
Chun-Cheng Lin
Bertrand M. T. Lin
Giuseppe Liotta (Eds.)

LN
CS

 1
39

73

WALCOM: Algorithms
and Computation
17th International Conference and Workshops, WALCOM 2023
Hsinchu, Taiwan, March 22–24, 2023
Proceedings

Lecture Notes in Computer Science 13973
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Chun-Cheng Lin · Bertrand M. T. Lin ·
Giuseppe Liotta
Editors

WALCOM: Algorithms
and Computation
17th International Conference and Workshops, WALCOM 2023
Hsinchu, Taiwan, March 22–24, 2023
Proceedings

Editors
Chun-Cheng Lin
National Yang Ming Chiao Tung University
Hsinchu, Taiwan

Giuseppe Liotta
University of Perugia
Perugia, Italy

Bertrand M. T. Lin
National Yang Ming Chiao Tung University
Hsinchu, Taiwan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-27050-5 ISBN 978-3-031-27051-2 (eBook)
https://doi.org/10.1007/978-3-031-27051-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9073-593X
https://orcid.org/0000-0002-2886-9694
https://orcid.org/0000-0003-0456-296X
https://doi.org/10.1007/978-3-031-27051-2

Preface

WALCOM 2023, the 17th International Conference and Workshops on Algorithms and
Computation, was held during March 22–24, 2023 at National Yang Ming Chiao Tung
University, Hsinchu, Taiwan. The workshop covered diverse areas of algorithms and
computation, namely, approximation algorithms, computational complexity, compu-
tational geometry, graph algorithms, graph drawing, visualization, online algorithms,
parameterized complexity, and property testing.

The quality of the workshop was ensured by a Program Committee comprising
27 researchers of international reputation from Australia, Bangladesh, Belarus, Brazil,
Canada, Germany, Greece, India, Ireland, Israel, Italy, Japan, the Netherlands, Rus-
sia, Taiwan, and USA. This proceedings volume contains 30 contributed papers and
two invited papers presented at WALCOM 2023. The Program Committee thoroughly
reviewed each of the 75 submissions from 32 countries and accepted 30 of them for pre-
sentation at the conference after elaborate discussions on 223 review reports prepared
by Program Committee members together with 95 external reviewers. The image of the
workshop was highly enhanced by the two invited talks of eminent and well-known
researchers Prof. Jan Kratochvil, Charles University, Prague, Czech Republic, and Prof.
Michael Kaufmann, Universität Tübingen, Germany.

As editors of this proceedings, we would like to thank all the authors who sub-
mitted their papers to WALCOM 2023. We also thank the members of the Program
Committee and external reviewers for their hard work in reviewing the manuscripts. Our
sincere appreciation goes to the invited speakers for delivering wonderful talks from
which researchers of this field benefited immensely. We acknowledge the continuous
encouragements of the advisory board members Prof. M. Kaykobad and Prof. C. Pandu
Rangan. The Steering Committeemembers ofWALCOMalways supported us with their
valuable suggestions. We sincerely thank the Organizing Committee led by Prof. Chun-
Cheng Lin for his excellent services that made the workshop a grand success. We would
like to thank Springer for publishing this proceedings in their prestigious LNCS series.
Finally, we acknowledge the EasyChair conference management system for providing
a beautiful platform for conference administration.

March 2023 Chun-Cheng Lin
Bertrand M. T. Lin

Giuseppe Liotta

Organization

WALCOM Steering Committee

Tamal Dey Purdue University, USA
Seok-Hee Hong University of Sydney, Australia
Costas S. Iliopoulos King College London (KCL), UK
Giuseppe Liotta University of Perugia, Italy
Petra Mutzel Technische Universität Dortmund, Germany
Shin-ichi Nakano Gunma University, Japan
Subhas Chandra Nandy Indian Statistical Institute, Kolkata, India
Md. Saidur Rahman Bangladesh University of Engineering and

Technology (BUET), Bangladesh
Ryuhei Uehara Japan Advanced Institute of Science and

Technology, Japan

Organizing Institution

National Yang Ming Chiao Tung University, Taiwan

Program Committee

Aritra Banik National Institute of Science Education and
Research, India

Tiziana Calamoneri Sapienza University of Rome, Italy
William Evans University of British Columbia, Canada
Martin Fuerer Pennsylvania State University, USA
Patrick Healy University of Limerick, Ireland
Alexander Kononov Russian Academy of Sciences, Russia
Mikhail Y. Kovalyov National Academy of Sciences of Belarus,

Belarus
Bertrand M. T. Lin (Co-Chair) National Yang Ming Chiao Tung University,

Taiwan
Chun-Cheng Lin (Co-Chair) National Yang Ming Chiao Tung University,

Taiwan
Giuseppe Liotta (Co-Chair) University of Perugia, Italy
Tamara Mchedlidze Utrecht University, The Netherlands

viii Organization

Debajyoti Mondal University of Saskatchewan, Canada
Krishnendu Mukhopadhyaya Indian Statistical Institute, India
Shin-ichi Nakano Gunma University, Japan
Rahnuma Islam Nishat University of British Columbia, Canada
Yoshio Okamoto The University of Electro-Communications, Japan
Chrysanthi N. Raftopoulou National Technical University of Athens, Greece
Md. Saidur Rahman BUET, Bangladesh
Ignaz Rutter University of Passau, Germany
Saket Saurabh The Institute of Mathematical Sciences, Chennai,

India
Uéverton Souza Universidade Federal Fluminense, Brazil
Ioannis Tollis University of Crete, Greece
Ryuhei Uehara Japan Advanced Institute of Science and

Technology, Japan
Sue Whitesides University of Victoria, Canada
Hsu-Chun Yen National Taiwan University, Taiwan
Meirav Zehavi Ben-Gurion University, Israel
Yakov Zinder University Technology Sydney, Australia

Organizing Committee Chair

Chun-Cheng Lin National Yang Ming Chiao Tung University,
Taiwan

Technical Co-sponsors

Information Processing Society of Japan (IPSJ), Japan; The Institute of Electronics,
Information and Communication Engineers (IEICE), Japan; Japan Chapter of the Euro-
pean Association of Theoretical Computer Science (EATCS Japan), Japan; Operations
Research Society of Taiwan (ORSTW); Chinese Institute of Industrial Engineers (CIIE),
Taiwan.

External Reviewers

Ageev, Alexander

Ahmed, Abu Reyan

Ahmed, Shareef

Ahn, Taehoon

Alam, Md. Jawaherul

Araki, Tetsuya

Bandopadhyay, Susobhan

Bayzid, Md. Shamsuzzoha

Bekos, Michael

Bhagat, Subhash

Organization ix

Bhore, Sujoy
Bhyravarapu, Sriram
Biniaz, Ahmad
Biswas, Arindam
Brakensiek, Joshua
Bredereck, Robert
Chatterjee, Abhranil
Corò, Federico
Cunha, Luis
Das, Gautam K
de Castro Mendes Gomes, Guilherme
Dósa, György
Eidenbenz, Stephan
Eisenstat, David
Epstein, Leah
Espenant, Jared
Fink, Simon D.
Fujii, Kaito
Förster, Henry
Gorain, Barun
Habib, Mursalin
Haeusler, Hermann
Hakim, Sheikh Azizul
Harrigan, Martin
Horiyama, Takashi
Ibiapina, Allen
Imai, Hiroshi
Jain, Pallavi
Jelínek, Vít
Ju, Andrew
Kakoulis, Konstantinos
Kanesh, Lawqueen
Kare, Anjeneya Swami
Kasthurirangan, Prahlad Narasimhan
Kawahara, Jun
Khachay, Michael
Khandeev, Vladimir
Kiyomi, Masashi
Kryven, Myroslav
Lionakis, Panagiotis
Liotta, Giuseppe
Lokshtanov, Daniel
Lucarelli, Giorgio

Madireddy, Raghunath Reddy
Manea, Florin
Mann, Kevin
Marcilon, Thiago
Mieno, Takuya
Miltzow, Till
Mondal, Kaushik
Mukhopadhyaya, Srabani
Münch, Miriam
Nascimento, Julliano
Ortali, Giacomo
Otachi, Yota
Papan, Bishal Basak
Parvez, Mohammad Tanvir
Pedrosa, Lehilton L. C.
Pfretzschner, Matthias
Pokorski, Karol
Sahu, Abhishek
Salvo, Ivano
Sampaio, Rudini
Satti, Srinivasa Rao
Schnider, Patrick
Schweitzer, Pascal
Sen, Sagnik
Sinaimeri, Blerina
Skiena, Steven
Stumpf, Peter
Suzuki, Akira
Symvonis, Antonios
Tabatabaee, Seyed Ali
Tappini, Alessandra
Tsakalidis, Konstantinos
Tsidulko, Oxana
Uchizawa, Kei
Verbeek, Kevin
Verma, Shaily
Viglietta, Giovanni
Wang, Haitao
Wasa, Kunihiro
Watrigant, Rémi
Xu, Chao
Xue, Jie
Yamanaka, Katsuhisa

Contents

Invited Talks

Graph Covers: Where Topology Meets Computer Science, and Simple
Means Difficult . 3

Jan Kratochvíl

The Family of Fan-Planar Graphs . 12
Michael Kaufmann

Computational Geometry

Minimum Ply Covering of Points with Unit Squares . 23
Stephane Durocher, J. Mark Keil, and Debajyoti Mondal

Overlapping Edge Unfoldings for Archimedean Solids and (Anti)prisms 36
Takumi Shiota and Toshiki Saitoh

Flipping Plane Spanning Paths . 49
Oswin Aichholzer,Kristin Knorr,Wolfgang Mulzer, Johannes Obenaus,
Rosna Paul, and Birgit Vogtenhuber

Away from Each Other . 61
Tetsuya Araki and Shin-ichi Nakano

Piercing Diametral Disks Induced by Edges of Maximum Spanning Trees 71
A. Karim Abu-Affash, Paz Carmi, and Meytal Maman

Reflective Guarding a Gallery . 78
Arash Vaezi, Bodhayan Roy, and Mohammad Ghodsi

Improved and Generalized Algorithms for Burning a Planar Point Set 90
Prashant Gokhale, J. Mark Keil, and Debajyoti Mondal

On the Longest Flip Sequence to Untangle Segments in the Plane 102
Guilherme D. da Fonseca, Yan Gerard, and Bastien Rivier

xii Contents

String Algorithm

Inferring Strings from Position Heaps in Linear Time . 115
Koshiro Kumagai, Diptarama Hendrian, Ryo Yoshinaka,
and Ayumi Shinohara

Internal Longest Palindrome Queries in Optimal Time . 127
Kazuki Mitani, Takuya Mieno, Kazuhisa Seto, and Takashi Horiyama

Finding the Cyclic Covers of a String . 139
Roberto Grossi, Costas S. Iliopoulos, Jesper Jansson, Zara Lim,
Wing-Kin Sung, and Wiktor Zuba

Efficient Non-isomorphic Graph Enumeration Algorithms for Subclasses
of Perfect Graphs . 151

Jun Kawahara, Toshiki Saitoh, Hirokazu Takeda, Ryo Yoshinaka,
and Yui Yoshioka

Optimization

Better Hardness Results for the Minimum Spanning Tree Congestion
Problem . 167

Huong Luu and Marek Chrobak

Energy Efficient Sorting, Selection and Searching . 179
Varunkumar Jayapaul, Seungbum Jo, Krishna Palem,
and Srinivasa Rao Satti

Reconfiguration of Vertex-Disjoint Shortest Paths on Graphs 191
Rin Saito, Hiroshi Eto, Takehiro Ito, and Ryuhei Uehara

k-Transmitter Watchman Routes . 202
Bengt J. Nilsson and Christiane Schmidt

Graph Algorithm

Splitting Plane Graphs to Outerplanarity . 217
Martin Gronemann, Martin Nöllenburg, and Anaïs Villedieu

Certifying Induced Subgraphs in Large Graphs . 229
Ulrich Meyer, Hung Tran, and Konstantinos Tsakalidis

Some Algorithmic Results for Eternal Vertex Cover Problem in Graphs 242
Kaustav Paul and Arti Pandey

Contents xiii

On the Complexity of Distance-d Independent Set Reconfiguration 254
Duc A. Hoang

On Star-Multi-interval Pairwise Compatibility Graphs . 267
Angelo Monti and Blerina Sinaimeri

Parameterized Complexity of Optimizing List Vertex-Coloring Through
Reconfiguration . 279

Yusuke Yanagisawa, Akira Suzuki, Yuma Tamura, and Xiao Zhou

Parameterized Complexity of Path Set Packing . 291
N. R. Aravind and Roopam Saxena

Approximation Algorithm

Interweaving Real-Time Jobs with Energy Harvesting to Maximize
Throughput . 305

Baruch Schieber, Bhargav Samineni, and Soroush Vahidi

Recognizing When a Preference System is Close to Admitting a Master List . . . 317
Ildikó Schlotter

Groups Burning: Analyzing Spreading Processes in Community-Based
Networks . 330

Gennaro Cordasco, Luisa Gargano, and Adele A. Rescigno

Roman k-Domination: Hardness, Approximation and Parameterized
Results . 343

A. Mohanapriya, P. Renjith, and N. Sadagopan

Parameterized Complexity

On the Parameterized Complexity of Compact Set Packing 359
Ameet Gadekar

Structural Parameterization of Cluster Deletion . 371
Giuseppe F. Italiano, Athanasios L. Konstantinidis,
and Charis Papadopoulos

Parity Permutation Pattern Matching . 384
Virginia Ardévol Martínez, Florian Sikora, and Stéphane Vialette

Author Index . 397

Invited Talks

Graph Covers: Where Topology Meets
Computer Science, and Simple Means

Difficult

Jan Kratochvíl(B)

Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

honza@kam.mff.cuni.cz

Abstract. We survey old and recent results on the computational com-
plexity of graph covers, also known as locally bijective graph homomor-
phisms. This notion opens doors to interesting connections. The motiva-
tion itself comes from the classical notion of covering spaces in general
topology, graph covers find computer science applications as a model of
local computation, and in combinatorics they are used for constructing
large highly symmetric graphs.

More than 30 years ago, Abello et al. [1] asked for a complete charac-
terization of the computational complexity of deciding if an input graph
covers a fixed one, and until this day only isolated results are known.
We look at this question from several different angles of view – covers as
locally constrained graph homomorphisms, covers of multigraphs, cov-
ers of graphs with semi-edges, or the list variant of the graph covering
question. We also mention several open problems, including the Strong
Dichotomy Conjecture for graph covers of Bok et al. [6], stating that
for every target multigraph H, the H-Cover problem is either polyno-
mial time solvable for arbitrary input graphs, or NP-complete for simple
graphs on input. We justify this conjecture for several infinite classes of
target (multi)graphs.

Keywords: Graph · Graph cover · Graph homomorphism ·
Multigraph · Computational complexity

1 Definitions

A simple graph is a pair G = (V,E) where V = V (G) is a set of vertices and
E = E(G) is a set of un-ordered pairs of vertices, called edges. We will only
consider finite graphs, i.e., graphs whose vertex sets are finite. Two vertices are
called adjacent if they are connected by an edge. The (open) neighborhood NG(u)
of a vertex u is the set of vertices u is adjacent to. The degree of a vertex is the
number of vertices it is adjacent to, i.e., degG(u) = |NG(u)|. A graph is k-
regular if the degree of every vertex is k, a 3-regular graph is called cubic. A path
in the graph is a sequence of distinct vertices, every two consecutive ones being
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 3–11, 2023.
https://doi.org/10.1007/978-3-031-27051-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_1&domain=pdf
http://orcid.org/0000-0002-2620-6133
https://doi.org/10.1007/978-3-031-27051-2_1

4 J. Kratochvíl

adjacent. The length of a path is the number if its edges, i.e., the number of its
vertices minus 1. The graph is connected if any two if its vertices are connected
by a path in the graph. A cycle in the graph is a path of length at least 2 whose
end-vertices are adjacent.

In a more general setting, we allow pairs of vertices to be connected by several
parallel edges, so called multiple edges, and we allow edges that are incident with
a single vertex only. The latter are loops or semi-edges, their difference lying in
how they contribute to the degrees of their vertices (a loop contributes 2, a
semi-edge contributes 1). In other words, the degree of a vertex is the number
of edges it is incident to, loops being counted twice. (Multi)graphs with parallel
edges and loops are studied from the early days of graph theory, while the semi-
edges are being considered only recently, mainly because of the applications
in mathematical physics and topological graph theory. In the sequel, we allow
graphs to have multiple edges, loops and/or semi-edges. We call a graph simple
if it contains no loops, no semi-edges and no parallel edges. A vertex of a graph
is called semi-simple if it is incident with no loops, no multiple edges and to at
most one semi-edge.

Now we are ready to introduce the main character of this paper, the notion
of graph cover.

Definition 1. Let G and H be simple connected graphs. A covering projection
from G to H is a mapping f : V (G) → V (H) such that for every vertex u ∈
V (G), the neighborhood NG(u) is mapped by f bijectively onto the neighborhood
NH(f(u)). We say that G covers H, and write G → H, if a covering projection
from G to H exists.

3

21

4

1

12

2

3

3

4

4

Fig. 1. Illustration to the definition of covers of simple graphs. The covering projection
is visualized by displaying the names of the images of the vertices of the covering graph.

Informally speaking, if we imagine an agent moving on the vertices of a
graph and being able to see the name of the vertex he/she is in and the names
of its neighbors, the agent cannot determine whether he/she is moving through
the graph H or through its cover G. This has been exploited by Angluin [2]

Graph Covers: Where Topology Meets Computer Science 5

for establishing models of local computation. For more recent results in this
direction, cf. [7,9]. This computer science connection led several researchers to
exploring the question of computational complexity of deciding if one graph
covers another one. Bodlaender [3] considered the case when both graphs are
part of the input and showed that the problem is NP-complete. Abello et al. [1]
considered the target graph H fixed and asked about the complexity of the
problem

H-Cover
Input: A graph G.
Question: Does G cover H?

parameterized by the target graph H. They asked for a complete characteri-
zation, and showed first examples of graphs H for which the problem is NP-
complete. In that paper the authors already consider multigraphs, in fact, they
prove their NP-hardness result for the so called dumbbell graph (a 2-vertex graph
with a loop incident to each of its vertices and a single normal edge connecting
them). At this point we are ready for the full definition of graph covers, even
when semi-edges are allowed.

Definition 2. Let G and H be graphs. A covering projection from G to H is a
pair of mappings f = (fV , fE) such that

– fV maps vertices of G onto vertices of H,
– fE maps edges of G onto edges of H,
– fV and fE are incidence preserving,
– the preimage of a loop of H incident with a vertex u is a disjoint union of

cycles spanning the subgraph of G induced by the preimage f−1
V (u) of u,

– the preimage of a semi-edge of H incident with a vertex u is a disjoint union
of single edges and semi-edges spanning the subgraph of G induced by the
preimage f−1

V (u) of u, and
– the preimage of a normal edge of H incident with distinct vertices u and v is

a matching spanning the subgraph of G induced by f−1
V (u) ∪ f−1

V (v).

Kratochvíl et al. [23] showed that in order to characterize the complexity of
H-Cover for all simple graphs H, one has to be able to characterize it for all
graphs that allow multiple edges and loops. The presence of semi-edges provides
a connection to edge-coloring problems, cf. the following example. Let F (1, 1)
denote the 1-vertex graph with a loop and a semi-edge, and let F (3, 0) denote
the 1-vertex graph with 3 semi-edges.

Proposition 1. A simple cubic graph covers F (1, 1) if and only if it has a per-
fect matching. Hence F (1, 1)-Cover is solvable in polynomial time. On the other
hand, a simple cubic graph covers F (3, 0) if and only if it is 3-edge-colorable, and
hence F (3, 0)-Cover is NP-complete.

The complexity of the H-Cover problem for graphs with semi-edges has been
studied only recently by Bok et al. [4–6]. It is immediately clear, already from the

6 J. Kratochvíl

Fig. 2. Illustration to the definition of covers of (multi)graphs with semi-edges. In the
case of 1-vertex graphs, the vertex mapping is uniquely defined. The edge part of the
covering projection is demonstrated by dashed lines of different patterns.

example in Proposition 1, that the presence of semi-edges makes the covering prob-
lem much harder. To explain the oxymoron from the title, we observe that proving
the NP-hardness of H-Cover is easier when the input graph is allowed to have
loops, multiple edges and semi-edges. However, in all cases when the problem is
known to be NP-complete, it remains NP-complete for simple graphs on input
as well. This phenomenon has been conjectured to hold true in general, and was
named the Strong Dichotomy Conjecture on graph covers in [6]. Attempts to prove
this conjecture for large classes of graphs have led to introduction of a notion gen-
eralizing the concept of snarks known from and well studied in the theory of edge-
colorings of graphs. We will comment on the results and open problems in this
recently developing area of research in Sects. 5 and 7. But first we reveal several
interesting connections of graph covers to other topics.

2 Negami’s Conjecture

Planar graphs belong to the most popular and most studied special classes of
graphs. In 1988, Negami [24] posed the following beautiful and still unresolved
conjecture.

Conjecture 1. A connected simple graph has a finite planar cover if and only if
it is projective planar.

Note here that every graph is covered by an infinite tree, called the universal
cover. Thus the requirement “finite” is vital for the non-triviality of this conjec-
ture. It is well known from the topology that the Euclidean plane is a double-
cover of the projective plane. It follows that every projective planar graph does
have a finite planar cover. The opposite implication is far less trivial (if true at
all). The conjecture was formulated in the time when the Robertson-Seymour
theory of graph minors was being developed, and it was soon observed that both
the class of projective planar graphs, and the class of graphs admitting a finite
planar cover are closed in the minor order. Luckily, the minimal forbidden minors
for the projective planar graphs were already described. What remained was to
check one by one that none of the connected ones admits a finite planar cover.

Graph Covers: Where Topology Meets Computer Science 7

By a frontal attack of several researchers, 28 out of 32 of these graphs have been
directly resolved, and, assuming the conjecture holds true, it suffices to prove
the last one - the complete 4-partite graph K2,2,2,1. For an accessible survey of
the most recent progress in this question see [19].

3 Locally Constrained Graph Homomorphisms

For simple graphs, a graph homomorphism is an adjacency preserving vertex
mapping between two graphs. If f : V (G) → V (H) is such a mapping, then for
any vertex u ∈ V (G), f(NG(u)) ⊆ NH(f(u)). We have already seen that f is a
covering projection when the restricted mapping f |NG(u) is a bijection of NG(u)
onto NH(f(u)). In this sense, graph covering projections are also referred to as
locally bijective homomorphisms. The following definition is a natural relaxation
of the bijectivity restriction.

Definition 3. A homomorphism f : G → H is called locally surjective if for
every vertex u ∈ V (G), the restricted mapping f |NG(u) maps NG(u) surjectively
onto NH(f(u)). And it is called locally injective if for every vertex u ∈ V (G),
the restricted mapping f |NG(u) maps NG(u) injectively into NH(f(u)).

Locally surjective homomorphisms are also called role assignments and they
find applications in the social network theory. Fiala and Paulusma [15] gave a
complete characterization of its complexity. They proved that for any connected
graph H with at least 3 vertices, deciding if an input graph admits a locally
surjective homomorphism onto H is NP-complete. Locally injective homomor-
phisms are also called partial covers because a graph admits a locally injective
homomorphism into a graph H if and only if it is an induced subgraph of a
graph that covers H. Partial covers are closely related to the so called Frequency
Assignment Problem, motivated by the practical task of assigning frequencies in
mobile networks. One particular subproblem is L(2, 1)-labeling of graphs (for a
graph G, L2,1(G) is the smallest integer λ such that the vertices of G can be
labeled by integers from the range 0, . . . , λ so that the labels of adjacent vertices
differ by at least 2 and labels of vertices with a common neighbor are different),
cf. [8,12,16,17]. It can be easily seen that L2,1(G) ≤ λ if and only if G is a partial
cover of the complement of the path of length λ. For every fixed λ ≥ 4, deciding
L2,1(G) ≤ λ is NP-complete, and so is the partial covering of complements of
paths. However, the catalog of known results on the complexity of partial covers
is far from being complete.

4 List Covering

Many graph theory problems are also studied in their list versions, in which the
colors (or labels or images) of vertices are restricted to be assigned values from
lists of admissible ones. For every problem, its list version is at least as difficult as
the plain version. If a problem is parameterized (like the H-Cover problem), this
means that the class of parameters that define polynomially solvable instances

8 J. Kratochvíl

is narrower. This may (or may not) imply that it is easier to describe. Compare
the situation for graph homomorphisms for simple graphs:

Theorem 1. [18] Deciding if a simple input graph allows a homomorphism into
a simple graph H is polynomial time solvable when H is bipartite and NP-
complete otherwise.

Theorem 2. [10] The List-H-Homomorphism problem is solvable in polyno-
mial time for bipartite graphs whose complement is a circular arc graph, and
NP-complete otherwise.

On the other hand, for the locally injective homomorphisms, the catalog of
complexity is unknown and presumably hard to achieve, while for the list variant
it has been determined:

Theorem 3. [13] Let H be a connected simple graph. Then List Locally
Injective H-Homomorphism is solvable in polynomial time if H has at most
one cycle, and NP-complete otherwise.

For locally bijective homomorphisms, i.e., for graph covers, the lists are help-
ful as well. It is known that for simple regular graphs of valency greater than
2, the H-Cover problem is NP-complete (this was proven first for k-regular k-
edge-colorable graphs in [22] and then for general k-regular graphs by Fiala [11],
cf. also [14]). Though the intuition says that covering graphs with loops, multiple
edges and semi-edges should be at least as difficult as covering simple graphs,
the arguments used in the NP-hardness reduction of the aforementioned result
breaks down in the presence of multiple edges. It is known that H-Cover is NP-
complete if all vertices of H are semi-simple [4], but when only some vertices are
semi-simple, lists come to help. The following result is proven in [6].

Theorem 4. If a k-regular graph H, k ≥ 3, contains a semi-simple vertex, then
the List H-Cover problem is NP-complete, even for simple input graphs.

In this theorem, H may contain multiple edges, loops, and semi-edges. The
problem remains NP-complete even if the lists are restrictive only for the vertex
mapping, the lists for the edge mapping being full.

5 Strong Dichotomy

Note that the NP-hardness result of Theorem 4 is stated for simple input graphs.
This follows the urge of proving the results in their strongest form. Construction
of gadgets for the NP-hardness reductions would be (sometimes much) easier
if multiple edges/loops/semi-edges were allowed. It is not even granted that a
problem NP-complete for (multi)graphs would be NP-complete also for simple
input graphs. However, in case of graph covering problems this has so far always
been the case. Bok et al. [6] have formulated the following Strong Dichotomy
Conjecture for graph covers:

Conjecture 2. For every graph H, the H-Cover problem is either polynomial
time solvable for arbitrary input graphs, or NP-complete even for simple graphs
on the input.

Graph Covers: Where Topology Meets Computer Science 9

6 Disconnected Graphs

In most situations one can freely say that we are only interested in connected
graphs, since the problem can be solved for each component separately otherwise.
And this have been done in several papers on graph covers. Only recently, Bok et
al. [5] noted, that this is not that obvious for graph covers, at least when multiple
edges, loops or semi-edges are present. They have argued that the following
definition of covers of disconnected graphs is the right one.

Definition 4. Let G and H be disconnected graphs, the components of G being
G1, G2, . . . , Gp and the components of H being H1,H2, . . . , Hq. A mapping f :
G → H is a covering projection of G onto H if

– for each i = 1, 2, . . . , p, there is a j such that f |Gi
is a covering projection

from Gi onto Hj, and
– the preimage of any vertex of H has size |V (G)|

|V (H)| .

Even with this most restrictive definition the following holds true.

Theorem 5. [5] If every component Hi of H defines a polynomial time solvable
problem Hi-Cover, then H-Cover is polynomial time solvable. On the other
hand, if Hi-Cover is NP-complete for some component Hi of H for simple
input graphs, then H-Cover is NP-complete for simple input graphs.

The proof of the NP-hardness part of this theorem, i.e., the proof of Hi-
Cover ∝ H-Cover, is non-constructive in the following sense. For two compo-
nents Hj and Hi of H we use a simple graph Gj (as a component of an input
graph G that we construct) such that Gj covers Hj and Gj does not cover Hi,
if such a graph Gj exists (otherwise we use an arbitrary simple cover of Hj).
Since H (and each of its components) are fixed graphs for the reduction, this is
a legal move, though we do not know how to decide if such a graph Gj exists or
not. This somewhat unexpected twist has led to introduction of a new relation
between connected graphs which will be the topic of the concluding section.

7 Look Who is Stronger, and Mind Generalized Snarks

Insisting on proving the NP-hardness results for simple input graphs leads to the
following definition which we find interesting in its own. Thus insisting in simple
graphs does not only make the proofs more difficult, as the title of the article
promised, but also brings in a new concept with intriguing open problems.

Definition 5. Let A and B be graphs. We say that A is stronger than B, and
write A � B if it holds true that every simple graph that covers A also covers B.

It is straightforward to observe that if A covers B, then A is stronger than
B. The converse is, however, not true. Consider the graphs F (1, 1) and F (3, 0)
from Proposition 1. Every simple graph that covers F (3, 0) contains a perfect
matching (the edges that map onto the same semi-edge of F (3, 0)) and hence

10 J. Kratochvíl

it covers F (1, 1). Thus F (3, 0) � F (1, 1). But obviously, F (3, 0) does not cover
F (1, 1).

Another easy observation states that if A is a simple graph, then A is stronger
than B if and only if A covers B. In the Open Problem Session at GROW
2022 [20], we have conjectured that the impact of semi-edges is vital for the
existence of non-trivial pairs of graphs in the � relation.

Conjecture 3. If A has no semi-edges, then A � B if and only if A → B.

In [21], we have confirmed Conjecture 3 for all pairs A,B such that B =
F (3, 0) or B = F (1, 1). In particular, we proved that A � F (3, 0) if and only if A
is 3-edge-colorable, i.e., if and only if A → F (3, 0). Showing that a graph A is not
stronger than F (3, 0) requires constructing a non-3-edge-colorable cubic graph
that covers A. Two-connected non-3-edge-colorable graphs are called snarks, and
thus a snark that covers A is a witness that A 	 �F (3, 0). Snarks have been hunted
for decades, but not from the point of view which graphs they cover. In our
proofs, 2-connectedness is not necessary, but being so close to the Wonderland,
we cannot resist the temptation to pose the last open problem.

Problem 4. Is it true that for every non-3-edge-colorable cubic graph A, there
exists a 2-connected non-3-edge-colorable graph that covers A?

Given a pair of graphs A and B, one way of proving that A 	 �B is to construct
a witness, i.e., a simple graph H such that H → A and H 	→ B. We call such
witnesses generalized snarks. Hunting for generalized snarks has the best chance
to become quite an adrenaline sport, but it can hardly be avoided if one wants
to prove Conjecture 3 for larger infinite classes of graphs. Got interested? Join
us in the game!

Acknowledgements. Supported by Research grant GAČR 20-15576S of the Czech
Science Foundation.

References

1. Abello, J., Fellows, M.R., Stillwell, J.C.: On the complexity and combinatorics of
covering finite complexes. Aust. J. Comb. 4, 103–112 (1991)

2. Angluin, D.: Local and global properties in networks of processors. In: Proceedings
of the 12th ACM Symposium on Theory of Computing, pp. 82–93. ACM, New York
(1980)

3. Bodlaender, H.L.: The classification of coverings of processor networks. J. Parallel
Distrib. Comput. 6, 166–182 (1989)

4. Bok, J., Fiala, J., Hliněný, P., Jedličková, N., Kratochvíl, J.: Computational com-
plexity of covering multigraphs with semi-edges: small cases. In: Bonchi, F., Puglisi,
S. J. (eds.), MFCS 2021, LIPIcs, vol. 202, pp. 21:1–21:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2021)

5. Bok, J., Fiala, J., Jedličková, N., Kratochvíl, J., Seifrtová, M.: Computational
complexity of covering disconnected multigraphs. In: Bampis, E., Pagourtzis, A.
(eds.) FCT 2021. LNCS, vol. 12867, pp. 85–99. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-86593-1_6

https://doi.org/10.1007/978-3-030-86593-1_6
https://doi.org/10.1007/978-3-030-86593-1_6

Graph Covers: Where Topology Meets Computer Science 11

6. Bok, J., Fiala, J., Jedličková, N., Kratochvíl, J., Rzazewski, P.: List covering of
regular multigraphs. In: Bazgan, C., Fernau, H. (eds.) Combinatorial Algorithms.
LNCS, vol. 13270, pp. 228–242. Springer, Heidelberg (2022). https://doi.org/10.
1007/978-3-031-06678-8_17

7. Chalopin, J., Paulusma, D.: Graph labelings derived from models in distributed
computing: a complete complexity classification. Networks 58(3), 207–231 (2011)

8. Chang, G.J., Kuo, D.: The L(2, 1)-labelling problem on graphs. SIAM J. Discrete
Math. 9, 309–316 (1996)

9. Courcelle, B., Métivier, Y.: Coverings and minors: applications to local computa-
tions in graphs. Eur. J. Comb. 15, 127–138 (1994)

10. Feder, F., Hell, P., Huang, J.: List homomorphisms and circular arc graphs. Com-
binatorica 19(4), 487–505 (1999)

11. Fiala, J.: Locally injective homomorphisms, Ph.D. thesis. Charles University,
Prague (2000)

12. Fiala, J., Kloks, T., Kratochvíl, J.: Fixed-parameter complexity of lambda-
labelings. Discret. Appl. Math. 113(1), 59–72 (2001)

13. Fiala, J., Kratochvíl, J.: Locally injective graph homomorphism: lists guarantee
dichotomy. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 15–26. Springer,
Heidelberg (2006). https://doi.org/10.1007/11917496_2

14. Fiala, J., Kratochvíl, J.: Locally constrained graph homomorphisms - structure,
complexity, and applications. Comp. Sci. Rev. 2(2), 97–111 (2008)

15. Fiala, J., Paulusma, D.: A complete complexity classification of the role assignment
problem. Theor. Comput. Sci. 349(1), 67–81 (2005)

16. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J.
Discret. Math. 5(4), 586–595 (1992)

17. Hasunuma, T., Ishii, T., Ono, H., Uno, Y.: A linear time algorithm for L(2, 1)-
labeling of trees. Algorithmica 66(3), 654–681 (2013). https://doi.org/10.1007/
s00453-012-9657-z

18. Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Comb. Theory Ser. B
48(1), 92–110 (1990)

19. Hliněný, P.: 20 years of negami’s planar cover conjecture. Graphs Comb. 26, 525–
536 (2010). https://doi.org/10.1007/s00373-010-0934-9

20. Kratochvíl, J: Towards strong dichotomy of graph covers. In: S. Cabello, M. Milanić
(eds.), GROW 2022 - Book of Open Problems, pp. 10 (2022). https://grow.famnit.
upr.si/GROW-BOP.pdf

21. Kratochvíl, J., Nedela, R.: Covers and semi-covers: who is stronger? In: Preparation
(2023)

22. Kratochvíl, J., Proskurowski, A., Telle, J.A.: Covering regular graphs. J. Comb.
Theory Ser. B 71(1), 1–16 (1997)

23. Kratochvíl, J., Proskurowski, A., Telle, J.A.: Complexity of colored graph covers I.
colored directed multigraphs. In: Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335,
pp. 242–257. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024502

24. Negami, S.: Graphs which have no planar covering. Bull. Inst. Math. Acad. Sinica
16(4), 377–384 (1988)

https://doi.org/10.1007/978-3-031-06678-8_17
https://doi.org/10.1007/978-3-031-06678-8_17
https://doi.org/10.1007/11917496_2
https://doi.org/10.1007/s00453-012-9657-z
https://doi.org/10.1007/s00453-012-9657-z
https://doi.org/10.1007/s00373-010-0934-9
https://grow.famnit.upr.si/GROW-BOP.pdf
https://grow.famnit.upr.si/GROW-BOP.pdf
https://doi.org/10.1007/BFb0024502

The Family of Fan-Planar Graphs

Michael Kaufmann(B)

Wilhelm-Schickard-Institute, Tübingen, Germany

michael.kaufmann@uni-tuebingen.de

1 The Origins

Beyond-planarity [24,28] has been developed in the areas of graph drawing and
topological graph theory as a core topic. Planar graphs have been a key class
here since several decades, although most of the graphs in practical applications
are not planar at all. Nevertheless, most of the models and layout algorithms
are based on the concept of planarity and aim for crossing-minimization, since
too many edge crossings may lead to clutter and visual errors.

The very first class in the landscape of beyond-planarity are 1-planar graphs,
i.e. graphs that have a drawing where edges have at most one crossing. This gen-
eralization has been introduced by Ringel in 1965 [34] in the context of graph
coloring planar and near-planar graphs, see also [15]. Later 1-planar graphs of
maximum number of edges, called maximum density, has been characterized
in [14], and later extended to larger crossing numbers per edge by Pach and
Tóth [33], where first bounds for the maximum density has been given. Mean-
while, many combinatorial and algorithmic aspects in particular for 1-planar and
partially for 2-planar graphs have been considered, like recognition [7,27], layout
algorithms [4], generation [37]. In particular, many subclasses like outer-1-planar
graphs, IC-planar and NIC-planar graphs etc have been considered, and numer-
ous results on the structure of such classes, the recognition problem as well as
efficient layout algorithms have been found. Surveys on 1-planar graphs can be
found in [32] and [28].

In follow-up works of [33], a complete characterization of 2-planar graphs of
maximum density and tight bounds for 3-planar graphs have been given in [10].

A more advanced model are quasiplanar graphs, i.e. graphs that have draw-
ings without 3 mutually crossing edges. These graphs have been introduced in
the early days of beyond-planarity as well. In a series of publications, the bounds
for maximum densities have been [3,35,36] gradually improved. In particular, for
k-quasiplanar graphs, where any k edges are forbidden to mutually cross, there
have been remarkable achievements [1,2,26]. We mention only the work in [5]
where it is shown that any simple k-planar drawing of a graph can be transformed
into a simple (k + 1)-quasiplanar drawing.

Another branch that had been developed so far are the class of RAC-drawable
graphs, i.e. graphs that have drawings with right-angle crossings [22,23]. In prin-
ciple, there are no limitations on the number of crossings along a single edge,

This work has been supported by DFG grant KA812-18/2.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 12–19, 2023.
https://doi.org/10.1007/978-3-031-27051-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_2&domain=pdf
http://orcid.org/0000-0001-9186-3538
https://doi.org/10.1007/978-3-031-27051-2_2

The Family of Fan-Planar Graphs 13

on the other hand, in the straight-line drawing, two edges incident to the same
vertex may not cross any other edge. Hence, fan-crossings are forbidden in this
scenario.

Overall, mostly the density questions and the inclusion relations between the
graph classes beyond planarity have been studied [9]. This was the state of the
landscape, when we considered the new graph class of fan-planar graphs. We
aimed for a class in the beyond-planarity landscape that reflects some practical
needs: First of all, sometimes an unlimited number of crossings should be allowed.
Note that the basic models of 1-, 2-, 3–planarity etc. seem a simple but artificial
restriction which is often not useful in practice. A second practical aspect is the
model of bundling edges. Bundling means edges that are routed similarly are
bundled into one single route and the question is how to count possible crossings.
This should be taken into account and supported by the model. Third aspect is
of course the necessity to develop a counterpart to the RAC model, where fan-
crossings are impossible for straight-line drawings. We want to explicitly allow
such fan crossings.

2 The First Generation

In the original paper [29], which appeared in a journal only recently [30], we
formally introduced the class of fan-planar graphs: In this graph class, graphs
have drawings where no two independent edges cross the same edge, i.e. an
edge can be crossed by several other edges as long as they have a common
vertex (Configuration I) (Fig. 1). Unfortunately, this condition is not enough
as we had to exclude the case that two edges which are incident to the same
vertex cross another edge coming from two different sides (Configuration II).
Graphs with drawings avoiding Configurations I and II will be called weakly fan-
planar following [21]. Much later, Klemz et al. [31] pointed out that our proof
works when we further generalize configuration II and give a new forbidden
configuration III. We call such graphs strongly fan-planar graphs. In [29], we
give a combinatorial proof for a bound of 5n − 10 on the density of simple
strongly fan-planar graphs of n vertices. In this proof, we assume right from the
beginning that we consider only simple graphs, i.e. graphs without self-loops,
parallel edges and non-intersecting incident edges, that have maximum density,
and further that the number of uncrossed edges is also maximal. We partition
the edges into several subsets and count the cardinality of these subsets. E.g. one
subset comprises the uncrossed edges. In a fan-planar drawing, those edges define
faces, i.e. (not necessarily simple) connected regions in the plane surrounded by
the uncrossed edges. The edges that are being crossed are contained in those
faces. We describe the ways that those edges might be drawn and hence we
are able to bound the number of such edges, depending on the length and the
properties of the faces. We can then characterize the shape of the faces such that
the total number of edges is maximized and finally achieve the claimed result.

In [29], we additionally describe several fan-planar graphs with different struc-
tural properties that achieve the claimed upper bound of 5n − 10 on the edge

14 M. Kaufmann

(I) (II) (III)

Fig. 1. A fan-crossing and the three forbidden Configurations I, II and III

density, we shortly discuss the option to remove configurations II and III for
straight-line fan-planar drawings, and show what might happen when allowing
incident edges that might intersect each other.

In follow-up papers [16,17], Brandenburg discusses the variant where Con-
figuration II is allowed but only Configuration I is forbidden. Among others,
he interestingly showed how to express this graph class in first-order logic. Fur-
ther, he claimed that graphs only obey forbidden Configuration I have the same
density bound as the fan-planar graphs as defined above.

As for almost all the graphs beyond-planarity, the recognition problem plays a
prominent role, but the results are the same: For the general setting, Binucci et al.
in the general setting [13] showed NP-hardness using a reduction from 1-planarity
testing. And even if the rotation system of the input graph, i.e. the cyclic order
of the incident edges for every vertex is being prescribed, Bekos et al. [8] show
NP-hardness as well using a reduction from 3-Partition. More feasible variants
with respect to the recognition problem are the maximal outer fan-planar graphs
and the 2-layer fan-planar graphs. In the 2-layer variant, usually the input graph
is bipartite, and the vertices of the two partitions are placed onto two parallel
(horizontal) lines and the edges are drawn in between the two lines. In [12] the
authors were able to completely characterize 2-layer fan-planar graphs. Efficient
recognition algorithms as well as tight density bounds could be found. For the
variant of outer-fan-planar graphs, all the vertices should be adjacent to the
outer face in addition to the general requirements of fan-planar graphs. Bekos
et al. [8] gave efficient recognition algorithms for the maximal variant, where
no extra edge can be inserted without violating one of the requirements of the
model. Additionally, the authors derived important properties in the respective
drawings.

3 The Relatives

A seemingly counterpart of the fan-planarity model, where only fan crossings
are allowed, is the fan-crossing free model, where only independent edges can
be crossed by the same edge. In an early work, Cheong et al. [20] explored this
graph class and gave an upper bound on such graphs of size 4n − 8, which is
the same as for 1-planar graphs, and hence remarkably low. Brandenburg [18]
has put the fan-crossing free graphs in relation to several other classes beyond
planarity.

The Family of Fan-Planar Graphs 15

Remarkably, the same density bound as the fan-planar graphs is obtained
by 2-planar graphs. Although 2-planar graphs of maximum density are also
fan-planar, there are 2-planar graphs which are not fan-planar [13] (indepen-
dent edges cross the same edge), and there are fan-planar graphs which are
not 2-planar, and not even k-planar for bounded k. Hence the two classes are
incomparable.

A more recent approach exploits the bundling abilities of fans: In a 1-sided
fan-bundle-planar drawing, the edges of a fan are grouped into a bundle such
that a crossing of such a fan-bundle with another edge counts as one crossing [6].
The crossing rule is that each bundle is crossed only once, and the bundling rule
is that an edge can be bundled only at one of its endpoints. The two rules imply
that graphs with such properties are fan-planar. For graphs with such a 1-sided
fan-bundle-planar drawings Angelini et al. [6] also showed a tight bound on the
density of that graph class. They obtained (13n−36)/3, which then implies that
there are fan-planar graphs, i.e. those of maximum density, that are not 1-fbp.

A last relative that we mention here is by Biedl et al. [11]. They consider a
generalization of 2-layer fan-planar drawings to multi-layer drawings, and here
several variants depending on the route of edges between neighboring layers or
even connecting non-neighboring layers. Due to the restricted setting by the
horizontal layers, we were able to develop FPT algorithms for the recognition
problem w.r.t. the number of layers, if the embedding is asssumed to be fixed.
Other properties like a bounded treewidth and drawability as a bar-1-visible
drawing have been obtained as well.

4 The Second Generation

We will mention here some recent results, even partially unpublished, which show
the attractiveness and the active research in this area.

4.1 Thickness

Graph thickness is a well-known graph parameter that describes in how many
planar graphs a graph can be decomposed. It is closely related to arboricity,
which denotes the number of edge-disjoint forests a graph can be decomposed.
For k-planar graphs, the arboricity, and also the thickness is 3.8

√
k which follows

from the density bound of 3.8
√
kn for general k planar graphs, while for 2- and 3-

planar graphs, a thickness of 5 and 6 follow from the density bounds respectively.
Analogously, from the 5n − 10 bound from the density, an upper bound for the
thickness of 5 holds for fan-planar graphs.

Cheong, Pfister and Schlipf improved this simple bound and showed that
any fan-planar drawings that obey the three forbidden configurations can be
partitioned into 3 non-crossing set of edges [21]. The main technique is to consider
odd cycles in the intersection graph, which then imply odd cycles in the original
graph. Dependencies between odd cycles can be resolved and finally the result is
achieved. Due to the absence of odd cycles in the intersection graph, the bounds
for the thickness is even two, for bipartite fan-planar graphs.

16 M. Kaufmann

The main task left open for the future here is to find a fan-planar graph,
which has thickness exactly 3.

4.2 Non-simple Fan-Planar Graphs

Klemz, Knorr, Reddy and Schröder [31] made a thorough research about non-
simple fan-planar graphs, they identified some flaws in the original paper by
Kaufmann and Ueckerdt [29] and introduced the new configuration III (ref. to
the definitions), see also [30]. They showed how to make non-simple fan-planar
drawings simple without introducing any new crossings. Rerouting some edges
to simplify the drawing is particularly tricky as naive approaches might destroy
fan-planarity.

4.3 Insights on Configuration III

New progress has also been made concerning Configuration III [19]. As a
first result, the authors give a weakly fan-planar graph, which is not strongly-
fanplanar, i.e. they present a graph that for any fan-planar drawing avoiding
Configuration I and II, the third Configuration III is being neglected. Here they
use some properties of possible fan-planar drawings of K7 that have been devel-
oped in [12] and that is used as a gadget.

Secondly, the authors claim that the 5n − 10 density bound which has been
proven for strongly fan-planar graphs, i.e. with all three forbidden configurations,
also hold for weakly fan-planar graphs, i.e. graphs where Configuration III might
be present. The idea is that for any Configuration III that occur in the drawing,
several ’independent’ parts can be defined, and for these parts, induction on the
number of edges can be applied. Reconnecting the two parts lead to the missing
edges and the claimed bound.

5 An Outlook to the Future

In this overview we gave an insight on the state of research around the class of
fan-planar graphs. Here is a list of tasks for follow-up work in the near future.

1. Concerning the thickness of fan-planar graphs, it is still open what the real
bound for the thickness is. In particular, find a graph where all fan-planar
drawings have thickness at least 3. Furthermore, find out if the restrictions on
the drawings, i.e. Configurations I, II and III, are really necessary to obtain
the bound.

2. Characterize the fan-planar graphs that achieve the maximum bound of 5n−
10 on the number of edges, and consider the recognition question for such
graphs as it has been done recently for 2-planar graphs of maximum density
[25].

3. Clarify the impact of the single forbidden Configurations I, II and III on the
density and other parameters of the respective graphs and their structure.

The Family of Fan-Planar Graphs 17

4. Explore the tasks for straight-line drawings, 1- or 2-bend drawings. Combine
the fan-planarity model with the RAC drawing model.

5. Generalize the fan-planar graph model in some way. One possible approach
is to define 2-fan-planarity by allowing the intersection of the same edge by
even 2 fans. Even the restriction of 2 fans intersecting from opposite/same
sides seems interesting.

6. Practical aspects: Define a layout model that takes the characteristics of fan-
planarity into account. An idea might be to layout the fans in uniform shapes
or in restricted directions, etc.

7. Give a striking application that includes many fans and apply the techniques
on fan-planarity.

Acknowledgement. Thanks go to Torsten Ueckerdt and all the (former) members of
my group in Tübingen Lena Schlipf, Maximilian Pfister, Axel Kuckuk, Julia Katheder,
Henry Förster, Michael Bekos, Patrizio Angelini for the nice collaborations in the past
on this fascinating topic.

References

1. Ackerman, E.: On topological graphs with at most four crossings per edge. CoRR
1509.01932 (2015). http://arxiv.org/abs/1509.01932

2. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar
graphs. J. Comb. Theory Ser. A 114(3), 563–571 (2007). https://doi.org/10.1016/
j.jcta.2006.08.002

3. Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar
graphs have a linear number of edges. Combinatorica 17(1), 1–9 (1997).
http://dx.doi.org/10.1007/BF01196127

4. Alam, M.J., Brandenburg, F.J., Kobourov, S.G.: Straight-line grid drawings of
3-connected 1-planar graphs. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS,
vol. 8242, pp. 83–94. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
03841-4 8

5. Angelini, P., et al.: Simple k-planar graphs are simple (k+1)-quasiplanar. J. Comb.
Theory Ser. B 142, 1–35 (2020). https://doi.org/10.1016/j.jctb.2019.08.006

6. Angelini, P., Bekos, M.A., Kaufmann, M., Kindermann, P., Schneck, T.: 1-fan-
bundle-planar drawings of graphs. Theor. Comput. Sci. 723, 23–50 (2018). https://
doi.org/10.1016/j.tcs.2018.03.005

7. Auer, C., et al.: Outer 1-planar graphs. Algorithmica 74(4), 1293–1320 (2016).
https://doi.org/10.1007/s00453-015-0002-1

8. Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S., Kaufmann, M.: On the recognition
of fan-planar and maximal outer-fan-planar graphs. Algorithmica 79(2), 401–427
(2017). https://doi.org/10.1007/s00453-016-0200-5

9. Bekos, M.A., Gronemann, M., Raftopoulou, C.N.: On the queue number of planar
graphs. In: Purchase, H.C., Rutter, I. (eds.) GD 2021. LNCS, vol. 12868, pp. 271–
284. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92931-2 20

10. Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On optimal 2- and 3-planar
graphs. In: Aronov, B., Katz, M.J. (eds.) 33rd International Symposium on Compu-
tational Geometry, SoCG 2017, 4-7 July 2017, Brisbane, Australia. LIPIcs, vol. 77,
pp. 16:1–16:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://
doi.org/10.4230/LIPIcs.SoCG.2017.16

http://arxiv.org/abs/1509.01932
https://doi.org/10.1016/j.jcta.2006.08.002
https://doi.org/10.1016/j.jcta.2006.08.002
http://dx.doi.org/10.1007/BF01196127
https://doi.org/10.1007/978-3-319-03841-4_8
https://doi.org/10.1007/978-3-319-03841-4_8
https://doi.org/10.1016/j.jctb.2019.08.006
https://doi.org/10.1016/j.tcs.2018.03.005
https://doi.org/10.1016/j.tcs.2018.03.005
https://doi.org/10.1007/s00453-015-0002-1
https://doi.org/10.1007/s00453-016-0200-5
https://doi.org/10.1007/978-3-030-92931-2_20
https://doi.org/10.4230/LIPIcs.SoCG.2017.16
https://doi.org/10.4230/LIPIcs.SoCG.2017.16

18 M. Kaufmann

11. Biedl, T., Chaplick, S., Kaufmann, M., Montecchiani, F., Nöllenburg, M.,
Raftopoulou, C.N.: Layered fan-planar graph drawings. In: Esparza, J., Král’, D.
(eds.) 45th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2020, 24-28 August 2020, Prague, Czech Republic. LIPIcs, vol. 170,
pp. 14:1–14:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://
doi.org/10.4230/LIPIcs.MFCS.2020.14

12. Binucci, C., et al.: Algorithms and characterizations for 2-layer fan-planarity:
from caterpillar to stegosaurus. J. Graph Algorithms Appl. 21(1), 81–102 (2017).
https://doi.org/10.7155/jgaa.00398

13. Binucci, C., et al.: Fan-planarity: properties and complexity. Theor. Comput. Sci.
589, 76–86 (2015). http://dx.doi.org/10.1016/j.tcs.2015.04.020

14. Bodendiek, R., Schumacher, H., Wagner, K.: Über 1-optimale graphen. Math.
Nachr. 117(1), 323–339 (1984)

15. Borodin, O.V.: A new proof of the 6 color theorem. J. of Graph Theory 19(4),
507–521 (1995). http://dx.doi.org/10.1002/jgt.3190190406

16. Brandenburg, F.J.: Recognizing optimal 1-planar graphs in linear time. Algorith-
mica 80(1), 1–28 (2018). https://doi.org/10.1007/s00453-016-0226-8

17. Brandenburg, F.J.: On fan-crossing graphs. Theor. Comput. Sci. 841, 39–49 (2020).
https://doi.org/10.1016/j.tcs.2020.07.002

18. Brandenburg, F.J.: Fan-crossing free graphs and their relationship to other beyond-
planar graphs. Theor. Comput. Sci. 867, 85–100 (2021). https://doi.org/10.1016/
j.tcs.2021.03.031

19. Cheong, O., Förster, H., Katheder, J., Pfister, M., Schlipf, L.: On weakly- and
strongly fan-planar graphs. Private Communication (2022)

20. Cheong, O., Har-Peled, S., Kim, H., Kim, H.-S.: On the number of edges of fan-
crossing free graphs. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013.
LNCS, vol. 8283, pp. 163–173. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-45030-3 16

21. Cheong, O., Pfister, M., Schlipf, L.: The thickness of fan-planar graphs is at most
three. CoRR abs/2208.12324 (2022). https://doi.org/10.48550/arXiv.2208.12324

22. Didimo, W.: Right angle crossing drawings of graphs. In: Hong, S.-H., Tokuyama,
T. (eds.) Beyond Planar Graphs, pp. 149–169. Springer, Singapore (2020). https://
doi.org/10.1007/978-981-15-6533-5 9

23. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right
angle crossings. Theor. Comput. Sci. 412(39), 5156–5166 (2011).
http://dx.doi.org/10.1016/j.tcs.2011.05.025

24. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond
planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019). https://doi.org/10.1145/
3301281

25. Förster, H., Kaufmann, M., Raftopoulou, C.N.: Recognizing and embedding simple
optimal 2-planar graphs. In: Purchase, H.C., Rutter, I. (eds.) GD 2021. LNCS,
vol. 12868, pp. 87–100. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92931-2 6

26. Fox, J., Pach, J., Suk, A.: The number of edges in k-quasi-planar graphs. SIAM J.
Discret. Math. 27(1), 550–561 (2013). https://doi.org/10.1137/110858586

27. Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embed-
dable with few crossings per edge. Algorithmica 49(1), 1–11 (2007).
http://dx.doi.org/10.1007/s00453-007-0010-x

28. Hong, S.-H.: Algorithms for 1-planar graphs. In: Hong, S.-H., Tokuyama, T. (eds.)
Beyond Planar Graphs, Communications of NII Shonan Meetings, pp. 69–87.
Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6533-5 5

https://doi.org/10.4230/LIPIcs.MFCS.2020.14
https://doi.org/10.4230/LIPIcs.MFCS.2020.14
https://doi.org/10.7155/jgaa.00398
http://dx.doi.org/10.1016/j.tcs.2015.04.020
http://dx.doi.org/10.1002/jgt.3190190406
https://doi.org/10.1007/s00453-016-0226-8
https://doi.org/10.1016/j.tcs.2020.07.002
https://doi.org/10.1016/j.tcs.2021.03.031
https://doi.org/10.1016/j.tcs.2021.03.031
https://doi.org/10.1007/978-3-642-45030-3_16
https://doi.org/10.1007/978-3-642-45030-3_16
https://doi.org/10.48550/arXiv.2208.12324
https://doi.org/10.1007/978-981-15-6533-5_9
https://doi.org/10.1007/978-981-15-6533-5_9
http://dx.doi.org/10.1016/j.tcs.2011.05.025
https://doi.org/10.1145/3301281
https://doi.org/10.1145/3301281
https://doi.org/10.1007/978-3-030-92931-2_6
https://doi.org/10.1007/978-3-030-92931-2_6
https://doi.org/10.1137/110858586
http://dx.doi.org/10.1007/s00453-007-0010-x
https://doi.org/10.1007/978-981-15-6533-5_5

The Family of Fan-Planar Graphs 19

29. Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. CoRR 1403.6184
(2014). http://arxiv.org/abs/1403.6184

30. Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. Electron. J. Comb.
29(1) (2022). https://doi.org/10.37236/10521

31. Klemz, B., Knorr, K., Reddy, M.M., Schröder, F.: Simplifying non-simple fan-
planar drawings. In: Purchase, H.C., Rutter, I. (eds.) GD 2021. LNCS, vol. 12868,
pp. 57–71. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92931-2 4

32. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-
planarity. Comput. Sci. Rev. 25, 49–67 (2017). https://doi.org/10.1016/j.cosrev.
2017.06.002

33. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica
17(3), 427–439 (1997). http://dx.doi.org/10.1007/BF01215922

34. Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abhandlungen aus dem Math-
ematischen Seminar der Universität Hamburg (in German) 29, 107–117 (1965)

35. Suk, A.: k -quasi-planar graphs. In: van Kreveld, M., Speckmann, B. (eds.) GD
2011. LNCS, vol. 7034, pp. 266–277. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-25878-7 26

36. Suk, A., Walczak, B.: New bounds on the maximum number of
edges in k-quasi-planar graphs. Comput. Geom. 50, 24–33 (2015).
http://dx.doi.org/10.1016/j.comgeo.2015.06.001

37. Suzuki, Y.: Re-embeddings of maximum 1-planar graphs. SIAM J. Discrete Math.
24(4), 1527–1540 (2010). http://dx.doi.org/10.1137/090746835

http://arxiv.org/abs/1403.6184
https://doi.org/10.37236/10521
https://doi.org/10.1007/978-3-030-92931-2_4
https://doi.org/10.1016/j.cosrev.2017.06.002
https://doi.org/10.1016/j.cosrev.2017.06.002
http://dx.doi.org/10.1007/BF01215922
https://doi.org/10.1007/978-3-642-25878-7_26
https://doi.org/10.1007/978-3-642-25878-7_26
http://dx.doi.org/10.1016/j.comgeo.2015.06.001
http://dx.doi.org/10.1137/090746835

Computational Geometry

Minimum Ply Covering of Points
with Unit Squares

Stephane Durocher1, J. Mark Keil2, and Debajyoti Mondal2(B)

1 University of Manitoba, Winnipeg, Canada
stephane.durocher@umanitoba.ca

2 University of Saskatchewan, Saskatoon, Canada
{keil,dmondal}@cs.usask.ca

Abstract. Given a set P of points and a set U of axis-parallel unit
squares in the Euclidean plane, a minimum ply cover of P with U is a
subset of U that covers P and minimizes the number of squares that
share a common intersection, called the minimum ply cover number of
P with U . Biedl et al. [Comput. Geom., 94:101712, 2020] showed that
determining the minimum ply cover number for a set of points by a
set of axis-parallel unit squares is NP-hard, and gave a polynomial-
time 2-approximation algorithm for instances in which the minimum
ply cover number is constant. The question of whether there exists a
polynomial-time approximation algorithm remained open when the min-
imum ply cover number is ω(1). We settle this open question and present
a polynomial-time (8+ε)-approximation algorithm for the general prob-
lem, for every fixed ε > 0.

1 Introduction

The ply of a set S, denoted ply(S), is the maximum cardinality of any subset
of S that has a non-empty common intersection. The set S covers the set P if
P ⊆ ⋃

Si∈S Si. Given sets P and U , a subset S ⊆ U is a minimum ply cover of
P if S covers P and S minimizes ply(S) over all subsets of U . Formally:

plycover(P,U) = arg min
S⊆U

S covers P

ply(S). (1)

The ply of such a set S is called the minimum ply cover number of P with
U , denoted ply∗(P,U). Motivated by applications in covering problems, includ-
ing interference minimization in wireless networks, Biedl et al. [3] introduced
the minimum ply cover problem: given sets P and U , find a subset S ⊆ U that
minimizes (1). They showed that the problem is NP-hard to solve exactly, and
remains NP-hard to approximate by a ratio less than two when P is a set of
points in R

2 and U is a set of axis-aligned unit squares or a set of unit disks in

This work is supported in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 23–35, 2023.
https://doi.org/10.1007/978-3-031-27051-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_3&domain=pdf
http://orcid.org/0000-0002-7370-8697
https://doi.org/10.1007/978-3-031-27051-2_3

24 S. Durocher et al.

Fig. 1. (a) An input consisting of points and unit squares. (b) A covering of the points
with ply 1, which is also the minimum ply cover number for the given input. (c) A
covering of the points with ply 2.

R
2. They also provided 2-approximation algorithms parameterized in terms of

ply∗(P,U) for unit disks and unit squares in R
2. Their algorithm for axis-parallel

unit squares runs in O((k + |P |)(2 · |U |)3k+1) time, where k = ply∗(P,U), which
is polynomial when ply∗(P,U) ∈ O(1). Biniaz and Lin [4] generalized this result
for any fixed-size convex shape and obtained a 2-approximation algorithm when
ply∗(P,U) ∈ O(1). The problem of finding a polynomial-time approximation
algorithm to the minimum ply cover problem remained open when the mini-
mum ply cover number, ply∗(P,U), is not bounded by any constant. This open
problem is relevant to the motivating application of interference minimization.
For example, algorithms for constructing a connected network on a given set of
wireless nodes sometimes produce a network with high interference [8]. Selecting
a set of network hubs that minimizes interference relates to the ply covering
problem in a setting where ply may not be a constant.

Given a set P and a set U of subsets of P , the minimum membership set cover
problem, introduced by Kuhn et al. [12], seeks to find a subset S ⊆ U that covers
P while minimizing the maximum number of elements of S that contain a com-
mon point of P . A rich body of research examines the minimum membership set
cover problem (e.g., [6,13]). The minimum ply cover problem is a generalization
of the minimum membership set cover problem: U is not restricted to subsets of
P , and ply is measured at any point covered by U instead of being restricted to
points in P . Consequently, the cardinality of a minimum membership set cover
is at most the cardinality of a minimum ply cover. Erlebach and van Leeuwen [9]
showed that the minimum membership set cover problem remains NP-hard when
P is a set of points in R

2 and U are unit squares or unit disks. For unit squares,
they gave a 5-approximation algorithm for instances where the optimum objec-
tive value is bounded by a constant. Improved approximation algorithms are
found in [2] and [10]. We refer the readers to [1,5] for more details on geometric
set cover problems.

Our Contribution: In this paper, we consider the minimum ply cover problem
for a set P of points in R

2 with a set U of axis-aligned unit squares in R
2

(Fig. 1). We show that for every fixed ε > 0, the minimum ply cover number can
be approximated in polynomial time for unit squares within a factor of (8 + ε).

Minimum Ply Covering of Points with Unit Squares 25

The algorithm is for the general case, i.e., no assumption on the ply cover of
the input instance is needed. Hence, this settles an open question posed in [3]
and [4].

Our algorithm overlays a regular grid on the plane and then approximates
the ply cover number from the near exact solutions for these grid cells. The most
interesting part of the algorithm is to model the idea of bounding the ply cover
number with a set of budget points, and to exploit this set’s geometric properties
to enable dynamic programming to be applied. We show that one can set budget
at the corners of a grid cell and check for a solution where the number of squares
hit by a corner does not exceed its assigned budget. A major challenge to solve
this decision problem is that the squares that hit the four corners may mutually
intersect to create a ply that is bigger than any budget set at the corners. We
show that an optimal solution can take a few well-behaved forms that can be
leveraged to tackle this problem.

2 Minimum Ply Covering with Unit Squares

Let P be a finite set of points in R
2 and let U be a set of axis-parallel unit

squares in general position in R
2, i.e., no two squares in U have edges that lie on

a common vertical or horizontal line. In this section we give a polynomial-time
algorithm to approximate the minimum ply cover number for P with U .

We consider a unit grid G over the point set P . The rows and columns of
the grid are aligned with the x- and y-axes, respectively, and each cell of the
grid is a unit square. We choose a grid that is in general position relative to the
squares in U . In addition, no grid line intersects the points of P . A grid cell is
called non-empty if it contains some points of P . We prove that one can first
find a near exact ply cover for each non-empty grid cell R and then combine
the solutions to obtain an approximate solution for P . We only focus on the ply
inside R, because if the ply of a minimum ply cover is realized outside R, then
there also exists a point inside R giving the same ply number.

We first show how to find a near exact ply cover when the points are bounded
inside a unit square and then show how an approximate ply cover number can
be computed for P . We will use the following property of a minimum ply cover.
We include the proof in the full version [7] due to space constraint.

Lemma 1. Let P be a set of points in a unit square R and let U be a set of
axis-parallel unit squares such that each square contains either the top left or top
right corner of R. Let W� ⊆ U and Wr ⊆ U be the squares that contain the top
left and top right corners of R, respectively. Let S ⊆ U be a minimum ply cover
of the points in R such that every square in S is necessary. In other words, if a
square of S is removed, then the resulting set cannot cover all the points of R.
Then S admits the property that one can remove at most one square from S to
ensure that squares of S ∩ W� do not intersect squares in S ∩ Wr (e.g., Fig. 2).

Ply Cover for Points in a Grid Cell

26 S. Durocher et al.

Fig. 2. (a)–(b) Illustration for the configuration of Lemma 1, where (S ∩ W�) and
(S ∩ Wr) are shown in blue and red, respectively. R is shown in dotted line. (Color
figure online)

Fig. 3. Illustration for Case 1. The squares taken in the solution are shaded in gray. R
is shown in dotted line.

Let R be a 1 × 1 closed grid cell. Let Q ⊆ P be the set of points in R, and let
W ⊆ U be the set of squares that intersect R. Note that by the construction of
the grid G, every square in W contains exactly one corner of R. We distinguish
some cases depending on the position of the squares in W . In each case we show
how to compute either a minimum ply cover or a ply cover with ply at most four
more than the minimum ply cover number in polynomial time.
Case 1 (A corner of R intersects all squares in W). In this case we compute
a minimum ply cover. Without loss of generality assume that the top right corner
of R intersects all the squares in W . We now can construct a minimum ply cover
by the following greedy algorithm G.
Step 1: Let z be the leftmost (break ties arbitrarily) uncovered point of Q. Find
the square B ∈ W with the lowest bottom boundary among the squares that
contain z.
Step 2: Add B to the solution, remove the points covered by B.
Step 3: Repeat Steps 1 and 2 unless all the points are covered.

Figure 3 illustrates such an example for Case 1. It is straightforward to com-
pute such a solution in O((|W | + |Q|) log2(|W | + |Q|)) time using standard
dynamic data structures, i.e., the point z can be maintained using a range tree
and the square B can be maintained by leveraging dynamic segment trees [11].

Lemma 2. Algorithm G computes a minimum ply cover.

Proof. To verify the correctness of the greedy algorithm, first observe that in
this case the number of squares in a minimum cardinality cover coincides with a

Minimum Ply Covering of Points with Unit Squares 27

minimum ply cover. We now show that the above greedy algorithm constructs a
minimum cardinality cover. We employ an induction on the number of squares
in a minimum cardinality cover. Let W1,W2, . . . ,Wk be a set of squares in a
minimum cardinality cover. First consider the base case where k = 1. Since W1

covers all the points, it also covers z. Since z is the leftmost point and since our
choice of square B has the lowest bottom boundary, B must cover all the points.
Assume now that if a minimum cardinality cover contains less than k squares,
then the greedy algorithm constructs a minimum cardinality cover. Consider
now the case when we have k squares in a minimum cardinality cover. For any
minimum cardinality cover, if z is covered by a square W1, then we can replace
it with the greedy choice B. The reason is that any point covered by W1 would
also be covered by B. By induction hypothesis, we have a minimum cardinality
cover for the points that are not covered by B. Hence the greedy solution must
give a minimum cardinality cover. ��

Case 2 (Two consecutive corners of R intersect all the squares in W).
In this case we compute a minimum ply cover. Without loss of generality assume
that the top left and top right corners of R intersect all the squares in W . Let
W� and Wr be the squares of W that intersect the top left corner and top right
corner, respectively. We construct a minimum ply cover by considering whether
a square of W� intersects a square of Wr.

If the squares of W� do not intersect the squares of Wr, then we can reduce
it into two subproblems of type Case 1. We solve them independently and it
is straightforward to observe that the resulting solution yields a minimum ply
cover. Similar to Case 1, here we need O((|W | + |Q|) log2(|W | + |Q|)) time.
Consider now the case when some squares in W� intersect some squares of Wr.
By Lemma 1, there exists a minimum ply cover S such that at least one of the
following two properties hold:

C1 There exists a vertical line L that passes through the left or right side of
some square and separates S ∩ W� and S ∩ Wr, as illustrated in Fig. 2(a).

C2 There exists a square M in S such that after the removal of M from S, one
can find a vertical line L that passes through the left or right side of some
square and separates (S \{M})∩W� and (S \{M})∩Wr. This is illustrated
in Fig. 2(b), where the square M is shown with the falling pattern.

To find a minimum ply cover, we thus try out all possible L (for C1), and all
possible M and L (for C2). More specifically, to consider C1, for each vertical line
L passing through the left or right side of some square in W , we independently
find a minimum ply cover for the points and squares on the left halfplane of L
and right halfplane of L. We then construct a ply cover of Q by taking the union
of these two minimum ply covers.

To consider C2, for each square M , we first delete M and the points it
covers. Then for each vertical line L determined by the squares in (W \ {M}),
we independently find a minimum ply cover for the points and squares on the
left halfplane of L and right halfplane of L. We then construct a ply cover of Q

28 S. Durocher et al.

Fig. 4. Illustration for the scenarios that may occur after applying Lemma 1: (a)–(b)
Diagonal, and (c) Disjoint. R is shown in dotted line.

by taking the union of these two minimum ply covers and M . Finally, among all
the ply covers constructed considering C1 and C2, we choose the ply cover with
the minimum ply as the minimum ply cover of Q.

Since there are O(|W |) possible choices for L and O(|W |) possible choices
for M , the number of ply covers that we construct is O(|W |2). Each of these ply
covers consists of two independent solutions that can be computed in O((|W | +
|Q|) log2(|W |+|Q|)) time using the strategy of Case 1. Hence the overall running
time is O((|W |3 + |W |2|Q|) log2(|W | + |Q|)).
Case 3 (Either two opposite corners or at least three corners of R
intersect the squares in W). Let S be a minimum ply cover of Q such that
all the squares in S are necessary (i.e., removing a square from S will fail to
cover Q). Let c1, c2, c3, c4 be the top-left, top-right, bottom-right and bottom-
left corners of R, respectively. Let Wi, where 1 ≤ i ≤ 4, be the squares of W
that contain ci. Similarly, let Si be the subset of squares in S that contain ci.

By Lemma 1, one can remove at most four squares from S such that the
squares of Si do not intersect the squares of S(i mod 4)+1. We assume these squares
to be in the solution and hence also remove the points they cover. Consequently,
we now have only the following possible scenarios after the deletion.

Diagonal: The squares of Si do not intersect the squares of S(i mod 4)+1. The
squares of S1 may intersect the squares of S3, but the squares of S2 do not
intersect the squares of S4 (or, vice versa). See Fig. 4(a) and (b).

Disjoint: If two squares intersect, then they belong to the same set, e.g.,
Fig. 4(c).

We will compute a minimum ply cover in both scenarios. However, consider-
ing the squares we deleted, the ply of the final ply cover we compute may be at
most four more than the minimum ply cover number.

Case 3.1 (Scenario Diagonal). We now consider the scenario Diagonal. Our
idea is to perform a search on the objective function to determine the minimum
ply cover number. Let k be a guess for the minimum ply cover number. If k ≤ 4,
we will show how to leverage Case 1 to verify whether the guess is correct. If

Minimum Ply Covering of Points with Unit Squares 29

k > 4, then one can observe that the ply is determined by a corner of R, as
follows. Let H be the common rectangular region of k mutually intersecting
squares in the solution. If H does not contain any corner of R, then it lies
interior to R. Since H is a rectangular region, we could keep only the squares
that determine the boundaries of H to obtain the same point covering with
at most 4 squares. Therefore, for k > 4, the region determining the ply cover
number must include a corner of R. We will use a dynamic program to determine
such a ply cover (if exists).

In general, by T (r, k1, k2, k3, k4) we denote the problem of finding a min-
imum ply cover for the points in a rectangle r such that the ply is at most
max{k1, k2, k3, k4}, and each corner ci respects its budget ki, i.e., ci does not
intersect more than ki squares. We will show that r can always be expressed as a
region bounded by at most four squares in W and T returns a feasible ply cover
if it exists. To express the original problem, we add four dummy squares in W
determined by the four sides of R such that they lie outside of R. Thus r = R is
the region bounded by the four dummy squares.

We are now ready to describe the details. Without loss of generality assume
that a square A ∈ S4 intersects a square B ∈ S2, as shown in Fig. 5(a). We
assume A and B to be in a minimum ply cover of R and try out all such pairs.
We first consider the case when k ≤ 4 and the minimum ply cover already
contains A and B. We enumerate all O(|W |4) possible options for k ≤ 4, S2,
and S4 with ply(S2 ∪ S4) ≤ k and for each option, we use Case 1 to determine
whether ply(W1) and ply(W3) are both upper bounded by k. We thus compute
the solution to T (r, k1, k2, k3, k4) and store them in a table D(r, k1, k2, k3, k4),
which takes O((|W |5 + |W |4|Q|) log2(|W | + |Q|)) time.

We now show how to decompose T (r, k1, k2, k3, k4) into two subproblems
assuming that the minimum ply cover already contains A and B. We will use
the table D as a subroutine.

The first subproblem consists of the points that lie above A and to the left of
B, e.g., Fig. 5(a) and (b). We refer to this set of points by Q1. The corresponding
region r′ is bounded by four squares: A, B, and the two (dummy) squares from
r. We now describe the squares that need to be considered to cover these points.

– Note that for Diagonal, no square in S1 intersects A or B, hence we can
only focus on the squares of W1 that do not intersect A or B.

– The squares of W2 that do not intersect Q1 are removed. The squares of W2

that contains the bottom left corner of B are removed because including them
will make B an unnecessary square in the cover to be constructed.

– Similarly, the squares of W4 that do not intersect Q1 or contains the top right
corner of A are removed.

– No square in W3 needs to be considered since to cover a point of Q1 it must
intersect A or B, which is not allowed in Diagonal.

The second subproblem consists of the points that lie below B and to the
right of A, e.g., Fig. 5(a) and (c). The corresponding region r′′ is bounded by
four squares: A, B, and the two squares from r. We denote these points by Q2.
The squares to be considered can be described symmetrically.

30 S. Durocher et al.

Fig. 5. Illustration for the dynamic program. (a)–(c) Decomposition into subproblems.
(d)–(f) Illustration for the (k + 1) mutually intersecting squares. The dashed squares
can be safely discarded. R is shown in dotted line.

Let W ′ and W ′′ be the set of squares considered to cover Q1 and Q2, respec-
tively. By the construction of the two subproblems, we have Q1 ∩ Q2 = ∅ and
W ′ ∩ W ′′ = ∅.

For each corner ci, we use k′
i and k′′

i to denote the budgets allocated for ci

in the first and the second subproblems, respectively. Since we need to ensure
that the ply of the problem T is at most k = max{k1, k2, k3, k4} and each corner
ci respects its budget ki, we need to carefully distribute the budget among the
subproblems when constructing the recurrence formula. Furthermore, let S′

2 and
S′
4 be the sets of squares corresponding to c2 and c4 that are returned as the

solution to the first subproblem. Similarly, define S′′
2 and S′′

4 for the second
subproblem. We now have the following recurrence formula.

T (r,k1,
k2,k3,k4)

= min
{A∈W4,B∈W2:A∩B �=∅}
k′
1=k′′

1 =k1,k′
3=k′′

3 =k3,

k′
2+k′′

2 =k2−1,

k′
4+k′′

4 =k4−1

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T (r′,k′
1,k′

2,k′
3,k′

4)∪
T (r′′,k′′

1 ,k′′
2 ,k′′

3 ,k′′
4)∪{A,B} , if δ ≤ k

T (r′,k′
1,k′

2,k′
3,k′

4)∪
T (r′′,k′′

1 ,k′′
2 ,k′′

3 ,k′′
4)∪β

, if δ > k and k ≥ 4

D(r,k1,k2,k3,k4) , if δ > k and k ≤ 3

Minimum Ply Covering of Points with Unit Squares 31

Here δ is the ply of (S′
2 ∪ S′

4 ∪ S′′
2 ∪ S′′

4 ∪ A ∪ B) and β is the set of squares that
remain after discarding unnecessary squares from (S′

2 ∪ S′
4 ∪ S′′

2 ∪ S′′
4 ∪ A ∪ B),

i.e., removal of these squares would still ensure that all points are covered by
the remaining squares. Since S1 and S4 are disjoint, one can also set k′

3 = 0 in
T (r′, k′

1, k
′
2, k

′
3, k

′
4) and k′′

1 = 0 in T (r′′, k′′
1 , k′′

2 , k′′
3 , k′′

4).
If δ ≤ k, then the union of {A,B} and the squares obtained from the two

subproblems must have a ply of at most k for the following two reasons. First,
the squares of S1 = S′

1 ∪ S′′
1 (similarly, S3) cannot intersect the squares of

S2 ∪ S4 = S′
2 ∪ S′′

2 ∪ S′
4 ∪ S′′

4 . Second, by the budget distribution, the ply of S1

can be at most k1 ≤ k and the ply of S3 can be at most k3 ≤ k.
If δ > k and k ≤ 4, then each of S1, S2, S3, S4 can have at most three

rectangles. We can look it up using the table D(r, k1, k2, k3, k4).
If δ > k > 4, then we can have k + 1 mutually intersecting squares in

(S′
2 ∪ S′

4 ∪ S′′
2 ∪ S′′

4 ∪ A ∪ B) and in the following we show how to construct
a solution with ply cover at most k respecting the budgets, or to determine
whether no such solution exists.

If T (r′, k′
1, k

′
2, k

′
3, k

′
4) and T (r′′, k′′

1 , k′′
2 , k′′

3 , k′′
4) each returns a feasible solution,

then we know that (k + 1) mutually intersecting squares can neither appear in
S′
2∪S′

4 nor in S′′
2 ∪S′′

4 . Therefore, these k+1 mutually intersecting squares must
include either both A and B, or at least one of A and B. We now consider the
following options.
Option 1: S4 and S2 each contains at least two squares that belong to the set
of k + 1 mutually intersecting squares. Since the region created by the k + 1
mutually intersecting squares is a rectangle, as illustrated in Fig. 5(f), we can
keep only the squares that determine the boundaries of this rectangle to obtain
the same point covering.

After discarding the unnecessary squares, we only have β squares where |β| =
4 < k. Thus the ply of the union of S1∪S3 and the remaining β squares is at most
k. Hence we can obtain an affirmative solution by taking T (r′, k′

1, k
′
2, k

′
3, k

′
4)∪

T (r′′, k′′
1 , k′′

2 , k′′
3 , k′′

4) ∪ β.

Option 2: S4 only contains A and A intersects all k squares of S′
2∪S′′

2 ∪B. Since
the k + 1 mutually intersecting region is a rectangle, as illustrated in Fig. 5(d),
we can keep only the squares that determine the boundaries of this rectangle
to obtain the same point covering. After discarding the unnecessary squares, we
only have β squares where |β| = 3 < k. Hence we can handle this case in the
same way as in Option 1.

Option 3: S2 only contains B and B intersects all k squares of S′
4 ∪ S′′

4 ∪ A.
This case is symmetric to Option 2.

In the base case of the recursion, we either covered all the points, or we obtain
a set of problems of type Case 1 or of Scenario Disjoint (Case 3.1.2). The
potential base cases corresponding to Case 1 are formed by guessing O(|W |2)
pairs of intersecting squares from opposite corners, as illustrated in Fig. 6(a). The
potential O(|W |4) base cases corresponding to Scenario Disjoint are formed by
two pairs of intersecting squares from opposite corners, as illustrated in Fig. 6(b).

32 S. Durocher et al.

Fig. 6. Illustration for the base cases, where the region corresponding to the base
cases are shown in gray. (a) The base case corresponds to Case 1, where we ignore the
squares that intersect the chosen squares A and B. (b) An example of the base case
that corresponds to scenario Disjoint, where we need to construct a solution such that
no two squares from opposite corners intersect. We ignore all the squares of W1 or W3

that intersect the chosen squares A and B, or A′ and B′, as well as those that makes
any of them unnecessary. R is shown in dotted line.

The precomputation of the base cases takes O(|W |4f(|W |, |Q|)) time, where
f(|W |, |Q|) is the time to solve a problem of type Case 1 and of Scenario Dis-
joint. We will discuss the details of f(|W |, |Q|) in the proof of Theorem 1.

Since r is determined by at most four squares (e.g., Fig. 6), and since there
are four budgets, the solution to the subproblems can be stored in a dynamic
programming table of size O(|W |4k4). Computing each entry requires examining
O(|W |2) pairs of squares. Thus the overall running time becomes O(|W |6k4 +
|W |4f(|W |, |Q|)).
Case 3.2 (Scenario Disjoint). In this case, we can find a sequence of empty
rectangles σ = (e1, e2, . . .) from top to bottom such that they do not intersect
any square of S, as illustrated in Fig. 7(a)–(b). The idea is again to exploit a
dynamic programming with a budget given for each corner of R. A subproblem
is expressed by a region determined by at most two squares—one intersecting
the left side and the other intersecting the right side of R. In Fig. 7(c), this
region is shown in gray. The overall running time for this case is O(|W |4k4 +
|W |4 log |Q| + |Q| log |Q|). See the full version [7] for more details.

The following theorem combines all cases and its proof is in full version [7].

Theorem 1. Given a set Q of points inside a unit square R and a set
W of axis-parallel unit squares, a ply cover of size 4 + k∗ can be com-
puted in O((|W |8(k∗)4 + |W |8 log |Q| + |W |4|Q| log |Q|) log k∗) time, where
k∗= ply∗(Q,W)≤ min{|Q|, |W |}.

Covering a General Point Set

Given a set P of points and a set U of axis-parallel unit squares, both in R
2,

we now give a polynomial-time algorithm that returns a ply cover of P with U
whose ply is at most (8 + ε) times the minimum ply cover number of P with U .
Recall that our algorithm partitions P along a unit grid and applies Theorem 1

Minimum Ply Covering of Points with Unit Squares 33

Fig. 7. Illustration for the dynamic program. R is shown in dotted line.

iteratively at each grid cell to select a subset of U that is a near minimum ply
cover for the grid cell. Elements of U selected to cover points of P in a given grid
cell overlap neighbouring grid cells, which can cause the ply to increase in those
neighbouring cells; Lemma 3 allows us to prove Theorem 2 and Corollary 1,
showing that the resulting ply is at most (8 + ε) times the optimal value.

Partition P using a unit grid, i.e., each cell in the partition contains P ∩ [i, i+
i) × [j, j + 1), for some i, j ∈ Z. Each grid cell has eight grid cells adjacent to
it. Let C1, . . . , C4 denote the four grid cells in counter-clockwise order that are
its diagonal neighbours. We now have the following lemma with the proof in the
full version [7].

Lemma 3. If any point p in a grid cell C is contained in four squares, {S1, . . . ,
S4} ⊆ U , such that for each i ∈ {1, . . . , 4}, Si intersects the cell Ci that is C’s
diagonal grid neighbour, then C ⊆ S1 ∪ S2 ∪ S3 ∪ S4.

We now partition P along a unit grid and apply Theorem 1 iteratively to find
a near minimum ply cover for each grid cell. For each cell that contains a point
p of P , we leverage Lemma 3 to show that at most 8 grid cells can contribute
to the ply of p. We thus obtain the following theorem with the proof in the full
version [7].

Theorem 2. Given a set P of points and a set U of axis-parallel unit squares,
both in R

2, a ply cover of P using U can be computed in O((|U |8(k∗)4 +
|U |8 log |P | +|U |4|P | log |P |) log k∗) time whose ply is at most 8k∗ + 32, where
k∗ = ply∗(P,U) ≤ min{|P |, |U |} denotes the minimum ply cover number of P
by U .

Corollary 1. Given a set P of points and a set U of axis-parallel unit squares,
both in R

2, a ply cover of P using U can be computed in polynomial time whose
ply is at most (8 + ε) times the minimum ply cover number k∗ = ply∗(P,U), for
every fixed ε > 0.

Proof. We use Theorem 2 to find a ply cover with ply at most 8k∗ +32, and then
consider the following two cases. Case 1. Suppose εk∗ ≥ 32. Then 8k∗ + 32 ≤

34 S. Durocher et al.

(8+ ε)k∗. Case 2. Suppose εk∗ < 32. We apply the 2-approximation algorithm
of Biedl et al. [3] in O(|P | · |U |)3k∗+1) time, which is polynomial since k∗ ∈ O(1).

��

3 Conclusion

We gave a (8+ε)-approximation polynomial-time algorithm for the minimum ply
cover problem with axis-parallel unit squares. Through careful case analysis, it
may be possible to further improve the running time of our approximation algo-
rithm presented in Theorem 2. A natural direction for future research would be
to reduce the approximation factor or to apply a different algorithmic technique
with lower running time. It would also be interesting to examine whether our
strategy can be generalized to find polynomial-time approximation algorithms
for other covering shapes, such as unit disks or convex shapes of fixed size.

References

1. Agarwal, P.K., Ezra, E., Fox, K.: Geometric optimization revisited. In: Steffen, B.,
Woeginger, G.J. (eds.) Computing and Software Science - State of the Art and
Perspectives, LNCS, vol. 10000, pp. 66–84. Springer, Cham (2019)

2. Basappa, M., Das, G.K.: Discrete unit square cover problem. Discret. Math. Algo-
rithms Appl. 10(6), 1850072:1–1850072:18 (2018)

3. Biedl, T.C., Biniaz, A., Lubiw, A.: Minimum ply covering of points with disks and
squares. Comput. Geom. 94, 101712 (2021)

4. Biniaz, A., Lin, Z.: Minimum ply covering of points with convex shapes. In: Pro-
ceedings of the 32nd Canadian Conference on Computational Geometry (CCCG),
pp. 2–5 (2020)

5. Chan, T.M., He, Q.: Faster approximation algorithms for geometric set cover. In:
Cabello, S., Chen, D.Z. (eds.) Proceedings of the 36th International Symposium
on Computational Geometry (SoCG). LIPIcs, vol. 164, pp. 27:1–27:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2020)

6. Demaine, E.D., Feige, U., Hajiaghayi, M., Salavatipour, M.R.: Combination can
be hard: approximability of the unique coverage problem. SIAM J. Comput. 38(4),
1464–1483 (2008)

7. Durocher, S., Keil, J.M., Mondal, D.: Minimum ply covering of points with unit
squares. CoRR abs/2208.06122 (2022)

8. Durocher, S., Mehrpour, S.: Interference minimization in k-connected wireless net-
works. In: Proceedings of the 29th Canadian Conference on Computational Geom-
etry (CCCG), pp. 113–119 (2017)

9. Erlebach, T., van Leeuwen, E.J.: Approximating geometric coverage problems. In:
Teng, S. (ed.) Procedings 19th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1267–1276. SIAM (2008)

10. Erlebach, T., van Leeuwen, E.J.: PTAS for weighted set cover on unit squares. In:
Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX/RANDOM -2010.
LNCS, vol. 6302, pp. 166–177. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15369-3 13

https://doi.org/10.1007/978-3-642-15369-3_13
https://doi.org/10.1007/978-3-642-15369-3_13

Minimum Ply Covering of Points with Unit Squares 35

11. van Kreveld, M.J., Overmars, M.H.: Union-copy structures and dynamic segment
trees. J. ACM 40(3), 635–652 (1993)

12. Kuhn, F., von Rickenbach, P., Wattenhofer, R., Welzl, E., Zollinger, A.: Inter-
ference in cellular networks: the minimum membership set cover problem. In:
Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 188–198. Springer, Heidelberg
(2005). https://doi.org/10.1007/11533719 21

13. Misra, N., Moser, H., Raman, V., Saurabh, S., Sikdar, S.: The parameterized com-
plexity of unique coverage and its variants. Algorithmica 65(3), 517–544 (2013)

https://doi.org/10.1007/11533719_21

Overlapping Edge Unfoldings
for Archimedean Solids and (Anti)prisms

Takumi Shiota(B) and Toshiki Saitoh

School of Computer Science and Systems Engineering, Kyushu Institute
of Technology, Fukuoka, Japan

shiota.takumi779@mail.kyutech.jp, toshikis@ai.kyutech.ac.jp

Abstract. Herein, we discuss the existence of overlapping edge unfold-
ings for Archimedean solids and (anti)prisms. Horiyama and Shoji showed
that there are no overlapping edge unfoldings for all platonic solids and five
shapes of Archimedean solids. The remaining five Archimedean solids were
also found to have edge unfoldings that overlap. In this study, we propose
a method called rotational unfolding to find an overlapping edge unfold-
ing of a polyhedron. We show that all the edge unfoldings of an icosido-
decahedron, a rhombitruncated cuboctahedron, an n-gonal Archimedean
prism, and an m-gonal Archimedean antiprism do not overlap when 3 ≤
n ≤ 23 and 3 ≤ m ≤ 11. Our algorithm finds three types of overlapping
edge unfoldings for a snub cube, consisting of two vertices in contact. We
show that an overlapping edge unfolding exists in an n-gonal Archimedean
prism and anm-gonal Archimedean antiprism for n ≥ 24 andm ≥ 12. Our
results prove the existence of overlapping edge unfoldings for Archimedean
solids and Archimedean (anti)prisms.

Keywords: Polyhedron · Overlapping edge unfolding · Archimedean
solids · Archimedean (anti)prisms · Enumeration algorithm

1 Introduction

The study of unfoldings of polyhedrons is known to have originated from the
publication “Underweysung der messung mit dem zirckel un richt scheyt” [3]
by Albrecht Dürer in 1525 [4]. Albrecht Dürer drew some edge unfoldings that
cut along the edges of a polyhedron and formed the plane’s flat polygon. How-
ever, all the edge unfoldings are nonoverlapping polygons, i.e., no two faces in
the polyhedron exhibit overlapping unfoldings. The following open problem is
obtained from this book:

Open Problem 1 ([4], Open Problem 21.1). Does every convex polyhedron
have a nonoverlapping edge unfolding?

Any convex polyhedron has nonoverlapping unfoldings, i.e., when the poly-
hedron surface is cut [10,13]. However, Namiki and Fukuda found a convex
polyhedron that has an overlapping edge unfolding [11]. Biedl et al. in 1998 and
Grünbaum in 2003 discovered that there exists a nonconvex polyhedron whose
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 36–48, 2023.
https://doi.org/10.1007/978-3-031-27051-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_4&domain=pdf
https://doi.org/10.1007/978-3-031-27051-2_4

Overlapping Edge Unfoldings for Archimedean Solids and (Anti)prisms 37

Table 1. Existence of an overlapping edge unfolding for Archimedean Solids and
(Anti)prisms.

Convex polyhedron Number of edge unfoldings [9] Is there an overlapping edge
unfolding?

Truncated Tetrahedron 261 No [7]

Cuboctahedron 6,912 No [7]

Truncated hexahedron 675,585 No [7]

Truncated octahedron 2,108,512 No [7]

Rhombicuboctahedron 6,272,012,000 No [7]

Icosidodecahedron 1,741,425,868,800 No [This paper]

Snub cube 3,746,001,752,064 Yes [This paper]

Rhombitruncated cuboctahedron 258,715,122,137,472 No [This paper]

Truncated dodecahedron 41,518,828,261,687,500 Yes [8]

Truncated icosahedron 3,127,432,220,939,473,920 Yes [8]

Rhombicosidodecahedron 1,679,590,540,992,923,166,257,971,200 Yes [8]

Snub dodecahedron 7,303,354,923,116,108,380,042,995,304,896,000 Yes [2]

Rhombitruncated icosidodecahedron 181,577,189,197,376,045,928,994,520,239,942,164,480 Yes [8]

n-gonal Archimedean prism

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

8
√
3

{
2
√

3n +
√

3(2 +
√

3)n

+(2 +
√

3)� n
2 �(4 + 2

√
3)

+(2 − √
3)� n

2 �(2
√

3 − 4)

+
√

3((2 − √
3)n − 2)

}

(if n is odd)

11 (if n = 4)
1
24

{
3(2 +

√
3)n + 4

√
3(2 +

√
3)

n
2

+3(2 − √
3)n − 4

√
3(2 − √

3)
n
2

+6n − 6}
(otherwise)

No (3 ≤ n ≤ 23) [This paper]
Yes (n ≥ 24) [This paper]

n-gonal Archimedean antiprism

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

11 (if n = 3)

1
10

{(
1+

√
5

2

)4n

+
(

1+
√
5

2

)−4n

− 2

}

+ (3+
√
5)n−(3−√

5)n

2n+1
√
5

(otherwise)
No (3 ≤ n ≤ 11) [This paper]
Yes (n ≥ 12) [This paper]

Fig. 1. Examples of overlapping edge unfoldings [8]. The right edge unfolding can be
obtained by cutting along the thick line of the left convex polyhedron.

every edge unfolding overlaps [1,6]. Some studies have reported on the existence
and/or the number of overlapping edge unfoldings for convex regular-faced poly-
hedrons. A snub dodecahedron has an overlapping edge unfolding [2]. Horiyama
and Shoji presented an algorithm that enumerates overlapping edge unfoldings
for a polyhedron. Their algorithm first enumerates edge unfoldings using binary
decision diagrams and then checks the overlapping by numerical calculations for
each unfolding. They found overlapping edge unfoldings for a truncated dodeca-
hedron, truncated icosahedron, rhombicosidodecahedron, and rhombitruncated
icosidodecahedron (Some are shown in Fig. 1). In addition, they confirmed that
platonic solids and five shapes of Archimedean solids do not have overlapping
edge unfoldings [7,8] (see Table 1). The edge unfoldings are represented as span-
ning trees of a polyhedral graph. The algorithm by Horiyama and Shoji first

38 T. Shiota and T. Saitoh

Fig. 2. Overlapping edge unfoldings for an n-gonal prisms [12].

enumerates the spanning trees to find overlapping edge unfoldings; however, if a
polyhedron has an excessive number of spanning trees, it is difficult to enumer-
ate overlapping edge unfoldings even if only a small number of them exist. Thus,
they considered isomorphism of unfoldings and enumeration of paths instead of
enumeration of the spanning trees to reduce the search space for finding over-
lapping edge unfolding [7]. However, it remains to be clarified a snub cube, an
icosidodecahedron, or a rhombitruncated cuboctahedron has overlapping edge
unfoldings. Schlickenrieder showed that n-gonal prisms have overlapping edge
unfoldings, as shown in Fig. 2 [12]. However, the side faces of n-gonal prisms are
not regular; therefore, the overlapping edge unfoldings for n-gonal Archimedean
prisms or n-gonal Archimedean antiprisms have not been studied. DeSplinter et
al. recently studied the edge unfoldings for high-dimensional cubes and showed
that a spanning tree of a Roberts graph can represent an edge unfolding [5].
They proposed a rolling and unfolding method, in which the cubes are rotated
on a spanning tree and the edges are cut to ensure that they do not overlap.

Our Contributions. Herein, we propose a method for determining an over-
lapping edge unfolding called rotational unfolding for a polyhedron. The basic
principle of our method is the same as that of the rolling and unfolding method.
First, a polyhedron is put on a plane, and the following three steps are performed
repeatedly: the bottom edges are cut, the polyhedron is rotated in the plane, and
overlapping edge unfoldings are searched. The rolling and unfolding method is
suitable for determining edge unfoldings for high-dimensional cubes but not for
general shapes. Therefore, we extend the method to n-gon by proposing pruning
methods on the rotational unfolding using the distance property and symmetry
of a polyhedron to determine overlapping unfoldings efficiently. As a result, we
obtain the following:

– We show that all the edge unfoldings of an icosidodecahedron and a rhombi-
truncated cuboctahedron do not overlap and that a snub cube has only three
types of overlapping edge unfoldings, as shown in Fig. 3, with two vertices of
faces in contact with each other. These are indicated in bold in Table 1. These
results are used to the determine the existence of overlapping edge unfoldings
for Archimedean solids.

– We find a new type of overlapping edge unfoldings for a truncated icosa-
hedron, as shown in Fig. 4, and show that only one and two types of edge
unfoldings exist in a truncated dodecahedron and truncated icosahedron,
respectively.

Overlapping Edge Unfoldings for Archimedean Solids and (Anti)prisms 39

Fig. 3. Three types of edge unfoldings have two faces in contact with the snub cube.
The edge unfolding can be obtained by cutting each snub cube along the thick line.

Fig. 4. A new overlapping edge unfolding in a truncated icosahedron. The right edge
unfolding is obtained by cutting along the thick line of the left convex polyhedron.

– Through rotational unfolding, we show that overlapping edge unfoldings do
not exist for n-gonal Archimedean prisms and m-gonal Archimedean anti-
prisms for 3 ≤ n ≤ 23 and 3 ≤ m ≤ 11 by rotational unfolding. We also
demonstrate that overlapping edge unfoldings exist in n-gonal Archimedean
prisms and m-gonal Archimedean antiprisms for n ≥ 24 and m ≥ 12.

2 Preliminaries

Let G = (V,E) be a simple graph where V is a set of vertices and E ⊆ V × V is
a set of edges. A sequence of vertices (v1, . . . , vk) is a path if all vertices in the
sequence are distinct and every consecutive two vertices are adjacent. A graph
is connected if there exists a path between any two vertices of the graph. If a
graph T = (VT , ET) is connected and |ET | = |VT | − 1, the graph is called a tree.
A tree T = (VT , ET) is a spanning tree of G = (V,E) if VT = V and ET ⊆ E.

A polyhedron is a three-dimensional object consisting of at least four poly-
gons, called faces, joined at their edges. A convex polyhedron is a polyhedron
with the interior angles of all two faces less than π. An n prism is a polyhedron
composed of two identical n-sided polygons, called bases, facing each other, and
n parallelograms, called side faces, connecting the corresponding edges of the
two bases. An n antiprism is a polyhedron composed of two bases of congru-
ent n-sided polygons and 2n-sided alternating triangles. An n-gonal (anti)prism
is an n (anti)prism if the bases are n-sided regular polygons and an n-gonal
Archimedean (anti)prism is an n-gonal (anti)prism if the side faces are also reg-
ular.

40 T. Shiota and T. Saitoh

Fig. 5. An overlapping edge unfolding in an n-gonal Archimedean (anti-)prism. The
right edge unfolding is obtained by cutting along the thick line of the left convex
polyhedron.

Let P be a polyhedron. P can be viewed as a graph GP = (VP , EP), where
VP is a set of vertices and EP is a set of edges of P . An unfolding (also called
a net, a development, or a general unfolding) of the polyhedron P is a flat
polygon formed by cutting P ’s edges or faces and unfolding it into a plane. An
edge unfolding of P is an unfolding formed by cutting only edges. We have the
following lemma for an edge unfolding of P .

Lemma 1 (see e.g., [4], Lemma 22.1.1). The cut edges of an edge unfolding
of P form a spanning tree of GP .

This lemma implies that a spanning tree of GP corresponds to an edge unfolding
of P . Two faces in P are neighbors if they contain a common edge. A dual graph
of P is a graph where each vertex of the dual graph corresponds to a face in
the polyhedron, and two vertices are adjacent if and only if the corresponding
two faces are neighbors. A spanning tree of the dual graph of P can also be
considered an edge unfolding [12].

The following proposition is used to determine whether an edge unfolding of
a polyhedron P is overlapping.

Proposition 1 ([8]). If for any two faces in an edge unfolding, the circum-
scribed circles of the two faces do not overlap, then the edge unfolding is not
overlapping.

This proposition is useful for efficiently checking the overlapping of an edge
unfolding, and it is a necessary condition for overlapping edge unfoldings. If the
circumscribed circles of two faces of P intersect, we use numerical calculations
to check the overlapping.

Overlapping Edge Unfoldings for Archimedean Solids and (Anti)prisms 41

Fig. 6. Illustration of rotational unfolding.

3 Rotational Unfolding

In this section, we propose an algorithm for detecting overlapping edge unfold-
ings for a polyhedron P . A spanning tree T (U) of a dual graph D(P) of P
represents an edge unfolding U . We can determine all overlapping edge unfold-
ings by enumerating all spanning trees of D(P) and then check the overlapping of
the corresponding unfoldings. However, a polyhedron generally contains a large
number of spanning trees. Our algorithm employs Lemma 2 to enumerate the
paths rather than the spanning trees to efficiently search for overlapping edge
unfoldings.

Lemma 2 ([5,7]). Let U be an overlapping edge unfolding of a polyhedron P ,
and T (U) be a spanning tree corresponding to U of the dual graph D(P). There
exist two vertices v, v′ ∈ T (U) such that a path from v to v′ in T (U) represents a
consecutive sequence of faces in U with overlapping the two faces corresponding
to v and v′.

For a polyhedron P , we present a simple and recursive procedure called
rotational unfolding to find paths and check their overlap. In this procedure, we
first place P in the plane. The start face fs of P is the bottom face. We rotate P
and unfold the current bottom in the rotational unfolding. Let f� be the current
bottom face, called the last face. In the first step of the procedure, f� is the start
face fs. The rotational unfolding first checks whether there exists a neighbor face
of f� in P . Then, for each neighbor face f , we run the following three steps: we
cut the edges of f� except for the edge sharing f , roll the polyhedron P to be the
bottom f , and check the overlap between fs and f . To check the overlapping of
edge unfoldings, we compute the coordinate of the outer center of f from that of
f� and the angle of the shared edge. Then, we check the overlap between fs and
f using Proposition 1 or numerical calculations. Let vfs

and vf be the vertices
corresponding to the face fs and f of D(P), respectively. If fs and f overlap,
we output a part of edge unfolding corresponding to a path from vfs

to vf .
Otherwise, we run the procedure recursively. Figure 6 illustrates the rotational
unfolding procedure.

Although the number of paths is smaller than that of spanning trees, it is
still large. To reduce the search space, we implement three methods for speeding

42 T. Shiota and T. Saitoh

Fig. 7. (a) and (b) are symmetric with respect to the x−axis.

Fig. 8. Cases of the first two faces in the rotational unfolding.

up the search. The first method uses the simple distance property. Let D be the
Euclidean distance between the outer center of fs and that of f , rs and r be
the circumscribed circle radii of fs and f , respectively, and W be the sum of
circumscribed circle diameters of the remaining faces in P . For fs and a face in
P to overlap, the distance between fs and f have to be smaller than W ; that is,
if W + rs + r < D, fs does not overlap any other faces in P for any unfolding
because fs is too far from the other faces in P . Thus, if W + rs + r < D, we
prune the search.

The second method uses the symmetry of the polyhedron. Figure 7 shows a
symmetric edge unfolding. If a polyhedron has such symmetric unfoldings, we
only compute one of them to check if a self-overlapping edge unfolding exists.
To implement this pruning, we maintain the y-coordinate of the outer center of
the last face before it becomes non-zero. We prune the search if the y-coordinate
becomes negative for the first time. Note that, this pruning does not work for a
snub cube and a snub dodecahedron because they do not have a mirror symmetry.

In the third method, we run the rotational unfolding by fixing a few steps
of the search. In the algorithm, we first choose a start face. We only need to
consider restricted patterns of the first few faces of polyhedrons. For example,
in the case of a truncated tetrahedron, which consists of regular triangles and
regular hexagons, as shown in Fig. 8, we only consider three patterns of the
start and next face pairs: (a) a triangle and a hexagon, (b) a hexagon and a
triangle, and (c) a hexagon and a hexagon. We find paths from these patterns
as start faces. Note that we cannot consider only the first face shape to find the
patterns. For example, both of the start faces of Fig. 9(a) and (b) are squares;
however, we need to consider both cases because the remaining polyhedrons are
not isomorphic. Thus, for each polyhedron shape, we have to find start patterns
based on symmetry.

Overlapping Edge Unfoldings for Archimedean Solids and (Anti)prisms 43

Fig. 9. Cases of the first three faces in the rotational unfolding for a rhombitruncated
cuboctahedron.

4 Archimedean Solids

We implemented rotational unfolding in C++ and adapted it to Archimedean
solids to find their overlapping edge unfoldings. We obtain the following theorem
from our experiments.

Theorem 1.

(a) An icosidodecahedron and a rhombitruncated cuboctahedron have no over-
lapping edge unfoldings.

(b) A snub cube has three types of overlapping unfoldings with two vertices of
faces in contact, as shown in Fig. 3.

An overlapping edge unfolding exists for a truncated dodecahedron and a
truncated icosahedron [8]. Our algorithm finds the other overlapping unfoldings
for truncated icosahedron, as shown in Fig. 4, and we verify that it has no other
types of overlapping edge unfoldings.

5 Archimedean Prisms

In this section, we prove Theorem 2.

Theorem 2. Let n be a natural number and PR(n) be an n-gonal Archimedean
prism.

(a) If 3 ≤ n ≤ 23, PR(n) has no overlapping edge unfoldings.
(b) For n ≥ 24, there exists an overlapping edge unfolding in PR(n).

We demonstrate the case of no overlapping edge unfolding of Theorem 2(a)
for every n ∈ {3, . . . , 23} of PR(n) using rotational unfolding.

Theorem 2(b) can be proven by constructing an overlapping edge unfolding
for PR(n). Let FT and FB be the top and bottom faces of PR(n), respectively,
and f0, · · · , fn−1 be the sides, which are numbered counterclockwise viewing
from the top face FT . For i ∈ {0, . . . , n − 1}, let ti and bi be vertices on FT and
FB such that they share two faces fi and fi+1, where fn = f0. For n = 24, PR(n)
has an overlapping edge unfolding, as shown in Fig. 5(a) (right), consisting of
faces {FB , f0, FT , f3, f2, f1} obtained by cutting along the thick line of PR(n),
as shown in Fig. 5(a) (left). For 25 ≤ n ≤ 28, PR(n) has an overlapping edge
unfolding similar to PR(24).

44 T. Shiota and T. Saitoh

Fig. 10. An overlapping edge unfolding in the 29-gonal Archimedean prism. The right
edge unfolding is obtained by cutting along the thick line of the left convex polyhedron.

Fig. 11. Magnified image of overlapping areas in the edge unfolding of PR(n)

It remains to be shown that an overlapping edge unfolding of PR(n) exists for
n ≥ 29. We prove that the edge unfolding consisting of faces {FB , f0, FT , f2, f1}
overlap, as shown in Fig. 10(right), by cutting along the thick line of PR(n)
shown in Fig. 10(left).

Lemma 3. For n ≥ 29, if we cut the edges (t0, t1), (t0, b0), (b0, b1), and (b1, b2)
and do not cut (tn−1, t0), (bn−1, b0), and (t1, t2) of PR(n), any edge unfolding is
overlapping.

Proof. Figure 11 shows a part of edge unfolding consisting of {FB , f0, FT , f2, f1}.
We define tTi and bB

i for i ∈ {0, . . . , n − 1} as vertices on FT and FB in the edge
unfolding such that they are ti and bi in PR(n), respectively. Let S be a subset
of faces {f0, . . . , fn−1}. The vertices ti and bi in PR(n) that are shared by S in
the edge unfolding are denoted as tSi and bS

i , respectively. Here, we set bf1
0 and

bf1,f2
1 as (0, 0) and (0, 1) in the plane, respectively. We can obtain the following

three conditions.

(i) Point bB
0 exists in the third quadrant.

(ii) Point bB
1 exists in the first quadrant.

(iii) Let p1 be an intersection point of the segment bB
0 bB

1 and the y-axis. The
y-coordinate of p1 is positive.

The y-coordinate of p1 is within (0,−1) to (0, 1) because the length of the line
segment bB

0 bB
1 is one if the conditions (i) and (ii) are satisfied. And if the y-

coordinate of p1 is positive, the line segment bf1
0 bf1,f2

1 intersects the line segment
bB
0 bB

1 . Therefore, the faces f1 and FB overlap if the three conditions are satisfied.

Overlapping Edge Unfoldings for Archimedean Solids and (Anti)prisms 45

Fig. 12. Overlapping edge unfoldings of PA(17) and PA(18), consisting of the set of
faces {FT , f0, f1, FB , f5, f4, f3, f2}. The center and right edge unfolding are obtained
by cutting along the thick line of the left convex polyhedron.

We will show that the three conditions are satisfied. We define the angle
θ = 2π

n as the exterior angle of the regular n-sided polygon. The range of θ is
0 < θ ≤ 2π

29 because n ≥ 29. We make the following claim.

Claim 1. The coordinates of bB
0 and bB

1 are (−1−sin θ+cos 2θ, 1−cos θ−sin 2θ)
and (−1 − sin θ + cos 2θ + sin 3θ, 1 − cos θ − sin 2θ + cos 3θ), respectively.

From the claim and differential analysis, we can show conditions (i) and (ii).
Let p2 be an intersection point of the perpendicular line from point bB

0 to
the y-axis and y-axis; that is, the coordinates of p2 are (0, 1 − cos θ − sin 2θ). To
show condition (iii), we give the following claim.

Claim 2. The length of the line segment p2p1 is greater than that of p2b
f1
0 .

Thus, conditions (i)–(iii) hold; that is, an overlapping edge unfolding exists
for PR(n), where n ≥ 29. ��

6 Archimedean Anti-prisms

In this section, we prove Theorem 3.

Theorem 3. Let n be a natural number and PA(n) be an n-gonal Archimedean
antiprism.

(a) If 3 ≤ n ≤ 11, PA(n) has no overlapping edge unfoldings.
(b) For n ≥ 12, there exists an overlapping edge unfolding in PA(n).

We demonstrate the no overlapping edge unfolding of Theorem 3(a) for every
n ∈ {3, . . . , 11} of PA(n) using rotational unfolding.

Theorem 3(b) can be proven by constructing an overlapping edge unfolding
for PA(n). Let FT and FB be the top and bottom faces of PA(n), respectively, and
f0, · · · , f2n−1 be the sides, which are numbered counterclockwise viewing from
the top face FT . For i ∈ {0, . . . , n−1}, let ti and bi be vertices on FT and FB such
that they share three faces f2i, f2i+1, and f2i+2 and f2i−1, f2i, and f2i+1, where
f−1 = f2n−1 and f2n = f0. For n = 12, PA(n) has an overlapping edge unfolding,
as shown in Fig. 5(b) (right), consisting of faces {f3, FB , f5, f4, FT , f0, f1, f2}
obtained by cutting along the thick line of PA(n), as shown in Fig. 5(b) (left).
For 13 ≤ n ≤ 16, PA(n) has an overlapping edge unfolding similar to PA(12).

46 T. Shiota and T. Saitoh

Fig. 13. An overlapping edge unfolding in the 19-gonal Archimedean prism. We obtain
the right edge unfolding by cutting along the thick line of the left convex polyhedron.

Fig. 14. Magnified image of overlapping areas in the edge unfolding of PA(n)

For n ∈ {17, 18}, PA(n) has overlapping edge unfoldings consisting of faces
{FT , f0, f1, FB , f5, f4, f3, f2}, as shown in Fig. 12(left), obtained by cutting along
the thick line PA(n), as shown in Fig. 12(center and right).

It remains to be shown that an overlapping edge unfolding of PA(n)
exists for n ≥ 19. We can prove that the edge unfolding consisting of faces
{FB , f1, f2, FT , f4, f3} contains overlapping, as shown in Fig. 13(right), by cut-
ting along the thick line of PA(n), as shown in Fig. 13(left).

Lemma 4. For n ≥ 19, if we cut the edges (t1, b1) and (b1, b2) and do not cut the
edges (b0, b1), (t0, t1), (t0, b1), (t1, t2), and (t1, b2) of PA(n), any edge unfolding is
overlapping.

Proof. Figure 14 shows a part of edge unfolding consisting of a set of faces
{FB , f1, f2, FT , f4, f3}. We define tTi and bB

i for i ∈ {0 · · · n − 1} as vertices
on FT and FB in the edge unfolding such that they are ti and bi in PA(n),
respectively. Let S be a subset of faces {f0, . . . , f2n−1}. The vertices ti and bi

are vertices in PA(n) that are shared by S in the edge unfolding are denoted as
tSi and bS

i , respectively. Here, we set bf3
1 and tT1 as (0, 0) and (−1, 0) in the plane,

respectively. We will show that the following three conditions are satisfied.

(i) Point bB
1 exists in the third quadrant.

(ii) The y-coordinate of point bB
2 is positive.

(iii) Let p1 be an intersection point of the segment bB
1 bB

2 and the x-axis. The
x-coordinate of point p1 is in −1 < p1 < 0.

Overlapping Edge Unfoldings for Archimedean Solids and (Anti)prisms 47

Face f3 is a triangle such that the bottom is (−1, 0) to (0, 0). From conditions
(i) and (ii), there exists an intersection point p1 of the segment the segment
bB
1 bB

2 and the x-axis. Moreover, if p1 is within (−1, 0) to (0, 0), the line segment
bB
1 bB

2 intersects f3; that is, f3 and FB overlap.
We define the angle θ = 2π

n as the exterior angle of the regular n-sided
polygon. The range of θ is 0 < θ ≤ 2π

19 because n ≥ 19. We obtain the following
claim.

Claim 3. The coordinate of bB
1 is (−1 + cos θ,− sin θ), the coordinate of bB

2 is{(−1 + cos θ + sin
(
2θ − π

6

)
,− sin θ + cos

(
2θ − π

6

))
if 19 ≤ n ≤ 24(−1 + cos θ − sin

(
π
6 − 2θ

)
,− sin θ + cos

(
π
6 − 2θ

))
if n ≥ 25

and the x-coordinate of p1 is{
cos

(
π
6 − θ

)
/ cos

(
2θ − π

6

) − 1 if 19 ≤ n ≤ 24
cos

(
π
6 − θ

)
/ cos

(
π
6 − 2θ

) − 1 if n ≥ 25.

From the claim and differential analysis, we can show the conditions (i)–
(iii). Thus, the conditions (i)–(iii) hold; that is, an overlapping edge unfolding
exists for PA(n), where n ≥ 19. ��

Acknowledgments. This work was supported in part by JSPS KAKENHI Grant
Numbers JP18H04091, JP19K12098, and 21H05857.

References

1. Biedl, T.C., et al.: Unfolding some classes of orthogonal polyhedra. In: 10th Cana-
dian Conference on Computational Geometry (1998)

2. Croft, H.T., Falconer, K.J., Guy, R.K.: Unsolved Problems in Geometry, reissue
edn. Springer, Heidelberg (1991)

3. Dürer, A.: Underweysung der messung, mit dem zirckel und richtscheyt in linien
ebenen unnd gantzen corporen (1525)

4. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press, Cambridge (2007)

5. DeSplinter, K., Devadoss, S.L., Readyhough, J., Wimberly, B.: Nets of higher-
dimensional cubes. In: 32nd Canadian Conference on Computational Geometry
(2020)

6. Grünbaum, B.: Are your polyhedra the same as my polyhedra? In: Aronov, B.,
Basu, S., Pach, J., Sharir, M. (eds.) Discrete and Computational Geometry, vol.
25, pp. 461–488. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-
55566-4 21

7. Hirose, K.: Hanseitamentai no tenkaizu no kasanari ni tsuite (On the overlap
of Archimedean solids). Saitama Univ. graduation thesis. Supervisor: Takashi
Horiyama (2015). (in Japanese)

8. Horiyama, T., Shoji, W.: Edge unfoldings of platonic solids never overlap. In: 23rd
Canadian Conference on Computational Geometry (2011)

https://doi.org/10.1007/978-3-642-55566-4_21
https://doi.org/10.1007/978-3-642-55566-4_21

48 T. Shiota and T. Saitoh

9. Horiyama, T., Shoji, W.: The number of different unfoldings of polyhedra. In: Cai,
L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 623–633.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45030-3 58

10. Mount, D.M.: On finding shortest paths on convex polyhedra. Technical report,
Center for Automation Research, University of Maryland College Park (1985)

11. Namiki, M., Fukuda, K.: Unfolding 3-dimensional convex polytopes. A package for
Mathematica 1.2 or 2.0. Mathematica Notebook (1993)

12. Schlickenrieder, W.: Nets of polyhedra. Ph.D. thesis, Technische Universität Berlin,
Berlin (1997)

13. Sharir, M., Schorr, A.: On shortest paths in polyhedral spaces. SIAM J. Comput.
15(1), 193–215 (1986)

https://doi.org/10.1007/978-3-642-45030-3_58

Flipping Plane Spanning Paths

Oswin Aichholzer1 , Kristin Knorr2 , Wolfgang Mulzer2 ,
Johannes Obenaus2(B) , Rosna Paul1(B) , and Birgit Vogtenhuber1

1 Institute of Software Technology, Graz University of Technology, Graz, Austria
{oaich,ropaul,bvogt}@ist.tugraz.at

2 Institut für Informatik, Freie Universität Berlin, Berlin, Germany
{kristin.knorr,wolfgang.mulzer,johannes.obenaus}@fu-berlin.de

Abstract. Let S be a planar point set in general position, and let P(S)
be the set of all plane straight-line paths with vertex set S. A flip on a
path P ∈ P(S) is the operation of replacing an edge e of P with another
edge f on S to obtain a new valid path from P(S). It is a long-standing
open question whether for every given point set S, every path from P(S)
can be transformed into any other path from P(S) by a sequence of
flips. To achieve a better understanding of this question, we show that
it is sufficient to prove the statement for plane spanning paths whose
first edge is fixed. Furthermore, we provide positive answers for special
classes of point sets, namely, for wheel sets and generalized double circles
(which include, e.g., double chains and double circles).

Keywords: Flips · Plane spanning paths · Generalized double circles

1 Introduction

Reconfiguration is a classical and widely studied topic with various applications
in multiple areas. A natural way to provide structure for a reconfiguration prob-
lem is by studying the so-called flip graph. For a class of objects, the flip graph
has a vertex for each element and adjacencies are determined by a local flip oper-
ation (we will give the precise definition shortly). In this paper we are concerned
with transforming plane spanning paths via edge flips.

Let S be a set of n points in the plane in general position (i.e., no three points
are collinear), and let P(S) be the set of all plane straight-line spanning paths
for S, i.e., the set of all paths with vertex set S whose straight-line embedding
on S is crossing-free. A flip on a path P ∈ P(S) is the operation of removing

This work was initiated at the 2nd Austrian Computational Geometry Reunion Work-
shop in Strobl, June 2021. We thank all participants for fruitful discussions. J.O. is
supported by ERC StG 757609. O.A. and R.P. are supported by FWF grant W1230.
B.V. is supported by FWF Project I 3340-N35. K.K. is supported by the German
Science Foundation (DFG) within the research training group ‘Facets of Complexity’
(GRK 2434). W.M. is partially supported by the German Research Foundation within
the collaborative DACH project Arrangements and Drawings as DFG Project MU
3501/3-1, and by ERC StG 757609.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 49–60, 2023.
https://doi.org/10.1007/978-3-031-27051-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_5&domain=pdf
http://orcid.org/0000-0002-2364-0583
http://orcid.org/0000-0003-4239-424X
http://orcid.org/0000-0002-1948-5840
http://orcid.org/0000-0002-0179-125X
http://orcid.org/0000-0002-2458-6427
http://orcid.org/0000-0002-7166-4467
https://doi.org/10.1007/978-3-031-27051-2_5

50 O. Aichholzer et al.

Type 1 Type 2 Type 3

Fig. 1. The three types of flips in plane spanning paths.

an edge e from P and replacing it by another edge f on S such that the graph
(P \ e) ∪ f is again a path from P(S). Note that the edges e and f might cross.
The flip graph on P(S) has vertex set P(S) and two vertices are adjacent if and
only if the corresponding paths differ by a single flip. The following conjecture
will be the focus of this paper:

Conjecture 1 (Akl et al. [3]). For every point set S in general position, the flip
graph on P(S) is connected.

Related Work. For further details on reconfiguration problems in general we
refer the reader to the surveys of Nishimura [10] and Bose and Hurtado [4].
Connectivity properties of flip graphs have been studied extensively in a huge
variety of settings, see, e.g., [6–9,11] for results on triangulations, matchings and
trees.

In our setting of plane spanning paths, flips are much more restricted, making
it more difficult to prove a positive answer. Prior to our work only results for
point sets in convex position and very small point sets were known. Akl et al. [3],
who initiated the study of flip connectivity on plane spanning paths, showed
connectedness of the flip graph on P(S) if S is in convex position or |S| ≤ 8.
In the convex setting, Chang and Wu [5] derived tight bounds concerning the
diameter of the flip graph, namely, 2n − 5 for n = 3, 4, and 2n − 6 for n ≥ 5.

For the remainder of this paper, we consider the flip graph on P(S) (or a
subset of P(S)). Moreover, unless stated otherwise, the word path always refers
to a path from P(S) for an underlying point set S that is clear from the context.

Flips in Plane Spanning Paths. Let us have a closer look at the different
types of possible flips for a path P = v1, . . . , vn ∈ P(S) (see also Fig. 1).
When removing an edge vi−1vi from P with 2 ≤ i ≤ n, there are three possible
new edges that can be added in order to obtain a path (where, of course, not
all three choices will necessarily lead to a plane path in P(S)): v1vi, vi−1vn,
and v1vn. A flip of Type 1 is a valid flip that adds the edge v1vi (if i > 2) or the
edge vi−1vn (if i < n). It results in the path vi−1, . . . , v1, vi, . . . , vn, or the path
v1, . . . , vi−1, vn, . . . , vi. That is, a Type 1 flip inverts a contiguous chunk from
one of the two ends of the path. A flip of Type 2 adds the edge v1vn and has the
additional property that the edges vi−1vi and v1vn do not cross. In this case,
the path P together with the edge v1vn forms a plane cycle. If a Type 2 flip is

Flipping Plane Spanning Paths 51

v1

v2

v3

Fig. 2. Example where the flip graph is disconnected if the first three vertices of the
paths are fixed. No edge of the solid path can be flipped, but there is at least one other
path (dotted) with the same three starting vertices.

possible for one edge vi−1vi of P , then it is possible for all edges of P . A Type 2
flip can be simulated by a sequence of Type 1 flips, e.g., flip v1v2 to v1vn, then
flip v2v3 to v1v2, then v3v4 to v2v3, etc., until flipping vi−1vi to vi−2vi−1. A flip
of Type 3 also adds the edge v1vn, but now the edges v1vn and vi−1vi cross.
Note that a Type 3 flip is only possible if the edge v1vn crosses exactly one edge
of P , and then the flip is possible only for the edge vi−1vi that is crossed.

Contribution. We approach Conjecture 1 from two directions. First, we show
that it is sufficient to prove flip connectivity for paths with a fixed starting edge.
Second, we verify Conjecture 1 for several classes of point sets, namely wheel
sets and generalized double circles (which include, e.g., double chains and double
circles).

Towards the first part, we define, for two distinct points p, q ∈ S, the following
subsets of P(S): let P(S, p) be the set of all plane spanning paths for S that
start at p, and let P(S, p, q) be the set of all plane spanning paths for S that
start at p and continue with q. Then for any S, the flip graph on P(S, p, q) is
a subgraph of the flip graph on P(S, p), which in turn is a subgraph of the flip
graph on P(S). We conjecture that all these flip graphs are connected:

Conjecture 2. For every point set S in general position and every p ∈ S, the flip
graph on P(S, p) is connected.

Conjecture 3. For every point set S in general position and every p, q ∈ S, the
flip graph on P(S, p, q) is connected.

Towards Conjecture 1, we show that it suffices to prove Conjecture 3:

Theorem 1. Conjecture 2 implies Conjecture 1.

Theorem 2. Conjecture 3 implies Conjecture 2.

Note that the analogue of Conjecture 3 for paths where the first k ≥ 3 vertices
are fixed, does not hold: Fig. 2 shows a counterexample with 7 points and k = 3.

52 O. Aichholzer et al.

Towards the flip connectivity for special classes of point
sets, we consider wheel sets and generalized double cir-
cles. A point set is in wheel configuration if it has exactly
one point inside the convex hull. For generalized double
circles we defer the precise definition to Sect. 4, however,
intuitively speaking a generalized double circle is obtained
by replacing each edge of the convex hull by a flat enough
concave chain of arbitrary size (as depicted on the right).
We show that the flip graph is connected in both cases:

Theorem 3. (�) Let S be a set of n points in wheel configuration. Then the flip
graph (on P(S)) is connected with diameter at most 2n − 4.

Theorem 4. (�) Let S be a set of n points in generalized double circle configu-
ration. Then the flip graph (on P(S)) is connected with diameter O(n2).

Finally, we remark that using the order type database [1], we are able to
computationally verify Conjecture 1 for every set of n ≤ 10 points in general
position (even when using only Type 1 flips).1

Notation. We denote the convex hull of a point set S by CH(S). All points
p ∈ S on the boundary of CH(S) are called extreme points and the remaining
points are called interior points.

The proofs of results marked by a (�) are omitted or only sketched in this
version. All full proofs can be found in the arxiv version [2].

2 A Sufficient Condition

In this section we prove Theorem 1 and Theorem 2.

Lemma 1. (�) Let S be a point set in general position and p, q ∈ S. Then there
exists a path P ∈ P(S) which has p and q as its end vertices.

Theorem 1. Conjecture 2 implies Conjecture 1.

Proof. Let S be a point set and Ps, Pt ∈ P(S). If Ps and Pt have a common
endpoint, we can directly apply Conjecture 2 and the statement follows. So
assume that Ps has the endpoints va and vb, and Pt has the endpoints vc and
vd, which are all distinct. By Lemma 1 there exists a path Pm having the two
endpoints va and vc. By Conjecture 2 there is a flip sequence from Ps to Pm

with the common endpoint va, and again by Conjecture 2 there is a further flip
sequence from Pm to Pt with the common endpoint vc. This concludes the proof.

��

1 The source code is available at https://github.com/jogo23/flipping plane spanni
ng paths.

https://github.com/jogo23/flipping_plane_spanning_paths
https://github.com/jogo23/flipping_plane_spanning_paths

Flipping Plane Spanning Paths 53

Towards Theorem 2, we first have a closer look at what edges form viable starting
edges. For a given point set S and points p, q ∈ S, we say that pq forms a viable
starting edge if there exists a path P ∈ P(S) that starts with pq. For instance,
an edge connecting two extreme points that are not consecutive along CH(S) is
not a viable starting edge. The following lemma shows that these are the only
non-viable starting edges.

Lemma 2. (�) Let S be a point set in general position and u, v ∈ S. The edge
uv is a viable starting edge if and only if one of the following is fulfilled: (i) u
or v lie in the interior of CH(S), or (ii) u and v are consecutive along CH(S).

The following lemma is the analogue of Lemma 1:

Lemma 3. (�) Let S be a point set in general position and v1 ∈ S. Further
let S′ ⊂ S be the set of all points p ∈ S such that v1p forms a viable starting
edge. Then for two points q, r ∈ S′ that are consecutive in the circular order
around v1, there exists a plane spanning cycle containing the edges v1q and v1r.

Theorem 2. Conjecture 3 implies Conjecture 2.

Proof. Let S be a point set and v1 ∈ S. Further let P, P ′ ∈ P(S, v1). If P and
P ′ have the starting edge in common, then we directly apply Conjecture 3 and
are done. So let us assume that the starting edge of P is v1v2 and the starting
edge of P ′ is v1v

′
2. Clearly v2, v

′
2 ∈ S′ holds. Sort the points in S′ in radial order

around v1. Further let vx ∈ S′ be the next vertex after v2 in this radial order
and C be the plane spanning cycle with edges v1v2 and v1vx, as guaranteed by
Lemma 3.

