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Abstract. Eternal vertex cover problem is a variant of the vertex cover
problem. It is a two player (attacker and defender) game in which given a
graph G = (V, E), the defender needs to allocate guards at some vertices
so that the allocated vertices form a vertex cover. Attacker can attack
one edge at a time and the defender needs to move the guards along the
edges such that at least one guard moves through the attacked edge and
the new configuration still remains a vertex cover. The attacker wins if
no such move exists for the defender. The defender wins if there exists
a strategy to defend the graph against infinite sequence of attacks. The
minimum number of guards with which the defender can form a winning
strategy is called the eternal vertex cover number of G, and is denoted
by eve(G). Given a graph G, the problem of finding the eternal vertex
cover number is NP-hard for general graphs, and remains NP-hard even
for bipartite graphs. We have given a polynomial time algorithm to find
the Eternal vertex cover number in chain graphs and cographs. We have
also given a linear-time algorithm to find the eternal vertex cover number
for split graphs, an important subclass of chordal graphs.

Keywords: Eternal vertex cover - Chain graphs * Split graphs -
Cographs

1 Introduction

In 2009, Klostermeyer and Mynhardt introduced the Eternal vertex cover prob-
lem [8], which is a dynamic variant of the vertex cover problem. The problem is
a two player (attacker and defender) game such that given a graph G = (V, E),
the defender is permitted to allocate guards in some vertices of G so that the
vertices, where guards are allocated form a vertex cover. The attacker can attack
one edge at a time. Now for each guard, the defender can either move the guard
to one of its neighbour or can keep it untouched, such that at least one guard
from any of the endpoint of the attacked edge move through the edge to settle
at the other end point. So, the new allocation should also remain a vertex cover
to defend the next attack. If no such configuration exists then the attacker wins.
If the allocation can defend infinite sequence of attacks, then the defender wins.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 242-253, 2023.
https://doi.org/10.1007/978-3-031-27051-2_21


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_21&domain=pdf
https://doi.org/10.1007/978-3-031-27051-2_21

Some Algorithmic Results for Eternal Vertex Cover Problem in Graphs 243

The minimum number of guards with which a winning strategy for the defender
can be formed is known as the eternal vertex cover number of G, and is denoted
by evc(G). In this paper, we are assuming that at most one guard can be allo-
cated to each vertex. If C; be the allocation of the guards before the i-th attack,
then after defending the i-th attack by moving the guards to configuration C;4 1,
Ci1+1 needs to be a vertex cover (for each ¢ € N), to form a winning strategy for
the defender. If it is not then the (i 4+ 1)-th attack will be on the edge which
is not covered by C;4+1 and the attacker will win. So after reconfiguring at each
step, the vertices where the guards are allocated should form a vertex cover. This
implies eve(G) > mue(G), where mue(G) denotes the size of the minimum ver-
tex cover of G. It is also known that twice as many guards as mvc(G) can form
an eternal vertex cover by placing the guards at both end points of a maximum
matching. So, for any graph G, we have

muce(G) < eve(G) < 2muc(G)

Klostermeyer and Mynhardt have also given a characterization of the graphs
for which eve(G) = 2muce(G) is attained [8]. Babu et al. have given some special
graph classes for which it attains the lower bound [2].

Fomin et al. have shown that the problem is NP-hard [6]. Fomin et al. have
also presented a 2-approximation algorithm based on the endpoints of the match-
ing [6]. Babu et al. proved that the problem remains NP-hard even for locally
connected graphs which includes all biconnected internally triangulated planar
graphs [2]. Babu et al. recently proved that the problem remains NP-hard for
bipartite graphs [3]. Babu et al. proposed polynomial-time algorithms for cactus
graphs and chordal graphs [4,5]. Babu et al. proved that the problem can also
be solved in polynomial time for co-bipartite graphs [3]. In this paper, we fur-
ther extend the algorithmic study of the problem by proposing polynomial-time
algorithms for some special graph classes. Araki et al. have given the evc(G)
for generalized trees where each edge of the tree is replaced by some elementary
bipartite graphs [1].

The rest of the paper is organized as follows: In Sect. 2.1, all notations and
definitions used in the paper are presented. In Sect.2.2, some theorems from
existing literature are stated, which are used in the proofs presented in this
paper. In Sect. 2.3, eternal vertex cover number is provided for some special
subclasses of bipartite graphs. In Sect. 3, a linear-time algorithm is given to
compute evc(G) in chain graphs. In Sect. 4, a linear-time algorithm to compute
eve(G) in split graphs is presented. In Sect. 5, a polynomial time algorithm to
compute evc(G) in cographs is presented. Finally, Sect. 6 concludes the paper.

