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Abstract. Due to the small size and noise interference, small object
detection is still a challenging task. The previous work can not effec-
tively reduce noise interference and extract representative features of
the small object. Although the upsampling network can alleviate the
loss of features by enlarging feature maps, it can not enhance seman-
tics and will introduce more noises. To solve the above problems, we
propose CAU (Content-Aware Upsampling) to enhance feature repre-
sentation and semantics of the small object. Moreover, we propose CSA
(Content-Shuffle Attention) to reconstruct robust features and reduce
noise interference using feature shuffling and attention. Extensive exper-
iments verify that our proposed method can improve small object detec-
tion by 2.2% on the traffic sign dataset TT-100K and 0.8% on the object
detection dataset MS COCO compared with the baseline model.

Keywords: Small object detection - Content-aware upsampling -
Content-shuffle attention

1 Introduction

Small object detection has a wide range of applications, such as traffic sign
detection, face recognition, and remote sensing image analysis. However, due
to the small size and noise interference, generic object detectors are not effec-
tively applicable to small object detection. A common practice to detect small
objects is to enlarge the feature map using upsampling. Traditional upsampling
methods include nearest-neighbor interpolation and bilinear interpolation, which
can enlarge the image resolution but introduce more noises. Deep-learning-based
upsampling method DUpsampling [23] can enlarge the feature map based on the
relationship between pixels. However, the downsampling operation in the net-
work can cause the loss of object information, especially for the small object,
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thus leading to missing detection of the small object. CARAFE [25] is an upsam-
pling method via content sensing and feature recombination, which can reduce
the information loss of small objects via context modeling. However, it does
not consider multi-scale features during feature recombination and is not con-
ducive to detecting small objects. To solve the above problems, we propose an
upsampling module CAU to reduce the loss of object information by aggre-
gating the global context information and extracting multi-scale features, thus
improving small object detection. Moreover, small objects are easily affected
by background noises. The attention mechanism can suppress noise interference
by focusing on essential areas and ignoring irrelevant information. SENet [10]
and ECANet [26] can capture the relationship between channels with channel
attention, suppressing background noises using global context modeling. How-
ever, the channel attention can not capture local information around the object,
affecting small object detection. Bilinear attention mechanism GSoP-Net [8] and
Fang et al. [6] propose to capture local feature interactions within each channel
via spatial attention. Although the spatial attention can effectively utilize local
relationships, the feature interaction brings heavy computational complexity. To
solve the above problems, we propose a CSA module to reconstruct features
via feature shuffling and attention, which combines channel attention and fea-
ture shuffling for robust representation. CSA can improve small object detection
with little computation added. In this paper, CAU is added to the detection
neck, and CSA is added to the detection head. By adding a few parameters
and calculations, small object detection can be improved significantly. Our main
contributions can be summarized as follows.

1. To reduce the loss of object information, we propose an upsampling module
CAU, which can enhance feature representation via global context aggrega-
tion and multi-scale feature extraction.

2. To reduce background noise interference, we propose an attention module
CSA, which significantly improves small object detection via robust feature
reconstruction.

3. Our proposed method achieves 66.1% and 21.9% on the small object of TT-
100K and MS COCO, respectively, 2.2% and 0.8% higher than the baseline
model by adding a few parameters and calculations.

2 Related Work

2.1 Upsampling Method

Upsampling is used to restore the resolution of the image or feature map to the
original resolution. Traditional upsampling methods include nearest-neighbor
upsampling, bilinear upsampling, and bicubic upsampling, which only improve
the image resolution according to its image signal. However, these methods
bring many side effects, such as increased noise and computational complex-
ity. To solve the above problems, deep-learning-based upsampling methods are
proposed. Sub-pixel layer [20] is an end-to-end learnable layer that generates
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and recombines multiple channels to perform upsampling. DUpsampling [23]
performs downsampling operations for low-level feature representations and then
concatenate them with high-level features to complete feature fusion and upsam-
pling. CARAFE [25] performs feature upsampling by recombining features in
the region centered at each location by weighted combination, which can aggre-
gate contextual information of large receptive fields. However, small objects will
be missed due to the lack of multi-scale features in feature recombination. We
propose an upsampling module that can aggregate global context and extract
multi-scale features to improve small object detection.

