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Abstract. In PATH SET PACKING, the input is an undirected graph
G, a collection P of simple paths in G, and a positive integer k. The prob-
lem is to decide whether there exist k edge-disjoint paths in P. We study
the parameterized complexity of PATH SET PACKING with respect
to both natural and structural parameters. We show that the problem
is W [1]-hard with respect to vertex cover plus the maximum length of
a path in P, and W [1]-hard with respect to pathwidth plus maximum
degree plus solution size. These results answer an open question raised
in [17]. On the positive side, we present an FPT algorithm parameter-
ized by feedback vertex set plus maximum degree, and also provide an
FPT algorithm parameterized by treewidth plus maximum degree plus
maximum length of a path in P.

Keywords: Path set packing · Set packing · Parameterized
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1 Introduction

Xu and Zhang [17] introduced the PATH SET PACKING (PSP) problem and
discussed its various applications, such as in software defined networks. The
problem asks if for a given graph G = (V,E) and a collection P of simple paths
in G, there exists a set S ⊆ P of edge disjoint paths such that |S| ≥ k. PSP is
closely related to the well known SET PACKING problem. Xu and Zhang [17]
showed that PSP is NP -complete even when the maximum length of the given
paths is 3. Considering the optimization version of the problem, they showed
that PSP is hard to approximate within O(|E| 1

2−ε) unless NP = ZPP . They
showed that PSP can be solved in polynomial time when the input graph is a tree
and gave a parameterized algorithm with running time O(|P|tw(G)Δ|V |) where
tw(G) is treewidth of G and Δ is maximum degree. Further, they left open the
question whether PSP is fixed parameter tractable with respect to treewidth of
the input graph.
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PATH SET PACKING:
Input: An instance I = (G,P, k), where G = (V,E) is an undirected
graph, P is a collection of simple paths in G, and k ∈ N.
Output: YES if there is a set of k pairwise edge-disjoint paths in P, NO
otherwise.

1.1 Related Work

In SET PACKING we are given a list S of subsets of a universe U and it is
asked if S has k pairwise disjoint sets. The SET PACKING problem is W[1]-
hard when parameterized by solution size k [6]. For the maximum size of a set
d, FPT algorithms for the combined parameter of k and d have been obtained
[14,15]. Kernel of size O(kd−1) [1] has also been obtained. Since PSP can be seen
as a special case of SET PACKING, all the positive results obtained for SET
PACKING are also applicable to PSP.

Path Set Packing (PSP) can also be seen as the problem of finding a Maxi-
mum Independent Set on the conflict graph obtained by considering each path
as a vertex with two vertices being adjacent if the corresponding paths share an
edge. When the input graph to a PSP instance is a grid graph, the corresponding
conflict graphs are called EPG graphs [12]. It was shown in [12] that every graph
is an EPG graph. This immediately implies the following, because of well-known
results on MIS on general graphs.

Corollary 1. PSP is W[1]-hard on Grid graphs when parameterized by solution
size k.

Corollary 2. PSP doesn’t admit a 2o(|P|) time exact algorithm, assuming ETH.

Thus, it is natural to consider PSP with further or different restrictions on
the input graph G. We mention some known results of this type.

1. When G is a tree, the conflict graph is called an EPT graph [11]. Recognizing
EPT graphs is NP-Complete [10]; nevertheless MIS is solvable in polynomial
time on the class of EPT graphs [16].

2. The class of Bk-EPG graphs was defined as graphs obtained as the edge
intersection graph of paths on a grid, with the restriction that each path have
at most k bends. MIS on B1-EPG graphs is NP-hard [7]. In [3], the authors
showed that for the class of B1-EPG graphs, when the number of path shapes
is restricted to three, MIS admits an FPT algorithm, while remanining W[1]-
hard on B2-EPG graphs.
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1.2 Our Results

We studied PSP with respect to combination of both natural and structural
parameters of the input graph G and obtained following results for PSP.

Theorem 1. PSP is W[1]-hard when parameterized by vertex cover number of
G + maximum length of a path in P.

Theorem 2. PSP is W[1]-hard when parameterized by pathwidth of G + max-
imum degree of G + solution size.

Theorem 3. PSP admits an FPT algorithm when parameterized by feedback
vertex number of G + maximum degree of G.

Theorem 4. PSP admits an FPT algorithm when parameterized by treewidth
of G + maximum degree of G + maximum length of a path in P.

