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Abstract. Federated learning (FL) enables many clients to train a joint
model without sharing the raw data. While many byzantine-robust FL
methods have been proposed, FL remains vulnerable to security attacks
(such as poisoning attacks and evasion attacks) because of its distributed
nature. Additionally, real-world training data used in FL are usually Non-
Independent and Identically Distributed (Non-IID), which further weak-
ens the robustness of the existing FL methods (such as Krum, Median,
Trimmed-Mean, etc.), thereby making it possible for a global model in FL
to be broken in extreme Non-IID scenarios.

In this work, we mitigate the vulnerability of existing FL methods
in Non-IID scenarios by proposing a new FL framework called Mini-
Federated Learning (Mini-FL). Mini-FL follows the general FL approach
but considers the Non-IID sources of FL and aggregates the gradients by
groups. Specifically, Mini-FL first performs unsupervised learning for the
gradients received to define the grouping policy. Then, the server divides
the gradients received into different groups according to the grouping pol-
icy defined and performs byzantine-robust aggregation. Finally, the server
calculates the weighted mean of gradients from each group to update the
global model. Owning the strong generality, Mini-FL can utilize the most
existing byzantine-robust method. We demonstrate that Mini-FL effec-
tively enhances FL robustness and achieves greater global accuracy than
existing FL methods when against the security attacks and in Non-IID
settings.

Keywords: Federated Learning (FL) · Byzantine-robust aggregation ·
Untargeted model attack

1 Introduction

Federated Learning (FL) is an emerging distributed learning paradigm that
enables many clients to train a machine learning model collaboratively while
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keeping the training data decentralized and users’ privacy protected [13]. Gener-
ally speaking, FL contains three steps: 1) a server broadcasts the current global
model to selected clients; 2) each client locally trains the model (called local
model) and sends back the local model updates1; and 3) the server updates
the global model by aggregating the local model updates received through a
particular aggregation algorithm (AGR).

However, the distributed nature of training data makes FL vulnerable to var-
ious attacks (such as poisoning attacks) by malicious attackers and untrusted
clients. Poisoning attack, which seeks to damage the model and generate misbe-
haviour, draws the most important threats to FL security. Through poisoning in
different training stages, poisoning attacks can lead the global model to show an
indiscriminate accuracy reduction (called untargeted attack) or attacker-chosen
behaviour on a minority of examples (called targeted attack) [13]. One popular
defence solution against the untargeted attack is introducing the byzantine-robust
aggregation rule [3,4,11,20] on the server to update the global model. By compar-
ing the client’s model updates, these aggregation rules can find and discard the
statistical outliers and prevent the suspected model uploaded from poisoning the
global model. Although most of the studies [3,20] are designed and evaluated in
an Independent and Identically Distributed (IID) setting. Assuming each client’s
data follows the same probability distribution, the training data in real-world FL
applications are usually Non-IID due to location, time, and user clusters reasons,
which make the existing byzantine-robust FL methods show little effectiveness and
even fully break when facing the state-of-the-art attack [9].

The most common sources of Non-IID are a client corresponding to a partic-
ular location, a particular time window, and/or a particular user cluster [13,15].
In terms of location, various kinds of locations factors drive the most impact
on the Non-IID of a dataset. For instance, the mammal’s distributions are dif-
ferent due to the geographic location [12], customer profiles are different due
to various city locations [18], and emoji usage patterns are different due to the
demographic locations [13]. In terms of a time window, people’s behaviour and
objects’ features can be very different at different times. For instance, the images
of the parked cars sometimes are snow-covered due to the seasonal effects, and
people’s shopping patterns are different due to the fashion and design trends. In
terms of a particular user, different personal preferences can result in a dataset
Non-IID. For instance, [5] shows students from different disciplines have very
different library usage patterns.