2 Preliminaries

2.1 Definitions and Notations

All graphs considered in this paper are finite, undirected and simple. Let G =
(V,E) is a graph. The set of neighbours of a vertex v in G is denoted by N(v).



244 K. Paul and A. Pandey

A set I C V is called an independent set of G if for all u,v € I, {u,v} ¢ E.
Degree of a vertex v € V is the number of neighbours of v in G and it is
denoted as deg(v). Given a subset V' of V, the number of neighbours of v in V'
is denoted by degy(v). A vertex v € V is said to be a cut vertex if G[V \ {v}]
is not connected. The join of two graphs H; and H is a graph formed from
disjoint copies of H; and Hs by connecting each vertex of V(Hj) to each vertex
of V(Hg)

A vertex cover S of G = (V,E) is subset of V, which contains at least
one end point from each edge in E. If S is a vertex cover then V \ S is an
independent set. A vertex cover of minimum cardinality is called a minimum
vertex cover. Cardinality of minimum vertex cover is denoted as minimum vertex
cover number or mvc(G). Given B C V, the cardinality of the minimum vertex
cover containing B is denoted as mvcp(G). If the induced graph on S, i.e. G[5]
is connected, S is called a connected vertex cover. The cardinality of minimum
vertex cover is denoted as cvc(G). The independent set of maximum cardinality
is called maximum independent set of G and its cardinality is denoted as mis(G).

Consider a graph G = (V, E) with |[V| = n and |E| = m. The guards are
needed to be allocated in order to protect against infinite sequence of attacks.
One edge can be attacked at a time and each guard either moves to a neighbour
vertex or stays on the same vertex.

A hamiltonian cycle of a graph G = (V, E) is a cycle in G, that visits each v €
V exactly once. A graph possessing a hamiltonian cycle is known as hamiltonian
graph. A graph G = (V, E) is said to be k-regular if deg(v) = k, for each v € V.

Let G = (X UY, E) be a bipartite graph. G is said to be a chain graph if
vertices in X can be ordered {z1,z2,...,7x|}, such that N(xz1) C N(z2) C
... € N(z|x|). Similarly vertices of ¥ can be ordered {y1,¥2,...,yy|}, such
that N(y1) 2 N(y2) 2 ... 2 N(yjy|). The cardinality of X and Y are denoted
by p and ¢ respectively, in this paper.

A graph G = (V, E) is called a split graph if V' can be partitioned in K and
I, such that K is clique and [ is an independent set. The class of split graphs is
an important subclass of chordal graphs.

A graph G = (V, E) is called a cograph if it can be generated from K; by
complementation and disjoint union. Recursively, the class of cographs can be
defined as follows

1. K is a cograph.
2. Complement of a cograph is a cograph.
3. G1 and G4 are cographs, then G; U G is a cograph.

Cographs can be represented as join of k graphs, G1,Ga,...,Gy where G; is
either K or disconnected graph.
2.2 Existing Results Used in This Paper

For the sake of convenience, we are stating some important theorems, which will
be used in the proofs presented in our paper.
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Theorem 1. [2] Let G = (V, E) be a graph with no isolated vertex for which
every minimum vertex cover is connected. If for every vertex v € V, there exists
a minimum vertex cover S, of G such that v € S,, then eve(G) = mwe(QG).
Otherwise, eve(G) = mve(G) + 1.

Theorem 2. [8] Let G = (V, E) be a nontrivial, connected graph and let D be
a minimum connected vertex cover of G. Then evc(G) < |D| + 1.

Theorem 3. [2] Let G = (V, E) be a graph with at least 2 vertices and X be
the set of cut vertices of G. If every minimum vertex cover S of G with X C S
is connected, then the following characterization holds: eve(G) = mve(G) if and
only if for every vertex v € V'\ X, there exists a minimum vertezx cover S, of G
such that X U{v} C S,.

Theorem 4. [2] Let G = (V, E) be a graph with no isolated vertices. If evc(G) =
muc(G), then for every vertex v € V, there is some minimum vertex cover of G
containing v.

2.3 Eternal Vertex Cover Number for Some Subclasses of Bipartite
Graph

For a k-regular bipartite graph, the following observation can be made.

