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Sustainable agriculture is a rapidly growing field aiming at producing food and 
energy in a sustainable way for humans and their children. Sustainable agriculture 
is a discipline that addresses current issues such as climate change, increasing food 
and fuel prices, poor-nation starvation, rich-nation obesity, water pollution, soil 
erosion, fertility loss, pest control, and biodiversity depletion.

Novel, environmentally-friendly solutions are proposed based on integrated 
knowledge from sciences as diverse as agronomy, soil science, molecular biology, 
chemistry, toxicology, ecology, economy, and social sciences. Indeed, sustainable 
agriculture decipher mechanisms of processes that occur from the molecular level 
to the farming system to the global level at time scales ranging from seconds to 
centuries. For that, scientists use the system approach that involves studying 
components and interactions of a whole system to address scientific, economic and 
social issues. In that respect, sustainable agriculture is not a classical, narrow 
science. Instead of solving problems using the classical painkiller approach that 
treats only negative impacts, sustainable agriculture treats problem sources.

Because most actual society issues are now intertwined, global, and fast-
developing, sustainable agriculture will bring solutions to build a safer world. This 
book series gathers review articles that analyze current agricultural issues and 
knowledge, then propose alternative solutions. It will therefore help all scientists, 
decision-makers, professors, farmers and politicians who wish to build a safe 
agriculture, energy and food system for future generations.
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Preface

The predicted increase in the frequency of extreme climate events such as drought 
and floods is threatening agricultural production and food security worldwide. 
Extreme climate events are degrading soil health and properties, and increasing 
plant stress from heat and pests. These issues can be partly alleviated by application 
of biochar to soils. Biochar is a carbon-neutral, porous carbonaceous material pro-
duced by pyrolysis of modern biomass and organic waste. Application of biochar to 
soils has several benefits such as improving crop productivity and soil structure, and 
storing nutrients and water (Fig. 1). Biochar also decreases plant stress from heat, 
drought, diseases and pollution. Biochar provides habitat for soil microbial com-
munities. Adding biochar to soils is also indirectly offsetting the negative effects of 
climate change by sequestrating stable carbon in the long run. This book reviews the 
major benefits of biochar amendment to soils, with emphasis on climate extremes 
and arid land. The 16 chapters are sorted into 4 parts: improvement of crop yield, 
alleviation of plant stress, improvement of soil health and microbial interactions.
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Fig. 1 Major benefits of adding biochar to soils. Biochar is symbolized as a ‘C’ for carbon. CEC 
cation exchange capacity, NUE nitrogen use efficiency, WUE water use efficiency, GHG green-
house gas

The editors are very thankful to all the authors and reviewers who contributed to 
this book. We would also like to thank the staff of Springer Nature for their highly 
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Chapter 1
Biochar Application for Improving 
the Yield and Quality of Crops Under 
Climate Change

Debjyoti Majumder , Salil Saha, Bishal Mukherjee , Suddhasuchi Das, 
F. H. Rahman, and Akbar Hossain 

Abstract Global climate change, which is mainly caused by industrialized nations, 
has a negative impact on the agricultural production of poor and emerging coun-
tries, calling for mitigating strategies to reduce fertiliser inputs and greenhous gas 
emissions. Increasing carbon sequestration in soils can be done by reduced tillage 
and application of biochar and straw. Here we review the use of biochar application 
to soil with focus on biochar synthesis, bioenergy, carbon sequestration, soil quality, 
greenhouse gases, nutrient retention, pesticide decontamination, water manage-
ment, crop yield, and economy. We also discuss drawbacks of biochar application.
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Abbreviations

AMF Arbuscular mycorrhizal fungi
BNF Biological N fixation
FYM Farm yard manure
GWP Global warming potential
IPCC Inter governmental panel on climate change
IWUE Irrigation water use efficiency
NUE Nutrient use efficiency
PUE Phosphorus use efficiency
RUE Relative water contents
SAR Sodium adsorption ratio
USEPA United States Environmental protection Agency
WHC Water holding capacity
WUE Water use efficiency

1.1  Introduction

Climate change is defined as deviations from the average atmospheric state pro-
duced by both natural and anthropogenic forces such as the orbit of the earth’s revo-
lution, volcanic activity, and crustal motions (Arunanondchai et al. 2018; Yang et al. 
2022; Ahmad et al. 2022; Shah et al. 2022; Muhammad et al. 2022; Wiqar et al. 
2022; Farhat et al. 2022; Niaz et al. 2022). Climate change by global warming, or 
the average increase in global temperature, has become a major issue, a megatrend 
that will result in significant future world developments. Devastating environmental 
changes have harmed natural systems, human health, and agricultural production 
(Ihsan et al. 2022; Chao et al. 2022; Qin et al. 2022; Xue et al. 2022; Ali et al. 2022; 
Mehmood et al. 2022; El Sabagh et al. 2022; Ibad et al. 2022).

Warming of weather and climate systems can lead to significant changes in the 
occurrence of severe events, such as temperature increases and irregular rainfall pat-
terns (Ahmad et al. 2018; Al-Zahrani et al. 2022; Rajesh et al. 2022; Anam et al. 
2021; Deepranjan et al. 2021; Haider et al. 2021; Amjad et al. 2021; Sajjad et al. 
2021a, b). The number of stress episodes, their influence on daily living, and dam-
age to crops are used to evaluate the effects of climate change and environmental 
variation (FAO 2018; Reckling et al. 2018; Deepranjan et al. 2021; Haider et al. 
2021; Huang et al. 2021; Ikram et al. 2021; Jabborova et al. 2021; Khadim et al. 
2021a, b; Muzammal et  al. 2021). The two major challenges of the twenty-first 
century are climate change and food insecurity (Fakhre et al. 2021; Khatun et al. 
2021; Ibrar et al. 2021; Bukhari et al. 2021; Haoliang et al. 2022; Sana et al. 2022; 
Abid et al. 2021; Zaman et al. 2021; Sajjad et al. 2021a, b; Rehana et al. 2021). 
Malnutrition affects approximately 815 million people, making it difficult for sus-
tainable development projects to fulfil the universal objective of ending hunger by 
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2030 (Hafeez et al. 2021; Khan et al. 2021; Kamaran et al. 2017; Safi et al. 2021; 
Sajjad et al. 2019; Saud et al. 2013, 2014, 2016, 2017; 2020, 2022a, b; Shah et al. 
2013). In 2050, the world’s population is predicted to reach around 9 billion people, 
resulting in an 85% increase in food demand (FAOSTAT 2017; Richardson et al. 
2018; Aziz et al. 2017a, b; Chang et al. 2021; Chen et al. 2021; Emre et al. 2021; 
Habib Ur et al. 2017; Hafiz et al. 2016; Hafiz et al. 2019; Ghulam et al. 2021; Guofu 
et al. 2021). Current cropping systems with little variety and high input concentra-
tions, as well as unstable production due to environmental changes in crops, exacer-
bate climatic influences (Saboor et al. 2021a, b; Ashfaq et al. 2021; Amjad et al. 
2021; Atif et al. 2021; Athar et al. 2021; Adnan et al. 2018a, b; Adnan et al. 2019; 
Akram et al. 2018a, b).

Agricultural yields in underdeveloped nations are primarily harmed by adverse 
environmental circumstances, therefore high temperatures and CO2 accumulation 
forced scientists to find new techniques to deal with fewer predictable difficulties 
(Zafar-ul-Hye et al. 2021; Adnan et al. 2020; Ilyas et al. 2020; Saleem et al. 2020a, 
b, c; Rehman et al. 2020; Farhat et al. 2020; Wu et al. 2020; Mubeen et al. 2020; 
Farhana et al. 2020; Jan et al. 2019; Wu et al. 2019; Ahmad et al. 2019; Baseer et al. 
2019; Hafiz et al. 2018; Tariq et al. 2018). Evidence suggests that high temperatures 
and variable rainfall distribution have a negative impact on crop output over the 
world (Lobell and Field 2011; Fahad and Bano 2012; Fahad et al. 2017). Agriculture 
is one of the most sensitive water sectors to climate change, as it is a major water 
consumer in both developing and developed countries (Farah et al. 2020; Sadam 
et al. 2020; Unsar et al. 2020; Fazli et al. 2020; Md. Enamul et al. 2020; Gopakumar 
et al. 2020; Zia-ur-Rehman 2020; EL Sabagh et al. 2020; Al-Wabel et al. 2020a, b). 
As per Inter governmental panel on climate change (IPCC 2013) temperature affects 
the rate of plant growth and development. The temperature ranges surrounding the 
plant and each species are represented by a minimum, maximum, and optimal (Chen 
et al. 2015; Adhikari et al. 2016).

Temperatures are expected to rise by 2–3 °C during the next 30–50 years. In a 
recent analysis of the effect of temperature extremes, frost and heat, on wheat 
(Triticum aestivum L.) (Amanullah et al. 2021; Rashid et al. 2020; Arif et al. 2020; 
Amir et al. 2020; Saman et al. 2020; Muhammad et al. 2019; Md Jakir and Allah 
2020; Mahmood Ul et al. 2021; Barlow et al. 2015), who found that frost caused 
sterility and abortion of produced grains, whereas excessive heat reduced grain 
number and lengthened the grain filling period. According to Majumder et  al. 
(2016), increased water demands under warming scenarios will put more strain on 
water resources in north-west India thereby challenging crop stand. According to 
(IPCC 2007; Asseng et al. 2017; Ahmad et al. 2019; Hesham and Fahad 2020. Iqra 
et al. 2020; Akbar et al. 2020), daily minimum temperatures will rise faster than 
daily maximum temperatures; resulting in an increase in daily mean temperatures 
and an increased likelihood of extreme occurrences, which could have a negative 
impact on grain yield (Fahad et al. 2013, 2014a, b, 2015a, b, 2016a, b, c, d, 2018a, 
b, 2019a, b, 2020, 2021a, b, c, d, e, f, 2022a, b). Under future warmer and drier 
conditions, wheat production could be lowered by 3–10% (You et al. 2009; Mahar 
et  al. 2020; Noor et  al. 2020; Bayram et  al. 2020; Amanullah and Fahad 2017, 
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2018a, b; Amanullah et  al. 2020), winter wheat production could be reduced by 
5–35% (Özdoğan 2011; Senol 2020; Amjad et al. 2020; Ibrar et al. 2020; Sajid et al. 
2020; Muhammad et al. 2021; Sidra et al. 2021; Zahir et al. 2021; Sahrish et al. 
2022), and maize yield could be reduced by 2.4–45.6% due to higher temperatures 
(Tao and Zhang 2010; Rosenzweig et al. 2014; Qamar-uz et al. 2017; Hamza et al. 
2021; Irfan et  al. 2021; Wajid et  al. 2017; Yang et  al. 2017; Zahida et  al. 2017; 
Depeng et al. 2018; Hussain et al. 2020; Hafiz et al. 2020a, b; Shafi et al. 2020; 
Wahid et al. 2020; Subhan et al. 2020; Zafar-ul-Hye et al. 2020a, b). The current 
book chapter has unfolded a detailed outlook of global abatement potentials which 
reveals that biochar, as a “climate-friendly” agricultural solution; can be used to 
transform agriculture and land use (International biochar Initiatives (IBI 2009; 
Lehmann et al. 2015). Since, biochar is fine-grained charcoal that is applied to soils, 
which has been advocated largely by many earlier findings for mitigation of climate 
change though improvement of soil fertility leads to the betterment of crop health 
ultimately enhancing crop productivity. Although, there are significant concerns 
about the global impact, capability, and sustainability of biochar, which are high-
lighted in the current chapter.

1.2  Biochar Synthesis

Biochar is a product that is enriched with high carbon content which is prepared 
generally by burning fossils and remnants bio products under air tight conditions 
(Lehmann et al. 2009). Biochar is a “solid material that is manufactured from bio-
mass decomposition under oxygen-depleted conditions” (Fig. 1.1, IBF 2009).

The production of biochar, in combination with its storage in soils, has been 
proposed as one method of lowering CO2 levels in the atmosphere (Fowles et al. 
2007; Laird 2008; Lehmann et al. 2007). Carbon compounds make up the majority 
of biochar. Hydrogen, oxygen, ash, nitrogen, and sulphur are also present (Ahmad 
et al. 2016). The type of biomass used, the design of the reactor, and the conditions 
under which it is created all influence the content and features of biochar (Ahmad 
et al. 2016). At the very least, biochar has been used since 2000 years ago (Hunt 
et al. 2010). Biochar can be made at several scales, from huge industrial facilities to 
small farms and even homes, making it suitable for a wide range of socioeconomic 
situations (Lehmann et al. 2015). Commercially accessible pyrolysis systems pro-
duce varying quantities of biochar and bioenergy products such as bio-oil and syn-
gas. The gaseous bioenergy products are commonly utilised to generate power; the 
bio-oil, on the other hand, can be used directly for low-grade heating purposes and, 
after appropriate treatment, as a diesel alternative (Elliott et  al. 2007). The first 
depiction of the word “biochar” was in Western agriculture in the mid-nineteenth 
century, although its precise application dates back even longer (Abiven et al. 2014). 
Following the first meeting of the International Biochar Advocacy Organization in 
Australia in 2007, various nations founded National Biochar Societies to launch 
biochar research and demonstration conferences, and the amount of biochar research 
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Fig. 1.1 Biochar production: industrial process for manufacturing of biochar productions from 
raw products conversion into end products

has steadily expanded since then (Han et al. 2020). Recent improvements in our 
understanding of biochars necessitate a thorough scientific assessment of the rela-
tionship between their qualities and their impact on soil parameters, plant growth, 
yield, and biotic and abiotic stress resistance.

1.3  Biochar for Sustainable Agriculture

The term “sustainable agriculture“ is described as the full integration of biological, 
chemical, physical, ecological, economic, and social disciplines to produce new 
farming practises that are both safe and environmentally friendly (Lichtfouse et al. 
2009). Agriculture is the primary source of greenhouse gases, accounting for slightly 
less than 25% of total global anthropogenic greenhouse gases in 2014 (Smith et al. 
2007), and for 52 and 84% of total global anthropogenic methane and nitrous oxide 
emissions, respectively, owing to land use change and forestry (Smith et al. 2008). 
Furthermore, the world’s rapidly growing population (expected to reach 9.6 billion 
by 2050) would unavoidably lead to increased demand for food production from a 
shrinking amount of arable land (Cleland 2013).

Biochar has been utilised in agriculture for a long time in various parts of Asia, 
particularly in Japan and Korea. In the mid-1990s, scientists discovered that biochar 
had a potential future in absorbing carbon dioxide and reducing carbon emissions, 
as part of the process of attempting to effectively reduce atmospheric carbon diox-
ide emissions and concentrations to cope with climate change today (Han et  al. 
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2020). Many contaminants with low concentrations but considerable environmental 
harm are gradually receiving attention as our demand for the environment grows 
(Cheng et al. 2021). Sewage released into the environment by industrial activities 
may be carcinogenic, poisonous, mutagenic, and teratogenic to people (Goltz et al. 
2005). Biochar has been shown to be effective at removing organic debris, surfac-
tants, and nitrogen (N) from wastewater in previous trials (Dalahmeh 2016; 
Berger 2012).

Biochar is effective as a phosphorus (P) sorbent in wastewater treatment 
(Kopecký et al. 2020). The sorbent then used the recycling method to create various 
products (phosphorous fertilisers), which are highly acknowledged for their poten-
tial to improve soil conditions. Biochar applications could be a major input for 
sustaining output while lowering pollution and fertiliser dependency, according to 
the developing research (Beesley et al. 2011; Lehmann et al. 2015; Sohi et al. 2009; 
Stavi et al. 2013). The climate-mitigation potential of biochar originates principally 
from its abrasive nature, which delays the rate at which photosynthetically fixed 
carbon (C) is returned to the atmosphere. Biochar also has many potential side 
effects (Cheng et al. 2008). Under present conditions of high greenhous gas emis-
sion worldwide, biochar had proven itself to be good soil greenhous gases reclaim-
ing substance by changing the soil porosity and chemical properties (Kammann 
et  al. 2011; Schmidt et  al. 2014; Mukherjee et  al. 2011). Several studies have 
recently shown that adding biochar to soils can boost crop yields and reduce plant 
stress caused by drought (Akhtar et al. 2014; Liang et al. 2014), salinity (Akhtar 
et al. 2015a, b; Dugdug et al. 2018), and heavy metals (Fiaz et al. 2014; Karunanayake 
et al. 2018). Despite the rising number of demonstrated benefits of biochar applica-
tions, there are numerous barriers to biochar adoption in sustainable agriculture 
(Fig. 1.2).

1.4  Role of Biochar in Climate Change Mitigation

1.4.1  Carbon Sequestration

The cycles of carbon stabilization have not been completely uncovered, and it is 
impacted by many elements (Wiesmeier et al. 2019; Yang et al. 2022). Mechanisms 
to balance out carbon stock embrace physical interactions, for example, the response 
of soil mineral framework with carbon compounds shaping a secure bond, difficult 
to reach for decomposers; inflexible chemical structure of some carbon substances, 
for example, biochar, a few humic acids or lipids or by biological protection given 
by arrangement of micro-aggregates bound by hyphae or by certain progressions to 
deposits inside creatures digestive system (Goh 2004). Knowing carbon stabiliza-
tion is crucial to work on agricultural management to store soil organic matter, and 
soil structure, or to moderate the greenhouse gas effect (Singh et al. 2018).

D. Majumder et al.
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Fig. 1.2 Effect of biochar addition to soil in agricultural activities. This figure depicts the impor-
tance of biochar in minimising soil nutrient leaching losses, storing atmospheric carbon in the soil, 
enhancing agricultural production, reducing the bioavailability of environmental pollutants, and 
eventually providing a value-added product in sustainable agriculture

Carbon stabilization is firmly connected with carbon sequestration, which is the 
change of air carbon dioxide into soil carbon (Liao et al. 2020). Increased stabiliza-
tion of sequestered carbon might assist with moderating the greenhouse impact 
(Goh 2004; Singh et al. 2018). Biochar content can be coarsely shared into leach-
able carbon, ash, and recalcitrant carbon. Carbon stabilization in the soil is engaged 
with the worldwide carbon cycle (Singh et al. 2018). However, not all the carbon 
inputs into soil repel to processes of mineralization, leaching, or erosion losses. 
Thus, soil carbon is considered as labile (with a short half-life of 1–20 years) or 
stable (20–100 years) (Goh 2004). Stable carbon stock is pivotal for evaluating the 
susceptibleness of soil organic carbon or facilities of environments (Buytaert et al. 
2011; Rolando et al. 2017; Yang et al. 2022).

Biochar application is one of the ways of expanding carbon sequestration and 
stabilization in soil, as it contains 20–80% of stable carbon which isn’t delivered 
into the climate in that frame of carbon dioxide within 2 or 3 years (Llorach-
Massana et al. 2017; Masek et al. 2011; McBeath et al. 2015). Contrasted with 
other natural matter opposing fast mineralization and containing aromatic carbon 
compounds (like lignin), biochar is principally made out of fused aromatic car-
bon, hydrocarbons comprising polycyclic aromatic compounds. It has been 
accounted for that biochar application upturns a humic-like fluorescent element 
in soil and diminishes co-localization of aromatic- C: polysaccharides-C.  

1 Biochar Application for Improving the Yield and Quality of Crops Under Climate…
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These changes, combined with diminished C metabolism (decreased respiration), 
appear to be as significant highlights of C stabilization in biochar-revised soils 
(Hernandez-Soriano et al. 2016). There are two types of labile carbon, firm as 
dissolved organic carbon and fraction of unstable organic carbon (Al-Wabel et al. 
2013). Biochar is by all accounts a material made out of microspores essentially 
comprising aromatic carbon and less carboxyl and phenolic carbon (Braida et al. 
2003). The labile piece of biochar can be shown as unstable matter, and ash con-
tent which incorporates crucial nutrients addressing important hotspots for 
soil biota.

1.4.2  Evaluation of Biochar System

Since pyrolysis is a more carbon-effective method for catching bioenergy than other 
bioenergy frameworks (in terms of CO2 MJ−1), the production and capacity of stor-
age of biochar would add critical advantages for climate change mitigation alone. 
According to this point of view, stockpiling of biochar needn’t bother to be in the 
soil, and it had been recommended that whole valleys could be utilized as store-
rooms for biochar (Seifritz 1993). However, presently application of biochar to agri-
cultural soils is the most broadly proposed way since it is bound to conquer the 
opportunity cost in energy production (the recoverable energy sworn off in the bio-
char). If biochar can give dependable agronomic advantage it may command a value 
in crop production in addition to a potential carbon credit.

In any case, while the potential for management of the terrestrial carbon cycle is 
the justification for the ongoing interest in biochar, to be useful a biochar-based situ-
ation must: (1) evaluate the financial worth of direct and indirect emission reserve 
funds emerging from the utilization of biochar against the opportunity cost of bio-
char ignition or elective use, (2) give assurance, confirmation and potentially proof 
for carbon-equivalent savings and (3) consider the indirect expenses and advantages 
to land users and upstream food processors from the utilization of biochar in soil. 
The last option could incorporate the expense of biochar application, weighed 
against the marketing benefits acquired through carbon-neutral food items. So, a 
full life-cycle examination of alternative situations is required.

However, more prominent sureness is expected on the following to completely 
survey biochar-based soil management for explicit applications: (a) the stability of 
biochar carbon in the soil, (b) the backhanded effects of biochar on carbon- 
equivalent emanations, and (c) the security, dependability, and steadiness of cost for 
pyrolysis feedstocks. The potential for technological advancements in pyrolysis to 
improve adaptability and overall efficiency is a different subject and will be worked 
with by its extension and forums such as International Biochar initiatives (IBI), and 
national organizations like the Network of Australian and New Zealand Biochar 
Researchers, and the United Kingdom biochar research centre. It should be 
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featured, not withstanding, that according to the viewpoint of the economics of 
energy catch, the worth of biochar and the general result of the examination is 
touchy to the cost of heat and power generated from other fuels. Any subsidy like-
wise impacts renewable energy, which may have the effect of inflating the monetary 
value of the energy in biochar (Woolf 2008).

1.4.3  Biochar and Bioenergy Production

Biochar can be made in an assortment of ways. Pyrolysis, or the heat degradation of 
biomass in an oxygen-depleted environment, produces biochar. The nature of the 
feedstocks, or materials burned, straightforwardly affects a definitive biochar item’s 
quality. Clean feedstocks with 10–20% dampness and high lignin content are great, 
and agricultural waste and woody biomass are best. Utilizing polluted feedstocks, 
like those from rail line dikes or sullied ground, can carry poisons into the soil, raise 
soil pH decisively, and/or potentially keep plants from getting minerals. Heavy met-
als, like cadmium, copper, chromium, lead, zinc, mercury, nickel, arsenic, and 
Polycyclic Aromatic Hydrocarbons, are the most well-known toxins. Biochar can 
be made in two ways: low-cost, small-scale production with adapted stoves or kilns, 
or large-scale, high-cost production with larger pyrolysis machines and higher feed-
stock volumes. Pyrolysis with a top-lit updraft biochar machine is one of the most 
frequent techniques to generate biochar for on-farm applications (Fig. 1.3).