In this paper, we design a new FL framework, namely Mini-FL framework,
to mitigate the research gap. Mini-FL considers the main source of Non-IID
and identifies Geo-feature, Time-feature, and User feature as the alternative
grouping features. Based on the grouping feature selected, the server defines the
grouping principle through performing unsupervised learning. In each iteration,
the server first assigns the received gradients to different groups and then per-
forms byzantine-robust aggregation, respectively. Finally, the server aggregates
the aggregation outcomes (called group gradient) from each group to update the

1 In this work, we combined use “model update” and “gradient” with same meaning.
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global model in each iteration. We use Krum [3], Median [20], and Trimmed-
mean [20] as the byzantine-robust aggregation rule to evaluate our Mini-FL on
the various dataset from different Non-IID levels. Our results show that Mini-FL
effectively enhances the security of existing byzantine-robust aggregation rules
and also reaches a high level of accuracy (without attack) in the extreme Non-IID
setting. We also provide a case study to further demonstrate the effectiveness of
Mini-FL in the real world.

Our contributions are summarized as follows:

– We propose the group-based aggregation method and identify three features
(i.e., Geo-feature, Time-feature, and User-feature) as the grouping principles.

– We propose the Mini-FL framework to enhance the robustness of existing FL
methods. Our results show these methods can achieve byzantine robustness
through the Mini-FL framework even in an extreme Non-IID setting.

2 Related Work

2.1 Poisoning Attacks on Federated Learning

Poisoning attacks generally indicate the attack type that crafts and injects the
model during training time. These attacks include data poisoning attacks [2]
and model poisoning attacks [6,8,9,12,18] which are performed by poisoning
the training data owned and gradients, respectively. The model poisoning attack
directly manipulates gradients, which can bring higher attack impacts to FL.

Based on the adversary’s goals, the attacks can be further classified
into untargeted attacks [6,8,9,12,18] (model downgrade attacks) and targeted
attacks [10,16] (backdoor attacks). In untargeted attacks, the adversary aims to
reduce the global model’s accuracy and entirely ‘break’ the model by participat-
ing in the learning task. In contrast, target attacks maintain the global model’s
overall accuracy but insert ‘back door’ in minority examples. These back-doors
can result in a wrong reaction when the attacker-chosen action event occurs. For
instance, [10] can force GoogLeNet to classify a panda as a gibbon by adding
an imperceptibly small vector on the panda image; the Faster RCNN can not
detect the ‘stop’ sign that added small perturbations [16]. As the untargeted
draws lead to security threats for FL, we consider the setting of untargeted
model poisoning attacks in this study which shows as follows:

“Reverse attack” [6] and “Random attack” [8] poison the global model by
uploading a reverse gradient and a random gradient. “Partial drop attack” [8]
replaces the gradient parameter as a 0 with a given probability and subsequently
uploads the crafted gradient to poison the global model. “Little is enough attack”
[1] and “Fall of empires attack” [19] leverage the dimension curse of machine
learning and upload the crafted gradient by adding perturbation on the mean of
the gradient owned (based on the capability). “Local model poisoning attack”
[9] is a state of art attack. It infers the convergence direction of the gradients
and uploads the scaled, reverse gradient to poison the global model.
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2.2 Byzantine-Robust Aggregation Rules for FL

The FL server can effectively average and aggregate the local models received
in non-adversarial settings [17]. However, linear combination rules, including
averaging, are not byzantine resilient. In particular, a single malicious worker
can corrupt the global model and even prevent global model convergence [3].
Therefore, the existing byzantine-robust aggregation rules have been designed
to replace the averaging aggregation and address byzantine failures. Next, we
discuss the popular byzantine-robust aggregation rules.

Krum [3]: Krum discards the gradients that are too far away from benign gradi-
ents. In particular, for each gradient received, Krum calculates the sum Euclidean
distance of a number of the closest neighbours as the score. The gradient with
the lowest score is the aggregation outcome and becomes the new global model
in this iteration. As the number of the closest neighbors selected influences the
score, Krum requires the number of attackers.