Observation 1. Given a k-regular bipartite graph G = (X UY, E), for each
e € E, there exists a perfect matching that contains e.

Note that, if the initial guard allocation is X (or Y'), then attack on any edge e
can be defended by moving the guards to Y (or X) through the perfect match-
ing that contains e. So, from the Observation 1 it can be concluded that for a
k-regular bipartite graph G, eve(G) = moe(G) = | X| = |Y].

For a hamiltonian bipartite graph G = (X UY, F) (with |X| = |Y| = n), sup-
pose a hamiltonian cycle of G is vivg - - vo,v1, where X = {vy,v3,...,v2-1}
and Y = {vg, v4,...,v2,}. Then, we have the following observation.

Observation 2. Given a hamiltonian bipartite graph G = (X UY,E) and a
hamiltonian cycle vivs - - - vopv1 of G, X and Y are the only two possible mini-
mum vertex covers of G.

From Observation 2, it can be concluded that for each e € F, there exists a
perfect matching that contains e, implying eve(G) = mue(G) = | X| = |Y].

3 A Polynomial Time Algorithm for Chain Graphs

In this section, we present a linear-time algorithm to compute the eve(G) of
a given chain graph G. We also show that for a chain graph G, eve(G) €
{mvc(G), mve(G) + 1, muc(G) + 2}.

For a chain graph G = (X UY | E), we assume that it is connected and
|X| < |Y|. The eternal vertex cover problem in the class of chain graphs are
studied in 2 exhaustive cases: (i) chain graphs having pendent vertices only in
Y, and (ii) chain graphs having pendant vertices both in X and Y or only in X.
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3.1 For Chain Graphs Where only Y Can Have Pendant Vertices

In this section we will assume that either there exists no pendant vertex in the
graph or only Y contains pendant vertices. Note that a minimum vertex cover
of a chain graph can be computed in linear time [9]. Let S be a minimum vertex
cover G. If |S] < min{|X|,|Y|}, then | X N S| # ¢ and |[Y N S| # ¢. First, we
state the following observation.

Observation 3. Given a chain graph G = (X UY, E) and a minimum vertex
cover S of G; if x; € S, then x; € S, for each i < j < p and if y; € S, then
y; €S, for each 1 < 5 <.

Lemma 1. For a chain graph G = (XUY, E), if mve(G) < min{| X|,|Y|}, then
eve(G) = mue(G) + 1.

Proof. From Observation 3, if |S| < min{|X]|, Y|}, then y1,x, € S. This implies
that S is a connected vertex cover, and hence mve(G) = cve(G). Also, each ver-
tex cover of size mvc(G) is connected, as it always contain y; and x,. But there
does not exist any minimum vertex cover S’ that contains zy (If ; € S/, then
by Observation 3, X C S’, which implies that mvc(G) > | X| > |5, a contradic-
tion). So, by Theorem 1, if for a chain graph G, mve(G) < min{|X|, Y|}, then
eve(G) = mue(G) + 1 and the initial configuration of guards is {z1} U S. O

Now we consider the case when movc(G) = min{|X|,|Y|}. Again two cases
may arise, one is | X| < |Y| and the another is | X| = [Y].

Claim 1. For a chain graph G = (X UY,E), if | X| < |Y| and mvc(G) =
min{|X|, |Y|}, then mvc(G) # eve(G).

Proof. Let eve(G) = mue(G), then x,, € S, for any minimum vertex cover S of G
(by Observation 3). If the attacker attacks {z,,y,}, then the guard at z, moves
to y4 and rest of the guards are adjusted so that the new configuration remains
a vertex cover. Since in the new configuration, y, € S’, (where S’ is a minimum
vertex cover), by Observation 3, Y C S’. Which leads to a contradiction since
mue(G) < |Y]. Hence muce(G) # eve(G). O

Lemma 2. For a chain graph G = (X UY,E), if | X| < |Y], mve(G) =
min{|X|,|Y|}, and there exists a minimum vertex cover containing x,,y1, then
moe(G) = eve(G) + 1.