Fig. 1.3 Methods of biochar production. This figure depicts the source from different sectors and 
how it is being converted to the final product i.e., biochar, bio-oil, biogas by various techniques
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1.4.4  Soil Biological Activity and Biochar Stability

Soil harbours complex micro-organisms populations that are uninterruptedly 
changing in response to the soil properties, climate, and land management prac-
tices. Soil microbial populations, their abundance, and their activities are closely 
interlinked to soil respiration, organic carbon content, soil nutrient cycling, and 
crop productivity (Dempster et al. 2012; Song et al. 2018). Soil microbial activ-
ity is influenced by biochar addition and the effect varies with the type of soil, 
biochar quality, and application rate (Rousk et al. 2010; Farkas et al. 2020). A 
meta- analysis reported that biochar amendment considerably increased the 
ammonia- oxidizing archaea (AOA) abundance and denitrification gene (nirS, 
nirK, and nosZ) by an average of 25.3, 32.0, 14.6, and 17.0%, respectively, 
(Xiao et al. 2019). Biochar stimulates soil microbial activity by providing car-
bon substrate and growth nutrients. In addition, it serves as a suitable habitat for 
growth and protects them from predators (Chen et  al. 2018; Lu et  al. 2020). 
Furthermore, biochar increases the buffering capacity of the soil thereby mini-
mizing pH variations in microhabitats present inside biochar particles.

Improvement in microbial abundance after biochar addition (47  t  ha−1) was 
observed in a 3.5-years field study in Tasmania, Australia (temperate region) 
(Abujabhah et  al. 2016). In another field study (2  years) in Australia, a rise in 
P-mobilizing mycorrhiza in biochar-added soils was observed owing to the indirect 
effects of biochar on soil physicochemical properties (Solaiman et  al. 2010). An 
increase in the colonization rate of arbuscular mycorrhizal fungi (AMF) after the 
application of bark charcoal of Acacia mangium was observed in maize in South 
Sumatra, Indonesia (Yamato et al. 2006). In contrast, studies have also found neutral 
and negative effects of biochar amendment on soil microbial activity. For a field trial 
on the wheat crop, biochar addition (3 or 6 kg m−2) did not show any changes in soil 
microbial biomass either 3 or 14 months after char addition (Castaldi et al. 2011).

However, a field study of mango-wood (Mangifera indica) biochar application in 
Colombia at rates of 23.2 and 116.1  t C ha−1 has resulted in a decrease of AMF 
abundance in soils by 43 and 77%, respectively, (Warnock et al. 2010). The decrease 
in AMF abundance could be due to the release of ethylene or organic pyrolytic by- 
products, including phenolics and polyphenolics from biochar that exert a negative 
effect on soil microflora (Spokas et al. 2010; Warnock et al. 2010). Further, owing 
to different mechanisms of action, biochar may elicit variable metabolic responses 
in microbial populations resulting in specific taxonomic shifts in the composition of 
the microbial community.

A field study conducted at three European locations (West Sussex, UK; Prato 
Sesia, Italy; Lusignan, France) using Zea mays-derived biochar (30 t ha−1) showed 
significant changes in the composition of the microbial community (Jenkins et al. 
2017). After a year of biochar application, the UK site showed an increase in 
Gemmatimonadetes, and Acidobacteria, the Italian site showed an increase in 
Gemmatimonadetes, and Proteobacteria whereas the French site reported no 

D. Majumder et al.



13

significant impact on the abundance of individual bacterial taxa. Further, fungal 
diversity was influenced by biochar treatment in Italy and France but was unaffected 
in the UK samples. An increase in the abundance of Proteobacteria, Bacteroidetes, 
and Actinobacteria and a decrease in that of Acidobacteria, Chloroflexi, and 
Gemmatimonadetes on biochar treatment was earlier reported in a laboratory study 
in China using Zea mays biochar (Xu et al. 2016). Another field study in Foshan, 
Southern China (subtropical) using sugarcane bagasse biochar showed an increased 
bacterial and actinomycetes population and decreased fungal population (Nie et al. 
2018). On the contrary, a significant increase in the fungal community diversity and 
a decrease in the bacterial community diversity was reported on biochar amendment 
in the soil of a Chinese fir plantation (Cunninghamia lanceolate) (Song et al. 2020). 
Table 1.1 presents the effects of biochar application on the biological properties 
of soils.

The steadiness of carbon, and the importance of how long it will stay out of the 
quicker carbon cycle, is setting subordinate since various applications will incite 
various degrees of biotic and abiotic stress to the carbon (Wang et al. 2016). This 
deviation in both biochar and its potential applications represents a test to track 
down a standardized method for predicting biochar stability. Moreover, the perti-
nent time viewpoint is really difficult while assessing and foreseeing the biochar 
stability. To quantify the degradation rate checking the degradation of carbon for 
many years or more would be essential. But this isn’t a choice. Hence, a more rea-
sonable chance is to imitate the normal degradation by simulating and modelling the 
degradation of biochar to estimate the stability (Leng et al. 2019). Such modelling 
is likewise an asset and time-taking practise and it is sensible to expect that it isn’t 
possible for each biochar maker and for each bunch of biochar. Therefor a depend-
able and more assessable method to indicate the stability is needed to connect a 
biochar property to a modelled degradation behaviour to more easily estimate the 
carbon sequestration potential.

1.4.5  Effect of Biochar on Tillage

Biochar is used in agriculture to improve soil and compost quality. Soil deteriora-
tion is a major problem in agriculture around the world. As a remedy to this expand-
ing problem, researchers proposed utilizing biochar to restore the state of degraded 
soils. Strengthening soil structure, increasing water retention and aggregation, 
decreasing acidity, reducing nitrous oxide emissions, improving porosity, regulating 
nitrogen leaching, and encouraging microbial features are just some of the ways 
biochar can help improve soil quality. Biochar has also been discovered to be ben-
eficial for composting, as it reduces greenhouse gas emissions while simultaneously 
limiting nutrient loss. It also promotes microbial activity, which helps the compost-
ing process go faster. It also helps with ammonia losses, bulk density, and odour 
control in the compost.
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Table 1.1 Impact of biochar application on biological properties of soils

Property Impact
% 
Change

Biochar 
feedstock, 
application 
rate

Soil type, 
location References

Total viable count – +15 Acacia tree 
green waste, 
47 t ha−1

Kurosol, 
Australia

Abujabhah 
et al. (2016)

Actinobacteria Decreased 
from 18.71 
to 8.69%

−10.02 Peanut shells 
and wheat 
straw, 10% 
(v/v)

Subtropical 
landfill cover 
soil, China

Lu et al. 
(2020)

Acidobacteria Increased 
from 4.86 to 
5.91%

+1.05 Peanut shells 
and wheat 
straw, 10% 
(v/v)

Subtropical 
landfill cover 
soil, China

Lu et al. 
(2020)

Proteobacteria – +3.0 Acacia tree 
green waste, 
47 t ha−1

Kurosol, 
Australia

Abujabhah 
et al. (2016)

Increased 
from 21.96 
to 24.1%

+2.14 Peanut shells 
and wheat 
straw, 10% 
(v/v)

Subtropical 
landfill cover 
soil, China

Lu et al. 
(2020)

Alphaproteobacteria – +1.81 Zea mays 
biochar, 
30 t ha−1

Sandy loam, 
United 
Kingdom

Jenkins 
et al. (2017)

– +12 Acacia tree 
green waste, 
47 t ha−1

Sandy loam, 
Tasmania

Abujabhah 
et al. (2016)

Betaproteobacteria – +11 Acacia tree 
green waste, 
47 t ha−1

Sandy loam, 
Tasmania

Abujabhah 
et al. (2016)Gammaproteobacteria – +10

Bacterial 16SRNA gene 
(*106)

Increased 
from 600 to 
1400

+133.3 15 t ha−1 Tianjin, North 
China

Wang et al. 
(2021)

Arbuscular Mycorrhizal 
fungal abundance (in 
root)

– −77 Mango wood, 
116.1 t C ha−1

Alluvial 
sediments, 
Columbia

Warnock 
et al. (2010)

Ascomycota – +39 Acacia tree 
green waste, 
47 t ha−1

Kurosol, 
Australia

Abujabhah 
et al. (2016)

Fungal ITSRNA gene 
(*106)

Increased 
from 1 to 6

+500 15 t ha−1 Tianjin, North 
China

Wang et al. 
(2021)

1.4.6  Biochar to Improve Soil Quality

Biochar is applied to agricultural soils in a variety of ways, with different applica-
tion rates and preparation methods. The rate at which biochar is applied and pre-
pared is largely dictated by soil conditions and the materials used to make the 
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biochar. It’s customary to mix biochar with compost or other materials to inoculate 
it with nutrients and helpful organisms. The recommended approach for spreading 
biochar will vary depending on how healthy or nutrient-depleted your soil is. 
Consider the state of your soil before beginning to use biochar in your own garden 
or farm.

1.4.7  Biochar Impact on Greenhouse Gases

Carbon sequestration in biochar enhances carbon’s storage time in comparison with 
other terrestrial sequestration approaches like afforestation or reforestation (Wang 
et al. 2016). Biochar amendment can thus play a significant role in carbon removal 
from the atmosphere and the simultaneous reduction of greenhous gas emission. 
Emissions of radioactively active gases such as CH4 and N2O, whose global warm-
ing potential (GWP100) for a 100 years time horizon is more than 28 and 265 times 
stronger than CO2, respectively, have been reduced from soils with biochar applica-
tion (Vijay et al. 2021).

Biochar can play a greater role in short-term CH4 emission reduction to help 
meet the 2050 greenhous gas targets, as methane’s GWP20 (for 20 years time hori-
zon) value of 84 is much higher than its GWP100, due to its short residence time in 
the atmosphere (Balcombe et al. 2018). The N2O, having a much longer residence 
time in the atmosphere, is a significant contributor to greenhous gas. Around 62% 
of the atmospheric N2O emissions are attributed to soils (Biernat et al. 2020). High 
rates of nitrogen-based fertilizer application to the fields also emit N2O into the 
environment. Biochar addition to soil effectively mitigates the soil N2O emissions 
and the mitigation can be attributed to the inhibition of either stage of nitrification 
and/or denitrification as reported in both field and lab studies (Rondon et al. 2007; 
Cayuela et al. 2014; Weldon et al. 2019).

Improved soil aeration from biochar application decreases denitrification due to 
the inhibition of the activity of anaerobic microorganisms involved in denitrifica-
tion. Biochar application leads to microbial immobilization of available N in the 
soil, reducing the N2O source capacity of the soil. Improved pH from the application 
of biochar drives the formation of N2 from N2O. Furthermore, the enhanced fertility 
of the soil with biochar application will also assist farmers to adapt to the changing 
climate, thus reducing the intensity of climate change (Zhang et  al. 2016). 
Application of 5 t ha−1 biochar in bamboo plantations in China has shown a reduc-
tion in soil N2O efflux by 28.8% in the first year and 19.7% in the second year (Song 
et al. 2020). The increasing application rate of biochar to 15 t ha−1 led to a 31.3 and 
30.1% reduction in N2O flux over the first and second year, respectively, concerning 
the control. Biochar application reduced soil N2O emissions by decreasing the con-
centrations of soil labile N forms and hindering the activities of N-cycling enzymes 
(Song et al. 2020). A field study on maize in Switzerland reported that the enhanced 
soil gas diffusivity in biochar-added soil (and thus improved soil aeration), may lead 
to reduced N2O emission (Keller et al. 2019). However, Suddick and Six (2013) 
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found no considerable change in N2O flux with the application of biochar and com-
post. The study recommended that certain biochar types may be less suitable for 
N2O mitigation in some agricultural soils, at least on shorter temporal scales, or that 
a minimum biochar quantity is needed for effective reduction (Suddick and Six 
2013). Findings are corroborated with another study wherein it was observed that 
N2O emissions do not always get reduced, and sometimes biochar application shows 
neutral or negative effects (Gao et al. 2020). Improved aeration, especially of fine-
grained soils, also enhances the sink capacity for CH4 by increasing the abundance 
of methanotrophic proteobacteria, enhancing CH4 oxidation and thereby reducing 
CH4 emissions (Al-Wabel et al. 2019).

Biochar application was found to reduce the total CH4 and N2O emissions from 
paddy fields under controlled irrigation in two rice seasons (Yang et  al. 2019). 
Controlled irrigation considerably reduced CH4 emissions while increasing N2O 
emissions in comparison with flood irrigation management. Biochar application 
(20  t  ha−1) in this study did not have any effect on SOC or soil pH, whereas it 
increased the soil DOC, Total N, NH4

+ -N significantly and reduced NO3
− -N con-

centrations compared to non-amended soil (Yang et  al. 2019). Another study 
reported that the biochar addition reduced the abundance of methanogenic archaea 
resulting in lower CH4 emission (Huang et al. 2019). Beyond its application in the 
agricultural context, biochar has also gained interest in the waste management 
industry as a media to enhance control of landfill gas emissions. Landfills are one of 
the largest contributors to global anthropogenic CH4 emissions at approximately 
17.4% of the total CH4 emissions in 2018 in the United States alone (USEPA 2020). 
One of the options for the long-term reduction of CH4 fluxes is the microbial oxida-
tion of CH4 in biofilters, bio-windows, or bio-covers (Huber-Humer et  al. 2008; 
Scheutz et al. 2009). The performance of these engineered methane oxidation sys-
tems can be enhanced if the soils in use are amended with biochar. Reddy et al. 
(2014) showed that both, the abundance of methanotrophs and the CH4 oxidation 
capacity, were increased by adding 20% biochar from wood chips to a fine-grained 
soil (fraction <75 μm = 92%) (Reddy et al. 2014). In a more coarsely-grained, sand- 
dominated soil, enhanced CH4 oxidation following a 10% biochar amendment as 
attributed to the positive effect of biochar on the soil’s water retention capacity 
(Yargicoglu and Reddy 2018).

The amelioration of crop productivity in tropical conditions after biochar appli-
cation results in higher photosynthesis rates and higher CO2 reduction in the atmo-
sphere if part of the C fixed by photosynthesis is sequestered in the soil in the long 
term. Biochar is reported to be 10–100 times more stable than most of the other soil 
organic matter due to its condensed aromatic content (Jeffery et al. 2011). A meta- 
analysis (128 studies) on the stability of biochar in soils estimated the mean resi-
dence time of biochar labile and recalcitrant fraction, pool size 3% and pool size 
97% as 108 days and 556 years, respectively, indicating that the major part of bio-
char (97%) contributes to long-term carbon sequestration in soil (Wang et al. 2016). 
A model prediction estimated that biochar production and implementation to soil 
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can potentially offset a maximum of 1.8 Pg CO2eq emissions (12% of anthropo-
genic CO2eq. emissions) every year, and over the century, the total net offset of 
emissions from biochar would be 130 Pg CO2eq. (Woolf et al. 2010). Production of 
biochar from crop waste and its amendment is reported to avoid 4348–4878 kg CO2 
ha−1 emissions in a year based on modelling predictions (Gaunt and Lehmann 
2008). As biochar contains 60–80% (approx.) of carbon, for every tonne of biochar 
added to soil 0.6–0.8 tonnes of carbon can be sequestered which is equivalent to the 
2.2–2.93 MT of CO2 (Galinato et al. 2011). Limestone is commonly used to reduce 
the soil pH for agricultural applications, however, per tonne of limestone usage 
leads to 0.059 MT C or 0.22 MT CO2 emission in the atmosphere. These emissions 
can be avoided by using biochar in place of lime. It is estimated that if 6.48 MT lime 
usage per hectare of land is replaced by 76.53 MT biochar, it can offset 225.6 MT 
CO2 ha−1 through avoided emissions and biochar carbon sequestration (West and 
McBride 2005).

1.4.8  Economic Feasibility

The economic viability of biochar production and utilization is still a significant 
challenge. In general, the cost associated with the feedstock acquisition and trans-
portation, capital, operations, and transportation of biochar to application sites sig-
nificantly affects the economic feasibility of biochar. Also, the revenue streams 
from biochar, including sales, climate offsets, and energy subsidies, are less devel-
oped and could impede investments in biochar production. Without policy interven-
tion, it is unlikely, at least in the near future, that biochar systems could out-compete 
bioenergy systems. Evidently, in the last decade, many biochar producers emerged 
and failed in the Great Lakes region, challenging the notion of biochar production 
as a financial opportunity. Feedstock cost is the most critical component of the bio-
char supply chain and is largely responsible for determining economic feasibility. 
Feedstock alone can cost 45–75% of the total expenditure in biochar production. In 
general, studies have suggested that feedstock procurement for agricultural and for-
estry residues could cost 63–82 US$ per ton. In addition, low-cost production tech-
nology is lacking and expensive, if available, challenging biochar systems’ 
profitability. Larger production technology exists and provides some advantages to 
the economy of scale; however, this is negated by the necessity of a longer feed-
stock haul. This has limited the procurement of feedstock (less than 50 miles) and 
product supply extent to regional markets (less than 100 miles). The selling price of 
biochar varies significantly depending on the type, texture, and quality. The current 
average market price of biochar is about $9 per cubic foot when negotiated for the 
bulk price but can cost up to $42 per cubic foot in retail stores such as Lowes and 
home depot. The biochar market is growing and is expected to reach $3  billion 
globally by 2025.
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1.5  Biochar for Improving Crop Health

1.5.1  Soil Health Management

Soils are the basis for agriculture and the medium in which almost all food- producing 
plants grow and as such, they need to be kept healthy. In turn, healthy soils produce 
healthy crops that nourish humans and animals alike. They are the foundation of the 
profitable and sustainable agricultural system. By the definition of Doran and Zeiss 
(2000), soil health refers to soil’s capacity to function as a vital living system, within 
the boundaries of ecosystems and land uses, as it sustains plant and animal produc-
tivity, enhances water and air quality, and promotes plant, animal, and human health. 
Soil health is reflected in biotic and abiotic indicators such as soil organic matter, 
nutrient status, moisture and pH which are influenced largely by management prac-
tices (Atkinson et al. 2005; Karlen et al. 2003). Many of the functions of a healthy 
soil support plant growth, such as nutrient cycling, biological control of pests, and 
regulating water and air supply. To keep soil healthy, good management practices 
are very important. Many of these practices are already being practiced as well as 
new ones are being adopted.

Although agricultural soils contain a relatively small amount of global soil car-
bon but their contribution to the annual atmospheric flux is significant (Sohi et al. 
2010). The addition of organic carbon to agricultural soils improves soil fertility 
which in turn increases crop production also. The practice can also permanently 
sequester carbon in order to reduce greenhouse gas emissions. Lehmann et  al. 
(2009) defined biochar as a carbon-rich product obtained by thermally converting 
biomass (farm wastes, wood waste, manures, etc.) in an oxygen-limited environ-
ment (pyrolysis). Biomass is converted to char, combined gas (mixture of H2, CO, 
CH4 and CO2) and bio-oil with heat energy in the absence of O2 during pyrolysis. 
Biochar contains high concentrations of carbon that can be rather recalcitrant to 
decomposition, so it may stably sequester carbon (Glaser et al. 2002). The addition 
of biochar can immediately increase nutrient availability primarily by increasing 
potassium, phosphorus, and zinc availability, and to a lesser extent calcium and cop-
per availability (Lehmann et al. 2003). The contribution of biochar to soil health 
management is briefly discussed below:

1.5.1.1  Impact of Biochar on Soil Physical Properties

Significant effects of biochar have been found over the years on the physical proper-
ties of agricultural soil. Physical properties of the soil influence the productivity of 
crops by determining water-holding capacity, soil aeration as well as soil strength 
limitations (Benjamin et al. 2003). After the incorporation of biochar into soils, due 
to its unique physical properties such as superior concentrations of organic carbon, 
high porosity and large surface area presence of micropores, improvements in soil 
properties, such as structure and aggregation, would be expected (Mukherjee et al. 
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2011; Chintala et al. 2014). Soils amended with biochar show an increase in surface 
area and porosity (Eastman 2011). Changes in soil properties under compaction can 
influence the state of the soil (Chen & Weil, 2011). Studies by Novak et al. (2016) 
and Prober et  al. (2014) showed that the infiltration rate increased following the 
application of biochar (Table 1.2).

1.5.1.2  Impact of Biochar on Soil Chemical Properties

Different soil chemical properties soil pH, cation exchange capacity (CEC), and 
organic carbon content are influenced by biochar application in soil (Table 1.3). As a 
result of applying biochar, the chemical properties of soil are improved such as soil pH, 
cation exchange capacity, base saturation, exchangeable bases, organic carbon content, 
and reduction of Al saturation in acid soils, thereby reducing fertilizer and lime require-
ments (Glaser et al. 2002; Van Zwieten et al. 2010). As a result of biochar amendments, 
soil pH increased particularly in acidic soils, with greater increases observed in sandy 
and loamy soils than in clayey soils (Yamato et al. 2006; Major et al. 2010).

Table 1.2 Impact of biochar on soil physical properties

Biochar source Effect on soil physical properties References

Biochar derived from 
lignocellulosic biomass e.g. 
rice husk, cacao shell, wooden 
chips

Decrease in density, increase in surface 
area, increase in porosity, decrease in soil 
penetration resistance, increase in water 
holding capacity

Abel et al. (2013) 
and Eastman 
(2011)

Biochar derived from animal 
waste e.g. poultry manure, 
dairy manure

Decrease in soil penetration resistance, 
increased hydrophobicity, increase in 
hydraulic conductivity

Liu et al. (2012) 
and Reddy et al. 
(2015)

Biochar derived from plant 
biomass e.g. eucalyptus green 
waste, olive tree pruning

Increase in surface area and porosity, 
higher water holding capacity, a moderate 
increase in hydraulic conductivity

Kinney et al. 
(2012) and 
Kameyama et al. 
(2014)

Table 1.3 Salient impacts of biochar on soil chemical properties

Biochar source Effect on soil chemical properties References

Biochar derived from 
lignocellulosic biomass e.g. 
rice husk, cacao shell, 
wooden chips

Increase in pH, increase in cations (K+, Ca2+, 
and Mg2+), increase in cation exchange 
capacity, increase in C content of soil.

Butnan et al. 
(2015) and 
Kameyama et al. 
(2016)

Biochar derived from animal 
waste e.g. poultry manure, 
dairy manure

Increase in cations (K+, Ca2+, and Mg2+), 
increase in cation exchange capacity, 
increase in C, N, and P contents, increase in 
C and N bioavailability

Chathurika et al. 
(2016) and Gul 
et al. (2016)

Biochar derived from plant 
biomass e.g. eucalyptus 
green waste, olive tree 
pruning

Increase in pH, increase in cations (K+, Ca2+, 
and Mg2+), increase in cation exchange 
capacity, increase in C and N content of soil, 
increase in C and N bioavailability

Zhang et al. 
(2016)
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According to Nelissen et  al. (2012), the incorporation of biochar into soil 
improves NH4

+ immobilization, which in turn reduces nitrification, which in turn 
reduces H+ leaching from the soil. In addition, research has shown that the incorpo-
ration of biochar increased organic carbon and decreased nitrogenous fertilizer 
requirements (Glaser et al. 2002; Widowati et al. 2012); this is due to the high levels 
of carbon in biochar that can be difficult to decompose, so it may steadily sequester 
carbon. Major et al. (2010) reported that nutrient uptake by plants was increased in 
biochar-amended soil, with an increase in plant yield and greater availability of Ca 
and Mg in soil. Biochar was found effective in adsorbing dissolved soluble nutrients 
such as ammonium (Lehmann et al. 2002), nitrate (Mizuta et al. 2004), phosphate 
(Beaton et al. 1960) and other ionic solutes (Radovic et al. 2001). Biochar was also 
found to improve biological N fixation (BNF) of biochar-amended soils 
(Krishnakumar et al. 2014).