Trimmed-Mean and Median [20]: Trimmed-mean is a coordinate-wise aggre-
gation rule which aggregates each model parameter, respectively. Specifically,
for a given parameter, the server firstly sorts the parameter from all gradients
received. Then, the server discards a part of the largest and smallest values and
finally averages the remaining gradients as the corresponding parameter of the
new global model in this iteration. The Median method is another coordinate-
wise aggregation rule. In the Median method, the server firstly sorts the param-
eter from all gradients received and selects the median as the corresponding
parameter of the new global model in this iteration.

Bulyan [11]: Bulyan can be regarded as a combination of Krum and Trimmed-
mean. Specifically, Bulyan first selects a number of gradients by performing
Krum (the gradient is then removed from the candidate pool once selected).
Then Bulyan performs Trimmed-mean in the gradients selected to update the
global model.

FLTrust [4]: FLTrust considers both the directions and magnitudes of the gra-
dients. Particularly, the server collects a clean dataset and owns a corresponding
model; in each iteration, FLTrust first calculates the cosine similarity between
the gradient received and owned. The higher cosine similarity gradient gains a
higher trust score and consequently participates in the weighted average with
a higher proportion. Instead of directly participating in the aggregation, each
gradient is normalized by the gradient server owned before the weighted average.

Table 1 illustrates the robustness of the existing FL methods/proposed Mini-
FL methods against different attacks under the IID/Non-IID settings. Since
these attacks (i.e., untargeted attack) aim to reduce the model’s global accuracy
indiscriminately, we use the global testing accuracy to evaluate the robustness
of FL methods.
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Table 1. The robustness of the existing FL methods against poisoning attacks

“Reverse”,“Random” “Partial” “Little”,“Fall” “Local”

IID Non-IID IID Non-IID IID Non-IID IID Non-IID

Average × × × × × × × ×
Krum � × � × O × × ×
Trimmed-Mean O × × × O × O O

Median � O � O � O O ×
Bulyan � O � O � O O O

FL-Trust � O � O � O � O

Mini Krum � � � � � � � �
Mini T-Mean � O � × � � � ×
Mini Median � � � � � � � �

Non: Non-IID, �: effective, O: partially effective, ×: ineffective.

3 Problem Setup

3.1 Adversary’s Objective and Capability

Adversary aims to reduce the model’s global accuracy or ‘fully break’ the global
by uploading the malicious gradients; this is also known as untargeted model
poisoning attacks or model downgrade attacks [10,13,16]. We consider the adver-
sary’s capability and knowledge from three dimensions: the adversary amount,
the malicious client’s distribution, and the knowledge of aggregation rule. We
assume the adversary controls some clients, called malicious clients, and we keep
the setting of the adversary number of each existing FL method that Krum:
2f + 2 < n, Trimmed-Mean: 2f < n and Trimmed-Median: 2f < n, where
f is the number of attackers, n denotes the number of all clients. The adver-
sary knows the local training data on malicious clients and can arbitrarily send
crafted local model updates to the server in each iteration. To guarantee the
generality, we assume the distribution of malicious clients and benign clients are
similar. Furthermore, we assume the adversary knows the aggregation rules but
does not know the grouping principle.

3.2 Defense Objective and Capability

We aim to develop the FL framework to achieve byzantine robustness against
untargeted attacks and embody the data minimization principle. Specifically,
the new framework does not need clients to upload further information beyond
local model updates. The server plays the defender’s role and has access to the
information naturally brought with the gradients uploaded (e.g., IP, Timestamp,
etc.). We notice some byzantine-robust aggregation rules need to know the upper
bound of the malicious clients [3,20]; we follow these settings but don’t leak
further information of malicious clients; specifically, the defender does not know
the distribution of malicious clients.
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4 Mini-FL Design and Analysis

4.1 Overview of Mini-FL

In our Mini-FL, the server assigns the model updates received into different
groups and executes byzantine-robust aggregation accordingly. Specifically, Mini-
FL follows the general FL framework but adds a new step (i.e., Grouped model
aggregation) before the Global model update. Furthermore, a prepossessing
step: Grouping principle definition is introduced before the training task starts.
Figure 1 illustrates the Mini-FL framework.

