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Abstract. Face video super-resolution (FVSR) aims to use continuous
low resolution (LR) video frames to reconstruct face and recover facial
details under the premise of ensuring authenticity. The existing video
super-resolution (VSR) technology usually uses inter-frame information
to achieve better super-resolution (SR) performance. However, due to
the complex temporal dependence between frames, as the number of
input frames increases, the information cannot be fully utilized, and even
wrong information is introduced, resulting in poor performance. In this
work, we propose an alignment propagation network for accumulating
facial prior information (FAPN). We design a neighborhood information
coupling (NIC) module based on optical flow estimation and alignment,
where the current frame, the adjacent frames and the SR results of the
previous frame are locally fused. The coupled frames are sent to a uni-
directional propagation (UP) structure for propagation. Meanwhile, in
the UP structure, the facial prior information is filtered and accumu-
lated in the face super-resolution cell (FSRC), and the high-dimensional
hidden state is introduced to propagate effective temporal information
between frames along the unidirectional structure. Extensive evaluations
and comparisons validate the strengths of our approach, FAPN can accu-
mulate more facial details while ensuring the authenticity of the face.
And the experimental results demonstrated that the proposed frame-
work achieves better performance on PSNR (up to 0.31 dB), SSIM (up
to 0.15 dB) and face recognition accuracy (up to 1.99%) compared with
state-of-the-art methods.

Keywords: Face video super-resolution · Alignment propagation
network · Face recognition accuracy

1 Introduction

With the development of artificial intelligence technology, face video super-
resolution (FVSR) has been widely used in intelligent transportation, personal
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identification, public security and other fields [1]. In the field of video surveil-
lance, due to the hardware limitations of video capture equipment, it is difficult
to obtain clear frames of target face far away from equipment [2]. FVSR aims
to effectively enhance facial details in video [3], improve the accuracy of face
recognition, and provide greater utilization of raw data (Fig. 1).

Fig. 1. Visual results of our FAPN on scale factor 4. Six consecutive LR video frames
(1st row), HR frames (2st row, generated by our method) and groundtruth (GT) frames
(3st row) are shown.

Compared with single image super-resolution (SR), video super-resolution
(VSR) can achieve better performance by utilizing inter-frame information.
At present, there are two main categories to utilize inter-frame information,
alignment-based and non-alignment-based. RBPN [4] integrates the spatial and
temporal context of consecutive video frames using a recurrent encoder and
decoder module in the multi-projection stage. EDVR [5] uses deformable convo-
lution to complete frame alignment at the feature level in a coarse-to-fine man-
ner. The alignment-based approach is efficient, but it only uses information from
adjacent frames and cannot effectively use input information far from the current
frame. To effectively utilize more inter-frame information, non-alignment-based
approaches [6–8] have also been proposed. Although these recurrent structures
can accumulate more information from frames, it will inevitably introduce inter-
ference or even erroneous information useless for the current frame SR.

In the aspect of face super-resolution (FSR), rational use of strong constraints
of human face will bring abundant prior information to the SR process. In addi-
tion, if a reasonable information accumulation mechanism is used to accumulate
correct and useful information for the face region in the video, the details of
the face region can be effectively enhanced under the premise of ensuring the
authenticity of the generated face.

In this work, we propose a face video super-resolution network (FAPN), which
combines the advantages of alignment-based and non-alignment-based methods.
The current frame, the adjacent frames and the SR results of the previous frame
are locally fused, and then sent to a unidirectional propagation (UP) structure
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for propagation, which is based on optical flow estimation and alignment. In
addition, in the propagation structure, we filter and accumulate face information,
and introduce hidden state to propagate the effective information forward with
UP structure. FAPN outperforms existing state of the arts in PSNR (up to 0.31
dB), SSIM (up to 0.15 dB) and face recognition accuracy (up to 1.99%).

Our main contributions can be summarized as follows: 1) We redesigned the
inter-frame alignment structure and the propagation structure so that the cou-
pled inter-frame information could be propagated between frames after neigh-
borhood information coupling (NIC) module, thus improving the accuracy of the
model. 2) We propose an effective facial prior information filtering mechanism,
retain correct and effective information, realize the accumulation of face infor-
mation to enrich face details. 3) Combined with the prior information of human
face, we introduce the pixel loss of facial features and the loss of high-level feature
vectors of face to constrain the network training process.