1.5.1.3  Impact of Biochar on Soil Biological Properties

Significant changes in soil biological properties can be brought about by applying 
biochar amendments in soil which can modify soil microbial and faunal diversity and 
activities (Gul et al. 2015; Zhang et al. 2017). The biochar-affected changes in soil 
biological properties appeared to be a function of biochar characteristics and soil tex-
ture such as surface area, pH, and porosity (Gul et al. 2015). Consequently, biochar-
induced changes in soil properties have different impacts on ecosystem functioning in 
soil and the rhizosphere (Hussain et  al. 2017; Kolton et  al. 2016). As per Graber 
(2009), with an increasing rate of biochar application maximum number of culturable 
colonies of general bacteria, Bacillus spp., yeasts and Trichoderma spp. were found.

Biochar-amended soil has a more suitable pH which may be beneficial for the 
growth of microbes, especially for fungal hyphae (Wuddivira et al. 2009). Joseph 
et al. (2010) showed that most biochar has a higher % of macropores and minerals, 
and small organic particles might accumulate in these pores. Dehydrogenase activ-
ity and microbial biomass carbon are enhanced due to biochar application in soils 
(Das and Mukherjee 2012). Some other positive impacts of biochar in maintaining 
soil health are in Table 1.4.

Table 1.4 Impacts of biochar on soil biological properties

Biochar effects on soil biology References

Enhancement of biological N fixation Rondon et al. (2007)
Improve colonization of mycorrhizal fungi, earthworms 
present in soil

Van Zwieten et al. (2010)

Act as potential catalyst in reducing nitrous oxide to 
nitrogen

Van Zwieten et al. (2009)

Decrease in fungi/bacteria ratio Zhang et al. (2017) and Gul et al. 
(2015)

Increase in beneficial microbes and suppression of 
pathogens

Anderson et al. (2011) and Warnock 
et al. (2010)
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1.5.2  Nutrient Retention, Use Efficiency and Leaching

As a sink, biochar can retain nutrients and reduces its losses through leaching and 
gaseous emission. Various kinds of soil amendments such as biochar, lime, and 
organic materials, are known to have a significant impact on the dynamics of soil 
nutrients (Baligar and Fageria 2007). Nutrient use efficiency (NUE) is the bench-
mark to increase crop cultivation efficiency and select appropriate methods to pre-
vent nutrient loss from the soil. The effects of biochar-amended soil on different 
nutrients retention, cycling and maintenance of efficiency of nutrients NUE has 
been seen over the years by many researchers which are briefly pointed out below:

1.5.2.1  Nutrient Retention

Due to its large surface area, porosity and presence of both nonpolar and polar sur-
face sites, biochar can help to improve the nutrient retention capacity of soil (Ahmad 
et al. 2014; Mukherjee et al. 2011). Biochar with a high cation exchange capacity 
(CEC) can retain much amount of nutrients in soil by reducing leaching oriented 
nutrient loss (Tomczyk et  al. 2020). Biochar application also improves nutrient 
retention by increasing the soil pH and soil organic matter (Mendez et al. 2012). 
Gao et  al. (2016) concluded that the addition of biochar increased NO3

−-N and 
NH4

+-N retention in soil by 33 and 53%, respectively. The high cation and anion 
exchange capacities of biochar and its ability to retain ions and molecules within its 
pores are further attributed to biochar’s enhanced nutrient retention capacity 
(Schofield et al. 2019). Zhang et al. (2017) reported that water and nutrient transfer 
facilities can be provided by the pore space of biochar at the initial stage of biochar 
application. The hydrophobic nature of biochar can inhibit water transport and thus 
limit N diffusion also (Dong et al. 2020). Several studies also reported that biochar 
can be used as a slow-release fertilizer. For instance, Sashidhar et al. (2020) reported 
that biochar-based slow-release fertilizer (BSRF) releases N slowly by 69.8% over 
a period of 30 days. In addition, modified biochar (calcium alginate pervaded) also 
increased N and K retention in soil as reported by Wang et al. (2018). Further, the 
combined application of biochar and farm yard manure (FYM) improved N and P 
retention in soil (Arif et al. 2017). Many studies on biochar addition in soil also 
indicated that soil amended with biochar improves P bioavailability and plant 
growth (Arif et  al. 2017; Beheshti et  al. 2017; Biederman et al. 2017). Thus the 
availability of P is increased in the soil after biochar application like the availability 
of N. Several previous researches (Glaser et al. 2002; Atkinson et al. 2010; Major 
et al. 2010) reported that the application of alkaline biochar to acidic soils increased 
K content in soils. The addition of biochar @ 10 t ha−1 increased the Mg content of 
loamy sand soil (Lusiba et al. 2017). Thus, the impacts of biochar application in soil 
are mostly positive in nature. For instance, Abujabhah et  al. (2016) found that 
woody biochar had a significant influence on exchangeable Ca, Na, and Mg in red 
loam, black clay loam and brown sandy loam soils.
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1.5.2.2  Nutrient Use Efficiency

Nutrient use efficiency (NUE) is evaluated by figuring out how plant nutrients are 
absorbed from the soil, transported, stored, mobilized, and utilized within the plant 
but it decreases with increasing soil nutrient levels (Fageria et al. 2005). Increasing 
nutrient uptake and decreasing leaching and gaseous emission through biochar can 
raise plant nutrient use efficiency, both directly and indirectly. Several studies (Cao 
et al. 2019; Coelho et al. 2018) reported that the application of biochar increases N 
uptake, thereby increasing N use efficiency in crops. Woody biochar (10 t ha−1) in 
alkaline soil improved the P use efficiency (PUE) of both wheat and maize (Arif 
et al. 2017). Prapagdee et al. (2017) also found that the application of woody bio-
char (20%) increased the NUE of green bean crops. Applications of biochar have 
significantly shown a reduction in leaching losses which are evident from studies 
mentioned in Table 1.5.

1.5.3  Water Retention and Irrigation Management

Biochar has a significant role in the water retention of soil as well as irrigation man-
agement of different field crops. Studies have indicated that biochar addition 
enhances soil’s ability to hold water (Streubel et al. 2011). Accordingly, soil amend-
ment with biochar could benefit crop productivity by retaining more rainfall in arid 
regions and reducing irrigation frequency in irrigated regions. A study conducted by 
Basso et al. (2013) applied flash pyrolysis biochar to sandy soil and found a 23% 
increase in water-holding capacity. In order to increase soil water holding capacity 
(WHC), the right source and application rate of biochar are essential. According to 
Singh et  al. (2010), biochar’s increased porosity increases the ability of soils to 
retain water, and the level of enhancement depends on biochar feedstock, soil type, 
and mixture rate. The excess volume of water and soluble nutrients stored in the 
biochar micropores is contemplated to become available for plants when the soil 
dries and the matric potential decreases (Uzoma et al. 2011).

Biochar application generally improves the physical and hydraulic characteris-
tics of sandy soil (Karhu et al. 2011) and has direct effects on soil water movement. 
Akhtar et al. (2014) found that biochar significantly improved the water use effi-
ciency (WUE), relative water contents (RWC), and increased stomatal density of 
drought-stressed tomato leaves. Biochar was also found to increase the WUE of 
maize in sandy soil (Uzoma et al. 2011). Plants may be better able to take up nutri-
ents dissolved in water if they are retained in the soil instead of being dissolved in 
water (Lehmann et al. 2009). Several experiments have indicated that biochar may 
alleviate water stress in plants when applied with microorganisms (Mickan et al. 
2016; Liu et al. 2017). The addition of biochar to clay under moist tube irrigation 
significantly reduced cumulative infiltration capacity, inhibited upward water trans-
port, and promoted downward and lateral water transport, as shown by Xu et al. 
(2015). The moisture content of sandy loam and silty loam increased by rice husk 
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Table 1.5 Impacts of biochar on nutrient leaching

Nutrient 
name Impact of biochar in leaching References

Nitrogen 
(N)

Brazilian pepperwood biochar application reduced 
NO3

− leaching by 34% through adsorption
Yao et al. (2012), Lehmann 
et al. (2003), Cao et al. 
(2019) and Laird et al. (2010)Woody biochar application decreases nutrient 

leaching by increasing water retention
Biochar derived from apple branches reduced the 
leaching of NO3

−-N by 9.9–68.7% and nitrogen- 
oxide flux by 6.3–19.2%
Application of mixed hardwood biochar decreased 
N leaching by 11% in midwestern agricultural 
lands.

Phosphorus 
(P)

The application of peanut hull biochar increased 
the amount of phosphate in the soil solution by 
39%

Doydora et al. (2011), Yao 
et al. (2012), Chen et al. 
(2011), Gul et al. (2016) and 
Hussain et al. (2017)Biochar produced from Brazilian pepperwood at 

600 °C reduced the total amount of phosphate by 
about 20.6% in biochar-amended soil. Biochar 
reduces P leaching by sorption or adsorption 
mechanism
The biochars magnetized with Fe3+/Fe2+ enhanced 
phosphate sorption compared to non-magnetic char
Biochar can reduce ortho-P leaching from 
nutrient-rich soil and thus can influence P 
availability in soil

Other 
nutrients

Sewage sludge biochar produced at 500 and 
700 °C reduced the leaching loss of K in 
Plinthudult soil more than that of biochar produced 
at 300 °C temperature.

Yuan et al. (2016), Major 
et al. (2012) and Cheng et al. 
(2018)

Woody biochar application in acidic and low fertile 
soil resulted in the leaching of Ca, K and Mg to the 
60 cm depth
With an increasing temperature of biochar 
production, biochar-induced leaching loss of Ca 
can be decreased

and rice straw biochar incorporation (Chen et al. 2020). Kameyama et al. (2016) 
reported an increase in available water capacity with an increased rate of biochar 
application in clay soil. Thus biochar can maintain soil water retention by improv-
ing different physical properties of the soil such as by reducing bulk density (Głab 
et al. 2016), enhancing soil aggregation (Herath et al. 2013), changing pore size 
distribution, and improving soil porosity (Obia et  al. 2016) etc. Soil amendment 
with biochar may retain more water from irrigation and also reduce the frequency 
of irrigation, hence sustaining and optimizing the limited water available for crop 
production (Faloye et al. 2019). Many of the research endeavours determined the 
impacts of biochar amendment on the productivity and irrigation water use effi-
ciency (IWUE) of different crops under greenhouse conditions (Uzoma et al. 2011) 
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and in pot experiments (Akhtar et al. 2014). Thus, under no water stress conditions, 
the application of biochar may be proposed to reduce water and energy consump-
tion while maximizing crop yields (Baiamonte et al. 2020). In coarse-textured soils, 
biochar impedes the larger soil pores, thus blocking the water flow and improving 
water retention (Liu et al. 2017; Trifunovic et al. 2018). So, in addition to other 
farming strategies (e.g., the timing of operations, broadening soil connectivity into 
deeper layers, nutrient management, and selecting drought-tolerant crop varieties), 
biochar would also contribute to improving the resilience of agriculture to climate 
variability by improving yield stability in water-limited regions (Agegnehu 
et al. 2016).

1.5.4  Biochar for Remediation of Pesticide-Contaminated Soils

Agricultural soil contamination results from pesticide abidance and accumulation 
can change the microbial processes, harm soil organisms and also poses a threat to 
human being and ecosystem health (Chen et al. 2015). There exist many reports 
indicating the negative impacts of pesticides on human health associated with 
derangement of hormonal balance, reproductive abnormalities, cancer, as well as 
cardiovascular effects (Hurley et al. 1998; Arora 2015). Apart from these, pesticide 
application also affects soil biological activities including the growth of microor-
ganisms and different soil enzyme activities (Table  1.6). A promising in situ 
approach for the bioremediation of pesticide-contaminated soil can be considered 
when using biochar since it is easy to apply and is environmentally friendly. The 
biological activity of biochar is enhanced by its high porosity, abundance of func-
tional groups, and low density (Liu et al. 2018).

The use of biochar combined with microbes applied for the remediation of 
pesticide- contaminated soil has been reported recently by Wu et al. (2017) and Zhu 

Table 1.6 Successful observations on the impact of different biochar for remediation of pesticide- 
contaminated soil

Type of Biochar Impacts in pesticide-contaminated soil References

Wheat straw (Triticum 
aestivum L.) (300 °C)

Increased sorption of herbicide (4-chloro-2- 
methylphenoxy) acetic acid in soil

Tatarková et al. 
(2013)

Maize straw (Zea mays) and 
pig manure (700 °C)

Increased sorption of thiacloprid Zhang et al. 
(2018)

Dairy manure Reduced atrazine uptake by earthworms and 
atrazine concentration in soil

Gao et al. 
(2011)

Cassava wastes (750 °C) Increased sorption of atrazine Deng et al. 
(2017)

Olive-mill waste (550 °C) Reduced degradation of pesticides and their 
bioavailability in soil

Gámiz et al. 
(2016b)

Cotton (Gossypium spp.) straw 
chips (450 and 850 °C)

Concentrations of pesticide is reduced 
(chlorpyrifos and fipronil) in soil

Yang et al. 
(2010)
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et al. (2017). Some examples of biochar application on pesticide behaviour and its 
remediation in soil are mentioned below:

• Biochar application increases the sorption of pesticides in soil and increases the 
bioavailability of pesticide residues (Yang and Sheng 2003, Yu et al. 2006).

• Gao et al. (2011) found that biochar applied at high levels (5.0%) reduced atra-
zine concentrations in the soil.

• Jones et al. (2011) studied the influence of various types of biochar and rates of 
application on soil sorption and biodegradation in the case of the herbicide 
simazine.

• Pesticide concentrations of chlorpyrifos and fipronil were decreased after the 
application of biochar produced from cotton (Gossypium spp.) straw chips due to 
enhanced microbial degradation (Yang et al. 2010).

• Sopena et al. (2012) reported that the adsorption capacity of 2% (W/W) biochar 
produced from Eucalyptus dunni, which had a high SSA, for isoproturon was 
nearly 5 times higher for amended soil than in un-amended soil.

• The herbicides aminocyclopyrachlor and bentazone were completely sorbed by 
silt loam soil which was amended with high SSA biochar produced from wood 
pellets as reported by Cabrera et al. (2014).

• Biochar is one of the most structured adsorbents for various groups of pesticides 
including herbicides, insecticides, fungicides, and rodenticides (Gilden 
et al. 2010).

• According to Gamiz et  al. (2016a), biochar with high sorptive capacities and 
specific surfaces reduces the bioavailability of pesticides such as metalaxyl and 
tebuconazole in soil by lowering leaching and degradation losses.

1.5.5  Role of Biochar for Improving Quality 
of Irrigation Water

Clean water is possibly considered the most important natural resource for accom-
plishing basic life requirements but clean water is under alarming threat globally. As 
per FAO (2017), 70% of global freshwater withdrawals are accounted for agricul-
tural purposes. As a result of multiple water use in downstream agroecosystems, soil 
and water salinization and sodium accumulation can occur, resulting in rapid 
declines in agricultural productivity. Carbonaceous biochar has been proven effec-
tive in improving various aspects of irrigation water quality. Some examples of the 
role of biochar in improving water quality and ultimately crop yield are given below:

• Akhtar et al. (2015a, b) demonstrated that biochar (5% w:w) is capable of absorb-
ing Na from irrigation water and increasing potato yield.

• Using soil with a 2.5% biochar content and irrigation with water with an electri-
cal conductivity (EC) of 5  dS  m−1, Rezaie et  al. (2019) reported better faba 
bean yields.
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• Biochar is found to be very much effective in retaining nitrogen and many 
organic compounds which are beneficial for the growth of crop plants.

• Fine-grained biochars are also found to be effective at retaining different bacteria 
from irrigation water.

• In a study published in 2019, Yang et al. noted that adding 5% biochar to soil and 
allowing phreatic water to evaporate increased soil water holding capacity while 
reducing soil salinity and sodium adsorption ratio (SAR).

• Due to the weak hydration and relatively large radii of soft base cations (e.g., 
Na), the electronegativity of biochar may be able to sorb such cations from water 
more effectively than hard base cations (e.g., Ca, Mg), but for hard base cations, 
this effect is less noticeable because of their high hydrated energies (Zhu 
et al. 2004).

• Hemp biochar showed the most promise for improving simulated irrigation water 
SAR by sorbing Na and releasing Ca and Mg ions into the solution (Awan 
et al. 2020).

1.5.6  Role of Biochar in Enhancing Crop Yield 
and Productivity

Biochar is generally a very novel approach for achieving sustainability and self- 
sufficiency in modern-day agriculture. Production of a huge amount of nutritious 
food maintaining environmental security to feed the burgeoning billions is one of 
the major concerns for policymakers. Utilizing biochar, crops are grown in such a 
manner which does not have negative impacts on the ecosystem and is healthy for 
man as well as animals. Biochar is found to be more effective than other organic 
matter because it can retain nutrients for plants. Due to the availability of larger 
surface area and pore space, biochar is generally considered to be the hub of differ-
ent beneficial microorganisms which helps to improve soil fertility as well as crop 
yield also.

The impacts of biochar addition in agricultural soil in enhancing the growth and 
yield of different crops are studied by several researchers and they found significant 
effects of biochar regarding yield and productivity of crops. Some research exam-
ples are briefly pointed out below:

• Deb et al. (2016) observed that the impact of biochar on the soil which is defi-
cient in nutrients showed a better response, resulting in higher productivity 
of crops.

• As per Glaser et al. (2001), biomass improvement of Oryza sativa L. (rice) by 
20% and Vigna unguiculata L. (cowpea) by 50% was found due to biochar appli-
cation at 68 t ha-1 and at 136.75 t ha-1 respectively.

• Rogovska et al. (2014) found a considerable increase in maize biomass yield of 
about 11–55% after the application of biochar.
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• Jeffery et al. (2011) conducted a series of experiments where it was found that 
the application of biochar significantly improved crop yield and productivity.

• Due to the amendment of biochar with fertilizers, a considerable increase in the 
yield of maize was reported by Yamato et al. (2006).

• In an experiment conducted by Park et al. (2011), chemically modified chicken 
manure derived biochar improved the dry biomass of Indian mustard by 452% 
and 672% for shoot and root, respectively with 1% (w/w) of biochar treatments. 
This increase in yield was attributed to the reduced toxicity of Pb, and Cu and 
amended nutrient availability such as P and K.

• Application of compost mixing with biochar resulted in 4–12 times increase in 
rice and sorghum yield at harvest in an experiment conducted at Brazil Amazon 
river basin (Steiner et al. 2007).

• Uzoma et al. (2011) reported that biochar addition @ 15 t ha−1 and 20 t ha−1 to 
sandy soil enhanced maize crop yield by 150 and 98% respectively.

• As per Genesio et al. (2015), a 12% enhancement in soybean yield and a 37% 
increase in wheat yield due to acid-modified maize stalk biochar addition to soil 
resulted in reduced water stress, and improved soil pH and water holding 
capacity.

• Schmalenberger and Fox (2016) observed improved wheat and corn grain yield 
after the addition of H2O2-modified sludge biochar in soil which occurred through 
proper nutrient supply and maintenance of soil microbial activities.

• Application of biochar at the rate of 25 t ha−1 and FYM at the rate of 5 t ha−1 also 
resulted in improved maize growth and a reduced weed population at 30 and 
60 days after sowing (Arif et al. 2012) which is mainly responsible for increased 
yield of maize.

• Wood biochar addition increased by a 30% increase in wheat yield, with no dif-
ferences in grain N content and sustained yield for two consecutive seasons with-
out biochar addition in the second year (Vaccari et al. 2011) was found.

So, from the various scientific studies, it is clear that biochar increases crop yields 
by about 20% with application rates often exceeding 10  t  ha−1. It has also been 
found that applications of less than 5 t ha−1 can increase crop yields by over 50% in 
a particular type of soil (Agegnehu et al. 2017). The response of different crops to a 
different kinds of biochar application has been represented in Table 1.7.

1.5.7  Potential Drawbacks of Biochar Application

Biochar addition in arable soils is getting importance day by day due to various kind 
of benefits related to soil health, improving crop production, restoring degraded 
lands as well as environmental benefits like reducing stream and groundwater pol-
lution, controlling global warming etc. (Lehmann et  al. 2006; Stavi et  al. 2013). 
However, certain risks and drawbacks are also related to biochar addition in soil 
which is briefly discussed below:
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Table 1.7 Impact of biochar addition on crops

Source of biochar Type of crop
Response of crop to biochar 
application References

Teak and rosewood 
biochar

Rice and 
sorghum

Plant growth increases and 
2–3 times yield improvement

Steiner et al. (2007)

Wood, cow manure 
biochar

Maize Enhancement of crop yield 
from 14–150%

Major et al. (2010) 
and Uzoma et al. 
(2011)

Mango wood, and corn 
stover produced 
biochar

Maize Increase in biomass from 
30–43% and yield by 22%

Rajkovich et al. 
(2012)

Biochar from Acacia 
bark

Maize and 
Peanut

A twofold increase in maize 
and peanut yield

Yamato et al. (2006)

Oil palm fruit bunch 
biochar

Rice Increase in grain yield by 
141–472% under the organic 
system

Bakar et al. (2015)

Wastewater sludge 
biochar

Tomato and 
cherry

Yield increment of 64% over 
the control plots

Hossain et al. (2010)

Maize straw biochar Choy sum and 
Amaranth

Yield improvement by 
28–48%

Jia et al. (2012)

Possible Source of Toxicants
A biochar product can contain toxins such as heavy metals (Cd, Cu, Cr, Ni, Zn) 
(Hospido et al. 2005), PAHs, polychlorinated dibenzodioxins (PCDDs), polychlori-
nated dibenzofurans (PCDFs) (Sonja and Glaser 2012), volatile organic compounds, 
xylenols, cresols, acrolein, and formaldehyde (Chagger et al. 1998; McClellan et al. 
2007) etc. The use of biochar reduced germination and plant growth due to the phy-
totoxic compounds present in it, as reported by Rogovska et al. (2012). Using bio-
char generated at high pyrolysis temperatures, Busch et al. (2012) found a reduction 
in the shoot and radical length in maize, but not at low temperatures.

Reduction of the Efficacy of Pesticides
By reducing soil bioavailability, increasing residual life, and reducing plant uptake, 
biochar generally reduces the effectiveness of soil-applied pesticides (Yu et  al. 
2011). A biochar-based application may modify pesticide behaviour; for example, 
the sorption of soil-applied pesticides by biochar may reduce their efficacy by con-
trolling their bioavailability to organisms and leaching vulnerability (Loganathan 
et  al. 2009). Soil amendment of 0.5% (w/w) with biochar from red gum wood 
(Eucalyptus spp.) improves the sorption of acetamiprid and ultimately decreased its 
dissipation relative to unamended soil (Yu et al. 2011). In their review, Mesa et al. 
(2011) concluded that soil-applied chars (generated from open-fire burning of bio-
mass) and biochars (produced from pyrolysis) alter soil-applied pesticide bioavail-
ability and efficacy dramatically.

Retention of Heavy Metals and Other Contaminants
Biochar can enhance the concentration of heavy metals and other pollutants or con-
taminants in soil which in turn can possess long-term risks to the ecosystem. For 
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example, Beesley et al. (2010) concluded that the application of biochar increased 
the concentrations of copper (Cu) and arsenic (As) by more than 30 times, while 
simultaneously increasing soil-dissolved organic carbon and pH levels. Similarly, 
biochar application increased As and Cu mobility in a field profile and Pb mobility 
in a mesocosm, while the effect on Cd was not found significant (Beesley and 
Dickinson 2011). In addition, Uchimiya et al. (2010) demonstrated that high car-
boxyl biochar fractions were capable of mobilizing Cu from alkaline soils.