We note that the above positive results complement the hardness of PSP with
respect to any subset of the parameters used in the respective algorithms. The
hardness with respect to treewidth plus maximum path length, and hardness
with respect to treewidth plus maximum degree are implied by (Theorem 1
and 2). The hardness with respect to feedback vertex number is implied by
(Theorem 1). And for maximum degree plus maximum path length, we note that
the reduction from maximum independent set to PSP given in [17] to prove the
inapproximability of PSP also works to prove NP-hardness of PSP for bounded
maximum degree in G and bounded maximum length of a path in P using the
fact that independent set is NP-hard on bounded degree graphs [9].

2 Preliminaries

We use [n] to denote the set {1, 2, ...., n}. For a sequence ρ with n elements,
set(ρ) denotes the set of all the elements of ρ, and for j ∈ [n], ρ[j] is the element
of ρ at position j. All the graphs considered in this paper are simple and finite.
We use standard graph notations and terminologies and refer the reader to [5].
A path P is simple if no vertex occurs more than once in it. We denote the set
of all the edges and all the vertices of a path P by E(P ) and V (P ) respectively.

For a connected graph G = (V,E), we say that a subset S ⊆ V is a vertex
cover if V \S is an independent set in G, and we say that S is a feedback vertex set
if G[V \S] induces a forest. The minimum size of a vertex cover of G is called its
vertex cover number and the minimum size of a feedback vertex set of G is called
its feedback vertex number. For two disjoint sets A,B ⊆ V , E(A,B) is the set of
all the edges with one endpoint in A and another in B. For details on pathwidth
and treewidth, we refer to [4] . For details on parameterized complexity and fixed
parameter tractability (FPT) we refer to [4,6]. Informally, a W [1]-hard problem
is unlikely to be fixed parameter tractable.
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3 Hardness with Respect to Vertex Cover + Maximum
Path Length

Hi
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Fig. 1. Left: An example of vertex selection gadget Hi, the darkened edges forms a
long path Pxi,2,Vi,1 . Right: An example of inter gadget edges and darkened edges forms
a short path Pvi,i′,j ,vj,j′,i corresponding to an edge vi,i′vj,j′ in G.

In the k-MULTI COLORED CLIQUE (k-MCC) problem we are given a graph
G = (V,E), where V is partitioned into k disjoint sets V1, ..., Vk, each of size n,
and the question is if G has a clique C of size k such that |C ∩ Vi| = 1 for every
i ∈ [k]. It is known that k-MCC is W[1]-hard parameterized by k [8].

We will give a parameterized reduction from k-MCC to PSP. Let G = (V,E)
and {V1, ...Vk} be an input of k-MCC. Let the vertices of Vi be labeled vi,1 to
vi,n. We will construct an equivalent instance (G′ = (V ′, E′),P) of PSP (see Fig.
1 for overview). For every set Vi, we construct a vertex selection gadget Hi (an
induced subgraph of G′) as follows .

– Create a set Ci = {ci,1, ...ci,k} of k vertices, a set Xi = {xi,1, xi,2, ..., xi,n−1}
of n − 1 vertices, and connect every xi,j to ci,1 we call these edges ECi,Xi

.
– For every vi,j ∈ Vi, create a vertex set Vi,j = {vi,j,1, vi,j,2, ..., vi,j,k} of k

vertices. Connect vi,j,l to ci,l and ci,l+1 where l ∈ [k − 1], and connect vi,j,k

to ci,k. We denote these edges by ECi,Vi,j
.

Formally, Hi = (
⋃n

j=1 Vi,j ∪ Xi ∪ Ci,
⋃n

j=1 ECi,Vi,j
∪ ECi,Xi

). Further, let C =
⋃k

i=1 Ci, we add the following edges in G′.

– For 1 ≤ i < j ≤ k, we connect ci,j ∈ Ci to cj,i ∈ Cj . We call these edges the
inter gadget edges and denote them by EC . Observe that there are

(
k
2

)
inter

gadget edges (Fig. 1).

The above completes the construction of G′ = (
⋃k

i=1 V (Hi),
⋃k

i=1 E(Hi) ∪ EC).
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We now move on to the construction of the collection P.

– Let Pxi,l,Vi,j
= (xi,l, ci,1, vi,j,1, ci,2, vi,j,2, ......., ci,k, vi,j,k), that is a path start-

ing at xi,l and then alternates between a vertex in Ci and Vi,j and ending
at vi,j,k. We call such a path a long path. For every i ∈ [k], l ∈ [n − 1], and
j ∈ [n] we add Pxi,l,Vi,j

in P. Observe that there are n(n − 1) long paths
added from every Hi.