2 Related Work

2.1 Video Super-Resolution

Alignment-based VSR methods mainly include motion compensation and
deformable convolution. For motion compensation, VESPCN [9] consists of an
alignment network and a fusion spatiotemporal sub-pixel network, which can
effectively utilize temporal redundancy, but with low accuracy of generated
images. EDVR [5] achieves frame alignment at the feature level in a coarse-to-
fine fashion using deformable convolutions. Alignment-based methods usually
utilize image information of adjacent frames but cannot effectively utilize input
information far from the current frame.

As for non-alignment-based approaches, DUF [6] generates dynamic upsam-
pling filters and residual images based on the local spatiotemporal neighborhood
of each pixel to avoid explicit motion compensation. This method is computation-
ally intensive and will introduce memory burden. RLSP [8] introduces a recurrent
structure, where information propagates through hidden states. BasicVSR [10]
combines feature-level alignment with the bidirectional propagation mechanism,
which has a good performance improvement. However, the bidirectional propa-
gation mechanism needs to acquire all the video sequences before VSR, which is
not easy to be applied in real-time VSR.

As for face VSR, it aims to improve the resolution of facial regions. Xin [11]
proposes a Motion Adaptive Feedback Unit (MAFC) that filters out unimpor-
tant motions such as background motions, preserves facial normal rigid motions
and non-rigid motions of facial expressions, and feeds them back to the net-
work. Yu [3] optimized the network parameters through three search strategies
of TPE, random search and SMAC, and proposed a lightweight FVSR net-
work HO-FVSR. Different from previous works, we propose an end-to-end FVSR
framework (FAPN) to accumulate correct facial information. It is demonstrated
that our face information accumulation mechanism facilitates our framework to
achieve the state-of-the-art performance.
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2.2 Facial Information Extraction and Recognition

Different from general VSR, in terms of FVSR, we mainly focus on the authen-
ticity of the generated face, with the purpose of improving the accuracy of face
recognition. In the field of face recognition, high-dimensional feature vectors are
usually used to represent facial information. Euclidean distance is calculated for
the generated feature vectors. When Euclidean distance becomes smaller, the
face similarity increases. Representative methods in this field include Openface
[12], Face recognition [13], Insightface [14] and other networks. The accuracy of
Face recognition and Insightface is 99.38% and 99.74% respectively, which can
be used for feature extraction and result evaluation.

3 Network Architecture

3.1 Framework of FAPN

VSR aims to map a LR video sequence ILR ∈ R
H×W×C to a HR video sequence

IHR ∈ R
kH×kW×C , where k is the upsampling factor, H and W are the height

and width, and C is the number of channels. We propose a Face Alignment
Propagation Network (FAPN) to filter and accumulate facial information. Our
network structure is shown in Fig. 2.

Fig. 2. Overview of the proposed framework FAPN.

Our framework takes consecutive LR frames ILR
t ∈ R

H×W×C (t = 0, 1, 2 . . .)
as input to the network. We design a neighborhood information coupling (NIC)
module to couple the information of adjacent frames in the first stage. In addition,
in order to utilize previous SR results, feedback is introduced, thus IHR

t−1 is also sent
to the NIC module at time t. In the second stage, the coupled information is sent
to a unidirectional propagation (UP) structure. By introducing the hidden state
ht(t = 0, 1, 2...), the UP structure can propagate information from the first frame
to the current frame to supplement information. FSRC stands for facial informa-
tion SR module, which is used to extract facial prior information in the network
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and generate face video streams with rich details and high authenticity. At time t,
the output of FSRC are hidden state ht and the filtered facial features IFSR

t . IFSR
t

is shuffled up to get the final output.

3.2 Neighborhood Information Coupling

Our NIC module aims to add details to the current frame. It is first coupled with
the information of adjacent frames and previous SR results, then the coupled
information is sent to the propagation structure. The NIC module is mainly com-
posed of optical flow estimation (OFE) module, alignment module and shuffling
module (see Fig. 3).