By Conjecture 3, we can flip P to C \ v1vx. Then, flipping v1v2 to v1vx we
get to the path C \ v1v2, which now has v1vx as starting edge. We iteratively
continue this process of “rotating” the starting edge until reaching v1v

′
2. ��

Theorems 1 and 2 imply that it suffices to show connectedness of certain
subgraphs of the flip graph. A priori it is not clear whether this is an easier or a
more difficult task – on the one hand we have smaller graphs, making it easier
to handle. On the other hand, we may be more restricted concerning which flips
we can perform, or exclude certain “nice” paths.

3 Flip Connectivity for Wheel Sets

Akl et al. [3] proved connectedness of the flip graph if the underlying point set S
is in convex position. They showed that every path in P(S) can be flipped to
a canonical path that uses only edges on the convex hull of S. To generalize
this approach to other classes of point sets, we need two ingredients: (i) a set of
canonical paths that serve as the target of the flip operations and that have the
property that any canonical path can be transformed into any other canonical
path by a simple sequence of flips, usually of constant length; and (ii) a strategy
to flip any given path to some canonical path.

54 O. Aichholzer et al.

Recall that a set S of n ≥ 4 points in the plane is a wheel set if there is exactly
one interior point c0 ∈ S. We call c0 the center of S and classify the edges on S
as follows: an edge incident to the center c0 is called a radial edge, and an edge
along CH(S) is called spine edge (the set of spine edges forms the spine, which
is just the boundary of the convex hull here). All other edges are called inner
edges. The canonical paths are those that consist only of spine edges and one or
two radial edges.

We need one observation that will also be useful later. Let S be a point set
and P = v1, . . . , vn ∈ P(S). Further, let vi (i ≥ 3) be a vertex such that no edge
on S crosses v1vi. We denote the face bounded by v1, . . . , vi, v1 by Φ(vi).

Observation 5. Let S be a point set, P = v1, . . . , vn ∈ P(S), and vi (i ≥ 3)
be a vertex such that no edge on S crosses v1vi. Then all vertices after vi
(i.e., {vi+1, . . . , vn}) must entirely be contained in either the interior or the
exterior of Φ(vi).

Theorem 3. (�) Let S be a set of n points in wheel configuration. Then the flip
graph (on P(S)) is connected with diameter at most 2n − 4.

Proof (Sketch). Let P = v1, . . . , vn ∈ P(S) be a non-canonical path and w.l.o.g.,
let v1 	= c0. We show how to apply suitable flips to increase the number of spine
edges of P . By Lemma 2, v1v2 can only be radial or a spine edge. In the former
case we can flip the necessarily radial edge v2v3 to the spine edge v1v3. In the
latter case, let va with a 	= 2 be a neighbor of v1 along the convex hull. Then,
either va−1va is not a spine edge and hence, we can flip it to v1va, or otherwise
we show, using Observation 5, that P actually already is a canonical path. ��

4 Flip Connectivity for Generalized Double Circles

The proof for generalized double circles is in principle similar to the one for
wheel sets but much more involved. For a point set S and two extreme points
p, q ∈ S, we call a subset CC(p, q) ⊂ S concave chain (chain for short) for S,
if (i) p, q ∈ CC(p, q); (ii) CC(p, q) is in convex position; (iii) CC(p, q) contains
no other extreme points of S; and (iv) every line �xy through any two points
x, y ∈ CC(p, q) has the property that all points of S \ CC(p, q) are contained in
the open halfplane bounded by �xy that contains neither p nor q. Note that the
extreme points p and q must necessarily be consecutive along CH(S). If there is
no danger of confusion, we also refer to the spanning path from p to q along the
convex hull of CC(p, q) as the concave chain.

A point set S is in generalized double circle position if there exists a family of
concave chains such that every inner point of S is contained in exactly one chain
and every extreme point of S is contained in exactly two chains. We denote the
class of generalized double circles by GDC. For S ∈ GDC, it is not hard to see
that the union of the concave chains forms an uncrossed spanning cycle (cf. the
full version [2]). Figure 3 gives an illustration of generalized double circles.

Flipping Plane Spanning Paths 55

(a) (b) double chain (c) double circle (d)

Fig. 3. (a–c) Examples of generalized double circles (the uncrossed spanning cycle is
depicted in orange). (d) A point set that is not a generalized double circle, but admits
an uncrossed spanning cycle. (Color figure online)

Before diving into the details of the proof of Theorem 4, we start by collecting
preliminary results in a slightly more general setting, namely for point sets S
fulfilling the following property:

(P1) there is an uncrossed spanning cycle C on S, i.e., no edge joining two
points of S crosses any edge of C.

A point set fulfilling (P1) is called spinal point set. When considering a spinal
point set S, we first fix an uncrossed spanning cycle C, which we call spine and
all edges in C spine edges. For instance, generalized double circles are spinal
point sets and the spine is precisely the uncrossed spanning cycle formed by
the concave chains as described above. Whenever speaking of the spine or spine
edges for some point set without further specification, the underlying uncrossed
cycle is either clear from the context, or the statement holds for any choice of
such a cycle. Furthermore, we call all edges in the exterior/interior of the spine
outer/inner edges.

We define the canonical paths to be those that consist only of spine edges.
Note that this definition also captures the canonical paths used by Akl et al. [3],
and that any canonical path can be transformed into any other by a single flip
(of Type 2). Two vertices incident to a common spine edge are called neighbors.

Valid Flips. We collect a few observations which will be useful to confirm
the validity of a flip. Whenever we apply more than one flip, the notation in
subsequent flips refers to the original path and not the current (usually we apply
one or two flips in a certain step). Figure 4 gives an illustration of Observation 6.

Observation 6. Let S be a spinal point set, P = v1, . . . , vn ∈ P(S), and v1, va
(a 	= 2) be neighbors. Then the following flips are valid (under the specified
additional assumptions):

(a) flip va−1va to v1va

(b) flip vava+1 to va−1va+1 (if the triangle Δva−1vava+1 is empty and (b) is
performed subsequently after the flip in (a))

(c) flip vava+1 to v1va+1 (if the triangle Δv1vava+1 is empty and
va−1va is a spine edge)

56 O. Aichholzer et al.

v1

va

va−1
v1

va

va−1

va+1
v1

va

va−1

va+1

Fig. 4. Left to right: Illustration of the three flips in Observation 6. The spine is
depicted in orange and edge flips are indicated by replacing dashed edges for dotted
(in the middle, the two flips must of course be executed one after the other). (Color
figure online)

Strictly speaking, in Observation 6(c) we do not require va−1va to be a spine
edge, but merely to be an edge not crossing v1va+1. The following lemma provides
structural properties for generalized double circles, if the triangles in Observa-
tion 6(b, c) are non-empty, i.e., contain points from S (see also Fig. 5 (left)):

Lemma 4. (�) Let S ∈ GDC and p, q, x ∈ S such that p and q are neighbors.
Further, let the triangle Δpqx be non-empty. Then the following holds:

(i) At least one of the two points p, q is an extreme point (say p),
(ii) x does not lie on a common chain with p and q, but shares a common chain

with either p or q (the latter may only happen if q is also an extreme point).

Combinatorial Distance Measure. In contrast to the proof for wheel sets, it
may now not be possible anymore to directly increase the number of spine edges
and hence, we need a more sophisticated measure. Let C be the spine of a spinal
point set S and p, q ∈ S. Further let o ∈ {cw, ccw} be an orientation. We define
the distance between p, q in direction o, denoted by do(p, q), as the number of
spine edges along C that lie between p and q in direction o. Furthermore, we
define the distance between p and q to be

d(p, q) = min{dcw(p, q), dccw(p, q)}.

Note that neighboring points along the spine have distance 1. Using this
notion, we define the weight of an edge to be the distance between its endpoints
and the (overall) weight of a path on S to be the sum of its edge weights.

Our goal is to perform weight-decreasing flips. To this end, we state two more
preliminary results (see also Fig. 5 (middle) and (right)):

Observation 7. Let S be a spinal point set, p, q, r be three neighboring points
in this order (i.e., q lies between p and r), and s ∈ S \ {p, q, r} be another point.
Then d(p, s) < d(q, s) or d(r, s) < d(q, s) holds.

Combining Observation 6 and Observation 7, it is apparent that we can per-
form weight-decreasing flips whenever Δva−1vava+1 and Δv1vava+1 are empty.

Flipping Plane Spanning Paths 57

p

s

q

r

p q

x

v1 va

vn

vb

vc vd

Fig. 5. Left: Illustration of Lemma 4. If p and q are neighbors, x has to lie on the
depicted chain in order to obtain a non-empty triangle Δpqx. Middle: Illustration of
Observation 7. One of the dashed edges has smaller weight than the solid: d(s, q) = 4;
d(s, p) = 4; d(s, r) = 3. Right: Illustration of Lemma 5. The initial path is depicted by
solid and dashed edges. Flipping the dashed edges to the dotted edges increases the
number of spine edges. (Color figure online)

Lemma 5. (�) Let S be a spinal point set, P = v1, . . . , vn ∈ P(S), and va, vb
(a, b 	= 2) be neighbors of v1 as well as vc, vd (c, d 	= n − 1) be neighbors of vn.
If max(a, b) > min(c, d), then the number of spine edges in P can be increased
by performing at most two flips, which also decrease the overall weight of P .

Note that vb or vd in Lemma 5 may not exist, if the first or last edge of P is
a spine edge. Lemma 5 essentially enables us to perform weight decreasing flips
whenever the path traverses a neighbor of vn before it reached both neighbors
of v1. We are now ready to prove Theorem 4, but briefly summarize the proof
strategy from a high-level perspective beforehand:

High Level Proof Strategy. To flip an arbitrary path P ∈ P(S) to a canonical
path, we perform iterations of suitable flips such that in each iteration we either

(i) increase the number of spine edges along P , while not increasing the overall
weight of P , or

(ii) decrease the overall weight of P , while not decreasing the number of spine
edges along P .

Note that for the connectivity of the flip graph it is not necessary to guarantee
the non increasing overall weight in the first part. However, this will provide us
with a better bound on the diameter of the flip graph.

Theorem 4. (�) Let S be a set of n points in generalized double circle configu-
ration. Then the flip graph (on P(S)) is connected with diameter O(n2).

Proof (Sketch). Let P = v1, . . . , vn ∈ P(S) be a non-canonical path. We show
how to iteratively transform P to a canonical path by increasing the number of
spine edges or decreasing its overall weight. Let va (a 	= 2) be a neighbor of v1.

We can assume, w.l.o.g, that v1 and vn are not neighbors (i.e., a < n),
since otherwise we can flip an arbitrary (non-spine) edge of P to the spine edge
v1vn (performing a Type 2 flip). Furthermore, we can also assume w.l.o.g., that

58 O. Aichholzer et al.

v1

va+1

v2

va

Fig. 6. Illustration of Case 1. If v1v2 is not a spine edge and Δv1vava+1 is empty, we
make progress by flipping the dashed edges to the dotted. (Color figure online)

va−1va is a spine edge, since otherwise we can flip va−1va to the spine edge v1va
(Observation 6(a)). This also implies that the edge vava+1, which exists because
a < n, is not a spine edge, since va already has the two neighbors va−1 and v1.

We distinguish two cases – v1v2 being a spine edge or not:

Case 1: v1v2 is not a spine edge.
This case is easier to handle, since we are guaranteed that both neighbors

of v1 are potential candidates to flip to. In order to apply Observation 6, we
require Δv1vava+1 to be empty. If that is the case we apply the following flips
(see also Fig. 6):

flip vava+1 to v1va+1 and flip v1v2 to v1va,

where the first flip results in the path va, . . . , v1, va+1, . . . , vn (and is valid by Ob-
servation 6(c)) and the second flip results in the path v2, . . . , va, v1, va+1, . . . , vn
(valid due to Observation 6(a)). Together, the number of spine edges increases,
while the overall weight does not increase.

If Δv1vava+1 is not empty we need to be more careful, using Lemma 4 (details
can be found in the full version [2]).

Case 2: v1v2 is a spine edge.
In this case we will consider P from both ends v1 and vn. Our general strategy

here is to first rule out some easier cases and collect all those cases where we
cannot immediately make progress. For these remaining “bad” cases we consider
the setting from both ends of the path.

Again, we skip the analysis of the easier cases and just summarize the six
“bad” cases. These “bad” cases always involve v1, va, or va−1 being an extreme
point. Instead of spelling all these cases out, we give an illustration in Fig. 7.

In the remainder of the proof we settle these “bad” cases by arguing about
both ends of the path, i.e., we consider all

(
6
2

)
+ 6 = 21 combinations of “bad”

cases.
We exclude several combinations as follows. By Lemma 5, we can assume

that a < c holds (otherwise there are weight decreasing flips) and hence, no
“bad” case where va+1 is in the interior of Φ(va) can be combined with a “bad”

Flipping Plane Spanning Paths 59

v1

va va−1

va+1

v2

v1

va

va−1

va+1
v2

v1

va

va+1

v2

v1 va

va−1

va+1

v2

v1 va

va−1

va+1

v2

v1

va+1

v2

va

(I)

(II)

(IIIa)

(IIIb)

(IVa)

(IVb)

va−2

va−1

va−1

Fig. 7. The six “bad” cases. The solid edges depict the fixed edges of the corresponding
“bad” case and the red arcs (here and in the following) indicate that there is no vertex
other than the two extreme points lying on this chain. (Color figure online)

vn

vc

vc+1

vc−1

vn−1

v1

va+1

v2va
(I)

(IIIa)

va−2

va−1

vn

vc

vc+1

vc−1

vn−1

v1

va+1

v2va

va−2

va−1
(I)

(IIIa)

Fig. 8. (I) and (IIIa) cannot be combined in a plane manner (left), except if the path
traverses a neighbor of vn before those of v1, i.e., c < a holds (right). (Color figure
online)

case having vn or vc as extreme point (Observation 5). This excludes (almost)
all combinations involving (I), (II), or (IVb); see Fig. 8 for an example.

For the remaining cases, we try to decrease the weight of P by flipping
vava+1 either to v1va+1 or va−1va+1 (see Observation 7). If these flips are valid
they are either weight-decreasing or we can identify disjoint regions that must
each contain at least n/2 vertices, which will result in a contradiction. Again,
we skip the details of this analysis.

Iteratively applying the above process transforms P to a canonical path and
the O(n2) bound for the required number of flips also follows straightforwardly.

��

60 O. Aichholzer et al.

5 Conclusion

In this paper, we made progress towards a positive answer of Conjecture 1,
though it still remains open in general. We approached Conjecture 1 from two
directions and believe that Conjecture 3 might be easier to tackle, e.g. for an
inductive approach. For all our results we used only Type 1 and Type 2 flips
(which can be simulated by Type 1 flips). It is an intriguing question whether
Type 3 flips are necessary at all.

Concerning the approach of special classes of point sets, of course one can
try to further adapt the ideas to other classes. Most of our results hold for the
setting of spinal point sets; the main obstacle that remains in order to show
flip connectivity for the point sets satisfying condition (P1) would be to adapt
Lemma 4. A proof for general point sets, however, seems elusive at the moment.

Lastly, there are several other directions for further research conceivable, e.g.
non-straight-line drawings.

References

1. Aichholzer, O., Aurenhammer, F., Krasser, H.: Enumerating order types for small
point sets with applications. Order 19, 265–281 (2002). https://doi.org/10.1023/
A:1021231927255

2. Aichholzer, O., Knorr, K., Mulzer, W., Obenaus, J., Paul, R., Vogtenhuber,
B.: Flipping plane spanning paths (2022). https://doi.org/10.48550/ARXIV.2202.
10831

3. Akl, S.G., Islam, M.K., Meijer, H.: On planar path transformation. Inf. Process.
Lett. 104(2), 59–64 (2007). https://doi.org/10.1016/j.ipl.2007.05.009

4. Bose, P., Hurtado, F.: Flips in planar graphs. Comput. Geom. 42(1), 60–80 (2009).
https://doi.org/10.1016/j.comgeo.2008.04.001

5. Chang, J.M., Wu, R.Y.: On the diameter of geometric path graphs of points in
convex position. Inf. Process. Lett. 109(8), 409–413 (2009). https://doi.org/10.
1016/j.ipl.2008.12.017

6. Hernando, C., Hurtado, F., Noy, M.: Graphs of non-crossing perfect matchings.
Graphs Comb. 18(3), 517–532 (2002)

7. Houle, M., Hurtado, F., Noy, M., Rivera-Campo, E.: Graphs of triangulations and
perfect matchings. Graphs Comb. 21, 325–331 (2005). https://doi.org/10.1007/
s00373-005-0615-2

8. Lawson, C.L.: Transforming triangulations. Discret. Math. 3(4), 365–372 (1972)
9. Nichols, T.L., Pilz, A., Tóth, C.D., Zehmakan, A.N.: Transition operations over

plane trees. Discret. Math. 343(8), 111929 (2020). https://doi.org/10.1016/j.disc.
2020.111929

10. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4) (2018). https://
doi.org/10.3390/a11040052

11. Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen
Mathematiker-Vereinigung 46, 26–32 (1936). http://eudml.org/doc/146109

https://doi.org/10.1023/A:1021231927255
https://doi.org/10.1023/A:1021231927255
https://doi.org/10.48550/ARXIV.2202.10831
https://doi.org/10.48550/ARXIV.2202.10831
https://doi.org/10.1016/j.ipl.2007.05.009
https://doi.org/10.1016/j.comgeo.2008.04.001
https://doi.org/10.1016/j.ipl.2008.12.017
https://doi.org/10.1016/j.ipl.2008.12.017
https://doi.org/10.1007/s00373-005-0615-2
https://doi.org/10.1007/s00373-005-0615-2
https://doi.org/10.1016/j.disc.2020.111929
https://doi.org/10.1016/j.disc.2020.111929
https://doi.org/10.3390/a11040052
https://doi.org/10.3390/a11040052
http://eudml.org/doc/146109

Away from Each Other

Tetsuya Araki and Shin-ichi Nakano(B)

Gunma University, Kiryu 376-8515, Japan

nakano@gunma-u.ac.jp

Abstract. We consider the following three problems where k is a con-
stant. For those problems there are cases where k is typically a small
constant.

Given a polygon with n edges on a plane we want to find k points in
the polygon so that the minimum pairwise Euclidean distance of the k
points is maximized. Intuitively, for an island, we want to locate k drone
bases far away from each other in flying distance to avoid congestion
in the sky. In this paper we give an O(((1/ε)2 + n/ε)k) time 1/(1 + ε)
approximation algorithm to solve the problem, where ε < 1 is a positive
number. This is the first PTAS for the problem.

Given a set of n straight line segments on a plane we want to find
k points on the straight line segments so that the minimum pairwise
Euclidean distance of the k points is maximized. Intuitively, for some
road network, we want to locate k drone bases far away from each other
to avoid congestion in the sky and also each base face a road. In this
paper we design the first PTAS for the problem.

Given a polygon with n edges on a plane we want to find k points
in the polygon so that the minimum length of paths inside the polygon
connecting two points among the k points is maximized. Intuitively, for
an island, we want to locate k coffee shops far away from each other to
avoid self competition for walking customers. In this paper we design the
first PTAS for the problem.

1 Introduction

The facility location problem and many of its variants have been studied [15,16].
Typically, given a set of points on which facilities can be placed and an integer
k, we want to place k facilities on some points so that a designated objective
function is minimized. By contrast in the dispersion problem, we want to place
facilities so that a designated objective function is maximized.

Our Results. In this paper we consider three dispersion problems on a plane.
Fix a constant integer k.

Given a polygon P with n edges on a plane, we want to find k points in P so
that the minimum pairwise Euclidean distance of the k points is maximized. See
an example in Fig. 1. We call the problem the k-dispersion problem in a polygon.
Note that the k points may contain a point in a polygon which is not on the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 61–70, 2023.
https://doi.org/10.1007/978-3-031-27051-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_6&domain=pdf
https://doi.org/10.1007/978-3-031-27051-2_6

62 T. Araki and S. Nakano

Fig. 1. A solution of a k−dispersion problem in a polygon with k = 4.

boundary, for instance if we choose 5 points in a square the 5 points consist of
the four corner points and the center of the square.

Intuitively, for an island, we want to locate k drone bases far away from each
other to avoid congestion in the sky.

In this paper we give an O(((1/ε)2 + n/ε)k) time 1/(1 + ε) approximation
algorithm to solve the problem, where ε < 1 is a positive number. Thus the
problem has a PTAS.

The algorithm first computes a set of (grid) points in P and computes an
optimal k points among the set of points by a brute force algorithm. By choosing
the gap size of the grid suitably we ensure the approximation ratio.

If k is a part of the inputs, not a constant, then a similar problem has no
PTAS [6].

We consider the following two more problems.
Given a set of n (connected) straight line segments on a plane we want to find

k points on the straight line segments so that the minimum pairwise Euclidean
distance of the k points is maximized. See an example in Fig. 2. We call the
problem the k-dispersion problem on straight line segments. In this paper we
design a PTAS for the problem.

Given a polygon with n edges on a plane we want to find k points in the
polygon so that the minimum length of paths inside the polygon (where a path
is a sequence of straight line segments in the polygon) connecting two points
among the k points is maximized. See an example in Fig. 3. We call the problem
the k-dispersion problem in a polygon with the geodesic distance. In this paper
we design the first PTAS for the problem.

Related Results. Given a set C of n points, a distance function d and an inte-
ger k with k < n, the max-min k-dispersion problem computes a subset S ⊂ C
with |S| = k such that the cost cost(S) = min{u,v}⊂S{d(u, v)} is maximized.
Several results are known for the max-min k-dispersion problem. The problem
is NP-hard [18]. If d is a metric (the distance satisfies the triangle inequality)

Away from Each Other 63

Fig. 2. A solution of a k−dispersion problem in a set of straight line segments with
k = 4.

a polynomial-time approximation algorithm with approximation ratio two is
known [25], and it is NP-hard to compute a solution with approximation ratio
less than two [25]. An exponential time exact algorithm is known [3]. If P is a
set of n points on a line one can solve the problem in O(kn) time by dynamic
programming [27], in O(n log log n) time by sorted matrix search method [2],
and in O((2k2)kn) time by the pigeonhole principle [4]. For the max-sum ver-
sion several results are also known [8,10–12,19,23,25]. For a variety of related
problems, see [6,12]. See more applications, including result diversification, in
[11,25,26].

Given a set of n disjoint intervals on a line the max-min dispersion problem on
intervals computes one point from each interval so that the minimum pairwise
distance of the n points is maximized. If the disjoint intervals are given in the
sorted order on the line, two O(n) time algorithms to solve the problem are
known [7,24]. Given a set of n intervals on a line and a constant integer k with
k < n, even if the disjoint intervals are given in any (unsorted) order, one can
compute k points from the intervals in O((2k2)kn) time so that the minimum
pairwise distance of the k points is maximized [5].

Given a set of disjoint disks with arbitrary radii, the dispersion problem on
disks is the problem to compute one point in each disk so that the minimum
distance among the points is maximized. The problem is NP-hard, and some
approximation algorithms are known [9,17,20], also an O((n/ε2)k) time 1/(1+ε)
approximation algorithm is known [5].

The dispersion problem in a polygon is similar to the following packing prob-
lem. Given an integer k and a disk, the circle packing in a circle problem com-
putes the maximum radius of k identical disks which can be packed without
overlapping into the given disk. Given an integer k, a disk with radius r and a
number dist, if we have an algorithm to decide whether one can locate k points
in the disk so that the minimum distance among them is dist or more, then, by
using the algorithm, we can decide whether one can pack k identical disks with

64 T. Araki and S. Nakano

Fig. 3. A solution of a k−dispersion problem in a polygon with k = 4 where the
minimum length of paths inside the polygon connecting two points among the k points
is maximized.

radii dist/2 or more into a disk with radius r + dist/2. Only the following result
is known for the time complexity of the circle packing in a circle problem. It is in
EXPTIME, but whether it is in PSPACE or not is open [1]. For similar problems
the following are known. It is NP-hard to decide whether a given set of (possibly
not identical) circles can be packed into a given square [14, Corollary 7.2]. It is
NP-hard to decide whether a given set of (possibly not identical) circles can be
packed into a given circle [21, Corollary 6.2].

The remainder of this paper is organized as follows. In Sect. 2 we give an
O(((1/ε)2 + n/ε)k) time 1/(1 + ε) approximation algorithm for the k-dispersion
problem in a polygon with n edges. In Sect. 3 we design algorithms to solve two
more similar problems. Finally Sect. 4 is a conclusion.

2 k-Dispersion in a Polygon

Fix a constant integer k. Given a polygon P with n edges on a plane we want
to find k points in P so that the minimum pairwise Euclidean distance of the k
points is maximized. Let ε < 1 be a positive number. In this section we give an
O(((1/ε)2 +n/ε)k) time 1/(1+ ε) approximation algorithm to solve the problem.

We need some notations. For a set S of points let cost(S) be the minimum
pairwise Euclidean distance among the points in S. Let P ∗ be a set of k points
in P with the maximum cost(P ∗).

Let W be the difference between the x-coordinates of a leftmost point and a
rightmost point in P . Similarly let H be the difference between the y-coordinates
of a topmost point and a bottommost point in P . Without loss of generality we
can assume that W ≥ H.

We have the following lemma.

Lemma 1. cost(P ∗) > W/k

Proof. Fix a directed path starting at a leftmost point p� and ending at a right-
most point pr in P . Let p0 = p�, p1, · · · , pk−1 = pr be the points on the directed

Away from Each Other 65

Fig. 4. An example of the set G of points in P .

path such that pi is the first point having its x-coordinate x(p�) + Wi/(k − 1)
for i = 0, 1, · · · , k − 1. Now the distance between any two points of the k points
is at least W/(k − 1), so more than W/k. ��

By a standard plane sweep algorithm (see page 1022 of textbook [13]) we
can sweep P by a horizontal sweep line from top to bottom in O(n log n) time,
and during the sweep we can maintain the edges of P intersecting the current
horizontal sweep line with the left-to-right order of the intersection points with
the current horizontal sweep line. During the sweep we construct a set G of points
in P , as follows. We consider a grid of gap size Wε/ck on P , where a constant c
is explained later, and stop the horizontal sweep line at each horizontal line on
the grid, that is, when the y-coordinate of the horizontal sweep line is Wεi/ck
for each integer i, and append to G the points on the current horizontal sweep
line which are (1) the intersection points with the vertical grid lines (the number
of such points is at most (1 + ck/ε)2 in total), and (2) the intersection points
with edges of P (the number of such points is at most (1 + ck/ε)n in total).
Similarly we sweep P by a vertical sweep line from left to right, and append to
G the points on the current vertical sweep line which are (3) the intersection
points with edges of P . Now |G| ≤ (1+ ck/ε)2 +2(1+ ck/ε)n holds. An example
of G is shown in Fig. 4.

Let G(P ∗) be the set of points derived from P ∗ by choosing a nearest point
in G for each point in P ∗. We choose c large enough so that (c1) cost(G(P ∗)) >
cost(P ∗)/(1 + ε) holds and (c2) no two points in P ∗ have the common nearest
point in G. (If two points in P ∗ have the common nearest point in G then
cost(G(P ∗)) = 0. We wish to prohibit this case.)

If we set c as c ≥ 2
√

2(1 + ε) then the following holds by Lemma 1.

66 T. Araki and S. Nakano

1
c

≤ 1
2
√

2(1 + ε)

2
√

2
c

(1 + ε) ≤ 1

2
√

2
c

W (1 + ε)
k

≤ W

k
< cost(P ∗)

2
√

2Wε

ck
< cost(P ∗)

ε

1 + ε

= cost(P ∗)
(1 + ε) − 1

1 + ε

= cost(P ∗) − 1
1 + ε

cost(P ∗)

1
1 + ε

cost(P ∗) < cost(P ∗) − 2
√

2Wε

ck
≤ cost(G(P ∗))

Thus (c1) holds. Note that cost(P ∗) − 2
√
2Wε
ck ≤ cost(G(P ∗)) holds, since the

distance between a point in P ∗ and its nearest point in G is at most
√

2Wε
ck .

If we set c as c ≥ (1 + 2
√

2)ε then the following holds.

1
(1 + 2

√
2)ε

≥ 1
c

1 ≥ (1 + 2
√

2)ε
c

W

k
≥ (1 + 2

√
2)Wε

ck

W

k
− 2

√
2Wε

ck
≥ Wε

ck

Now the following holds by Lemma 1.

cost(G(P ∗)) ≥ cost(P ∗) − 2
√

2Wε

ck
>

W

k
− 2

√
2Wε

ck
≥ Wε

ck

Note that again cost(P ∗) − 2
√
2Wε
ck ≤ cost(G(P ∗)) holds.

Thus, for any two points p and q in P ∗, let p′ and q′ be the nearest points in
G, respectively, then the distance between p′ and q′ is at least Wε/ck, so (c2)
holds.

We set c large enough to satisfy the above two conditions.

Algorithm. Let GA be the set G′ of k points in G maximizing cost(G′). If we
find a set GA in O(|G|k) time by a brute force algorithm we have cost(GA) ≥
cost(G(P ∗)) ≥ cost(P ∗)/(1 + ε).

Now we have the following theorem. Note that k is a constant.

Away from Each Other 67

Theorem 1. One can compute a set GA of k points in a given polygon P with
n edges with cost(GA) ≥ cost(P ∗)/(1 + ε) in O((1/ε2 + n/ε)k) time, where P ∗

is a set of k points in P maximizing cost(P ∗).

3 More Problems

In this section we design two algorithms to solve two more problems.
Given a set L of n straight line segments on a plane, we want to find k

points in L so that the minimum pairwise Euclidean distance of the k points is
maximized. We assume that L are connected, that means, for any pair of points
in L, there is a path in L from a point to the other point. We set W ′ as the
difference between the x-coordinate of a leftmost end point and the x-coordinate
of a rightmost end point in L. Similarly let H ′ be the difference between the y-
coordinate of a topmost end point and the y-coordinate of a bottommost end
point in L. Without loss of generality we can assume that W ′ ≥ H ′.

As before we define that for a set S of points let cost(S) be the minimum
pairwise Euclidean distance among the points in S. Let P ∗ be a set of k points
in L with the maximum cost(P ∗).

We have the following lemma.

Lemma 2. cost(P ∗) > W ′/k

Proof. Similar to Lemma 1.

Now we explain the algorithm.
By a standard plane sweep algorithm we sweep L by a horizontal sweep line

from top to bottom in O(n log n) time. During the sweep we construct a set G
of points in L, as follows. We consider a grid of gap size W ′ε/ck on L, where c
is a constant, and stop the horizontal sweep line at each horizontal line on the
grid, and append to G the points on the current horizontal sweep line which are
(2’) the intersection points with straight line segments in L (the number of such
points is at most (1 + ck/ε)n in total). Similarly we sweep L by a vertical sweep
line from left to right, and append to G the points on the current vertical sweep
line which are (3’) the intersection points with straight line segments in L. Now
|G| ≤ 2(1 + ck/ε)n holds. Then again by a brute force algorithm compute GA

which is the set G′ of k points in G maximizing cost(G′).
Now we have the following theorem.

Theorem 2. Given a set L of n straight line segments on a plane, one can
compute a set PA of k points on L with cost(PA) ≥ cost(P ∗)/(1+ε) in O((n/ε)k)
time, where P ∗ is a set of k points on L maximizing cost(P ∗).

Proof. Similar to Theorem 1.

By replacing the Euclidean distance by the length of a shortest path inside
a polygon, we can define the following problem.

68 T. Araki and S. Nakano

Given a polygon P with n edges on a plane, we want to find k points in P
so that the minimum length of the shortest paths inside P (where a path is a
sequence of straight line segments in the polygon) connecting two points among
the k points is maximized.

By preprocessing the polygon in O(n log n) time, one can compute, for any
pair of query points in P , the length of the shortest path inside P in O(log n)
time [22]. Thus given a set of k points in P we can compute in O(k2 log n) time
the minimum length of the shortest paths inside P connecting two points among
the k points.

For a set S of points in P let cost′(S) be the minimum length of the shortest
paths inside P connecting two points among S. Let P ∗ be a set of k points in P
with the maximum cost′(P ∗).

We can solve the problem as follows. First by a standard plane sweep algo-
rithm we sweep P by a horizontal sweep line from top to bottom in O(n log n)
time and by a vertical sweep line from left to right in O(n log n) time, and con-
struct a set of points G in P as the algorithm in Sect. 2. For this problem we
additionally append to G the end points of each segment of P . So |G| increased
by n. Now |G| ≤ (1 + ck/ε)2 + (3 + 2ck/ε)n holds. We need to append these
points to G to ensure cost′(P ∗) − 2

√
2Wε
ck ≤ cost′(G(P ∗)) for this problem. Then

by a brute force algorithm compute GA which is the set G′ of k points in G
maximizing cost′(G′). We can find GA in O(|G|k) time.

We again choose c large enough so that (c1”) cost′(G(P ∗)) > cost′(P ∗)/(1+ε)
holds and (c2”) no two points in P ∗ have the common nearest point in G.

We have the following theorem.

Theorem 3. One can compute a set GA of k points in a given polygon P with
n edges with cost′(GA) ≥ cost′(P ∗)/(1 + ε) in O((1/ε2 + n/ε)kk2 log n) time,
where d′(u, v) is the length of the shortest path inside P connecting two points
u and v, and cost′(S) = min{u,v}⊂S{d′(u, v)} and P ∗ is a set of k points in P
maximizing cost′(P ∗).

Proof. Similar to Theorem 1.

4 Conclusion

In this paper we have designed an algorithm to solve the k-dispersion problem
in a polygon. For a fixed constant integer k, given a polygon with n edges,
our algorithm computes a set GA of k points in the polygon with cost(GA) ≥
cost(P ∗)/(1 + ε) in O(((1/ε)2 + n/ε)k) time, where P ∗ is an optimal solution.
Thus the problem has a PTAS.

Then we have defined two natural dispersion problems. For a constant integer
k we can design a PTAS to compute k points on given straight line segments
on a plane so that the minimum pairwise Euclidean distance of the k points is
maximized, and a PTAS to compute k points in a given polygon so that the
minimum length of the shortest paths inside P connecting two points among the
k points is maximized.

Away from Each Other 69

Each algorithm is simple but the first PTAS to solve a natural problem. We
hope further improvements will continue.

References

1. Alt, H.: Computational aspects of packing problems. Bull. EATCS (118) (2016)
2. Akagi, T., Nakano, S.: Dispersion on the line, IPSJ SIG Technical Reports, 2016-

AL-158-3 (2016)
3. Akagi, T., et al.: Exact algorithms for the max-min dispersion problem. In: Chen,

J., Lu, P. (eds.) FAW 2018. LNCS, vol. 10823, pp. 263–272. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78455-7 20

4. Araki, T., Nakano, S.: Max–min dispersion on a line. J. Comb. Optim. 44, 1824–
1830 (2020). https://doi.org/10.1007/s10878-020-00549-5

5. Araki, T., Miyata, H., Nakano, S.: Dispersion on intervals. In: Proceedings of
CCCG2021 (2021)

6. Baur, C., Fekete, S.P.: Approximation of geometric dispersion problems. In: Jansen,
K., Rolim, J. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 63–75. Springer, Heidel-
berg (1998). https://doi.org/10.1007/BFb0053964 Also in Algorithmica 30, 451–
470 (2001)

7. Biedl, T., Lubiw, A., Naredla, A.M., Ralbovsky, P.D., Stroud, G.: Dispersion for
intervals: a geometric approach. In: Proceedings of SOSA 2021 (2021)

8. Birnbaum, B., Goldman, K.J.: An improved analysis for a greedy remote-clique
algorithm using factor-revealing LPs. Algorithmica 50, 42–59 (2009)

9. Cabello, S.: Approximation algorithms for spreading points. J. Algorithms 62, 49–
73 (2007)

10. Cevallos, A., Eisenbrand, F., Zenklusen, R.: Max-sum diversity via convex pro-
gramming. In: Proceedings of SoCG 2016, pp. 26:1–26:14 (2016)

11. Cevallos, A., Eisenbrand, F., Zenklusen, R.: Local search for max-sum diversifica-
tion. In: Proceedings of SODA 2017, pp. 130–142 (2017)

12. Chandra, B., Halldorsson, M.M.: Approximation algorithms for dispersion prob-
lems. J. Algorithms 38, 438–465 (2001)

13. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2009)

14. Demaine, E.D., Fekete, S.P., Lang, R.J.: Circle packing for origami design is
hard. In: Proceedings of the 5th International Conference on Origami in Sci-
ence, Mathematics and Education (OSME 2010), pp. 609–626 (2010). Also, CoRR
abs/1008.1224

15. Drezner, Z.: Facility Location: A Survey of Applications and Methods. Springer,
Heidelberg (1995)

16. Drezner, Z., Hamacher, H.W.: Facility Location: Applications and Theory.
Springer, Heidelberg (2004)

17. Dumitrescu, A., Jiang, M.: Dispersion in disks. Theory Comput. Syst. 51, 125–142
(2012)

18. Erkut, E.: The discrete p-dispersion problem. Eur. J. Oper. Res. 46, 48–60 (1990)
19. Fekete, S.P., Meijer, H.: Maximum dispersion and geometric maximum weight

cliques. Algorithmica 38, 501–511 (2004)
20. Fiala, J., Kratochvil, J., Proskurowski, A.: Systems of distant representatives. Dis-

cret. Appl. Math. 145, 306–36 (2005)

https://doi.org/10.1007/978-3-319-78455-7_20
https://doi.org/10.1007/s10878-020-00549-5
https://doi.org/10.1007/BFb0053964

70 T. Araki and S. Nakano

21. Fekete, S.P., Keldenich, P., Scheffer, C.: Packing disks into disks with optimal
worst-case density. In: Proceedings 35th International Symposium on Computa-
tional Geometry, SoCG 2019. LIPIcs, vol. 129, pp. 35:1–35:19 (2019)

22. Guibas, L.J., Hershberger, J.: Optimal shortest path queries in a simple polygon.
J. Comput. Syst. Sci. 39, 126–152 (1989)

23. Hassin, R., Rubinstein, S., Tamir, A.: Approximation algorithms for maximum
dispersion. Oper. Res. Lett. 21, 133–137 (1997)

24. Li, S., Wang, H.: Dispersing points on intervals. In: Proceedings of ISAAC 2016,
Article no. 52 (2016). https://doi.org/10.4230/LIPIcs.ISAAC.2016.52

25. Ravi, S.S., Rosenkrantz, D.J., Tayi, G.K.: Heuristic and special case algorithms for
dispersion problems. Oper. Res. 42, 299–310 (1994)

26. Sydow, M.: Approximation guarantees for max sum and max min facility dispersion
with parameterised triangle inequality and applications in result diversification.
Mathematica Applicanda 42, 241–257 (2014)

27. Wang, D.W., Kuo, Y.-S.: A study on two geometric location problems. Inf. Process.
Lett. 28, 281–286 (1988)

https://doi.org/10.4230/LIPIcs.ISAAC.2016.52

Piercing Diametral Disks Induced
by Edges of Maximum Spanning Trees

A. Karim Abu-Affash1(B), Paz Carmi2, and Meytal Maman2

1 Department of Software Engineering, Shamoon College of Engineering,
Be’er Sheva, Israel
abuaa1@sce.ac.il

2 Department of Computer Science, Ben-Gurion University, Be’er Sheva, Israel

carmip@cs.bgu.ac.il

Abstract. Let P be a set of points in the plane and let T be a maximum-
weight spanning tree of P . For an edge (p, q), let Dpq be the diametral
disk induced by (p, q), i.e., the disk having the segment pq as its diameter.
Let DT be the set of the diametral disks induced by the edges of T . In
this paper, we show that one point is sufficient to pierce all the disks in
DT , thus, the set DT is Helly. Actually, we show that the center of the
smallest enclosing circle of P is contained in all the disks of DT , and thus
the piercing point can be computed in linear time.

Keywords: Maximum spanning tree · Piercing set · Helly’s theorem ·
Fingerhut’s conjecture

1 Introduction

Let P be a set of points in the plane and let G = (P,E) be the complete graph
over P . A maximum-weight spanning tree T of P is a spanning tree of G with
maximum edge weight, where the weight of an edge (p, q) ∈ E is the Euclidean
distance between p and q, and denoted by |pq|. For an edge (p, q), let Dpq denote
the diametral disk induced by (p, q), i.e., the disk having the segment pq as its
diameter. Let DT be the set of the diametral disks obtained by the edges of T ,
i.e., DT = {Dpq : (p, q) ∈ ET }, where ET is the set of the edges of T . In this
paper, we prove that the disks in DT have a non-empty intersection.

1.1 Related Works

Let F be a set of geometric objects in the plane. A set S of points in the plane
pierces F if every object in F contains a point of S, in this case, we say that S
is a piercing set of F . The piercing problem, i.e., finding a minimum cardinality
set S that pierces a set of geometric objects, has attracted researchers for the
past century.

This work was partially supported by Grant 2016116 from the United States – Israel
Binational Science Foundation.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 71–77, 2023.
https://doi.org/10.1007/978-3-031-27051-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_7&domain=pdf
https://doi.org/10.1007/978-3-031-27051-2_7

72 A. K. Abu-Affash et al.

A famous result is Helly’s theorem [7,8], which states that for a set F of
convex objects in the plane, if every three objects have a non-empty intersection,
then there is one point that pierces all objects in F . The problem of piercing
pairwise intersecting objects has been also studied, particularly when the objects
are disks in the plane. It has been proven by Danzer [4] and by Stacho [11,12]
that a set of pairwise intersecting disks in the plane can be pierced by four
points. However, these proofs are involved and it seems that they can not lead
to an efficient algorithm. Recently, Har-Peled et al. [6] showed that every set
of pairwise intersecting disks in the plane can be pierced by five points and
gave a linear time algorithm for finding these points. Carmi et al. [2] improved
this result by showing that four points are always sufficient to pierce any set of
pairwise intersecting disks in the plane, and also gave a linear time algorithm
for finding these points.

In 1995, Fingerhut [5] conjectured that for any maximum-weight perfect
matching M = {(a1, b1), (a2, b2), . . . , (an, bn)} of 2n points in the plane, there
exists a point c, such that |cai| + |cbi| ≤ α · |aibi|, for every 1 ≤ i ≤ n, where
α = 2√

3
. That is, the set of the ellipses Ei with foci at ai and bi, and contain all

the points x, such that |aix| + |xbi| ≤ 2√
3

· |aibi|, have a non-empty intersection.
Recently, Bereg et al. [1] considered a variant of this conjecture. They proved
that there exists a point that pierces all the disks whose diameters are the edges
of M . The proof is accomplished by showing that the set of disks is Helly, i.e.,
for every three disks there is a point in common.

1.2 Our Contribution

A common and natural approach to prove that all the disks in DT have a non-
empty intersection is using Helly’s Theorem, i.e., to show that every three disks
have a non-empty intersection. However, we use a different approach and show
that all the disks in DT have a non-empty intersection by characterizing a specific
point that pierces all the disks in DT . More precisely, we prove the following
theorem.

Theorem 1. Let C∗ be the smallest enclosing circle of the points of P and let
c∗ be its center. Then, c∗ pierces all the disks in DT .

This approach is even stronger since it implies a linear-time algorithm for finding
the piercing point, using Megiddo’s linear-time algorithm [9] for computing the
smallest enclosing circle of P .

The result in this paper can be considered as a variant of Fingerhut’s Conjec-
ture. That is, for a maximum-weight spanning tree (instead of a maximum-weight
perfect matching) and α =

√
2 (instead of α = 2√

3
) the conjecture holds.

2 Preliminaries

Let P be a set of points in the plane, let T be a maximum-weight spanning tree
of P , and let DT be the set of the diametral disks induced by the edges of T .

Piercing Diametral Disks Induced by Edges of Maximum Spanning Trees 73

Let C∗ be the smallest enclosing circle of the points of P , and let r∗ and c∗ be
its radius and its center, respectively. We assume, w.l.o.g., that r∗ = 1 and c∗ is
located at the origin (0, 0). Let D∗ be the disk having C∗ as its boundary. Let
A1, A2, A3, and A4 (resp., Q1, Q2, Q3, and Q4) be the four arcs (resp., the four
quarters) obtained by dividing C∗ (resp., D∗) by the x and the y-axis; see Fig. 1
for an illustration.

Lemma 1. Each one of the arcs A1 and A3 contains at least one point of P or
each one of the arcs A2 and A4 contains at least one point of P .

Proof. By definition, there are at least two points of P on C∗. If there are exactly
two points p and q on C∗, then the segment pq is a diameter of C∗, and clearly, p
and q are on non-adjacent arcs of C∗; see Fig. 1(a). Otherwise, there are at least
three points of P on C∗; see Fig. 1(b). In this case, there are three points p, q,
and t on C∗, such that the triangle �pqt contains c∗. Thus, every angle in this
triangle is acute, and therefore two points from p, q, t are on non-adjacent arcs
of C∗.

C∗

c∗

A2
A1

A4A3

p

q

c∗

A2

A1

A4
A3

p

q

t

(a) (b)

C∗

Q3

Q1Q2

Q4

c∗

A2

A1

A4
A3

p

q

t

(c)

C∗

Fig. 1. The smallest enclosing circle C∗ of P . (a) Two points on C∗. (b) and (c) Three
points on C∗.

Lemma 2. Let p and q be two points in Q3, such that p is on the negative
x-axis, the angle ∠pc∗q < π

2 , and |c∗p| ≥ |c∗q|; see Fig. 2. Then,

(i) for every point t on A1 ∪ A2, we have |qt| > |pq|,
(ii) for every point t on A1 ∪ A4, we have |pt| > |pq|, and
(iii) for every two points t and t′ on A2 and A4, respectively, we have |tt′| > |pq|.
Proof. (i) Let a = (−1, 0) and b = (1, 0) be the intersection points of C∗ with the

negative and the positive x-axis, respectively; see Fig. 2(a). Let Dq be the disk
with center q and radius |qa|. Since |c∗q| ≤ |c∗p|, we have ∠c∗pq ≤ ∠c∗qp,
and thus ∠c∗pq ≤ π

2 . Hence, ∠qpa > π
2 , and thus |qa| > |qp|. Let q′ be the

intersection point of the line passing through a and q with the y-axis, and

74 A. K. Abu-Affash et al.

let Dq′ be the disk with center q′ and radius |q′a|; see Fig. 2(a). Since Dq′

intersects C∗ at the points a and b, the arc A1 ∪ A2 is outside Dq′ (this is
correct for every disk centered at a point x on the negative y-axis and has a
radius |xa|). Thus, for every point t on A1 ∪ A2, we have |q′t| ≥ |qa|. Since
Dq is contained in Dq′ , this is also correct for Dq. Therefore, for every point
t on A1 ∪ A2, we have |qt| ≥ |qa| > |qp|.

c∗

Q3

p

q

a

C∗

b

q′

Dq′Dq

t

(a) (b)

c∗

Q3

p

q

a

b

t

Dp C∗

A1A2

A1

A4

Fig. 2. Illustration of the proof of Lemma 2. (a) Any point t on A1 ∪ A2 satisfies
|qt| > |pq|. (b) Any point t on A1 ∪ A4 satisfies |pt| > |pq|.

(ii) Let a and b be the intersection points of C∗ with the negative and the
positive y-axis, respectively; see Fig. 2(b). Let Dp be the disk centered at p
with radius |pa|. Hence, Dp contains Q3, and thus for every point z ∈ Q3,
we have |pz| < |pa|, particularly |pq| < |pa|. Since Dp intersects C∗ at the
points a and b, the arc A1 ∪ A4 is outside Dp (this is correct for every
disk centered at a point x on the negative x-axis and has a radius |xa|).
Therefore, for every point t on A1 ∪ A4, we have |pt| > |pa| > |pq|.

(iii) Since ∠pc∗q < π
2 , we have |pq| <

√
2. Moreover, by the location of t and t′,

we have |tt′| ≥ √
2. Therefore, |tt′| > |pq|.

Notice that Lemma 2 holds for every two points p and q inside C∗, such that
∠pc∗q < π

2 . This is true since we can always rotate the points of P around c∗

(and reflect them with respect to the x-axis if needed) until the farthest point
from c∗ among p and q lays on the negative x-axis and the other point lays inside
Q3.

Corollary 1. Lemma 2 holds for every two points p and q inside C∗, such that
∠pc∗q < π

2 .

3 Proof of Theorem 1

Let G = (P,E) be the complete graph over P and let T = (P,ET) be the
maximum-weight spanning tree of P (i.e., of G). A maximum-weight spanning

Piercing Diametral Disks Induced by Edges of Maximum Spanning Trees 75

tree can be computed by Kruskal’s algorithm [3] (or by the algorithm provided
by Monma et al. [10]) which uses the fact that for any cycle C in G, if the weight
of an edge e ∈ C is less than the weight of each other edge in C, then e cannot
be an edge in any maximum-weight spanning tree of P . Kruskal’s algorithm
works as follows. It sorts the edges in E in non-increasing order of their weight,
and then goes over these edges in this order and adds an edge (p, q) to ET if it
does not produce a cycle in T . Based on this fact, we prove that for every edge
(p, q) ∈ ET , the disk Dpq contains c∗. More precisely, we prove that for each
edge (p, q) ∈ ET the angle ∠pc∗q is at least π

2 .

Lemma 3. For every edge (p, q) ∈ ET , we have ∠pc∗q ≥ π
2 .

Proof. Let (p, q) be an edge in ET . We show that if ∠pc∗q < π
2 , then there is

a cycle in G in which the edge (p, q) has the minimum weight among the edges
of this cycle, and thus (p, q) can not be in a maximum-weight spanning tree of
P . Assume towards a contradiction that ∠pc∗q < π

2 , and assume, w.l.o.g., that
p and q are in Q3, p is on the x-axis, and |c∗p| > |c∗q|. We distinguish between
two cases:

(i) If there is a point t on A1, then, by Lemma 2, we have |tp| > |pq| and
|tq| > |pq|. Thus, the edges (t, p), (p, q), and (q, t) form a cycle and the edge
(p, q) has a weight less than the weight of each other edge in this cycle; see
Fig. 3(a). This contradicts that (p, q) ∈ ET .

(ii) Otherwise, by Lemma 1, there exist two points t and t′ on A2 and A4,
respectively. By Lemma 2, we have |tq| > |pq|, |t′p| > |pq| and |tt′| > |pq|.
Thus, the edges (t, t′), (t′, p), (p, q), and (q, t) form a cycle and the edge
(p, q) has a weight less than the weight of each other edge in this cycle; see
Fig. 3(b). This contradicts that (p, q) ∈ ET .

c∗

A2 A1

A4
A3

C∗

p

q

c∗

A2

A1

A4
A3

C∗

p

q

t

t′

t

(a) (b)

Q3 Q3

Fig. 3. Illustration of the proof of Lemma 3. (a) (p, q) is of minimum weight in the
cycle <t, p, q>. (b) (p, q) is of minimum weight in the cycle <t, p, q, t′>.

76 A. K. Abu-Affash et al.

4 Conclusion

In this paper, we have shown that the diametral disks obtained by the edges of
a maximum-weight spanning tree of a set of points P have a non-empty inter-
section. We showed that the disks can be pierced by the center of the smallest
enclosing circle of P , which can be computed in linear time [9].

Fingerhut [5] conjectured that for any maximum-weight perfect matching
M = {(a1, b1), (a2, b2), . . . , (an, bn)} of 2n points in the plane, the set of the
ellipses Ei with foci at ai and bi, and contains all the points x, such that
|aix| + |xbi| ≤ α · |aibi|, for every 1 ≤ i ≤ n, where α = 2√

3
, have a non-empty

intersection. The smallest known value for α is α =
√

2, which was provided by
Bereg et al. [1].

In this paper, we considered a variant of Fingerhut’s Conjecture for
maximum-weight spanning tree instead of maximum-weight perfect matching.
We showed that for any maximum-weight spanning tree T and α =

√
2, there

exists a point c∗, such that for every edge (a, b) in T , |c∗a| + |c∗b| ≤ α · |ab|. In
Fig. 4(a), we show an example of a maximum-weight spanning tree, such that
for any α < 1+

√
3

2 , the conjecture does not hold. This provides a lower bound
on α. Moreover, in Fig. 4(b), we show an example of a maximum-weight span-
ning tree for which the center c∗ of the smallest enclosing circle does not satisfy
the inequality for α = 1+

√
3

2 . This means that our approach does not work for
α = 1+

√
3

2 , but does not mean that the conjecture does not hold for α = 1+
√
3

2 .
Even though the gap between

√
2 ≈ 1.414 and 1+

√
3

2 ≈ 1.366 is very small,
it is an interesting open question to find the exact value for α for which the
conjecture holds.

1

1 − ε 1 − ε

a b

c

d 1 − ε

c∗

1

1

1 − ε

1 − ε

a b

cd

1 − ε

(a) (b)

C∗

Fig. 4. A maximum-weight spanning tree of the points {a, b, c, d} (red edges) and

α = 1+
√
3

2
. (a) The ellipses defined by the edges (a, b) and (c, d) are tangent to each

other. (b) The ellipse defined by the edge (a, b) does not contain the point c∗. (Color
figure online)

Piercing Diametral Disks Induced by Edges of Maximum Spanning Trees 77

References

1. Bereg, S., Chacón-Rivera, O., Flores-Peñaloza, D., Huemer, C., Pérez-Lantero, P.,
Seara, C.: On maximum-sum matchings of points. J. Glob. Optim. 85, 111–128
(2022)

2. Carmi, P., Katz, M.J., Morin, P.: Stabbing pairwise intersecting disks by four
points. CoRR, abs/1812.06907 (2018)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

4. Danzer, L.: Zur Lösung des Gallaischen Problems über Kreisscheiben in der Euk-
lidischen Ebene. Studia Sci. Math. Hungar 21(1–2), 111–134 (1986)

5. Eppstein, D.: Geometry junkyard. https://www.ics.uci.edu/∼eppstein/junkyard/
maxmatch.html

6. Har-Peled, S., et al.: Stabbing pairwise intersecting disks by five points. Discret.
Math. 344(7), 112403 (2021)

7. Helly, E.: Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahres-
ber. Dtsch. Math.-Ver. 32, 175–176 (1923)

8. Helly, E.: Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punk-
ten. Monatshefte Math. 37(1), 281–302 (1930)

9. Megiddo, N.: Linear-time algorithms for linear programming in R
3 and related

problems. SIAM J. Comput. 12(4), 759–776 (1983)
10. Monma, C., Paterson, M., Suri, S., Yao, F.: Computing Euclidean maximum span-

ning trees. Algorithmica 5(1–4), 407–419 (1990)
11. Stacho, L.: Über ein Problem für Kreisscheiben Familien. Acta Sci. Math. (Szeged)

26, 273–282 (1965)
12. Stacho, L.: A solution of Gallai’s problem on pinning down circles. Mat. Lapok

32(1–3), 19–47 (1981/84)

https://www.ics.uci.edu/~eppstein/junkyard/maxmatch.html
https://www.ics.uci.edu/~eppstein/junkyard/maxmatch.html

Reflective Guarding a Gallery

Arash Vaezi1(B), Bodhayan Roy2, and Mohammad Ghodsi1,3

1 Department of Computer Engineering, Sharif University of Technology,
Tehran, Iran

avaezi@ce.sharif.edu, ghodsi@sharif.edu
2 Indian Institute of Technology Kharagpur, Kharagpur, India

broy@maths.iitkgp.ac.in
3 Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Abstract. This paper studies a variant of the Art Gallery problem in
which the “walls” can be replaced by reflecting edges, which allows the
guards to see further and thereby see a larger portion of the gallery. Given
a simple polygon P , first, we consider one guard as a point viewer, and
we intend to use reflection to add a certain amount of area to the visi-
bility polygon of the guard. We study visibility with specular and diffuse
reflections where the specular type of reflection is the mirror-like reflec-
tion, and in the diffuse type of reflection, the angle between the incident
and reflected ray may assume all possible values between 0 and π. Lee
and Aggarwal already proved that several versions of the general Art
Gallery problem are NP-hard. We show that several cases of adding an
area to the visible area of a given point guard are NP-hard, too.

Second (A primary version of the second result presented here is
accepted in EuroCG 2022 [1] whose proceeding is not formal), we assume
that all edges are reflectors, and we intend to decrease the minimum num-
ber of guards required to cover the whole gallery.

Chao Xu proved that even considering r specular reflections, one may
need �n

3
� guards to cover the polygon. Let r be the maximum number

of reflections of a guard’s visibility ray.
In this work, we prove that considering r diffuse reflections, the min-

imum number of vertex or boundary guards required to cover a given
simple polygon P decreases to � α

1+� r
8

��, where α indicates the minimum

number of guards required to cover the polygon without reflection. We
also generalize the O(log n)-approximation ratio algorithm of the vertex
guarding problem to work in the presence of reflection.

1 Introduction

Consider a simple polygon P with n vertices and a point viewer q inside P.
Suppose C(P) denotes P’s topological closure (the union of the interior and the

B. Roy—The author is supported by an ISIRD Grant from Sponsored Research and
Industrial Consultancy, IIT Kharagpur, and a MATRICS grant from Science and Engi-
neering Research Board.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 78–89, 2023.
https://doi.org/10.1007/978-3-031-27051-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_8&domain=pdf
https://doi.org/10.1007/978-3-031-27051-2_8

Reflective Guarding a Gallery 79

boundary of P). Two points x and y are visible to each other, if and only if the
line segment xy lies completely in C(P). The visibility polygon of q, denoted
as VP(q), consists of all points of P visible to q. Many problems concerning
visibility polygons have been studied so far. There are linear-time algorithms to
compute VP(q) [2,3]. Edges of VP(q) that are not edges of P are called windows.

If some of the edges of P are made into mirrors, then VP(q) may enlarge.
Klee first introduced visibility in the presence of mirrors in 1969 [4]. He asked
whether every polygon whose edges are all mirrors is illuminable from every
interior point. In 1995 Tokarsky constructed an all-mirror polygon inside which
there exists a dark point [5]. Visibility with reflecting edges subject to different
types of reflections has been studied earlier [6]: (1) Specular-reflection: in which
the direction light is reflected is defined by the law-of-reflection. Since we are
working in the plane, this law states that the angle of incidence and the angle of
reflection of the visibility rays with the normal through the polygonal edge are
the same. (2) Diffuse-reflection: that is to reflect light with all possible angles
from a given surface. The diffuse case is where the angle between the incident
and reflected ray may assume all possible values between 0 and π.

Some papers have specified the maximum number of allowed reflections via
mirrors in between [7]. In multiple reflections, we restrict the path of a ray
coming from the viewer to turn at polygon boundaries at most r times. Each
time this ray will reflect based on the type of reflection specified in a problem
(specular or diffuse).

Every edge of P can potentially become a reflector. However, the viewer
may only see some edges of P. When we talk about an edge, and we want to
consider it as a reflector, we call it a reflecting edge (or a mirror-edge considering
specular reflections). Each edge has the potential of getting converted into a
reflecting edge in a final solution of a visibility extension problem (we use the
words “reflecting edge” and “reflected” in general, but the word “mirror” is used
only when we deal with specular reflections).

Two points x and y inside P can see each other through a reflecting edge e,
if and only if they are reflected visible with a specified type of reflection. We call
these points reflected visible (or mirror-visible).

The Art Gallery problem is to determine the minimum number of guards that
are sufficient to see every point in the interior of an art gallery room. The art
gallery can be viewed as a polygon P of n vertices, and the guards are stationary
points in P. If guards are placed at vertices of P, they are called vertex guards.
If guards are placed at any point of P, they are called point guards. If guards are
allowed to be placed along the boundary of P, they are called boundary-guards
(on the perimeter). To know more details on the history of this problem see [8].

The Art Gallery problem was proved to be NP -hard first for polygons with
holes by [9]. For guarding simple polygons, it was proved to be NP -complete
for vertex guards by [10]. This proof was generalized to work for point guards
by [11]. The class ∃R consists of problems that can be reduced in polynomial
time to the problem of deciding whether a system of polynomial equations with
integer coefficients and any number of real variables has a solution. It can be

80 A. Vaezi et al.

easily seen that NP ⊆ ∃R. The article [12] proved that the Art Gallery problem
is ∃R-complete. Sometimes irrational coordinates are required to describe an
optimal solution [13].

Ghosh [14] provided an O(log n)-approximation algorithm for guarding poly-
gons with or without holes with vertex guards. King and Kirkpatrick obtained
an approximation factor of O(log log(OPT)) for vertex guarding or perimeter
guarding simple polygons [15]. To see more information on approximating vari-
ous versions of the Art Gallery problem see [16], or [17].

Result 1. Given a simple polygon P and a query point q as the position of a
single viewer (guard), consider extending the area of the visibility polygon of q
(VP(q)) by choosing an appropriate subset of edges and make them reflecting
edges so that q can see the whole P.

A) To extend the surface area of VP(q) by exactly a given amount, the problem
is NP-complete.

B) To extend the surface area of VP(q) using the minimum number of diffuse
reflecting edges and by at least a given amount, the problem is NP-hard.

Result 2. Suppose that in the Art Gallery problem a given polygon, possibly with
holes, can be guarded by α vertex guards without reflections, then the gallery can
be guarded by at most � α

1+� r
8 �� guards when r diffuse reflections are permitted.

For both the diffuse and specular reflection the Art Gallery problem consid-
ering r diffuse reflection is solvable in O(n8r+1+10) time with an approximation
ratio of O(log n).

1.1 Our Settings

Every guard can see a point if the point is directly visible to the guard or if it is
reflected visible. This is a natural and non-trivial extension of the classical Art
Gallery setting. The problem of visibility via reflection has many applications
in wireless networks, and Computer Graphics, in which the signal and the view
ray can reflect on walls several times, and it loses its energy after each reflection.
There is a large literature on geometric optics (such as [18–20]), and on the
chaotic behavior of a reflecting ray of light or a bouncing billiard ball (see,
e.g., [21–24]). Particularly, regarding the Art Gallery problem, reflection helps
in decreasing the number of guards (see Fig. 1).

Sections 2 and 3 study the problem of extending the surface area of the
visibility polygon VP(q) of a point guard q inside a polygon P by means of
reflecting edges. Section 3 considers the scenario in which the visibility polygon
of the source needs to be extended at least k units of area where k is a given
value. However, to make the problem more straightforward, one may consider
adding a specific area with an exact given surface area to the visibility of the
source. Section 2 considers extending the visibility polygon of q exactly k units
of area.

A special reflective case of the general Art Gallery problem is described by
Chao Xu in 2011 [25]. Since we want to generalize the notion of guarding a

Reflective Guarding a Gallery 81

Fig. 1. This figure illustrates a situation where a single guard is required if we use
reflection-edges; Θ(n) guards are required if we do not consider reflection. Red segments
illustrate the reflected-edges. (Color figure online)

simple polygon, if the edges become mirrors instead of walls, the light loses
intensity every time it gets reflected on the mirror. Therefore after r reflections,
it becomes undetectable to a guard. Chao Xu proved that regarding multiple
specular reflections, for any n, there exist polygons with n vertices that need �n

3 �
guards. Section 4 deals with the same problem but regarding diffuse reflection. G.
Barequet et al. [26] proved the minimum number of diffuse reflections sufficient
to illuminate the interior of any simple polygon with n walls from any interior-
point light source is �n

2 � − 1. E. Fox-Epstein et al. [27] proved that to make a
simple polygon in a general position visible for a single point light source, we
need at most �n−2

4 � diffuse reflections on the edges of the polygon, and this is the
best possible bound. These two papers consider a single point viewer ; however,
in Sect. 4 we considered helping the art gallery problem with diffuse reflection
on the edges of the polygon. So, we want to decrease the minimum number
of guards required to cover a given simple polygon using r diffuse reflections.
We will prove that we can reduce the optimal number with the help of diffuse
reflection. Note that we do not assume general positions for the given polygon.
For more information on combining reflection with the art gallery problem see
[7,28–30], and [6].

2 Expanding VP(q) by Exactly k Units of Area

We begin this section with the following theorem, and the rest of the section
covers the proof of this theorem.

Theorem 1. Given a simple polygon P, a point q ∈ P, and an integer k > 0,
the problem of choosing any number of, say l, reflecting edges of P in order to
expand VP(q) by exactly k units of area is NP-complete in the following cases:

1. Specular-reflection where a ray can be reflected only once.
2. Diffuse-reflection where a ray can be reflected any number of times.

Clearly, it can be verified in polynomial time if a given solution adds precisely
k units to VP(q). Therefore, the problem is in NP .

82 A. Vaezi et al.

Consider an instance of the Subset-Sum problem (InSS), which has
val(1), val(2) ..., val(m) non-negative integer values, and a target number T .
Suppose m ∈ Θ(n), where n indicates the number of vertices of P. The Subset-
Sum Problem involves determining whether a subset from a list of integers can
sum to a target value T . Note that the variant in which all inputs are positive
is NP-complete as well [31].

In the following subsections, we will show that the Subset-Sum problem is
reducible to this problem in polynomial time. Thus, we deduce that our problem
in the cases mentioned above is NP -complete.

2.1 NP-Hardness for Specular Reflections

The reduction polygon P consists of two rectangular chambers attached side by
side. The chamber to the right is taller, while the chamber to the left is shorter
but quite broad. The query point q is located in the right chamber (see Fig. 2).
The left chamber has left-leaning triangles attached to its top and bottom edges.
In the reduction from Subset-Sum, the areas of the bottom spikes correspond to
the weights of the sets (the values of InSS). The top triangles are narrow and
have negligible areas. Their main purpose is to house the edges which may be
turned into reflecting edges so that q can see the bottom spikes.

To describe the construction formally, consider InSS . Denote the ith value
by val(i) and the sum of the values till the ith value,

∑i
k=1 val(k), by sum(i).

We construct the reduction polygon in the following steps:

(1) Place the query point q at the origin (0, 0).
(2) Consider the x-axis as the bottom edge of the left rectangle.
(3) Denote the left, right and bottom points of the ith bottom spike by llt(i),

rlt(i) and blt(i) respectively. Set the coordinates for llt(i) at (i + 2(sum(i −
1)), 0), rlt(i) at (i+2(sum(i)), 0), and those for blt(i) at (i+2(sum(i)),−1).

(4) The horizontal polygonal edges between the top triangles are good choices
for mirrors, so we call them mirror-edges. The ith mirror-edge lies between
the (i − 1)th and ith top spikes. Denote the left and right endpoints
of the ith mirror-edge by lm(i) and rm(i) respectively. Set the coordi-
nates of lm(i) at ((i+2(sum(i−1)))

2 , 2(sum(m) + m)), and those of rm(i) at
((i+2(sum(i)))

2 , 2(sum(m) + m)).

Denote the topmost point of the ith top spike by ut(i) and set its coordinates
at ((i+2(sum(i)))

2 , 4(sum(m) + 2m)).

2.2 Properties of the Reduction Polygon

In this subsection, we discuss properties that follow from the above construction
of the reduction polygon. We have the following lemmas.

Lemma 1. The query point q can see the region enclosed by the ith bottom spike
only through a specular reflection through the ith mirror-edge.

Reflective Guarding a Gallery 83

qf
w3w4

mirror − edge

5

w1

P

q

c

d

f

a

b

e
1 32 4

P

window(constructed-edge)

a

Fig. 2. Two main components of the reduction polygon is illustrated.

Proof. See the full version of the paper [32] for the proof.

Lemma 2. All coordinates of the reduction polygon are rational and take poly-
nomial time to compute.

Proof. This too follows from the construction, as the number of sums used is
linear, and each coordinate is derived by at most one division from such a sum.

Lemma 3. The problem of extending the visibility polygon of a query point
inside a simple polygon via single specular reflection is NP-complete.

Proof. From Lemma 1 it follows that a solution for the problem exists if an only
if a solution exists for the corresponding Subset-Sum problem. From Lemma 2
it follows that the reduction can be carried out in polynomial time, thus proving
the claim.

Observation 1. The multiple reflection case of the first case of the problem
mentioned in Theorem 1 is still open. That is the above-mentioned reduction
(presented in Subsect. 2.1) does not work if more than one reflection is allowed.

Proof. See the proof in the complete version of the paper [32].

2.3 NP-Hardness for Diffuse Reflections

This subsection deals with the second part of Theorem 1. Considering diffuse
reflection, since rays can be reflected into wrong spikes (a spike which should
get reflected visible via another reflecting edge) the previous reduction does
not work. Considering multiple plausible reflections, the problem becomes even
harder. These rays have to be excluded by an appropriate structure of the polyg-
onal boundary.

The construction presented in this subsection works in the case of multi-
ple reflections, too. Again we reduce the Subset-Sum problem to our problem
(Result 1(A) considering diffuse reflections).

As before, we place the query point q at the origin, (0, 0). The main polygon
P used for the reduction is primarily a big rectangle, with around two-thirds of
it being to the right of q (see Fig. 3). On top of this rectangle are m “double
triangle” structures. Each double triangle structure consists of triangles sharing

84 A. Vaezi et al.

h

r d
q

m − triangular − regions

lSi

2mσ

lTi

bTi

tSi = rTi

g

double triangle

rSi

Fig. 3. A schema of the reduction polygon. Note that m ∈ Θ(n). The main polygon is
a rectangle, with gadgets on its top edge. The green region plus the grey region are in
one triangle which its surface area equals to a value of InSS . (Color figure online)

some of their interiors. The lower among these two triangles, referred to as the
second triangles, is right-angled and has its base on the main rectangle, with its
altitude to the right and hypotenuse to the left. The upper triangle, referred to
as the “top triangle”, is inverted, i.e., its base or horizontal edge is at the top.
One of its vertices is the top vertex of the second triangle, and another of its
vertices merges into the hypotenuse of the second triangle. Its third vertex juts
out far to the left, at the same vertical level as the top vertex of the second
triangle, making the top triangle a very narrow triangle. The area of the top
triangle equals the value of the ith set in the Subset-Sum problem (vali).

We make each top triangle to get diffusely reflected visible by only some
specific reflecting edges. However, as mentioned previously, there can be a trou-
blemaker shared reflected visible area in each top triangle. This area is illustrated
in green in Fig. 3. We know that every value of the Subset-Sum problem is an
integer. We manage to set the coordination of the polygon so that the sum of
the surface area of all the green regions gets equal to a value less than 1, and
all of these regions are entirely reflected visible to the lower edge of the main
rectangle. As a result, seeing the green areas through a reflection via the bottom
red edge cannot contribute towards seeing exactly an extra region of k units of
area. Remember that k is an integer.

Formally, denote the ith top and second triangles by Ti and Si respectively.
Denote the top, left and right vertices of Si by tSi, lSi and rSi respectively.
Denote the sum of values of all subsets of the Subset-Sum problem by σ. In
fact, σ =

∑m
i=1 vali. In general, the triangle Si has a base length of i units, and

its base is 2m2σ units distance away from those of Si−1 and Si+1. Therefore
the coordinates of lSi and rSi are given by ((2m2σ) i(i+1)

2 − i,m2(m + 1)σ)

Reflective Guarding a Gallery 85

and ((2m2σ) i(i+1)
2 ,m2(m + 1)σ) respectively. For any vertex v of the reduction

polygon, let us denote the x and y coordinates of v by x(v) and y(v) respectively.
The vertex tSi is obtained by drawing a ray originating at q and passing through
lSi, and having it intersect with the vertical line passing through rSi. This point
of intersection is tSi with coordinates (x(rSi),m2(m + 1)σ + m2(m+1)σ

x(lSi)
).

Denote the leftmost and bottom-most vertices of Ti by lTi and bTi respec-
tively. Recall that bTi lies on the hypotenuse of Si, and lTi has the same y-
coordinate as tSi. Moreover, we place bTi in such a way, that the sum of the
total regions of all top triangles seen from the base of the main rectangle
(the rd edge in Fig. 3) is less than 1. Intuitively, bTi divides the hypotenuse
of Si in the m2 − 1 : 1 ratio. Accordingly, the coordinates of bTi are:
(1 + i(i−1)

2 + (m2 − 1) (x(tSi)−x(lSi))
(m2) ,m + (m2 − 1) (y(tSi)−y(lSi))

(m2)).
Next, we set coordinates of lTi in a way that the total surface area of Ti

gets equal to the value of the ith subset. Denote the value of the ith subset by
vali. Then, the coordinates of lTi are given by (x(tSi) − 2 vali

y(tSi)−y(bTi)
, y(tSi)).

Finally, the coordinates of the four vertices of the main rectangle holding all the
double triangle gadgets, are given by (−x(rSm),m2(m + 1)σ), (−x(rSm),−1),
(2(x(rSm)),−1) and (2(x(rSm)),m2(m + 1)σ).

Lemma 4. The reduction stated in Subsect. 2.3 proves that the problem of
adding exactly k units of area to a visibility polygon via only a single diffuse-
reflection per ray, is NP-complete. The reduction polygon has rational coordi-
nates with size polynomial with respect to n.

Proof. See the full version of the paper [32] for the proof.

We can use the above-mentioned reduction in case multiple reflection is
allowed. See the following corollary.

Corollary 2. The reduction stated in Subsect. 2.3 works if multiple reflections
is allowed.

Proof. See the full version of the paper [32] for the proof.

3 Expanding at Least k Units of Area

In this section, we modify the reduction of Lee and Lin [10] and use it to infer
that the problem of extending the visibility polygon of a given point by a region
of area at least k units of area with the minimum number of reflecting edges is
NP -hard, where k is a given amount (Result 1(B)). The idea is that the potential
vertex guards are replaced with edges that can reflect the viewer (q). We need
an extra reflecting edge, though. Only a specific number of edges can make an
invisible region (a spike) entirely reflected visible to the viewer. Converting the
correct minimum subset of these edges to the reflecting edges determines the
optimal solution for the problem.

The specular-reflection cases of the problem are still open. Nonetheless, it
was shown by Aronov [6] in 1998 that in such a polygon where all of its edges

86 A. Vaezi et al.

are mirrors, the visibility polygon of a point can contain holes. And also, when
we consider at most r specular reflections for every ray, we can compute the
visibility polygon of a point inside that within O(n2r log n) of time complexity
and O(n2r) of space complexity [7].

Conjecture 1. Given a simple polygon P, and a query point q inside the poly-
gon, and a positive value k, the problem whether l of the edges of the polygon
can be turned to reflecting edges so that the area added to VP(q) through (sin-
gle/multiple) diffuse-reflections increases at least k units of area is NP -hard.

Proof Idea. See the full version of the paper for the proof [32].

4 Regular Visibility vs Reflection

This section deals with Result 2. Under some settings, visibility with reflections
can be seen as a general case of regular visibility. For example, consider guarding
a polygon P with vertex guards, where all the edges of the polygons are diffuse
reflecting edges, and r reflections are allowed for each ray. Let S be the set of
guards in an optimal solution if we do not consider reflection. Since we allow
multiple vertices of the polygon to be collinear, we slightly change the notion of
a visibility polygon for convenience. Consider the visibility polygon of a vertex
(see Fig. 4). It may include lines containing points that do not have any interior
point of the visibility polygon within a given radius. So, given a vertex x of P, we
consider the union of the interior of the original VP(x) (denoted by intVP(x)),
and the limit points of intVP(x), as our new kind of visibility polygon of x.
Clearly, a guard set of P gives a set of the new kind of visibility polygons whose
union is P.

v

Fig. 4. The visibility polygon of a point v.

Consider any guard v ∈ S. The visibility polygon VP(v) of v must have at
least one window1. Otherwise, v is the only guard of P. Consider such a window,
say, w. Let x be a point of intersection of w with the polygonal boundary. Then
there must be at least another guard u ∈ S such that x lies in both VP(u)
and VP(v). The following lemmas discuss how VP(u) and VP(v) can be united
1 A window is an edge of a viewer’s visibility polygon, which is not a part of an edge

of the main polygon.

Reflective Guarding a Gallery 87

using a few diffuse reflections, and how the whole polygon can be seen by a just
a fraction of the optimal guards, depending on the number of reflections allowed
per ray.

Theorem 3. If P can be guarded by α vertex guards without reflections, then
P can be guarded by at most � α

1+� r
8 �� guards when r diffuse reflections are per-

mitted.

To prove this theorem see the following lemmas first:

Lemma 5. If S is an optimal vertex guard set of polygon P and |S| > 1 then
for every guard u ∈ S there exists a different guard v ∈ S” such that u and v can
see each other through five diffuse reflections. Furthermore, u and v can fully see
each other’s visibility polygons with eight diffuse reflections.

Proof. See the full version of the paper [32] for the proof.

Now we build a graph G as follows. We consider the vertex guards in S as
the vertices of G, and add an edge between two vertices of G if and only if the
two corresponding vertex guards in S can see each other directly or through at
most five reflections. We have the following Lemma.

Lemma 6. The graph G is connected.

Proof. See the full version of the paper [32] for the proof.

Consider any optimal vertex guard set S for the Art Gallery problem on the
polygon P, where | S |= α. Build a graph G on S as it was mentioned before
Lemma 6. Due to Lemma 6, G is connected. Find a spanning tree T of G and
root it at any vertex. Denote the ith level of vertices of T by Li. Given a value
of r, divide the levels of T into 1 + � r

8� classes, such that the class Ci contains
all the vertices of all levels of T of the form Li+x(1+� r

8 �), where x ∈ Z
+
0 . By

the pigeonhole principle, one of these classes will have at most � α
1+� r

8 �� vertices.
Again, by Lemma 5, given any vertex class C of T , all of P can be seen by the
vertices of C when r diffuse reflections are allowed. The theorem follows.

Corollary 4. The above bound (mentioned in Theorem 3) holds even if the
guards are allowed to be placed anywhere on the boundary of the polygon.

Proof. The proof follows directly from the proof of Theorem 3 since Lemmas 5
and 6 are valid for boundary guards as well.

Observation 2. The above bound (mentioned in Theorem 3) does not hold in
the case of arbitrary point guards.

Proof. See the full version of the paper [32] for the proof.

Finding an approximate solution to the vertex guard problem with r dif-
fuse reflections is harder than approximating the standard problem. Reflection
may change the position of guards remarkably. Here, we have a straight-forward
generalization of Ghosh’s discretization algorithm presented in [33].

88 A. Vaezi et al.

Theorem 5. For vertex guards, the art gallery problem considering r reflec-
tions, for both the diffuse and specular reflection are solvable in O(n8r+1+10)
time giving an approximation ratio of O(log n).

Proof. See the full version of the paper [32] for the proof.

5 Conclusion

In this paper, we deal with a variant of the Art Gallery problem in which the
guards are empowered with reflecting edges. Many applications consider one
source and they want to make that source visible via various access points.
Consider a WiFi network in an organization where due to some policies all the
personnel should be connected to one specific network. The access points should
receive the signal from one source and deliver it to places where the source cannot
access. The problem is to minimizing the access points.

The gallery is denoted by a given simple polygon P. This article mentioned
a few versions of the problem of adding an area to the visibility polygon of a
given point guard inside P as a viewer. Although we know that reflection could
be helpful, we proved that several versions of the problem are NP -hard or NP -
complete.

Nonetheless, we proved that although specular reflection might not help
decrease the minimum number of guards required for guarding a gallery, dif-
fuse reflection can decrease the optimal number of guards.

References

1. Vaezi, A., Roy, B., Ghodsi, M.: Reflection helps guarding an art gallery. In: The
38th European Workshop on Computational Geometry, Perugia, Italy, March 2022,
hal-03674221, pp. 3:1–3:7 (2022)

2. Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time
algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica 2, 209–233 (1987)

3. Lee, D.T.: Visibility of a simple polygon. Comput. Vis. Graph. Image Process. 22,
207–221 (1983)

4. Klee, V.: Is every polygonal region illuminable from some point? Comput. Geom.
Am. Math. Monthly 76, 180 (1969)

5. Tokarsky, G.T.: Polygonal rooms not illuminable from every point. Am. Math.
Monthly 102, 867–879 (1995)

6. Aronov, B., Davis, A.R., Dey, T.K., Pal, S.P., Prasad, D.: Visibility with one
reflection. Discret. Comput. Geom. 19, 553–574 (1998)

7. Davis, B.A.A.R., Dey, T.K., Pal, S.P., Prasad, D.: Visibility with multiple specular
reflections. Discret. Comput. Geom. 20, 62–78 (1998)

8. Urrutia, J.: Handbook of Computational Geometry (2000)
9. O’Rourke, J., Supowit, K.: Some NP-hard polygon decomposition problems. IEEE

Trans. Inf. Theory 29(2), 181–189 (1983)
10. Lee, D.T., Lin, A.: Computational complexity of art gallery problems. IEEE Trans.

Inf. Theory 32, 276–282 (1986)

Reflective Guarding a Gallery 89

11. Aggarwal, A.: The art gallery theorem: its variations, applications and algorithmic
aspects. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD (1984)

12. Abrahamsen, M., Adamaszek, A., Miltzow, T.: The art gallery problem is ∃R-
complete. In: Proceedings of the 50th Annual ACM SIGACT Symposium on The-
ory of Computing, STOC (2018)

13. Abrahamsen, M., Adamaszek, A., Miltzow, T.: Irrational guards are sometimes
needed (2017)

14. Ghosh, S.K.: Approximation algorithms for art gallery problems. In: Proceedings
of the Canadian Information Processing Society Congress, pp. 429–436 (1987)

15. King, J., Kirkpatrick, D.: Improved approximation for guarding simple galleries
from the perimeter. Discret. Comput. Geom. 46, 252–269 (2011)

16. Ashur, S., Filtser, O., Katz, M.J.: A constant-factor approximation algorithm for
vertex guarding a WV-polygon. J. Comput. Geom. 12(1), 128–144 (2021)

17. Vaezi, A.: A constant-factor approximation algorithm for point guarding an art
gallery. arXiv:2112.01104 (2021)

18. Guenther, R.: Modern Optics. Wiley, New York (1990)
19. Born, M., Wolf, E.: Principles of Optics, 6th edn. Pergamon Press, Oxford (1980)
20. Newton, I.: Opticks, or a Treatise of the Reflections, Refractions, Inflections and

Colours of Light, 4th edn. London (1730)
21. Boldrighini, C., Keane, M., Marchetti, F.: Billiards in polygons. Ann. Probab. 6,

532–540 (1978)
22. Gutkin, E.: Billiards in polygons. Phys. D 19, 311–333 (1986)
23. Kerckhoff, S., Masur, H., Smillie, J.: Ergodicity of billiard flows and quadratic

differentials. Ann. Math. 124, 293–311 (1986)
24. Kozlov, V.V., Treshchev, D.V.: Billiards: A Genetic Introduction to the Dynamics

of Systems with Impacts. Translations of Mathematical Monographs, vol. 89, pp.
62–78. American Mathematical Society, Providence (1991)

25. Xu, C.: A generalization of the art gallery theorem with reflection and a cool
problem (2011). https://chaoxuprime.com/posts/2011-06-06-a-generalization-of-
the-art-gallery-theorem-with-reflection-and-a-cool-problem.html

26. Barequet, G., et al.: Diffuse reflection diameter in simple polygons. Discret. Appl.
Math. 210, 123–132 (2016). Seventh Latin-American Algorithms, Graphs, and
Optimization Symposium, LAGOS 2013, Playa del Carmen, México, p. 2013

27. Fox-Epstein, E., Tóth, C.D., Winslow, A.: Diffuse reflection radius in a simple
polygon. Algorithmica 76, 910–931 (2016)

28. Vaezi, A., Ghodsi, M.: Visibility extension via reflection-edges to cover invisible
segments. Theor. Comput. Sci. 789, 22–33 (2019)

29. Vaezi, A., Ghodsi, M.: How to extend visibility polygons by mirrors to cover invis-
ible segments. In: Poon, S.-H., Rahman, M.S., Yen, H.-C. (eds.) WALCOM 2017.
LNCS, vol. 10167, pp. 42–53. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-53925-6 4

30. Vaezi, A., Ghodsi, M.: Extending visibility polygons by mirrors to cover specific
targets. In: EuroCG2013, pp. 13–16 (2013)

31. Kleinberg, J., Tardos, E.: Algorithm Design. Pearson Education India (2006)
32. Vaezi, A., Roy, B., Ghodsi, M.: Visibility extension via reflection (2020)
33. Ghosh, S.K.: Approximation algorithms for art gallery problems in polygons. Dis-

cret. Appl. Math. 158(6), 718–722 (2010)

http://arxiv.org/abs/2112.01104
https://chaoxuprime.com/posts/2011-06-06-a-generalization-of-the-art-gallery-theorem-with-reflection-and-a-cool-problem.html
https://chaoxuprime.com/posts/2011-06-06-a-generalization-of-the-art-gallery-theorem-with-reflection-and-a-cool-problem.html
https://doi.org/10.1007/978-3-319-53925-6_4
https://doi.org/10.1007/978-3-319-53925-6_4

Improved and Generalized Algorithms
for Burning a Planar Point Set

Prashant Gokhale1, J. Mark Keil2, and Debajyoti Mondal2(B)

1 Indian Institute of Science, Bangalore, India
prashantag@iisc.ac.in

2 University of Saskatchewan, Saskatoon, Canada
{keil,dmondal}@cs.usask.ca

Abstract. Given a set P of points in R
2, a point burning process is

a discrete time process to burn all the points of P where fires must be
initiated at the points of P . Specifically, the point burning process starts
with a single burnt point from P , and at each subsequent step, burns
all the points in R

2 that are within one unit distance from the currently
burnt points, as well as one other unburnt point of P (if exists). The point
burning number of P is the smallest number of steps required to burn
all the points of P . If we allow the fire to be initiated anywhere in R

2,
then the burning process is called an anywhere burning process. One can
think of the anywhere burning problem as finding the minimum integer
r such that P can be covered with disks of radii 0, 1, 2, . . . , r. A burn-
ing process provides a simple model for distributing commodities to the
locations in P by sending a daily bulk shipment to a distribution center,
i.e., the place where we initiate a fire. The burning number corresponds
to the minimum number of days to reach all locations. In this paper we
show that both point and anywhere burning problems admit PTAS in
one dimension. We then show that in two dimensions, point burning and
anywhere burning are (1.96+ε) and (1.92+ε) approximable, respectively,
for every ε > 0, which improves the previously known (2 + ε) approx-
imation for these problems. We then generalize the results by allowing
the points to have different fire spreading rates, and prove that even if
the burning sources are given as input, finding a point burning sequence
itself is NP-hard. Finally, we obtain a 2-approximation for burning the
maximum number of points in a given number of steps.

Keywords: Computational geometry · Burning number ·
Approximation algorithm · NP-hard

1 Introduction

Graph burning was introduced by Bonato et al. [4] as a simplified model to
investigate the spread of influence in a network. Given a finite, simple, undirected

This work is supported in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC). The work of P. Gokhale was supported by a MITACS
Globalink Internship at the University of Saskatchewan.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 90–101, 2023.
https://doi.org/10.1007/978-3-031-27051-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_9&domain=pdf
http://orcid.org/0000-0002-7370-8697
https://doi.org/10.1007/978-3-031-27051-2_9

Improved and Generalized Algorithms for Burning a Planar Point Set 91

(a) (b)
t3

t1

t2

t4

t1 t1 t1

t2 t2

t3

t1 t1 t1

t2t2

The unit distance used in these two examples.

Fig. 1. Illustration for (a) point burning and (b) anywhere burning. The burning
sources are illustrated in labelled dots and cross marks, respectively.

graph G, the burning process on G is defined as a discrete time process as follows.
Initially, at time t = 0, all vertices in the graph are unburnt. Once a node is
burnt, it remains so until the end of the process. At time t, where t > 0 is
a positive integer, the process burns all the neighbors of the currently burnt
vertices, as well as one more unburnt vertex (if exists). This process stops when
all vertices are burnt. The graph burning problem seeks to minimize the number
of steps required to burn the whole graph. We refer the reader to [3] for a survey
on graph burning.

Keil et al. [10] introduced two geometric variants of this problem — point
burning and anywhere burning, where the goal is to burn a given set of points P
in R

2. The point burning model allows for initiating fires only at points of P . The
burning process starts by burning one point of P , and then at each subsequent
step, the fire burns all unburnt points of R

2 that are within one unit of any
currently burnt point and a new unburnt point in P is chosen to initiate the
fire. The point burning number of P is the smallest number of steps required
to burn all the points of P . Figure 1(a) illustrates this model, where the burnt
points are shaded in red. In the anywhere burning model, the burning process is
the same but the fires can be started at any point in R

2, and the corresponding
burning number is called anywhere burning number. Figure 1(b) illustrates this
model. Note that we may not have an unburnt point to initiate fire at the last
step. Note that one can think of the anywhere burning problem as finding the
minimum integer r such that P can be covered with disks of radii 0, 1, 2, . . . , r.
The point burning problem is the same with the additional constraint that the
centers of the disks must be chosen from P .

The geometric version of the burning process can provide a simple model
of supply management where products need to be shipped in bulk to distribu-
tion centers. Consider a business that needs to maintain a continuous supply
of perishable goods to a set of P locations. Each day it can manage to send
one large shipment to a hub location that distributes the goods further to the
nearby locations over time. The point burning considers only the points of P as
potential hubs, whereas anywhere burning allows to create a hub at any point
in R

2. The burning number indicates the minimum number of days needed to
distribute the goods to all locations. For example, in Fig. 1(a), the hubs are t1,
t2, t3 and t4, and the business can keep sending the shipments to the hubs after
every three days in the same order.

92 P. Gokhale et al.

The graph burning problem is known to be NP-hard for forests of paths [2]
and APX-hard for subcubic graphs [11]. However, the problem is approximable
within a factor of 3 [5], which has recently been improved further to (3 − 2/b)
where b is the burning number of the input graph [7]. The introduction of point
and anywhere burning naturally raises the question of whether one can prove
analogous results for these problems. Keil et al. [10] showed that both problems
are NP-hard, but approximable within a factor of (2 + ε), for every ε > 0.
However, a number of interesting problems are yet to be explored. For example,
can we find better approximation algorithms? Does there exist a PTAS for these
problems? Can we maximize the number of burnt points within a given time
limit? What happens if the points have different rates for spreading the fire?
This is relevant in practice when the distribution capabilities vary across different
distribution centers. Can we find a burning sequence in polynomial time if the
burning sources are given? This last question is known to be NP-complete for
graph burning [11].

Contribution: In this paper, we obtain the following results.

– We show that in one dimension one can find a PTAS for both point and
anywhere burning. In two dimensions, we improve the approximation ratio
for point and anywhere burning to (1.96296+ε) and (1.92188+ε), respectively.

– We consider a generalization where the fire spreading rates vary across the
given points. We show how to adapt the existing approximation algorithms
to obtain constant-factor approximation for point burning if the ratio of the
largest and the smallest rate is a constant.

– We prove that even if the burning sources are given as input, finding a point
burning sequence itself is NP-hard. This problem was known to be NP-hard
for graph burning, but this result does not hold in geometric setting.

– Our NP-hardness result implies that given a set of q burning sources, it is NP-
hard to find a point burning sequence that maximizes the number of burnt
points within q steps. In contrast, we show how to adapt a set cover technique
to obtain a 2-approximation for burning the maximum number of points in a
given number of steps. This result holds even when a set of burning sources
are specified at the input.

2 Burning Number in One Dimension

In this section we consider the case when the points of P are on a line. Assume
that the points are ordered in increasing x-coordinate and let A[i] be the x-
coordinate of the ith point from the left. Let δ∗ be the burning number.

2.1 PTAS for Anywhere Burning

We now provide a polynomial-time approximation scheme (PTAS), i.e., a (1+ε)-
approximation algorithm for every ε > 0, for the anywhere burning problem.
Intuitively, we can visualize this problem as a covering problem with intervals
in one dimension.

Improved and Generalized Algorithms for Burning a Planar Point Set 93

Our strategy is to make a guess δ for the burning number starting from 1.
We keep increasing the guess by 1 as long as we can prove the current δ to be
a lower bound on the burning number. At some point when we are unable to
establish δ as a lower bound, we show how to find an approximate solution.

Note that for a δ, we have δ intervals of length 0, 2, 4, ... , 2 (δ − 1) to cover
all the points. We group these intervals into t different groups as follows. The
first group will have δ

t intervals with length at most 2
(

δ
t

)
. Generally, the jth

group will have δ
t intervals with length larger than 2(j − 1)

(
δ
t

)
and at most

2j
(

δ
t

)
. For each group, we now relax all its intervals such that their length is

equal to the largest interval in the group, i.e., 2j
(

δ
t

)
. We use the notation S(δ)

to denote this new set of intervals. We now use dynamic programming to check
if there is a placement of the intervals in S(δ) so that every point is covered.
If not, then we are sure that δ is not the burning number, as we had relaxed
every interval. Otherwise, we will use these intervals to obtain an approximate
solution. Later, we will show how to choose t to obtain a PTAS.

Let V = (v1, . . . , vt+1) be a (t+1)-tuple of integers. Let D(V) be the problem
of covering vt+1 points of P from the left with vj intervals of group j, where
1 ≤ j ≤ t. We use P (vt+1) to denote these points that are to be covered. Assume
that the rest of the points, i.e., P \ P (vt+1) are already covered by the rest of
the intervals of S(δ). We can then express D(V) using the following recursion
with trivial values for the base cases: D(V) =

∨t
j=1 D(W j).

Here W j = (w1, . . . , wt+1) is similar to V except at two places: wj and wt+1.
The jth element wj is set to (vj −1), because we have now used one more interval
I of group j to cover some points of P (vt+1). Note that the best position for this
interval is when its right end coincides with the rightmost point z of P (vt+1).
It is straightforward to prove this formally with the observation that for every
covering we can shift the rightmost interval to the left unless its right end point
coincides with z. Therefore, we set wt+1 to be the number of remaining points
that remains to be covered after placing I.

We store the solution to the subproblems using a multidimensional table L
where L[V] stores the solution to D(V). Using table lookup, the time taken to
compute a cell of the table is O(t). Since each of the t groups has δ

t intervals,

and since P has n points, the size of L is O
(
n

(
δ
t

)t
)
. Thus the overall running

time of the dynamic programming algorithm is O
(
nt

(
δ
t

)t
)
.

Note that the question of covering P using S(δ) is obtained from L[Uδ], where
U δ = (u1, . . . , ut+1) be a (t+1)-tuple with uj = δ

t for 1 ≤ j ≤ t and ut+1 = n. We
now describe the process of guessing δ and arriving at an approximate answer.

– Start guessing from δ = 1
– Use the dynamic programming to compute L[U δ], i.e., the solution to the

relaxed covering question for S(δ) in O
(
nt

(
δ
t

)t
)

time.

– If L[U δ] does not contain an affirmative answer, then we know that δ∗ > δ.
We thus iterate again by increasing value of δ by 1.

94 P. Gokhale et al.

– If L[U δ] contains an affirmative answer, stop and return the approximate
burning number to be δ

(
1 + 2

t

)
. At this point we know that δ ≤ δ∗. We

construct the burning sequence as follows: First, burn the midpoints of all
intervals of length 2δ in the covering solution (i.e., the largest intervals), then
burn the midpoints of all intervals of length 2 (t − 1)

(
δ
t

)
in the solution and

so on. However, since we used relaxed intervals in the dynamic programming,
we keep burning for an extra 2δ

t steps to ensure that each interval reaches its
relaxed size (i.e., burns all points of P).

Observe that we took δ + 2δ
t = δ

(
1 + 2

t

)
steps to burn all the points. Since

δ ≤ δ∗, we have δ
(
1 + 2

t

) ≤ δ∗ (
1 + 2

t

)
. Therefore, our algorithm achieves an

approximation factor of 1 + 2
t for anywhere burning. Since δ∗ ≤ n, the total

running time of our algorithm is bounded by O
(
n2

(
n
t

)t
)
. Given an ε > 0, we

choose t such that ε = 2
t . Thus we get an approximation factor of (1 + ε) and a

running time of O
(
n2+ 2

ε (ε
2)

2
ε

)
. We thus obtain the following theorem.

Theorem 1. Given a set P of n points on a line and a positive constant ε > 0.
One can approximate the anywhere burning number of P within a factor of (1+ε)
and compute the corresponding burning sequence in polynomial time.

2.2 PTAS for Point Burning

We can slightly modify the algorithm for anywhere burning problem to obtain a
PTAS for the point burning problem. We refer the reader to the full version [9].

Theorem 2. Given a set P of n points on a line and a positive constant ε > 0.
One can approximate the point burning number of P within a factor of (1 + ε)
and compute the corresponding burning sequence in polynomial time.

3 Burning Number in Two Dimensions

In this section we assume that the points of P are in R
2. We first give a

(1.92188+ε)-approximation algorithm for anywhere burning (Sect. 3.1) and then
a (1.96296+ ε)-approximation algorithm for point burning (Sect. 3.2). Note that
this improves the previously known (2+ ε)-approximation factor for these prob-
lems [10].

3.1 Anywhere Burning

Our algorithm for anywhere burning is inspired by the (2 + ε)-approximation
algorithm of Keil et al. [10], where we improve the approximation factor by using
a geometric covering argument.

Keil et al. [10] leverage the discrete unit disk cover problem to obtain an
approximation algorithm for anywhere burning. The input to the discrete unit

Improved and Generalized Algorithms for Burning a Planar Point Set 95

disk cover problem is a set of points P and a set of unit disks U in R
2. The goal

is to choose the smallest set U ⊂ U that covers all the points of P . There exists
a PTAS for the discrete unit disk cover problem [12].

Let δ∗ be the actual burning number. Keil et al. [10] iteratively guess the
anywhere burning number δ from 1 to n. For each δ, they construct a set of
n disks, each of radius δ, that are centered at the points of P , and

(
n
3

)
+

(
n
2

)

additional disks, where each disk is of radius δ and is centered at the center
of a circle determined by either two or three points of P . The reason is that
any solution to the anywhere burning can be perturbed to obtain a subset of
the discretized disks. Then they compute a (1 + ε) approximation U

′
δ for the

discrete unit disk cover Uδ. If |U ′
δ|

(1+ε) > δ, then δ cannot be the burning number
as otherwise, one could construct a smaller discrete unit disk cover by choosing
disks that are centered at the burning sources of an optimal burning sequence.

At this point, the guess is increased by one. The iteration stops when |U ′
δ|

(1+ε) ≤ δ,
where we know that δ ≤ δ∗. At this point, Keil et al. [10] show how to construct
a burning sequence of length (2 + ε).

We now describe a new technique for constructing the burning sequence. To
burn all points in P , we use 1.92188δ(1 + ε) steps. We first choose the centers
of a 0.92188 fraction of U

′
δ disks and burn them in arbitrary order. Later, we

will see that the number 0.92188 relates to a geometric covering result [13]. This
requires 0.92188|U ′

δ| = 0.92188δ(1 + ε) steps. We then burn for another δ(1 + ε)
steps. This will ensure the previously chosen 0.92188|U ′

δ| fires to have a radius of
at least δ. Therefore, these fires will burn all the points that are covered by the
corresponding disks of the discrete unit disk cover solution. We are now left with
(1−0.92188)|U ′

δ| = 0.07812|U ′
δ| disks in U

′
δ that need to be covered using the next

δ(1 + ε) steps. Observe that (1 − 0.6094) = 0.3906 fraction of these δ(1 + ε) fires
have radius at least 0.6094. Since a unit disk can be covered by 5 equal disks1 of
radius at most 0.6094 [13], we can cover the remaining 0.3906

5 |U ′
δ| = 0.07812|U ′

δ|
disks of U

′
δ.

Since δ ≤ δ∗, We have the following theorem.

Theorem 3. Given a set P of points in R
2 and an ε > 0, one can compute an

anywhere burning sequence in polynomial time where the length of the sequence
is at most 1.92188(1 + ε) times the anywhere burning number of P .

3.2 Point Burning

The algorithm for anywhere burning can be easily adapted to provide a
(1.96296 + ε) approximation ratio for point burning. We refer the reader to
the full version [9] for further details.

Theorem 4. Given a set P of points in R
2 and an ε > 0, one can compute a

point burning sequence in polynomial time where the length of the sequence is at
most 53(1+ε)

27 ≈ 1.96(1 + ε) times the point burning number of P .

1 http://oeis.org/A133077.

http://oeis.org/A133077

96 P. Gokhale et al.

4 Generalizations for Point Burning

In this section we consider two generalizations of the problem.
The first one is point burning with non-uniform rates (Sect. 4.1). Specifically,

for each i from 1 to n, the ith point in P is assigned a positive integer (rate) ri.
If a fire starts at the ith point q, then the fire will spread with a rate of ri per
step. Specifically, at the kth step, where k is a positive integer, the fire burns all
points of R2 that are within kr1 units of q. Note that point burning with uniform
rates, i.e., r1 = . . . = rn reduces to point burning. The second one is k-burning
number, i.e., when k points can be burned at each step (Sect. 4.2). This version
has previously been considered for graph burning and graph k-burning number
is known to be 3 approximable [11].

4.1 Point Burning with Non-uniform Rates

Let h be the ratio of the fastest rate to the slowest rate, i.e., h = max1≤i,j≤n
ri

rj

(intuitively, it is the maximum ratio over all pairs of rates). In this section we
show that for every fixed h, point burning number with non-uniform rates is
approximable within a constant factor. We will use the concept of dominating
set in a disk graph. A disk graph is a geometric intersection graph where the
vertices correspond to a set of disks in the plane and there is an edge if and only
if the corresponding pair of disks intersect. A dominating set in a disk graph is
a subset S of vertices such that every vertex is either in S or has a neighbour in
S. Gibson and Parwani [8] provides a PTAS for finding a minimum dominating
set in disk graphs, where the disks can have different radii.

We are now ready to present the algorithm. For a positive integer m, let Gm

be the disk graph obtained by constructing for each point t ∈ P , a disk centered
at t with radius m

2 rt. Let Dm be a minimum dominating set of Gm.
We start guessing the burning number δ from 1 to n, and for each guess,

we compute a (1 + ε)-approximate dominating set Eδ−1 of Gδ−1. We now have
|Eδ−1| ≤ (1+ε)|Dδ−1|. If δ < |Eδ−1|

(1+ε) ≤ |Dδ−1|, then we can claim that δ burning
sources are not enough to burn all the points and can increase the guess by
1. Suppose for a contradiction that all the points can be burned in δ steps.
We can then choose the disks corresponding to the burning sources to obtain a
dominating set with less than |Dδ−1| disks, a contradiction.

Once we get δ ≥ |Eδ−1|
(1+ε) , we stop. At this point, we know that δ ≤ δ∗. We

now construct a burning sequence by first burning all the points in Eδ−1 (in an
arbitrary order) and then continuing the burning for h(δ − 1) more steps. We
need to show all the points of P are burned. Take some point p ∈ P , if p ∈ Eδ−1,
then it is clearly burned. Otherwise, p is dominated by a point q ∈ Eδ−1. Here
the Euclidean distance between p and q is at most δ−1

2 (rp + rq).
If rq ≥ rp, then the radius for the fire initiated at q is rq(δ−1) which is larger

than δ−1
2 (rp + rq). Therefore, p must be burned.

Otherwise, assume that rq < rp. Here the distance between p and q is at
most δ−1

2 (rp + rq) ≤ (δ − 1)rp. Since q ∈ Eδ−1, by our burning strategy, the

Improved and Generalized Algorithms for Burning a Planar Point Set 97

fire at q will continue to burn for at least h(δ − 1) steps. Therefore, its radius
is at least rqh(δ − 1) steps. Since h is the maximum ratio of the burning rates,
rqh(δ − 1) ≥ rq(

rp

rq
)(δ − 1) = (δ − 1)rp. Hence the point p must be burned.

The number of rounds taken by our algorithm is |Eδ−1| + h(δ − 1) ≤ (1 +
ε)δ∗ + h(δ∗ − 1) = (1 + h + ε)δ∗. We thus obtain the following theorem.

Theorem 5. Let P be a set of points in R
2, where each point is assigned a

burning rate. Let h be the ratio of the fastest rate to the slowest rate. Given an
ε > 0, one can compute a point burning sequence in polynomial time where the
sequence length is at most (1 + h + ε) times the point burning number of P .

4.2 k-Burning with Non-uniform Rates

We now consider the point burning model when k points are allowed to burn
at each step and the goal is to compute the k-burning number, i.e., minimum
number of rounds to burn all points of P . Our algorithm for this model is the
same as in the previous section except that we stop iterating the guess when
kδ ≥ |Eδ−1|

(1+ε) . The reason we keep iterating in the case when kδ < |Eδ−1|
(1+ε) < |Dδ−1|

is that burning all points in kδ steps would imply the existence of a dominating
set of size smaller than |Dδ−1|. We thus obtain the following theorem.

Theorem 6. Let P be a set of points in R
2, where each point is assigned a

burning rate, and let h be the ratio of the fastest rate to the slowest rate. Given an
ε > 0 and a positive integer k > 0, one can compute a point k-burning sequence
in polynomial time where the length of the sequence is at most (1 + h + ε) times
the point burning number of P .

5 NP-Hardness

In this section we show that computing a point burning sequence is NP-hard
even if we are given the burning sources.

We will reduce the NP-Hard problem LSAT [1], which is a 3-SAT formula
where each clause (viewed as a set of literals) intersects at most one other clause,
and, moreover, if two clauses intersect, then they have exactly one literal in
common. Given an LSAT instance, one can sort the literals such that each clause
corresponds to at most three consecutive literals, and each clause may share at
most one of its literals with another clause, in which case this literal is extreme
in both clauses [1].

Let I be an instance of LSAT with m clauses and n variables. Without loss
of generality we may assume for every variable, both its positive and negative
literals appear in I. Otherwise, we could set a truth value to the variable to
satisfy some clauses and remove them to obtain an LSAT instance I ′ which is
satisfiable if and only if I is satisfiable. We will construct a point set P with
4n + m points and identify 2n points to be used as the burning sources. We will
show that I is satisfiable if and only if P has a point burning sequence that uses
only the given 2n points as the burning sources.

98 P. Gokhale et al.

Fig. 2. Illustration for the construction of the point set for a pair of intersecting clauses:
(ja ∨ jb ∨ jc) and (jc ∨ jd ∨ je).

Construction of the Point Set: The point set includes one point per clause,
which is called a clause point and one point per literal, which is called a literal
point. For each literal, we add a point, which we call a tail point of that literal
point. For example, consider a pair of clauses with k distinct literals and assume
that these clauses have a literal in common. The corresponding point set con-
sists of two clause points, k literal points and k tail points. Figure 2 gives an
illustration with k = 5.

We now describe the construction in detail. We call a clause (or a pair of
clauses that share a common literal) independent if it does not intersect any
other clause. We place these independent elements (clauses or pairs of clauses)
far from each other such that points in one element are at least n2 units apart
from the points in any other element.

If a literal is shared among a pair of clauses, then we call it an intersection
literal. If each of the two clauses corresponding to an intersection literal is of size
three (i.e., contains three literals), then we call intersection literal heavy and
otherwise, we call it light. Note that there can be at most 2n

5 heavy literals (as
each such literal corresponds to a pair of clauses with 5 distinct literals, which
must be independent by the property of LSAT). We now relabel the variables
(with labels 1, . . . , n) such that variables that correspond to heavy literals get
lower labels. For a variable with label k, we label its literals as jk and jk. Thus
for any heavy literal jk, we have k ≤ 2n

5 .
We first describe the construction of the points corresponding to a heavy

literal. Let (ja ∨ jb ∨ jc) and (jc ∨ jd ∨ je) be the corresponding clauses. For an
integer q let djq

to be the distance of (2n−2q) units. In general, when placing the
literal point zjq

, we ensure that it is at distance (djq
+1) from its corresponding

Improved and Generalized Algorithms for Burning a Planar Point Set 99

clause point. When placing a tail point tjq
, we ensure that it is at a distance

djq
from its corresponding literal point zjq

. Therefore, in the following we only
describe the position of the literal, clause and tail points relative to each other.

We place a clause point u for (ja ∨jb ∨jc). We place the literal points zjb
and

zjc
to the left and right of the u (on the horizontal line through u), respectively.

We place the literal point zja
vertically below u. We then place the clause point

v and its literal points to the right of the intersection literal zjc
symmetrically,

as shown in Fig. 2. We place the tail points tjb
and tje

to the left and right of
zjb

and zje
, respectively. The tail points tja

and tjd
are placed vertically below

zja
and zjd

, respectively. Finally, the tail point tjc
is placed vertically above zjc

.
For the light literals, we have at most 4 distinct literal points to place. The

construction is the same as above and we intentionally put three literal points
on the line passing through the clause points and the remaining one (if exists)
below its corresponding clause point.

For each independent clause, the construction is again the same as for (ja ∨
jb ∨ jc). If it contains two literals, then we place both literal points on the
horizontal line passing through the clause point.

Remark 1. For a literal zq, the construction ensures the following properties.

P1: The distance of tzq
is strictly greater than 2n − 2q + 1 from all literal

points except for its own literal point.
P2: The distance of zjq

is strictly greater than 2n− 2q +1 from all tail points
except for its own tail point.

Remark 1 is straightforward to verify from the construction except for the
case when a heavy literal correspond to two literal points below the line through
the clause points. It may initially appear that if the construction places them in
close proximity, then the nearest tail point of one literal point may be the tail
point of the other literal point. However, such a scenario does not appear due
to our initial relabelling of the literals, i.e., the smallest distance between the
vertical lines through these literal points is at least d = 2(2n−2(2n

5)) = 2(6n
5) =

12n
5 > 2n (Fig. 2).

Reduction: First we show that if I is satisfiable, then P can be burnt in 2n
steps using only the literal points as sources. For every r from 1 to n, if jr is true
then burn zjr

at the (2r − 1)th step and burn zjr
at the 2rth step. If jr is false,

then swap the steps. Any tail point tja
is at a distance of (2n − 2a) from zja

.
Even if ja is false, it still has (2n − 2a) steps left to burn, which will be enough
to burn the tail point. It only remains to show that all clause points are burned.
Let u be any clause point, as I is satisfiable, at least one of its variable jr must
be true, which will burn for at least 2n − (2r − 1) = 2n − 2r + 1 steps and thus
burn u.

We now assume that there is a burning sequence that burns all the points of
P using the literal points as sources. To construct a satisfying truth assignment
for the LSAT, we use the following lemma and the proof is included in the full
version [9].

100 P. Gokhale et al.

Lemma 1. For a variable with label r, its literal points zjr
and zjr

are burnt in
the (2r − 1)th and 2rth step, respectively (or in the reverse order).

We now construct a satisfying truth assignment as follows. If zjr
or zjr

is
burnt in odd step, we set it to be true. Otherwise, we set it to be false. We now
show that I is satisfied. Assume for a contradiction that there is a clause c which
is not satisfied, i.e., all of its associated literal points are burnt in even steps. By
Lemma 1, each literal point zja

corresponding to c burns for (2n−2a) steps, which
is not enough to burn the clause point. This contradicts our initial assumption
of a valid burning sequence. This completes the NP-hardness reduction.

Theorem 7. Given a set of points P in the plane and a subset S of P , it is
NP-hard to construct a point burning sequence using only the points of S that
burns all the points of P within |S| rounds.

5.1 Burning Maximum Number of Points

Our NP-hardness result implies that given a subset S = {s1, . . . , sq} of q points
from P , it is NP-hard to burn the maximum number of points by only burning
the points of S within q rounds. We now show how to obtain a 2-approximation
for this problem. For every point sj , where 1 ≤ j ≤ q, we consider q sets. The
ith set Δj

i , where 1 ≤ i ≤ q, contains the points that are covered by the disk of
radius i centered at p, i.e., these points are within a distance of i from p. We thus
have a collection of sets {Δ1

1, . . . ,Δ
1
q, . . . ,Δ

q
1, . . . ,Δ

q
q}, which can be partitioned

into q groups based on radius, i.e., the ith group contains the sets {Δ1
i , . . . ,Δ

q
i }.

To burn the maximum number of points by burning S, we need to select one
subset from each radius group so that the cardinality of the union of these sets is
maximized. This is exactly the maximum set cover problem with group budget
constraints, which is known to be 2-approximable [6].

Theorem 8. Given a set P of n points in the plane and a subset S of q points
from P , one can compute a point burning sequence using S within q rounds in
polynomial time that burns at least half of the maximum number of points that
can be burned using S within q rounds.

If we want to burn maximum number of points within q rounds, then we
can set S to be equal to P to have a 2-approximate solution. We thus have the
following corollary.

Corollary 1. Given a set of n points in the plane and a positive integer q < n,
one can compute a point burning sequence in polynomial time that burns at least
half of the maximum number of points that can be burned within q rounds.

6 Conclusion

In this paper we have shown that point burning and anywhere burning problems
admit PTAS in one dimension and improved the known approximation factors

Improved and Generalized Algorithms for Burning a Planar Point Set 101

in two dimensions. To improve the previously known approximation factor in
two dimensions we used a geometric covering argument. We believe our cover-
ing strategy can be refined further by using a tedious case analysis. However,
this would not provide a PTAS. Therefore, the most intriguing question in this
context is whether these problems admit PTAS in two dimensions.

We have also proven that the problem of burning the maximum number of
points within a given number of rounds is NP-hard, but 2-approximable by a
known result on set cover with group budget constraints. It would be interesting
to design a better approximation algorithm leveraging the geometric structure.

References

1. Arkin, E.M., et al.: Selecting and covering colored points. Discret. Appl. Math.
250, 75–86 (2018)

2. Bessy, S., Bonato, A., Janssen, J.C.M., Rautenbach, D., Roshanbin, E.: Burning a
graph is hard. Discret. Appl. Math. 232, 73–87 (2017)

3. Bonato, A.: A survey of graph burning. Contrib. Discret. Math. 16(1), 185–197
(2021)

4. Bonato, A., Janssen, J., Roshanbin, E.: Burning a graph as a model of social
contagion. In: Bonato, A., Graham, F.C., Pra�lat, P. (eds.) WAW 2014. LNCS,
vol. 8882, pp. 13–22. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13123-8 2

5. Bonato, A., Kamali, S.: Approximation algorithms for graph burning. In: Gopal,
T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 74–92. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-14812-6 6

6. Chekuri, C., Kumar, A.: Maximum coverage problem with group budget con-
straints and applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D.
(eds.) APPROX/RANDOM -2004. LNCS, vol. 3122, pp. 72–83. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-27821-4 7

7. Garcia-Diaz, J., Sansalvador, J.C.P., Rodŕıguez-Henŕıquez, L.M., Cornejo-Acosta,
J.A.: Burning graphs through farthest-first traversal. IEEE Access 10, 30395–30404
(2022)

8. Gibson, M., Pirwani, I.A.: Algorithms for dominating set in disk graphs: breaking
the logn barrier. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp.
243–254. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15775-
2 21

9. Gokhale, P., Keil, J.M., Mondal, D.: Improved and generalized algorithms for burn-
ing a planar point set. CoRR abs/2209.13024 (2022)

10. Keil, J.M., Mondal, D., Moradi, E.: Burning number for the points in the plane. In:
Proceedings of the 34th Canadian Conference on Computational Geometry (2022)

11. Mondal, D., Rajasingh, A.J., Parthiban, N., Rajasingh, I.: APX-hardness and
approximation for the k-burning number problem. Theor. Comput. Sci. 932, 21–30
(2022)

12. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discret.
Comput. Geom. 44(4), 883–895 (2010). https://doi.org/10.1007/s00454-010-9285-
9

13. Neville, E.H.: On the solution of numerical functional equations illustrated by an
account of a popular puzzle and of its solution. Proc. Lond. Math. Soc. 2(1), 308–
326 (1915)

https://doi.org/10.1007/978-3-319-13123-8_2
https://doi.org/10.1007/978-3-319-13123-8_2
https://doi.org/10.1007/978-3-030-14812-6_6
https://doi.org/10.1007/978-3-540-27821-4_7
https://doi.org/10.1007/978-3-642-15775-2_21
https://doi.org/10.1007/978-3-642-15775-2_21
https://doi.org/10.1007/s00454-010-9285-9
https://doi.org/10.1007/s00454-010-9285-9

On the Longest Flip Sequence to Untangle
Segments in the Plane

Guilherme D. da Fonseca1 , Yan Gerard2 , and Bastien Rivier2(B)

1 Aix-Marseille Université and LIS, Marseille, France
guilherme.fonseca@lis-lab.fr

2 Université Clermont Auvergne and LIMOS, Clermont-Ferrand, France
{yan.gerard,bastien.rivier}@uca.fr

Abstract. A set of segments in the plane may form a Euclidean TSP
tour or a matching, among others. Optimal TSP tours as well as mini-
mum weight perfect matchings have no crossing segments, but several
heuristics and approximation algorithms may produce solutions with
crossings. To improve such solutions, we can successively apply a flip
operation that replaces a pair of crossing segments by non-crossing ones.
This paper considers the maximum number D(n) of flips performed on
n segments. First, we present reductions relating D(n) for different sets
of segments (TSP tours, monochromatic matchings, red-blue matchings,
and multigraphs). Second, we show that if all except t points are in
convex position, then D(n) = O(tn2), providing a smooth transition
between the convex O(n2) bound and the general O(n3) bound. Last,
we show that if instead of counting the total number of flips, we only
count the number of distinct flips, then the cubic upper bound improves
to O(n8/3).

Keywords: Planar geometry · Matching · Reconfiguration · Euclidean
TSP

1 Introduction

In the Euclidean Travelling Salesman Problem (TSP), we are given a set P
of n points in the plane and the goal is to produce a closed tour connecting
all points of minimum total Euclidean length. The TSP problem, both in the
Euclidean and in the more general graph versions, is one of the most studied
NP-hard optimization problems, with several approximation algorithms, as well
as powerful heuristics (see for example [2,13,17]). Multiple PTAS are known for
the Euclidean version [3,26,30], in contrast to the general graph version that
unlikely admits a PTAS [11]. It is well known that the optimal solution for the
Euclidean TSP is a simple polygon, i.e., has no crossing segments, and in some
situation a crossing-free solution is necessary [10]. However, most approxima-
tion algorithms (including Christofides and the PTAS), as well as a variety of

This work is supported by the French ANR PRC grant ADDS (ANR-19-CE48-0005).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 102–112, 2023.
https://doi.org/10.1007/978-3-031-27051-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_10&domain=pdf
http://orcid.org/0000-0002-9807-028X
http://orcid.org/0000-0002-2664-0650
http://orcid.org/0000-0001-5985-2169
https://doi.org/10.1007/978-3-031-27051-2_10

On the Longest Flip Sequence to Untangle Segments in the Plane 103

simple heuristics (nearest neighbor, greedy, and insertion, among others) may
produce solutions with pairs of crossing segments. In practice, these algorithms
may be supplemented with a local search phase, in which crossings are removed
by iteratively modifying the solution.

Fig. 1. Examples of flips in a (a) TSP tour, (b) monochromatic matching, and (c)
red-blue matching. (Color figure online)

Given a Euclidean TSP tour, a flip is an operation that removes a pair of
crossing segments and adds a new pair of segments preserving a tour (Fig. 1(a)).
If we want to find a tour without crossing segments starting from an arbitrary
tour, it suffices to find a crossing, perform a flip, and repeat until there are no
crossings. It is easy to see that the process will eventually finish, as the length of
the tour can only decrease when we perform a flip. Since a flip may create several
new crossings, it is not obvious how to bound the number of flips performed until
a crossing-free solution is obtained. Let DTSP(n) denote the maximum number
of flips successively performed on a TSP tour with n segments. An upper bound
of DTSP(n) = O(n3) is proved in [24], while the best lower bound known is
DTSP(n) = Ω(n2). In contrast, if the points P are in convex position, then tight
bounds of Θ(n2) are easy to prove.

In this paper, we show that we can consider a conceptually simpler problem
of flips in matchings (instead of Hamiltonian cycles), in order to bound the num-
ber of flips to both problems. Next, we describe this monochromatic matching
version.

Consider a set of n line segments in the plane defining a matching M on
a set P of 2n points. In this case, a flip replaces a pair of crossing segments
by a pair of non-crossing ones using the same four endpoints (Fig. 1(b)). Notice
that, in contrast to the TSP version, one of two possible pairs of non-crossing
segments is added. As previously, let DMM(n) denote the maximum number of
flips successively performed on a monochromatic matching with n segments. In
Sect. 2, we show that DMM(n) ≤ DTSP(3n) ≤ DMM(3n), hence it suffices to prove
asymptotic bounds for DMM(n) in order to bound DTSP(n).

104 G. D. da Fonseca et al.

A third and last version of the problem that we consider is the red-blue
matching version, in which the set P is partitioned into two sets of n points each
called red and blue, with segments only connecting points of different colors
(Fig. 1(c)). Let DRB(n) denote the analogous maximum number of flips succes-
sively performed on a red-blue matching with n segments. The red-blue match-
ing version has been thoroughly studied [6,12]. In Sect. 2, we also show that
DMM(n) ≤ DRB(2n) ≤ DMM(2n) and, as a consequence, asymptotic bounds for the
monochromatic matching version also extend to the red-blue matching version.
We use the notation D(n) for bounds that hold in all three versions.

For all the aforementioned versions, special cases arise when we impose some
constraint on the location of the points P . In the convex case, P is in convex
position. Then it is known that, for all three versions, D(n) = Θ(n2) [6,8]. This
tight bound contrasts with the gap for the general case bounds.

For all three versions in the convex case, D(n) ≤ (
n
2

)
as the number of

crossings decreases at each flip. The authors have recently shown that without
convexity DRB(n) ≥ 1.5

(
n
2

) − n
4 [12], which is higher than the convex bound. A

major open problem conjectured in [8] is to determine if the non-convex bounds
are Θ(n2) as the convex bounds. Unfortunately, the best upper bound known
for the non-convex case remains D(n) = O(n3) [24] since 19811, despite recent
work on this specific problem [6,8,12]. The best lower bound known is D(n) =
Ω(n2) [8,12].

The argument for the convex case bound of D(n) ≤ (
n
2

)
breaks down even

if all but one point are in convex position, as the number of crossings may not
decrease. In Sect. 3, we present a smooth transition between the convex and the
non-convex cases. We show that, in all versions, if there are t points anywhere
and the remaining points are in convex position with a total of n segments, then
the maximum number of flips is O(tn2).

Finally, in Sect. 4, we use a balancing argument similar to the one of Erdös
et al. [15] to show that if, instead of counting the number of flips, we count the
number of distinct flips (two flips are the same if they change the same set of
four segments), then we get a bound of O(n8/3).

1.1 Related Reconfiguration Problems

Combinatorial reconfiguration studies the step-by-step transition from one solu-
tion to another, for a given combinatorial problem. Many reconfiguration prob-
lems are presented in [20].

It may be tempting to use an alternative definition for a flip in order to
remove crossings and reduce the length of a TSP tour. The 2OPT flip is not
restricted to crossing segments, as long as it decreases the Euclidean length of
the tour. However, the number of 2OPT flips performed may be exponential [14].

Another important parameter d(n) is the minimum number of flips needed
to remove crossings from any set of n segments. When the points are in convex

1 While the paper considers only the TSP version, the proof of the upper bound also
works for the matching versions, as shown in [8].

On the Longest Flip Sequence to Untangle Segments in the Plane 105

position, then it is known that d(n) = Θ(n) in all three versions [6,12,28,32]. If
the red points are on a line, then dRB(n) = O(n2) [6,12]. In the monochromatic
matching version, if we can choose which pair of segments to add in a flip,
then dMM(n) = O(n2) [8]. For all remaining cases, the best bounds known are
d(n) = Ω(n) and d(n) = O(n3).

It is also possible to relax the flip definition to all operations that replace
two segments by two others with the same four endpoints, whether they cross
or not [4,5,7,9,16,31]. This definition has also been generalized to multigraphs
with the same degree sequence [18,19,22].

In the context of triangulations, a flip consists of removing one segment and
adding another one while preserving a triangulation. Reconfiguration problems
for triangulations are also widely studied [1,21,23,25,27,29].

1.2 Definitions

Consider a set of points P . We say that two segments s1, s2 ∈ (
P
2

)
cross if

they intersect in exactly one point which is not an endpoint of either s1 or s2.
Furthermore, a line � and a segment s cross if they intersect in exactly one point
that is not an endpoint of s.

Let s1, s
′
1, s2, s

′
2 be four segments of

(
P
2

)
forming a cycle with s1, s2 crossing.

We define a flip f = s1, s2 � s′
1, s

′
2 as the function that maps any set (or

multiset) of segments M containing the two crossing segments s1 and s2 to
f(M) = M∪{s′

1, s
′
2}\{s1, s2} provided that f(M) satisfies the property required

by the version of the problem in question (being a monochromatic matching, a
red-blue matching, a TSP tour...). This leads to the most general version of the
problem, called the multigraph version. We note that a flip preserves the degree
of every point. However, a flip may not preserve the multiplicity of a segment,
which is why, in certain versions, we must consider multisets and multigraphs
and not just sets and graphs.

A flip sequence of length m is a sequence of flips f1, . . . , fm with a correspond-
ing sequence of (multi-)sets of segments M0, . . . ,Mm such that Mi = fi(Mi−1)
for i = 1, . . . , m. Unless mentioned otherwise, we assume general position for the
points in P (no three collinear points).

Given a property Π over a multiset of n line segments, we define DΠ(n) as
the maximum length of a flip sequence such that every multiset of n segments in
the sequence satisfies property Π. We consider the following properties Π: TSP
for Hamiltonian cycle, RB for red-blue matching, MM for monochromatic matching,
and G for multigraph. Notice that if a property Π is stronger than a property
Π ′, then DΠ(n) ≤ DΠ′(n).

2 Reductions

In this section, we provide a series of inequalities relating the different versions
of D(n). We show that all different versions of D(n) have the same asymptotic
behavior.

106 G. D. da Fonseca et al.

Theorem 1. For all positive integer n, we have the following relations

DMM(n) = DG(n), (1)
2DMM(n) ≤ DRB(2n) ≤ DMM(2n), (2)
2DMM(n) ≤ DTSP(3n) ≤ DMM(3n). (3)

Proof. Equality 1 can be rewritten DG(n) ≤ DMM(n) ≤ DG(n). Hence, we have to
prove six inequalities. The right-side inequalities are immediate, since the left-
side property is stronger than the right-side property (using G instead of MM for
inequality 3).

The proofs of the remaining inequalities follow the same structure: given a
flip sequence of the left-side version, we build a flip sequence of the right-side
version, having similar length and number of points.

We first prove the inequality DG(n) ≤ DMM(n). A point of degree δ larger than
1 can be replicated as δ points that are arbitrarily close to each other in order
to produce a matching of 2n points. This replication preserves the crossing pairs
of segments (possibly creating new crossings). Thus, for any flip sequence in the
multigraph version, there exists a flip sequence in the monochromatic matching
version of equal length, yielding DG(n) ≤ DMM(n).

Fig. 2. (a) Two red-blue flips to simulate a monochromatic flip. (b) Two TSP flips to
simulate a monochromatic flip. (Color figure online)

The left inequality of (2) is obtained by duplicating the monochromatic
points of the matching M into two arbitrarily close points, one red and the
other blue. Then each segment of M is also duplicated into two red-blue seg-
ments. We obtain a bichromatic matching M ′ with 2n segments. A crossing in
M corresponds to four crossings in M ′. Flipping this crossing in M amounts
to choose which of the two possible pairs of segments replaces the crossing pair.
It is simulated by flipping the two crossings in M ′ such that the resulting pair
of double segments corresponds to the resulting pair of segments of the initial
flip. These two crossings always exist and it is always possible to flip them one
after the other as they involve disjoint pairs of segments. Figure 2(a) shows this
construction. A sequence of m flips on M provides a sequence of 2m flips on M ′.
Hence, 2DMM(n) ≤ DRB(2n).

On the Longest Flip Sequence to Untangle Segments in the Plane 107

To prove the left inequality of (3), we start from a red-blue matching M with
2n points and n segments and build a tour T with 3n points and 3n segments.
We then show that the flip sequence of length m on M provides a flip sequence
of length 2m on T . We build T in the following way. Given a red-blue segment
rb ∈ M , the red point r is duplicated in two arbitrarily close points r and r′ which
are adjacent to b in T . We still need to connect the points r and r′ in order to
obtain a tour T . We define T as the tour r1, b1, r

′
1, . . . , ri, bi, r

′
i, . . . , rn, bn, r′

n . . .
where ri is matched to bi in M (Fig. 2(b)).