Proof. If for a given chain graph G, there exists a minimum vertex cover that
contains x,,y1, then cve(G) = mve(G). Since eve(G) # muc(G) and by Theorem
2, eve(@) < cve(G) + 1, we may conclude that eve(G) = mvc(G) + 1. O

Now let us consider the case when there does not exist any minimum vertex
cover that contains z,,y1, mvc(G) = min{|X|, |Y|} and |X| < |Y|. In this case,
X is the only minimum vertex cover.
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Lemma 3. For a given chain graph G = (XUY, E), if mve(G) = min{|X|, |Y |}
and |Y| =|X|+1, and X is the only minimum vertex cover of G, then eve(G) =
mvc(G) + 1.

Proof. Let |N(xz1)] > 2 or yg—1 ¢ N(z1). If the initial configuration is
{z1,22,....,2p,yq}, attack any edge {x;,y;} (y; # yq); by Hall’s Theorem there
exists a perfect matching from X \{z;} to Y'\{y;, y,}, since | Us_, N (x;) [> k+1,
for each k € [p]. So all the guards can be moved from X U {y,} to Y.

Now if Y is the guard allocation configuration and {y;,z;}(y; # y,) is
attacked then the next configuration will be X U {y,}. If y; = y, then the
configuration will be X U {y,—1}. Thus any infinite sequence of attack can be
defended using mve(G) + 1 guards. So eve(G) = moe(G) + 1. If |N(z1)| < 2 and
Yg—1 € N(z1), then it is easy to observe eve(G) = muc(G) + 1. O

Observation 4. Let G = (X UY, E) is a chain graph with |Y| > |X|+ 1 for
which the only minimum vertex cover is X and S be a vertexr cover of size
moc(G)+ 1. If | SNY |> 2 and y; € S, then y; € S, for each j € [i]. We may
also conclude that there exists two kinds of vertex covers of size mvc(G) + 1

i. XU{y};i€lq.
7. {yl,...,yi+17$i+17...,1’p};iE [p—2}

Let k = min{i | {z;,y,} € E}.

Lemma 4. For a giwen chain graph G = (X UY,E) with mvc(G) =
min{|X|,|Y|} and |Y| > |X| + 1, if X is the only minimum vertex cover of
G and | U?;llN(xj) |= k&, then eve(G) = mue(G) + 1.

Proof. By above definition k = min{i | {z;,y,} € E}, if | U?;ll N(z;)| = k.
Then any attack can be defended by moving the guards from the configuration
X U{y,} to configuration {y1,..., Yk, Tk, ..., xp} (or from {y1, ..., Yk, Tp, ..., Tp}
to X U{y,})- So, in this case eve(G) = mve(G) + 1. O

Let V/ = {i| | Ui_, N(z;)| =i +1}.

Lemma 5. For a giwen chain graph G = (X UY,E) with mvc(G) =
min{| X[, Y|} and |Y| > |X| + 1, if X is the only minimum vertex cover of
G and | U?;ll N(zj)| > k, then evc(G) = mvc(G) + 2.

Proof. 1f | Uf;ll N(z;)| > k and V' # ¢, then let | = max{i | i € V'}. If the
initial configuration is of type-ii, then attack {z,, y,} and make the configuration
X U{y,}, if possible. Then attack {z;11,yi+1}, the guard at ;41 moves to y;41
and since {yq, 141} ¢ E, so there does not exist any guard which can move to
Z4+1, hence no defending move exists, hence eve(G) = muc(G) + 2.

If the set V' = ¢, then | Uj_) N(z;) [> i + 2, which implies all vertex covers
of size mvc(G)+1 are of type-i. Now whatever the initial configuration be attack
{2p,yq}. The configuration after defending this should be X U{y,}. Now attack
{Zk—1,Yr—1}, the guard at x;_1 moves to y,_1 now there is no guard which can
move to x;_1 and form a vertex cover. So eve(G) = moe(G) + 2. O
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Now, consider the case when | X| = |Y|.

Lemma 6. For a given chain graph G = (XUY, E), if mve(G) = min{|X|, Y|},
|X| = Y| and there exists a minimum vertex cover containing y1 and x,, then
eve(G) = moe(G) + 1.

Proof. There exists a minimum vertex cover of G that contains both y; and z,.
This implies there exists i € [p], such that U’_; N'(x;) = Ui_,{y;} and eve(G) €
{mvc(G), mve(G) + 1}. If eve(G) = mwe(G), then the initial configuration can
be of 3 types: (i) X, (ii) Y and (iii) {y1,...,¥i, Tit1,---,Tp}, & € [D].