Fig. 1. Illustration of the Mini-FL framework.

To craft the malicious gradient and avoid being excluded by byzantine-robust
aggregation rules, the adversary commonly statistically analyzes the gradient
owned and calculates (or infers) the range of the benign gradients. By restrict-
ing the crafted gradient under this range, the attackers can effectively hide their
gradients in benign gradients and subsequently attack the global model. How-
ever, because most federated learning models are trained through Non-IID data,
the gradients uploaded naturally tend to be clustered due to location, time and
user clusters reason. Thus, Mini-FL firstly defined the groups and then execute
byzantine-robust aggregation accordingly. The similar behaviour of each group
brings a smaller gradient range and therefore results in a smaller attack space.
Finally, the server aggregates the outcome from each group and updates the
global model to finish the current iteration.

Fig. 2. Illustration of the Mini-FL aggregation rule.
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4.2 Mini-FL Framework

Our Mini-FL considers leveraging the Non-IID nature of federated learning to
define groups and execute byzantine-robust aggregation accordingly. Figure 2
illustrates the Mini-FL aggregation rule.

Grouping Principle Definition. Before the learning task starts, the server defines
the grouping principle (i.e., prepossessing step), which includes “grouping feature
definition” and “grouping boundaries definition”; the grouping principle could
only be defined before the learning task starts or is required to be updated.

– Grouping feature definition: The existing research [13] believes the major
sources of Non-IID are due to each client corresponding to a particular geo-
graphic location, a particular time window, and/or a particular user. For
instance, [12] demonstrates the real-world example of skewed label partitions:
geographical distribution of mammal pictures on Flickr, [13] illustrates the
same label can also look very different at different times(e.g., seasonal effects,
fashion trends, etc.).
Considering the major source of Non-IID and the features naturally carried in
server-client communication, we identify textbfGeo-feature (e.g., IP address),
Time-feature (e.g., Timestamp), and User-feature (e.g., User ID) of the local
model update as the based grouping feature to maintain the principle of
focused collection and guarantee the effectiveness of clustering.
When defining the grouping feature, the server firstly regroups the gradient
collection C by Geo-feature; the collection C should accumulate the gradients
received in a few iterations to maintain the generality. Then, we execute the
‘elbow method’ [14] to detect the number for clustering and subsequently get
the SSE (i.e., Sum of the Squared Errors, which reflected the grouping effec-
tiveness). By repeating the first two steps through replacing the Geo-feature
with Time-feature and User-feature, we can find the feature F with the lowest
SSE. Finally, we select that feature F acts as the grouping feature and the
corresponding elbow point as the number of groups.

– Grouping boundaries definition: Once the grouping feature has been
defined, we cluster the collection regrouped through unsupervised learning.
In this research, we use the K-means algorithm to execute the unsupervised
learning; the “elbow” point is assigned to the algorithm as the number of
groups. By analyzing the gradient’s feature value in different groups, the
grouping boundaries could be defined.

Grouped Model Aggregation. According to the grouping principle, the server
divides the gradients received into different groups and executes byzantine-robust
aggregation respectively. The mini-FL framework has strong generality and can
utilize most existing byzantine-robust aggregation rules. In this research, we used
‘Krum,’ ‘Trimmed-mean,’ and ‘Median’ for aggregation in this research, and the
detail of the experiments are studied in Sect. 5.



52 Y. Li et al.

Global Model Update. The server calculates the weighted mean of grouped gra-
dients (i.e., outcome from each group) and updates the global model to finish
this iteration.