– For every edge e = vi,i′vj,j′ ∈ E where vi,i′ ∈ Vi and vj,j′ ∈ Vj , w.l.o.g.
assuming i < j, we add a path Pvi,i′,j ,vj,j′,i = (vi,i′,j , ci,j , cj,i, vj,j′,i) in P and
call such a path, a short path. There are |E| short paths added to P.

The above completes the construction of instance (G′ = (V ′, E′),P) with |P| =
|E| + kn(n − 1).

The vertex set C forms a vertex cover for G′ which is of size k2 and the
length of every long path is 2k + 1. Further, the time taken for construction is
poly(|V |); the following concludes the correctness of the reduction and proof of
Theorem 1.

Lemma 1 (�1). (G = (V,E), {V1, ...Vk}) is a yes instance of k-MCC if and
only if G′ has k(n − 1)+

(
k
2

)
edge disjoint paths in P.

4 Hardness with Respect to Pathwidth + Maximum
Degree + Solution Size

We give a parameterized reduction from k-MCC to PSP. Let G = (V,E) and
{V1, ..., Vk} be the input for k-MCC, and let the vertices of set Vi be labeled vi,1

to vi,n. We will construct an equivalent instance (G′ = (V ′, E′),P) of PSP (see
Fig. 2 for overview), the construction of G′ is as follows.

– For every Vi, we construct a gadget (subgraph of G′) which includes a vertex
selection path Pi, a vertex set Wi, and k edge verification paths P e

i,l as follows.
• Corresponding to Vi, we start with creating n + 1 paths of 2k vertices

each, one path for every vertex vi,i′ ∈ Vi and an additional path. For
every i′ ∈ [n+1], the i′ path is (vi,i′,1, ui,i′,1, vi,i′,2, ui,i′,2...., vi,i′,k, ui,i′,k).
We now combine these n + 1 paths into one path Pi by adding an edge
between ui,i′,k and vi,i′+1,1 for every i′ ∈ [n].

• We create n vertices wi,1 to wi,n and call the set of these vertices Wi. For
every i′ ∈ [n], we connect wi,i′ to vi,i′,1 and vi,i′+1,1 .

• We create k edge verification paths P e
i,1 to P e

i,k with n + 1 vertices each.
The path P e

i,j is (xi,1,j , xi,2,j , ..., xi,n,j , ci,j).
• For every j ∈ [k], i′ ∈ [n], we connect ui,i′,j to xi,i′,j . These edges connects

the vertices of vertex selection path Pi to edge verification paths P e
i,j .

1 The proofs of statements marked with a � have been omitted.
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Fig. 2. An example of path Pi, edge verification paths P e
i,1 P e

i,2, and P e
i,k, also the edges

between vertices of vertex selection paths and edge verification paths.

– After constructing above mentioned gadgets for every vertex set in {V1, .., Vk},
for 1 ≤ i < j ≤ k, we connect ci,j to cj,i. We call these edges the inter gadget
edges. Observe that there are

(
k
2

)
inter gadget edges.

The above completes the construction of G′. We now construct collection P of
size nk + |E| as follows.

– For every i ∈ [k], from the subgraph of G′ induced by V (Pi) ∪ Wi, we will
add n paths in the collection P as follows.

• Add a path li,̄i′ = (Pi(vi,1,1, vi,i′,1), wi,i′ , Pi(vi,i′+1,1, ui,n+1,k)) for every
i′ ∈ [n], where Pi(vi,1,1, vi,i′,1) is the path from vertex vi,1,1 to vi,i′,1 in
Pi (a unique path since Pi is a path). Intuitively, for every i′ ∈ [n] the
li,ī′ contains all the edges of Pi except the edges which belong to subpath
Pi(vi,i′,1, vi,i′+1,1). We call these paths the long paths.

– For every edge vi,i′vj,j′ ∈ E where i < j, we add the path si,i′,j,j′=
(vi,i′,j , ui,i′,j , P

e
i,j(xi,i′,j , ci,j), P e

j,i(cj,i, xj,j′,i), uj,j′,i, vj,j′,i) in P, where
P e

i,j(xi,i′,j , ci,j) is the path from xi,i′,j to ci,j in P e
i,j (a unique path, since P e

i,j

is a path). We note that every si,i′,j,j′ contains exactly one inter gadget edge
ci,j , cj,i. This finishes the construction of P.