The role of OFE is to predict HR optical flow from LR frame, and the pre-
dicted HR optical flow can be used to align the frames in the neighborhood with
the current frame, which helps to reconstruct more accurate temporal informa-
tion. In NIC, we adopt OFRnet [15] for optical flow information estimation in
OFE module due to its simplicity and effectiveness:

OFHR
t−1 = OFE(ILR

t−1, ILR
t ) (1)

Fig. 3. Architecture of our NIC module.
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OFHR
t+1 = OFE(ILR

t+1, ILR
t ) (2)

where OFHR
t−1 and OFHR

t+1 represent the HR optical flow generated by OFE mod-
ule respectively.

Shuffling is used for space-to-depth conversion, which uses the scale factor k
to map LR to HR space. The operation is reversible and can achieve the inverse
mapping from HR to LR. In previous work [8,16,17] shuffling has been used to
change the spatial resolution of feature.

sLR ∈ R
H×W×C shuffle up−−−−−−→ sHR ∈ R

kH×kW×C/k2
(3)

sHR ∈ R
H×W×C shuffle down−−−−−−−−→ sLR ∈ R

H/k×W/k×k2C (4)

For ILR
t+1, input it together with ILR

t into OFE module to generate HR optical
flow OFHR

t+1. After shuffling down, the LR flow cube OFLR
t+1 is generated.

OFHR
t+1 ∈ R

H×W×C shuffle down−−−−−−−−→ OFLR
t+1 ∈ R

H/k×W/k×k2C (5)

ÎLR
t+1 = WP (ILR

t+1, OFLR
t+1) (6)

where WP (·) denotes warping operation and ÎLR
t+1 is the aligned frame at time

t + 1.
For ILR

t−1, input it together with ILR
t into OFRnet to generate HR optical

flow OFHR
t−1. Different from ILR

t+1, IHR
t−1 can be fed back to the NIC module for

auxiliary information fusion since it already has the HR result IHR
t−1 of the pre-

vious frame. The output feedback can improve the continuity between frames,
and the generated frames are more stable. It can effectively use the information
of the previous frames, which is equivalent to the accumulation of picture infor-
mation in the video. Compared with ILR

t−1, the HR frame IHR
t−1 can provide more

information to help generate IHR
t . So we warp IHR

t−1 directly using HR optical
flow OFHR

t−1 to get ÎHR
t−1 and align it to the current frame. Finally, shuffling down

ÎHR
t−1 to ensure consistency with ÎLR

t+1 and ÎLR
t .

ÎHR
t−1 = WP (IHR

t−1 , OFHR
t−1) (7)

ÎHR
t−1 ∈ R

H×W×C shuffle down−−−−−−−−→ ÎLR
t−1 ∈ R

H/k×W/k×k2C (8)

For ÎLR
t+1, ÎLR

t and ÎLR
t−1, concatenating them together to get the final output

INIC
t of the NIC module.

3.3 Face Super-Resolution Cell (FSRC)

The purpose of FSRC is to extract prior information of face, utilize the previous
NIC module and UP structure, so that the facial features can flow over time and
be selectively accumulated.
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FSRNet [18] proposed the method of combining image features and prior
information to carry out FSR. Inspired by FSRNet, we designed the following
network structure (see Fig. 4) to extract prior information of face.

The network consists of FSR encoder, FSR decoder and prior information
extraction (PIE) module. The input of the network is the video frames coupled
with the neighborhood information and the historical hidden state. After the
coupled video frame INIC

t is concatenated with the hidden state ht−1, it is sent to
the FSR encoder to extract image features. In another branch, the coupled video
frames INIC

t are sent to the PIE module to extract facial prior information. The
extracted prior information is concatenated with the image features generated
by the encoder, and then sent to the FSR decoder to generate hidden state ht

and the filtered facial features IFSR
t .

Fig. 4. Architecture of our FSRC. ‘Cat’ denotes concatenation along the channel
dimension, ‘RCAB’ denotes residual channel attention block. ‘HG’ denotes HourGlass
structure, which uses a skip connection mechanism between symmetrical layers.

Encoder-Decoder Structure. Inspired by the success of ResNet [19] in SR,
we use residual blocks for feature extraction, and the network structure is shown
in Fig. 4. The FSR encoder consists of convolutional layers, ReLU [20] layers
and two residual blocks to extract the features of the coupled video frame INIC

t

and the hidden state. The FSR decoder consists of convolutional layers, ReLU
layers and a residual block, which jointly utilizes features and prior information
for face image restoration.