Impact on Soil Organisms
PAHs, formaldehyde, cresols, acrolein, and xylenes as well as other carbonyl com-
pounds present in biochar may possess bactericidal or fungicidal properties when 
applied to soil (Painter et al. 2001). A few studies have monitored earthworm mor-
tality and avoidance behaviour to assess the effect of biochar soil amendments on 
earthworm population dynamics. For instance, earthworm habitat choice was not 
affected by biochar (30 t ha−1) amendment within 2 days, but earthworms avoided 
biochar after 2 weeks primarily due to a slight decline in soil water potential, rather 
than toxins such as PAHs (Tammeorg et al. 2014).

Emission of Greenhouse Gases
We know that biochar application in the soil can reduce the emission of greenhouse 
gases like CO2, CH4, N2O etc. as per previous research documentation. But in some 
particular cases, a few studies have also reported that biochar addition in the soil can 
increase greenhous gas emission into the atmosphere. For example, the application 
of wheat straw biochar (pyrolyzed at 350–550 °C) @ 40 t ha−1 with or without N 
increases the CH4 emission by 34 and 41%, respectively at Tai Lake plain, China 
(Zhang et  al. 2010). Furthermore, the CH4 emission was increased by 44.9% by 
municipal biowaste biochar (40 t ha−1) in rice (Bian et al. 2013). Likewise, with the 
addition of biochar at 5 and 25 t ha−1, the cumulative CO2 flux was enhanced by 6 
and 10% respectively, under a maize-soybean rotation in Central Ohio (Hottle 2013).

Poisonous Effect on Human Health
As different kinds of biochar are mostly present in dust form, so they contain vari-
ous heavy metals (As, Cu, Pb etc.) and other toxic substances like silica which are 
very much harmful to human health during application in soil. These dust particles 
can create problems, particularly in the respiratory system of humans. Broad studies 
are needed regarding the impacts of biochar on human health in near future.

1.6  Conclusion

Biochar is a technique of reclaiming contaminated agricultural soil, boosting soil 
fertility by lowering acidity, and increasing nutrient availability. Thus, adding bio-
char to the soil is the ideal method for overcoming any biotic stress in the soil and 
increasing crop output. Biochar’s positive effects on soil-water-plant interactions 
resulted in increased nitrogen and water consumption efficiency as well as improved 
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photosynthetic performance. Soil characteristics, microbial abundance, biological 
nitrogen fixation, and plant development all benefit from biochar. It is suggested 
that biochar be used as a soil additive for long-term carbon sink repair. Biochar is a 
strong option for expanding soil efficiency and plant development even in outra-
geous climate-uncovered soils. Plants might have the option to get through outra-
geous temperatures, dry spell, desertification, flooding, and salinization with the 
assistance of biochar revisions. Biochar is definitely not an original thought in farm-
ing. Notwithstanding, there is an assortment of studies accessible on the capability 
of biochar in further developing soil organic carbon among smallholder ranchers; 
consequently, biochar’s effects on environment moderation are a profoundly factor. 
When compared to the use of plant biomass, which biodegrades faster in soil, bio-
char could be a viable option for producing more stubborn carbon and so making it 
more stable when added to the ground. Agroecosystems are crucial for ensuring 
food security and reducing greenhous gas emissions. Biochar expansion tends to 
reduce synthetic manure inputs and lighten greenhous gas outflows by increasing 
soil C sequestration and, as a result, increasing manure N crop-use efficacy. Before 
applying biochar, it is important to make informed decisions about its type, rate, and 
partiality using agro-farming frameworks. Biochar is useful for delaying the arrival 
of nutrients and thereby protecting the environment without compromising crop 
output. Biochar’s positive impact on agroecosystems and the creation of a sustain-
able climate necessitates thorough investigation, as well as economic and social 
inquiry. Biochar can be made from a variety of plant-based ingredients; therefore it 
is frequently distributed locally. Following a lab test, the biochar(s) may be used on 
a small scale to determine which biochar and revision rate will provide the most 
benefit to your crops.
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Chapter 2
Biochar to Improve Crops Yield 
and Quality Under a Changing Climate

Mushtaq Ahmad Khan, Abdul Basir, Muhammad Adnan, Shah Fahad, 
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Abdel Rahman Mohammad Said Al-Tawaha, Muhammad Arif, Amanullah, 
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Abstract Climate change is threatening global food security, calling for advanced 
agricultural practices to feed an increasing population. In particular, a major chal-
lenge is improving soil quality in an ecological manner for obtaining optimum crop 
yield. For that, recent research shows that using biochar as a soil amendment miti-
gates global warming, restores soil health, and improves crop yield. Biochar improves 
the availability of plant nutrients by increasing nutrient and water use efficiencies, 
soil porosity, and cation exchange capacity. For instance, application of biochar 
alone or combined with other fertilizers improves the aerial biomass of maize by 
189%, wheat by 18%, grasses by 93% and cereals by 20%. Biochar application 
enhances grain nitrogen and protein content of cereals such as wheat and maize. 
Nonetheless, biochar performance depends upon agro-climatic conditions. Here we 
review the role of biochar in improving crop performance under changing climate.
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2.1  Introduction

Problems related to climatic instability along global warming compelled the scien-
tific community to search for techniques that ensure sustainable crop production for 
the ever increasing world population. Intensive agriculture is the recommendation to 
raise productivity which is directly related to soil health/quality and crop input 
requirement. Improving soil quality and inputs requirement for getting potential 
yields remains a major challenge. Biochar, a recent amendment in the agriculture 
system as a soil conditioner with proven benefits related to soil sustainability and 
crop productivity, has been recognized as a sustainable strategy to tackle the concern.
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Biochar a carbon rich material produced when organic solids is decomposed at 
low temperatures under restricted supply of oxygen (Sohi et al. 2010). Pyrolysis is 
a process which happens at above 350 °C temperature under no/restricted supply of 
oxygen for the conversion of organic material such as biomass. In Pakistan the 
availability of organic materials generally called feedstock’s for biochar production 
is extensive (Rasul et al. 2017; Ahmad et al. 2022a, b). Generally these feedstocks 
may include i.e. wood chips, plant prunings, plant residues, organic wastes, poultry 
and dairy manures.

Biochar characteristics mainly depend on the temperature and heating time 
required for pyrolysis (Elnour et al. 2019). Due to high alkalinity we have to select 
appropriate biochar feedstock’s and find out suitable pyrolysis temperature for 
Pakistani soils. Thus to keep soil fertile, biochar produced through low pyrolysis 
temperature, is highly nutritive, having low pH and high cation exchange capacity 
might be a good choice than any other amendment for Pakistani soil (Rasul 
et al. 2017).

Application of organic manures alone and along with synthetic fertilizers can 
beeffectively used as nutrient supplement. However, the effect of organic manures 
varies depending on soil and climatic condition. Furthermore, little literature 
explores the integrated effect of biochar alone and in combination with organic and 
inorganic amendments on crop growth, yield and quality. Keeping these observa-
tions we hypothesized that biochar application into soil enhances the efficiency of 
organic and inorganic nitrogen fertilizers and improve the yield of wheat crop. 
Therefore, in this chapter we evaluated the effects of biochar, organic manures and 
inorganic nitrogen fertilizer on crop yield and quality.

2.2  Biochar as Soil Conditioner

There are different ways through which biochar can be applied to soil. These meth-
ods involve application by hand or through machine. Scientists in their studies have 
reported that the best way of application of biochar to soil is incorporation upto 
0–15  cm through tillage implements such as rigid tine cultivator (Graves 2013; 
Nelissen et al. 2015; Amanullah et al. 2021). Recommended application of organic 
materials to soil must be based on large field experiments.

To make general recommendations, biochar application rates should be main-
tained according to nature of biochar materials, soil types and crops (Major 2010). 
However, Liu et  al. (2013) studied data of 59 pot and 57 field experiments and 
observed average increase of 11% in overall crop productivity. He noted that this 
increase in productivity was due to the field application of biochar probably less 
than 30 t ha−1 and further clarifies that this improvement in crop productivity differs 
with crop type and greater increase of 30, 29, 14, 11, 8 and 7% were observed for 
legumes, vegetables, grasses, wheat, maize and rice respectively. However, the 
highest amount of biochar 100 tons ha−1 that can be applied has been evaluated by 
Jeffery et al. (2011), and results showed positive impacts.

2 Biochar to Improve Crops Yield and Quality Under a Changing Climate
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The application of biochar is important for improving soil biology which further 
have impact on microbial community and its activity (Palansooriya et  al. 2019), 
decrease oozing of nutrient and have encouraging effects on soil physico-chemical 
characteristics (Rawat et al. 2019; Berek et al. 2018; Ahmad et al. 2022a, b). Though, 
responses of soil to application of biochar are strongly affected by its physico- 
chemical properties. Hence, making it difficult to predict the effect of particular 
biochar on soil physico-chemical characteristics and crop productivity (Biederman 
and Harpole 2013).

Biochar is highly porous, which creates a better soil environment and decreases 
the bulk density or compactness of the soil, alter the pore size distribution and pos-
sibly affects the slow passage of water in the soil or water percolation rates (Libutti 
et al. 2019), modifies soil hydraulic properties (Altdorff et al. 2019) thus improves 
soil aggregation and water holding capacity. Likewise, application of biochar 
increases the availability of nutrients, its uptake that ultimately increases crop pro-
ductivity. It also improves soil organic carbon, total nitrogen and nitrogen use effi-
ciency (Shah and Shah 2018; Rawat et al. 2019; Oladele et al. 2019).

Crop growth rate of maize, net assimilation rate, yield components, water use 
efficiency and productivity of maize significantly increases when biochar is applied 
at 15 to 20 t (Uzoma et al. 2011). The use of synthetic fertilizer can be minimized 
through biochar application due to reduction of nitrogen loses due to de-nitrification 
and leaching while on the other hand it enhances cation exchange capacity (Pereira 
et al. 2015, 2017) (Fig. 2.1).

2.3  Biochar in Optimizing Crop Quality and Yield

Utilization of wood biochar lone or in integration with other manure mends crop 
yield when compared to no biochar treated soils (Mensah and Frimpong 2018; 
Amanullah et al. 2022). Significant variation is reported in grain yield 95 to 266% 
for soils with no biochar and nitrogen fertilizer was applied, in contrast to those 
soils where biochar at 100 tones ha−1 was applied in combination/integration with 
inorganic nitrogen. Remarkable increase of 189% was recorded in maize biological 
yield when biochar was treated with soil (Major et  al. 2010). Legume and grass 
above ground biomass improves by 20% and 93% respectively as compare to no 
biochar amended plots (Major et al. 2009).

Around 18% improvement in wheat yield is noted when both wood biochar and 
nitrogen is applied in combination (Solaiman et al. 2010). Furthermore, incorpora-
tion of wood biochar produces considerably higher wheat yield over no biochar 
amended soils (Solaiman et al. 2010). Chan et al. (2008) studied agronomic value of 
wood biochar in coarse textured soils is greatly needed to increase soil water hold-
ing capacity and nutrients retention ability that encourages crop growth as well as 
development. Furthermore, observed encouraging influence of wood biochar on 
wheat yield during pot experiment under Simi-arid condition.
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Fig. 2.1 Properties of biochar. Biochar a carbon rich material and porous by-product of slow 
pyrolysis, having a range of characteristics. For a particular feedstock, biochar characteristics 
mainly depend on the temperature and heating time required for pyrolysis. The general character-
istics showed that biochar are rich with nitrogen, phosphorus, potassium, calcium, magnesium and 
sulfur. Furthermore, biochars prepared from different feed stocks have different properties such as 
pH, electrical conductivity, surface area and essential nutrients). Most woody biochars have 
medium-high surface area and porosity and lower bulk density as well as particle density. 
Furthermore, high as biochars have lower porosity and surface area. C, H, O, N, P, K, EC, CEC 
stand for carbon, hydrogen, oxygen, nitrogen, phosphorus, potassium, electrical conductivity and 
cation exchange capacity respectively. (Modifed and reprinted with permission from Xu et al. 2017)

Spokas (2010) studied no and/or adverse effect of wood biochar on crop yield 
when treated with soil alone. On the other hand, when integrated with inorganic 
fertilizer the effect was encouraging (Palm et al. 2001; Arif et al. 2021). Blackwell 
et al. (2009) also noted comparable results and found enhanced crop growth and 
yield when both wood biochar and inorganic fertilizer were co-applied as compared 
to sole wood biochar application. Several authors including Alburquerque et  al. 
(2013) stated that wood biochar addition improves plant height, biological yield and 
grains quality. Biochar application enhances nitrogen content in different parts of 
wheat e.g. straw and grain by 24, 56% respectively, grain protein content by (20%) 
and soil total nitrogen by 63%.
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Similarly nitrogen use efficiency improves by 38% in the plots receives biochar 
at 25 and 50 t ha−1 over plots without biochar (Ali et al. 2015a). It has been reported 
that biochar applied to wheat at 25 t ha−1 maximizes spikes m−2, grains in spike, 
1000 grain weight, economic and biological yield by 6.64, 5.6, 3.73, 9.96, and 
15.36% respectively in comparison with no biochar treated plots (Ali et al. 2015b; 
Dawar et al. 2021). Wheat grown with mineral fertilizer phosphorous and biochar 
produces maximum grain yield of 46% in comparison to plot where no biochar was 
applied (Blackwell et al. 2010). Integrated application of biochar, nitrogen and farm 
yard manure at 25, 10 and 150 kg ha−1 delayed phenology in maize crop.

Further it is reported that addition of 30 tones biochar and 75 kg ha−1 nitrogen 
applied from urea lead to more rows/ear, heavier 1000 grain weight, greater grain 
yield and biological yield of maize (Arif et al. 2012). Further, use of biochar and 
farm yard manure by 25 and 5 ton ha−1 lead to reduces weeds density both 30 and 
60 days after sowing (Arif et al. 2013). Biochar also enhanced fertilizer use effi-
ciency, which resulted in maximum yield/kilogram of fertilizer used (Chan and Xu 
2009). Yeboah et al. (2009) observed higher nutrient uptake as well as crop growth 
due to higher wood biochar addition. Soil incorporated with biochar enhanced crop 
establishment and better crop growth rate and net assimilation rate which ultimately 
lead to higher maize yield (Uzoma et al. 2011).

Similarly biochar incorporation can enhance quality of the crop and crop yield, 
and keep the crop safe from the attack of destructive pests and occurrence of crop 
diseases (Vaccari et al. 2011). Biochar in soil have encouraging effects on germina-
tion of seed, establishment of crop plants, and early crop growth (Genesio et al. 
2012). Biochar as soil amendment restores soil fertility, stimulate plant growth, and 
promote sustainable agriculture development (Rawat et  al. 2019) (Tables 2.1 
and 2.2).

2.4  Biochar with Organic and Mineral Fertilizers

The degradation of the soils is one of the key limitations for providing food for the 
ever growing population (Gupta 2019). This soil degradation occurs due to the 
intensive agricultural uses and poor soil management (Lucas-Borja et  al. 2019; 
Fahad et al. 2020). Applications of synthetic fertilizers and manures have frequently 
been used for restoration of degraded soils. However, constant use of inorganic 
fertilizers enhances acidification, decrease microbial population and biological, 
geological and chemical aspects of the soil, hence reduce crop productivity (Seufert 
et al. 2012). Adding manures to soil is a tool to improve physical environment and 
directly supply both macro and micro-nutrients. However, the rapid turnover of 
manures is the key limitation for the restoration of poor fertile soils (Mensah and 
Frimpong 2018).

The integrated application of both biochar and organic manures declines the 
decomposition of the organic manures, leading to slowly release of nutrients, which 
subsequently reduced nutrients losses especially through leaching (Mensah and 
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Table 2.1 Integrated effect of biochar and nitrogen sources on grain yield of wheat

Biochar (t ha−1)
Years

Mean % Increase2015–2016 2016–2017

0 3407.53 c 3645.83 c 3526.68 c
10 3518.81 bc 3762.01 bc 3640.41 b 3.22
20 3872.25 a 4116.25 a 3994.25 a 13.26
30 3575.44 b 3822.01 b 3700.23 b 4.92
LSD (0.05) 158.72 158.59 110.59
Nitrogen management (kg ha−1)
Control 2653.11 f 2900.19 f 2776.65 f
90 N urea 3298.67 e 3541.08 e 3419.88 e23.17
120 N urea 3622.17 cd 3862.58 cd 3742.38 cd 34.78
150 N urea 3944.66 ab 4185.25 ab 4064.95 a 46.40
90 N FYM 36.07.11 d 3847.69 d 3727.40 cd 34.24
120 N FYM 3575.79 d 3819.87 d 3697.83 d 33.18
150 N FYM 3866.56 abc 4105.22 abc 3985.89 ab 43.55
90 N PM 3574.39 d 3814.81 d 3694.60 d 33.06
120 N PM 3762.86 bcd 4011.03 bcd 3886.95 bc 39.99
150 N PM 4037.25 a 4277.50 a 4157.38 a 49.73
LSD (0.05) 250.96 250.75 174.86
Mean 3594.26 b 3836.52 a
Interactions
Y x BC ns Y × N ns
BC x N * Y × BC × N ns

LSD mean least significant difference (α=0.05) while N, FYM, PM, Y, BC and ns means 
nitrogen, farmyard manure, poultry manure, year, biochar and non-significant respectively

Frimpong 2018). Furthermore combined application of biochar and conventional 
fertilizer reduces the quantity of biochar needed to reduce soil pH and increase 
inorganic fertilizer retention (Nielsen et  al. 2018; Khalid et  al. 2019). However, 
scientists also reported antagonistic effect due to combined addition of biochar and 
organic or inorganic fertilizers when compared with the sole application (Seehausen 
et al. 2017). Biochar with high sorption capacity can decrease the availability of 
nitrogen and phosphorus (DeLuca et al. 2015). Though, biochar sorption capacity 
may be considerably dependent on biochar properties, e.g. pH, acidic surface, 
amount of biochar applied, feedstocks used and pyrolysis temperature (Yao 
et al. 2012).

Addition of organic and mineral fertilizer improved productivity and is also envi-
ronmentally friendly (Zahoor 2014). It is further reported that application of organic 
materials and inorganic fertilizer contributes to the proper nutrition of the crops and 
improve soil fertility. Application of poultry manure 6 tons, farm yard manure 6 
tons and 90 kg nitrogen ha−1 significantly affected no. of spikes, length of the spike, 
plant height, days to harvest maturity, biological and grain yield of wheat. The addi-
tion of organic and mineral fertilizers to wheat crop might give a substitute under 
field condition (Abbas et al. 2012).
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Table 2.2 Integrated effect of biochar and N sources on biological yield in kg ha−1 of wheat 
(Figs. 2.2 and 2.3)

Biochar (t ha−1)
Years

Mean % Increase2015–2016 2016–2017

0 11382.23 c 11724.93 c 11553.58 d
10 12205.57 b 12550.07 b 12377.82 c 7.13
20 13093.32 a 13446.48 a 13269.90 a 14.86
30 12377.24 b 12729.18 b 12553.21 b 8.65
LSD (0.05) 195.64 194.47 135.96
Nitrogen management (kg ha−1)
Control 10863.44 e 11203.61 e 11033.53 f
90 N urea 12045.50 d 12397.08 d 12221.29 e 10.77
120 N urea 12296.58 cd 12642.42 cd 12469.50 d 13.01
150 N urea 12626.00 ab 12981.83 ab 12803.91 ab 16.05
90 N FYM 12333.61 bcd 12677.28 bcd 12505.44 d 13.34
120 N FYM 12391.37 bc 12733.62 bc 12562.50 cd 13.86
150 N FYM 12552.14 abc 12903.31 abc 12727.72 abc 15.35
90 N PM 12319.81 bcd 12669.97 cd 12494.89 d 13.24
120 N PM 12449.45 bc 12800.78 bc 12625.11 bcd 14.42
150 N PM 12768.00 a 13116.75 a 12942.38 a 17.30
LSD (0.05) 309.33 307.48 214.98
Mean 12264.59 b 12612.66 a
Interactions
Y x BC Ns Y x N Ns
BC x N * Y x BC x N Ns

LSD mean least significant difference (α=0.05) while N, FYM, PM, Y, BC and ns means nitrogen, 
farmyard manure, poultry manure, year, biochar and non-significant respectively

Integrated management of poultry manure and inorganic fertilizers results in 
maximum height and grain yield of wheat (Abbas et al. 2012). Addition of higher 
level of farm yard manure alone had considerably improved weed density, weed 
fresh and dry biomass as compared to low level of farm yard manure (Arif et al. 
2012). Furthermore, combined application of biochar, farmyard manure and nitro-
gen levels had also significant impact on weed infestation in wheat crop. Moreover 
higher weed density such as 35 and 70 days after sowing, weed fresh and dry bio-
mass were observed at higher level of farmyard manure, similarly maximum weeds 
fresh and dry biomass were also observed for 120 kg nitrogen ha−1 and 50 tons 
biochar (Arif et al. 2013; Khan et al. 2022).

Atif et al. quoted that application of farm yard manure by (9 tons ha−1) results in 
highest spike length, number of grains in each spike and maximum grain yield. 
Also application of farmyard manure, poultry manure and urea had significant 
effect on cobs per plant, 1000 grains weight and grain yield of two maize hybrids 
(Pioneer 3062 & 3012) (Khalid et al. 2004). It is further reported that addition of 
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Fig. 2.2 Interactive effect of biochar and nitrogen sources on grain yield of wheat. Generally, the 
interaction between biochar × nitrogen management showed that sole application of biochar sig-
nificantly increased grain yield of wheat over no biochar treated plot. However the results were 
more pronounced when biochar was applied with either of the nitrogen source. Specifically, plots 
amended with 20  t biochar produced maximum grain yield of wheat when combined with 
150 kg ha−1 nitrogen applied from poultry manure. N, FYM and PM stand for nitrogen, farmyard 
manure and poultry manure respectively. (Modified and reprinted with permission from Khan 
et al. 2020)
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Fig. 2.3 Interactive effect of biochar and nitrogen sources on biological yield of wheat. Generally, 
the interaction between biochar × nitrogen management showed that sole application of biochar 
significantly increased biological yield of wheat over no biochar treated plot. However the results 
were more pronounced when biochar was applied with either of the nitrogen source. Specifically, 
plots amended with 20 t biochar produced maximum biological yield of wheat when combined 
with 150 kg ha−1 nitrogen applied from poultry manure. N, FYM and PM stand for nitrogen, farm-
yard manure and poultry manure respectively. (Modified and reprinted with permission from Khan 
et al. 2020)
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poultry manure alone and with urea increase grain yield, 1000 grains weight, soil 
total nitrogen and organic matter (Shah et al. 2013). Further, reports are available 
that utilization of 12 t farmyard manure and 28/12 N/P have considerable impact 
on affected leaf area index, plant height, grain yield of maize but not harvest index 
and saved almost 75% cost of commercial fertilizer for both years (Zerihun 
et al. 2013).

Mukhtiar et  al. (2018) observed improvement in all wheat parameters due to 
variations in nature of the organic materials. Furthermore, the application of 
manures with synthetic fertilizers is cost-effective (Kumar et  al. 2017). Poultry 
manure has been known from the past as an important and utmost needed organic 
fertilizer because it develop fertility of the soil by providing the necessary nutrients 
and build up soil organic matter which ultimately increase moisture and nutrient 
retaining potential of the soil, furthermore poultry manure alone at 12 t ha−1 results 
in maximum yield and yield components of maize (Farhad et al. 2009; Mehmood 
et al. 2021). Efthimiadou et al. (2010) further reported that plots receiving poultry 
manure (5 t) has high grains/spike, 1000 grain weight, biological and grain yield. 
However, combined application of organic and mineral fertilizers increases soil 
organic matter and soil total nitrogen (Fig. 2.4).

