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Abstract. Recently, deep learning-based methods have made remark-
able progress in low-light image enhancement. In addition to poor con-
trast, the images captured under insufficient light suffer from severe noise
and saturation distortion. Most existing unsupervised learning-based
methods adopt the two-stage processing method to enhance contrast
and denoise sequentially. However, the noise will be amplified in the
contrast enhancement process, thus increasing the difficulty of denois-
ing. Besides, the saturation distortion caused by insufficient illumination
is not considered well in existing unsupervised low-light enhancement
methods. To address the above problems, we propose a novel paral-
lel framework, which includes a saturation adaptive adjustment branch,
brightness adjustment branch, noise suppression branch, and fusion mod-
ule for adjusting saturation, correcting brightness, denoise, and multi-
branch fusion, respectively. Specifically, the saturation is corrected via
global adjustment, the contrast is enhanced through curve mapping esti-
mation, and we use BM3D to preliminary denoise. Further, the enhanced
branches are fed to the fusion module for a trainable guided filter, which
is optimized in an unsupervised training manner. Experiments on the
LOL, MIT-Adobe 5k, and SICE datasets demonstrate that our method
achieves better quantitation and qualification results than the state-of-
the-art algorithms.

Keywords: Unsupervised · Low-light enhancement · Noise
suppression · Saturation correction

1 Introduction

High-quality images are critical to computer vision tasks. However, due to the
technical conditions and lighting limitations, images captured in insufficient light
conditions inevitably appear with low contrast and unexpected noise and color
shift, which will degrade both perceptual quality and downstream high-level
vision tasks, such as object detection [16] and tracking [5]. Therefore, improving
the quality of low-light images is urgently needed and has drawn significant
attention in recent years.
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Fig. 1. The statistical histograms of corresponding saturation channel by different
enhancement methods. Our method achieves better saturation correction compared
with SCI [19], which is the state-of-the-art LLIE method.

Recently, various supervised learning-based methods have been proposed
for low-light image enhancement(LLIE) [8,12,17,23,25,27,28]. Nevertheless,
due to training a deep model on paired data that may result in overfitting
and limited generalization capability [15], unsupervised learning-based meth-
ods [4,8,10,12,17,19] are extensively used to perform LLIE. Some of the exist-
ing unsupervised LLIE algorithms adopt the end-to-end “one-stage method”
[8,12,19] to enhance brightness, which does not sufficiently suppress the noise
while enhancing the brightness. Therefore, some “two-stage methods” [4,10,17]
are proposed, which in a “first enhancement then denoising” manner to enhance
image contrast and suppress noise. However, this cascade processing method
may lead to the accumulation of artifacts, and the noise will be amplified in
the brightness enhancement process, thus increasing the difficulty of denois-
ing. Furthermore, the existing unsupervised low-light enhancement algorithms
[4,8,10,12,17,19] do not consider the saturation distortion caused by insufficient
illumination, which leads to the incorrect color of the restored results, such as
Fig. 1.

To address the above issues, we propose a parallel framework, which includes
a saturation adaptive adjustment branch, brightness adjustment branch, noise
suppression branch, and a fusion module for adjusting saturation, correcting
brightness, denoise, and multi-branch fusion, respectively. Specifically, we pro-
pose a novel saturation adaptive adjustment method based on Gray World Algo-
rithm [7] and Von Kries diagonal model [13] to adjust the saturation in HSV
color space. As shown in Fig. 1, our method achieves better saturation correc-
tion than the state-of-the-art unsupervised method SCI [19]. Then we design
a brightness adjustment branch, which uses the high-order mapping curve to
adjust the original V channel at the pixel level in HSV color space. It takes the
low-light image as the input and the parameter of the high-order mapping curve
as the output. The estimated coefficients are used to adjust the dynamic range
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of the input through the high-order curve to obtain the corrected V channel.
Meanwhile, we use BM3D [6] to initially denoise the input image in the noise
suppression branch of the parallel framework. Finally, the output images of each
branch of the parallel framework are fused through a fusion module composed
of a trainable unsupervised guided filter network. The whole parallel framework
is trained by unsupervised learning. It avoids the problem of insufficient denoise
caused by the one-stage processing methods and intractable noise removal caused
by the two-stage processing methods.