Observe that the construction of (G′,P) takes time polynomial in |V |. We now
claim the bounds on pathwidth and maximum degree of G′.
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Lemma 2 (�). Pathwidth of G′ is O(k2) and maximum degree of G′ is O(k).

The following concludes the correctness of reduction and proof of Theorem 2.

Lemma 3 (�). G = (V,E) with partition V1 to Vk is a yes instance of k-MCC
if and only if P has k +

(
k
2

)
pairwise edge disjoint paths.

5 FPT Parameterized by Feedback Vertex Number +
Maximum Degree

In this section, we will show that PSP is FPT parameterized by Γ (feedback
vertex number) plus maximum degree Δ and prove Theorem 3. For a connected
graph G = (V,E), its feedback edge number, denoted by λ, is the minimum
number of edges whose removal results in a tree and equals |V | − |E| + 1. Since
the set of all edges incident on a feedback vertex set forms a feedback edge
set, we have: λ ≤ Γ · Δ. We will provide an algorithm which solves PSP in time
(λ · Δ)O(λ·Δ) ·poly(|V |+ |P|). The approach used here is a non trivial adaptation
of the approach given in [13].

5.1 Preliminaries: Defining Structures and Nice Solutions

Let G = (V,E) be the input graph. We create 3 vertices z1, z2,z3 and arbitrarily
choose a vertex v ∈ V and connect z1, z2, z3, and v to each other forming a clique
on 4 vertices in G. This modification increases the size of minimum feedback
vertex set and maximum degree by only a constant, and is safe for our purposes.
In this section we define structures (adapted from [13]) that we will need.

G[X] G[X ∪ S] G[X ∪ S ∪ T ]

Fig. 3. An example induced graphs G[X], G[X ∪ S], and G[X ∪ S ∪ T ]. The darkened
edges in rightmost graph represent core edges EX .

Definition 1. We define the vertex set T, S and X by the following process
(refer Fig. 3).

– Initialize T as an empty set and G′ = (V ′, E′) as a copy of G.
– While there is a vertex v in G′ with degree dG′(v) = 1, we set T = T ∪ {v}

and G′ = G′ − {v}.
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– X is the set of all the vertices with degree at least 3 in G[V \T ], and S is the
set V \(T ∪ X).

Observe that G[T ] is a forest, and every component of G[T ] is connected to
G[V \T ] by a single edge in G. G[V \T ] has minimum degree 2. X is a non empty
set as it contains at least z1, z2, z3, and v as they form a clique. Every vertex in
S has degree exactly 2 in G[V \T ] and G[S] is a union of paths (Fig. 3).

Definition 2. We define EX = E(G[X]) ∪ E(X,S ∪ T ), i.e. all the edges in G
with at least one endpoint in X. We will call these edges the core edges of G.

Observation 1 (�). Every component in G[S∪T ] contains at most 1 component
from G[S].

Let D be the set of all the components of G[S ∪ T ] which contain a component
of G[S]. Further, let T be the set of all other components in G[S ∪ T ], every
component C ∈ D ∪ T is a tree, and the edges which connect C to G[X], are
called external edges of C, and these edges belong to EX .

Observation 2 (�). Every component in D is connected to G[X] by two edges
in G (has 2 external edges), and every component in T is connected to G[X] by
one edge in G (has one external edge).

We call D the set of 2-external edge components, and T the set of 1-external edge
components. To bound the size of X and D, we recall the following from [13].

Proposition 1 ([13]). Let G be a connected graph of minimum degree at least
two with cyclomatic number (feedback edge number) λ. Let X be the set of all
the vertices of degree at least three in G. Then |X| ≤ 2λ − 2 and if X �= ∅, then
the number of connected components of G[V \X] is at most λ + |X| − 1.

We get the following corollary.

Corollary 3. The size of vertex set |X| = O(λ) = O(Γ · Δ), and |EX | =
O(λ · Δ) = O(Γ · Δ2). The size of component set |D| = O(λ) = O(Γ · Δ).

Definition 3. For a subgraph H ⊆ G, a path p in G is an internal path of H
if E(p) ⊆ E(H). Further, given a set P of paths in G, we define INT(H,P ) =
{pi| pi ∈ P ∧E(pi) ⊆ E(H)}, that is all the paths in P which are internal to H.

