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Abstract. With the possibility of deceivingdeep learningmodels by appropriately
modifying images verified, lots of researches on adversarial attacks and adversarial
defenses have been carried out in academia. However, there is few research on
adversarial attacks and adversarial defenses of point cloud semantic segmentation
models, especially in the field of autonomous driving. The stability and robustness
of point cloud semantic segmentation models are our primary concerns in this
paper. Aiming at the point cloud segmentation model RangeNet++ in the field of
autonomous driving, we propose novel approaches to improve the security and
anti-attack capability of the RangeNet++ model. One is to calculate the local
geometry that can reflect the surface shape of the point cloud based on the range
image. The other is to obtain a general adversarial sample related only to the
image itself and closer to the real world based on the range image, then add it
into the training set for training. The experimental results show that the proposed
approaches can effectively improve the RangeNet + +’s defense ability against
adversarial attacks, and meanwhile enhance the RangeNet++ model’s robustness.

Keywords: Adversarial attacks · Adversarial defenses · Semantic
segmentation · RangeNet++ · Local geometry · Adversarial samples

1 Introduction

As part of the 3D point cloud scene understanding, semantic segmentation is a very
important task in the field of autonomous driving. Semantic segmentation assigns a
class label to each data point in the input modality, where a data point can be a pixel
from a camera or a 3D point acquired from a radar. A stable semantic segmentation
model can greatly improve the safety of autonomous driving systems. However, most
semantic segmentation models perform poorly when facing the adversarial attacks and
they have fairly weak adversarial defenses.

In recent years, there are many researches on applying adversarial attacks and adver-
sarial defenses to various practical scenarios. Weng et al. [3] used adversarial attacks to
findflaws in imageQRcodes.Wuet al. [4] summarizedmethods for imagegeneration and

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Y. Zheng et al. (Eds.): ACCV 2022, LNCS 13848, pp. 60–70, 2023.
https://doi.org/10.1007/978-3-031-27066-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27066-6_5&domain=pdf
https://doi.org/10.1007/978-3-031-27066-6_5


Towards Improving the Anti-attack Capability of the RangeNet++ 61

Fig. 1. Velodyne HDL-64E laser scan from KITTI dataset [1] with semantic information from
RangeNet++. Best viewed in color, each color represents a different semantic class [2].

editing based on adversarial networks. Deng et al. [5] proposed a hippocampal segmen-
tation method that combines residual attention mechanism with generative adversarial
networks. However, there have been few studies on adversarial attacks and adversarial
defenses of point cloud semantic segmentation models.

The essence of adversarial attack is to generate adversarial disturbances that canmis-
lead model judgments and add them to samples. Therefore, how to generate aggressive
and versatile adversarial samples is the focus of this research, while adversarial defense
mainly focuses on improving the robustness of the model so that the model can still
work normally in the face of disturbance. Among them, adding adversarial samples to
the training set is a commonly used method for adversarial defense.

As one of the best point cloud semantic segmentation methods in the field of
autonomous driving, the basic concept of RangeNet++ is to convert the point cloud
into a range image, and then put it into a 2D convolutional network for learning, so as to
obtain the label of the point. An example of RangeNet++ is shown in Fig. 1. However, the
semantic information about the point cloud contained in the range image is too simple,
which is not enough to support the model’s good performance under adversarial attacks.
Therefore, we can enrich the semantic information of the point cloud by obtaining the
local geometric features of the points, so that the model has better robustness.

In this paper, we improve the security and anti-attack capability of the RangeNet++
model in two ways.

One is to add adversarial samples to the training set. We propose a method to obtain
perturbation based on the surrounding local information of each point in the range image.
Considering the fact that the semantic segmentation model classifies each point based on
the feature differences between different objects, our method of generating adversarial
samples calculates the average feature difference of each point and all points around it
based on the range image. By adding the feature difference between each point and its
surrounding points, the feature difference will become blurred, which makes it difficult
for the semantic segmentation model to obtain the unique feature values of different
objects and ensures the effectiveness of adversarial samples.