4.3 Security Enhancement Analysis

In this section, we analyze the security enhancement of Mini-FL from ‘informa-
tion asymmetry’ perspective.

As discussed in Sect. 2, most existing byzantine-robust aggregation rules
can effectively detect and discard the malicious gradient if it is far (based on
Euclidean distance) from benign gradients. To guarantee the attack effective-
ness and avoid being excluded by the byzantine-robust aggregation rules, a com-
mon perturbation strategy is determining the attack direction and then scaling
the crafted gradient to stay close with benign gradients. Depending on differ-
ent knowledge, the adversary can precisely or generally infer the statistics (e.g.,
max, min, mean, and Std (Standard Deviation)) of the benign gradients and
subsequently scale the crafted gradient; Table 2 illustrates the scalier of gradient
crafted in different attacks.

Table 2. Illustration of the scalier of gradient crafted in different attacks.

Attack Crafted gradients range

“Little” [1] (μ − zσ, μ + zσ)
μ: mean, z: scalar (set 0∼1.5 in research), σ: Std.

“Fall” [19] (−zμ, −zμ)
μ: mean, z: scalar (0∼10 in research), σ: Std.

“Local” [9] (μ + 3σ, μ + 4σ) when the adversary has partial knowledge.
or (μ-4σ, μ-3σ) depends on the gradient direction

(Wmax, z ∗ Wmax) when the adversary has full knowledge. or
(z ∗ Wmin, Wmin) depends on the gradient direction

μ: mean, z: scalar(set 2 in research), σ: Std, Wmax/Wmin: the
max/min gradient value at that iteration

However, Mini-FL defines the grouping principles and clusters the gradients
received only on the server-side. The information asymmetry makes the adver-
sary hardly infer the members of different groups, much less calculate the relevant
statistical parameters to scale the crafted gradients and bypass the defense of
Mini-FL.

5 Evaluation

5.1 Experimental Setup

Dataset. We evaluate our Mini-FL framework on the MNIST [7]. To simulate
the dataset pattern in the real world, we set different Non-IID degrees when
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distributing training data. Suppose we have m groups of clients and l different
data labels; we set training data size as s and assign p∗s training examples with
label l to the client group m with probability p, then we randomly select and
assign other s−(p∗s) training data to m groups. As the parameter p controls the
distribution of training data on clients, we call p the Non-IID degree. To further
embody the source of each Non-IID distribution, we assign a feature (i.e., Geo,
Time, or User feature) for each item of local model updates.

MNIST-1.0: The MNIST [7] (Modified National Institute of Standards and
Technology) database is an extensive database of handwritten digits that
includes 60,000 training images and 10,000 testing images. To simulate people’s
different handwriting habits in different countries [13], we divide clients into five
groups; each group owns one unique IP range (reflect different countries) and
training examples with two different labels (reflect different handwriting habits).
We use MNIST-1.0 (p = 1.0) to simulate the extreme Non-IID situation (Non-
IID degree = 1.0). In other words, each group only has two different unique labels
of training examples in MNIST-1.0.

MNIST-0.75 and MNIST-0.5: We use MNIST-0.75 and MNIST-0.5 to eval-
uate the effectiveness of Mini-FL in different Non-IID degrees. MNIST-0.75 and
MNIST-0.5 have similar settings as MNIST-1.0, but the Non-IID degree p is 0.75
and 0.5, respectively.

Evaluated Poisoning Attacks. Mini-FL provides a new framework to enhance
the security of FL and the excellent generalization enables Mini-FL can intro-
duce most existing byzantine-robust aggregation rules. We introduce Krum [3],
Trimmed-mean [20], Median [20] in experiments, respectively, and select the fol-
lowing poisoning attacks to evaluate the effectiveness of Mini-FL; we have not
introduced FL-Trust in Mini-FL as FL-Trust does not fit extreme Non-IID sce-
narios - Krum adapted attacks can achieve 90% attack success rate when the
root dataset’s bias probability is over 0.6 [4].