Prior Information Extraction (PIE). In many CNN-based methods [21,22],
information is treated equally in all channels during feature extraction, which
makes the network lack the ability of discriminative learning. RCAN [23] pro-
poses a deep residual channel attention network to obtain better performance.
Inspired by RCAN, we add the residual channel attention block (RCAB) to
re-weight the distribution of different channels.



10 S. Bian et al.

In addition, inspired by the success of stacked heatmap regression in human
pose estimation [24] and human face image SR [18], we added an HourGlass
(HG) structure [24] after RCAB to effectively integrate cross-scale features and
preserve spatial information at different scales. The network structure of PIE is
shown in Fig. 4, consisting of convolutional layers, ReLU layers, RCAB and HG
structure.

3.4 Loss Function

Adding constraints will bring more prior information to the SR process, and can
effectively constrain the distribution of solutions, so as to obtain more accurate
results. In the process of FVSR, we can also use the features of face to constrain
the spatial distribution of solutions in a more precise way.

Due to the particularity of human face, the effective information in the face
is mainly concentrated in the facial organs, so adding additional loss functions
in the training process can achieve better results. In addition to the mean square
error (MSE) loss LMSE of SR frame and groundtruth (GT) frame, we add the
loss of facial organs Lface organ. For facial frames, MTCNN [25] is used to pre-
calibrate the specific positions of the facial organs. Then additional MSE cal-
culation is performed between HR frame and GT frame in corresponding facial
organ regions, where Φi(i = 1, 2, 3, 4) represent the left eye, right eye, nose
and mouth components respectively, ISR

t represent HR frame of time t and IHt
represent GT frame.

LMSE =
∥
∥ ISR

t − IHt
∥
∥

2

2
(9)

Lface organ =
∑4

i=1

∥
∥
∥ Φi(I

SR
t ) − Φi(IHt )

∥
∥
∥

2

2
(10)

In addition to pixel-level differences, we can also add loss of high-level infor-
mation such as image structure, texture, and style. With reference to Insightface
[14], face feature extraction can be performed on face images to generate a vector
containing face identity information. The loss function Lface vector is constructed
according to the Euclidean distance of the feature vector between HR frame and
GT frame, where Θ represents using Insightface to extract face features. Accord-
ing to this training method, more accurate recognition results can be obtained
after FSR.

Lface vector =
∥
∥
∥ Θ(ISR

t ) − Θ(IHt )
∥
∥
∥

2

2
(11)

Based on the above analysis, we design three loss terms, the MSE loss of HR
frame and GT frame LMSE , and the MSE loss of the pixels in facial features
area Lface organ and the loss of high-level feature vectors of faces Lface vector.

L = LMSE + λ1Lface organ + λ2Lface vector (12)



FAPN for Face Video Super-Resolution 11

4 Experiments

In this section, we first compare our framework to several existing VSR methods.
Then, we further conduct ablation experiments to evaluate our framework.

4.1 Dataset

Due to the lack of recognized FVSR Dataset, we make a Face Video Dataset
made by 300 Videos in the Wild (300-VW) and conducted experiments on it.
It was first used in ICCV’s face recognition contest in 2015 and can be down-
loaded at ibug.doc.ic.ac.uk. According to requirements, our dataset production
process is as follows. First, the original videos are intercepted into sequences of
consecutive frames, 32 frames per sequence, and a total of 400 video sequences
are generated. MTCNN [25] network is used to select and cut facial area of
each frame, and then adjust the size to 160*160 to obtain HR frames. Then we
performed downsampling to generate LR frames and obtain final Face Video
Dataset. In this work, we only focus on the downsampling factor of 4 since it is
the most challenging case.

Finally, We divide 400 generated video sequences into training sets, verifica-
tion sets and testing sets (see Table 1).

Table 1. Datasets used in FVSR.

Face video dataset Sequences Frames

Training 340 10880

Validation 15 480

Testing 45 1440

4.2 Implementation Details

To train our network, we randomly selected 10 consecutive frames from 32
frames. Due to UP structure, the hidden state ht−1 and the HR result IHR

t−1

of the previous frame need to be initialized. Both tensors are initialized with
zeros.

We implemented our framework in Pytorch. We set the batch size to 4,
the learning rate to 10−4, and λ1 and λ2 to 0.05 and 0.01, respectively. All
experiments are conducted on a PC with an Nvidia GTX 1080Ti GPU.