2.2 Multi-scale Feature Extraction

SPPNet [9] and GoogLeNet [21] propose a parallel branch to extract features
at different spatial scales based on its receptive field, i.e., spatial pyramid. Liu
et al. propose RFBNet [16] with dilated convolution and fuse three branches to
improve the poor representation of small objects. Zhao et al. [30] use global aver-
age pooling to extract multi-scale information and achieve competitive results
in semantic segmentation. Chen et al. [3] design multiple parallel dilated convo-
lution modules with different sampling rate to extract multi-scale features. We
propose to extract global information by adding a multi-scale feature extraction
module.

2.3 Attention Mechanism

The attention mechanism can focus on the essential area of the object and sup-
press irrelevant information. Channel attention includes SENet [10] and ECANet
[26], which focuses on the relationship between channels and automatically
learns the importance of different channel features. Bilinear attention mecha-
nism GSoP-Net [8] and Fang et al. [6] propose to enhance the local pairwise fea-
ture interaction in each channel while retaining spatial information, improving
feature representation via local relationship. SANet [28] introduces the random
channel mixing operation, which uses spatial and channel attention mechanisms
in parallel. Ying et al. [27] propose a multi-scale global attention mechanism to
alleviate the loss of small object information caused by downsampling opera-
tions. We propose to combine feature reconstruction and attention mechanism
to enhance object feature representation.

3 Method

3.1 Network Architecture

The overall network architecture is shown in Fig. 1. We choose the lightweight
YOLOVS5 as our baseline model. YOLOv5 uses CSPDarknet53 [18] as the back-
bone network for feature extraction. The detection neck adopts a Path Aggre-
gation Network (PANet) [15] for feature fusion, where the low-resolution fea-
tures are upsampled by nearest-neighbor upsampling to be concatenated with
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the high-resolution features. In this paper, we introduce an upsampling module
CAU to replace the nearest-neighbor upsampling module in the detection neck.
CAU can reduce information loss by global context aggregation and multi-scale
feature extraction. Moreover, we propose an attention module CSA in the detec-
tion head to reconstruct features for robust representation. CAU and CSA can
improve small object detection with a few parameters and calculations added.

gz O L - 7 A=A —{

g ¥ )

Backbone Neck Detection Head

Fig. 1. Overall architecture.

3.2 Content-Aware Upsampling (CAU)

As shown in Fig.2, CAU is divided into two branches: the upsampling kernel
prediction branch and the multi-scale feature recombination branch. The former
branch can automatically predict the upsampled kernel corresponding to the
object location. The latter branch can extract multi-scale features for robust
representation. We predict the upsampling kernel and then use the multi-scale
feature recombination module to complete the upsampling operation. Given an
input feature map F' of H x W x C and an upsampling rate r, the size of the
output feature map F” will be rH x rW x C. For any object location I’ = (',
j') of the output F’, there is a corresponding source location [ = (i,7) at the
input F, where i = [¢'/r], j = |j'/r].

Upsampling Kernel Prediction. We use a content-aware method to predict
the upsampled kernel. Each position on the feature map F' corresponds to the
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Fig. 2. The Content-Aware Upsampling (CAU) module. The top is the upsampling ker-
nel prediction branch, and the bottom is the multi-scale feature recombination branch.

r? object position in the feature map F’. Each object position needs a K, X
K, upsampling kernel. For the input feature map F', we first use a 1x1 convo-
lution to compress its channels to reduce the computational burden. We use the
convolutional layer of kernel size K. to generate the upsampled kernel, where
K. = K, — 2. The size of the output upsampled kernel is H x W x r2K2. Then
pixelshuffle [20] is to activate the corresponding subpixels periodically during
convolution according to different subpixel positions of the low-resolution feature
map to complete the construction of the high-resolution feature map. Finally,
the size of the final output upsampled kernel is TH x tW x K2, and the softmax
function is applied to each K, x K, for normalization. As shown in Eq. (1), the
upsampling kernels at different positions are predicted adaptively.

Ky = (N (F, K.)) (1)

where the kernel prediction module v predicts a location-wise kernel K/ for each
location !’ based on the neighbor of F;. Here we denote N(F}, K,) as the K. x K,
sub-region of F' centered at the location [, i.e., the neighbor of Fj.

Multi-scale Feature Recombination. For the input feature map F', we divide
the feature map into different sub-regions through adaptive pooling operations,
obtaining 1x1, 2x2, 3x3, and 6x6 feature maps. Then we perform 1x1 convo-
lution on each feature map to reduce the number of channels to i of F'. The
sub-region features are then upsampled and concatenated with the input fea-
tures, which aggregate global context information of different scales to improve
small object detection,the output feature map f. As shown in Eq. (2), for each
position !’ in the output feature map, we map it to the feature map f; and dot
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product the region centered by K, x K, with K; to obtain the output value.
F, = ¢(N(fi, Ku), Kr) (2)

where ¢ is the multi-scale content-aware reassembly module that reassembles
the neighbor of f; with the kernel K.
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Fig. 3. The Channel Shuffle Attention (CSA) module.