“Reverse Attack” [6]: “Reverse attack” poisons the global model through
uploading the reverse gradient. We follow the setting in [6] and set the attack
multiple as 100.

“Random Attack” [8]: “Random attack” poisons the global model through
uploading a random gradient.

“Partial Drop Attack” [8]: “Partial drop attack” masks the gradient param-
eter as 0 with probability p. As the parameter naturally carries a few 0 in our
training tasks, we enhance the attack strength by replacing the mask 0 as -1 and
setting p as 0.8 in experiments.

“Little is Enough Attack” [1]: “Little is enough attack” leverages the dimen-
sion curse of ML and upload the crafted gradient where gradient = μ + z * σ;
here, μ and σ are the mean and standard deviation of the gradients respectively.
z is the attack multiple, and we set z as 1.035, 1.535, and 2.035.
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“Fall of Empires Attack” [19]: “Fall of empires attack” uploads the crafted
gradient where gradient = −z ∗ μ. Here, μ is the mean of gradients and z is the
attack multiple; we set z as 1 and 10.

“Local Model Poisoning Attack” [9]: “Local model poisoning attack” is
a state of art attack. It infers the convergence direction of the gradients and
uploads the scaled, reverse gradient to poison the global model. We follow the
default setting in [9] for the local model poisoning attack.

Evaluation Metrics. Since these attacks (i.e., untargeted attack) aim to reduce
the model’s global accuracy indiscriminately, we use the testing accuracy to
evaluate the effectiveness of our Mini-FL. In particular, we use a part of data
owned as testing examples and test the model’s global accuracy each iteration.
The testing accuracy reflects the model’s robustness against byzantine attacks;
in other words, it is more robust if the model has a higher testing accuracy. We
further use the existing FL methods with the original framework as the baseline
to compare against.

FL System Setting. Without other specific notifications, we use the setting as
follows.

Global model setting: As this study does not aim to improve the model
accuracy through crafting the model, we use a general model for training MNIST.
This model consists of a dense layer (28 * 28) and a softmax layer (10).

Learning parameters: We set the learning rate as 0.01, the batch size as 128,
and the epoch as 50. We set the global iterations as 300. As some byzantine-
robust methods (Krum in this study) require the parameter M for the upper
bound of the number of malicious clients, we follow the setting in [3] that the
server knows the exact number of all malicious clients. However, since Mini-FL
defines groups and performs aggregation accordingly, Mini-FL further requires
the malicious clients m of each group when introducing Krum. To maintain the
generality, We set m belong with the group size:

m =
ngroup

Nglobal
M

Here, ngroup is the client number of the group (i.e., group size) and Nglobal is
the total number of clients. In other words, we do not give any privilege to Mini-
FL, and Mini-FL can only use the proportion to infer the number of malicious
clients in each group.

Clients & data setting: We assume 20 clients participate in the learning task
in each iteration, and 25% of clients are malicious. In Mini-FL, gradients are
assigned in different groups as they carry different features. To simulate the
Non-IID setting in the real world, we assign different numbers of clients to dif-
ferent groups; subsequently, the larger group has more malicious clients. Table 3
illustrates the setting detail for the MNIST (Non-IID degree = 1.0).
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Table 3. Illustration of the setting (Client & Data) for the MNIST.