We now show that a flip sequence of M with length m provides a flip sequence
of T with length 2m. For a flip ribi, rjbj � ribj , rjbi on M , we perform two
successive flips ribi, r

′
jbj � ribj , r

′
jbi and r′

ibi, rjbj � r′
ibj , rjbi on T .

The tour then becomes r1, b1, r
′
1, . . . , ri, bj , r

′
i, . . . , rj , bi, r

′
j , . . . , rn, bn, r′

n, . . .
on which we can apply the next flips in the same way. Hence, 2DMM(n) ≤
DTSP(3n), concluding the proof. ��

3 Near Convex Sets

In this section, we bridge the gap between the O(n2) bound on the length of flip
sequences for a set P of points in convex position and the O(n3) bound for P in
general position. We prove the following theorem in the monochromatic matching
version; the translations to the other versions follows from the reductions from
Sect. 2, noticing that all reductions preserve the number of points in non-convex
position up to constant factors.

Theorem 2. In the monochromatic matching version with n segments, if all
except t points of P are in convex position, then the length of a flip sequence is
O(tn2).

Proof. The proof strategy is to combine the potential ΦX used in the convex case
with the potential ΦL used in the general case. Given a matching M , the potential
ΦX(M) is defined as the number of crossing pairs of segments in M . Since there
are n segments in M , ΦX(M) ≤ (

n
2

)
= O(n2). Unfortunately, with points in

non-convex position, a flip f might increase ΦX , i.e. ΦX(f(M)) ≥ ΦX(M) (as
shown in Fig. 1).

The potential ΦL is derived from the line potential introduced in [24] but
instead of using the set of all the O(n2) lines through two points of P , we use
a subset of O(tn) lines in order to take into account that only t points are in
non-convex position. More precisely, let the potential Φ�(M) of a line � be the
number of segments of M crossing �. Note that Φ�(M) ≤ n. The potential ΦL(M)
is then defined as follows: ΦL(M) =

∑
�∈L Φ�(M).

We now define the set of lines L as the union of L1 and L2, defined hereafter.
Let C be the subset containing the 2n−t points of P which are in convex position.
Let L1 be the set of the O(tn) lines through two points of P , at least one of
which is not in C. Let L2 be the set of the O(n) lines through two points of C
which are consecutive on the convex hull boundary of C.

108 G. D. da Fonseca et al.

Let the potential Φ(M) = ΦX(M) + ΦL(M). We have the following bounds:
0 ≤ Φ(M) ≤ O(tn2). To complete the proof of Theorem 2, we show that any flip
decreases Φ by at least 1 unit.

We consider an arbitrary flip f = p1p3, p2p4 � p1p4, p2p3. Let px be the point
of intersection of p1p3 and p2p4. It is shown in [12,24] that f never increases the
potential Φ� of a line �. More precisely, we have the following three cases:

– The potential Φ� decreases by 1 unit if the line � separates the final segments
p1p4 and p2p3 and exactly one of the four flipped points belongs to �. We call
these lines f-critical (Fig. 3(a)).

– The potential Φ� decreases by 2 units if the line � strictly separates the final
segments p1p4 and p2p3. We call these lines f-dropping (Fig. 3(b)).

– The potential Φ� remains stable in the remaining cases.

Notice that, if a point q lies in the triangle p1pxp4, then the two lines qp1 and
qp4 are f -critical (Fig. 3(a)).

Fig. 3. (a) An f -critical line � for a flip f = p1p3, p2p4 � p1p4, p2p3. This situation cor-
responds to case (2a) with � ∈ L1. (b) An f -dropping line �. This situation corresponds
to case (2b) with � ∈ L2.

To prove that Φ decreases, we have the following two cases.
Case 1. If ΦX decreases, as the other term ΦL does not increase, then their

sum Φ decreases as desired.
Case 2. If not, then ΦX increases by an integer k with 0 ≤ k ≤ n−1, and we

know that there are k+1 new crossings after the flip f . Each new crossing involves
a distinct segment with one endpoint, say qi (0 ≤ i ≤ k), inside the non-simple
polygon p1, p4, p2, p3 (Fig. 3). Next, we show that each point q ∈ {q0, . . . , qk}
maps to a distinct line in L which is either f -dropping or f -critical, thus proving
that the potential ΦL decreases by at least k + 1 units.

We assume without loss of generality that q lies in the triangle p1pxp4. We
consider the two following cases.

Case 2a. If at least one among the points q, p1, p4 is not in C, then either
qp1 or qp4 is an f -critical line � ∈ L1 (Fig. 3(a)).

Case 2b. If not, then q, p1, p4 are all in C, and the two lines through q in L2

are both either f -dropping (the line � in Fig. 3(b)) or f -critical (the line qp4 in

On the Longest Flip Sequence to Untangle Segments in the Plane 109

Fig. 3(b)). Consequently, there are more lines � ∈ L2 that are either f -dropping
or f -critical than there are such points q ∈ C in the triangle p1pxp4, and the
theorem follows. ��

4 Distinct Flips

In this section, we prove the following theorem in the monochromatic matching
version, yet, the proof can easily be adapted to the other versions. We remark
that two flips are considered distinct if the sets of four segments in the flips are
different.

Theorem 3. In all versions with n segments, the number of distinct flips in
any flip sequence is O(n8/3).

The proof of Theorem 3 is based on a balancing argument from [15] and is
decomposed into two lemmas that consider a flip f and two matchings M and
M ′ = f(M). Similarly to [24], let L be the set of lines defined by all pairs of
points in

(
P
2

)
. For a line � ∈ L, let Φ�(M) be the number of segments of M

crossed by � and ΦL(M) =
∑

�∈L Φ�(M). Notice that Φ(M) − Φ(M ′) depends
only on the flip f and not on M or M ′. The following lemma follows immediately
from the fact that ΦL(M) takes integer values between 0 and O(n3) [24].

Lemma 1. For any integer k, the number of flips f in a flip sequence with
Φ(M) − Φ(M ′) ≥ k is O(n3/k).

Lemma 1 bounds the number of flips (distinct or not) that produce a large
potential drop in a flip sequence. Next, we bound the number of distinct flips
that produce a small potential drop. The bound considers all possible flips on a
fixed set of points and does not depend on a particular flip sequence.

Lemma 2. For any integer k, the number of distinct flips f with Φ(M) −
Φ(M ′) < k is O(n2k2).

Proof. Let F be the set of flips with Φ(M)− Φ(M ′) < k where M ′ = f(M). We
need to show that |F | = O(n2k2). Consider a flip f = p1p3, p2p4 � p1p4, p2p3 in
F . Next, we show that there are at most 4k2 such flips with a fixed final segment
p1p4. Since there are O(n2) possible values for p1p4, the lemma follows. We show
only that there are at most 2k possible values for p3. The proof that there are
at most 2k possible values for p2 is analogous.

We sweep the points in P \ {p4} by angle from the ray p1p4. As shown in
Fig. 4, let q1, . . . , qk be the first k points produced by this sweep in one direction,
q−1 . . . , q−k in the other direction and Q = {q−k . . . , q−1, q1, . . . , qk}. To conclude
the proof, we show that p3 must be in Q. Suppose p3 /∈ Q for the sake of a
contradiction and assume without loss of generality that p3 is on the side of
qi with positive i. Then, consider the lines L′ = {p1q1, . . . , p1qk}. Notice that
L′ ⊆ L, |L′| = k, and for each � ∈ L′ we have Φ�(M) > Φ�(M ′), which contradicts
the hypothesis that Φ(M) − Φ(M ′) < k. ��

Theorem 3 is a consequence of Lemmas 1 and 2 with k = n1/3.

110 G. D. da Fonseca et al.

Fig. 4. Illustration for the proof of Lemma 2.

5 Conclusion and Open Problems

In Sect. 2, we showed a relationship among several different bounds on the max-
imum number of flips for a set of n line segments. This result shows how upper
bounds to the monochromatic matching version can be easily transferred to dif-
ferent versions. But they can also be applied to transfer lower bounds among
different versions. For example, the lower bound of 3

2

(
n
2

) − n
4 for the red-blue

matching case [12] implies a lower bound of 1
3

(
n
2

) − n
2 for TSP. It is not clear

if the constants in the TSP lower bound may be improved, perhaps by a more
direct approach (or perhaps the lower bounds are not even asymptotically tight).
However, we showed that all these versions are related by constant factors.

We can also use the results from Sect. 2 to convert the bounds from Sect. 3 to
the general multigraph version, and hence to spanning trees and other types of
graphs. In this case, the number t of points in non-convex position needs to be
replaced by the sum of the degrees of the points in non-convex position. If the
graphs are dense, or have non-constant degree, we do not know of any non-trivial
lower bounds or better upper bounds.

Another key property that we did not consider in this paper is the length
d(n) of the shortest flip sequence to untangle any set of n segments. In general,
we only know that d(n) = Ω(n) and d(n) ≤ D(n) = O(n3), for all versions.
Whether similar reductions are possible is an elusive question. Furthermore, if
the n points are in convex position, then dTSP (n) = Θ(n) for all versions. It is
unclear if a transition in the case of t points in non-convex position is possible.

The result of Theorem 3 is based on the O(n2k2) bound from Lemma 2. A
better analysis of the dual arrangement could potentially improve this bound,
perhaps to O(n2k).

The main open question, though, is whether the O(n3) bound to both D(n)
and d(n) can be improved for points in general position. The O(n8/3) bound on
the number of distinct flips presented in Sect. 4 is a hopeful step in this direction,

On the Longest Flip Sequence to Untangle Segments in the Plane 111

at least for d(n). We were not able to find a set of line segments that requires
the same pair of segments to be flipped twice in order to be untangled.

References

1. Aichholzer, O., Mulzer, W., Pilz, A.: Flip distance between triangulations of a
simple polygon is NP-complete. Discrete Comput. Geom. 54(2), 368–389 (2015).
https://doi.org/10.1007/s00454-015-9709-7

2. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman
Problem. Princeton University Press, Princeton (2011)

3. Arora, S.: Polynomial time approximation schemes for Euclidean TSP and other
geometric problems. In: 37th Conference on Foundations of Computer Science, pp.
2–11 (1996)

4. Bereg, S., Ito, H.: Transforming graphs with the same degree sequence. In: Ito,
H., Kano, M., Katoh, N., Uno, Y. (eds.) KyotoCGGT 2007. LNCS, vol. 4535, pp.
25–32. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89550-3_3

5. Bereg, S., Ito, H.: Transforming graphs with the same graphic sequence. J. Inf.
Process. 25, 627–633 (2017)

6. Biniaz, A., Maheshwari, A., Smid, M.: Flip distance to some plane configurations.
Comput. Geom. 81, 12–21 (2019). https://arxiv.org/abs/1905.00791

7. Bonamy, M., et al.: The perfect matching reconfiguration problem. In: 44th Inter-
national Symposium on Mathematical Foundations of Computer Science. LIPIcs,
vol. 138, pp. 80:1–80:14 (2019)

8. Bonnet, É., Miltzow, T.: Flip distance to a non-crossing perfect matching (2016).
https://arxiv.org/abs/1601.05989

9. Bousquet, N., Joffard, A.: Approximating shortest connected graph transformation
for trees. In: Chatzigeorgiou, A., et al. (eds.) SOFSEM 2020. LNCS, vol. 12011, pp.
76–87. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38919-2_7

10. Buchin, M., Kilgus, B.: Fréchet distance between two point sets. Comput. Geom.
102, 101842 (2022)

11. Chlebík, M., Chlebíková, J.: Approximation hardness of travelling salesman via
weighted amplifiers. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS,
vol. 11653, pp. 115–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26176-4_10

12. Das, A.K., Das, S., da Fonseca, G.D., Gerard, Y., Rivier, B.: Complexity results on
untangling red-blue matchings. In: 15th Latin American Theoretical Informatics
Symposium (LATIN 2022). LNCS, vol. 13568. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-20624-5_44, https://arxiv.org/abs/2202.11857

13. Davendra, D.: Traveling Salesman Problem: Theory and Applications. BoD-Books
on Demand, Norderstedt (2010)

14. Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the
2-Opt algorithm for the TSP. Algorithmica 68(1), 190–264 (2013). https://doi.org/
10.1007/s00453-013-9801-4

15. Erdös, P., Lovász, L., Simmons, A., Straus, E.G.: Dissection graphs of planar point
sets. In: A Survey of Combinatorial Theory, pp. 139–149. Elsevier (1973)

16. Erdős, P.L., Király, Z., Miklós, I.: On the swap-distances of different realizations
of a graphical degree sequence. Comb. Probab. Comput. 22(3), 366–383 (2013)

17. Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations, vol.
12. Springer Science & Business Media, Berlin (2006)

https://doi.org/10.1007/s00454-015-9709-7
https://doi.org/10.1007/978-3-540-89550-3_3
https://arxiv.org/abs/1905.00791
https://arxiv.org/abs/1601.05989
https://doi.org/10.1007/978-3-030-38919-2_7
https://doi.org/10.1007/978-3-030-26176-4_10
https://doi.org/10.1007/978-3-030-26176-4_10
https://doi.org/10.1007/978-3-031-20624-5_44
https://doi.org/10.1007/978-3-031-20624-5_44
https://arxiv.org/abs/2202.11857
https://doi.org/10.1007/s00453-013-9801-4
https://doi.org/10.1007/s00453-013-9801-4

112 G. D. da Fonseca et al.

18. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a
linear graph. I. J. Soc. Ind. Appl. Math. 10(3), 496–506 (1962)

19. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a
linear graph II. uniqueness. J. Soc. Ind. Appl. Math. 11(1), 135–147 (1963)

20. van den Heuvel, J.: The complexity of change. Surv. Comb. 409, 127–160 (2013)
21. Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discrete Com-

put. Geom. 22(3), 333–346 (1999)
22. Joffard, A.: Graph domination and reconfiguration problems. Ph.D. thesis, Univer-

sité Claude Bernard Lyon 1 (2020)
23. Lawson, C.L.: Transforming triangulations. Discret. Math. 3(4), 365–372 (1972)
24. van Leeuwen, J.: Untangling a traveling salesman tour in the plane. In: 7th Work-

shop on Graph-Theoretic Concepts in Computer Science (1981)
25. Lubiw, A., Pathak, V.: Flip distance between two triangulations of a point set is

NP-complete. Comput. Geom. 49, 17–23 (2015)
26. Mitchell, J.S.: Guillotine subdivisions approximate polygonal subdivisions: a sim-

ple polynomial-time approximation scheme for geometric TSP, k-mst, and related
problems. SIAM J. Comput. 28(4), 1298–1309 (1999)

27. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)
28. Oda, Y., Watanabe, M.: The number of flips required to obtain non-crossing convex

cycles. In: Ito, H., Kano, M., Katoh, N., Uno, Y. (eds.) KyotoCGGT 2007. LNCS,
vol. 4535, pp. 155–165. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-89550-3_17

29. Pilz, A.: Flip distance between triangulations of a planar point set is APX-hard.
Comput. Geom. 47(5), 589–604 (2014)

30. Rao, S.B., Smith, W.D.: Approximating geometrical graphs via "spanners" and
"banyans". In: Proceedings of the 30th Annual ACM Symposium on Theory of
Computing, pp. 540–550 (1998)

31. Will, T.G.: Switching distance between graphs with the same degrees. SIAM J.
Discret. Math. 12(3), 298–306 (1999)

32. Wu, R., Chang, J., Lin, J.: On the maximum switching number to obtain non-
crossing convex cycles. In: 26th Workshop on Combinatorial Mathematics and
Computation Theory, pp. 266–273 (2009)

https://doi.org/10.1007/978-3-540-89550-3_17
https://doi.org/10.1007/978-3-540-89550-3_17

String Algorithm

Inferring Strings from Position Heaps
in Linear Time

Koshiro Kumagai(B), Diptarama Hendrian, Ryo Yoshinaka,
and Ayumi Shinohara

Graduate School of Information Sciences, Tohoku University, Sendai, Japan
koshiro_kumagai@shino.ecei.tohoku.ac.jp,

{diptarama,ryoshinaka,ayumis}@tohoku.ac.jp

Abstract. Position heaps are index structures of text strings used for
the string matching problem. They are rooted trees whose edges and
nodes are labeled and numbered, respectively. This paper is concerned
with variants of the inverse problem of position heap construction and
gives linear-time algorithms for those problems. The basic problem is to
restore a text string from a rooted tree with labeled edges and numbered
nodes. In the variant problems, the input trees may miss edge labels or
node numbers which we must restore as well.

Keywords: Position heaps · Reverse engineering · Enumeration

1 Introduction

The string matching problem searches for occurrences of a pattern P in a text
T . It has been widely studied for many years and many efficient algorithms have
been proposed. Those techniques can be classified into mainly two approaches.
The first one is to construct data structures from P by preprocessing P . For
example, the Knuth-Morris-Pratt algorithm [19] constructs border arrays, the
Boyer-Moore method [5] constructs suffix tables, and the Z-algorithm [16] con-
structs prefix tables which is the dual notion of suffix tables. The other approach
is preprocessing T to create indexing structures, such as suffix trees [25], suffix
arrays [21], LCP arrays [21], suffix graphs [3], compact suffix graphs [4], and
position heaps [12]. Indexing structures are advantageous when searching for
many different patterns in a text.

The reverse engineering of those data structures has also been widely studied.
Studying reverse engineering deepens our insight into those data structures. For
example, it may enable us to design an algorithm generating indexing structures
with specific structural characteristics, which should be useful for verifying other
software processing them. The early studies targeted border arrays [9,10,14].
Later, Clément et al. [8] proposed a linear time algorithm for inferring strings
from prefix tables. Those data structures are produced by preprocessing pat-
terns. The reverse engineering for indexing structures has been studied for suffix
arrays [2,11], LCP arrays [18], suffix graphs [2], and suffix trees [6,17,24]. The
techniques used in [17] and [24] involve finding an Eulerian cycles on a graph
modifying an input tree.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 115–126, 2023.
https://doi.org/10.1007/978-3-031-27051-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_11&domain=pdf
https://doi.org/10.1007/978-3-031-27051-2_11

116 K. Kumagai et al.

In this paper, we discuss the reverse engineering of another type of indexing
structures, called position heaps [12,20]. The position heap of a string T is a
rooted tree with labeled edges and numbered nodes. Actually, Ehrenfeucht et
al. [12] and Kucherov [20] gave different definitions of position heaps. By either
definition, position heaps can be constructed in linear time online assuming the
alphabet size to be constant. In addition, we can find all occurrence positions
of a pattern P in O(|P |2 + k) time, where k is the output size. Moreover, by
augmenting position heaps with additional data structures, we can improve the
searching time to O(|P | + k).

We consider the following four types of reverse engineering of Kucherov’s
position heaps [20]. The first problem is to restore a source text T from an input
edge-labeled and node-numbered rooted tree so that the input should be the
position heap PH(T) of T . While this problem allows at most one solution, the
other problems may have many possible solutions. In the second problem, input
trees miss edge labels. In the third problem, input trees miss node numberings.
Instance trees of the fourth problem miss both edge labels and node numberings
but have potential suffix links among nodes, which play an important role in
the construction of position heaps. We show that all the problems above can be
solved in linear time in the input size. Among those, we devote the most pages to
the third problem. We reduce the problem to finding a special type of Eulerian
cycle over the input tree augmented with suffix links. By showing the problem of
finding an Eulerian cycle of this special type is linear-time solvable, we conclude
that restoring a text from a position heap without node numbers is linear-time
solvable. This can be seen analogous to the techniques used in [17] and [24] for
the suffix tree reverse engineering. In addition, we present formulas for counting
the number of possible text strings, which can be computed in polynomial time.
Moreover, we show efficient algorithms for enumerating all possible text strings
in output linear time.

2 Preliminaries

Let Σ be a finite alphabet and let the size of Σ be constant. For a string w over
Σ, the length of w is denoted by |w|. The empty string ε is the string of length
0. Throughout this paper, strings are 1-indexed. For 1 ≤ i ≤ j ≤ |w|, we let w[i]
be the i-th letter of w, and w[i : j] be the substring of w which starts at position
i and ends at position j. In particular, we denote w[i : |w|] by w[i :] and w[1 : j]
by w[: j]. The concatenation of two strings s and t is denoted by st.

Let N0 and N1 be the set of natural numbers including and excluding 0,
respectively. We denote the cardinality of a set X by |X|.

2.1 Graphs

A directed multigraph G is a tuple (V,E, Γ) where V is the node set, E ⊆ V ×V
is the edge set, and Γ : E → N1 gives each edge its multiplicity. The head and

Inferring Strings from Position Heaps in Linear Time 117

the tail of an edge (u, v) ∈ E are v and u, respectively. This paper disallows self-
loops: (v, v) /∈ E for any v ∈ V . When Γ (e) = 1 for all e ∈ E, G is called a directed
graph and is simply denoted by (V,E). An edge-labeled multigraph is a tuple
(V,E, Γ, Ψ) where Ψ : E → Σ for an alphabet Σ. A sequence p = 〈e1, . . . , e�〉 of
edges is called a v0–v� path if there are v0, . . . , v� ∈ V such that ei = (vi−1, vi)
for all i ∈ {1, . . . , �}. Note that, the same node may occur more than once in a
path in this paper. We call p a v0-cycle when v0 = v�. For a t–u path p1 and a
u–v path p2, we denote by p1 ·p2 the concatenation of p1 and p2, which will be a
t–v path. By extending the domain of Ψ to sequences of edges, we define the path
label Ψ(p) of p to be the string Ψ(e1) · · · Ψ(e�). When there exists just one v0–v�

path, we call its label the v0–v� path label and denote it by Ψ((v0, v�)) ∈ Σ∗.
A directed graph G is a t-rooted tree (t ∈ V) if there exists exactly one t–v

path for all v ∈ V . We call t the root of G. Similarly, G is a t-oriented tree if
there exists exactly one v–t path for all v ∈ V . We call t the sink of G. For a
t-rooted tree G = (V,E), if (u, v) ∈ E, then u is the parent of v and v is a child
of u. For two nodes u, v ∈ V such that a u–v path exists, v is a descendant of u,
and u is an ancestor of v. The depth of v is the length of the unique path from
the root to v. We denote the set of all descendants of v as DG(v).

Two directed multigraphs G = (V,E, Γ) and G′ = (V ′, E′, Γ ′) are isomor-
phic, denoted by G ≡ G′, if there is a bijection φ over V such that V ′ = φ(V),
E′ = { (φ(u), φ(v)) | (u, v) ∈ E }, and Γ ′((φ(u), φ(v))) = Γ ((u, v)). The defini-
tion of isomorphism is naturally extended and applied for edge-labeled directed
multigraphs. When G is a rooted tree, we can verify G ≡ G′ in linear time. If
V ′ = V and G′ is a t-oriented tree, then G′ is a t-oriented spanning tree of G.

Let G = (V,E, Γ) be a directed multigraph. For a node v ∈ V , δ−
G(v) and

δ+G(v) are the sets of edges whose heads and tails are v, respectively. We denote
the sum of the multiplicities of edges contained in δ−

G(v) and δ+G(v) by Δ−
G(v) =∑

e∈δ−
G(v) Γ (e) and Δ+

G(v) =
∑

e∈δ+
G(v) Γ (e), respectively. A cycle p is Eulerian

when p contains e just Γ (e) times for all e ∈ E. We also call a directed multigraph
Eulerian if it has an Eulerian cycle. It is well-known that G is Eulerian if and
only if G is connected and Δ−

G(v) = Δ+
G(v) for all v ∈ V [13]. Therefore, we can

check whether G is Eulerian in O(|V | + |E|) time. We often drop the subscript
G from DG, δ+G, Δ−

G etc. when G is clear from the context.

2.2 Position Heaps

A position heap is an index structure with which one can efficiently solve the
pattern matching problem. In this paper, we follow Kucherov’s definition [20].
Let T be a string of length n ending with a unique letter, i.e., T [i] 	= T [n] for
all i ∈ {1, . . . , n − 1}. The position heap PH(T) of T is an edge-labeled rooted
tree (V,E, Ψ) defined as follows. Let h0 be ε, and hi be the shortest prefix of
T [i :] not contained in {h0, . . . , hi−1} for all i ∈ {1, . . . , n}. Since T ends with
a unique letter, T [i :] 	= hj for any j < i, and thus hi is always defined. Then,
define V = {0, . . . , n}, E = {(i, j) | hic = hj for some c ∈ Σ}, and Ψ((i, j)) = c
if hic = hj . Clearly, a position heap is 0-rooted and hi is the 0–i path label for

118 K. Kumagai et al.

Fig. 1. PHS(abaababc) (dashed arrows are suffix links)

all i ∈ {0, . . . , n}. Moreover, we have i ≤ j if node i is an ancestor of node j.
We call T the source text of PH(T). Kucherov showed that one can determine
whether a pattern P occurs in T in O(|P |2) time using PH(T). Moreover, we
can determine it in O(|P |) time with auxiliary data structures.

In Kucherov’s algorithm for constructing position heaps, the mapping S : V \
{0} → V called suffix links plays an important role. It is defined by S(i) = j
such that hi = chj for some c ∈ Σ for i > 0. The suffix links are well-defined. It
is clear that the depth of node i is the depth of node S(i) plus 1. We often treat
S as a subset of V × V . We denote the position heap augmented with its suffix
links by PHS(T) = (V,E, Ψ,S). Figure 1 shows PHS(T) for T = abaababc.

2.3 Problem Definitions

In this paper, we consider the following inverse problems of position heap con-
struction. The first problem is inferring the source text T from a position heap.

Problem 1 (Inferring source texts from node-numbered edge-labeled
trees).
Input: An edge-labeled rooted tree (V,E, Ψ) with V = {0, . . . , |V | − 1}.
Output: A string T such that PH(T) = (V,E, Ψ) if such T exists. Otherwise,
“invalid”.

We will also consider the problem where edge labels are missing.

Problem 2 (Inferring source texts from node-numbered trees).
Input: A rooted tree (V,E) with V = {0, . . . , |V | − 1}.
Output: A string T such that PH(T) = (V,E, Ψ) for some Ψ if such T exists.
Otherwise, “invalid”.

The third problem is inferring source texts T from trees whose nodes are not
numbered but edges are labeled.

Problem 3 (Inferring source texts from edge-labeled trees).
Input: An edge-labeled rooted tree (V,E, Ψ).
Output: A string T such that PH(T) ≡ (V,E, Ψ) if such T exists. Otherwise,
“invalid”.

Inferring Strings from Position Heaps in Linear Time 119

In the end, we will address the problem where the input trees miss both node
numbers and edge labels but have potential suffix links.

Problem 4 (Inferring source texts from trees with links).
Input: A pair (G,S) of a rooted tree G = (V,E) and a partial map S : V � V .
Output: A string T such that PHS(T) ≡ (V,E, Ψ,S) for some Ψ if such T exists.
Otherwise, “invalid”.

Figure 2 shows examples of instances of Problem 2 and 3 and Fig. 3 shows all
possible answers for the instance of Fig. 2(b).

3 Proposed Algorithms

3.1 Inferring Source Texts from Node-Numbered Edge-Labeled
Trees

Solving Problem 1 is easy. Given an edge-labeled tree (V,E, Ψ) where V =
{0, . . . , n}, let hi be the 0–i path label on G for every i ∈ V . If the input is the
position heap of some string T , it must hold T [i] = hi[1]. Therefore, by DFS on G
remembering the initial letter of each path label, we can construct the candidate
string T in linear time. Then, we can verify whether PH(T) = (V,E, Ψ) in linear
time, since the position heap of T can be constructed in linear time [20].

Theorem 1. Problem 1 is solvable in linear time.

3.2 Inferring Source Texts from Node-Numbered Trees

Figure 2(a) shows an input to an instance of Problem 2. The following procedure
solves Problem 2. We label the outgoing edges of the root with arbitrary but
distinct letters of Σ. Then, we construct an output candidate T following the
method for Problem 1 in the previous subsection.

Theorem 2. Problem 2 is solvable in linear time.

There can be many correct outputs for input unless it is invalid. The number
of possible source texts to output equals the number of how to attach the labels
to edges from the root r. Since the number of letters that appear in T equals
Δ+(r), the number of possible texts is |Σ|!/

(
|Σ|−Δ+(r)

)
!. One can enumerate

such T in output linear time because one can enumerate all Δ+(r)-permutations
of Σ in output linear time [23].

3.3 Inferring Source Texts from Edge-Labeled Trees

Compared to the previous two problems, solving Problem 3 in linear time
requires more elaborate arguments. In this subsection, we assume that two dis-
tinct outgoing edges of a node have different labels, since otherwise obviously the
input cannot be extended to a position heap. We will investigate the structural
properties of position heaps augmented with the suffix links, and see that the
text T will appear as the label of a path with a specific property over PHS(T).

120 K. Kumagai et al.

Fig. 2. Examples of inputs to instances of (a) Problem 2 and (b) Problem 3.

Fig. 3. All possible answers to Problem 3 when the graph in Fig. 2(b) is given.

Lemma 1. Let PHS(T) = (V,E, Ψ,S) with V = {0, . . . , n}. We have S(n) = 0
and i + 1 ∈ D(S(v)) for all i ∈ V \ {0, n}.

Proof. We show the lemma by induction on the depth of node i. When the depth
of node i is 1, S(i) is the root 0, which is an ancestor of every node including
i + 1. Note that the depth of node n is 1 since T ends with a unique letter.
Suppose the depth of node i < n is two or more. In this case, let the 0–i path
label hi be awb for some a, b ∈ Σ and w ∈ Σ∗. Let j be the parent of i, for
which hj = aw. Let is = S(i) and js = S(j), i.e., his = wb and hjs = w. By
the induction hypothesis, we have j + 1 ∈ D(js), i.e., hj+1 = hjsw

′ for some
w′ ∈ Σ∗, which implies that j + 1 ≥ js. Together with the fact that i > j, we
have i+1 > js. Since hi and hi+1 are prefixes of T [i :] and T [i+1 :], respectively,
either hi[2 :] = wb is a prefix of hi+1 or the other way around. The fact hjs = w
and i+1 > js implies that wb is a prefix of hi+1. That is, his is a prefix of hi+1,
which means i + 1 ∈ D(is). ��

Inferring Strings from Position Heaps in Linear Time 121

Fig. 4. The T -trace cycle of PHS(T)
with T = abaababc, which is an answer
to the input graph in Fig. 2(b). Dashed
lines represent suffix links.

Fig. 5. The trace graph of the input
graph in Fig. 2(b). The multiplicities of
doubled edges are 2 and the others are
1. Dashed arrows show suffix links.

Hereafter, by a path/cycle of PHS(T) = (V,E, Ψ,S), we mean a path/cycle of
(V,E ∪ S). We call elements of E ∪ S arcs while reserving the term edges for
elements of E. From Lemma 1, for all i ∈ {1, . . . , n − 1}, PHS(T) has a special
i–(i+1) path which starts with the suffix link followed by zero or some number
of edges. We define a cycle by concatenating all special i–(i + 1) paths.

Definition 1. For PHS(T) = (V,E, Ψ,S), let fi = (i,S(i)), p0 the path from 0
to 1, and pi the path from S(i) to i + 1 for i > 0. The T-trace cycle of PHS(T)
is the sequence p0 · f1 · p1 · · · fn−1 · pn−1 · fn.

Figure 4 shows the T -trace cycle of PHS(T) for T = abaababc. Note that the
T -trace cycle is a cycle in the graph (V,E ∪S), where each element of S appears
exactly once. Since following an edge from E and a suffix link from S increases
and decreases the depth by one, respectively, the total numbers of occurrences
of edges and suffix links in the T -trace cycle should be balanced. That is, the T -
trace cycle contains exactly n occurrences of edges from E. The following lemma
explains why we call the cycle T -trace cycle.

Lemma 2. Let e ∈ E be the i-th occurrence of an edge in the T -trace cycle of
PHS(T). Then Ψ(e) = T [i].

Proof. Suppose the i-th edge e = (u, v) in the T -trace cycle p = p0 ·f1 · · · pn−1 ·fn

occurs in the pj segment. In other words, p can be written as p′ ·(u, v) ·p′′, where
p′ contains j suffix links and i−1 edges. Then, the depth of v is i− j. Moreover,
the edge e is on the path from the root to the node j + 1, whose label is a
prefix of T [j + 1 :]. That is, Ψ(e) is the (i − j)-th letter of T [j + 1 :]. Hence,
Ψ(e) = T [(j + 1) + (i − j) − 1] = T [i]. ��

Lemma 2 allows us to spell T by following the T -trace cycle without referring
to node numbers. To solve Problem 3, we will construct the T -trace cycle of
PHS(T) ≡ (V,E, Ψ,SG) for some T from the input graph G = (V,E, Ψ). For
this end, we first reconstruct the suffix links S.

122 K. Kumagai et al.

Lemma 3. From an edge-labeled rooted tree G = (V,E, Ψ), one can uniquely
construct S in linear time such that PHS(T) ≡ (V,E, Ψ,S) for some T if any
exist.

Proof. We recover the suffix links of nodes from shallower to deeper. Let r be
the root of G. From the definition of suffix links, we have S(v) = r for every
node of depth 1. For e = (u, v) ∈ E with Ψ(e) = c, we assume S(u) has already
been determined. Let aw be the r–u path label where a ∈ Σ and w ∈ Σ∗. The
r–S(u) path label is w and the r–v path label is awc. Therefore, the r–S(v) path
label is wc. Hence, an edge (S(u),S(v)) labeled c exists. So, for the node t ∈ V
such that (S(u), t) ∈ E and Ψ((S(u), t)) = c, we determine S(v) = t. ��

If we fail to give a suffix link to any of the nodes by the procedure described
in the proof of Lemma 3, the answer to Problem 3 is “invalid”.

While the T -trace cycle contains just one occurrence of each suffix link, the
numbers of occurrences of respective edges vary. Actually, one can uniquely deter-
mine the multiplicity of each edge in the T -trace cycle from G.

Lemma 4. Let σ(e) be the number of occurrences of e in the T -trace cycle for
all e ∈ E. Then, it holds that

σ(e) = 1 −
∣
∣{u ∈ V | SG(u) = v}

∣
∣ +

∑

e′∈δ+
G(v)

σ(e′) (1)

where v is the head of e.

Note that δ+G(v) contains no suffix links of PHS(T).

Proof. The T -trace cycle must include the same number of occurrences of arcs
coming into and going out from node v. Since each suffix link occurs just once
in the T -trace cycle, we obtain the lemma. ��

Lemma 5. The system of Eqs. (1) in σ has a unique solution. Moreover, it can
be computed in linear time.

Proof. One can uniquely determine the value of σ(e) inductively on the height
of e ∈ E. Then, the linear-time computation is obvious. ��

Let us call a cycle p of (V,E, Ψ,S) a legitimate cycle if it is the T -trace cycle
for some T . Based on Lemmas 4 and 5, we define the directed multigraph for
which every legitimate cycle is Eulerian.

Definition 2 (Trace graph). The trace graph G(G) of an edge-labeled tree
G = (V,E, Ψ) is a tuple (V,E′,S, Γ) where E′ = {e ∈ E | σ(e) > 0} and
Γ : E′ ∪ S → N1 is defined by

Γ (e) =

{
1 if e ∈ S,

σ(e) if e ∈ E′,

where S and σ are given in Lemmas 3 and 5, respectively.

Inferring Strings from Position Heaps in Linear Time 123

Figure 5 shows the trace graph of Fig. 2(b). The doubled arrows have multi-
plicity 2 and the others have 1. The dashed arrows are suffix links.

From the definition, it is obvious that the T -trace cycle is an r-Eulerian cycle
of G(G) where r is the root of G. However, not every Eulerian cycle of G(G) can
be a legitimate cycle. Recall that in the definition of the T -trace cycle, the suffix
link of every node u proceeds all outgoing edges of u. We say that an Eulerian
cycle p of G(G) respects S if no edges of δ+G(u) occur before (u,S(u)) in p.

Lemma 6. A cycle p is an r-Eulerian cycle respecting S if and only if p is the
T -trace cycle of some T .

Proof. (⇐=) By definition.
(=⇒) Let n = |V | and r be the root of G. Let pi and fi+1 be the sequences of

edges and the suffix links for i = 0, . . . , n − 1 so that p = p0 · f1 · p1 . . . pn−1 · fn.
Since p ends at r and only suffix links point to r, p always ends with a suffix
link. We define the bijection Λ : V → {0, . . . , n} such that Λ(r) = 0 and Λ(s) = i
if fi = (s,S(s)) for all s ∈ V \ {r}. Let si be the node such that Λ(si) = i.

We first show Λ(u) < Λ(v) for all (u, v) ∈ E by induction on Λ(v). Suppose
the claim holds true for all v such that Λ(v) < i. Then, we will show the claim
holds for the edge whose head is si. If |pi| ≥ 1, the edge (sk, si) occurs just before
fi = (si,S(si)) in p. Since p respects S, fk = (sk,S(sk)) occurs before (sk, si).
Thus, we have k < i. If |pi| = 0, fi−1 = (si−1, si). Let the parents of si−1 and
si be sj and sk, respectively. By the induction hypothesis, j < i − 1. By the
definition of S, fj = (sj , sk) ∈ S. Since p respects S, fk = (sk,S(sk)) appears
either before fj or right after fj . That is, k ≤ j + 1 holds. Therefore, k < i.

Now, we define a string T by T [i] = Ψ(ei) where ei is the i-th edge in p for
i = 1, . . . , n, and define hi inductively to be the shortest prefix of T [i :] which is
not in {h0, . . . , hi−1} where h0 = ε. We will show by induction on i that for all
j ≤ i, the s0–sj path label Ψ((s0, sj)) is hj = T [j : xj] where xj = |p0 . . . pj−1|.
This implies (V,E, Ψ) ≡ PH(T) when i = n. Then the constructed S is the
correct suffix links of PH(T) by Lemma 3 and thus p is the T -trace cycle.

Let gi = Ψ((s0, si)). The claim clearly holds for i = 0 by g0 = h0 = ε. Suppose
the claim holds true for i. That is, gi = hi = T [i : xi] where xi = |p0 . . . pi−1|.
Let u = S(si). By the definition of S, we have Ψ((s0, u)) = gi[2 :] = T [i+1 : xi].
By the definition of T , Ψ((u, si+1)) = pi = T [xi +1 : xi + |pi|] = T [xi +1 : xi+1],
where xi+1 = |p0 . . . pi|. By concatenating these two paths, we obtain gi+1 =
Ψ((s0, si+1)) = T [i + 1 : xi+1]. Since the labels of all proper ancestors of si+1

are at most i, all prefixes of gi+1 appears in {g0, . . . , gi} = {h0, . . . , hi}. That is,
gi+1 is the least prefix of T [i + 1 :] not in {h0, . . . , hi}, i.e., gi+1 = hi+1. ��

Therefore, to find a source text T , it is enough to find an r-Eulerian cycle over
(V,E,S, Γ) that respects S where r is the root. We show that this problem can
be solved in linear time on general graphs.

Problem 5 (The ECP (Eulerian cycle with priority edges) problem).
Input: A tuple (G,F, r) of a directed multigraph G = (V,E, Γ), an edge subset
F ⊆ E, and a start node r ∈ V such that |F ∩ δ+(v)| ≤ 1 for all v ∈ V and

124 K. Kumagai et al.

Γ (e) = 1 for all e ∈ F .
Output: An r-Eulerian cycle that respects F if any. Otherwise, “invalid”.

We call edges of F priority edges. Without loss of generality, we may assume a
node has a priority outgoing edge only if it has another outgoing edge. If a node
has only one outgoing edge and it has priority, then one can remove it from F
and make it a non-priority edge. This does not affect possible solutions. In what
follows, we show how to solve the ECP problem in linear time.

First, let us review a linear-time algorithm for constructing an r-Eulerian
cycle. The following procedure gives a justification for the so-called BEST theo-
rem [1,7], which counts the number of Eulerian cycles in a directed multigraph.

1. Construct an arbitrary r-oriented spanning tree H of G,
2. Starting from r, choose an arbitrary unused edge to follow next, except that

an edge in H can be chosen only when it is the only remaining choice, until
we follow all the edges of G.

This process guarantees to find an Eulerian cycle without getting stuck. We
modify this procedure so that the output shall respect F .

1. Construct an arbitrary t-oriented spanning tree H of (V,E \ F),
2. Starting from r, choose an arbitrary unused edge to follow next, except that

– choose an unused priority edge if the current node has any,
– an edge in H can be chosen only when it is the only remaining choice,

until we follow all the edges of G.

Theorem 3. We can compute an answer to the ECP problem in linear time.

One can count the number of r-ECPs by modifying the BEST theorem for-
mula. Letting G′ = (V,E \ F, Γ ′) with the restriction Γ ′ of Γ to E \ F , the
number of r-ECPs is given as

Δ+
G′(r) ·

∏

v∈V

(Δ+
G′(v) − 1)!

∏
e∈δ+

G′ (v)
Γ ′(e)!

·
∑

(V,E′)∈TG′ (r)

∏

e∈E′
Γ ′(e) (2)

where TG′(r) is the set of r-oriented spanning trees of G′. One can compute (2)
in polynomial time by the matrix-tree theorem [22].

Theorem 4. We can calculate the number of r-ECPs in polynomial time.

One can also enumerate r-ECPs. We have already described a linear-time
nondeterministic algorithm to find an r-ECP. Gabow and Myers proposed an
algorithm [15] to enumerate spanning trees in output linear time. By searching
all the possible choices of the procedure, we enumerate all the r-ECPs.

Theorem 5. We can enumerate r-ECPs in linear time per solution.

Corollary 1. Problem 3 is solvable in linear time. Moreover, one can count
and enumerate all possible answers in polynomial time and output linear time,
respectively.

Inferring Strings from Position Heaps in Linear Time 125

Proof. The first claim follows from Theorem 3. By Theorems 4 and 5, it suffices
to show that two distinct legitimate cycles p and p′ over a trace graph give
different source texts. Suppose e and e′ are the first mismatch of p and p′. Since
choosing a suffix link is obligatory, e 	= e′ implies e, e′ ∈ E. Since distinct edges
with the same tail have distinct labels, Ψ(e) 	= Ψ(e′), and thus those two cycles
spell different source texts. ��

3.4 Inferring Source Texts from Trees with Links

Instance trees of Problem 4 miss both node numbers and edge labels but have
possible suffix links. This problem can be solved by combining ideas for solving
Problems 2 and 3. We first label the outgoing edges of the root node with arbi-
trary distinct letters. Then, the other edge labels are uniquely determined by
the definition of suffix links, as long as the input is valid. Now, the algorithm for
Problem 3 can be applied. Similarly one can solve the counting and enumerating
variants of Problem 4.

Theorem 6. We can solve Problem 4 in linear time. Moreover, one can count
the number of output strings in polynomial time, and enumerate all output strings
in linear time per each.

4 Conclusion

We studied four types of reverse engineering problems on Kucherov’s position
heaps [20] and showed that all problems can be solved in linear time. One can
think of an even more restrictive variant, where the input tree has no edge labels,
no node numbers, and no suffix links. In this setting, we need to find “valid” suffix
links, which seems a challenging task.

One can also study the reverse engineering problems of position heaps based
on the definition by Ehrenfeucht et al. [12]. We conjecture that those problems
can be solved by quite similar techniques presented in this paper.

Another interesting direction of future work is to study the reverse engineer-
ing of augmented position heaps [12].

Acknowledgements. The authors deeply appreciate the anonymous reviewers helpful
comments. This work was supported by JSPS KAKENHI Grant Numbers JP19K20208
(DH), JP18H04091 (RY), JP18K11150 (RY), JP19K12098 (RY), JP20H05703 (RY),
and JP21K11745 (AS).

References

1. van Aardenne-Ehrenfest, T., de Bruijn, N.G.: Circuits and trees in oriented linear
graphs. Simon Stevin: Wis- en Natuurkundig Tijdschrift 28, 203–217 (1951)

2. Bannai, H., Inenaga, S., Shinohara, A., Takeda, M.: Inferring strings from graphs
and arrays. In: Proceedings of the MFCS 2003, pp. 208–217 (2003)

126 K. Kumagai et al.

3. Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.:
The smallest automaton recognizing the subwords of a text. Theoret. Comput. Sci.
40, 31–55 (1985)

4. Blumer, A., Blumer, J., Haussler, D., McConnell, R., Ehrenfeucht, A.: Complete
inverted files for efficient text retrieval and analysis. J. ACM 34(3), 578–595 (1987)

5. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20,
762–772 (1977)

6. Cazaux, B., Rivals, E.: Reverse engineering of compact suffix trees and links: a
novel algorithm. J. Discret. Algorithms 28, 9–22 (2014)

7. Charalambides, C.A.: Enumerative Combinatorics, vol. 2. Chapman and
Hall/CRC, Boca Raton (2018)

8. Clément, J., Crochemore, M., Rindone, G.: Reverse engineering prefix tables. In:
Proceedings of the STACS 2009, pp. 289–300 (2009)

9. Duval, J.P., Lecroq, T., Lefebvre, A.: Border array on bounded alphabet. J. Autom.
Lang. Comb. 10(1), 51–60 (2005)

10. Duval, J.P., Lecroq, T., Lefebvre, A.: Efficient validation and construction of border
arrays and validation of string matching automata. RAIRO Theor. Inform. Appl.
43(2), 281–297 (2009)

11. Duval, J.P., Lefebvre, A.: Words over an ordered alphabet and suffix permutations.
RAIRO Theor. Inform. Appl. 36(3), 249–259 (2002)

12. Ehrenfeucht, A., McConnell, R.M., Osheim, N., Woo, S.W.: Position heaps: a sim-
ple and dynamic text indexing data structure. J. Discret. Algorithms 9(1), 100–121
(2011)

13. Fleischner, H.: Eulerian Graphs and Related Topics, vol. 1. Elsevier, Amsterdam
(1990)

14. Franek, F., Lu, W., Ryan, P.J., Smyth, W.F., Sun, Y., Yang, L.: Verifying a border
array in linear time. J. Comb. Math. Comb. Comput. 42, 223–236 (2002)

15. Gabow, H.N., Myers, E.W.: Finding all spanning trees of directed and undirected
graphs. SIAM J. Comput. 7(3), 280–287 (1978)

16. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

17. I, T., Inenaga, S., Bannai, H., Takeda, M.: Inferring strings from suffix trees and
links on a binary alphabet. Discret. Appl. Math. 163, 316–325 (2014)

18. Kärkkäinen, J., Piatkowski, M., Puglisi, S.J.: String inference from longest-
common-prefix array. In: Proceedings of the ICALP 2017, pp. 62:1–62:14 (2017)

19. Knuth, D.E., Morris, J.J.H., Pratt, V.R.: Fast string searching in strings. SIAM J.
Comput. 6(2), 323–350 (1977)

20. Kucherov, G.: On-line construction of position heaps. J. Discret. Algorithms 20,
3–11 (2013)

21. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

22. Moore, C., Mertens, S.: The Nature of Computation. OUP Oxford, Oxford (2011)
23. Sedgewick, R.: Permutation generation methods. ACM Comput. Surv. (CSUR)

9(2), 137–164 (1977)
24. Starikovskaya, T., Vildhøj, H.W.: A suffix tree or not a suffix tree? J. Discret.

Algorithms 32, 14–23 (2015)
25. Weiner, P.: Linear pattern matching algorithm. In: Proceedings of the 14th IEEE

Symposium on Switching and Automata Theory, pp. 1–11 (1973)

Internal Longest Palindrome Queries
in Optimal Time

Kazuki Mitani1, Takuya Mieno2(B), Kazuhisa Seto3, and Takashi Horiyama3

1 Graduate School of Information Science and Technology,
Hokkaido University, Sapporo, Japan

kazukida199911204649@eis.hokudai.ac.jp
2 Department of Computer and Network Engineering,
University of Electro-Communications, Chofu, Japan

tmieno@uec.ac.jp
3 Faculty of Information Science and Technology,

Hokkaido University, Sapporo, Japan
{seto,horiyama}@ist.hokudai.ac.jp

Abstract. Palindromes are strings that read the same forward and
backward. Problems of computing palindromic structures in strings have
been studied for many years with a motivation of their application to
biology. The longest palindrome problem is one of the most important
and classical problems regarding palindromic structures, that is, to com-
pute the longest palindrome appearing in a string T of length n. The
problem can be solved in O(n) time by the famous algorithm of Man-
acher [Journal of the ACM, 1975]. In this paper, we consider the problem
in the internal model. The internal longest palindrome query is, given
a substring T [i..j] of T as a query, to compute the longest palindrome
appearing in T [i..j]. The best known data structure for this problem is
the one proposed by Amir et al. [Algorithmica, 2020], which can answer
any query in O(log n) time. In this paper, we propose a linear-size data
structure that can answer any internal longest palindrome query in con-
stant time. Also, given the input string T , our data structure can be
constructed in O(n) time.

Keywords: String algorithms · Palindromes · Internal queries

1 Introduction

Palindromes are strings that read the same backward as forward. Palindromes
have been widely studied with the motivation of their application to biology [22].
Computing and counting palindromes in a string are fundamental tasks. Man-
acher [26] proposed an O(n)-time algorithm that computes all maximal palin-
dromes in the string of length n. Droubay et al. [16] showed that any string
of length n contains at most n + 1 distinct palindromes (including the empty
string). Then, Groult et al. [21] proposed an O(n)-time algorithm to enumerate

Partially supported by JSPS KAKENHI Grant Numbers JP20H05964.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 127–138, 2023.
https://doi.org/10.1007/978-3-031-27051-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_12&domain=pdf
https://doi.org/10.1007/978-3-031-27051-2_12

128 K. Mitani et al.

the number of distinct palindromes in a string. The above O(n)-time algorithms
are time-optimal since reading the input string of length n takes Ω(n) time.

Regarding the longest palindrome computation, Funakoshi et al. [18] consid-
ered the problem of computing the longest palindromic substring of the string T ′

after a single character insertion, deletion, or substitution is applied to the input
string T of length n. Of course, using O(n) time, we can obtain the longest palin-
dromic substring of T ′ from scratch. However, this idea is naïve and appears to
be inefficient. To avoid such inefficiency, Funakoshi et al. [18] proposed an O(n)-
space data structure that can compute the solution for any editing operation
given as a query in O(log(min{σ, log n})) time where σ is the alphabet size.
Amir et al. [7] considered the dynamic longest palindromic substring problem,
which is an extension of Funakoshi et al.’s problem where up to O(n) sequential
editing operations are allowed. They proposed an algorithm that solves this prob-
lem in O(

√
n log2 n) time per a single character edit w.h.p. with a data structure

of size O(n log n), which can be constructed in O(n log2 n) time. Furthermore,
Amir and Boneh [6] proposed an algorithm running in poly-logarithmic time per
a single character substitution.

Internal queries are queries about substrings of the input string T . Let us
consider a situation where we solve a certain problem for each of k different sub-
strings of T . If we run an O(|w|)-time algorithm from scratch for each substring
w, the total time complexity can be as large as O(kn). To be more efficient, by
performing an appropriate preprocessing on T , we construct some data structure
for the query to output each solution efficiently. Such efficient data structures
for palindromic problems are known. Rubinchik and Shur [30] proposed an algo-
rithm that computes the number of distinct palindromes in a given substring of
an input string of length n. Their algorithm runs in O(log n) time with a data
structure of size O(n log n), which can be constructed in O(n log n) time. Amir
et al. [7] considered a problem of computing the longest palindromic substring in
a given substring of the input string of length n; it is called the internal longest
palindrome query. Their algorithm runs in O(log n) time with a data structure
of size O(n log n), which can be constructed in O(n log2 n) time.

This paper proposes a new algorithm for the internal longest palindrome
query. The algorithm of Amir et al. [7] uses 2-dimensional orthogonal range max-
imum queries [3,4,12]; furthermore, time and space complexities of their algo-
rithm are dominated by this query. Instead of 2-dimensional orthogonal range
maximum queries, by using palindromic trees [31], weighted ancestor queries [19],
and range maximum queries [17], we obtain a time-optimal algorithm.

Theorem 1. Given a string T of length n over a linearly sortable alphabet, we
can construct a data structure of size O(n) in O(n) time that can answer any
internal longest palindrome query in O(1) time.

Here, an alphabet is said to be linearly sortable if any sequence of n charac-
ters from Σ can be sorted in O(n) time. For example, the integer alphabet
{1, 2, . . . , nc} for some constant c is linearly sortable because we can sort a
sequence from the alphabet in linear time by using a radix sort with base n. We

Internal Longest Palindrome Queries in Optimal Time 129

also assume the word-RAM model with word size ω ≥ log n bits for input size
n.

Related Work. Internal queries have been studied on many problems not only
those related to palindromic structures. For instance, Kociumaka et al. [25] con-
sidered the internal pattern matching queries that are ones for computing the
occurrences of a substring U of the input string T in another substring V of
T . Besides, internal queries for string alignment [13,32–34], longest common
prefix [1,5,20,28], and longest common substring [7] have been studied in the
last two decades. See [24] for an overview of internal queries. We also refer to
[2,10,11,14,15,23] and references therein.

2 Preliminaries

2.1 Strings and Palindromes

Let Σ be an alphabet. An element of Σ is called a character, and an element of
Σ∗ is called a string. The empty string ε is the string of length 0. The length of a
string T is denoted by |T |. For each i with 1 ≤ i ≤ |T |, the i-th character of T is
denoted by T [i]. For each i and j with 1 ≤ i, j ≤ |T |, the string T [i]T [i+1] · · · T [j]
is denoted by T [i..j]. For convenience, let T [i′..j′] = ε if i′ > j′. If T = xyz, then
x, y, and z are called a prefix, substring, and suffix of T , respectively. They are
called a proper prefix, a proper substring, and a proper suffix of T if x �= T ,
y �= T , and z �= T , respectively. The string y is called an infix of T if x �= ε and
z �= ε. The reversal of string T is denoted by TR, i.e., TR = T [|T |] · · · T [2]T [1]. A
string T is called a palindrome if T = TR. Note that ε is also a palindrome. For
a palindromic substring T [i..j] of T , the center of T [i..j] is i+j

2 . A palindromic
substring T [i..j] is called a maximal palindrome in T if i = 1, j = |T |, or
T [i − 1] �= T [j + 1]. In what follows, we consider an arbitrary fixed string T of
length n > 0. In this paper, we assume that the alphabet Σ is linearly sortable.
We also assume the word-RAM model with word size ω ≥ log n bits.

Let z be the number of palindromic suffixes of T . Let suf (T) = (s1, s2, . . . , sz)
be the sequence of the lengths of palindromic suffixes of T sorted in increas-
ing order. Further let dif i = si − si−1 for each i with 2 ≤ i ≤ z. For con-
venience, let dif 1 = 0. Then, the sequence (dif 1, . . . , dif z) is monotonically
non-decreasing (Lemma 7 in [27]). Let (suf 1, suf 2, . . . , suf p) be the partition
of suf (T) such that for any two elements si, sj in suf (T), si, sj ∈ suf k for some
k iff dif i = dif j . By definition, each suf k forms an arithmetic progression. It is
known that the number p of arithmetic progressions satisfies p ∈ O(log n) [9,27].
For 1 ≤ k ≤ p and 1 ≤ � ≤ |suf k|, suf k,� denote the �-th term of suf k. Figure 1
shows an example of the above definitions.

2.2 Tools

In this section, we list some data structures used in our algorithm in Sect. 3.

130 K. Mitani et al.

Fig. 1. Palindromic suffixes of T = abababaabababaabababababababaabababaabababa

and the partition (suf 1, . . . , suf 5) of their lengths. Three integers s3 = 3, s4 = 5, and
s5 = 7 are represented by a single arithmetic progression suf 3 since dif 3 = dif 4 =
dif 5 = 2. Since s4 is the second smallest term in suf 3, suf 3,2 = s4.

Palindromic Trees and Series Trees. The palindromic tree of T is a data structure
that represents all distinct palindromes in T [31]. The palindromic tree of T ,
denoted by paltree(T), has d ordinary nodes and one auxiliary node ⊥ where
d ≤ n + 1 is the number of all distinct palindromes in T . Each ordinary node v
corresponds to a palindromic substring of T (including the empty string ε) and
stores its length as weight(v). For the auxiliary node ⊥, we define weight(⊥) =
−1. For convenience, we identify each node with its corresponding palindrome.
For an ordinary node v in paltree(T) and a character c, if nodes v and cvc exist,
then an edge labeled c connects these nodes. The auxiliary node ⊥ has edges to
all nodes corresponding to length-1 palindromes. Each node v in paltree(T) has
a suffix link that points to the longest palindromic proper suffix of v. Let link(v)
be the string pointed to by the suffix link of v. We define link(ε) = link(⊥) = ⊥.
See the Fig. 2(a) for example. For each node v corresponding to a non-empty
palindrome in paltree(T), let δv = |v| − |link(v)| be the difference between the
lengths of v and its longest palindromic proper suffix. For convenience, let δε = 0.
Each node v corresponding to a non-empty palindrome has a series link that
points to the longest palindromic proper suffix u of v such that δu �= δv. Let
serieslink(v) be the string pointed to by the series link of v.

Let LSufPal be an array of length n such that LSufPal[j] stores a pointer to
the node in paltree(T) corresponding to the longest palindromic suffix of T [1..j]
for each 1 ≤ j ≤ n. The definition of LSufPal is identical to the array node[1]
defined in [31], and it was shown that node[1] can be computed in O(n) time.
Hence, LSufPal can be computed in O(n) time. Let LPrePal be an array of length
n such that LPrePal[i] stores a pointer to the node in paltree(T) corresponding
to the longest palindromic prefix of T [i..n] for each 1 ≤ i ≤ n. LPrePal can be
computed in O(n) time as well as LSufPal.

Internal Longest Palindrome Queries in Optimal Time 131

Fig. 2. Illustration for the palindromic tree and the series tree of string T =
abaabaabababbb Since δabaabaaba = |abaabaaba| − |abaaba| = 3, δabaaba = |abaaba| −
|aba| = 3, and δaba = |aba| − |a| = 2, then serieslink(abaabaaba) = aba. abaabaaba

stores the arithmetic progression representing {6, 9}, abaaba stores the arithmetic pro-
gression representing {6} and aba stores the arithmetic progression representing {3}.

Theorem 2 (Proposition 4.10 in [31]). Given a string T over a linearly
sortable alphabet, the palindromic tree of T , including its suffix links and series
links, can be constructed in O(n) time. Also, LSufPal and LPrePal can be com-
puted in O(n) time.

Let us consider the subgraph S of paltree(T) that consists of all ordinary
nodes and reversals of all series links. By the definition, S has no cycle and S
is connected (any node is reachable from the node ε), i.e., it forms a tree. We
call the tree S the series tree of T , and denote it by seriestree(T). By definition
of series links, the set of lengths of palindromic suffixes of v that are longer
than |serieslink(v)| can be represented by an arithmetic progression. Each node
v stores the arithmetic progression, represented by a triple consisting of its first
term, its common difference, and the number of terms. Arithmetic progressions
for all nodes can be computed in linear time by traversing the palindromic tree.
It is known that the length of a path consisting of series links is O(log n) [31].
Hence, the height of seriestree(T) is O(log n). See the Fig. 2(b) for illustration.

Weighted Ancestor Query. A rooted tree whose nodes are associated with integer
weights is called a monotone weighted tree if the weight of every non-root node
is not smaller than the parent’s weight. Given a monotone weighted tree T for
preprocess and a node v and an integer k for query, a weighted ancestor query
(WAQ) returns the ancestor u closest to the root of v such that the weight of u

132 K. Mitani et al.

Fig. 3. Illustration for weighted ancestor query. Integers in nodes denote the weights.
Given a node v5 in a monotone weighted tree T and an integer k = 6 for query, WAQ
returns the node v3 since v3 is an ancestor of v5, weight(v3) > k = 6, and the weight
of the parent v2 of v3 is not greater than k = 6.

is greater than k. Let WAQT (v, k) be the output of the weighted ancestor query
for tree T , node v, and integer k. See Fig. 3 for a concrete example.

It is known that there is an O(N)-space data structure that can answer any
weighted ancestor query in O(log log N) time where N is the number of nodes
in the tree [8]. In general, the query time O(log log N) is known to be optimal
within O(N) space [29]. On the other hand, if the height of the input tree is low
enough, the query time can be improved:

Theorem 3 (Proposition 15 in [19]). Let ω be the word size. Given a mono-
tone weighted tree with N nodes and height O(ω), one can construct an O(N)
space data structure in O(N) time that can answer any weighted ancestor query
in constant time.

In this paper, we use weighted ancestor queries only on the series tree of T
whose height is O(log n) ⊆ O(ω), where ω is the word size, thus we will apply
Theorem 3. Note that we assume the word-RAM model with word size ω ≥ log n
bits.

Range Maximum Query. Given an integer array A of length m for preprocess
and two indices i and j with 1 ≤ i ≤ j ≤ m for query, range maximum query
returns the index of a maximum element in the sub-array A[i..j]. Let RMQA(i, j)
be the output of the range maximum query for array A and indices i, j. In other
words, RMQA(i, j) = arg maxk{A[k] | i ≤ k ≤ j}. The following result is known:

Theorem 4 (Theorem 5.8 in [17]). Let m be the size of the input array
A. There is a data structure of size 2m + o(m) bits that can answer any range
maximum query on A in constant time. The data structure can be constructed
in O(m) time.

Internal Longest Palindrome Queries in Optimal Time 133

3 Internal Longest Palindrome Queries

In this section, we propose an efficient data structure for the internal longest
palindrome query defined as follows:

Internal longest palindrome query� �

Preprocess: A string T of length n.
Query input: Two indices i and j with 1 ≤ i ≤ j ≤ n.
Query output: The longest palindromic substring in T [i..j].

� �

Our data structure requires only O(n) words of space, and can answer any
internal longest palindrome query in constant time. To answer queries efficiently,
we classify all palindromic substrings of T into palindromic prefixes, palindromic
infixes, and palindromic suffixes. First, we compute the longest palindromic pre-
fix and the longest palindromic suffix of T [i..j]. Second, we compute a palin-
dromic infix that is a candidate for the answer. As we will discuss in a later
subsection, this candidate may not be the longest palindromic infix of T [i..j].
Finally, we compare the three above palindromes and output the longest one.

3.1 Palindromic Suffixes and Prefixes

First, we compute the longest palindromic suffix of T [i..j]. In the preprocessing,
we build seriestree(T) and a data structure for the weighted ancestor queries on
seriestree(T), and compute LSufPal as well. The query algorithm consists of three
steps:

Step 1: Obtain the longest palindromic suffix of T [1..j].
We obtain the longest palindromic suffix v of T [1..j] from LSufPal[j]. If |v| ≤
|T [i..j]|, then v is the longest palindromic suffix of T [i..j]. Then we return
T [j −|v|+1..j] and the algorithm terminates. Otherwise, we continue to Step
2.

Step 2: Determine the group to which the desired length belongs.
Let � be the length of the longest palindromic suffix of T [i..j] we want to
know. We use the longest palindromic suffix v of T [1..j] obtained in Step
1. First, we find the shortest palindrome u that is an ancestor of v in
seriestree(T) and has length at least |T [i..j]|. Such a palindrome (equivalently
the node) u can be found by weighted ancestor query on the series tree, i.e.,
u = WAQseriestree(T)(v, j − i). Then |u| is an upper bound of �. Let suf α be the
group such that |u| ∈ suf α. If the smallest element suf α,1 in suf α is at most
|T [i..j]|, the length � belongs to the same group suf α as |u|. Otherwise, the
length � belongs to the previous group suf α−1.

Step 3: Calculate the desired length.
Let suf β be the group to which the length � belongs, which is determined in
Step 2. Since suf β is an arithmetic progression, i.e. suf β,γ = suf β,1 + (γ −
1)dif β for 1 ≤ γ ≤ |suf β |, the desired length � can be computed by using a
constant number of arithmetic operations. Then we return T [j − � + 1..j].

134 K. Mitani et al.

Fig. 4. Illustration for how to compute the longest palindromic suffix of T [i..j], when
T [1..j] = abababaabababaabababababababaabababaabababa. The graph on the right
hand depicts a part of the series tree of a string T , and the lengths of palindromes
are written inside the nodes. In Step 1, we obtain the length suf 5,1 of the longest
palindromic suffix v1 of T [1..j]. In Step 2, we find suf 3,3 by WAQseriestree(T)(v1, j − i).
Since suf 3,1 > j − i + 1, the desired length belongs to suf 3. In Step 3, since suf 3 is
an arithmetic progression, we can find that suf 3,1 is the longest palindromic suffix of
T [i..j] in constant time.

See Fig. 4 for illustration. Now, we show the correctness of the algorithm and
analyze time and space complexities.

Lemma 1. We can compute the longest palindromic suffix and prefix of T [i..j]
in O(1) time with a data structure of size O(n) that can be constructed in O(n)
time.

Proof. In the preprocessing, we build seriestree(T), LSufPal, LPrePal and a data
structure of weighted ancestor query on seriestree(T) in O(n) time (Theorem 2
and 3). Recall that since the height of seriestree(T) is O(log n) ⊆ O(ω), we
can apply Theorem 3 to the series tree. Again, by Theorem 2 and 3, the space
complexity is O(n) words of space.

In what follows, let � be the length of the longest palindromic suffix of T [i..j].
In Step 1, we can obtain the longest palindromic suffix v of T [1..j] by just
referring to LSufPal[j]. If |v| ≤ |T [i..j]|, v is also the longest palindromic suffix of
T [i..j], i.e., � = |v|. Otherwise, v is not a substring of T [i..j]. In Step 2, we first
query WAQseriestree(T)(v, j−i). The resulting node u corresponds to a palindromic
suffix of T [1..j], which is longer than |T [i..j]|. Let suf α and suf β be the groups
to which |u| and � belong to, respectively. If the smallest element suf α,1 in suf α

is at most j − i + 1, then the desired length � satisfies suf α,1 ≤ � ≤ |u|. Namely,

Internal Longest Palindrome Queries in Optimal Time 135

β = α. Otherwise, if s is greater than j − i + 1, � is not in suf α but is in suf α−x

for some x > 1. If we assume that � belong to suf α−y for some y ≥ 2, the length
of serieslink(u) belonging to suf α−1 is longer than T [i..j]. However, it contradicts
that u is the answer of WAQseriestree(T)(v, j−i). Hence, if s is greater than j−i+1,
then the length � is in suf α−1. Namely, β = α − 1. In Step 3, we can compute
� in constant time since we know the arithmetic progression suf β to which �
belongs. More specifically, � is the largest element that is in suf β and is at most
j − i + 1.

Throughout the query algorithm, all operations, including WAQ and opera-
tions on arithmetic progressions, can be done in constant time. Thus the query
algorithm runs in constant time. 	

We can compute the longest palindromic prefix of T [i..j] in a symmetric way
using LPrePal instead of LSufPal.

3.2 Palindromic Infixes

Next, we compute the longest palindromic infix except for ones that are obviously
shorter than the longest palindromic prefix or the longest palindromic suffix
of the query substring. We show that to find the desired palindromic infix, it
suffices to consider maximal palindromes whose centers are between the centers
of the longest palindromic prefix and the longest palindromic suffix of T [i..j].
Let t be the ending position of the longest palindromic prefix and s be the
starting position of the longest palindromic suffix. Namely, T [i..t] is the longest
palindromic prefix and T [s..j] is the longest palindromic suffix of T [i..j].

Lemma 2. Let w be a palindromic infix of T [i..j] and c be the center of w. If
c < i+t

2 or c > s+j
2 , w cannot be the longest palindromic substring of T [i..j].

Proof. Palindrome w is a proper substring of T [i..t] (resp. T [s..j]) if c < i+t
2

(resp. c > s+j
2). Then, w is shorter than T [i..t] or T [s..j] (see also Fig. 5). 	

Then, we consider palindromes whose centers are between the centers of the
longest palindromic prefix and the longest palindromic suffix of T [i..j].

Lemma 3. Let w be a palindromic substring of T and c be the center of w. If
i+t
2 < c < s+j

2 , then w is a palindromic infix of T [i..j].

Proof. Let w = T [p..q]. Then, c = p+q
2 . To prove that w is a palindromic infix,

we show that p > i and q < j. For the sake of contradiction, we assume p ≤ i.
If i+t

2 < c ≤ i+j
2 , there exists a palindromic prefix w1 whose center is c. This

contradicts that T [i..t] is the longest palindromic prefix of T [i..j] since T [i..t]
is a substring of w1 (see also Fig. 6). Otherwise, if i+j

2 < c < s+j
2 , there exists

a palindromic suffix whose w2 center is c. This contradicts that T [s..j] is the
longest palindromic suffix of T [i..j] since T [i..t] is a substring of w2 (see also
Fig. 6). Therefore, p > i. We can show q < j in a symmetric way. 	

136 K. Mitani et al.

Fig. 5. Illustration for Lemma 2. Two-way arrows denote palindromic substrings of
T . T [i..t] is the longest palindromic prefix of T [i..j]. A palindrome whose center c is
less than i+t

2
is either (a) not a substring of T [i..j] or (b) shorter than the longest

palindromic prefix of T [i..j] as shown in this figure.

Fig. 6. Illustration for contradictions in the proof of Lemma 3. T [i..t] is the longest
palindromic prefix and T [s..j] is the longest palindromic suffix of T [i..j]. If a palindrome
as (a) exists, there exists a palindromic prefix (a’) of T [i..j] that is longer than T [i..t], a
contradiction. Similarly, the existence of a palindrome as (b) leads to a contradiction.

By Lemmas 2 and 3, when a palindromic infix w of T [i..j] is the longest
palindromic substring of T [i..j], the center of w must be located between i+t

2

and s+j
2 . Furthermore, w is a maximal palindrome in T . In other words, w is

the longest maximal palindrome in T whose center c satisfies i+t
2 < c < s+j

2 . To
find such a (maximal) palindrome, we build a succinct RMQ data structure on
the length-(2n − 1) array MP that stores the lengths of maximal palindromes
in T . For each integer and half-integer c ∈ {1, 1.5, . . . , n − 0.5, n}, MP[2c − 1]
stores the length of the maximal palindrome whose center is c. By doing so,
when the indices t and s are given, we can find a candidate for the longest
palindromic substring which is an infix of T [i..j] in constant time. More precisely,
the length of the candidate is MP[RMQMP(i + t, s + j − 2)] since the center c
of the candidate satisfies i+t

2 < c < s+j
2 (i + t − 1 < 2c − 1 < s + j − 1).

By Manacher’s algorithm [26], MP can be constructed in O(n) time. Then, we
obtain the following lemma.

Internal Longest Palindrome Queries in Optimal Time 137

Lemma 4. Given the longest palindromic prefix T [i..t] and the longest palin-
dromic suffix T [s..j] of T [i..j], we can compute the longest palindromic infix of
T [i..j] whose centers are between the centers of T [i..t] and T [s..j] in O(1) time
with a data structure of size O(n) that can be constructed in O(n) time.

By Lemmas 1 and 4, we have shown our main theorem:

Theorem 1. Given a string T of length n over a linearly sortable alphabet, we
can construct a data structure of size O(n) in O(n) time that can answer any
internal longest palindrome query in O(1) time.

References

1. Abedin, P., et al.: A linear-space data structure for range-LCP queries in poly-
logarithmic time. Theor. Comput. Sci. 822, 15–22 (2020)

2. Abedin, P., Ganguly, A., Pissis, S.P., Thankachan, S.V.: Efficient data structures
for range shortest unique substring queries. Algorithms 13(11), 1–9 (2020)

3. Agarwal, P.K.: Range Searching. In: Handbook of Discrete and Computational
Geometry, pp. 1057–1092. Chapman and Hall/CRC, Boca Raton (2017)

4. Alstrup, S., Brodal, G.S., Rauhe, T.: New data structures for orthogonal range
searching. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science, p. 198. IEEE Computer Society (2000)

5. Amir, A., Apostolico, A., Landau, G.M., Levy, A., Lewenstein, M., Porat, E.:
Range LCP. J. Comput. Syst. Sci. 80(7), 1245–1253 (2014)

6. Amir, A., Boneh, I.: Dynamic palindrome detection. arXiv preprint
arXiv:1906.09732 (2019)

7. Amir, A., Charalampopoulos, P., Pissis, S.P., Radoszewski, J.: Dynamic and inter-
nal longest common substring. Algorithmica 82(12), 3707–3743 (2020)

8. Amir, A., Landau, G.M., Lewenstein, M., Sokol, D.: Dynamic text and static pat-
tern matching. ACM Trans. Algorithms 3(2), 19 (2007)

9. Apostolico, A., Breslauer, D., Galil, Z.: Parallel detection of all palindromes in a
string. Theor. Comput. Sci. 141(1), 163–173 (1995)

10. Babenko, M., Gawrychowski, P., Kociumaka, T., Kolesnichenko, I., Starikovskaya,
T.: Computing minimal and maximal suffixes of a substring. Theor. Comput. Sci.
638, 112–121 (2016)

11. Badkobeh, G., Charalampopoulos, P., Kosolobov, D., Pissis, S.P.: Internal shortest
absent word queries in constant time and linear space. Theor. Comput. Sci. 922,
271–282 (2022)

12. Bentley, J.L.: Multidimensional divide-and-conquer. Commun. ACM 23(4), 214–
229 (1980)

13. Charalampopoulos, P., Gawrychowski, P., Mozes, S., Weimann, O.: An almost
optimal edit distance oracle. In: 48th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2021). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik (2021)

14. Charalampopoulos, P., Kociumaka, T., Mohamed, M., Radoszewski, J., Rytter, W.,
Waleń, T.: Internal dictionary matching. Algorithmica 83(7), 2142–2169 (2021)

15. Charalampopoulos, P., Kociumaka, T., Wellnitz, P.: Faster approximate pattern
matching: a unified approach. In: 2020 IEEE 61st Annual Symposium on Founda-
tions of Computer Science (FOCS), pp. 978–989. IEEE (2020)

http://arxiv.org/abs/1906.09732

138 K. Mitani et al.

16. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of
de Luca and Rauzy. Theor. Comput. Sci. 255(1–2), 539–553 (2001)

17. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

18. Funakoshi, M., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Comput-
ing longest palindromic substring after single-character or block-wise edits. Theor.
Comput. Sci. 859, 116–133 (2021)

19. Ganardi, M.: Compression by contracting straight-line programs. In: Mutzel, P.,
Pagh, R., Herman, G. (eds.) 29th Annual European Symposium on Algorithms
(ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 204,
pp. 45:1–45:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

20. Ganguly, A., Patil, M., Shah, R., Thankachan, S.V.: A linear space data structure
for range LCP queries. Fund. Inform. 163(3), 245–251 (2018)

21. Groult, R., Prieur, É., Richomme, G.: Counting distinct palindromes in a word in
linear time. Inf. Process. Lett. 110(20), 908–912 (2010)

22. Gusfield, D.: Algorithms on stings, trees, and sequences: computer science and
computational biology. ACM SIGACT News 28(4), 41–60 (1997)

23. Kociumaka, T.: Minimal suffix and rotation of a substring in optimal time. In: 27th
Annual Symposium on Combinatorial Pattern Matching (CPM 2016), vol. 54, pp.
28:1–28:12. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

24. Kociumaka, T.: Efficient data structures for internal queries in texts. Ph.D. thesis,
University of Warsaw (2018)

25. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Internal pattern matching
queries in a text and applications. In: Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 532–551. SIAM (2014)

26. Manacher, G.: A new linear-time “on-line” algorithm for finding the smallest initial
palindrome of a string. J. ACM (JACM) 22(3), 346–351 (1975)

27. Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto,
K.: Efficient algorithms to compute compressed longest common substrings and
compressed palindromes. Theor. Comput. Sci. 410(8–10), 900–913 (2009)

28. Matsuda, K., Sadakane, K., Starikovskaya, T., Tateshita, M.: Compressed orthogo-
nal search on suffix arrays with applications to range LCP. In: 31st Annual Sympo-
sium on Combinatorial Pattern Matching (CPM 2020). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik (2020)

29. Pătraşcu, M., Thorup, M.: Time-space trade-offs for predecessor search. In: Pro-
ceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing,
pp. 232–240 (2006)

30. Rubinchik, M., Shur, A.M.: Counting palindromes in substrings. In: Fici, G.,
Sciortino, M., Venturini, R. (eds.) SPIRE 2017. LNCS, vol. 10508, pp. 290–303.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67428-5_25

31. Rubinchik, M., Shur, A.M.: Eertree: an efficient data structure for processing palin-
dromes in strings. Eur. J. Comb. 68, 249–265 (2018)

32. Sakai, Y.: A substring-substring LCS data structure. Theor. Comput. Sci. 753,
16–34 (2019)

33. Sakai, Y.: A data structure for substring-substring LCS length queries. Theor.
Comput. Sci. 911, 41–54 (2022)

34. Tiskin, A.: Semi-local string comparison: algorithmic techniques and applications.
Math. Comput. Sci. 1(4), 571–603 (2008)

https://doi.org/10.1007/978-3-319-67428-5_25

Finding the Cyclic Covers of a String

Roberto Grossi1 , Costas S. Iliopoulos2 , Jesper Jansson3 , Zara Lim2(B) ,
Wing-Kin Sung4 , and Wiktor Zuba5

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
roberto.grossi@unipi.it

2 Department of Informatics, King’s College London, London, UK
{costas.iliopoulos,zara.lim}@kcl.ac.uk

3 Graduate School of Informatics, Kyoto University, Kyoto, Japan
jj@i.kyoto-u.ac.jp

4 Department of Computer Science, National University of Singapore,
Singapore, Singapore

ksung@comp.nus.edu.sg
5 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

wiktor.zuba@cwi.nl

Abstract. We introduce the concept of cyclic covers, which generalizes
the classical notion of covers in strings. Given any nonempty string X of
length n, a factor W of X is called a cyclic cover if every position of X
belongs to an occurrence of a cyclic shift of W . Two cyclic covers are
distinct if one is not a cyclic shift of the other. The cyclic cover problem
requires finding all distinct cyclic covers of X. We present an algorithm
that solves the cyclic cover problem in O(n log n) time. This is based
on finding a well-structured set of standard occurrences of a constant
number of factors of a cyclic cover candidate W , computing the regions
of X covered by cyclic shifts of W , extending those factors, and taking
the union of the results.

Keywords: String · Cyclic string · Cover · Periodicity · Regularities

1 Introduction

String periodicities and repetitions have been thoroughly studied in many fields
such as string combinatorics, pattern matching and automata theory [25,26]
which can be linked to its importance across various applications, in addition
to its theoretical aspects. Detection algorithms and data structures for repeated
patterns and regularities span across several fields of computer science [13,18],
for example computational biology, pattern matching, data compression, and
randomness testing.

Covers of strings have also been extensively studied in similar fields of combi-
natorics. The concept originates from quasiperiodicity, a generalization of peri-
odicity which also allows those identical strings to overlap [5]. A factor W of a
nonempty string X is called a cover if every position of X belongs to some occur-
rence of W in X. Furthermore, a cover W must also be a border (i.e. appearing
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 139–150, 2023.
https://doi.org/10.1007/978-3-031-27051-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_13&domain=pdf
http://orcid.org/0000-0002-7985-4222
http://orcid.org/0000-0003-3909-0077
http://orcid.org/0000-0001-6859-8932
http://orcid.org/0000-0001-6528-6060
http://orcid.org/0000-0001-7806-7086
http://orcid.org/0000-0002-1988-3507
https://doi.org/10.1007/978-3-031-27051-2_13

140 R. Grossi et al.

as both a prefix and a suffix) of the string X. Moore and Smyth [30] developed a
linear-time algorithm which computes all covers of a string. Apostolico et al. [6]
developed a linear-time algorithm for finding the shortest cover, which Bres-
lauer developed into an on-line algorithm [8]. Li and Smyth [24] produced an
on-line algorithm for the all-covers problem. Related string factorization prob-
lems include antiperiods [2] and anticovers [1], in addition to approximate [3]
and partial [22] covers and seeds [21]. Other combinatorial covering problems
consider applications to graphs [11,31].

Cyclic strings have been commonly studied throughout various computer
science and mathematical fields, mostly occurring in the field of combinatorics.
A cyclic string is a string that does not have an initial or terminal position;
instead, the two ends of the string are joined together, and the string can be
viewed as a necklace of letters. A cyclic string of length n can be also viewed
as a traditional linear string, which has the left- and right-most letters wrapped
around and stuck together. Under this notion, the same cyclic string can be seen
as n linear strings, which would all be considered equivalent. One of the earliest
studies of cyclic strings occurs in Booth’s linear time algorithm [7] for computing
the lexicographically smallest cyclic factor of a string. Other closely related works
reference terms such as ‘Lyndon factorization’ and ’canonization’ [4,10,14,16,27,
28,33]. Some recent advances on cyclic strings can be found in [12]. Aside from
combinatorics, cyclic strings have applications within Computational Biology,
such as detecting DNA viruses with circular structures [34,35].

We introduce the concept of a cyclic cover of a nonempty string X of
length n = |X|, which generalizes the notion of a cover under cyclic shifts.
A factor W of X is called a cyclic cover if every position of X belongs to an
occurrence of a cyclic shift of W . Figure 1 displays an example where X has a
cyclic cover where factors have length � = 3, 4, 7, 10, 13, 16 (cyclic occurrences of
the shortest two are shown on the figure).

Fig. 1. String X = aabbaabaabaabaab has a cyclic cover of length 3, as X[0 . . 2],
X[3 . . 5], X[4 . . 6], X[5 . . 7], X[6 . . 8], X[7 . . 9], X[8 . . 10], X[9 . . 11], X[10 . . 12],
X[11 . . 13], X[12 . . 14], X[13 . . 15] are all cyclic shifts of the same factor, and cover
all positions of X. Similarly X has a cyclic cover of length 4.

Finding the Cyclic Covers of a String 141

Looking at the example, we observe that if two distinct factors W and Z, of
the same length �, are cyclic covers of X, then W must be a cyclic shift of Z,
and vice versa. For this, we say that two cyclic covers are distinct if one is not
the cyclic shift of the other (in other words, they must have different length as
factors of X). Moreover, if a cyclic cover of length � exists, then the prefix of X
of length � is also a cyclic cover and, consequently, is the representative of all
factors of length � that are cyclic covers of X (as the latter ones are all cyclic
shifts of the prefix). Because of this, it is enough to give � as output.

Our Contribution. We introduce the following cyclic cover problem: given
an input string X of length n, find all the distinct cyclic covers of X, namely,
the prefixes of X that are cyclic covers (actually, their lengths �). Under this
definition, we have at most n distinct cyclic covers whereas there might be Θ(n2)
distinct factors that are cyclic covers.1 In the example of Fig. 1, the output of
the cyclic cover problem is � = 3, 4, 7, 10, 13, 16.

We show that for a string of length n, the cyclic cover problem can be solved
in O(n log n) time. We assume, that the input string is over a polynomially
bounded integer alphabet, and the word RAM model of computation with word
size O(log n) (both restrictions follow from the restrictions of cited and used
data structures).

The rest of the paper is organized as follows. In Sect. 2, we present the prelim-
inary concepts. Section 3 shows our findings for cyclic covers. Finally, we present
concluding remarks in Sect. 4.

2 Preliminaries

2.1 Basic Definitions

A string X of length n = |X| is a sequence of n letters over an integer alpha-
bet Σ = {0, . . . , nO(1)}. The letter at position i, for 0 ≤ i < n, is denoted as
X[i]. A positive integer p < n is called a period of X if X[i] = X[i + p] for all
i = 0, . . . , n − p − 1. By X[i . . j], we denote a factor of X equal to X[i] · · · X[j],
whereby if i > j, then it is the empty string. The factor X[i . . j] is a prefix of X
if i = 0, and a suffix of X if j = n−1. If X[0 . . b−1] = X[n−b . . n−1], the factor
X[0 . . b−1] is called a border of X. A factor W is periodic if its smallest period is
at most |W |/2, and W is highly-periodic if its smallest period is at most |W |/4.
An important property used throughout the paper is Fine and Wilf’s periodicity
lemma.

Lemma 1 ([15]). If p, q are periods of a string X of length |X| ≥ p+q−gcd(p, q),
then gcd(p, q) is also a period of X.

A factor U is a cyclic shift of a factor W if W = AB and U = BA for some
strings A and B. In that case, we also say that U is a d-cyclic shift of W where

1 For example, for X = akbak and k > 1, all factors aibaj are cyclic covers of X, for
i, j ≥ 0 such that i + j ≥ k. They are represented by the prefixes of length i + j + 1.

142 R. Grossi et al.

d = |A|. (Clearly, d = 0 implies that U = W and so there is no cyclic shift.) A
factor W is called a cyclic cover of X if, for every position i (0 ≤ i < n), there
exists a factor X[l . . l+ |W |−1] that is a cyclic shift of W and contains position i
(i.e. 0 ≤ l ≤ i ≤ l + |W | − 1 < n). Two cyclic covers are distinct if they are not
cyclic shifts of one another. As observed in the introduction, the distinct cyclic
covers are represented by (the lengths of) the prefixes of X.

We denote by lcp(X[i . . j],X[k . . l]) the length of the longest common prefix
of factors X[i . . j] and X[k . . l]. Also, we denote by lcpr(X[i . . j],X[k . . l]) the
length of the longest common suffix of X[i . . j] and X[k . . l]. Both lcp and lcpr

can be computed in O(1) time after an O(n)-time preprocessing of X [19].

2.2 The IPM Data Structure

A useful data structure called the Internal Pattern Matching (IPM) data struc-
ture was introduced in [23]. The following three lemmas summarize some of its
properties. Let us denote by occ(W,Z) the (possibly empty) list of positions j
such that W = Z[j . . j + |W | − 1].

Lemma 2 ([20,23]). Given a string X of length n, the IPM data structure of
X after O(n) time and space construction computes occ(A,B) for any factors
A and B of X where |A| ≤ |B| ≤ 2|A|, in O(1) time. Furthermore, the list of
positions is presented as an arithmetic progression.

Lemma 3 ([20,23]). Given a string X of length n, the IPM data structure of
X after O(n) time and space construction determines if A is a cyclic shift of B
in O(1) time, for any two factors A and B of X.

Lemma 4 ([23]). Given a string X of length n, the 2-Period data structure of
X after O(n) time and space construction determines if A is periodic and if that
is the case computes its shortest period in O(1) time for any factor A of X.

In [23] the structures of Lemmas 2 and 3 are constructed in O(n) expected
time. These constructions were made worst-case in [20]. The structure of Lemma
4 was constructed in O(n) worst-case time already in [23].

3 Cyclic Covers

Consider a string X[0 . . n − 1] and its length-� factor W [0 . . � − 1]. A straight-
forward approach to verify if X is cyclically covered by W leads to a quadratic
algorithm, as follows: we apply Lemma 3 to test whether X[i . . i+�−1] is a cyclic
shift of X[0 . . � − 1], for all i = 0, 1, . . . , n − �. If the cyclic shifts of X[0 . . � − 1]
cover all positions of X, we report X[0 . . � − 1] as a cyclic cover of X[0 . . n − 1].
Such verification takes O(n − �) time. The cyclic cover problem can be solved
by verifying all � ∈ {1, . . . , n − 1}, which takes O(n2) time in total.

Below, we show that this problem can be solved in O(n log n) time. Before
we detail the algorithm, we first outline 3 techniques:

Finding the Cyclic Covers of a String 143

1. Section 3.1 gives a function FindFixedCover(W,X, i, j) that verifies if X is
cyclically covered by W with the constraint that W [i] aligns to X[j].

2. Based on the function FindFixedCover(W,X, i, j), Sect. 3.2 gives an O(n/�)-
time algorithm that finds regions in X covered by W when W is highly-
periodic.

3. Based on the function FindFixedCover(W,X, i, j), Sect. 3.3 gives an O(n/�)-
time algorithm that finds regions in X covered by W when W is not highly-
periodic.

3.1 Find Regions in X Covered by Cyclic Shifts of W
with the Constraint that W [i] Aligns to X[j]

Consider a string X[0 . . n − 1] and its length-� factor W [0 . . � − 1]. For any
j′ ∈ [j − � + 1 . . j], a length-� factor X[j′ . . j′ + � − 1] of X is called a cyclic
shift of W [0 . . � − 1] with W [i] aligned to X[j] if the i-cyclic shift of W equals
the (j − j′)-cyclic shift of X[j′ . . j′ + � − 1]. The lemma below computes the
region X[α . . β] in X that is cyclically covered by W with the constraint that
W [i] aligns to X[j].

Lemma 5. Consider a string X[0 . . n − 1] and its length-� factor W [0 . . � − 1].
Let �1 = lcp(W [i . . �−1]W [0 . . i−1],X[j . . n−1]) and �2 = lcpr(W [i + 1 . . � − 1]
W [0 . . i],X[0 . . j]) − 1. If �1 + �2 ≥ �, then X[j − �2 . . j + �1 − 1] is cyclically
covered by W with the constraint that W [i] aligns to X[j]; otherwise, such a
cyclic cover does not exist.

Proof. Let U = W [i . . � − 1]W [0 . . i − 1]. Observe that X[j − �2 . . j + �1 − 1] =
U2[� − �2 . . � + �1 − 1] from the definitions of �1 and �2. Every factor of length �
of this string is a cyclic shift of U , hence also of W , thus it is cyclically covered
by W , with the constraint that U [0] aligns to X[j] (hence W [i] aligns to X[j]).

If �1+�2 < �, then X does not contain any cyclic shift of U , with U [0] aligned
to X[j] since U [� − �2 − 1] �= X[j − �2 − 1] and U [�1] �= X[j + �1], and any such
cyclic shift (as a factor of X) would contain one of those two positions (those
positions are less then � positions apart, and position j is in between them). ��

For example, given the word X = babbbababb, the factor W = bbab and the
constraint that X[3] aligns with W [1], X[1 . . 6] is is cyclically covered by W (see
Fig. 2).

W = bbab and X = abbbab where W [1] aligns with X[3]. Thus W cyclically
covers the region X[1 . . 6].

Based on the above lemma, we denote FindFixedCover(W,X, i, j) as the
function that returns the region X[α . . β] that is cyclically covered by W with
the constraint that W [i] aligns to X[j]. If no such cyclic cover exists, the function
returns an empty region.

Lemma 6. After linear time preprocessing, we can compute
FindFixedCover(W,X, i, j) for any factor W of X in O(1) time.

144 R. Grossi et al.

Fig. 2. Given X = babbbababb, W = bbab and the constraint that X[3] aligns with
W [1], the factor X[1 . . 6] is cyclically covered by W . The lengths �1 and �2 denote
lcp(W [1 . . 3]W [0], X[4 . . 9]) and lcpr(W [2 . . 3]W [0 . . 1], X[0 . . 4]) − 1, respectively.

Proof. We first build the lcp data structures for X and for its reverse in linear
time and then use them to compute �1 and �2. Even though W [i . . �−1]W [0 . . i−
1] does not need to occur in X in such a case, we simply compute �1 in two steps.
If lcp(W [i . . � − 1],X[j . . n − 1]) < � − i, then it represents the sought value.
Otherwise �1 = (� − i) + lcp(W [0 . . i − 1],X[j + � − i . . n − 1]). Note that �2 is
computed analogously. ��

3.2 Finding Regions in X that are Cyclically Covered
by a Highly-Periodic Factor W

Lemma 8 describes how to find regions that are cyclically covered by W [0 . . �−1]
if W is of period q where q ≤ �/4. To show it, we make use of Lemma 7 from
[29] (see also [9,17]) to represent occurrences in a convenient way. Below, we
let (j1, q,m) denote the arithmetic progression j1, j2, . . . , jm with js+1 = js + q,
where 1 ≤ s < m.

Lemma 7 ([29], Lemma 3.1). Suppose the minimum period of W [0 . . � − 1]
is q. For a length-2� factor Y , occ(W,Y) equals a single arithmetic progression
(j1, q′,m′). If m′ ≥ 3, then q′ = q.

Lemma 8. Suppose the smallest period of W [0 . . � − 1] is q ≤ �/4. We can find
which parts of X[i . . i + � − 1] are cyclically covered by W in O(1) time.

Proof. Any cyclic shift of W that covers any position of X[i . . i + � − 1] must
be fully contained inside X[i − � . . i + 2� − 1], hence we are going to restrict our
search to that region.

Let Y = W [0 . . ��/2q	q − 1], which is W [0 . . q − 1]��/2q�. Note that �/3 <
|Y | ≤ �/2, and also |Y | ≥ 2q, hence q is its smallest period (a smaller period
would imply a smaller period of X by Lemma 1). Any cyclic shift of W must
contain Y as a factor.

We first find the occurrences of Y in X[i− � . . i+2�−1]. By Lemma 2, these
occurrences can be found in O(1) time by computing occ(Y,X[i′ . . i′ +2|Y |]) for

Finding the Cyclic Covers of a String 145

i′ ∈ {i − � + h|Y | | h = 0, 1, 2, . . . �3�/|Y |	}. Since 3�/|Y | < 9 we have at most
9 arithmetic progressions with period q (by Lemma 7) plus up to 18 standalone
occurrences.

For each standalone occurrence starting at position j we can simply run
FindFixedCover(W,X, 0, j) separately. Processing of the arithmetic progres-
sions is a little more complex however.

To see how to do it efficiently, we first prove a crucial claim. For
an arithmetic progression (j1, q,m) and 1 ≤ s ≤ m, let X[αs . . βs] =
FindFixedCover(W,X, 0, js). We claim that the following inequalities hold:
βs ≤ βs+1 and αs ≤ αs+1. The former inequality βs = js+lcp(W,X[js . . n−1])−
1 ≤ js+lcp(W [0 . . q−1]W,X[js . . n−1])−1 = js+q+lcp(W,X[js+1 . . n−1])−1 =
βs+1 is simple to see as W is a prefix of W [0 . . q − 1]W . For the latter inequality
αs ≤ αs+1, notice that if |W | is a multiple of q, then we can simply apply a
proof symmetric to the one for β’s. Otherwise αs+1 < αs ≤ js for s ≥ 1 would
imply a non-trivial border of W of length q, which in turn would imply that
W − |q| is a period of W . By Lemma 1, we have gcd(q, |W | − q) < q, which is a
contradiction. This completes the proof of the claim.

Due to this claim, the region obtained for this sequence is X[α1 . . βm], and
only two calls of FindFixedCover are needed. ��

In conclusion, as factors X[k� . . (k + 1)� − 1] for k ∈ [0, �n
� 	 − 1] and

X[n − � . . n − 1] contain all positions of X, we have the following corollary.

Corollary 1. After an O(n) time preprocessing of the string X[0 . . n − 1], for
any highly-periodic factor W [0 . . � − 1], we can compute the regions in X which
are cyclically covered by W in O(n/�) time.

3.3 Finding Regions in X that Are Cyclically Covered
by a Non-highly-periodic Factor W

The lemma below states that factors that are not highly-periodic do not occur
frequently in X, and follows directly from the definition of a period.

Lemma 9. Consider a string X[0 . . n − 1] and a non-highly-periodic factor
W [0 . . � − 1]. Any two occurrences of W in X are at distance at least �/4.

Let W ′ be some factor of W . If a cyclic shift of W contains W ′, we call it a
W ′-containing cyclic shift of W .

Consider W [0 . . � − 1] = WlWr where |Wl| = ��/2	. The following lemma
gives a way to find all regions in X covered by cyclic shifts of W .

Lemma 10. Consider W [0 . . �−1] = WlWr where |Wl| = ��/2	. For a string X,
let A be the set of all regions in X covered by Wl-containing cyclic shifts of WlWr,
and let B be the set of all regions in X covered by Wr-containing cyclic shifts of
WrWl. Then A ∪ B forms the set of all regions in X that are cyclically covered
by W .

146 R. Grossi et al.

Proof. Observe that every cyclic shift of W must contain either Wl or Wr. Hence,
the lemma follows. ��

Below we focus on describing an algorithm that finds all regions in X cov-
ered by Wl-containing cyclic shifts of WlWr. All regions in X covered by Wr-
containing cyclic shifts of WrWl can be found by an analogous algorithm.

To find all regions in X covered by Wl-containing cyclic shifts of WlWr, we
consider two cases: Wl is highly-periodic or not.

If Wl is not highly-periodic, then it has O(n/�) occurrences in X[0 . . n − 1]
(Lemma 9). Thus we can find all these occurrences in O(n/�) time given the
IPM data structure (Lemma 3). Then, using FindFixedCover(), the regions in
X covered by these Wl-containing cyclic shifts of W can be found using O(n/�)
time.

For a highly periodic Wl, let ql ≤ �/8 denote its shortest period, and let dl

denote the longest prefix of W which is ql-periodic. Let us also denote Wl′ =
W [0 . . dl − 1] and Wr′ = W [dl . . � − 1]. Notice that if Wr′Wl′ is highly-periodic
we can simply reduce our problem to the case with a highly-periodic W as any
cyclic shift of W is also a cyclic shift of Wr′Wl′ . Notice, also, that a Wl-containing
cyclic shift of W (d-cyclic shift of W for d = 0 or d ≥ |Wl|) is always a Wl′W [dl]-
containing factor of W (for d = 0 or d > dl) or a Wr′Wl-containing factor of W
(for |Wl| ≤ d ≤ dl).

Now it is enough to show that, for a highly-periodic Wl when W and Wr′Wl′

are not highly-periodic, Wl′W [dl] and Wr′Wl are not highly-periodic as well.

Lemma 11. Wl′W [dl] is non-periodic (hence also non-highly-periodic).

Proof. By contradiction, suppose that W [0 . . dl] = Wl′W [dl] has period q′ ≤
(dl + 1)/2. This means that Wl′ has both periods ql and q′. Since ql + q′ ≤
�/8 + (dl + 1)/2 ≤ dl, we have that gcd(ql, q

′) is also a period of Wl′ by Lemma
1.

We observe that q′ cannot be a multiple of ql as in this case W [dl] = W [dl −
q′] = W [dl − q], which contradicts the definition of dl. Hence we get gcd(ql, q

′) <
ql, which in turn contradicts the fact that ql is the shortest period of Wl′ . ��
Lemma 12. Wr′Wl is not highly-periodic.

Proof. Suppose, on the contrary, that Wr′Wl has period q′ ≤ |Wr′Wl|/4 ≤ �/4.
This means, that Wl has both periods ql and q′. Since ql + q′ ≤ �/2 by Lemma
1 gcd(ql, q

′) is also a period of Wl.
If q′ is a multiple of ql, then Wr′Wl′ is also q′ ≤ �/4 periodic contrary to the

assumptions, otherwise gcd(ql, q
′) < ql which contradicts that ql is the shortest

period of Wl. ��
Now, we are ready to describe a function FindCyclicCover(WlWr,X) that

returns all regions in X that are covered by Wl-containing cyclic shifts of W .
This function is described in Algorithm 1.

Finding the Cyclic Covers of a String 147

Algorithm 1. FindCyclicCover(Wl,Wr,X)
Output: Regions in X covered by Wl-containing cyclic shifts of W
1: If W = WlWr or Wr′Wl′ is of period ≤ �/4, we apply Corollary 1 to find the

regions of X covered by W using O(n/�) time and return the answer.
2: Ans = ∅
3: if Wl is not highly-periodic then
4: Find j1, . . . , jm such that X[js . . js + |Wl| − 1] = Wl using O(n/�) time.
5: For each js, Ans = Ans ∪ FindFixedCover(W, X, 0, js)
6: else
7: Find j1, . . . , jm such that X[js . . js + dl] = Wl′W [dl] using O(n/�) time.
8: For each js, Ans = Ans ∪ FindFixedCover(W, X, 0, js)
9: Find j1, . . . , jm such that X[js . . js + |Wr′Wl|−1] = Wr′Wl using O(n/�) time.

10: For each js, Ans = Ans ∪ FindFixedCover(W, X, dl, js)
11: end if
12: Return Ans

Lemma 13 summarizes the time complexity of FindCyclicCover(Wl,Wr,X).

Lemma 13. Given the lcp, IPM and 2-Period data structures of X, we can
compute FindCyclicCover(Wl,Wr,X) (and FindCyclicCover(Wr,Wl,X)) in
O(n/�) time.

Proof. Let us first assume that we know an occurrence in X of any given
string. To check whether W and Wl are (highly-)periodic, it is enough to per-
form the 2-Period queries (Lemma 4). Later, with the use of a single lcp query
(lcp(X,X[ql . . n−1]) in this case), one can compute dl. Wr′Wl′ can only be highly
periodic if Wl is periodic with the same period, hence a check of whether it is
highly periodic only requires a comparison between parts of Wl and Wr which
takes O(1) time in total. After determining which method to use, the algorithm
performs O(n/l) FindFixedCover() queries, which results in a O(n/l) total
time complexity.

In general, we do not know the occurrences of some of the strings (for example
WrWl), or even if they occur in X at all. To address this issue and be able to
use the internal data structures we make some adjustments.

For the cyclic shifts of W , namely, WrWl,Wr′Wl′ and its counterpart used by
FindCyclicCover(Wr,Wl,X), we only need to check whether they are highly-
periodic and employ the lcp (or lcpr) with another string. To address the first
point, it is sufficient to check whether their longest factor which appears in W is
periodic, and whether the period can be extended to the whole string (with lcp
queries). This factor must be of length at least �/2; hence, it must be periodic if
the whole string is highly-periodic. Its shortest period is the only candidate for
the shortest period (of length at most �/4) of the whole string. As for the second
point, lcp, this is only used by Lemma 6, where this problem has already been
solved.

Another string which does not need to appear in X is Wr′Wl (symmetri-
cally (WrWl)[0 . . dr] used by FindCyclicCover(Wr,Wl,X)). We make use of

148 R. Grossi et al.

this string only if Wl is highly periodic. Using the lcpr query, we can find how
far this period extends to the left in Wr′Wl. Now, instead of looking for the
whole Wr′Wl in the parts of X, we simply look for Wl. If a whole arithmetic
sequence (j1, ql,m) of occurrences is found, then we know that only one of those
occurrences can be extended to the whole Wr′Wl (with jk+1, where k is equal
to the number of periods of Wl at the end of Wr′). This way we can process the
whole X in O(n/�) time. ��
Theorem 1 (Cyclic cover problem). Given a string X of length n, over
an integer alphabet, we can find all integers � > 0 such that the prefix W =
X[0 . . � − 1] is a cyclic cover of X, in O(n log n) total time.

Proof. In the preprocessing step we construct the Internal Data Structure
answering lcp, IPM and 2-Period queries in O(n) time (Lemmas 2 and 4).
For any fixed �, let Wl = X[0 . . ��/2	 − 1] and Wr = X[��/2	 . . � − 1]. We
can check if W = X[0 . . � − 1] is a cyclic cover of X[0 . . n − 1] by apply-
ing FindCyclicCover(Wl,Wr,X) and FindCyclicCover(Wr,Wl,X). Lemma 13
shows that these two functions run in O(n

�) time. The total time to test
� = 1, . . . , n is upper bounded by O(

∑n
�=1

n
�) = O(n log n). ��

4 Concluding Remarks

In this paper we showed that all distinct cyclic covers can be found in O(n log n)
time. The techniques introduced in our solution can also give (much simpler)
algorithms for two other related problems.

The first one is to find all cyclic borders of X, namely, all values of � such
that prefix X[0 . . �−1] is a cyclic shift of suffix X[n− � . . n−1]. It can be solved
in O(n) time by simply using Lemma 3 n times.

The second problem is to find all the cyclic factorizations, which are a special
case of the cyclic covers: X is partitioned into factors of length �, for all feasible
�, so that each resulting factor is a cyclic shift of the others. We obtain an
O(n log log n) time algorithm by using Lemma 3 O(n

�) times for every length �
that divides n (denoted as �|n). The complexity follows from the bound

∑
�|n

n
� =

O(n log log n) given in [32, Thm.2].

References

1. Alzamel, M., et al.: Finding the anticover of a string. In: 31st Annual Symposium
on Combinatorial Pattern Matching (CPM 2020), vol. 161 (2020)

2. Alzamel, M., et al.: Online algorithms on antipowers and antiperiods. In: Brisaboa,
N.R., Puglisi, S.J. (eds.) SPIRE 2019. LNCS, vol. 11811, pp. 175–188. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32686-9 13

3. Amir, A., Levy, A., Lubin, R., Porat, E.: Approximate cover of strings. Theor.
Comput. Sci. 793, 59–69 (2019). https://doi.org/10.1016/j.tcs.2019.05.020

4. Apostolico, A., Crochemore, M.: Fast parallel Lyndon factorization with appli-
cations. Math. Syst. Theor. 28(2), 89–108 (1995). https://doi.org/10.1007/
BF01191471

https://doi.org/10.1007/978-3-030-32686-9_13
https://doi.org/10.1016/j.tcs.2019.05.020
https://doi.org/10.1007/BF01191471
https://doi.org/10.1007/BF01191471

Finding the Cyclic Covers of a String 149

5. Apostolico, A., Ehrenfeucht, A.: Efficient detection of quasiperiodicities in strings.
Theor. Comput. Sci. 119(2), 247–265 (1993)

6. Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimitivity testing for
strings. Inf. Process. Lett. 39(1), 17–20 (1991)

7. Booth, K.S.: Lexicographically least circular substrings. Inf. Process. Lett. 10(4–5),
240–242 (1980)

8. Breslauer, D.: An on-line string superprimitivity test. Inf. Process. Lett. 44(6),
345–347 (1992)

9. Breslauer, D., Galil, Z.: Real-time streaming string-matching. ACM Trans. Algo-
rithms 10(4), 1–12 (2014). https://doi.org/10.1145/2635814

10. Černỳ, A.: Lyndon factorization of generalized words of Thue. Discrete Math.
Theor. Comput. Sci. 5, 17–46 (2002)

11. Conte, A., Grossi, R., Marino, A.: Large-scale clique cover of real-world networks.
Inf. Comput. 270, 104464 (2020)

12. Crochemore, M., et al.: Shortest covers of all cyclic shifts of a string. Theor. Com-
put. Sci. 866, 70–81 (2021)

13. Crochemore, M., Rytter, W.: Jewels of Stringology: Text Algorithms. World Sci-
entific, Singapore (2002)

14. Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–
381 (1983)

15. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math.
Soc. 16(1), 109–114 (1965). https://doi.org/10.2307/2034009

16. Fredricksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de Bruijn
sequences. Discret. Math. 23(3), 207–210 (1978)

17. Galil, Z.: Optimal parallel algorithms for string matching. Inf. Control. 67(1–3),
144–157 (1985). https://doi.org/10.1016/S0019-9958(85)80031-0

18. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology. ACM Sigact News 28(4), 41–60 (1997)

19. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 943–955. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-45061-0 73

20. Kociumaka, T.: Efficient data structures for internal queries in texts. Ph.D.
thesis, University of Warsaw, October 2018 (2018). https://www.mimuw.edu.pl/
kociumaka/files/phd.pdf

21. Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: A linear time
algorithm for seeds computation. In: Proceedings of the 23rd Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1095–1112. SIAM (2012)

22. Kociumaka, T., Pissis, S.P., Radoszewski, J., Rytter, W., Waleń, T.: Fast algorithm
for partial covers in words. Algorithmica 73(1), 217–233 (2014). https://doi.org/
10.1007/s00453-014-9915-3

23. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Internal pattern matching
queries in a text and applications. In: Proceedings of the 26th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 532–551. SIAM (2014)

24. Li, Y., Smyth, W.F.: Computing the cover array in linear time. Algorithmica 32(1),
95–106 (2002). https://doi.org/10.1007/s00453-001-0062-2

25. Lothaire, M.: Applied combinatorics on words. Encyclopedia of Mathematics and
its Applications, Cambridge University Press (2005). https://doi.org/10.1017/
CBO9781107341005

26. Lothaire, M.: Algebraic Combinatorics on Words, vol. 90. Cambridge University
Press, New York (2002)

https://doi.org/10.1145/2635814
https://doi.org/10.2307/2034009
https://doi.org/10.1016/S0019-9958(85)80031-0
https://doi.org/10.1007/3-540-45061-0_73
https://doi.org/10.1007/3-540-45061-0_73
https://www.mimuw.edu.pl/kociumaka/files/phd.pdf
https://www.mimuw.edu.pl/kociumaka/files/phd.pdf
https://doi.org/10.1007/s00453-014-9915-3
https://doi.org/10.1007/s00453-014-9915-3
https://doi.org/10.1007/s00453-001-0062-2
https://doi.org/10.1017/CBO9781107341005
https://doi.org/10.1017/CBO9781107341005

150 R. Grossi et al.

27. Melançon, G.: Lyndon factorization of infinite words. In: Puech, C., Reischuk, R.
(eds.) STACS 1996. LNCS, vol. 1046, pp. 147–154. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-60922-9 13

28. Melançon, G.: Lyndon factorization of Sturmian words. Discret. Math. 210(1–3),
137–149 (2000)

29. Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching algorithm
for strings in terms of straight-line programs. In: Apostolico, A., Hein, J. (eds.)
CPM 1997. LNCS, vol. 1264, pp. 1–11. Springer, Heidelberg (1997). https://doi.
org/10.1007/3-540-63220-4 45

30. Moore, D., Smyth, W.F.: Computing the covers of a string in linear time. In: Pro-
ceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
511–515. SODA’94, Society for Industrial and Applied Mathematics, USA (1994)

31. Norman, R.Z., Rabin, M.O.: An algorithm for a minimum cover of a graph. Proc.
Am. Math. Soc. 10(2), 315–319 (1959)

32. Robin, G.: Grandes valeurs de la fonction somme des diviseurs et hypothese de
Riemann. J. Math. Pures Appl. 63, 187–213 (1984)

33. Shiloach, Y.: Fast canonization of circular strings. J. Algorithms 2(2), 107–121
(1981)

34. Tisza, M.J., et al.: Discovery of several thousand highly diverse circular DNA
viruses. Elife 9, e51971 (2020)

35. Wagner, E.K., Hewlett, M.J., Bloom, D.C., Camerini, D.: Basic Virology, vol. 3.
Blackwell Science, Malden, MA (1999)

https://doi.org/10.1007/3-540-60922-9_13
https://doi.org/10.1007/3-540-63220-4_45
https://doi.org/10.1007/3-540-63220-4_45

Efficient Non-isomorphic Graph
Enumeration Algorithms for Subclasses

of Perfect Graphs

Jun Kawahara1 , Toshiki Saitoh2(B) , Hirokazu Takeda2, Ryo Yoshinaka3 ,
and Yui Yoshioka2

1 Kyoto University, Kyoto, Japan
2 Kyushu Institute of Technology, Kitakyushu, Japan

toshikis@ai.kyutech.ac.jp
3 Tohoku University, Sendai, Japan

Abstract. Intersection graphs are well-studied in the area of graph algo-
rithms. Some intersection graph classes are known to have algorithms enu-
merating all unlabeled graphs by reverse search. Since these algorithms
output graphs one by one and the numbers of graphs in these classes are
vast, they work only for a small number of vertices. Binary decision dia-
grams (BDDs) are compact data structures for various types of data and
useful for solving optimization and enumeration problems. This study pro-
poses enumeration algorithms for five intersection graph classes, which
admit O(n)-bit string representations for their member graphs. Our algo-
rithm for each class enumerates all unlabeled graphs with n vertices over
BDDs representing the binary strings in time polynomial in n. Moreover,
our algorithms are extended to enumerate those with constraints on the
maximum (bi)clique size and/or the number of edges.

Keywords: Enumeration · Binary decision diagrams · Graph
isomorphism · Graph classes · String representation

1 Introduction

This paper is concerned with efficient enumeration of unlabeled intersection
graphs. An intersection graph has a geometric representation such that each
vertex of the graph corresponds to a geometric object and the intersection of
two objects represents an edge between the two vertices in the graph. Intersec-
tion graphs are well-studied for their practical and theoretical applications [2,17].
For example, interval graphs, which are represented by intervals on a real line,
are applied in bioinformatics, scheduling, and so on [5]. Proper interval graphs
are a subclass of interval graphs with interval representations where no interval
is properly contained to another. These graph classes are related to important
graph parameters: The bandwidth of a graph G is equal to the smallest value of
the maximum clique sizes in proper interval graphs that extend G [6].

The literature has considered the enumeration problems for many of the
intersection graph classes. The graph enumeration problem is to enumerate all
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 151–163, 2023.
https://doi.org/10.1007/978-3-031-27051-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_14&domain=pdf
http://orcid.org/0000-0001-7208-044X
http://orcid.org/0000-0003-4676-5167
http://orcid.org/0000-0002-5175-465X
https://doi.org/10.1007/978-3-031-27051-2_14

152 J. Kawahara et al.

the graphs with n vertices in a specified graph class. If it requires not enumerat-
ing two isomorphic graphs, it is called unlabeled. Otherwise, it is called labeled.
Unlabeled enumeration algorithms based on reverse search [1] have been pro-
posed for subclasses of interval graphs and permutation graphs [14,15,18,19].
Those algorithms generate graphs in time polynomial in the number of vertices
per graph. In this regard, those algorithms are considered to be fast in theory.
However, since those algorithms output graphs one by one and the numbers of
graphs in these classes are vast, the total running time will be impractically long,
and storing the output graphs requires a large amount of space.

The idea of using binary decision diagrams (BDDs) has been studied to over-
come the difficulty of the high complexity of enumeration. BDDs can be seen
as indexing and compressed data structures for various types of data, including
graphs, via reasonable encodings. The technique so-called frontier-based search,
given an arbitrary graph, efficiently constructs a BDD which represents all sub-
graphs satisfying a specific property [7,10,16]. Among those, Kawahara et al. [8]
proposed enumeration algorithms for several sorts of intersection graphs, e.g.,
chordal and interval graphs. Using the obtained BDD, one can easily count the
number of those graphs, generate a graph uniformly at random, and find an
optimal one under some measurement, like the minimum weight. However, the
enumeration by those algorithms is labeled. In other words, the obtained BDDs
by those algorithms may have many isomorphic graphs. Hence, the technique
cannot be used, for example, for generating a graph at uniformly random when
taking isomorphism into account.

This paper proposes polynomial-time algorithms for unlabeled intersection
graph enumeration using BDDs. The five intersection graph classes in concern
are those of proper interval, cochain, bipartite permutation, (bipartite) chain,
and threshold graphs. It is known that the unlabeled graphs with n vertices
of these classes have natural O(n)-bit string encodings: We require 2n bits for
proper interval and bipartite permutation graphs [14,15] and n bits for chain,
cochain, and threshold graphs [11,13]. It may be a natural idea for enumerating
those graphs to construct a BDD that represents those encoding strings. Here,
we remark that there are different strings that represent isomorphic graphs, and
we need to keep only a “canonical” one among those strings. Actually, if we
make a BDD naively represent those canonical strings, the resultant BDD will
be exponentially large. To solve the problem, we introduce new string encodings
of intersection graphs of the respective classes so that the sizes of the BDDs rep-
resenting canonical strings are polynomial in n. Our encodings are still natural
enough to extend the enumeration technique to more elaborate tasks: namely,
enumerating graphs with bounded maximum (bi)clique size and/or with maxi-
mum number of edges. One application of enumerating proper interval graphs
with maximum clique size k is, for example, to enumerate graphs with the band-
width at most k. Recall that the bandwidth of a graph is the minimum size of
the maximum cliques in the proper interval graphs obtained by adding edges.
Thus, conversely, we can obtain graphs of bandwidth at most k by removing
edges from the enumerated graphs.

Non-isomorphic Graph Enumeration for Subclasses of Perfect Graphs 153

2 Preliminary

Graphs. Let G = (V,E) be a simple graph with n vertices and m edges. A
sequence P = (v1, v2, . . . , vk) of vertices is a path from v1 to vk if vi and vj
are distinct for i �= j and (vi, vi+1) ∈ E for i ∈ {1, . . . , k − 1}. The graph G is
connected if for every two vertices vi, vj ∈ V , there exists a path from vi to vj .
The neighbor set of a vertex v is denoted by N(v), and the closed neighbor set
of v is denoted by N [v] = N(v) ∪ {v}. A vertex v is universal if |N(v)| = n − 1
and a vertex v is isolate if |N(v)| = 0. For V ′ ⊆ V and E′ ⊆ E such that the
endpoints of every edge in E′ are in V ′, G′ = (V ′, E′) is a subgraph of G. The
graph G is complete if every vertex is universal. If a subgraph G′ = (V ′, E′) of G
is a complete graph, V ′ is called a clique of G. A clique C is maximum if for any
clique C ′ in G, |C| ≥ |C ′|. A vertex set S is called an independent set if for each
v ∈ S, N(v) ∩ S = ∅. The complement of G = (V,E) is the graph G = (V,E)
where E = {(u, v) | (u, v) /∈ E}.

For a graph G = (V,E), let (X,Y) be a partition of V ; that is, V = X∪Y and
X∩Y = ∅. A graph G = (X∪Y,E) is bipartite if for every edge (u, v) ∈ E, either
u ∈ X and v ∈ Y or u ∈ Y and v ∈ X holds. The bipartite graph G is complete
bipartite if E = {(x, y) | x ∈ X, y ∈ Y }. For a subgraph G′ = (X ′ ∪ Y ′, E′) of G,
X ′ ∪ Y ′ is called biclique if G′ is complete bipartite. A biclique B is maximum
if for any biclique B′ in G, |B| ≥ |B′|. Note that we here say that a biclique has
the “maximum” size if the number of not edges but vertices of it is maximum.
For a bipartite graph G = (X ∪ Y,E), G is called cobipartite. Note that X and
Y are cliques in G. An ordering x1, x2, . . . , x|X| on X is an inclusion ordering if
N(xi) ∩ Y ⊆ N(xj) ∩ Y for every i, j with i < j.

Binary Strings. We use the binary alphabet Σ = {L, R} in this paper. Let s =
c1c2 . . . cn be a binary string on Σ∗. The length of s is n and we denote it by |s|.
Let L = R and R = L. For a string s = c1c2 . . . cn, we define s = cn cn−1 . . . c1. The
height hs(i) of s at i ∈ {0, 1, . . . , n} is defined by hs(i) = |c1 . . . ci|L − |c1 . . . ci|R,
where |t|c denotes the number of occurrences of c in a string t. The string s is
balanced if hs(n) = 0; that is, the number of L is equal to that of R in s. The height
of s is the maximum value in the height function for s and denoted by h(s); that
is, h(s) = maxi hs(i). We say s is larger than a string s′ with length n if there
exists an index i ∈ {1, . . . , n} such that hs(i′) = hs′(i′) for any i′ < i and hs(i) >
hs′(i), and we denote it by s > s′. The alternate string α(s) of s is obtained
by reordering the characters of s from outside to center, alternately; that is,
α(s) = c1cnc2cn−1 . . . c�n/2� if n is odd and α(s) = c1cnc2cn−1 . . . cn/2cn/2+1

otherwise.

Binary Decision Diagrams. A binary decision diagram (BDD) is an edge
labeled directed acyclic graph D = (N,A) that classifies strings over a binary
alphabet Σ of a fixed length n. To distinguish BDDs from the graphs we enu-
merate, we call elements of N nodes and those of A arcs. The nodes are par-
titioned into n + 1 groups: N = N1 ∪ · · · ∪ Nn+1. Nodes in Ni are said to be
at level i for 1 ≤ i ≤ n + 1. There is just one node at level 1, called the root.

154 J. Kawahara et al.

Fig. 1. An example BDD.

Level (n + 1) nodes are only two: the 0-terminal
node and the 1-terminal node. Each node in Ni for i ≤
n has two outgoing arcs pointing at nodes in Ni+1 ∪
Nn+1. Thus, the length of every path from the root to
a node in Ni is just i−1 for i ≤ n. The terminal nodes
have no outgoing arcs. The two arcs from a node have
different labels from Σ. We call those arcs L-arc and
R-arc. When a string s = c1 . . . cn is given, we follow
the arcs labeled c1, . . . , cn from the root node. If we
reach the 1-terminal, then the input is accepted. If we
reach the 0-terminal, it is rejected. One may reach a
terminal node before reading the whole string. In that case, we do not care the
rest unread suffix of the string, and classify the whole string in accordance with
the terminal node. Figure 1 shows an example BDD, where LRLR and LLRR are
accepted and LLRL and RLRL are rejected.

3 Algorithms

3.1 Proper Interval Graphs and Cochain Graphs

Definition and Properties of Proper Interval Graphs. A graph G = (V,E)
with V = {v1, . . . , vn} is an interval graph if there exists a set of n intervals
I = {I1, . . . , In} such that (vi, vj) ∈ E iff Ii ∩ Ij �= ∅ for i, j ∈ {1, . . . , n}. The
set I of intervals is called an interval representation of G. For an interval I, we
denote the left and right endpoints of I by l(I) and r(I), respectively. Without
loss of generality, we assume that any two endpoints in I are distinct. An interval
representation I is proper if there are no two distinct intervals Ii and Ij in I
such that l(Ii) < l(Ij) < r(Ij) < r(Ii) or l(Ij) < l(Ii) < r(Ii) < r(Ij). A graph
G is proper interval if it has a proper interval representation (Fig. 2).

Fig. 2. Proper interval graph and its proper interval representation. The string repre-
sentation of the proper interval representation is LLLRLRLLRRLRRLRR.

Proper interval graphs can be represented by binary strings as follows. Let G
be a proper interval graph with n vertices and I be a proper interval represen-
tation of G. We can represent I as a string by sweeping I from left to right and

Non-isomorphic Graph Enumeration for Subclasses of Perfect Graphs 155

encoding l(I) by L and r(I) by R, respectively. We denote the obtained string by
s(I) and call it the string representation of I. The length of s(I) is 2n.

Lemma 1 ([15]). Let s(I) = c1c2 . . . c2n be a string representation of a con-
nected proper interval graph G with n vertices.

1. c1 = L and c2n = R,
2. s(I) is balanced; that is, the number of L is same as that of R in s(I), and
3. hs(I)(i) > 0 for i ∈ {1, . . . , 2n − 1}.
A connected proper interval graph has at most two string representations [4].
More strictly, for any two string representations s and s′ of a connected proper
interval graph G, s = s′ or s = s′. The string representation is said to be
canonical if s > s or s = s. Thus, the canonical string representations have
one-to-one correspondence to the proper interval graphs up to isomorphism [15].

Algorithm for n Vertices. We here present an enumeration algorithm of
all connected proper interval graphs with n vertices up to isomorphism. We
would like to construct a BDD representing all canonical string representations
of proper interval graphs. However, for the efficiency of the BDD construction
as described later, we instead construct a BDD representing alternate strings of
all canonical representations of proper interval graphs.

We describe an overview of our algorithm. We construct the BDD in a
breadth-first manner in the direction from the root node to the terminals. We
create the root node in N1, and for each node in Ni (i ∈ {1, . . . , 2n}), we create
its L and R-arcs and make each arc point at one of the existing nodes in Ni+1 or
N2n+1 or a newly created node. We call making an arc point at 0-terminal node
pruning. For each node ν, we store into ν information on the paths from the root
to ν as a tuple, which we call state. Two nodes having the same state never exist.
When creating an (L or R) arc of a node, we compute the state of the destination
from the state of the original node. If there is an existing node having the same
state as the computed one, we make the arc point at the existing node, which
we call (node) sharing.

Consider deciding whether a string s in Σ2n is canonical or not; that is, s > s
or s = s holds. Suppose that s = c1c2 . . . c2n and we have s = c2n c2n−1 . . . c1.
This can be done by comparing ci with c2n−i+1 for i = 1, . . . , 2n. When creating
a node ν in the BDD construction process, we would like to conduct pruning
early if we can determine that all the path labels from the root via ν will not
be canonical. That is the reason we adopt alternate string representations. A
node in level i (∈ {1, . . . , 2n}) corresponds to the
i/2�th character in the string
representation if i is odd, and the (2n + 1 − i/2)th one otherwise. For example,
consider the path LRLRRR. Any path extending LRLRRR will represent a string of
the form s = LLRtRRR for which s = LLLtLRR for some t ∈ Σ∗ and s < s holds.
This implies s cannot be canonical. The path goes to the 0-terminal.

We make each node, say ν, maintain state (i, hL, hR, F). The first element i
is the level where ν is. We take an arbitrary path from the root node to ν, say
c1c2nc2c2n−1 . . . c�i/2�−1c2n+2−�i/2� (the case where i is odd) or c1c2nc2c2n−1 . . .
c2n+2−�i/2�c�i/2� (the case where i is even). The second and third elements hL, hR

156 J. Kawahara et al.

represent the heights of the sequences c1c2 . . . c�i/2� and c2n c2n−1 . . . c2n+2−�i/2�,
respectively. Note that we must design an algorithm so that it is well-defined;
that is, the values of the sequences obtained from all the paths from the root
node to ν are the same. F represents whether (�) cı̂ = c2n+1−ı̂ holds for all
ı̂ = 1, . . . ,
i/2�−1. If F = �, (�) does not hold; that is, there exists i′ such that
ci′ �= c2n+1−i′ . If ci′ = R and c2n+1−i′ = L, the canonicity condition does not
meet. As shown later, such a node never exists because we conduct the pruning.
Therefore, F = � means that ci′ = L, c2n+1−i′ = R and ci′′ = c2n+1−i′′ holds for
all i′′ ≤ i′ − 1, which implies that the canonicity condition is satisfied whatever
the other characters are. F = ⊥ means that (�) holds.

We discuss how to store states and conduct pruning in the process of the
BDD construction. We make the root node have the state (1, 0, 0,⊥). Let ν be a
node that has the state (i, hL, hR, F) and νL and νR be nodes pointed at by L-arc
and R-arc of ν. If i = 1, νR is 0-terminal, and if i = 2, νL is 0-terminal because
of the condition (i) in Lemma 1. First, we consider the case where i is odd.
L-arc and R-arc of ν mean that the
i/2�th character is L and R, respectively. We
make νL have state (i + 1, hL + 1, hR, F). As for R-arc, if hL − 1 ≤ 0, we make
R-arc of ν point at 0-terminal because R-arc means c�i/2� = R and the height of
c1c2 . . . c�(i+1)/2� violates the condition of (iii) in Lemma 1. Otherwise, we make
νR have state (i + 1, hL − 1, hR, F). Next, we consider the case where i is even.
L-arc and R-arc of ν mean that the (2n + 1 −
i/2�)th character is L and R,
respectively. If F = �, we make νL and νR maintain states (i + 1, hL, hR − 1,�)
and (i + 1, hL, hR + 1,�), respectively. (Recall that since F = � means that
the canonicity condition has already been satisfied, we need not update F .)
We conduct pruning for L-arc if hR − 1 ≤ 0. Let us consider the case where
F = ⊥. Recall that (�) holds. Although we want to compare the
i/2�th and
(2n+1−
i/2�)th characters to decide whether the canonicity condition holds or
not, ν does not have the information on the
i/2�th character. Instead, ν has hL

and hR. We consider two cases (i) and (ii): (i) If hL − 1 = hR, it means that the

i/2�th character is L. In this case, R-arc of ν means that the (2n + 1 −
i/2�)th
character is R, which implies that (�) still holds. Therefore, we make νR maintain
state (i+1, hL, hR+1,⊥). L-arc of ν means that the (2n+1−
i/2�)th character is
L, which implies that (�) no longer holds and the canonicity condition is satisfied.
Therefore, we make νL maintain state (i + 1, hL, hR − 1,�). (ii) If hL − 1 �= hR,
it means that the
i/2�th character is R. In this case, R-arc of ν means that the
(2n + 1 −
i/2�)th character is R, which violates the canonicity condition. We
make R-arc of ν point at 0-terminal. L-arc of ν means that the (2n+1−
i/2�)th
character is L, which implies that (�) still holds. Therefore, we make νL maintain
state (i + 1, hL, hR − 1,⊥).

Consider the case where i = 2n (final level). Let the computed state as the
destination of L- or R-arc of a node in N2n be (2n + 1, h′

L, h′
R, F ′). If h′

L �= h′
R,

the destination is pruned (0-terminal) because it violates the condition of (ii) in
Lemma 1. Otherwise, we make the arc point at 1-terminal.

Theorem 1. Our algorithm constructs a BDD representing all canonical string
representations of connected proper interval graphs in O(n3) time and space.