3.3 Channel Shuffle Attention (CSA)

As shown in Fig. 3, we introduce the CSA module, which combines feature recon-
struction and attention mechanism. Through feature reconstruction, the network
can effectively suppress background noise interference; By adding the attention
mechanism, the network can focus on critical objects and filter out useless infor-
mation. CSA is mainly divided into two branches. In the bottom feature recon-
struction branch, CSA divides the channels of the input feature X into multiple
groups and performs corresponding interception operations. Then channel shuffle
is used for each group to enhance the feature robustness. This branch can disrupt
the internal relationship between features and force the network to learn more
subtle features. In the top attention branch, global average pooling is carried
out on the input feature X to aggregate global spatial information. As shown
in Eq. (3), the 1-dimensional convolution operation is carried out to capture the
local cross-channel information interaction, where we use the sigmoid activation
function to calculate the weight of each channel. This way, we can extract the
dependencies between channels, improving small object detection. As shown in
Eq. (4), the output feature M’ is obtained by multiplying the weights with the
original input features. As shown in Eq. (5), the final feature M" is obtained via
adding the top and bottom output.

W = o(ConvlD(GAP(X))) (3)
M =W X (4)
M = &M, X) (5)
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4 Experiments

4.1 Datasets

MS COCO. [14] Microsoft COCO (MS COCO) is a widely used dataset for
object detection, including 118k training images, 5k validation images, and 40k
test images. MS COCO has 80 categories, approximately containing 41% small
objects, 34% medium objects, and 24% large objects. MS COCO is challenging
because small objects account for a large proportion with complex background.
In this paper, we set the input image size as 640x640.

Tsinghua-Tencent 100K (TT-100K). [32] TT-100K is a traffic sign detection
dataset, containing 100k high-resolution (2048x2048) images and 30k traffic
signs under various weather and lighting conditions. Same as the previous work
[5], we remove the categories with a few samples and only keep 45 categories
of more than 200 categories. To reduce computation and memory overflow, we
crop the original image to the size of 1280x1280. TT-100K can be divided into
three scales, i.e., the area lower than 32x32 as the small-sized object, the area
between 32x32 and 96x96 as the middle-sized object, and the area greater than
96x 96 as the large-sized object.

4.2 Evaluation Metrics

Same as the evaluation metrics in the MS COCO competition [14], we use Aver-
age Precision (AP) to evaluate the detection performance, which is a compre-
hensive metric of precision and recall. AP is calculated as Eq. (6), where p
represents precision, and r represents recall. As shown in Eq. (7), mean Average
Precision (mAP) denotes average AP of multiple categories, where n represents
the number of categories. Moreover, we use Floating Point Operations (FLOPS)
to measure the computation complexity, which represents the total number of
calculation operations of a detection model.

1
AP:/O p(r)dr (6)

1 n
AP=—-Y AP
m n Z i (7)

=1

4.3 Implementation Details

We conduct all the experiments with Pytorch 1.11.0 and CUDA 11.3. All the
networks are trained with 4 NVIDIA GeForce 2080Ti GPUs. We use the SGD
optimizer to train the models for 300 epochs. The initial learning rate is set
to 0.01, and the cosine annealing strategy is used to reduce the learning rate.
The weight decay, batch size, and momentum are set to 0.0005, 8, and 0.937,
respectively.
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4.4 Ablation Study

As shown in Table 1, we perform ablation experiments on the TT-100K dataset
to verify the proposed CAU and CSA modules. We use YOLOv516 as the baseline
detection model. Experiments prove that CAU and CSA can improve the detec-
tion performance of all sizes with little computation added, achieving 1.7% mAP
improvement compared with the baseline model. Specially, the proposed method
can sinificantly improve small object detection, 2.2% higher than YOLOv5I6.
CAU can improve the AP of small objects by 1.9%, which proves its ability to
reduce information loss.