Group1 Group2 Group3 Group4 Group5

Training labels 1, 2 3, 4 5, 6 7, 8 9, 0

Client ID C1, C6 C2, C7 C3, C8 C4, C9 C5, C10

C11, C16, C19 C12, C17, C20 C13, C18 C14 C15

Attackers C1, C11 C2, C12 C3 None None

5.2 Experimental Results

The results show Mini-FL achieves better robustness than the existing FL
methods. Figures 3 and 4 illustrate the global accuracy of the existing FL
methods/Mini-FL methods under different Non-IID degrees. When increasing
the Non-IID degree, the results show that most Mini-FL methods can maintain
a similar global accuracy under the same attack, while the existing FL methods
witness decreasing global accuracy. For instance, Mini-median stably maintains
around 90% global accuracy against various attacks and Non-IID settings. In
contrast, Median achieves around 85% global accuracy against various attacks
in MNIST-0.5 but drops global accuracy to 64.62%, 26.51%, 55.79%, and 53.68%
in MNIST-1.0 under “little attack”, “fall attack”, “random attack”, and “drop
attack”, respectively.

Mini-FL Achieves the Defense Objectives: Recall that the defense objec-
tives include two parts (see Sect. 3): achieving byzantine robustness against
untargeted attacks and maintaining the data minimization principle of
FL. The experimental results show our Mini-FL framework achieves these goals.

Table 4. The global accuracy of different FL/Mini-FL methods under different Non-
IID degrees and non-attack setting

MNIST-1.0 MNIST-0.75 MNIST-0.5

Avg 88.89% 90.04% 90.38%

Krum 88.25% 77.27% 87.47%

Mini Krum 89.51% 90.03% 90.09%

Median 53.60% 80.45% 86.30%

Mini median 90.34% 90.26% 90.47%

Trimmed-mean 86.88% 88.29% 89.24%

Mini trimmed-mean 90.38% 90.47% 90.51%

First, Mini-FL achieves similar global accuracy as FedAvg (average aggrega-
tion rule) in the non-attack setting, but most existing byzantine robust FL meth-
ods have a decreased accuracy. For instance, FedAvg and all Mini-FL methods
(i.e., Mini-Krum, Mini-Median, Mini-Trimmed mean) achieve over 90% global
accuracy on MNIST-0.75 while Krum, Median, Trimmed mean get 77.27%,
80.45%, 88.29%, respectively. Table 4 illustrates the global accuracy of different
FL/Mini-FL methods under different Non-IID degrees and non-attack settings.
The result shows the Mini-FL framework increases the accuracy for existing
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Fig. 3. The robustness of existing FL-methods under different Non-IID levels.

Fig. 4. The robustness of Mini FL-methods under different Non-IID levels.

Table 5. The global accuracy of FL/Mini-FL methods under different Non-IID degrees
and non-attack setting

