizes sim-
ple sequences of layers such as an upsampling layer, concatenation, residual block
and an attention layer. We introduce the novel deep learning architecture, Dilated-
SegNet, to address the critical need for clinical integration of polyp segmentation
routine, which is real-time and retains high accuracy. The main contribution of the
study are as follows:

1. We introduce a novel network named DilatedSegNet for polyp segmentation.
The architecture begins with a pre-trained ResNet50 [5] and utilizes dilated
convolution [19] pooling block to increase the receptive field for capturing
more diverse and reliable features for a better delineation.

2. DilatedSegNet showed outstanding performance by outperforming nine stan-
dard benchmarking methods with two widely used publicly available polyp
segmentation datasets.
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3. Extensive experimental results and cross-dataset test results on two unseen
datasets showed the better generalization capability of the DilateSegNet.
Explored deep features showed via heatmaps that the proposed network
model is focusing on the target polyp regions and their boundaries, prov-
ing visual interpretability of the model.

Fig. 1. Block diagram of the proposed DilatedSegNet along with its components.

2 Method

Figure 1 shows the block diagram of the proposed DilatedSegNet along with its
core components. It follows an encoder-decoder scheme much like the U-Net [14],
consisting of a pre-trained ResNet50 [5] as an encoder. The input image I with
a resolution of [h × w × 3] is fed to the pre-trained encoder from which we
extract four levels of features maps {fi : i = 1, 2, 3, 4} with varying resolution
of [h/2k × w/2k : k = 1, 2, 3, 4]. Each of these feature maps is then passed
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through a Dilated Convolution Pooling (DCP) block, where four parallel dilated
convolutions with the rate 1, 3, 6, 9 are applied to enhance the field of view.
The output from all the DCP blocks is concatenated and passed to the first
decoder block, where the feature map is upsampled and concatenated with a skip
connection from the pre-trained encoder. Next, it is passed through some residual
block and then a Convolutional Block Attention Module (CBAM) [18]. The
output of the CBAM is passed to the next decoder for further transformation.
Finally, the output from the last decoder block is passed to a 1 × 1 convolution
followed by a sigmoid activation function.

2.1 Dilated Convolution Pooling (DCP) Block

The DCP block begins with four parallel 3× 3 convolution layers having a dila-
tion rate of 1, 3, 6 and 9. The dilated convolution increases the receptive field of
the 3× 3 kernel, which helps it to cover more area over the input feature maps.
Thus, by increasing dilation rate, we get better feature maps with each layer.
The output from each convolutional layer is followed by batch normalization
and a ReLU activation function. Next, we combine the output from each ReLU
activation function to form a concatenated feature map, which is followed by a
1 × 1 convolutional layer to reduce the number of feature channels. The 1 × 1
convolutional layer is further followed by batch normalization and a ReLU acti-
vation function. The output of the ReLU activation function is passed through
a max-pooling layer to reduce its spatial dimensions.

2.2 Decoder Block

The decoder block begins with a bilinear upsampling where the feature map spa-
tial dimensions (height and width) are increased by a factor of two. After that, we
concatenate the upsampled feature map with the feature map from the pre-trained
encoder through the skip connections. These skip connections fetch the necessary
features directly from the encoder to the decoder which is sometimes lost due to
the depth of the network. The concatenated feature maps are passed through a
set of two residual blocks which helps to learn more meaningful semantic features
from the input. These features are further refined by using an attention mechanism
called CBAM [18]. CBAM consists of channel attention followed by spatial atten-
tion to highlight the more significant features and suppress the irrelevant ones.

3 Experimental Setup

In this section, we present the datasets, evaluation metrics and the implementa-
tion details.

3.1 Datasets and Evaluation Metrics

We have selected the Kvasir-SEG [8] and BKAI-IGH [11] datasets to evalu-
ate the performance of the proposed DilatedSegNet. Both of the datasets are
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Table 1. Complexity of the models with image size of 256 × 256.