Organic fertilizer or manures is relatively poor in nutrients content, moreover the 
nutrients emancipating power is also lower in order to fulfill the nutritional needs of 
the crops (Baghdadi et al. 2018), thus the incorporation of organic manures alone 
could not sustain the normal intensity of agriculture production (Bandyopadhyay 
et al. 2010). Moreover, application of lone inorganic fertilization improves mineral-
ization of soil organic matter (Mahal et al. 2019; Mian et al. 2021), deteriorated soil 
structure and increase loss of nutrients (Nin et al. 2016). Therefore, integrated nutri-
ent management is the most promising practice to keep soil fertile (Dejene and 
Lemlem 2012).

Incorporation of organic manures, decreased soil pH (Mahmood et  al. 2017). 
Kawsar (2013) noted decline in soil pH from 7.54 to 7.47 when farmyard manure 
(FYM) was applied at higher level 10 t ha−1 to alkaline soils. However, Mahmood 
et al. (2017) quoted that lone mineral nitrogen application abridged soil pH, how-
ever addition of organic and synthetic fertilizer considerably increased soil pH. A 
conceivable justification for the above statement is that organic manures consist of 
basic cations as well as carbonate to neutralize the acidification effect (Duruigbo 
et al. 2007). Moreover, high alkalinity of manures is the key cause for the raising 
soil pH (Xu et al. 2006).

Further, reduced soil bulk density due to improved soil bio pores and soil aera-
tion, greater soil organic carbon content, and improved soil aggregation that eventu-
ally enhanced soil porosity as well as water holding capacity (Gangwar et al. 2006). 
Similarly, Papini et al. (2011) also noted that the addition of manures improved soil 
aeration, moisture content, water holding capacity and decreased soil bulk density. 
The lower C:N ratios of the soil due to the addition of synthetic and organic fertil-
izers might be ascribed to greater availability of nitrogen and its retention in the soil 
(Chen et  al. 2010). Organic manures considerably improved soil organic carbon 
therefore had a positive impact on soil microbial population.
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Fig. 2.4 Conceptual framework for organic amendments and plant  – soil relationships. This 
framework shows the effect of biochar, biochar-compost and co-composted-biochar-compost on 
crop growth, yield, soil phyico-chemical properties and carbon sequestration. Application of bio-
char and biochar-compost mixtures from various feedstock’s have promising choice for improving 
soil fertility, plant nutrient availability, nutrient uptake, restoring degraded land and mitigating the 
emissions of greenhouse gasses associated with agriculture. (Modified and reprinted with permis-
sion from Agegnehu et al. 2017)

The exogenous application of organic matter having high C:N ratio encourage 
faster mineralization of the already existing organic matter (Shahzad et al. 2015; 
Saleem et al. 2021). Mahmood et al. (2017) quoted that sheep manure has greater 
C:N ratio and minimum soil organic carbon when compared with farmyard manure 
and poultry manure. Purakayastha et al. (2008) stated that integrated use of organic 
and synthetic fertilizer boosted soil organic carbon and soil total nitrogen by 1180 
and 56–92% in the soil. Addition of organic manures like sheep manure, poultry 
manure and farmyard manure with mineral fertilizers causes considerable improve-
ment in soil nitrogen, phosphorus and potassium concentration that sustain improved 
nutrient use efficiency (Mahmood et al. 2017).

Furthermore the improvement in soil nitrogen, phosphorus and potassium con-
tent was possibly be related with organic manure such as farmyard manure or poul-
try manure absorbing more leachate, which lead to decreased nutrient leaching 
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(Murmu et al. 2013; Adekiya et al. 2019; Ullah et al. 2022). Organic manures com-
bined with reduced amount of synthetic fertilizers generally enhance microbial 
activity as well as nutrients availability more than the lone incorporation of syn-
thetic fertilizer. Furthermore, enhanced soil aggregation, structure, and water reten-
tion capacity are also associated with the addition of both organic and synthetic 
fertilizers (Walsh and McDonnell 2012; Mahmood et al. 2017).

2.5  Conclusion

Agriculture under changing climate scenario is facing major challenges. Crop yield 
response to biochar may differ with biochar type, application rate and soil condi-
tions. Organic fertilizer or manures is relatively poor in nutrients content and the 
nutrients releasing power is also poor in order to fulfill the nutritional needs of the 
crops. Biochar has been reported to improve crop yield, grain nitrogen and protein 
content. Its application as soil amendment restores soil fertility, stimulate plant 
growth, and promote sustainable agriculture development but its performance varies 
depending upon soil and climatic conditions. Therefore, further research is neces-
sary to understand the performance of biochar on different crops under diverse agro- 
climatic conditions.
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Chapter 3
Biochar for Improving Crop Productivity 
and Soil Fertility

Fazal Jalal, Zafar Hayat Khan, Muhammad Imtiz, Muhammad Ali Khan, 
Fazal Said, Sayed Hussain, Farooq Shah, and Muhammad Adnan

Abstract Biochar application to soils can both sequester carbon in the long term, 
and improve soil fertility by storing nutrients and water. Biochar is produced by 
pyrolysis of biomass and biomass residues at high temperature. Here we review 
biochar application to soil with focus on improving crop productivity and soil fertil-
ity. The effect of biochar are highly variable depending on the type of biochar and 
the experimental conditions. Biochar modify significantly soil properties.

Keywords Biochar · Temperature · Plants · Climate change

3.1  Introduction

Soil is a medium for plant growth and provide support, minerals and water to the plant 
for survival. Various factors such as environment, soil condition, cultural/management 
operations and fertilizer application affect plants growth and development (Reis et al. 
2016). The use of nitrogen-based fertilizers can’t be ignored because of disfavor, but 
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it’s fabulous for the worldwide global aggregation but its excessive use can contami-
nate the environment through leaching, runoff and volatilization of the nutrient (Serra 
gas emission) (Norse and Xiaotang 2015). Therefore, the use of biochar in low-fertil-
ity soils is a useful technique for improve soil carbon, soil health its crop productivity 
(Van Zwieten et al. 2010). Biochar is a carbonaceous compost that comes from the 
thermal decomposition of vegetable residues and organic waste. The application of 
biochar has generated an ever-increasing interest in the recovery of nutrients from the 
ground. The use of biochar can improve the growth of the plant by improving the 
availability of nutrients, enhancing the microbial activity, the capacity to treat and 
nutrient of the water and increasing the apparent density. The application and manage-
ment of biochar and climatic factors influence notably the physical-chemical property 
of the soil due to the slow rate of decomposition and the prolongation of soil fertility 
(Lima et al. 2002). However, biochar is highly recalcitrant to microbial decomposition 
and guarantees long-term benefits for soil fertility (Lima et al. 2002).

The integration of biochar with synthetic fertilizers can meliorate the address-
able culture (Lima et  al. 2002). Because the accumulation of biochar in the soil 
implies a diverse nitrogen pool, further study is necessary to increase the length of 
nitrogen restriction and the rate of riling (Kochanek et al. 2016). The biochar can be 
grown at temperatures below 350 °C or 550 °C with a C:N rate of 43 and 49 and is 
used in the ratio of 10 g kg−1 to its clayey soil. This has favored the mineralization 
of the more undecomposed fractions probably due to the effect of in scone biochar 
(Shaheen et al. 2019). The biochar product through the low temperature at the end 
has increased the pH of the soil and has also increased the exchange of soil microbes 
(Zhao et al. 2013; Esfandbod et al. 2017).

Climate change is affecting our agriculture sector (Irfan et al. 2021; Wajid et al. 2017; 
Yang et al. 2017; Zahida et al. 2017; Depeng et al. 2018; Hussain et al. 2020; Shafi et al. 
2020; Wahid et al. 2020; Subhan et al. 2020; Zafar-ul-Hye et al. 2020a, b; Zafar et al. 
2021; Adnan et al. 2020; Ilyas et al. 2020; Saleem et al. 2020a, b, c; Rehman 2020; 
Frahat et al. 2020; Wu et al. 2020; Mubeen et al. 2020; Farhana 2020; Wu et al. 2019; 
Ahmad et al. 2019; Baseer et al. 2019). Biochar can play a vital role in response to cli-
mate change because it can improve crop yield, soil microbial activity and decrease 
nutrients leaching. However, little attention has been given to biochar application in the 
process of biological N2 fixation through its application to legume crops.

Potential benefits of applying biochar to agricultural soil include improved soil 
structure and soil moisture retention, changes in soil pH and micro-nutrient avail-
ability, positive effects on soil microorganisms, e.g. increased biological N2 fixation 
by rhizobia in legumes and high levels of colonization by mycorrhizal fungi and 
plant growth promoting organisms in the rhizosphere. Biochar incorporation into 
agricultural soils not only changes their biology, but is also likely to have a strong 
correlated effect on their nitrogen dynamics. Since the C/N ratio of biochar is usu-
ally relatively high, initial mineralization of its available C would result in nitrogen 
(N) immobilization in the short term. This has been reported primarily in N-limited 
tropical soils (reduced N uptake and plant yields). The effects on soil nitrogen 
dynamics of biochar applications alone or in combination with mineral nitrogen 
fertilizers have been the focus of few recent studies. These experiments were carried 
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out with the aim of studying the direct effect of biochar on legumes and the residual 
effects of biochar and legumes along with different nitrogen levels for subsequent 
crops of maize and wheat in the increase in productivity, in the improvement of soil 
quality and in the achievement of sustainability in the cultivation system based on 
cereals (Cao et al. 2010) (Table 3.1).

3.2  Biochar and Crop Productivity

Biochar is one of the efficient soil amendments which are used predominantly for 
the commercialized crops production. However, the data related to biochar effect on 
the crop production is limited as compare to his use and composition. Therefore, the 

Table 3.1 Plant responses to biochar application

Source of biochar 
and application rate Test crop Crop responses

Reasons of crop 
response given by 
author Reference

Unknown 0.5 t ha−1 Soybean Biomass increased by 
51%

Increased soil water 
holding capacity and 
color of soil

Unknown 5 and 
15 t ha-1

Soybean Yield reduced by 37% pH induced 
micro-nutrients 
deficiency

Wood biochar Cereal Enhances plant growth Improving soil 
physical and 
biological properties

Bamboo Tea tree Height and volume 
increased by 20 and 40%

Nutrient retention 
and balance pH

Bark of acacia 
37 t ha−1

Maize and 
legumes

200% in yield with 
fertilizer application

Enhance the 
availability of P and 
N also reduce 
nutrient losses

Wood biochar Sorghum 
and rice

Increased yield when 
biochar applied with 
fertilizer as compared to 
biochar alone

Nutrient retention

Rice husk 10 t ha−1 Maize 
soybean

10–40% yield increased Increased pH

Green waste 
0–100 t ha−1

Wheat Yield increased up to 
40%

Improving physical 
properties of soil

Wood charcoal Wheat – Reduced N leaching
Forest wood 
charcoal

Maize – 10% lower bulk 
density

Biochar created 
from modern 
pyrolysis 
techniques

Legumes Positive crop responses Reducing soil acidity 
and aluminum 
toxicity

Glaser et al. 
(2002)
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numbers of tests related to soil and field evaluations are required to recommend dif-
ferent mount of biochar to amend the soil for the qualitative and quantitative pro-
duction of the crop. Due to lack of limited information and research in the current 
literature, biochar application is a need of the day for getting more information and 
benefits. Characteristic of a particular biochar depends on the composition of its 
material, thus application rates if a particular biochar largely relates to the composi-
tion matrix. Several scientific evidences depicted a significant effect of biochar on 
crop yield and overall growth and development while applied at a rate of 5–50 t ha−1 
along with adequate plant nourishment (Jalal et al. 2020). Biochar application can 
increase the value of the standing crops (Cao et al. 2010; Jalal et al. 2020). Thus 
enhance the yield and development of plants. An increased yield (28–40%) in maize 
crop was observed after 50 t ha−1 biochar application in Pakistani climatic condition 
(Jalal et al. 2020; Oguntunde et al. 2004) along with biochar at the rate of 90 g kg−1 
to a manimum-fertile tropical soil, this is not only enhances the Nitrogen fixation 
rate in bean plants (Phaseolus vulgaris) from 50% to 72%, it is also have positive 
effect on the yield and biomass of bean (Oguntunde et al. 2004; Rondon et al. 2007).

Biochar ammendents in Northern Laos region of United States, categorically 
known for low Phosphorus availability results in higher grian yield of highlands rice 
(Oryza sativa) (Asai et al. 2009; Silber et al. 2010). All these above mentioned soil 
characteristics are closely interlinked and may act synergistically towards overall 
improvement crop productivity and efficiency. Numerous research findings justify 
the efficient use of biochar for crop improvement (Lehmann et al. 2003), however 
in certain specific agro-climatic zone the positive effect of biochar inadequate, 
while some scientist reported negative responses (Mikan and Abrams 1995). Several 
studies conducted in tropical and temperate agro-climatic conditions reported posi-
tive crop response to biochar application, increasing plant growth and development, 
robust microbial activity, enhanced water retention capacity and reduce nutrient 
leaching issue (Silber et al. 2010).

Application of biochar enhances nitrogen fixation and useful mycorrhizal rela-
tionship in beans (Phaseolus vulgaris) (Zhang et  al. 2010). Research findings 
exposed that the positive effect of biochar on plant biomass and development of a 
crop enhances over time after its incorporation into the soil. Biochar can influence 
the physiochemical properties of soil, thus it has been reported to increase the fresh 
and dry yield of sesbania and cowpea (Arif et al. 2015). Furthermore, a research 
study depicted that biochar can enhance the water holding for more time water and 
soil nutrient preservation, it make sure the availability and optimum uptake of nutri-
ents from the root zone for synthesis of higher photosynthate which can results in 
high dry matter content (Elmer et al. 2010).

In case of a study on cowpea and sesbania, the fresh and dry yield was recorded 
high in second year as compare to first year of experimental trial, illustrating the 
abundant of nutrients discharge both from legumes as well as biochar breakdown 
after a year (Arif et al. 2015). Grain and biological yield of mung bean significantly 
improved in the biochar applied experimental plots, attributes to the direct accessi-
bility of nutrients mostly nitrogen all over the growing season from various biochar 
sources (Gruss et al. 2019), thus contributing to soil and crop productivity. Likewise, 
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combined application of biochar from charcoal sources and organic fertilizers dis-
played positive plant growth responses suggesting a strong synergistic relationship 
for plant development (Yoshida et al. 2008). Biochar showed increased grain yield 
for different crop species in growing areas with minimum phosphorus (P) availabil-
ity and also improved the reaction to nitrogen (N) and NP fertilizer applications.

Soil moisture, nutrient matrix and various yield traits such as grains ear−1 and 
grain output of corn is predominantly affected by biochar amendments in soil 
(Marshall et al. 2019). Various yield components contributes to the overall Grain 
yield. Application of biochar increased the grain and their overall weight level and 
seed pod−1 (Arif et al. 2015). Soil application with biochar amendments enhances 
yield and all yield related parameters of legume crops (Mikan and Abrams 1995), 
explaining the optimum influence of biochar is to provide more nutrient to the soil 
(Hafiz et al. 2018; Tariq et al. 2018; Fahad and Bano 2012; Fahad et al. 2013, 2014a, 
b, 2015a, b, 2016a, b, c, d, 2017, 2018a, b, 2019a, b, 2020, 2021a, b, c, d, e, f, 2022a, 
b; Hesham and Fahad 2020. Iqra et al. 2020; Akbar et al. 2020; Mahar et al. 2020; 
Noor et al. 2020; Bayram et al. 2020; Amanullah 2017, 2018a, b).

Biotic activity of nitrogen fixing organisms improves with application of biochar 
thus effecting crop total biomass (Joseph et  al. 2010). Nutrient leaching rate 
decreases with providing of Biochar into the soil which enhances the nutrient 
cycling and therefore creates a positive influence on crop yield and quality. Biochar 
has the capability to maintain and make available bio-available nutrients for growth 
of plant uptake in the root zone. For instance, plant can readily utilize the potassium 
found within biochar composition (Elmer et al. 2010). Biochar creates a varying 
effect on soil pH and other related chemical properties, depending on the nutrient 
source and growing situation (Joseph et al. 2010). Moreover, many type of microbes 
including fungi, nematodes and acidobacteria i.e. mycorrhizae are higher in popula-
tion in soils amended with biochar (Woolf et al. 2008).

Soil type classified as “Problem Soil”, possessing organic properties such as 
poor combined stability, high salinity, excessive pH levels (very high or very low) 
or deficient in nutrients (Paul et al. 2018; Amanullah et al. 2020, 2021; Rashid et al. 
2020; Arif et al. 2020; Amir et al. 2020; Saman et al. 2020; Muhammad Tahir et al. 
2020; Md Jakirand Allah 2020; Mahmood et al. 2021; Farah et al. 2020; Sadam 
et al. 2020; Unsar et al. 2020; Fazli et al. 2020; Md. Enamul et al. 2020; Gopakumar 
et al. 2020; Zia-ur-Rehman 2020; Ayman et al. 2020; Mohammad I. Al-Wabel et al. 
2020a, b). This may be successfully rectified and reclaimed by using biochar as an 
active remedial agent alone or mixed with other organic amendments (Sohi et al. 
2010a, b). Sustainable health of soils may rectify with adequate use of biochar 
(Spokas et al. 2010).

Several studies had reported multiple ways through which biochar can improve 
the overall soil health and growing condition (Zhang et  al. 2018). For instance, 
enhanced microbial population diversity throughout the soil volume can immensely 
increase soil fertility and nutrient levels (Ayaz et al. 2021). The protection provided 
by biochar pores allows microbial populations to multiply and propagates as well 
increase the nitrogen fixation rate for plant uptake (Paul et al. 2018; Zhang et al. 
2020). This phenomena is beneficial for crops mainly non-legumes crop that are not 
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capable to fix their individual nitrogen. In context to plant-soil feeding relationship, 
it is quite evident and interesting that potassium found in biochar composition is 
already present in form that is readily available for plat uptake (Senol 2020; Amjad 
et al. 2020; Ibrar et al. 2020; Sajid et al. 2020; Muhammad et al. 2021; Sidra et al. 
2021; Zahir et al. 2021; Sahrish et al. 2022). Also, Biochar is essentially beneficial 
for crops where nitrogen fixation phenomena is limited or absent (Heitkötter 
et al. 2015).

Moreover, the amount of carbon in soil enhances and for the short term mini-
mized the pH level in soils, while soils with alkaline activities tends to be most posi-
tive for normally grown cash crops such as maize (Dempster et al. 2012). Addition 
of biochar can improve different soil properties (Haque et al. 2021). While analyze 
the soil physicochemical characteristic, it was recorded that the application of bio-
char had improved nitrogen levels as compare toward only fertilizer treatments 
(1.16% vs. 0.15% soil nitrogen).increasing of biomass up to 9–18%, it was observed 
that there were high levels of nitrogen within biomass leaves. Utlizing carbon in its 
solid form also allows soil to improve its nutrient availability and retention (Haque 
et al. 2021). Type of soil which are subjected to natural weathering due to any pos-
sible reason can’t retain the nutrients and mineral available in the soil and thus 
recorded with low Cation Exchange Capacity (CEC) (Haque et al. 2021). It also has 
positive relationship of increasing water holding capacity but on surface bonding 
that occurs with enhanced CEC adds to the nutrient maintenance (Haque et al. 2021).

Furthermore, biochar also hold the capability to openly provide nutrients for 
plant uptake. For instance, the potassium avaliable in biochar obtained from its cre-
ative feed stock is mainly bring into being in forms readily existing for plant uptake 
(Ameloot et al. 2013). Like illustrated in the Fig. 3.1, the rise and fall of soil pH 
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after biochar amendments totally depend on the nature, source and characteristics of 
biochar (Zheng et al. 2013). Generally, bio-chars mixtures formulated from the agri-
cultural residues are likely to be extra alkaline and thus cooperate to enhance soil 
pH (Borchard et al. 2014; Glaser et al. 2002). Agri- prone biochar compositions 
have maximum amount of the ash which gives maximum salts quantity to twist 
more alkaline (Ameloot et  al. 2013). Contrary, biochars compositions sourced 
mainly animal waste product, including bovine manure or chicken litter, are pre-
dominantly acidic due to the chemical property they supply to the biochar compos-
ite (Yuan et al. 2011).

3.2.1  Biochar as a Soil Amendment

Soil improvement and development is an essential for better quality crop production 
in most part of the world (Sajjad et al. 2021a, b; Rehana et al. 2021; Yang et al. 
2022; Ahmad et al. 2022; Shah et al. 2022; Muhammad et al. 2022; Wiqar et al. 
2022; Farhat et al. 2022; Niaz et al. 2022; Ihsan et al. 2022; Chao et al. 2022, Qin 
et al. 2022; Xue et al. 2022; Ali et al. 2022; Mehmood et al. 2022; El Sabagh et al. 
2022; Ibad et al. 2022). Scarcity of basic food elements leading towards meal secu-
rity is substantially high in sub-Saharan Africa and South Asian regions, recorded 
for 32% and 22% malnutrition rates in the overall population, respectively (Keske 
et al. 2020; Deepranjan et al. 2021; Haider et al. 2021; Huang Li et al. 2021; Ikram 
et  al. 2021; Jabborova et  al. 2021; Khadim et  al. 2021a, b; Manzer et  al. 2021; 
Muzammal et al. 2021; Abdul et al. 2021a, b; Ashfaq et al. 2021; Amjad et al. 2021; 
Atif et al. 2021; Athar et al. 2021; Adnan et al. 2018a, b, 2019; Akram et al. 2018a, 
b; Aziz et al. 2017a, b; Chang et al. 2021; Chen et al. 2021; Emre et al. 2021). Even 
though, the world predominantly work and managed to reduce the malnutrition and 
famine situation in many countries during the years 1990–1992 and 2001–2003, but 
countries in Africa, Asia and Latin America are facing this mimic humanitarian 
disaster.

The historical initiative-“Green Revolution” took by Nobel Laureate Norman 
Borlaug in 1940s at the International Centre for Maize and Wheat Improvement 
(CIMMYT), Mexico results in remarkable increase in all sorts of agricultural pro-
duce in Asia and Latin American regions. All these advancement in productivity 
accounts for efficient and improve agricultural practices as well as use of modern 
technology, including better quality crop varieties, effectual irrigation system and 
adequate fertilizer and pesticides inputs (Habib et al. 2017; Hafiz et al. 2016, 2019; 
Ghulam et al. 2021; Guofu et al. 2021; Hafeez et al. 2021; Khan et al. 2021; Kamaran 
et al. 2017; Muhmmad et al. 2019; Safi et al. 2021; Sajjad et al. 2019; Saud et al. 
2013, 2014, 2016, 2017, 2020, 2022a, b; Shah et al. 2013; Qamar et al. 2017; Hamza 
et al. 2021).

Concept of sustainable soil management and manipulation is presently urged in 
various applicable forms to implement a ‘Doubly inexperienced Revolution’ com-
prising different available conservation technologies (Al-Zahrani et al. 2022; Rajesh 
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et al. 2022; Anam et al. 2021; Deepranjan et al. 2021; Haider et al. 2021; Amjad 
et al. 2021; Sajjad et al. 2021a, b; Fakhre et al. 2021; Khatun et al. 2021; Ibrar et al. 
2021; Bukhari et al. 2021; Haoliang et al. 2022; Sana et al. 2022; Abid et al. 2021; 
Zaman et al. 2021).