The other method is designed in such a way that instead of directly extracting local
features for each point in the point cloud, we will calculate the difference between the
normal vectors of different triangular patches formed by each point in the image and the
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surrounding points according to the range image to obtain the local geometry features.
Such features reflect the topographic features of the 3D point cloud surface, thereby they
will be increasing the semantic information of the point cloud.

In summary, contribution of our work are as follows:

i) A method for generating local features of point cloud based on range image and
reflecting the geometric shape of point cloud.

ii) A method for generating general adversarial samples based on range image that are
closer to the real world and adding them to the training set.

iii) Adversarial attack against RangeNet++ added to our method and original
RangeNet++.

The rest of this paper is organized as follows. Section 2 presents a brief introduction
to related works of local features of point clouds and adversarial examples. In Sect. 3, we
describe the methodology of local feature extraction, and the generation of adversarial
samples are also detailed. In Sect. 4, experimental results and the analysis are presented.
Section 5 concludes this paper.

2 Related Work

2.1 Local Features of Point Clouds

Point cloud features are mainly divided into single point features, local features and
global features. Single point features only focus on their own details, ignoring global
information, and global features cannot describe the details sufficiently. In contrast, local
features strike a balance between these two aspects.

Rusu et al. [6, 7] proposed to use point feature histograms (PFH) to obtain the
shape information of the local surface. Using this method to describe point cloud fea-
tures can extract rich information, but the computational complexity is high. It is also
computationally expensive, especially for feature extraction tasks on large point cloud
data.

In order to solve this problem, the Fast Point Feature Histograms (FPFH) method
[8] reduces the computational complexity of the algorithm at the expense of reducing
feature information by simplifying the interconnection characteristics of the PFH center
point neighborhood, but it is simply affected by the point cloud sampling density. The
feature distribution will be quite different when facing different sampling scales.

The Viewpoint Feature Histogram (VFH) [9] operator uses the angle between the
viewpoint direction and the normal to the sampling point as a feature. However, VFH
loses the property of rigidly maintaining the relative positional relationship between
point clouds, and has poor performance in point cloud segmentation and registration.

Splash descriptor [10] describes local features by calculating the angle component
between the normal vector of the key point and the normal vector of all points in the
neighborhood.

Inspired by these works, we take the points in the range image as the key points,
calculate the normal vectors of several triangular patches formed between itself and
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other key points in the neighborhood, and take the cosine value of any included angle
between two normal vectors as the local feature of the point cloud. This feature can
satisfactorily describe the surface shape of the point cloud in the neighborhood of the
key points, better utilizing the morphological features of the point cloud.

2.2 Generation of Adversarial Examples

The key to adversarial sample generation is to find suitable and effective adversarial
maneuvers. The fast gradient sign method (FGSM) proposed by Ian J et al. [11] max-
imizes the loss function to obtain the corresponding perturbation by backpropagating
the gradient. Based on this, the DeepFool method proposed by Moosavi et al. [12]
aimed at the selection of artificially specified perturbation coefficients in FGSM. This
method firstly obtains good-performance adversarial samples by calculating the mini-
mum necessary perturbation. Algorithms such as FGSM and DeepFool are all focusing
on adversarial samples with different perturbation degrees for each adversarial sample
generated by a single sample. In a work based onDeepFool, Moosavi et al. [13] extended
it to propose a noise independent of the input image, known as Universal Adversarial
Perturbations (UAP), which could destroy most natural images and would become a
universal adversarial noise that could be trained offline and generate interference to the
corresponding output of a given model online. These methods all rely heavily on the
model to be attacked, and the adversarial disturbances generated for a certain model
often perform poorly for other models and have poor scalability.