4.3 Comparisons to the State-of-the-Art

Quantitative Comparisons. We compare our proposed FAPN with the state-
of-the-art VSR methods, including VESPCN [9], FRVSR [16], SOF-VSR [15] and

https://ibug.doc.ic.ac.uk/
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Table 2. Quantitative comparisons. Best results are shown in boldface.

SOF-VSR [15] FRVSR [16] TecoGan [26] VESPCN [9] Ours

PSNR (dB) 30.75 25.25 24.85 30.00 31.06

SSIM (dB) 0.917 0.823 0.811 0.907 0.924

Face distance 0.201 0.276 0.252 0.228 0.197

TecoGan [26]. Quantitative comparison with other state-of-the-art VSR methods
is shown in Table 2.

We conducte experiments on 45 test sets and measure PSNR, SSIM and Face
distance, which measures the difference between faces. Face recognition [13] is a
concise and powerful face recognition library, tested with the Labeled Faces in
the Wild face dataset, with an accuracy rate of 99.38%. We use it to measure
the Face distance metric. Face recognition generates high-dimensional feature
vectors for face images, and then calculates the Euclidean distance between
corresponding face feature vectors of HR frames and GT frames to quantify the
differences between faces. The smaller the Face distance is, the higher the face
similarity is.

Fig. 5. Average PSNR values for the first 10 frames on the test sets. Average PSNR
values of each frame is calculated from the average of the corresponding frames on all
test sets

The experimental results demonstrated that the proposed framework FAPN
achieves better performance on PSNR, SSIM and Face distance compared with
state-of-the-art methods. Specifically, the PSNR and SSIM values achieved by
our framework are better than other methods by over 0.31 dB and 0.15 dB.
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This is because we use NIC to supplement and fuse information, and the infor-
mation provided to the UP structure is more abundant and accurate, therefore,
more reliable spatial details and temporal consistency can be recovered well.

For Face distance, we achieved an improvement of 1.99%, which indicates that
the face generated by our network is closer to real face and has high reliability.

It can be seen that the PSNR and SSIM values of the TecoGan [26] and
FRVSR [16] networks are only about 25 dB and 0.8 dB, and the Face distance
value exceeds 0.25. This is due to the non-natural generation of SR frames, with
severe facial deformation or incorrect information generation. The specific test
images will be displayed in the Qualitative comparisons. In addition, we plot
the average PSNR for the first 10 frames on the test sets. As can be seen from
Fig. 5, our network achieves the best PSNR values for each frame.

Qualitative Comparisons. A qualitative comparison between our method and
other SR methods [9,15,16,26] are shown in Fig. 6. There are three face images,
each of which is reconstructed from ten consecutive frames. The results obtained
by our network are closer to real frames than other methods, especially in facial
features.

Fig. 6. Qualitative comparisons, where all the examples come from our test sets.

It can be seen that the visual effect represented by TecoGan [26] is better, but
their PSNR, SSIM and Face distance metrics are poor. Although they generate
richer details, they are generated incorrectly, resulting in a certain degree of
distortion of human facial features. For example, the wrinkles on the forehead
of the old man in the first row are falsely generated. In addition, the mouth
of the little girl generated by TecoGan [26] and FRVSR [16] in the second row
is deformed. These additionally generated textures and deformations will make
the visual effect better to a certain extent, but will reduce the authenticity of
the generated face. From the perspective of the actual application scenario of
FVSR, it is expected to improve the accuracy of face recognition through super-
resolution. Therefore, it is necessary to include more details as much as possible



14 S. Bian et al.

on the premise of ensuring the authenticity of the generated face. So compared
with TecoGan [26] and FRVSR [16], our results are closer to the real situation.

From the 32 frames of the test sets, we selected 6 consecutive frames for test-
ing, and the results are shown in Fig. 7. Expanding horizontally in chronological
order, it can be seen that for TecoGan [26] and FRVSR [16], the faces in columns
4 and 5 are severely distorted. This is because when the inter-frame motion is
intense to a certain extent, inaccurate motion estimation and compensation not
only cannot effectively utilize the inter-frame information, but also introduce
error information and seriously interfere with SR results. Our network utilizes
NIC module, which can not only effectively utilize the information of previous
frame to supplement the information of the current frame, but also ensure the
authenticity of the introduced information to avoid unnatural generation.

Fig. 7. Qualitative comparisons of 6 consecutive test frames.