Non-isomorphic Graph Enumeration for Subclasses of Perfect Graphs 157

Proof. We here analyze the complexity of the algorithm. For each level i ∈
{0, 1, . . . , 2n}, the number of nodes in Ni is O(n2) because 0 ≤ hL, hR ≤ n and
F ∈ {⊥,�}. Thus, the total size of BDD is O(n3). The computation of the next
state for each node can be run in constant time because it has only increment
and we can access the nodes in constant time by using O(n2) pointers. ��

Algorithm for Maximum Clique Size k. We here present an algorithm that
given natural numbers n and k, enumerates all proper interval graphs with n
vertices and the maximum clique size at most k. It is well known that a clique
of an interval graph G corresponds to overlap intervals of a point in an interval
representation of G [3]. The number of overlapping intervals is same as the height
of string representation of a proper interval graph. Thus, the enumeration of all
proper interval graphs with the maximum clique size at most k can be seen as
that of all canonical string representations with the height at most k. We modify
the algorithm for n vertices by adding one pruning for the case when either of
the heights hL or hR becomes larger than k. Therefore, our extended algorithm
runs in O(k2n) time and space since the ranges of hL and hR become k from n.

Algorithm for m Edges. To extend the algorithm for n vertices and m edges,
we here show how to count the number of edges from the string representation.
Let s be a string representation of a proper interval graph with m edges. Sweeping
the string representation from left to right, for each i ∈ {1, . . . , 2n} with ci = L,
the height hs(i) is the number of intervals Ij with j < i that overlap with i.
This means that the vertex v corresponding to ci is incident to hs(i) edges in G.
Thus, we obtain the number of edges from the string representation as follows.

Lemma 2. Let s = c1 . . . c2n be a string representation of a connected proper
interval graph G with m edges and J be the set of indices i of s such that ci = L.
The summation of heights in J is equal to m; i.e.,

∑
i∈J hs(i) = m.

In the construction of a BDD, each node stores the value to maintain the
number of edges m′. The state of each node is now a quintuple (i, hL, hR, F,m′).
For the L-arc of a node ν, the number of edges m′ is updated to m′ + hL if i
is odd and to m′ + hR − 1 otherwise. When either i is odd and m′ + hL > m
or i is even and m′ + hR − 1 > m holds, we make the L-arc of ν point at the
0-terminal since the number of edges is larger than m. We make each arc point
at the 1-terminal if it gives a state (2n + 1, h, h, F,m) for some h and F based
on the state updating rule. Otherwise, it must point at the 0-terminal. For each
i ∈ {1, . . . , 2n}, the number of nodes in Ni is O(n2m) since 0 ≤ hL, hR ≤ n and
0 ≤ m′ ≤ m and the number of levels is 2n. Therefore, the algorithm runs in
O(n3m) time.

Theorem 2. A BDD representing all connected proper interval graphs with n
vertices and maximum clique size k and with n vertices and m edges can be
constructed in O(k2n) time and O(n3m) time, respectively.

Cochain Graphs. A graph G = (X ∪ Y,E) is a cochain graph if G is cobi-
partite and each of X and Y has an inclusion ordering. In other words, X

158 J. Kawahara et al.

and Y are cliques in G and we have two orderings over X = {x1, . . . , xnX
}

and Y = {y1, . . . , ynY
} such that (xi, yj) ∈ E implies (xi′ , yj′) ∈ E for any

i ≤ i′ and j ≤ j′. It is well-known [2] that cochain graphs are a subclass of
proper interval graphs. Here, we give a concrete proper interval representation
{I1, . . . , InX

, J1, . . . , JnY
} of G, where xi and yj correspond to Ii and Jj , respec-

tively, by

– l(I1) < · · · < l(InX
) < r(I1) < · · · < r(InX

) < r(JnY
),

– l(InX
) < l(JnY

) < · · · < l(J1) < r(JnY
) < · · · < r(J1),

– l(Jj) < r(Ii) iff (xi, yj) ∈ E for 1 ≤ i ≤ nX and 1 ≤ j ≤ nY .

The inclusion ordering constraint guarantees that the above is well-defined and
gives a proper interval representation. Therefore, one can specify a cochain graph
as a proper interval graph by a 2n-bit string representation. Moreover, the strong
restriction of cochain graphs allows us to reduce the number of bits to specify a
cochain graph. Obviously, the first nX bits of the proper interval string repre-
sentation of a cochain graph are all L and the last nY bits are all R. Thus, those
n = nX + nY bits are redundant and removable. Indeed, one can recover the
numbers nX and nY from the remaining n bits. Since every surviving bit of R
corresponds to r(Ii) for some i, the number of those bits is just nX . Similarly,
nY is the number of bits of L in the new n-bit representation. Conversely, every
n-bit string s can be seen as the string representation of a cochain graph with n
vertices. However, the n-bit strings are not in one-to-one correspondence to the
cochain graphs because universal vertices in the cochain graphs can be seen in
either X or Y . To avoid the duplication, we assume that all universal vertices
are in Y , so we only consider n-bit strings without R as a suffix. Using this n-bit
string representation, we obtain an enumeration algorithm for cochain graph,
and it runs in O(n) time.

For the constraint problems, we use 2n-bit strings because we need to com-
pute the size of cliques or the number of edges. Our algorithms with constraints
for cochain graphs are similar to that of proper interval graphs and need to
recognize whether the strings represent cochain graphs.

Theorem 3. A BDD representing all canonical string representations of
cochain graphs with n vertices, n vertices and maximum clique size k, and n
vertices and m edges can be constructed in O(n), O(k2n), and O(n3m) time,
respectively.

3.2 Bipartite Permutation Graphs and Chain Graphs

Definition and Properties of Bipartite Permutation Graphs. Let π be
a permutation on V ; that is, π is a bijection from V to {1, . . . , n}. We define π
as π(v) = n + 1 − π(v) for all v ∈ V . We denote by π−1 the inverse of π.

A graph G = (V,E) is permutation if it has a pair (π1, π2) of two permuta-
tions on V such that there exists an edge (u, v) ∈ E iff (π1(u) − π1(v))(π2(u) −
π2(v)) < 0. The pair P = (π1, π2) can be seen as the following intersection model

Non-isomorphic Graph Enumeration for Subclasses of Perfect Graphs 159

on two parallel horizontal lines L1 and L2: the vertices in V are arranged on the
line L1 (resp. line L2) according to π1 (resp. π2). Each vertex w corresponds to
a line segment lw, which joins w on L1 and w on L2. An edge (u, v) is in E iff
lu and lv intersects, which is equivalent to (π1(u) − π1(v))(π2(u) − π2(v)) < 0.
The model P = (π1, π2) is called a permutation diagram. A graph G is bipartite
permutation if G is bipartite and permutation.

Let P = (π1, π2) be a permutation diagram of a connected bipartite per-
mutation graph G = (V,E). Let us observe properties of π1 and π2, which are
discussed in [14]. First, there is no vertex u ∈ V such that π1(u) = π2(u) unless
n = 1. Secondly, for all vertices u, v ∈ V such that π1(u) < π2(u), π1(v) < π2(v)
and π1(u) < π1(v) hold, π2(u) > π2(v) does not hold; that is, lu and lv never
intersects. Therefore, X = {u | π1(u) < π2(u)} and Y = {u | π1(u) > π2(u)}
give the vertex partition of G. By expressing the above observation with the
intersection model, the line segments are never straight vertical and classified
into X and Y depending on their tilt directions: lines in X go from upper left
to lower right and those in Y go from lower left to upper right.

Based on the above discussion, let us give a string representation s(P) of the
permutation diagram P. We define sx(P) = x1 . . . xn and sy(P) = y1 . . . yn as
follows: For i = 1, . . . , n, xi = L if π1(π−1

1 (i))(= i) < π2(π−1
1 (i)), and xi = R

otherwise. Similarly, for i = 1, . . . , n, yi = R if π2(π−1
2 (i))(= i) > π1(π−1

2 (i)),
and yi = L otherwise. In other words, xi = L iff the ith intersection point of
L1 is with a line segment from X in the intersection model. On the other hand,
yi = L iff the ith intersection point of L2 is with a line segment from Y . We
define the string representation s(P) of P by s(P) = x1y1x2y2 . . . xnyn. The
string representation s(P) has the following properties [14].

Lemma 3. Let s = c1c2 . . . c2n be a string representation of a connected bipartite
permutation graph G with n vertices. Then,

(i) c1 = L and c2n = R,
(ii) s is balanced; that is, the number of L is the same as that of R in s, and
(iii) hs(i) > 0 for i ∈ {1, . . . , 2n − 1}.
By horizontally, vertically, and rotationally flipping P, we obtain essentially
equivalent diagrams PV = (π2, π1), PH = (π1, π2), and PR = (π2, π1) of G,
respectively.

Lemma 4 ([14]). Let P1 and P2 be permutation diagrams of a connected bipar-
tite permutation graph. At least one of the equations s(P1) = s(P2), s(P1) =
s(PV

2), s(P1) = s(PH
2), or s(P1) = s(PR

2) holds.

A string representation s(P) is said to be canonical if all the inequalities s(P) ≥
s(PV), s(P) ≥ s(PH), and s(P) ≥ s(PR) hold.

Algorithm for n Vertices. We construct the BDD representing the set
of bipartite permutation graphs using the alternate strings of the canoni-
cal representation strings. Each BDD node is identified with a state tuple
(i, hL, hR, cL, cR, FV, FH, FR). The integer i is the level where the node is. The

160 J. Kawahara et al.

heights hL and hR are those of x1x2 . . . xn and yn yn−1 . . . y1, respectively, the
purpose of which is the same as in Sect. 3.1.

Let us describe FV, FH and FR. FR is ⊥ or �, which is used for deciding
whether s(P) ≥ s(PR) holds or not. Recall that if s(P) = x1y1x2y2 . . . xnyn,
s(PR) = yn xn yn−1 xn−1 . . . y1 x1. According to the variable order α(s(P)), we
can decide whether s(P) > s(PR) holds or not using the heights hL and hR by
the way described in Sect. 3.1. Then, FR has the same role as F in Sect. 3.1.
Next, we consider FV, which is used for deciding the canonicity of s(P) ≥ s(PV).
Recall that if s(P) = x1y1x2y2 . . . xnyn, s(PV) = y1x1y2x2 . . . ynxn. We need to
compare x1 with y1, y1 with x1, . . . , and yn with xn in order. Recall that on the
BDD, the value of yi is represented by arcs of each node in level 4i−1. The value
of xi has already been determined by arcs of a node in level 4i−3. Therefore, to
compare xi with yi, we store the value of xi into nodes. Strictly speaking, if i is
odd, then, cL = x�i/2�−1 and cR = y2n−�i/2�+2. If i is even, then, cL = xi/2 and
cR = y2n−i/2+2. The stored values cL and cR are also used for deciding whether
s(P) ≥ s(PH) holds or not in a similar way.

We estimate the number of BDD nodes by counting the possible values of a
state (i, hL, hR, cL, cR, FV, FH, FR). Since 1 ≤ i ≤ 2n, 0 ≤ hL ≤ n, 0 ≤ hR ≤ n,
and the number of possible states of cL, cR, FV, FH, FR are two, the number of
possible values of tuples is 2n × (n + 1)2 × 25 = O(n3).

Algorithm for m edges. We present an algorithm that constructs the BDD
representing the set of (string representations of) bipartite permutation graphs
with n vertices and m edges when n and m are given. The number of edges
of a bipartite permutation graph G is that of intersections of the permutation
diagram of G. We use the following lemma.

Lemma 5. The number of edges is
∑n

i=1 hs(P)(2i).

We can easily obtain

n∑

i=1

hs(P)(2i) =
�n/2�∑

i=1

hs(P)(2i) +
�n/2�∑

i=1

hs(PR)(2i). (1)

To count the number of edges, we store this value into each BDD node. Let us
describe the detail. We make each BDD node maintain a tuple (i, hL, hR, cL, cR,
FV, FH, FR,m′). The first eight elements are the same as the ones described
above. The last element m′ is the current value of (1). Thus, the running time
of the algorithm is O(n3m).

Theorem 4. A BDD representing all connected bipartite permutation graphs
with n vertices, and n vertices and m edges can be constructed in O(n3) and
O(n3m) time, respectively.

Chain Graphs. A graph G = (X ∪ Y,E) is a chain graph if G is bipar-
tite and each of X and Y has an inclusion ordering. Let (x1, x2, . . . , x|X|) and
(y1, y2, . . . , y|Y |) be an inclusion ordering of X and Y , respectively. Chain graphs
are known to be a subclass of bipartite permutation graphs [2] and have the fol-
lowing permutation diagrams P = (π1, π2) [12]:

Non-isomorphic Graph Enumeration for Subclasses of Perfect Graphs 161

– π1 = (x1, x2, . . . , x|X|, y|Y |, y|Y |−1, . . . , y1),
– for i, j ∈ {1, . . . , |X|} with i < j, π2(xi) < π2(xj),
– for i, j ∈ {1, . . . , |Y |} with i < j, π2(yj) < π2(yi).

Chain graphs as bipartite permutation graphs have 2n-bit string representa-
tions based on the permutation diagrams. From the diagram and Lemma 4, we
observe that the string of π1 is uniquely determined except for exchanging X
and Y . Since π1 can be fixed as above, any chain graph can be represented
using an n-bit string by sweeping π2: The ith element of π2 is encoded as L if
π−1
2 (i) ∈ X and is encoded as R if π−1

2 (i) ∈ Y . If a chain graph G is disconnected,
G consists of two parts: a connected chain graph component and a set of isolated
vertices [9]. We observe that the connected chain graphs have a one-to-one corre-
spondence with the string representations up to reversal [13]. On the other hand,
isolated vertices may arbitrarily belong to X or Y . To determine a unique string
representation, we assume that isolated vertices are all in X, where the represen-
tation strings must not end with R. Thus, we obtain an algorithm to construct a
BDD representing all canonical n-bit string representations of chain graphs and
it runs in O(n). For the restriction problems, we adopt 2n-bit strings defined as
representations of bipartite permutation graphs instead of n-bit representations
to compute the number of edges or the size of bicliques. In the algorithms, we
need to check whether the constructed strings represent chain graphs satisfying
the conditions described above.

Theorem 5. A BDD representing all chain graphs with n vertices, n vertices
and maximum biclique size k, and n vertices and m edges can be constructed in
O(n), O(k2n), O(n3m) time, respectively.

3.3 Threshold Graphs

A graph G is a threshold graph if the vertex set of G can be partitioned into X
and Y such that X is a clique and Y is an independent set and each of X and Y
has an inclusion ordering. Threshold graphs are a subclass of interval graphs, and
any threshold graph can be constructed by the following process [2,11]. First, if
the size of the vertex set is one, the graph is threshold. Then, for a threshold
graph G, (1) the graph by adding an isolated vertex to G is also threshold, and
(2) the graph adding a universal vertex to G is also threshold. The sequence
of the two operations (1) and (2) to construct a threshold graph is called a
construction sequence. It is easy to see that the two threshold graphs G1 and G2

are not isomorphic if the construction sequences of (1) and (2) of G1 and G2 are
different. From this characterization of threshold graphs, we obtain algorithms
to construct a BDD representing all unlabeled threshold graphs by encoding the
construction sequences of the operation (1) to L and (2) to R.

Theorem 6. A BDD representing all threshold graphs with n vertices, n vertices
and maximum clique size k, and n vertices and m edges can be constructed in
O(n) time, O(kn) time, and O(nm) time, respectively.

162 J. Kawahara et al.

Acknowledgments. The authors are grateful for the helpful discussions of this work
with Ryuhei Uehara. This work was supported in part by JSPS KAKENHI Grant
Numbers JP18H04091, JP19K12098, JP20H05794, and JP21H05857.

References

1. Avis, D., Fukuda, K.: Reverse search for enumeration. Discret. Appl. Math. 65(1–
3), 21–46 (1996)

2. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for
Industrial and Applied Mathematics (1999)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

4. Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper
circular-arc graphs and proper interval graphs. SIAM J. Comput. 25(2), 390–403
(1996)

5. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs (Annals of Dis-
crete Mathematics, vol. 57). Elsevier (2004)

6. Kaplan, H., Shamir, R.: Pathwidth, bandwidth, and completion problems to proper
interval graphs with small cliques. SIAM J. Comput. 25(3), 540–561 (1996)

7. Kawahara, J., Inoue, T., Iwashita, H., Minato, S.: Frontier-based search for enu-
merating all constrained subgraphs with compressed representation. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci. 100(9), 1773–1784 (2017)

8. Kawahara, J., Saitoh, T., Suzuki, H., Yoshinaka, R.: Colorful frontier-based search:
implicit enumeration of chordal and interval subgraphs. In: Kotsireas, I., Pardalos,
P., Parsopoulos, K.E., Souravlias, D., Tsokas, A. (eds.) SEA 2019. LNCS, vol.
11544, pp. 125–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34029-2 9

9. Kijima, S., Otachi, Y., Saitoh, T., Uno, T.: Subgraph isomorphism in graph classes.
Discret. Math. 312(21), 3164–3173 (2012)

10. Knuth, D.: The Art of Computer Programming, Volume 4A: Combinatorial Algo-
rithms. No. Part 1, Pearson Education, London (2014)

11. Mahadev, N., Peled, U.: Threshold Graphs and Related Topics. Elsevier, Amster-
dam (1995)

12. Okamoto, Y., Uehara, R., Uno, T.: Counting the number of matchings in chordal
and chordal bipartite graph classes. In: Paul, C., Habib, M. (eds.) WG 2009. LNCS,
vol. 5911, pp. 296–307. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11409-0 26

13. Peled, U.N., Sun, F.: Enumeration of difference graphs. Discret. Appl. Math. 60(1–
3), 311–318 (1995)

14. Saitoh, T., Otachi, Y., Yamanaka, K., Uehara, R.: Random generation and enu-
meration of bipartite permutation graphs. J. Discrete Algorithms 10, 84–97 (2012)

15. Saitoh, T., Yamanaka, K., Kiyomi, M., Uehara, R.: Random generation and enu-
meration of proper interval graphs. IEICE Trans. Inf. Syst. 93(7), 1816–1823 (2010)

16. Sekine, K., Imai, H., Tani, S.: Computing the Tutte polynomial of a graph of
moderate size. In: Staples, J., Eades, P., Katoh, N., Moffat, A. (eds.) ISAAC 1995.
LNCS, vol. 1004, pp. 224–233. Springer, Heidelberg (1995). https://doi.org/10.
1007/BFb0015427

17. Spinrad, J.P.: Efficient Graph Representations. American Mathematical Society,
Providence, RI, Fields Institute monographs (2003)

https://doi.org/10.1007/978-3-030-34029-2_9
https://doi.org/10.1007/978-3-030-34029-2_9
https://doi.org/10.1007/978-3-642-11409-0_26
https://doi.org/10.1007/978-3-642-11409-0_26
https://doi.org/10.1007/BFb0015427
https://doi.org/10.1007/BFb0015427

Non-isomorphic Graph Enumeration for Subclasses of Perfect Graphs 163

18. Yamazaki, K., Qian, M., Uehara, R.: Efficient enumeration of non-isomorphic
distance-hereditary graphs and ptolemaic graphs. In: Uehara, R., Hong, S.-H.,
Nandy, S.C. (eds.) WALCOM 2021. LNCS, vol. 12635, pp. 284–295. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-68211-8 23

19. Yamazaki, K., Saitoh, T., Kiyomi, M., Uehara, R.: Enumeration of nonisomorphic
interval graphs and nonisomorphic permutation graphs. Theor. Comput. Sci. 806,
310–322 (2020)

https://doi.org/10.1007/978-3-030-68211-8_23

Optimization

Better Hardness Results for the Minimum
Spanning Tree Congestion Problem

Huong Luu(B) and Marek Chrobak

Department of Computer Science, University of California at Riverside,
Riverside, USA

hluu008@ucr.edu

Abstract. In the spanning tree congestion problem, given a connected
graph G, the objective is to compute a spanning tree T in G for which
the maximum edge congestion is minimized, where the congestion of an
edge e of T is the number of vertex pairs adjacent in G for which the
path connecting them in T traverses e. The problem is known to be NP-
hard, but its approximability is still poorly understood, and it is not even
known whether the optimum can be efficiently approximated with ratio
o(n). In the decision version of this problem, denoted K−STC, we need
to determine if G has a spanning tree with congestion at most K. It is
known that K−STC is NP-complete for K ≥ 8, and this implies a lower
bound of 1.125 on the approximation ratio of minimizing congestion.
On the other hand, 3−STC can be solved in polynomial time, with the
complexity status of this problem for K ∈ {4, 5, 6, 7} remaining an open
problem. We substantially improve the earlier hardness result by proving
that K−STC is NP-complete for K ≥ 5. This leaves only the case K = 4
open, and improves the lower bound on the approximation ratio to 1.2.

1 Introduction

Problems involving constructing a spanning tree that satisfies certain require-
ments are among the most fundamental tasks in graph theory and algorithmics.
One such problem is the spanning tree congestion problem, STC for short, that
has been studied extensively for many years. Roughly, in this problem we seek a
spanning tree T of a given graph G that approximates the connectivity structure
of G in the following sense: Embed G into T by replacing each edge (u, v) of G
by the unique u-to-v path in T . Define the congestion of an edge e of T as the
number of such paths that traverse e. The objective of STC is to find a spanning
tree T that minimizes the maximum edge congestion.

The general concept of edge congestion was first introduced in 1986, under
the name of load factor, as a measure of quality of an embedding of one graph into
another [3] (see also the survey in [20]). The problem of computing trees with low
congestion was studied by Khuller et al. [12] in the context of solving commodi-
ties network routing problems. The trees considered there were not required to be

M. Chrobak—Research partially supported by National Science Foundation grant
CCF-2153723.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 167–178, 2023.
https://doi.org/10.1007/978-3-031-27051-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_15&domain=pdf
https://doi.org/10.1007/978-3-031-27051-2_15

168 H. Luu and M. Chrobak

spanning subtrees, but the variant involving spanning trees was also mentioned.
In 2003, Ostrovskii provided independently a formal definition of STC and estab-
lished some fundamental properties of spanning trees with low congestion [17].
Since then, many combinatorial and algorithmic results about this problem have
been reported in the literature — we refer the readers to the survey paper by
Otachi [18] for complete information, most of which is still up-to-date.

As established by Löwenstein [15], STC is NP-hard. As usual, this is proved
by showing NP-completeness of its decision version, where we are given a graph G
and an integer K, and we need to determine if G has a spanning tree with conges-
tion at most K. Otachi et al. [19] strengthened this by proving that the problem
remains NP-hard even for planar graphs. In [16], STC is proven to be NP-hard for
chain graphs and split graphs. On the other hand, computing optimal solutions
for STC can be achieved in polynomial time for some special classes of graphs:
complete k-partite graphs, two-dimensional tori [14], outerplanar graphs [5], and
two-dimensional Hamming graphs [13].

In our paper, we focus on the decision version of STC where the bound K
on congestion is a fixed constant. We denote this variant by K−STC. Several
results on the complexity of K−STC were reported in [19]. For example, the
authors show that K−STC is decidable in linear time for planar graphs, graphs
of bounded treewidth, graphs of bounded degree, and for all graphs when K =
1, 2, 3. On the other hand, they show that the problem is NP-complete for any
fixed K ≥ 10. In [4], Bodlaender et al. proved that K−STC is linear-time solvable
for graphs in apex-minor-free families and chordal graphs. They also show an
improved hardness result of K−STC, namely that it is NP-complete for K ≥ 8,
even in the special case of apex graphs that only have one unbounded degree
vertex. As stated in [18], the complexity status of K−STC for K ∈ {4, 5, 6, 7}
remains an open problem.

Little is known about the approximability of STC. The trivial upper bound
for the approximation ratio is n/2 [18]. As a direct consequence of the NP-
completeness of 8−STC, there is no polynomial-time algorithm to approximate
the optimum spanning tree congestion with a ratio better than 1.125 (unless
P = NP).

Our Contribution. Addressing an open question in [18], we provide an
improved hardness result for K−STC:

Theorem 1. For any fixed integer K ≥ 5, K−STC is NP-complete.

The proof of this theorem is given in Sect. 3. Combined with the results
in [19], Theorem 1 leaves only the status of 4−STC open. Furthermore, it also
immediately improves the lower bound on the approximation ratio for STC:

Corollary 1. For c < 1.2 there is no polynomial-time c-approximation algo-
rithm for STC, unless P = NP.

We remark that this hardness result remains valid even if an additive constant
is allowed in the approximation bound. This follows by an argument in [4]. (In

Hardness Results for K-STC 169

essence, the reason is that assigning a positive integer weight β to each edge
increases its congestion by a factor β.)

Other Related Work. The spanning tree congestion problem is closely related
to the tree spanner problem in which the objective is to find a spanning tree T
of G that minimizes the stretch factor, defined as the maximum ratio, over all
vertex pairs, between the length of the path in T and the length of the shortest
path in G connecting these vertices. In fact, for any planar graph, its spanning
tree congestion is equal to its dual’s minimum stretch factor plus one [10,19].
This direction of research has been extensively explored, see [6,8,9]. As an aside,
we remark that the complexity of the tree 3-spanner problem has been open since
its first introduction in 1995 [6].

STC is also intimately related to problems involving cycle bases in graphs.
As each spanning tree identifies a fundamental cycle basis of a given graph,
a spanning tree with low congestion yields a cycle basis for which the edge-
cycle incidence matrix is sparse. Sparsity of such matrices is desirable in linear-
algebraic approaches to solving some graph optimization problems, for example
analyses of distribution networks such as in pipe flow systems [1].

STC can be considered as an extreme case of the graph sparsification problem,
where, given a graph G, the objective is to compute a sparse graph H that
captures connectivity properties of G. Such H can be used instead of G for
the purpose of various analyses, to improve efficiency. See [2,11,21] (and the
references therein) for some approaches to graph sparsification.

2 Preliminaries

Let G = (V,E) be a simple graph with vertex set V and edge set E. Consider a
spanning tree T ⊆ E of G. If e = (u, v) ∈ T , removing e from T splits T into two
components. We denote by Tu,v the component that contains u and by Tv,u the
component that contains v. Let the cross-edge set of e, denoted ∂G,T (e), be the
set of edges in E that have one endpoint in Tu,v and the other in Tv,u. In other
words, ∂G,T (e) consists of the edges (u′, v′) ∈ E for which the unique (simple)
path in T from u′ to v′ goes through e. Note that e ∈ ∂G,T (e). The congestion of
e, denoted by cngG,T (e), is the cardinality of ∂G,T (e). The congestion of tree T is
cngG(T) = maxe∈T cngG,T (e). Finally, the spanning tree congestion of graph G,
denoted by stc(G), is defined as the minimum value of cngG(T) over all spanning
trees T of G.

The concept of the spanning tree congestion extends naturally to multi-
graphs. For multigraphs, only one edge between any two given vertices can be
in a spanning tree, but all of them belong to the cross-edge set ∂G,T (e) of any
edge e ∈ T whose removal separates these vertices in T (and thus all contribute
to cngG,T (e)). As observed in [19], edge subdivision does not affect the spanning
tree congestion of a graph. Therefore any multigraph can be converted into a
simple graph by subdividing all multiple edges, without changing its minimum
congestion. We use positive integer weights to represent edge multiplicities: an
edge (u, v) with weight ω represents a bundle of ω edges connecting u to v. While

170 H. Luu and M. Chrobak

we state our results in terms of simple graphs, we use weighted graphs in our
proofs, with the understanding that they actually represent the corresponding
simple graphs. As all weights used in the paper are constant, the computational
complexity of K−STC is not affected.

In fact, it is convenient to generalize this further by introducing edges with
double weights. A double weight of an edge e is denoted ω :ω′, where ω and ω′

are positive integers such that ω ≤ ω′, and its interpretation in the context of
K−STC is as follows: given a spanning tree T , if e ∈ E\T then e contributes ω
to the congestion cngG,T (f) of any edge f for which e ∈ ∂G,T (f), and if e ∈ T
then e contributes ω′ to its own congestion, cngG,T (e). The lemma below implies
that including edges with double weights that add up to at most K does not
affect the computational complexity of K−STC, and therefore we can formulate
our proofs in terms of graphs where some edges have double weights.

Lemma 1. Let (u, v) be an edge in G with double weight ω :ω′, where 1 ≤ ω ≤ ω′

and ω + ω′ ≤ K for some integer K. Consider another graph G′ with vertex set
V ′ = V ∪{w} and edge set E′ = E∪{(u,w), (w, v)}\{(u, v)}, in which the weight
of (u,w) is ω and the weight of (w, v) is ω′. Then, stc(G) ≤ K if and only if
stc(G′) ≤ K.

Proof. (⇒) Suppose that G has a spanning tree T with cngG(T) ≤ K. We will
show that there exists a spanning tree T ′ of G′ with cngG′(T ′) ≤ K. We break
the proof into two cases, in both cases showing that cngG′,T ′(e) ≤ K for each
edge e ∈ T ′.
Case 1: (u, v) ∈ T . Let T ′ = T ∪{(u,w), (w, v)}\{(u, v)}. T ′ is clearly a spanning
tree of G′. If (x, y) ∈ E′\{(u,w), (w, v)}, the x-to-y paths in T and T ′ are the
same, except that if the x-to-y path in T traverses edge (u, v) then the x-to-y path
in T ′ will traverse (u,w) and (w, v) instead. Therefore, if e ∈ T ′\{(u,w), (w, v)},
∂G′,T ′(e) = ∂G,T (e), so cngG′,T ′(e) = cngG,T (e) ≤ K. On the other hand, if e ∈
{(u,w), (w, v)}, ∂G′,T ′(e) = ∂G,T (u, v)\{(u, v)}∪{e}. Then, edge e contributes ω
or ω′ to cngG′,T ′(e), while (u, v), by the definition of double weights, contributes
ω′ ≥ ω to cngG,T (u, v). Hence, cngG′,T ′(e) ≤ cngG,T (u, v) ≤ K.
Case 2: (u, v) /∈ T . Let T ′ = T ∪ {(w, v)}, which is a spanning tree of G′.
If e ∈ T ′\{(w, v)}, we have two subcases. If e is not on the u-to-v path in T ′,
∂G′,T ′(e) = ∂G,T (e), so cngG′,T ′(e) = cngG,T (e) ≤ K. If e is on the u-to-v path in
T ′, ∂G′,T ′(e) = ∂G,T (e)∪{(u,w)}\{(u, v)}. As (u,w) contributes ω to cngG′,T ′(e)
and, by the definition of double weights, (u, v) contributes ω to cngG,T (e), we
obtain that cngG′,T ′(e) = cngG,T (e) ≤ K. In the remaining case, for e = (w, v),
we have ∂G′,T ′(e) = {(u,w), (w, v)}, so cngG′,T ′(e) = ω + ω′ ≤ K.

(⇐) Let T ′ be the spanning tree of G′ with congestion cngG′(T ′) ≤ K. We
will show that there exists a spanning tree T of G with cngG(T) ≤ K. Note that
at least one of edges (u,w) and (v, w) has to be in T ′. We now consider three
cases, in each case showing that cngG,T (e) ≤ K for each edge e ∈ T .
Case 1: (u,w), (v, w) ∈ T ′. Let T = T ′ ∪ {(u, v)}\{(u,w), (w, v)}. T is clearly a
spanning tree of G. The argument for this case is similar to Case 1 in the proof

Hardness Results for K-STC 171

for the (⇒) implication. For each edge e ∈ T\{(u, v)}, its congestion in T is the
same as in T ′. The congestion of (u, v) in T is bounded by the congestion of
(w, v) in T ′, which is at most K.
Case 2: (v, w) ∈ T ′ and (u,w) /∈ T ′. Let T = T ′\{(w, v)}. T is a spanning
tree of G. Here again, the argument is similar to the proof for Case 2 in the (⇒)
implication. For each edge e ∈ T , if e is not on the u-to-v path in T , its congestion
in T and T ′ is the same. If e is on the u-to-v path in T , the contributions of
(u, v) and (u,w) to the congestion of e in T and T ′ are the same.
Case 3: (u,w) ∈ T ′ and (v, w) /∈ T ′. Consider T ′′ = T ′ ∪ {(v, w)}\{(u,w)},
which is a different spanning tree of G′. It is sufficient to show that cngG′(T ′′) ≤
cngG′(T ′) because it will imply cngG′(T ′′) ≤ K, and then we can apply Case 2
to T ′′. We examine the congestion values of each edge e ∈ T ′′. Suppose first
that e 	= (u,w). If e is not on the u-to-v path in T ′, ∂G′,T ′′(e) = ∂G′,T ′(e), so
cngG′,T ′′(e) = cngG′,T ′(e). If e is on the u-to-v path in T ′, ∂G′,T ′′(e) = ∂G′,T ′(e)∪
{(u,w)}\{(v, w)}, so cngG′,T ′′(e) = cngG′,T ′(e) + ω − ω′ ≤ cngG′,T ′(e). In the
last case when e = (v, w), cngG′,T ′′(e) = ω + ω′ ≤ K.

3 NP-Completeness Proof of K−STC for K ≥ 5

In this section we prove our main result, the NP-completeness of K−STC. Our
proof uses an NP-complete variant of the satisfiability problem called (2P1N)-
SAT [7,22]. An instance of (2P1N)-SAT is a boolean expression φ in conjunctive
normal form, where each variable occurs exactly three times, twice positively
and once negatively, and each clause contains exactly two or three literals of
different variables. The objective is to decide if φ is satisfiable, that is if there is
a satisfying assignment that makes φ true.

For each constant K, K−STC is clearly in NP. We will present a polynomial-
time reduction from (2P1N)-SAT. In this reduction, given an instance φ of
(2P1N)-SAT, we construct in polynomial time a graph G with the following
property:

(∗) φ has a satisfying truth assignment if and only if stc(G) ≤ K.

Throughout the proof, the three literals of xi in φ will be denoted by xi, x′
i,

and x̄i, where xi, x′
i are the two positive occurrences of xi and x̄i is the negative

occurrence of xi. We will also use notation x̃i to refer to an unspecified literal
of xi, that is x̃i ∈ {xi, x

′
i, x̄i}.

We now describe the reduction. Set ki = K−i for i = 1, 2, 3, 4. (In particular,
for K = 5, we have k1 = 4, k2 = 3, k3 = 2, k4 = 1.) G will consist of gadgets
corresponding to variables, with the gadget corresponding to xi having three
vertices xi, x′

i, and x̄i, that represent its three occurrences in the clauses. G will
also have vertices representing clauses and edges connecting literals with the
clauses where they occur (see Fig. 1b for an example). As explained in Sect. 2,
without any loss of generality we can allow edges in G to have constant-valued
weights, single or double. Specifically, starting with G empty, the construction
of G proceeds as follows:

172 H. Luu and M. Chrobak

– Add a root vertex r.
– For each variable xi, construct the xi-gadget (see Fig. 1a). This gadget has

three vertices corresponding to the literals: a negative literal vertex x̄i and
two positive literal vertices xi, x

′
i, and two auxiliary vertices yi and zi. Its

edges and their weights are given in the table below:

edge (x̄i, zi) (zi, xi) (xi, x
′
i) (r, x′

i) (r, yi) (yi, zi) (yi, x̄i)

weight 1:k3 1:k3 1:k2 k3 k4 k4 1:k2

– For each clause c, create a clause vertex c. For each literal x̃i in c, add the
corresponding clause-to-literal edge (c, x̃i) of weight 1:k2. Importantly, as all
literals in c correspond to different variables, these edges will go to different
variable gadgets.

– For each two-literal clause c, add a root-to-clause edge (r, c) of weight 1:k1.

Fig. 1. (a)The xi-gadget. (b) An example of a partial graph G for the boolean expres-
sion φ = (x̄1 ∨x4)∧ (x1 ∨x2 ∨ x̄3)∧ (x1 ∨ x̄2)∧· · · . Here, c1 = x̄1 ∨x4, c2 = x1 ∨x2 ∨ x̄3,
and c3 = x1 ∨ x̄2.

We now show that G has the required property (∗), proving the two impli-
cations separately.

(⇒) Suppose that φ has a satisfying assignment. Using this assignment, we
construct a spanning tree T of G as follows:

– For every xi-gadget, include in T edges (r, x′
i), (r, yi), and (yi, zi). If xi = 0,

include in T edges (x̄i, zi) and (xi, x
′
i), otherwise include in T edges (yi, x̄i)

and (zi, xi).
– For each clause c, include in T one clause-to-literal edge that is incident to

any literal vertex that satisfies c in our chosen truth assignment for φ.

By routine inspection, T is indeed a spanning tree: Each xi-gadget is tra-
versed from r without cycles, and all clause vertices are leaves of T . Figures 2
and 3 show how T traverses an xi-gadget in different cases, depending on whether

Hardness Results for K-STC 173

xi = 0 or xi = 1 in the truth assignment for φ, and on which literals are cho-
sen to satisfy each clause. Note that the edges with double weights satisfy the
assumption of Lemma 1 in Sect. 2, that is each such weight 1:ω′ satisfies 1 ≤ ω′

and 1 + ω′ ≤ K.
We need to verify that each edge in T has congestion at most K. All the

clause vertices are leaves in T , thus the congestion of each clause-to-literal edge
is k2+2 = K; this holds for both three-literal and two-literal clauses. To analyze
the congestion of the edges inside an xi-gadget, we consider two cases, depending
on the value of xi in our truth assignment.

When xi = 0, we have two sub-cases as shown in Fig. 2. The congestions of
the edges in the xi-gadget are as follows:

– In both cases, cngG,T (r, x′
i) = k3 + 3.

– In case (a), cngG,T (r, yi) = k4 + 3. In case (b), it is k4 + 2.
– In case (a), cngG,T (yi, zi) = k4 + 4. In case (b), it is k4 + 3.
– In case (a), cngG,T (x̄i, zi) = k3 + 3. In case (b), it is k3 + 2.
– In both cases, cngG,T (xi, x

′
i) = k2 + 2.

Fig. 2. The traversal of the xi-gadget by T when xi = 0. Solid lines are tree edges,
dashed lines are non-tree edges. (a) x̄i is chosen by clause c. (b) x̄i is not chosen by
clause c.

On the other hand, when xi = 1, we have four sub-cases. Figure 2 illustrates
cases (a)–(c). In case (d) (not shown in Fig. 2), none of the positive literal
vertices xi, x

′
i is chosen to satisfy their corresponding clauses. The congestions

of the edges in the xi-gadget are as follows:

– In cases (a) and (b), cngG,T (r, x′
i) = k3 + 3. In cases (c) and (d), it is k3 + 2.

– In cases (a) and (c), cngG,T (r, yi) = k4 + 4. In cases (b) and (d), it is k4 + 3.
– In cases (a) and (c), cngG,T (yi, zi) = k4 + 4. In cases (b) and (d), it is k4 + 3.
– In cases (a) and (c), cngG,T (zi, xi) = k3 + 3. In cases (b) and (d), it is k3 + 2.
– In all cases, cngG,T (yi, x̄i) = k2 + 2.

In summary, the congestion of each edge of T is at most K. Thus cngG(T) ≤
K; in turn, stc(G) ≤ K, as claimed.

174 H. Luu and M. Chrobak

Fig. 3. The traversal of the xi-gadget by T when xi = 1. By c, c′ and c′′ we denote
the clauses that contain literals x̄i, xi and x′

i, respectively. (a) xi and x′
i are chosen by

clauses c′ and c′′. (b) x′
i is chosen by clause c′′. (c) xi is chosen by clause c′.

(⇐) We now prove the other implication in (∗). We assume that G has a
spanning tree T with cngG(T) ≤ K. We will show how to convert T into a
satisfying assignment for φ. The proof consists of a sequence of claims showing
that T must have a special form that will allow us to define this truth assignment.

Claim 1. Each xi-gadget satisfies the following property: for each literal vertex
x̃i, if some edge e of T (not necessarily in the xi-gadget) is on the r-to-x̃i path in
T , then ∂G,T (e) contains at least two distinct edges from this gadget other than
(yi, zi).

This claim is straightforward: it follows directly from the fact that there are
two edge-disjoint paths from r to any literal vertex x̃i ∈ {x̄i, xi, x

′
i} that do not

use edge (yi, zi).

Claim 2. For each two-literal clause c, edge (r, c) is not in T .

For each literal x̃i of clause c, there is an r-to-c path via the xi-gadget, so,
together with edge (r, c), G has three disjoint r-to-c paths. Thus, if (r, c) were
in T , its congestion would be at least k1 + 2 > K, proving Claim 2.

Claim 3. All clause vertices are leaves in T .

To prove Claim 3, suppose there is a clause c that is not a leaf. Then, by
Claim 2, c has at least two clause-to-literal edges in T , say (c, x̃i) and (c, x̃j).
We can assume that the last edge on the r-to-c path in T is e = (c, x̃i). Clearly,
r ∈ Tx̃i,c and x̃j ∈ Tc,x̃i

. By Claim 1, at least two edges of the xj-gadget are in
∂G,T (e), and they contribute at least 2 to cngG,T (e). We now have some cases
to consider.

If c is a two-literal clause, its root-to-clause edge (r, c) is also in ∂G,T (e),
by Claim 2. Thus, cngG,T (e) ≥ k2 + 3 > K (see Fig. 4a). So assume now that
c is a three-literal clause, and let x̃l 	= x̃i, x̃j be the third literal of c. If T
contains (c, x̃l), the xl-gadget would also contribute at least 2 to cngG,T (e), so

Hardness Results for K-STC 175

cngG,T (e) ≥ k2 + 4 > K (see Fig. 4b). Otherwise, (c, x̃l) /∈ T , and (c, x̃l) itself
contributes 1 to cngG,T (e), so cngG,T (e) ≥ k2 + 3 > K (see Fig. 4c).

We have shown that if a clause vertex c is not a leaf in T , then in all cases
the congestion of T would exceed K, completing the proof of Claim 3.

Fig. 4. Illustration of the proof of Claim 3. In (a) c is a two-literal clause; in (b) and (c),
c is a three-literal clause.

Claim 4. For each xi-gadget, edge (r, x′
i) is in T .

Towards contradiction, suppose that (r, x′
i) is not in T . Let (x′

i, c) be the
clause-to-literal edge of x′

i. If only one of the two edges (x′
i, xi), (x′

i, c) is in
T , making x′

i a leaf, then the congestion of that edge is k3 + k2 + 1 > K.
Otherwise, both (x′

i, xi), (x′
i, c) are in T . Because c is a leaf in T by Claim 3,

e = (xi, x
′
i) is the last edge on the r-to-x′

i path in T . As shown in Fig. 5a,
cngG,T (e) ≥ k3 + k2 + 2 > K. This proves Claim 4.

Claim 5. For each xi-gadget, edge (r, yi) is in T .

To prove this claim, suppose (r, yi) is not in T . We consider the congestion of
the first edge e on the r-to-yi path in T . By Claims 3 and 4, we have e = (r, x′

i),
all vertices of the xi-gadget have to be in Tx′

i,r
, and Tx′

i,r
does not contain literal

vertices of another variable xj 	= xi. For each literal x̃i of xi, if a clause-to-literal
edge (c, x̃i) is in T , then the two other edges of c contribute 2 to cngG,T (e),
otherwise (c, x̃i) contributes 1 to cngG,T (e). Then, cngG,T (e) ≥ k4 + k3 + 3 > K
(see Fig. 5b), proving Claim 5.

Claim 6. For each xi-gadget, exactly one of edges (zi, xi) and (xi, x
′
i) is in T .

By Claims 4 and 5, edges (r, yi) and (r, x′
i) are in T . Since the clause neighbor

c′ of xi is a leaf of T , by Claim 3, if none of (zi, xi), (xi, x
′
i) were in T , xi would

not be reachable from r in T . Thus, at least one of them is in T . Now, assume
both (zi, xi) and (xi, x

′
i) are in T (see Fig. 6a). Then, edge (yi, zi) is not in T ,

as otherwise we would create a cycle. Let us consider the congestion of edge
e = (r, x′

i). Clearly, xi and x′
i are in Tx′

i,r
. The edges of the two clause neighbors

176 H. Luu and M. Chrobak

Fig. 5. (a) Illustration of the proof of Claim 4. (a) Illustration of the proof of Claim 5.
Dot-dashed lines are edges that may or may not be in T .

c′ and c′′ of xi and x′
i contribute at least 2 to cngG,T (e), by Claim 3. In addition,

by Claim 1, besides e and (yi, zi), ∂G,T (e) contains another edge of the xi-gadget
which contributes at least another 1 to cngG,T (e). Thus, cngG,T (e) ≥ k4+k3+3 >
K — a contradiction. This proves Claim 6.

Claim 7. For each xi-gadget, edge (yi, zi) is in T .

By Claims 4 and 5, the two edges (r, x′
i) and (r, yi) are in T . Now assume,

towards contradiction, that (yi, zi) is not in T (see Fig. 6b). By Claim 6, only
one of (zi, xi) and (xi, x

′
i) is in T . Furthermore, the clause neighbor c′ of xi is a

leaf of T , by Claim 3. As a result, (zi, xi) cannot be on the yi-to-zi path in T . To
reach zi from yi, the two edges (yi, x̄i), (x̄i, zi) have to be in T . Let us consider
the congestion of e = (yi, x̄i). The edges of the clause neighbor c of x̄i contribute
at least 1 to the congestion of e, by Claim 3. Also, by Claim 1, besides e and
(yi, zi), ∂G,T (e) contains another edge of the xi-gadget which contributes at least
1 to cngG,T (e). In total, cngG,T (e) ≥ k4 + k2 + 2 > K, reaching a contradiction
and completing the proof of Claim 7.

Fig. 6. (a) Illustration of the proof of Claim 6. (b) Illustration of the proof of Claim 7.
Dot-dashed lines are edges that may or may not be in T .

Hardness Results for K-STC 177

Claim 8. For each xi-gadget, if its clause-to-literal edge (x̄i, c) is in T , then its
other two clause-to-literal edges (xi, c

′) and (x′
i, c

′′) are not in T .

Assume the clause-to-literal edge (x̄i, c) of the xi-gadget is in T . By Claim 7,
edge (yi, zi) is in T . If (yi, x̄i) is also in T , edge (x̄i, zi) cannot be in T , and it
contributes 1 to cngG,T (yi, x̄i). As shown in Fig. 7a, cngG,T (yi, x̄i) = k2+3 > K.
Thus, (yi, x̄i) cannot be in T . Since c is a leaf of T , edge (x̄i, zi) has to be in T ,
for otherwise x̄i would not be reachable from r. By Claim 6, one of edges (zi, xi)
and (xi, x

′
i) is in T . If (zi, xi) is in T (see Fig. 7b), cngG,T (yi, zi) ≥ k4 + 5 > K.

Hence, (zi, xi) is not in T , which implies that (xi, x
′
i) is in T .

Fig. 7. Illustration of the proof of Claim 8. Dot-dashed lines are edges that may or
may not be in T .

Now, we proceed by contradiction assuming that at least one other clause-
to-literal edge of the xi-gadget is in T . If edge (xi, c

′) is in T , cngG,T (xi, x
′
i) ≥

k2 + 3 > K, as shown in Fig. 7c. Similarly, if (x′
i, c

′′) is in T , cngG,T (r, x′
i) ≥

k3+4 > K (see Fig. 7d). So we reach a contradiction in both cases, thus proving
Claim 8.

We are now ready to complete the proof of the (⇐) implication in the equiv-
alence (∗). We use our spanning tree T of congestion at most K to create a truth
assignment for φ by setting xi = 0 if the clause-to-literal edge of x̄i is in T , oth-
erwise xi = 1. By Claim 8, this truth assignment is well-defined. Each clause has
one clause-to-literal edge in T which ensures that all clauses are indeed satisfied.

References

1. Alvarruiz Bermejo, F., Mart́ınez Alzamora, F., Vidal Maciá, A.M.: Improving the
efficiency of the loop method for the simulation of water distribution networks. J.
Water Resour. Plan. Manag. 141(10), 1–10 (2015)

2. Benczúr, A.A., Karger, D.R.: Approximating s − t minimum cuts in Õ(n2) time.
In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing,
pp. 47–55 (1996)

178 H. Luu and M. Chrobak

3. Bhatt, S., Chung, F., Leighton, T., Rosenberg, A.: Optimal simulations of tree
machines. In: Proceedings of the 27th Annual Symposium on Foundations of Com-
puter Science, pp. 274–282 (1986)

4. Bodlaender, H., Fomin, F., Golovach, P., Otachi, Y., Leeuwen, E.: Parameterized
complexity of the spanning tree congestion problem. Algorithmica 64, 1–27 (2012)

5. Bodlaender, H.L., Kozawa, K., Matsushima, T., Otachi, Y.: Spanning tree conges-
tion of k-outerplanar graphs. Discret. Math. 311(12), 1040–1045 (2011)

6. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Discret. Math. 8(3), 359–387 (1995)
7. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:

The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)
8. Dragan, F.F., Fomin, F.V., Golovach, P.A.: Spanners in sparse graphs. J. Comput.

Syst. Sci. 77(6), 1108–1119 (2011)
9. Emek, Y., Peleg, D.: Approximating minimum max-stretch spanning trees on

unweighted graphs. SIAM J. Comput. 38(5), 1761–1781 (2009)
10. Fekete, S.P., Kremer, J.: Tree spanners in planar graphs. Discret. Appl. Math.

108(1), 85–103 (2001)
11. Fung, W.S., Hariharan, R., Harvey, N.J., Panigrahi, D.: A general framework for

graph sparsification. In: Proceedings of the 43rd Annual ACM Symposium on
Theory of Computing, pp. 71–80 (2011)

12. Khuller, S., Raghavachari, B., Young, N.: Designing multi-commodity flow trees.
Inf. Process. Lett. 50(1), 49–55 (1994)

13. Kozawa, K., Otachi, Y.: Spanning tree congestion of rook’s graphs. Discuss. Math.
Graph Theory 31(4), 753–761 (2011)

14. Kozawa, K., Otachi, Y., Yamazaki, K.: On spanning tree congestion of graphs.
Discret. Math. 309(13), 4215–4224 (2009)

15. Löwenstein, C.: In the Complement of a Dominating Set. Ph.D. thesis, Technische
Universitat Ilmenau (2010)

16. Okamoto, Y., Otachi, Y., Uehara, R., Uno, T.: Hardness results and an exact
exponential algorithm for the spanning tree congestion problem. In: Ogihara, M.,
Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 452–462. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20877-5 44

17. Ostrovskii, M.: Minimal congestion trees. Discret. Math. 285(1), 219–226 (2004)
18. Otachi, Y.: A survey on spanning tree congestion. In: Fomin, F.V., Kratsch, S., van

Leeuwen, E.J. (eds.) Treewidth, Kernels, and Algorithms. LNCS, vol. 12160, pp.
165–172. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42071-0 12

19. Otachi, Y., Bodlaender, H.L., van Leeuwen, E.J.: Complexity results for the span-
ning tree congestion problem. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410,
pp. 3–14. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16926-
7 3

20. Rosenberg, A.L.: Graph embeddings 1988: recent breakthroughs, new directions.
In: Reif, J.H. (ed.) AWOC 1988. LNCS, vol. 319, pp. 160–169. Springer, New York
(1988). https://doi.org/10.1007/BFb0040384

21. Spielman, D.A., Teng, S.H.: Spectral sparsification of graphs. SIAM J. Comput.
40(4), 981–1025 (2011)

22. Yoshinaka, R.: Higher-order matching in the linear lambda calculus in the absence
of constants is NP-complete. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp.
235–249. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-
3 18

https://doi.org/10.1007/978-3-642-20877-5_44
https://doi.org/10.1007/978-3-030-42071-0_12
https://doi.org/10.1007/978-3-642-16926-7_3
https://doi.org/10.1007/978-3-642-16926-7_3
https://doi.org/10.1007/BFb0040384
https://doi.org/10.1007/978-3-540-32033-3_18
https://doi.org/10.1007/978-3-540-32033-3_18

Energy Efficient Sorting, Selection
and Searching

Varunkumar Jayapaul1, Seungbum Jo2(B), Krishna Palem3,
and Srinivasa Rao Satti4

1 Indian Institute of Technology Mandi, Kamand, India
varunkumar@iitmandi.ac.in

2 Chungnam National University, Daejeon, South Korea
sbjo@cnu.ac.kr

3 Rice University, Houston, USA
Krishna.V.Palem@rice.edu

4 Norwegian University of Science and Technology, Trondheim, Norway

srinivasa.r.satti@ntnu.no

Abstract. In this paper, we introduce a model for studying energy effi-
cient algorithms by extending the well-studied comparison model. In our
model, the result of a comparison is determined based on two parame-
ters: (i) the energy used to perform a comparison, and (ii) the absolute
difference between the two values being compared – thus introducing an
energy-accuracy trade-off. This model also extends the ideas presented by
Geissmann and Penna [SOFSEM 2018] and Funke et al. [Comput. Geom.
2005] wherein they use two distinct types of comparisons namely low and
full-energy (cheap and expensive) comparisons, by introducing multiple
types of comparisons. In this extension, the accuracy of a comparison
becomes a function of the energy used. We consider the fundamental
problems of (i) sorting (ii) selection (iii) searching, and design efficient
algorithms for these problems in the new model. We also present lower
bounds on the energy usage for some of these problems, showing that
some of our algorithms are asymptotically optimal with respect to the
energy usage.

Keywords: Energy-efficiency · Sorting · Selection · Searching ·
Binary search tree

1 Introduction

Various studies have captured the relationship between energy consumption and
computational capability. One direction to explore such a relationship is by con-
sidering models motivated by Landauer’s Principle [4,17,21]. In these models,
energy usage is proportional to the ratio of the input and output sizes. If one can
reconstruct the input from the output, no energy is considered necessary for the
computation to produce the output and in this case, the computation is called

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 179–190, 2023.
https://doi.org/10.1007/978-3-031-27051-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_16&domain=pdf
https://doi.org/10.1007/978-3-031-27051-2_16

180 V. Jayapaul et al.

reversible computation. Demaine et al. [7] give three different models based on
the energy cost of irreversible operations and give a time-space-energy trade-off
for some fundamental sorting and graph algorithms.

On the other hand, one can consider a trade-off between the energy usage and
its accuracy for each step of the computation (see [20] for details). This is moti-
vated by the fact that probabilistic CMOS switches [16] give significant energy
gains compared to the deterministic CMOS switches. For example, Arumugam
et al. [3] proposed a probabilistic memory model which has a fixed probability
of incorrectness for read/write operations on each memory cell and designed
energy-accuracy trade-off algorithms for radix sort and pattern matching prob-
lems under the model. Geissmann and Penna introduced a comparison model in
which the accuracy of a comparison depends on an energy parameter λ. They
analyzed the performance of sorting algorithms by considering them as Markov
processes [14].

The concept of incorrectness in computations has been well-studied for
comparison-based models with several variants (without considering the energy
consumption as a parameter). Feige et al. [8] proposed the model where each
comparison has a fixed error probability and showed how many comparisons are
necessary (and sufficient) for obtaining a correct output with a small probability
of failure, and showed that there exists an asymptotically optimal algorithm for
sorting, merging, and selection problems under this model, in the worst case.
Under the same model, Leucci and Liu [18] considered the selection problem
and the approximate minimum selection problem in the average and the worst
case, respectively. Alonso et al. [2] showed that the number of inversions after
performing Quicksort on an array of size n converges to Θ(n2p) when each
comparison has error probability p. Geissmann et al. [11] recently proposed an
O(n log n)-time sorting algorithm with O(log n) maximum dislocation and O(n)
total dislocation with high probability for an array of size n when each compar-
ison has a fixed error probability, and the answer does not change by repeat-
ing the same comparison. In this model, the dislocation is defined as a gap
between the actual rank and its final position on the input elements. Without
considering the probability of errors while performing a comparison as a param-
eter, Finocchi and Italiano [9] considered the comparison-based algorithms when
some elements of the input can be read incorrectly. Huang et al. [15] considered
the sorting problem under the model where one cannot compare each pair of
elements with a fixed probability. Ajtai et al. [1] proposed a model of impre-
cise comparisons where two elements are compared correctly only if their value
difference is at least δ (otherwise, the output is unpredictable) and designed
a sorting algorithm of permutation where any two inversions have the value
difference at most kδ for any constant k > 1 after the sorting. Geissmann
and Penna [13] proposed an inexact comparison-based model motivated from
the energy-accuracy trade-off mentioned in [20]. Their model has two types of
comparisons low-energy comparisons and high-energy comparisons, wherein each
comparison has a non-zero error probability (based on the value difference) with
low-energy comparison, whereas a high-energy comparison has zero error prob-
ability. They considered the number of expected inversions after Insertion sort

Energy Efficient Sorting, Selection and Searching 181

and Quicksort only with low-energy comparisons (without repeating the same
comparison). Thus, by combining with any sorting algorithm parameterized by
the number of inversions (e.g., Insertion sort with (2, 4)-finger search tree [19])
with high-energy comparisons, one can use less high-energy comparisons com-
pared to performing sorting algorithms only with high-energy comparisons. The
model with low and high-energy comparisons is also used in other problems as
optimization [12] and clustering [5]. Note that the similar model was proposed
by Funke et al. [10] which uses cheap and expensive comparisons, to improve the
practical performance of geometric computations.

In this paper, we propose a new comparison model based on the energy-
accuracy trade-off with distance-based errors, which was considered in the model
of Ajtai et al. [1] and the model with low and high-energy comparisons [5,12,13].
Our model’s primary motivation is to measure the total energy usage with vari-
ous energy-accuracy trade-off models. More precisely, our model can use multiple
amounts of energy where the energy usage for each comparison is decided by the
threshold function. The value of the threshold function only depends on the
maximum difference of two elements to be compared without any probability of
incorrectness. If we compare two elements with energy less than the minimum
energy to be compared correctly, the answer is unpredictable (i.e., the adversary
can choose the answer arbitrarily). Note that our model can be applied to the
various scenarios by defining the threshold function appropriately. For example,
in the RAM model with word size Θ(lg n) bits1, our model with the threshold
function f(k) = O(lg k) corresponds to the model when one needs to use the
same energy to read each bit in the word (see Sect. 2 for a detailed definition of
the threshold function f). Also for example, suppose there is a preference list of
a set of objects investigated by multiple experts, and the experts have different
levels of expertise in ranking the objects (see [6]). For simplicity, assume that
more experienced experts can rank the objects whose ranks are closer; and that
the cost of querying experts is proportional to their expertise. Then our model
can be applied to the problem of obtaining a complete sorted list of preferences
from the experts using minimum cost.

Our model extends the model with low and high-energy comparisons [5,12,13]
in the sense that our model can use multiple types of energy with some unknown
error probability, while giving a ratio of the energy consumption among them. For
example, when the ratio between the low and high energy comparison is almost 1,
sorting only with high energy comparisons might use less energy. Also, compared
to the model of Ajtai et al. [1], our model can use multiple types of imprecise com-
parisons by increasing (or decreasing) the energy used for a comparison.

We consider the following fundamental problems (i) sorting, (ii) selection
and (iii) searching under our model, and describe energy-efficient algorithms
for the above three problems for a wide variety of threshold functions. Most of
our new algorithms use less energy than the trivial algorithms, which perform
the well-known optimal algorithms while using the full-energy (i.e., high-energy

1 Throughout this paper, lg denotes the logarithm to the base 2, and we ignore ceiling
and floors which do not affect our results asymptotically.

182 V. Jayapaul et al.

comparison in the model of low- and high-energy comparisons [13]) for each
comparison operation. We summarize our results for each problems in Sect. 2.
The basic idea of our algorithms is to use comparisons with low energy to obtain
an approximated solution that only requires less number of comparisons with
the full-energy. Note that the similar idea was used in [10,12,13] for sorting and
optimization problems under low and high-energy comparisons model.

The paper is organized as follows. Section 2 describes our energy-accuracy
trade-off comparison model, and gives the summarization of our results. Section 3
and 4, we consider sorting and finding the minimum under our model and give
the algorithms which take less energy than the trivial algorithms, with some
threshold functions.

2 Model

In this section, we introduce our energy-accuracy trade-off comparison model.
In this model the cost of performing a comparison is measured by the energy
used for comparing any two operands a and b. Note that, as is the case for
the standard comparison model, any computation other than comparison (i.e.,
read/write and movement of data within the memory) is considered free and
costs no energy. In this paper, we only consider inputs consisting of integers.

Now we define the energy to perform a single comparison. Let E be the
minimum energy needed to compare any two elements from the input correctly
(i.e., if we use energy E to compare two elements, then we are assured that the
answer is correct). We refer to a comparison that uses energy E as a full-energy
comparison, and a comparison that uses energy strictly less than E as a partial-
energy comparison. Although one can simply choose E to be 1 to remove this
parameter from the energy terms. We choose not to do so, so that it is clear
from the complexity terms that we are referring to energy and not the number
of comparisons.

The answer to a partial-energy comparison is based on following two param-
eters: (i) the (absolute) difference between the operands, and (ii) the threshold
function, f : Z+ → R

+ which is a non-decreasing function with f(1) = 1. More
specifically, when we compare two distinct elements a and b using a partial-
energy comparison which consumes at least E/f(|a − b|) energy, the answer is
correct; otherwise (i.e., if we use energy less than E/f(|a−b|)), the answer could
be incorrect (i.e., the adversary can choose the answer arbitrarily). Note that the
case of energy E/f(1) (i.e., full-energy comparison) is considered as the special
case which allows to check the equality of two elements although |a−b| < 1 when
a = b. In our model, the energy used by a comparison is fixed by choosing an
argument for the threshold function. We refer to this argument as the threshold.

Since any threshold function is a non-decreasing function, it is clear that
more energy is necessary to compare two values correctly with a smaller dif-
ference, regardless of which threshold function is used in our model. Also, any
comparison-based algorithm with K comparisons can be performed under our
model with energy E · K by trivially performing every comparison with full-
energy. In the rest of the paper, given two integers a, b, and a positive integer

Energy Efficient Sorting, Selection and Searching 183

x, we use the notation a ≺x b (resp. a �x b) to mean that a is smaller (resp.
larger) than b according to the answer of the comparison with threshold x, and
a < b (resp. a > b) means that a is smaller (resp. larger) than b according to
their actual values. Thus, a ≺x b implies that a+(x−1) < b. The equality of two
elements (a = b) can only be ascertained by using a full energy comparison to
compare the two elements. In the rest of the paper, we study threshold functions
in general, but we also showcase a few special threshold functions.

Summary of the Results. When a sequence P of n distinct integers are given,
we obtain the following results:

– Sorting: We first show that at least energy E · (n − 1) is necessary to sort
P (Theorem 5). We then give two sorting algorithms (i) an algorithm that
runs in two phases, where every comparison within each phase uses the same
amount of energy. We refer to this as a two-level sorting algorithm; and (ii)
a multi-level sorting algorithm, which consists of several phases. Both the
algorithms use energy o(En lg n) when the threshold function is non-trivial
i.e. in ω(1). Furthermore, when the threshold function is O(kc) for c > 1,
we show that the multi-level algorithm uses asymptotically optimal energy in
the worst case (Theorem 7).

– Selection: We show that there exists a algorithm for (i) finding the minimum
of P using energy o(En) when the threshold function is in Ω(lgc k) for any
constant c > 1 in the worst case (Theorem 9), and (ii) finding an element with
rank r in P using energy o(En) when the threshold function is in Ω(kc) for
any constant c > 0 in the worst case (Theorem 1). For the selection problem,
we also give a randomized algorithm which uses energy O(E lg n) in average if
the threshold function is in Ω(k) (Theorem 2). Note that when f(k) is O(k),
our randomized algorithm uses asymptotically optimal energy on average.

– Searching: We consider two problems as (i) searching in a sorted array and
(ii) searching in a balanced binary search tree with o(n) additional space
(for both of the cases, we assume that the input is already given). For (i),
we give an algorithm that uses energy o(E lg n) in the worst case when the
threshold function is in ω(1) (Theorem 3). When the threshold function is in
Ω(lgc k) for any constant c > 1, the algorithm uses energy Θ(E), which is
asymptotically optimal in energy usage. For (ii), We give an algorithm that
uses energy o(E lg n) in the worst case when the threshold function is in ω(1)
(Theorem 4). Again when the threshold function is in Ω(kc) for any constant
c > 0, the algorithm uses energy Θ(E).

Due to the page limit, the details of the results other than sorting and find-
ing the minimum are omitted. The following theorems describe the results on
selection and searching problems.

Theorem 1. Given a sequence P containing n distinct integers, there exists an
algorithm which can find the r-th smallest element in P using energy o(En) if
the threshold function f(k) is in Ω(kc) for any constant c > 0.

184 V. Jayapaul et al.

Theorem 2. Given a set P containing n distinct elements, there exists an
algorithm which can find the r-th smallest element in P using expected energy
O(E lg n) if the threshold function f(k) is in Ω(k).

Theorem 3. Given a sorted sequence of n distinct integers, there exists an algo-
rithm to search an element in P using energy o(E lg n) if the threshold func-
tion f(k) is in ω(1). Furthermore, the algorithm uses energy Θ(E) if f(k) is in
Ω(lgc k) for some constant c > 1,

Theorem 4. Given a balanced BST T of n nodes consisting of distinct integers,
there exists an algorithm to search a key in T energy o(E lg n) if the threshold
function is ω(1), and using energy O(E) if the threshold function f(k) is in
Ω(kc) for some constant c > 0.

3 Sorting

In this section, we consider the problem of sorting a sequence P =
P (1), P (2), . . . , P (n) of n distinct integers. Regardless of the threshold func-
tion, one can obtain a simple algorithm that uses energy O(En lg n) by simply
running any worst-case O(n lg n)-time comparison-based sorting algorithm using
only full-energy comparisons. In this section, we focus on how to minimize the
total energy consumption under our model. We start by giving a simple lower
bound on the energy consumption for sorting an arbitrary sequence of integers.

Theorem 5. Any sorting algorithm that sorts a sequence of n distinct integers
requires energy at least E · (n − 1).

Proof. Let P be the input sequence consisting of n distinct integers that is
already sorted. In order to verify that P is sorted, the algorithm needs to com-
pare every adjacent pair of elements to make sure that they are in the correct
order. Otherwise, the adversary can put one pair of adjacent elements in wrong
order, while keeping the rest of elements in the correct order. Now, for any
pair of adjacent elements P (i) and P (i + 1), if |P (i) − P (i + 1)| = 1 then any
number of partial-energy comparisons cannot infer the correct ordering between
P (i) and P (i + 1). Thus, the algorithm is forced to use full-energy comparisons
(with energy E) to verify that each pair of adjacent elements is in the correct
order. This forces every correct algorithm to perform at least n − 1 full-energy
comparisons using energy E · (n − 1).

In the following sections, an inversion in P is defined as a pair of positions
(i, j) in P , where i < j and P (i) > P (j), or vice versa. For an inversion (i, j),
we say that i (resp. j) has an inversion with j (resp. i).

3.1 Two-Level Algorithm

Our two-level sorting algorithm is based on the two-level algorithm of Funke
et al. [10]. Their notion of cheap and expensive comparisons is analogous to

Energy Efficient Sorting, Selection and Searching 185

our concept of partial-energy and full-energy comparisons respectively. More
specifically, the model of Funke et al. [10] is a special case of our model which only
allows two types of comparisons: compare two values with threshold k for some
fixed k > 1 (cheap comparison), and with threshold 1 (expensive comparison)2.
The two-level algorithm of Funke et al. [10] to sort P is as follows:

1. (First level:) Perform any comparison-based sorting algorithm on P using
cheap comparisons only. Let P ′ be the resulting sequence with I inversions
in it.

2. (Second level:) Sort P ′ with O(n lg (2 + I/n)) expensive comparisons using
(2,4)-finger search tree [19].

Now we analyze the above two-level algorithm under our model. We will use
a threshold k which will be decided later. For the first level of the algorithm, we
choose Mergesort which gives at most kn lg n inversions after sorting (only with
cheap comparisons) [10]. The energy usage is at most O(E

f(k) ·n lg n) for the first

level of the algorithm, and O(E ·n lg(2 + kn lg n
n)) = O(En(lg k +lg lg n)) for the

second level. Thus, we can sort P by using energy at most O(En(lg n/f(k) +
lg k + lg lg n)) in total. The threshold functions f can be broadly categorized
into three different classes and we shall list out the energy requirement in each
of those classes.

1. When f(k) is in Ω(k), let k ∈ {1, 2, . . . , n} be the minimum value which
satisfies f(k) ≥ lg n. By choosing this k as our threshold, the total energy
required to sort P would be O(En lg lg n).

2. When f(k) is in ω(1), we simply choose k = lg n. Then since f(lg n) = ω(1),
the total energy required to sort is O(En(lg n/f(lg n)+lg lg n)) = o(En lg n).

3. When f(k) is in O(1), the cost of any partial-energy comparison asymptot-
ically matches the cost of a full-energy comparison. So, there is no advan-
tage in using partial-energy comparisons, and the energy required to sort is
Θ(En lg n).

The third case (f(k) = O(1)) is not interesting because the optimal strategy
is the trivial strategy of using only full-energy comparisons. This case is only
considered for the sake of completeness and we shall not be discussing the third
case in the rest of the paper. Thus, as long as the threshold function is a super
constant function, the two-level algorithm uses energy o(En lg n) to sort P . We
summarize the results in the following theorem.

Theorem 6. Given a sequence P of n distinct integers and a threshold func-
tion f(x), there exists an algorithm which can sort P using energy at most (i)
O(En lg lg n) if f(k) is in Ω(k), and (ii) o(En lg n) if f(k) is in ω(1).

2 In [10], they defined the cheap comparison based on the absolute difference between
the rank of operands. This corresponds to the case when input is a permutation over
integers 1 to n.

186 V. Jayapaul et al.

Remark. By using Quicksort instead of Mergesort during the first level of the
two-level algorithm, we can get better results on average. Suppose we perform
Quicksort using O(n lg n) cheap comparisons on average. Since there exist at
most kn inversions after Quicksort with cheap comparisons [13], we can sort
using additional O(n lg(2+k)) expensive comparisons. Thus in this case, the two-
level algorithm uses energy O(En(lg n/f(k)+lg k)) on average. This is especially
useful when the threshold function is a super polynomial function since we can
choose k to satisfy lg n/f(k) ≤ 1 in this case (thus, O(En lg k) energy is enough
on average). For example, if f(k) is in 2

√
k, we can choose k to be (lg lg n)2 and

the average energy consumption would be O(En lg lg lg n) which is o(En lg lg n).
Furthermore, the worst case energy usage in this case is O(En(n/f(k) + lg k))
– this would be O(En lg lg n) if we choose k = (lg n)2.

3.2 Multi-level Algorithm

In this section, we describe a multi-level sorting algorithm to sort a sequence
P of n distinct integers, which generalizes the two-level algorithm in Sect. 3.1.
We prove that by using distinct threshold values at each level, we can obtain
an algorithm whose energy usage matches asymptotically the lower bound of
Theorem 5 when the threshold function f(k) is in Ω(kc) for any fixed constant
c > 0. We first introduce a lemma which is a reformulation of Lemma 3 of Funke
et al. [10].

Lemma 1. ([10]). Let P ′ be a sequence after performing Mergesort on a
sequence P of n distinct integers using partial-energy comparisons only (with
threshold k). Then for any two positions i < j on P ′, P ′(i) ≤ P ′(j) + k lg n.

Proof. We follow the proof in Funke et al. [10, Lemma 3] which bounds the
maximum number of inversions after Mergesort with partial-energy (i.e., cheap)
comparisons. The proof uses induction on the number of merging levels. Level
0 (the case that there is one element in the input) is trivial. Now suppose we
merge two lists P (x1)P (x2) . . . P (xn/2) and P (xn/2+1)P (xn/2+2) . . . P (xn). Then
by induction hypothesis, for any positions in the first list with i < j, P (xi) ≤
P (xj)+k lg(n/2). Since we only use partial-energy comparisons with threshold k,
at most k elements in the second list can be placed between P (i) and P (j) after
merging two lists. Thus, the largest element which is placed between P (i) and
P (j) after merging lists has the value at most k+P (xj)+k lg n/2 = P (xj)+k lg n.

Next, we introduce the following lemma which gives an upper bound on the
distance between any two positions i and j on P where (i, j) is an inversion,
after Mergesort with partial-energy comparison is performed.

Lemma 2. Let P ′ be a sequence after performing Mergesort on a sequence P
of n distinct integers using partial-energy comparisons only (with threshold k).
Then for any inversion (i, j), |i − j| is at most 2k lg n.

Energy Efficient Sorting, Selection and Searching 187

Proof. Let (i, j) be an inversion in P ′ after performing Mergesort, and without
loss of generality suppose i < j and P ′(i) > P ′(j). Then by Lemma 1, there
exists at most k lg n elements between P ′(i) and P ′(j) which are smaller than
P ′(i). Next, for any position l with i < l < j and P ′(i) < P ′(l), (l, j) is an
inversion since P ′(j) < P ′(i) < P ′(l). Thus, by the same property, there exists
at most k lg n elements between P ′(i) and P ′(j) which are larger than P ′(i).
Thus, the number of elements between the positions i and j is at most 2k lg n.

Now we describe our multi-level sorting algorithm to sort P . Let n1 = n for the
sake of simplicity of notation. The threshold values (ki at level i, for i ≥ 1) in
the following description are chosen later, based on the threshold function.

First level: We first perform Mergesort on P using energy E/f(k1) for each
comparison, thus using energy O((En1 lg n1)/f(k1)) in total. Then the resulting
sequence P1 has at most k1n1 lg n1 inversions. Also for any inversion (a1, b1) in
P1, |a1 − b1| is at most 2k1 lg n1 by Lemma 2.

j-th level: For j-th (j > 1) level, we first divide Pj−1 into blocks of size nj =
4kj−1 lg nj−1 except the last block. Also for any i ∈ {1, 2, . . . , �nj−1/nj	}, we
define i-th group in Pj−1 as (at most) three consecutive blocks composed of the
i-th block along with the (i−1)-th and (i+1)-th block, if they exist. Then by the
property of Pj−1, for any inversion (a, b) in Pj−1, both the positions a and b are
in (a/nj)-th group. Now let Pj be a sequence obtained by performing Mergesort
on each group of Pj−1 sequentially from left to right, using energy E/f(kj) for
each comparison (thus, the total energy usage is O(n1

nj
· Enj lg nj

f(kj)
) = O(En1 lg nj

f(kj)
)).

Then by Lemma 2, for any inversion (a, b) in Pj , |a−b| is at most 4kj lg nj (thus,
Pj has O(kjn1 lg nj) inversions in total). This is from the fact that |a− b| can be
greater than 2kj lg nj only when Pj(a) and Pj(b) are placed in two consecutive
blocks (let these blocks be the r-th and (r+1)-th block, respectively) just before
sorting the group which contains the (r + 1)-th block, but not the r-th block.
The worst case occurs when b is moved (2kj lg nj) positions to the right of its
previous position after sorting the group, which implies |a − b| ≤ 4kj lg nj (note
that Pj(b) never moves beyond the (r + 1)-th block in this case).

Final level: We iteratively perform the above procedure up to �-th level where
4k� lg n� is O(1). The total energy used in all the � levels is O(En1 ·∑�

j=1
lg nj

f(kj)
).

Finally, since the resulting sequence P� has O(n) inversions, we sort P� using
O(En) energy, (using the same strategy which was used in the second level of
the two-level algorithm in Sect. 3.1, using full-energy comparisons) and complete
the sorting procedure.

The following theorem shows that for any constant c > 0 the multi-level
sorting algorithm with a threshold function f(k) is Ω(kc) uses asymptotically
optimal energy to sort P .

188 V. Jayapaul et al.

Theorem 7. Given a sequence P of n distinct integers, one can sort P using
at most energy O(En) if the threshold function f(k) = Ω(kc) for some constant
c > 0.

Proof. Let ki = (lg ni)c′
for all i ≥ 1 where c′ is 2/c when 0 < c ≤ 1, and

1 otherwise (c > 1). Then the multi-level sorting algorithm terminates after
O(lg∗ n) levels (since nj is O(lg1+c′

nj−1)). Thus, the total energy usage is
O(En((

∑O(lg∗ n)
j=1

1
lg ni

) + 1)) = O(En) since the terms in the summation can be
upper bounded by the terms of a geometric series in which last term is O(En).

Remark. Note that for some threshold functions f(k) = o(kc), the multi-level
sorting algorithm uses asymptotically less energy than the two-level sorting algo-
rithm. For example when f(k) is in Θ(lg2 k), the multi-level sorting algorithm
terminates after O(lg lg n) levels by setting ki = 2(lg ni/

√
lg lg ni) for all i ≥ 1

(note that ni+1 = ki lg ni = O(
√

ni)). Thus, the multi-level sorting algorithm
uses O(En(

∑O(lg lg n)
j=1

lg ni

lg lg ni
) = o(En lg lg n) energy in total, whereas the two-

level algorithm of Theorem 6 uses ω(En lg lg n) energy.

4 Finding the Minimum Element

In this section, we study the problem of finding the minimum (i.e., the case
when r = 1). We first prove the following theorem, which gives a lower bound on
the energy usage for finding the minimum element (thus, the same lower bound
holds for finding an element with rank r).

Theorem 8. Any selection algorithm that finds the minimum element from a
sequence of n distinct integers requires energy at least

∑n−1
i=1 E/f(i).

Proof. Suppose the sequence is a permutation sorted in ascending order. To ver-
ify that the smallest element is placed correctly, the verification process needs
to compare the smallest element with the i-th smallest element in the permu-
tation using a threshold at most i. Then the total energy required would be∑n−1

i=1 E/f(i).

A naive way to find the minimum would involve using n−1 comparisons with
full-energy which takes energy Θ(En) in total. To improve the energy usage, we
first divide P into blocks of size b = 4k lg k (k will be chosen based on the
threshold function), and let Bi be the i-th block of P . Now let C be a sequence
of elements in P initialized as B1. Then for 2 ≤ i ≤ n/b, we iteratively perform
a following procedure:

1. Perform Mergesort on the sequence C · Bi using E/f(k) energy for each
comparison (for any two sequences A and B, A ·B denotes the concatenation
of A and B).

2. By Lemma 2, the smallest element of C · Bi should be in the 2k lg 2b < b
leftmost elements after the sequence is sorted in increasing order. Update C
as the sequence of of 4k lg k leftmost elements in C · Bi.

Energy Efficient Sorting, Selection and Searching 189

After performing the above procedure, it is clear that we can find the
smallest element in P by performing at most O(k lg k) full-energy compar-
isons on C. Thus, we can find the minimum element in P using energy
O(E((n/b) · b lg b/f(k) + k lg k) = O(E(n lg k/f(k) + k lg k)) in total. When
the threshold function f(k) is in Ω(lgc k) for any constant c > 1, we can find
the minimum element in P using energy O(Ek lg k)+ o(En) = o(En) by setting
k = n

1
1+c . We summarize the results in the following theorem.

Theorem 9. Given a sequence P containing n distinct elements, there exists an
algorithm which can find the minimum in P using energy o(En) if the threshold
function f(k) is in Ω(lgc k) for any constant c > 1.

5 Conclusion

This paper proposes a new comparison model based on the energy-accuracy
trade-off and gives some energy-efficient algorithms under this model with the
various cases of threshold functions. Many of the algorithms that we propose are
asymptotically optimal under a wide range of t threshold functions. Note that
our model can be applied not only to implement energy-efficient exact problems
but also to energy-efficient approximation problems. For example, considering
the energy-efficient algorithms for imprecise sorting [1] or sorting with small max-
imum dislocation [11] under our model would be interesting. Also in this paper,
we only consider the case when the input consists of distinct integers. Extending
our results to more general inputs (e.g., multisets) is also an interesting open
problem.

References

1. Ajtai, M., Feldman, V., Hassidim, A., Nelson, J.: Sorting and selection with impre-
cise comparisons. ACM Trans. Algorithms 12(2), 19:1–19:19 (2016)

2. Alonso, L., Chassaing, P., Gillet, F., Janson, S., Reingold, E.M., Schott, R.: Quick-
sort with unreliable comparisons: a probabilistic analysis. Comb. Probab. Comput.
13(4–5), 419–449 (2004). https://doi.org/10.1017/S0963548304006297

3. Arumugam, G.P., et al.: Novel inexact memory aware algorithm co-design for
energy efficient computation: algorithmic principles. In: Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibition, DATE 2015, pp.
752–757. ACM (2015)

4. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput.
18(4), 766–776 (1989)

5. Bianchi, E., Penna, P.: Optimal clustering in stable instances using combinations
of exact and noisy ordinal queries. Algorithms 14(2), 55 (2021)

6. David, H.A.: The Method of Paired Comparisons, 2nd edition, vol. 12. London
(1988)

7. Demaine, E.D., Lynch, J., Mirano, G.J., Tyagi, N.: Energy-efficient algorithms.
In: Sudan, M. (ed.) Proceedings of the 2016 ACM Conference on Innovations in
Theoretical Computer Science, Cambridge, MA, USA, 14–16 January 2016, pp.
321–332. ACM (2016)

https://doi.org/10.1017/S0963548304006297

190 V. Jayapaul et al.

8. Feige, U., Raghavan, P., Peleg, D., Upfal, E.: Computing with noisy information.
SIAM J. Comput. 23(5), 1001–1018 (1994)

9. Finocchi, I., Italiano, G.F.: Sorting and searching in faulty memories. Algorithmica
52(3), 309–332 (2008)

10. Funke, S., Mehlhorn, K., Näher, S.: Structural filtering: a paradigm for efficient
and exact geometric programs. Comput. Geom. 31(3), 179–194 (2005)

11. Geissmann, B., Leucci, S., Liu, C., Penna, P.: Optimal sorting with persistent
comparison errors. In: 27th Annual European Symposium on Algorithms, ESA
2019. LIPIcs, vol. 144, pp. 49:1–49:14 (2018)

12. Geissmann, B., Leucci, S., Liu, C.H., Penna, P., Proietti, G.: Dual-mode greedy
algorithms can save energy. In: 30th International Symposium on Algorithms and
Computation (ISAAC 2019), vol. 149, pp. 64–1. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik (2019)

13. Geissmann, B., Penna, P.: Inversions from sorting with distance-based errors. In:
Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOF-
SEM 2018. LNCS, vol. 10706, pp. 508–522. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-73117-9 36

14. Geissmann, B., Penna, P.: Sorting processes with energy-constrained comparisons.
Phys. Rev. E 97(5), 052108 (2018)

15. Huang, Z., Kannan, S., Khanna, S.: Algorithms for the generalized sorting problem.
In: Ostrovsky, R. (ed.) IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, pp. 738–747. IEEE Computer Society (2011)

16. Korkmaz, P., Akgul, B.E.S., Palem, K.V.: Energy, performance, and probability
tradeoffs for energy-efficient probabilistic CMOS circuits. IEEE Trans. Circuits
Syst. I Regul. Pap. 55(8), 2249–2262 (2008)

17. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5(3), 183–191 (1961). https://doi.org/10.1147/rd.53.0183

18. Leucci, S., Liu, C.H.: Approximate minimum selection with unreliable comparisons.
Algorithmica 84(1), 60–84 (2022)

19. Mehlhorn, K.: Data Structures and Algorithms 1: Sorting and Searching, EATCS
Monographs on Theoretical Computer Science, vol. 1. Springer, Cham (1984).
https://doi.org/10.1007/978-3-642-69672-5

20. Palem, K.V., Avinash, L.: Ten years of building broken chips: the physics and
engineering of inexact computing. ACM Trans. Embed. Comput. Syst. 12(2s),
87:1–87:23 (2013)

21. Zurek, W.H.: Thermodynamic cost of computation, algorithmic complexity and
the information metric. Nature 341, 119–124 (1989)

https://doi.org/10.1007/978-3-319-73117-9_36
https://doi.org/10.1007/978-3-319-73117-9_36
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1007/978-3-642-69672-5

Reconfiguration of Vertex-Disjoint
Shortest Paths on Graphs

Rin Saito1(B) , Hiroshi Eto2 , Takehiro Ito1 , and Ryuhei Uehara3

1 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
rin.saito@dc.tohoku.ac.jp, takehiro@tohoku.ac.jp
2 School of Computer Science and Systems Engineering,

Kyushu Institute of Technology, Iizuka, Japan
eto@ai.kyutech.ac.jp

3 School of Information Science, Japan Advanced Institute of Science
and Technology, Nomi, Japan

uehara@jaist.ac.jp

Abstract. We introduce and study reconfiguration problems for (inter-
nally) vertex-disjoint shortest paths: Given two tuples of internally
vertex-disjoint shortest paths for fixed terminal pairs in an unweighted
graph, we are asked to determine whether one tuple can be transformed
into the other by exchanging a single vertex of one shortest path in the
tuple at a time, so that all intermediate results remain tuples of inter-
nally vertex-disjoint shortest paths. We also study the shortest variant of
the problem, that is, we wish to minimize the number of vertex-exchange
steps required for such a transformation, if exists. These problems gen-
eralize the well-studied Shortest Path Reconfiguration problem. In
this paper, we analyze the complexity of these problems from the view-
point of graph classes, and give some interesting contrast.

Keywords: Combinatorial reconfiguration · Graph algorithm ·
Vertex-disjoint paths

1 Introduction

Combinatorial reconfiguration [6] has been extensively studied in the field of the-
oretical computer science. One of the most well-studied problems is the reacha-
bility variant : we are given two feasible solutions of a combinatorial search prob-
lem, and are asked to determine whether we can transform one into the other
by repeatedly applying a prescribed reconfiguration step so that all intermediate
results are also feasible. This kind of problems has been studied intensively for
several combinatorial search problems. (See surveys [5,8].)

This work is partially supported by JSPS KAKENHI Grant Numbers JP18H04091,
JP19K11814, JP20H05793, JP20H05961, JP20H05964 and JP20K11673.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 191–201, 2023.
https://doi.org/10.1007/978-3-031-27051-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_17&domain=pdf
http://orcid.org/0000-0002-3953-4339
http://orcid.org/0000-0003-1456-1987
http://orcid.org/0000-0002-9912-6898
http://orcid.org/0000-0003-0895-3765
https://doi.org/10.1007/978-3-031-27051-2_17

192 R. Saito et al.

s1P1

t1P2

s1Q1

t1Q2

s1 t1

s2 t2

s1 t1

s2 t2

s1 t1

s2 t2

s1 t1

s2 t2

s1 t1

s2 t2

s1 t1

s2 t2

Fig. 1. Sequence of tuples of (internally) vertex-disjoint shortest paths for two terminal
pairs (s1, t1) and (s2, t2).

For example, the Shortest Path Reconfiguration (SPR) problem is
defined as follows [7]: we are given two shortest paths between two specified
vertices s and t (called terminals) in an unweighted graph, and are asked to
determine whether or not we can transform one into the other by exchanging a
single vertex in a shortest path at a time, so that all intermediate results remain
shortest paths between s and t. Surprisingly, the problem is PSPACE-complete [1,
9], and polynomial-time algorithms have been developed for restricted graph
classes [1–3].

1.1 Our Problems and Related Results

In this paper, as generalizations of the SPR problem, we introduce and study
reconfiguration problems for (internally) vertex-disjoint shortest paths in an
unweighted graph G. For k terminal pairs (si, ti), i ∈ {1, 2, . . . , k}, consider
a tuple of k paths in G such that the i-th path in the tuple joins si and ti. Then,
the k paths in the tuple are said to be internally vertex-disjoint if the internal
vertices of k paths are all distinct and do not contain any terminal.

We now define the Reachability of Vertex-Disjoint Shortest Paths
(RVDSP) problem, as follows. Suppose that we are given two tuples P =
(P1, P2, . . . , Pk) and Q = (Q1, Q2, . . . , Qk) of internally vertex-disjoint paths
such that each of Pi and Qi is a shortest path in an unweighted graph G join-
ing two terminals si and ti for all i ∈ {1, 2, . . . , k}. Then, the RVDSP problem
asks to determine whether or not one can transform P into Q by exchanging a
single vertex of one shortest path in the tuple at a time, so that all intermediate
results remain tuples of internally vertex-disjoint shortest paths for k terminal
pairs. (See Fig. 1 as an example.) Thus, the RVDSP problem for k = 1 is equiv-
alent to the SPR problem. We also study the shortest variant, the Shortest
Reconfiguration of Vertex-Disjoint Shortest Paths (SRVDSP) prob-
lem which asks to determine whether or not there is a transformation between
P and Q by at most � vertex-exchange steps, for a given integer � ≥ 0.

Reconfiguration of Vertex-Disjoint Shortest Paths on Graphs 193

Fig. 2. Our results with respect to graph classes. Each arrow represents the inclusion
relationship between graph classes: A → B means that the graph class B is a proper
subclass of the graph class A. In addition, we prove that the RVDSP problem is
PSPACE-complete for graphs with bounded bandwidth (Theorem 1), and the SRVDSP
problem is solvable in polynomial time for distance-hereditary graphs and for split
graphs if all k terminal pairs are the same (Theorem 3).

Kamiński et al. [7] introduced the SPR problem (i.e., the RVDSP problem
for k = 1), and posed an open question of the complexity of the SPR problem.
Bonsma [1] answered by proving that the SPR problem is PSPACE-complete
for bipartite graphs. Since P ⊆ NP ⊆ PSPACE, this means that the problem
admits no polynomial-time algorithm under the assumption of P �= PSPACE, and
furthermore implies that there is a yes-instance that requires super-polynomial
steps for transforming one shortest path to the other under the assumption of
NP �= PSPACE. These are somewhat surprising because the problem of finding
shortest paths (especially, in an unweighted graph) is easy. Bonsma [1] posed
another open question whether the SPR problem can be solved in polynomial
time for graphs with bounded treewidth. This question was answered negatively
by Wrochna [9]: the SPR problem remains PSPACE-complete even for graphs
with bounded bandwidth. Note that the bandwidth of a graph gives an upper
bound on the pathwidth (and hence the treewidth) of the graph; and hence the
PSPACE-completeness holds also for graphs with bounded treewidth.

On the positive side, the SPR problem has been shown to be solvable in
polynomial time when restricted to graph classes, such as chordal graphs and
claw-free graphs [1]; planar graphs [2]; circle graphs, permutation graphs, the
Boolean hypercube, bridged graphs, and circular-arc graphs [3]. Furthermore,
the shortest variant of the SPR problem (i.e., the SRVDSP problem for k = 1)
is solvable in polynomial time for chordal graphs [1].

1.2 Our Contribution

In this paper, we study the computational complexity of the RVDSP and
SRVDSP problems from the viewpoint of graph classes. Figure 2 summarizes
our results. (Throughout the paper, k denotes the number of terminal pairs.)

194 R. Saito et al.

We first observe that the RVDSP problem for every fixed k ≥ 1 is PSPACE-
complete for bipartite graphs and for graphs with bounded bandwidth. On the
positive side, we give a polynomial-time algorithm to solve the RVDSP problem
for distance-hereditary graphs and for split graphs. Interestingly, our algorithm
for these two graph classes can be obtained as a corollary of a single theorem
(Theorem 2) by introducing the concept of “st-completeness” of graphs for termi-
nal pairs (s, t). Our algorithm is constructive, and finds an actual transformation
(if exists) that requires polynomial number of vertex-exchange steps.

We then prove that the SRVDSP problem is NP-complete for split graphs.
On the positive side, the problem is solvable in polynomial time for split graphs
and for distance-hereditary graphs if all k terminal pairs are the same, that is,
(s1, t1) = (s2, t2) = · · · = (sk, tk).

Our results give the following interesting contrast:

1. the RVDSP problem is PSPACE-complete for bipartite graphs (Theorem 1),
while it is solvable in polynomial time for complete bipartite graphs (Corol-
lary 1);

2. for split graphs, the RVDSP problem is solvable in polynomial time (Corol-
lary 1), whereas the SRVDSP problem is NP-complete (Theorem 4); and

3. the SRVDSP problem for k = 1 is solvable in polynomial time for chordal
graphs [1] (thus, for split graphs), while the SRVDSP problem for general k
is NP-complete for split graphs (Theorem 4).

We omit the proofs for claims with (∗) from this extended abstract.

2 Preliminaries

In this paper, we assume that graphs are simple and unweighted. For a graph
G, we denote by V (G) and E(G) the vertex and edge sets of G, respectively.
Let n = |V (G)| and m = |E(G)| throughout the paper. For u, v ∈ V (G), a path
in G joining u and v is called a uv-path. We denote by dG(u, v) the minimum
number of edges in any uv-path in G; we sometimes omit the subscript G if it is
clear from the context. The diameter of G is the maximum dG(u, v) among any
two vertices u, v in G. For two sets A and B, we denote by A�B the symmetric
difference of A and B, that is, (A \ B) ∪ (B \ A).

Let k be a positive integer, and let (si, ti) be a pair of vertices in G, called
terminals, for i ∈ {1, 2, . . . , k}. Then, k paths P1, P2, . . . , Pk in G are said to
be internally vertex-disjoint if Pi is an siti-path in G for each i ∈ {1, 2, . . . , k},
and their internal vertices are all distinct and do not contain any terminal. Note
that internally vertex-disjoint paths may share terminals. In the following, we
call internally vertex-disjoint paths simply vertex-disjoint paths. For a tuple
P = (P1, P2, . . . , Pk) of vertex-disjoint paths, let V (P) =

⋃k
i=1 V (Pi).

In this paper, we consider only shortest siti-paths in G, i ∈ {1, 2, . . . , k}.
For two tuples P = (P1, P2, . . . , Pk) and P ′ = (P ′

1, P
′
2, . . . , P

′
k) of vertex-disjoint

shortest paths, we write P ↔ P ′ if
∑k

i=1|V (Pi)�V (P ′
i)| = 2; in other words, P ′

can be obtained from P by exchanging a single (internal) vertex in some shortest

Reconfiguration of Vertex-Disjoint Shortest Paths on Graphs 195

path Pi with a vertex that is not contained in V (P). A sequence 〈P0,P1, . . . ,P�〉
of tuples of vertex-disjoint shortest paths is called a reconfiguration sequence
between P0 and P� if Pr−1 ↔ Pr for all r ∈ {1, 2, . . . , �}. The length of a
reconfiguration sequence 〈P0,P1, . . . ,P�〉 is defined to be �. We now define two
following problems.

The Reachability of Vertex-Disjoint Shortest Paths (RVDSP)
problem
Input: An unweighted graph G, and two tuples P and Q of vertex-disjoint

shortest paths for k terminal pairs (si, ti).
Task: Determine if there is a reconfiguration sequence between P and Q.

The Shortest Reconfiguration of Vertex-Disjoint Shortest
Paths (SRVDSP) problem
Input: An unweighted graph G, two tuples P and Q of vertex-disjoint

shortest paths for k terminal pairs (si, ti), and an integer � ≥ 0.
Task: Determine if there is a reconfiguration sequence between P and Q

of length at most �.

Note that both RVDSP and SRVDSP problems are decision problems,
and do not ask for an actual reconfiguration sequence as an output. We some-
times denote simply by (G,P,Q) an instance of the RVDSP problem, and by
(G,P,Q, �) an instance of the SRVDSP problem.

Definitions of layers and st-completeness

For two distinct vertices s, t ∈ V (G) and j ∈ {0, 1, . . . , d(s, t)}, let Lj = {v ∈
V (G) | d(s, v) = j, d(s, v)+d(v, t) = d(s, t)}. We call Lj the j-th st-layer, that is,
Lj is the set of vertices v such that d(s, v) = j and v is contained in some shortest
st-path. Note that L0 = {s} and Ld(s,t) = {t}. We denote by Gst the subgraph of
G induced by all st-layers Lj , j ∈ {0, 1, . . . , d(s, t)}. Then, any shortest st-path
in G is contained in Gst. We say that G is st-complete if every vertex in Lj is
adjacent in G to all vertices in Lj+1 for all j ∈ {0, 1, . . . , d(s, t) − 1}. Since G is
an unweighted graph, we have the following lemma.

Lemma 1. For two vertices s, t ∈ V (G), one can construct Gst and check
whether G is st-complete in O(m + n) time.

The st-completeness of a graph G is a useful property, because we can forget
the structure of G in the following sense: if we choose exactly one vertex from
each st-layer Lj , j ∈ {0, 1, . . . , d(s, t)}, the set of the chosen vertices always
forms a shortest st-path in G.

3 Reachability Variant

Recall that the RVDSP problem for k = 1 (i.e., the SPR problem) is PSPACE-
complete for bipartite graphs [1], and for graphs with bounded bandwidth [9].

196 R. Saito et al.

By introducing dummy vertex-disjoint shortest paths, one can observe the fol-
lowing hardness results.

Theorem 1. For every fixed k ≥ 1, the RVDSP problem is PSPACE-complete
for bipartite graphs, and for graphs of bounded bandwidth.

The main result of this section is the following theorem, whose proof will be
given in Sects. 3.1 and 3.2.

Theorem 2. Let G be a graph of diameter d as an input of the RVDSP problem
such that G is st-complete for all k terminal pairs. Then, the RVDSP problem
is solvable in O(mk + ndk2) time. Furthermore, in the same running time, one
can find a reconfiguration sequence of length O(d2k2) if exists.

From Theorem 2, one can show that the RVDSP problem is solvable in
polynomial time for some graph classes, as in the following corollary. A graph
G is split if V (G) can be partitioned into a clique and an independent set. A
graph G is distance hereditary if dG(u, v) = dG′(u, v) for every connected induced
subgraph G′ of G and all u, v ∈ V (G′).

Corollary 1 (∗). The RVDSP problem is solvable in polynomial time for split
graphs, and for distance-hereditary graphs.

Note that any split graph is of diameter at most 3, and hence we can drop
the factor d in Theorem 2 for split graphs. On the other hand, the diameter of
distance-hereditary graphs can be Ω(n). We also note that a complete bipartite
graph is distance hereditary, and hence the RVDSP problem can be solved in
polynomial time for complete bipartite graphs. Therefore, Theorem 1 and Corol-
lary 1 give an interesting contrast of the complexity of the RVDSP problem.
(See Fig. 2 again.)

3.1 Characterization of Reachability

Let (G,P,Q) be an instance of the RVDSP problem such that G is siti-complete
for each i ∈ {1, 2, . . . , k}. We denote by Li

j the j-th siti-layer for each pair of
integers i ∈ {1, 2, . . . , k} and j ∈ {0, 1, . . . , dG(si, ti)}. For G and P, we define a
directed graph GP , called an auxiliary graph for P, as follows: V (GP) = V (G),
and for each i, j, we add arcs (u, v) from u ∈ V (Pi) ∩ Li

j to all vertices v ∈ Li
j ,

that is, A(GP) =
⋃

i,j{(u, v) | u ∈ V (Pi) ∩ Li
j , v ∈ Li

j}.
For each pair of i ∈ {1, 2, . . . , k} and j ∈ {0, 1, . . . , dG(si, ti)}, we place a

(labeled) token tij on the vertex u ∈ V (Pi) ∩ Li
j in the auxiliary graph GP . Note

that no two tokens are placed on the same vertex, because paths in P are vertex-
disjoint. Conversely, the siti-completeness of G ensures that any placement of
the token tij to a vertex in Li

j yields a shortest siti-path in G. The vertex on
which tij is placed is sometimes referred simply as tij . We say that the token tij
is P-movable if there exists a directed path in GP from tij to a vertex v /∈ V (P).
We sometimes call such a tijv-path a tij-escape path under P. The P-movable
tokens have a good property, as follows.

Reconfiguration of Vertex-Disjoint Shortest Paths on Graphs 197

Lemma 2 (∗). Let P and P ′ be two tuples of vertex-disjoint shortest paths in G
such that P ↔ P ′. Then, a token tij is P-movable if and only if tij is P ′-movable.

For each pair of integers i ∈ {1, 2, . . . , k} and j ∈ {0, 1, . . . , dG(si, ti)}, the
vertex in V (Qi)∩Li

j is called the target position for the token tij . For a tuple P ′

of vertex-disjoint shortest paths, we denote by TP′ the set of all tokens that are
not placed on their target positions in P ′. The following lemma is the key for
the proof of Theorem 2.

Lemma 3. (G,P,Q) is a yes-instance if and only if every token in TP is P-
movable.

Proof. We first prove the only-if direction. Suppose that (G,P,Q) is a yes-
instance, and hence there is a reconfiguration sequence 〈P0,P1, . . . ,P�〉 between
P = P0 and Q = P�. Because every token tij in TP is not placed on its target
position in P, the token must be moved at least once in the reconfiguration
sequence. Assume that tij was moved between Pr and Pr+1, from a vertex y1 ∈
Li

j ∩ V (Pr) to another vertex y2 ∈ Li
j \ V (Pr). Then, the auxiliary graph GPr

has an arc (y1, y2); this arc forms a tij-escape path under Pr, and hence tij is
Pr-movable. Since Pr ↔ Pr−1 ↔ · · · ↔ P0 = P, Lemma 2 implies that tij is
P-movable.

We then prove the if direction, by induction on |TP |. If |TP | = 0, then P = Q
and hence (G,P,Q) is a yes-instance. Thus, suppose that |TP | ≥ 1 and every
token in TP is P-movable. We consider two following cases.

Case (a): We first consider the case where there exists a token tij placed on
the vertex y1 ∈ V (Pi) ∩ Li

j such that its target position y2 is not occupied by
any token in P, that is, V (Qi) ∩ Li

j = {y2} and y2 /∈ V (P). In this case, we
can move tij to y2 directly, and obtain the tuple P ′ of vertex-disjoint shortest
paths; notice that there is an arc (y1, y2) in GP by the definition of GP . Since
P ↔ P ′, Lemma 2 says that every P-movable token is P ′-movable. Since tij
reaches its target position y2, we have |TP′ | = |TP | − 1. Therefore, we can apply
the induction hypothesis to (G,P ′,Q).

Case (b): We then consider the other case, that is, the target positions of
all tokens are occupied by tokens in P. In this case, we can find a directed cycle
C = x1x2 . . . xα in GP such that xr+1 is the target position of the token placed on
xr for all r ∈ {1, 2, . . . , α}; for convenience, we regard xα+1 = x1. Since |TP | ≥ 1,
we can assume that α ≥ 2 (i.e., C is not a self-loop). Therefore, all tokens placed
on x1, x2, . . . , xα belong to TP , and hence all of them are P-movable. Then, there
exists at least one token t such that t is placed on a vertex in C, say xα, and GP
has a t-escape path xαy1y2 . . . yβ with y1, y2, . . . , yβ /∈ V (C). (See Fig. 3.) Then,
we move tokens as follows:

1. move the token on yr to yr+1 for each r, β − 1 ≥ r ≥ 1;
2. move the token on xα to y1 (now no token is placed on xα);
3. move the token on xr to xr+1 for each r, α − 1 ≥ r ≥ 1;
4. move the token on y1 (which was placed on xα in P) to x1; and
5. move the token on yr to yr−1 for each r, 2 ≤ r ≤ β.

198 R. Saito et al.

x2

x3

x1

xα−2

xα−1

xα y1 yβ−1 yβ

Fig. 3. Illustration for Case (b).

Note that, in Step 4, we can move the token on y1 to x1, because x1 is the
target position of the token which was placed on xα in P. After Step 5, each
token on y1, y2, . . . , yβ are placed on the same vertex as in P, and each token
on x1, x2, . . . , xα reaches its target position. Let P ′ be the resulting tuple of
vertex-disjoint shortest paths. Lemma 2 says that every P-movable token is P ′-
movable. Since |TP′ | = |TP |−α and α ≥ 2, we can apply the induction hypothesis
to (G,P ′,Q). ��

3.2 Proof of Theorem 2

Our proof of Lemma 3 naturally yields an algorithm which finds an actual recon-
figuration sequence between P and Q if exists. Starting from any token t in TP ,
we traverse GP by repeatedly visiting the target position of the currently visited
token; if we reach a vertex which is not occupied by any token (that is, the
vertex is not contained in any path in P), then we apply Case (a) of the proof;
otherwise we find a directed cycle x1, x2, . . . , xα to which we apply Case (b).
In Case (b) we can find the path xαy1y2 . . . yβ by a breadth-first search on GP
starting from any vertex in the directed cycle.

We now estimate the length of our reconfiguration sequence between P and
Q. Recall that there are O(dk) tokens, where d is the diameter of G and k is
the number of terminal pairs. In Case (a), one token in TP reaches its target
position by one step. In Case (b), α tokens in TP reach their target positions by
(β −1)+1+(α−1)+1+(β −1) = α+2β −1 = O(dk) steps. Therefore, in both
cases, at least one token in TP reaches its target position by O(dk) steps. Since
there are O(dk) tokens, the length of our reconfiguration sequence between P
and Q can be bounded by O(dk) × O(dk) = O(d2k2) in total.

Finally, we estimate the running time of the algorithm. By Lemma 1 we can
check if a given graph G is st-complete for all k terminal pairs, and construct
layers in O(k(n+m)) time. Since

∑d(si,ti)
j=1 |Li

j | ≤ n for each i ∈ {1, 2, . . . , k}, the
auxiliary graph GP has at most nk arcs. For each token in TP , we traverse GP at
most twice to apply Case (a) or (b). Thus, we can move at least one token in TP to
its target position in O(nk)+O(dk) = O(nk) time. Since there are O(dk) tokens,
all tokens can be moved to their target positions in O(nk) × O(dk) = O(ndk2)
time. In total, our algorithm runs in O(mk + ndk2) time.

This completes the proof of Theorem 2. ��

Reconfiguration of Vertex-Disjoint Shortest Paths on Graphs 199

4 Shortest Variant

Our polynomial-time algorithm in Sect. 3 for the RVDSP problem does not
always return a reconfiguration sequence of the shortest length. Indeed, we
will show in this section that the SRVDSP problem is NP-complete even for
split graphs, while the RVDSP problem is solvable in polynomial time for split
graphs.

4.1 Polynomial-Time Solvable Cases

We first give tractable cases of the SRVDSP problem, based on the algorithm
in Sect. 3. We say that k terminal pairs are identical if (s1, t1) = (s2, t2) = · · · =
(sk, tk). Then, we have the following theorem.

Theorem 3 (∗). Let (G,P,Q, �) be an instance of the SRVDSP problem such
that G is st-complete for all k terminal pairs, and k terminal pairs are identical.
Then, the SRVDSP problem is solvable in polynomial time.

Similarly as in Corollary 1, we have the following corollary from Theorem 3.
Note that, if k = 1, then it is an identical terminal pair.

Corollary 2. The SRVDSP problem is solvable in polynomial time for split
graphs, and for distance-hereditary graphs, if k terminal pairs are identical. In
particular, the shortest variant of the SPR problem is solvable in polynomial
time for split graphs, and for distance-hereditary graphs.

4.2 NP-Completeness

We finally prove the following theorem.

Theorem 4. The SRVDSP problem is NP-complete for split graphs.

By Theorem 2, recall that the RVDSP problem for split graphs can be solved
in polynomial time, and admits a reconfiguration sequence of length O(k2) if
exists. Therefore, the SRVDSP problem for split graphs belongs to the class
NP. As a proof of Theorem 4, we will thus prove that the SRVDSP problem is
NP-hard for split graphs, by giving a polynomial-time reduction from 3SAT [4].

Suppose that we are given a 3CNF formula φ, where each clause consists
of exactly three literals. Let α and β be the numbers of variables and clauses
in φ, respectively. We write x1, x2, . . . , xα for variables in φ, and C1, C2, . . . , Cβ

for clauses in φ. We will construct the corresponding graph Gφ which forms a
split graph. Recall that a split graph Gφ can be partitioned into a clique and an
independent set. In the following, we call a vertex in the clique a clique vertex,
and call a vertex in the independent set an independent vertex. In our reduction,
independent vertices will be terminals. As shown in Corollary 1, a split graph
Gφ is st-complete for any terminal pair (s, t). Therefore, roughly speaking, we
will focus on how to move tokens placed on clique vertices in Gφ.

200 R. Saito et al.

Reduction

We first create a variable gadget Gxi
for each variable xi in φ. The variable gad-

get Gxi
has five clique vertices ai, bi, ci, x

�
i , x⊥

i , and eight independent vertices
si1, si2, si3, si4, ti1, ti2, ti3, ti4. Then, we define four vertex sets Li1, Li2, Li3, Li4,
as follows:

Li1 = {ai, bi, x
�
i }, Li2 = {ai, bi, x

⊥
i }, Li3 = {ci, x

�
i }, Li4 = {ci, x

⊥
i }.

We join the clique and independent vertices in Gxi
so that each Lir forms the

1-st sirtir-layer for terminal pair (sir, tir), r ∈ {1, 2, 3, 4}; more specifically, for
each r ∈ {1, 2, 3, 4}, we join each of sir and tir with all clique vertices in Lir.
For each r ∈ {1, 2, 3, 4}, we define shortest sirtir-paths Pir and Qir as follows:

Pi1 = si1aiti1, Qi1 = si1biti1,

Pi2 = si2biti2, Qi2 = si2aiti2,

Pi3 = Qi3 = si3x
�
i ti3,

Pi4 = Qi4 = si4x
⊥
i ti4.

Notice that only the internal vertices of Pi1 and Pi2 are swapped in Qi1 and Qi2.
By the construction, it suffices to focus on which clique vertex is chosen as an
internal vertex of a shortest sirtir-path.

We then create a clause gadget GCj
for each clause Cj in φ. We assume that

Cj = (ljp∨ljq∨ljr), where ljh is either xh or ¬xh for each h ∈ {p, q, r}. Let σ(j, h)
denote � if ljh = xh, otherwise ⊥. The clause gadget GCj

has six new clique ver-
tices ajh, bjh where h ∈ {p, q, r}, and three clique vertices x

σ(j,p)
p , x

σ(j,q)
q , x

σ(j,r)
r

which are already introduced in variable gadgets. In addition, GCj
has 12 new

independent vertices sjh1, sjh2, tjh1, tjh2 where h ∈ {p, q, r}. We define six vertex
sets, as follows:

Ljp1 = {xσ(j,p)
p , bjp, ajp, bjq},

Ljq1 = {xσ(j,q)
q , bjq, ajq, bjr},

Ljr1 = {xσ(j,r)
r , bjr, ajr, bjp},

Ljh2 = {ajh, bjh} for h ∈ {p, q, r}.

Similarly as in the variable gadgets, we join the clique and independent vertices
in GCj

, as follows: for each h ∈ {p, q, r}, we join each of sjh1 and tjh1 with all
clique vertices in Ljh1, and also join each of sjh2 and tjh2 with all clique vertices
in Ljh2. For each h ∈ {p, q, r}, we define shortest sjh1tjh1-paths Pjh1 and Qjh1,
and shortest sjh2tjh2-paths Pjh2 and Qjh2, as follows:

Pjh1 = sjh1ajhtjh1, Qjh1 = sjh1bjhtjh1,

Pjh2 = sjh2bjhtjh2, Qjh2 = sjh2ajhtjh2.

We next join all clique vertices in variable and clause gadgets so that they
form a clique in Gφ. This completes the constructions of Gφ, P, and Q. Then,

Reconfiguration of Vertex-Disjoint Shortest Paths on Graphs 201

there are k = 4α+6β terminal pairs, and we set � = 5α+9β. In this way, the cor-
responding instance (Gφ,P,Q, �) of the SRVDSP problem can be constructed
in time polynomial in α and β.

Lemma 4 (∗). φ is satisfiable if and only if (Gφ,P,Q, �) is a yes-instance.

5 Conclusion

In this paper, we introduced two reconfiguration problems, the RVDSP and
SRVDSP problems, as generalizations of the well-studied SPR problem. We
studied the computational complexity of the RVDSP and SRVDSP problems
from the viewpoint of graph classes, and gave some interesting contrast. (Recall
Fig. 2 and the numbered list at the end of the introduction.)

It remains open to clarify the complexity status of the RVDSP problem
for chordal graphs, and for planar graphs. Note that the SPR problem (i.e., the
RVDSP problem for k = 1) is solvable in polynomial time for chordal graphs [1],
and for planar graphs [2].

Acknowledgment. We are grateful to Kai Matsudate, Tohoku University, Japan, for
valuable discussions with him.

References

1. Bonsma, P.S.: The complexity of rerouting shortest paths. Theor. Comput. Sci. 510,
1–12 (2013). https://doi.org/10.1016/j.tcs.2013.09.012

2. Bonsma, P.S.: Rerouting shortest paths in planar graphs. Discret. Appl. Math. 231,
95–112 (2017). https://doi.org/10.1016/j.dam.2016.05.024

3. Gajjar, K., Jha, A.V., Kumar, M., Lahiri, A.: Reconfiguring shortest paths in graphs.
In: Proceedings of AAAI 2022, pp. 9758–9766. AAAI Press (2022). https://ojs.aaai.
org/index.php/AAAI/article/view/21211

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

5. van den Heuvel, J.: The complexity of change. In: Surveys in Combinatorics 2013,
London Mathematical Society Lecture Note Series, vol. 409, pp. 127–160. Cambridge
University Press (2013). https://doi.org/10.1017/CBO9781139506748.005

6. Ito, T., et al.: On the complexity of reconfiguration problems. Theor. Comput. Sci.
412(12–14), 1054–1065 (2011). https://doi.org/10.1016/j.tcs.2010.12.005

7. Kamiński, M., Medvedev, P., Milanič, M.: Shortest paths between shortest paths.
Theor. Comput. Sci. 412(39), 5205–5210 (2011). https://doi.org/10.1016/j.tcs.2011.
05.021

8. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018).
https://doi.org/10.3390/a11040052

9. Wrochna, M.: Reconfiguration in bounded bandwidth and tree-depth. J. Comput.
Syst. Sci. 93, 1–10 (2018). https://doi.org/10.1016/j.jcss.2017.11.003

https://doi.org/10.1016/j.tcs.2013.09.012
https://doi.org/10.1016/j.dam.2016.05.024
https://ojs.aaai.org/index.php/AAAI/article/view/21211
https://ojs.aaai.org/index.php/AAAI/article/view/21211
https://doi.org/10.1017/CBO9781139506748.005
https://doi.org/10.1016/j.tcs.2010.12.005
https://doi.org/10.1016/j.tcs.2011.05.021
https://doi.org/10.1016/j.tcs.2011.05.021
https://doi.org/10.3390/a11040052
https://doi.org/10.1016/j.jcss.2017.11.003

k-Transmitter Watchman Routes

Bengt J. Nilsson1 and Christiane Schmidt2(B)

1 Department of Computer Science and Media Technology, Malmö University,
Malmö, Sweden

bengt.nilsson.TS@mau.se
2 Department of Science and Technology, Linköping University, Norrköping, Sweden

christiane.schmidt@liu.se

Abstract. We consider the watchman route problem for a k-transmitter
watchman: standing at point p in a polygon P , the watchman can see
q ∈ P if pq intersects P ’s boundary at most k times—q is k-visible to p.
Traveling along the k-transmitter watchman route, either all points in P
or a discrete set of points S ⊂ P must be k-visible to the watchman. We
aim for minimizing the length of the k-transmitter watchman route.

We show that even in simple polygons the shortest k-transmitter
watchman route problem for a discrete set of points S ⊂ P is NP-
complete and cannot be approximated to within a logarithmic factor
(unless P=NP), both with and without a given starting point. More-
over, we present a polylogarithmic approximation for the k-transmitter
watchman route problem for a given starting point and S ⊂ P with
approximation ratio O(log2(|S| · n) log log(|S| · n) log |S|) (with |P | = n).

Keywords: Watchman route · k-Transmitter · k-Transmitter
watchman route · NP-Hardness · Approximation algorithm ·
NP-completeness

1 Introduction

In the classical Watchman Route Problem (WRP)—introduced by Chin and
Ntafos [1], we ask for the shortest (closed) route in an environment (usually a
polygon P), such that a mobile guard traveling along this route sees all points
of the environment. The WRP has mostly been studied for the “traditional”
definition of visibility: a point p ∈ P sees another point q ∈ P if the line segment
pq is fully contained in P . This mimics human vision, as this, e.g., does not
allow looking through obstacles or around corners. In contrast to the classical
guarding problems with stationary guards, the Art Gallery Problem (AGP)—
where we aim to place a minimum number of non-moving guards that see the
complete environment—the WRP is solvable in polynomial time in simple poly-
gons with [2–4] and without [5,6] a given boundary start point. In polygons with
holes, the WRP is NP-hard [1,7].

Supported by grants 2018-04001 (Nya paradigmer för autonom obemannad flygledning)
and 2021-03810 (Illuminate: bevisbart goda algoritmer för bevakningsproblem) from
the Swedish Research Council (Vetenskapsr̊adet).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 202–213, 2023.
https://doi.org/10.1007/978-3-031-27051-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_18&domain=pdf
http://orcid.org/0000-0002-1342-8618
http://orcid.org/0000-0003-2548-5756
https://doi.org/10.1007/978-3-031-27051-2_18

k-Transmitter Watchman Routes 203

However, we may also have other vision types for the watchman. If we, for
example, consider a mobile robot equipped with a laser scanner, then the scan-
ning creates point clouds, which are easier to map afterwards when the robot was
immobile while taking a single scan. This results in the model of “discrete vision”:
information on the environment can be acquired only at discrete points, at other
times the watchman is blind. Carlsson et al. [8] showed that the problem of find-
ing the minimum number of vision points—the discrete set of points at which the
vision system is active—along a given path (e.g., the shortest watchman route)
is NP-hard in simple polygons. Carlsson et al. [9] also presented an efficient
algorithm to solve the problem of placing vision points along a given watchman
route in streets. Another natural restriction for a mobile robot equipped with
laser scanners is a limited visibility range (resolution degrades with increasing
distance), see [10–12].

Another type of visibility is motivated by modems: When we try to con-
nect to a modem, we observe that one wall will not prevent this connection
(i.e., obstacles are not always a problem). However, many walls separating our
location from the modem result in a failed connection. This motivates studying
so-called k-transmitters: p ∈ P sees q ∈ P if the line segment pq intersects P ’s
boundary at most k times. If more than k walls are intersected, we no longer
“see” an object—the connection is not established. Different aspects of guarding
with k-transmitters (the AGP with k-transmitters) have been studied. First, the
focus was on worst-case bounds, so-called Art Gallery theorems. Aichholzer et
al. [13] presented tight bounds on the number of k-transmitters in monotone and
monotone orthogonal polygons. Other authors explored k-transmitter coverage
of regions other than simple polygons, such as coverage of the plane in the pres-
ence of lines or line segment obstacles [14,15]. Ballinger et al. [14] also presented
a tight bound for a very special class of polygons: spiral polygons, so-called
spirangles. Moreover, for simple n-gons they provided a lower bound of �n/6�
2-transmitters. Cannon et al. [16] showed that it is NP-hard to compute a mini-
mum cover of point 2-transmitters, point k-transmitters, and edge 2-transmitters
(where a guard is considered to be the complete edge) in a simple polygon.
The point 2-transmitter result extends to orthogonal polygons. Moreover, they
gave upper and lower bounds for the number of edge 2-transmitters in general,
monotone, orthogonal monotone, and orthogonal polygons; and improved the
bound from [14] for simple n-gons to �n/5� 2-transmitters. For the AGP with k-
transmitters, no approximation algorithms have been obtained so far, but Biedl
et al. [17] recently presented a first constant-factor approximation result for so-
called sliding k-transmitters (traveling along an axis-parallel line segment s in
the polygon, covering all points p of the polygon for which the perpendicular
from p onto s intersects at most k edges of the polygon).

Of course, k-transmitters do not have to be stationary (or restricted to travel
along a special structure as in [17]): we might have to find a shortest tour such
that a mobile k-transmitter traveling along this route can establish a connection
with all (or a discrete subset of the) points of an environment, the WRP with
a k-transmitter. This problem is the focus of this paper and to the best of our

204 B. J. Nilsson and C. Schmidt

knowledge it has not been studied before. Given that our watchman moves inside
the polygon, we consider even values for k only—while odd numbers of k can
be interesting when we, for example, want to monitor the plane in presence of
line-segment or line obstacles, or when we want to monitor parts of a polygon’s
exterior.

For the original WRP, we know that an optimal tour must visit all essential
cuts: the non-dominated extensions of edges incident to a reflex vertex. However,
already if we want to see a discrete set of points with a mobile k-transmitter, for
k ≥ 2, we do not have such a structure: the region visible to a k-transmitter point
can have O(n) connected components, to see the point, the mobile k-transmitter
can visit any of these.

Guarding a discrete set of points—though with stationary guards—is, e.g.,
considered in the problem of guarding treasures in an art gallery: Deneen and
Joshi [18] presented an approximation algorithm for finding the minimum num-
ber of guards that monitors a discrete set of treasure points, Carlsson and Jon-
sson [19] added weights to the treasures and aimed for placing a single guard
maximizing the total value of the guarded treasures.

Roadmap. In Sect. 2, we introduce notation; in Sect. 3, we detail some spe-
cial properties of k-transmitters. In Sect. 4, we show that the WRP with k-
transmitters monitoring a discrete set of points is NP-complete and cannot be
approximated to within a logarithmic factor in simple polygons even for k = 2. In
Sect. 5, we present an approximation algorithm for the WRP with k-transmitters
monitoring a discrete set of points and has a given starting point.

2 Notation and Preliminaries

We let P be a polygon, in general, we are interested in P being simple. We define
∂(P) as the boundary of P , and let n denote the number of vertices of P .

A point q ∈ P is k-visible to a k-transmitter p ∈ R
2 if qp intersects P ’s

boundary in at most k connected components. This includes “normal” guards
for k = 0. For a point p ∈ P , we define the k-visibility region of p, kVR(p), as
the set of points in P that are k-visible from p, see Fig. 1(a). For a set X ⊆ P :
kVR(X) =

⋃
p∈X kVR(p). A k-visibility region can have O(n) connected compo-

nents (CCs), see [16] and Observation 2 in Sect. 3, we denote these components
by kVRj(p), j = 1, . . . , Jp, with Jp ∈ O(n).

The boundary of each CC of kVR(p) contains edges that coincide with (parts
of) edges of ∂(P), and so-called windows. Cutting P along a window w partitions
it into two subpolygons. We denote by Ps(w) the subpolygon that contains a
given point s �∈ w and consider the window w to belong to ∂

(
Ps(w)

)
. A window

w1 dominates another window w2 if Ps(w2) ⊂ Ps(w1). A window w is essential
if it is not dominated by any other window.

For a given point s in a simple polygon P there exists one window w per
CC kVRj(p), such that any path from s to a window w′ �= w,w′ ∈ kVRj(p)
intersects w, that is, Ps(w) ⊆ Ps(w′). We denote this window as the cut of
kVRj(p) w.r.t. s, see Fig. 1(a).

k-Transmitter Watchman Routes 205

Fig. 1. (a): Point p with its 2-visibility region shown in light blue, 2VR(p) has five
CCs. The cuts of these CCs w.r.t. s are shown in red. (b): The complete boundary of
this polygon is visible from the pink 2-transmitter watchman route. In particular, this
holds for the red part of the polygon’s boundary (seen, e.g., from the four marked pink
points). However, the turquoise point is not 2-visible from that route. Thus, not all of
P is 2-visible from that route. (Color figure online)

We aim to find shortest watchman routes for k-transmitters. In particular,
we aim to find a route R, such that either all points of a polygon P or a set of
points S ⊂ P is k-visible for the watchman following R, that is, kVR(R) = P
or S ⊂ kVR(R). We define the k-Transmitter WRP for X ⊆ P and P , k-
TrWRP(X,P), possibly with a given starting point s ∈ P , k-TrWRP(X,P, s),
as the problem of finding the shortest route for a k-transmitter within P , starting
at s, from which every point in X is k-visible. Let OPT(S, P) and OPT(S, P, s)
be optimal w.r.t. k-TrWRP(S, P) and k-TrWRP(S, P, s), respectively.

In Sect. 5, we use an approximation algorithm by Garg et al. [20] for the group
Steiner tree problem. The group Steiner tree problem was introduced by Reich
and Widmayer [21]: given a graph G = (V,E) with cost function c : E → R

+

and subsets of vertices γ1, γ2, . . . , γQ ⊆ V, so-called groups, we aim to find the
minimum-cost subtree T of G that contains at least one vertex from each of
the groups, that is, a connected subgraph T = (V ′, E′), V ′ ⊆ V,E′ ⊆ E that
minimizes

∑
e∈E′ ce such that V ′ ∩ γq �= ∅, ∀q ∈ {1, . . . , Q}. For |V | = m,

Garg et al. [20] obtained a randomized algorithm with an approximation ratio
of O(log2 m log log m log Q).

3 Special Observations for k-Transmitters

For 0-transmitter watchmen guarding a simple polygon’s boundary is enough to
guard all of the polygon, this does not hold for k-transmitters with k ≥ 2:

Observation 1. For a simple polygon P and k ≥ 2: ∂(P) being k-visible to a
k-transmitter watchman route is not a sufficient condition for P being k-visible
to that k-transmitter watchman route, see Fig. 1(b).

The visibility region 0VR(p) for any point p ∈ P has a single connected
component (and is also a simple polygon). This does not hold for larger k, as
already for k = 2 we have:

206 B. J. Nilsson and C. Schmidt

Observation 2 (Observation 1 in [16]). In a simple polygon P , the 2-visibility
region of a single guard can have O(n) connected components. [More precise: The
2-visibility region of a single guard can have at most n connected components.]

4 Computational Complexity

Theorem 1. For a discrete set of points S ⊂ P and a simple polygon P , the
k-Transmitter WRP for S and P , k-TrWRP(S, P), does not admit a polynomial-
time approximation algorithm with approximation ratio α · ln |S| for a constant
α > 0 unless P=NP, even for k = 2.

Proof. We give a gap-preserving reduction from Set Cover (SC):
Set Cover (SC):
Input: A set system (U , C), with ∪C∈CC = U .
Output: Minimum cardinality sub-family B ⊆ C that covers U , i.e., ∪B∈BB = U .

Given an instance of the Set Cover problem, we construct a polygon P with
S = U ∪ {v}. For that construction, we build a bipartite graph G with vertex
set V (G) = U ∪ C and edge set E(G) = {e = (u, c) | u ∈ U , c ∈ C, u ∈ c}. See
Fig. 2(a) for an example of this graph G.

We start the construction of P , see Fig. 2(b), with a spiral structure with
v ∈ S located in the center of the spiral, to its end we attach |C| spikes (narrow
polygonal corridors of four vertices each), each ending at the same y-coordinate
(each C ∈ C corresponds to the tip of one spike). Let the length of the longest
spike be �C , and let the length of the spikes differ by ε′ � �C only. All points
u ∈ U are located in a long horizontal box to which T-shaped structures are
attached, such that the crossbeams leave gaps only where an edge in E(G)
connects a C from a spike to a u in the horizontal box. These two polygon parts
are connected by a very long vertical polygonal corridor. Let the length of this
corridor be �vert = 4 · |C| · �C .

Because of the placement of v, any 2-transmitter needs to enter the spiral
structure to reach a point in 2VR(v) (indicated in light green in Fig. 2(c)). All
u ∈ U are visible only to points in the horizontal box, in the T-shaped structures,
to points at the bottom of the long vertical corridor (shown in light pink in
Fig. 2(d)) and from the tips of the spikes (representing the C ∈ C). Covering
the vertical corridor twice to reach any of the light pink points from 2VR(v)
is more expensive than even visiting all tips of the spikes. Hence, any optimal
k-transmitter watchman route must visit spike tips to see all u ∈ U . To obtain
the shortest k-transmitter watchman route we must visit as few spike tips as
possible: we must visit the minimum number of spike tips, such that all pink
points u ∈ U are covered. This is exactly the solution to the Set Cover problem.

Set Cover cannot be approximated in polynomial time to within a factor
(1 − o(1)) ln |U|, where |S| = |U| + 1; [22].

For each si ∈ S, we can compute the 2-visibility region of si and check
whether the given route intersects it, thus, k-TrWRP(S, P) is in NP.

By choosing s to be located on the window of 2VR(v) in the above construc-
tion and using S = U , we obtain:

k-Transmitter Watchman Routes 207

Fig. 2. Example construction for the SC instance (U , C) with U = {1, 2, 3, 4, 5, 6},
C = {{2, 4}, {1, 3, 5}, {1, 2, 5, 6}, {2, 4, 6}, {4, 5}}. (a) Graph G, (b) polygon P with v
shown in green, (c) kVR(v) shown in light green, (d) set of points that are not located
in the |C| spikes and see all u ∈ U (all points in the horizontal box, in the T-shaped
structures, and points at the bottom of the long vertical corridor). (Color figure online)

Corollary 1. For S, P , and α as in Theorem 1, s ∈ P , k-TrWRP(S, P, s) does
not admit a polynomial-time approximation algorithm with approximation ratio
α · ln |S|, for k ≥ 2.