Xiang et al. [14] firstly proposed an adversarial sample generation method for
3D point clouds, and several new algorithms to generate adversarial point clouds for
PointNet. However, on the one hand, the direct manipulation based on 3D point cloud
will result in a large amount of computation. On the other hand, it is mainly used for
adversarial sample generation of a single object and does not work well in point cloud
segmentation where multiple objects exist.

On the basis of the above work, we herein propose a model-independent adversarial
perturbation generationmethod for the semantic segmentationmodel. By calculating the
difference between each point and its neighboring points in the image, the perturbation
is generated to make the points in the image similar, so that the boundaries of each object
become blurred in the process of semantic segmentation then the effective adversarial
sample can be obtained.
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Fig. 2. The flow of our model. (A) convert the point cloud into a range image according to
the method in RangeNet++, (B) extract local features based on the range image, (C) generate
adversarial samples based on the range image, and put the new range image into the network of
RangeNet++.

3 Methods

Our work is an improvement of the RangeNet++ model, which is carried out on the
basis of range image, so we will first review the range image processing component in
RangeNet++ in this section, and then introduce the local feature extraction method and
adversarial samples generation method.

Our model is as follows: (A) convert the point cloud into a range image according
to the method in RangeNet++; (B) extract local features based on the range image; (C)
generate adversarial samples based on the range image, and then put the new range
image into the network of RangeNet++. See Fig. 2 for details.

3.1 Mapping of Points to Range Image

For the points in the point cloud, the contained information of each of them includes
coordinates (x, y, z) and remission. To obtain accurate semantic segmentation of point
clouds, RangeNet++ converts each point cloud into a depth representation. To achieve
this, it converts each point pi = (x, y, z) to spherical coordinates by mapping Π : R^3
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→ R^2, and finally to image coordinates, we denote the height and width of the range
image by H, W, while using u, v to represent the mapping of each point to the range
image, then this mapping can be defined as:

(u
v

)
=

(
1
2

[
1 − arctan(y, x)π−1

]
W[

1 − (
arcsin

(
zr−1

) + fdown
)
f −1

]
H

)
(1)

where, r = √
x2 + y2 + z2 represents the depth of each point, and f = fup + fdown is

the vertical field-of-view of the sensor. With this approach, we get a list of (u, v) tuples
containing a pair of image coordinates for each pi. For each pi, we extract its distance
r, its x, y, and z coordinates, and its remission, and store them in the image, ultimately
creating a [5 × h × w] tensor.

3.2 Local Feature Extraction

It should be noted that, after we obtain the mapping of each point on the range image,
for the multiple points contained in each pixel, RangeNet++ selects the minimum depth
point to represent this pixel, since there are multiple points mapped to the same pixel.

In order to ensure the proposed time complexity advantage of theRangeNet++model,
we did not choose to directly extract local features for each point in the point cloud, but
relied on the corresponding points that their index could be used to easily find in the
range image so as to quickly obtain its neighbor points, thus completing the extraction
of local features.

Specifically, we first extract the neighborhood points of each point pi in the range
image in four directions: up, down, left, and right, namely pu, pd , pl , pr . With pi and the
four points around it, we can get four vectors:

⎧⎪⎪⎨
⎪⎪⎩

nui = pu − pi
ndi = pd − pi
nli = pl − pi
nri = pr − pi

(2)

Then, we use “×” to denote the Vector product. Meanwhile, we can get four planes,
and each of which includes pi and two non-collinear neighbor points: (pi, pl , pu), (pi,
pr , pu), (pi, pl , pd ), (pi, pr , pd ). We use their normal vectors to represent them:

⎧⎪⎪⎨
⎪⎪⎩

n1 = nli × nui
n2 = nri × nui
n3 = nli × ndi
n4 = nri × ndi

(3)
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n1, n2, n3, n4 represent the directions of the four planes. Then, we calculate the angle
between these normal vectors, here we use the cosine of the angle to represent the angle:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θ1 = cos < n1,n2 >

θ2 = cos < n1,n3 >

θ3 = cos < n1,n4 >

θ4 = cos < n2,n3 >

θ5 = cos < n2,n3 >

θ6 = cos < n3,n4 >

(4)

Finally, we add these 6 values to the [5, H, W] tensor created in the previous section
to get a [11, H, W] tensor and put it into the RangeNet++ semantic segmentation
convolutional network for learning.