If the initial configuration is of type-iii, then attack {z1,y1} and change it
to X if possible. Then attack {y;,x;y1}, so the guard at z;;1 moves to y; and i
guards at x1,x2,...,x; have ¢+ — 1 places, i.e. y1,y2,...,y;—1 to move. Hence no
new configuration can be made which will form a vertex cover.

If the initial configuration is Y, then attack {y;, x;41}. The guard at y; moves
to T;41 and p — ¢ guards at y;y1,...,yp have p—i —1 places, i.e. ;42,...,7p to
move. Hence no new configuration can be made which will form a vertex cover.

This implies G can not be defended with mwvc(G) guards. So, eve(G) =
mue(G) + 1. O

Lemma 7. For a given chain graph G = (X UY,E), with mvc(G) =
min{|X|,|Y|} and |Y| = |X|, if the only minimum vertex covers are X and
Y, then eve(G) = muc(G).

Proof. The only type of minimum vertex covers are X and Y. This implies
| Ui_ N(z;) [> 1+ 1, for all I € [p —1]. Now if the initial configuration is X,
then attack on any edge {z;,y;} can be defended by moving all the guards to
Y, this can be done since by Hall’s Theorem there exists a perfect matching in
(X\{xi}, Y \{y;}). Similarly, if the initial configuration is Y, then attack on any
edge {x;, y;} can be defended by moving all the guards to X, this can also be done
since by Hall’s Theorem there exists a perfect matching in (X \ {z;},Y \ {y;})-
So, evc(G) = muc(G). O

3.2 For Chain Graphs with Pendant Vertices in X or in X,Y both

If y1 and x, both have pendant vertices attached (consider that the graph is
not Ky; for K, eve(G) = muc(G) = 1), then there exists a minimum vertex
cover that contains x, and yi, which implies eve(G) € {mve(G), mve(G) + 1}.
Now if eve(G) = mvc(G), then there exists a configuration such that a guard is
allocated at the pendant vertex x; (if not then we can attack the edge {y1, 1}
and shift the guard at y; to x1). This implies that there is no guard in ;. Now
attack {x,,y1}, then the guard at =, moves to y; and the guard at z; has to
stay at x1. So in this new configuration, x; and y; both have guards allocated,
a contradiction since no minimum vertex cover can contain the pendant vertex
and its respective stem. So, evc(G) = mvc(G) + 1.

Now consider the case when only X has pendant vertices, that is, only y; is
the stem. If mvce(G) < min{|X|,|Y|}, then eve(G) = moc(G) + 1. If mue(G) =
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| X|, then y; has only one pendant neighbour (otherwise mvc(G) < | X|, leading
to a contradiction). Since {y1, 22, ..., z, } forms a minimum vertex cover and it is
connected, mvc(G) = cve(G). This implies that eve(G) € {mvc(G), mvc(G)+1}
Further, two cases may arise.

Case 1: |X| < |Y|
If eve(G) = moe(G), the initial guard allocation can be of 2 types; X and
{yl; o s Yis Tig1y e e ,l‘p}.

If the initial configuration is X, then if {xp,y1} is attacked then the guard
at x1 can not move anywhere, failing to produce a valid defending move.

If the initial configuration is {y1,..., ¥, Tit1,...,%p} then attack {z1,v1},
the only configuration it can form is X. But then, attacking {z,,y:} will lead
to a win for the attacker.

So, evc(G) # muc(G). This implies eve(G) = moe(G) + 1.

Case 2: | X| = Y|
If the initial guard allocation is X or Y, then attacking {z,,y1} will lead to a
win for the attacker.

If the initial configuration is {y1,..., ¥, Tit1,...,2p} then attack {1,711},
the only configuration it can form is X. But then, attacking {z,,y:} will lead
to a win for the attacker.

So, eve(G) # muc(G). This implies that eve(G) = moce(G) + 1.

The above characterization is done by observing a property that for a given
chain graph G = (X UY, F), whether there exists a minimum vertex cover S
that contains both x, and y; or not. This property can be checked in polynomial
time for a given chain graph. Before starting the process of the algorithm, by
preprocessing, an array A[1,2,...,p| can be formed, where i** cell contains the
degree of x;. If there exists a j € [p — 1], such that A[j] < j, then there exists a
minimum vertex cover of G that contains both z,, and y;. If there does not exist
such j, then the only vertex covers are of the form X or Y.

From the above lemmas and results, we can conclude the following theorem.

Theorem 5. Given a connected chain graph G = (V, E), eve(G) can be com-
puted in O(n +m) time.