Method Publication venue Backbone Parameters (Millions) Flops (GMac) FPS

U-Net [14] MICCAI’15 – 31.04 54.75 160.27

ResU-Net [20] GRSL’18 – 8.22 45.42 197.94

U-Net++ [22] DLMIAW’18 – 9.16 34.65 123.45

DeepLabV3+ [2] ECCV’18 ResNet50 39.76 43.31 99.16

ResU-Net++ [9] ISM’19 – 4.06 15.81 55.86

DDANet [16] ICPRW’20 – 3.36 18.2 86.46

PraNet [3] MICCAI’20 Res2Net 32.55 6.93 36.21

ColonSegNet [7] IEEE Access’21 – 5.01 62.16 122.42

HarDNet-MSEG [6] Arxiv’21 – 33.34 6.02 41.20

FANet [17] IEEE TNNLS’22 – 7.72 94.75 65.53

CaraNet [13] SPIE MI’22 Res2Net 46.64 11.48 20.13

DilatedSegNet (Ours) – ResNet50 18.11 27.1 33.68

publicly available and can be easily accessible. Kvasir-SEG [8] consists of 1000
polyp images, their corresponding masks, and the bounding box information.
Similarly, BKAI-IGH [11] consists of 1000 polyp images in the training dataset,
and separate 200 images in the test dataset. However, the ground truth of the
test dataset is not made publicly available by the dataset provided. So, we only
experiment on the training dataset. Additionally, each of the polyp in dataset is
categorized neo-plastic (potential to become cancerous) and non-neoplastic (non
cancerous). However, we treat the dataset as a binary class problem (i.e. polyp
and normal tissue). We have used standard segmentation metrics such as DSC,
mean intersection over Union (mIoU), precision, recall, F2-score and frame per
second (FPS) to benchmark the performance of our proposed model.

3.2 Implementation Details

In this study, we have implemented our proposed DilatedSegNet and all the other
benchmarkmodels using the PyTorch framework and trained on aRTX3090GPU.
We have used the same hyperparameters for all the models for a fair compari-
son. The images and masks were first split into training, validation and testing
datasets. For Kvasir-SEG, we have utilized the official split of 880/120, where 880
images and masks were used for training and the rest of the 120 were used for val-
idation and testing. For the BKAI dataset, we followed an 80 : 10 : 10 split, where
80% images and masks were used for training, 10% was used for validation and the
remaining 10% was used for the testing. All the images and masks were resized to
256 × 256 pixels. To make the model more robust, we have used an online data
augmentation strategy with random rotation, horizontal flipping, vertical flipping
and coarse dropout. All the models were trained by an Adam optimizer [10] with a
learning rate of 1e−4 and a batch size of 16. We have used a combination of dice loss
and binary cross-entropy as the loss function. ReduceLROnPlateau was used while
training to reduce the learning rate for better performance, while early stopping
was used to stop the training when the model stopped improving.
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Table 2. Results on the Kvasir-SEG [8] and BKAI-IGH [11] datasets.

Method Publication DSC mIoU Recall Precision F2

Train and test data: Kvasir-SEG [8]

U-Net [14] MICCAI’15 0.8264 0.7472 0.8504 0.8703 0.8353

ResU-Net [20] GRSL’18 0.7642 0.6634 0.8025 0.8200 0.7740

U-Net++ [22] DLMIAW’18 0.8228 0.7419 0.8437 0.8607 0.8295

DeepLabV3+ [2] ECCV’18 0.8837 0.8173 0.9014 0.9028 0.8904

ResU-Net++ [9] ISM’19 0.6453 0.5341 0.6964 0.7080 0.6575

DDANet [16] ICPRW’20 0.7415 0.6448 0.7953 0.7670 0.7640

PraNet [3] MICCAI’20 0.8942 0.8296 0.9060 0.9126 0.8976

ColonSegNet [7] IEEE Access’21 0.7920 0.6980 0.8193 0.8432 0.7999

HarDNet-MSEG [6] Arxiv’21 0.8260 0.7459 0.8485 0.8652 0.8358

FANet [17] IEEE TNNLS’22 0.7844 0.6975 0.8503 0.8165 0.8054

CaraNet [13] SPIE MI’22 0.8742 0.8001 0.9289 0.8614 0.8996

DilatedSegNet (Ours) – 0.8957 0.8336 0.9169 0.9096 0.9034

Train and test data: BKAI-IGH [11]