3.3 The Generation of Adversarial Samples

Ourwork on adversarial sample generation is based on range image. The basic concept is
as follows: firstly, obtain the difference between each point in the range image and each
point in the surrounding neighborhood, and then multiply it by a perturbation parameter,
which determines the strength of the adversarial attack, so as to obtain an adversarial
perturbation, and generate adversarial samples.

For the semantic segmentation model, its essence is to find the feature differences
between different objects. The smaller the differences are, the more blurred the different
objects become, and the semantic segmentation model is more difficult to play a role.

Therefore, in the first step, we need to calculate the difference between each point
pi in the range image and its surrounding points pj(j = 1, 2, . . . , 8):

dj = pj − pi (5)

When getting the difference value from each surrounding point, we average these
difference values to generate the average difference value di:

di = 1

8

∑8

j=1
dj (6)

di can be used as an adversarial perturbation for the semantic segmentation model.
In order to ensure that the adversarial samples are effective, we must have some

control over the adversarial perturbation, so that it cannot be observed. Therefore, we
set the perturbation parameter α, which is in the range [0.0, 1.0]. For the difference value
obtained in Eq. (6), we multiply it by α as the final perturbation value. Then, we set
the perturbation parameter α in the range [0.0, 1.0]. For the difference value obtained in
Eq. (6), we multiply it by α as the final perturbation value:

ri = α ∗ di (7)

Finally, the perturbation generated by each point is added to the sample, and the
corresponding adversarial sample is obtained.
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3.4 Adversarial Attacks Against Models

In the previous subsection, we obtained adversarial examples based on range image.
Using these adversarial examples, we design adversarial attacks against RangeNet++
and our model. The adversarial attack mainly consists of two parts. The difference
between the two parts lies in the selection of the perturbation parameters α. In the first
part, for each range image, we randomly select the perturbation parameters in the range
of [0, 1] to achieve a more comprehensive attack. In the second part, we set the same
perturbation parameters to conduct a more targeted attack on the model.

Table 1. IoU [%] before and after adversarial attack.

Approach RangeNet++ RangeNet++
+
Local Feature

RangeNet++
+
Local Feature
+
Adversarial Samples

State Before After Diff Before After Diff Before After Diff

Car 80.2 60.1 20.1 79.1 67.1 12.0 80.2 79.8 0.4

Bicycle 16.4 7.5 8.9 15.9 7.2 8.7 16.6 12.4 4.2

Motorcycle 34.5 10.6 23.9 34.2 20.3 13.9 30.6 29.8 0.8

Truck 3.5 1.7 1.8 2.0 0.9 1.1 4.8 3.5 1.3

Other-vehicle 21.3 3.7 17.6 22.0 11.4 10.6 21.0 20.6 0.4

Person 15.1 10.8 4.3 12.3 8.8 3.5 13.9 14.1 −0.2

Bicyclist 35.4 16.8 18.6 33.8 25.5 8.3 33.9 33.6 0.3

Motorcyclist 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Road 89.8 73.0 16.8 91.0 77.1 13.9 90.1 90.3 −0.2