Our contributions are summarized as follows:

(1) We propose a parallel fusion framework to simultaneously perform contrast
enhancement, saturation correction, and denoising. The whole framework is
trained in an unsupervised manner.

(2) We propose a novel saturation adaptive adjustment method based on Gray
World Algorithm and Von Kries diagonal model to correct saturation.

(3) We introduce a trainable unsupervised guided filter fusion module in multi-
branch fusion to further suppress noise.

(4) Experiments on the LOL, MIT-Adobe 5k, and SICE datasets show that the
proposed method achieves better saturation correction and noise suppres-
sion.

2 Related Work

2.1 Traditional LLIE Methods

Early LLIE methods are based on various image priors. For example, HE-based
methods [21] focus on changing the image’s dynamic range to improve the con-
trast, which may lead to insufficient or excessive results enhancement. Inspired
by Retinex [14] theory, some methods decompose the image into pixel-level prod-
ucts of reflection and illumination map, and the enhanced results can be obtained
through further processing. However, this method relies on intensive parameter
adjustment, leading to inconsistent colors and noise in the enhanced results.

2.2 Deep Learning-Based LLIE Methods

In recent years, the method based on deep learning has shown surprising results
on LLIE. High-quality normal light is usually used as the ground truth to
guide low-light image enhancement. The first learning-based LLIE method, LL-
Net [18], proposes a stacked automatic encoder for simultaneous denoising and
enhancement. The work in [25] is based on Retinex theory and uses special sub-
networks to enhance the illuminance and reflectance component, respectively.
Zhang et al. [30] propose KinD, which uses three subnetworks for layer decom-
position, reflectivity recovery, and illumination adjustment. The work in [28] pro-
poses a recursive band network and trains it through a semi-supervised strategy.
However, training a depth model on paired data may lead to overfitting and limit
the generalization ability, so the unsupervised LLIE method has been widely used
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in recent years. EnGAN [12] proposed a generator and used unpaired data for
training. ZeroDCE [8] designed a depth curve estimation network to adjust the
dynamic range of low illumination images. Liu et al. [17] built a Retinex-inspired
unrolling framework with architecture search. SCI [19] presents a lightweight
enhancement network and achieves state-of-the-art.

Fig. 2. Parallel fusion frame diagram, where the red box represents the brightness
adjustment branch, and the green box represents the inception module. (Color figure
online)

3 Proposed Method

The proposed framework is shown in Fig. 2. The framework consists of three main
branches and a fusion module, and the input image is enhanced by brightness and
saturation correction and denoising in parallel before fusion separately. The input
image is converted from the RGB to HSV color space, and the S and V channels
are corrected by the saturation and brightness correction branches, respectively.
Meanwhile, the noise suppression branch performs preliminary denoise for input
image parallelly on RGB color space. Finally, the output of each branch is fused
through the fusion module. We explain the role of each branch and module in
this section.

3.1 Saturation Adaptive Adjustment Branch

To solve the problem of saturation distortion, we propose a saturation adaptive
adjustment method. It is assumed that the relative values of the three com-
ponents of RGB remain unchanged after adjusting the saturation of an image.
According to the Gray World Algorithm [7] and Von Kries diagonal model [13]:

⎧
⎪⎪⎨

⎪⎪⎩

M ′(x) = M(x) · K

M(x)

N ′(x) = N(x) · K

N(x)

, (1)
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where M(x) = max {R,G,B}, N(x) = min {R,G,B} represent the maximum
and minimum channels in the RGB color space, respectively. M(x) and N(x)
represent the average value of the maximum value channel and the minimum
value channel respectively. M ′(x) and N ′(x) represent the adjusted channel, and
K is the gain coefficient. Corresponding to the HSV color space, the adjustment
formula of the saturation channel can be derived:

S′ =
M ′(x) − N ′(x)

M ′(x)
= 1 −

N(x) · K
N(x)

M(x) · K
M(x)

= 1 − (1 − S) · M(x)
N(x)

(2)

where S′ is the saturation channel after adjustment. We adjust the saturation
channel according to Eq. 2.