In present day, biochar provides range of opportunities to transform the basic 
concept of green revolution into a well-developed sustainable agricultural environ-
ment. High economical returns even after use of expensive inputs such as fertilizers 
are closely linked with adequate level of soil organic health and fertility, which can 
be sustainably maintained by using biochar amendments (Kammann et al. 2016). 
Biochar is predominantly produced in absence of oxygen via heating of biomass 
from various sources. Application of biochar can amend physical and chemical 
properties interacting with soil microbial population, soil matrix and plant root zone 
interaction with soil (Lehmann et al. 2009). The level of interaction and amend-
ments depicted in a soil types is variable depending on biochar composition nature 
of biomass, biochar preparation procedure, biochar physical factors and soil envi-
ronmental properties including soil temperature and moisture’s.

Biochar provides immense advantages to any kind of soil, basically working as a 
soil conditioner refining its physical and organic properties along with enhancement 
in water conservation capacity and soil nutrient retention (Sohi et  al. 2010a, b). 
Addition of biochar to a soil type depends on various soil properties such as soil 
ability to produce high quality product, soil nutrient retention, water holding capac-
ity, permanent carbon sequestration, low release of GHG emissions especially 
nitrous oxide (N2O) and methane (CH4) (Kammen et al. 2005; Bracmort et al. 2010; 
Steiner et al. 2010).

Farmers could be prompted to use biochar on their farms if these blessings can 
be verified explicitly. In common agricultural practices, the level of carbon degree 
naturally available in soil can determine the normal regulation of agro-ecosystem 
and impact the soil fertility and its physical properties majorly soil mixture balance, 
cation alternate potential and water holding ability (Milne et al. 2007). Ability of 
soil to provide soil vitamins and nutrients in cation form can be enhanced with bio-
char application which will ultimately improve plant growth and development. 
Numerous research studies provide evidences for significant potential of biochar to 
enhance soil pH levels, decrease lower aluminum toxicity, decline soil tensile capac-
ity, improve the soil conditions for earthworm population and improved efficient 
fertilizer utility.

Furthermore, several research findings depicts that biochar application and utility 
can enhance the soil physical properties and grain yield of upland (Oryza sativa L.) 
in region of northern Laos (Spokas et al. 2009). Incorporation biochar can enhance 
the saturated hydraulic conductivity of upper soil layers and xylem sap glide in rice 
plant. Predominant soil amendments in form of soil pH improvement, natural carbon 
and exchangeable cation levels as well as considerable decline in tensile energy 
(>50  t/ha) can closely linked with biochar utility in different soil types. Biochars 
improves the cation exchange capability (CEC) for various spoil types especially in 
case of highly weathered and low nutrient sandy soil, depends on the level of already 
availability biochar residues and sources f biochar composition.
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Application of biochar can also provide various environmental services such as 
stepped forward soil shape, enhanced microbial pastime and nutrient cycling reten-
tion of soil moisture (Sohi et al. 2010a, b). Another significant effect of biochar also 
well-documented, elaborating the lime effect of biochar often linked with the 
improved cop yield in tropical acidic soil. Furthermore, application of biochar to 
alkaline soil But, the addition of biochar to the alkaline soil showed no significant 
improvement in soil pH and nodultion levels in soil, which is mostly inhibited with 
use of low soil pH. Though the initial transient flush of labile compounds to the 
rhizosphere region subsequently followed by use of biochar can improve the nutri-
ent cycling. The yield of legume crops grown in a nutrient poor alkaline soil are 
observed to get enhance in the second season of the specific crop, suggesting that 
longer-term advantages of biochar application can improve the crop growth as com-
pare to the primary season. All these applications into the soil for better plant growth 
and development makes biochar a unique efficient substance, keeping the exchange-
able and consequently plant available nutrients in the soil, and supplying the possi-
bility of enhancing crop yields at the same time as reducing environmental pollution 
via vitamins. Overall, biochar application can be used a modern day concept for 
improving the soil fertility and higher cop productivity, with environment efficient 
approach (Ogawa et al. 2009) (Table 3.2).

Furthermore, Black carbon may affect the retention of nutrients and play an 
important role in extensive range of biogeochemical approaches within the soil, 
especially for cycling of nutrients (Spokas et al. 2009). Investigated the impact of 
rate and kind of biochar made from poultry litter under distinctive conditions on the 
soil exceptional parameters. It was observed that addition of Biochar to the various 
potting soils resulted in vast special modifications in the chemical and physical 
properties of soil, inclusive of increase in pH, C, N, and P. It was concluded that 
specific outcomes of the two Biochars (Produced at 450 °C and 550 °C, respec-
tively) could be associated with their exclusive traits. Drastically, unique modifica-
tions in soil biology including microbial biomass and earthworm desire residences 
were recorded within the two Biochars.

Table 3.2 Effect of biochar on soil properties

Constituent Consequence Reference

Cation exchange capacity (CEC) Increase 50% Glaser et al. (2002)
Fertilizer use efficiency Enhance 10–30%
Liming agent Enhance pH 0.5–1
Soil moisture retention Increase up to 20%
Crop productivity Increase 20–120%
Emission of methane Enhance 80–100%
Emission of nitrous oxide Decrease 40–50%
Bulk density Depend on soil
Biological nitrogen fixation Increase 30–40%
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3.3  Conclusion

The problem of depletion of agricultural land is due to the pressure caused by the 
constantly growing population and therefore requires the sustainable exercise of 
cultivation. It has been suggested that biochar be used as a method to clean up con-
taminated agricultural soils and improve soil fertility. Additionally, adding biochar 
to the soil can be one of the best practices to triumph over any biotic stresses in the 
soil and increase crop productivity. Biochar’s high-quality means in soil-plant-water 
interactions resulted in higher photosynthetic yield and higher nitrogen and water 
use efficiency. Subsequently, from this comprehensive overview, it could be con-
cluded that biochar has the ability to enhance microbial population and its activities, 
improve soil habitats, organic nitrogen fixation and plant growth. Therefore, it is 
recommended to use biochar as a soil amendment for long-term carbon sink healing.
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Chapter 4
Biochar Application to Soil to Improve 
Fertility

Sadia Zafar, Inam Mehdi Khan, Muhammad Muddasar, Rehman Iqbal, 
Tasmia Bashir, Asim Shahzad, Sana Bashir, and Anis Ali Shah

Abstract Biochar application to soils improves fertility by facilitating the uptable 
of essential nutrients by plants. Biochar is carbon-rich and is produced by pyrolysis. 
Different types of biochar are obtained depending on the raw material and on the 
process. Biochar improves plant growth at low concentration but induces toxic 
effects at high concentration. Here we will review the application of biochar to soil 
for plants for improving soil fertility. Biochar allows to minimize the negative effect 
of climate change. Biochar improves the water holding capacity. Biochar coupled 
with arbuscular mycorrhizal fungi stimulates the plant length by enhancing the 
root system.

Keywords Biochar · Climate · Plants · Roots · Nutrients

4.1  Introduction

Biochar is a very important stable compound that have carbon item in larger con-
centration that is produced via pyrolysis, which is thermal degeneration of various 
organic sources under limited O2 circumstances (Harter et al. 2014). Plant waste 
material or biomass is passed by a process which is known as pyrolysis, in which 
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material is heated in anaerobic condition to form biochar. Its production and reten-
tion into soil is unique methods for creating a long term CO2 sink with low chance 
of environmental return (Lehmann et al. 2005a). It has greater water holding ability, 
anion and cation conversion capacity, and assimilation by functional groups which 
is present on surface (Basso et al. 2013). It has long been known for its ability to 
boost growth of the plant by storing greater amount of water (Hien et al. 2021), 
providing greater nutrients as well as advantageous for microbial activity (Nielsen 
et al. 2014). It also has the potential to decrease the nitrogen waste concentration 
from the soil by decreasing the process of volatilization and leaching (Kamali et al. 
2022). Charcoal was originally used as a fuel by humans in Southern Europeand 
Middle East around 5500  years ago, according to archaeological findings (Elad 
et al. 2011).

Biochar significantly increased the microbial colonies in the soil by arbuscular 
mycorrhizal fungi (AMF), which improved structure, biochar affect accessibility of 
nutrient for plants in soil (Sohi et al. 2010) as well as water holding in growth media 
(Atkinson et al. 2010). Arbuscular mycorrhizal fungi action is boosted by biochar 
(Mickan et al. 2016), most likely through altering the physical as well as chemical 
properties of growth medium, facilitating germination of spore and hyphal branch-
ing due to growth and elongation (Hammer et al. 2015). Biochar (9% of the con-
tainer content) improved morphology of root system of plants grown on media in 
combination with arbuscular mycorrhizal fungi, while arbuscular mycorrhizal fungi 
had a favorable influence on the morphology of this plants grown on same media. 
These findings clearly display the impact of biochar in the substrate in conjunction 
with arbuscular mycorrhizal fungi in hydroponically growing plant (Gujre et  al. 
2021; Luo et al. 2017).

Nitrogen cycle of microbes and their activities in soil also improved by the addi-
tion of biochar (Cayuela et al. 2014: Harter et al. 2014; Van Zwieten et al. 2010b, c, 
2014). Soil nitrate reduction, for an example, is the progressive reduction of nitrite 
to N2 by microorganisms via transitional nitrous oxide (N2O) and nitric oxide (NO) 
via the soil denitrification process (Harter et al. 2014). Environmental elements like 
as soil pH, humidity and temperature, O2 availability, and N2 delivery influence the 
process (Harter et al. 2014).

Biochar composition may be altered by alteration in the process like lowering 
soil bulk density, enhancing structure of soil, boosting water holding capacity of soil 
particles, and lowering nitrogen leaching (Lehmann et al. 2011; Van Zwieten et al. 
2010c). Biochar has also been presented as a conceivable strategy to reduce nitrous 
oxide emission, which lowers N-loss from soils by minimizing N2O emissions 
(Harter et al. 2016; Cayuela et al. 2014; Wang et al. 2011).

Biochar rectification lowers Nitrogen level that resulted into fertilizer deficiency 
and enhances usage of fertilizers (Laird et al. 2010). Greater biochar quantity boost 
plant biomass output at smaller nitrogen application rates (Van Zwieten et al. 2010a; 
Laird et al. 2010). Backer et al. (2017) discovered that adding softwood chips bio-
char to sandy loam soils boosted maize root development and root metabolic activ-
ity, and that adding biochar made by olive trees or straw of wheat to soil that 
enhanced the proliferation of wheat root (Olmo et al. 2016). The use of acacia bark 
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biochar boosted maize root biomass by 88–92% (Yamato et al. 2006). During criti-
cal plant growth phases, biochar increases the soil’s nitrogen content, and the 
changes it causes to the root system’s physiology and architecture enable better 
nitrogen uptake and fertiliser recovery (Backer et al. 2017). For the purpose of esti-
mating root longevity and recognising the root’s active biomass that can absorb 
nutrients and water, root function is essential (Rewald and Meinen 2013). The activ-
ity of an enzyme called nitrate reductase in the root is a crucial sign of nitrogen 
uptake and assimilation by plant roots (Taghavi and Babalar 2007).

4.2  Effects of Biochar

Biochar helps the plants to resist against harsh climatic conditions. Charcoal was 
widely used as a metallurgical fuel by the time the Bronze age, began in the Britian 
around 4000 years ago. However, charcoal was used for more than only fuel in the 
past. “After all waste has been charred, concentrated excrements should be mixed in 
and stored for a while.” “This manure is effective for yielding any crop when applied 
to the fields” (Elad et al. 2011).

In agriculture and horticulture fields of North America and Europea, Charcoal 
was frequently utilized throughout the nineteenth and early twentieth centuries, 
according to agronomy literature. Seeds germination and early development of the 
plants increases 4–10 times, when seeds were treated with charcoal dust. Charcoal 
is strewn across the ground, absorbing and condensing the nourishing gases inside 
its pores to a volume 20–80 times its own bulk. It controls diseases like mildew and 
rust in several cereal crops as well as mitigate the damage they cause in all cases, 
even if it doesn’t completely prevent it. A charcoal dressing has been demonstrated 
to be an effective prophylactic of rust in many circumstances, and it has proven to 
be so useful in France that it is commonly employed for the wheat harvest there 
(Zimmerman 2010).

Charcoal’s use in agriculture declined dramatically over the twentieth century, 
owing to its greater importance as a fuel and the advent of advance inorganic fertil-
izers as well as in insect control technologies. However, there has been notable 
upsurge of interest in agriculture use of charcoal since the beginning of the twenty- 
first century for following four interrelated reasons:

 (i) Pyrolysis, the method for producing charcoal, produces renewable energy 
products. Pyrolysis is expected to be part of a growing arsenal of low-price 
renewable energy technologies targeted at lowering emissions of net green-
house gas from fossil fuel combustion and diversifying energy sources.

 (ii) Pyrolysis can be used to treat and transform a variety of organic wastes into 
energy. Pyrolysis is more adaptable than biodiesel and ethanol generation from 
crop, and it couldn’t meet resources with food production. Pyrolysis can be 
used to treat a broad range of municipal, agricultural, and forestry biomass 
wastes and residues.

4 Biochar Application to Soil to Improve Fertility
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 (iii) When it is used in conjunction with fertilizers (organic and inorganic) for 
increasing the soil fertility that charcoal application ultimately improve soil 
and plant structure (Glaser et al. 2002). Thus, charcoal application it has greater 
utilization as agrochemicals for increasing he plant growth and development 
(Steiner et al. 2007, 2008b), charcoal application can aid in production of fuel 
and production of conservable food, limited organic resources and inadequate 
water and supply of chemical fertilizers.

 (iv) Biochar halflife on soil might vary depending on feedstock and pyrolysis con-
ditions (Zimmerman 2010). As a result, carbon is stored in soil and depleted 
from the atmosphere (Lehmann 2007). Furthermore, biochar addition even in 
small concentration in the soil system minimize greenhouse gas emission from 
agricultural soil, with nitrous oxide emission reduced by up to 80% and meth-
ane emissions completely suppressed (Yanai et al. 2007; Rondon et al. 2007; 
Lehmann et al. 2006). When considered as part of a four part “charcoal vision” 
that includes generation of renewable energy, waste treatment, improvement of 
soil fertility (Laird 2008).

4.3  Status of Biochar

Current agricultural practises underutilize biochar, and it is unknown whether this 
has any positive effects on crops or the health of the soil from an agronomic stand-
point. The significant heterogeneity in biochar features as a function or raw material 
and pyrolysis circumstances, notably pyrolysis highest treatment temperature, are 
among the many impediments to biochar application in modern agriculture (HTT). 
Biochars made at low temperatures (<500 °C) have significantly different properties 
than biochars made at high temperature (>550  °C). These qualities can have an 
impact on biochar’s potential as a soil improvement in unknown ways, as well assist 
environmental stability, which affect it long lasting sinks utility (El-Naggar 
et al. 2019).

4.4  Biochar Effect on Plant Growth

Soil amendment with the biochar typically has good impact on crops and trees pro-
duced under greenhouse and agricultural circumstances, according to various 
sources. Early research found that adding charcoal to the soil enhanced production 
of soybean, moong, and pea. The biomass of birch and pine shoots and roots was 
higher in soil treated with charcoal (Wardle et al. 1998). Similarly, biomass output 
of sugi trees (Cryptomeria japonica) was significantly boosted 5 years after soil 
application of biochar (charcoal) (Kishimoto and Sugiura 1985; El-Naggar et al. 
2019) (Table 4.1).
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Table 4.1 Potential of biochar to boost plant productivity. (Elad et al. 2011)

Plant Quantity of biochar
Increase 
in Yield References

Maize 20 tha−1 28–140% Major et al. (2010)
Bean 90 gkg−1 50–72% Rondon et al. (2007)
Durum wheat 30 and 60 tha−1 30% Vaccari et al. (2011)
Barley 10 tha−1 45% Agegnehu et al. (2016)
Soyabean 20 tha−1 7% Liu et al. (2017)
Peanut 20 tha−1 7% Liu et al. (2017)
Maize 20 tha−1 6% Liu et al. (2017)
Bean 50 tha−1 53% Raboin et al. (2016)
Sorghum 15 tha−1 14% Laghari et al. (2015)
Wheat 0.1 tha−1 40% Joseph et al. (2015)
Wheat 30 tha−1 28% Vaccari et al. (2011)
Wheat 60 tha−1 30% Vaccari et al. (2011)
Cucumber 6.75 tha−1 55% Jaiswal et al. (2014)
Tomato 67.5 tha−1 20% Akhtar et al. (2014)
Rapeseed 2.5 tha−1 22% Liu et al. (2014)
Grape 8 tha−1 2% Schmidt et al. (2014)
Moong 0.5 tha−1 22% Glaser et al. (2002)
Raddish 100 tha−1 266% Chan et al. (2007)
Maize 15 tha−1 150% Uzoma et al. (2011)
Rice 30 tha−1 294% Noguera et al. (2010)
Maize 20 tha−1 28% Major et al. (2010)

Plants which are inoculated with AMF produced greater number of roots and had 
increased root biomass. A cascade of molecular signaling is triggered during the 
relation between the fungus and the host, including a thinner roots are produced by 
diffusible factor of AMF (chitooligo saccharides) (Ol’ah et al. 2005). AMF changes 
root structure to increase nutrient and water availability (Wu et al. 2010). As a result, 
these findings help in the establishment of long-term nutritional management, 
reducing the demand for phosphate fertilizers. Because this interaction boosts the 
root system’s function, joining biochar with AMFin the growth media which is 
another source for strawberry growing on substrate. The root systems of plants 
grown with 9% biochar application and inoculated with C. etunicatum, a fungus, are 
more extensive (Wu et al. 2010).

The process of crops by which biochar increases crop responsiveness include 
direct benefits from biochar-supplied nutrients (Silber et al. 2010) as well as a num-
ber of indirect effects, such as: improvement in the retention of nutrients (Chan 
et al. 2007, 2008; Chan and Xu 2009); soil pH (Yamato et al. 2006; Steiner et al. 
2007; Novak et al. 2009); soil cation exchange capacity (Cheng et al. 2006) trans-
formations in phosphorous and sulphur (Pietikainen et al. 2000; Deluca et al. 2009); 
neutralization of soil phytotoxic compound (Wardle et al. 1998); soil physical prop-
erties comprising water retention (Ballestero and Douglas 1996; Glaser et al. 2002); 
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growth of mycorrhizal fungi (Wamock et  al. 2007); and alternation of microbial 
population and functions in soil (Steiner et al. 2008a; Kolton et al. 2011). Biochar 
improve soil composition, soil chemistry, and soil condition all have an impact on 
the agronomic benefits of biochar. Furthermore, different biomass pyrolysis condi-
tions produce biochar with variable physical and chemical characteristics, resulting 
in different plant responses (Keiluweit et al. 2010).

The elements that genuinely contribute to the “Biochar Effect” are difficult to 
separate given the interaction of the biochar, soil, plants, water, and environment. In 
order to reduce the number of potential influences, Graber et al. (2010) explained 
that removing the nutritional and soil physical components of biochar may have an 
impact on plant growth. This was done by examining how nutrient-poor, wood- 
derived biochar affected the growth of Capsicum annuum and Solanum lycopersi-
cum in a coconut. For both tomato and pepper plants, it was discovered that biochar 
treatment (1–5% w:w) boosted a number of plant development metrics (length, leaf 
area, canopy). The advantages of biochar on Capsicum annuum and Solanum lyco-
persicum plant response were not linked to direct or indirect impacts on plant nutri-
tion, nor were they related to increases in the soilless mixture’s capacity to hold 
water (no difference due to biochar addition). As a result, higher plant nutrition and 
improved soil’s physical and chemical properties are advantages of biochar-induced 
plant growth stimulation. It offered two related ideas to explain why plants perform 
better after being treated with biochar:

 (i) Low doses of biochar-borne chemicals, at high concentration there use is phy-
totoxic, at low doses stimulated plant growth

 (ii) At different concentration of biochar improve the plant growth and yield, at low 
concentration it was most effective and at high doses it was phytotoxic.

4.5  Biochar Production

Pyrolysis, which entail heating a biomass raw material under managed conditions to 
create burnable synthesis gas and the oil that may be burned to give heat, electricity, 
or both electricity and heat, are used in modern industrial bioenergy systems. The 
carbon-rich residue of pyrolysis is biochar, the third combustible product. It is pos-
sible to optimize the energy release and biochar creation balance. It’s essentially a 
‘combustion’ process that can be stopped once any preferred ratio of these defined 
products has been gained. This ratio then can be optimized to meet shifting goals. 
Whereas per unit mass energy yield is maximized by simple burning of a fuel, 
pyrolysis syngas provides a substantially higher energy yield per unit of carbon 
release when optimized for biochar. If composite biochar into soil can dependably 
achieve the numerous environmental benefits, the carbon equivalent savings from 
biomass conversion by pyrolysis can be boosted even further, compared to energy 
production alone. According to Gaunt and Lehmann (2008)’s calculations, applying 
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Fig. 4.1 Different types of raw material and procedure for biochar synthesis and its utilization

biochar to this land area once every 10 years result in a carbon dioxide equivalent 
gain of 0.65 GtC per year (Fig. 4.1).

Pyrolysis necessitates the usage of starting energy, similar to how heat in flames 
utilized to start the combustion of raw material in direct combustion. However, the 
proportional requirements must be carefully examined, as well as any differences in 
feedstock transportation and drying energy requirements between pyrolysis and 
alternative bioenergy methods. The advantage of pyrolysis-derived bioenergy over 
other options in terms of gas emissions that contribute to ozone depletion results not 
only from the retention of up to 50% of the carbon from the raw materials in the 
biochar but also from indirect preservation from the use of biochar in agriculture, 
particularly the soil (Gaunt and Lehmann 2008).

Well established methods for the biofuels and syngas production are Biomass 
pyrolysis and gasification. Commercial use of biochar byproducts as soil applica-
tion, on the other hand, is still in its infancy. For soil use, in Japan around 15,000 ton 
year−1 is traded annually which has the huge market for such items (Okimori et al. 
2003). Biochar is typically gasified to extract residual energy or utilized in the man-
ufacturing of high-value goods like carbon (Demirbas et al. 2006). The pyrolysis 
process has large influence on biochar properties and potential use to agriculture. 
The procedure and approach, in particular the furnace’s temperature and residence 
duration, are essential. However, the nature of the outcome depends on how the 
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Table 4.2 Production of different compounds during process of pyrolysis (Sohi et al. 2009)

Process
Liquid 
(bio-oil)

Solid 
(biochar)

Gas 
(syngass)

FAST PYROLYSIS (Moderate temperature (~ 500 °C) 
short hot vapor residence time (<2 s))

75% (25% 
water)

12% 13%

INTERMEDIATE PYROLYSIS low moderate 
temperature moderate hot vapor residence time

50% (50% 
water)

25% 25%

SLOW PYROLYSIS low moderate temperature long 
vapor residence time

30% (70% 
water)

35% 35%

GASIFICATION high temperature (>800 °C) long 
vapor residence time

5% tar (5% 
water)

10% 85%

process and the manner of the process interact with the kind of feedstock (Demirbas 
et al. 2006).