4 A Linear Time Algorithm for Split Graphs

In this section, we present a linear-time algorithm to compute the eternal vertex
cover number for split graphs. Note that, there already exists a quadratic time
algorithm to compute eve(G) for chordal graphs. Since the class of split graphs is
a subclass of chordal graphs, we also have a quadratic time algorithm to compute
eve(@) for split graphs. But, in this section, we present a linear-time algorithm
to compute eve(@) for any split graph G.

The following result is already known regarding the eternal vertex cover
number of chordal graphs.
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Theorem 6. [}] Given a connected chordal graph G = (V,E) and the set of
all cut vertices X of G, eve(G) = muex (G) if and only if for every vertex v €
V(G)\ X, we have mvcx ) (G) = muex (G); otherwise eve(G) = mvex (G)+1.

Since split graphs are chordal graphs, for any split graph G we have eve(G) €
{mvex (G), mvex (G) + 1}.

Let G = (K U1, E) be a connected split graph, where K is a clique and I
is an independent set. Without loss of generality, we may assume that K is a
maximal clique of G. Let X denote the set of cut vertices of G. Now, we first
prove the following lemmas.

Lemma 8. If for each x € K, |N(z)| > |K| — 1, then mvc(G) = mvex (G) =
|K|. Otherwise mvc(G) = mvex(G) = |K| — 1.

Proof. If for each z € K, |N(z)| > |K| — 1, then each z € K has at least
one neighbour in I. Note that any minimum vertex cover must contain at least
| K| — 1 vertices from K. If there exists a minimum vertex cover .S that contains
only |K|—1 vertices from K. Then there exists a vertex v € K, such that v does
not belong to S. So, S must contain all neighbours of v from I, implying that
|S| > |K|. Since K is itself a vertex cover of size |K]|, if v has more than one
neighbour in I, then |S| > |K]|, a contradiction. So, K always form a minimum
vertex cover in this case. Since X C K, it can be concluded that mve(G) =
muex (G) = | K.

Now if there exists x € K, such that |N(z)| = |K| — 1, then K \ {z} forms a
minimum vertex cover of cardinality |K|—1. Note that z cannot be a cut vertex
(as it has no neighbour in I). So, X C K \ {z} and K \ {z} forms a minimum
vertex cover, implying that mve(G) = muex (G) = |K| — 1. O

Lemma 9. evc(G) € {mvc(G), mvc(G) + 1}.

Proof. The proof follows from the fact that evc(G) € {mvcx(G), mvex(G) + 1}
and mouc(G) = muex (G). O

Lemma 10. Let mve(G) = |K| — 1. Then eve(G) = muc(G) + 1 if I # ¢ and
eve(@) = muc(G) if T = 0.

Proof. f I # ¢, then consider a vertex y € I. By Theorem 4, if eve(G) =
mvuc(G) = |K| — 1, then there exists a minimum vertex cover S that con-
tains y, which implies |S N K| < |K| — 2, leading to a contradiction. Hence
eve(G) = mue(G) + 1. If I = ¢, then G is a complete graph, implying
eve(G) = moe(G). O

Lemma 11. Let mve(G) = |K| and there exists at least one pendant vertex
y; € I, then eve(G) = moc(G) + 1.

Proof. Let x; be the only neighbour of the pendant vertex y;, then z; € X.
On contrary assume that eve(G) = mue(G), then by Theorem 6 there exists
a minimum vertex cover S that contains both X and y;. Hence z; € S as
y; € S. Then there must be a vertex xp € K, which does not belong to S.
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Since mve(G) = | K|, by Lemma 8, N(z) N1 # ¢ for all x € K. Hence, if zj is
not in S then all of its neighbours should be in S. Since y; is not a neighbour
of xj, no neighbour of xy in I belongs to S. Hence contradiction arises. So,
eve(G) = moe(G) + 1. O

Lemma 12. Let mve(G) = |K|, G has no pendant vertices and for each x € K,
deg(z) > |K|+ 1. Then, eve(G) = muc(G) + 1.