Parking 49.7 27.7 22.0 52.0 28.1 23.9 48.9 48.7 0.2

Sidewalk 76.2 49.6 26.6 77.9 54.7 23.2 76.6 76.9 −0.3

Other-ground 0.0 0.1 −0.1 0.1 0.5 −0.4 0.0 0.0 0.0

Building 76.5 60.9 15.6 77.2 73.0 4.2 77.1 77.0 0.1

Fence 46.1 22.4 23.7 44.6 25.8 18.8 48.7 48.5 0.2

Vegetation 75.0 50.6 24.4 76.0 63.4 12.6 75.9 76.0 −0.1

Trunk 37.8 34.3 3.5 39.5 37.3 2.2 32.0 32.6 −0.6

Terrain 61.5 38.5 23.0 64.9 45.5 19.4 64.1 64.1 0.0

Pole 27.6 24.3 3.3 31.6 28.5 3.1 29.6 29.2 0.4

Traffic-sign 27.2 20.7 6.5 29.4 26.3 3.1 25.3 25.2 0.1

MeanIoU 40.7 27.0 13.7 41.2 31.7 9.5 40.5 40.1 0.4

MeanAcc 83.4 67.7 16.6 85.0 74.5 10.5 84.9 84.9 0.0
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4 Experiments and Results

Dataset: We use SemanticKITTI as experiment dataset, which is a sub-dataset of KITTI
in the direction of semantic segmentation. It annotates all sequences in the KITTI Vision
Odometry Benchmark and provides dense point-by-point annotations for the full 360°
field of view of the automotive LiDAR used in [2]. It includes a total of 22 sequences,
of which sequences 00-10 are the training set and sequences 11-21 are the test set.

Parameters: To get objective and fair results, we train RangeNet++ and our model
with the same parameters. We choose the sequences 00-05 as the training set, 07-10 as
the test set, and 06 as the validation set. Meanwhile, we train each model for 100 epochs.
We employ random perturbation parameters in the first experiment, i.e. α ∈ [0.0, 1.0],
and specific perturbation parameters in the second experiment, i.e. α ∈ {0.2, 0.4, 0.6,
0.8, 1.0}.

To ensure consistency, we chose the same evaluation metric as in RangeNet++. That
is, we use themean intersection over union (mIoU) over all classes [6], with the following
formula:

mIoU = 1

D

∑D

d=1

TPd

TPd + FPd + FNd
(8)

where TPd , FPd and FNd correspond to the number of true positive, false positive, and
false negative predictions for class d and D is the number of classes.

4.1 Adversarial Attacks with Randomly Perturbed Parameters

The first experiment aims to demonstrate the effectiveness of the two methods proposed
in this paper, that is, to improve the security and anti-attack capability of RangeNet++
in the face of adversarial attacks. Therefore, we compare the defense ability of the
original RangeNet++with the RangeNet++with only local features added and themodel
containing local features and adversarial samples in the face of adversarial attacks.

Table 1 shows the changes of the IoU of these three models before and after being
attacked. As can be seen from Table 1, compared to the original RangeNet++, the
RangeNet++ added to our method performs better in the face of adversarial attacks.
More specifically, the RangeNet++ that only contains local features is improved com-
pared to the original RangeNet++ and the RangeNet++ that includes both methods have
a higher improvement, which fully shows that our two methods are both effective in
improving the defense capability of the RangeNet++.
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Fig. 3. Experimental results: mIoU with different perturbation parameters.

4.2 Adversarial Attack with Specified Perturbation Parameters

The second experiment demonstrates the effectiveness of adversarial attacks based on
the adversarial samples proposed in this paper. Figure 3 shows the variation of mIoU
for the three models under different parameters, which represent adversarial attacks of
different strengths.

As can be seen from Fig. 3, as the perturbation parameter increases, the mIoU
of the three models gradually decreases, which proves the effectiveness of adversarial
samples. At the same time, we can find that our method has better performance in the
face of different levels of adversarial attacks, which further illustrates that our method
can improve the defense ability of the RangeNet++.

5 Conclusions

In this work, we proposed twomethods to improve the security and anti-attack capability
of the semantic segmentationmodel RangeNet++. Onewas to extract the local geometric
features of each point reflecting the topographic features of the point cloud based on
the range image. The other was to generate adversarial examples against the semantic
segmentation model based on the range image. And then we put them into the training
set. Through experiments, we demonstrated the effectiveness of these two methods.
Moreover, the adversarial attack based on our designed adversarial samples also had
good performance for the RangeNet++ model.
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