We can generalize the construction by replacing the elements of U in Fig. 2
with small almost horizontal spikes that need to be covered by the tour visiting
the minimum number of set spikes at the top of the figures. We claim:

Corollary 2. For a simple polygon P and s ∈ P , k-TrWRP(P, P, s) does not
admit a polynomial-time approximation algorithm with approximation ratio α ·
ln n for a constant α > 0, for k ≥ 4.

5 Approximation Algorithm for k-TrWRP(S, P, s)

In this section, we develop an approximation algorithm ALG(S, P, s) for the k-
transmitter watchman route problem for a simple polygon P , a discrete set S of
points in P , and a given starting point s. We prove:

208 B. J. Nilsson and C. Schmidt

Theorem 2. Let P be a simple polygon, n = |P |. Let OPT(S, P, s) be the opti-
mal solution for the k-TrWRP(S, P, s) and let R be the solution output by our
algorithm ALG(S, P, s). Then R has length within O

(
log2(|S| · n) log log(|S| ·

n) log |S|) of OPT(S, P, s).

The basic idea of our approximation algorithm is to create a candidate point
for each connected component of the k-visibility region of each point in S. These
candidate points are defined by the intersections of geodesics from the starting
point s to the cuts and the cuts themselves. We then build a complete graph on
these candidate points (using the length of geodesics in P between two points as
the edge length in the graph). Finally, we group all candidate points that belong
to the same point in S and construct a group Steiner tree; by doubling this tree,
we obtain a route. Our approximation algorithm performs the following steps:

1. For each si ∈ S, we compute the k-visibility region within P , kVR(si)—and
say that all CCs kVRj(si) have “color” si. We denote kVRj(si) as kj

i . Let
the cut of each kj

i be denoted by ci,j , and let Call denote the set of all cuts
in P . See Fig. 3(a) for an example of this step.

2. We compute a geodesic gi,j from s to each cut ci,j . Let pi,j be the point where
gi,j intersects ci,j . See Fig. 3(b) for an example of this step, the pi,j are shown
in light green.

3. We build the complete graph on the pi,j and s: for an edge {x, y}, we have
cost({x, y}) = geodesicP (x, y). We introduce further vertices and edges: one
vertex ĉi,j per cut ci,j ∈ Call. We add edges {pi,j , ĉi,j} with edge cost 0,
and edges {pi,j , ĉi′,j′} with edge cost 0 for all cuts ci′,j′ that gi,j intersects.
(Rationale: any path or tour visiting pi,j must visit ci′,j′/ci,j .) Let the result-
ing graph be denoted as G = (V,E). See Fig. 3(c)/(d): the points of type ĉi,j

are shown in green. We have |V (G)| = O(n · |S|).
4. With γi =

⋃Ji

j=1 pi,j ∪ ⋃Ji

j=1 ĉi,j , γ0 = s, Q = |S| + 1—that is, each group
γi contains all vertices in V (G) of color si, γ0 contains the starting point
that we must visit—we approximate the group Steiner tree problem on G,
using the approximation by Garg et al. [20], the approximation ratio is
O

(
f(|V (G)|, |S|)), where f(N,M) = log2 N log log N log M , e.g., polyloga-

rithmic in |V (G)| and |S|.
5. We double the resulting tree to obtain a route R; it visits at least one vertex

per color (one point in each kVR(si)). Thus, R is a feasible solution for k-
TrWRP(S, P, s) visiting one point per γi. R is a polylog-approximation to
the best tour that is feasible for k-TrWRP(S, P, s), visiting one point per γi

using edges in G (denoted by OPTG(S, P, s)).

To prove that R is indeed an approximation with the claimed approxima-
tion factor, we alter the optimum k-transmitter watchman route, OPT(S, P, s),
(which we of course do not know in reality) to pass points that represent vertices
of V (G), and show that this new tour is at most 3 times as long as the optimum
route. The visited points are intersection points of independent geodesics and
cuts (we obtain independent geodesics by ordering the geodesics to essential cuts

k-Transmitter Watchman Routes 209

Fig. 3. Example for the idea of our approximation algorithm, S = {s1, s2, s3}. (a)–(c):
The cuts ci,j are shown in red, geodesics and all pi,j are shown in light green, all ĉi,j
are shown in dark green. The CCs of the visibility region of a point si are colored in
a lighter shade of the same color as the point itself (orange for s1, turquoise for s2,
and pink for s3). Line segments are slightly offset to enhance visibility in case they
coincide with polygon boundary. (d) Resulting graph G. Edges with edge cost 0 are
shown in dark green, edges with edge cost of the length of the geodesic between the
two points in P are shown in gray. We highlight each vertex of G with the color of
the point si to which it belongs. All colored in the same color constitute the set γi

(γ1 highlighted in light orange, γ2 highlighted in light turquoise, γ3 highlighted in light
pink, γ0 highlighted in yellow). (Color figure online)

210 B. J. Nilsson and C. Schmidt

by non-increasing length and filtering out geodesics to cuts that were visited by
longer geodesics). The basic idea is:

a. We identify all cuts of the kVR(si) that OPT(S, P, s) visits, let these be the
set C (C ⊆ Call). Let oi,j denote the point where OPT(S, P, s) visits ci,j (for
the first time).

b. We identify the subset of essential cuts C′ ⊆ C.
c. We order the geodesics to the essential cuts C′ by decreasing length: �(g1) ≥

�(g2) ≥ . . . ≥ �(g|C′|), where �(·) defines the Euclidean length.
d. C′′ ← C′; FOR t = 1 TO |C′|, we identify all Ct ⊂ C′ that gt intersects, and

set C′′ ← C′′ \ Ct.
C′′ ⊆ C′. We let GC′′ be the set of geodesics that end at cuts in C′′.

e. The geodesics in GC′′ constitute a set of independent geodesics, that is, no
essential cut is visited by two of these geodesics. Moreover, each essential cut
visited by OPT(S, P, s)—each cut in C′—is touched by exactly one of the
geodesics.

f. The geodesics in GC′′ intersect the cuts in C′′ in points of the type pi,j , points
that represent vertices of V (G). We denote the set of all these points as PC′′

(PC′′ ⊆ {pi,j | i = 1, . . . , |S|, j = 1, . . . , Ji}).
g. We build the relative convex hull of all oi,j and all points in PC′′ (relative w.r.t.

the polygon P). We denote this relative convex hull by CHP (OPT,PC′′).
h. Because we have a set of independent geodesics, no geodesic can intersect

CHP (OPT,PC′′) between a point oi,j and a point pi,j on the same cut. Thus,
between any pair of points of the type oi,j on CHP (OPT,PC′′), we have at
most two points of PC′′ . We show that CHP (OPT,PC′′) has length of at most
three times ‖OPT(S, P, s)‖.

i. The relative convex hull of the points in PC′′ , CHP (PC′′), is not longer than
CHP (OPT,PC′′), and we show that CHP (PC′′) visits one point per γi (except
for γ0).

j. Because s (= γ0) might be located in the interior of CHP (PC′′), we need to
connect s to CHP (PC′′). This costs at most ‖OPT(S, P, s)‖.

k. Thus, we obtain (note f(N,M) = log2 N log log N log M):

‖R‖ ≤ α1 · f(|V (G)|, |S|)‖OPTG(S, P, s)‖ ≤ α2 · f(n|S|, |S|)‖CHP (PC′′)‖
≤ α3 · f(n|S|, |S|)‖CHP (OPT,PC′′)‖ ≤ α4 · f(n|S|, |S|)‖OPT(S, P, s)‖

for suitable constants α1, . . . , α4.

Hence, to show Theorem 2, we need to prove steps e, h, and i. We show step e
using Lemma 1; step h using Lemmas 2, 3, and 4; and step i using Lemmas 5, 6, 7,
and 8. For the proofs of Lemmas 1, 4, and 6 we refer to the paper’s full version.

Lemma 1. For the geodesics in GC′′ , we have:

I. The geodesics in GC′′ are independent, that is, no cut in C′ is visited by two
of these geodesics.

II. Each cut in C′ is visited by a geodesic in GC′′ .

k-Transmitter Watchman Routes 211

Lemma 2. Consider a cut c ∈ C′′, from CC j of a k-visibility region for si ∈ S,
kVRj(si), for which both the point oi,j and the point pi,j are on CHP (OPT,PC′′).
No geodesic in GC′′ intersects c between oi,j and pi,j.

Proof. Assume that there exists a geodesic gc′ ∈ GC′′ to a cut c′ �= c, c′ ∈ C′′ that
intersects c between oi,j and pi,j . Let c′ be the cut of kVRj′

(si′). Let pc denote
the point in which gc′ intersects c. If �(gc′) > �(gc), we would have deleted gc in
step d, hence c /∈ C′′. If �(gc′) < �(gc), the geodesic to c′ restricted to the part
between s and pc, gc′[s;pc], is shorter than gc, a contradiction to gc being the
geodesic to c. If �(gc′) = �(gc), either �(gc′[s;pc]) < �(gc′) = �(gc) or (if pc on c′)
pi,j = pc and the claim holds.

Lemma 3. Between any pair of points of the type oi,j on CHP (OPT,PC′′), we
have at most two points in PC′′ .

Proof. Let oi,j and oi′,j′ be two consecutive points from OPT on CHP (OPT,
PC′′), see Fig. 4 for an example of this proof construction. By Lemma 2, pi,j and
pi′,j′ can lie between oi,j and oi′,j′ , but we can have no point pκ,λ between oi,j

and pi,j or between oi′,j′ and pi′,j′ . Assume that there exists a point pκ,λ between
pi,j and pi′,j′ on CHP (OPT,PC′′). Moreover, let pi,j , pi′,j′ , and pκ,λ be on cuts
c, c′ and c′′, respectively. OPT visits oκ,λ on c′′. As oi,j and oi′,j′ are consecutive
points from OPT on CHP (OPT,PC′′), OPT visits the three points either in order
oi,j , oi′,j′ , oκ,λ or oκ,λ, oi,j , oi′,j′ . W.l.o.g., assume the order oi,j , oi′,j′ , oκ,λ. The
cut c′′ is a straight-line segment. Consider the convex polygon P� with vertices
oi,j , pi,j , pκ,λ, oκ,λ, oi′,j′ , oi,j . The point pi′,j′ must lie in P�’s interior. Moreover,
oi′,j′ cannot lie on CHP (OPT,PC′′); a contradiction.

Fig. 4. Example for the proof of Lemma 3. Cuts are shown in red, points of the type
pi,j in green, and the optimal route and points of the type oi,j in orange. The convex
polygon P� is shown in turquoise. (Color figure online)

Lemma 4. ‖CHP (OPT,PC′′)‖ ≤ 3 · ‖OPT(S, P, s)‖
Lemma 5. ‖CHP (PC′′)‖ ≤ ‖CHP (OPT,PC′′)‖.
Proof. We have PC′′ ⊆ OPT ∪ PC′′ , hence, the claim follows trivially.

Lemma 6. All points in PC′′ lie on their relative convex hull CHP (PC′′).

212 B. J. Nilsson and C. Schmidt

Lemma 7. CHP (PC′′) visits all cuts in C.

Proof. We have C = C′′ ∪ {C′ \ C′′} ∪ {C \ C′}. Cuts in {C \ C′} are dominated by
cuts in C′. Thus, any tour visiting all cuts in C′ must visit all cuts in {C \ C′}.
Cuts in C′′ are visited by Lemma 6.

Assume that there is a cut c ∈ {C′ \ C′′} not visited by CHP (PC′′). Then the
cut c is not in C′′ (we filtered gc out in step d), hence, there exists a geodesic
gci,j ∈ GC′′ with �(gci,j) ≥ �(gc) that intersects c; gci,j visits ci,j in the point
pi,j . Thus, any tour that visits both s and pi,j must intersect c. By Lemma 6,
CHP (PC′′) is such a tour; a contradiction.

Lemma 8. CHP (PC′′) visits one point per γi, except for γ0.

Proof. Because OPT(S, P, s) is feasible, the set C does include at least one cut
colored in si,∀i. By Lemma 7, CHP (PC′′) visits all cuts in C. Hence, it visits at
least one point per γi.

This concludes the proof of Theorem 2.

6 Conclusion

We proved that even in simple polygons the k-transmitter watchman route
problem for S ⊂ P cannot be approximated to within a logarithmic factor
(unless P = NP)—both the variant with a given starting point and the float-
ing watchman route. Moreover, we provided an approximation algorithm for k-
TrWRP(S, P, s), that is, the variant where we need to see a discrete set of points
S ⊂ P with a given starting point. The approximation ratio of our algorithm is
O(log2(|S| · n) log log(|S| · n) log |S|).

Obvious open questions concern approximation algorithms for the other ver-
sions of the WRP for k-transmitters: k-TrWRP(P, P, s), k-TrWRP(P, P), and
k-TrWRP(S, P). Moreover, for 0-transmitters (“normal” guards), we have a very
clear structure: any watchman route must visit all non-dominated extensions of
edges incident to a reflex vertex. Any structural analogue for k-transmitters
(k ≥ 2) would be of great interest.

References

1. Chin, W.-P., Ntafos, S.: Optimum watchman routes. In: Proceedings of the Second
Annual Symposium on Computational Geometry, SCG 1986, pp. 24–33. ACM, New
York (1986). ISBN 0-89791-194-6

2. Chin, W.-P., Ntafos, S.: Shortest watchman routes in simple polygons. Discret.
Comput. Geom. 6(1), 9–31 (1991). https://doi.org/10.1007/BF02574671

3. Tan, X., Hirata, T., Inagaki, Y.: Corrigendum to “an incremental algorithm for
constructing shortest watchman routes”. Int. J. Comput. Geom. Appl. 9(3), 319–
323 (1999)

https://doi.org/10.1007/BF02574671

k-Transmitter Watchman Routes 213

4. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.S.B.: Touring a sequence of polygons.
In: Proceedings of the 35th Annual ACM Symposium Theory Computing, pp.
473–482. ACM Press (2003)

5. Carlsson, S., Jonsson, H., Nilsson, B.J.: Finding the shortest watchman route in
a simple polygon. In: Ng, K.W., Raghavan, P., Balasubramanian, N.V., Chin,
F.Y.L. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 58–67. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-57568-5 235

6. Tan, X.: Fast computation of shortest watchman routes in simple polygons. Inf.
Process. Lett. 77(1), 27–33 (2001)

7. Dumitrescu, A., Tóth, C.D.: Watchman tours for polygons with holes. Comput.
Geom. 45(7), 326–333 (2012). ISSN 0925-7721

8. Carlsson, S., Nilsson, B.J., Ntafos, S.C.: Optimum guard covers and m-watchmen
routes for restricted polygons. Int. J. Comput. Geom. Appl. 3(1), 85–105 (1993)

9. Carlsson, S., Nilsson, B.J.: Computing vision points in polygons. Algorithmica
24(1), 50–75 (1999)

10. Bhattacharya, A., Ghosh, S.K., Sarkar, S.: Exploring an unknown polygonal envi-
ronment with bounded visibility. In: Alexandrov, V.N., Dongarra, J.J., Juliano,
B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS 2001. LNCS, vol. 2073, pp. 640–648.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45545-0 74

11. Fekete, S., Mitchell, J.S.B., Schmidt, C.: Minimum covering with travel cost. J.
Comb. Optim. 1–20 (2010). ISSN 1382-6905

12. Schmidt, C.: Algorithms for mobile agents with limited capabilities. Ph.D. thesis,
Braunschweig Institute of Technology (2011)

13. Aichholzer, O., et al.: Modem illumination of monotone polygons. Comput. Geom.:
Theory Appl. SI: in memoriam Ferran Hurtado (2018)

14. Ballinger, B., et al.: Coverage with k -transmitters in the presence of obstacles. In:
Wu, W., Daescu, O. (eds.) COCOA 2010. LNCS, vol. 6509, pp. 1–15. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17461-2 1 ISBN 978-3-642-
17460-5

15. Fabila-Monroy, R, Vargas, A.R., Urrutia, J.: On modem illumination problems. In:
XIII Encuentros de Geometria Computacional, Zaragoza (2009)

16. Cannon, S., Fai, T.G., Iwerks, J., Leopold, U., Schmidt, C.: Combinatorics and
complexity of guarding polygons with edge and point 2-transmitters. Comput.
Geom.: Theory Appl. SI: in memory of Ferran Hurtado 68, 89–100 (2018). ISSN
0925-7721

17. Biedl, T., et al.: Guarding orthogonal art galleries with sliding k-transmitters:
hardness and approximation. Algorithmica 81(1), 69–97 (2019). ISBN 1432-0541

18. Deneen, L.L., Joshi, S.: Treasures in an art gallery. In: Proceedings of the 4th
Canadian Conference on Computational Geometry, pp. 17–22 (1992)

19. Carlsson, S., Jonsson, H.: Guarding a treasury. In: Proceedings of the 5th Canadian
Conference on Computational Geometry, pp. 85–90 (1993)

20. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for
the group Steiner tree problem. J. Algorithms 37(1), 66–84 (2000)

21. Reich, G., Widmayer, P.: Beyond Steiner’s problem: a VLSI oriented generalization.
In: Nagl, M. (ed.) WG 1989. LNCS, vol. 411, pp. 196–210. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52292-1 14

22. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 314–318
(1998)

https://doi.org/10.1007/3-540-57568-5_235
https://doi.org/10.1007/3-540-45545-0_74
https://doi.org/10.1007/978-3-642-17461-2_1
https://doi.org/10.1007/3-540-52292-1_14

Graph Algorithm

Splitting Plane Graphs to Outerplanarity

Martin Gronemann, Martin Nöllenburg, and Anäıs Villedieu(B)

Algorithms and Complexity Group, TU Wien, Vienna, Austria
{mgronemann,noellenburg,avilledieu}@ac.tuwien.ac.at

Abstract. Vertex splitting replaces a vertex by two copies and par-
titions its incident edges amongst the copies. This problem has been
studied as a graph editing operation to achieve desired properties with
as few splits as possible, most often planarity, for which the problem is
NP-hard. Here we study how to minimize the number of splits to turn a
plane graph into an outerplane one. We tackle this problem by establish-
ing a direct connection between splitting a plane graph to outerplanarity,
finding a connected face cover, and finding a feedback vertex set in its
dual. We prove NP-completeness for plane biconnected graphs, while we
show that a polynomial-time algorithm exists for maximal planar graphs.
Finally, we provide upper and lower bounds for certain families of max-
imal planar graphs.

Keywords: Vertex splitting · Outerplanarity · Feedback vertex set

1 Introduction

Graph editing problems are fundamental problems in graph theory. They define
a set of basic operations on a graph G and ask for the minimum number of
these operations necessary in order to turn G into a graph of a desired target
graph class G [24,29,34,42]. For instance, in the Cluster Editing problem [38] the
operations are insertions or deletions of individual edges and the target graph
class are cluster graphs, i.e., unions of vertex-disjoint cliques. In graph drawing,
a particularly interesting graph class are planar graphs, for which several related
graph editing problems have been studied, e.g., how many vertex deletions are
needed to turn an arbitrary graph into a planar one [32] or how many vertex
splits are needed to obtain a planar graph [16,23]. In this paper, we are interested
in the latter operation: vertex splitting. A vertex split creates two copies of a
vertex v, distributes its edges among these two copies and then deletes v from G.

Further, we are translating the graph editing problem into a more geometric
or topological drawing editing problem. This means that we apply the splitting
operations not to the vertices of an abstract graph, but to the vertices of a planar
graph drawing, or more generally to a planar embedded (or plane) graph. In a
plane graph, each vertex has an induced cyclic order of incident edges, which
needs to be respected by any vertex split in the sense that we must split its

Anäıs Villedieu is supported by the Austrian Science Fund (FWF) under grant P31119.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 217–228, 2023.
https://doi.org/10.1007/978-3-031-27051-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_19&domain=pdf
https://doi.org/10.1007/978-3-031-27051-2_19

218 M. Gronemann et al.

Fig. 1. (a) An instance of Outerplane Splitting Number, where the colored vertices
will be split; (b) resulting outerplane graph after the minimum 3 splits.

cyclic order into two contiguous intervals, one for each of the two copies. From
a different perspective, the two faces that serve as the separators of these two
edge intervals are actually merged into a single face by the vertex split.

Finally, we consider outerplanar graphs as the target graph class. Thus, we
want to apply a minimum number of vertex splits to a plane graph G, which
merge a minimum number of faces in order to obtain an outerplanar embed-
ded graph G′, where all vertices are incident to a single face, called the outer
face. We denote this minimum number of splits as the outerplane splitting num-
ber osn(G) of G (see Fig. 1). Outerplanar graphs are a prominent graph class
in graph drawing (see, e.g., [7,17,27,28]) as well as in graph theory and graph
algorithms more generally (e.g., [10,18,31]). For instance, outerplanar graphs
admit planar circular layouts or 1-page book embeddings [5]. Additionally, out-
erplanar graphs often serve as a simpler subclass of planar graphs with good
algorithmic properties. For instance, they have treewidth 2 and their generaliza-
tions to k-outerplanar graphs still have bounded treewidth [6,9], which allows
for polynomial-time algorithms for NP-complete problems that are tractable for
such bounded-treewidth graphs. This, in turn, can be used to obtain a PTAS
for these problems on planar graphs [4].

We are now ready to define our main computational problem as follows.

Problem 1 (Outerplane Splitting Number). Given a plane biconnected
graph G = (V,E) and an integer k, can we transform G into an outerplane
graph G′ by applying at most k vertex splits to G?

Contributions. In this paper, we introduce the above problem Outerplane
Splitting Number. We start by showing the key property for our subse-
quent results, namely that (minimum) sets of vertex splits to turn a plane bicon-
nected graph G into an outerplane one correspond to (minimum) connected face
covers in G (Sect. 2), which in turn are equivalent to (minimum) feedback vertex
sets in the dual graph of G. Using this tool we then show that for general plane
biconnected graphs Outerplane Splitting Number is NP-complete (Sect. 3),
whereas for maximal planar graphs we can solve it in polynomial time (Sect. 4).

Splitting Plane Graphs to Outerplanarity 219

Fig. 2. (a) Two touching faces f1, f2 with a common vertex v on their boundary.
(b) Result of the split of v with respect to f1, f2 joining them into a new face f .
(c-d) Merging 4 faces f1, . . . , f4 covering a single vertex v with 3 splits.

Finally, we provide upper and lower bounds on the outerplane splitting number
for maximal planar graphs (Sect. 5).

Related Work. Splitting numbers have been studied mostly for abstract (non-
planar) graphs with the goal of turning them into planar graphs. The Planar
Splitting Number problem is NP-complete in general [16], but exact splitting
numbers are known for complete and complete bipartite graphs [21,23], as well
as for the 4-cube [15]. For two-layer drawings of general bipartite graphs, the
problem is still NP-complete, but FPT [2] when parametrized by the number of
split vertices. It has also been studied for other surfaces such as the torus [19]
and the projective plane [20]. Another related concept is the split thickness of
a graph G (or its folded covering number [26]), which is the smallest k such
that G can be transformed into a planar graph by applying at most k splits
per vertex. Recognizing graphs with split thickness 2 is NP-hard, but there is
a constant-factor approximation algorithm and a fixed-parameter algorithm for
graphs of bounded treewidth [14]. Recently, the complexity of the embedded
splitting number problem of transforming non-planar graph drawings into plane
ones has been investigated [35]. Beyond the theoretical investigations of splitting
numbers and planarity, there are also applied work in graph drawing making
use of vertex splitting to untangle edges [41] or to improve layout quality for
community exploration [3,22].

Regarding vertex splitting for achieving graph properties other than pla-
narity, Trotter and Harary [39] studied vertex splitting to turn a graph into an
interval graph. Paik et al. [36] considered vertex splitting to remove long paths in
directed acyclic graphs and Abu-Khzam et al. [1] studied heuristics using vertex
splitting for a cluster editing problem.

Preliminaries. The key concept of our approach is to merge a set of faces of a
given plane graph G = (V,E) with vertex set V = V (G) and edge set E = E(G)
into one big face which is incident to all vertices of G. Hence, the result is
outerplanar. The idea is that if two faces f1 and f2 share a vertex v on their
boundary (we say f1 and f2 touch, see Fig. 2a), then we can split v into two new
vertices v1, v2. In this way, we are able to create a narrow gap, which merges

220 M. Gronemann et al.

f1, f2 into a bigger face f (see Fig. 2b). With this in mind, we formally define an
embedding-preserving split of a vertex v w.r.t. two incident faces f1 and f2. We
construct a new plane graph G′ = (V ′, E′) with V ′ = V \{v}∪{v1, v2}. Consider
the two neighbors of v both incident to f1 and let w1 be the second neighbor
in clockwise order. Similarly, let wi be the second vertex adjacent to v and
incident to f2. We call wd the vertex preceding w1 in the cyclic ordering or the
neighbors, with d being the degree of v, see Fig. 2a. Note that while w1 = wi−1

and wi = wd is possible, wd �= w1 and wi−1 �= wi. For the set of edges, we now set
E′ = E\{(v, w1), . . . , (v, wd)}∪{(v2, w1), . . . , (v2, wi−1)}∪{(v1, wi), . . . , (v1, wd)}
and assume that they inherit their embedding from G. From now on we refer
to this operation simply as a split or when f1, f2 are clear from the context, we
may refer to merging the two faces at v. The vertices v1, v2 introduced in place
of v are called copies of v. If a copy vi of a vertex v is split again, then any copy
of vi is also called a copy of the original vertex v.

We can now reformulate the task of using as few splits as possible. Our
objective is to find a set of faces S that satisfies two conditions. (1) Every vertex
in G has to be on the boundary of at least one face f ∈ S, that is, the faces in S
cover all vertices in V .1 And (2) for every two faces f, f ′ ∈ S there exists a set
of faces {f1, . . . , fk} ⊆ S such that f = f1, . . . , fk = f ′, and fi touches fi+1 for
1 ≤ i < k. In other words, S is connected in terms of touching faces. We now
introduce the main tool in our constructions that formalizes this concept.

2 Face-Vertex Incidence Graph

Let G = (V,E) be a plane biconnected graph and F its set of faces. The face-
vertex incidence graph is defined as H = (V ∪ F,EH) and contains the edges
EH = {(v, f) ∈ V ×F : v is on the boundary of f}. Graph H is by construction
bipartite and we assume that it is plane by placing each vertex f ∈ F into its
corresponding face in G.

Definition 1. Let G be a plane biconnected graph, let F be the set of faces of
G, and let H be its face-vertex incidence graph. A face cover of G is a set S ⊆ F
of faces such that every vertex v ∈ V is incident to at least one face in S. A
face cover S of G is a connected face cover if the induced subgraph H[S ∪ V] of
S ∪ V in H is connected.

We point out that the problem of finding a connected face cover is not equiva-
lent to the Connected Face Hitting Set Problem [37], where a connected set of
vertices incident to every face is computed. We continue with two lemmas that
are concerned with merging multiple faces at the same vertex (Fig. 2c).

Lemma 1. Let G be a plane biconnected graph and S ⊆ F a subset of the faces
F of G that all have the vertex v ∈ V on their boundary. Then |S| − 1 splits are
sufficient to merge the faces of S into one.
1 Testing whether such S with |S| ≤ k exists, is the NP-complete problem Face
Cover [8].

Splitting Plane Graphs to Outerplanarity 221

Proof. Let f1, . . . , fk with k = |S| be the faces of S in the clockwise order as
they appear around v (f1 chosen arbitrarily). We iteratively merge f1 with fi

for 2 ≤ i ≤ k, which requires in total |S| − 1 splits (see Fig. 2c and Fig. 2d). ��
Lemma 2. Let G be a plane biconnected graph and let S be a connected face
cover of G. Then |S| − 1 splits are sufficient to merge the faces of S into one.

Proof. Let H ′ = H[S ∪ V] and compute a spanning tree T in H ′. For every
vertex v ∈ V (T) ∩ V (G), we apply Lemma 1 with the face set F ′(v) = {f ∈
S ∩ V (T) | (v, f) ∈ E(T)}. We root the tree at an arbitrary face f ′ ∈ S, which
provides a hierarchy on the vertices and faces in T . Every vertex v ∈ V (T)∩V (G)
requires by Lemma 1 |F ′(v)| − 1 splits. Note that that for all leaf vertices in T ,
|F ′(v)| = 1, i.e., they will not be split. Each split is charged to the children of
v in T . Since H is bipartite, so is T . It follows that every face f ∈ S \ {f ′} is
charged exactly once by its parent, thus |S| − 1 splits suffice. ��
Lemma 3. Let G be a plane biconnected graph and σ a sequence of k splits to
make G outerplane. Then G has a connected face cover of size k + 1.

Proof. Since by definition applying σ to G creates a single big face that is incident
to all vertices in V (G) by iteratively merging pairs of original faces defining a
set S ⊆ F , it is clear that S is a face cover of G and since the result of the vertex
splits and face merges creates a single face, set S must also be connected. ��

As a consequence of Lemmas 2 and 3 we obtain that Outerplane Split-
ting Number and computing a minimum connected face cover are equivalent.

Theorem 1. Let G be a plane biconnected graph. Then G has outerplane split-
ting number k if and only if it has a connected face cover of size k + 1.

3 NP-Completeness

In this section, we prove that finding a connected face cover of size k (and thus
Outerplane Splitting Number) is NP-complete. The idea is to take the dual
of a planar biconnected Vertex Cover instance and subdivide every edge once
(we call this an all-1-subdivision). Note that the all-1-subdivision of a graph G
corresponds to its vertex-edge incidence graph and the all-1-subdivision of the
dual of G corresponds to the face-edge incidence graph of G. A connected face
cover then corresponds to a vertex cover in the original graph, and vice versa.
The following property greatly simplifies the arguments regarding Definition 1.

Property 1. Let G′ be an all-1-subdivision of a biconnected planar graph G and
S a set of faces that cover V (G′). Then S is a connected face cover of G′.

Proof. Let H be the all-1-subdivision of the dual of G, and assume to the con-
trary that the induced subgraph H ′ = H[S∪V (G)] is not connected. Then there
exists an edge (u, v) ∈ E(G) such that u and v are in different connected com-
ponents in H ′. Let w be the subdivision vertex of (u, v) in G′. As a subdivision

222 M. Gronemann et al.

Fig. 3. Link between the primal graph G, its vertex cover, the dual D and its subdi-
vision D∗.

vertex, w is incident to only two faces, one of which, say f , must be contained in
S. But f is also incident to u and v and hence u and v are in the same component
of H ′ via face f , a contradiction. Hence H ′ is connected and S is a connected
face cover of G′. ��

The proof of the next theorem is very similar to the reduction of Bienstock
and Monma to show NP-completeness of Face Cover [8]; due to differences in
the problem definitions, such as the connectivity of the face cover and whether
the input graph is plane or not, we provide the full reduction for the sake of
completeness.

Theorem 2. Deciding whether a plane biconnected graph G has a connected
face cover of size at most k is NP-complete.

Proof. Clearly the problem is in NP. To prove hardness, we first introduce some
notation. Let G be a plane biconnected graph and D the corresponding dual
graph. Furthermore, let D∗ be the all-1-subdivision of D. We prove now that a
connected face cover S∗ of size k in D∗ is in a one-to-one correspondence with a
vertex cover S of size k in G (see Fig. 3). More specifically, we show that the dual
vertices of the faces of S∗ that form a connected face cover in D∗, are a vertex
cover for G and vice versa. The reduction is from the NP-complete Vertex
Cover problem in biconnected planar graphs in which all vertices have degree
3 (cubic graphs) [33].

Connected Face Cover ⇒ Vertex Cover : Let G be such a biconnected
plane Vertex Cover instance. Assume we have a connected face cover S∗

with |S∗| = k for D∗. Note that the faces of D∗ correspond to the vertices
in G. We claim that the faces S∗, when mapped to the corresponding vertices
S ⊆ V (G) are a vertex cover for G. Assume otherwise, that is, there exists
an edge e∗ ∈ E(G) that has no endpoints in S. However, e∗ has a dual edge
e ∈ E(D) and therefore a subdivision vertex ve ∈ V (D∗). Hence, there is a face

Splitting Plane Graphs to Outerplanarity 223

Fig. 4. The connected face cover (blue) is a feedback vertex set (red) in the dual.
(Color figure online)

f ∈ S∗ that has ve on its boundary by definition of connected face cover. And
when mapped to D, f has e on its boundary, which implies that the primal edge
e∗ has at least one endpoint in S∗; a contradiction.

Vertex Cover ⇒ Connected Face Cover : To prove that a vertex cover
S induces a connected face cover S∗ in D∗, we have to prove that S∗ covers
all vertices and the induced subgraph in the face-vertex incidence graph H is
connected. We proceed as in the other direction. S covers all edges in E(G),
thus every edge e ∈ E(D) is bounded by at least one face of S∗. Hence, every
subdivision vertex in V (D∗) is covered by a face of S∗. Furthermore, every vertex
in D∗ is adjacent to a subdivision vertex, thus, also covered by a face in S∗. Since
S∗ is covering all vertices, we obtain from Property 1 that S∗ is a connected face
cover. ��

4 Feedback Vertex Set Approach

A feedback vertex set S◦ ⊂ V (G) of a graph G is a vertex subset such that the
induced subgraph G[V (G)\S◦] is acyclic. We show here that finding a connected
face cover S of size k for a plane biconnected graph G is equivalent to finding
a feedback vertex set S◦ ⊂ V (D) of size k in the dual graph D of G. The weak
dual, i.e., the dual without a vertex for the outer face, of an outerplanar graph is
a forest. Thus we must find the smallest number of splits in G which transform
D into a forest. In other words, we must must break all the cycles in D, and
hence all of the vertices in the feedback vertex set S◦ of D correspond to the
faces of G that should be merged together (see Fig. 4).

Property 2. Let H be the face-vertex incidence graph of a plane biconnected
graph G and let S◦ be a feedback vertex set in the dual D of G. Then S◦ induces
a connected face cover S in G.

224 M. Gronemann et al.

Proof. We need to show that S◦ is a face cover and that it is connected. First,
assume there is a vertex v ∈ V (G) of degree deg(v) = d that is not incident to
a vertex in S◦, i.e., a face of G. Since G is biconnected, v is incident to d faces
f1, . . . , fd, none of which is contained in S◦. But then D[V (D) \ S◦] has a cycle
(f1, . . . , fd), a contradiction.

Next, we define S◦ = V (D)\S◦ as the complement of the feedback vertex set
S◦ in D. Assume that H[V ∪S◦] has at least two separate connected components
C1, C2. Then there must exist a closed curve in the plane separating C1 from C2,
which avoids the faces in S◦ and instead passes through a sequence (f1, . . . , f�) of
faces in S◦, where each pair (fi, fi+1) for i ∈ {1, . . . , �− 1} as well as (f�, f1) are
adjacent in the dual D. Again this implies that there is a cycle in D[V (D) \S◦],
a contradiction. Thus S◦ is a connected face cover. ��
Theorem 3. A plane biconnected graph G has outerplane splitting number k if
and only if its dual D has a minimum feedback vertex set of size k + 1.

Proof. Let S◦ be a minimum feedback vertex set of the dual D of G with cardi-
nality |S◦| = k + 1 and let H be the face-vertex incidence graph of G. We know
from Property 2 that H ′ = H[V (G) ∪ S◦] is connected and hence S◦ induces a
connected face cover S with |S| = k + 1. Then by Lemma 2 G has osn(G) ≤ k.

Let conversely σ be a sequence of k vertex splits that turn G into an out-
erplane graph G′ and let F be the set of faces of G. By Lemma 3 we obtain a
connected face cover S of size k + 1 consisting of all faces that are merged by
σ. The complement S = F \ S consists of all faces of G that are not merged by
the splits in σ and thus are the remaining (inner) faces of the outerplane graph
G′. Since G′ is outerplane and biconnected, S is the vertex set of the weak dual
of G′, which must be a tree. Hence S is a feedback vertex set in D of size k + 1
and the minimum feedback vertex set in D has size at most k + 1. ��

Since all faces in a maximal planar graph are triangles, the maximum vertex
degree of its dual is 3. Thus, we can apply the polynomial-time algorithm of
Ueno et al. [40] to this dual, which computes the minimum feedback vertex set
in graphs of maximum degree 3 by reducing the instance to polynomial-solvable
matroid parity problem instance, and obtain

Corollary 1. We can solve Outerplane Splitting Number for maximal
planar graphs in polynomial time.

Many other existing results for feedback vertex set extend to Outerplane
Splitting Number, e.g., it has a kernel of size 13k [11] and admits a PTAS [13].

5 Lower and Upper Bounds

In this section we provide some upper and lower bounds on the outerplane split-
ting number in certain maximal planar graphs.

Splitting Plane Graphs to Outerplanarity 225

5.1 Upper Bounds

Based on the equivalence of Theorem 3 we obtain upper bounds on the outer-
plane splitting number from suitable upper bounds on the feedback vertex set
problem, which has been studied for many graph classes, among them cubic
graphs [12]. Liu and Zhao [30] showed that cubic graphs G = (V,E) of girth at
least four (resp., three) have a minimum feedback vertex set of size at most |V |

3

(resp., 3|V |
8). Kelly and Liu [25] showed that connected planar subcubic graphs

of girth at least five have a minimum feedback vertex set of size at most 2|V |+2
7 .

Recall that the girth of a graph is the length of its shortest cycle.

Proposition 1. The outerplane splitting number of a maximal planar graph
G = (V,E) of minimum degree (i) 3, (ii) 4, and (iii) 5, respectively, is at most
(i) 3|V |−10

4 , (ii) 2|V |−7
3 , and (iii) 4|V |−13

7 , respectively.

Proof. Maximal planar graphs with n = |V | vertices have 2n − 4 faces. So the
corresponding dual graphs have 2n − 4 vertices. Moreover, since the degree of a
vertex in G corresponds to the length of a facial cycle in the dual, graphs with
minimum vertex degree 3, 4, or 5 have duals with girth 3, 4, or 5, respectively.
So if the minimum degree in G is 3, we obtain an upper bound on the feedback
vertex set of (3n − 6)/4; if the minimum degree is 4, the bound is (2n − 4)/3;
and if the minimum degree is 5, the bound is (4n− 6)/7. The claim then follows
from Theorem 3. ��

5.2 Lower Bounds

We first provide a generic lower bound for the outerplane splitting number of
maximal planar graphs. Let G be an n-vertex maximal planar graph with 2n−4
faces. Each face is a triangle incident to three vertices. In a minimum-size con-
nected face cover S∗, the first face covers three vertices. Due to the connectivity
requirement, all other faces can add at most two newly covered vertices. Hence
we need at least n−1

2 faces in any connected face cover. By Theorem 1 this
implies that osn(G) ≥ n−3

2 .

Proposition 2. Any maximal planar graph G has outerplane splitting number
at least |V (G)|−3

2 .

Next, towards a better bound, we define a family of maximal planar graphs
Td = (Vd, Ed) of girth 3 for d ≥ 0 that have outerplane splitting number at least
2|Vd|−8

3 . The family are the complete planar 3-trees of depth d, which are defined
recursively as follows. The graph T0 is the 4-clique K4. To obtain Td from Td−1

for d ≥ 1 we subdivide each inner triangular face of Td−1 into three triangles by
inserting a new vertex and connecting it to the three vertices on the boundary
of the face.

Proposition 3. The complete planar 3-tree Td of depth d has outerplane split-
ting number at least 2|Vd|−8

3 .

226 M. Gronemann et al.

Proof. Each Td is a maximal planar graph with nd = 3 +
∑d

i=0 3i = 3d+1+5
2

vertices. All 3d leaf-level vertices added into the triangular faces of Td−1 in the
last step of the construction have degree 3 and are incident to three exclusive
faces, i.e., there is no face that covers more than one of these leaf-level vertices.
This immediately implies that any face cover of Td, connected or not, has size at
least 3d. From nd = 3d+1+5

2 we obtain d = log3
2nd−5

3 and 3d = 2nd−5
3 . Theorem

1 then implies that osn(Td) ≥ 2nd−8
3 . ��

6 Open Problems

We have introduced the Outerplane Splitting Number problem and estab-
lished its complexity for plane biconnected graphs. The most important open
question revolves around the embedding requirement. Splitting operations can
be defined more loosely and allow for any new embedding and neighborhood of
the split vertices. In general, it is also of interest to understand how the prob-
lem differs when the input graph does not have an embedding at all, as in the
original splitting number problem. Since Outerplane Splitting Number can
be solved in polynomial time for maximal planar graphs but is hard for plane
biconnected graphs, there is a complexity gap to be closed when faces of degree
more than three are involved. Vertex splitting in graph drawings has so far been
studied to achieve planarity and outerplanarity. A natural extension is to study
it for other graph classes or graph properties.

References

1. Abu-Khzam, F.N., Barr, J.R., Fakhereldine, A., Shaw, P.: A greedy heuristic for
cluster editing with vertex splitting. In: Proceedings of the 4th International Con-
ference on Artificial Intelligence for Industries (AI4I), pp. 38–41. IEEE (2021).
https://doi.org/10.1109/AI4I51902.2021.00017

2. Ahmed, R., Kobourov, S., Kryven, M.: An FPT algorithm for bipartite vertex
splitting. In: Angelini, P., von Hanxleden, R. (eds.) GD 2022. LNCS, vol. 13764, pp.
261–268. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-22203-0 19

3. Angori, L., Didimo, W., Montecchiani, F., Pagliuca, D., Tappini, A.: Hybrid graph
visualizations with ChordLink: algorithms, experiments, and applications. IEEE
Trans. Vis. Comput. Graph. 28(2), 1288–1300 (2022). https://doi.org/10.1109/
TVCG.2020.3016055

4. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41(1), 153–180 (1994). https://doi.org/10.1145/174644.174650

5. Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Comb. Theor. Ser.
B 27(3), 320–331 (1979). https://doi.org/10.1016/0095-8956(79)90021-2

6. Biedl, T.: On triangulating k-outerplanar graphs. Discrete Appl. Math. 181, 275–
279 (2015). https://doi.org/10.1016/j.dam.2014.10.017

7. Biedl, T.: Small drawings of outerplanar graphs, series-parallel graphs, and other
planar graphs. Discrete Comput. Geom. 45(1), 141–160 (2010). https://doi.org/
10.1007/s00454-010-9310-z

https://doi.org/10.1109/AI4I51902.2021.00017
https://doi.org/10.1007/978-3-031-22203-0_19
https://doi.org/10.1109/TVCG.2020.3016055
https://doi.org/10.1109/TVCG.2020.3016055
https://doi.org/10.1145/174644.174650
https://doi.org/10.1016/0095-8956(79)90021-2
https://doi.org/10.1016/j.dam.2014.10.017
https://doi.org/10.1007/s00454-010-9310-z
https://doi.org/10.1007/s00454-010-9310-z

Splitting Plane Graphs to Outerplanarity 227

8. Bienstock, D., Monma, C.L.: On the complexity of covering vertices by faces in
a planar graph. SIAM J. Comput. 17(1), 53–76 (1988). https://doi.org/10.1137/
0217004

9. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth.
Theor. Comput. Sci. 209(1–2), 1–45 (1998). https://doi.org/10.1016/S0304-
3975(97)00228-4

10. Bodlaender, H.L., Fomin, F.V.: Approximation of pathwidth of outerplanar
graphs. J. Algorithms 43(2), 190–200 (2002). https://doi.org/10.1016/S0196-
6774(02)00001-9

11. Bonamy, M., Kowalik, L.: A 13k-kernel for planar feedback vertex set via region
decomposition. Theor. Comput. Sci. 645, 25–40 (2016). https://doi.org/10.1016/
j.tcs.2016.05.031

12. Bondy, J.A., Hopkins, G., Staton, W.: Lower bounds for induced forests in cubic
graphs. Can. Math. Bull. 30(2), 193–199 (1987). https://doi.org/10.4153/CMB-
1987-028-5

13. Demaine, E., Hajiaghayi, M.: Bidimensionality: new connections between FPT
algorithms and PTASs. In: Proceedings of the 37th Annual ACM Symposium
on Theory of Computing (STOC), pp. 590–601 (2005). https://doi.org/10.1145/
1070432.1070514

14. Eppstein, D.: On the planar split thickness of graphs. Algorithmica 80(3), 977–994
(2017). https://doi.org/10.1007/s00453-017-0328-y

15. Faria, L., de Figueiredo, C.M.H., de Mendonça Neto, C.F.X.: The splitting number
of the 4-cube. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380,
pp. 141–150. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054317

16. Faria, L., de Figueiredo, C.M., de Mendonça, C.F.X.: Splitting number is NP-
complete. Discrete Appl. Math. 108(1), 65–83 (2001). https://doi.org/10.1016/
S0166-218X(00)00220-1

17. Frati, F.: Planar rectilinear drawings of outerplanar graphs in linear time. Comput.
Geom. 103, 101854 (2022). https://doi.org/10.1016/j.comgeo.2021.101854

18. Frederickson, G.N.: Searching among intervals and compact routing tables. Algo-
rithmica 15(5), 448–466 (1996). https://doi.org/10.1007/BF01955044

19. Hartsfield, N.: The toroidal splitting number of the complete graph kn. Discrete
Math. 62(1), 35–47 (1986). https://doi.org/10.1016/0012-365X(86)90039-7

20. Hartsfield, N.: The splitting number of the complete graph in the projective plane.
Graphs Comb. 3(1), 349–356 (1987). https://doi.org/10.1007/BF01788557

21. Hartsfield, N., Jackson, B., Ringel, G.: The splitting number of the complete graph.
Graphs Comb. 1(1), 311–329 (1985). https://doi.org/10.1007/BF02582960

22. Henry, N., Bezerianos, A., Fekete, J.: Improving the readability of clustered social
networks using node duplication. IEEE Trans. Vis. Comput. Graph. 14(6), 1317–
1324 (2008). https://doi.org/10.1109/TVCG.2008.141

23. Jackson, B., Ringel, G.: The splitting number of complete bipartite graphs. Arch.
Math. 42(2), 178–184 (1984). https://doi.org/10.1007/BF01772941

24. Kant, G.: Augmenting outerplanar graphs. J. Algorithms 21(1), 1–25 (1996).
https://doi.org/10.1006/jagm.1996.0034

25. Kelly, T., Liu, C.: Minimum size of feedback vertex sets of planar graphs of girth at
least five. Eur. J. Comb. 61, 138–150 (2017). https://doi.org/10.1016/j.ejc.2016.
10.009

26. Knauer, K.B., Ueckerdt, T.: Three ways to cover a graph. Discrete Math. 339(2),
745–758 (2016). https://doi.org/10.1016/j.disc.2015.10.023

https://doi.org/10.1137/0217004
https://doi.org/10.1137/0217004
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/S0196-6774(02)00001-9
https://doi.org/10.1016/S0196-6774(02)00001-9
https://doi.org/10.1016/j.tcs.2016.05.031
https://doi.org/10.1016/j.tcs.2016.05.031
https://doi.org/10.4153/CMB-1987-028-5
https://doi.org/10.4153/CMB-1987-028-5
https://doi.org/10.1145/1070432.1070514
https://doi.org/10.1145/1070432.1070514
https://doi.org/10.1007/s00453-017-0328-y
https://doi.org/10.1007/BFb0054317
https://doi.org/10.1016/S0166-218X(00)00220-1
https://doi.org/10.1016/S0166-218X(00)00220-1
https://doi.org/10.1016/j.comgeo.2021.101854
https://doi.org/10.1007/BF01955044
https://doi.org/10.1016/0012-365X(86)90039-7
https://doi.org/10.1007/BF01788557
https://doi.org/10.1007/BF02582960
https://doi.org/10.1109/TVCG.2008.141
https://doi.org/10.1007/BF01772941
https://doi.org/10.1006/jagm.1996.0034
https://doi.org/10.1016/j.ejc.2016.10.009
https://doi.org/10.1016/j.ejc.2016.10.009
https://doi.org/10.1016/j.disc.2015.10.023

228 M. Gronemann et al.

27. Lazard, S., Lenhart, W.J., Liotta, G.: On the edge-length ratio of outerplanar
graphs. Theor. Comput. Sci. 770, 88–94 (2019). https://doi.org/10.1016/j.tcs.
2018.10.002

28. Lenhart, W., Liotta, G.: Proximity drawings of outerplanar graphs (extended
abstract). In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 286–302. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-62495-3 55

29. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980). https://doi.org/10.
1016/0022-0000(80)90060-4

30. Liu, J., Zhao, C.: A new bound on the feedback vertex sets in cubic graphs. Discrete
Math. 148(1–3), 119–131 (1996). https://doi.org/10.1016/0012-365X(94)00268-N

31. Maheshwari, A., Zeh, N.: External memory algorithms for outerplanar graphs. In:
ISAAC 1999. LNCS, vol. 1741, pp. 307–316. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-46632-0 31

32. Marx, D., Schlotter, I.: Obtaining a planar graph by vertex deletion. Algorithmica
62(3–4), 807–822 (2012). https://doi.org/10.1007/s00453-010-9484-z

33. Mohar, B.: Face covers and the genus problem for apex graphs. J. Comb. Theor.
Ser. B 82(1), 102–117 (2001). https://doi.org/10.1006/jctb.2000.2026

34. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge mod-
ification problems. Discrete Appl. Math. 113(1), 109–128 (2001). https://doi.org/
10.1016/S0166-218X(00)00391-7

35. Nöllenburg, M., Sorge, M., Terziadis, S., Villedieu, A., Wu, H.Y., Wulms, J.: Pla-
narizing graphs and their drawings by vertex splitting. In: Angelini, P., von Hanxle-
den, R. (eds.) GD 2022. LNCS, vol. 13764, pp. 232–246. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-22203-0 17

36. Paik, D., Reddy, S.M., Sahni, S.: Vertex splitting in dags and applications to partial
scan designs and lossy circuits. Int. J. Found. Comput. Sci. 9(4), 377–398 (1998).
https://doi.org/10.1142/S0129054198000301

37. Schweitzer, P., Schweitzer, P.: Connecting face hitting sets in planar graphs. Inf.
Process. Lett. 111(1), 11–15 (2010). https://doi.org/10.1016/j.ipl.2010.10.008

38. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete
Appl. Math. 144(1–2), 173–182 (2004). https://doi.org/10.1016/j.dam.2004.01.007

39. Trotter, W.T., Harary, F.: On double and multiple interval graphs. J. Graph.
Theor. 3(3), 205–211 (1979). https://doi.org/10.1002/jgt.3190030302

40. Ueno, S., Kajitani, Y., Gotoh, S.: On the nonseparating independent set problem
and feedback set problem for graphs with no vertex degree exceeding three. Discrete
Math. 72(1–3), 355–360 (1988). https://doi.org/10.1016/0012-365X(88)90226-9

41. Wu, H.Y., Nöllenburg, M., Viola, I.: Multi-level area balancing of clustered graphs.
IEEE Trans. Vis. Comput. Graph. 28(7), 2682–2696 (2022). https://doi.org/10.
1109/TVCG.2020.3038154

42. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: Proceedings of
the 10th Annual ACM Symposium on Theory of Computing (STOC), pp. 253–264.
ACM (1978). https://doi.org/10.1145/800133.804355

https://doi.org/10.1016/j.tcs.2018.10.002
https://doi.org/10.1016/j.tcs.2018.10.002
https://doi.org/10.1007/3-540-62495-3_55
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0012-365X(94)00268-N
https://doi.org/10.1007/3-540-46632-0_31
https://doi.org/10.1007/3-540-46632-0_31
https://doi.org/10.1007/s00453-010-9484-z
https://doi.org/10.1006/jctb.2000.2026
https://doi.org/10.1016/S0166-218X(00)00391-7
https://doi.org/10.1016/S0166-218X(00)00391-7
https://doi.org/10.1007/978-3-031-22203-0_17
https://doi.org/10.1142/S0129054198000301
https://doi.org/10.1016/j.ipl.2010.10.008
https://doi.org/10.1016/j.dam.2004.01.007
https://doi.org/10.1002/jgt.3190030302
https://doi.org/10.1016/0012-365X(88)90226-9
https://doi.org/10.1109/TVCG.2020.3038154
https://doi.org/10.1109/TVCG.2020.3038154
https://doi.org/10.1145/800133.804355

Certifying Induced Subgraphs
in Large Graphs

Ulrich Meyer1, Hung Tran1(B), and Konstantinos Tsakalidis2

1 Goethe University Frankfurt, Frankfurt, Germany
{umeyer,htran}@ae.cs.uni-frankfurt.de
2 University of Liverpool, Liverpool, UK

K.Tsakalidis@liverpool.ac.uk

Abstract. We introduce I/O-effiient certifying algorithms for bipartite
graphs, as well as for the classes of split, threshold, bipartite chain, and
trivially perfect graphs. When the input graph is a member of the respec-
tive class, the certifying algorithm returns a certificate that characterizes
this class. Otherwise, it returns a forbidden induced subgraph as a cer-
tificate for non-membership. On a graph with n vertices and m edges,
our algorithms take O(sort(n + m)) I/Os in the worst case for split,
threshold and trivially perfect graphs. In the same complexity bipartite
and bipartite chain graphs can be certified with high probability. We
provide implementations for split and threshold graphs and provide a
preliminary experimental evaluation.

Keywords: Certifying algorithm · Graph algorithm · External
memory

1 Introduction

Certifying algorithms [13] ensure the correctness of an algorithm’s output with-
out having to trust the algorithm itself. The user of a certifying algorithm
inputs x and receives the output y with a certificate or witness w that proves
that y is a correct output for input x. In a subsequent step, the certificate can
be inspected using an authentication algorithm that considers the input, output
and certificate and returns whether the output is indeed correct. Certifying the
bipartiteness of a graph is a textbook example where the returned witness w
is a bipartition of the vertices (YES-certificate) or an induced odd-length cycle
subgraph, i.e. a cycle of vertices with an odd number of edges (NO-certificate).

Emerging big data applications need to process large graphs efficiently. Stan-
dard models of computation in internal memory (RAM, pointer machine) do not
capture the algorithmic complexity of processing graphs with size that exceed the
main memory. The I/O model by Aggarwal and Vitter [1] is suitable for studying
large graphs stored in an external memory hierarchy, e.g. comprised of cache,
RAM and hard disk memories. The input data elements are stored in external
memory (EM) packed in blocks of at most B elements and computation is free
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 229–241, 2023.
https://doi.org/10.1007/978-3-031-27051-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_20&domain=pdf
https://doi.org/10.1007/978-3-031-27051-2_20

230 U. Meyer et al.

in main memory for at most M elements. The I/O-complexity is measured in
I/O-operations (I/Os) that transfer a block from external to main memory and
vice versa. I/O-optimal external memory algorithms for sorting n elements take
sort(n) = O((n/B) logM/B(n/B)) I/Os and reading or writing n contiguous
items (which is referred to as scanning) requires scan(n) = O(n/B) I/Os.

1.1 Previous Work

Certifying bipartiteness in internal memory takes linear time in the number
of edges by any traversal of the graph. However, all known external memory
breadth-first search [2] and depth-first search [4] traversal algorithms take sub-
optimal ω (sort (n + m)) I/Os for an input graph with n vertices and m edges.

Heggernes and Kratsch [10] present optimal internal memory algorithms for
certifying whether a graph belongs to the classes of split, threshold, bipar-
tite chain, and trivially perfect graphs. They return in linear time a YES-
certificate characterizing the corresponding class or a forbidden induced sub-
graph of the class (NO-certificate). The YES- and NO-certificates are authenticated
in linear and constant time, respectively. A straightforward application to the
I/O model leads to suboptimal certifying algorithms since graph traversal algo-
rithms in external memory are much more involved and no worst-case efficient
algorithms are known.

1.2 Our Results

We present I/O-efficient certifying algorithms for bipartite, split, threshold, bipar-
tite chain, and trivially perfect graphs. All algorithms return in the member-
ship case, a YES-certificate w characterizing the graph class, or a O(1)-size NO-
certificate in the non-membership case. All YES-certificates can be authenticated
using O(sort(n + m)) I/Os as detailed in the full version of the paper [14]. Addi-
tionally, we perform experiments for split and threshold graphs showing scaling
well beyond the size of main memory.

2 Preliminaries and Notation

For a graph G = (V,E), let n = |V | and m = |E| denote the number of vertices V
and edges E, respectively. For a vertex v ∈ V we denote by N(v) the neighborhood
of v and by N [v] = N(v) ∪ {v} the closed neighborhood of v. The degree deg(v)
of a vertex v is given by deg(v) = |N(v)|. A vertex v is called simplicial if N(v)
is a clique and universal if N [v] = V .

Graph Subgraphs and Orderings. The subgraph of G that is induced by a
subset A ⊆ V of vertices is denoted by G[A]. The substructure (subgraph) of a
cycle on k vertices is denoted by Ck and of a path on k vertices is denoted by
Pk. The 2K2 is a graph that is isomorphic to the following constant size graph:
({a, b, c, d}, {ab, cd}).

Henceforth we refer to different types of orderings of vertices: an order-
ing (v1, . . . , vn) is a (i) perfect elimination ordering (peo) if vi is simplicial in

Certifying Induced Subgraphs in Large Graphs 231

G[{vi, vi+1, . . . , vn}] for all i ∈ {1, . . . , n}, and a (ii) universal-in-a-component-
ordering (uco) if vi is universal in its connected component in G[{vi, vi+1, . . . , vn}]
for all i ∈ {1, . . . , n}. For a subset X = {v1, . . . , vk}, we call (v1, . . . , vk) a nested
neighborhood ordering (nno) if (N(v1) \ X) ⊆ (N(v2) \ X)) ⊆ . . . ⊆ (N(vk) \ X).
Finally for any ordering, we partition N(vi) into lower and higher ranked neigh-
bors, respectively, L(vi) = {x ∈ N(vi) : vi is ranked higher than x} and H(vi) =
{x ∈ N(vi) : vi is ranked lower than x}.

Graph Representation. We assume an adjacency array representation [15]
where the graph G = (V,E) is represented by two arrays P = [Pi]ni=1 and E =
[ui]mi=1. The neighbors of a vertex vi are then given by the vertices at position
P [vi] to P [vi+1]−1 in E. We use the adjacency array representation to straight-
forwardly allow for efficient scanning of G: (i) scanning k consecutive adjacency
lists consisting of m edges requires O(scan(m)) I/Os and (ii) computing and
scanning the degrees of k consecutive vertices requires O(scan(k)) I/Os.

Time-Forward Processing. Time-forward processing (TFP) is a generic tech-
nique to manage data dependencies of external memory algorithms [12]. These
dependencies are typically modeled by a directed acyclic graph G = (V,E) where
every vertex vi ∈ V models the computation of zi and an edge (vi, vj) ∈ E indi-
cates that zi is required for the computation of zj .

Computing a solution then requires the algorithm to traverse G according
to some topological order ≺T of the vertices V . The TFP technique achieves
this in the following way: after zi has been calculated, the algorithm inserts a
message 〈vj , zi〉 into a minimum priority-queue data structure for every succes-
sor (vi, vj) ∈ E where the items are sorted by the recipients according to ≺T .
By construction, vj receives all required values zi of its predecessors vi ≺T vj
as messages in the data structure. Since these predecessors already removed
their messages from the data structure, items addressed to vj are currently the
smallest elements in the data structures and thus can be dequeued with a delete-
minimum operation. By using suitable external memory priority-queues [3], TFP
incurs O(sort(k)) I/Os, where k is the number of messages sent.

3 Certifying Graph Classes in External Memory

3.1 Certifying Split Graphs in External Memory

A split graph is a graph that can be partitioned into two sets of vertices (K, I)
where K and I induce a clique and an independent set, respectively. The parti-
tion (K, I) is called the split partition. They are additionally characterized by the
forbidden induced subgraphs 2K2, C4 and C5, meaning that any vertex subset of
a split graph cannot induce these structures [9]. Since split graphs are a subclass
of chordal graphs, there exists a peo of the vertices for every split graph. In fact,
any non-decreasing degree ordering of a split graph is a peo [10].

Our algorithm adapts the internal memory certifying algorithm of Heggernes
and Kratsch [10] to external memory by adopting TFP. As output it either

232 U. Meyer et al.

returns the split partition (K, I) as a YES-certificate or one of the forbidden
subgraphs C4, C5 or 2K2 as a NO-certificate. We present the algorithm as a
whole and refer to details in Proposition 1 and Proposition 2 at the end of the
subsection.

First, we compute a non-decreasing degree ordering α = (v1, . . . , vn) and
relabel1 the graph according to α. Thereafter we check whether α is a peo in
O(sort(n + m)) I/Os by Proposition 1. In the non-membership case, the algo-
rithm returns three vertices vj , vk, vi where {vi, vj}, {vi, vk} ∈ E but {vj , vk} /∈
E and i < j < k, violating that vi is simplicial in G[{vi, . . . , vn}]. In order
to return a forbidden subgraph we find additional vertices that complete the
induced subgraphs. Note that (vk, vi, vj) already forms a P3 and may extend to
a C4 if N(vk) ∩ N(vj) contains a vertex z 	= vi that is not adjacent to vi. Com-
puting (N(vk) ∩ N(vj)) \ N(vi) requires scanning the adjacencies of O(1) many
vertices totaling to O(scan(n)) I/Os. If (N(vk)∩N(vj))\N(vi) is empty we try
to extend the P3 to a C5 or output a 2K2 otherwise. To do so, we find vertices
x 	= vi and y 	= vi for which {x, vj}, {y, vk} ∈ E but {x, vk}, {y, vj} /∈ E that are
also not adjacent to vi, i.e. {x, vi}, {y, vi} /∈ E. Both x and y exist due to the
ordering α [10] and are found using O(1) scanning steps requiring O(scan(n)
I/Os. If {x, y} ∈ E then (vj , vi, vk, y, x) is a C5, otherwise G[{vj , x, vk, y}] con-
stitutes a 2K2. Determining whether {x, y} ∈ E requires scanning N(x) and
N(y) using O(scan(n)) I/Os.

In the membership case, α is a peo and the algorithm proceeds to verify
first the clique K and then the independent set I of the split partition (K, I).
Note that for a split graph the maximum clique of size k must consist of the
k-highest ranked vertices in α [10] where k can be computed using O(sort(m))
I/Os by Proposition 2. Therefore, it suffices to verify for each of the k candi-
dates vi whether it is connected to {vi+1, . . . , vn} since the graph is undirected.
For a sorted sequence of edges relabeled by α, we check this property using
O(scan(m)) I/Os. If we find a vertex vi ∈ {vn−k+1, . . . , vn} where {vi, vj} /∈ E
with i < j then G[{vi, . . . , vn}] already does not constitute a clique and we have
to return a NO-certificate. Since the maximum clique has size k, there are k ver-
tices with degree at least k − 1. By these degree constraints there must exist
an edge {vi, x} ∈ E where x ∈ {v1, . . . , vi−1} [10]. Additionally, it holds that
{x, vj} /∈ E and there exists an edge {z, vj} ∈ E where z ∈ {v1, . . . , vi−1} that
cannot be connected to x, i.e. {x, z} /∈ E [10]. Thus, we first scan the adjacency
lists of vi and vj to find x and z in O(scan(n)) I/Os and return G[{vi, vj , x, z}]
as the 2K2 NO-certificate. Otherwise let K = {vn−k+1, . . . , vn}.

Lastly, the algorithm verifies whether the remaining vertices form an indepen-
dent set. We verify that each candidate vi is not connected to {vi+1, . . . , vn−k},
since the graph is undirected. For this, it suffices to scan over n − k consecu-
tive adjacency lists in O(scan(m)) I/Os. More precisely, we scan the adjacency
lists from vn−k to v1 and in case an edge {vi, vj} where i < j ≤ n − k is

1 If a vertex vi has rank k in α it will be relabeled to vk. The relabeling
results in an adjacency array representation of the relabeled graph requiring
O(sort(n + m)) I/Os.

Certifying Induced Subgraphs in Large Graphs 233

Algorithm 1: Recognizing Perfect Elimination in EM
Data: edges E of graph G, non-decreasing degree ordering α = (v1, . . . , vn)
Output: bool whether α is a peo, three invalidating vertices {vi, vj , vk} if not

1 Sort E and relabel according to α
2 for i = 1, . . . , n do
3 Retrieve H(vi) from E
4 if H(vi) �= ∅ then
5 Let u be the smallest successor of vi in H(vi)
6 for x ∈ H(vi) \ {u} do
7 PQ.push(〈u, x, vi〉) // inform u of x coming from vi

8 while 〈v, vk, vj〉 ← PQ.top() where v = vi do // for each message to vi
9 if vk /∈ H(vi) then // vi does not fulfill peo property

10 return false, {vi, vj , vk}
11 PQ.pop()

12 return true

found we find two more vertices to again complete a 2K2. For the first occur-
rence of such a vertex vi, we remark that {vi+1, . . . , vn−k} and {vn−k+1, . . . , vn}
form an independent set and a clique, respectively. Therefore there exists a ver-
tex y ∈ K that is adjacent to x but not to vi [10]. We find y by scanning
N(x) and N(vi) in O(scan(n)) I/Os. To complete the 2K2 we similarly find
z ∈ N(y)\ (N(x)∪N(yi)) in O(scan(n)) I/Os which is guaranteed to exist [10].

Proposition 1. Verifying that a non-decreasing degree ordering α =
(v1, . . . , vn) of a graph G is a perfect elimination ordering requires
O(sort(n + m)) I/Os.

Proof. We follow the approach of [8, Theorem 4.5] and adapt it to the external
memory using TFP, see Algorithm 1.

After relabeling and sorting the edges by α we iterate over the vertices in the
order given by α. For a vertex vi the set of neighbors N(vi) needs to be a clique.
In order to verify this for all vertices, for a vertex vi we first retrieve H(vi). Then
let u ∈ H(vi) be the smallest ranked neighbor according to α. In order for vi
to be simplicial, u needs to be adjacent to all vertices of H(vi) \ {u}. In TFP-
fashion we insert a message 〈u,w〉 into a priority-queue where w ∈ H(vi) \ {u}
to inform u of every vertex it should be adjacent to. Conversely, after sending
all adjacency information, we retrieve for vi all messages 〈vi,−〉 directed to vi
and check that all received vertices are indeed neighbors of vi.

Relabeling and sorting the edges takes O(sort(m)) I/Os. Every vertex vi
inserts at most all its neighbors into the priority-queue totaling up to O(m)
messages which requires O(sort(m)) I/Os. Checking that all received vertices
are neighbors only requires a scan over all edges since vertices are handled in
non-descending order by α. ��

234 U. Meyer et al.

Algorithm 2: Maximum Clique Size for Chordal Graphs in EM
Data: edges E of input graph G, peo α = (v1, . . . , vn)
Output: maximum clique size χ

1 Sort E and relabel according to α
2 χ ← 0
3 for i = 1, . . . , n do
4 Retrieve H(vi) from E // scan E
5 if H(vi) �= ∅ then
6 Let u be the smallest successor of vi in H(vi)
7 PQ.push(〈u, |H(vi)| − 1〉) // vi simplicial ⇒ G[N(vi)] is clique

8 S(vi) ← −∞
9 while 〈v, S〉 ← PQ.top() where v = vi do

10 S(vi) ← max{S(vi), S} // compute maximum over all
11 PQ.pop()

12 χ ← max{χ, S(vi)}
13 return χ

Proposition 2. Computing the size of a maximum clique in a split graph
requires O(sort(m)) I/Os.

Proof. Note that split graphs are both chordal and co-chordal [9]. For chordal
graphs, computing the size of a maximum clique in internal memory takes linear
time [8, Theorem 4.17] and is easily convertible to an external memory algorithm
using O(sort(m)) I/Os. To do so, we simulate the data accesses of the internal
memory variant using priority-queues to employ TFP, see Algorithm 2. Instead
of updating each S(vi) value immediately, we delay its consecutive computation
by sending a message 〈vi, S〉 to vi to inform vi, that vi is part of a clique of
size S. After collecting all messages, the overall maximum is computed and the
global value of the currently maximum clique is updated if necessary. ��

By the above description it follows that split graphs can be certified using
O(sort(n + m)) I/Os which we summarize in Theorem 1.

Theorem 1. A graph G can be certified whether it is a split graph or not in
O(sort(n + m)) I/Os. In the membership case the algorithm returns the split
partition (K, I) as the YES-certificate, and otherwise it returns an O(1)-size NO-
certificate.

3.2 Certifying Threshold Graphs in External Memory

Threshold graphs [6,8,11] are split graphs with the additional property that the
independent set I of the split partition (K, I) has an nno. Its corresponding
forbidden subgraphs are 2K2, P4 and C4. Alternatively, threshold graphs can
be characterized by a graph generation process: repeatedly add universal or
isolated vertices to an initially empty graph. Conversely, by repeatedly removing

Certifying Induced Subgraphs in Large Graphs 235

universal and isolated vertices from a threshold graph the resulting graph must
be the empty graph. In comparison to certifying split graphs, threshold graphs
thus require additional steps.

First, the algorithm certifies whether the input is a split graph. In the non-
membership case, if the returned NO-certificate is a C5 we extract a P4 otherwise
we return the subgraph immediately. For the membership case, we recognize
whether the input is a threshold graph by repeatedly removing universal and
isolated vertices using the previously computed peo α in O(sort(m)) I/Os by
Proposition 3 (see below). If the remaining graph is empty, we return the inde-
pendent set I with its non-decreasing degree ordering. Note that after remov-
ing a universal vertex vi, vertices with degree one become isolated. Since low-
degree vertices are at the front of α, an I/O-efficient algorithm cannot determine
them on-the-fly after removing a high-degree vertex. Therefore pre-processing is
required. For every vertex vi we compute the number of vertices S(vi) that
become isolated after the removal of {vi, . . . , vn}. To do so, we iterate over
α in non-descending order and check for vi with L(vi) = ∅. Since vi has no
lower ranked neighbors, it would become isolated after removing all vertices
in H(vi), in particular when the successor with smallest index vj ∈ H(vi) is
removed. We save vj in a vector S and sort S in non-ascending order. The values
S(vn), . . . , S(v1) are now accessible by a scan over S to count the occurrences of
each vj in O(scan(m)) I/Os.

In the non-membership case, there must exist a P4 since the input is split and
cannot contain a C4 or a 2K2. We can delete further vertices from the remaining
graph that cannot be part of a P4. For this, let K ′ ⊂ K and I ′ ⊂ I be the
remaining vertices of the split partition. Any v ∈ K ′ where N(v) ∩ I ′ = ∅ and
any v ∈ I ′ where N(v) ∩ K ′ = K ′ cannot be part of a P4 [10] and can therefore
be deleted. We proceed by considering and removing vertices of K by non-
descending degree and vertices of I by non-ascending degree. After this process,
we retrieve the highest-degree vertex v in I for which there exists {v, y} /∈ E and
{y, z} ∈ E where y ∈ K and z ∈ I [10]. Additionally, there is a neighbor w ∈ K
of v for which {w, z} /∈ E [10] and we return the P4 given by G[{v, w, y, z}].
Finding the P4 therefore only requires O(scan(n + m)) I/Os.

Proposition 3. Verifying that a non-decreasing degree ordering α =
(v1, . . . , vn) of a graph G emits an empty graph after repeatedly removing uni-
versal and isolated vertices requires O(sort(n) + scan(m)) I/Os.

Proof. Generating the values S(vn), . . . , S(v1) requires a scan over all adjacency
lists in non-descending order and sorting S which takes O(sort(n) + scan(m))
I/Os. Afte pre-processing, the algorithm only requires a reverse scan over the
degrees dn, . . . , d1. We iterate over α in reverse order, where for each vi we
check whether L(vi) = ∅. If vi is not isolated it must be universal. Therefore we
compare its current degree deg(vi) with the value (n − 1) − ndel where ndel =∑n

j=j+1 S(vj). All operations take O(scan(m)) I/Os in total. ��
We summarize our findings for threshold graphs in Theorem 2.

236 U. Meyer et al.

Theorem 2. A graph G can be certified whether it is a threshold graph or not
in O(sort(n + m)) I/Os. In the membership case the algorithm returns a nested
neighborhood ordering β as the YES-certificate, and otherwise it returns an O(1)-
size NO-certificate.

Proof. Certifying that the input graph is a split graph requires O(sort(n + m))
I/Os by Theorem 1. If it is, we check if the input is a threshold graph directly
by checking whether the graph is empty after repeatedly removing universal and
isolated vertices in O(sort(m)) I/Os by Proposition 3. Otherwise we have to
find a P4, since the input is a split but not a threshold graph. Hence, this step
requires O(scan(n + m)) I/Os and the total I/Os are O(sort(n + m)). ��

3.3 Certifying Trivially Perfect Graphs in External Memory

Trivially perfect graphs have no vertex subset that induces a P4 or a C4 [8]. In
contrast to split graphs, any non-increasing degree ordering of a trivially perfect
graph is a uco [10]. In fact, this is a one-to-one correspondence: a non-increasing
sorted degree sequence of a graph is a uco iff the graph is trivially perfect [10].

In external memory this can be verified using TFP by adapting the algorithm
in [10]. After computing a non-increasing degree ordering γ the algorithm relabels
the edges of the graph according to γ and sorts them. Now we iterate over the
vertices in non-descending order of γ, process for each vertex vi its received
messages and relay further messages forward in time.

Initially all vertices are labeled with 0. Then, at step i vertex vi checks that
all adjacent vertices N(vi) have the same label as vi. After this, vi relabels
each vertex u ∈ N(vi) with its own index i and is then removed from the
graph. In the external memory setting we cannot access labels of vertices and
relabel them on-the-fly but rather postpone the comparison of the labels to the
adjacent vertices instead. To do so, vi forwards its own label �(vi) to u ∈ H(vi)
by sending two messages 〈u, vi, �(vi)〉 and 〈u, vi, i〉 to u, signaling that u should
compare its own label to vi’s label �(vi) and then update it to i. Since the label
of any adjacent vertex is changed after processing a vertex, when arriving at
vertex vj an odd number of messages will be targeted to vj , where the last
one corresponds to its actual label at step j. Then, after collecting all received
labels, we compare disjoint consecutive pairs of labels and check whether they
match. In the membership case, we do not find any mismatch and return γ as
the YES-certificate. Otherwise, we have to return a P4 or C4.

In the description of [10] the authors stop at the first anomaly where vi
detects a mismatch in its own label and one of its neighbors. We simulate the
same behavior by writing out every anomaly we find, e.g. that vj does not have
the expected label of vi via an entry 〈vi, vj , k〉 where k denotes the label of vj .
After sorting the entries, we find the earliest anomaly 〈vi, vj , k〉 with the largest
label k of vi’s neighbors. Since vj received the label k from vk, but vi did not, it is
clear that vk is not universal in its connected component in G[{vk, vk+1, . . . , vn}]
and we thus will return a P4 or C4. Note that (vk, vj , vi) already constitutes a P3

where deg(vk) ≥ deg(vj), because vj received the label k. Since vj is adjacent to

Certifying Induced Subgraphs in Large Graphs 237

both vk and vi and deg(vk) ≥ deg(vj), there must exist a vertex x ∈ N(vk) where
{vj , x} /∈ E. Thus, G[{vk, vj , vi, x}] is a P4 if {vi, x} /∈ E and a C4 otherwise.
Finding x and determining whether the forbidden subgraph is a P4 or a C4

requires scanning O(1) adjacency lists in O(scan(n)) I/Os.

Proposition 4. Verifying that a non-increasing degree ordering γ =
(v1, . . . , vn) of a graph G with n vertices and m edges is a universal-in-a-
component-ordering requires O(sort(m)) I/Os.

Proof. Every vertex vi receives exactly two messages per neighbor in L(vi) and
verifies that all consecutive pairs of labels match. Then, either the label i is sent
to each higher ranked neighbor of H(vi) via TFP or it is verified that γ is not a
uco. Since at most O(m) messages are inserted, the resulting overall complexity
is O(sort(m)) I/Os. Correctness follows from [10] since the adapted algorithm
performs the same operations but only delays the label comparisons. ��

We again summarize our results in Theorem 3.

Theorem 3. A graph G can be certified whether it is a trivially perfect graph
or not in O(sort(n + m)) I/Os. In the membership case the algorithm returns
the universal-in-a-component ordering γ as the YES-certificate, and otherwise it
returns an O(1)-size NO-certificate.

3.4 Certifying Bipartite Chain Graphs in External Memory

Bipartite chain graphs are bipartite graphs where one part of the bipartition
has an nno [16] similar to threshold graphs. Its forbidden induced subgraphs are
2K2, C3 and C5. By definition, bipartite chain graphs are bipartite graphs which
therefore requires I/O-efficient bipartiteness testing.

We follow the linear time internal memory approach of [10] with slight adjust-
ments to accommodate the external memory setting. First, we check whether the
input is indeed a bipartite graph. Instead of using breadth-first search which is
very costly in external memory, even for constrained settings [2], we can use a
more efficient approach with spanning trees which is presented in the following in
Lemma 1. Note that, computing a spanning forest only requires O(sort(n + m))
I/Os with high probability [5] and is therefore no real restriction to Lemma 1.
In case the input is not connected, we simply return two edges of two different
components as the 2K2. If the graph is connected, we proceed to verify that the
graph is bipartite and return a NO-certificate in the form of a C3, C5 or 2K2 in
case it is not. In order to find a C3, C5 or 2K2 some modifications to Lemma 1
are necessary. Essentially, the algorithm instead returns a minimum odd cycle
that is built from T and a single non-tree edge. Due to minimality we can then
find a 2K2. The result is summarized in Corollary 1 and proven in the full version
of the paper [14].

Then, it remains to show that each side of the bipartition has an nno. Let U
be the larger side of the partition. By [11] it suffices to show that the input is a
chain graph if and only if the graph obtained by adding all possible edges with

238 U. Meyer et al.

both endpoints in U is a threshold graph. Instead of materializing the mentioned
threshold graph, we implicitly represent the adjacencies of vertices in U to retain
the same I/O-complexity and apply Theorem 2 using O(sort(n + m)) I/Os.
If the input is bipartite but not chain, we repeatedly delete vertices that are
connected to all other vertices of the other side and the resulting isolated vertices,
similar to Subsect. 3.3 and [10]. After this, the vertex v with highest degree has
a non-neighbor y in the other partition. By similar arguments y is adjacent to
another vertex z that is adjacent to a vertex x where {v, x} /∈ E [10]. As such
G[{v, y, z, x}] is a 2K2 and can be found in O(scan(n)) I/Os and returned as
the NO-certificate.

Lemma 1. A graph G can be certified whether it is a bipartite graph or not in
O(sort(n + m)) I/Os, given a spanning forest of the input graph. In the mem-
bership case the algorithm returns a bipartition (U, V \ U) as the YES-certificate,
and otherwise it returns an odd-length cycle as the NO-certificate.

Proof. In case there are multiple connected components, we operate on each
individually and thus assume that the input is connected. Let T be the edges of
the spanning tree and E \T the non-tree edges. Any edge e ∈ E \T may produce
an odd cycle by its addition to T . In fact, the input is bipartite if and only if
T ∪ {e} is bipartite for all e ∈ E \ T 2. We check whether an edge e = {u, v}
closes an odd cycle in T by computing the distance dT (u, v) of its endpoints in T .
Since this is required for every non-tree edge E\T , we resort to batch-processing.
Note that T is a tree and hence after choosing a designated root r ∈ V it holds
that dT (u, v) = dT (u,LCAT (u, v)) + dT (v,LCAT (u, v)) where LCAT (u, v) is
the lowest common ancestor of u and v in T . Therefore for every edge E \
T we compute its lowest common ancestor in T using O((m/n) · sort(n)) =
O(sort(m)) I/Os [5].

Additionally, for each vertex v ∈ V we compute its depth in T in O(sort(m))
I/Os using Euler Tours [5] and inform each incident edge of this value by a few
scanning and sorting steps. Similarly, each edge e = {u, v} is provided of the
depth of LCAT (u, v). Then, after a single scan over E \ T we compute dT (u, v)
and check if it is even. If any value is even, we return the odd cycle as a NO-
certificate or a bipartition in T as the YES-certificate. Both can be computed
using Euler Tours in O(sort(m)) I/Os. ��
Corollary 1. If a connected graph G contains a C3, C5 or 2K2 then any of these
subgraphs can be found in O(sort(n + m)) I/Os given a spanning tree of G.

We summarize our findings for bipartite chain graphs in Theorem 4.

Theorem 4. A graph G can be certified whether it is a bipartite chain graph or
not in O(sort(n + m)) I/Os with high probability. In the membership case the
algorithm returns the bipartition (U, V \ U) and nested neighborhood orderings
of both partitions as the YES-certificate, and otherwise it returns an O(1)-size
NO-certificate.
2 Since T is bipartite, one can think of T as a representation of a 2-coloring on T .

Certifying Induced Subgraphs in Large Graphs 239

Proof. Computing a spanning tree T requires O(sort(n + m)) I/Os with high
probability by an external memory variant of the Karger, Klein and Tarjan
minimum spanning tree algorithm [5]. By Corollary 1 we find a C3, C5 or 2K2

if the input is not bipartite or not connected. We proceed by checking the nno’s
of both partitions in O(sort(n + m)) I/Os using Theorem 2. ��

Fig. 1. Running times of the certifying algorithms for split (left) and threshold graphs
(right) for different random graph instances. The black vertical lines depict the number
of elements that can concurrently be held in internal memory.

4 Experimental Evaluation

We implemented our external memory certifying algorithms for split and thresh-
old graphs in C++ using the STXXL library [7]. To provide a comparison of
our algorithms, we also implemented the internal memory state-of-the-art algo-
rithms by Heggernes and Kratsch [10]. STXXL offers external memory versions
of fundamental algorithmic building blocks like scanning, sorting and several
data structures. Our benchmarks are built with GNU g++-10.3 and executed
on a machine equipped with an AMD EPYC 7302P processor and 64 GB RAM
running Ubuntu 20.04 using six 500 GB solid-state disks.

In order to validate the predicted scaling behaviour we generate our instances
parameterized by n. For yes-instances of split graphs we generate a split parti-
tion (K, I) with |K| = n/10 and add each possible edge {u, v} with probability
1/4 for u ∈ I and v ∈ K. Analogously, yes-instances of threshold graphs are gen-
erated by repeatedly adding either isolated or universal vertices with probability
9/10 and 1/10, respectively. We additionally attempt to generate no-instances
by adding O(1) many random edges to the yes-instances. In a last step, we
randomize the vertex indices to remove any biases of the generation process.

In Fig. 1 we present the running times of all algorithms on multiple yes-
and no-instances. It is clear that the performance of both external memory
algorithms is not impacted by the main memory barrier while the running time
of their internal memory counterparts already increases when at least half the
main memory is used. This effect is amplified immensely after exceeding the size
of main memory for split graphs, Fig. 1.

240 U. Meyer et al.

Certifying the produced no-instances of split graphs seems to require less
time than their corresponding unmodified yes-instances as the algorithm typi-
cally stops early. Furthermore, due to the low data locality of the internal mem-
ory variant it is apparent that the external memory algorithm is superior for the
yes-instances. The performance on both yes- and no-instances is very similar in
external memory. This is in part due to the fact that the common relabeling step
is already relatively costly. For threshold graphs, however, the external memory
variant outperforms the internal memory variant due to improved data locality.

5 Conclusions

We have presented the first I/O-efficient certifying recognition algorithms for
split, threshold, trivially perfect, bipartite and bipartite chain graphs. Our algo-
rithms require O(sort(n + m)) I/Os matching common lower bounds for many
algorithms in external memory. In our experiments we show that the algorithms
perform well even for graphs exceeding the size of main memory.

Further, it would be interesting to extend the scope of certifying recognition
algorithms to more graph classes for the external memory regime.

Acknowledgements. This work is partially supported by the International
Exchanges Grant IES\R3\203041 of the Royal Society and by the Deutsche Forschungs-
gemeinschaft (DFG) under grant ME 2088/5-1 (FOR 2975 | Algorithms, Dynamics, and
Information Flow in Networks).

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Commun. ACM 31(9), 1116–1127 (1988)

2. Ajwani, D., Meyer, U.: Design and engineering of external memory traversal algo-
rithms for general graphs. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algo-
rithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 1–33. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02094-0_1

3. Arge, L.: The buffer tree: a technique for designing batched external data struc-
tures. Algorithmica 37(1), 1–24 (2003)

4. Buchsbaum, A.L., Goldwasser, M.H., Venkatasubramanian, S., Westbrook, J.R.:
On external memory graph traversal. In: SODA, pp. 859–860. ACM/SIAM (2000)

5. Chiang, Y., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter, J.S.:
External-memory graph algorithms. In: SODA, pp. 139–149. ACM/SIAM (1995)

6. Chvátal, V.: Set-packing and threshold graphs. Res. Rep. Comput. Sci. Dept.,
Univ. Waterloo, 1973 (1973)

7. Dementiev, R., Kettner, L., Sanders, P.: STXXL: standard template library for
XXL data sets. Softw. Pract. Exp. 38(6), 589–637 (2008)

8. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Elsevier, Ams-
terdam (2004)

9. Hammer, P.L., Földes, S.: Split graphs. Congr. Numer. 19, 311–315 (1977)
10. Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and for-

bidden induced subgraphs. Nord. J. Comput. 14(1–2), 87–108 (2007)

https://doi.org/10.1007/978-3-642-02094-0_1

Certifying Induced Subgraphs in Large Graphs 241

11. Mahadev, N.V., Peled, U.N.: Threshold Graphs and Related Topics. Elsevier, Ams-
terdam (1995)

12. Maheshwari, A., Zeh, N.: A survey of techniques for designing I/O-efficient algo-
rithms. In: Meyer, U., Sanders, P., Sibeyn, J. (eds.) Algorithms for Memory Hier-
archies. LNCS, vol. 2625, pp. 36–61. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36574-5_3

13. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms.
Comput. Sci. Rev. 5(2), 119–161 (2011)

14. Meyer, U., Tran, H., Tsakalidis, K.: Certifying induced subgraphs in large graphs.
CoRR abs/2210.13057 (2022)

15. Sanders, P., Mehlhorn, K., Dietzfelbinger, M., Dementiev, R.: Sequential and Par-
allel Algorithms and Data Structures - The Basic Toolbox. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25209-0

16. Yannakakis, M.: Node-deletion problems on bipartite graphs. SIAM J. Comput.
10(2), 310–327 (1981)

https://doi.org/10.1007/3-540-36574-5_3
https://doi.org/10.1007/3-540-36574-5_3
https://doi.org/10.1007/978-3-030-25209-0

Some Algorithmic Results for Eternal
Vertex Cover Problem in Graphs

Kaustav Paul and Arti Pandey(B)

Department of Mathematics, Indian Institute of Technology Ropar,
Nangal Road, Rupnagar 140001, Punjab, India
{kaustav.20maz0010,arti}@iitrpr.ac.in

Abstract. Eternal vertex cover problem is a variant of the vertex cover
problem. It is a two player (attacker and defender) game in which given a
graph G = (V,E), the defender needs to allocate guards at some vertices
so that the allocated vertices form a vertex cover. Attacker can attack
one edge at a time and the defender needs to move the guards along the
edges such that at least one guard moves through the attacked edge and
the new configuration still remains a vertex cover. The attacker wins if
no such move exists for the defender. The defender wins if there exists
a strategy to defend the graph against infinite sequence of attacks. The
minimum number of guards with which the defender can form a winning
strategy is called the eternal vertex cover number of G, and is denoted
by evc(G). Given a graph G, the problem of finding the eternal vertex
cover number is NP-hard for general graphs, and remains NP-hard even
for bipartite graphs. We have given a polynomial time algorithm to find
the Eternal vertex cover number in chain graphs and cographs. We have
also given a linear-time algorithm to find the eternal vertex cover number
for split graphs, an important subclass of chordal graphs.

Keywords: Eternal vertex cover · Chain graphs · Split graphs ·
Cographs

1 Introduction

In 2009, Klostermeyer and Mynhardt introduced the Eternal vertex cover prob-
lem [8], which is a dynamic variant of the vertex cover problem. The problem is
a two player (attacker and defender) game such that given a graph G = (V,E),
the defender is permitted to allocate guards in some vertices of G so that the
vertices, where guards are allocated form a vertex cover. The attacker can attack
one edge at a time. Now for each guard, the defender can either move the guard
to one of its neighbour or can keep it untouched, such that at least one guard
from any of the endpoint of the attacked edge move through the edge to settle
at the other end point. So, the new allocation should also remain a vertex cover
to defend the next attack. If no such configuration exists then the attacker wins.
If the allocation can defend infinite sequence of attacks, then the defender wins.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 242–253, 2023.
https://doi.org/10.1007/978-3-031-27051-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_21&domain=pdf
https://doi.org/10.1007/978-3-031-27051-2_21

Some Algorithmic Results for Eternal Vertex Cover Problem in Graphs 243

The minimum number of guards with which a winning strategy for the defender
can be formed is known as the eternal vertex cover number of G, and is denoted
by evc(G). In this paper, we are assuming that at most one guard can be allo-
cated to each vertex. If Ci be the allocation of the guards before the i-th attack,
then after defending the i-th attack by moving the guards to configuration Ci+1,
Ci+1 needs to be a vertex cover (for each i ∈ N), to form a winning strategy for
the defender. If it is not then the (i + 1)-th attack will be on the edge which
is not covered by Ci+1 and the attacker will win. So after reconfiguring at each
step, the vertices where the guards are allocated should form a vertex cover. This
implies evc(G) ≥ mvc(G), where mvc(G) denotes the size of the minimum ver-
tex cover of G. It is also known that twice as many guards as mvc(G) can form
an eternal vertex cover by placing the guards at both end points of a maximum
matching. So, for any graph G, we have

mvc(G) ≤ evc(G) ≤ 2mvc(G)

Klostermeyer and Mynhardt have also given a characterization of the graphs
for which evc(G) = 2mvc(G) is attained [8]. Babu et al. have given some special
graph classes for which it attains the lower bound [2].

Fomin et al. have shown that the problem is NP-hard [6]. Fomin et al. have
also presented a 2-approximation algorithm based on the endpoints of the match-
ing [6]. Babu et al. proved that the problem remains NP-hard even for locally
connected graphs which includes all biconnected internally triangulated planar
graphs [2]. Babu et al. recently proved that the problem remains NP-hard for
bipartite graphs [3]. Babu et al. proposed polynomial-time algorithms for cactus
graphs and chordal graphs [4,5]. Babu et al. proved that the problem can also
be solved in polynomial time for co-bipartite graphs [3]. In this paper, we fur-
ther extend the algorithmic study of the problem by proposing polynomial-time
algorithms for some special graph classes. Araki et al. have given the evc(G)
for generalized trees where each edge of the tree is replaced by some elementary
bipartite graphs [1].

The rest of the paper is organized as follows: In Sect. 2.1, all notations and
definitions used in the paper are presented. In Sect. 2.2, some theorems from
existing literature are stated, which are used in the proofs presented in this
paper. In Sect. 2.3, eternal vertex cover number is provided for some special
subclasses of bipartite graphs. In Sect. 3, a linear-time algorithm is given to
compute evc(G) in chain graphs. In Sect. 4, a linear-time algorithm to compute
evc(G) in split graphs is presented. In Sect. 5, a polynomial time algorithm to
compute evc(G) in cographs is presented. Finally, Sect. 6 concludes the paper.

2 Preliminaries

2.1 Definitions and Notations

All graphs considered in this paper are finite, undirected and simple. Let G =
(V,E) is a graph. The set of neighbours of a vertex v in G is denoted by N(v).

244 K. Paul and A. Pandey

A set I ⊆ V is called an independent set of G if for all u, v ∈ I, {u, v} /∈ E.
Degree of a vertex v ∈ V is the number of neighbours of v in G and it is
denoted as deg(v). Given a subset V ′ of V , the number of neighbours of v in V ′

is denoted by degV ′(v). A vertex v ∈ V is said to be a cut vertex if G[V \ {v}]
is not connected. The join of two graphs H1 and H2 is a graph formed from
disjoint copies of H1 and H2 by connecting each vertex of V (H1) to each vertex
of V (H2).

A vertex cover S of G = (V,E) is subset of V , which contains at least
one end point from each edge in E. If S is a vertex cover then V \ S is an
independent set. A vertex cover of minimum cardinality is called a minimum
vertex cover. Cardinality of minimum vertex cover is denoted as minimum vertex
cover number or mvc(G). Given B ⊆ V , the cardinality of the minimum vertex
cover containing B is denoted as mvcB(G). If the induced graph on S, i.e. G[S]
is connected, S is called a connected vertex cover. The cardinality of minimum
vertex cover is denoted as cvc(G). The independent set of maximum cardinality
is called maximum independent set of G and its cardinality is denoted as mis(G).

Consider a graph G = (V,E) with |V | = n and |E| = m. The guards are
needed to be allocated in order to protect against infinite sequence of attacks.
One edge can be attacked at a time and each guard either moves to a neighbour
vertex or stays on the same vertex.

A hamiltonian cycle of a graph G = (V,E) is a cycle in G, that visits each v ∈
V exactly once. A graph possessing a hamiltonian cycle is known as hamiltonian
graph. A graph G = (V,E) is said to be k-regular if deg(v) = k, for each v ∈ V .

Let G = (X ∪ Y,E) be a bipartite graph. G is said to be a chain graph if
vertices in X can be ordered {x1, x2, . . . , x|X|}, such that N(x1) ⊆ N(x2) ⊆
. . . ⊆ N(x|X|). Similarly vertices of Y can be ordered {y1, y2, . . . , y|Y |}, such
that N(y1) ⊇ N(y2) ⊇ . . . ⊇ N(y|Y |). The cardinality of X and Y are denoted
by p and q respectively, in this paper.

A graph G = (V,E) is called a split graph if V can be partitioned in K and
I, such that K is clique and I is an independent set. The class of split graphs is
an important subclass of chordal graphs.

A graph G = (V,E) is called a cograph if it can be generated from K1 by
complementation and disjoint union. Recursively, the class of cographs can be
defined as follows

1. K1 is a cograph.
2. Complement of a cograph is a cograph.
3. G1 and G2 are cographs, then G1 ∪ G2 is a cograph.

Cographs can be represented as join of k graphs, G1, G2, . . . , Gk where Gi is
either K1 or disconnected graph.

2.2 Existing Results Used in This Paper

For the sake of convenience, we are stating some important theorems, which will
be used in the proofs presented in our paper.

Some Algorithmic Results for Eternal Vertex Cover Problem in Graphs 245

Theorem 1. [2] Let G = (V,E) be a graph with no isolated vertex for which
every minimum vertex cover is connected. If for every vertex v ∈ V , there exists
a minimum vertex cover Sv of G such that v ∈ Sv, then evc(G) = mvc(G).
Otherwise, evc(G) = mvc(G) + 1.

Theorem 2. [8] Let G = (V,E) be a nontrivial, connected graph and let D be
a minimum connected vertex cover of G. Then evc(G) ≤ |D| + 1.

Theorem 3. [2] Let G = (V,E) be a graph with at least 2 vertices and X be
the set of cut vertices of G. If every minimum vertex cover S of G with X ⊆ S
is connected, then the following characterization holds: evc(G) = mvc(G) if and
only if for every vertex v ∈ V \ X, there exists a minimum vertex cover Sv of G
such that X ∪ {v} ⊆ Sv.

Theorem 4. [2] Let G = (V,E) be a graph with no isolated vertices. If evc(G) =
mvc(G), then for every vertex v ∈ V , there is some minimum vertex cover of G
containing v.

2.3 Eternal Vertex Cover Number for Some Subclasses of Bipartite
Graph

For a k-regular bipartite graph, the following observation can be made.

Observation 1. Given a k-regular bipartite graph G = (X ∪ Y,E), for each
e ∈ E, there exists a perfect matching that contains e.

Note that, if the initial guard allocation is X (or Y), then attack on any edge e
can be defended by moving the guards to Y (or X) through the perfect match-
ing that contains e. So, from the Observation 1 it can be concluded that for a
k-regular bipartite graph G, evc(G) = mvc(G) = |X| = |Y |.

For a hamiltonian bipartite graph G = (X ∪ Y,E) (with |X| = |Y | = n), sup-
pose a hamiltonian cycle of G is v1v2 · · · v2nv1, where X = {v1, v3, . . . , v2n−1}
and Y = {v2, v4, . . . , v2n}. Then, we have the following observation.

Observation 2. Given a hamiltonian bipartite graph G = (X ∪ Y,E) and a
hamiltonian cycle v1v2 · · · v2nv1 of G, X and Y are the only two possible mini-
mum vertex covers of G.

From Observation 2, it can be concluded that for each e ∈ E, there exists a
perfect matching that contains e, implying evc(G) = mvc(G) = |X| = |Y |.

3 A Polynomial Time Algorithm for Chain Graphs

In this section, we present a linear-time algorithm to compute the evc(G) of
a given chain graph G. We also show that for a chain graph G, evc(G) ∈
{mvc(G),mvc(G) + 1,mvc(G) + 2}.

For a chain graph G = (X ∪ Y,E), we assume that it is connected and
|X| ≤ |Y |. The eternal vertex cover problem in the class of chain graphs are
studied in 2 exhaustive cases: (i) chain graphs having pendent vertices only in
Y , and (ii) chain graphs having pendant vertices both in X and Y or only in X.

246 K. Paul and A. Pandey

3.1 For Chain Graphs Where only Y Can Have Pendant Vertices

In this section we will assume that either there exists no pendant vertex in the
graph or only Y contains pendant vertices. Note that a minimum vertex cover
of a chain graph can be computed in linear time [9]. Let S be a minimum vertex
cover G. If |S| < min{|X|, |Y |}, then |X ∩ S| 	= φ and |Y ∩ S| 	= φ. First, we
state the following observation.

Observation 3. Given a chain graph G = (X ∪ Y,E) and a minimum vertex
cover S of G; if xi ∈ S, then xj ∈ S, for each i ≤ j ≤ p and if yi ∈ S, then
yj ∈ S, for each 1 ≤ j ≤ i.

Lemma 1. For a chain graph G = (X ∪Y,E), if mvc(G) < min{|X|, |Y |}, then
evc(G) = mvc(G) + 1.

Proof. From Observation 3, if |S| < min{|X|, |Y |}, then y1, xp ∈ S. This implies
that S is a connected vertex cover, and hence mvc(G) = cvc(G). Also, each ver-
tex cover of size mvc(G) is connected, as it always contain y1 and xp. But there
does not exist any minimum vertex cover S′ that contains x1 (If x1 ∈ S′, then
by Observation 3, X ⊆ S′, which implies that mvc(G) ≥ |X| > |S|, a contradic-
tion). So, by Theorem 1, if for a chain graph G, mvc(G) < min{|X|, |Y |}, then
evc(G) = mvc(G) + 1 and the initial configuration of guards is {x1} ∪ S.
�

Now we consider the case when mvc(G) = min{|X|, |Y |}. Again two cases
may arise, one is |X| < |Y | and the another is |X| = |Y |.
Claim 1. For a chain graph G = (X ∪ Y,E), if |X| < |Y | and mvc(G) =
min{|X|, |Y |}, then mvc(G) 	= evc(G).

Proof. Let evc(G) = mvc(G), then xp ∈ S, for any minimum vertex cover S of G
(by Observation 3). If the attacker attacks {xp, yq}, then the guard at xp moves
to yq and rest of the guards are adjusted so that the new configuration remains
a vertex cover. Since in the new configuration, yq ∈ S′, (where S′ is a minimum
vertex cover), by Observation 3, Y ⊆ S′. Which leads to a contradiction since
mvc(G) < |Y |. Hence mvc(G) 	= evc(G).
�
Lemma 2. For a chain graph G = (X ∪ Y,E), if |X| < |Y |, mvc(G) =
min{|X|, |Y |}, and there exists a minimum vertex cover containing xp, y1, then
mvc(G) = evc(G) + 1.

Proof. If for a given chain graph G, there exists a minimum vertex cover that
contains xp, y1, then cvc(G) = mvc(G). Since evc(G) 	= mvc(G) and by Theorem
2, evc(G) ≤ cvc(G) + 1, we may conclude that evc(G) = mvc(G) + 1.
�

Now let us consider the case when there does not exist any minimum vertex
cover that contains xp, y1, mvc(G) = min{|X|, |Y |} and |X| < |Y |. In this case,
X is the only minimum vertex cover.

Some Algorithmic Results for Eternal Vertex Cover Problem in Graphs 247

Lemma 3. For a given chain graph G = (X∪Y,E), if mvc(G) = min{|X|, |Y |}
and |Y | = |X|+1, and X is the only minimum vertex cover of G, then evc(G) =
mvc(G) + 1.

Proof. Let |N(x1)| > 2 or yq−1 /∈ N(x1). If the initial configuration is
{x1, x2,, xp, yq}, attack any edge {xi, yj} (yj 	= yq); by Hall’s Theorem there
exists a perfect matching from X\{xi} to Y \{yj , yq}, since | ∪k

j=1N(xj) |≥ k+1,
for each k ∈ [p]. So all the guards can be moved from X ∪ {yq} to Y .

Now if Y is the guard allocation configuration and {yj , xi}(yj 	= yq) is
attacked then the next configuration will be X ∪ {yq}. If yj = yq then the
configuration will be X ∪ {yq−1}. Thus any infinite sequence of attack can be
defended using mvc(G)+1 guards. So evc(G) = mvc(G)+1. If |N(x1)| ≤ 2 and
yq−1 ∈ N(x1), then it is easy to observe evc(G) = mvc(G) + 1.
�
Observation 4. Let G = (X ∪ Y,E) is a chain graph with |Y | > |X| + 1 for
which the only minimum vertex cover is X and S be a vertex cover of size
mvc(G) + 1. If | S ∩ Y |≥ 2 and yi ∈ S, then yj ∈ S, for each j ∈ [i]. We may
also conclude that there exists two kinds of vertex covers of size mvc(G) + 1

i. X ∪ {yi}; i ∈ [q].
ii. {y1, . . . , yi+1, xi+1, . . . , xp}; i ∈ [p − 2].

Let k = min{i | {xi, yq} ∈ E}.
Lemma 4. For a given chain graph G = (X ∪ Y,E) with mvc(G) =
min{|X|, |Y |} and |Y | > |X| + 1, if X is the only minimum vertex cover of
G and | ∪k−1

j=1N(xj) |= k, then evc(G) = mvc(G) + 1.

Proof. By above definition k = min{i | {xi, yq} ∈ E}, if | ∪k−1
j=1 N(xj)| = k.

Then any attack can be defended by moving the guards from the configuration
X∪{yq} to configuration {y1, . . . , yk, xk, . . . , xp} (or from {y1, . . . , yk, xk, . . . , xp}
to X ∪ {yq}). So, in this case evc(G) = mvc(G) + 1.
�

Let V ′ = {i | | ∪i
j=1 N(xj)| = i + 1}.

Lemma 5. For a given chain graph G = (X ∪ Y,E) with mvc(G) =
min{|X|, |Y |} and |Y | > |X| + 1, if X is the only minimum vertex cover of
G and | ∪k−1

j=1 N(xj)| > k, then evc(G) = mvc(G) + 2.

Proof. If | ∪k−1
j=1 N(xj)| > k and V ′ 	= φ, then let l = max{i | i ∈ V ′}. If the

initial configuration is of type-ii, then attack {xp, yq} and make the configuration
X ∪ {yq}, if possible. Then attack {xl+1, yl+1}, the guard at xl+1 moves to yl+1

and since {yq, xl+1} /∈ E, so there does not exist any guard which can move to
xl+1, hence no defending move exists, hence evc(G) = mvc(G) + 2.

If the set V ′ = φ, then | ∪i
j=1N(xj) |> i + 2, which implies all vertex covers

of size mvc(G)+1 are of type-i. Now whatever the initial configuration be attack
{xp, yq}. The configuration after defending this should be X ∪ {yq}. Now attack
{xk−1, yk−1}, the guard at xk−1 moves to yk−1 now there is no guard which can
move to xk−1 and form a vertex cover. So evc(G) = mvc(G) + 2.
�

248 K. Paul and A. Pandey

Now, consider the case when |X| = |Y |.
Lemma 6. For a given chain graph G = (X∪Y,E), if mvc(G) = min{|X|, |Y |},
|X| = |Y | and there exists a minimum vertex cover containing y1 and xp, then
evc(G) = mvc(G) + 1.

Proof. There exists a minimum vertex cover of G that contains both y1 and xp.
This implies there exists i ∈ [p], such that ∪i

j=1N(xj) = ∪i
j=1{yj} and evc(G) ∈

{mvc(G),mvc(G) + 1}. If evc(G) = mvc(G), then the initial configuration can
be of 3 types: (i) X, (ii) Y and (iii) {y1, . . . , yi, xi+1, . . . , xp}, i ∈ [p].

If the initial configuration is of type-iii, then attack {x1, y1} and change it
to X if possible. Then attack {yi, xi+1}, so the guard at xi+1 moves to yi and i
guards at x1, x2, . . . , xi have i − 1 places, i.e. y1, y2, . . . , yi−1 to move. Hence no
new configuration can be made which will form a vertex cover.

If the initial configuration is Y , then attack {yi, xi+1}. The guard at yi moves
to xi+1 and p − i guards at yi+1, . . . , yp have p − i − 1 places, i.e. xi+2, . . . , xp to
move. Hence no new configuration can be made which will form a vertex cover.

This implies G can not be defended with mvc(G) guards. So, evc(G) =
mvc(G) + 1.
�
Lemma 7. For a given chain graph G = (X ∪ Y,E), with mvc(G) =
min{|X|, |Y |} and |Y | = |X|, if the only minimum vertex covers are X and
Y , then evc(G) = mvc(G).

Proof. The only type of minimum vertex covers are X and Y . This implies
| ∪l

j=1N(xj) |≥ l + 1, for all l ∈ [p − 1]. Now if the initial configuration is X,
then attack on any edge {xi, yj} can be defended by moving all the guards to
Y , this can be done since by Hall’s Theorem there exists a perfect matching in
(X \{xi}, Y \{yj}). Similarly, if the initial configuration is Y , then attack on any
edge {xi, yj} can be defended by moving all the guards to X, this can also be done
since by Hall’s Theorem there exists a perfect matching in (X \ {xi}, Y \ {yj}).
So, evc(G) = mvc(G).
�

3.2 For Chain Graphs with Pendant Vertices in X or in X,Y both

If y1 and xp both have pendant vertices attached (consider that the graph is
not K2; for K2, evc(G) = mvc(G) = 1), then there exists a minimum vertex
cover that contains xp and y1, which implies evc(G) ∈ {mvc(G),mvc(G) + 1}.
Now if evc(G) = mvc(G), then there exists a configuration such that a guard is
allocated at the pendant vertex x1 (if not then we can attack the edge {y1, x1}
and shift the guard at y1 to x1). This implies that there is no guard in y1. Now
attack {xp, y1}, then the guard at xp moves to y1 and the guard at x1 has to
stay at x1. So in this new configuration, x1 and y1 both have guards allocated,
a contradiction since no minimum vertex cover can contain the pendant vertex
and its respective stem. So, evc(G) = mvc(G) + 1.

Now consider the case when only X has pendant vertices, that is, only y1 is
the stem. If mvc(G) < min{|X|, |Y |}, then evc(G) = mvc(G) + 1. If mvc(G) =

Some Algorithmic Results for Eternal Vertex Cover Problem in Graphs 249

|X|, then y1 has only one pendant neighbour (otherwise mvc(G) < |X|, leading
to a contradiction). Since {y1, x2, . . . , xp} forms a minimum vertex cover and it is
connected, mvc(G) = cvc(G). This implies that evc(G) ∈ {mvc(G),mvc(G)+1}
Further, two cases may arise.

Case 1: |X| < |Y |
If evc(G) = mvc(G), the initial guard allocation can be of 2 types; X and
{y1, . . . , yi, xi+1, . . . , xp}.

If the initial configuration is X, then if {xp, y1} is attacked then the guard
at x1 can not move anywhere, failing to produce a valid defending move.

If the initial configuration is {y1, . . . , yi, xi+1, . . . , xp} then attack {x1, y1},
the only configuration it can form is X. But then, attacking {xp, y1} will lead
to a win for the attacker.

So, evc(G) 	= mvc(G). This implies evc(G) = mvc(G) + 1.

Case 2: |X| = |Y |
If the initial guard allocation is X or Y , then attacking {xp, y1} will lead to a
win for the attacker.

If the initial configuration is {y1, . . . , yi, xi+1, . . . , xp} then attack {x1, y1},
the only configuration it can form is X. But then, attacking {xp, y1} will lead
to a win for the attacker.

So, evc(G) 	= mvc(G). This implies that evc(G) = mvc(G) + 1.
The above characterization is done by observing a property that for a given

chain graph G = (X ∪ Y,E), whether there exists a minimum vertex cover S
that contains both xp and y1 or not. This property can be checked in polynomial
time for a given chain graph. Before starting the process of the algorithm, by
preprocessing, an array A[1, 2, . . . , p] can be formed, where ith cell contains the
degree of xi. If there exists a j ∈ [p − 1], such that A[j] ≤ j, then there exists a
minimum vertex cover of G that contains both xp and y1. If there does not exist
such j, then the only vertex covers are of the form X or Y .

From the above lemmas and results, we can conclude the following theorem.

Theorem 5. Given a connected chain graph G = (V,E), evc(G) can be com-
puted in O(n + m) time.

4 A Linear Time Algorithm for Split Graphs

In this section, we present a linear-time algorithm to compute the eternal vertex
cover number for split graphs. Note that, there already exists a quadratic time
algorithm to compute evc(G) for chordal graphs. Since the class of split graphs is
a subclass of chordal graphs, we also have a quadratic time algorithm to compute
evc(G) for split graphs. But, in this section, we present a linear-time algorithm
to compute evc(G) for any split graph G.

The following result is already known regarding the eternal vertex cover
number of chordal graphs.

250 K. Paul and A. Pandey

Theorem 6. [4] Given a connected chordal graph G = (V,E) and the set of
all cut vertices X of G, evc(G) = mvcX(G) if and only if for every vertex v ∈
V (G)\X, we have mvcX∪{v}(G) = mvcX(G); otherwise evc(G) = mvcX(G)+1.

Since split graphs are chordal graphs, for any split graph G we have evc(G) ∈
{mvcX(G),mvcX(G) + 1}.

Let G = (K ∪ I, E) be a connected split graph, where K is a clique and I
is an independent set. Without loss of generality, we may assume that K is a
maximal clique of G. Let X denote the set of cut vertices of G. Now, we first
prove the following lemmas.

Lemma 8. If for each x ∈ K, |N(x)| > |K| − 1, then mvc(G) = mvcX(G) =
|K|. Otherwise mvc(G) = mvcX(G) = |K| − 1.

Proof. If for each x ∈ K, |N(x)| > |K| − 1, then each x ∈ K has at least
one neighbour in I. Note that any minimum vertex cover must contain at least
|K| − 1 vertices from K. If there exists a minimum vertex cover S that contains
only |K|−1 vertices from K. Then there exists a vertex v ∈ K, such that v does
not belong to S. So, S must contain all neighbours of v from I, implying that
|S| ≥ |K|. Since K is itself a vertex cover of size |K|, if v has more than one
neighbour in I, then |S| > |K|, a contradiction. So, K always form a minimum
vertex cover in this case. Since X ⊆ K, it can be concluded that mvc(G) =
mvcX(G) = |K|.

Now if there exists x ∈ K, such that |N(x)| = |K| − 1, then K \ {x} forms a
minimum vertex cover of cardinality |K|−1. Note that x cannot be a cut vertex
(as it has no neighbour in I). So, X ⊆ K \ {x} and K \ {x} forms a minimum
vertex cover, implying that mvc(G) = mvcX(G) = |K| − 1.
�
Lemma 9. evc(G) ∈ {mvc(G),mvc(G) + 1}.
Proof. The proof follows from the fact that evc(G) ∈ {mvcX(G),mvcX(G)+ 1}
and mvc(G) = mvcX(G).
�
Lemma 10. Let mvc(G) = |K| − 1. Then evc(G) = mvc(G) + 1 if I 	= φ and
evc(G) = mvc(G) if I = ∅.
Proof. If I 	= φ, then consider a vertex y ∈ I. By Theorem 4, if evc(G) =
mvc(G) = |K| − 1, then there exists a minimum vertex cover S that con-
tains y, which implies |S ∩ K| ≤ |K| − 2, leading to a contradiction. Hence
evc(G) = mvc(G) + 1. If I = φ, then G is a complete graph, implying
evc(G) = mvc(G).
�

Lemma 11. Let mvc(G) = |K| and there exists at least one pendant vertex
yi ∈ I, then evc(G) = mvc(G) + 1.

Proof. Let xj be the only neighbour of the pendant vertex yi, then xj ∈ X.
On contrary assume that evc(G) = mvc(G), then by Theorem 6 there exists
a minimum vertex cover S that contains both X and yi. Hence xj ∈ S as
yi ∈ S. Then there must be a vertex xk ∈ K, which does not belong to S.

Some Algorithmic Results for Eternal Vertex Cover Problem in Graphs 251

Since mvc(G) = |K|, by Lemma 8, N(x) ∩ I 	= φ for all x ∈ K. Hence, if xk is
not in S then all of its neighbours should be in S. Since yi is not a neighbour
of xk, no neighbour of xk in I belongs to S. Hence contradiction arises. So,
evc(G) = mvc(G) + 1.
�
Lemma 12. Let mvc(G) = |K|, G has no pendant vertices and for each x ∈ K,
deg(x) ≥ |K| + 1. Then, evc(G) = mvc(G) + 1.

Proof. Note that mvcX(G) = mvc(G). On contrary assume that evc(G) =
mvc(G). Then, by Theorem 4, for any yi ∈ I, there exists a minimum ver-
tex cover S that contains yi. Then |K ∩ S| = |K| − 1. Let xj ∈ K be the vertex
which is not in S. Since |NI(xj)| ≥ 2, S contains at least 2 vertices from I. But,
then |S| ≥ |K| + 1, a contradiction arises. Hence, evc(G) = mvc(G) + 1.
�
Lemma 13. Let G does not has any pendant vertex with mvc(G) = |K| and
X1 = {x ∈ K : degI(x) = 1}. If N(X1) ∩ I = I, then evc(G) = mvc(G),
otherwise if N(X1) ∩ I is properly contained in I, then evc(G) = mvc(G) + 1.

Proof. Proof of the Lemma 13 has been omitted due to space constraint.

So, by the above lemmas we can conclude the following theorem.

Theorem 7. For a connected split graph G(K ∪ I, E), evc(G) can be computed
in time O(n + m).

Proof. The proof of the theorem is straightforward from the above lemmas.
Before starting the algorithm, by preprocessing, an array A[1, 2, . . . , n] can be
formed, such that A[i] stores the degree of the vertex vi. By help of this array
the algorithm can run in O(n + m) time.
�

5 A Polynomial Time Algorithm for Cographs

As mentioned earlier, any connected cograph can be written as join of k graphs,
G1, G2, . . .,Gk where each Gi is either K1 or a disconnected graph. Note that for
a connected cograph G = (V,E), the maximum independent set of G is a subset
of V (Gi), for some i ∈ [k]. So, any minimum vertex cover of G contains vertices
from at least k − 1 number of Gi’s.

By Theorem 1, given a connected cograph G = (V,E), for which each
minimum vertex cover is connected, evc(G) can be calculated by checking
mvcv(G) = mvc(G) for each v ∈ V . To check this condition for any v ∈ V , a new
graph G′ = (V ′, E′) can be formed from G, where V ′ = V ∪{u}, E′ = E ∪{uv};
then we can check whether mvc(G) = mvc(G′). The class of cographs is not
closed under pendant vertex addition. But cographs are also weakly chordal
graphs, which are closed under pendant vertex addition. So, we are giving a poly-
nomial time algorithm EV C CHECK(G) for connected cographs G = (V,E)
for which every minimum vertex cover is connected, to compute evc(G). For this,
we are using the algorithm given in [7] to compute minimum vertex cover for

252 K. Paul and A. Pandey

weakly chordal graphs. So, for each vertex of the cograph G = (V,E) (for which
every minimum vertex cover is connected) we will add a pendent vertex (only
one at each step and we will delete the previous pendent vertex while adding
pendent to the next vertex) and use the algorithm in [7] to compute whether the
mvc is same for the old and new graph. If it is same for each vertex of G = (V,E),
then evc(G) = mvc(G); and evc(G) = mvc(G) + 1 otherwise.

Since the algorithm to find minimum vertex cover in weakly chordal graphs
mentioned in [7] runs in O(nm) time, we may conclude the following theorem
from the above discussion.

Theorem 8. Given a connected cograph G = (V,E), for which every minimum
vertex cover is connected, evc(G) can be calculated in time O(nm).

The algorithm mentioned in Theorem 8 will be called as EV C CHECK
from here on.

When k = 2, the graph G is join of 2 subgraphs G1 and G2. Here we
are assuming |G1| ≤ |G2| and both G1 and G2 are non-empty. If mis(G) >
min{|G1|, |G2|}, then maximum independent set I of G is a subset of G2. If
I ⊂ G2, then each minimum vertex cover S is connected, since G2 ∩ S 	= φ and
G1 ∩S 	= φ. So evc(G) can be computed by EV C CHECK(G). If I = G2, then
G1 is the only minimum vertex cover and there does not exist any minimum ver-
tex cover S that contains any vertex of G2, so by Theorem 4, evc(G) 	= mvc(G).
In this case, G1∪{u}, such that u ∈ G2, forms an initial configuration of guards,
as G2 is independent, implying evc(G) = mvc(G) + 1.

So, the case remains to be observed is, when mis(G) ≤ min{|G1|, |G2|}. If
mis(G) < min{|G1|, |G2|}, then any minimum vertex cover S is connected, since
G2∩S 	= φ and G1∩S 	= φ. So, evc(G) can be calculated by EV C CHECK(G).

Now for the case when mis(G) = min{|G1|, |G2|} and by previous assump-
tion, |G1| = min{|G1|, |G2|}. If |G1| = |G2|, then G1 or G2 is an independent
set.

If both are independent then G is K|G1|,|G1|, and evc(G) = mvc(G).
If G2 is not independent, then G1 is independent. If there exists a minimum

vertex cover S that contains at least one vertex of G1, then it contains all
vertex of G1, so it contains no vertex from G2. But since G2 is not independent,
then there exists at least one edge in E(G2) for which no endpoint is in S.
Hence no minimum vertex cover contains any vertex from G1. So, by Theorem 4,
evc(G) 	= mvc(G). So, evc(G) = mvc(G) + 1 and G2 ∪ {u} where u ∈ G1, forms
an initial guard allocation configuration.

Lemma 14. Given a connected cograph G = (V,E) which is a join of G1 and
G2. If mis(G) = min{|G1|, |G2|} and |G1| < |G2|, then evc(G) can be calculated
in polynomial time.

Proof. Proof of Lemma 14 is omitted due to space constraint.

Observation 5. Given a connected cograph G = (V,E) and k ≥ 3, every mini-
mum vertex cover of G is connected.

Some Algorithmic Results for Eternal Vertex Cover Problem in Graphs 253

Note that, for k ≥ 3, evc(G) can be computed in O(nm) time using
EV C CHECK(G). So, from the above observations and lemma the following
theorem can be concluded.

Theorem 9. Given a connected cograph G = (V,E), evc(G) can be computed
in O(nm)-time.

6 Conclusion and Future Aspects

In this paper we have given polynomial time algorithms for three restricted
subclasses of perfect graphs, i.e. chain graphs, split graphs and cographs. For
split graphs, running time of our algorithm is linear. The class of split graphs is
an important subclass of chordal graphs, for which a quadratic time algorithm
was already known in the literature. It will also be interesting to try for linear-
time algorithms for eternal vertex cover problem for chordal graphs, or some
other important subclasses of chordal graphs. The eternal vertex cover problem
is NP-hard for bipartite graphs and the class of chain graphs is the largest
class of bipartite graphs for which linear time algorithm has been found. The
complexity status of the eternal vertex cover problem is still unknown for other
important subclasses of bipartite graphs. Here we have solved the complexity
status of eternal vertex cover problem for cographs, but for larger graph classes
like distance hereditary graphs, it is yet to be solved.

References

1. Araki, H., Fujito, T., Inoue, S.: On the eternal vertex cover numbers of generalized
trees. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 98-A(6), 1153–1160
(2015)

2. Babu, J., Chandran, L.S., Francis, M., Prabhakaran, V., Rajendraprasad, D., War-
rier, N.J.: On graphs whose eternal vertex cover number and vertex cover number
coincide. Discret. Appl. Math. 319, 171–182 (2022)

3. Babu, J., Misra, N., Nanoti, S.G.: Eternal vertex cover on bipartite graphs. In:
Kulikov, A.S., Raskhodnikova, S. (eds.) Computer Science–Theory and Applica-
tions. CSR 2022. LNCS, vol. 13296, pp. 64–76. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-09574-0 5

4. Babu, J., Prabhakaran, V.: A new lower bound for the eternal vertex cover number
of graphs. J. Comb. Optim. 06, 2482–2498 (2021)

5. Babu, J., Prabhakaran, V., Sharma, A.: A substructure based lower bound for eter-
nal vertex cover number. Theor. Comput. Sci. 890, 87–104 (2021)

6. Fomin, F.V., Gaspers, S., Golovach, P.A., Kratsch, D., Saurabh, S.: Parameterized
algorithm for eternal vertex cover. Inf. Process. Lett. 110(16), 702–706 (2010)

7. Hayward, R.B., Spinrad, J., Sritharan, R.: Weakly chordal graph algorithms via han-
dles. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete
Algorithms, 9–11 January 2000, San Francisco, CA, USA, pp. 42–49. ACM/SIAM
(2000)

8. Klostermeyer, W.F., Mynhardt, C.M.: Edge protection in graphs. Australas. J.
Comb. 45, 235–250 (2009)

9. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation.
Discret. Math. 201(1–3), 189–241 (1999)

https://doi.org/10.1007/978-3-031-09574-0_5
https://doi.org/10.1007/978-3-031-09574-0_5

On the Complexity of Distance-d
Independent Set Reconfiguration

Duc A. Hoang(B)

Graduate School of Informatics, Kyoto University, Kyoto, Japan
hoang.duc.8r@kyoto-u.ac.jp

Abstract. For a fixed positive integer d ≥ 2, a distance-d independent
set (DdIS) of a graph is a vertex subset whose distance between any
two members is at least d. Imagine that there is a token placed on each
member of a DdIS. Two DdISs are adjacent under Token Sliding (TS)
if one can be obtained from the other by moving a token from one ver-
tex to one of its unoccupied adjacent vertices. Under Token Jumping
(TJ), the target vertex needs not to be adjacent to the original one. The
Distance-d Independent Set Reconfiguration (DdISR) problem
under TS/TJ asks if there is a corresponding sequence of adjacent DdISs
that transforms one given DdIS into another. The problem for d = 2,
also known as the Independent Set Reconfiguration problem, has
been well-studied in the literature and its computational complexity on
several graph classes has been known. In this paper, we study the com-
putational complexity of DdISR on different graphs under TS and TJ for
any fixed d ≥ 3. On chordal graphs, we show that DdISR under TJ is in
P when d is even and PSPACE-complete when d is odd. On split graphs,
there is an interesting complexity dichotomy: DdISR is PSPACE-complete
for d = 2 but in P for d = 3 under TS, while under TJ it is in P for d = 2
but PSPACE-complete for d = 3. Additionally, certain well-known hard-
ness results for d = 2 on general graphs, perfect graphs, planar graphs
of maximum degree three and bounded bandwidth can be extended for
d ≥ 3.

Keywords: Reconfiguration problem · Distance-d independent set ·
Computational complexity · Token sliding · Token jumping

1 Introduction

Recently, reconfiguration problems have attracted the attention from both theo-
retical and practical viewpoints. The input of a reconfiguration problem consists
of two feasible solutions of some source problem (e.g., Satisfiability, Inde-
pendent Set, Vertex Cover, Dominating Set, etc.) and a reconfiguration
rule that describes an adjacency relation between solutions. One of the primary
goal is to decide whether one feasible solution can be transformed into the other
via a sequence of adjacent feasible solutions where each intermediate member is

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 254–266, 2023.
https://doi.org/10.1007/978-3-031-27051-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_22&domain=pdf
http://orcid.org/0000-0002-8635-8462
https://doi.org/10.1007/978-3-031-27051-2_22

On the Complexity of Distance-d Independent Set Reconfiguration 255

obtained from its predecessor by applying the given reconfiguration rule exactly
once. Such a sequence, if exists, is called a reconfiguration sequence. Readers
may recall the classic Rubik’s cube puzzle as an example of a reconfiguration
problem, where each configuration of the Rubik’s cube corresponds to a feasible
solution, and two configurations (solutions) are adjacent if one can be obtained
from the other by rotating a face of the cube by either 90, 180, or 270 degrees.
The question is whether one can transform an arbitrary configuration to the one
where each face of the cube has only one color. For an overview of this research
area, we refer readers to the surveys [7,26,27,29].

Reconfiguration problems involving vertex subsets (e.g., clique, independent
set, vertex cover, dominating set, etc.) of a graph have been extensively consid-
ered in the literature. In such problems, to make it more convenient for describ-
ing reconfiguration rules, one usually view a vertex subset of a graph as a set
of tokens placed on its vertices. Some of the well-known reconfiguration rules in
this setting are:

– Token Sliding (TS): a token can only move to one of the unoccupied adjacent
vertices;

– Token Jumping (TJ): a token can move to any unoccupied vertex; and
– Token Addition/Removal (TAR(k)): a token can either be added to an unoc-

cupied vertex or removed from an occupied one, such that the number of
tokens is always (upper/lower) bounded by some given positive integer k.

Let G be a simple, undirected graph. An independent set of a graph G is a set
of pairwise non-adjacent vertices. The Independent Set (MaxIS) problem,
which asks if G has an independent set of size at least some given positive
integer k, is one of the fundamental NP-complete problems in the computational
complexity theory [14]. Given an integer d ≥ 2, a distance-d independent set
(also known as d-scattered set or sometimes d-independent set1) of G is a set of
vertices whose pairwise distance is at least d. This “distance-d independent set”
concept generalizes “independent set”: an independent set is also a distance-2
independent set but may not be a distance-d independent set for d ≥ 3. Given a
fixed integer d ≥ 2, the Distance-d Independent Set (MaxDdIS) problem
asks if there is a distance-d independent set of G whose size is at least some given
positive integer k. Clearly, MaxD2IS is nothing but MaxIS. It is known that
MaxDdIS is NP-complete for every fixed d ≥ 3 on general graphs [21] and even
on regular bipartite graphs when d ∈ {3, 4, 5} [22]. Eto et al. [12] proved that
MaxDdIS is NP-complete for every fixed d ≥ 3 even for bipartite graphs and
for planar bipartite graphs of maximum degree three. They also proved that on
chordal graphs, MaxDdIS is in P for any even d ≥ 2 and remains NP-complete
for any odd d ≥ 3. The complexity of MaxDdIS on several other graphs has

1 In fact, the terminology d-independent set is sometimes used to indicate a vertex
subset such that any two members are of distance at least d+ 1 for d ≥ 1. We note
that sometimes a d-independent set is defined as a vertex subset S such that the
maximum degree of the subgraph induced by S is at most d. In some other contexts,
a d-independent set is nothing but an independent set of size d.

256 D. A. Hoang

also been studied. Additionally, MaxDdIS and its variants have been studied
extensively from different viewpoints, including exact exponential algorithms,
approximability, and parameterized complexity. We refer readers to [12,19,32]
and the references therein for more details.

In this paper, we take MaxDdIS as the source problem and initiate the
study of Distance-d Independent Set Reconfiguration (DdISR) from
the computational complexity viewpoint. The problem for d = 2, which is usually
known as the Independent Set Reconfiguration (ISR) problem, has been
well-studied from both classic and parameterized complexity viewpoints. Readers
are referred to [7,27] for a complete overview of recent developments regarding
ISR. We now briefly mention some known results regarding the computational
complexity of ISR on different graph classes. ISR remains PSPACE-complete
under any of TS,TJ,TAR on general graphs [17], planar graphs of maximum
degree three and bounded bandwidth [15,30,31] and perfect graphs [18]. Under
TS, the problem is PSPACE-complete even on split graphs [3]. Interestingly, on
bipartite graphs, ISR under TS is PSPACE-complete while under any of TJ and
TAR it is NP-complete [24]. On the positive side, ISR under any of TJ and
TAR is in P on even-hole-free graphs [18] (which also contains chordal graphs,
split graphs, interval graphs, trees, etc.), cographs [5], and claw-free graphs [6].
ISR under TS is in P on cographs [18], claw-free graphs [6], trees [10], bipartite
permutation graphs and bipartite distance-hereditary graphs [13], and interval
graphs [4,8].