Proof. Note that mvcx(G) = movce(G). On contrary assume that eve(G) =
mvc(G). Then, by Theorem 4, for any y; € I, there exists a minimum ver-
tex cover S that contains y;. Then |[K N S| =|K|—1. Let z; € K be the vertex
which is not in S. Since [Ny(x;)| > 2, S contains at least 2 vertices from I. But,
then |S| > |K| + 1, a contradiction arises. Hence, evc(G) = muc(G) + 1. O

Lemma 13. Let G does not has any pendant vertexr with mve(G) = |K| and
X1 ={x e K : degr(x) = 1}. If N(X1) NI = I, then eve(G) = mue(G),
otherwise if N(X1) NI is properly contained in I, then eve(G) = mvc(G) + 1.
Proof. Proof of the Lemma 13 has been omitted due to space constraint.

So, by the above lemmas we can conclude the following theorem.

Theorem 7. For a connected split graph G(K U1, E), eve(G) can be computed
in time O(n +m).

Proof. The proof of the theorem is straightforward from the above lemmas.

Before starting the algorithm, by preprocessing, an array A[1,2,...,n] can be
formed, such that A[i] stores the degree of the vertex v;. By help of this array
the algorithm can run in O(n + m) time. O

5 A Polynomial Time Algorithm for Cographs

As mentioned earlier, any connected cograph can be written as join of k graphs,
G1,Ga,...,Gf where each Gj is either K; or a disconnected graph. Note that for
a connected cograph G = (V, E), the maximum independent set of G is a subset
of V(G;), for some i € [k]. So, any minimum vertex cover of G contains vertices
from at least k — 1 number of G;’s.

By Theorem 1, given a connected cograph G = (V,E), for which each
minimum vertex cover is connected, eve(G) can be calculated by checking
muc, (G) = mue(G) for each v € V. To check this condition for any v € V, a new
graph G’ = (V', E’) can be formed from G, where V' = VU{u}, E' = EU{uv};
then we can check whether mvc(G) = muc(G’). The class of cographs is not
closed under pendant vertex addition. But cographs are also weakly chordal
graphs, which are closed under pendant vertex addition. So, we are giving a poly-
nomial time algorithm EVC_CHECK(G) for connected cographs G = (V, E)
for which every minimum vertex cover is connected, to compute eve(G). For this,
we are using the algorithm given in [7] to compute minimum vertex cover for
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weakly chordal graphs. So, for each vertex of the cograph G = (V, E) (for which
every minimum vertex cover is connected) we will add a pendent vertex (only
one at each step and we will delete the previous pendent vertex while adding
pendent to the next vertex) and use the algorithm in [7] to compute whether the
mvc is same for the old and new graph. If it is same for each vertex of G = (V, E),
then eve(G) = moe(G); and eve(G) = moc(G) 4+ 1 otherwise.

Since the algorithm to find minimum vertex cover in weakly chordal graphs
mentioned in [7] runs in O(nm) time, we may conclude the following theorem
from the above discussion.

Theorem 8. Given a connected cograph G = (V, E), for which every minimum
vertex cover is connected, eve(G) can be calculated in time O(nm).

The algorithm mentioned in Theorem 8 will be called as EVC_.CHECK
from here on.

When k = 2, the graph G is join of 2 subgraphs G; and G5. Here we
are assuming |G1| < |G| and both G; and G are non-empty. If mis(G) >
min{|G1|,|Gz2|}, then maximum independent set I of G is a subset of Ga. If
I C Go, then each minimum vertex cover S is connected, since Go NS # ¢ and
G1NS # ¢. So eve(G) can be computed by EVC_.CHECK (G). If I = G5, then
(31 is the only minimum vertex cover and there does not exist any minimum ver-
tex cover S that contains any vertex of Ga, so by Theorem 4, eve(G) # mue(G).
In this case, G; U{u}, such that u € G4, forms an initial configuration of guards,
as G is independent, implying eve(G) = muc(G) + 1.

So, the case remains to be observed is, when mis(G) < min{|G1|,|G2|}. If
mis(G) < min{|G1], |Gz|}, then any minimum vertex cover S is connected, since
G2NS # ¢ and G1NS # ¢. So, eve(G) can be calculated by EVC_CHECK(G).

Now for the case when mis(G) = min{|G1|,|G2|} and by previous assump-
tion, |G1| = min{|G1|,|G2|}. If |G1| = |Gs|, then Gy or G5 is an independent
set.

If both are independent then G is K\q,||q,|, and eve(G) = mvc(G).

If G5 is not independent, then G is independent. If there exists a minimum
vertex cover S that contains at least one vertex of Gy, then it contains all
vertex of (G, so it contains no vertex from G5. But since G5 is not independent,
then there exists at least one edge in E(G2) for which no endpoint is in S.
Hence no minimum vertex cover contains any vertex from G;. So, by Theorem 4,
eve(Q) # mue(G). So, eve(G) = mue(G) + 1 and Go U {u} where u € Gy, forms
an initial guard allocation configuration.