The physical, biological, and chemical properties of biochar products are greatly 
influenced by these factors, which restricts the applications that may be made of 
them. Each pyrolysis process type is identified by a particular biochar, syngas, or 
bio oil (Table 4.2). Although the precise ratio of these products varies from plant to 
plant and can be optimised at a particular installation, it is important to keep in mind 
that increasing biochar productivity in relation to initial feedstock mass always 
comes at the expense of liquid or gaseous energy (Demirbas 2006). Although an 
approach of mitigation of greenhouse gas may favour increasing biochar output 
(Gaunt and Lehmann 2008), the final balances determined by market and engineer-
ing restrictions. In a broad analysis, the economic cost of maximizing carbon reten-
tion in biochar utilising slow pyrolysis has been contrasted to the net gain possible 
in equivalent CO2 emissions from the product after accounting for the extra fossil 
carbon offset that can be obtained through full use of the feedstock (Gaunt and 
Lehmann 2008). The net carbon gain from fossil fuels is 2–19 tons of CO2 ha−1 year, 
2–5 times larger than that obtained from biomass burning techniques. The CO2 off-
set of these additional savings should be large enough to cover the remaining USD 
$47 ton−1 energy value in biochar (Gaunt and Lehmann 2008).

4.6  Physical and Chemical Characterization

For a quality assessment of agronomically utilized biochar. Kuwagaki and Tamura 
(1990) advocated measuring seven properties: pH, volatile chemical concentration, 
ash content, bulk density, pore volume, water holding capacity and specific surface 
area. The chemical and physical properties of biochar are largely determined by the 
feed stock. Table 4.3 compares the elemental makeup of a variety of bio oil and 
biochar products derived from diverse feed stocks.

In general, the yield of biochar is inversely related to its carbon content. When 
the pyrolysis temperature was raised from 300 to 800 °C, the generation of biochar 
decreased from 67% to 26%, but the carbon content increased from 56% to 93% 
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Table 4.3 The elemental composition of biochar products (Demirbas et al. 2006)

Product
Elemental composition (%)

HHVa (MJ/Kg)C H N O

Beech-trunk bark biochar 87.9 2.9 0.6 10.6 33.2
Beech-trunk bark bio-oil 68.8 8.9 0.8 21.5 34.6
Rapeseed cake biochar 66.6 2.5 6.1 24.3 30.7
Rapeseed cake bio-oil 73.9 10.8 4.7 10.6 36.5
Wood bark biochar 85.0 2.8 – 12.2 30.8
Wood bark bio-oil 64.0 7.6 – 28.4 31.0
Cotton stalk biochar 72.2 1.2 – 26.6 21.4
Cotton stalk bio-oil 59.7 7.8 1.8 30.6 26.0
Bio-char from hazelnut shell 95.6 1.3 – 3.1 32.0
Sunflower bio-oil 72.1 9.8 5.2 12.9 36.2

aHHV HIGHER HEATING VALUE

Table 4.4 Bagasse-derived biochar’s properties (Ueno et al. 2007)

Parameter or property Biochar Feedback

Present temperature (°C) 500 600 700 800
Average temperature (°C) 490 690 740 830
Specific surface area (m2/g) Nd 270 322 273 Nd
EC (mSm−1) 7.78 7.15 6.95 7.83 Nd
pH 7.46 7.59 7.68 7.89 Nd
TN (%) 0.58 0.45 0.32 0.44 0.19
TC (%) 70.5 71.0 65.2 73.9 46.1
Minerals (mg 100 g−1) 3361 4601 5359 4363 841

Nd Not Determined

(Tanaka 1963). The mass of biochar may fall beyond a certain threshold without 
affecting the quantity of carbon stored inside it; never the less, as mass is decrease, 
the biochar ash content increases. Between 300 and 800 °C, the fraction of ash in 
biochar grew from 0.67% to 1.26% in one research (Kuwagaki and Tamura 1990).

The processing temperature and pyrolysis residence time can still have a big 
impact on the composition of molecules for making final pyrolysis products for a 
given feedstock (Ueno et al. 2007). Table 4.4 displays the impact of temperature on 
the chemical makeup of biochar generated from sugarcane bagasse. This modifica-
tion caused the biochar pH to alter from 7.6 (least alkali) at 310 °C to 9.7 (alkali pH) 
at 850 °C (Kuwagaki and Tamura 1990).

It is impossible to avoid differences in the physical and chemical characteristics 
of biochar. The physical structure of biochar is extensively described using scanning 
electron microscopy (SEM), and the architecture of cellulose plant material is 
prominently preserved (Fig. 4.2). It has been suggested that the porous structure of 
biochar may account for its influence on soil water retention and adsorption capac-
ity (Ogawa et al. 2006; Yu et al. 2006).
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Fig. 4.2 A picture of biochar created at 400 °C using pelletized peanut shell was taken using a 
scanning electron microscope. (Day et al. 2005)

The process temperature has a significant impact on the surface area of the pyrol-
ysis products. In one study, surface area improved from 120 m2 g−1 at 400 °C to 
460 m2 g−1 at 900 °C. Given this effect of temperature, it has been proposed that 
biochar produced at low temperatures is effective for controlling the release of fer-
tiliser nutrients and that biochar produced at high temperatures would be better 
suited for use as activated carbon. On the other hand, low-temperature biochar sur-
faces are hydrophobic, which may lessen the soil’s ability to retain water. The type 
of feedstock and the pyrolysis outcome have an impact on how biochar is used. The 
ratio of total surface area that is initially exposed depends on the biochar’s particle 
size. Low temperature biochar, on the other hand, is prone to grind into fine frac-
tions once absorbed, despite being stronger than high temperature products. As a 
result, this parameter may not have a significant impact on surface area, i.e. weath-
ered biochar, in the long run (Ogawa et al. 2006).

Biochar belongs to a group of compounds known as “black carbon” (Schmidt 
et al. 2001). Using techniques that have been used to define this larger category of 
materials, which includes charcoal, char, and soot from plant fires, biochar can be 
found in soil, sediments, and the air. (Lehmann et al. 2005b; Baldock and Smernik 
2002) Wildfire naturally transforms soil into biochar, which is supposed to act as a 
distinct carbon storage in the ground (Krull et al. 2003). There are limitations of 
number of analytical techniques when applied to soil for the physical separation of 
char from other soil organic matter have been addressed in research to quantify and 
character of this material. The mineral matrix’s influence, especially its interactions 
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with highly stable soil organic matter, which chemically appears similar to char, is 
a significant problem. This problem has been solved by using high-energy ultra 
violet light for oxidation, which oxidizes most non-charcarbon (Smernik et al. 2000; 
Smernik and Oades 2000).

Chemical oxidation with hydro fluoric acid to remove mineral interferences and 
thermal oxidation to remove lignin have also been utilized (Simpson and Hatcher 
2004). Biochar collaborates with the environment in a variety of ways. A few exam-
ples are soil carbon sequestration, greenhouse gas (GHG) emissions from the bio-
char value chain, variations in surface albedo from applying biochar to agricultural 
soils, and very soon. These problems are intricate and situational. For more details 
on the controlling variables and the size of the effect, go to this section’s presenta-
tion of the elements and how they interact. By capturing and storing atmospheric 
carbon in refractory form, biochar works to slow down global warming. However, 
the combined effects of increased soil organic carbon (SOC) stability and biomass 
yield after biochar application may also increase soil carbon in agroecosystems. The 
gathering and transportation of biomass waste uses energy and emits greenhouse 
gases (Collins et al. 2013). Black carbon is a significant warming aerosol, and pro-
spective field emissions need to be carefully analyzed. During pyrolysis, black car-
bon and particulate matter can also be released, especially in low-technology 
conversion processes (Cornelissen et al. 2016; Bond et al. 2013) (Fig. 4.3).

Fig. 4.3 Climate effects of biochar in cultivated (left) and follow (right) fields. Biochar has the 
following effect on the variable when compared to a control group that did not use biochar: (+) 
grew, ( ) shrank, (=) remained the same, (?) There is a scarcity of evidence on which to base a judg-
ment. (Sohi et al. 2009)
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4.6.1  Soil Organic Carbon

By supplying recalcitrant carbon, biochar directly benefits soil organic carbon. 
Additionally, soil carbon stability indirectly benefits soil organic carbon. Some car-
bon from biochar may be leached from soil so carried by the wind (Sohi et al. 2009).

4.6.2  Soil Inorganic Carbon

Although scientific information on biochar’s influence on Soil Inorganic Carbon 
(SIC) is currently scarce, a pilot investigation reveals that biochar enhances SIC 
stock in both conditions; directly and indirectly (Sohi et al. 2009).

4.6.3  Albedo

Biochar tends to darkens oils, lowering albedo on the surface. The existence of a 
vegetative canopy or snow cover, on the other hand, can mitigate these impacts. Soil 
emissions are affected by the gas, the biochar characteristics, and the soil conditions 
(Sohi et al. 2009).

4.6.4  Water Retention

More water can be utilised for transpiration and evaporation during sowing thanks 
to biochar’s improved soil water retention and plant water availability (Sohi 
et al. 2009).

4.6.5  Evapotranspiration

Biochar has conflicting influence on evapotranspiration under cultivation, depend-
ing on soilcon addition and climate, e.g., precipitation level and evapotranspiration 
energy constraint, and can boost or reduce plant water usage efficiency. Biochar 
reduces evaporation when left fallow, although further research is needed (Sohi 
et al. 2009).
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4.6.6  Net Primary Productivity

Depending on the soil, biochar has varying effects on net primary productivity; 
higher net primary productivity have the ability to fix more carbon in plants, 
increases residues left on the field and root, and increases in root exudates, all of 
which may contribute to higher soil organic carbon (Sohi et al. 2009).

4.6.7  Black Carbon

Microparticles of black carbon can be transported with the help of wind during 
biochar application and tilling operations.

Climate is also influenced by the Earth’s surface (Bonan 2015). Biochar reduces 
albedo, it enhances absorption of short wave, allowing greater solar energy to reach 
the surface. The warming benefit of biochar is expected to be reduced by 13–30% 
due to changes in soil albedo following application (Bozzi et al. 2015). The effect of 
albedo on climate is determined by the amount of incoming radiation (Bright et al. 
2016). At higher latitudes, decreased soil albedo will have a less warming effect, 
while biochar’s effects on soil moisture and aerosol may have an impact on cloud 
formation and the quantity of radiation that reaches the soil. The potential transport 
and deposition of black carbon from biochar will likely reduce ice albedo in cold 
climes and snowy conditions, and biochar-amended snow-free areas may possibly 
speed up the rate at which snow melts on the field. The surface temperature will be 
controlled by managing the ratio of sensible, latent, and ground heat fluxes. This 
will happen because biochar reduces soil albedo, alters soil water availability, and 
alters the actual features of soil. Genesio et  al. (2012) observed fluctuations in 
albedo in an Italian wheat field and forecasted the balance of surface energy. 
According to the researchers, biochar increases all energy fluxes on a seasonal and 
early scale and raises soil temperatures during the bare soil regime (Genesio et al. 
2012). Drought can be alleviated by increasing soil moisture. It also helps to reduce 
heat waves by increasing total potential of evapotranspiration, which has cooling 
impact. Finally, soil moisture is inversely proportional to precipitation. Using bio-
char to boost soil particles’ ability to hold water may allow plants to adapt to climate 
change in a novel way (Seneviratne et al. 2010).

4.7  Uses of Biochar

Biochar isknown toenhance soil physical and chemical qualities, such as enhancing 
soilfertility and production, when used as soil supplements. Soil fertility should be 
monitered and understand before the application of biochar, which can be determine 
by examining application methods and rates, as well as checking the benefits of 
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using them as agricultural amendments. Many recent research have focused on the 
broader effects of biochar, such as potential for mitigation of global climatechange. 
Other advantages of supplementing soils with biochars include reducing pollutant 
levels in soils, reducing nitrous oxide and methane emissions, and minimising nutri-
ent leakage into groundwater (Zama et al. 2018).

4.8  Influences of Biochar on Agriculture

The potential and features of biochar depending upon material and processing tech-
nique used during its production as well as on the soil type. Biochars store fertiliser 
and beneficial nutrients and release over time to agronomic crops. Agriculture ben-
efits from biochar’s capacity to keep water and essencial nutrients in the soil layers 
for greater durations by reducing the loss of nutrients discharge from root zone of 
crops, significantly enhancing crop yeild, and lowering fertilizer need. As a result, 
utilising biochars in production agriculture should increase yields while reducing 
degrading environmental impacts. For the sake of clarity, a difference should be 
established between biochars and composts. Biochars differ from composts fre-
quently used in agricultural soils in that compost provides nutrients directly through 
the decomposition of organic components (Schnell et  al. 2012; Arif et  al. 2020; 
Ashfaq et al. 2021; Athar et al. 2021; Atif et al. 2021; Hesham and Fahad 2020; Ibad 
et al. 2022; Irfan et al. 2021; Khadim et al. 2021a, b; Muhammad et al. 2022; Rashid 
et al. 2020; Subhan et al. 2020; Wiqar et al. 2022; Zafar et al. 2020; Fahad et al. 
2020, 2021a, b, c, d, e, f).

Biochars, on the other hand, do not disintegrate over time, therefore no extra 
applications should be required. According to a recent biochar papers by Spokas 
et al. (2012) while biochar application result in good effects in agricultural produc-
tion, some instances biochar cannot improve the yield of crop or sometimes it sig-
nificantly reduc the crop yield (Lentz and Ippolito 2012; Schnell et al. 2012). Low 
yields have been reported, which could be due to limited release of nutrient uptake 
by plants, application of biochar even in very small quantity on fertrile soil has also 
greater impact. High yields reported in some biochar applications are difficult to 
explain, however they may be influenced by biochar characteristics, soil fertility, 
and the agronomic crop in question. The majority of current biochar research has 
been done on extremely worn and infertile soils, where the benefits of biochar appli-
cation have been frequently observed. Researchers at UF/IFAS are working on the 
effects of biochar on low-fertility sandy soils in Florida, as well as potential increases 
in crop development and output (Ippolito et al. 2012).
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4.9  Impact of Biochar on the Respiration Rate 
of Plants Roots

Biochar application resulted in greater important for root surface area, root length, 
and root volume in comparision of control group. Around 80 kg−1 biochar treatment 
increased root surface, root length, and root volume by 57%, 58%, and 63%, respec-
tively, compared to the control. Little effect of biochar was seen on root diameter. In 
the biochar treatments, the rate of root respiration was much higher than in the 
control. With applications of 0, 5, 20, and 80 kg of biochar, the root respiration sig-
nificantly enhanced, reaching 745, 863, 960, and 1239  nmol O2 min−1 g−1 FW, 
respectively.

Because biochar had a stronger effect on roots than on above ground plant com-
ponents, the root and shoot ratio rose in the 80  kg−1 biochar treatment. Biochar 
treatment enhanced maize root length mass and density considerably in another 
investigation. Biochar boosted the root length, surface area, volum and root dry 
weight. These effect could be attributed to increased concentration of carbon after 
biochar addition phenolic chemicals by biochar, lessening their negative impact on 
the growth of root (Brennan et al. 2014). The process of respiration by root is a 
crucial part of root metabolism, as it helps with nutrient intake, root regeneration, 
and boots the the plants growth. Natural agricultural waste like manure, straw, com-
post and seaweed have greater concentration of carbon as well as macronutrients 
and micronutrients. When these organic waste is used as a charcoal feedstock, the 
availability of macronutrients like N, K, and P, as well as some micronutrients like 
Mn, Ca, and others, may be affected. As a result, nutrients in biochar may driveroot 
growth of plant while also improving respiration in root (Atkinson et al. 2010).

4.10  Conclusion

Biochar improve the plant growth and yield by using its different concentration. It 
improves the soil composition by increasing the nutrients in the swoil that boots the 
plant helth. It increase the soil fertilitity that improves the soil composition as well 
as significantly increase the microbiota in the rhizospheric soil. These microbes 
have potential to convert the nutrients into avialable form. Most of the bacteria fixes 
the nitrogen and in the way abdundant nitrogen reached to the plants. All these fac-
tors increases the plant improves the efficiency of the photosynthesis that gives the 
plant strength and improves yields. So, all types of agricultural wastes should be 
processed and produced different types of biochar that not only increase the soil 
fertility but also helps to improve/extend root system of plant. Moreover, biochar 
help plants to cope with changing the climatic conditions by increasing strength 
of plants.
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Chapter 5
Biochar as Soil Amendment for Mitigating 
Nutrients Stress in Crops

Muhammad Adnan, Mushtaq Ahmad Khan, Abdul Basir, Shah Fahad, 
Jamal Nasar, Imran, Saif Alharbi, Adel M. Ghoneim, Guang-Hui Yu, 
Muhammad Hamzha Saleem, Shakeel Ahmad, Khadim Dawar, Iqbal Munir, 
Ayman El Sabagh, Abdel Rahman Mohammad Said Al-Tawaha, 
Taufiq Nawaz, Shah Saud, Shah Hassan, and Seema Zubair

Abstract Global food security is threatened by decreasing soil fertility and climate 
change. Moreover, soil erosion and salinity are depleting mineral nutrients through 
leaching, precipitation, and complexation and gas emissions. This issue can be 
solved by the addition of biochar, which improves soil fertility, crop productivity 
and carbon sequestration in soils. Biochar has a high sorption capacity which mini-
mizes nutrient leaching in groundwater and surface water, and thus promotes the 
timely release of nutrients to crop plants. Biochar also increases the nutrient stocks 
in the root zone, which improves nutrients uptake. Biochar reduces greenhouse gas 
emissions by improving soil quality. This chapter details the role of biochar in miti-
gating nutrients stress, sequestering carbon and improving crop yield.
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5.1  Introduction

Among major challenges, poor soil fertility is one of the key problems around the 
globe which is directly linked to low productivity (FAO 2011). Soils in arid region 
are often characterized by poor physical properties, water scarcity, low organic mat-
ter and nutrients deficiency for plants (Khalifa and Yousef 2015; Ullah et al. 2022). 
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Similarly, tropical climates of the world also face such types of problems for prac-
ticing sustainable agriculture. Because, the major plant nutrients are washed out 
from the root zone due to extreme weather such as high rainfall and temperature and 
presence of decomposers which results in improved soil organic matter mineraliza-
tion (Bruun et al. 2015). Moreover, the decline in soil organic matter have undesir-
able affects soil fertility by affecting physico-chemical properties of the soil (Annabi 
et al. 2011), and ultimately threaten soil productivity (Lal 2015).

During 1960s (Era of Green Revolution), the application of sole mineral fertil-
izer was the main cause of increasing food production (Bationo and Waswa 2011). 
Though, sole application of mineral fertilizer is not the most appropriate remedy 
(Usman et al. 2015; Saleem et al. 2021). Therefore, the world needs sustainable and 
economical soil amendments. Biochar is a carbon rich material produced by the 
pyrolysis of organic solids (Lehmann et  al. 2006). Its application might recover 
degraded and poor fertile soil and ultimately improve crop productivity. Improving 
soil quality through application of organic soil amendments is the key objective of 
this chapter, having specific emphasis on biochar.

5.2  Biochar Versus Other Organic Amendments

In nature the stability in carbon cycle is sustained by the production/evolution of 
CO2 from the breakdown of the organic materials such as plant debris, which is a 
much quicker process (Wang et al. 2016). Therefore, the primary purpose of the 
introduction of wood biochar technology decreases the flow of carbon, deter the 
rapid degradation of plant materials, and store carbon in biochar, which is highly 
more stable compared to any other form of organic matter and strongly resilient to 
degradation (Beesley et al. 2011). Wood biochar reduces the return of CO2 from soil 
to air and store carbon in a long-term soil carbon pool.

Higher probabilities of adopting biochar are observed in countries having huge 
farming, agricultural or forestry industries that generate greater quantity of waste 
materials for feedstock (Khan et  al. 2020). Furthermore, El-Naggar et  al. (2019) 
found that the influence of wood biochar on soil properties as well as on crop produc-
tion is mainly determined by the feed stock used in production of wood biochar and 
temperature during pyrolysis. Moreover wood biochar of similar nature might have a 
different effect on both Alkaline and acidic soil (Peake et al. 2014; Mian et al. 2021).

The most differentiating property of biochar is its stable nature when compared 
to other organic materials (Beesley et al. 2011). Organic materials have a compara-
tively short life in the soil however wood biochar is highly stable (Hansen et al. 
2016). Once practiced wood biochar has life span of 100–1000s of years in soil 
(Duku et  al. 2011; Mehmood et  al. 2021) which is much greater than any other 
organic substance. Lehmann and Joseph (2015) described that the total life of wood 
biochar in soil is ten to thousand times greater than other organic materials; there-
fore the addition of wood biochar to soil is a possible sink for carbon. Furthermore, 
stability of the wood biochar can be set by the particular feed stocks (materials used 
for production of biochar), the type of soil used and pyrolysis temperature.
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5.3  Biochar Effects on Soil Properties

In general, various agricultural benefits has been recorded for biochar due to its uses 
as a soil amendment, these benefits mainly consists of high soil sorption capacity, 
minimizes nutrient leaching with groundwater or loss with surface water, and a slow 
nutrients release to crop plants (Salim 2016; Mensah and Frimpong 2018). It 
increases the nutrient stocks in the rooting zone, hence increased nutrients uptake 
and improve crop yield (Muhammad et al. 2017; Khan et al. 2022). The presence of 
plant nutrients in the biochar and its greater specific area, high porosity and its abil-
ity to create a favorable environment for microorganisms are the key causes for the 
enhancement in soil properties and improve plants nutrients uptake in soil amended 
with biochar (Nigussie et al. 2012).

Application of biochar is important and valuable because it cleans the polluted 
soils through adsorption and immobilization (Deng et al. 2017). In addition to the 
above biochar has also the ability to absorb pesticides contamination from the soils 
and subsequently decrease the overwhelming effect on the local environment 
(Rawat et al. 2019). To counter the conceivably of inaccessible nirogen, it has been 
discovered that utilization of biochar alongside nitrogen fertilizer can have benefi-
cial outcomes, thus improve the effectiveness of mineral nitrogen fertilizer by 
decreasing the use of inorganic fertilizers and hence the cost as well (Sarfraz et al. 
2017; Khalid et al. 2019).

It has been demonstrated previously that biochar application modifies the nitro-
gen dynamics in the soil (Lim et al. 2018) and decomposition of biochar in soil can 
prompt nitrogen immobilization in soil (Singh et al. 2010). Typically biochar has 
higher adsorption ability for nitrate and ammonium (Fidel et al. 2018), thus enhances 
the amount of ammonium-nitrogen in the soil (Clough and Condron 2010). Hence 
induces higher nitrogen uptake in plants (Cao et al. 2019). Reports are available that 
biochar application without nitrogen fertilizer does not improve crop yield; how-
ever, application of biochar at different levels 10, 50 and 100 t ha−1 and nitrogen at 
100 kg ha−1 enhances yield as a result of enhancing use efficiency of nitrogen of 
crop plants (Ding et al. 2010).

Frequent and consistent applications of biochar to soil are not needed since bio-
char is not warranted as a fertilizer (Lehmann and Joseph, 2009; Fahad et al. 2020). 
Enhanced soil fertility status through wood biochar application is a renowned fact 
though the response of crop to biochar addition mainly depends on the type of mate-
rials used for preparation of biochar, its production process, soil properties and the 
nutritional composition of biochar (Schulz et al. 2013) (Fig. 5.1).