U-Net [14] MICCAI’15 0.8286 0.7599 0.8295 0.8999 0.8264

ResU-Net [20] GRSL’18 0.7433 0.6580 0.7447 0.8711 0.7387

U-Net++ [22] DLMIAW’18 0.8275 0.7563 0.8388 0.8942 0.8308

DeepLabV3+ [2] ECCV’18 0.8937 0.8314 0.8870 0.9333 0.8882

ResU-Net++ [9] ISM’19 0.7130 0.6280 0.7240 0.8578 0.7132

DDANet [16] ICPRW’20 0.7269 0.6507 0.7454 0.7575 0.7335

PraNet [3] MICCAI’20 0.8904 0.8264 0.8901 0.9247 0.8885

ColonSegNet [7] IEEE Access’21 0.7748 0.6881 0.7852 0.8711 0.7746

HarDNet-MSEG [6] Arxiv’21 0.7627 0.6734 0.7532 0.8344 0.7528

FANet [17] IEEE TNNLS’22 0.8305 0.7578 0.8285 0.9169 0.8243

CaraNet [13] SPIE MI’22 0.8948 0.8309 0.8907 0.9280 0.8911

DilatedSegNet (Ours) – 0.8950 0.8315 0.9082 0.9111 0.8991

4 Results

We present quantitative and qualitative results along with the heatmaps for
model interpretability.

4.1 Performance Test on Same Dataset

Table 2 shows the result of the DilatedSegNet on the Kvasir-SEG [8] and BKAI-
IGH [11] datasets, respectively. DilatedSegNet obtains an DSC score of 0.8957
and mIoU of 0.8336 with Kvasir-SEG and an DSC-score of 0.8950 and mIoU
of 0.8315 on the BKAI-IGH dataset, outperforming nine state-of-the-art bench-
marks. The most competitive network to our network was PraNet [3] which
obtained DSC and mIoU 0.8942 and 0.8296, respectively, for the Kvasir-SEG.
DeepLabv3+ obtained the most competitive results with BKAI-IGH: a DSC of
0.8937 and mIoU of 0.8314. DilatedSegNet achieved a real-time operation speed
of real-time speed of 33.68 FPS. The number of parameters used in DeepLabv3+
was 39.76 million and the number of flops utilized was 43.31 GMac. However, our
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Fig. 2. The figure shows qualitative results comparison of the three best methods. The
heatmaps are obtained with respect to the convolutional layer at the bottleneck. The
produced heatmap shows both important and unimportant pixels. Here, the heatmap
shows that DilatedSegNet utilized correct pixels from the input image while making
predictions for polyp and non-polyps. The qualitative comparison between the ground
truth and the heatmap produced by DilatedSegNet shows that the heatmap is precise.
This show that the prediction made by the proposed model is trustworthy. (Color figure
online)

proposed architecture has only 18.11 million parameters and 27.1 GMac flops
(refer Table 1), substantially better performance by lowering the parameters and
flops, thanks to our lightweight architectural design allowing for real-time pro-
cessing (Fig. 3).

Figure 2 shows the qualitative results of DilatedSegNet and two state-of-the-
art networks (i.e., PraNet [3] and DeepLabv3+ [2]). The qualitative result shows
that DilatedSegNet can correctly segment smaller and medium-sized polyps that
are commonly missed during routine colonoscopy examinations due to their size.
For diminutive polyps, DeepLabv3+ shows over-segmentation and PraNet shows
under-segmentation. Similarly, PraNet misses challenging and flat polyps for two
cases, and DeepLabv3+ shows under segmentation (for the second example).
The visual results comparison shows that DilatedSegNet has a better ability
to capture regular and flat polyps. Thus, both the qualitative and quantitative
results exhibit the high overall performance of DilatedSegNet. Additionally, we
determined the heatmap results of the DilatedSegNet. The heatmap results show
the relevance of the individual polyp and non-polyp pixels. The heatmaps can
be useful to understand the convolutional neural network and helps towards



DilatedSegNet 341

Table 3. Cross dataset results of models trained on Kvasir-SEG [8] and tested on
independent CVC-ClinicDB [1] and BKAI-IGH [11].

Model DSC mIoU Recall Precision F2

Train: Kvasir-SEG [8], Test: CVC-ClinicDB [1]

U-Net [14] 0.6336 0.5433 0.6982 0.7891 0.6563

ResU-Net [20] 0.5970 0.4967 0.6210 0.8005 0.5991

U-Net++ [22] 0.6350 0.5475 0.6933 0.7967 0.6556

DeepLabV3+ [2] 0.8142 0.7388 0.8331 0.8735 0.8198

ResU-Net++ [9] 0.4642 0.3585 0.5880 0.5770 0.5084

DDANet [16] 0.5234 0.4183 0.6502 0.5935 0.5718

PraNet [3] 0.8046 0.7286 0.8188 0.8968 0.8077

ColonSegNet [7] 0.6126 0.5090 0.6564 0.7521 0.6246

HarDNet-MSEG [6] 0.6960 0.6058 0.7173 0.8528 0.7010

FANet [17] 0.6524 0.5579 0.7560 0.7243 0.6872

CaraNet [13] 0.8254 0.7450 0.8568 0.8696 0.8389

DilatedSegNet (Ours) 0.8278 0.7545 0.8462 0.8921 0.8336

Train: Kvasir-SEG [8], Test: BKAI-IGH [11]