Definition 4. Let (G,P, k) be an instance of PSP, for a subgraph H ⊆ G, we
define OPT(H) as the maximum number of edge disjoint paths in INT(H,P).

Lemma 4 (�). Let (G,P, k) be an instance of PSP. And let M ⊆ P be a path
set packing of maximum size. Then there exists a path set packing M ′ ⊆ P, such
that |M ′| = |M | and the following holds

– for every component Di ∈ D, OPT(Di) ≥ |M ′ ∩ INT(Di,P)| ≥ OPT(Di)−1,
and

– for every component Ti ∈ T , |M ′ ∩ INT(Ti,P)| = OPT(Ti).
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We call such M ′ as a nice solution.

While searching for a solution, we will only search for a nice solution of maximum
size.

Proposition 2 ([16,17]). PSP can be solved in time polynomial in |V | + |P| if
the input graph is a tree.

Corollary 4. OPT(Di) and OPT(Ti) can be computed in time polynomial in
|V | + |P| for every Di ∈ D and every Ti ∈ T .

5.2 Guessing and Extending the Solution

We first guess the number of internal paths that every Di ∈ D will have in
the solution. Formally, fd : D → {0, 1} is a guessing that OPT(Di) − fd(Di)
internal paths of Di will be in the solution. For every Ti ∈ T we know that
OPT(Ti) internal paths will be in the solution. Now, it is left to optimize the
number of edge disjoint paths which are having one or more edges from EX .
Let fe : EX → [|EX |] ∪ {0}. Let Ei = {e|e ∈ EX ∧ fe(e) = i}. Let there be l
non-empty sets Ei except E0; let them be E1 to El. This is our second guess,
where we are guessing the partition of EX such that if a path p in the solution
intersects with EX , then E(p) ∩ EX should be Ei for an i ∈ [l]. Further, all the
edges of E0 are guessed to be not part of any path in the solution. Thus, we are
guessing that there will be l paths in the solution containing the edges from EX .

Definition 5. We say a path p ∈ P is of type Ei if (E(p) ∩ EX) = Ei.

Definition 6. We say that the pair (fd, fe) has a feasible solution, if there exists
a set of edge disjoint paths M ⊆ P such that the following holds.

1. For every i ∈ [l], there exists a path p ∈ M such that p is of type Ei;
2. For every Di ∈ D, |M ∩ INT(Di,M)| = OPT(Di) − fd(Di);
3. For every Ti ∈ T , |M ∩ INT(Ti,M)| = OPT(Ti).

If a pair (fd, fe) has a feasible solution M , then |M | will be equal to the sum of
OPT(Ti) over every Ti ∈ T , plus sum of OPT(Di) − fd(Di) over every Di ∈ D,
plus l. Thus, taking maximum over the size of the feasible solution of every
possible pair (fd, fe) which has a feasible solution will give us the maximum
size of a path set packing as both fd and fe are exhaustive guesses, and we are
searching for a nice solution (Lemma 4). There are at most 2O(λ) distinct guesses
fd and at most (λ · Δ)O(λ·Δ) distinct guesses fe. If we can verify whether a pair
(fd, fe) has a feasible solution in time polynomial in (|V | + |P|), then we can
bound the running time of the algorithm to (λ · Δ)O(λ·Δ) ·poly(|V |+ |P|). Given
a pair (fd, fe), we will now discuss how to verify if (fd, fe) has a feasible solution.
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Definition 7. A set of paths P is (fd, fe)-compatible if the following holds.

1. For every pair p, q ∈ P , if p �= q then p and q are edge disjoint;
2. For every p ∈ P , there exists i ∈ [l] such that p is of type Ei;
3. For every Di ∈ D, OPT(Di − E(P )) ≥ OPT(Di) − fd(Di);
4. For every Ti ∈ T , OPT(Ti − E(P )) = OPT(Ti).

Observation 3 (�). Given a path set P ⊆ P, in time polynomial in (|V | +
|P|) we can verify if P is (fd, fe)-compatible or not. Further, if P is (fd, fe)-
compatible then every subset P ′ of P is also (fd, fe)-compatible.

Lemma 5 (�). (fd, fe) has a feasible solution if and only if there exists a path
set P ⊆ P such that |P | = l and P is (fd, fe)-compatible.