3.2 Brightness Adjustment Branch

Inspired by [8], we perform a parameters estimation network to estimate a set
of best-fitting parameters of the pixel-wise light enhancement curve to adjust
the brightness, as shown in the red box in Fig. 2. The module maps all pixels of
the V channel by applying the curve parameters iteratively to obtain the final
enhanced V channel. The iterative process is as follows:

In(x) = In−1(x) + Pn(x) · In−1(x) · (1 − In−1(x)) , n = {1, 2, 3, 4} , (3)

where x denotes pixel coordinates, n is the number of iterations, Pn(x) is a
parameter map with the same size as the given V channel. In(x) is the result
of each iteration, and I0(x) is the V channel of the original low-light image. We
perform four iterations on the input V channel.

Unlike [8], we designed a multi-scale network to extract the input brightness
information more effectively. Moreover, we only adjust the brightness in the V
channel instead of in the RGB color channel. The parameter estimation network
downsamples the input to 1/2, 1/4, and 1/8 size and then passes that through five
layers of skip-connected inception module and ReLU, respectively. The features
of the smallest size are upsampled and gradually fused with the features of larger
size to obtain the parameters Pn(x) of the curve. Finally, the iterative mapping
is performed according to Eq. 3 to obtain the output. The inception module is
shown in the green box of Fig. 2, which consists of parallel 1×1 convolution, 3×3
convolution, and horizontal and vertical Sobel filters.

3.3 Noise Suppression Branch

To obtain a relatively clean image and retain the edge and detail information of
the input image, we perform preliminary denoise on the original image through
the noise suppression branch. As shown in the lower branch of the Fig. 2, we
use BM3D [6] as an initial denoise method. This branch can be replaced by any
denoise method, and the denoise result will affect the final image quality.
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3.4 Fusion Module

We design an unsupervised guided filtering network to fuse different branches in
the parallel framework. We use the image with sharp edges obtained by the lower
branch in the parallel framework to guide the images with correct brightness
and saturation obtained by the upper branch for fusion, which removes noise
and retains the proper brightness and saturation information.

Trainable Guided Filter. Traditional guided filtering [9] assumes that the
guide and output images are local linearly correlated within the filter window.
Suppose q is a linear transformation of guide image G in a window ωk centered
on pixel k:

qi = ak · Gi + bk ,∀i ∈ ωk , (4)

where ak, bk are linear coefficients. As shown in the yellow box in Fig. 2, the
guided filter fusion module takes the noisy image and the guide image as the
input. It uses the five layers skip connected inception module to obtain the
corresponding linear coefficients ak and bk, and calculate the output result of
the fusion module according to Eq. 4.

Unsupervised Training Framework. The existing trainable guided filters
[26] are almost all supervised. We split the input noise image according to the
neighborhood of each 2 × 2 window and randomly select two adjacent pixels in
each window as the split two images N1 and N2. So we get two images with
independent conditions but similar contents. According to [11], the optimization
problem is transformed into:

arg min
θ

E ‖fθ(N1) − N2‖22 , (5)

where fθ is the trainable guide filter denoising network parameterized by θ. Thus
we implement unsupervised trainable guided filtering.

3.5 Loss Function

To train the Brightness Adjustment Branch, we use an exposure control
loss Lexp to measure the distance between the average intensity value Ik of a
local region to the well-exposedness level E:

Lexp =
1
R

R∑

k=1

‖Ik − E‖ , (6)

where R represents the number of non-overlapping local regions of size 16 × 16,
and we set E to 0.6 in our experiments. To preserve the monotonicity relations
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Fig. 3. Subjective results comparison on the LOL dataset [25], the MIT-Adobe 5K
dataset [2] and the SICE dataset [3]. RN means RetinexNet, ZDCE means ZeroDCE.
Compared with other methods, our method performs better in saturation and noise
suppression.

between neighboring pixels, we add an illumination smoothness loss Ltv to each
curve parameter map Pn:

Ltv =
1
T

T∑

n=1

(∇xPn + ∇yPn)2 , (7)

where T is the number of iterations, ∇x and ∇y represent the horizontal and
vertical gradient operations, respectively. The total loss for training the param-
eter estimation network can be expressed as: Ltotal1 = Lexp + λtvLtv, where λtv

is the weight of the loss.
To train the Fusion Module, we use reconstruction loss Lrec to ensure

structural similarity between the noisy input and output:

Lrec = ‖fθ(N1) − N2‖22 . (8)

Since the ground-truth of N1 and N2 are different, directly applying reconstruc-
tion loss is inappropriate and leads to over-smoothing. So we add a regularization
term loss Lreg [11]:

Lreg = ‖fθ(N1) − N2 − (O1 − O2)‖22 , (9)

where O1 and O2 represent the two images split from the output. The total loss
for training the trainable guided filter can be expressed as: Ltotal2 = λrecLrec +
λregLreg , where λrec and λreg are the weights of the losses.
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4 Experiments

4.1 Experimental Setting

We conduct experiments on the LOL dataset [25], the MIT-Adobe 5K [2] dataset,
and the SICE dataset [3]. We randomly sample 100 images from the MIT dataset
for testing and others for training. The SICE dataset is a multi-exposure dataset
consisting of 7 (or 9) pictures in various exposure levels for each scene. We select
the first picture with the worst exposure in each scene in part II as the test
images and select the third (or fourth) image as ground-truth.

Fig. 4. Detailed comparison of existing methods on the LOL dataset.

4.2 Implementation Details

We implement our framework using PyTorch on an NVIDIA 3090 GPU and
separately train the brightness adjustment module and the fusion module. We
adopt the Adam optimizer with a learning rate of 0.0001. The cropped image
and batch sizes are set to 512 and 8, respectively. λtv is set to 200, λreg and λrec

are both set to 1.
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Table 1. Quantitative results in terms of four full-reference metrics including PSNR,
SSIM, LPIPS and MSE, and three no-reference metrics including LOE, NIQE, and
EME on the LOL, MIT-Adobe 5K(MIT) and SICE datasets. The best result is shown
in red, and the second-best result is blue.