DdISR for d ≥ 3 was first studied by Siebertz [28] from the parameterized
complexity viewpoint. More precisely, in [28], Siebertz proved that DdISR under
TAR is in FPT for every d ≥ 2 on “nowhere dense graphs” (which generalized the
previously known result for d = 2 of Lokshtanov et al. [25]) and it is W[1]-hard for
some value of d ≥ 2 on “somewhere dense graphs” that are closed under taking
subgraphs.

Since the TJ and TAR rules are somewhat equivalent [18], i.e., any TJ-
sequence between two size-k token-sets can be converted into a TAR-sequence
between them whose members are token-sets of size at least k−1 and vice versa2,
in this paper, we consider DdISR (d ≥ 3) under only TS and TJ. In short, we
show the following results.

– It is worth noting that
• Even though it is well-known that MaxDdIS on G and MaxIS on its
(d − 1)th power (this concept will be defined later) are equivalent, this
does not necessarily holds for their reconfiguration variants. (Sect. 3.1)

• The definition of DdIS implies the triviality of DdISR for large enough
d on graphs whose (connected) components’ diameters are bounded by
some constant, including cographs and split graphs. (Sect. 3.2)

– On chordal graphs and split graphs, there are some interesting complexity
dichotomies. (Sect. 4)

• Under TJ on chordal graphs, DdISR is in P for even d and PSPACE-
complete for odd d.

2 They proved the result for ISR, but it is not hard to extend it for DdISR.

On the Complexity of Distance-d Independent Set Reconfiguration 257

• On split graphs, DdISR under TS is PSPACE-complete for d = 2 [3] but in
P for d = 3. Under TJ, it is in P for d = 2 [18] but PSPACE-complete for
d = 3.

– There is a proof of the PSPACE-hardness of DdISR on general graphs under
TJ for d ≥ 3 which is not a direct extension of the corresponding result by
Ito et al. [17] for d = 2. (Sect. 5) Additionally, several known results for d = 2,
including the one by Ito et al., can be extended for d ≥ 3. (Sect. 6)

Due to the space limitation, the proofs of some statements (marked by ∗) are
omitted and can be found in the full version [16].

2 Preliminaries

For terminology and notation not defined here, see [11]. Let G be a simple,
undirected graph with vertex-set V (G) and edge-set E(G). For two sets I, J ,
we sometimes use I − J and I + J to indicate I \ J and I ∪ J , respectively.
Additionally, we simply write I − u and I + u instead of I − {u} and I + {u},
respectively. The neighbors of a vertex v in G, denoted by NG(v), is the set
{w ∈ V (G) : vw ∈ E(G)}. The closed neighbors of v in G, denoted by NG[v], is
simply the set NG(v) + v. Similarly, for a vertex subset I ⊆ V (G), its neighbor
NG(I) and closed neighbor NG[I] are respectively

⋃
v∈I NG(v) and NG(I) + I.

The degree of a vertex v in G, denoted by degG(v), is |NG(v)|. The distance
between two vertices u, v in G, denoted by distG(u, v), is the number of edges
in a shortest path between them. For convenience, if there is no path between
u and v then distG(u, v) = ∞. The diameter of G, denoted by diam(G), is the
largest distance between any two vertices. A (connected) component of G is a
maximal subgraph in which there is a path connecting any pair of vertices. An
independent set (IS) of G is a vertex subset I such that for any u, v ∈ I, we
have uv /∈ E(G). A distance-d independent set (DdIS) of G for an integer d ≥ 2
is a vertex subset I ⊆ V (G) such that for any u, v ∈ I, distG(u, v) ≥ d. We use
αd(G) to denote the maximum size of a distance-d independent set of G. When
d = 2, we use the well-known notation α(G) instead of α2(G).

Unless otherwise noted, we denote by (G, I, J,R, d) an instance of DdISR
under R ∈ {TS,TJ} where I and J are two distinct DdISs of a given graph G, for
some fixed d ≥ 2. Since (G, I, J,R, d) is obviously a no-instance if |I| �= |J |, from
now on, we always assume that |I| = |J |. Imagine that a token is placed on each
vertex in a DdIS of a graph G. A TS-sequence in G between two DdISs I and J is
the sequence S = 〈I = I0, I1, . . . , Iq = J〉 such that for i ∈ {0, . . . , q −1}, the set
Ii is a DdIS of G and there exists a pair xi, yi ∈ V (G) such that Ii−Ii+1 = {xi},
Ii+1 − Ii = {yi}, and xiyi ∈ E(G). By simply removing the restriction xiyi ∈
E(G), we immediately obtain the definition of a TJ-sequence in G. Depending
on the considered rule R ∈ {TS,TJ}, we can also say that Ii+1 is obtained from
Ii by immediately sliding/jumping a token from xi to yi and write xi

G−→R yi.
As a result, we can also write S = 〈x0

G−→R y0, . . . , xq−1
G−→R yq−1〉. In short, S

can be viewed as a (ordered) sequence of either DdISs or token-moves. (Recall

258 D. A. Hoang

that we defined S as a sequence between I and J . As a result, when regarding
S as a sequence of token-moves, we implicitly assume that the initial DdIS is I.)
With respect to the latter viewpoint, we say that S slides/jumps a token t from
u to v in G if t is originally placed on u ∈ I0 = I and finally on v ∈ Iq = J after
performing S. The length of a R-sequence is simply the number of times the rule
R is applied.

We conclude this section with the following simple remark: since MaxDdIS
is in NP, DdISR is always in PSPACE [17]. As a result, to show the PSPACE-
completeness of DdISR, it is sufficient to construct a polynomial-time reduction
from a known PSPACE-hard problem and prove its correctness.

3 Observations

3.1 Graphs and Their Powers

An extremely useful concept for studying distance-d independent sets is the so-
called graph power. For a graph G and an integer s ≥ 1, the sth power of G is
the graph Gs whose vertices are V (G) and two vertices u, v are adjacent in Gs if
distG(u, v) ≤ s. Observe that I is a distance-d independent set of G if and only
if I is an independent set of Gd−1. Therefore, MaxDdIS in G is equivalent to
MaxIS in Gd−1.

However, this may not apply for their reconfiguration variants. More pre-
cisely, the statement “the DdISR’s instance (G, I, J,R, d) is a yes-instance if and
only if the ISR’s instance (Gd−1, I, J,R, 2) is a yes-instance” holds for R = TJ but
not for R = TS. The reason is that we do not care about edges when performing
token-jumps (as long as they result new DdISs), therefore whatever token-jump
we perform in G can also be done in Gd−1 and vice versa. Therefore, we have

Proposition 1. Let G and H be two graph classes and suppose that for every
G ∈ G we have Gd−1 ∈ H for some fixed integer d ≥ 2. If ISR under TJ on H
can be solved in polynomial time, so does DdISR under TJ on G.

Recall that the power of any interval graph is also an interval graph [1,9] and
ISR under TJ on even-hole-free graphs (which contains interval graphs) is in
P [18]. Along with Proposition 1, we immediately obtain the following corollary.

Corollary 2. DdISR under TJ is in P on interval graphs for any d ≥ 2.

On the other hand, when using token-slides, we need to consider which edge
can be used for moving tokens, and clearly Gd−1 has much more edges than
G, which means certain token-slides we perform in Gd−1 cannot be done in G.
Figure 1 describes an example of a DdISR’s no-instance (G, I, J,TS, 3) whose
corresponding ISR’s instance (G2, I, J,TS, 2) is a yes-instance. One can verify
that in the former instance no token can move without breaking the “distance-3
restriction”, while in the latter I can be transformed into J using exactly two
token-slides. Moreover, these moves use edges that do not appear in G.

On the Complexity of Distance-d Independent Set Reconfiguration 259

(G, I, J,TS, 3) (G2, I, J,TS, 2)

Fig. 1. A DdISR’s no-instance (G, I, J,TS, 3) whose corresponding ISR’s instance
(G2, I, J,TS, 2) is a yes-instance. Tokens in I (resp., J) are marked with black (resp.,
gray) color.

3.2 Graphs with Bounded Diameter Components

The following observation is straightforward.

Proposition 3. Let G be a graph class such that there is some constant c > 0
satisfying diam(CG) ≤ c for any G ∈ G and any component CG of G. Then,
DdISR on G under R ∈ {TS,TJ} is in P for every d ≥ c + 1.

Proof. When d ≥ c+1, any DdIS contains at most one vertex in each component
of G, and the problem becomes trivial: under TJ, the answer is always “yes”;
under TS, compare the number of tokens in each component.
�

As a result, on cographs (a.k.a P4-free graphs), one can immediately derive
the following corollary.

Corollary 4. DdISR on cographs under R ∈ {TS,TJ} is in P for any d ≥ 2.

Proof. It is well-known that the problems for d = 2 is in P [5,18]. Since a
connected cograph has diameter at most two, Proposition 3 settles the case
d ≥ 3.
�

4 Chordal Graphs and Split Graphs

In this section, we will focus on chordal graphs and split graphs. Recall that
the odd power of a chordal graph is also chordal [1,2] and ISR under TJ on
even-hole-free graphs (which contains chordal graphs) is in P [18]. Therefore, it
follows from Proposition 1 that

Corollary 5. DdISR is in P on chordal graphs under TJ for any even d ≥ 2.

In contrast, we have the following theorem.

260 D. A. Hoang

1 2 3

4 5

G

1 2 3

4 5

x12 x14 x23 x24 x35

f(1) f(4) f(2) f(5) f(3)

G′

Fig. 2. An example of constructing a chordal graph G′ from G for d = 5. Vertices in a
light-gray box form a clique. New vertices in V (G′) − V (G) are marked with the gray
color.

Theorem 6. DdISR is PSPACE-complete on chordal graphs under TJ for any
odd d ≥ 3.

Proof. We reduce from the ISR problem, which is known to be PSPACE-complete
under any of TS and TJ [17]. Let (G, I, J,TJ, 2) be an ISR’s instance. We con-
struct a DdISR’s instance (G′, I ′, J ′,TJ, d) (d ≥ 3 is odd) as follows. We note that
the same reduction was used by Eto et al. [12] for showing the NP-completeness
of MaxDdIS on chordal graphs for odd d ≥ 3. We first describe how to con-
struct G′ from G. First, for each edge uv ∈ V (G), add a new vertex xuv and
create a new edge between xuv and both u and v. Next, we add an edge in G′

between xuv and xu′v′ for any pair of distinct edges uv, u′v′ ∈ E(G). Finally, for
each v ∈ V (G) we add a new path Pv on (d − 3)/2 vertices and then add a new
edge between v and one of Pv’s endpoints. Let the resulting graph be G′. One
can verify that G′ is indeed a chordal graph: it is obtained from a split graph by
attaching new paths to certain vertices. Clearly this construction can be done in
polynomial time. (For example, see Fig. 2.)

For each u ∈ V (G), we define f(u) ∈ V (G′) to be the vertex whose distance
in G′ from u is largest among all vertices in V (Pu)+u. Let f(X) =

⋃
x∈X{f(x)}

for a vertex subset X ⊆ V (G). From the construction of G′, note that if u and
v are two vertices of distance 2 in G, one can always find a shortest path Q
between f(u) and f(v) whose length is exactly d. Indeed, Q can be obtained by
joining the paths from f(u) to u, from u to xuw, from xuw to xwv, from xwv

to v, and from v to f(v), where w ∈ NG(u) ∩ NG(v). It follows that if I is an
independent set of G then f(I) is a distance-d independent set of G′. Therefore,
we can set I ′ = f(I) and J ′ = f(J).

On the Complexity of Distance-d Independent Set Reconfiguration 261

From the construction of G′, note that for each uv ∈ E(G), xuv is of distance
exactly one from each xwz for wz ∈ E(G)−uv, at most two from each v ∈ V (G),
and at most 2+(d−3)/2 ≤ d−1 from each vertex in Pv for v ∈ V (G). It follows
that any distance-d independent set of G′ of size at least two must not contain
any vertex in

⋃
uv∈E(G){xuv}.

We now show that there is a TJ-sequence between I and J in G if and only
if there is a TJ-sequence between I ′ and J ′ in G′. If |I| = |J | = 1, the claim is
trivial. As a result, we consider the case |I| = |J | ≥ 2. Since f(I) is a distance-d
independent set in G′ if I is an independent set in G, the only-if direction is
clear. It remains to show the if direction. Let S ′ be a TJ-sequence in G′ between
I ′ and J ′. We modify S ′ by repeating the following steps:

– Let x
G′

−→TJ y be the first token-jump that move a token from x ∈ f(V (G))
to some y ∈ V (Pu) + u − f(u) for some u ∈ V (G). If no such token-jump
exists, we stop. Let Ix and Iy be respectively the distance-d independent sets
obtained before and after this token-jump. In particular, Iy = Ix − x + y.

– Replace x
G′

−→TJ y by x
G′

−→TJ f(u) and replace the first step after x
G′

−→TJ y

of the form y
G′

−→TJ z by f(u) G′
−→TJ z. From the construction of G′, note

that any path containing f(u) must also contains all vertices in V (Pu) + u.
Additionally, Ix ∩ (V (Pu) + u) = ∅, otherwise no token in Ix can jump to y.
Therefore, the set Ix−x+f(u) is also a distance-d independent set. Moreover,
distG′(f(u), z) ≥ distG′(y, z) for any z ∈ V (G′) − V (Pu). Roughly speaking,

this implies that no token-jump between x
G′

−→TJ y and y
G′

−→TJ z breaks
the “distance-d restriction”. Thus, after the above replacements, S ′ is still a
TJ-sequence in G′.

– Repeat the first step.

After modification, the final resulting TJ-sequence S ′ in G′ contains only token-
jumps between vertices in f(V (G)). By definition of f , we can construct a TJ-

sequence between I and J in G simply by replacing each step x
G′

−→TJ y in S ′

by f−1(x) G−→TJ f−1(y). Our proof is complete.
�
Now, we consider the split graphs. Proposition 3 implies that on split graphs

(where each component has diameter at most 3), DdISR is in P under R ∈
{TS,TJ} for any d ≥ 4. Interestingly, recall that when d = 2, the problem under
TS is PSPACE-complete even on split graphs [3] while under TJ it is in P [18]. It
remains to consider the case d = 3.

Observe that the constructed graph G′ in the proof of Theorem 6 is indeed
a split graph when d = 3. Therefore, we have the following corollary.

Corollary 7. D3ISR is PSPACE-complete on split graphs under TJ.

In contrast, under TS, we have the following proposition.

Proposition 8. D3ISR is in P on split graphs under TS.

262 D. A. Hoang

Proof. Let (G, I, J,TS, 3) be an instance of D3ISR and suppose that V (G) can be
partitioned into a clique K and an independent set S. One can assume without
loss of generality that G is connected, otherwise each component can be solved
independently. If |I| = |J | = 1, the problem becomes trivial: (G, I, J,R, 3) is
always a yes-instance. Thus, we now consider |I| = |J | ≥ 2. Observe that for
every u ∈ V (G) and v ∈ K, we have distG(u, v) ≤ 2. Therefore, in this case, both
I and J are subsets of S. Now, no token in I ∪J can be slid, otherwise such a token
must be slid to some vertex in K, and each vertex in K has distance at most two
from any other token, which contradicts the restriction that tokens must form a
D3IS. Hence, (G, I, J,TS, 3) is always a no-instance if |I| = |J | ≥ 2.
�

5 A Reduction Under TJ on General Graphs

Recall that Ito et al. [17] proved the PSPACE-completeness of ISR under TJ/TAR
by reducing from 3-Satisfiability Reconfiguration (3SAT-R). In this
section, we present a simple proof for the PSPACE-hardness of DdISR (d ≥ 3) on
general graphs under TJ by reducing from ISR instead of 3SAT-R.

Theorem 9 (∗). DdISR is PSPACE-complete under TJ for any d ≥ 3.

Proof (Sketch). Our goal is to construct a DdISR’s instance (G′, I, J,TJ, d) (d ≥
3) from a given ISR’s instance (G, I, J,TJ, 2). Intuitively, we aim to construct
G′ from G such that two vertices of distance at least 2 in G would be of distance
at least d in G′. We also need to slightly adjust G′ to ensure that TJ-sequences
in G between I and J can be converted to those in G′ and vice versa. (This
implies the correctness of our reduction.) More precisely, we adjust G′ to avoid
placing any token on a vertex in V (G′) − V (G) when reconfiguring in G′.
�

6 Extending Some Known Results for d = 2

In this section, we prove that several known results on the complexity of DdISR
for the case d = 2 can be extended for d ≥ 3.

6.1 General Graphs

Ito et al. [17] proved that ISR is PSPACE-complete on general graphs under
TJ/TAR. Indeed, their proof uses only maximum independent sets, which
implies that any token-jump is also a token-slide [6], and therefore the
PSPACE-completeness also holds under TS. We will show that the reduction of
Ito et al. [17] can be extended for showing the PSPACE-completeness of DdISR
for d ≥ 3.

Theorem 10 (∗). DdISR is PSPACE-complete under R ∈ {TS,TJ} for any
d ≥ 3.

On the Complexity of Distance-d Independent Set Reconfiguration 263

6.2 Perfect Graphs

In this section, we will show the PSPACE-completeness of DdISR (d ≥ 3) on per-
fect graphs by extending the corresponding known result of Kamiński et al. [18]
for ISR.

Theorem 11 (∗). DdISR is PSPACE-complete on perfect graphs under R ∈
{TS,TJ} for any d ≥ 3.

6.3 Planar Graphs

In this section, we claim that the PSPACE-hard reduction of Hearn and
Demaine [15] for ISR under TS can be extended to DdISR (d ≥ 3) under
R ∈ {TS,TJ}.

Theorem 12 (∗). DdISR is PSPACE-complete under R ∈ {TS,TJ} on planar
graphs of maximum degree three and bounded bandwidth for any d ≥ 2.

7 Open Problem: Trees

Since the power of a tree is a (strongly) chordal graph [20,23] and ISR on chordal
graphs under TJ is in P [18], Proposition 1 implies that DdISR under TJ on trees
is in P for any d ≥ 3. On the other hand, the complexity of DdISR under TS for
d ≥ 3 remains unknown.

Conjecture 13. DdISR under TS on trees is in P for d ≥ 3.

Demaine et al. [10] showed that the problem for d = 2 is in P. Their algorithm
is based on the so-called rigid tokens. Given a tree T and a DdIS I of T (d ≥ 2),
a token t on u ∈ I is (T, I, d)-rigid if there is no TS-sequence that slides t from
u to some vertex v ∈ NT (u). We denote by R(T, I, d) the set of all vertices
where (T, I, d)-rigid tokens are placed. Demaine et al. proved that R(T, I, 2)
can be found in linear time. Clearly it holds for any d ≥ 2 that every instance
(T, I, J,TS, d) where R(T, I, d) �= R(T, J, d) is a no-instance. When R(T, I, 2) =
R(T, J, 2) = ∅, they proved that (T, I, J,TS, 2) is always a yes-instance. Based
on these observations, one can derive a polynomial-time algorithm for solving
ISR on trees under TS.

Indeed, for d ≥ 3, even when R(T, I, d) = R(T, J, d) = ∅, (T, I, J,TS, d) may
be a no-instance. An example of such instances is described in Fig. 3. As a result,
Demaine et al.’s strategy cannot be directly applied and thus the problem for
d ≥ 3 becomes more challenging.

264 D. A. Hoang

u

Fig. 3. A no-instance (T, I, J,TS, d) (d ≥ 3) with R(T, I, d) = R(T, J, d) = ∅. Tokens
in I (resp., J) are marked with the black (resp. gray) color. All tokens are of distance
d − 1 from u.

Acknowledgements. This research is partially supported by the Japan Society for
the Promotion of Science (JSPS) KAKENHI Grant Number JP20H05964 (AFSA).

References

1. Agnarsson, G., Greenlaw, R., Halldórsson, M.M.: On powers of chordal graphs and
their colorings. Congr. Numer. 144, 41–65 (2000)

2. Balakrishnan, R., Paulraja, P.: Powers of chordal graphs. J. Aust. Math. Soc.
35(2), 211–217 (1983). https://doi.org/10.1017/S1446788700025696

3. Belmonte, R., Kim, E.J., Lampis, M., Mitsou, V., Otachi, Y., Sikora, F.: Token
sliding on split graphs. Theory Comput. Syst. 65(4), 662–686 (2020). https://doi.
org/10.1007/s00224-020-09967-8

4. Bonamy, M., Bousquet, N.: Token sliding on chordal graphs. In: Bodlaender, H.L.,
Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 127–139. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68705-6_10

5. Bonsma, P.S.: Independent set reconfiguration in cographs and their generaliza-
tions. J. Graph Theory 83(2), 164–195 (2016). https://doi.org/10.1002/jgt.21992

6. Bonsma, P., Kamiński, M., Wrochna, M.: Reconfiguring independent sets in claw-
free graphs. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp.
86–97. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08404-6_8

7. Bousquet, N., Mouawad, A.E., Nishimura, N., Siebertz, S.: A survey on the param-
eterized complexity of the independent set and (connected) dominating set recon-
figuration problems. arXiv preprint arXiv:2204.10526 (2022)

8. Briański, M., Felsner, S., Hodor, J., Micek, P.: Reconfiguring independent sets
on interval graphs. In: Bonchi, F., Puglisi, S.J. (eds.) Proceedings of MFCS 2021.
LIPIcs, vol. 202, pp. 23:1–23:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2021). https://doi.org/10.4230/LIPIcs.MFCS.2021.23

9. Chen, M., Chang, G.J.: Families of graphs closed under taking powers. Graphs
Comb. 17(2), 207–212 (2001). https://doi.org/10.1007/PL00007241

10. Demaine, E.D., et al.: Linear-time algorithm for sliding tokens on trees. Theor.
Comput. Sci. 600, 132–142 (2015). https://doi.org/10.1016/j.tcs.2015.07.037

11. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-53622-3

https://doi.org/10.1017/S1446788700025696
https://doi.org/10.1007/s00224-020-09967-8
https://doi.org/10.1007/s00224-020-09967-8
https://doi.org/10.1007/978-3-319-68705-6_10
https://doi.org/10.1002/jgt.21992
https://doi.org/10.1007/978-3-319-08404-6_8
http://arxiv.org/abs/2204.10526
https://doi.org/10.4230/LIPIcs.MFCS.2021.23
https://doi.org/10.1007/PL00007241
https://doi.org/10.1016/j.tcs.2015.07.037
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3

On the Complexity of Distance-d Independent Set Reconfiguration 265

12. Eto, H., Guo, F., Miyano, E.: Distance-d independent set problems for bipartite
and chordal graphs. J. Comb. Optim. 27(1), 88–99 (2013). https://doi.org/10.
1007/s10878-012-9594-4

13. Fox-Epstein, E., Hoang, D.A., Otachi, Y., Uehara, R.: Sliding token on bipartite
permutation graphs. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS,
vol. 9472, pp. 237–247. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48971-0_21

14. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory
of NP-completeness. W.H. Freeman and Company (1979)

15. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computa-
tion. Theor. Comput. Sci. 343(1–2), 72–96 (2005). https://doi.org/10.1016/j.tcs.
2005.05.008

16. Hoang, D.A.: On the complexity of distance-d independent set reconfiguration.
arXiv preprint arXiv:2208.07199 (2022)

17. Ito, T., et al.: On the complexity of reconfiguration problems. Theor. Comput. Sci.
412(12–14), 1054–1065 (2011). https://doi.org/10.1016/j.tcs.2010.12.005

18. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set recon-
figurability problems. Theor. Comput. Sci. 439, 9–15 (2012). https://doi.org/10.
1016/j.tcs.2012.03.004

19. Katsikarelis, I., Lampis, M., Paschos, V.T.: Structurally parameterized d-scattered
set. Discret. Appl. Math. 308, 168–186 (2020). https://doi.org/10.1016/j.dam.
2020.03.052

20. Kearney, P.E., Corneil, D.G.: Tree powers. J. Algorithms 29(1), 111–131 (1998).
https://doi.org/10.1006/jagm.1998.9999

21. Kong, M., Zhao, Y.: On computing maximum k-independent sets. Congr. Numer.
95, 47–47 (1993)

22. Kong, M., Zhao, Y.: Computing k-independent sets for regular bipartite graphs.
Congr. Numer. 143, 65–80 (2000)

23. Lin, Y.L., Skiena, S.S.: Algorithms for square roots of graphs. SIAM J. Discret.
Math. 8(1), 99–118 (1995). https://doi.org/10.1137/S089548019120016X

24. Lokshtanov, D., Mouawad, A.E.: The complexity of independent set reconfigura-
tion on bipartite graphs. ACM Trans. Algorithms 15(1), 7:1–7:19 (2019). https://
doi.org/10.1145/3280825

25. Lokshtanov, D., Mouawad, A.E., Panolan, F., Ramanujan, M.S., Saurabh, S.:
Reconfiguration on sparse graphs. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS
2015. LNCS, vol. 9214, pp. 506–517. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21840-3_42

26. Mynhardt, C., Nasserasr, S.: Reconfiguration of colourings and dominating sets
in graphs. In: Chung, F., Graham, R., Hoffman, F., Mullin, R.C., Hogben, L.,
West, D.B. (eds.) 50 years of Combinatorics, Graph Theory, and Computing, pp.
171–191. CRC Press, 1st edn. (2019). https://doi.org/10.1201/9780429280092-10

27. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018).
https://doi.org/10.3390/a11040052

28. Siebertz, S.: Reconfiguration on nowhere dense graph classes. Electron. J. Comb.
25(3), P3.24 (2018). https://doi.org/10.37236/7458

29. van den Heuvel, J.: The complexity of change. In: Surveys in Combinatorics, Lon-
don Math. Soc. Lecture Note Ser., vol. 409, pp. 127–160. Cambridge University
Press (2013). https://doi.org/10.1017/CBO9781139506748.005

https://doi.org/10.1007/s10878-012-9594-4
https://doi.org/10.1007/s10878-012-9594-4
https://doi.org/10.1007/978-3-662-48971-0_21
https://doi.org/10.1007/978-3-662-48971-0_21
https://doi.org/10.1016/j.tcs.2005.05.008
https://doi.org/10.1016/j.tcs.2005.05.008
http://arxiv.org/abs/2208.07199
https://doi.org/10.1016/j.tcs.2010.12.005
https://doi.org/10.1016/j.tcs.2012.03.004
https://doi.org/10.1016/j.tcs.2012.03.004
https://doi.org/10.1016/j.dam.2020.03.052
https://doi.org/10.1016/j.dam.2020.03.052
https://doi.org/10.1006/jagm.1998.9999
https://doi.org/10.1137/S089548019120016X
https://doi.org/10.1145/3280825
https://doi.org/10.1145/3280825
https://doi.org/10.1007/978-3-319-21840-3_42
https://doi.org/10.1007/978-3-319-21840-3_42
https://doi.org/10.1201/9780429280092-10
https://doi.org/10.3390/a11040052
https://doi.org/10.37236/7458
https://doi.org/10.1017/CBO9781139506748.005

266 D. A. Hoang

30. van der Zanden, T.C.: Parameterized complexity of graph constraint logic. In:
Proceedings of IPEC 2015. LIPIcs, vol. 43, pp. 282–293. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2015). https://doi.org/10.4230/LIPIcs.IPEC.2015.282

31. Wrochna, M.: Reconfiguration in bounded bandwidth and treedepth. J. Comput.
Syst. Sci. 93, 1–10 (2018). https://doi.org/10.1016/j.jcss.2017.11.003

32. Yamanaka, K., Kawaragi, S., Hirayama, T.: Exact exponential algorithm for
distance-3 independent set problem. IEICE Trans. Inf. Syst. 102(3), 499–501
(2019). https://doi.org/10.1587/transinf.2018FCL0002

https://doi.org/10.4230/LIPIcs.IPEC.2015.282
https://doi.org/10.1016/j.jcss.2017.11.003
https://doi.org/10.1587/transinf.2018FCL0002

On Star-Multi-interval Pairwise
Compatibility Graphs

Angelo Monti1 and Blerina Sinaimeri2(B)

1 Computer Science Departmente, Sapienza University of Rome, Rome, Italy
monti@di.uniroma1.it

2 LUISS University, Rome, Italy

bsinaimeri@luiss.it

Abstract. A graph G is a star-k-PCG if there exists a non-negative edge
weighted star tree S and k mutually exclusive intervals I1, I2, . . . , Ik of
non-negative reals such that each vertex of G corresponds to a leaf of S
and there is an edge between two vertices in G if the distance between
their corresponding leaves in S lies in I1 ∪ I2 ∪ . . . ∪ Ik. These graphs
are related to different well-studied classes of graphs such as PCGs and
multithreshold graphs. It is well known that for any graph G there exists
a k such that G is a star-k-PCG. Thus, for a given graph G it is interesting
to know which is the minimum k such that G is a star-k-PCG.

In this paper, we focus on classes of graphs where k is constant and
prove that circular graphs and two dimensional grid graphs are both
star-2-PCGs and that they are not star-1-PCGs. Moreover we show that
4-dimensional grids are not star-2-PCG.

Keywords: Pairwise compatibility graph · Multithreshold graph ·
Graph theory · Grid graphs

1 Introduction

A graph G is a k-PCG (known also as multi-interval PCG) if there exists a non-
negative edge weighted tree T and k mutually exclusive intervals I1, I2, . . . , Ik of
non-negative reals such that each vertex of G corresponds to a leaf of T and there
is an edge between two vertices in G if the distance between their corresponding
leaves in T lies in I1 ∪ I2 ∪ . . . ∪ Ik (see e.g. [1]). Such tree T is called the
k-witness tree of G. Figure 1 depicts an example of a graph that is a 1-PCG
graph of a star tree.

The class of 1-PCGs (simply known as PCGs) arose from the phylogenetic
tree reconstruction problem [7]. Indeed, sampling leaves in a phylogenetic tree
under distance constraints is related to sampling cliques in a PCG [7]. Later on,
in [9], it was shown that PCGs could be applied to describe rare evolutionary
events and scenarios with horizontal gene transfer.

To date, many graph classes have been proven to be 1-PCGs (see for a sur-
vey [12]). Not all graphs are 1-PCGs, while it is known that for each graph
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 267–278, 2023.
https://doi.org/10.1007/978-3-031-27051-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_23&domain=pdf
http://orcid.org/0000-0002-3309-8249
http://orcid.org/0000-0002-9797-7592
https://doi.org/10.1007/978-3-031-27051-2_23

268 A. Monti and B. Sinaimeri

Fig. 1. (a) The grid G4,2 (b) An edge-weighted star S such that G4,2 is a star-1-PCG
G of S for I1 = [8, 10].

G = (V,E) there is an integer k ≤ |E| such that G is a k-PCG [1,2]. Given a
graph G, determining the minimum k for which G is k-PCG is a difficult prob-
lem. Indeed, it is not known whether it can be solved in polynomial time even
for k = 1. Thus, in the hope to simplify the problem, the k-witness tree has
been constrained to have a simple topology as a star or a caterpillar. This is fur-
thermore motivated by the fact that, in the literature, most of the witness trees
of k-PCGs have such simple structures. Nevertheless, the problem is not easy
even for star trees. Only recently, a complete characterization of the 1-PCGs of
a star was provided in [14]. This characterization gave a first polynomial-time
algorithm for recognizing graphs that are 1-PCG of a star. This result has been
further improved in [8] where, through a new characterization, a linear time
algorithm has been provided. Motivated by these results, in this paper we con-
sider k-PCGs having as witnesses star trees (in short star-k-PCGs). It is worth
mentioning that star-k-PCGs are 2k-threshold graphs, a class of graphs recently
introduced in [5] and which has already drawn a lot of attention in the commu-
nity [3,5,6,11]. Thus, the results presented in this paper can be also considered
in terms of multithreshold graphs.

It is already known that every graph G is a star-k-PCG for some positive
integer k ≤ |E(G)| [1]. Moreover, for each positive integer k there are graphs
that are not star-k-PCGs and are star-(k + 1)-PCGs [3]. However, except for
star-1-PCGs, a complete characterization of star-k-PCGs for k ≥ 2 is still an
open problem. In this paper we study the relation between the star-k-PCGs and
circular and grid graphs. In [15] it is shown that every circular graph is a 1-
PCG of a caterpillar tree. Here we show that they are not star-1-PCGs but are
star-2-PCGs.

In [10] it was proved that 2-dimensional grid graphs are 2-PCGs of a caterpil-
lar and this result was improved in [4] showing that 2-dimensional grid graphs
are indeed 1-PCGs of a caterpillar. Here we prove that two dimensional grid
graphs Gn1,n2 , are star-1-PCG only if min{n1, n2} ≤ 2 and are star-2-PCGs

On Star-Multi-interval Pairwise Compatibility Graphs 269

otherwise. From the results in [5] it can be easily shown that d-dimensional
grids are not star-(d− 4)-PCGs. Here we improve this result for d = 4, by show-
ing that 4-dimensional grids are not star-2-PCG. Finally, all our constructions
can be obtained in linear time.

2 Preliminaries

For a graph G = (V,E) and a vertex u ∈ V , the set N(u) = {v : {u, v} ∈ E} is
called the neighborhood of u.

Let S be an edge weighted star tree for each leaf vi of S we denote by
w(vi) = wi the weight of the edge incident to vi. For a graph G, the weighted
star tree of G is a star whose leaves are the vertices of G.

A circular graph, denoted as Cn, n ≥ 3, is a graph that consists of a single
cycle of n vertices.

For any integer n ≥ 1 we denote by [n] the set {0, 1, 2, . . . , n − 1}. A d-
dimensional grid graph Gn1,...,nd

, is a graph such that the vertex set is given
by [n1] × [n2] × . . . × [nd] and there is an edge between two vertices if and only
if they differ in exactly one coordinate and the difference is 1. More formally,
a vertex u is described by its coordinates (i1, . . . , id). For any dimension j we
denote by uj the coordinate of u in the j-th dimension. Two vertices u and u′

are adjacent if there is a dimension i such that |ui − u′
i| = 1 and for all l �= i,

ul = u′
l (see Fig. 1 for an example). Notice that in this paper we only consider

bounded grid graphs.
Notice that every vertex of the d-dimensional grid has at most 2d neighbors.

Two vertices u and u′ are called opposed if there exists a dimension i for which
|ui − u′

i| = 2 and for all j �= i, uj = u′
j . Notice that in a d-dimensional grid

for any vertex u, the set of its 2d neighbors can be partitioned in d pairs of
opposed vertices. Consider a vertex u and any two of its neighbors v, v′ that are
not opposed. Then there exists exactly one vertex x different from u, denoted
Qu

v,v′ such that N(u) ∩ N(x) = {v, v′}.
We need the following lemma which is inspired by [14].

Lemma 1. Let G be a graph and let k be a positive integer. If for any weighted
star S of G, there exist x ∈ V (G), vertices v1, . . . , vk+1 in N(x) and u1, . . . uk

not in N(x) ∪ {x}, such that w(v1) ≤ w(u1) ≤ . . . ≤ w(uk) ≤ w(vk+1), then G
is not a star-k-PCG.

Proof. Consider a graph G and let S be any of its star trees. Assume the assump-
tions of the lemma hold and thus there exist a vertex x with v1, . . . , vk+1 in N(x)
and u1, . . . uk not in N(x) ∪ {x} such that the following holds

w(v1) ≤ w(u1) ≤ . . . ≤ w(uk) ≤ w(vk+1).

We show that the edges {x, vi} must belong to k + 1 different intervals and
thus S cannot be a k-witness tree. For any 1 ≤ i < j ≤ k + 1 we consider the
edges ei = {x, vi}, ej = {x, vj} and the non-edge ēi = {x, ui}. We have that
w(x) + w(vi) ≤ w(x) + w(ui) ≤ w(x) + w(vj) and thus if the edges ei, ej belong
to the same interval so does the non-edge ēi. This concludes the proof. �	

270 A. Monti and B. Sinaimeri

3 Circular Graphs

It is not hard to see that the circular graphs C3 and C4 are star-1-PCGs. For
Cn with n ≥ 5 we prove the following result.

Theorem 1. For any n ≥ 5 the graph Cn is not a star-1-PCG.

Proof. Consider Cn = v1, v2, . . . , vn, v1, and let S be any of its witness star
trees. For n ≥ 5, all the n vertices have distinct neighbourhoods. Consider the
vertices of Cn ordered by weight of their incident edge in S. Thus, let w(vi1) ≤
. . . ≤ w(vin) and notice that there are exactly n − 1 consecutive pairs vij , vij+1

which will correspond to at most n − 1 different neighbourhoods. Thus, it must
necessarily exists a vertex x with N(x) = {v, v′} and a vertex u for which
w(v) ≤ w(u) ≤ w(v′). Notice that if x �= u we are done as the conditions
of Lemma 1 are satisfied. Otherwise let x = u, we have that w(x) + w(v) ≤
w(v′) + w(v) ≤ w(v′) + w(x). Notice that since Cn is triangle free {v, v′} is a
non-edge. Hence, the edges {x, v} and {x, v′} cannot belong to the same interval
and thus Cn is not a star-1-PCG. �	

We now prove that circular graphs are star-2-PCGs for n ≥ 5. To this purpose
we extend one construction for the 1-witness star of a path. Notice that it is
already known that path graphs are star-1-PCGs [14] and two different ways to
weight the witness star are presented in [10]. However, for circular graphs we
need a slightly different construction.

Fig. 2. (a) An edge-weighted star S such that C8 is a star-2-PCG G of S for I1 = [12, 13]
and I2 = [16]. (b) An edge-weighted star S such that C7 is a star-2-PCG of S for
I1 = [13, 15] and I2 = [7]. The normal and dotted edges in the cycle correspond to
edges for which the sum of their endpoints falls in I1 and I2, respectively.

Theorem 2. For any n ≥ 3 the graph Cn is a star-2-PCG.

Proof. The construction depends on the parity of n.

On Star-Multi-interval Pairwise Compatibility Graphs 271

Case n even. Let Cn = v1, v2, . . . , vn, v1, we construct a star tree S as follows:
For every 1 ≤ i ≤ n we set wi so that:

wi =

{
n + n

2 − i−1
2 , if i is odd

i
2 , if i is even

We define two intervals:

I1 =
[
n +

n

2
, n +

n

2
+ 1

]
I2 = [2n]

In Fig. 2a we depict an example of the witness star tree for C8. Consider any
two different vertices vi, vj . There are three cases to consider:

(a) Both i and j are odd. In this case wi+wj = 3n− i+j
2 +1 > 2n+1 (where the

last inequality follows from i+j
2 < n). Thus, wi + wj �∈ I1 and wi + wj �∈ I2.

(b) Both i and j are even. In this case wi + wj = i+j
2 < n. Thus, wi + wj �∈ I1

and wi + wj �∈ I2.
(c) The vertices i and j have different parity. W.l.o.g. let i be odd and j be

even. In this case wi +wj = n+ n
2 − i−j−1

2 . Clearly, wi +wj ∈ I1 if and only
i−j−1

2 ∈ {−1, 0}. If i−j−1
2 = −1 then i = j − 1. Otherwise if i−j−1

2 = 0 we
have i = j+1. Thus wi+wj ∈ I1 if and only if |i−j| = 1 which corresponds to
an edge in Cn, more precisely in Pn = v1, v2, . . . , vn. Moreover, wi +wj ∈ I2
if and only if j − i = n − 1. The latter holds only for j = n and i = 1 as
1 ≤ i, j ≤ n.

Thus, from points (a)–(c) we conclude that there is an edge among i and j
if and only if (i, j) ∈ Cn.

Case n odd. For every 1 ≤ i ≤ n we set wi so that:

wi =

⎧⎪⎨
⎪⎩

n − i, if i is even
n + i, if i is odd and i �= n

n − 1, if i = n

We define two intervals:

I1 = [2n − 1, 2n + 1]
I2 = [n]

In Fig. 2b we depict an example of the witness star tree for C7. Consider any
two different vertices vi, vj and there are three cases to consider:

(a) Both i and j are even. In this case wi + wj = 2n − (i + j) < 2n − 1 (where
the last inequality follows from i+ j ≥ 6). Thus wi +wj �∈ I1. Moreover i+ j
is even thus wi + wj = 2n − (i + j) is even too. Hence wi + wj �∈ I2.

272 A. Monti and B. Sinaimeri

(b) Both i and j are odd. First assume i and j different from n. In this case
wi + wj = 2n + (i + j) > 2n + 1 (where the last inequality follows from
i + j ≥ 4). Thus wi + wj �∈ I1 ∪ I2. Assume now that i = n, in this case we
have wn + wj = n − 1 + n + j = 2n + j − 1. If j = 1 (i.e. we are considering
the edge {vn, v1}) then wn + wj = 2n ∈ I1. Otherwise, for j ≥ 3, it holds
that wn + wj ≥ 2n + 2. Thus, wn + wj �∈ I1 ∪ I2.

(c) The vertices i and j have different parity and w.l.o.g. let i be even and j
be odd. Assume first that j �= n. In this case wi + wj = 2n − i + j. Clearly,
wi + wj ∈ I1 if and only −1 ≤ j − i ≤ 1 and since i �= j it must be i = j + 1
or i = j − 1 which correspond to edges of Pn−1 = v1, v2, . . . , vn−1. Consider
now the case j = n. We have wi + wj = 2n − i − 1. Clearly, as i ≥ 2,
wi + wj ≤ 2n − 3 �∈ I1. Finally, wi + wj ∈ I2 if and only if i = n − 1. This
corresponds to the edge {vn−1, vn} of Cn.

Thus there is an edge among i and j if and only if {i, j} ∈ Cn. This concludes
the proof. �	

4 Grid Graphs

In [5] it has been shown that every graph with minimum degree δ in which
any two distinct vertices have at most c neighbors in common is not a star-
(δ − c − 2)-PCG. Thus, any d-dimensional grid is not a star-(d − 4)-PCG as the
minimum degree is d and any two vertices can share at most 2 neighbors. Thus,
the following theorem holds.

Theorem 3 ([5]). For any integer d ≥ 5, the d-dimensional grid Gn1,...,nd
with

n1, . . . , nd ≥ 3 is not a star-(d − 4)-PCG.

In this section we analyse the cases d = 2 and d = 4.

Theorem 4. A 2-dimensional grid Gn1,n2 with min{n1, n2} ≤ 2 is a star-1-
PCG.

Proof. If min{n1, n2} = 1 then the graph is a path and it is already known that
it is a star-1-PCG [10,14]. Assume now min{n1, n2} = 2 and w.l.o.g. let n2 = 2.
It is worth mentioning that it is already known that Gn1,2 is a PCG but the
witness tree is a caterpillar [13]. We define a witness star tree S for Gn1,2 as
follows: For each vertex (i, j) with 0 ≤ i ≤ n1 − 1 and 0 ≤ j ≤ 1, we define its
weight w(i, j), as follows:

w(i, j) =

{
2n1 − i if i + j is even
i + 1 if i + j is odd

We define
I1 = [2n1, 2n1 + 2]

See Fig. 1 for a construction of a 1-witness star tree for G2,4. We now show that
S is a 1-witness star tree for Gn1,2. For this let (i, j) and (i′, j′) be two vertices
and we consider the following three cases:

On Star-Multi-interval Pairwise Compatibility Graphs 273

Case j = j′ = 0. Notice that we must have i �= i′ and i + i′ ≤ n1 − 1 + n1 − 3 =
2n1 − 4. We consider the following three subcases:

– Both i and i′ are odd. We have w(i, 0) + w(i′, 0) = i + i′ + 2 ≤ 2n1 − 2 �∈ I1.
– Both i and i′ are even. We have w(i, 0)+w(i′, 0) = 4n1−(i+i′) ≥ 2n1+4 �∈ I1.
– i and i′ have different parity. W.l.o.g. assume i odd and i′ even. Then w(i, 0)+

w(i′, 0) = 2n1 + i− i′ +1. Thus, as I1 = [2n1, 2n1 +2] it must hold that either
2n1 + i− i′ +1 = 2n1 or 2n1 + i− i′ +1 = 2n1 +2. Thus, w(i, 1)+w(i′, 1) ∈ I1
if and only if |i − i′| = 1, which corresponds to the edges of Gn1,2 for which
|i − i′| = 1 and j = j′ = 0.

Case j = j′ = 1. This case is symmetrical to the previous one. Thus, w(i, 1) +
w(i′, 1) ∈ I1 if and only if |i − i′| = 1, which corresponds to the edges of Gn1,2

for which |i − i′| = 1 and j = j′ = 1.

Case j and j′ are of different parity. W.l.o.g. assume j = 0 and j′ = 1. Then we
consider the following three subcases:

– Both i and i′ are odd. We have w(i, 0)+w(i′, 1) = 2n1+i−i′+1. If i �= i′ then
|i−i′| ≥ 2 and thus either w(i, 0)+w(i′, 1) ≥ 2n1+3 �∈ I1 or w(i, 0)+w(i′, 1) ≤
2n1 − 1 �∈ I1. Otherwise, if i = i′ then w(i, 0) + w(i′, 1) = 2n1 + 1 ∈ I1 which
corresponds to the edges of Gn1,2 for which i = i′ and |j − j′| = 1.

– Both i and i′ are even. We have w(i, 0) + w(i′, 1) = 2n1 − i + i′ + 1 and the
case follows identical to the previous one. Thus, w(i, 1) + w(i′, 1) ∈ I1 if and
only if i = i′, which corresponds to the edges of Gn1,2 for which i = i′ and
|j − j′| = 1.

– i and i′ have different parity. Notice that we must have i �= i′ and thus
i + i′ ≤ 2n1 − 4. Assume first i odd and i′ even. Then w(i, 0) + w(i′, 1) =
i+i′+2 ≤ 2n1−2 �∈ I1. Otherwise, if i even and i′ odd. Then w(i, 0)+w(i′, 1) =
4n1 − (i + i′) ≥ 2n1 + 4 �∈ I1.

Thus, S is a 1-witness star tree for Gn1,2. �	
Theorem 5. A 2-dimensional grid Gn1,n2 with n1, n2 ≥ 3 is not a star-1-PCG.

Proof. Note that any induced subgraph of a star-1-PCG graph is also star-1-
PCG graph. Thus, the theorem follows since the circular graph C8 is an induced
subgraph of Gn1,n2 with n1, n2 ≥ 3; by Theorem 1 C8 is not a star-1-PCG. �	
We now prove that any 2-dimensional grid graph is a star-2-PCG.

Theorem 6. For any two positive integers n1, n2, the 2-dimensional grid graph
Gn1,n2 is a star-2-PCG.

Proof. Notice that if a graph G is a star-2-PCG, then so is any vertex induced
subgraph of G. Hence, it is sufficient to focus on the case where n1 = n2 = h.
Let G = Gh,h and consider a star S on h2 vertices of G. For each vertex (i, j),
we define its weight w(i, j), as follows:

w(i, j) =

⎧⎨
⎩

(i + j − 1)h
2 +i + 1, if i + j is odd

(2h − 1)h − (i + j)h
2 −i, if i + j is even

274 A. Monti and B. Sinaimeri

We define two intervals:

I1 = [2h(h − 1), 2h(h − 1) + 1]
I2 = [2h(h − 1) + h + 1, 2h(h − 1) + h + 2]

Thus, by construction two vertices (i, j) and (i′, j′) are adjacent if the sum of
their weights is one of the 4 integer values in S = {2h(h−1), 2h(h−1)+1, 2h(h−
1) + h + 1, 2h(h − 1) + h + 2} (see Fig. 3). Consider two vertices (i, j), (i′, j′)
in the grid and we check under which conditions they are adjacent. Recall that
0 ≤ i, j, i′, j′ ≤ h − 1. There are two cases to consider.

Case i+ j and i′ + j′ have the same parity. By definition of a 2-dimensional grid
these vertices are not adjacent. Consider first the case where i + j and i′ + j′

are both odd. Notice that w(i, j) = (i+j−1)h
2 + i + 1 is maximized for i = h − 1

and j = h − 2 (notice that as i + j is odd we cannot have i = j = h − 1. Hence,
w(i, j) + w(i′, j′) < (2h − 4)h + 2h = (2h − 2)h and thus is not in S where the
last inequality holds as (i, j) �= (i′, j′).

Consider now the case i + j and i′ + j′ are both even. Notice that w(i, j) =

(2h − 1)h − (i + j)h
2 −i is minimized for i = h − 1 and j = h − 1. Hence,

w(i, j) + w(i′, j′) > 2h(h − 1) + 2 and thus is not in S.

Case i + j and i′ + j′ have different parity. W.l.o.g. assume i + j odd and i′ + j′

even and thus:

w(i, j) + w(i′, j′) = (2h − 1)h + (i − i′ + j − j′ − 1)
h

2
+ i − i′ + 1

We consider now for what values of i, j, i′, j′ w(i, j) + w(i′, j′) = s ∈ S. To this
purpose we solve the following equations for each possible value of s.

– In the case s = 2h(h − 1) we obtain (i − i′ + j − j′ + 1)h + 2(i − i′ + 1) = 0.
Let c = i − i′ + j − j′ + 1 and we consider for which values of c the equation
has solutions. Notice first that for c ≤ −3 and c ≥ 3 there are no solutions
as −2h ≤ 2(i − i′ + 1) ≤ 2h (recall that 0 ≤ i, j, i′, j′ ≤ h − 1). Moreover,
as i + j is odd and i′ + j′ is even we have that c must be even. Thus, the
only possible cases that remain to consider are c ∈ {−2, 0, 2}. If c = 2 then
2h+2(i−i′+1) = 0 and thus i−i′+1 = −h. From this and i−i′+j−j′+1 = 2
we have j−j′ = h+2 which is not possible since j−j′ ≤ h−1. If c = −2 then
−2h+2(i−i′+1) = 0 and thus i−i′+1 = h. From this and i−i′+j−j′+1 = −2
we have j − j′ = −(h + 2) which is not possible since j − j′ ≥ −(h + 1). The
only possibility is c = 0 and as a consequence 2(i − i′ + 1) = 0 from which we
have i = i′ − 1. Then as i − i′ + j − j′ + 1 = 0 we have j = j′.

– In the case s = 2h(h − 1) + 1 following a similar argument as in the previous
point we have the only possibility is i = i′ and j = j′ − 1.

– In the case s = 2h(h − 1) + h + 1 following a similar argument as in the
previous point we have the only possibility is i = i′ and j = j′ + 1.

– In the case s = 2h(h − 1) + h + 2 following a similar argument as in the
previous point we have the only possibility is i = i′ + 1 and j = j′.

On Star-Multi-interval Pairwise Compatibility Graphs 275

From the previous four items we have that two vertices (i, j), (i′, j′) are
adjacent if and only if i = i′ and |j − j′| = 1 or j = j′ and |i− i′| = 1 and j = j′.
This concludes the proof. �	

Fig. 3. The graph G4,4 where the weight associated to each vertex v corresponds to
the weight of the edge incident to v in the 2-witness tree star. The two intervals are
I1 = [24, 25] and I2 = [29, 30]. The normal and dotted edges correspond to edges for
which the sum of their endpoints falls in I1 and I2, respectively.

We now consider 4-dimensional grids.

Theorem 7. For any four positive integers n1, n2, n3, n4 ≥ 3 the 4-dimensional
grid Gn1,n2,n3,n4 is not a star-2-PCG.

Proof. Since G3,3,3,3 is an induced subgraph of Gn1,...,n4 and thus it is sufficient
to show G3,3,3,3 is not a star-2-PCG. Consider G = G3,3,3,3, and let S be any
of its star trees. Notice that due to Lemma 1 it is sufficient to prove that there
exists a vertex x with v1, v2, v3 in N(x) and u1, u2 not in N(x) ∪ {x} such that
w(v1) ≤ w(u1) ≤ w(v2) ≤ w(uk) ≤ w(v3). We now proceed to find this vertex x.

Consider the vertex a = (1, 1, 1, 1). If a is our vertex x we are done. Otherwise
we have x �= a. Notice that a has exactly 8 neighbors and w.l.o.g. let b1, . . . , b8
be its neighbors such that w(b1) < w(b2) < . . . < w(b8) in S (notice that in
d-dimensional grid graphs there are no two vertices with the same neighborhood
and thus all the vertices have pairwise different weights). We show that there
exist bi, bj ∈ N(a) such that x = Qa

bi,bj
. There are two cases to consider:

Case I. For any u �∈ N(a) it holds w(u) < w(b1) or w(u) > w(b8). At least
one between the pairs (b2, b4) and (b2, b5) is not an opposed pair. W.l.o.g. let
(b2, b4) be such a pair. Let y = Qa

b2,b4
and we show that x = y. To this purpose

consider an arbitrary vertex v ∈ N(y) − {b2, b4}. As v �∈ N(a) we have that
either w(v) < w(b1) or w(v) > w(b8). We consider each case separately.

276 A. Monti and B. Sinaimeri

– If w(v) < w(b1) we can set v1 = v, v2 = b2, v3 = b4 and u1 = b1, u2 = b3 and
notice that v1, v2, v3 are in N(y) and u1, u2 are not in N(y) and moreover
w(v1) < w(u1) < w(v2) < w(u2) < w(v3). Thus, we can take x = y.

– If w(v) > w(b8) we can set v1 = b2, v2 = b4, v3 = v and u1 = b3, u2 = b5 and
we can take x = y.

Case II. There exists 1 ≤ i ≤ 7 such that for any u �∈ N(a) at least one
of the followings holds: (i) w(u) < w(b1), (ii) w(bi) < w(u) < w(bi+1), (iii)
w(u) > w(b8). We will consider only the cases 1 ≤ i ≤ 4 as the reasoning in the
cases for i > 4 is identical to the cases 8 − i.

Case II.a. 1 ≤ i ≤ 2. At least one between the pairs (b4, b6) and (b4, b7) is not
an opposed pair. W.l.o.g. let(b4, b6) be such a pair. Let y = Qa

b4,b6
. We show

that x = y. To this purpose consider an arbitrary vertex v ∈ N(y)− {b4, b6}. As
v �∈ N(a) we have that one of the followings must hold: (i) w(v) < w(b1), (ii)
w(bi) < w(v) < w(bi+1), (iii) w(v) > w(b8). We consider each case separately.

(i) If w(v) < w(b1) we can set v1 = v, v2 = b4, v3 = b6 and u1 = b1, u2 = b5
and thus we can take x = y.

(ii) If w(bi) < w(v) < w(bi+1) we can set v1 = v, v2 = b4, v3 = b6 and u1 = b3,
u2 = b5 and thus we can take x = y.

(iii) If w(v) > w(b8) we can v1 = b4, v2 = b6, v3 = v and u1 = b5, u2 = b8 and
thus we can take x = y.

Case II.b. 3 ≤ i ≤ 4. At least one between the pairs (b2, b6) and (b2, b7) is
not an opposed pair. W.l.o.g. let(b2, b6) be such a pair. Let y = Qa

b2,b6
. We

show that x = y. Similarly to the previous case let v ∈ N(y) − {b2, b6}. as
v �∈ N(a) we have that one of the followings must hold: (i) w(v) < w(b1), (ii)
w(bi) < w(v) < w(bi+1), (iii) w(v) > w(b8). We consider each case separately.

(i) If w(v) < w(b1) we can set v1 = v, v2 = b2, v3 = b6 and u1 = b1, u2 = b5
and thus we can take x = y.

(ii) If w(bi) < w(v) < w(bi+1) we can set v1 = b2, v2 = v, v3 = b6 and u1 = b3,
u2 = b5 and thus we can take x = y.

(iii) If w(v) > w(b8) we can v1 = b2, v2 = b6, v3 = v and u1 = b5, u2 = b8 and
thus we can take x = y.

This concludes the proof. �	

5 Conclusions and Open Problems

In this paper we consider the problem of characterizing star-multi-interval pair-
wise compatibility graphs. This is particularly interesting as this class connects
two important graph classes: the PCGs and multithreshold graphs for both of
which a complete characterization is not yet known. Here we study the rela-
tion between the star-multi-interval pairwise compatibility graphs and circular

On Star-Multi-interval Pairwise Compatibility Graphs 277

and grid graphs. We show that circular graphs, Cn are star-1-PCGs for every
1 ≤ n < 4 and are star-2-PCGs for any n ≥ 5. We then consider d-dimensional
grids and for the specific cases d = 2 and d = 4 we improve on the existing
general result stating that any d-dimensional grid is not a star-(d − 4)-PCG [5].
More specifically, we show that 2-dimensional grid graphs Gn1,n2 , are star-1-PCG
only if min{n1, n2} ≤ 2 and they are star-2-PCGs otherwise. For 4-dimensional
grids we show that they are not star-2-PCGs. It remains open to determine the
minimum value k for which d-dimensional grids, d ≥ 3, are star-k-PCGs.

Acknowledgments. The authors would like to thank Manuel Lafond for pointing
out the connection of star-k-PCGs and 2k-threshold graphs as well as the anonymous
reviewers whose comments and suggestions helped us to improve the quality of the
manuscript.

References

1. Ahmed, S., Rahman, M.S.: Multi-interval pairwise compatibility graphs. In: Gopal,
T.V., Jäger, G., Steila, S. (eds.) TAMC 2017. LNCS, vol. 10185, pp. 71–84.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55911-7 6

2. Calamoneri, T., Lafond, M., Monti, A., Sinaimeri, B.: On generalizations of pair-
wise compatibility graphs (2021). https://doi.org/10.48550/ARXIV.2112.08503

3. Chen, G., Hao, Y.: Multithreshold multipartite graphs. J. Graph Theory 1–6
(2022). https://doi.org/10.1002/jgt.22805

4. Hakim, S.A., Papan, B.B., Rahman, M.S.: New results on pairwise compatibility
graphs. Inf. Process. Lett. 178, 106284 (2022). https://doi.org/10.1016/j.ipl.2022.
106284

5. Jamison, R., Sprague, A.: Multithreshold graphs. J. Graph Theory 94(4), 518–530
(2020)

6. Jamison, R.E., Sprague, A.P.: Double-threshold permutation graphs. J. Algebraic
Combin. 56, 23–41 (2021). https://doi.org/10.1007/s10801-021-01029-7

7. Kearney, P., Munro, J.I., Phillips, D.: Efficient generation of uniform samples from
phylogenetic trees. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS, vol.
2812, pp. 177–189. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-39763-2 14

8. Kobayashi, Y., Okamoto, Y., Otachi, Y., Uno, Y.: Linear-time recognition of
double-threshold graphs. Algorithmica 84(4), 1163–1181 (2022). https://doi.org/
10.1007/s00453-021-00921-9

9. Long, Y., Stadler, P.F.: Exact-2-relation graphs. Discrete Appl. Math.
285, 212–226 (2020). https://doi.org/10.1016/j.dam.2020.05.015, https://www.
sciencedirect.com/science/article/pii/S0166218X20302638

10. Papan, B.B., Pranto, P.B., Rahman, M.S.: On 2-interval pairwise compatibility
properties of two classes of grid graphs. Comput. J. (2022). https://doi.org/10.
1093/comjnl/bxac011

11. Puleo, G.J.: Some results on multithreshold graphs. Graphs Combin. 36(3), 913–
919 (2020). https://doi.org/10.1007/s00373-020-02168-7

12. Rahman, M.S., Ahmed, S.: A survey on pairwise compatibility graphs. AKCE Int.
J. Graphs Comb. 17(3), 788–795 (2020). https://doi.org/10.1016/j.akcej.2019.12.
011

https://doi.org/10.1007/978-3-319-55911-7_6
https://doi.org/10.48550/ARXIV.2112.08503
https://doi.org/10.1002/jgt.22805
https://doi.org/10.1016/j.ipl.2022.106284
https://doi.org/10.1016/j.ipl.2022.106284
https://doi.org/10.1007/s10801-021-01029-7
https://doi.org/10.1007/978-3-540-39763-2_14
https://doi.org/10.1007/978-3-540-39763-2_14
https://doi.org/10.1007/s00453-021-00921-9
https://doi.org/10.1007/s00453-021-00921-9
https://doi.org/10.1016/j.dam.2020.05.015
https://www.sciencedirect.com/science/article/pii/S0166218X20302638
https://www.sciencedirect.com/science/article/pii/S0166218X20302638
https://doi.org/10.1093/comjnl/bxac011
https://doi.org/10.1093/comjnl/bxac011
https://doi.org/10.1007/s00373-020-02168-7
https://doi.org/10.1016/j.akcej.2019.12.011
https://doi.org/10.1016/j.akcej.2019.12.011

278 A. Monti and B. Sinaimeri

13. Salma, S., Rahman, M., Hossain, M.: Triangle-free outerplanar 3-graphs are pair-
wise compatibility graphs. J. Graph Algorithms Appl. 17(2), 81–102 (2013).
https://doi.org/10.7155/jgaa.00286

14. Xiao, M., Nagamochi, H.: Characterizing star-PCGs. Algorithmica 82(10), 3066–
3090 (2020). https://doi.org/10.1007/s00453-020-00712-8

15. Yanhaona, M.N., H.K.R.M.: Pairwise compatibility graphs. J. Appl. Math. Com-
put. (30), 479–503 (2009). https://doi.org/10.1007/s12190-008-0204-7

https://doi.org/10.7155/jgaa.00286
https://doi.org/10.1007/s00453-020-00712-8
https://doi.org/10.1007/s12190-008-0204-7

Parameterized Complexity of Optimizing
List Vertex-Coloring Through

Reconfiguration

Yusuke Yanagisawa(B), Akira Suzuki , Yuma Tamura, and Xiao Zhou

Graduate School of Information Sciences, Tohoku University, Sendai, Japan
yusuke.yanagisawa.r7@dc.tohoku.ac.jp, {akira,tamura,zhou}@tohoku.ac.jp

Abstract. In the combinatorial reconfiguration framework, we study
the relationship between two feasible solutions of a combinatorial search
problem under a prescribed reconfiguration rule. In this paper, we deal
with the Opt-List Coloring Reconfiguration problem. Given a
graph G, a list function L, a list L-coloring f0 of G and an integer p,Opt-
List Coloring Reconfiguration asks for finding a list L-coloring fsol
of G such that fsol can be transformed from f0 in a step-by-step fashion
and fsol uses at most p colors. We first observe that the problem remains
NP-hard for empty graphs even if every vertex of a given graph has a list
of size two. Moreover, we prove that the problem is PSPACE-complete
for bipartite graphs with bounded bandwidth and pathwidth two, even
if the number k of colors that can be used in the reconfiguration process
is bounded by some constant. On the positive side, we give an FPT algo-
rithm parameterized by k for graphs of pathwidth one. We also design an
FPT algorithm parameterized by k+vc, where vc is vertex cover number
of a given graph.

1 Introduction

In the combinatorial reconfiguration framework, we study the relationship
between two feasible solutions of a combinatorial search problem under a
prescribed reconfiguration rule. In particular, a reconfiguration problem asks
whether, given two feasible solutions of the problem, one solution can be trans-
formed into the other step-by-step, so that each intermediate solution is also fea-
sible. Combinatorial reconfiguration models “dynamic” transformations of real-
world systems, such as communication networks and road networks, as well as
topics in recreational mathematics such as the 15-puzzle and the block-pushing
puzzle. Since both cases do not allow for drastic changes in a short period of
time, we wish to transform the current configuration into a more desirable one

A. Suzuki—Partially supported by JSPS KAKENHI Grant Numbers JP18H04091,
JP20K11666 and JP20H05794, Japan.
Y. Tamura—Partially supported by JSPS KAKENHI Grant Numbers JP21K21278,
Japan.
X. Zhou—Partially supported by JSPS KAKENHI Grant Number JP19K11813, Japan.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 279–290, 2023.
https://doi.org/10.1007/978-3-031-27051-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_24&domain=pdf
http://orcid.org/0000-0002-5212-0202
https://doi.org/10.1007/978-3-031-27051-2_24

280 Y. Yanagisawa et al.

by a step-by-step transformation. After the combinatorial reconfiguration frame-
work was proposed by Ito et al. [14], it has been widely studied in the field of
theoretical computer science and mathematics. (See, e.g., the surveys of van den
Heuvel [13] and Nishimura [19]).

However, we sometimes face difficulties when applying the current framework
to real-world systems. In the reconfiguration problem, we are required to have
in advance a target (a more desirable) configuration. Sometimes it is hard to
find a target configuration because there may exist exponentially many feasible
configurations. Moreover, even if we successfully decide a target configuration,
it may not be possible to reach it from the current configuration.

To resolve these situations, Ito et al. recently introduced the optimization
variant of reconfiguration problems [15]. In this variant, we are given a sin-
gle solution as a current configuration, and asked for the most desirable solu-
tion that can be transformed from the given one. The optimization variants of
Independent Set Reconfiguration [15,16] and Dominating Set Recon-
figuration [1] have been studied, and very recently we applied the variant to
(Vertex-)Coloring Reconfiguration [22], which is one of the most studied
reconfiguration problems [2–7,9,12,17,21].

1.1 Our Problem

We here define several notations and terminologies that are required to describe
our problem. Let G be a graph with the vertex set V (G) and the edge set E(G).
For an integer k ≥ 1, let C be a color set consisting of k colors 1, 2, . . . , k. Recall
that a k-coloring f of G is a mapping f : V (G) → C such that f(v) �= f(w) for
every edge vw ∈ E(G). For a list function L : V (G) → 2C , the k-coloring f is
a list L-coloring of G if f(v) ∈ L(v) holds for every vertex v ∈ V (G). We call
L(v) a list of a vertex v.

In the (Vertex-)Coloring Reconfiguration problem, given a graph G
and two k-colorings f0 and fr of G, we are asked to determine whether there
is a sequence 〈f0, f1, . . . , f�〉 of k-colorings of G such that f� = fr and each fi,
1 ≤ i ≤ �, can be obtained from fi−1 by recoloring only a single vertex in G.
Such a sequence is called reconfiguration sequence from f0 to fr. In the List
(Vertex-)Coloring Reconfiguration problem, we are given a list function
L and two list L-colorings f0 and fr of an input graph G. Our task is to determine
whether there is a reconfiguration sequence of list L-colorings between f0 and
fr. Coloring Reconfiguration and List Coloring Reconfiguration are
widely studied in the field of combinatorial reconfiguration [2–7,9–12,17,21]. See
also the survey of Mynhardt and Nasserasr [18].

In this paper, we initiate the study of optimization variant of List Coloring
Reconfiguration. In the Opt-List Coloring Reconfiguration problem,
Opt-LCR for short, we are given a graph G, a list function L, a single list L-
coloring f0 of G and an integer p. Then we are asked to find a list L-coloring fsol
of G such that there exists a reconfiguration sequence of list L-colorings from f0
to fsol and fsol uses at most p colors, that is, |{fsol(v) : v ∈ V (G)}| ≤ p.

Parameterized Complexity of Optimizing List Vertex-Coloring 281

1.2 Related Results

Since List Coloring Reconfiguration generalizes Coloring Reconfig-
uration, all the hardness results of Coloring Reconfiguration are also
applicable to List Coloring Reconfiguration. It is known that Coloring
Reconfiguration is PSPACE-complete for bipartite graphs if the number k
of colors is any fixed constant of at least four [4]. Moreover, List Coloring
Reconfiguration remains PSPACE-complete for bipartite planar graphs even
if both the bandwidth of an input graph and k are bounded by some constant [21].
Hatanaka et al. proved that List Coloring Reconfiguration for threshold
graphs is PSPACE-complete [11]. On the positive side, List Coloring Recon-
figuration is solvable in polynomial time for graphs of pathwidth at most one
(that is, caterpillars) [11]. Cereceda et al. [7] gave a polynomial-time algorithm
for Coloring Reconfiguration when k ≤ 3, which is also applicable to List
Coloring Reconfiguration.

(List) Coloring Reconfiguration has also been studied from the view-
point of parameterized complexity. Coloring Reconfiguration is W[1]-hard
when parameterized by �, where � is the upper bound of the length of the reconfig-
uration sequence [5]. On the other hand, Coloring Reconfiguration admits
an FPT algorithm parameterized by k+� [5,17]. In List Coloring Reconfigu-
ration, the problem parameterized by vertex cover number vc is W[1]-hard [12],
while the problem is fixed-parameter tractable when parameterized by k + mw,
where mw is the modular-width of an input graph [12].

The optimization variant of reconfiguration problems was recently proposed
by Ito et al. [15], and to the best of our knowledge, it has been applied to Inde-
pendent Set Reconfiguration [15,16], Dominating Set Reconfigura-
tion [1] and Coloring Reconfiguration [22]. In the optimization variant of
Coloring Reconfiguration, namely Opt-Coloring Reconfiguration,
we showed that for any k ≥ 4 this problem is NP-hard for planar graphs with
degeneracy three and maximum degree four. On the other hand, we gave a
linear-time algorithm for Opt-Coloring Reconfiguration when k ≤ 3 [22],
and linear-time algorithms for graphs with degeneracy two, chordal graphs and
cographs for any k [22].

1.3 Our Results

In this paper, we first observe that Opt-LCR remains NP-hard for empty graphs
even if every vertex of a given graph has a list of size two. Especially, Opt-LCR
on graphs of pathwidth pw is NP-complete for any pw ∈ {0, 1}. This incredi-
bly intractable result motivates us to study the problem when parameterized by
combinations of the number k of colors and structural graph parameters. We
prove that Opt-LCR is PSPACE-complete for bipartite graphs with bounded
bandwidth and pathwidth two, even if k is bounded by some constant. On the
positive side, we give an FPT algorithm parameterized by k for graphs of path-
width one. We also design an FPT algorithm parameterized by k+vc, where vc is

282 Y. Yanagisawa et al.

Fig. 1. Our results for Opt-LCR with respect to structural graph parameters, where
k is the number of colors. Each arrow represents the inclusion relationship between two
graph classes A and B: A → B means that B is a subclass of A.

vertex cover number of a given graph. Our results in this paper are summarized
in Fig. 1. Proofs for the claims marked with (∗) are omitted from this extended
abstract.

2 Preliminaries

Let G = (V,E) be a graph. We denote by V (G) and E(G) the vertex set and
the edge set of G, respectively. We assume that all graphs in this paper are
simple, undirected, and unweighted. For a vertex v ∈ V , we denote by N(v) the
neighborhood of v, that is, N(v) = {w : vw ∈ E}. For integers i and j with
i ≤ j, we write [i, j] as the shorthand for the set {i, i + 1, . . . , j} of integers.

A list L-coloring f of a graph G is L-reachable from a list L-coloring f0
of G if there is a sequence 〈f0, f1, . . . , f�〉 of list L-colorings of G such that
f� = f and each fi, 1 ≤ i ≤ �, can be obtained from fi−1 by recoloring only
a single vertex of G. Let #col(f) be the number of colors used in f , that is,
#col(f) = |{f(v) : v ∈ V (G)}|. Given a graph G, a list function L, an initial
list L-coloring f0 and an integer p, Opt-LCR is the problem of finding a list L-
coloring fsol such that fsol is L-reachable from f0 and #col(fsol) ≤ p. We note
that all algorithms in this paper compute the value #col(fsol) for simplicity, but
one can find an actual solution fsol with just a minor change in our algorithm.

2.1 Graph Parameters

For an n-vertex graph G, let ρ be an ordering of V (G). For a vertex v ∈ V (G),
we denote by ρ(v) an integer that represents the position of v in ρ. The width of
an ordering ρ is defined as max{|ρ(u) − ρ(v)| : uv ∈ E(G)}, and the bandwidth
of G is the minimum width over all orderings of V (G).

Parameterized Complexity of Optimizing List Vertex-Coloring 283

A tree decomposition of a graph G is a pair T = 〈T, {Xt : t ∈ V (T)}〉, where
T is a tree and Xt ⊆ V (G) is called a bag for a node t ∈ V (T), such that the
following three conditions (i)–(iii) hold;

(i)
⋃

t∈V (T) Xt = V (G);
(ii) for every uv ∈ E(G), there exists a node t ∈ V (T) such that u, v ∈ Xt; and
(iii) for every u ∈ V (G), the set {t ∈ V (T) : u ∈ Xt} induces a connected

subgraph of T .

The width of a tree decomposition T = 〈T, {Xt : t ∈ V (T)}〉 is defined as
maxt∈V (T) |Xt| − 1, and the treewidth of a graph G is the minimum width over
all possible tree decompositions of G. If T is a path, a tree decomposition T is
also called a path decomposition. The pathwidth of a graph G is the minimum
width over all possible path decompositions of G.

For a graph G, a subset S ⊆ V (G) is a vertex cover of G if at least one of
the endpoints of every edge e ∈ E(G) is contained in S. It is easy to see that
removing the vertices in S from G results in an empty graph, that is, an edgeless
graph. The vertex cover number vc of G is the size of a minimum vertex cover
of G.

Figure 1 also shows the relationship between treewidth, pathwidth, band-
width and vertex cover number. If the vertex cover number of a graph G is
bounded by a constant, the treewidth and the pathwidth of G are also bounded.
The same property holds for bandwidth, but vertex cover number and bandwidth
are incomparable.

3 NP-Hardness

We first observe that Opt-LCR is hard even for very restricted graphs.

Theorem 1 (∗). Opt-LCR is NP-hard for empty graphs even if every vertex
of a given graph has a list of size two.

The pathwidth of empty graphs is zero and hence Opt-LCR is NP-hard even
for graphs of pathwidth zero. On the other hand, List Coloring Reconfigu-
ration for graphs of pathwidth at most one is solvable in polynomial time [10],
which means that the solution for Opt-LCR can be verified in polynomial time
if a given graph has pathwidth at most one. Therefore, the following corollary
holds.

Corollary 1. Opt-LCR on graphs of pathwidth pw is NP-complete for any
pw ∈ {0, 1}.

4 PSPACE-Completeness

Theorem 1 immediately implies that Opt-LCR is intractable even if treewidth,
pathwidth, and bandwidth of a given graph are zero. Notice that, however, the
number k of colors is not bounded by a constant in our reduction of Theorem 1.

284 Y. Yanagisawa et al.

This motivates us to analyze the complexity of Opt-LCR parameterized by
treewidth, pathwidth, or bandwidth plus k. The following theorem states that
Opt-LCR is quite hard even if both parameters are bounded by a constant.

Theorem 2. Opt-LCR is PSPACE-complete for bipartite graphs of bounded
bandwidth and pathwidth two, even if the number of colors is bounded by a
constant.

We first show that Opt-LCR is in PSPACE. For a yes-instance (G,L, f0, p)
of Opt-LCR and a sequence S from f0 to a list L-coloring fsol of G, one
can verify in polynomial space whether S is a reconfiguration sequence and
#col(fsol) ≤ p. Thus, Opt-LCR is in NPSPACE and hence in PSPACE by
Savitch’s theorem [20].

To prove the PSPACE-hardness of Opt-LCR, we observe the PSPACE-
hardness of the H-word Changeability problem defined as follows, and then
reduce H-word Changeability to Opt-LCR.

Let Σ be an alphabet, that is, a nonempty set of symbols. A word x over Σ
is a sequence of symbols in Σ, and we denote by |x| the number of symbols in
x. Let E ⊆ Σ2 be a binary relation over Σ. For a pair H = (Σ,E), a word x
over Σ is an H-word if every two consecutive symbols in x are in the binary
relation E. Given an H-word x0, a positive integer q ≤ |x0| and a symbol s ∈ Σ,
the H-word Changeability problem asks whether there is a reconfiguration
sequence 〈x0, x1, . . . , x�〉 of H-words such that xi can be obtained from xi−1 by
replacing a single symbol in xi−1 to another one for every i ∈ [1, �], and a q-th
symbol of x� is s.

The PSPACE-completeness of H-word Changeability follows the result
by Wrochna [21], which proves the PSPACE-completeness of the H-word
Reachability problem. In H-word Reachability, given two H-words x0

and x�, we are asked to determine whether there is a reconfiguration sequence
of H-words between x0 and x�.

Theorem 3 ([21]). There is a pair H = (Σ,E) for which H-word Reacha-
bility is PSPACE-complete, even if the size of Σ is bounded by some constant.

In the proof of Theorem 3, in fact, x0 can be transformed into x� if and only
if a second symbol of x� can be replaced with a special symbol. Therefore, we
have the following proposition.

Proposition 1. There is a pair H = (Σ,E) for which H-word Changeabil-
ity is PSPACE-complete, even if q = 2 and the size of Σ is bounded by some
constant.

We construct an instance (G,L, f0, p) of Opt-LCR from an instance (x0, 2, s)
of H-Word Changeability, where H = (Σ,E) such that Σ has a constant
size. Our construction of (G,L, f0, p) is based on the reduction from H-Word
Reachability to List Coloring Reconfiguration by Wrochna [21].

Parameterized Complexity of Optimizing List Vertex-Coloring 285

We first construct a graph G. (See also Fig. 2.) A chain of onions of width b
and length n is the graph with the vertex set U ∪ W , where U = {u1, . . . , un}
and W = {wj

i : i ∈ [1, n − 1], j ∈ [1, b]}, and the edge set {uiw
j
i , w

j
i ui+1 : i ∈

[1, n − 1], j ∈ [1, b]}. A vertex ci of a star Ti is the center if every vertex in
V (Ti)\{ci} is a leaf of Ti. To construct a graph G of Opt-LCR, we prepare a
chain of onions of width b = |Σ2\E| and length n = |x0|. We also add |Σ| − 1
stars T1, . . . , T|Σ|−1, where each Ti, 1 ≤ i ≤ |Σ|−1, has the center ci and 2|Σ|+2
leaves �1i , . . . , �

2|Σ|+2
i . Then, for each i ∈ [1, |Σ| − 1], we identify �

2|Σ|+2
i with u2

of the chain of onions. This completes the construction of G.
We next give a list function L as follows. Let Σ′ be a disjoint copy of Σ

and we write a′ for the copy of a ∈ Σ. For a vertex ui ∈ U with i ∈ [1, n]
of a chain of onions, we let L(ui) = Σ if i is even, otherwise L(ui) = Σ′.
For each (a0, a1) ∈ Σ2\E, we assign a distinct integer j ∈ [1, b]. Then, for a
vertex wj

i ∈ W with i ∈ [1, n − 1] in a chain of onions, we let L(wj
i) = {a0, a

′
1}

if i is even, otherwise L(wj
i) = {a′

0, a1}. For the center ci of a star Ti with
i ∈ [1, |Σ| − 1], we assign a distinct symbol ai ∈ Σ\{s} and let L(ci) = {ai, z},
where z is the additional symbol that does not appear in Σ. For each leaf �j

i

of a star Ti with j ∈ [1, 2|Σ| + 1], we let L(�j
i) = {z, zj}, where zj is the

additional symbol that does not appear in Σ. As a consequence, the color set C
is Σ ∪ Σ′ ∪ {z, z1, z2, . . . , z2|Σ|+1}.

We then define an initial coloring f0. If the i-th symbol of x0 is a, then we
let f0(ui) = a if i is even, otherwise f0(ui) = a′. Suppose that i is even and
wj

i ∈ W has a list {a0, a
′
1}. Since x0 is an H-word, it holds that f0(ui) �= a0 or

f0(ui+1) �= a′
1; otherwise, (a0, a1) ∈ E, contradicting the construction of L(wj

i).
Thus, we assign f0(w

j
i) = a0 if f0(ui) �= a0, otherwise f0(w

j
i) = a′

1. Similarly, we
assign an initial color to wj

i when i is odd. For each star Ti with i ∈ [1, |Σ| − 1],
we then let f0(ci) = z for the center ci of Ti and f0(�

j
i) = zj for a leaf �j

i of Ti

for each j ∈ [1, 2|Σ| + 1]. It is easy to see that f0 constructed as above is a list
L-coloring of G with #col(f0) ≥ 2|Σ| + 2. Finally, we set p = 2|Σ| + 1.

Lemma 1. Let (G,L, f0, p) be an instance of Opt-LCR constructed from an
instance (x0, 2, s) of H-Word Changeability as above, where p = 2|Σ| + 1.
Then, (x0, 2, s) is a yes-instance of H-Word Changeability if and only if
(G,L, f0, p) is a yes-instance of Opt-LCR.

Proof. We first prove the sufficiency. Suppose a reconfiguration sequence S =
〈x0, . . . , xsol〉 of H-words such that the second symbol of xsol is s. Recall that
each i-th symbol of x0 corresponds to the color of ui ∈ U for f0. If x1 is obtained
by replacing an i-th symbol a0 ∈ Σ of x0 to a1 ∈ Σ and i is even, then we
recolor ui ∈ U from a0 to a1. If there are vertices w ∈ W adjacent to ui such
that f0(w) = a1, we recolor w to the other color of L(w) before recoloring
ui. The recolorings of ui and w are safe because L(w) consists of a pair of
symbols in Σ2\E. Similarly, if i is odd, we recolor ui from a′

0 to a′
1 and recolor

w ∈ W ∩N(ui) if necessary. This yields a new list L-coloring of G corresponding
to x1. By repeating the above recoloring, eventually, we obtain a list L-coloring
f of G such that f(u2) = s. Recall that for the center ci of every star Ti, L(ci)

286 Y. Yanagisawa et al.

u1

u2

u3

un

w1
1

w1
2

w2
1

w2
2

wb
1

wb
2

c1

c2

..
.

1
1

2
1

1
2

2
2

..
.

..
.

..
.

. . .

. . .

..
.

T1

T2

Fig. 2. The construction of a graph G for Opt-LCR. This graph consists of a chain of
onions together with stars Ti which are surrounded by dotted rectangles

has no color corresponding to s. Then, we recolor the center ci of each Ti from
z ∈ L(ci) to ai ∈ L(ci), and recolor all leaves of every Ti to z. Let fsol be
the list L-coloring of G obtained as above. The vertices in the chain of onions
are assigned colors in Σ ∪ Σ′ and the vertices in all stars are assigned colors in
Σ ∪ {z} by fsol. Therefore, we have #col(fsol) ≤ |Σ ∪ Σ′ ∪ {z}| ≤ 2|Σ| + 1 = p.

Conversely, we prove the necessity. Suppose a reconfiguration sequence S =
〈f0, . . . , fsol〉 of list L-colorings of G such that #col(fsol) ≤ p = 2|Σ| + 1. Then,
there is no center ci of a star Ti for any i ∈ [1, |Σ| − 1] such that fsol(ci) = z;
otherwise, there is a star Ti with fsol(�

j
i) = zj for any j ∈ [1, 2|Σ|+1] and hence

fsol uses colors z, z1, . . . , z2|Σ|+1, which contradicts #col(fsol) ≤ p. From the
construction of L(ci) for the center ci of Ti, we have

⋃
i∈[1,|Σ|−1] fsol(ci) = Σ\{s}

and hence fsol(u2) = s. Since we can define the corresponding H-word for any
list L-coloring of G, we obtain a reconfiguration sequence S′ = 〈x0, . . . , xsol〉 of
H-words from S such that the second symbol of xsol is s. This completes the
proof of Lemma 1.
�

We confirm the number k of colors and the property of G. The color set C
is Σ ∪ Σ′ ∪ {z, z1, z2, . . . , z2|Σ|+1}, and hence the number k of colors is 4|Σ| + 2,
which is a constant because the size of Σ is bounded by some constant. Clearly,
G is bipartite. To show that the bandwidth of G is bounded by a constant, for
each i ∈ [1, n − 1], consider the sub-orderings ρi = 〈ui, w

1
i , . . . , wb

i 〉 of vertices
in the chain of onions of width b. In addition, let σ be an arbitrary ordering of⋃

i∈[1,|Σ|−1] V (Ti). Since each Ti has the center ci and 2|Σ|+1 leaves, the length
of σ is

∑
i∈[1,|Σ|−1] |V (Ti)| = (|Σ| − 1)(2|Σ| + 2). Then, consider the ordering

ρ = 〈ρ1, σ, ρ2, . . . , ρn−1, un〉. Since b ≤ |Σ|2, the width of ρ is

Parameterized Complexity of Optimizing List Vertex-Coloring 287

max{|ρ(u) − ρ(v)| : uv ∈ E(G)} = ρ(u2) − ρ(w1
1)

= (1 + b + (|Σ| − 1)(2|Σ| + 2)) − 2

≤ 3|Σ|2 − 3,

which is bounded by a constant. Finally, to show that the pathwidth of G
is two, we give a sequence of bags with three vertices. For an integer i ∈
[1, n − 1], let Πi = 〈A1

i , A
2
i . . . , Ab

i 〉 be the sequence of bags for the chain
of onions of width b, where Aj

i = {ui, w
j
i , ui+1}. In addition, for an integer

i ∈ [1, |Σ| − 1], let Φi = 〈B1
i , B2

i . . . , B
2|Σ|+1
i 〉 be the sequence of bags for

stars, where Bj
i = {u2, ci, �

j
i}. Then, the pair 〈P,Π〉, where Π is the sequence

〈Π1, Φ1, Φ2, . . . , Φ|Σ|−1,Π2, . . . , Πn−1〉 of bags and P is a path whose length
equals the length of Π, forms the path decomposition of width two. This com-
pletes the proof of Theorem 2.
�

5 Fixed Parameter Algorithms

5.1 Graphs of Pathwidth One

We give the following theorem.

Theorem 4 (∗). Opt-LCR on graphs with pathwidth one is fixed-parameter
tractable when parameterized by the number of colors.

5.2 Vertex Cover Number

In this subsection, we show the following theorem.

Theorem 5. Opt-LCR is fixed-parameter tractable when parameterized by
k + vc.

Recall that a graph G with vertex cover number vc can be partitioned into
a vertex cover S of size vc and an independent set I. It is known that a vertex
cover S of size vc can be found in O(1.2738vc + vc · n) time [8], and hence we
suppose that S is given. To give an FPT algorithm for Opt-LCR, we again
utilize the encoding graph. For a vertex subset V ′ ⊆ V (G), we denote by g[V ′]
the restriction of a list L-coloring g of a graph G, that is, g[V ′] is the mapping
V ′ → L(v) such that g[V ′](v) = g(v) for each v ∈ V ′. For simplicity, we write R
instead of a reconfiguration graph RL

G. For two nodes g, g′ in R, we define g ∼ g′

if there is a reconfiguration sequence 〈g0, g1, . . . , g�〉 with g0 = g and g� = g′ of
list L-colorings such that g[S] = gi[S] for every i ∈ [0, �]. The relation ∼ is an
equivalence relation, and we denote V (R)/ ∼ the set of all equivalence classes
in V (R) with respect to ∼. The encoding graph H of R is obtained from R by
contracting the nodes in each equivalence class in V (R)/ ∼ to a single node.

Since the size of R depends on a super-polynomial function of |V (G)| in
general, we directly obtain H whose size is bounded by a function of k + vc

288 Y. Yanagisawa et al.

without constructing R. Let Ĥ ′ be an empty graph whose vertex set has one-to-
one correspondence to a set of all list L-colorings of G[S]. For each two nodes
f, f ′ ∈ V (Ĥ ′), f and f ′ are joined by an edge if and only if the corresponding
two colorings f and f ′ differ at only one vertex and L(v)\{f(w), f ′(w) : w ∈
N(v)} �= ∅ holds for every vertex v ∈ I. Then, we define Ĥ as the obtained
graph. The following three lemmas ensure that Ĥ constructed as above is equal
to the encoding graph H of R.

Lemma 2 (∗). For a node f of Ĥ, let Rf be a set of nodes g in R such that
f = g[S]. Then, g ∼ g′ for any two nodes g, g′ ∈ Rf , and hence all nodes in Rf

are contracted in a single node in the encoding graph H.

Lemma 3 (∗). Let f and f ′ be nodes of Ĥ. Then, f and f ′ are joined by
an edge on Ĥ if and only if there are colorings g, g′ of G such that f = g[S],
f ′ = g′[S] and g′ is obtained from g by recoloring a single vertex in S.

Lemma 4. Let H be the encoding graph of R. Then, H = Ĥ.

Proof. Let Φ(x) be the set of nodes in R that are contracted to a node x of the
encoding graph H of R. Lemma 2 states that there is a one-to-one correspondence
φ between V (Ĥ) and V (H) such that f = g[S] for every pair of a node f ∈ V (Ĥ)
and a node g ∈ Φ(φ(f)) of R. Moreover, by Lemma 3, two nodes f and f ′ of Ĥ

are joined by an edge on Ĥ if and only if there are nodes g, g′ in R such that
g ∈ Φ(φ(f)), g′ ∈ Φ(φ(f ′)) and g, g′ are joined by an edge on R. This implies
that for any two nodes x, y ∈ V (Ĥ), it holds that xy ∈ E(Ĥ) if and only if
φ(x)φ(y) ∈ E(H). Therefore, Ĥ is indeed the encoding graph H of R.
�

Suppose that we have obtained the encoding graph H of R by constructing
Ĥ. For each node f in H, we determine whether there exists a list L-coloring
g of G such that f = g[S] and #col(g) ≤ p. However, it is unlikely to be done
in polynomial time of a given instance because a situation similar to Theorem 1
may arise. Instead, we guess a subset C ′ of the color set C such that {g(v) :
v ∈ V (G)} ⊆ C ′. For a node f in H and a subset C ′ ⊆ C, we say that C ′ is
compatible with the list L-coloring f of G[S] if f(u) ∈ C ′ for every u ∈ S and
C ′ ∩ L(v)\{f(w) : w ∈ N(v)} �= ∅ for every v ∈ I.

Lemma 5. Let C ′ be a subset of the color set C and f be a list L-coloring of
G[S]. Then, C ′ is compatible with f if and only if there exists a list L-coloring
g of G such that f = g[S] and g(v) ∈ C ′ for every v ∈ V (G).

Proof. The necessity is clear, and hence we show the sufficiency. Since C ′ is
compatible, we can construct a mapping h such that h(v) ∈ C ′ ∩ L(v)\{f(w) :
w ∈ N(v)} for every vertex v ∈ I. Clearly, h(v) �= f(w) holds for every pair of
v ∈ I and w ∈ N(v). Thus, combined with f and h, we obtain a list L-coloring
g of G with f = g[S]. Moreover, since f(u) ∈ C ′ for each u ∈ S and h(v) ∈ C ′

for each v ∈ I, we have g(v) ∈ C ′ for every v ∈ V (G).
�

Parameterized Complexity of Optimizing List Vertex-Coloring 289

Let H0 be a connected component of H that contains a node f0[S]. By
Lemma 5, to solve Opt-LCR, it suffices to find a subset C ′ ⊆ C of size at most
p that is compatible with some node f ∈ V (H0).

Finally, we estimate the running time of our algorithm. Since the number
of colors is bounded by k and the size of a vertex cover S is bounded by vc,
obviously we have |V (H)| ≤ kvc. In addition, since the size of a list of each
vertex in V (G) is bounded by k, there are at most k · |V (H)| ≤ kvc+1 pairs of
nodes in H that can be joined by an edge. For such a pair of nodes f and f ′, we
can decide in O((k + vc) · n) time whether {f(w), f ′(w) : w ∈ N(v)} ∩ L(v) �= ∅
for every vertex v ∈ I. Thus, H can be constructed in O(kvc+1(k + vc) · n) time.
For each C ′ ⊆ C and each node f ∈ V (H0), we determine in O((k + vc) ·n) time
whether C ′ is compatible with f and |C ′| ≤ p. Since there are 2k subsets of C and
|V (H0)| ≤ kvc, we obtain the solution of a given instance in O(2kkvc(k + vc) · n)
time. The total running time of our algorithm is O(2kkvc+1(k + vc) · n). This
completes the proof of Theorem 5.
�

6 Conclusion

In this paper, we analyzed the parameterized complexity of Opt-LCR. We
showed that Opt-LCR is NP-hard for empty graphs even if every vertex of
a given graph has a list of size two. Furthermore, we proved the PSPACE-
completeness for bipartite graphs with bounded bandwidth and pathwidth two,
even if the number k of colors is bounded by some constant. We then gave an
FPT algorithm parameterized by k for graphs of pathwidth one and designed
an FPT algorithm parameterized by k + vc.

The PSPACE-completeness for graphs with pathwidth two immediately
implies the PSPACE-completeness for graphs with treewidth two. It is inter-
esting to settle the complexity of Opt-LCR on graphs of treewidth one, that
is, forests. We note that the polynomial-time solvability of List Coloring
Reconfiguration on forests is also still open.

References

1. Blanché, A., Mizuta, H., Ouvrard, P., Suzuki, A.: Decremental optimization of
dominating sets under the reconfiguration framework. In: G ↪asieniec, L., Klasing,
R., Radzik, T. (eds.) IWOCA 2020. LNCS, vol. 12126, pp. 69–82. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-48966-3 6

2. Bonamy, M., Bousquet, N.: Recoloring graphs via tree decompositions. Eur. J.
Comb. 69, 200–213 (2018)

3. Bonamy, M., Johnson, M., Lignos, I., Patel, V., Paulusma, D.: Reconfiguration
graphs for vertex colourings of chordal and chordal bipartite graphs. J. Comb.
Optim. 27, 132–143 (2014)

4. Bonsma, P.S., Cereceda, L.: Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoret. Comput. Sci. 410(50),
5215–5226 (2009)

https://doi.org/10.1007/978-3-030-48966-3_6

290 Y. Yanagisawa et al.

5. Bonsma, P., Mouawad, A.E., Nishimura, N., Raman, V.: The complexity of
bounded length graph recoloring and CSP reconfiguration. In: Cygan, M., Heg-
gernes, P. (eds.) IPEC 2014. LNCS, vol. 8894, pp. 110–121. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13524-3 10

6. Bonsma, P., Paulusma, D.: Using contracted solution graphs for solving reconfig-
uration problems. Acta Informatica 56, 619–648 (2019)

7. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colourings.
J. Graph Theor. 67(1), 69–82 (2011)

8. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoret.
Comput. Sci. 411(40), 3736–3756 (2010)

9. Feghali, C., Johnson, M., Paulusma, D.: A reconfigurations analogue of brooks’
theorem and its consequences. J. Graph Theor. 83(4), 340–358 (2016)

10. Hatanaka, T., Ito, T., Zhou, X.: The list coloring reconfiguration problem for
bounded pathwidth graphs. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. E98.A(6), 1168–1178 (2015)

11. Hatanaka, T., Ito, T., Zhou, X.: Parameterized complexity of the list coloring
reconfiguration problem with graph parameters. Theoret. Comput. Sci. 739, 65–
79 (2018)

12. Hatanaka, T., Ito, T., Zhou, X.: The coloring reconfiguration problem on spe-
cific graph classes. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
E102.D(3), 423–429 (2019)

13. van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S.,
Wildon, M. eds. Surveys in Combinatorics, London Mathematical Society Lecture
Note Series, vol. 409, pp. 127–160. Cambridge University Press (2013)

14. Ito, T., et al.: On the complexity of reconfiguration problems. Theoret. Comput.
Sci. 412(12), 1054–1065 (2011)

15. Ito, T., Mizuta, H., Nishimura, N., Suzuki, A.: Incremental optimization of inde-
pendent sets under the reconfiguration framework. In: Du, D.-Z., Duan, Z., Tian,
C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 313–324. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26176-4 26

16. Ito, T., Mizuta, H., Nishimura, N., Suzuki, A.: Incremental optimization of inde-
pendent sets under the reconfiguration framework. J. Comb. Optim. 43(5), 1264–
1279 (2022)

17. Johnson, M., Kratsch, D., Kratsch, S., Patel, V., Paulusma, D.: Finding shortest
paths between graph colourings. Algorithmica 75, 295–321 (2016)

18. Mynhardt, C.M., Nasserasr, S.: 50 Years of Combinatorics, Graph Theory, and
Computing, chapter Reconfiguration of colourings and dominating sets in graphs,
pp. 171–191. Chapman and Hall/CRC (2019)

19. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)
20. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-

plexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)
21. Wrochna, M.: Reconfiguration in bounded bandwidth and tree-depth. J. Comput.

Syst. Sci. 93, 1–10 (2018)
22. Yanagisawa, Y., Suzuki, A., Tamura, Y., Zhou, X.: Decremental optimization

of vertex-coloring under the reconfiguration framework. In: Chen, C.-Y., Hon, W.-
K., Hung, L.-J., Lee, C.-W. (eds.) COCOON 2021. LNCS, vol. 13025, pp. 355–366.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89543-3 30

https://doi.org/10.1007/978-3-319-13524-3_10
https://doi.org/10.1007/978-3-030-26176-4_26
https://doi.org/10.1007/978-3-030-89543-3_30

Parameterized Complexity of Path
Set Packing

N. R. Aravind and Roopam Saxena(B)

Department of Computer Science and Engineering, IIT Hyderabad, Hyderabad, India
aravind@cse.iith.ac.in, cs18resch11004@iith.ac.in

Abstract. In PATH SET PACKING, the input is an undirected graph
G, a collection P of simple paths in G, and a positive integer k. The prob-
lem is to decide whether there exist k edge-disjoint paths in P. We study
the parameterized complexity of PATH SET PACKING with respect
to both natural and structural parameters. We show that the problem
is W [1]-hard with respect to vertex cover plus the maximum length of
a path in P, and W [1]-hard with respect to pathwidth plus maximum
degree plus solution size. These results answer an open question raised
in [17]. On the positive side, we present an FPT algorithm parameter-
ized by feedback vertex set plus maximum degree, and also provide an
FPT algorithm parameterized by treewidth plus maximum degree plus
maximum length of a path in P.

Keywords: Path set packing · Set packing · Parameterized
complexity · Fixed parameter tractability · Graph algorithms

1 Introduction

Xu and Zhang [17] introduced the PATH SET PACKING (PSP) problem and
discussed its various applications, such as in software defined networks. The
problem asks if for a given graph G = (V,E) and a collection P of simple paths
in G, there exists a set S ⊆ P of edge disjoint paths such that |S| ≥ k. PSP is
closely related to the well known SET PACKING problem. Xu and Zhang [17]
showed that PSP is NP -complete even when the maximum length of the given
paths is 3. Considering the optimization version of the problem, they showed
that PSP is hard to approximate within O(|E| 1

2−ε) unless NP = ZPP . They
showed that PSP can be solved in polynomial time when the input graph is a tree
and gave a parameterized algorithm with running time O(|P|tw(G)Δ|V |) where
tw(G) is treewidth of G and Δ is maximum degree. Further, they left open the
question whether PSP is fixed parameter tractable with respect to treewidth of
the input graph.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 291–302, 2023.
https://doi.org/10.1007/978-3-031-27051-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_25&domain=pdf
https://doi.org/10.1007/978-3-031-27051-2_25

292 N. R. Aravind and R. Saxena

PATH SET PACKING:
Input: An instance I = (G,P, k), where G = (V,E) is an undirected
graph, P is a collection of simple paths in G, and k ∈ N.
Output: YES if there is a set of k pairwise edge-disjoint paths in P, NO
otherwise.

1.1 Related Work

In SET PACKING we are given a list S of subsets of a universe U and it is
asked if S has k pairwise disjoint sets. The SET PACKING problem is W[1]-
hard when parameterized by solution size k [6]. For the maximum size of a set
d, FPT algorithms for the combined parameter of k and d have been obtained
[14,15]. Kernel of size O(kd−1) [1] has also been obtained. Since PSP can be seen
as a special case of SET PACKING, all the positive results obtained for SET
PACKING are also applicable to PSP.

Path Set Packing (PSP) can also be seen as the problem of finding a Maxi-
mum Independent Set on the conflict graph obtained by considering each path
as a vertex with two vertices being adjacent if the corresponding paths share an
edge. When the input graph to a PSP instance is a grid graph, the corresponding
conflict graphs are called EPG graphs [12]. It was shown in [12] that every graph
is an EPG graph. This immediately implies the following, because of well-known
results on MIS on general graphs.

Corollary 1. PSP is W[1]-hard on Grid graphs when parameterized by solution
size k.

Corollary 2. PSP doesn’t admit a 2o(|P|) time exact algorithm, assuming ETH.

Thus, it is natural to consider PSP with further or different restrictions on
the input graph G. We mention some known results of this type.

1. When G is a tree, the conflict graph is called an EPT graph [11]. Recognizing
EPT graphs is NP-Complete [10]; nevertheless MIS is solvable in polynomial
time on the class of EPT graphs [16].

2. The class of Bk-EPG graphs was defined as graphs obtained as the edge
intersection graph of paths on a grid, with the restriction that each path have
at most k bends. MIS on B1-EPG graphs is NP-hard [7]. In [3], the authors
showed that for the class of B1-EPG graphs, when the number of path shapes
is restricted to three, MIS admits an FPT algorithm, while remanining W[1]-
hard on B2-EPG graphs.

Path Set Packing 293

1.2 Our Results

We studied PSP with respect to combination of both natural and structural
parameters of the input graph G and obtained following results for PSP.

Theorem 1. PSP is W[1]-hard when parameterized by vertex cover number of
G + maximum length of a path in P.

Theorem 2. PSP is W[1]-hard when parameterized by pathwidth of G + max-
imum degree of G + solution size.

Theorem 3. PSP admits an FPT algorithm when parameterized by feedback
vertex number of G + maximum degree of G.

Theorem 4. PSP admits an FPT algorithm when parameterized by treewidth
of G + maximum degree of G + maximum length of a path in P.

We note that the above positive results complement the hardness of PSP with
respect to any subset of the parameters used in the respective algorithms. The
hardness with respect to treewidth plus maximum path length, and hardness
with respect to treewidth plus maximum degree are implied by (Theorem 1
and 2). The hardness with respect to feedback vertex number is implied by
(Theorem 1). And for maximum degree plus maximum path length, we note that
the reduction from maximum independent set to PSP given in [17] to prove the
inapproximability of PSP also works to prove NP-hardness of PSP for bounded
maximum degree in G and bounded maximum length of a path in P using the
fact that independent set is NP-hard on bounded degree graphs [9].

2 Preliminaries

We use [n] to denote the set {1, 2,, n}. For a sequence ρ with n elements,
set(ρ) denotes the set of all the elements of ρ, and for j ∈ [n], ρ[j] is the element
of ρ at position j. All the graphs considered in this paper are simple and finite.
We use standard graph notations and terminologies and refer the reader to [5].
A path P is simple if no vertex occurs more than once in it. We denote the set
of all the edges and all the vertices of a path P by E(P) and V (P) respectively.

For a connected graph G = (V,E), we say that a subset S ⊆ V is a vertex
cover if V \S is an independent set in G, and we say that S is a feedback vertex set
if G[V \S] induces a forest. The minimum size of a vertex cover of G is called its
vertex cover number and the minimum size of a feedback vertex set of G is called
its feedback vertex number. For two disjoint sets A,B ⊆ V , E(A,B) is the set of
all the edges with one endpoint in A and another in B. For details on pathwidth
and treewidth, we refer to [4] . For details on parameterized complexity and fixed
parameter tractability (FPT) we refer to [4,6]. Informally, a W [1]-hard problem
is unlikely to be fixed parameter tractable.

294 N. R. Aravind and R. Saxena

3 Hardness with Respect to Vertex Cover + Maximum
Path Length

Hi

xi,1 xi,2 xi,n−1

ci,1
ci,2 ci,k

vi,1,1 vi,1,k vi,n,1 vi,n,k

Hi

ci,l

ci,jv
i,i′,j

Hj

cj,l

cj,i v
j,j′,i

Hl

cl,i cl,j

Fig. 1. Left: An example of vertex selection gadget Hi, the darkened edges forms a
long path Pxi,2,Vi,1 . Right: An example of inter gadget edges and darkened edges forms
a short path Pvi,i′,j ,vj,j′,i corresponding to an edge vi,i′vj,j′ in G.

In the k-MULTI COLORED CLIQUE (k-MCC) problem we are given a graph
G = (V,E), where V is partitioned into k disjoint sets V1, ..., Vk, each of size n,
and the question is if G has a clique C of size k such that |C ∩ Vi| = 1 for every
i ∈ [k]. It is known that k-MCC is W[1]-hard parameterized by k [8].

We will give a parameterized reduction from k-MCC to PSP. Let G = (V,E)
and {V1, ...Vk} be an input of k-MCC. Let the vertices of Vi be labeled vi,1 to
vi,n. We will construct an equivalent instance (G′ = (V ′, E′),P) of PSP (see Fig.
1 for overview). For every set Vi, we construct a vertex selection gadget Hi (an
induced subgraph of G′) as follows .

– Create a set Ci = {ci,1, ...ci,k} of k vertices, a set Xi = {xi,1, xi,2, ..., xi,n−1}
of n − 1 vertices, and connect every xi,j to ci,1 we call these edges ECi,Xi

.
– For every vi,j ∈ Vi, create a vertex set Vi,j = {vi,j,1, vi,j,2, ..., vi,j,k} of k

vertices. Connect vi,j,l to ci,l and ci,l+1 where l ∈ [k − 1], and connect vi,j,k

to ci,k. We denote these edges by ECi,Vi,j
.

Formally, Hi = (
⋃n

j=1 Vi,j ∪ Xi ∪ Ci,
⋃n

j=1 ECi,Vi,j
∪ ECi,Xi

). Further, let C =
⋃k

i=1 Ci, we add the following edges in G′.

– For 1 ≤ i < j ≤ k, we connect ci,j ∈ Ci to cj,i ∈ Cj . We call these edges the
inter gadget edges and denote them by EC . Observe that there are

(
k
2

)
inter

gadget edges (Fig. 1).

The above completes the construction of G′ = (
⋃k

i=1 V (Hi),
⋃k

i=1 E(Hi) ∪ EC).

Path Set Packing 295

We now move on to the construction of the collection P.

– Let Pxi,l,Vi,j
= (xi,l, ci,1, vi,j,1, ci,2, vi,j,2,, ci,k, vi,j,k), that is a path start-

ing at xi,l and then alternates between a vertex in Ci and Vi,j and ending
at vi,j,k. We call such a path a long path. For every i ∈ [k], l ∈ [n − 1], and
j ∈ [n] we add Pxi,l,Vi,j

in P. Observe that there are n(n − 1) long paths
added from every Hi.

– For every edge e = vi,i′vj,j′ ∈ E where vi,i′ ∈ Vi and vj,j′ ∈ Vj , w.l.o.g.
assuming i < j, we add a path Pvi,i′,j ,vj,j′,i = (vi,i′,j , ci,j , cj,i, vj,j′,i) in P and
call such a path, a short path. There are |E| short paths added to P.

The above completes the construction of instance (G′ = (V ′, E′),P) with |P| =
|E| + kn(n − 1).

The vertex set C forms a vertex cover for G′ which is of size k2 and the
length of every long path is 2k + 1. Further, the time taken for construction is
poly(|V |); the following concludes the correctness of the reduction and proof of
Theorem 1.

Lemma 1 (�1). (G = (V,E), {V1, ...Vk}) is a yes instance of k-MCC if and
only if G′ has k(n − 1)+

(
k
2

)
edge disjoint paths in P.

4 Hardness with Respect to Pathwidth + Maximum
Degree + Solution Size

We give a parameterized reduction from k-MCC to PSP. Let G = (V,E) and
{V1, ..., Vk} be the input for k-MCC, and let the vertices of set Vi be labeled vi,1

to vi,n. We will construct an equivalent instance (G′ = (V ′, E′),P) of PSP (see
Fig. 2 for overview), the construction of G′ is as follows.

– For every Vi, we construct a gadget (subgraph of G′) which includes a vertex
selection path Pi, a vertex set Wi, and k edge verification paths P e

i,l as follows.
• Corresponding to Vi, we start with creating n + 1 paths of 2k vertices

each, one path for every vertex vi,i′ ∈ Vi and an additional path. For
every i′ ∈ [n+1], the i′ path is (vi,i′,1, ui,i′,1, vi,i′,2, ui,i′,2...., vi,i′,k, ui,i′,k).
We now combine these n + 1 paths into one path Pi by adding an edge
between ui,i′,k and vi,i′+1,1 for every i′ ∈ [n].

• We create n vertices wi,1 to wi,n and call the set of these vertices Wi. For
every i′ ∈ [n], we connect wi,i′ to vi,i′,1 and vi,i′+1,1 .

• We create k edge verification paths P e
i,1 to P e

i,k with n + 1 vertices each.
The path P e

i,j is (xi,1,j , xi,2,j , ..., xi,n,j , ci,j).
• For every j ∈ [k], i′ ∈ [n], we connect ui,i′,j to xi,i′,j . These edges connects

the vertices of vertex selection path Pi to edge verification paths P e
i,j .

1 The proofs of statements marked with a � have been omitted.

296 N. R. Aravind and R. Saxena

Pi

Pe
i,k

Pe
i,2

Pe
i,1

x
i,i′,k x

i,i′+1,k x
i,i′+2,kxi,1,k xi,n,k ci,k

x
i,i′,2 x

i,i′+1,2 x
i,i′+2,2xi,1,2 xi,n,2 ci,2

x
i,i′,1 x

i,i′+1,1 x
i,i′+2,1xi,1,1 xi,n,1 ci,1

wi,1 w
i,i′+1 w

i,i′+2w
i,i′

wi,n−1 wi,n

vi,1,1

vi,1,2

ui,1,1

ui,1,2

vi,n,1

vi,n,2

vi,n+1,1

vi,n+1,2

ui,n,1

ui,n,2

ui,n+1,1

ui,n+1,2

vi,1,k

ui,1,k

vi,n,k

ui,n,k

vi,n+1,k

ui,n+1,k

v
i,i′,1

u
i,i′,k

v
i,i′+1,1

u
i,i′+1,k

v
i,i′+2,1

u
i,i′+2,k

Fig. 2. An example of path Pi, edge verification paths P e
i,1 P e

i,2, and P e
i,k, also the edges

between vertices of vertex selection paths and edge verification paths.

– After constructing above mentioned gadgets for every vertex set in {V1, .., Vk},
for 1 ≤ i < j ≤ k, we connect ci,j to cj,i. We call these edges the inter gadget
edges. Observe that there are

(
k
2

)
inter gadget edges.

The above completes the construction of G′. We now construct collection P of
size nk + |E| as follows.

– For every i ∈ [k], from the subgraph of G′ induced by V (Pi) ∪ Wi, we will
add n paths in the collection P as follows.

• Add a path li,̄i′ = (Pi(vi,1,1, vi,i′,1), wi,i′ , Pi(vi,i′+1,1, ui,n+1,k)) for every
i′ ∈ [n], where Pi(vi,1,1, vi,i′,1) is the path from vertex vi,1,1 to vi,i′,1 in
Pi (a unique path since Pi is a path). Intuitively, for every i′ ∈ [n] the
li,ī′ contains all the edges of Pi except the edges which belong to subpath
Pi(vi,i′,1, vi,i′+1,1). We call these paths the long paths.

– For every edge vi,i′vj,j′ ∈ E where i < j, we add the path si,i′,j,j′=
(vi,i′,j , ui,i′,j , P

e
i,j(xi,i′,j , ci,j), P e

j,i(cj,i, xj,j′,i), uj,j′,i, vj,j′,i) in P, where
P e

i,j(xi,i′,j , ci,j) is the path from xi,i′,j to ci,j in P e
i,j (a unique path, since P e

i,j

is a path). We note that every si,i′,j,j′ contains exactly one inter gadget edge
ci,j , cj,i. This finishes the construction of P.

Observe that the construction of (G′,P) takes time polynomial in |V |. We now
claim the bounds on pathwidth and maximum degree of G′.

Path Set Packing 297

Lemma 2 (�). Pathwidth of G′ is O(k2) and maximum degree of G′ is O(k).

The following concludes the correctness of reduction and proof of Theorem 2.

Lemma 3 (�). G = (V,E) with partition V1 to Vk is a yes instance of k-MCC
if and only if P has k +

(
k
2

)
pairwise edge disjoint paths.

5 FPT Parameterized by Feedback Vertex Number +
Maximum Degree

In this section, we will show that PSP is FPT parameterized by Γ (feedback
vertex number) plus maximum degree Δ and prove Theorem 3. For a connected
graph G = (V,E), its feedback edge number, denoted by λ, is the minimum
number of edges whose removal results in a tree and equals |V | − |E| + 1. Since
the set of all edges incident on a feedback vertex set forms a feedback edge
set, we have: λ ≤ Γ · Δ. We will provide an algorithm which solves PSP in time
(λ · Δ)O(λ·Δ) ·poly(|V |+ |P|). The approach used here is a non trivial adaptation
of the approach given in [13].

5.1 Preliminaries: Defining Structures and Nice Solutions

Let G = (V,E) be the input graph. We create 3 vertices z1, z2,z3 and arbitrarily
choose a vertex v ∈ V and connect z1, z2, z3, and v to each other forming a clique
on 4 vertices in G. This modification increases the size of minimum feedback
vertex set and maximum degree by only a constant, and is safe for our purposes.
In this section we define structures (adapted from [13]) that we will need.

G[X] G[X ∪ S] G[X ∪ S ∪ T]

Fig. 3. An example induced graphs G[X], G[X ∪ S], and G[X ∪ S ∪ T]. The darkened
edges in rightmost graph represent core edges EX .

Definition 1. We define the vertex set T, S and X by the following process
(refer Fig. 3).

– Initialize T as an empty set and G′ = (V ′, E′) as a copy of G.
– While there is a vertex v in G′ with degree dG′(v) = 1, we set T = T ∪ {v}

and G′ = G′ − {v}.

298 N. R. Aravind and R. Saxena

– X is the set of all the vertices with degree at least 3 in G[V \T], and S is the
set V \(T ∪ X).

Observe that G[T] is a forest, and every component of G[T] is connected to
G[V \T] by a single edge in G. G[V \T] has minimum degree 2. X is a non empty
set as it contains at least z1, z2, z3, and v as they form a clique. Every vertex in
S has degree exactly 2 in G[V \T] and G[S] is a union of paths (Fig. 3).

Definition 2. We define EX = E(G[X]) ∪ E(X,S ∪ T), i.e. all the edges in G
with at least one endpoint in X. We will call these edges the core edges of G.

Observation 1 (�). Every component in G[S∪T] contains at most 1 component
from G[S].

Let D be the set of all the components of G[S ∪ T] which contain a component
of G[S]. Further, let T be the set of all other components in G[S ∪ T], every
component C ∈ D ∪ T is a tree, and the edges which connect C to G[X], are
called external edges of C, and these edges belong to EX .

Observation 2 (�). Every component in D is connected to G[X] by two edges
in G (has 2 external edges), and every component in T is connected to G[X] by
one edge in G (has one external edge).

We call D the set of 2-external edge components, and T the set of 1-external edge
components. To bound the size of X and D, we recall the following from [13].

Proposition 1 ([13]). Let G be a connected graph of minimum degree at least
two with cyclomatic number (feedback edge number) λ. Let X be the set of all
the vertices of degree at least three in G. Then |X| ≤ 2λ − 2 and if X �= ∅, then
the number of connected components of G[V \X] is at most λ + |X| − 1.

We get the following corollary.

Corollary 3. The size of vertex set |X| = O(λ) = O(Γ · Δ), and |EX | =
O(λ · Δ) = O(Γ · Δ2). The size of component set |D| = O(λ) = O(Γ · Δ).

Definition 3. For a subgraph H ⊆ G, a path p in G is an internal path of H
if E(p) ⊆ E(H). Further, given a set P of paths in G, we define INT(H,P) =
{pi| pi ∈ P ∧E(pi) ⊆ E(H)}, that is all the paths in P which are internal to H.

Definition 4. Let (G,P, k) be an instance of PSP, for a subgraph H ⊆ G, we
define OPT(H) as the maximum number of edge disjoint paths in INT(H,P).

Lemma 4 (�). Let (G,P, k) be an instance of PSP. And let M ⊆ P be a path
set packing of maximum size. Then there exists a path set packing M ′ ⊆ P, such
that |M ′| = |M | and the following holds

– for every component Di ∈ D, OPT(Di) ≥ |M ′ ∩ INT(Di,P)| ≥ OPT(Di)−1,
and

– for every component Ti ∈ T , |M ′ ∩ INT(Ti,P)| = OPT(Ti).

Path Set Packing 299

We call such M ′ as a nice solution.

While searching for a solution, we will only search for a nice solution of maximum
size.

Proposition 2 ([16,17]). PSP can be solved in time polynomial in |V | + |P| if
the input graph is a tree.

Corollary 4. OPT(Di) and OPT(Ti) can be computed in time polynomial in
|V | + |P| for every Di ∈ D and every Ti ∈ T .

5.2 Guessing and Extending the Solution

We first guess the number of internal paths that every Di ∈ D will have in
the solution. Formally, fd : D → {0, 1} is a guessing that OPT(Di) − fd(Di)
internal paths of Di will be in the solution. For every Ti ∈ T we know that
OPT(Ti) internal paths will be in the solution. Now, it is left to optimize the
number of edge disjoint paths which are having one or more edges from EX .
Let fe : EX → [|EX |] ∪ {0}. Let Ei = {e|e ∈ EX ∧ fe(e) = i}. Let there be l
non-empty sets Ei except E0; let them be E1 to El. This is our second guess,
where we are guessing the partition of EX such that if a path p in the solution
intersects with EX , then E(p) ∩ EX should be Ei for an i ∈ [l]. Further, all the
edges of E0 are guessed to be not part of any path in the solution. Thus, we are
guessing that there will be l paths in the solution containing the edges from EX .

Definition 5. We say a path p ∈ P is of type Ei if (E(p) ∩ EX) = Ei.

Definition 6. We say that the pair (fd, fe) has a feasible solution, if there exists
a set of edge disjoint paths M ⊆ P such that the following holds.

1. For every i ∈ [l], there exists a path p ∈ M such that p is of type Ei;
2. For every Di ∈ D, |M ∩ INT(Di,M)| = OPT(Di) − fd(Di);
3. For every Ti ∈ T , |M ∩ INT(Ti,M)| = OPT(Ti).

If a pair (fd, fe) has a feasible solution M , then |M | will be equal to the sum of
OPT(Ti) over every Ti ∈ T , plus sum of OPT(Di) − fd(Di) over every Di ∈ D,
plus l. Thus, taking maximum over the size of the feasible solution of every
possible pair (fd, fe) which has a feasible solution will give us the maximum
size of a path set packing as both fd and fe are exhaustive guesses, and we are
searching for a nice solution (Lemma 4). There are at most 2O(λ) distinct guesses
fd and at most (λ · Δ)O(λ·Δ) distinct guesses fe. If we can verify whether a pair
(fd, fe) has a feasible solution in time polynomial in (|V | + |P|), then we can
bound the running time of the algorithm to (λ · Δ)O(λ·Δ) ·poly(|V |+ |P|). Given
a pair (fd, fe), we will now discuss how to verify if (fd, fe) has a feasible solution.

300 N. R. Aravind and R. Saxena

Definition 7. A set of paths P is (fd, fe)-compatible if the following holds.

1. For every pair p, q ∈ P , if p �= q then p and q are edge disjoint;
2. For every p ∈ P , there exists i ∈ [l] such that p is of type Ei;
3. For every Di ∈ D, OPT(Di − E(P)) ≥ OPT(Di) − fd(Di);
4. For every Ti ∈ T , OPT(Ti − E(P)) = OPT(Ti).

Observation 3 (�). Given a path set P ⊆ P, in time polynomial in (|V | +
|P|) we can verify if P is (fd, fe)-compatible or not. Further, if P is (fd, fe)-
compatible then every subset P ′ of P is also (fd, fe)-compatible.

Lemma 5 (�). (fd, fe) has a feasible solution if and only if there exists a path
set P ⊆ P such that |P | = l and P is (fd, fe)-compatible.

Due to above lemma, to verify if (fd, fe) has a feasible solution, it will suffice to
verify if there exist an (fd, fe)-compatible path set P ⊆ P of size l.

Observation 4 (�). If there exist an Ei which contains exactly one external
edge of three or more components in D ∪ T , then no path can contain all the
edges of Ei.

If for any i ∈ [l], Ei contains exactly one external edge of three or more com-
ponents in D ∪ T , then using Observation 4, we can conclude that (fd, fe) has
no feasible solution. Thus we shall henceforth assume that no Ei where i ∈ [l],
contains exactly one external edge of three or more components in D ∪ T .

Consider an auxiliary graph H with vertex set {E1,, El}. In H, two vertices
Ei and Ej are adjacent if and only if there exists a D ∈ D such that one of the
external edges of D belongs to Ei and the other external edge belongs to Ej .
Every D has two external edges, and thus, every D can cause at most one edge
to be created in H. Combining this with Observation 4, we conclude that H
has degree at most two. Thus, H is a union of paths and cycles. Let there be l′

components in H which are labelled from 1 to l′, let πi be the the path formed
by the component i, that is each πi is a sequence of vertices (arbitrarily chose
the first vertex of the path in case the component i is a cycle). We call πi a type
sequence. Let Π = {πi|i ∈ [l′]}.

Definition 8. A sequence ρ of paths is a candidate for type sequence πi, if
|ρ| = |πi| and for every j ∈ [|ρ|], ρ[j] is of type πi[j].

Lemma 6 (�). There exists P ⊆ P such that |P | = l and P is (fd, fe)-
compatible if and only if for every sequence πi ∈ Π, there exists a candidate
ρ such that set(ρ) is (fd, fe)-compatible.

Since there are at most l′ ≤ |V |2 type sequences, it suffices to prove that given
a type sequence πi ∈ Π, in time polynomial in (|P|+ |V |) we can verify if πi has
a candidate ρi such that set(ρi) is (fd, fe)-compatible. Consider the following.

Lemma 7 (�). For every type sequence πi ∈ Π, let ρi be a candidate of πi.
Then, set(ρi) is (fd, fe)-compatible if and only if

Path Set Packing 301

– For every j ∈ [|πi|], {ρi[j], ρi[(j + 1)mod|πi|]} is (fd, fe)-compatible.

The above lemma helps us find a desired candidate for type sequence πi in
polynomial time, since we now only need to check if the paths of adjacent types
in a sequence are (fd, fe)-compatible or not. If the size of πi is ≤ 2, then we
can verify if πi has a candidate ρi such that set(ρi) is (fd, fe)-compatible by
checking for every distinct p, q ∈ P if (p, q) is a candidate of πi as well as
(fd, fe)-compatible or not, this will take time polynomial in (|V |+ |P|). We now
move on to the case when |πi| ≥ 3.

Given a type sequence πi we create an auxiliary directed graph Hi as follows.

– For every type πi[j], create a vertex set Vj = {vp| p ∈ P ∧ p is of type
πi[j] ∧ {p} is (fd, fe)-compatible }. That is Vj contain vertices corresponding
to every path of type πi[j] which is (fd, fe)-compatible.

– For every j ∈ [|πi|], let j′ = (j + 1)mod|πi|, we add an arc (directed edge)
from vp ∈ Vj to vq ∈ Vj′ if and only if {p, q} are (fd, fe)-compatible.

Lemma 8 (�). πi has a candidate ρi such that set(ρi) is (fd, fe)-compatible if
and only if Hi has a cycle containing exactly one vertex from every Vj where
j ∈ [|πi|].

Lemma 9 (�). In time polynomial in (|V |+ |P|), we can find a cycle containing
exactly one vertex from every Vj in Hi or conclude that no such cycle exists.

The above lemma finishes the proof of Theorem 3.

6 FPT When Combining Three Parameters

Given a pair (G,P), let H be the conflict graph with vertex set P. As noted
earlier, solving PSP on (G,P) is equivalent to finding a MIS in H. We can deduce
the following fact about the structure of H.

Lemma 10 (�). If G has treewidth k and maximum degree Δ, and each path
in P is of length at most r, then the treewidth of H is at most (k + 1)Δr.

The Maximum Independent Set problem admits a O(2τ) algorithm on graphs of
treewidth τ [2]. Hence we obtain Theorem 4 as a corollary.

Acknowledgements. We thank anonymous reviewers of this and an earlier version
of this paper for useful suggestions.

References

1. Abu-Khzam, F.N.: An improved kernelization algorithm for r-set packing. Inf. Pro-
cess. Lett. 110(16), 621–624 (2010)

2. Arnborg, S., Proskurowski, A.: Linear time algorithms for np-hard problems
restricted to partial k-trees. Discret. Appl. Math. 23(1), 11–24 (1989)

302 N. R. Aravind and R. Saxena

3. Bessy, S., Bougeret, M., Chaplick, S., Gonçalves, D., Paul, C.: On independent set
in B1-EPG graphs. Discret. Appl. Math. 278, 62–72 (2020)

4. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-319-21275-3

5. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Heidelberg (2012)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science, Springer, New York (1999). https://doi.org/10.1007/978-1-4612-
0515-9

7. Epstein, D., Golumbic, M.C., Morgenstern, G.: Approximation algorithms for B1-
EPG graphs. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS,
vol. 8037, pp. 328–340. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40104-6 29

8. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized
complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61
(2009)

9. Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem is np-complete.
SIAM J. Appl. Math. 32(4), 826–834 (1977)

10. Golumbic, M.C., Jamison, R.E.: Edge and vertex intersection of paths in a tree.
Discret. Math. 55(2), 151–159 (1985)

11. Golumbic, M.C., Jamison, R.E.: The edge intersection graphs of paths in a tree.
J. Comb. Theory Ser. B 38(1), 8–22 (1985)

12. Golumbic, M.C., Lipshteyn, M., Stern, M.: Edge intersection graphs of single bend
paths on a grid. Networks 54(3), 130–138 (2009)

13. Jansen, B.M.P.: On structural parameterizations of hitting set: hitting paths in
graphs using 2-SAT. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 472–
486. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53174-7 33

14. Jia, W., Zhang, C., Chen, J.: An efficient parameterized algorithm for m-set pack-
ing. J. Algorithms 50(1), 106–117 (2004)

15. Koutis, I.: A faster parameterized algorithm for set packing. Inf. Process. Lett.
94(1), 7–9 (2005)

16. Tarjan, R.E.: Decomposition by clique separators. Discret. Math. 55(2), 221–232
(1985)

17. Xu, C., Zhang, G.: The path set packing problem. In: Wang, L., Zhu, D. (eds.)
COCOON 2018. LNCS, vol. 10976, pp. 305–315. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-94776-1 26

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-3-642-40104-6_29
https://doi.org/10.1007/978-3-642-40104-6_29
https://doi.org/10.1007/978-3-662-53174-7_33
https://doi.org/10.1007/978-3-319-94776-1_26
https://doi.org/10.1007/978-3-319-94776-1_26

Approximation Algorithm

Interweaving Real-Time Jobs with Energy
Harvesting to Maximize Throughput

Baruch Schieber(B), Bhargav Samineni, and Soroush Vahidi

New Jersey Institute of Technology, Newark, NJ, USA
{sbar,bs567,sv96}@njit.edu

Abstract. Motivated by baterryless IoT devices, we consider the fol-
lowing scheduling problem. The input includes n unit time jobs J =
{J1, . . . , Jn}, where each job Ji has a release time ri, due date di, energy
requirement ei, and weight wi. We consider time to be slotted; hence, all
time related job values refer to slots. Let T = maxi {di}. The input also
includes an ht value for every time slot t (1 ≤ t ≤ T), which is the energy
harvestable on that slot. Energy is harvested at time slots when no job is
executed. The objective is to find a feasible schedule that maximizes the
weight of the scheduled jobs. A schedule is feasible if for every job Jj in the
schedule and its corresponding slot tj , tj �= tj′ if j �= j′, rj ≤ tj ≤ dj , and
the available energy before tj is at least ej . To the best of our knowledge,
we are the first to consider the theoretical aspects of this problem.

In this work we show the following. (1) A polynomial time algorithm
when all jobs have identical ri, di andwi. (2)A

1
2
-approximation algorithm

when all jobs have identical wi but arbitrary ri and di. (3) An FPTAS
when all jobs have identical ri and di but arbitrary wi. (4) Reductions
showing that all the variants of the problem in which at least one of the
attributes ri, di, or wi are not identical for all jobs are NP-Hard.