Due to above lemma, to verify if (fd, fe) has a feasible solution, it will suffice to
verify if there exist an (fd, fe)-compatible path set P ⊆ P of size l.

Observation 4 (�). If there exist an Ei which contains exactly one external
edge of three or more components in D ∪ T , then no path can contain all the
edges of Ei.

If for any i ∈ [l], Ei contains exactly one external edge of three or more com-
ponents in D ∪ T , then using Observation 4, we can conclude that (fd, fe) has
no feasible solution. Thus we shall henceforth assume that no Ei where i ∈ [l],
contains exactly one external edge of three or more components in D ∪ T .

Consider an auxiliary graph H with vertex set {E1, ...., El}. In H, two vertices
Ei and Ej are adjacent if and only if there exists a D ∈ D such that one of the
external edges of D belongs to Ei and the other external edge belongs to Ej .
Every D has two external edges, and thus, every D can cause at most one edge
to be created in H. Combining this with Observation 4, we conclude that H
has degree at most two. Thus, H is a union of paths and cycles. Let there be l′

components in H which are labelled from 1 to l′, let πi be the the path formed
by the component i, that is each πi is a sequence of vertices (arbitrarily chose
the first vertex of the path in case the component i is a cycle). We call πi a type
sequence. Let Π = {πi|i ∈ [l′]}.

Definition 8. A sequence ρ of paths is a candidate for type sequence πi, if
|ρ| = |πi| and for every j ∈ [|ρ|], ρ[j] is of type πi[j].

Lemma 6 (�). There exists P ⊆ P such that |P | = l and P is (fd, fe)-
compatible if and only if for every sequence πi ∈ Π, there exists a candidate
ρ such that set(ρ) is (fd, fe)-compatible.

Since there are at most l′ ≤ |V |2 type sequences, it suffices to prove that given
a type sequence πi ∈ Π, in time polynomial in (|P|+ |V |) we can verify if πi has
a candidate ρi such that set(ρi) is (fd, fe)-compatible. Consider the following.

Lemma 7 (�). For every type sequence πi ∈ Π, let ρi be a candidate of πi.
Then, set(ρi) is (fd, fe)-compatible if and only if
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– For every j ∈ [|πi|], {ρi[j], ρi[(j + 1)mod|πi|]} is (fd, fe)-compatible.

The above lemma helps us find a desired candidate for type sequence πi in
polynomial time, since we now only need to check if the paths of adjacent types
in a sequence are (fd, fe)-compatible or not. If the size of πi is ≤ 2, then we
can verify if πi has a candidate ρi such that set(ρi) is (fd, fe)-compatible by
checking for every distinct p, q ∈ P if (p, q) is a candidate of πi as well as
(fd, fe)-compatible or not, this will take time polynomial in (|V |+ |P|). We now
move on to the case when |πi| ≥ 3.

Given a type sequence πi we create an auxiliary directed graph Hi as follows.

– For every type πi[j], create a vertex set Vj = {vp| p ∈ P ∧ p is of type
πi[j] ∧ {p} is (fd, fe)-compatible }. That is Vj contain vertices corresponding
to every path of type πi[j] which is (fd, fe)-compatible.

– For every j ∈ [|πi|], let j′ = (j + 1)mod|πi|, we add an arc (directed edge)
from vp ∈ Vj to vq ∈ Vj′ if and only if {p, q} are (fd, fe)-compatible.

Lemma 8 (�). πi has a candidate ρi such that set(ρi) is (fd, fe)-compatible if
and only if Hi has a cycle containing exactly one vertex from every Vj where
j ∈ [|πi|].

Lemma 9 (�). In time polynomial in (|V |+ |P|), we can find a cycle containing
exactly one vertex from every Vj in Hi or conclude that no such cycle exists.

The above lemma finishes the proof of Theorem 3.

6 FPT When Combining Three Parameters

Given a pair (G,P), let H be the conflict graph with vertex set P. As noted
earlier, solving PSP on (G,P) is equivalent to finding a MIS in H. We can deduce
the following fact about the structure of H.

Lemma 10 (�). If G has treewidth k and maximum degree Δ, and each path
in P is of length at most r, then the treewidth of H is at most (k + 1)Δr.

The Maximum Independent Set problem admits a O(2τ ) algorithm on graphs of
treewidth τ [2]. Hence we obtain Theorem 4 as a corollary.

Acknowledgements. We thank anonymous reviewers of this and an earlier version
of this paper for useful suggestions.
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