U-Net [14] 0.6347 0.5686 0.6986 0.7882 0.6591

ResU-Net [20] 0.5836 0.4931 0.6716 0.6549 0.6177

U-Net++ [22] 0.6269 0.5592 0.6900 0.7968 0.6493

DeepLabV3+ [2] 0.7286 0.6589 0.7919 0.8123 0.7493

ResU-Net++ [9] 0.4166 0.3204 0.6979 0.3922 0.5019

DDANet [16] 0.5006 0.4115 0.6612 0.4825 0.5592

PraNet [3] 0.7298 0.6609 0.8007 0.824 0.7484

ColonSegNet [7] 0.5765 0.4910 0.7191 0.6644 0.6225

HarDNet-MSEG [6] 0.6502 0.5711 0.7420 0.7469 0.6830

FANet [17] 0.5153 0.4412 0.8395 0.5505 0.5913

CaraNet [13] 0.7470 0.6749 0.8234 0.8102 0.7742

DilatedSegNet (Ours) 0.7545 0.6906 0.7886 0.8750 0.7649

model interpretability. Here, “red” and “yellow” denote the important regions
the models learns as polyp, whereas “blue” color shows that the model considers
those regions as less significant areas.

4.2 Performance Test on Completely Unseen Datasets

Table 3 shows the cross-dataset results. In the experimental setting #1, we train
the dataset on Kvasir-SEG and test it on CVC-ClinicDB (a completely unseen
dataset). The proposed method obtains a high DSC score of 0.8278 and mIoU of
0.7545 and outperforms the best performing DeepLabv3+ by 1.36% in DSC and
1.57% in mIoU. Similarly, in setting #2 when the model is trained on Kvasir-SEG
and tested on BKAI-IGH data, the DilatedSegNet surpass the best performing
PraNet [3] and obtains 2.47% more in DSC and 2.97% in mIoU.
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Fig. 3. The Figure shows examples of qualitative results comparison of the ablation
study from the Kvasir-SEG dataset. The leftmost column shows the input image and
the other column next to it shows the ground truth indicating the area covered by polyp
and non-polyp. The name of the network used for training during the ablation study is
indicated at the top. The qualitative examples show that the proposed network is the
best. Eliminating DCP or attention block or both affect the quality of prediction. This
is evidenced by the over-segmentation or under-segmentation results produced under
the same setting without incorporating the individual or both of the blocks.

Table 4. Ablation study of the proposed DilatedSegNet on the Kvasir-SEG [8].

No. Method DSC mIoU Recall Precision

#1 DilatedSegNet w/o DCP block 0.8725 0.8067 0.8917 0.9025

#2 DilatedSegNet w/o Attention 0.8832 0.8135 0.9076 0.8966

#3 DilatedSegNet w/o DCP block & Attention
(CBAM)

0.8627 0.7946 0.8871 0.8947

#4 DilatedSegNet 0.8957 0.8336 0.9169 0.9096

5 Ablation Study

In the Table 4, we present the results of the ablation study to verify the effective-
ness and the importance of each blocks. Here, we test the DilatedSegNet without
DCP block (setting #1), without attention (# 2), and without DCP block &
attention (#3). The proposed architecture has an improvement of 3.3% in DSC
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and 3.9% in mIoU, 2.98% recall and 1.49% in precision as compared to the
setting #3. Therefore, we showed that the proposed method had performance
improvement with the utilization of DCP and attention block.

6 Conclusion

In this work, we proposed the DilatedSegNet architecture that utilizes a dilated
convolution pooling (DCP) block and CBAM to accurately segment polyps with
high performance and real-time speed, which has never been addressed before.
The experimental results on the same dataset testing and completely unseen
dataset testing results showed that DilateSegNet achieves a high DSC and out-
performs the state-of-the-art polyp segmentation models. The design of the archi-
tecture was supported by the ablation study. The qualitative, quantitative and
heatmap suggest that DilatedSegNet can be a strong benchmark for building
early polyp detection in clinics. Additionally, the presented heatmap was effec-
tive in discriminating different polyp and non-polyp (normal tissue) pixels from
the colonoscopy image. In the future, we plan to explore DilatedSegNet with
the multi-centre dataset, evaluate its robustness, and explore the results on the
federated learning settings.
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