Keywords: Scheduling · Approximation algorithms · NP-hardness ·
Throughput maximization · IoT

1 Introduction

The energy aware scheduling problem considered in this paper is defined as fol-
lows. Its input includes n jobs J = {J1, . . . , Jn}, where each job Ji is associated
with release time ri, due date di, energy requirement ei, and weight wi. All jobs
have equal (unit) processing time. We consider time to be slotted with unit length
and hence all time related job values refer to slots. Let T = maxi {di}. The input
also includes an ht value specified explicitly for every time slot t, (1 ≤ t ≤ T),
which is the energy harvestable on the slot. Energy can be harvested only at
times when no job is executed. The energy available immediately before slot t is
the energy harvested in slots 1, . . . , t−1 minus the energy consumed by the jobs
scheduled in slots 1, . . . t − 1. A schedule is feasible if it schedules no more than
one job at a time, all executed jobs are scheduled between their release time and
due date, and the energy available immediately before a job is executed is at
least its energy requirement. The objective is to maximize throughput, namely,
the weight of the jobs in a feasible schedule.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 305–316, 2023.
https://doi.org/10.1007/978-3-031-27051-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_26&domain=pdf
https://doi.org/10.1007/978-3-031-27051-2_26

306 B. Schieber et al.

1.1 Motivation

Our problem is motivated by the proliferation of Internet of Things (IoT) devices,
which are used for many applications such as sensor networks, control systems,
and home and building automation, to name a few. One of the major chal-
lenges impacting the deployment of these devices is their power source. Most are
powered by batteries, which are compact and lightweight options. However, the
chemicals contained in these batteries pose a considerable risk to our environ-
ment [12]. Also, the scarcity of the materials needed for batteries makes them
prohibitively expensive in some applications, especially on an industrial scale.
Battery maintenance is another major issue, as the limited lifetime of batteries
requires expensive and constant care to replace or recharge them. Consider, for
example, IoT devices with humidity and temperature sensors that are stationed
along an oil pipeline in a remote area and connected to its SCADA system [2].
Or, consider IoT devices for wildlife monitoring that are attached to animals
and used to gather information like migration paths and population mortality
[5]. Connecting these devices to the electric grid is not an option in some places,
and using batteries is a logistical nightmare.

To overcome these issues, batteryless IoT devices have been proposed [14,17].
The energy used by these devices is directly harvested from environmental and
renewable sources such as solar, wind, and radio-frequency (RF). In the sim-
plest designs, the harvested energy output is connected directly to the load.
However, this design is only appropriate when the harvested current and volt-
age match those required for a task’s execution [13]. More sophisticated designs
include either capacitors or super capacitors to store energy, and are intermit-
tent systems [12,13] in which energy harvesting (charging) and task execution
(discharging) are mutually exclusive to allow for a single control thread. This is
captured in our model by interweaving job execution and energy harvesting.

A major challenge in the design of such an intermittent system is the vari-
ability of energy harvesting over time [16]. For example, consider a solar energy
source. Certainly, this energy can only be harvested in the daytime; but even
during the day the amount of harvestable energy varies based on the cloud cover
and the sun angle and its predictability is challenging [8]. We consider the offline
version of the problem, as proposed in [12], and assume that the energy harvest-
ing profile over time is given as part of the input to our problem.

As noted in [12], intermittent systems are primarily used in monitoring and
surveillance applications that collect data at a fixed rate and then process the
data periodically. We model this by associating a release time and due date for
each job (task). Due to the bare-bones design of these systems, all these tasks are
pretty basic and require a minimal number of cycles. Thus, it can be assumed
that all these tasks require equal processing time.

1.2 Our Results

We present both algorithms and hardness results for several variants of the prob-
lem. To the best of our knowledge, our work is the first theoretical analysis of

Interweaving Real-Time Jobs with Energy Harvesting 307

this problem. Our objective is to find a feasible schedule that maximizes job
throughput. When all the jobs have the same weight (i.e. the unweighted set-
ting), this corresponds to finding a schedule that maximizes the number of jobs
scheduled. We call this problem Energy Aware Scheduling (EAS). Otherwise, this
corresponds to maximizing the weight of the jobs scheduled (i.e. the weighted
setting). We call this problem Weighted Energy Aware Scheduling (WEAS).

In Sect. 2 we give an optimal polynomial time algorithm for EAS when all
the jobs have identical release times and due dates. The dynamic programming
algorithm is based on some properties of an optimal solution for this case. In
the full version of the paper we give a more efficient algorithm (that is more
involved) for the same problem that is based on additional properties of an
optimal solution. In Sect. 3 we consider EAS when jobs have arbitrary release
times and due dates and show that a simple greedy algorithm achieves a 1

2 -
approximation. Interestingly, the proof of the approximation ratio of this simple
algorithm is quite “tricky”. In Sect. 4 we show an FPTAS for WEAS when all the
jobs have identical release times and due dates. In Sect. 5.1 we prove that EAS
is weakly NP-Hard whenever all jobs don’t have both identical release times and
identical due dates. We also show that WEAS is weakly NP-Hard in Sect. 5.2.

1.3 Prior Work

Our model is inspired by a similar model proposed by Islam and Nirjon [12]. While
their model allows arbitrary processing times for both jobs and energy harvesting,
we consider all processing times to be uniform. Additionally, they model jobs as
belonging to a set of periodic tasks, while we do not enforce such a constraint.
They give heuristic scheduling algorithms for the offline (in which the harvestable
energy profile is part of the input) as well as the online (in which the harvestable
energy profile is not known a priori) versions of the problem. They benchmarked
their algorithms against other heuristics and in the offline case also compared their
algorithm to the optimal solution computed using an IP solver.

Our problem is related to scheduling with nonrenewable resources in which
jobs require a nonrenewable resource like energy or funding to be scheduled. In
contrast to our problem, it is assumed that the replenishment of the resource is
done instantly at predetermined times. As in our problem, jobs can be scheduled
feasibly only if the amount of available resource when they are started is at least
their resource requirement. The goal is to schedule these resource-consuming jobs
to optimize various objectives. In [11] it was shown that computing a minimum
makespan schedule of jobs with a single nonrenewable resource requirement with
2 replenishment times, arbitrary processing times, and identical release times
on a single machine is (weakly) NP-Hard. The same paper also proved that in
case the number of replenishment times of the resource is part of the input,
the problem is strongly NP-Hard. [9] considered the same setting but with the
objective of delay minimization. [6,10] (and references therein) also considered
scheduling with nonrenewable resources.

Another related problem is inventory constrained scheduling, which considers
the scheduling of two types of jobs: resource-producing and resource-consuming

308 B. Schieber et al.

jobs. A resource-consuming job cannot be scheduled unless its resource require-
ment is available. Unlike our problem where there is no need to schedule all the
resource-producing (energy harvesting) jobs, in this problem both the resource-
producing and resource-consuming jobs have to be scheduled. Several variants
of this problem were considered in [3,4,7]. These variants include the case of
jobs with equal processing times and the objective of minimizing the number of
tardy jobs, which is the complement of unweighted throughput maximization.

[1], and later [18], considered the “non-energy-aware” version of our prob-
lem and showed that minimizing the number of tardy jobs, which is equivalent
to maximizing the unweighted throughput, can be solved in polynomial time.
[19] identified special cases in which minimizing the weighted tardiness of the
“non-energy-aware” version of our problem is polynomial.

1.4 Preliminaries

As we mostly deal with integral values, we use the notation [a, b], where a, b ∈ Z
+

and a ≤ b, to denote the set of integers between a and b inclusive. We assume that
time is slotted with unit length; that is, when referring to a job being scheduled
or energy being harvested at time slot j ∈ Z

+, it means they are done on the
time interval [j − 1, j). A job Ji ∈ J = {J1, . . . , Jn} can be executed at any slot
in [ri, di], assuming that the energy available before its execution time slot is at
least ei.

We formally define a schedule S as a pair (J(S), πS) where J(S) ⊆ J is the
set of jobs scheduled by S and πS : J(S) → [1, T] is a mapping that maps each
job Ji ∈ J(S) to its execution time slot t ∈ [1, T]. We additionally define ES(t)
to be the energy amount available immediately before slot t in schedule S, given
by the equation

ES(t) =
t−1∑

τ=1

hτ −
⎛

⎝
∑

Ji∈{J ′∈J(S) | πS(J ′)<t}
ei + hπS(Ji)

⎞

⎠ .

That is, it is the total energy harvestable from all time slots τ ∈ [1, t − 1] minus
the energy consumed by the jobs scheduled up to slot t and the energy har-
vestable at the slots when these jobs are scheduled (since energy can be har-
vested only at slots in which no job is scheduled). A schedule S is feasible if πS

is one-to-one, and for each job Ji ∈ J(S) scheduled on time slot ti = πS(Ji), we
have ES(ti) ≥ ei and ti ∈ [ri, di].

2 An Optimal Algorithm for EAS When All Jobs Have
Identical Release Times and Due Dates

In this section, we consider EAS instances in which all jobs have identical release
times and due dates and present a polynomial time dynamic programming algo-
rithm that produces an optimal schedule. From now on, we assume that the jobs

Interweaving Real-Time Jobs with Energy Harvesting 309

are sorted in non-decreasing order by their energy requirement (e1 ≤ . . . ≤ en).
We consider all ri = 1, though the algorithm can easily be adapted to cases
where all ri = r for some r > 1. We begin with two claims.

Claim 1. There exists an optimal schedule that schedules a prefix of the sequence
J1, . . . , Jn.

Proof. Suppose that the optimal algorithm schedules the m jobs Ji1 , . . . , Jim
,

where i1 < · · · < im. Then, the schedule that replaces job Jij
by Jj for j ∈ [1,m]

is also feasible since ej ≤ eij
. ��

Claim 2. There exists an optimal schedule in which the jobs are scheduled in
non-decreasing order of their energy requirement.

Proof. Consider a feasible schedule S in which a job Ji is scheduled before job
Jj and ei > ej . To prove the claim it is sufficient to show that the schedule S′

given by swapping Ji and Jj is also feasible. Let ti = πS(Ji) and tj = πS(Jj).
The parts of schedule S′ immediately before time slot ti and after time slot tj
are feasible since for every t ∈ [1, ti − 1] ∪ [tj + 1, T], we have ES′(t) = ES(t).
Job Jj can be scheduled at slot ti since ES′(ti) = ES(ti) ≥ ei > ej . For every
slot t ∈ [ti + 1, tj − 1], we have ES′(t) = ES(t) + ei − ej > ES(t). Thus, the
jobs scheduled in S′ in these time slots are also feasible. Now consider slot
tj . Job Jj is scheduled in S at this slot, hence ES(tj) ≥ ej . It follows that
ES′(tj) = ES(tj) + ei − ej ≥ ei, which implies Ji can be scheduled at slot tj .
Therefore, S′ is a feasible schedule. Since the optimal schedule must also be
feasible, the same swapping procedure can be applied. ��

We apply these observations to obtain a dynamic programming algorithm to
compute an optimal schedule O. Define the dynamic programming “table” as fol-
lows. For i ∈ [1, n] and t ∈ [1, T], let A(i, t) be the maximum amount of available
energy at the start of time slot t+1, where the maximum is taken over all feasible
schedules of jobs J1, . . . , Ji on the time slots [1, t]. If such a feasible schedule does
not exist, then A(i, t) = −∞. Since the input size is Ω(n + T), the size of this
table is polynomial. The maximum number of jobs that can be scheduled feasibly
is given by the maximum m for which A(m,T) ≥ 0. The respective optimal sched-
ule can be computed by backtracking the intermediate values that contributed to
A(m,T). The computation of A(i, t) is given in Algorithm 1, whose time complex-
ity is O(nT). In the full version of the paper we describe a more efficient algorithm
with time complexity O(n log n + T) that is also optimal.

Theorem 1. The maximum number of jobs that can be scheduled feasibly is
given by the maximum m for which A(m,T) ≥ 0 in the array A(·, ·) computed
by Algorithm 1.

Proof. Let m be maximum number of jobs that can be scheduled feasibly. For
i ∈ [1,m], let ti be the time slot in which Ji is scheduled in such a schedule. It
is easy to see that in this case A(i, ti) ≥ 0, for every i ∈ [1,m]. In the other
direction, suppose that A(i, t) ≥ 0. In this case, there exists a feasible schedule
of jobs J1, . . . , Ji on the time slots [1, t]. The schedule can be computed by
backtracking the intermediate values that contributed to A(i, t). ��

310 B. Schieber et al.

3 A Greedy 1
2
-Approximation for EAS

This section considers the general case of EAS when jobs have arbitrary release
times and due dates. This problem variant is NP-Hard as shown in Sect. 5.1. We
present a 1

2 -approximation for this case that uses a greedy scheduling strategy.
Consider the following greedy approach to scheduling jobs. The algorithm

works in iterations where in each iteration, either one job is scheduled or the
algorithm stops. Let U be the set of unscheduled jobs and G the schedule con-
structed by the algorithm. Initially, U = {J1, . . . , Jn} and J(G) = ∅. In iteration
�, the algorithm first checks for each job Ji ∈ U whether there exists at least
one time slot it can be feasibly scheduled in without impacting the feasibility of
previously scheduled jobs. If it is not feasible to schedule any of the jobs, then
the algorithm stops. Otherwise, for each job Ji that can be scheduled feasibly,
find the time slot ti that minimizes Q = ei + hti

over all its feasible time slots.
The job scheduled in iteration � is the job that minimizes Q over all feasible
jobs that can be scheduled during this iteration. Denote this job as Jj , remove
it from U , and add it to J(G) with πG(Jj) = tj . The algorithm’s pseudocode is
given in Algorithm 2.

Let O = (J(O), πO) be an optimal schedule, where |J(O)| = m ≤ n. Suppose
that |J(G)| = x, which implies that the greedy algorithm stops after completing
x iterations. Let Jg

1 , . . . , Jg
x be the jobs scheduled by the greedy algorithm, where

Jg
� is scheduled in iteration �. We prove the following lemma, which will later be

used to prove the approximation ratio.

Lemma 1. At the end of iteration � of the greedy algorithm, for 1 ≤ � ≤ x,
there exists a feasible schedule S such that (i) |J(S)| ≥ max {�,m − �}, (ii)
{Jg

1 , . . . , Jg
� } ⊆ J(S) with πS (Jg

i) = πG (Jg
i), for 1 ≤ i ≤ �, and (iii)

J(S)\ {Jg
1 , . . . , Jg

� } ⊆ J(O).

Proof. We prove the lemma by induction. For the induction base we add a
“dummy” iteration 0 before the actual start of the greedy algorithm. The claim
holds for � = 0 since at the beginning of the greedy algorithm the schedule O

Interweaving Real-Time Jobs with Energy Harvesting 311

is feasible and |J(O)| = m. Consider the end of iteration �, for � ≥ 1. By the
inductive hypothesis, at the start of iteration �, there exists a feasible schedule
S of at least max {� − 1,m − � + 1} jobs that schedules the jobs Jg

1 , . . . , Jg
�−1

at time slots πG(Jg
1), . . . , πG(Jg

�−1), respectively, and the remaining jobs belong
to J(O). Suppose that S schedules job Jg

� on time slot t� = πG(Jg
�). In this

case S satisfies the conditions of the lemma also for �, since it schedules at least
max {�,m − �} jobs, including the jobs Jg

1 , . . . , Jg
� at slots πG(Jg

1), . . . , πG(Jg
�),

and the remaining jobs belong to J(O).
From now on assume that S has not scheduled job Jg

� at time slot t�. We
show how to obtain a schedule S′ that satisfies the conditions of the lemma for
�. We start with schedule S and modify it as follows. First, we schedule the job
Jg

� at slot t� (in case Jg
� ∈ J(S) this would just change the execution time slot

of Jg
�). If S already scheduled another job at slot t�, then this job is discarded.

312 B. Schieber et al.

Otherwise (that is, if S has not scheduled another job at slot t�), then the job
in J(S)\ {Jg

1 , . . . , Jg
� } that S schedules earliest is discarded.

Before showing that schedule S′ is feasible, we show that it satisfies the
conditions of the lemma. Clearly, S′ schedules the jobs Jg

1 , . . . , Jg
� at time slots

πG(Jg
1), . . . , πG(Jg

�), and the remaining jobs in J(S′) belong to J(O). Also, since
exactly one job is discarded from J(S), |J(S′)| ≥ max {�,m − �}.

Schedule S′ is feasible if and only if for all Ji ∈ J(S′), ES′(πS′(Ji)) ≥ ei.
This is clearly the case for all jobs in J(S′) that are scheduled at slots [1, t� − 1]
since schedule S is feasible. Next, consider job Jg

� scheduled in S′ at slot t� and
the rest of the jobs in S′ that are scheduled after this time slot. We distinguish
between three cases.

Case 1: S schedules another job Jj ∈ J(S)\{Jg
1 , . . . , Jg

� } at time slot t�. In this
case ES′(t�) = ES(t�) ≥ ej . However, since the greedy algorithm preferred to
schedule job Ji = Jg

� at slot t� while Jj was also feasible at the same time, we
must have ei ≤ ej and thus Ji = Jg

� is feasible at slot t�. Since ei +ht�
≤ ej +ht�

,
we have that for all t ∈ [t� + 1, T] , ES′(t) ≥ ES(t), and thus the jobs in S′

scheduled after time slot t� are also feasible.
In the remaining two cases, S has not scheduled another job at slot t�. In these

cases, the job in J(S)\{Jg
1 , . . . , Jg

� } that S schedules earliest is discarded. Let
this job be denoted by Jj and the time slot it was scheduled in by tj = πS(Jj).

Case 2: tj < t�. Again, since the greedy algorithm preferred to schedule Ji = Jg
�

at time slot t� while Jj was also feasible at time slot tj , we must have ei + ht�
≤

ej + htj
. This implies that ES′(t�) ≥ ES(t�) + ej + htj

≥ ei and thus Ji = Jg
�

is feasible at slot t�. It also implies that for all t ∈ [t� + 1, T] , ES′(t) = ES(t) +
ej + htj

− ei − ht�
≥ ES(t), and thus the jobs in S′ scheduled after time slot t�

are also feasible.

Case 3: tj > t�. Again, since the greedy algorithm preferred to schedule Ji = Jg
�

at time slot t� while Jj was also feasible at time slot tj , we must have ei + ht�
≤

ej + htj
. This implies that for all t ∈ [tj + 1, T] , ES′(t) ≥ ES(t), and thus the

jobs in S′ scheduled after time slot tj are feasible. Since Jj is the earliest job in
J(S)\ {Jg

1 , . . . , Jg
� }, all the jobs in J(S′) scheduled before tj are in {Jg

1 , . . . , Jg
� }.

Since the greedy schedule is guaranteed to be feasible, the schedule of these jobs
in S′ is also feasible.

Therefore, the schedule S′ generated from modifying S is always feasible. As
S′ was already shown to satisfy the constraints of the lemma, we have the proof
of the inductive step. ��
Theorem 2. The greedy algorithm yields a 1

2 -approximation of the optimal solu-
tion.

Proof. Consider any 1 ≤ � ≤ �m
2
. Lemma 1 implies that at the start of iteration

� there exists a feasible schedule of at least m − (� − 1) ≥ � jobs that schedules
the jobs Jg

1 , . . . , Jg
�−1 at times πG(Jg

1), . . . , πG(Jg
�−1). Thus, there exists at least

one job that can be feasibly scheduled in iteration �. It follows that the greedy
algorithm completes at least �m

2
 iterations, which implies that 2x ≥ m. ��

Interweaving Real-Time Jobs with Energy Harvesting 313

4 An FPTAS for WEAS When All Jobs Have Identical
Release Times and Due Dates

We now consider WEAS in the special case of jobs with identical release times and
due dates. In the full version of the paper we show that this variant of the problem
is NP-Hard. We present a fully polynomial time approximation scheme (FPTAS)
that for any constant ε finds a feasible schedule that is a (1 − ε)-approximation
to the maximum weight of the scheduled jobs in any feasible schedule. Due to
space constraints the description is given in the full version of the paper.

5 Hardness Results

5.1 Unweighted Setting

In EAS we consider the cases of arbitrary release times and identical due dates,
identical release times and arbitrary due dates, and arbitrary release times and
arbitrary due dates and show they are all (weakly) NP-Hard. We mainly use
a reduction from the k−Sum problem (i.e. the parameterized version of Subset
Sum whose hardness is shown in [15]).

Theorem 3. EAS when jobs have arbitrary release times and identical due dates
is (weakly) NP-Hard.

Proof. A reduction is given from k−Sum. An instance of this problem consists of
a set of positive integers A = {α1, . . . , αn}, a target value 0 < β < S =

∑n
i=1 αi,

and an integer k < n. The objective is to decide whether there exists a subset
A ⊆ A such that |A| = k and

∑
α∈A α = β. To simplify notation, we assume

that A is sorted in non-increasing order (α1 ≥ . . . ≥ αn) and assume without
loss of generality that S > 2 and n > 2. Construct a corresponding instance of
EAS with the following:

– Time slots [1, 2n − k + 2] and a threshold value of n jobs
– J = {J1, . . . , Jn} where each job Ji ∈ J has release time, due date, and

energy requirement given by ri = i+1, di = 2n−k+2, and ei = S2n2+αi (Sn),
respectively

– Energy harvesting values defined by

ht =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k
(
S2n2

)
+ β (Sn) if t = 1

S − αt−1 if t ∈ [2, n + 1]
(n − k)(S2n2) + (S − β) (Sn) − S(n − k − 1) − β if t = n + 2
0 otherwise

We claim that any feasible schedule that schedules all n jobs must assign
exactly k jobs to time slots in τ1 = [2, n + 1] and the remaining n−k jobs to time
slots in τ2 = [n + 3, 2n − k + 2]. To see this, note that energy must always be
harvested at the first time slot since no jobs are yet released. Moreover, the total

314 B. Schieber et al.

amount of energy that can be harvested on τ1 is
∑n+1

t=2 (S − αt−1) = S(n − 1).
Thus, the total amount of energy that can be harvested on slots [1, n + 1] is

k
(
S2n2

)
+ β (Sn) + S(n − 1) < k

(
S2n2

)
+ Sn(S + 1) < (k + 1)(S2n2),

which is strictly less than the energy required to execute more than k jobs. This
implies that no more than k jobs can be scheduled in τ1, and that energy must be
harvested at time slot n + 2 in order to schedule more jobs. This leaves exactly
n − k time slots in τ2 until the due date to schedule the remaining n − k jobs.
Additionally, we note that by the construction of the energy harvesting profile, it
is optimal to schedule jobs in τ1 immediately at their release time as the later a
job is scheduled, the more energy is lost from not harvesting energy at that time
slot. We proceed with the assumption that jobs in τ1 are scheduled in this way.

We now show that the total energy requirement of the k jobs scheduled
in τ1 is exactly γ1 = k

(
S2n2

)
+ β (Sn). Assume for the sake of contradiction

that this is not the case; that is, the total energy requirement of the k jobs is
R = k

(
S2n2

)
+ β′ (Sn) where β′ �= β. If β′ > β, then by integrality it must be

that β′ ≥ β +1, which implies R ≥ γ1 +Sn. However, as shown before, the total
amount of energy harvestable on τ1 is S(n − 1), so it is not possible to feasibly
schedule the k jobs on τ1. Now consider the case when β′ < β. The energy
harvested on τ1 is S(n − k) − (S − β′) and (β − β′) (Sn) energy is leftover, so at
the start of time slot n+2, there is at most γ2 = (β − β′) (Sn)+S(n−k−1)+β′

energy. Since we must harvest energy at slot n + 2, we get that at the start of
slot n + 3, the energy available is

γ3 = (n − k)(S2n2) + (S − β) (Sn) − S(n − k − 1) − β + γ2

= (n − k)(S2n2) + (S − β′) (Sn) − β + β′.

However, the energy requirement of the remaining n − k jobs is (n − k)(S2n2) +
(S − β′) (Sn), so it is not possible to feasibly schedule the remaining jobs in τ2.
Hence, there is a contradiction so β′ = β and R = γ1.

Therefore, a “yes” instance of this problem implies that the corresponding
k−Sum instance is also a “yes” instance since the first k jobs scheduled cor-
respond to k positive integers that sum to β. Conversely, a “yes” instance of
k−Sum implies that the corresponding EAS instance is a “yes” instance since
we can schedule the jobs that correspond to elements of A at time slots in τ1 at
their release time and the remaining n − k jobs at time slots in τ2. Thus, EAS
when jobs have arbitrary release times and identical due dates is NP-Hard. ��

A similar type of reduction from k−Sum can also be used to show the hard-
ness of EAS with identical release times and arbitrary due dates. Full details of
the proof of the following theorem are given in the full version of the paper.

Theorem 4. EAS when jobs have identical release times and arbitrary due dates
is (weakly) NP-Hard.

Since jobs having arbitrary release times and identical due dates (or identical
release times and arbitrary due dates) is a special case of both being arbitrary,
we get the following as an immediate consequence of Theorem 3 (or Theorem 4).

Interweaving Real-Time Jobs with Energy Harvesting 315

Theorem 5. EAS when jobs have arbitrary release times and due dates is
(weakly) NP-Hard.

5.2 Weighted Setting

In WEAS it can be shown that the problem is NP-Hard even when all the jobs
have identical release time and due dates. A proof of the following theorem
(which is a straightforward reduction from Knapsack) is given in the full version
of the paper.

Theorem 6. WEAS when jobs have identical release times and due dates is
(weakly) NP-Hard.

Since the case of jobs having identical release times and due dates is a special
case of either one or both of them being arbitrary, we get the following as an
immediate consequence.

Theorem 7. WEAS is (weakly) NP-Hard.

6 Conclusions and Open Problems

We conclude with a brief summary of our results and open problems. We pre-
sented three algorithms: (1) an optimal polynomial time algorithm for EAS with
identical release times and due dates (Sect. 2), (2) a greedy 1

2 -approximation
algorithm for EAS with arbitrary release times and due dates (Sect. 3), and (3)
an FPTAS for WEAS in the case of identical release times and due dates (Sect. 4).

It would be interesting to see if there exists a PTAS or a better constant
factor approximation for EAS with arbitrary release times and due dates, or if
special cases of EAS where only one of them is arbitrary admit better approxima-
tion ratios. Another natural direction to consider is the extension of the greedy
approach to WEAS with arbitrary release times and due dates.

In Sect. 5, we study the hardness of both EAS and WEAS and give nontrivial
reductions from the k−Sum problem to show that except for the case of identical
release times and due dates, EAS is weakly NP-Hard (Sect. 5.1). It is open whether
EAS admits an FPTAS or whether there is a reduction from a strongly NP-Hard
problem to EAS.

One could also consider expanding our model. A natural extension is to
consider the case of arbitrary processing times for jobs. Another is to consider
online versions of our problems. This may include either considering an online
energy harvesting profile as considered in [12], or considering a model in which
both jobs and the harvesting profile are revealed in an online manner.

References

1. Baptiste, P.: Polynomial time algorithms for minimizing the weighted number of
late jobs on a single machine with equal processing times. J. Sched. 2(6), 245–252
(1999)

316 B. Schieber et al.

2. Boyer, S.A.: SCADA: Supervisory Control and Data Acquisition. International
Society of Automation, 4th edition (2010)

3. Briskorn, D., Choi, B.-C., Lee, K., Leung, J., Pinedo, M.: Inventory constrained
scheduling on a single machine. Manuskripte aus den Instituten für Betrieb-
swirtschaftslehre der Universität Kiel 640, Christian-Albrechts-Universität zu Kiel,
Institut für Betriebswirtschaftslehre (2008)

4. Briskorn, D., Choi, B.-C., Lee, K., Leung, J., Pinedo, M.: Complexity of single
machine scheduling subject to nonnegative inventory constraints. Eur. J. Oper.
Res. 207(2), 605–619 (2010)

5. Bäumker, E., Schüle, F., Woias, P.: Development of a batteryless VHF-beacon and
tracker for mammals. In: Journal of Physics: Conference Series, vol. 1052, p. 012005
(2018)

6. Caruso, A., Chessa, S., Escolar, S., del Toro, X., López, J.C.: A dynamic pro-
gramming algorithm for high-level task scheduling in energy harvesting IoT. IEEE
Internet Things J. 5(3), 2234–2248 (2018)

7. Davari, M., Ranjbar, M., De Causmaecker, P., Leus, R.: Minimizing makespan on
a single machine with release dates and inventory constraints. Eur. J. Oper. Res.
286(1), 115–128 (2020)

8. Faceira, J., Afonso, P., Salgado, P.: Prediction of solar radiation using artificial
neural networks. In: Moreira, A.P., Matos, A., Veiga, G. (eds.) CONTROLO’2014.
LNEE, vol. 321, pp. 397–406. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-10380-8 38

9. Gafarov, E.R., Lazarev, A.A., Werner, F.: Single machine scheduling problems with
financial resource constraints: some complexity results and properties. Math. Soc.
Sci. 62(1), 7–13 (2011)

10. Grigoriev, A., Holthuijsen, M., van de Klundert, J.: Basic scheduling problems with
raw material constraints. Nav. Res. Logist. 52(6), 527–535 (2005)

11. Györgyi, P., Kis, T.: Approximation schemes for single machine scheduling with
non-renewable resource constraints. J. Sched. 17, 135–144 (2014)

12. Islam, B., Nirjon, S.: Scheduling computational and energy harvesting tasks in
deadline-aware intermittent systems. In: 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp. 95–109. IEEE (2020)

13. Lucia, B., Balaji, V., Colin, A., Maeng, K., Ruppel, E.: Intermittent computing:
challenges and opportunities. In: 2nd Summit on Advances in Programming Lan-
guages (SNAPL 2017) (2017)

14. Merrett, G.V.: Invited: energy harvesting and transient computing: a paradigm
shift for embedded systems? In: 53rd ACM/EDAC/IEEE Design Automation Con-
ference (DAC), pp. 1–2 (2016)

15. Pătraşcu, M., Williams, R.: On the possibility of faster SAT algorithms. In: Pro-
ceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 1065–1075. SIAM (2010)

16. Shaikh, F.K., Zeadally, S.: Energy harvesting in wireless sensor networks: a com-
prehensive review. Renew. Sustain. Energy Rev. 55, 1041–1054 (2016)

17. Sudevalayam, S., Kulkarni, P.: Energy harvesting sensor nodes: survey and impli-
cations. IEEE Commun. Surv. Tutorials 13(3), 443–461 (2010)

18. Vakhania, N.: Branch less, cut more and minimize the number of late equal-length
jobs on identical machines. Theoret. Comput. Sci. 465, 49–60 (2012)

19. van den Akker, J.M., Diepen, G., Hoogeveen, J.A.H.: Minimizing total weighted
tardiness on a single machine with release dates and equal-length jobs. J. Sched.
13, 561–576 (2010)

https://doi.org/10.1007/978-3-319-10380-8_38
https://doi.org/10.1007/978-3-319-10380-8_38

Recognizing When a Preference System is
Close to Admitting a Master List

Ildikó Schlotter1,2(B)

1 Centre for Economic and Regional Studies, Budapest, Hungary
schlotter.ildiko@krtk.hu

2 Budapest University of Technology and Economics, Budapest, Hungary

Abstract. A preference system I is an undirected graph where vertices
have preferences over their neighbors, and I admits a master list if all
preferences can be derived from a single ordering over all vertices. We
study the problem of deciding whether a given preference system I is
close to admitting a master list based on three different distance mea-
sures. We determine the computational complexity of the following ques-
tions: can I be modified by (i) k swaps in the preferences, (ii) k edge
deletions, or (iii) k vertex deletions so that the resulting instance admits
a master list? We investigate these problems in detail from the viewpoint
of parameterized complexity and of approximation. We also present two
applications related to stable and popular matchings.

1 Introduction

A preference system models a set of agents as an undirected graph where agents
are vertices, and each agent has preferences over its neighbors. Preference sys-
tems are a fundamental concept in the area of matching under preferences which,
originating in the seminal work of Gale and Shapley [16] on stable matchings, is
a prominent research field in the intersection of algorithm design and computa-
tional social choice that has steadily gained attention over the last two decades.

Preference systems may admit a master list, that is, a global ranking over all
agents from which agents derive their preferences. Master lists arise naturally in
many practical scenarios such as P2P networks [26], job markets [21], and student
housing assignments [30]. Consequently, master lists and its generalizations have
been the focus of research in several papers [7,9,11,21,22,24,29].

In this work we aim to investigate the computational complexity of recogniz-
ing preference systems that are close to admitting a master list. Such instances
may arise as a result of noise in the data set, or in scenarios where a global
ranking of agents is used in general, with the exception of a few anomalies.

Our Contribution. We introduce three measures to describe the distance of
a given preference system I from the class of preference systems admitting a

Supported by the Hungarian Academy of Sciences under its Momentum Programme
(LP2021-2) and the Hungarian Scientific Research Fund (OTKA grants K128611 and
K124171).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 317–329, 2023.
https://doi.org/10.1007/978-3-031-27051-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_27&domain=pdf
https://doi.org/10.1007/978-3-031-27051-2_27

318 I. Schlotter

master list. The first measure, Δswap(I) is based on the swap distance between
agents’ preferences, while the measures Δedge(I) and Δvert(I) are based on clas-
sic graph operations, the deletion of edges or vertices; precise definitions follow
in Sect. 2. We study in detail the complexity of computing these values for a
given preference system I. After proving that computing any of these three
measures is NP-hard, we apply the framework of parameterized complexity and
of approximation algorithms to gain a more fine-grained insight.

In addition to the problems of computing Δswap(I), Δedge(I), and Δvert(I),
we briefly look at two applications. First, we show that if a strict preference
system I is close to admitting a master list, then we can bound the number
of stable matchings as a function of the given distance measure. This yields an
efficient way to solve a wide range of stable matching problems in instances
that are close to admitting a master list. Second, we consider an optimization
problem over popular matchings where the task is to find a maximum-utility
popular matching while keeping the number (or cost) of blocking edges low. We
prove that this notoriously hard problem can be efficiently solved if preferences
are close to admitting a master list. In both of these applications, the running
time of the obtained algorithms heavily depends on the distance measure used.

Related Work. Master lists have been extensively studied in the context of sta-
ble matchings [7,11,21,22]. Various models have been introduced in the literature
to generalize master lists, and capture preferences that are similar to each other
in some sense. Closest to our work might be the paper by Bredereck et al. [7]
who examine the complexity of multidimensional stable matching problems on
instances that are close to admitting a master list. Abraham et al. investigated a
setting where agent pairs are ranked globally [1]. Bhatnagar et al. [4] examined
three restrictions on preference systems—the k-attribute, the k-range, and the
k-list models—that aim to capture similarities among preferences; these models
have been studied subsequently by several researchers [9,24,29].

Restricted preference profiles have been also examined in the broader context
of computational social choice; see the survey by Elkind et al. [13]. In election
systems, computing the Kemeny score [23] for a multiset of votes (where each
vote is a total linear order over a set of candidates) is analogous to computing
the value Δswap(I) for a preference system I, although there are some differences
between these two problems. Besides the extensive literature on the complexity of
Kemeny voting (see e.g. [3,15]), our work also relates to the problem of computing
certain distance measures between elections [5]. Some of the distance measures we
use were considered by Gupta et al. in their paper on committee selection [18].

2 Preliminaries

We assume that the reader is familiar with basic concepts in graph theory,
classic and parameterized computational complexity, and approximation the-
ory. For directed and undirected graphs, we will use the notation of the book
by Bang-Jensen and Gutin [2], unless otherwise stated. For more on complexity
and approximations, we refer the reader to corresponding books [12,17,33]. We

Recognizing When a Preference System is Close to Admitting a Master List 319

provide all definitions and notations we use (apart from those defined below), as
well as all formal proofs in the full version of our paper [31].

Preference Systems. A preference system is a pair I = (G,�) where G is an
undirected graph and �= {�v: v ∈ V (G)} where �v is a weak or a strict order
over NG(v) for each vertex v ∈ V (G), indicating the preferences of v. For some
v ∈ V (G) and a, b ∈ NG(v), we say that v prefers b to a, denoted by a ≺v b,
if a ��v b. We write a ∼v b, if a �v b and b �v a. A tie in v’s preferences is a
maximal set T ⊆ NG(v) such that t ∼v t′ for each t and t′ in T . If each tie has
size 1, then I is a strict preference system, and we may denote it by (G,≺).

Deletions and Swaps. For a set X of edges or vertices in G, let I − X denote
the preference system whose underlying graph is G−X and where the preferences
of each vertex v ∈ V (G − X) is the restriction of �v to NG−X(v). We may refer
to I − X as a sub-instance of I.

If vertex v has strict preferences ≺v in I, then a swap is a triple (a, b; v)
with a, b ∈ NG(v), and it is admissible if a and b are consecutive1 in v’s pref-
erences. Performing an admissible swap (a, b; v) in I means switching a and b
in v’s preferences; the resulting preference system is denoted by I � (a, b; v). For
a set S of swaps, I � S denotes the preference system obtained by performing
the swaps in S in I in an arbitrary order as long as each swap is admissible
(if this is not possible, I � S is undefined). For non-strict preferences, similar
notions will be discussed in Sect. 3.

Master Lists. A weak or strict order �ml over V (G) is a master list for (G,�),
if for each v ∈ V (G), the preferences of v are consistent with �ml, that is, �v

is the restriction of �ml to NG(v). We will denote by FML the family of those
preference systems that admit a master list. Notice that FML is closed under
taking subgraphs: if we delete a vertex or an edge from a preference system
in FML, the remainder still admits a master list.

3 Problem Definition and Initial Results

Let us first introduce the notion of a preference digraph, a directed graph asso-
ciated with a given preference system, which can be exploited to obtain a useful
characterization of preference systems that admit a master list. We then proceed
with defining our measures for describing the distance from FML.

Characterization of FML Through the Preference Digraph. With a strict
preference system I = (G,≺) where G = (V,E), we associate an arc-labelled
directed graph DI that we call the preference digraph of I. We let DI have the
same set of vertices as G, and we define the arcs in DI by adding an arc (a, b)
labelled with v whenever a ≺v b holds for some vertices a, b and v in V . Note that
several parallel arcs may point from a to b in DI , each having a different label,
so we have |V (DI)| = |V | but |A(DI)| = O(|V |·|E|). Observation 1 immediately
follows from the fact that acyclic digraphs admit a topological order.
1 Vertices a and b are consecutive in v’s preferences, if either a ≺v b but there is no

vertex c with a ≺v c ≺v b, or b ≺v a but there is no vertex c with b ≺v c ≺v a.

320 I. Schlotter

Observation 1. A strict preference system (G,≺) admits a master list if and
only if the preference digraph of G is acyclic.

For a preference system I = (G,�) with G = (V,E) that is not necessarily
strict we extend the concept of the preference digraph of I as follows. Again,
we let DI have V as its vertex set, but now we add two types of arcs to DI :
for any v in V and a, b ∈ NG(V) with a �= b we add a strict arc (a, b) with
label v whenever a ≺v b, and we add a pair of tied arcs (a, b) and (b, a), both
with label v, whenever a ∼v b. Note that this way we indeed generalize our
definition above for the preference digraph of strict preference systems. We will
call a cycle of DI that contains a strict arc a strict cycle. The following lemma
is a straightforward generalization of Observation 1.

Lemma 2. A preference system (G,�) admits a master list if and only if no
cycle of the preference digraph of G is strict.

Measuring the Distance from FML. Let us now define our three measures
to describe the distance of a given strict preference system I = (G,≺) from the
family FML of preference systems that admit a master list:

– Δswap(I) = min{|S| : S is a set of swaps in I such that I � S ∈ FML};
– Δedge(I) = min{|S| : S ⊆ E(G), I − S ∈ FML};
– Δvert(I) = min{|S| : S ⊆ V (G), I − S ∈ FML}.

The measures Δedge(I) and Δvert(I) can be easily extended for preference sys-
tems that are not necessarily strict, since the above definitions are well-defined
for any preference system (G,�).

Extending the measure Δswap(I) for non-strict preference systems is, how-
ever, not entirely straightforward. If there are ties in the preferences of some ver-
tex v, how can we define an admissible swap? In this paper we use the following
definition for swap distance, which seems to be standard in the literature [6,8].
Let �u and �v be weak orders. If they are not defined over the same sets, then
the swap distance of �u and �v, denoted by Δ(�u,�v) is ∞, otherwise

Δ(�u,�v) = |{{a, b} : a ≺u b but b �v a}| + |{{a, b} : a ∼u b but a �∼v b}|.
For two preferences systems I = (G,�) and I ′ = (G′,�′) with G = (V,E) and
G′ = (V ′, E′), we let their swap distance, denoted by Δ(I, I ′), be ∞ if they
are not defined over the same vertex set; otherwise (that is, if V = V ′) we let
Δ(I, I ′) =

∑
v∈V Δ(�v,�′

v). Using this, we can define

Δswap(I) = min {Δ(I, I ′) : I ′ ∈ FML} .

The following lemma follows easily from the definitions.

Lemma 3. Δswap(I) ≥ Δedge(I) ≥ Δvert(I) for any preference system I.
Let Master List by Swaps (or MLS for short) be the problem whose input

is a preference system I and an integer k, and the task is to decide whether
Δswap(I) ≤ k. We define the Master List by Edge Deletion (or MLED)
and the Master List by Vertex Deletion (or MLVD) problems analogously.

Recognizing When a Preference System is Close to Admitting a Master List 321

4 Computing the Distance from Admitting a Master List

Let us now present our main results on recognizing when a given preference list
is close to admitting a master list. We investigate the classical and parameterized
complexity of each of our problems MLS, MLED, and MLVD. In Sect. 4.1 we
consider strict preference systems, and then extend our results for weakly ordered
preferences in Sect. 4.2.

4.1 Strict Preferences

We show that computing the distance from FML is NP-hard for each of our three
distance measures. However, when viewed from the perspective of approximation
or of parameterized complexity, intrinsic differences between MLS, MLED, and
MLVD will surface.

We start with Theorem 4 showing that we cannot expect a polynomial-time
algorithm for MLS or for MLED and even a polynomial-time approximation
is unlikely to exist already for bipartite graphs, assuming the so-called Unique
Games Conjecture [25], a standard assumption in complexity theory. The proof
of Theorem 4 relies on a connection between MLS, MLED, and the Feedback
Arc Set problem which, given a directed graph D and an integer k, asks whether
there exists a set of at most k arcs in D whose deletion from D yields an acyclic
graph. Interestingly, the connection of this problem to MLS and to MLED can
be used both ways: on the one hand, it serves as the basis of our reduction
for proving computational hardness, and on the other hand, we will be able
to apply already existing algorithms for Feedback Arc Set in our quest for
solving MLS and MLED.

Theorem 4. MLS and MLED are both NP-hard, and assuming the Unique
Games Conjecture they are NP-hard to approximate by any constant factor in
polynomial time. All of these hold even if the input graph is bipartite with all
vertices on one side having degree 2, and preferences are strict.

Thanks to Lemma 1 below, for any strict preference system I we can decide
whether Δswap(I) ≤ k for some k ∈ N by applying the FPT algorithm of Lok-
shtanov et al. [27] for Feedback Arc Set on the preference digraph DI and
parameter k. Their algorithm runs in time O(k!4kk6(n+m)) on an input graph
with n vertices and m arcs [27]. If G = (V,E) is the graph underlying I, then DI
has |V | vertices and O(|V |·|E|) arcs, implying a running time of O(k!4kk6|V |·|E|).
Lemma 1. For a strict preference system I, Δswap(I) ≤ k if and only if the
preference digraph of I admits a feedback arc set of size at most k.

Corollary 5. If preferences are strict, then MLS is fixed-parameter tractable
with parameter k, and can be solved in time O(k!4kk6|V |·|E|).
We remark that MLS for strict preferences can be formulated as a variant of the
Kemeny Score problem with incomplete votes as studied by Betzler et al. [3].
Their results also imply that MLS is FPT with parameter k, though the running
time we obtain in Corollary 5 is better than the one stated in [3, Theorem 10].

322 I. Schlotter

Algorithm 1. Obtaining a 2-approximation for MLED on input (I, k) with
strict preferences
1: Construct the graph HI .
2: Let F be a solution for Feedback Arc Set on input (HI , k).
3: Ensure that each arc in F is incident to some vertex in V by replacing all arcs of F

entering some a−
v with (a−

v , a).
4: Return SF = {{a, v} ∈ E : (a, a+

v) ∈ F or (a−
v , a) ∈ F}.

In contrast to MLS, the MLED problem is W[1]-hard with k as the parameter;
the reduction is from Multicolored Clique [14].
Theorem 6. MLED is W[1]-hard with parameter k, even for strict preferences.

Although Theorem 6 provides strong evidence that there is no FPT algo-
rithm for MLED with parameter k, and by Theorem 4 we cannot hope for
a polynomial-time approximation algorithm for MLED either, our next result
shows that combining these two approaches yields a way to deal with the compu-
tational hardness of the problem. Namely, Theorem 7 provides a 2-approximation
for MLED whose running time is FPT with parameter k. This result again relies
heavily on the connection between MLED and Feedback Arc Set.

Theorem 7. There exists an algorithm that achieves a 2-approximation for
MLED if preferences are strict, and runs in FPT time with parameter k.

2-Approximation FPT Algorithm for MLED (Strict Preferences). Let
the strict preference system I = (G,≺) with underlying graph G = (V,E)
and k ∈ N be our input for MLED. See Algorithm 1 for a formal description.

First, we construct a directed graph HI by setting

V (HI) = V ∪ {a−
v , a+

v : {a, v} ∈ E},

A(HI) = {(a+
c , b−

c) : a, b, c ∈ V, a ≺c b} ∪ {(a−
v , a), (a, a+

v) : v ∈ V, a ∈ NG(v)}.

Our approximation factor relies on the property if HI that, roughly speaking, the
effect of deleting an edge from G can be achieved by deleting two arcs from HI .

Next, we compute a minimum feedback arc set F in HI using the algorithm
by Lokshtanov et al. [27]. We may assume that F only contains arcs incident to
some vertex in V , as we can replace any arc (a+

c , b−
c) with the sole are leaving b−

c ,
namely (b−

c , b), since all cycles containing (a+
c , b−

c) must also go through (b−
c , b).

Finally, we return the set SF = {{a, v} ∈ E : (a, a+
v) ∈ F or (a−

v , a) ∈ F}.
Note that HI has |V | + 2|E| vertices and at most |V |·|E| + 4|E| arcs. The

total running time of Algorithm 1 is therefore O(k!4kk6|V |·|E|) which is indeed
FPT with parameter k.

Contrasting our positive results for MLS and MLED, a reduction from the
classic Hitting Set problem shows that MLVD is computationally hard both
in the classic and in the parameterized sense, and cannot be approximated by
any FPT algorithm, as stated by Theorem 8.

Theorem 8. MLVD is NP-hard and W[2]-hard with parameter k. Furthermore,
no FPT algorithm with k as the parameter can achieve an f(k)-approximation

Recognizing When a Preference System is Close to Admitting a Master List 323

for MLVD for any computable function f , unless FPT = W[1]. All of these hold
even if the input graph is bipartite and preferences are strict.

4.2 Weakly Ordered Preferences

Let us now consider preference systems that are not necessarily strict. The hard-
ness results of Sect. 4.1 trivially hold for weakly ordered preferences, so we will
focus on extending the algorithmic results of the previous section.

Lemma 2. For any preference system I = (G,�), Δswap(I) ≤ k if and only if
there exists a set of at most k arcs in the preference digraph DI of I that hits
every strict cycle of DI .

Thanks to Lemma 2, we can reduce MLS to a generalization of the Feedback
Arc Set problem where, instead of searching for a feedback arc set, the task is to
seek an arc set that only hits certain relevant cycles. In the Subset Feedback
Arc Set (or SFAS) problem the input is a directed graph D, a vertex set W ⊆
V (D) and an integer k, and the task is to find a set of at most k arcs in D that
hits all relevant cycles in D, where a cycle is relevant if it goes through some
vertex of W .

To solve SFAS, we apply an FPT algorithm by Chitnis et al. [10] for the vertex
variant of SFAS, the Directed Subset Feedback Vertex Set (or DSFVS)
problem that, given a directed graph D, a set W ⊆ V (D) and a parameter k ∈ N,
asks for a set of at most k vertices that hits all relevant cycles in D. Applying a
simple, well-known reduction from SFAS to DSFVS, we can use the algorithm
by Chitnis et al. [10] to obtain an FPT algorithm for MLS with parameter k.

Theorem 9. MLS is fixed-parameter tractable with parameter k, even if pref-
erences are weak orders.

Next we extend Theorem 7 for weak orders, by reducing MLED to SFAS.

Theorem 10. There exists an algorithm that achieves a 2-approximation for
MLED, and runs in FPT time with parameter k.

2-Approximation FPT Algorithm for MLED. Let the preference system I
with underlying graph G = (V,E) and k ∈ N be our input for MLED. For
each v ∈ V , let Tv be the set family containing every tie that appears in the
preferences of v. See Algorithm 2 for a formal description.

First, we construct a directed graph HI with V (HI) = V ∪T ∪U ∪Z where

T = {t : v ∈ V, t ∈ Tv},

U = {a−
v , a+

v : {a, v} ∈ E},

Z = {z(a,b,v) : a ≺v b for some a, b, v ∈ V },

and with arc set A(HI) = AT ∪ AU ∪ AZ where

AT = {(t, a−
v), (a

+
v , t) : v ∈ V, t ∈ Tv, a ∈ t}

AU = {(a−
v , a), (a, a+

v) : v ∈ V, a ∈ NG(v)}
AZ = {(a+

v , z(a,b,v)), (z(a,b,v), b
−
v) : z(a,b,v) ∈ Z}.

324 I. Schlotter

Algorithm 2. Obtaining a 2-approximation for MLED on input (I, k)
1: Construct the graph HI .
2: Let F be a solution for Subset Feedback Arc Set on input (HI , Z, k).
3: Ensure F ⊆ AU by replacing all arcs pointing to some a−

v ∈ U with (a−
v , a) and all

arcs leaving some a+
v ∈ U with (a, a+

v).
4: Return SF = {{a, v} ∈ E : (a, a+

v) ∈ F or (a−
v , a) ∈ F}.

Next, we solve the Subset Feedback Arc Set problem (HI , Z, k) by
applying the above reduction from SFAS to DSFVS and then using the algo-
rithm of Chitnis et al. [10]; let F be the solution obtained for (HI , Z, k). Observe
that w.l.o.g. we may assume that F only contains arcs of AU . Indeed we can
replace any arc f ∈ F in AT ∪ AZ by an appropriately chosen arc f ′ ∈ AU : note
that f either points to some a−

v ∈ U or it leaves some a+
v ∈ U ; in the former

case we set f ′ = (a−
v , a), while in the latter case we set f ′ = (a, a+

v). Then any
cycle containing f must also contain f ′, so we can safely replace f with f ′, as
F\{f} ∪ {f ′} still hits all relevant cycles. Hence, we will assume F ⊆ AU .

Finally, we return the set SF = {{a, v} ∈ E : (a, a+
v) ∈ F or (a, a+

v) ∈ F}.
It is clear that the above algorithm runs in FPT time with parameter k.

5 Applications

In this section we consider two examples related to stable and popular matchings
where we can efficiently solve computationally hard optimization problems on
preference systems that are close to admitting a master list; see the book [28]
for the definition of stability and popularity.

5.1 Optimization over Stable Matchings

One of the most appealing property of the distances defined in Sect. 3 is that
whenever the distance of a strict (but not necessarily bipartite) preference system
from admitting a master list is small, we obtain an upper bound on the number
of stable matchings contained in the given preference system. Therefore, strict
preference systems that are close to admitting a master list are easy to handle, as
we can efficiently enumerate their stable matchings, as Lemmas 11 and 13 show.

Lemma 11. Given a strict preference system I = (G,≺) with G = (V,E) and
a set S ⊆ E of edges such that I−S ∈ FML, the number of stable matchings in I
is at most 2|S|, and it is possible to enumerate all of them in time 2|S| · O(|E|).
Corollary 12. In a strict preference system I, the number of stable matchings
is at most 2Δswap(I).

Observe that although the number of stable matchings may grow exponen-
tially as a function of the distance Δedge or Δswap, this growth does not depend
on the size of the instance. By contrast, this is not the case for the distance Δvert.

Recognizing When a Preference System is Close to Admitting a Master List 325

Lemma 13. Given a strict preference system I = (G,≺) with G = (V,E) and
a set S ⊆ V of vertices such that I − S ∈ FML, the number of stable matchings
in I is at most |V ||S|, and it is possible to enumerate all stable matchings of I
in time |V ||S| · O(|E|).

There exists an algorithm by Gusfield and Irving [19,20] that outputs the
set S(I) of stable matchings in a preference system I over a graph G = (V,E)
in O(|S(I)|·|E|) time after O(|V | · |E| log |V |) preprocessing time. As a conse-
quence, the bounds of Lemma 11, Corollary 12, and Lemma 13 on |S(I)| directly
yield a way to handle computationally hard problems on any preference system I
where Δswap(I), Δedge(I), or Δvert(I) has small value, even without the need to
determine a set S of edges or vertices for which I −S ∈ FML or a set S of swaps
for which I � S ∈ FML. Thus, we immediately have the following result, even
without having to use our results in Sect. 4. For the definitions of the NP-hard
problems mentioned as an example in Theorem 14, see the book [28].

Theorem 14. Let I be a strict (but not necessarily bipartite) preference system,
and Q any optimization problem where the task is to maximize or minimize some
function f over S(I) such that f(M) can be computed in polynomial time for
any matching M ∈ S(I). Then Q can be solved

(i) in FPT time with parameter Δedge(I) or Δswap(I);
(ii) in polynomial time if Δvert(I) is constant.

In particular, these results hold for Sex-Equal Stable Matching, Balanced
Stable Matching, (Generalized) Median Stable Matching2, Egali-
tarian Stable Roommates, and Maximum-Weight Stable Roommates.

We remark that the bounds in Lemmas 11 and 13 are tight in the following
sense. For any k, n ∈ N with n ≥ k, there exist strict preference systems Ik

and Jk,n such that (i) Δedge(Ik) = k and Ik admits 2k stable matchings, and
(ii) Δvert(Jk,n) = k, the number of vertices in Jk,n is 2n, and Jk admits

(
n
k

)

stable matchings. See the full paper [31] for the details of these constructions.

5.2 Maximum-Utility Popular Matchings with Instability Costs

We now turn our attention to the Max-Utility Popular Matching with
Instability Costs problem, studied in [32]: given a strict preference sys-
tem I = (G,≺), a utility function ω : E(G) → N, a cost function c : E(G) → N,
an objective value t ∈ N and a budget β ∈ N, the task is to find a popular
matching in I whose utility is at least t and whose blocking edges have total
cost at most β. Our aim is to investigate whether we can solve this problem
efficiently for instances that are close to admitting a master list.

Note that in general this problem is computationally hard even if the given
preference system is strict, bipartite, admits a master list, and the cost and
2 Although the problem of finding a (generalized) median matching is not an opti-

mization problem over S(I), it is clear that it can be solved in |S(I)| · O(|I|) time.

326 I. Schlotter

utility functions are very simple. Namely, given a strict, bipartite preference
system (G,≺) ∈ FML for which a stable matching has size |V (G)|/2 − 1, it is
NP-hard and W[1]-hard with parameter β to find a complete popular matching
(i.e., one that is larger than a stable matching) that admits at most β blocking
edges [32]. Nevertheless, if the total cost β of the blocking edges that we allow
is a constant and each edge has cost at least 1, then Max-Utility Popular
Matching with Instability Costs can be solved in polynomial time for
bipartite, strict preference systems that admit a master list (in fact, it suffices
to assume that the preferences of all vertices on one side of the bipartite input
graph are consistent with a master list), representing an island of tractability
for this otherwise extremely hard problem [32]. Therefore, it is natural to ask
whether we can extend this result for strict preferences systems that are close
to admitting a master list. Theorem 15 answers this question affirmatively.

Theorem 15. Let I be a strict (but not necessarily bipartite) preference system
with G = (V,E). Then an instance (I, ω, c, t, β) of Max-Utility Popular
Matching with Instability Costs where c(e) ≥ 1 for all edges e ∈ E, and
β is constant can be solved
(i) in FPT time with parameter Δedge(I) or Δswap(I);
(ii) in polynomial time if Δvert(I) is constant.

We apply the same approach as in Sect. 5.1, with a crucial difference: for
the algorithms proving Theorem 15 we will need to determine a set of edges or
vertices whose deletion yields an instance in FML. Using such a set, we then
apply Lemma 16 or 17 below; these are generalizations of Lemmas 11 and 13 for
the case when we allow a fixed set of edges to block the desired matching.
Lemma 16. Given a strict preference system I = (G,≺) with G = (V,E) and
edge sets B ⊆ E and S ⊆ E such that I −S ∈ FML, the number of matchings M
for which B = bp(M) is at most 2|S|, and it is possible to enumerate them in
time 2|S| · O(|E|).
Lemma 17. Given a strict preference system I = (G,≺) with G = (V,E), an
edge set B ⊆ E, and a vertex set S ⊆ V such that I − S ∈ FML, the number
of matchings M for which B = bp(M) is at most |V ||S|, and it is possible to
enumerate them in time |V ||S| · O(|E|).

The algorithms proving Theorem 15 start with searching for the set of block-
ing edges using brute force: recall that our budget β is constant, and since each
edge has cost at least 1, we know that |bp(M)| ≤ β for our desired popular
matching M . Thus, there are only polynomially many sets to consider as the
set B of blocking edges.

Next, to prove statement (ii) of Theorem 15, we again use brute force to find
a set S of Δvert(I) vertices such that I−S ∈ FML. Thus having the sets S and B
at hand, we can apply Lemma 17. For statement (i) however, we need to find a
set S of edges such that I − S ∈ FML in FPT time with Δedge(I) or Δswap(I)
as parameter. Notice that it suffices to use Theorem 7 to obtain an edge set S of
size at most 2Δedge(I), and then we can apply Lemma 16. For a more detailed
description of these algorithms and their correctness, see the full paper [31].

Recognizing When a Preference System is Close to Admitting a Master List 327

Table 1. Summary of our results on MLS, MLED, and MLVD. Results marked by the
sign † assume the Unique Games Conjecture.

Problem Parameterized complexity Approximation

MLS FPT wrt k (Corollary 5, Theorem 9) Constant-factor approx. is NP-hard (Theorem 4)†

MLED W[1]-hard wrt k (Theorem 6) Constant-factor approx. is NP-hard (Theorem 4)†

2-approx. FPT alg wrt k (Theorems 7, 10)
MLVD W[2]-hard wrt k (Theorem 8) f(k)-approx. is W[1]-hard wrt k (Theorem 8)

6 Summary and Further Research

We summarize our main results on MLS, MLED, and MLVD in Table 1. Inter-
estingly, all our hardness results hold for strict preference systems, and we were
able to extend all our positive results for preference systems with weak orders.

There are a few questions left open in the paper. We gave asymptotically
tight bounds on the maximum number of stable matchings in a strict preference
system I as a function of Δedge(I) and Δvert(I), but we were not able to do the
same for Δswap(I). Another question is whether the approximation factor of our
2-approximation FPT algorithm for MLED can be improved.

A possible direction of future research would be to identify further problems
that can be solved efficiently on preference systems that are close to admit-
ting a master list. Also, it would be interesting to see how these measures vary
in different real-world scenarios, and to find those practical applications where
preference profiles are usually close to admitting a master list.

References

1. Abraham, D.J., Levavi, A., Manlove, D.F., O’Malley, G.: The stable roommates
problem with globally-ranked pairs. Internet Math. 5, 493–515 (2008)

2. Bang-Jensen, J., Gutin, G.Z.: Digraphs: Theory, Algorithms and Applications.
Springer Monographs in Mathematics, 2nd edn. Springer, London (2009). https://
doi.org/10.1007/978-1-84800-998-1

3. Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.: Fixed-
parameter algorithms for Kemeny rankings. Theor. Comput. Sci. 410(45), 4554–
4570 (2009)

4. Bhatnagar, N., Greenberg, S., Randall, D.: Sampling stable marriages: why spouse-
swapping won’t work. In: SODA 2008, pp. 1223–1232. SIAM (2008)

5. Boehmer, N., Faliszewski, P., Niedermeier, R., Szufa, S., Wąs, T.: Understanding
distance measures among elections. In: IJCAI-22, pp. 102–108 (2022)

6. Bredereck, R., Chen, J., Knop, D., Luo, J., Niedermeier, R.: Adapting stable match-
ings to evolving preferences. In: AAAI 2020, pp. 1830–1837 (2020)

7. Bredereck, R., Heeger, K., Knop, D., Niedermeier, R.: Multidimensional stable
roommates with master list. In: Chen, X., Gravin, N., Hoefer, M., Mehta, R. (eds.)
WINE 2020. LNCS, vol. 12495, pp. 59–73. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-64946-3_5

https://doi.org/10.1007/978-1-84800-998-1
https://doi.org/10.1007/978-1-84800-998-1
https://doi.org/10.1007/978-3-030-64946-3_5
https://doi.org/10.1007/978-3-030-64946-3_5

328 I. Schlotter

8. Chen, J., Skowron, P., Sorge, M.: Matchings under preferences: strength of stability
and tradeoffs. ACM Trans. Econ. Comput. 9(4), 20:1–20:55 (2021)

9. Cheng, C.T., Rosenbaum, W.: Stable matchings with restricted preferences: struc-
ture and complexity. In: EC 2021, pp. 319–339 (2021)

10. Chitnis, R., Cygan, M., Hajiaghayi, M., Marx, D.: Directed subset feedback vertex
set is fixed-parameter tractable. ACM Trans. Algorithms 11(4), 28:1–28:28 (2015)

11. Chowdhury, R.: A simple matching domain with indifferences and a master list.
Rev. Econ. Des. (2022). https://doi.org/10.1007/s10058-022-00292-9

12. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

13. Elkind, E., Lackner, M., Peters, D.: Structured preferences. In: Endriss, U. (ed.)
Trends in Computational Social Choice, chap. 10, pp. 187–207. AI Access (2017)

14. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized
complexity of multiple-interval graph problems. Theor. Comput. Sci. 410, 53–61
(2009)

15. Fitzsimmons, Z., Hemaspaandra, E.: Kemeny consensus complexity. In: IJCAI-21,
pp. 196–202 (2021)

16. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Amer.
Math. Monthly 69(1), 9–15 (1962)

17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

18. Gupta, S., Jain, P., Saurabh, S.: Well-structured committees. In: IJCAI-20, pp.
189–195 (2020)

19. Gusfield, D.: The structure of the stable roommate problem: efficient representation
and enumeration of all stable assignments. SIAM J. Comput. 17(4), 742–769 (1988)

20. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-
rithms. Foundations of Computing Series, MIT Press, Cambridge (1989)

21. Irving, R.W., Manlove, D.F., Scott, S.: The stable marriage problem with master
preference lists. Discret. Appl. Math. 156(15), 2959–2977 (2008)

22. Kamiyama, N.: Many-to-many stable matchings with ties, master preference lists,
and matroid constraints. In: AAMAS 2019, pp. 583–591 (2019)

23. Kemeny, J.: Mathematics without numbers. Daedalus 88, 577–591 (1959)
24. Khanchandani, P., Wattenhofer, R.: Distributed stable matching with similar pref-

erence lists. In: OPODIS 2016. LIPIcs, vol. 70, pp. 12:1–12:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2016)

25. Khot, S.: On the power of unique 2-prover 1-round games. In: STOC 2002, pp.
767–775. Association for Computing Machinery (2002)

26. Lebedev, D., Mathieu, F., Viennot, L., Gai, A.T., Reynier, J., de Montgolfier,
F.: On using matching theory to understand P2P network design. In: INOC 2007
(2007)

27. Lokshtanov, D., Ramanujan, M.S., Saurabh, S.: When recursion is better than
iteration: a linear-time algorithm for acyclicity with few error vertices. In: SODA
2018, pp. 1916–1933 (2018)

28. Manlove, D.F.: Algorithmics of Matching Under Preferences, Series on Theoretical
Computer Science, vol. 2. World Scientific, Singapore (2013)

29. Meeks, K., Rastegari, B.: Solving hard stable matching problems involving groups
of similar agents. Theor. Comput. Sci. 844, 171–194 (2020)

https://doi.org/10.1007/s10058-022-00292-9
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3

Recognizing When a Preference System is Close to Admitting a Master List 329

30. Perach, N., Polak, J., Rothblum, U.G.: A stable matching model with an entrance
criterion applied to the assignment of students to dormitories at the Technion. Int.
J. Game Theory 36, 519–535 (2008)

31. Schlotter, I.: Recognizing when a preference system is close to admitting a master
list. CoRR abs/2212.03521 (2022). arXiv:2212.03521 [cs.CC]

32. Schlotter, I., Cseh, Á.: Maximum-utility popular matchings with bounded insta-
bility. CoRR abs/2205.02189 (2022). arXiv:2205.02189 [cs.DM]

33. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

http://arxiv.org/abs/2212.03521
http://arxiv.org/abs/2205.02189

Groups Burning: Analyzing Spreading
Processes in Community-Based Networks

Gennaro Cordasco1(B), Luisa Gargano2, and Adele A. Rescigno2

1 Department of Psychology, University of Campania “L.Vanvitelli”, Caserta, Italy
gennaro.cordasco@unicampania.it

2 Department of Computer Science, University of Salerno, Fisciano, Italy
{lgargano,arescigno}@unisa.it

Abstract. Graph burning is a deterministic, discrete-time process that
can be used to model how influence or contagion spreads in a graph. In
the graph burning process, each node starts as dormant, and becomes
informed/burned over time; when a node is burned, it remains burned
until the end of the process. In each round, one can burn a new node
(source of fire) in the network. Once a node is burned in round t, in round
t + 1, each of its dormant neighbors becomes burned. The process ends
when all nodes are burned; the goal is to minimize the number of rounds.
We study a variation of graph burning in order to model spreading pro-
cesses in community-based networks. With respect to a specific piece of
information, a community is satisfied when this information reaches at
least a prescribed number of its members. Specifically, we consider the
problem of identifying a minimum length sequence of nodes that, accord-
ing to a graph burning process, allows to satisfy all the communities of
the network. We investigate this NP-hard problem from an approxima-
tion point of view, showing both a lower bound and a matching upper
bound. We also investigate the case when the number of communities
is constant and show how to solve the problem with a constant approx-
imation factor. Moreover, we consider the problem of maximizing the
number of satisfied groups, given a budget k on the number of rounds.

Keywords: Burning number · Spreading processes · Group influence

1 Introduction

Spreading processes in complex networks have recently gained a great deal of
attention. There are many situations where members of a network may influence
their neighbors’ behavior and decisions, by swaying their opinions, by suggesting
what products to buy, but also acting in many social problems as public health
awareness, financial inclusion, and more. A fundamental aspect to understand
and control the spreading dynamics is the identification of spreaders that can
diffuse information within the network in the least possible amount of time.

Small and marginalized groups within a larger community are those who
need the most from attention, information and assistance. It is important, then,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 330–342, 2023.
https://doi.org/10.1007/978-3-031-27051-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_28&domain=pdf
https://doi.org/10.1007/978-3-031-27051-2_28

Groups Burning 331

to ensure that each group receives an appropriate amount of information and
resources, so to respect the diverse composition of the communities.

To address the above issue, in this paper we consider the problem of ensuring
the right amount of informed representatives for each group in the network within
fast spreading processes.

In our model the spreading process reflects the burning process in a graph.
Bonato [5] introduced the notion of graph burning as a simplified model for the
spread of memes in a network. Imagine someone trying to optimize the spread
of a meme, hitting key actors in the network with the meme in a given prior-
ity sequence. To recap graph burning, nodes start off as dormant, and become
informed/burned over time. If a dormant node is neighboring an informed one,
it becomes informed too. One can burn/inform a new node anywhere in the net-
work in each step. We can then see the process to proceed in sequential discrete
steps, where one node is selected at each time-step t as a source of fire and burns
all of its neighbors at the next time step t + 1. The nodes that are burned, can
burn their neighbors at the next time step. That is, the information can pass
from a node who have been informed in the previous time step. Furthermore, an
informed node remains informed or burned throughout the process.

The analysis of the burning process enables evaluating the robustness of a
network with respect to misinformation strategies (diffusion of negative behav-
iors) and on the other hand, it allows optimizing the impact of positive strategies.

Problems Definitions. We model the network as an undirected graph G =
(V,E), where V is the set of individuals and the set of edges E represents the
relationships among members of the network, i.e., (u, v) ∈ E if individuals u and
v can directly communicate. We denote by n = |V | the number of individuals
in the network. For any u, v ∈ V , we denote by d(u, v) the distance between u
and v in G. We denote by Nd[v] = {w |w ∈ V, 0 ≤ d(v, w) ≤ d} the set of all
nodes having distance at most d from v ∈ V ; we call Nd[v] the neighborhood of
radius d around v (d-neighborhood of v). We denote by N [v] = N1[v] the closed
neighborhood of v, that is, the set composed by v and its neighbors. Note also
that N0[v] = {v}.

The Graph Burning problem [5] is defined as follows.

Graph Burning
Input: A graph G = (V,E).
Output: A sequence (v1, v2, . . . , vk), with vi ∈ V for each1 i ∈ [k], of
minimum length k such that

⋃k
i=1 Nk−i[vi] = V.

If (v1, v2, . . . , vk) is a burning sequence for the given graph G, then a source vi,
where i ∈ [k], will burn only all the nodes within distance k − i from vi by the
end of the k-th step. Each node v ∈ V must be either a source or burned from
at least one of the sources by the k-th round.

In our setting, we are given a family of pairwise disjoint subsets V1, . . . , Vω,
referred to as groups, of the node set V and we are interested in the minimum

1 For any integer a, we denote by [a] the set {1, 2, . . . , a}.

332 G. Cordasco et al.

time needed to reach at least a given number of individuals in each group.
In particular, a positive integer pj is assigned to each group Vj . The value pj

represents the minimum amount of nodes of group Vj that have to be informed
(burned) during the spreading process.

Burning with Groups (BG)
Input: G = (V,E), a group family Π = {V1, V2, . . . , Vω} (a collection
of pairwise disjoint subsets of V), and a vector R = (p1, p2, . . . , pω) of
requirements for each group.
Output: A sequence (v1, v2, . . . , vk), where vi ∈ V, of minimum length k
such that ∣

∣
∣
∣
∣

(
k⋃

i=1

Nk−i[vi]

)
⋂

Vj

∣
∣
∣
∣
∣
≥ pj , for each j ∈ [ω].

We notice that BG is a generalization of the Graph Burning problem. Indeed,
starting from BG, the Graph Burning problem is obtained considering each
node as a single group (i.e. w = n) and fixing all the requirements equal to 1, or
alternatively, considering all the nodes in a single group (i.e., w = 1) and fixing
its requirement to n.

We will also consider the following corresponding maximization problem.

Burning Max Groups (BMG)
Input: G = (V,E), a group family Π = {V1, V2, . . . , Vω} (a collection of
pairwise disjoint subsets of V), a vector R = (p1, p2, . . . , pω) of require-
ments for each group, and an integer k.
Output: A sequence (v1, v2, . . . , vk), where vi ∈ V , and a set of integers
J ⊆ [ω] such that

∣
∣
∣
∣
∣

(
k⋃

i=1

Nk−i[vi]

)
⋂

Vj

∣
∣
∣
∣
∣
≥ pj , for each j ∈ J and |J | is maximized.

Given a sequence (v1, v2, . . . , vk), in the following we will say that the group
Vj , for j ∈ [ω], is satisfied iff

∣
∣
∣
(⋃k

i=1 Nk−i[vi]
) ⋂

Vj

∣
∣
∣ ≥ pj . In words, in the BG

problem, the goal is to find the sequence of the minimum length that satisfies
all the groups, while in the BMG problem, given a budget of at most k sources,
the goal is to maximize the number of satisfied groups.

2 Related Works

The problem of finding a source set of minimum size which, according to a
spreading process, is able to spread a piece of information to the whole (or a fixed
fraction of the) network, has its roots in the area of the spread of information
in Social Networks.

The spread of viral information across a network naturally suggests many
interesting optimization problems like Influence Maximization and Target Set

Groups Burning 333

Selection (see [8,21] and references quoted therein). The first authors to study
the spread of information in networks from an algorithmic point of view were
Kempe et al. [24] who proposed two diffusion models named Linear Threshold
and Independent Cascade. Thereafter, a series of papers that isolated interest-
ing variants of the problem were proposed [1,4,9–15,17–19,22,26]. Being the
problem hard in general, several heuristics have been proposed [16,20,27].

All the considered models are applied on a static snapshot of the network and
asks for the identification of a set of initial adapter which will be in charge to
trigger the diffusion of the information. In a real setting, on the other hand, the
network is dynamic and algorithms should be able to adapt to network changes.

Recently, the classical Influence Maximization problem has been revised with
the aim of fetching the top influential users in social networks under a group
influence perspective [28]. The assumption is that the interaction within a group
is high and this favors the rapid dissemination of information inside it. The goal
becames reaching all the groups or maximizing the number of reached groups.

Closely related to our work is the colorful k-center problem, which
has been studied in [3,23].

Colorful k-center problem
Input: A set P of n points in a metric space, and an integer k, a partition
{P1, P2, . . . , Pc} of P into c color classes, and a coverage requirement 0 ≤
tj ≤ |Pj | for each color class j ∈ [c].
Output: Find the smallest radius ρ such that using k balls of radius ρ,
centered at points of P , we can simultaneously cover at least tj points
from each class Pj with j ∈ [c].

Apart from the fact that the problem is defined in a metric space, the main
difference with our BG problem is the fact that the number of sources/centers
is fixed to k, while the radius of the neighbourhood (that is, the value to be
minimized) is equal for each source, while in the BG problem the number of
sources varies as well as the radius of the neighbourhood, because it depends on
the position of the source in the output burning sequence.

3 Burning with Groups: The General Case

3.1 Hardness Results for Burning with Groups

We show that BG cannot be approximated in polynomial time within a factor
c log n, for some constant c < 1, unless NP has quasi polynomial time (i.e.,
NP ⊂ TIME(nO(polylog n)), where TIME(t) denote the class of problems that
admit a deterministic algorithm that runs in time t). To this aim, we provide an
approximation preserving reduction from Set cover.

Set cover (SC)
Input: A universe U = {1, 2, . . . , n} and a collection S of m subsets of U ,
whose union equals the universe.
Output: A collection C ⊆ S of minimum size such that

⋃
C∈C C = U .

334 G. Cordasco et al.

The following result has been proved in [2].

Theorem 1 [2]. Set cover cannot be approximated, in polynomial time, within
a factor (log n)/48, unless NP has quasi polynomial time.

Remark 1. We remark that in the instance of Set cover produced by the reduc-
tion in the proof of Theorem 1, the number of subsets (m) and the size of the
universe (n) are polynomially related (i.e., m ≈ na, for some constant a > 0).

Theorem 2. BG cannot be approximated, in polynomial time, to a factor c log n
where c < 1 is a certain constant, unless NP has quasi polynomial time, even if
all the requirements are equal to 1.

Proof. We give an approximation preserving reduction from Set cover.

The theorem will follow by Theorem 1 and Remark 1, since the construction
below provides a graph G = (V,E) having |V | = O(n × m) nodes.

To our aim, given a SC instance 〈U ,S〉, we construct an instance 〈G,Π,R〉 of
BG. Let |U| = n and S = {C1, . . . , Cm}. We build the graph G = (V,E) where
V is partitioned into the disjoint sets V0, V1, . . . , Vn+2 (i.e., the group family is
Π = {V0, V1, . . . , Vn+2}) and where all the group requirements are fixed to 1
(i.e., R = (1, 1, . . . , 1)). Formally, G = (V,E) is build as follows:

– For any Ci ∈ S, if Ci = {a1, a2, . . . , ar} we add to G a star Si of r + 1 nodes
{ui, vi,1, vi,2, . . . , vi,r} and edges {(ui, vi,j) | j ∈ [r]}. The center node ui is
assigned to the group V0 and the leaf node vi,j is assigned to Vaj

, for j ∈ [r].
– Then, we add a node um+1. We assign um+1 to Vn+1.
– Finally, for each i ∈ [m], we add a path Pi of length 2n + 1 connecting the

node ui to ui+1; all the nodes of the these m paths are assigned to Vn+2.

The correctness of the reduction is implied by the following claim.

Claim 1. The instance 〈U ,S〉 of SC admits a solution of size k if and only if
the instance 〈G,Π,R〉 of BG admits a solution of size k + 1.
�

3.2 Approximation Algorithms for Burning with Groups

We show that BG can be approximated to a factor log n + 1. To this aim, we
first define a novel maximization problem called Maximum Multi-Coverage
Burning (MMCB) and show that it admits a 2-approximation. We will then
use the 2 approximation for MMCB to obtain a log n+1 approximation for BG.

Maximum Multi-Coverage Burning (MMCB)
Input: G = (V,E), a group family Π = {V1, V2, . . . , Vω} (a collection
of pairwise disjoint subsets of V), a vector L = (�1, �2, . . . , �ω) of ω non-
negative values and an integer k.
Output: A sequence S = (v1, v2, . . . , vk), where vi ∈ V , such that

ω∑

j=1

min

{∣
∣
∣
∣
∣

(
k⋃

i=1

Nk−i[vi]

)
⋂

Vj

∣
∣
∣
∣
∣
, �j

}

is maximum. (1)

Groups Burning 335

Algorithm 1. MMCB Algorithm(G,Π,L, k)
1: S = ()
2: for i = 1 to k do
3: v = argmaxu∈V fi(u | S)
4: S(i) = v
5: end for
6: return S

Let S = (v1, . . . , vh) be a sequence of 0 ≤ h ≤ k nodes. We define NS,k =
⋃h

i=1 Nk−i[vi] as the set of all the nodes burned by S by the k-th round and

f(S, k) =
ω∑

j=1

min

{∣
∣
∣
∣
∣

(
h⋃

i=1

Nk−i[vi]

)

∩Vj

∣
∣
∣
∣
∣
, �j

}

=
ω∑

j=1

min {|NS,k ∩ Vj | , �j} . (2)

When S is an empty sequence, we have NS,k = ∅ and f(S, k) = 0. In the
following, we will use NS and f(S), instead of NS,k and f(S, k), whenever the
value of k is clear from the context.
Notice that MMCB asks for a sequence S of size k that maximizes f(S).

Moreover, let S = (v1, . . . , vh) be a sequence of 0 ≤ h ≤ k nodes, let i ∈ [k]
and let v ∈ V be a node, we define

fi(v | S) =
ω∑

j=1

min{|(Nk−i[v] − NS) ∩ Vj |,max{0, �j − |NS ∩ Vj |}}, (3)

the gain that is provided by burning the neighborhood of radius k − i around v,
assuming that nodes in NS are already burned.

By Eq. (3) we can easily observe that given two sequences S and S′ such that
NS ⊆ NS′ and a node v ∈ V we have

fi(v | S) ≥ fi(v | S′) for each i ∈ [k]. (4)

Given the instance 〈G,Π,L, k〉 of MMCB, the algorithm MMCB proceeds by
iteratively adding nodes to the sequence S. At each iteration i, for i ∈ [k], the
node v to be added to the sequence is greedily chosen to give with its (k − i)-
neighborhood the maximum contribution to the sum in (1), see line 3.

The following properties will be useful to prove the approximation factor.

Lemma 1. Let S = (v1, v2, . . . , vh−1) be a sequence of h − 1 nodes and let
S⊥v = (v1, v2, . . . , vh−1, v) be the sequence obtained by queuing v at S. We have

f(S⊥v) − f(S) = fh(v | S). (5)

Let S = (v1, v2, . . . , vk) be the solution provided by the algorithm MMCB
on the instance 〈G,Π,L, k〉 and let O = (u1, u2, . . . , uk) be an optimal solution
for the MMCB problem on the same instance 〈G,Π,L, k〉.

Denote by Si = (v1, . . . , vi) the sequence constructed by the algorithm
MMCB by the end of the i-th step, for i ∈ [k]. We denote by S0 = () the
empty sequence and recall that f(S0) = 0. Let vi be the node selected at step i.

336 G. Cordasco et al.

Lemma 2. For i ∈ [k], fi(vi | Si−1) ≥ fi(ui | S).

Lemma 3.
∑k

i=1 fi(ui | S) ≥ f(O) − f(S).

Theorem 3. MMCB admits a 2-approximation algorithm.

Proof. We have that,

f(S) = (f(S) − f(Sk−1)) + (f(Sk−1) − f(Sk−2)) + . . . + (f(S1) − f(S0))
= fk(vk | Sk−1) + fk−1(vk−1 | Sk−2) + . . . + f1(v1 | S0) by Lemma 1

=
k∑

i=1

fi(vi | Si−1)

≥
k∑

i=1

fi(ui | S) by Lemma 2

≥ f(O) − f(S). by Lemma 3 (6)

Inequality (6) implies f(S) ≥ f(O)/2.
�
We show now how the 2-approximation bound for MMCB can be used to

obtain a log n + 1 approximation for BG.
Consider an instance 〈G,Π,L, k〉 of MMCB. Let � =

∑ω
j=1 �j . By Definition

(2), we have that, for any sequence S of size k: (i) f(S) ≤ � and (ii) f(S) = � if
and only if |NS ∩ Vj | ≥ �j , for j ∈ [ω]. Hence, whenever f(S) = �, the sequence
S also satisfies the BG instance 〈G,Π,R = L〉.

Similarly, let 〈G,Π,R〉 be an instance of BG, let r =
∑ω

j=1 pj and let k∗

be the size of the smallest sequence S∗ that satisfies all the requirements (i.e.,
the optimal value for the given instance). Using the same sequence S∗ we get
f(S∗, k∗) = r for the instance 〈G,Π,R, k∗〉 of MMCB and we have: (i) the
optimum value for the instance 〈G,Π,R, k∗〉 of MMCB is r and (ii) if the
optimum value for 〈G,Π,R, k〉 of MMCB is r then k ≥ k∗.

Let 〈G,Π,R〉 be an instance of BG. For each k = 1, 2, . . . , n, we execute the
Algorithm 2 and take the smallest set obtained as the solution of the problem.
Theorem 4 shows that, exploiting Algorithm 2 and the above properties, one can
obtain the desired approximation factor for BG.

Theorem 4. BG can be approximated to log n + 1.

Proof. For a given k the obtained sequence S = S1⊥S2⊥ . . . ⊥Stk has length
k × tk. We show now that by choosing the value k such that k × tk is minimum
one can get the desired approximation factor.

Let k∗ denote the value of an optimal solution SBG = (v1, . . . , vk∗) for BG
instance 〈G,Π,R〉. Clearly f(SBG, k∗) = r. Hence, when the Algorithm 2 is
executed with k = k∗, we know, by Theorem 3 and the above properties, that
the greedy MMCB algorithm will compute a sequence S1 such that f(S1, k∗) ≥
r/2. By iterating the MMCB algorithm t times, we get the sequences S =

Groups Burning 337

Algorithm 2. BG Algorithm(G = (V,E),Π,R, k)
1: h = 1, Π1 = Π, R1 = R, V 1 = V
2: S1 = MMCB(G, Π1, R1, k)

3: while
(∑h

i=1 f(Si) < r
)
do

4: h = h + 1
5: V h = V h−1 − NSh−1 � V h is the set of nodes not burned by S1, S2, . . . , Sh−1

6: Πh = {V h
1 , . . . , V h

ω } � V h
j = V h ∩ Vj , for j ∈ [ω]

7: Rh = (ph
1 , . . . , ph

ω) � ph
j = max{0, ph−1

j − |NSh−1 ∩ Vj |}, for j ∈ [ω]

8: Sh = MMCB(G, Πh, Rh, k)
9: end while

10: return S = S1⊥S2⊥ . . . ⊥Sh � the concatenation of S1, S2, . . . , Sh

S1⊥S2⊥ . . . ⊥St (that is S is the concatenation of S1, S2, . . . , St) providing a
solution for the instance 〈G,Π,R, k∗ × t〉 of MMCB of value at least

f(S, k∗ × t) ≥
t∑

i=1

f(Si, k∗) ≥ r

(
1
2

+
1
4

+ . . . +
1
2t

)

= r

(

1 − 1
2t

)

.

Hence, for some t ≤ log r + 1, the algorithm will find a sequence S such that
f(S, k∗ × t) ≥ r and the corresponding burning time is

|S| = k∗ × t ≤ k∗ × (log r + 1) ≤ k∗ × (log n + 1).
�

4 Burning with O(1) Groups

In this section we assume that ω = O(1) and obtain a constant approximation
factor for the BG problem. Our solution goes through the following problem:

Square Domination with Groups (SDG)
Input: G = (V,E), a group family Π = {V1, V2, . . . , Vω} (a collection
of pairwise disjoint subsets of V), and a vector R = (p1, p2, . . . , pω) of
requirements for each group.
Output: A set {v1, v2, . . . , vk} ⊆ V of minimum size k such that∣
∣
∣
(⋃k

i=1 Nk[vi]
) ⋂

Vj

∣
∣
∣ ≥ pj , for each j ∈ [ω].

SDG differs from BG because in SDG each source covers a neighbourhood
of the same radius k and consequently the order of nodes in the solution does not
matter, while in BG the radius of the neighbourhood depends on the position
of the source in the sequence.

We notice that given any sequence S, solution for BG on 〈G,Π,R〉, then the
set containing the nodes in S is a solution for SDG for the same instance.
Moreover, from any solution {v1, v2, . . . , vk} to SDG on 〈G,Π,R〉 we can
get a solution for BG, of size 2k, for the same instance as any sequence
(v1, . . . , vk, u1, . . . , uk) where u1, . . . , uk are k arbitrary chosen nodes. Hence,

338 G. Cordasco et al.

Fig. 1. (left) The natural LP relaxation for the k-SDG problem; (right) A simplified
LP relaxation for the same problem.

denoted by OB and OD the sizes of the optimal solution of the BG problem and
the SDG problem, respectively, we have OD ≤ OB ≤ 2OD.

In the following, we will show how to obtain, from this observation, a poly-
nomial time algorithm for the BG problem, whose solution is upper bounded by
3OB + ω − 1.

We assume that OD > ω, otherwise OD = O(1) and we are able to find the
optimal solution for the SDG problem in polynomial time by simply enumerating
over all subsets of V of size OD, which results in an exact algorithm having
running time |V |O(OD) = |V |O(1).

We are going to use a result in [3], where the authors describe a pseudo-
approximation algorithm for the Colorful k-center problem (with two col-
ors). They show how to find a solution of radius at most 2r∗ using at most
k + 1 centers (i.e., sources), where r∗ is the optimum radius for the considered
problem.

Let k-SDG be the decision version of SDG for a given integer k, that is, the
problem asking if there exists a subset S ⊆ V , with |S| = k such that∣
∣
(⋃

v∈S Nk[v]
) ⋂

Vj

∣
∣ ≥ pj , for each j ∈ [ω].

We use the solution of the following natural LP relaxation for the k-SDG
problem, that we name LPk-SDG (Fig. 1 (left)), to have a simplified LP version
(Fig. 1 (right)). This will allow to find a 2-approximation for the SDG problem.

Given a fractional solution (x, z) to LPk-SDG, the variable xu, for u ∈ V ,
represents the fraction of node u that is used as a source and zv, for v ∈ V ,
represents the fraction of coverage that node v receives by the other (fractional)
sources nodes (namely, nodes u at distance at most k from v with xu > 0).

Following [3], we present an algorithm that, given a feasible solution (x, z) to
LPk-SDG, finds a clustering of the nodes of V and a subset S of cluster centers
(nodes with zv > 0), that we can use to write a simplified version of LPk-SDG.

Let S and {Cv | v ∈ S} be the sets returned by Algorithm 3. For any v ∈ S
and j ∈ [ω], let Pjv = Cv ∩ Vj be the set of nodes of group Vj in the cluster Cv.
Fix pjv = |Pjv|. By using S and the values pjv, for each v ∈ S and j ∈ [ω], we
define the linear program LP ′

k-SDG (Fig. 1 (right)).

Groups Burning 339

Algorithm 3. Clustering Algorithm(G, k, x, z)
1: S = ∅, V ′ = V
2: while V ′ �= ∅ and maxv∈V ′ zv > 0 do
3: v = argmaxv′∈V ′zv′

4: S = S ∪ {v}
5: yv = min{1,

∑
u∈Nk[v]

xu}
6: Cv = N2k[v] ∩ V ′

7: V ′ = V ′ − Cv

8: end while
9: return S, {Cv | v ∈ S}, y

The variable yv in LP ′
k−SDG represents the fraction of node v that is used as

a source to cover pjv nodes of group Vj . The following Lemma shows that the
vector y returned by Algorithm 3 is a feasible solution to LP ′

k−SDG.

Lemma 4. Given a feasible solution (x, z) to LPk-SDG and the sets S ⊆ V and
Cv, for v ∈ S returned by Algorithm 1, the following proprieties hold:
(i) The clusters Cv, for v ∈ S are pairwise disjoint.
(ii) y is a feasible solution to LP ′

k-SDG.

As LP ′
k-SDG has only ω non-trivial constraints, any extreme point will have

at most ω variables attaining strictly fractional values [25]. So by the second
constraint in LP ′

k-SDG at most k −1+ω variables of any feasible y are non-zero.
So, we choose to round up the fractional variables yv to 1 since the coverage

of each group Vi for i ∈ [ω] can only increase, and set S′ = {v ∈ S | yv > 0}. By
said above, we get |S′| = k − 1 + ω. Recalling that for each node v ∈ S′ it holds
Cv ⊆ N2k[v] and that k > ω we have that |S′| = k − 1 + ω < 2k − 1 and S′ is a
solution for the k-SDG problem.

Recalling by the definition of the k-SDG problem that k ≤ diam(G), we
can repeat all the above procedure for k = 1, · · · , diam(G), and stop at the
smallest value of k for which a solution S′ is possible. Now, we notice that, if
OD is the size of the optimal solution of the SDG problem, then k ≤ OD, since
an optimal solution SOD

for the SDG problem satisfies all the constraints of
LPk-SDG whenever k ≥ OD. Hence the following theorem follows.

Theorem 5. For ω = O(1), there exists a polynomial time algorithm that finds
a 2-approximation for the SDG problem.

By observing that the above strategy enables to identify a set of k − 1 + ω
sources such that their 2k-neighborhoods satisfy all the requirements, we have
that one can obtain a sequence S, solution of the BG problem, by tacking all the
above sources in any order followed by other arbitrary chosen 2k nodes. Hence,
|S| = 3k + ω − 1 and recalling that k ≤ OD ≤ OB the following result holds.

Theorem 6. For ω = O(1), there exists a polynomial time algorithm to find a
solution for the BG problem whose size is upper bounded by 3OB + ω − 1.

340 G. Cordasco et al.

Recalling that the Graph Burning problem is a special case of BG in which
all the nodes form a single group (i.e., ω = 1) with requirement n, the above
result generalizes the 3-approximation for the Graph Burning [6].

5 Burning Max Groups with Unitary Requirements

When all the requirements are equal to one, an instance of Burning Max
Groups (BMG) can be seen as an instance of the following problem [7].

MCG
Input: S = {S1, S2, . . . , Sm} partitioned into � subsets G1, G2, . . . , G� of
a ground set X , a global bound k and � subset bounds ki, for each Gi.
Output: H ⊆ S such that |H| ≤ k and |H ∩ Gi| ≤ ki for i ∈ [�], and
|⋃S∈H S| is maximized.

Indeed given an instance 〈G,Π = {V1, V2, . . . , Vω}, R, k〉 of the BMG prob-
lem, where all the requirements are fixed to 1 (i.e., R = (1, . . . , 1)), we can
set X = {1, 2, . . . , ω} and � = k. For each i ∈ [k], and for each v ∈ V let
Si,v = {j | Nk−i[v] ∩ Vj �= ∅}, we set S = {Si,v | v ∈ V, i ∈ [k]} and for each
i ∈ [k], Gi = {Si,v | v ∈ V }. Finally set ki = 1, for each i ∈ [k]. Since MCG
admits a 2-approximation algorithm [7], we have the following results.

Theorem 7. There exists a polynomial time algorithm to find a 2-
approximation for the Burning Max Groups problem with unitary requirements.

Open Problem: Can the above result be extended to the BMG problem in the
general case?

By considering each node as a separate subset, the BMG problem becomes

Max Burning (MB)
Input: G = (V,E) and a integer k.
Output: A sequence of nodes (v1, v2, . . . , vk), such that maximizes∣
∣
∣
⋃k

i=1 Nk−i[vi]
∣
∣
∣.

Theorem 8. There exists a polynomial time algorithm to find a 2-approximation
for the Max Burning problem.

References

1. Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds for
target set selection. Theor. Comp. Sci. 411(44–46), 4017–4022 (2010)

2. Arora, S., Lund, C.: Hardness of approximation. In: Hochbaum, Ed. D. (ed.)
Approximation Algorithms for NP-Hard Problems, pp. 399–446 PWS Publishers
(1995)

Groups Burning 341

3. Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.: A constant approxima-
tion for colorful k-center. arXiv:1907.08906v1 (2019)

4. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the
complexity of target set selection. Discrete Optim. 8(1), 87–96 (2011)

5. Bonato, A.: A survey of graph burning. Contr. Discret. Math. 16, 185–197 (2021)
6. Bonato, A., Kamali, S.: Approximation algorithms for graph burning. In: Gopal,

T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 74–92. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-14812-6 6

7. Chekuri, C., Kumar, A.: Maximum coverage problem with group budget con-
straints and applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D.
(eds.) APPROX/RANDOM -2004. LNCS, vol. 3122, pp. 72–83. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-27821-4 7

8. Chen, W., Lakshmanan, L.V.S., Castillo, C.: Information and influence propa-
gation in social networks. In: Synthesis Lectures on Data Management, vol. 5.4
(2013)

9. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can
make target set selection tractable. Theory Comput. Syst. 55(1), 61–83 (2014).
https://doi.org/10.1007/s00224-013-9499-3

10. Cicalese, F., Cordasco, G., Gargano, L., Milanic, M., Vaccaro, U.: Latency-bounded
target set selection in social networks. Theor. Comp. Sci. 535, 1–15 (2014)

11. Coja-Oghlan, A., Feige, U., Krivelevich, M., Reichman, D.: Contagious sets in
expanders. In: Proceedings of SODA, pp. 1953–1987 (2015)

12. Cordasco, G., Gargano, L., Rescigno, A.A.: Influence propagation over large scale
social networks. In: Proceedings of ASONAM, pp. 1531–1538 (2015)

13. Cicalese, F., Cordasco, G., Gargano, L., Milanic, M., Peters, J., Vaccaro, U.: Spread
of influence in weighted networks under time and budget constraints. Theor. Comp.
Sci. 586, 40–58 (2015)

14. Cordasco, G., Gargano, L., Rescigno, A.A.: On finding small sets that influence
large networks. Soc. Netw. Anal. Min. 6, 1–20 (2016)

15. Cordasco, G., Gargano, L., Rescigno, A.A., Vaccaro, U.: Evangelism in social net-
works: algorithms and complexity. Networks 71(4), 346–357 (2018)

16. Cordasco, G., Gargano, L., Mecchia, M., Rescigno, A.A., Vaccaro, U.: Discovering
small target sets in social networks: a fast and effective algorithm. Algorithmica
80, 1804–1833 (2018). https://doi.org/10.1007/s00453-017-0390-5

17. Cordasco, G., Gargano, L., Rescigno, A.A.: Active influence spreading in social
networks. Theor. Comp. Sci. 764, 15–29 (2019)

18. Cordasco, G., et al.: Whom to befriend to influence people. Theor. Comp. Sci. 810,
26–42 (2020)

19. Cordasco, G., Gargano, L., Peters, J.G., Rescigno, A.A., Vaccaro, U.: Fast and
frugal targeting with incentives. Theor. Comp. Sci. 812, 62–79 (2020)

20. Dinh, T.N., Zhang, H., Nguyen, D.T., Thai, M.T.: Cost-effective viral marketing
for time-critical campaigns in large-scale social networks. IEEE Trans. Net. 22,
2001–2011 (2014)

21. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a
Highly Connected world. Cambridge University Press, Cambridge (2010)

22. Gargano, L., Hell, P., Peters, J.G., Vaccaro, U.: Influence diffusion in social net-
works under time window constraints. Theor. Comp. Sci. 584(C), 53–66 (2015)

23. Jia, X., Sheth, K., Svensson, O.: Fair colorful k-center clustering.
arXiv:2007.04059v1 (2020)

24. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. In: Proceedings of KDD 2003 (2003)

http://arxiv.org/abs/1907.08906v1
https://doi.org/10.1007/978-3-030-14812-6_6
https://doi.org/10.1007/978-3-540-27821-4_7
https://doi.org/10.1007/s00224-013-9499-3
https://doi.org/10.1007/s00453-017-0390-5
http://arxiv.org/abs/2007.04059v1

342 G. Cordasco et al.

25. Lev, B., Soyster, A.L.: Integer programming with bounded variables via canonical
separation. J. Oper. Res. Soc. 29(5), 477–488 (1978)

26. Reddy, T.V.T., Rangan, C.P.: Variants of spreading messages. J. Graph Algorithms
Appl. 15(5), 683–699 (2011)

27. Shakarian, P., Eyre, S., Paulo, D.: A scalable heuristic for viral marketing under
the tipping model. Soc. Netw. Anal. Min. 3(4), 1225–1248 (2013). https://doi.org/
10.1007/s13278-013-0135-7

28. Zhu, J., Ghosh, S., Wu, W.: Group influence maximization problem in social net-
works. IEEE Trans. Comput. Soc. Syst. 6(6), 1156–1164 (2019)

https://doi.org/10.1007/s13278-013-0135-7
https://doi.org/10.1007/s13278-013-0135-7

Roman k-Domination: Hardness,
Approximation and Parameterized

Results

A. Mohanapriya1(B), P. Renjith2, and N. Sadagopan1

1 Indian Institute of Information Technology, Design and Manufacturing,
Kancheepuram, Chennai, India

{coe19d003,sadagopan}@iiitdm.ac.in
2 National Institute of Technology, Calicut, Kozhikode, India

renjith@nitc.ac.in

Abstract. We investigate the computational complexity of finding a
minimum Roman k-dominating function (RKDF) on split graphs. We
prove that RKDF on split graphs is NP-complete on K1,2k+3-free split
graphs. We also show that finding RKDF on star-convex bipartite graphs
and comb-convex bipartite graphs are NP-complete. Further, we also
show that finding RKDF on bipartite chain graphs is polynomial-time
solvable, which is a non-trivial subclass of comb-convex bipartite graphs.
On the parameterized front, we show that finding RKDF on split graphs
is in W[1]-hard when the parameter is the solution size. From the approx-
imation perspective, we show that there is no constant factor approxi-
mation algorithm for RKDF.

Keywords: Roman k-dominating function · Split graphs · Bipartite
graphs

1 Introduction

The set D is a dominating set of G if every vertex in V (G) \ D is adjacent
to at least one vertex in D. The dominating set problem and its variants are
of fundamental interest in graph theoretic research. Some of the variants of
Domination which are studied from function perspectives are: {k}-dominating
function [1], k-rainbow domination function [2], Roman domination [3], global
Roman domination [4], double Roman domination [5], Roman {k}-domination
[6] and Roman k-domination [7]. In this paper we analyze the computational
complexity of Roman k-domination for every fixed k ∈ Z

+. Let G be a simple
graph with vertex set V (G). A Roman dominating function on a graph G is a
vertex labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 has
a neighbor with label 2. The weight w(f) of an RDF f is Σv∈V (G)f(v). The
Roman domination number γR(G) is the minimum weight of an RDF of G. A
Roman k-dominating function (RKDF) on G is a function f : V (G) → {0, 1, 2}
such that every vertex u for which f(u) = 0 is adjacent to at least k vertices
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 343–355, 2023.
https://doi.org/10.1007/978-3-031-27051-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_29&domain=pdf
https://doi.org/10.1007/978-3-031-27051-2_29

344 A. Mohanapriya et al.

v1, v2, . . . , vk with f(vi) = 2 for i = 1, 2, . . . , k. The weight of a Roman k-
dominating function is the value w(f) = Σu∈V (G)f(u). The minimum weight of
a Roman k-dominating function on a graph G is called the Roman k-domination
number γkR(G) of G. Note that the Roman 1-domination number γ1R(G) is the
usual Roman domination number γR(G).

On the complexity front, Roman domination is polynomial-time solvable on
interval graphs, cographs, and AT-free graphs [8], and Roman domination is NP-
complete on bipartite graphs [9,10]. Global Roman Domination is NP-complete
for bipartite graphs and chordal graphs [4], and double Roman Domination
is NP-complete for bipartite graphs and chordal graphs [11]. Finding a mini-
mum weight RKDF is called the minimum weight Roman k-domination problem
(RKDP). RKDP is known to be polynomial-time solvable for cactus graphs [7].

To the best of our knowledge, RKDF has not been studied for a subclass of
chordal graphs and a subclass of bipartite graphs. We make the first attempt
in identifying the complexity of the Roman k-domination problem on a subclass
of chordal graphs and for a subclass of bipartite graphs. In this paper, we focus
on the computational complexity of the Roman k-domination problem on split
graphs and some subclass of bipartite graphs such as star-convex bipartite graphs
and comb-convex bipartite graphs.

Our Results: In this paper, we consider connected undirected unweighted sim-
ple graphs.

1. We show that deciding the Roman k-domination problem is NP-complete for
split graphs, star-convex bipartite graphs, and comb-convex bipartite graphs.
We show that for a positive integer k, the Roman k-domination problem is
NP-complete for K1,2k+3-free split graphs. Further, we prove that finding a
minimum weight Roman k-dominating function on bipartite chain graphs is
polynomial-time solvable.

2. As far as approximation algorithms are concerned, we show that there is no
constant factor polynomial-time approximation algorithm for RKDF unless
P = NP .

3. On the parameterized complexity front, we show that for split graphs finding
RKDF is W[2]-hard with the parameter being the weight of the Roman k-
domination function.

Graph Preliminaries:
For a graph G, V (G) denotes the vertex set and E(G) represents the edge set.
For a set S ⊆ V (G), G[S] denotes the subgraph of G induced on the vertex
set S. The open neighborhood of a vertex v is NG(v) = {u | {u, v} ∈ E(G)}
and the closed neighborhood of v is NG[v] = {v} ∪ NG(v). For S ⊆ V (G),
NG(S) =

⋃

v∈S

NG(v). The degree of vertex v is dG(v) = |NG(v)|. A split graph

is a graph G in which V (G) can be partitioned into two sets; a clique K and
an independent set I. A split graph is written as G = (K ∪ I, E), where K is a
maximal clique and I is an independent set. In a split graph, for each vertex u in
K, N I

G(u) = NG(u) ∩ I, dIG(u) = |N I
G(u)|, and for each vertex v in I, NK

G (v) =

Roman k-Domination: Hardness, Approximation and Parameterized Results 345

N(v) ∩ K, dKG (v) = |NK
G (v)|. For each vertex u in K, N I

G[u] = NG(u) ∩ I ∪ {u},
and for each vertex v in I, NK

G [v] = N(v) ∩ K ∪ {v}. For a split graph G,
ΔI

G = max{dIG(u)}, u ∈ K and ΔK
G = max{dKG (v)}, v ∈ I. A bipartite graph

G with V (G) = (X,Y) is called tree-convex if there exists a tree T on X such
that, for each y in Y , the neighbors of y induce a subtree in T . When T is a star
(comb), G is called star- (comb-) convex bipartite graph. If G by its definitions
contains more than one partition, then each partition is non-empty.

Roadmap: In Sect. 2, we present classical complexity results and bounds for
RKDF on split graphs. In Sect. 3, we present classical complexity results for
RKDF on star-convex bipartite graphs and comb-convex bipartite graphs, and
RKDF is polynomial-time solvable on bipartite chain graphs. We present param-
eterized complexity results and approximation results in Sect. 4, and Sect. 5,
respectively. We present some observations about Roman k-domination,

Claim 1. For a graph G, if there exists a vertex v whose degree is less than k,
then RKDF having minimum weight has f(v) �= 0.

Proof. We know that if a vertex v such that f(v) = 0 means that it has ui, 1 ≤
i ≤ k neighbours such that f(ui) = 2. Since the degree of v is less than k, there
can not be k vertices adjacent to v. Hence RKDF having minimum weight has
f(v) �= 0.

2 Roman k-Domination on Split Graphs

We analyze the classical complexity of Roman k-domination on split graphs for
any k ≥ 1.

2.1 Roman k-Domination on Split Graphs Is NP-Complete

In this section, we show that the decision version of the Roman k-domination
problem is NP-complete for split graphs by giving a polynomial-time reduction
from a well-known NP-complete problem, Exact-3-Cover (X3C) [12], which is
defined as follows:

EXACT-3-COVER (X, C)
Instance: A finite set X with |X| = 3q and a collection C =
{C1, C2, . . . , Cm} of 3-element subsets of X.
Question: Is there a subcollection C′ ⊆ C such that for every x ∈ X, x
belongs to exactly one member of C′ (that is, C′ partitions X) ?

The decision version of Roman k-domination problem is defined below:

The Roman k-domination problem
Instance: A graph G, α ∈ N

Question: Does there exist a function f : V (G) → {0, 1, 2} such that
for every vertex u for which f(u) = 0 is adjacent to at least k vertices
v1, v2, . . . , vk for which f(vi) = 2, 1 ≤ i ≤ k and Σu∈V (G)f(u) ≤ α?

346 A. Mohanapriya et al.

We can observe that Roman 1-domination is not a special case of Roman 2-
domination. For instance, assume that we have G as K1,10 and we ask“does
there exist a Roman 1-dominating function (RKDF) of weight at most 2?” The
answer is yes. But for the same G as K1,n and we ask “does there exist a Roman
2-dominating function (RKDF) of weight at most 2?” The answer is no.

From this, we can observe that YES instance of Roman 1-domination
becomes NO instance of Roman 2-domination. Therefore, the computational
complexity of Roman k-domination for each k needs to be analyzed separately.
The computational complexity of Roman k-domination can vary for each k. Thus
we present a reduction wherein the reduction instances use parameter k as part
of the construction.

Theorem 1. For split graphs, the Roman k-domination problem (RKDP) is
NP-complete.

Proof. RKDP is in NP: Given a graph G, an integer α and a function f ,
whether f is a RKDF of size at most α can be checked in polynomial time.
Hence RKDP is in NP.

RKDP is NP-Hard: X3C can be reduced to RKDP on split graphs in poly-
nomial time using the following reduction. We map an instance (X, C) of X3C,
where X = {x1, . . . , x3q} and C = {c1, . . . , cm}, to the corresponding instance
(G,α) of RKDP as follows: V (G) = V1 ∪ V2 ∪ V3, V1 = {cij | ci ∈ C, 1 ≤ i ≤
m, 1 ≤ j ≤ k}, V2 = {xi | xi ∈ X}, V3 = {yij | 1 ≤ i ≤ m, 1 ≤ j ≤ 2k − 2}, and
E(G) = {{cij , xl} | xl ∈ ci, cij ∈ V1, xl ∈ V2, 1 ≤ i ≤ m, 1 ≤ j ≤ k, 1 ≤ l ≤
3q} ∪ {{yij , cil} | 1 ≤ i ≤ m, 1 ≤ j ≤ 2k − 2, 1 ≤ l ≤ k} ∪ {{w, z} | w, z ∈ V1}.
Note that G is a split graph with V1 as a clique and V2 ∪ V3 as an indepen-
dent set. Using the following claims, we establish that this reduction is a solu-
tion preserving reduction. That is Exact-3-Cover (X, C) if and only if G has a
RKDF with weight at most α = (2kq) + ((2k − 2)(m − q)). An illustration for
X3C to Roman 4-domination on split graphs is shown in Fig. 1. In Fig. 1, For
X = {x1, x2, x3, x4, x5, x6} and C = {c1 = {x1, x2, x3}, c2 = {x2, x3, x4}, c3 =
{x4, x5, x6}}, the corresponding graph G with α = 2qk + ((2k − 2)(m − q)) = 6.
For C′ = {c1, c3} which is a solution to X3C we obtain the corresponding
Roman 4-domination function as follows: f(c11) = . . . = f(c14) = f(c31) =
. . . = f(c34) = 2, f(y11) = . . . = f(y16) = f(y31) = . . . = f(y36) = 0,
f(c21) = . . . = f(c24) = f(x1) = . . . = f(x6) = 0, f(y21) = . . . = f(y26) = 1.

Proof. Necessity: Suppose C′ is a solution for X3C with |C′| = q, then the corre-
sponding function f : V → {0, 1, 2} in G is defined as follows.
For ci ∈ C′:
f(v) = 2, if v ∈ V1, v = cij , 1 ≤ j ≤ k,
f(v) = 0, if v ∈ V2,
f(v) = 0, if v ∈ V3, v ∈ N I

G(cij)
For ci /∈ C′ (ci ∈ C − C′):
f(v) = 1, if v ∈ V3, v ∈ N I

G(cij), 1 ≤ j ≤ k,
f(v) = 0, if v ∈ V1, v = cij , 1 ≤ j ≤ k

Roman k-Domination: Hardness, Approximation and Parameterized Results 347

Observe that there are kq vertices in V1 having label 2, and there are (2k −
2)(m − q) vertices in V3 having label 1. Therefore, f is a RKDF with weight
α = (2kq) + ((2k − 2)(m − q)).

Sufficiency: Suppose that G has a RKDF f with weight at most α = (2kq) +
((2k − 2)(m − q)).

To complete the proof of sufficiency, we present a series of claims using the
structural understanding of G and f .

Claim 1A. If G has a RKDF f with weight at most α, then for each x ∈ V2,
f(x) = 0.

x1

x2

x3

x4

x5

x6

y11
y12
y13
y14
y15
y16
y21
y22
y23
y24
y25
y26
y31
y32
y33
y34
y35
y36

c11

c14
c13

c12

c21
c22
c23
c24
c31
c32
c33
c34

K
I

I
Clique on K (K12)

Fig. 1. Reduction: An instance of X3C to RKDP in split graphs

Proof. Suppose there exists a vertex x ∈ V2 such that f(x) �= 0. Let x1, . . . , xp ⊆
V2 such that f(xi) �= 0, 1 ≤ i ≤ p. Clearly |V2 − {x1, . . . , xp}| = 3q − p. Let
V ′
2 = V2 − {x1, . . . , xp}. Since f is a RKDF, each a ∈ V ′

2 with f(a) = 0 is
adjacent to at least k vertices say {w1, . . . , wk} with f(wi) = 2, 1 ≤ i ≤ k.
By our construction for any w ∈ V1, |N(w) ∩ V2| = 3. Hence there are at least
(
 3q−p

3 �)k vertices, say Z = {z1, . . . , z(� 3q−p
3 �)k} in V1 such that for each z ∈ Z,

f(z) = 2.

Case 1: For each i, 1 ≤ i ≤
 3q−p
3 �, j �= l, 1 ≤ j ≤ k, 1 ≤ l ≤ k, f(cij) = f(cil) = 2.

Let r =
 3q−p
3 �. Without loss of generality we relabel Z as Z = {z1 =

c11, . . . , zk = c1k, zk+1 = c21, . . . , z2k = c2k, . . . , zrk−k+1 = cr1, . . . , zrk = crk}
such that for each z ∈ Z, f(z) = 2.

Case 1.1: For each c ∈ (V1 \ Z) such that f(c) = 0, for each y ∈ V3, y ∈
N(z) where z ∈ Z such that f(y) = 0 and for each a ∈ V3, a ∈ N(c) where

348 A. Mohanapriya et al.

c ∈ (V1 \ Z) such that f(a) = 1. Then the weight of RKDF of G is at least
2k(
 3q−p

3 �) + p + (2k − 2)(m − (
 3q−p
3 �)) = p + 2km − 2m + 2(
 3q−p

3 �), which is
greater than α, a contradiction.

Note that if we assume other values for each r ∈ (V1 \ Z) such that f(r) = 1
or f(r) = 2, for each y ∈ V3, y ∈ N(z) where z ∈ Z such that f(y) = 1 or
f(y) = 2 and for each a ∈ V3, a ∈ N(w) where w ∈ (V1 \ Z) such that f(a) = 2,
we arrive at a contradiction.

Case 2: For some i, 1 ≤ i ≤
 3q−p
3 �, j �= l, 1 ≤ j ≤ k, 1 ≤ l ≤ k, f(cij) = 2 and

f(cil) �= 2.
Let c1, c2, . . . , ct ⊆ V1 such that for each ci, 1 ≤ i ≤ t, j �= l, 1 ≤ j ≤ k,

1 ≤ l ≤ k, f(cij) = 2 and f(cil) = 2. we know that t < r. For some 1 ≤
i ≤ t < r, S = {cij | cij ∈ V1, 1 ≤ i ≤ t, 1 ≤ j ≤ k such that f(cij) = 2}.
Let W = {cij | cij ∈ V1, 1 ≤ j ≤ k, there exist cij , cil such that f(cij) =
2 and f(cil) �= 2 for some i, 1 ≤ i ≤
 3q−p

3 �, j �= l, 1 ≤ j ≤ k, 1 ≤ l ≤ k}. Note
that W ∩ S = ∅. Let W0 = {w | w ∈ W, f(w) = 0}, W1 = {w | w ∈ W, f(w) =
1}, W2 = {w | w ∈ W, f(w) = 2}. Let U = W ∪ S.

Note that for each vertex y ∈ V3, y ∈ N(W), f(y) �= 0 because by our
construction dG(y) = k and there exist two vertices in a, b ∈ N(y) such that
f(a) �= 2, f(b) = 2.

Case 2.1: For each c ∈ (V1 \ U) such that f(c) = 0, for each y ∈ V3, y ∈ N(z),
where z ∈ Z such that f(y) = 0, for each g ∈ V3, g ∈ N(w) where w ∈ (V1 \ Z)
such that f(g) = 1, for each vertex in w ∈ W0, f(w) = 0, for each vertex in
l ∈ W1, f(l) = 1, and for each vertex in d ∈ W2, f(d) = 2.

Then the weight of RKDF of G is at least 2k(t)+|W1|+2|W2|+(2k−2)(m−t)
where t < r, which is greater than α, a contradiction.

Note that if we assume other values for each c ∈ (V1\U) such that f(c) = 1 or
f(c) = 2, for each y ∈ N(z), y ∈ V3 where z ∈ Z such that f(y) = 1 or f(y) = 2
and for each g ∈ N(w) and g ∈ V3 where w ∈ V1 \ Z such that f(g) = 2, For
W any other combination, for each vertex in w ∈ W0, f(w) = 0, for each vertex
in l ∈ W1, f(l) = 1, and for each vertex in d ∈ W2, f(d) = 2, we obtain a
contradiction.

Therefore there does not exist {x1, . . . , xp} ⊆ V2 such that f(xi) �= 0, 1 ≤
i ≤ p. Thus for each x ∈ V2, f(x) = 0.

Claim 1B. Given f , without loss of generality Z = {c11, . . . , c1k, . . . , cq1, . . . , cqk}
such that for each z ∈ Z, f(z) = 2.

Proof. By our construction, for any w ∈ V1, |N(w) ∩ V2| = 3, then at least
qk say Z = {c11, . . . , c1k, . . . , cq1, . . . , cqk} such that for each z ∈ Z, f(z) = 2.
Suppose that there exists a ci ∈ Z, 1 ≤ i ≤ q such that f(cij) �= 2, 1 ≤ j < k.
Since for each xi ∈ V2, f(xi) = 0, there exist U = {ul ∈ (V1 \ Z)} such that
f(ul) = 2, 1 ≤ l ≤ j. Note that the vertices in U need not be consecutive. Let
W = {w | w ∈ (V1 \ U)}.

Case 1: For each w ∈ W , f(w) = 0, for each y ∈ V3, there exists ci, 1 ≤ i ≤ m,
f(cij) �= 2, f(cil) = 2, 1 ≤ j ≤ k, 1 ≤ l ≤ k, j �= l such that f(y) = 1, for each

Roman k-Domination: Hardness, Approximation and Parameterized Results 349

y ∈ V3, there does not exists ci, 1 ≤ i ≤ m, f(cij) �= 2, f(cil) = 2, 1 ≤ j ≤ k,
1 ≤ l ≤ k, j �= l such that f(y) = 0. Then the weight of RKDF of G is at least
2kq + ((2k − 2)(m − t)) where t < q, which is greater than α, a contradiction.
(Note that t refers to the number of consecutive vertices ci ∈ V1, 1 ≤ i ≤ t such
that f(ci) = 2)

Note that when we assume other values for each w ∈ W , f(w) = 0, for each
y ∈ V3, there exists ci, 1 ≤ i ≤ m, f(cij) �= 2, f(cil) = 2, 1 ≤ j ≤ k, 1 ≤ l ≤ k,
j �= l such that f(y) = 2, for each a ∈ V3, there does not exists ci, 1 ≤ i ≤ m,
f(cij) �= 2, f(cil) = 2, 1 ≤ j ≤ k, 1 ≤ l ≤ k, j �= l such that f(a) = 1, f(a) = 2,
we still arrive at a contradiction. Therefore the vertices in Z are consecutive and
z ∈ Z, f(z) = 2.

Claim 1C. If G has a RKDF f with weight at most α, then w ∈ (V1 \ Z),
Z = {c11, . . . , c1k, . . . , cq1, . . . , cqk} such that for each z ∈ Z, f(z) = 2, f(w) = 0.

Proof. Case 1: Suppose that there exist at least k vertices such that U =
{u1, . . . , uk} ⊆ (V1 \ Z) such that f(ui) = 2, 1 ≤ i ≤ k.

Recall that y ∈ N(w) such that w ∈ (V1 \ (Z ∪ U)), f(y) �= 0.

Case 1.1: Let t = q + 1, U = {ct1, . . . , ctk} such that for each u ∈ U , f(u) = 1,
U ∩ Z = ∅, for each w ∈ (V1 \ (Z ∪ U)), f(w) = 0, for each y ∈ N(w) such that
y ∈ V3, w ∈ Z, f(y) = 0, for each y ∈ N(w) such that y ∈ V3, w ∈ U , f(y) = 0
and for each y ∈ V3, y ∈ N(w), w ∈ (V1 \ (Z ∪ U)), f(y) = 1. Then the weight
of RKDF of G is 2kq + k + ((2k − 2)(m − q − 1)), which is greater than α, a
contradiction. Note that if we assume other values for each u ∈ U , f(u) = 2,
U ∩ Z = ∅, for each w ∈ (V1 \ (Z ∪ U)), f(w) = 0, for each y ∈ N(w) such that
y ∈ V3, w ∈ Z, f(y) = 1 or f(y) = 2, for each y ∈ N(w) such that y ∈ V3,
w ∈ U , f(y) = 1 or f(y) = 2 and for each y ∈ V3, y ∈ N(w), w ∈ (V1 \ (Z ∪ U)),
f(y) = 2, we still arrive at a contradiction.

Case 2: Suppose that there exist at least one vertex u ∈ (V1 \ Z) such that
f(u) = 2.

Recall that y ∈ N(v) such that v ∈ (V1 \ (Z ∪ {u})), f(y) �= 0.

Case 2.1: For each v ∈ (V1 \ (Z ∪ {u})), f(v) = 0, for each y ∈ V3, y ∈ N(z),
z ∈ Z, f(y) = 0 and for each y ∈ V3, y ∈ N(w), w ∈ (V1 \ Z), f(y) = 1. Then
the weight of RKDF of G is 2kq + 2 + ((2k − 2)(m − q)), which is greater than
α, a contradiction. Note that if we assume other values for vertices in Case 2.1,
we still arrive at a contradiction.

Case 3: Suppose that there exists a vertex such that w ∈ (V1 \ Z) such that
f(w) = 1.

Case 3.1: For each v ∈ (V1 \ (Z ∪ {u})), f(v) = 0, for each y ∈ V3, y ∈ N(w),
w ∈ Z, f(y) = 0 and for each a ∈ V3, a ∈ N(w), a ∈ (V1 \ Z), f(a) = 1. Then
the weight of RKDF of G is 2kq +1+((2k −2)(m− q)), which is greater than α,
a contradiction. Note that if we assume other values for vertices in Case 3.1, we
still arrive at a contradiction. Therefore for any vertex w ∈ (V1 \ Z) such that
f(w) = 0. Thus Σu∈V1f(u) = 2kq.

350 A. Mohanapriya et al.

Claim 1D. If G has a RKDF f with weight at most α, then u ∈ N(w), w ∈
(V1 \ Z), Z = {c11, . . . , c1k, . . . , cq1, . . . , cqk}, f(u) = 1, and v ∈ N(z), z ∈
Z, Z = {c11, . . . , c1k, . . . , cq1, . . . , cqk}, f(v) = 0.

Proof. Case 1: There exists a vertex y ∈ V3, y ∈ N(z), z ∈ Z, f(y) = 1 and for
each a ∈ V3, a ∈ N(w), w ∈ (V1 \Z), f(a) = 1 (Recall that f(a) = 1 or f(a) = 2).

Then the weight of RKDF of G is 2kq+((2k−2)(m−q))+1, which is greater
than α, a contradiction. If we assume other values for vertices in Case 1, we still
arrive at a contradiction. Therefore y ∈ V3, y ∈ N(z), z ∈ Z, f(y) = 0. We
know that a ∈ V3, a ∈ N(w), w ∈ (V1 \ Z), Z = {c11, . . . , c1k, . . . , cq1, . . . , cqk},
f(a) �= 0.

Case 2: There exist a vertex y ∈ V3, y ∈ N(w), w ∈ (V1 \ Z), f(y) = 2, for each
a ∈ N(c), a ∈ V3, c ∈ (V1\(Z∪{c})), f(a) = 1. Then the weight of RKDF of G is
2kq+((2k−2)(m−q−1))+2, which is greater than α, a contradiction. Therefore
y ∈ V3, y ∈ N(w), w ∈ (V1 \ Z), f(y) = 1. Thus Σy∈V3f(y) = (2k − 2)(m − q).

Since each cij ∈ V1 has exactly three neighbors in X, clearly there exists kq
vertices of cij ∈ V1 with weight 2 such that (

⋃

f(cij)=2

NG(cij) ∩ X) = X. Conse-

quently, C′ = {ci | f(cij) = 2} is an exact-3-cover of C.
Therefore, the Roman k-domination problem is NP-complete on split

graphs.
�

3 Roman k-Domination on Some Subclasses of Bipartite
Graphs

In this section, we show that finding RKDF on star-convex bipartite graphs and
comb-convex bipartite graphs are NP-complete. Further, we show that finding
RKDF on bipartite chain graphs is polynomial-time solvable.

3.1 Roman k-Domination on Star-Convex Bipartite Graphs

In this section, we show that the decision version of the Roman k-domination
problem is NP-complete for star-convex bipartite graphs by giving a polynomial
time reduction from Exact-3-Cover (X3C).

Theorem 2. For star-convex bipartite graphs, the Roman k-domination prob-
lem is NP-complete.

The proof is omitted due to space constraint.

3.2 Roman k-Domination on Comb-Convex Bipartite Graphs

In this section, we show that the decision version of the Roman k-domination
problem is NP-complete for comb-convex bipartite graphs by giving a polynomial
time reduction from Exact-3-Cover (X3C).

Theorem 3. For comb-convex bipartite graphs, the Roman k-domination prob-
lem is NP-complete.

The proof is omitted due to space constraint.

Roman k-Domination: Hardness, Approximation and Parameterized Results 351

3.3 Roman k-Domination on Bipartite Chain Graphs

It is known from Theorem 1, that for P5-free graphs finding RKDF is NP-
complete. A natural question to ask is the complexity of RKDF on P5-free
bipartite graphs. In this section, we present a polynomial-time algorithm for
finding RKDF on bipartite chain graphs. A bipartite graph G(X,Y,E) is called
a bipartite chain graph if and only if the neighborhood of the vertices in X can
be linearly ordered with respect to inclusion (subset or equal) and the neighbor-
hood of the vertices in Y can also be linearly ordered with respect to inclusion
(subset or equal).

We show that for any fixed k ∈ Z
+, finding the minimum Roman k-

domination function is polynomial-time solvable for bipartite chain graphs.
Let G(X,Y,E) be a bipartite chain graph such that X = (x1, . . . , xn), Y =
(y1, . . . , yn) such that dG(x1) ≥ dG(x2) ≥ . . . ≥ dG(xn) and dG(y1) ≥
dG(y2) ≥ . . . dG(ym). It is known that NG(x1) ⊇ NG(x2) ⊇ . . . ⊇ NG(xn)
and NG(y1) ⊇ NG(y2) ⊇ . . . ⊇ NG(ym). Let l be the number of vertices in G
whose degree is less than k.

Theorem 4. For G(X,Y,E) be a bipartite chain graph such that X =
(x1, . . . , xn), Y = (y1, . . . , yn) such that dG(x1) ≥ dG(x2) ≥ . . . ≥ dG(xn) and
dG(y1) ≥ dG(y2) ≥ . . . dG(ym), then

γkR(G) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4k + l if G has at least 3k vertices in X of degree at least k

and G has at least 3k vertices in Y of degree at least k

2k + l + r if G has at least 2k vertices in X of degree at least k

and G has at least k vertices in Y of degree at least k,
where r represents number of vertices in yk+1, . . . , ym

having degree at leastk or vice versa
n + m otherwise.

Proof. Case 1: If G has at least 3k vertices in X of degree at least k and G
has at least 3k vertices in Y of degree at least k, then γkR = 4k + l. Since
x1, . . . , x3k, y1, . . . , y3k has degree at least k, then Z = {x1, . . . , xk, y1, . . . , yk}
such that z ∈ Z, f(z) = 2. There are k vertices in Z ∩ X, there are 2k vertices
yi ∈ Y, k + 1 ≤ i ≤ m such that dG(yi) ≥ k, yi is adjacent to Z ∩ X. Hence
f(yi) = 0, k + 1 ≤ i ≤ m. Similarly, there are k vertices in Z ∩ Y , there are 2k
vertices xi ∈ X, k + 1 ≤ i ≤ n such that dG(xi) ≥ k, xi is adjacent to Z ∩ Y .
Hence f(xi) = 0, k + 1 ≤ i ≤ m. The vertices whose degree is strictly less than
k do not have k neighbors labeled 2, hence they are labeled 1.

Case 2: If G has at least 2k vertices in X of degree at least k and G has at least
k vertices in Y of degree at least k or vice versa, then γkR = 2k + l + r.

Without loss of generality assume that the number of vertices of degree k
in X is more than the number of vertices of degree k in Y . It is known that
Z = {x1, . . . , x2k, y1, . . . , yk} are of degree at least k. Since the number of
vertices in Y having degree at least k is at least 2k and at most 3k − 1, and

352 A. Mohanapriya et al.

the number of vertices in X having degree at least K is at least k and at most
3k − 1, k vertices in Y say y1, . . . , yk such that f(yi) = 2, 1 ≤ i ≤ k. Therefore
for all x ∈ X, dG(x) ≥ k, f(x) = 0. Since the number of yi ∈ Y , k + 1 ≤ i ≤ m
having degree at least k is at most 2k − 1, then all yi ∈ Y , k +1 ≤ i ≤ m having
degree at least k are labeled 1. The vertices whose degree is strictly less than
k do not have k neighbors labeled 2, hence they are labeled 1. The number of
vertices in y having label 2 are 2k, and the rest of the vertices in y having label 1
and degree at least k are r. Hence the minimum Roman k-domination function
of G is γkR(G) = 2k + l + r.

Case 3: The number of vertices of degree at least k in X is at most 2k − 1 or
the number of vertices of degree at least k in Y is at most k − 1 or vice versa.
Then all the vertices in V (G) are labeled 1.
�

4 W-Hardness Results for Roman Domination on Split
Graphs

In this section, we shall analyze the complexity of the parameterized version
of Roman domination problem. By Roman domination, we mean RKDF when
k = 1.

The parameterized version of Roman domination problem (PRD) with solu-
tion size k as the parameter is defined below:

PRD (G, k)
Instance: A graph G. Parameter: A positive integer α.
Question: Does there exist a function f : V (G) → {0, 1, 2} such that for
every vertex u for which f(u) = 0 is adjacent to at least one vertex v for
which f(v) = 2 and Σu∈V (G)f(u) ≤ α?

Theorem 5. PRD is W[2]-hard on split graphs.

Proof. We prove this by giving a reduction from the dominating set problem in
general graphs. Given an instance of (G, k) of dominating set, we construct a
corresponding instance of split graph (H,α = 2k) as follows; V (H) = W ∪X∪Y ,
W = {wi | ui ∈ V } ∪ X = {xi | ui ∈ V } ∪ Y = {yi | ui ∈ V }, and E(H) =
{{wi, xj}, {wi, yj}, {xi, wj}, {yi, wj} | {ui, uj} ∈ E(G)} ∪ {{wi, xi}, {wi, yi} |
1 ≤ i ≤ n} ∪ {{wi, wj} | 1 ≤ i < j ≤ n}. We can observe that H is a split graph
with H[W] as a clique and H[X ∪ Y] as an independent set.