Supervised Learning Methods Unsupervised Learning Methods
Dataset Metrics

RetinexNet DRBN KinD EnGAN ZeroDCE RUAS SCI Ours

PSNR↑ 17.5624 18.7139 20.0795 17.5713 16.8937 16.4268 18.2586 20.0607

SSIM↑ 0.6517 0.7344 0.8297 0.6537 0.5579 0.5039 0.5414 0.7132

LPIPS↓ 0.2730 0.1959 0.1776 0.2576 0.2701 0.2144 0.2892 0.2284

MSE↓ 1339.01 1871.47 1217.12 1978.54 1941.93 2543.65 1747.39 1222.38

LOE↓ 404.70 590.02 280.71 398.44 306.85 219.16 243.67 234.57

NIQE↓ 2.8993 3.6271 3.4088 3.2358 4.8792 4.1962 4.8968 3.1138

LOL

EME↑ 9.7901 10.1642 10.2616 15.0098 14.6715 14.6123 16.8015 16.8881

PSNR↑ 15.7520 17.0130 18.7865 16.2985 18.0688 18.1560 19.3030 20.5714

SSIM↑ 0.6625 0.8013 0.8022 0.7953 0.7823 0.8022 0.8176 0.8046

LPIPS↓ 0.1763 0.2360 0.1495 0.1753 0.1547 0.1441 0.1312 0.1341

MSE↓ 1526.35 1159.68 1138.72 1195.00 1210.00 1368.95 1057.32 1025.54

LOE↓ 496.13 419.55 334.81 433.45 72.11 131.07 89.74 58.72

NIQE↓ 2.5585 2.8678 2.4399 2.3871 2.5323 3.8390 2.4482 2.4181

MIT

EME↑ 5.3471 4.5468 7.4647 6.5967 7.2509 5.2263 8.7124 8.7796

PSNR↑ 17.2503 20.1136 21.3907 18.6267 19.9799 15.1072 20.7242 21.9516

SSIM↑ 0.7718 0.8183 0.8637 0.8476 0.8353 0.7295 0.8505 0.8618

LPIPS↓ 0.1974 0.1523 0.1162 0.1312 0.1408 0.2440 0.1416 0.1353

MSE↓ 1416.75 716.69 541.25 1123.68 756.43 2441.73 771.33 514.89

LOE↓ 645.69 515.43 409.92 527.92 436.33 485.80 408.06 405.83

NIQE↓ 2.7035 2.7721 2.5302 2.5556 2.6319 3.8231 2.5181 2.5152

SICE

EME↑ 8.2007 8.5509 10.6299 9.7228 9.4614 9.5468 12.5989 9.8908

4.3 Experimental Results

We compare our method with three advanced supervised learning methods,
including RetinexNet [25], DRBN [28], and KinD [30], and four unsupervised
learning methods, including EnGAN [12], ZeroDCE [8], RUAS [17], and SCI
[19].

Qualitative Evaluation. We present the visual comparisons on typical low-
light images in Fig. 3. Most of the previous methods cannot recover global illumi-
nation and structure well, such as RetinexNet [25] and RUAS [17], and uneven
enhancement may occur in some areas of the image, such as KinD [30] and RUAS
[17].Meanwhile, as shown in Fig. 4, most existing methods do not correct satu-
ration and suppress noise well, such as DRBN [28], EnGAN [12], ZeroDCE [8],
SCI [19] and RUAS [17]. Comparatively, our method achieves good perceptual
visual quality, with proper illumination, saturation, as well as clean and sharp
details.

Quantitative Evaluation. As shown in Table 1, We perform quantitative com-
parisons of different methods, and we use four full-reference metrics including
PSNR, SSIM [24], LPIPS [29], and MSE, three no-reference metrics including
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EME [1], LOE [22] and NIQE [20]. Our method achieves excellent results in most
indicators compared with the existing methods. The results show that we have
advantages in light restoration and structural restoration.

4.4 Ablation Study

In order to investigate the effectiveness of different components of our method, we
conduct ablation experiments on several key components, including the proposed
module and our proposed parallel framework.

Contribution of Each Branch. To verify the effectiveness of each branch,
we conduct ablation studies on the LOL dataset [25]. Subjective experimental
results and quantitative comparisons are shown in Fig. 5 and Table 2. The image
will be very dark without the brightness adjustment branch. The overall image
will be greenish without the saturation adaptive adjustment branch. Without
the fusion module, the image will have severe noise.

Fig. 5. Ablation on different branches/modules and frameworks. The first to sixth
panels: (a) w/o brightness adjustment branch. (b) w/o saturation adaptive adjustment
branch. (c) w/o fusion module. (d) full branches and module. (e) cascade framework.
(f) our proposed parallel framework.

Effect of Parallel Framework. To verify the framework’s effectiveness, we
compare our proposed parallel framework with a “two-stage” cascade framework.
We compare the experimental results of the cascade framework that removed the
original noise suppression branch and changed it to self-guided filtering based
on the output results of the original three branches. From Fig. 5 and Table 2, we
can observe that our results are less noisy.
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Table 2. Ablation on different branches/modules and frameworks. The best results
are highlighted in bold. BAB means brightness adjustment branch, SAAB means sat-
uration adaptive adjustment branch, FM means fusion module.

framework w/o LOE↓ NIQE↓ EME↑ PSNR↑ SSIM↑ LPIPS↓ MSE↓
parallel BAB 308.93 4.7216 13.129 7.8010 0.2018 0.3533 12524.61

parallel SAAB 245.828 3.6069 11.495 19.300 0.7091 0.2797 1449.928

parallel FM 235.224 5.0333 12.12 19.1773 0.5458 0.3067 1347.22

cascade \ 246.522 4.992 11.253 19.6521 0.6755 0.2364 1289.655

parallel \ 234.573 3.1138 16.888 20.0607 0.7132 0.2284 1222.377

5 Conclusion

In this work, we propose a parallel unsupervised LLIE framework to improve
brightness, correct saturation, and denoise, respectively. We designed a satura-
tion correction branch based on the Gray World Algorithm and Von Kries model
to correct saturation. In addition, we designed an unsupervised guided filtering
module at the end of the parallel framework to fuse different branches. Various
experiments show that our methods achieve better results quantitatively and
qualitatively compared with the state-of-the-art unsupervised methods.
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