Lemma 14. Given a connected cograph G = (V, E) which is a join of G1 and
Ga. If mis(G) = min{|G1|,|G2|} and |G| < |G2|, then evc(G) can be calculated
i polynomial time.

Proof. Proof of Lemma 14 is omitted due to space constraint.

Observation 5. Given a connected cograph G = (V, E) and k > 3, every mini-
mum vertex cover of G is connected.
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Note that, for k¥ > 3, eve(G) can be computed in O(nm) time using
EVC_CHECK(G). So, from the above observations and lemma the following
theorem can be concluded.

Theorem 9. Given a connected cograph G = (V, E), eve(G) can be computed
in O(nm)-time.

6 Conclusion and Future Aspects

In this paper we have given polynomial time algorithms for three restricted
subclasses of perfect graphs, i.e. chain graphs, split graphs and cographs. For
split graphs, running time of our algorithm is linear. The class of split graphs is
an important subclass of chordal graphs, for which a quadratic time algorithm
was already known in the literature. It will also be interesting to try for linear-
time algorithms for eternal vertex cover problem for chordal graphs, or some
other important subclasses of chordal graphs. The eternal vertex cover problem
is NP-hard for bipartite graphs and the class of chain graphs is the largest
class of bipartite graphs for which linear time algorithm has been found. The
complexity status of the eternal vertex cover problem is still unknown for other
important subclasses of bipartite graphs. Here we have solved the complexity
status of eternal vertex cover problem for cographs, but for larger graph classes
like distance hereditary graphs, it is yet to be solved.

References

1. Araki, H., Fujito, T., Inoue, S.: On the eternal vertex cover numbers of generalized
trees. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 98-A(6), 1153-1160
(2015)

2. Babu, J., Chandran, L.S., Francis, M., Prabhakaran, V., Rajendraprasad, D., War-
rier, N.J.: On graphs whose eternal vertex cover number and vertex cover number
coincide. Discret. Appl. Math. 319, 171-182 (2022)

3. Babu, J., Misra, N., Nanoti, S.G.: Eternal vertex cover on bipartite graphs. In:
Kulikov, A.S., Raskhodnikova, S. (eds.) Computer Science-Theory and Applica-
tions. CSR 2022. LNCS, vol. 13296, pp. 64-76. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-09574-0_5

4. Babu, J., Prabhakaran, V.: A new lower bound for the eternal vertex cover number
of graphs. J. Comb. Optim. 06, 2482-2498 (2021)

5. Babu, J., Prabhakaran, V., Sharma, A.: A substructure based lower bound for eter-
nal vertex cover number. Theor. Comput. Sci. 890, 87-104 (2021)

6. Fomin, F.V.  Gaspers, S., Golovach, P.A., Kratsch, D., Saurabh, S.: Parameterized
algorithm for eternal vertex cover. Inf. Process. Lett. 110(16), 702-706 (2010)

7. Hayward, R.B., Spinrad, J., Sritharan, R.: Weakly chordal graph algorithms via han-
dles. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete
Algorithms, 9-11 January 2000, San Francisco, CA, USA, pp. 42-49. ACM/SIAM

2000

8. %(lostgrmeyer, W.F., Mynhardt, C.M.: Edge protection in graphs. Australas. J.
Comb. 45, 235-250 (2009)

9. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation.
Discret. Math. 201(1-3), 189-241 (1999)


https://doi.org/10.1007/978-3-031-09574-0_5
https://doi.org/10.1007/978-3-031-09574-0_5

	Some Algorithmic Results for Eternal Vertex Cover Problem in Graphs
	1 Introduction
	2 Preliminaries
	2.1 Definitions and Notations
	2.2 Existing Results Used in This Paper
	2.3 Eternal Vertex Cover Number for Some Subclasses of Bipartite Graph

	3 A Polynomial Time Algorithm for Chain Graphs
	3.1 For Chain Graphs Where only Y Can Have Pendant Vertices
	3.2 For Chain Graphs with Pendant Vertices in X or in X,Y both

	4 A Linear Time Algorithm for Split Graphs
	5 A Polynomial Time Algorithm for Cographs
	6 Conclusion and Future Aspects
	References