We show that G has a dominating set D of size k if and only if H has a
RKDF with weight α = 2k. Clearly for each vertex ui ∈ D, f(wi) = 2, for the
vertices uj /∈ D, wj ∈ W , f(wj) = 0 and for each vertex z ∈ X ∪ Y , f(z) = 0.
We obtain a RKDF of weight 2k in H. Conversely, by our construction, we know
that a vertex wi ∈ W such that |N I

G(wi)| ≥ 4, whereas for the corresponding
xi ∈ X, |N(xi)| ≥ 2 and yi ∈ Y , |N(yi)| ≥ 2. Suppose that a subset of vertices
from X ∪ Y has weight 2. Then w ∈ W, f(w) = 0. Further, 2n − k vertices in
X ∪ Y should have weight at least 1. Thus α ≥ 2k + n + n − k = 2n + k which is

Roman k-Domination: Hardness, Approximation and Parameterized Results 353

a contradiction that α = 2k. Similarly, if a subset of vertices from X has weight
2 or a subset of vertices from Y has weight 2, we obtain a contradiction for α.
Thus, a set of k vertices in W have the corresponding k vertices of G is in D.

This proves that D is a dominating set of size k for G and establishes the
theorem.
�
Corollary 1. PRD is W[2]-hard on chordal graphs.

Given the ordering of vertices in bipartite chain graphs. Since we visit each vertex
exactly once, we can find a minimum Roman k-dominating set in linear time.

5 Approximation Hardness for RKDF

In this section, we prove that split graphs do not admit any constant-time
approximation algorithm for MRKDF. To show the hardness result for find-
ing a minimum weight Roman k-dominating function (MRKDP), we provide an
approximation ratio preserving reduction from the MIN SET COVER problem.
Minimum set cover problem: Let X be any non-empty set and C be a family
of subsets of X. For the set system (X,C), a set C ′ ⊆ C is called a cover of
X, if every element of X belongs to at least one element of C. The MIN SET
COVER problem is to find a minimum cardinality cover of X for a given set
system (X,C). The following result is proved in [13].

Theorem 6 [13]. The MIN SET COVER problem for the input instance (X,C)
does not admit a (1 − ε) ln |X|-approximation algorithm for any ε > 0 unless
NP ⊆ DTIME(|X|O(log log |X|)). Furthermore, this inapproximability result
holds for the case when the size of the input collection C is no more than the
size of the set X.

Theorem 7. For a fixed integer ρ, MRKDP on split graphs does not admit a
ρ-approximation algorithm, unless P = NP .

Proof. In order to prove the theorem, we propose the following approximation-
ratio preserving reduction. Let X = {x1, x2, . . . , xp} and C = {c1, c2, . . . , cq} be
an instance of the MIN SET COVER problem. From this, with similar arguments
as in Theorem 1, we construct an instance G(K, I,E) of MRKDP for split graphs.
We state the following:

Claim 1: MIN SET COVER instance (X,C) has a cover of cardinality m if and
only if G has a RKDF of size (2mk) + ((2k − 2)(q − m)).

Proof. The proof is similar to the claim that is Exact-3-cover (X, C) if and only
if G has a RKDF with weight at most α = (2kq)+((2k −2)(m− q)) of Theorem
1, and details are omitted due to space constraint.

If α is MRKDF of G and C ′ is a minimum set cover of X for the set system
(X,C), then α = (2mk) + ((2k − 2)(q − m)). Suppose that MRKDF can be
approximated within a ratio of ρ, where ρ is a fixed integer, by using some

354 A. Mohanapriya et al.

approximation algorithm A, that runs in polynomial time. Then the algorithm
SET-COVER-APPROX presented in Algorithm 1 constructs a solution for the
MIN SET COVER problem.

Algorithm 1. SET-COVER-APPROX(X,C)
1: Input: A set X and a collection C of subsets of X.
2: Output: A cover C∗ of X.
3: Construct the graph G
4: Compute a RKDF g on G by using algorithm A
5: Construct a cover C∗ of X from the weight of RKDF of G which is α (as illustrated

in the proof of Claim 1 in Theorem 7)
6: return C∗

Clearly, SET-COVER-APPROX runs in polynomial time. Let R be the RKDF
of G obtained from Algorithm A and let R∗ be the optimal RKDF of G. Since
RKDF algorithm A admits ρ-approximation algorithm, R

R∗ = ρ. This proves that
the algorithm SET-COVER-APPROX approximates the set cover of X within
ratio ρ′, where 1 ≤ ρ′ ≤ ρ. By Theorem 6, it is known that set cover does
not admit a (1 − ε) ln |X|-approximation algorithm for any ε > 0 unless NP ⊆
DTIME(|X|O(log log |X|)). However, it contradicts Theorem 6 which says MIN
SET COVER for any arbitrary instance (X,C) does not admit a (1 − ε) ln |X|-
approximation algorithm for any ε > 0 unless NP ⊆ DTIME (|X|O(log log |X|)).

�
Concluding Remarks and Further Research: In this paper, we have pre-
sented NP-Hardness result for split graphs, star-convex and comb-convex bipar-
tite graphs. We have presented a polynomial-time algorithm for RKDF on bipar-
tite chain graphs. We have also presented approximation and parameterized
complexity results for RKDF. The natural direction for further research is to
explore these graph classes in other variants of the Roman dominating function
such as the global Roman dominating function and double Roman dominating
function.

References

1. Domke, G.S., Hedetniemi, S.T., Laskar, R.C., Fricke, G.: Relationships between
integer and fractional parameters of graphs. In: Graph Theory, Combinatorics,
and Applications, Proceedings of the Sixth Quadrennial International Conference
on the Theory and Applications of Graphs, vol. 1, pp. 371–387 (1991)

2. Brešar, B., Henning, M.A., Rall, D.F.: Rainbow domination in graphs. Taiwanese
J. Math. 12(1), 213–225 (2008)

3. Cockayne, E.J., Dreyer, P.A., Jr., Hedetniemi, S.M., Hedetniemi, S.T.: Roman
domination in graphs. Discrete Math. 278(1–3), 11–22 (2004)

4. Panda, B.S., Goyal, P.: Hardness results of global roman domination in graphs.
In: Mudgal, A., Subramanian, C.R. (eds.) CALDAM 2021. LNCS, vol. 12601, pp.
500–511. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67899-9 39

https://doi.org/10.1007/978-3-030-67899-9_39

Roman k-Domination: Hardness, Approximation and Parameterized Results 355

5. Beeler, R.A., Haynes, T.W., Hedetniemi, S.T.: Double roman domination. Discrete
Appl. Math. 211, 23–29 (2016)

6. Wang, C.X., Yang, Y., Wang, H.J., Xu, S.J.: Roman {k}-domination in trees and
complexity results for some classes of graphs. J. Comb. Optim., pp. 1–13 (2021)

7. Kammerling, K., Volkmann, L.: Roman k-domination in graphs. J. Korean Math.
Soc. 46(6), 1309–1318 (2009)

8. Liedloff, M., Kloks, T., Liu, J., Peng, S.-L.: Roman domination over some graph
classes. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 103–114. Springer,
Heidelberg (2005). https://doi.org/10.1007/11604686 10

9. Liu, C.H., Chang, G.J.: Roman domination on strongly chordal graphs. J. Comb.
Optim. 26(3), 608–619 (2013)

10. Padamutham, C., Palagiri, V.S.R.: Algorithmic aspects of roman domination in
graphs. J. Appl. Math. Comput. 64(1), 89–102 (2020). https://doi.org/10.1007/
s12190-020-01345-4

11. Ahangar, H.A., Chellali, M., Sheikholeslami, S.M.: On the double roman domina-
tion in graphs. Discrete Appl. Math. 232, 1–7 (2017)

12. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman San
Francisco, San Francisco (1979)

13. Feige, U.: A threshold of ln n for approximating set cover. J. ACM (JACM) 45(4),
634–652 (1998)

https://doi.org/10.1007/11604686_10
https://doi.org/10.1007/s12190-020-01345-4
https://doi.org/10.1007/s12190-020-01345-4

Parameterized Complexity

On the Parameterized Complexity
of Compact Set Packing

Ameet Gadekar(B)

Aalto University, Espoo, Finland
ameet.gadekar@aalto.fi

Abstract. The Set Packing problem is, given a collection of sets S
over a ground set U , to find a maximum collection of sets that are pair-
wise disjoint. The problem is among the most fundamental NP-hard
optimization problems that have been studied extensively in various
computational regimes. The focus of this work is on parameterized com-
plexity, Parameterized Set Packing (PSP): Given r ∈ N, is there
a collection S ′ ⊆ S : |S ′| = r such that the sets in S ′ are pairwise dis-
joint? Unfortunately, the problem is not fixed parameter tractable unless
W[1] = FPT, and, in fact, an “enumerative” running time of |S|Ω(r) is
required unless the exponential time hypothesis (ETH) fails. This paper
is a quest for tractable instances of Set Packing from parameterized
complexity perspectives. We say that the input (U , S) is “compact” if
|U| = f(r) · Θ(poly(log |S|)), for some f(r) ≥ r. In the Compact PSP
problem, we are given a compact instance of PSP. In this direction, we
present a “dichotomy” result of PSP: When |U| = f(r) · o(log |S|), PSP
is in FPT, while for |U| = r ·Θ(log(|S|)), the problem is W[1]-hard; more-
over, assuming ETH, Compact PSP does not admit |S|o(r/ log r) time
algorithm even when |U| = r ·Θ(log(|S|)). Although certain results in the
literature imply hardness of compact versions of related problems such
as Set r-Covering and Exact r-Covering, these constructions fail to
extend to Compact PSP. A novel contribution of our work is the iden-
tification and construction of a gadget, which we call Compatible Inter-
secting Set System pair, that is crucial in obtaining the hardness result
for Compact PSP. Finally, our framework can be extended to obtain
improved running time lower bounds for Compact r-VectorSum.

1 Introduction

Given a graph G = (V,E), the problem of finding a maximum-size subset of dis-
joint edges (matching) is tractable, but its generalization to hypergraphs, even
when the edge length is 3, isNP-hard. This general problem is known as theHyper-
graphMatching problem. The hyper-graph H = (W,F) can be equivalently viewed
as a set system (U ,S), where the universe (or the ground set) U corresponds to the
vertex set W and S corresponds to the collection of hyperedges F . Then finding
a maximum matching in H is equivalent to finding maximum number of pairwise
disjoint sets (packing) in S. Hence theHypergraphMatching problem is also known
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 359–370, 2023.
https://doi.org/10.1007/978-3-031-27051-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_30&domain=pdf
https://doi.org/10.1007/978-3-031-27051-2_30

360 A. Gadekar

as the Set Packing problem, which is a fundamental problem in combinatorial
optimization with numerous applications [24]. While this problem captures many
classical combinatorial problems such as maximum independent set (or maximum
clique), k-dimensional matching and also, some graph packing problems [9,14],
this generalization also makes it intractable in several regimes. One computational
regime in which Set Packing has been explored extenstively is approximation
algorithms. Since Set Packing generalizes the maximum independent set prob-
lem [1], it inherits the inapproximability of the latter problem [15]. This immedi-
ately implies that the trivial approximation of picking simply one set in the pack-
ing is roughly the best to hope for. Furthermore, approximations in terms of |U| are
also not hopeful since the result also implies inapproximability bound of |U|1/2−ε,
which is matched by [13]. To combat these intractabilities, various restrictions
of Set Packing have been studied. Particularly, a restriction where the size of
the sets in S is bounded by some integer k, which is known as k-Set Packing,
is also a well-studied problem. However, k-Set Packing captures the independent
set problem in bounded degree graphs, which again is a notoriously hard prob-
lem to approximate beyond the “trivial” bound [2,3]. While [16] improves the
lower bound for k-Set Packing to Ω(k/ ln k), the best known approximation is
(k+1+ε)/3 [8,10], yielding a logarithmic gap between the bounds. Besides approx-
imation algorithms, Set Packing has also been studied from the parameterized
complexity perspectives (with the standard parameter on the size of an optimal
packing solution). In this problem, known as the Parameterized Set Pack-
ing (PSP) problem, we are given an instance (U ,S, r) and the task is to decide
if there exists a packing of size r. Unfortunately, even PSP remains intractable
and is, actually, W[1]-complete [12]. In fact, Exponential Time Hypothesis (ETH)
implies that the trivial enumerative algorithm running in O∗(|S|r) time to find
an r-packing is asymptotically our best hope [11]. The algorithmic outlook for
PSP worsens further due to [7], which rules out o(r)-FPT-approximation algo-
rithm assuming the Gap Exponential Time Hypothesis (Gap-ETH). Assuming a
weaker hypothesis of FPT �= W[1], very recently [22] showed that there is no FPT
algorithm for PSP problem that finds a packing of size r/r1/H(r), for any increas-
ing function H(·), when given a promise that there is an r-packing in the instance.
Thus, the flurry of these negative results make it likely that Set Packing prob-
lem is intractable in all computational regimes.

In this paper, we consider PSP on compact instances. We say that an instance
(U ,S, r) of PSP is compact if |U| = f(r) · Θ(poly(log |S|)), for some function
f(r) ≥ r, that is, the universe is relatively small compared to the number of sets.1
Besides the algorithmic motivation, compact instances have recently been used
as an “intermediate step” to prove FPT inapproximability results of the (non-
compact) classical problems (see, e.g., [4,18] where the compact instances were
used in proving FPT-inapproximability of the k-EvenSet and Dominating Set).

1 In fact there is another way to define compactness: when |S| = f(r)·Θ(poly(log |U|)).
However in this case, the enumerative algorithm running in time O∗(|S|r) is already
fixed parameter tractable [6]. Thus, the interesting case is when the universe is
compact, which is the case we will be focusing on.

On the Parameterized Complexity of Compact Set Packing 361

We hope that studying Compact PSP would lead to some ideas that would be
useful in proving tight FPT inapproximability of PSP (that is, to weaken the
Gap-ETH assumption used in [7]).

1.1 Our Results

Our main result is the following dichotomy of Parameterized Set Packing.

Theorem 1 (Dichotomy). The following dichotomy holds for PSP.

◦ If |U| = f(r) · o(log |S|), for any f , then PSP is in FPT.
◦ PSP remains W[1]-hard even when |U| = r · Θ(log |S|).
The algorithmic result follows from well-known dynamic programming based
algorithms [5,11] that run in time O∗(2|U|), and observing that this running
time is fixed parameter tractable [6] when |U| = f(r)o(log |S|). The main contri-
bution of our work is the W[1]-hardness of PSP even when |U| = r · Θ(log |S|).
Towards this, we show an FPT-reduction from Subgraph Isomorphism (SGI)
to Compact PSP. The hardness result follows since SGI is W[1]-hard. In fact,
our hardness result can be strengthened assuming Exponential Time Hypothesis
(ETH) [11] to obtain the following result.

Theorem 2. Compact PSP requires time |S|Ω(r/ log r) even when |U| = r ·
Θ(log |S|), unless ETH fails.

The result of Theorem 2 follows from the ETH-hardness result of SGI due to
[20], and from the fact that the hardness reduction of Theorem 1 is parameter
preserving up to a multiplicative constant. Note that since PSP can be trivially
solved by enumeration in time O∗ (|S|r), the above result says that, even for
the compact instances this is essentially our best hope, up to a log factor in the
exponent. An interesting consequence of the dichotomy theorem coupled with
Theorem 2 is the fact that, as soon as instances get asymptotically smaller,
not only we beat the enumerative algorithm, but we actually obtain an FPT
algorithm. We would like to remark that the universe size in Theorem 2 is tight
(up-to log r factor) since having |U| = o(r/ log r) ·Θ(log |S|) would already allow
|S|o(r/ log r) time algorithm. Further, note that for W[1]-hardness, it is sufficient
to have |U| = f(r)Θ(log |S|), for some f , since we can add f(r) − r new sets
each with a unique dummy element and inflate the parameter to f(r). However,
this is not true for ETH based running time lower bounds as such inflation fail
to transfer the lower bounds asymptotically.

Finally, we extend our construction framework (Theorem 3) to improve the
running time lower bound (matching the trivial upper bound up to a log factor
in the exponent) for the compact version of r-VectorSum: Given a collection
C of N vectors in F

d
2, and a target vector b ∈ F

d
2, r-VectorSum asks if there

are r vectors in C that sum to b. Compact r-VectorSum is defined when
d = f(r) · Θ(poly(logN)), for some f(r) ≥ r.

Theorem 3. Compact r-VectorSum requires time NΩ(r/ log r), even when
d = r · Θ(logN), unless ETH fails.

362 A. Gadekar

The present bound of [4] rules out No(
√

r) time under ETH. Due to space con-
straints, the proof of this theorem is deferred to the full version.

1.2 Our Contributions and Comparison to Existing Work

In this section, we compare our contribution with existing works to highlight
its significance. To our best knowledge, the compact version of combinatorial
problems has not previously been formalized and investigated. However, several
existing reductions already imply the hardness of compact version of some of the
combinatorial problems. Here we review and compare the related results.

Our Contribution. As far as we know, there are no results showing W[1]-
hardness of Compact PSP, and hence the corresponding dichotomy (Theo-
rem 1). The key contribution of this paper is to show the hardness result for
Compact PSP. On the way, we also show an ETH-based almost tight running
time lower bound for Compact PSP, with tight (up-to log r factor) universe
size |U| = r ·Θ(log |S|). Interestingly, we show both of these results with a single
FPT reduction. In addition, we extend our framework to improve the running
time lower bounds for Compact r-VectorSum.

Next we survey some known hardness results for Set r-Covering in the com-
pact regime and argue their limitations in extending them to PSP. In particular,
[17, Lemma 25] shows a reduction from SGI to a variant of Set r-Covering
called Compact Exact, where we want to find an r-packing that is also a cov-
ering (in fact they show hardness for Compact Set. But a closer inspection of
their construction shows that the intended set cover is also a packing). The high
level idea of the construction is similar to ours: first assign each vertex of G a
logarithm length binary pattern vector. Then, create two kinds of sets: V -sets
that capture the mapping of the vertices and E-sets that capture the mapping
of edges. The idea is to use the pattern vectors to create these sets so that there
is an isomorphic copy of H in G if and only if there are |VH | many V -sets and
|EH | many E-sets covering the universe exactly once. However, if we consider
the Soundness (No case) proof of this reduction, then it crucially relies on the
fact that no candidate solution can cover the entire universe exactly once. In
fact, it is quite easy to find r sets that are mutually disjoint but do not form
a cover. Therefore, it fails to yield hardness for Compact PSP. The heart of
our construction lies in ensuring that in the No case, any r sets intersect. To
this end, we construct a combinatorial gadget called Compatible Intersecting Set
System (ISS) pair. This gadget is a pair of set systems (A,B) over a universe
U that guarantees two properties: First, every pair of sets within each set sys-
tem intersects, and second, for any set a ∈ A, there exists b ∈ B such that a
intersects every set in B except b. Further, we present a simple greedy algorithm
that finds such compatible ISS pair (A,B) over a universe of size N , each having
roughly 2Ω(N) sets. Note that this gadget, which we use to build our compact
hard instance, also has a “compact” universe. While, on the other hand, [23]
shows Compact Set is W[1]-hard using a reduction from k-Clique to Set
r-Covering with r = Θ(k2) and |U| = r3/2 · Θ(log |S|), but does not yield a
tight ETH- based running time lower bound. In contrast, [21] shows such tight

On the Parameterized Complexity of Compact Set Packing 363

ETH lower bound for Compact Set: requiring time |S|Ω(r), which can be easily
modified to obtain a similar running time lower bound for Compact Exact (by
reducing from 1-in-3-SAT, instead from 3-SAT).

1.3 Overview of Techniques

In this section we sketch the main ideas of our hardness proof of Theorem 1.
To this end, we present a reduction from SGI, which asks, given a graph G
on n vertices and another graph H with k edges, if there is a subgraph of G
isomorphic (not necessarily induced) to H, with parameter k. The reduction
produces an instance I = (U ,S, r) of PSP in FPT time such that r = Θ(k) and
|U| = Θ(r log |S|). We remark that the classical reduction given in [12] also has
parameter r = Θ(k), but |U| is linear in the size of G, which is the size of |S|.
Below, we attempt a reduction to construct a compact instance that, despite
falling short of its goal, illustrates some of the key ideas of the actual hardness
proof. This failed attempt also highlights the crucial properties of the gadget
that are necessary for the correct reduction.

Our reduction constructs the instance I = (U ,S, r) of PSP using a special
set system gadget – which we call the Intersecting Set System (ISS) gadget. A
set system A = (UA, SA) with M sets over N elements is called an (M,N)-
Intersecting set system, if every pair si, sj ∈ SA intersects (i.e., si, sj has a
non-empty intersection). We show how to efficiently construct an (M,N)-ISS
A = (UA, SA) with M = 2N−1. Let UA = {1, 2, · · · , N + 1}. Then, for every
subset s ⊆ {2, 3, · · · , N + 1}, add the set s′ := {1} ∪ s to SA. Note that A has
a compact universe since |UA| = log2 M + 1 = log2 |SA| + 1, which is crucial
in constructing a compact instance of PSP. We are now ready to present the
reduction using this compact ISS gadget. Let the given instance of SGI be J =
(G = (VG, EG),H = (VH , EH), k). Let � := |VH |, n := |VG| and m := |EG|.
Further, let V (G) = {1, · · · , n}. Note that � ≤ 2k, since isomorphic sub-graph in
G to H is not necessarily induced. Let A = (UA, SA) be the (M,N)-ISS gadget
specified above with N = 	log n
 + 1. Since M ≥ n, assume SA = {sα}α∈V (G)

by arbitrarily labeling sets in SA and ignoring the sets sα, α > n. We construct
an instance I = (U ,S, r) of Compact PSP as follows. For every v ∈ VH , and
w ∈ NH(v), let Av,w = (Uv,w, Sv,w) be a distinct copy of ISS A (that is, the
universes {Uv,w}w∈NH(v) are disjoint) with the same labeling of sets as that of
SA. Note that Av,w and Aw,v are distinct copies of A. Let Uv := ∪w∈N(v)Uv,w.
The universe U in I is defined as U = ∪v∈VH

Uv. Now for S, we will construct two
types of sets, that we call V -sets and E-sets. For every α ∈ V (G) and v ∈ VH ,
add the set Sα�→v := ∪w∈N(v)s

α
v,w to S. These sets are referred as V -sets. For

each edge (α, β) ∈ EG and each edge (v, w) ∈ EH , add the set S(α,β) �→(v,w) :=
s̄α

v,w ∪ s̄β
w,v to S. These sets are called E-sets. Finally, setting the parameter

r = � + k, concludes the construction of PSP instance I = (U ,S, r). First, note
that for the base ISS gadget A = (UA, SA), we have that |UA| = Θ(log n). Hence,
|U| = ∑

i∈[�]

∑
j∈[d(vi)]

|UA| = Θ(k log n), where as |S| = Θ(mk + n�) = Θ(n2k).
Since r = Θ(k), we have |U| = Θ(r log |S|), yielding a Compact PSP instance.

364 A. Gadekar

To illustrate the main ideas, we analyze the completeness and discuss how
the soundness fails. In the completeness case, let us assume that there exists an
injection φ : VH → VG which specifies the isomorphic subgraph in G. Consider
T = {Sφ(v) �→v}v∈VH

⋃{S(φ(v),φ(w)) �→(v,w)}(v,w)∈EH
, and note that T ⊆ S due to

φ. Notice that we have chosen �+ k sets from S. To see that T forms a packing,
fix v, w ∈ VH such that w ∈ N(v). Let T |Uv,w

be the restriction of T on Uv,w

(Formally, T |Uv,w
:= {t∩Uv,w : t ∈ T}). Then note that T |Uv,w

forms a packing
since T |Uv,w

= {s
φ(v)
v,w , s̄

φ(v)
v,w }.

For soundness, we show the proof for a simpler case. Suppose T ⊆ S with
|T | = r is a packing with at most one V -set from each vertex of G. Further,
assume |TV | = � and |TE | = k, where TV and TE denote the V -sets and E-sets
of T respectively. Finally, we also assume that T covers U . Let VH = {v1, · · · , v�}.
Relabel the sets in TV as TV = {T i

V : ∃Sα�→vi
∈ TV , for some α ∈ VG, vi ∈ VH}.

Now consider V ′ := {α | T i
V = Sα�→vi

} ⊆ VG, and relabel the vertices of V ′ as
V ′ = {α′

1, · · · , α′
�}, where α′

i = α such that T i
V = Sα�→vi

. We claim that G[V ′] is
isomorphic to H with injection φ : VH → VG given by φ(vi) = α′

i. To this end, we
show (vi, vj) ∈ EH =⇒ (φ(vi), φ(vj)) ∈ EG[V ′]. Note that since Avi,vj

is an ISS,

TV |Uvi,vj
= T i

V |Uvi,vj
= s

α′
i

vi,vj . Further, combining the fact that T is a packing

covering U with the fact |TE | = k, we have that TE |Uvi,vj
= s̄

α′
i

vi,vj . Similarly,

it holds that TV |Uvj,vi
= T j

V |Uvj,vi
= s

α′
j

vj ,vi , and hence TE |Uvj,vi
= s̄

α′
j

vj ,vi . But
this implies that S(α′

i,α
′
j) �→(vi,vj) ∈ TE , which means (φ(vi), φ(vj)) = (α′

i, α
′
j) ∈

EG[V ′], as desired. However, for the general case, we would require a gadget that
enforces all the above assumptions in any candidate packing.

1.4 Open Problems

An interesting problem is to show Compact PSP also needs time |S|Ω(r) even
when |U| = r · Θ(log |S|), assuming ETH. Another interesting direction is FPT
approximating Compact PSP: Given a promise that there is an r-packing, is it
possible to find a packing of size ω(1) in FPT time? Note that for the general PSP
problem, there is no o(r) FPT-approximation, assuming Gap-ETH. However,
recent results [19,22] use a weaker assumption of W[1] �= FPT but also obtain
weaker FPT-inapproximibility. It is also interesting to show such hardness of
approximation for Compact PSP.

2 Preliminaries

2.1 Notations

For q ∈ N, denote by [q], the set {1, · · · , q}. For a finite set [q] and i ∈ [q], we
overload ‘+′ operator and denote by i+1 as the (cyclic) successor of i in [q]. Thus,
the successor of q is 1 in [q]. All the logs are in base 2. For a graph G = (V,E) and
a vertex v ∈ V , denote by N(v), the set of vertices adjacent to v. Further, d(v)
denotes the degree of v, i.e., d(v) := |N(v)|. For a finite universe U and s ⊆ U ,

On the Parameterized Complexity of Compact Set Packing 365

denote by s̄ as the complement of s under U , i.e., s̄ := U \ s. Similarly, for a
family of sets S = {s1, · · · , sM} over U , we denote by comp(S) = {s̄1, · · · , s̄M}.
Further, for a subset s ⊆ U and a sub-universe U ′ ⊆ U , denote by s |U ′ as the
restriction of s on sub-universe U ′, i.e., s |U ′ := s ∩ U ′. Similarly, for a family of
sets S = {s1, · · · , sM} over U , denote by S |U ′ as the restriction of every set of
S on U ′, i.e., S |U ′ := {s1 |U ′ , · · · , sM |U ′}. For a set system A = (UA, SA), we
denote the complement set system by Ā = (UA, comp(SA)). For s, t ⊆ U , we say
s and t intersects if s ∩ t �= ∅.

For a background on parameterized complexity, please refer to [11,12].

2.2 Problem Definitions

Definition 1 (Parameterized Set Packing (PSP)). Given a collection of
sets S = {S1, . . . , Sm} over an universe U = {e1, . . . , en} and an integer r, the
PSP problem asks if there is a collection of sets S ′ ⊆ S such that |S ′| = r and,
Si ∩ Sj = ∅ for every Si �= Sj ∈ S ′. An instance of PSP is denoted as (U ,S, r).

Compact PSP is defined when the instances have |U| = f(r) · Θ(poly(log |S|)),
for some function f(r) ≥ r.

Given two graphs G = (VG, EG) and H = (VH , EH), a homomorphism from
H to G is a map φ : VH → VG such that if (vi, vj) ∈ EH then (φ(vi), φ(vj)) ∈ EG.

Definition 2 (Subgraph Isomorphism (SGI)). Given a graph G = (VG, EG)
and a smaller graph H = (VH , EH) with |EH | = k, the SGI problem asks if there
is an injective homomorphism from H to G. An instance of SGI is denoted as
(G = (VG, EG),H = (VH , EH), k).

The parameterized version of SGI has parameter κ = |EH | = k. Without loss of
generality, we assume |VH | ≤ 2k, and every vertex of H has degree at most k.

3 Dichotomy of PSP

In this section we prove the hardness part of the dichotomy theorem (Theorem 1).
First in Sect. 3.1, we identify the gadget and its associated properties that are
crucial for the reduction. Then, using this gadget, in Sect. 3.2 we show an FPT-
reduction from SGI to Compact PSP.

3.1 Compatible Intersecting Set System Pair

A set system A = (UA, SA) is called an (M,N)-Intersecting set system (ISS), if
it contains M sets over N elements such that every pair s, t ∈ SA intersects.

Definition 3 (Compatible ISS pair). Given two ISS A = (U, SA) and B =
(U, SB) on a universe U , we say that (A,B) is a compatible ISS pair if there
exists an efficiently computible bijection f : SA → SB such that

– (Complement partition) ∀s ∈ SA, s and f(s) forms a partition of U , and
– (Complement exchange) ∀s ∈ SA, As := (U, (SA \ {s}) ∪ {f(s)}) is an ISS.

366 A. Gadekar

Since f is as bijection, we have |SA| = |SB |, and ∀t ∈ SB , the set system
Bt := (U, (SB \ {t}) ∪ {f−1(t)}) is also an ISS. Also, for (s, t) ∈ (SA, SB) if
s ∪ t = U , then t = f(s). The following lemma, whose proof is deferred to the
full version, efficiently constructs a compatible (M,N)-ISS pair, which is a key
ingredient in our hardness proof. The idea of the construction is simple: for every
N/2-sized subset s of [N], add s to A and s̄ to B.

Lemma 1. For even N ≥ 2, we can compute a compatible (M,N)-ISS pair
(A,B) with M ≥ 2N/2−1 in time polynomial in M and N . Further, B = Ā.

3.2 Hardness of Compact PSP

Our hardness result follows from the following FPT-reduction from SGI that
yields compact instances of PSP and the fact that SGI is W[1]-hard.

Theorem 4. There is an FPT-reduction that, for every instance I = (G =
(VG, EG),H = (VH , EH), k) of SGI with |VG| = n and |EG| = m, computes
μ = k! instances Jp = (Up,Sp, r), p ∈ [μ] of PSP with |Up| = Θ(k log n), |Sp| =
Θ(n2k + mk), and r = Θ(k), such that there is a subgraph of G isomorphic to
H if and only if there is an r-packing in at least one of the instances {Jp}p∈[μ].

Proof. The construction follows the approach outlined in Sect. 1.3. Let VG =
{1, · · · , n}. Let (A, Ā) be the compatible (M,N)-ISS pair given by Lemma 1,
for N = 2	log(n+1)
+2. We call A = (UA, SA) and Ā = (UA, comp(SA)) as the
base ISS gadgets. Further, assume an arbitrary ordering on SA = {s1, · · · , sM}.
Since M ≥ 2N/2−1 > n, every α ∈ VG can be identified by the set sα ∈ SA

corresponding to the index α ∈ [M]. For each ordering p : VH → [�], create an
instance Jp = (Up,Sp, r) of Compact PSP as follows. Rename the vertices of
VH as {v1, · · · , v�} with vi := v ∈ VH such that p(v) = i. For each vi ∈ VH ,
create a collection Cvi

of d(vi) + 1 many different copies of base ISS gadget A
(i.e., each has its own distinct universe) as: Cvi

:= {Avi,0, {Avi,w}w∈N(vi)}, where
Avi,0 = (Uvi,0, Svi,0) and Avi,w = (Uvi,w, Svi,w). Let Uvi

= ∪w∈N(v)Uvi,w. For
each Cvi

, let UCi
= Uvi,0 ∪ Uvi

. Define the universe Up of Jp as Up =
⋃

i∈[�] UCi
.

The sets in Sp are of two types: V -sets and E-sets as defined below. For
α ∈ VG and v ∈ VH , denote by Sα

v = ∪w∈N(v)s
α
v,w. Recall that for α ∈ VG and

(v, w) ∈ EH , the set sα
v,w is the αth set in Sv,w of ISS Av,w = (Uv,w, Sv,w).

V -sets: For each α ∈ VG, for each vi ∈ {v1, · · · , v�−1}, and for each β ∈
VG, β > α, add a set Sα�→vi,β to Sp such that

Sα�→vi,β := sα
vi,0

⋃
Sα

vi

⋃
s̄β

vi+1,0

Further, for each α ∈ VG, and for each β ∈ VG, β < α, add a set Sα�→v�,β to Sp,

Sα�→v�,β := sα
v�,0

⋃
Sα

v�

⋃
s̄β

v1,0

E-sets: For each edge (α, β) ∈ EG and each edge (vi, vj) ∈ EH , add a set
S(α,β) �→(vi,vj) to Sp such that

S(α,β) �→(vi,vj) := s̄α
vi,vj

⋃
s̄β

vj ,vi

On the Parameterized Complexity of Compact Set Packing 367

Parameter: Set r := k + �.
This concludes the construction. Before we prove its correctness, we note the

size of the constructed instance Jp. First, r = Θ(k), since � ≤ 2k. Then, |Up| =∑�
i=1 |UCi

| = ∑�
i=1(d(vi)+1)N = Θ(k log n), and |Sp| = Θ(n2�+mk) = Θ(n2k).

Yes case. Suppose there is a subgraph G′ = (VG′ , EG′) of G that is isomorphic
to H with injection φ : VH → VG′ . Let VG′ = {α1, α2, · · · , α�} ⊆ [n] such
that α1 < α2 < · · · < α�. Relabel the vertices of H as {v1, · · · , v�}, where
vi := φ−1(αi), i ∈ [�]. Now, consider the ordering p of VH such that p(vi) = i,
for i ∈ [�], and fix the corresponding instance Jp = (Up,Sp, r). Consider the
following collection of V -sets and E-sets: TV :=

⋃
i∈[�] Sαi �→vi,αi+1 and TE :=

⋃
(vi,vj)∈EH

S(αi,αj) �→(vi,vj). Let T = TV ∪ TE . Note that for this choice of p, we
have TV ⊆ Sp due to construction, and TE ⊆ Sp due to φ, and hence T ⊆ Sp.
Further, |T | = |TV |+ |TE | = �+ k = r, as required. Now, we claim that T forms
a packing in Jp. Towards this goal, note that it is sufficient to show that the
sets in T |UCi

are mutually disjoint, for all i ∈ [�]. To this end, it is sufficient to
show that both T |Uvi,0 and T |Uvi

are packing, for all i ∈ [�]. Fix i ∈ [�], and
consider the following cases:

1. T |Uvi,0 : Since TE |Uvi,0= ∅ by construction, we focus on TV |Uvi,0 . But,
TV |Uvi,0 is a packing since,

TV |Uvi,0=

{
{Sαi−1 �→vi−1,αi

|Uvi,0 , Sαi �→vi,αi+1 |Uvi,0} = {s̄αi
vi,0

, sαi
vi,0

}, if i �= 1
{Sα� �→v�,α1 |Uv1,0 , Sα1 �→v1,α2 |Uv1,0} = {s̄α1

v1,0, s
α1
v1,0}, if i = 1.

2. T |Uvi
: It is sufficient to show that T |Uvi,vj

is a packing, ∀vj ∈ N(vi). But
this follows since, ∀vj ∈ N(vi),

T |Uvi,vj
= {TV |Uvi,vj

, TE |Uvi,vj
}

= {Sαi �→vi,αi+1 |Uvi,vj
, S(αi,αj) �→(vi,vj) |Uvi,vj

} = {sαi
vi,vj

, s̄αi
vi,vj

}.

No case. Suppose there is an r-packing T ⊆ Sp in some instance Jp, p ∈ [μ],
then we show that there is a subgraph GT of G that is isomorphic to H. First
note that p ∈ [μ] gives a labeling {v1, · · · , v�} of VH such that vi = p−1(i), for
i ∈ [�]. Next, partition T into TV and TE , such that TV and TE correspond to
the V -sets and E-sets of T respectively. This can be easily done since t ∈ T is
a V -set if and only if t |Uvi,0= sα

vi,0 ∈ Avi,0, for some α ∈ VG, vi ∈ VH . Let
U0 = {Uvi,0}vi∈VH

and U1 = {Uvi
}vi∈VH

. We claim the following.

Lemma 2. |TV | = � and |TE | = k.

Proof. Note that for t ∈ TV , we have t |U0= {sα
vi,0, s̄

β
vi+1,0}, for some α, β ∈ VG

and vi, vi+1 ∈ VH . Hence, it follows that |t |U0 | = N . Since |U0| = �N and TV is
a packing, we have |TV | ≤ �. For bounding |TE |, consider t ∈ TE , and note that
t |U1= {s̄α

vi,vj
, s̄β

vj ,vi
}, for some (α, β) ∈ EG and (vi, vj) ∈ EH . But also note that

we have s̄α
vi,vj

∈ Āvi,vj
and s̄β

vj ,vi
∈ Āvj ,vi

. Hence, by the virtue of TE being a

368 A. Gadekar

packing and using the facts that U1 is the union of universes of 2k many base
ISS {Āv,w}v∈VH ,w∈N(v), and each t ∈ TE contains sets from two of such ISS, it
follows |TE | ≤ k. Finally, |T | = r = � + k implies |TV | = � and |TE | = k. ��
For i ∈ [�], as Avi,0 = (Uvi,0, Svi,0) is an ISS, we can relabel the sets in TV

as TV = {T 1
V , · · · , T �

V }, where T i
V := t ∈ TV such that t |U0� sα

vi,0, for some
sα

vi,0 ∈ Svi,0. The following lemma is our key ingredient.

Lemma 3. T covers the whole universe Up.

Proof. Since Up = U0 ∪U1, we will show that T |Uj
covers Uj , for j = {0, 1}. For

U0, note that T |U0= TV |U0 by construction. For T i
V ∈ TV , we have |T i

V |U0 | =
N due to complement partition axiom of (Avi,0, Āvi,0). Since TV forms a packing,
we have that |∪i∈[�] T

i
V |U0 | = �N = |U0|, as desired. Next, we have |U1| = 2kN .

Consider T i
V ∈ TV and notice |T i

V |U1 | = N
2 d(vi) since T i

V |U1= Sα
vi

, for some α ∈
VG. Since TV forms a packing, we have |⋃i∈[�] T

i
V |U1 | = ∑�

i=1 |T i
V |U1 | = kN .

Now consider t = S(α,β) �→(vi,vj) ∈ TE , for some (α, β) ∈ EG and (vi, vj) ∈ EH .
Since, t |U1= {s̄α

vi,vj
, s̄β

vj ,vi
}, we have |t |U1 | = N . As TE forms a packing, we

have |⋃t∈TE
t |U1 | = ∑

t∈TE
|t |U1 | = kN . Finally, T being a packing, we have

|⋃τ∈T τ |U1 | = |⋃i∈[�] T
i
V |U1 | + |⋃t∈TE

t |U1 | = 2kN = |U1| as desired. ��

Let αi = α ∈ VG such that T i
V |Uvi,0� sα

vi,0, for i ∈ [�], and let VT = {αi}i∈[�].

Lemma 4. For each vertex α ∈ VG, there is at most one V -set Sα�→vi,β in TV ,
for some vi ∈ VH and β ∈ VG.

Proof. It is sufficient to show αi < αi+1, for i ∈ [�−1]. Fix such i and consider the
universe Uvi+1,0 of Avi+1,0. Then, note that only T i

V and T i+1
V contain elements of

Uvi+1,0. Let T i
V = Sαi �→vi,β for β > αi, and let T i+1

V = Sαi+1 �→vi+1,γ , for γ > αi+1.
As T covers Uvi,0 (Lemma 3), and using the complement partition property of
the compatible ISS pair (Avi+1,0, Āvi+1,0), we have that αi+1 = β > αi. ��
Lemma 5. For every edge (α, β) ∈ EG, there is at most one E-set S(α,β) �→(vi,vj)

in TE, for some (vi, vj) ∈ EH .

Proof. Suppose there are two sets S(α,β) �→(vi,vj), S(α,β) �→(v′
i,v

′
j)

∈ TE , for some
(α, β) ∈ EG. Without loss of generality assume vi �= v′

i. Then, we will show
that Sα�→vi,γ , Sα�→v′

i,δ
∈ TV , for some γ, δ ∈ VG, contradicting Lemma 4. Since

S(α,β) �→(vi,vj), S(α,β) �→(v′
i,v

′
j)

∈ TE , it holds that TE |Uvi,vj
= s̄α

vi,vj
, and TE |Uv′

i
,v′

j
=

s̄α
v′

i,v
′
j
. As T covers Up, in particular, T covers Uvi,vj

, it must be that TV |Uvi,vj
=

sα
vi,vj

as (Avi,vj
, Āvi,vj

) is a compatible ISS pair. By similar reasoning for Uv′
i,v

′
j
, it

must be that TV |Uv′
i
,v′

j
= sα

v′
i,v

′
j
. This implies that TV |Uvi

= Sα
vi

and TV |Uv′
i
= Sα

v′
i
.

Thus, Sα�→vi,γ , Sα�→v′
i,δ

∈ TV for vi �= v′
i, for some γ, δ ∈ VG. ��

Let GT = G[VT] = (VT , ET), be the induced subgraph of G on VT . Note that
from the above lemmas, |VT | = � and |ET | = k. To finish the proof, we claim

On the Parameterized Complexity of Compact Set Packing 369

that GT is isomorphic to H with the injective homomorphism φ : VH → VT

given by φ(vi) = αi, for i ∈ [�]. To this end, we will show that for any
(vi, vj) ∈ EH , it holds that (φ(vi), φ(vj)) = (αi, αj) ∈ ET . Consider the uni-
verse Uvi,vj

, and note that T i
V |Uvi,vj

= sαi
vi,vj

. As T covers Uvi,vj
, it holds

that TE |Uvi,vj
= s̄αi

vi,vj
since (Avi,vj

, Āvi,vj
) is a compatible ISS pair. Hence

S(αi,β) �→(vi,vj) ∈ TE , for some (αi, β) ∈ EG. This implies that TE |Uvj,vi
= s̄β

vj ,vi
.

By similar arguments for Uvj ,vi
, we have that β = αj as T j

v |Uvj,vi
= s

αj
vj ,vi . Hence

(αi, αj) = (φ(vi), φ(vj)) ∈ EG. ��

Acknowledgments. This work has been partially supported by European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 759557). I thank Parinya Chalermsook for the infor-
mative discussions about the results in the paper, and for providing guidance on writing
this paper. I also thank anonymous reviewers for their valuable suggestions on improv-
ing the readability of the paper.

References

1. Ausiello, G., D’Atri, A., Protasi, M.: Structure preserving reductions among convex
optimization problems. J. Comput. Syst. Sci. 21(1), 136–153 (1980)

2. Austrin, P., Khot, S., Safra, M.: Inapproximability of vertex cover and indepen-
dent set in bounded degree graphs. In: 2009 24th Annual IEEE Conference on
Computational Complexity, pp. 74–80. IEEE (2009)

3. Bansal, N., Gupta, A., Guruganesh, G.: On the lovász theta function for indepen-
dent sets in sparse graphs. SIAM J. Comput. 47(3), 1039–1055 (2018)

4. Bhattacharyya, A., Gadekar, A., Ghoshal, S., Saket, R.: On the hardness of learn-
ing sparse parities. In: Sankowski, P., Zaroliagis, C. (eds.) 24th Annual European
Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 57, pp. 1–17. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2016). https://doi.org/10.4230/LIPIcs.ESA.2016.11,
http://drops.dagstuhl.de/opus/volltexte/2016/6362

5. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion.
SIAM J. Comput. 39(2), 546–563 (2009)

6. Cai, L., Juedes, D.: Subexponential parameterized algorithms collapse the w-
hierarchy. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 273–284. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-48224-5_23

7. Chalermsook, P., et al.: From Gap-ETH to FPT-inapproximability: clique, domi-
nating set, and more. In: 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 743–754. IEEE (2017)

8. Chan, Y.H., Lau, L.C.: On linear and semidefinite programming relaxations for
hypergraph matching. Math. program. 135(1–2), 123–148 (2012)

9. Chataigner, F., Manić, G., Wakabayashi, Y., Yuster, R.: Approximation algorithms
and hardness results for the clique packing problem. Discrete Appl. Math. 157(7),
1396–1406 (2009)

10. Cygan, M.: Improved approximation for 3-dimensional matching via bounded path-
width local search. In: 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science, pp. 509–518. IEEE (2013)

https://doi.org/10.4230/LIPIcs.ESA.2016.11
http://drops.dagstuhl.de/opus/volltexte/2016/6362
https://doi.org/10.1007/3-540-48224-5_23
https://doi.org/10.1007/3-540-48224-5_23

370 A. Gadekar

11. Cygan, M., et al.: Parameterized Algorithms, 1st edn. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

12. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Cham (2012)
13. Halldórsson, M.M., Kratochvıl, J., Telle, J.A.: Independent sets with domination

constraints. Discret. Appl. Math. 99(1–3), 39–54 (2000)
14. Hassin, R., Rubinstein, S.: An approximation algorithm for maximum triangle

packing. Discrete Appl. Math. 154(6), 971–979 (2006)
15. Hastad, J.: Clique is hard to approximate within n1-. In: Proceedings of the 37th

Annual Symposium on Foundations of Computer Science FOCS 1996, p. 627. IEEE
Computer Society, USA (1996)

16. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-set pack-
ing. Comput. Complex. 15(1), 20–39 (2006). https://doi.org/10.1007/s00037-006-
0205-6

17. Jones, M., Lokshtanov, D., Ramanujan, M.S., Saurabh, S., Suchý, O.: Parame-
terized complexity of directed Steiner tree on sparse graphs. In: Bodlaender, H.L.,
Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 671–682. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40450-4_57

18. Lin, B.: A Simple gap-producing reduction for the parameterized set cover prob-
lem. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) 46th
International Colloquium on Automata, Languages, and Programming (ICALP
2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 132, pp.
81:1–81:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany
(2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.81, http://drops.dagstuhl.de/
opus/volltexte/2019/10657

19. Lin, B.: Constant approximating k-clique is w[1]-hard. In: Khuller, S., Williams,
V.V. (eds.) STOC 2021: 53rd Annual ACM SIGACT Symposium on Theory of
Computing, Virtual Event, Italy, 21–25 June 2021, pp. 1749–1756. ACM (2021).
https://doi.org/10.1145/3406325.3451016

20. Marx, D.: Can you beat treewidth? In: 48th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS 2007), pp. 169–179. IEEE (2007)

21. Pătraşcu, M., Williams, R.: On the possibility of faster SAT algorithms. In: Pro-
ceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1065–1075. SIAM (2010)

22. Karthik, C.S., Khot, S.: Almost polynomial factor inapproximability for parame-
terized k-clique (2021)

23. Karthik, C.S., Laekhanukit, B., Manurangsi, P.: On the parameterized complex-
ity of approximating dominating set. In: Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, pp. 1283–1296. STOC 2018, Asso-
ciation for Computing Machinery, New York, NY, USA (2018). https://doi.org/
10.1145/3188745.3188896

24. Vemuganti, R.: Applications of set covering, set packing and set partitioning mod-
els: a survey. In: Du, DZ., Pardalos, P.M. (eds.) Handbook of Combinatorial Opti-
mization, pp. 573–746. Springer, Boston (1998). https://doi.org/10.1007/978-1-
4613-0303-9_9

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/s00037-006-0205-6
https://doi.org/10.1007/s00037-006-0205-6
https://doi.org/10.1007/978-3-642-40450-4_57
https://doi.org/10.4230/LIPIcs.ICALP.2019.81
http://drops.dagstuhl.de/opus/volltexte/2019/10657
http://drops.dagstuhl.de/opus/volltexte/2019/10657
https://doi.org/10.1145/3406325.3451016
https://doi.org/10.1145/3188745.3188896
https://doi.org/10.1145/3188745.3188896
https://doi.org/10.1007/978-1-4613-0303-9_9
https://doi.org/10.1007/978-1-4613-0303-9_9

Structural Parameterization of Cluster
Deletion

Giuseppe F. Italiano1 , Athanasios L. Konstantinidis1(B),
and Charis Papadopoulos2

1 LUISS University, Rome, Italy
{gitaliano,akonstantinidis}@luiss.it

2 Department of Mathematics, University of Ioannina, Ioannina, Greece
charis@uoi.gr

Abstract. In the weighted Cluster Deletion problem we are given
a graph with non-negative integral edge weights and the task is to deter-
mine, for a target value k, if there is a set of edges of total weight at
most k such that its removal results in a disjoint union of cliques. It is
well-known that the problem is FPT parameterized by k, the total weight
of edge deletions. In scenarios in which the solution size is large, natu-
rally one needs to drop the constraint on the solution size. Here we study
weighted Cluster Deletion where there is no bound on the size of the
solution, but the parameter captures structural properties of the input
graph. Our main contribution is to classify the parameterized complex-
ity of weighted Cluster Deletion with three structural parameters,
namely, vertex cover, twin cover and neighborhood diversity. We show
that the problem is FPT when parameterized by the vertex cover, whereas
it becomes paraNP-hard when parameterized by the twin cover or the
neighborhood diversity. To illustrate the applicability of our FPT result,
we use it in order to show that the unweighted variant of the problem,
Cluster Deletion, is FPT parameterized by the twin cover. This is the
first algorithm with single-exponential running time parameterized by the
twin cover. Interestingly, we are able to achieve an FPT result parameter-
ized by the neighborhood diversity that involves an ILP formulation. In
fact, our results generalize the parameterized setting by the solution size,
as we deduce that both parameters, twin cover and neighborhood diver-
sity, are linearly bounded by the number of edge deletions.

Keywords: Cluster deletion problem · Twin cover · Neighborhood
diversity

G. F. Italiano—Partially supported by MUR, the Italian Ministry for University and
Research, under PRIN Project AHeAD (Efficient Algorithms for HArnessing Net-
worked Data).
C. Papadopoulos—Supported by the Hellenic Foundation for Research and Innovation
(H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty
members and Researchers and the procurement of high-cost research grant”, Project
FANTA (eFficient Algorithms for NeTwork Analysis), number HFRI-FM17-431.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 371–383, 2023.
https://doi.org/10.1007/978-3-031-27051-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_31&domain=pdf
http://orcid.org/0000-0002-9492-9894
http://orcid.org/0000-0001-5556-2981
https://doi.org/10.1007/978-3-031-27051-2_31

372 G. F. Italiano et al.

1 Introduction

Highly-connected parts of complex systems reveal clustering data that are
important in numerous application fields such as computational biology [2] and
machine learning [1,25]. In graph-theoretic terms, those dense homogeneous sets
are often identified as cliques. A core algorithmic theme that has received con-
siderably interest is to modify a given graph as little as possible in order to
reveal disjoint cliques. In the Cluster Deletion problem we seek to delete
the minimum number of edges of a given graph such that the resulting graph is
a vertex-disjoint union of cliques (cluster graph). Here we also consider its natu-
ral variant with weights on the edges of the graph, named weighted Cluster
Deletion: each edge has an associated non-negative weight and the goal is
to minimize the sum of the weights of the removed edges. It is known that the
problems are NP-hard on general graphs [26] and settling their complexity status
even on restricted settings has attracted several researchers.

With regards to parameterized complexity, the general result by Cai [6] shows
that (weighted) Cluster Deletion is FPT parameterized by the number of
deleted edges. Considering the same parameter, it is known that the problem
admits a linear kernel [7] and recently, Cao et al. [8] devised a different, still
linear, kernel. In particular, both variations of the problem admit several fast
FPT algorithms parameterized by the solution size [3,8,27]. However, as with
the principle of parameterized complexity, such algorithms are efficient when-
ever the considered parameter is rather small. Combined with the light of lower
bounds refuting the existence of subexponential FPT algorithms [20], it seems
reasonable to study different distance measures. If the remaining edges inside
the cliques are used as a parameter then the unweighted variant of the problem
has shown to be FPT and does not admit a polynomial kernel [18]. In con-
trast, by considering either the maximum degree or the diameter of the graph as
a parameter of the problem, paraNP-hardness results occur. More specifically,
Komusiewicz and Uhlmann [20] showed that Cluster Deletion is NP-hard
on graphs of maximum degree 4, but it is polynomial-time solvable on graphs
with maximum degree 3. Further, Cluster Deletion is NP-hard on P5-free
graphs [5,23], although there is a polynomial algorithm that computes an opti-
mal solution on P4-free graph [16]. Interestingly, Cluster Deletion is FPT
when parameterized by the size of a minimum cluster vertex deletion set [21].

Naturally, the weighted variant of the problem may behave differently than
the unweighted on the same class of graphs. For instance, weighted Cluster
Deletion is NP-hard even on P4-free graphs and split graphs [5]. Apart from
some restricted subclasses of chordal graphs for which the problem can be solved in
polynomial time [5], the weighted variant of the problem has received less interest
when parameterized by distance measures other than the solution size. Our focus
is to complement existing results and analyze both variations of the problem under
graph structural parameters. To capture the powerfulness of such parameters, we
consider generalizations of the vertex cover number. These type of parameteriza-
tions proved to be successful in a wide range of problems [4,14,15,24]. Here we
exploit their impact towards the (weighted) Cluster Deletion problem.

Structural Parameterization of Cluster Deletion 373

Our Results. We consider parameterizations of the problem with respect to
structural properties of the given graph. As (weighted) Cluster Deletion
admits fast algorithms parameterized by the solution size, it is natural to con-
sider variations of the vertex cover number such as the twin cover and the neigh-
borhood diversity. We note that both notions constitute generalizations of the
vertex cover number [15,24], though there is no relation among them.

We first show that both parameters are linearly upper-bounded in the num-
ber of edge deletions required to obtain a cluster graph. Thus we explore further
venues to attack Cluster Deletion, since the unweighted and weighted varia-
tions of the problem were already known to admit fast parameterized algorithms
by the solution size [6,8,17,27].

As an initial point, we establish that weighted Cluster Deletion is
paraNP-hard when parameterized by the twin cover or the neighborhood diver-
sity. This is achieved through an interesting reduction from a terminal cut prob-
lem with a small number of terminals.

Theorem 1.1. weighted Cluster Deletion is NP-hard on graphs with twin
cover number at most three and graphs with neighborhood diversity at most two.

Based on this negative result, we also consider the more restrictive vertex
cover number as a structural parameter. The vertex cover number is unrelated
to the solution size. However, with our next algorithm, vertex cover can be con-
sidered as one of the few parameters for which the weighted variant admits a
positive result. Our technique relies on carefully applying a dynamic program-
ming approach that handles vertices that lie outside the vertex cover. We note
that Cluster Deletion is expressible in monadic second order logic (MSO2)
as explicitly given in [22]. Thus weighted Cluster Deletion is FPT when
parameterized by treewidth [9]. However, we are not aware if such an approach
leads to a single-exponential running time, as we deduce for the vertex cover.

Theorem 1.2. weighted Cluster Deletion can be solved in 2O(vc) · O(n2)
time, where vc is the vertex cover number of the input graph.

To illustrate the wider applicability of the algorithm given in Theorem 1.2,
we turn our attention to the unweighted variant of Cluster Deletion. Twin
cover introduced by Ganian [15] generalizes vertex cover in the sense that vertices
outside the cover set form an independent set or a true twin class. Our approach
for Cluster Deletion relies on carefully contracting true twin classes that lie
outside the cover set. It turns out that this process results in an edge-weighted
graph of bounded vertex cover. Then we apply the algorithm given in Theo-
rem 1.2 for the weighted Cluster Deletion problem.

Theorem 1.3. Cluster Deletion can be solved in 2O(tc) · O(n2) time, where
tc is the twin cover number of the input graph.

It should be noted that the FPT membership given in Theorem 1.3, can be
obtained with a different approach, though with a worse running time. In partic-
ular, one could use the cluster vertex deletion number (also known as distance to

374 G. F. Italiano et al.

cluster) which stands for the number of deleted vertices that is required to obtain
a cluster graph. Doucha and Kratochv́ıl [12] showed that for any graph G, the clus-
ter vertex deletion number of G is at most the twin cover number of G. Combined
with the fact that Cluster Deletion is FPT parameterized by the cluster ver-
tex deletion number [21], we get an algorithm with running time 2O(tc log tc) ·nO(1).
Thus Theorem 1.3 reveals the first FPT algorithm with single-exponential running
time. Moreover, we believe that our algorithm is interesting on its own because it
exploits further connections between the two variations of the problem.

Regarding the neighborhood diversity which was introduced by Lampis [24],
we use a completely different approach. This notion is based on true twin and
false twin classes of vertices. We use integer linear programming (ILP) as a
subroutine in our FPT algorithm. In particular, we translate part of our problem
as an instance of choosing sufficient maximum cliques in an auxiliary graph of
bounded size. As the size is bounded, we show that the formulation to an ILP
problem with bounded number of variables is feasible.

Theorem 1.4. Cluster Deletion can be solved in 22
O(nd) · nO(1) time, where

nd is the neighborhood diversity of the input graph.

2 Preliminaries

All graphs considered here are simple and undirected. For S ⊆ V , N(S) =⋃
v∈S N(v)\S and N [S] = N(S)∪S. For X ⊆ V (G), the subgraph of G induced

by X, G[X], has vertex set X, and for each vertex pair u, v from X, uv is an
edge of G[X] if and only if u �= v and uv is an edge of G. For R ⊆ E(G), G \ R
denotes the graph (V (G), E(G) \R), that is a subgraph of G and for S ⊆ V (G),
G − S denotes the graph G[V (G) − S], that is an induced subgraph of G. For
two disjoint sets of vertices A and B, we write E(A,B) to denote the edges that
have one endpoint in A and one endpoint in B. A matching in G is a set of
edges having no common endpoint. A cluster graph is a graph in which every
connected component is a clique. Contracting a set of vertices S is the operation
of substituting the vertices of S by a new vertex w with N(w) = N(S). We next
formalize Cluster Deletion, as a decision problem.

Cluster Deletion

Input: A graph G = (V,E) and a non-negative integer k.
Task: Decide whether there is E′ ⊆ E(G) such that G \E′ is a cluster graph
and |E′| ≤ k.

In the optimization setting, the task of Cluster Deletion is to turn the
input graph G into a cluster graph by deleting the minimum number of edges.
We describe a solution of Cluster Deletion in two equivalent ways: either a
solution is given as a set of edges E′ ⊆ E(G) such that G \E′ is a cluster graph,
or it is given as a vertex partition S = {C1, . . . , Ct} of V (G) such that each
G[Ci] is a clique. The equivalence follows because the connected components of

Structural Parameterization of Cluster Deletion 375

the cluster graph G \E′ correspond to the induced subgraphs G[Ci], so that the
set E′ =

⋃
E(Ci, Cj) where Ci, Cj ∈ S forms the required set of deleted edges.

Let S = {C1, . . . , Ct} be a solution of Cluster Deletion such that each
G[Ci] is a clique. In such terms, the problem can be viewed as a vertex partition
problem into C1, . . . , Ct. Each Ci is called cluster. Edgeless clusters, i.e., clusters
containing exactly one vertex, are called trivial clusters. An optimal solution S
for Cluster Deletion is a clique partition of G such that the number of edges
E(G) \ E(S) is minimum, where E(S) stands for the set of edges

⋃
E(Ci).

For the edge-weighted variation, every edge of the input graph admits a cost
of deletion (represented by a weight function w) and the task is to perform the
minimum sum of weights deletions. Given a subset E′ of edges, we let w(E′) =∑

e∈E′ w(e), for the ease of notation. Hereafter we assume that the edge weights
are positive integers. The reason of not considering negative weights comes from
the fact that any graph can be completed into a clique with arbitrary edge-
weights, so that weighted Cluster Deletion becomes trivially difficult even
on graphs with sufficiently large cliques.

weighted Cluster Deletion

Input: A graph G = (V,E), a weight function w : E(G) → Z
+, and a non-

negative integer k.
Task: Decide whether there is E′ ⊆ E(G) such that G \E′ is a cluster graph
and w(E′) ≤ k.

Notice that if all edge weights are equal to one then the two variants of the
problem coincide. Moreover, positive results propagate from weighted Clus-
ter Deletion towards Cluster Deletion, whereas negative results propa-
gate in the reverse order. However, a notable difference among the two problems
is the aspect of computing a minimum solution. Indeed, the formal description
of the edge-weighted problem is not sufficient to find a minimum weight solu-
tion. Despite this fact, we point out that our positive results concerning both
problems are able to compute an optimal solution with an additional polynomial
factor on the stated running times.

Next we provide some useful properties concerning twin vertices. Two adja-
cent vertices u and v are called true twins if N [u] = N [v], whereas two non-
adjacent vertices x and y are called false twins if N(x) = N(y). A true twin
class of G is a maximal set of vertices that are pairwise true twins. Note that
the set of true twin classes of G constitutes a partition of V (G). We denote by
T (G) = {T1, . . . , Tr} the true twin classes of G, so that each set of vertices Ti

forms a true twin class in G. Observe that the partition T (G) = {T1, . . . , Tr} of
V (G) into classes of true twins can be constructed in linear time.

Lemma 2.1 ([5]). Let x and y be true twin vertices in G. Then, in any optimal
solution for Cluster Deletion x and y belong to the same cluster.

It is not difficult to extend Lemma 2.1 for a set of true twin vertices.

Observation 2.1. The vertices of a true twin class of G belong to the same
cluster in any optimal solution for Cluster Deletion.

376 G. F. Italiano et al.

We should point out that the above characterization does not hold for the
edge-weighted variant of the problem, even if we relax the restriction to certain
(rather than any) optimal solutions. However the following result holds.

Lemma 2.2. Let X be a true twin class of G such that all edges incident to the
vertices of X have the same positive weight. Then the vertices of X belong to
the same cluster in any optimal solution for weighted Cluster Deletion.

Graph Parameters. A vertex cover of G is a set of vertices that includes at
least one endpoint of every edge of the graph. The vertex cover number, denoted
by vc(G), is the size of a minimum cardinality vertex cover in G. Notice that
a set of vertices X is a vertex cover if and only if V (G) \ X is an independent
set. Unfortunately, vertex cover is a rather restrictive graph parameter and, for
that reason the following generalizations have been proposed. The twin cover of
a graph has been introduced by Ganian [15] as follows.

Definition 2.1. A set of vertices X ⊆ V (G) is a twin cover of G if for every
edge uv ∈ E(G) either one of the following holds: (i) u ∈ X or v ∈ X, (ii)
u and v are true twin vertices. Then G has twin cover number tc if tc is the
minimum possible size of a twin cover of G.

It is known that if a minimum twin cover in G has size at most k, then it is
possible to find a twin cover of size k in time O(|E| + k|V | + 1.2738k) [15].

Another generalization of vertex cover is the neighborhood diversity which
has been defined by Lampis [24]. Two vertices x, y of G have the same type if
N(x)\{y} = N(y)\{x}. The relation of having the same type is an equivalence.
In particular, two vertices x and y have the same type if and only if x and y are
either true twin or false twin vertices.

Definition 2.2. A graph G = (V,E) has neighborhood diversity at most nd, if
there exists a partition of V (G) into at most nd sets, such that all vertices in
each set have the same type.

Observe that the vertices of a given type not only have the same (closed)
neighborhood in G, but also form either a clique or an independent set in G.
Moreover, it is useful to consider a type graph H of a graph G, in which every
node Vi of H is a type class of G and two such nodes Vi, Vj are adjacent in
H if and only if uv ∈ E(G) for u ∈ Vi and v ∈ Vj . There exists an algorithm
which runs in polynomial time and given a graph G = (V,E) finds a minimum
partition of V (G) into neighborhood types [24].

Notice here that there are graphs that have bounded twin cover and
unbounded neighborhood diversity, and vice versa (see for e.g., [15]). Moreover,
twin cover and neighborhood diversity are incomparable with treewidth (tw) but
more restrictive than cliquewidth (cw) [15,24].

We now relate the above mentioned parameters with the number k of deleted
edges for Cluster Deletion. We consider connected graphs, because any solu-
tion for Cluster Deletion or weighted Cluster Deletion of a discon-
nected graph G is obtained by the union of partial solutions on each connected

Structural Parameterization of Cluster Deletion 377

component of G. Regarding vc there are simple examples for which k = O(n)
and vc = O(1), whereas other examples exist to show the opposite situation:
a star graph is typical example for the former case and a graph consisting of
two vertex-disjoint cliques with an additional edge is an example for the latter
case. Thus k and vc are unrelated. Notice that this comes in contrast to similar
relations with respect to the cluster vertex deletion number (also known as dis-
tance to cluster) which stands for the number of deleted vertices that is required
to obtain a cluster graph. It is not difficult to see that the cluster vertex dele-
tion number is at most 2k. Let us now show that nd and tc are both linearly
upper-bounded in k.

Proposition 2.1. Let G be a connected graph and let H be a cluster subgraph
of G with k = |E(G) \ E(H)|. Then, nd(G) ≤ 3k + 1 and tc(G) ≤ 2k.

3 Algorithmic Results for weighted Cluster Deletion

In this section, we present our results on weighted Cluster Deletion when
the parameter is the twin cover (tc) or neighborhood diversity (nd) or vertex
cover (vc) of the given graph. We begin with the hardness result for the more
general parameters tc and nd and then provide an efficient algorithm for the
restricted parameter vc.

We obtain our result from the k-Multiway Cut problem: given a graph
G = (V,E), a set T = {t1, . . . , tk} ⊆ V (G) of k terminals, and a non-negative
integer �, the task is to find a set of edges F ′ ⊆ E(G) such that |F ′| ≤ � and each
terminal belongs to a separate connected component in G \ F ′. It is known that
k-Multiway Cut problem remains NP-hard even if the number of terminals is
three (i.e., k = 3) [11].

Theorem 3.1. weighted Cluster Deletion is NP-hard on graphs with twin
cover number at most three and graphs with neighborhood diversity at most two.

Proof. We give a polynomial-time reduction to weighted Cluster Deletion
on graphs with twin cover 3 or neighborhood diversity 2 from the NP-hard
problem 3-Multiway Cut. Let (G = (V,E), T = {t1, t2, t3}, �) be an instance
of 3-Multiway Cut where |V (G)| = n and |E(G)| = m. We assume that
G is connected and G[T] is edgeless, because we can restrict to the connected
components of G and any edge between terminals belongs to a solution. Starting
from G, we construct a graph H by adding all necessary edges so that (i) V (G)\T
is a clique and (ii) every vertex t of T is adjacent to every vertex of V (G) \ T .
Observe that H has the same vertex set with G and contains all edges of the
complete graph except the edges of the triangle among the three terminals. We
assign the following edge-weight function for the edges of H: if e ∈ E(G) then
w(e) = n2; otherwise, w(e) = 1.

Notice that H can be constructed in polynomial time and contains n vertices
and n(n−1)

2 − 3 edges. Since the vertices of V (G) \ {t1, t2, t3} form a clique and
the neighborhood of t1, t2 and t3 is exactly this clique, the vertices of the clique

378 G. F. Italiano et al.

are true twins. Thus, by the definition of twin cover, we get that tc(H) = 3, with
a twin cover set {t1, t2, t3}. Moreover, the vertices of H can be partitioned into a
clique V (G) and an independent set T such that every vertex of the independent
set T is adjacent to every vertex of the clique V (G). Hence H not only has a
bounded twin cover, but it also admits a neighborhood diversity exactly 2, since
one type class is the clique V (G) \T and the other type class is the independent
set T . Let W = � ·n2 +p, where p = n(n−1)

2 −m−3. We prove that 3-Multiway
Cut has a solution F ′ ⊆ E(G) with |F ′| ≤ � if and only if weighted Cluster
Deletion has a solution E′ ⊆ E(H) with w(E′) ≤ W . �	

3.1 Vertex Cover

Here we provide an FPT algorithm for the weighted Cluster Deletion prob-
lem parameterized by the vertex cover. As a consequence, notice that Cluster
Deletion can be solved within the same running time.

Theorem 3.2. weighted Cluster Deletion can be solved in 2O(vc) · O(n2)
time, where vc is the vertex cover number of the input graph.

Proof. Let (G, k) be an instance of weighted Cluster Deletion and let
X be a vertex cover of G = (V,E) of size vc. The vertices of V \ X form an
independent set I. Let S = {C1, . . . , Cr} be a solution for weighted Cluster
Deletion. Observe that any cluster Ci contains at most one vertex from I.
That is, |Ci ∩ I| ≤ 1, for every 1 ≤ i ≤ r. Since |X| = vc, there are at most vc
vertices of I that belong to non-trivial clusters. We design an FPT algorithm
that computes a solution by applying a dynamic programming scheme. For a set
of vertices Y , we assign its total edge-weight w(Y) as −∞ whenever G[Y] is not
a cluster graph and w(Y) is the sum of the edge-weights in G[Y], otherwise.

We number the vertices of I in an arbitrary order I = {1, . . . , |I|}. For
technical reasons, we extend I by adding a vertex u in G that is non-adjacent
to any vertex, so that I ′ = I ∪ {u}. Let G be the resulting graph and let
I ′ = {0, 1, . . . , |I|}, assuming that u is numbered with zero. For the dynamic
programming, we construct a table T as follows: given a subset X ′ of X and an
integer j ∈ {0, 1, . . . , |I|}, T [X ′, j] denotes the total edge-weights of a maximum
edge-weighted cluster subgraph of G[X ′ ∪ {0, . . . , j}]. Clearly T [X, |I|] is the
desired value for our problem. As a base case, observe that T [∅, j] = 0 for any
j. For the recurrence, we have the following equation:

T [X ′, j] = max
∅�=Y ′⊆X′

{
T [X ′ \ Y ′, 0] + w(Y ′), if j = 0
T [X ′ \ Y ′, j − 1] + w(Y ′ ∪ {j}), otherwise.

(1)

�	

4 An Application on Twin Cover

In this section, we illustrate how Theorem 3.2 can be applied in the more relaxed
variation with no edge weights but in a more powerful setting. We consider

Structural Parameterization of Cluster Deletion 379

twin cover number as a parameter for Cluster Deletion and we show that
Cluster Deletion can be solved in FPT time under this parameterization. For
doing so, we apply a natural process related to the true twin vertices resulting
in an edge-weighted graph of bounded vertex cover.

Even though we deal with the unweighted variant, we consider edge-weighted
graphs in a natural way. If there is no weight function defined on the edges of a
graph G, we assign a weight to each edge of G equal to one and assume that G
is an edge-weighted graph. A true twin class T of an edge-weighted graph G, is
called 1-class if all edges incident to the vertices of T have weight one.

Definition 4.1 (T -contraction). Given a 1-class T of G, we define the T -
contraction of G as the edge-weighted graph H obtained from G by contracting
T into a single vertex vT s.t. all edges incident to vT in H have weight |T |.

Observe that after a T -contraction, H has |V (G)|− |T |+1 vertices, whereas the
total value of the new edge weights in H is at most |E(G)|.

Lemma 4.1. Let T be a 1-class of a graph G and let H be the T -contraction
of G. There is a solution E1 ⊆ E(G) for weighted Cluster Deletion on
G with w(E1) ≤ k if and only if there is a solution E2 ⊆ E(H) for weighted
Cluster Deletion on H with w(E2) ≤ k.

Theorem 4.1. Cluster Deletion can be solved in 2O(tc) · O(n2) time, where
tc is the twin cover number of the input graph.

Proof. Let (G, k) be an instance of Cluster Deletion and let X be a twin
cover of G = (V,E) of size tc = |X|. By the definition of twin cover, the vertices
of V (G) \ X induce a disjoint union of cliques in G. In particular, observe that
every connected component of G − X is a clique and forms a 1-class in G.
Based on this fact, it is not difficult to prove the following. Let Y1, . . . , Yp be
the connected components of G − X such that |Yi| ≥ 2, for every 1 ≤ i ≤ p.
Any Yi-contraction results in an edge-weighted graph Hi in which the connected
components of Hi − X with at least one edge are {Y1, . . . , Yp} \ Yi, and every
Y ′ ∈ {Y1, . . . , Yp} \ Yi is a 1-class.

We apply a Yi-contraction in an arbitrary order with respect to Y1, . . . , Yp.
The resulting graph H has vertex cover at most |X|: every connected component
of H − X has size one implying that the vertices of H − X form an independent
set. Therefore we can apply the weighted Cluster Deletion algorithm on
the edge-weighted graph H given in Theorem 3.2. �	

5 Cluster Deletion and Neighborhood Diversity

In this section, we provide an FPT algorithm for Cluster Deletion when
parameterized by neighborhood diversity. We will use integer linear program-
ming as a subroutine of our main result. In particular, we translate part of our
problem to an instance of the p-Variable Integer Linear Programming
Feasibility problem: given an m × p matrix A over Z and a vector b ∈ Z

m,

380 G. F. Italiano et al.

decide whether there is a vector x ∈ Z
p such that Ax ≤ b. Lenstra [19] showed

that the above problem is FPT parameterized by p, while Frank and Tardos [13]
showed that this algorithm can be made to run also in polynomial space. We
will make use of these results, that we formally state next1.

Theorem 5.1 ([13,19]). p-Variable Integer Linear Programming Fea-
sibility can be solved using O(p2.5p+o(p) · L) arithmetic operations and space
polynomial in L, where L is the number of bits in the input.

Before giving the details of our FPT algorithm for Cluster Deletion when
parameterized by neighborhood diversity, we describe the basic idea how to
compute a solution for Cluster Deletion by using the type graph. Let G be
a graph and let H be its type graph of size nd. Moreover, let {V1, . . . , Vnd} be
the type classes of G, or equivalently, the nodes of H. In the beginning, we find
all possible cliques (not necessarily maximal) of H by taking all the subsets of
nodes of H that form cliques. For every clique Hi of H, it is possible to find a
maximum clique in G that is induced by the vertices of the nodes which belong
to Hi. Now, our task is to choose some cliques Hi of H and for each Hi to choose
a specific number of maximum cliques contained in G. Those maximum cliques
will be considered as clusters for the problem.

Theorem 5.2. Cluster Deletion can be solved in 22
O(nd) · nO(1) time, where

nd is the neighborhood diversity of the input graph.

Proof. Let (G, k) be an instance of Cluster Deletion and let H be the type
graph of G of size nd. By the definition of neighborhood diversity, the vertices
of G can be partitioned in nd type classes. Let {V1, . . . , Vnd} be the type classes
of G. For ease of notation, we let Gi = G[Vi]. In the forthcoming arguments, we
assume that S = {S1, . . . , Sr} is the set of clusters of an optimal solution for
Cluster Deletion on (G, k).

Since the vertices of a type class that forms a clique are true twin vertices,
they belong to exactly one cluster of the solution S by Lemma 2.2. On the other
hand, the vertices of a type class of G that forms an independent set belong to
different clusters by the definition of cluster. Hence, for any cluster Sj ∈ S that
contains a vertex of Vi, we have the properties: (i) Vi ⊆ Sj , if Gi is a clique
and (ii) |Vi ∩ Sj | = 1, if Gi is an independent set. Based on this, we define the
following quantities:

‖Vi‖F =
{

|Vi| if Gi = clique
1 if Gi = independent set ‖Vi‖T =

{
1 if Gi = clique
|Vi| if Gi = independent set

Now we focus on the type graph H of G. We consider all subgraphs of H that
form a clique in H. Since every type class of G is a node in H, there are at
most 2nd cliques in H. Let H = {H1, . . . , Hq} be the set of cliques in H, where

1 In general the applicability of Theorem 5.1 has revealed close connections between
FPT and ILP (see for e.g. [10]).

Structural Parameterization of Cluster Deletion 381

q = |H| ≤ 2nd. Given a clique Hj ∈ H, we denote by G[Hj] the graph induced
by the vertices of G that belong to the nodes of Hj . Formally, the set of vertices
of G[Hj] is exactly {u ∈ Vi | Vi ∈ V (Hj)}.

For every clique Hj ∈ H, we define the following values: nj is the number of
vertices of a maximum clique in G[Hj], mj is the number of edges of a maximum
clique in G[Hj], tj = min ‖Vi‖T , for any Vi ∈ V (Hj).

Claim 5.1. For any Hj ∈ H, a maximum clique Sj in G[Hj] fulfils properties (i)
and (ii) and contains the following number of vertices: nj =

∑
Vi∈V (Hj)

‖Vi‖F .

Thus, by Claim 5.1 we can compute in polynomial time both numbers nj and
mj for every clique Hj . Similarly, tj can be computed in time linear in the size
of Hj . Now consider a maximum clique of G[Hj] for a clique Hj . Observe that
G[Hj] may contain more than one maximum cliques that are vertex-disjoint. We
capture this property by a non-negative integer yj assigned to Hj ∈ H, which
describes some number of vertex-disjoint maximum cliques that belong to G[Hj].

Given the set of cliques H, for every node Vi of the type graph H we
define M(i) as the cliques of H that contain Vi. Formally, we have M(i) =
{Hj ∈ H | Vi ∈ V (Hj)}. Based on the number of cliques q = |H|, we define a
sequence X = (x1, . . . , xq) of non-negative integers and we say that X is valid
vector of H if the following conditions hold: 0 ≤ xj ≤ tj and

∑
Hj∈M(i) xj =

‖Vi‖T , for every Vi ∈ V (H).
Furthermore, for a valid vector X of H, we let |E(X)| be the total number

of edges if we choose xj number of vertex-disjoint maximum cliques that belong
to G[Hj] for all xj ∈ X. That is, |E(X)| =

∑
xj∈X xj · mj . With the next claim,

our task is translated into finding a valid vector with an appropriate cost.

Claim 5.2 There is a solution E′ ⊆ E(G) for (G, k) if and only if there is a
valid vector X of H with |E(G)| − |E(X)| ≤ k.

Regarding the running time, the set H can be computed in 2nd · nO(1) time
by taking all possible subset of nodes of H and checking if each subset induces
a clique in H. Additionally, for every Vi the set M(i) can be found in |H| · nO(1)

time by traversing all cliques of H. Moreover, the ILP has at most 2nd number
of variables, where the value of any variable is bounded by n. Thus by applying
Theorem 5.1 the ILP can be solved in 22

O(nd) · nO(1) time. Then we can compute
a solution for Cluster Deletion from a valid vector in the same running time,
as described in Claim 5.1. Therefore the overall running time is bounded by the
time needed to solve the ILP system as it contains 2nd number of variables. �	

References

1. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56, 89–113
(2004). https://doi.org/10.1023/b:mach.0000033116.57574.95

2. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Com-
put. Biol. 6, 281–297 (1999)

https://doi.org/10.1023/b:mach.0000033116.57574.95

382 G. F. Italiano et al.

3. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: Going weighted: parameterized
algorithms for cluster editing. Theor. Comput. Sci. 410, 5467–5480 (2009)

4. Bonnet, É., Sikora, F.: The graph motif problem parameterized by the structure
of the input graph. Discrete Appl. Math. 231, 78–94 (2017)

5. Bonomo, F., Durán, G., Valencia-Pabon, M.: Complexity of the cluster deletion
problem on subclasses of chordal graphs. Theor. Comput. Sci. 600, 59–69 (2015)

6. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58, 171–176 (1996)

7. Cao, Y., Chen, J.: Cluster editing: kernelization based on edge cuts. Algorithmica
64(1), 152–169 (2012). https://doi.org/10.1007/s00453-011-9595-1

8. Cao, Y., Ke, Y.: Improved kernels for edge modification problems. In: Proceedings
of IPEC 2021, pp. 1–14 (2021)

9. Courcelle, B.: The monadic second-order logic of graphs I: recognizable sets of
finite graphs. Inf. Comput. 85, 12–75 (1990)

10. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

11. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM J. Comput. 23, 864–894 (1994)

12. Doucha, M., Kratochv́ıl, J.: Cluster vertex deletion: a parameterization between
vertex cover and clique-width. In: Proceedings of MFCS 2012, vol. 7464, pp. 348–
359 (2012). https://doi.org/10.1007/978-3-642-32589-2

13. Frank, A., Tardos, É.: An application of simultaneous Diophantine approximation
in combinatorial optimization. Combinatorica 7, 49–65 (1987). https://doi.org/10.
1007/BF02579200

14. Ganian, R.: Twin-cover: beyond vertex cover in parameterized algorithmics. In:
Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 259–271.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28050-4 21

15. Ganian, R.: Improving vertex cover as a graph parameter. Discrete Math. Theor.
Comput. Sci. 17(2), 77–100 (2015)

16. Gao, Y., Hare, D.R., Nastos, J.: The cluster deletion problem for cographs. Discrete
Math. 313, 2763–2771 (2013)

17. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering:
fixed-parameter algorithms for clique generation. In: Petreschi, R., Persiano, G.,
Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, pp. 108–119. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-44849-7 17

18. Grüttemeier, N., Komusiewicz, C.: On the relation of strong triadic closure and
cluster deletion. Algorithmica 82(4), 853–880 (2019). https://doi.org/10.1007/
s00453-019-00617-1

19. Lenstra, J.H.W.: Integer programming with a fixed number of variables. Math.
Oper. Res. 8, 538–548 (1983)

20. Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications.
Discrete Appl. Math. 160, 2259–2270 (2012)

21. Komusiewicz, C., Uhlmann, J.: Alternative parameterizations for cluster editing.
In: Černá, I., et al. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 344–355. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-18381-2 29

22. Konstantinidis, A.L., Papadopoulos, C.: Maximizing the strong triadic closure in
split graphs and proper interval graphs. Discrete Appl. Math. 285, 79–95 (2020)

23. Konstantinidis, A.L., Papadopoulos, C.: Cluster deletion on interval graphs and
split related graphs. Algorithmica 83(7), 2018–2046 (2021). https://doi.org/10.
1007/s00453-021-00817-8

https://doi.org/10.1007/s00453-011-9595-1
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-642-32589-2
https://doi.org/10.1007/BF02579200
https://doi.org/10.1007/BF02579200
https://doi.org/10.1007/978-3-642-28050-4_21
https://doi.org/10.1007/3-540-44849-7_17
https://doi.org/10.1007/s00453-019-00617-1
https://doi.org/10.1007/s00453-019-00617-1
https://doi.org/10.1007/978-3-642-18381-2_29
https://doi.org/10.1007/s00453-021-00817-8
https://doi.org/10.1007/s00453-021-00817-8

Structural Parameterization of Cluster Deletion 383

24. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica
64(1), 19–37 (2012). https://doi.org/10.1007/s00453-011-9554-x

25. Li, P., Puleo, G.J., Milenkovic, O.: Motif and hypergraph correlation clustering.
IEEE Trans. Inf. Theor. 66, 3065–3078 (2020)

26. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete
Appl. Math. 144, 173–182 (2004)

27. Tsur, D.: Cluster deletion revisited. Inf. Process. Lett. 173, 106171 (2022)

https://doi.org/10.1007/s00453-011-9554-x

Parity Permutation Pattern Matching

Virginia Ardévol Mart́ınez1(B) , Florian Sikora1 , and Stéphane Vialette2

1 Université Paris-Dauphine, PSL University, CNRS, LAMSADE,
75016 Paris, France

{virginia.ardevol-martinez,florian.sikora}@dauphine.fr
2 LIGM, CNRS, Univ Gustave Eiffel, 77454 Marne-la-Vallée, France

stephane.vialette@univ-eiffel.fr

Abstract. Given two permutations, a pattern σ and a text π, Parity
Permutation Pattern Matching asks whether there exists a parity
and order preserving embedding of σ into π. While it is known that
Permutation Pattern Matching is in FPT, we show that adding the
parity constraint to the problem makes it W[1]-hard, even for alternating
permutations or for 4321-avoiding patterns. However, it remains in FPT
if the text avoids a fixed permutation, thanks to a recent meta-theorem
on twin-width. On the other hand, as for the classical version, Parity
Permutation Pattern Matching remains polynomial-time solvable
when both permutations are separable, or if both are 321-avoiding, but
NP-hard if the pattern is 321-avoiding and the text is 4321-avoiding.

Keywords: Permutation Pattern Matching · Fixed parameter
tractability · Parameterized hardness · NP-hardness

1 Introduction

Permutations are one of the most fundamental objects in discrete mathematics,
and in concrete, deciding if a permutation contains another permutation as a
pattern is one of the most natural decision problems related to them. More pre-
cisely, in the well-known problem Permutation Pattern Matching (PPM),
given two permutations σ and π, the task is to determine if σ is a pattern of π,
or equivalently, if π contains a subsequence which is order-isomorphic to σ. For
example, if π = 3 1 5 4 2, it contains σ = 2 3 1, as 3 5 2 is a subsequence of π with
the same relative order as σ, but π does not contain σ = 1 2 3, as there are no
3 increasing elements in π. In the latter case, we say that π avoids 1 2 3. The
notion of avoidance allows to define classes of permutations as sets of permu-
tations that avoid certain patterns, for example, 321-avoiding permutations, or
(2413, 3142)-avoiding permutations, which are known as separable permutations.

PPM was proven to be NP-complete by Bose, Buss, and Lubiw in 1998 [6].
This motivated the search for exact exponential time algorithms [1,4,8,13]. How-
ever, some special cases, such as Longest Increasing Subequence, or the
cases where both σ and π are separable or 321-avoiding, are known to be poly-
nomial time solvable [2,6,10,16]. In fact, it was shown in [17] that PPM is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 384–395, 2023.
https://doi.org/10.1007/978-3-031-27051-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_32&domain=pdf
http://orcid.org/0000-0002-3703-2335
http://orcid.org/0000-0003-2670-6258
http://orcid.org/0000-0003-2308-6970
https://doi.org/10.1007/978-3-031-27051-2_32

Parity Permutation Pattern Matching 385

always polynomial-time solvable if the pattern avoids any fixed permutation
τ ∈{1, 12, 21, 132, 231, 312, 213}, and NP-complete otherwise. This result was then
extended in [18].

Its parameterized complexity was open for a long time, with a series of partial
results, but a breakthrough result of Guillemot and Marx showed that it is fixed
parameter tractable when parameterized by the size of the pattern σ, using a
new width measure structure theory of permutations [15]. They showed that
the problem can be solved in time 2O(k2 log k)n, and later on, Fox improved the
running time of the algorithm by removing a factor log k from the exponent [12].

This led to the question of whether a graph-theoretic generalization of their
permutation parameter could exist, that was answered positively in [5], by intro-
ducing the notion of twin-width, which has proven huge success recently. They
showed that graphs of bounded twin-width define a very natural class with
respect to computational complexity, as FO model checking becomes linear in
them.

Pattern matching for permutations, together with its many variants, has been
widely studied in the literature (the best general reference is [19], see also [7]).
Here we introduce a natural variation of PPM, which we call Parity Permu-
tation Pattern Matching, and that incorporates the additional constraint
that the elements of σ have to map to elements of π with the same parity,
i.e., even (resp. odd) elements of σ have to be mapped to even (resp. odd) ele-
ments of π. For one thing, pattern avoidance with additional constraints [3,9],
including parity restrictions [14,20], has emerged as a promising research area.
For another, Parity Permutation Pattern Matching aims at providing
concrete use cases of the 2-colored extension of PPM introduced in [16]. We
show that, surprisingly, it does not fit into the twin-width framework, and this
increases the complexity of the problem, as it becomes W[1]-hard parameterized
by the length of the pattern.

In fact, the approach used by Guillemot and Marx [15] to prove that PPM
is FPT is based on a result that states that given a permutation π, there exists
a polynomial time algorithm that either finds an r × r-grid of π or determines
that the permutation has bounded width (and returns the merge sequence of
the decomposition, which is used to solve the PPM problem in FPT time). This
win-win approach works because, if π contains an r × r-grid, it’s not hard to see
that it contains every possible pattern σ. However, this cannot be generalized
to Parity PPM, as here we have no information on the parity of the elements
of the grid, and thus, it is not guaranteed that every pattern maps via a parity
respecting embedding into the grid.

Structure of the Paper. The paper is organized as follows. Section 2 briefly intro-
duces the necessary concepts and definitions. In Sect. 3, we study the parame-
terized complexity of Parity PPM, showing that it is harder than PPM in
general, but that it remains in FPT for some cases, namely when the twin-width
of the host permutation is bounded. Finally, in Sect. 4, we show that concerning
the classical P vs NP questions, Parity PPM is similar to PPM. A summary
of the complexity of the problems is given in Table 1.

386 V. Ardévol Mart́ınez et al.

Table 1. Summary of known results (for PPM) and our results (for Parity PPM).

PPM Parity PPM

General case NP-hard, FPT W[1]-hard

Separable permutations P P

321-av σ and 321-av π P P

321-av σ and 4321-av π NP-hard NP-hard

4321-av σ FPT W[1]-hard

Alternating π and σ FPT W[1]-hard

π is fixed pattern avoiding FPT FPT

Due to space constraints, some proofs (marked with (�)) are deferred to the
full version of this paper.

2 Preliminaries

Let [n]={1, . . . , n}. A permutation of length n is a bijection f : [n] −→ [n]. Given
two permutations σ ∈Sk and π ∈Sn, we say that π (the text, or the host) contains
σ (the pattern) if there is an embedding from σ into π, i.e., an injective function
f such that for every pair of elements x and y of σ, their images f(x) and f(y)
of π are in the same relative order as x and y. Otherwise, we say that π avoids
σ. If π contains σ, we write σ ⪯ π.

A permutation class is a set C of permutations such that for every permuta-
tion π ∈C, every pattern of π is also contained in C. Every permutation class can
be defined by the minimal set of permutations that do not lie inside it, and we
define this as C =Av(B), where B is the minimal set of avoided permutations.

In this manner, we can define the class Av(4321), which is the set of permu-
tations that avoid 4321, Av(321), which is the set of permutations that avoid
321, and Av(2413, 3142), i.e., the class of permutations that avoid both 2413
and 3142. As we mentioned in the introduction, the latter is known as the class
of separable permutations, and it can also be characterized as the set of permu-
tations that have a separating tree. In other words, a permutation is separable
if there exists an ordered binary tree T in which the elements of the permuta-
tion appear in the leaves and such that the descendants of a tree node form a
contiguous subset of these elements.

Furthermore, we define the set of alternating permutations as the set of per-
mutations σ ∈ Sn such that σ1 > σ2 < σ3 >

The problem of determining whether a fixed pattern is contained in a per-
mutation has been well studied in the literature, and it is referred to as Per-
mutation Pattern Matching. Here, we study a natural variation of PPM,
Parity Permutation Pattern Matching, which we define formally below.

Definition 1. Given two permutations, a pattern σ ∈ Sk and a text π ∈ Sn, the
problem Permutation Pattern Matching asks whether π contains σ.

Parity Permutation Pattern Matching 387

Definition 2. An injective function f from σ to π is a parity respecting embed-
ding if for all elements x and y of σ, f(x) and f(y) are in the same relative
order as x and y, and for every element x of σ, f(x) has the same parity as x.

We say that an occurrence of a pattern σ in a permutation π respects parity
if there is a parity respecting embedding of σ into π. Furthermore, if there is an
occurrence of σ in π which respects parity, we say that π parity contains σ, and
we write σ ⪯P π. Otherwise, we say that π parity avoids σ.

Definition 3. Parity PPM is the problem of determining whether given a
pattern σ and a text π, there exists a parity respecting embedding of σ into π.

As a remark, note that if instead of considering the problem PPM with
the constraint that even (resp. odd) elements have to map to even (resp. odd)
elements, we require that elements in even (resp. odd) indices (positions) map to
elements in even (resp. odd) indices, the problem is equivalent. Indeed, σ parity
avoids π if and only if σ−1 parity index avoids π−1.

For example, the parity+order preserving embedding of σ = 2 4 1 3 into π =
42 76 315 yields the parity-index+order-preserving embedding of σ−1 = 3 1 4 2
into π−1 = 62 5 174 3 (occurrences are depicted with bold integers).

To see this, assume that there is a parity respecting embedding of σ into
π. Denote by Pσ(i) the position in σ of the element with value i and by f the
parity respecting injective map between σ and π associated to the embedding.
Since σ−1 = Pσ(1) ... Pσ(k), and f respects parity, if f(i) = j, both i and j have
the same parity, and thus, the indices in the inverses will also have the same
parity (by definition, odd elements are placed in odd indices in the inverses, and
vice versa). Furthermore, since f is an embedding, for i < j, σi < σj if and only
if f(σi) < f(σj). Thus, P (σi) is to the left of P (σj) in both σ−1 and π−1, and by
assumption, we also have i< j, so f induces a parity index respecting embedding
between the inverses.

In this paper, we focus mainly on the parameterized complexity of the above-
mentioned problem. Parameterized complexity allows the classification of NP-
hard problems on a finer scale than in the classical setting. Fixed parameter
tractable (FPT) algorithms are those with running time O(f(k) ·poly(n)), where
n is the size of the input and f is a computable function that depends only
on some well-chosen parameter k. On the other hand, problems for which we
believe that there does not exist an algorithm with that running time belong to
the W-hierarchy. We refer to [11] for more background on the topic.

3 Parameterized Complexity

We already saw in the introduction that PPM is in FPT in general, and why the
win-win approach of Guillemot and Marx for the parameterized algorithm for
PPM doesn’t work for Parity PPM. We show that this intuition is indeed true,
proving that the problem is W[1]-hard. In fact, we prove something stronger,
which is that Parity PPM is W[1]-hard even when restricted to alternating

388 V. Ardévol Mart́ınez et al.

permutations or when the pattern is 4321-avoiding. Note that both results are
independent from each other, as alternating permutations and 4321-avoiding
permutations are not comparable, but they both imply the W[1]-hardness of the
general case.

However, the twin-width framework (on which the parameterized algorithm
of Guillemot and Marx is an initial step) will be useful to prove that Parity
PPM remains in FPT when the text avoids a fixed pattern.

3.1 Parameterized Hardness for Alternating Permutations

Theorem 4. Parity PPM is W[1]-hard parameterized by the length k of the
pattern, even for alternating permutations σ and π.

Proof. We reduce from k-Clique in general graphs, which is known to be W[1]-
hard parameterized by the size of the clique k [11]. Given as input a graph G
and a parameter k, k-Clique asks whether G contains a clique of size k. For our
reduction, given a graph G = (V,E), with |V | = n and |E| =m, and a parameter
k, we construct a permutation σ that depends only on the parameter k, and a
permutation π, that depends on G, such that there exists a clique of size k in
the graph G if and only if there is a parity respecting embedding of σ into π.

Construction. We explain the construction of π for a general graph G. The high-
level idea is to construct different gadgets to represent the vertices and the edges
of the graph, and to somehow link each edge gadget to the corresponding vertex
gadgets, that is, we link the gadget associated to edge (u, v) with the gadgets
associated to vertices u and v by placing elements of value greater than the
minimum element of each vertex gadget and smaller than the maximum element
of each vertex gadget between the elements of the edge gadget.

We define the following gadgets (see also Fig. 1):

– A vertex gadget π[V], which is a direct sum of n decreasing permutations, all
order-isomorphic to 21 and composed of odd elements. It contains 2n elements
and starts at element 8m + 3.

– An edge gadget π[E], which is a direct sum of m permutations, all order-
isomorphic to 435261 and formed by odd elements. It contains 6m elements
and starts at element 3.

– The separator gadget is composed of the four even integers 4(n + 3m) + 4,
8m + 2, 4(n + 3m) + 2 and 2 (and hence is order-isomorphic to 4231). The
separator gadget lies between the vertex gadget and the edge gadget.

– Let Even be the 2(n+ 3m)− 2 even integers between 4 and 4(n+ 3m) that do
not appear in the vertex gadget, the separator gadget or the edge gadget. The
even garbage gadget is the alternating sequence composed of the even integers
of Even. It is constructed recursively from left to right as follows: place (and
remove from Even) the maximum of Even, place (and remove from Even) the
minimum of Even and recurse. It is placed to the right of the edge gadget.

Parity Permutation Pattern Matching 389

Fig. 1. Illustration of the construction introduced in the proof of Theorem 4. The
permutation in the figure corresponds to a clique of size 3 with vertices v1, v2, v3 and
edges (v1, v2), (v1, v3), (v2, v3). The odd elements are represented in black while even
elements are colored in red. Furthermore, blue lines delimit the vertex boxes. (Color
figure online)

– Let Odd be the two odd elements 4(n + 3m) + 3 and 1 that do not appear in
the vertex gadget, the separator gadget or the edge gadget. The odd garbage
gadget is the decreasing sequence composed of the two odd integers of Odd.
It is constructed as the even garbage gadget and placed directly to its right.

Formally, define,

∀vi ∈ V, π[vi] = 8m + 2 + 2∑j<i (deg(vj) + 2) + 2∑i (deg(vi)) + 3

8m + 2 + 2∑j<i (deg(vj) + 2) + 1 (1)

390 V. Ardévol Mart́ınez et al.

∀ek = (i, j) ∈ E, π[ek] = 6k + 1 6k − 1 8m + 2 + 2∑j′
<i (deg(v′

j) + 2) + 2∑(i,j′)/j′
<j (1) + 3

6k − 3 8m + 2 + 2∑j′
<j (deg(v′

j) + 2) + 2∑(i′,j)/i′<i (1) + 3 6k − 5 (2)

π = π[v1] . . . π[vn] 4(n + 3m) + 4 4(n + 3m) + 2 8m + 2 2

π[e1] , . . . π[em] , EVEN ODD (3)

(boxes are used for readability purposes only).
The permutation σ is constructed as the permutation π but considering Kk

as the graph G.
Clearly, this construction can be carried out in polynomial time and σ

depends only on the parameter k, i.e., the new parameter |σ| is a function of k.
Furthermore, both σ and π are alternating permutations. We claim that there
exists a clique of size k in the graph G if and only if there is a parity respecting
embedding of σ into π.

Notation. Before proving this reduction, we need to define some notation for the
elements of the permutations.

Let us denote by wi and w′
i (i ∈ {1, 2, 3, 4}) the four even elements of the

separator gadget, placed in between the vertex gadget and the edge gadget of σ
and π, respectively.

For each vertex vi, with i ∈ {1, . . . , n}, we will refer to the decreasing subse-
quence of length two associated to it, σ[vi], as the vertex box associated to vi.

For each edge ei, with i ∈ {1, . . . , m}, we will refer to the decreasing subse-
quence of length four associated to it (i.e., the elements of σ[ei] which correspond
to 4321 in the permutation 435261) as the edge box of ei.

We will denote the elements of the vertex box associated to vertex vi as vi,1

and vi,2, from left to right (i.e., vi,1 > vi,2), and the elements of the edge box
associated to edge ei as ei,1, ei,2, ei,3 and ei,4, again from left to right. On the
other hand, for each edge, we denote the two elements placed in between ei,2 and
ei,3, and between ei,3 and ei,4, as hi,1 and hi,2, respectively, where here hi,1 <hi,2

(these are the elements that correspond to the subsequence 56 in σ[ei]).
Finally, the even elements to the right of the edge gadget placed below w2

are referred to as wi,1, wi,2, wi,3 and wi,4, for every edge i ∈ {1, . . . , m}, where
wi,1 is the element ei,4 +1, wi,2 is ei,3 +1, wi,3 is ei,2 +1, and wi,4 is ei,1 +1. Note
that wi,4 is not defined for the last edge. On the other hand, the even elements
to the right of the edge gadget placed above w2 are denoted as xi,t, for every
vertex i ∈ {1, ..., n} and every edge incident to vi, t ∈ {1, ...,mi} (xi,t =hx,y + 1 for
some pair x, y).

Furthermore, we denote by xi,0 and xi,mi+1 the even elements in the extremes
such that xi,0 = vi,2 + 1 and xi,mi+1 = vi,1 + 1. Again, note that xn,mn+1 is not
defined.

For the elements of π, we follow an analogous notation denoting the elements
by v′

i,1, e′
i,1, etc.

Parity Permutation Pattern Matching 391

Direct Implication

Claim 5. (�) If there exists a clique of size k in the graph G, then there is a
parity respecting embedding of σ into π.

Reverse Implication. Suppose now that there exists a parity respecting embed-
ding between σ and π and let f be the associated injective mapping. We want
to show that we have enough structure in the permutations to infer that there
must be a clique of size k in the graph G. In order to do so, we will prove the
following sequence of claims that will restrict the map f .

Claim 6. Any parity respecting embedding f from σ to π must map wi to w′
i,

for i ∈ {1, 2, 3, 4}.

Proof of Claim. Since the pattern matching needs to respect parity, f must
map the wi’s to even elements of π. Towards a contradiction, assume first that
f(wi)≠w′

j , i, j ∈{1, 2, 3, 4}. That means that f(wi)=w′
i′,j or x′

i′,t, for some indices
i′, j or i′, t. But then, the odd elements to the right of wi in σ cannot map to
elements to the right of f(wi) in π (as there would be at most 2 odd elements to
the right of f(wi) and there are strictly more than 2 odd elements to the right
of wi), so f cannot be an embedding of σ into π. Finally, since both the wi’s
and the w′

i’s form 4231 subsequences, it is clear that there exists a unique way
to embed the wi’s into the w′

i’s, which is mapping each wi to its corresponding
w′

i, for every i ∈ {1, 2, 3, 4}. Thus, if f(wi) ≠ w′
i, f cannot be an embedding. �

Claim 7. All the elements to the left (resp. to the right) of the wi’s in σ map
to elements to the left (resp. to the right) of w′

i’s in π. Similarly, the elements
above (resp. below) w2 in σ map to elements above (resp. below) w′

2 in π.

Proof of Claim. This is a direct corollary of Claim 6. �

Claim 8. Any parity respecting embedding f from σ to π must map vertex blocks
of σ to vertex blocks of π.

Proof of Claim. By Claim 7, since elements to the left of w2 in σ map to
elements to the left of w′

2 in π, we have that f(vi,j) = v′
i′,j′ , for i ∈ {1, ..., k}, i′ ∈

{1, ..., n} and j, j′
∈ {1, 2}. Assume that f(vi,1) = v′

i′,j′ and f(vi,2) = v′
i′′,j′′ , with

i′≠i′′. Since vi,1 is to the left of vi,2, it means that f must map vi,2 to an element
placed to the right of f(vi,1) = v′

i′,j′ . But vi,1 > vi,2 and every element which is to
the right of v′

i′,j′ and which does not belong to the vertex block of v′
i′ , is greater

than v′
i′,j′ . Thus, if i′′ ≠ i′, then f would not be an embedding. �

Claim 9. Any parity respecting embedding f from σ to π must map edge blocks
of σ to edge blocks of π.

Proof of Claim. Again, we have that f(ei,j) = e′
i′,j′ for some pair i′, j′, and

since the structure of the gadget has the same properties as the vertex gadget,
we can use the same argument as in the proof of Claim 8. �

392 V. Ardévol Mart́ınez et al.

Claim 10. Any parity respecting embedding f from σ to π must map hi,j to
h′

i′,j, where e′
i′ is the edge associated to the edge block where ei,1 maps to.

Proof of Claim. By Claim 7, we have that necessarily, f(ei,j) = e′
i′,j , for i ∈

{1, ..., l}, i′ ∈ {1, ...,m} and j ∈ {1, 2, 3, 4}.
First, since f(ei,2) = e′

i′,2 and f(ei,3) = e′
i′,3, and f is an embedding, the fact

that hi,1 is in between ei,2 and ei,3 implies that it must map to an element
between e′

i′,2 and e′
i′,3. Similarly, hi,2 must map to an element in between e′

i′,3
and e′

i′,4. Since edge blocks map to edge blocks, there is at most one element
that satisfies each of these conditions. And these elements are h′

i′,1 and h′
i′,2,

respectively. �

Claim 11. All the even elements to the right of the edge gadgets in σ must map
to even elements to the right of the edge gadgets in π.

Proof of Claim. This follows from Claim 6. Since f(wi) =w′
i for i ∈ {1, 2, 3, 4}

and f has to respect parity, the rest of the even elements cannot map anywhere
else. �

Now, suppose that there is a parity respecting embedding f of σ into π and
assume, towards a contradiction, that G does not contain a clique of size k. Since
there is no clique of size k, it means that we cannot have l =

(
k
2

)
edges between

the k vertices of G which are in the image of f (that is, the vertices associated
to the images of the k vertex boxes of σ).

We know that the k vertex blocks of σ map to k vertex blocks in π and the(
k
2

)
edge blocks of σ map to

(
k
2

)
edge blocks of π. Since G does not contain a

clique, one of the k vertices corresponding to the k vertex blocks in the image
of f will have degree strictly smaller than k − 1 when we restrict G to the k
selected vertices. Let i′ be the vertex with degree strictly smaller than k − 1
and suppose it is the image of vertex block i in σ. Then, there are two possible
cases. The first case is that in the image of f , between the values f(vi,1) and
f(vi,2), there are less than k odd elements (these elements are necessarily of the
form h′

i,j). Since in between vi,1 and vi,2 in σ there are k odd elements of the
form hi,j , this would imply that f cannot be a parity respecting embedding. The
second possibility is that in between the values f(vi,1) and f(vi,2) there are k
odd elements (which again are necessarily of the form h′

i,j) but one of them is
not in between f(el,2) and f(el,3), or f(el,3) and f(el,4), for some l ∈ {1, . . . , m}.
This would also contradict the fact that f is a parity respecting isomorphism, as
all the hi,j in σ are between some pair el,2, el,3, or el,3, el,4 (with respect to the
x-axis). Therefore, if there is a parity respecting embedding of σ into π, it must
map the k vertex boxes of σ into k vertex boxes of π associated to k vertices
that form a clique in G. ��

Corollary 12. (�)Given a pattern σ ∈ Sk and a text π ∈ Sn, Parity PPM can-
not be solved in time f(k) · no(

√
k) for any computable function f , under the

Exponential Time Hypothesis (ETH).

Parity Permutation Pattern Matching 393

Note that reducing from Subgraph Isomorphism instead of k-Clique in
the proof of Theorem 4 to get a better lower bound under the ETH is not
trivial since there is a notion of order of the pattern in Parity PPM (i.e.,
two isomorphic subgraphs can result in different permutations depending on the
ordering of their vertices).

3.2 Parameterized Hardness for 4321-Avoiding Patterns

In this subsection, we complement the previous hardness result by showing that
the problem remains hard for patterns belonging to the class of 4321-avoiding
permutations. Our proof uses a colored version of PPM defined in [16], proven
W[1]-hard parameterized by k = |σ| in [16].

Definition 13. 2-colored 2IPP (2 Increasing Permutation Pattern)
consists on, given a 321-avoiding permutation σ∈Sk and an arbitrary permutation
π such that both σ and π are 2-colored permutations, finding a color-preserving
embedding of σ into π.

Theorem 14. (�) Parity PPM is W[1]-hard parameterized by the length k of
the pattern, even if the pattern is 4321-avoiding.

3.3 Parameterized Algorithm for Fixed Pattern Avoiding Text

In the previous subsection, we showed that restricting the pattern does not
necessarily reduce the complexity of the problem. However, we now see that
restricting the text allows us to use the twin-width meta-theorem [5] to have a
positive result. In fact, to see that Parity PPM is FPT if the text avoids a
fixed pattern x, it suffices to show that we can describe the problem using first-
order (FO) logic, i.e., that we can express it as a formula which uses quantified
variables over non-logical objects, and sentences (formulas without free variables)
that contain the variables. Indeed, adding unary relations to mark the odd and
even values preserves bounded twin-width, and therefore FPT tractability. The
result follows from [5]:

Lemma 15 ([5]). FO model checking is FPT on every hereditary proper subclass
of permutation graphs.

This implies that FO model checking is FPT in the class of permutations
avoiding a fixed pattern. Here, FO model checking refers to the problem of,
given a first-order sentence φ of FO and a finite model M of FO (which spec-
ifies the domain of disclosure of the variables), deciding whether M satisfies
φ, i.e., whether there exists an assignment of the variables which respects the
domain imposed by M and that satisfies φ. Therefore, we can state the following
theorem:

Theorem 16. (�)Parity PPM is in FPT if the text π avoids a fixed permuta-
tion.

394 V. Ardévol Mart́ınez et al.

4 Classical Complexity

Even though Parity PPM is harder than PPM from the parameterized point
of view, we will show that this is not the case concerning its classical complexity.

4.1 Hardness

A nice quite recent result showed that PPM remains NP-hard, even if the pattern
is 321-avoiding and the text is 4321-avoiding [17]. In the following, we show that
it remains true for Parity PPM.

Theorem 17. (�)Parity PPM is NP-hard, even if σ is a 321-avoiding permu-
tation and π is a 4321-avoiding permutation.

4.2 Polynomial-Time Solvable Cases

For some specific cases of Permutation Pattern Matching, polynomial time
algorithms that solve the problem exactly have been proposed. Here, we show
that some of these algorithms can be adapted to solve the problem Parity
Permutation Pattern Matching while still running in polynomial time.

Theorem 18. (�)Let σ be a permutation in Sk and π be a permutation in Sn.
Parity PPM can be solved in polynomial time in the following cases:

1. If both permutations are separable. In particular, if both permutations are
(231, 213)-avoiding, it can be solved in linear time.

2. If both permutations are 321-avoiding.

Acknowledgements. Thanks to Édouard Bonnet and Eun Jung Kim for pointing out
the link with the twin-width framework, and to the reviewers for their useful comments.

References

1. Ahal, S., Rabinovich, Y.: On complexity of the subpattern problem. SIAM J. Dis-
crete Math. 22(2), 629–649 (2008)

2. Albert, M.H., Lackner, M., Lackner, M., Vatter, V.: The complexity of pattern
matching for 321-avoiding and skew-merged permutations. Discrete Math. Theor.
Comput. Sci. 18(2) (2016)

3. Alexandersson, P., Fufa, S.A., Getachew, F., Qiu, D.: Pattern-avoidance and fuss-
catalan numbers. arXiv preprint. arXiv:2201.08168 (2022)

4. Berendsohn, B.A., Kozma, L., Marx, D.: Finding and counting permutations via
CSPs. Algorithmica 83(8), 2552–2577 (2021). https://doi.org/10.1007/s00453-021-
00812-z

5. Bonnet, É., Kim, E.J., Thomassé, S., Watrigant, R.: Twin-width I: tractable FO
model checking. J. ACM 69(1), 3:1–3:46 (2022)

6. Bose, P., Buss, J.F., Lubiw, A.: Pattern matching for permutations. Inf. Process.
Lett. 65(5), 277–283 (1998)

http://arxiv.org/abs/2201.08168
https://doi.org/10.1007/s00453-021-00812-z
https://doi.org/10.1007/s00453-021-00812-z

Parity Permutation Pattern Matching 395

7. Bruner, M.L., Lackner, M.: The computational landscape of permutation patterns.
Pure Mathematics and Applications: Special Issue for the Permutation Patterns
2012 Conference, vol. 24, no. 2, pp. 83–101 (2013)

8. Bruner, M., Lackner, M.: A fast algorithm for permutation pattern matching based
on alternating runs. Algorithmica 75(1), 84–117 (2016). https://doi.org/10.1007/
s00453-015-0013-y

9. Bulteau, L., Fertin, G., Jugé, V., Vialette, S.: Permutation pattern matching for
doubly partially ordered patterns. In: Proceedings of the CPM. LIPIcs, vol. 223,
pp. 21:1–21:17 (2022)

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2022)

11. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015)
12. Fox, J.: Stanley-wilf limits are typically exponential. arXiv preprint.

arXiv:1310.8378 (2013)
13. Gawrychowski, P., Rzepecki, M.: Faster exponential algorithm for permutation

pattern matching. In: 5th SOSA@SODA 2022, pp. 279–284. SIAM (2022)
14. Gil, J.B., Tomasko, J.A.: Restricted Grassmannian permutations. Enumerative

Comb. Appl. 2(4), #S4PP6 (2021)
15. Guillemot, S., Marx, D.: Finding small patterns in permutations in linear time. In:

Proceedings of the SODA, pp. 82–101. SIAM (2014)
16. Guillemot, S., Vialette, S.: Pattern matching for 321-avoiding permutations. In:

Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1064–
1073. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10631-6 107

17. Jeĺınek, V., Kynčl, J.: Hardness of permutation pattern matching. In: Proceedings
of the SODA, pp. 378–396. SIAM (2017)

18. Jeĺınek, V., Opler, M., Pekárek, J.: Griddings of permutations and hardness of
pattern matching. In: Proceedings of the MFCS. LIPIcs, vol. 202, pp. 65:1–65:22
(2021)

19. Kitaev, S.: Patterns in Permutations and Words. Monographs in Theoretical Com-
puter Science. An EATCS Series, Springer, Berlin (2011). https://doi.org/10.1007/
978-3-642-17333-2

20. Tanimoto, S.: Combinatorics of the group of parity alternating permutations. Adv.
Appl. Math. 44(3), 225–230 (2010)

https://doi.org/10.1007/s00453-015-0013-y
https://doi.org/10.1007/s00453-015-0013-y
http://arxiv.org/abs/1310.8378
https://doi.org/10.1007/978-3-642-10631-6_107
https://doi.org/10.1007/978-3-642-17333-2
https://doi.org/10.1007/978-3-642-17333-2

Author Index

A
Abu-Affash, A. Karim 71
Aichholzer, Oswin 49
Araki, Tetsuya 61
Aravind, N. R. 291
Ardévol Martínez, Virginia 384

C
Carmi, Paz 71
Chrobak, Marek 167
Cordasco, Gennaro 330

D
da Fonseca, Guilherme D. 102
Durocher, Stephane 23

E
Eto, Hiroshi 191

G
Gadekar, Ameet 359
Gargano, Luisa 330
Gerard, Yan 102
Ghodsi, Mohammad 78
Gokhale, Prashant 90
Gronemann, Martin 217
Grossi, Roberto 139

H
Hendrian, Diptarama 115
Hoang, Duc A. 254
Horiyama, Takashi 127

I
Iliopoulos, Costas S. 139
Italiano, Giuseppe F. 371
Ito, Takehiro 191

J
Jansson, Jesper 139
Jayapaul, Varunkumar 179
Jo, Seungbum 179

K
Kaufmann, Michael 12
Kawahara, Jun 151
Keil, J. Mark 23, 90
Knorr, Kristin 49
Konstantinidis, Athanasios L. 371
Kratochvíl, Jan 3
Kumagai, Koshiro 115

L
Lim, Zara 139
Luu, Huong 167

M
Maman, Meytal 71
Meyer, Ulrich 229
Mieno, Takuya 127
Mitani, Kazuki 127
Mohanapriya, A. 343
Mondal, Debajyoti 23, 90
Monti, Angelo 267
Mulzer, Wolfgang 49

N
Nakano, Shin-ichi 61
Nilsson, Bengt J. 202
Nöllenburg, Martin 217

O
Obenaus, Johannes 49

P
Palem, Krishna 179
Pandey, Arti 242
Papadopoulos, Charis 371

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 397–398, 2023.
https://doi.org/10.1007/978-3-031-27051-2

https://doi.org/10.1007/978-3-031-27051-2

398 Author Index

Paul, Kaustav 242
Paul, Rosna 49

R
Renjith, P. 343
Rescigno, Adele A. 330
Rivier, Bastien 102
Roy, Bodhayan 78

S
Sadagopan, N. 343
Saito, Rin 191
Saitoh, Toshiki 36, 151
Samineni, Bhargav 305
Satti, Srinivasa Rao 179
Saxena, Roopam 291
Schieber, Baruch 305
Schlotter, Ildikó 317
Schmidt, Christiane 202
Seto, Kazuhisa 127
Shinohara, Ayumi 115
Shiota, Takumi 36
Sikora, Florian 384
Sinaimeri, Blerina 267
Sung, Wing-Kin 139
Suzuki, Akira 279

T
Takeda, Hirokazu 151
Tamura, Yuma 279
Tran, Hung 229
Tsakalidis, Konstantinos 229

U
Uehara, Ryuhei 191

V
Vaezi, Arash 78
Vahidi, Soroush 305
Vialette, Stéphane 384
Villedieu, Anaïs 217
Vogtenhuber, Birgit 49

Y
Yanagisawa, Yusuke 279
Yoshinaka, Ryo 115, 151
Yoshioka, Yui 151

Z
Zhou, Xiao 279
Zuba, Wiktor 139

	 Preface
	 Organization
	 Contents
	Invited Talks
	Graph Covers: Where Topology Meets Computer Science, and Simple Means Difficult
	1 Definitions
	2 Negami's Conjecture
	3 Locally Constrained Graph Homomorphisms
	4 List Covering
	5 Strong Dichotomy
	6 Disconnected Graphs
	7 Look Who is Stronger, and Mind Generalized Snarks
	References

	The Family of Fan-Planar Graphs
	1 The Origins
	2 The First Generation
	3 The Relatives
	4 The Second Generation
	4.1 Thickness
	4.2 Non-simple Fan-Planar Graphs
	4.3 Insights on Configuration III

	5 An Outlook to the Future
	References

	Computational Geometry
	Minimum Ply Covering of Points with Unit Squares
	1 Introduction
	2 Minimum Ply Covering with Unit Squares
	3 Conclusion
	References

	Overlapping Edge Unfoldings for Archimedean Solids and (Anti)prisms
	1 Introduction
	2 Preliminaries
	3 Rotational Unfolding
	4 Archimedean Solids
	5 Archimedean Prisms
	6 Archimedean Anti-prisms
	References

	Flipping Plane Spanning Paths
	1 Introduction
	2 A Sufficient Condition
	3 Flip Connectivity for Wheel Sets
	4 Flip Connectivity for Generalized Double Circles
	5 Conclusion
	References

	Away from Each Other
	1 Introduction
	2 k-Dispersion in a Polygon
	3 More Problems
	4 Conclusion
	References

	Piercing Diametral Disks Induced by Edges of Maximum Spanning Trees
	1 Introduction
	1.1 Related Works
	1.2 Our Contribution

	2 Preliminaries
	3 Proof of Theorem 1
	4 Conclusion
	References

	Reflective Guarding a Gallery
	1 Introduction
	1.1 Our Settings

	2 Expanding VP(q) by Exactly k Units of Area
	2.1 NP-Hardness for Specular Reflections
	2.2 Properties of the Reduction Polygon
	2.3 NP-Hardness for Diffuse Reflections

	3 Expanding at Least k Units of Area
	4 Regular Visibility vs Reflection
	5 Conclusion
	References

	Improved and Generalized Algorithms for Burning a Planar Point Set
	1 Introduction
	2 Burning Number in One Dimension
	2.1 PTAS for Anywhere Burning
	2.2 PTAS for Point Burning

	3 Burning Number in Two Dimensions
	3.1 Anywhere Burning
	3.2 Point Burning

	4 Generalizations for Point Burning
	4.1 Point Burning with Non-uniform Rates
	4.2 k-Burning with Non-uniform Rates

	5 NP-Hardness
	5.1 Burning Maximum Number of Points

	6 Conclusion
	References

	On the Longest Flip Sequence to Untangle Segments in the Plane
	1 Introduction
	1.1 Related Reconfiguration Problems
	1.2 Definitions

	2 Reductions
	3 Near Convex Sets
	4 Distinct Flips
	5 Conclusion and Open Problems
	References

	String Algorithm
	Inferring Strings from Position Heaps in Linear Time
	1 Introduction
	2 Preliminaries
	2.1 Graphs
	2.2 Position Heaps
	2.3 Problem Definitions

	3 Proposed Algorithms
	3.1 Inferring Source Texts from Node-Numbered Edge-Labeled Trees
	3.2 Inferring Source Texts from Node-Numbered Trees
	3.3 Inferring Source Texts from Edge-Labeled Trees
	3.4 Inferring Source Texts from Trees with Links

	4 Conclusion
	References

	Internal Longest Palindrome Queries in Optimal Time
	1 Introduction
	2 Preliminaries
	2.1 Strings and Palindromes
	2.2 Tools

	3 Internal Longest Palindrome Queries
	3.1 Palindromic Suffixes and Prefixes
	3.2 Palindromic Infixes

	References

	Finding the Cyclic Covers of a String
	1 Introduction
	2 Preliminaries
	2.1 Basic Definitions
	2.2 The IPM Data Structure

	3 Cyclic Covers
	3.1 Find Regions in X Covered by Cyclic Shifts of W with the Constraint that W[i] Aligns to X[j]
	3.2 Finding Regions in X that are Cyclically Covered by a Highly-Periodic Factor W
	3.3 Finding Regions in X that Are Cyclically Covered by a Non-highly-periodic Factor W

	4 Concluding Remarks
	References

	Efficient Non-isomorphic Graph Enumeration Algorithms for Subclasses of Perfect Graphs
	1 Introduction
	2 Preliminary
	3 Algorithms
	3.1 Proper Interval Graphs and Cochain Graphs
	3.2 Bipartite Permutation Graphs and Chain Graphs
	3.3 Threshold Graphs

	References

	Optimization
	Better Hardness Results for the Minimum Spanning Tree Congestion Problem
	1 Introduction
	2 Preliminaries
	3 NP-Completeness Proof of K-STC for K 5
	References

	Energy Efficient Sorting, Selection and Searching
	1 Introduction
	2 Model
	3 Sorting
	3.1 Two-Level Algorithm
	3.2 Multi-level Algorithm

	4 Finding the Minimum Element
	5 Conclusion
	References

	Reconfiguration of Vertex-Disjoint Shortest Paths on Graphs
	1 Introduction
	1.1 Our Problems and Related Results
	1.2 Our Contribution

	2 Preliminaries
	3 Reachability Variant
	3.1 Characterization of Reachability
	3.2 Proof of Theorem 2

	4 Shortest Variant
	4.1 Polynomial-Time Solvable Cases
	4.2 NP-Completeness

	5 Conclusion
	References

	k-Transmitter Watchman Routes
	1 Introduction
	2 Notation and Preliminaries
	3 Special Observations for k-Transmitters
	4 Computational Complexity
	5 Approximation Algorithm for k-TrWRP(S,P,s)
	6 Conclusion
	References

	Graph Algorithm
	Splitting Plane Graphs to Outerplanarity
	1 Introduction
	2 Face-Vertex Incidence Graph
	3 NP-Completeness
	4 Feedback Vertex Set Approach
	5 Lower and Upper Bounds
	5.1 Upper Bounds
	5.2 Lower Bounds

	6 Open Problems
	References

	Certifying Induced Subgraphs in Large Graphs
	1 Introduction
	1.1 Previous Work
	1.2 Our Results

	2 Preliminaries and Notation
	3 Certifying Graph Classes in External Memory
	3.1 Certifying Split Graphs in External Memory
	3.2 Certifying Threshold Graphs in External Memory
	3.3 Certifying Trivially Perfect Graphs in External Memory
	3.4 Certifying Bipartite Chain Graphs in External Memory

	4 Experimental Evaluation
	5 Conclusions
	References

	Some Algorithmic Results for Eternal Vertex Cover Problem in Graphs
	1 Introduction
	2 Preliminaries
	2.1 Definitions and Notations
	2.2 Existing Results Used in This Paper
	2.3 Eternal Vertex Cover Number for Some Subclasses of Bipartite Graph

	3 A Polynomial Time Algorithm for Chain Graphs
	3.1 For Chain Graphs Where only Y Can Have Pendant Vertices
	3.2 For Chain Graphs with Pendant Vertices in X or in X,Y both

	4 A Linear Time Algorithm for Split Graphs
	5 A Polynomial Time Algorithm for Cographs
	6 Conclusion and Future Aspects
	References

	On the Complexity of Distance-d Independent Set Reconfiguration
	1 Introduction
	2 Preliminaries
	3 Observations
	3.1 Graphs and Their Powers
	3.2 Graphs with Bounded Diameter Components

	4 Chordal Graphs and Split Graphs
	5 A Reduction Under TJ on General Graphs
	6 Extending Some Known Results for d = 2
	6.1 General Graphs
	6.2 Perfect Graphs
	6.3 Planar Graphs

	7 Open Problem: Trees
	References

	On Star-Multi-interval Pairwise Compatibility Graphs
	1 Introduction
	2 Preliminaries
	3 Circular Graphs
	4 Grid Graphs
	5 Conclusions and Open Problems
	References

	Parameterized Complexity of Optimizing List Vertex-Coloring Through Reconfiguration
	1 Introduction
	1.1 Our Problem
	1.2 Related Results
	1.3 Our Results

	2 Preliminaries
	2.1 Graph Parameters

	3 NP-Hardness
	4 PSPACE-Completeness
	5 Fixed Parameter Algorithms
	5.1 Graphs of Pathwidth One
	5.2 Vertex Cover Number

	6 Conclusion
	References

	Parameterized Complexity of Path Set Packing
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Preliminaries
	3 Hardness with Respect to Vertex Cover + Maximum Path Length
	4 Hardness with Respect to Pathwidth + Maximum Degree + Solution Size
	5 FPT Parameterized by Feedback Vertex Number + Maximum Degree
	5.1 Preliminaries: Defining Structures and Nice Solutions
	5.2 Guessing and Extending the Solution

	6 FPT When Combining Three Parameters
	References

	Approximation Algorithm
	Interweaving Real-Time Jobs with Energy Harvesting to Maximize Throughput
	1 Introduction
	1.1 Motivation
	1.2 Our Results
	1.3 Prior Work
	1.4 Preliminaries

	2 An Optimal Algorithm for EAS When All Jobs Have Identical Release Times and Due Dates
	3 A Greedy 12-Approximation for EAS
	4 An FPTAS for WEAS When All Jobs Have Identical Release Times and Due Dates
	5 Hardness Results
	5.1 Unweighted Setting
	5.2 Weighted Setting

	6 Conclusions and Open Problems
	References

	Recognizing When a Preference System is Close to Admitting a Master List
	1 Introduction
	2 Preliminaries
	3 Problem Definition and Initial Results
	4 Computing the Distance from Admitting a Master List
	4.1 Strict Preferences
	4.2 Weakly Ordered Preferences

	5 Applications
	5.1 Optimization over Stable Matchings
	5.2 Maximum-Utility Popular Matchings with Instability Costs

	6 Summary and Further Research
	References

	Groups Burning: Analyzing Spreading Processes in Community-Based Networks
	1 Introduction
	2 Related Works
	3 Burning with Groups: The General Case
	3.1 Hardness Results for Burning with Groups
	3.2 Approximation Algorithms for Burning with Groups

	4 Burning with O(1) Groups
	5 Burning Max Groups with Unitary Requirements
	References

	Roman k-Domination: Hardness, Approximation and Parameterized Results
	1 Introduction
	2 Roman k-Domination on Split Graphs
	2.1 Roman k-Domination on Split Graphs Is NP-Complete

	3 Roman k-Domination on Some Subclasses of Bipartite Graphs
	3.1 Roman k-Domination on Star-Convex Bipartite Graphs
	3.2 Roman k-Domination on Comb-Convex Bipartite Graphs
	3.3 Roman k-Domination on Bipartite Chain Graphs

	4 W-Hardness Results for Roman Domination on Split Graphs
	5 Approximation Hardness for RKDF
	References

	Parameterized Complexity
	On the Parameterized Complexity of Compact Set Packing
	1 Introduction
	1.1 Our Results
	1.2 Our Contributions and Comparison to Existing Work
	1.3 Overview of Techniques
	1.4 Open Problems

	2 Preliminaries
	2.1 Notations
	2.2 Problem Definitions

	3 Dichotomy of PSP
	3.1 Compatible Intersecting Set System Pair
	3.2 Hardness of Compact PSP

	References

	Structural Parameterization of Cluster Deletion
	1 Introduction
	2 Preliminaries
	3 Algorithmic Results for weighted Cluster Deletion
	3.1 Vertex Cover

	4 An Application on Twin Cover
	5 Cluster Deletion and Neighborhood Diversity
	References

	Parity Permutation Pattern Matching
	1 Introduction
	2 Preliminaries
	3 Parameterized Complexity
	3.1 Parameterized Hardness for Alternating Permutations
	3.2 Parameterized Hardness for 4321-Avoiding Patterns
	3.3 Parameterized Algorithm for Fixed Pattern Avoiding Text

	4 Classical Complexity
	4.1 Hardness
	4.2 Polynomial-Time Solvable Cases

	References

	Author Index