Average Krum Mini Krum T-Median Mini T-Median T-Mean Mini T-Mean

(a) MNIST-1.0

Little (2.035) 74.71% 74.92% 89.62% 53.76% 90.37% 52.83% 89.76%

Little (1.035) 84.42% 57.78% 89.70% 64.62% 90.34% 71.95% 90.40%

Fall (10) 23.73% 77.34% 88.38% 54.98% 90.10% 61.54% 90.18%

Fall (1) 78.23% 48.97% 87.61% 26.51% 89.95% 85.41% 89.41%

Random 80.19% 88.03% 89.68% 55.79% 90.37% 76.80% 79.04%

Partial Drop 61.65% 88.05% 87.33% 53.68% 90.42% 61.47% 62.33%

Local 78.62% n/d n/d 2.85% 89.77% 64.51% 87.32%

(b) MNIST-0.75

Little (2.035) 66.89% 83.84% 89.74% 81.25% 90.22% 61.05% 89.94%

Little (1.035) 89.49% 59.55% 89.81% 80.65% 90.34% 87.33% 90.41%

Fall (10) 85.33% 77.27% 89.77% 79.15% 89.98% 64.09% 90.23%

Fall (1) 89.63% 52.43% 89.74% 77.59% 90.10% 87.51% 89.95%

Random 74.85% 88.93% 89.74% 81.28% 90.24% 80.85% 81.28%

Partial Drop 69.99% 88.83% 89.77% 81.87% 90.31% 49.36% 72.53%

Local 85.16% n/d n/d 62.31% 90.00% 75.90% 88.78%

(c) MNIST-0.5

Little (2.035) 79.15% 88.71% 90.02% 86.56% 90.36% 80.83% 90.34%

Little (1.035) 89.88% 68.06% 90.01% 86.51% 90.35% 88.80% 90.41%

Fall (10) 88.38% 89.66% 90.03% 85.88% 90.38% 71.64% 90.35%

Fall (1) 90.11% 84.03% 89.99% 85.48% 90.41% 88.77% 90.30%

Random 78.43% 89.67% 90.02% 86.60% 90.36% 80.92% 83.08%

Partial Drop 72.06% 89.66% 90.00% 86.86% 90.43% 57.11% 73.48%

Local 86.37% n/d n/d 80.68% 90.28% 76.48% 89.81%
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FL methods in the non-attack scenario. This is because benign gradients could
be very different in the Non-IID setting, which may be regarded as malicious
gradients and discarded by the existing FL method. As Mini-FL performs the
aggregation by groups, it could comprehensively collect features from different
groups and guarantee global accuracy.

Second, our Mini-FL shows better robustness and stability than most exist-
ing FL methods against different attacks and under different Non-IID settings.
Specifically, most Mini-FLs can maintain the unattacked global accuracy even
facing a state of art attack and under an extreme Non-IID setting; on the con-
trary, existing FL methods immensely decrease global accuracy and even be fully
broken. For instance, Mini-median achieves 89.77% global accuracy in MNIST-
1.0 under ‘local attack,’ while Median drops global accuracy from 53.60% to
2.85%. Table 5 illustrates the global accuracy of FL/Mini-FL methods under
different Non-IID degrees and different attacks.

Moreover, the result shows that although the Mini-trimmed mean improves
the robustness for the trimmed mean method, it achieves lower global accuracy
than other Mini-Fl methods. For instance, Mini-trimmed mean achieves 62.33%
global accuracy under drop attack in MNIST1.0 while other Mini-FL meth-
ods get around 90%. This is because the original FL method (Trimmed mean
(β = 20%)) draws a larger attack surface than Krum and Median as Trimmed
mean (β = 20%) accept and aggregates 80% gradients received while Krum and
Median accept only one gradient.

Third, Mini-FL maintains the principles of focused collection and data min-
imization of FL. All of the information used for grouping (i.e., IP address,
response time, and client ID) are naturally carried by the gradients when upload-
ing. Mini-FL neither asks clients to upload their information further nor digs
their features through reverse engineering, which provides the same privacy pro-
tection as the existing FL methods.

6 Discussion and Future Work

Mini-Krum and Bulyan: Mini-Krum and Bulyan [11] are different, although both
of them rely on performing Krum and mean/trimmed methods. Specifically,
Mini-Krum performs Krum by group and generates the weighted average as the
global model. In contrast, Bulyan globally performs Krum n times to select n
gradients and performs Trimmed-mean to generate the global model. As Bulyan
does not consider the Non-IID setting of FL, it faces a similar degraded perfor-
mance as other FL methods in Non-IID scenarios.

Non-IID sources: As Geo-feature, Time-feature and User-feature are the most
common source of Non-IID in the real world, we select these three features as
the grouping feature in this research, but we note that the Non-IID source could
be more complicated and even be a combination in some cases [13]. We leave
investigating further to explore more possibilities of Non-IID sources and improve
the Mini-FL method.
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7 Conclusion

We evaluated the robustness of existing FL methods in different Non-IID settings
and proposed a new framework called Mini-FL to enhance Federated Learning
robustness. The main difference between Mini-FL and existing FL methods is
that Mini-FL considers FL’s Non-IID nature and performs the byzantine tolerant
aggregation in different groups. Our evaluation shows that Mini-FL effectively
enhances existing FL methods’ robustness and maintains a stable performance
against untargeted model attacks and different Non-IID settings.
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