Due to UP structure, our network relies on historical input frames. Initially,
the information content available is minimal, and a certain number of input
frames are required to accumulate information. This phenomenon can be seen
in Fig. 7. In the first two frames, the texture on the forehead of the old man,
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and the eyes have a certain degree of distortion, and the facial structure of the
human face cannot be completely reconstructed. But with more information, the
textures on the facial features and forehead gradually approach the real face.

In addition, compared with SOF-VSR [15] and VESPCN [9], we slightly
improve visual effects and indicators, introducing richer details on the premise
of ensuring authenticity.

4.4 Ablation Study

Effects of NIC and FSR. We conducted 3 experiments to evaluate the effects
of NIC and FSR, respectively. Specifically, we remove the NIC and FSRC from
our network, the remaining parts constitute the first network, named ‘BasicNet
v1’. The second network, named ‘BasicNet v2’, has the same structure as FAPN
except for NIC module. In this part, we study the effects of different networks.
For fairly comparison, we train all those models with other same implementation
details.

Fig. 8. Qualitative results of ablation study.

For ‘BasicNet v1’, as Fig. 8 shows, the generated face is blurry, and the left
eye is distorted relative to GT. For ‘BasicNet v2’, the face is clear, but there exist
distortions and false generation. This is because ‘BasicNet v2’ introduced FSRC
compared to ‘BasicNet v1’, which can advance the high-level information of the
face, but without NIC, it may lead to the accumulation of wrong information.
The results of FAPN are closest to GT, achieving correct and sufficient informa-
tion extraction. The results of the quantitative comparison are shown in Table 3.
PSNR, SSIM and Face distance of ‘BasicNet v2’ are the worst, which indicates
that we should not only focus on visual effects, but should take authenticity as
an important evaluation factor. Compared to ‘BasicNet v1’, our final network
has 0.68 dB improvement in PSNR, 0.004 dB improvement in SSIM, and 0.005
improvement in Face distance.

Effects of Loss Function. In this section, we adopt 4 training methods, and
evaluated the results respectively for our PAFN network. Where ‘MSE’ stands
for MSE loss. ‘MSE+GAN’ refers to adding an adversarial network on the basis
of MSE, and forms an adversarial loss [27] with the help of the generator and
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Table 3. Quantitative results of ablation study. Best results are shown in boldface.

BasicNet v1 BasicNet v2 FAPN

PSNR (dB) 29.58 29.37 30.26

SSIM (dB) 0.918 0.823 0.922

Face distance 0.197 0.206 0.192

the discriminator. ‘MSE+VGG’ refers to using the VGG network for high-level
feature extraction of the face based on the MSE and drawing on the powerful
feature extraction characteristics of the VGGNet [28]. The loss function includes
not only the MSE loss, but also the mean squared loss of each layer of feature
maps of the VGG feature extraction module, in order to obtain the similarity
between high-level features of the image. ‘MSE+FACE’ refers to the loss function
we constructed in Sect. 3.5. We omit the different loss weight adjustment steps
for each method, and the results of each method under the optimal parameters
are shown in Table 4.

Table 4. Ablation study on the effects of different loss terms. Best results are shown
in boldface.

MSE MSE+GAN MSE+VGG MSE+FACE

PSNR (dB) 30.88 30.92 30.50 31.00

SSIM (dB) 0.912 0.913 0.902 0.913

Face distance 0.215 0.206 0.214 0.203

It can be seen that ‘MSE+FACE’ achieves the best performance on PSNR
(up to 0.08 dB), SSIM (same as ‘MSE+GAN’) and face recognition accuracy
(up to 1.46%), because it not only emphasizes the facial features, but also uses
the Insightface [14] network to extract the high-level features of the face.

5 Conclusion

In this paper, we propose an end-to-end face alignment propagation network
(FAPN) for face video super-resolution. Our NIC module first fuses adjacent
frames and previous HR frame. UP structure and FSRC are then performed to
accumulate correct facial prior information. Extensive experiments have demon-
strated that our FAPN can recover facial details and improve the accuracy of
face recognition on the premise of ensuring the authenticity of the generated
face. Comparison to existing video SR methods has shown that our framework
achieves the state-of-the-art performance on PSNR (up to 0.31 dB), SSIM (up
to 0.15 dB) and face recognition accuracy (up to 1.99%).
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