Table 1. Ablaton study on TT-100K

Method AP, |AP,, | AP; | AP50 | mAP | params | GFLOPs
YOLOv516 63.9 |81.3 |87.1 |95.5 |76.5 |76.5M |110.8
YOLOvV516+CAU 65.8 |81.9 |88.2 959 |77.5 |80.5M |116.6
YOLOv516+CAU+CSA | 66.1 | 82.8 | 88.5 | 96.4 | 78.2 | 84.9M | 121.9

4.5 Comparative Results

As shown in Table 2, we compare our method with other state-of-the-art detec-
tors on the TT-100K dataset, including prestigious one-stage SSD [17], Reti-
naNet [13], YOLO [1,18] and two-stage Faster R-CNN [19], FPN [12]. Our pro-
posed method can achieve the best detection performance for all evaluation met-
rics. Especially for the small object, our method can acquire a large performance
gain. Moreover, Table 3 shows the detection results on MS COCO. Due to the

Table 2. Comparison with state-of-the-art methods on TT-100K.

Method AP, | AP,, AP; | AP5o | mAP
Faster R-CNN [19] |50.0 [82.0 |88.0 {90.3 |72.1
Cascade R-CNN [2] | 55.7 |85.4 |90.4 |92.5 |74.9

FPN [12] 40.6 |63.7 |63.0 435 |64.1
SSD [17] 25.3 | 67.8 |81.5 83.5 |59.8
RetinaNet [13] 60.9 | 79.5 |81.2 924 |70.9
Efficientdet-DO [22] - | 74.4 83.6 85.4 |66.7
YOLOV3 [18] 60.4 |76.7 |81.1 91.6 |70.2
YOLOv4 [1] 62.8 | 79.8 |85.4 |94.7 |74.9
YOLOV516 63.9 |81.3 |87.1 |95.5 |76.5

Ours 66.1 | 82.8 |88.5|96.4 | 78.2
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limited computing resources, we use YOLOvV5s as the baseline model®, replacing
the upsampling module with CAU in the detection neck and adding CSA to the
detection head. Our method achieves the best detection performance, proving
its effectiveness and generality.

Table 3. Comparison with state-of-the-art methods on MS COCO.

Method AP, | AP,, | AP; | AP50 | mAP
Faster R-CNN [19] 15.7 | 35.8 |44.3 |55.2 | 34.1
Cascade R-CNN [2] 19.6 | 38.9 |48.0 | 55.8 |36.8
Deformable R-FCN [4] | 19.4 | 40.1 |52.5 |58.0 |37.5
CoupleNet [31] 11.6 [36.3 |50.1 53.5 |33.1
CornerNet [11] 17.0 139.0 |50.5 |53.7 |37.8
RefineDet [29] 16.5 | 38.8 |51.5 |57.0 |36.1
DSSD513 [7] 13.0 | 35.4 |51.1 | 53.3 |33.2
RetainNet [13] 18.5 |37.2 |45.4 |53.4 |35.1
DeNet [24] 12.3 136.1 |50.8 53.4 | 33.8
YOLOv3 [18] 20.5 [39.3 |45.9 |54.8 351
YOLOvV5s 21.1 |42.3 |47.5 |56.7 | 37.1
Ours 21.9|42.9 |47.8|57.1 | 37.5

4.6 Qualitative Results

In Fig.4, we visualize the feature map after using CAU and CSA. Compared
with the original detection neck, CAU can highlight the features of small traffic
signs, which proves CAU can enhance feature representation. Compared with the
original detection head, CSA can effectively suppress background noise interfer-
ence and extract robust features. This way, our method can improve small object
detection.

Figure5 shows some detection examples of TT-100K and MS COCO. Our
method can accurately detect objects, especially for small objects.

! Please refer to https://github.com /ultralytics/yolov5. For TT-100K, we use the large
YOLOV516 as the baseline model. For MS COCO, we use the small YOLOv5s as
the baseline model. Except for CSA and CAU, our model is the same as the official
model. The parameters of YOLOvV516 are about 10x of YOLOv5s.


https://github.com/ultralytics/yolov5.
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Original Detection Neck Original Detection Head

CAU CSA

Fig. 4. Feature visualization. CAU can enhance object features. CSA can suppress
background noises for robust feature extraction.

Original Image

Fig. 5. Qualitative results on TT-100K (1st row) and MS COCO (2nd & 3rd rows)

5 Conclusion

This paper proposes a feature enhancement module CAU and a feature recon-
struction module CSA for small object detection. CAU can enhance feature
representation with less information loss, and CSA can suppress background
noise interference to extract robust features. Comprehensive experiments prove
that our method can improve object detection, especially for small objects. In
the future, we will validate the generality of the proposed modules with more
networks.
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