Chemical properties of the soil like such as electrical conductivity, pH, Soil 
nitrogen, phosphorus and potassium and physical properties like soil bulk density, 
soil structure, water holding capacity and pore spaces of the soil are greatly respon-
sive to addition of wood biochar into agricultural soils. As a result adequate avail-
ability of water to crops is enhanced and soil erosion is reduced (Steiner et al. 2007). 
Furthermore biochar enhances/improves biological properties of the soil as well, 
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Fig. 5.1 Impact of biochar addition on different soil properties. The above figure showed sum-
mary about modifications in soil physical, chemical and biological properties in response of bio-
char application. CEC, WHC and SOM stands for cation exchange capacity, water holding capacity 
and soil organic matter respectively. (Modified and reprinted with permission from Murtaza 
et al. 2021)

which results in better growth of the crop plants that ultimately leads to improved 
crop productivity (Habtegebrial et al. 2007; Dawar et al. 2021).

The soil physical properties depend upon the interactive effect of the biochar 
with the physico-chemical properties of the soil. In contrast to the findings of 
Lehman (2007) wood biochar responses positively in acidic soils, and Van et al. 
(2010) who observed increased pH due to biochar, reduced micronutrient concen-
tration in soil, which ultimately reduced crop growth and yield. Mohammad and 
Alamgir (2013) expressed a persuading impact regarding wood biochar on produc-
tivity of maize in alkaline soils. Biochar made from the waste of the pine forest was 
utilized to assess plant growth using two levels 2 and 4% wt/wt amended with alka-
line, loamy sand soil. Similarly, Major (2010) also observed that incorporation of 
wood biochar results in reduce or high soil pH depends upon on the kind of feed 
stocks used to make biochar and also on the soil type.

After the addition of biochar, decomposition of the small organic molecules by 
the action of microbes get stared which liberate CO2, organic acids and release ini-
tial ammonia content that cause reduction in soil pH, furthermore this reduction in 
pH might be different due to the nature of the applied wood biochar. While the rise 
in pH, might be due to the bacterial hydrolysis of protein that liberate NH4+. The 
bulk density of wood biochar is considerably lesser when compared to soil bulk 
density; therefore incorporation of wood biochar decreases the soil bulk density 
(Ulyett et al. 2014). Substantial improvement in bulk density is possible in certain 
situations. At the point when the soil pores space is not absolutely filled by the bio-
char particles, it will bring about decline of the soil bulk density. Otherwise; wood 
biochar incorporation might improve soil bulk density if the applied biochar disin-
tegrates rapidly into little particles and occupy the soil pores (Verheijen et al. 2010; 
Arif et al. 2021).

Khan et al. (2013) revealed considerable reduction in soil bulk density through 
the addition of wood biochar. Furthermore incorporation of wood biochar declined 
the soil bulk density and enhanced the soil water content both under field as well as 
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pot moisture capacity conditions (Artiola et al. 2012). Chan et al. (2008) described 
that application of biochar decrease the threat of soil compaction through reduction 
in tensile strength. The incorporation of wood biochar decreases soil total nitrogen 
after 1st year of its application whereas no or significant effect were noted on soil 
total nitrogen content after 2nd years of field trial (Arif et al. 2012).

Generally alone application of wood biochar promote nitrogen immobilization in 
the soil (Gao and Deluca 2016) thus, causes deficiency of nitrogen in plants and 
decrease crop yield primarily because of higher C:N ratios (Lehman and Joseph, 
2009). Incorporation of organic materials having higher C:N ratios (>20) results in 
immobilization of nitrogen (through microbes) and change inorganic nitrogen to 
organic form (Kizewski et al. 2019). When both wood biochar and mineral fertilizer 
particularly nitrogenous, are applied to soil in integrated form than the process of 
mineralization dominant over immobilization. Hence, soil nitrogen content is 
enhanced. Though, the exact quantity of easily biodegradable organic substances 
present in biochar is not the single choice for microorganisms to encourage immo-
bilization of the available nitrogen.

Ameloot et  al. (2015) are of the opinion that biochar can potentially enhance 
nitrogen mineralization by sorting organic molecule from the soil solution when 
applied to the field. Likewise, Oladele et al. (2019) revealed that the use efficiency 
of nitrogenous fertilizer possibly be improved if the soil is amended with a certain 
quantity of wood biochar. Various woods biochar may positively alter soil biology 
due to their potential to increase the microbial biomass with considerable changes 
in microbial community composition (Lehmann et al. 2011; Amanullah et al. 2022). 
Wood biochar as soil amendments results in improved colonization of mycorrhizal 
fungi (Solaiman et al. 2011). The enhanced biological nitrogen fixation potential by 
legumes was observed following biochar application (Mia et al. 2014).

Similarly, Wu et al. (2016) observed an improved production of soil total nitro-
gen content through application of wood biochar. Sohi et al. (2009) indicated that 
cation exchange capacity is the capability of the soil to store and release cations of 
essential nutrients in a form which is easily available to plants and to decrease loses 
due to leaching. Biochar improve soil fertility and the concentration of the cation in 
soil when treated with soil. In case of high leaching situations, anthrosols amended 
with biochar has a greater ability to adsorb and retain greater cations (Lima and 
Marshall 2005), thus considerably increases the availability of all major cations 
(Topoliantz et al. 2005).

Glasaer et al. believe that the formation of carboxyl groups could be the main 
reason for greater cation exchange capacity of the soil amended with biochar. 
Zornoza et  al. (2016) observed improved cation exchange capacity in biochar 
applied soil might be clarified by the presence of several chemical functional groups 
that render the biochar as an active chemical exchange surface. Nigussie et  al. 
(2012) stated that the inherent cation exchange capacity of wood biochar is steadily 
greater than that of soil and soil organic matter.

The cation exchange capacity of biochar is greatly variable which mostly depends 
upon the pyrolysis conditions. Cation exchange capacity is lower at low pyrolysis 
temperatures and considerably higher when produced under high temperatures 
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(Lehmann 2007). Newly made biochar have minimum potential to hold cations in 
soil causing lower cation exchange capacity (Cheng et al. 2008; Amanullah et al. 
2021), but considerably increase with the passage of time in soil with surface oxida-
tion (Cheng et al. 2006). However, Mukherjee and Zimmerman quoted that fresh 
biochar had more power to release reasonable amounts of nitrogen and phosphorus.

5.4  Biochar for Carbon Sequestration

Soil carbon sequestration is the capture of air CO2 into the soil carbon pool through 
addition of plant and animal residues. Decreasing soil fertility of cultivated lands 
due to running down of soil organic carbon content is a serious issue for the farming 
community. Soil organic carbon being the foundation stone to soil quality and key 
indicator of agricultural sustainability (Lal 2004). Restoring soil carbon is signifi-
cant for food security, ecosystem functioning, and environmental health, particu-
larly in light of global climate change (Majumder et  al. 2019). There are many 
recommended management practices which under suitable environments improve 
soil organic carbon sequestration. One among these management practices is the 
addition of organic material into the soil that is moderately resistant to microbial 
decomposition such as biochar (Lal 2016).

Biochar amendment to soil have been suggested as a means of reducing green-
house gas emission and abating climate change by improving soil quality, protect-
ing natural resource and sequestering carbon into the soil (Zheng et al. 2010; Fidel 
et  al. 2019), so the burden of additional atmospheric CO2 will be diminished 
(Lehmann et al. 2006). Biochar in soil not only leads to a net carbon sequestration 
and mitigation of atmospheric CO2 emission, but as a one potential strategy to 
reduce the release of other gases like N2O and CH4 (Harter et al. 2014).

In order to achieve the purpose of carbon sequestration under different climates 
first we need to address the farming community to grow the appropriate crop plants 
as they are being used to make biochar hence the first phase of CO2 sequestration 
and with the help of biochar is exclusively be determined by photosynthesis in 
plants. It is generally revealed that the overall plant biomass produced through the 
process of photosynthesis can release their carbon quickly due to fast decomposi-
tion. The decomposition of plant biomass contrary to the biochar process plays a 
crucial role in climate change as it releases the heap of carbon into the atmosphere 
which is fixed by the plant through photosynthesis.

However, unlike decomposition when the same biomass is converted to biochar, it 
decomposes gradually (Lehmann 2007). Secondly, the biochar is highly stable when 
compared with original plant biomass. Since the stability level of biochar is the key 
parameter that can generally be achieved through the process of pyrolysis and can be 
used to assess its carbon sequestration potential. Furthermore, the pyrolysis process 
has significant consequences on the stability of biochar. Because during the process of 
pyrolysis most of the cellulose and lignin are completely destroyed and the appearance 
of aromatic structures in the biochar leads to a significant change in the composition.
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To gauge the carbon sequestration potential and measure the amount of atmo-
spheric CO2 carbon sequestrated through biochar several methods have been docu-
mented. These methods are considered to be a preliminary estimate of the large-scale 
potential of biochar sequestration and subsequently its benefit in the form of greater 
crop productivity (Laird 2008); however these methods need must be refined against 
economic as well as ecological constraints and extended to a complete carbon emis-
sion balance. Furthermore, the overall balance of carbon emission must be com-
pared with a baseline scenario and simultaneously it must be shown that what 
emission of carbon has been reduced by changing of the product from plant material 
that utilizes biochar.

We therefore need more studies that clearly demonstrate the potential of carbon 
sequestration with biochar. Many studies have found that the earth’s soil is stored 
about 4 times higher organic carbon when compared to atmospheric CO2 (Stockmann 
et al. 2013; Ahmad et al. 2022a, b). Likewise, the annual CO2 absorbed by the plants 
during photosynthesis is about eight times higher as compared to today’s anthropo-
genic emissions of CO2 into the atmosphere. Therefore, there is strong evidence that 
a substantial quantity of CO2 flow between the plants and atmosphere while soil is 
one of the best source where most of the organic carbon is already stored.

Thus, if we are trying to transfer a small fraction of this massive quantity of 
cycling carbon into the soil through biochar. It will have a large impact on the con-
centrations of atmospheric CO2 but on the other hand it will have a small impact on 
the global soil carbon storage. It was previously projected/estimated that by divert-
ing almost 1% of the annual net plant uptake into biochar perhaps it may reduce 
nearly 10% of current anthropogenic carbon emissions into the atmosphere (Laird 
2008). The biochar stability define that how long carbon remains sequestered in the 
soil in the form. The conversion of plant biomass to biochar through pyrolysis and 
its application to the soil has been shown to increase the life of carbon in the soil 
compared to the same organic materials application (Nachenius et al. 2013).

The encouraging effect of carbon sequestration through addition of biochar can 
be better observed in soils having lower amount of carbon compared to soils having 
higher amount of carbon. Research data revealed that the selection of appropriate 
biochar technology can address the emerging challenges of agricultural sector and 
improve environmental quality (Yadav et al. 2017).

5.5  Biochar Role in Nitrogen Availability

Nitrogen is one among the essential macro nutrients which decreased wheat yield if 
not supplied in appropriate quantity as it is required for vigorous growth of the 
plants and ultimately for higher production (Grant et al. 2016). It play significant 
role in all the metabolic processes occurring in plants (Bloom 2015; Ahmad et al. 
2022a, b). All the biochemical processes going in plants are mostly governed by 
nitrogen and its related compounds which make it crucial for the growth and 
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development of wheat (Khan et al. 2015). Thus, it is compulsory to apply nitrogen 
fertilizer to the soil in order to get maximum wheat yield (Ahmad et al. 2008). The 
varieties which have greater genetic yield potential needs high amount of nitrogen 
to produce higher production (Emam 2011).

In order to get the higher wheat yield, application of nitrogen in sufficient quan-
tity is measured as an important key to success (Fageria 2014). Use of inorganic 
nitrogen at 120 kg enhanced wheat yield and yield attributes while non-significant 
influence on soil carbon, phosphorus and potassium concentration (Ali et al. 2015b). 
Among the essential nutrients, nitrogen plays a vital role in sustaining vegetative 
growth of the crop (Kibe et al. 2006). Visually high stature plants and more grains 
ear−1 of maize was obtained from plots where only mineral nitrogen was used (Arif 
et  al. 2012). Ullah et  al. (2018) observed highest fertile tillers, maximum plant 
height, 1000 grain weight and biological yield where nitrogen was applied at 
203 kg ha−1.

Improved physiological parameters such as plant height, leaf area plant, leaf 
number at 120 kg nitrogen ha−1 (Ayub et al. 2003). Increasing nitrogen rates (up to 
69 kg ha−1) on durum wheat had improved yield, yield components, nitrogen uptake 
parameters and protein content (Woyema et  al. 2012). Similarly maximum plant 
height, more grains spike−1, single spike grain and thousand grain weight, more 
biological and grain yield were produce by nitrogen and P2O5 by 120 and 90 kg ha−1 
(Khan et al. 2007). Patra and Ray (2018) listed that plant height, leaf area index, 
crop growth rate, number of tillers, grain yield and biological yield and all other 
yield attributes except 1000 grain weight were considerably improved with increase 
the nitrogen level up to 150 kg.

More tillers m−2, maximum plant height, spike’s length, yield and its components 
of wheat were considerably improved by increasing the levels of nitrogen from 0, 80, 
130 & 180 kg ha−1 over control (Ali et al. 2011). Furthermore, application of 120 kg 
nitrogen produced greater tiller m−2 which further improves productivity of wheat 
(Shahzad et al. 2013). Iqbal et al. (2012) attained considerably maximum plant height, 
grain yield, biological yield and harvest index at 125 kg nitrogen when compared to 
control. Higher dose of nitrogen improved grain yield of wheat by 30% (Dang et al. 
2006). Kousar et  al. (2015) observed that 120 and 150  kg nitrogen considerably 
enhanced fertile tillers, plant height, spike length, number of spikelet per spike, num-
ber of grains per spike, 1000 grain weight, grain yield per plot and grain yield of wheat.

Shere et al. had noticed maximum days to anthesis, maturity, leaf area tiller−1, 
leaf area index, plant height and biological yield by 150 kg nitrogen. Ullah et al. 
(2013) experienced considerable improvement in wheat phenology, growth and 
physiological attributes when nitrogen was applied by 210 kg. Ali et al. (2015b) also 
observed delayed booting, anthesis and maturity stage in wheat plots treated with 
120 kg nitrogen. Similarly application of 100 kg nitrogen improves grain protein 
content (Maqsood et al. 2000). Moreover, Ali et al. (2015a) observed higher wheat 
leaf nitrogen content, stem nitrogen content, grain nitrogen content, grain protein 
content, grain nitrogen uptake, total nitrogen uptake in those plots where nitrogen 
was treated by 120 kg (Fig. 5.2).
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Fig 5.2 Biochar-mediated nitrogen cycle. Summary about nitrogen cycle in response of biochar 
application showed that the application of biochar reduced NO3

− leaching by 26%. However, bio-
char could temporarily increase volatilization of nitrogen by 19% as NH3, which will be ultimately 
deposited into the soil. Similarly application of biochar has been shown to improve nitrogen uptake 
by 11%. N stands for nitrogen. (Modified and reprinted with permission from Liu et al. 2018)

5.6  Biochar and Phosphorus Availability

Phosphorus is major plant nutrient which is required for crop growth and yield. 
Many soils around the globe are facing phosphorus deficiency, particularly in both 
tropical and subtropical areas due to both high rainfall and phosphorus fixation 
(Blake et al. 2000). To fulfill plant phosphorus requirements, globally about 15 mil-
lion tons of phosphorus based fertilizer is applied every year (Wang et al. 2012). 
Under best condition only 5–30% of the applied fertilizer phosphorus is utilize by 
crop (Price 2006). The remaining quantity of the applied phosphorus is lost due 
to runoff.
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At present, most of the phosphorus fertilizer is obtained from mined rock 
phosphate, which is a non-renewable resource. Streubel et al. (2012) predicted 
that the availability of rock phosphate may be reduced because of the ever 
increasing demand of phosphorus on global basis. Therefore, we need to dis-
cover new strategies on urgent basis which can provide phosphorus in plants 
available forms, which can be used as alternate source to traditional phosphorus 
fertilizer and further minimizes the loss of phosphorus from the soil. Many 
studies around the world have now shown that biochar can be utilized as phos-
phorus source for soils and reasonable amount of this phosphorus is available 
for plant use. However, the type of feedstock used and pyrolysis conditions of 
biochar are the key parameters which determine the amount of phosphorus in 
biochar.

Siebers and Leinweber (2013) stated that phosphorus in biochar prepared from 
animal bone was 152 and extractable phosphorus was almost 7 g kg−1. Uzoma et al. 
(2011) described that Olsen- phosphorus was 23 g kg−1 in wood biochar prepared at 
500 °C, while the amount of Olsen- phosphorus was found 1.2 g kg−1 when biochar 
was made from the same material at 300 °C. Naeem et al. (2014) noticed that raising 
temperature during pyrolysis (300–500 °C), the amount of phosphorus in biochar 
did volatilize. This is because of the loss of hydrogen and oxygen ions. The use of 
biochar in acidic soil, the released phosphorus is easily available for plants uptake. 
Yao et al. (2013) stated that biochar can retain phosphorus applied as fertilizer in 
soil. Though, data regarding retention of phosphorus in soil due to biochar applica-
tion is limited.

5.7  Biochar and Micronutrients Availability

Micronutrients are important for plant growth and play crucial role in balanced crop 
nutrition. The availability of micronutrients is mainly determined by soil pH. The 
concentration of micronutrients declines with raising soil pH except molybdenum. 
In high alkaline soil the availability of zinc, iron and boron, is of great concern. 
During the pyrolysis process not all micronutrients are volatilized until 1000  °C 
temperature. Amonette and Joseph (2009) found that iron and manganese are mainly 
retained in biochar during biochar preparation.

Naeem et  al. (2014) observed that raising pyrolysis temperature upto 500  °C 
increase the total micronutrient contents of biochar. At different temperatures, total 
zinc were 46 to 68 mg kg−1 and 66 to 96 mg kg−1 in wheat and rice straw biochar 
respectively. While Fe were 156 to 419 mg kg−1, and 193 to 517 mg kg−1 respec-
tively. However, manganese was 104 and 393 mg kg−1 for biochar prepared from the 
above sources. Except manganese, plant available micronutrients contents e.g. iron 
and zinc decline in both wheat and rice straw biochar with raising temperature. 
Gaskin et al. (2008) prepared biochar from poultry manure, peanut hull and pine 
chips at 400 and 500 °C.
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Maximum zinc, copper, manganese and iron contents of 0.75, 1.03, 0.73 and 
8.03 g kg−1 were found in case of poultry litter biochar produced at 500 °C when 
compared to biochar made from the same feedstock’s at 400 or 500 °C. It must be 
worth noted that the nutrient concentration change from feedstock to feedstock. 
Moreover the pyrolysis conditions also alter the plant available concentration of 
micronutrients. Biochar has also the ability to hold nutrients like those have positive 
charges on it. Moreover, biochar having high pH may decline the concentration of 
micronutrients in the soil. Care must be exercise to select those Biochar having 
acidic or neutral pH. Greater nutrient concentration is desirable characteristic of 
biochar but greater concentration of basic cations may cause several issues, like 
high pH and high electrical conductivity of produced biochar. To keep soil quality 
good, we have to select suitable biochar feedstocks and pyrolysis conditions.

5.8  Conclusion

Poor soil fertility is the major constrains in ensuring food security around the globe. 
Biochar contributes to soil fertility either by acting as a direct nutrient source or by 
altering the physiochemical properties in the soil. Biochar not only improves soil 
fertility and crop productivity but also promotes soil carbon sequestration. It has 
high soil sorption and cation exchange capacity thus minimizes nutrient losses with 
surface/ground water, and promotes timely nutrients release to crop plants. It also 
increases the nutrient stocks in the root zone, hence increased nutrients uptake and 
improve crop yield. Therefore, biochar shall be applied as soil conditioner to 
improve soil health and crop yield by mitigate nutrients deficiency.
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Chapter 6
Biochar to Mitigate Crop Exposure to Soil 
Compaction Stress

Anis Ali Shah, Munazza Kiran, Sadia Zafar, and Muhammad Iftikhar

Abstract Soil compaction stress is a major obstacle in improving soil health and 
performance, calling for advanced agricultural practices such as biochar amend-
ment. Biochar contains organic and mineral substances, which are useful for growth 
and yield of crops. Application of biochar enhances soil properties such as water 
holding capacity and soil organic content. Here we review biochar supplementation 
with focus on the improvement of plant growth and physiology of plants exposed to 
soil compaction stress, and to biotic and abiotic stress. Moreover, application of soil 
fungi and microbes reduce the negative effects of soil compaction on plants by 
improving soil physiochemical characteristics.

Keywords Biochar, soil · Compaction · Plants · Abiotic stresses

6.1  Introduction

The term “char” means a product which is made up of natural and inorganic sub-
stances. Both charcoal and biochar are considered same but can be differentiated on 
the basis of their usage. Charcoal is used as energy source and biochar is utilized for 
the carbon chemical processes and environmental benefits. Biochar, also named as 
‘pyrochar,’ which is the product of biomass passed through a chemical reaction 
named pyrolysis (Ralebitso-Senior and Orr 2016). According to International 
Biochar Initiative (IBI 2015), the thermochemical transformation of biomass in an 
environment having less concentration of oxygen produces a solid material called 
biochar. Biochar isn’t always a natural carbon as it consists of nitrogen, sulfur, 
hydrogen, oxygen and ash (Lehmann et  al. 2003). Amazon area which has 
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‘terra- preta’ (black earth) a highly fertile soil with biochar component and is used 
for the enhancement of soil fertility.

Specifically, biochar is a product of biomass including manure, wooden and crop 
residues at a temperature below the 900 °C beneath oxygen-limited pyrolytic condi-
tions (Zhang et al. 2019). Nevertheless, current researchers have reported that bio-
char can also be made with the aid of different thermochemical methods e.g., 
hydrothermal, gasification, carbonization, microwave assisted transformation and 
torrefaction (Yuan et al. 2017). The chemical and physical components additionally 
rely upon different factors which include warming rate, kiln strain, the mixture of 
the atmosphere (CO2 and nitrogen surroundings within kiln) and the kind of set up 
or pre-management of biochar (Joseph and Taylor 2014).

6.2  Types of Biochar

Joseph and Taylor (2014) consider three major groups of biochar.

 1. Biochar constructed from biomass with minimum ash contented material 
(<3–5%), which include plant material, few seeds, bamboo, nut shells and mass 
of leaves. This biochar has huge porosity, base section and preserve greater water 
than the biochar in other groups.

 2. Biochar as a product of various biomasses having normal quantity of ash smug 
range from 5% to 13% which also include the maximum amount of bark, agri-
cultural wastes and enormous amount of green waste with less infection of plas-
tics, soil and metals.

 3. Biochar as a product of biomass with full ash contents (>13%), which exclude 
waste paper, municipal waste, manures, sludges and rice husks.

Biomass including waste water sludge, grasses, crop waste, manures, agricultural 
waste converts at high range of temperature in minimal amount of oxygen called 
pyrolysis. It has higher energy dispersion bio-oil and comparatively low-capacity 
tightness gasoline (non-compressible) which provides excessive energy compactness 
to strong biochar (Kapoor et al. 2022). The extensive chain polymers alongside lignin, 
starch, hemicellulose, cellulose fat, obliterate down and exchanged over into gases 
(e.g., carbon dioxide, carbon mono oxide, methane and hydrogen) all through the 
transformation response. Biochar is produced through aromatization of compressible 
gasses which are gained from the liquid fuel and various hydrocarbon compounds.

6.3  Biochar Types Based on Pyrolysis

Khan et al. (2016) reported predominant types of biochar as following:

 1. Slow pyrolysis is a batch reactor or a relentless framework that gradually warms 
the biomass to more than 350  °C.  It is almost broadly utilized pyrolysis plot 
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owing to simplicity and this pyrolyzer yields around 35% fuel, 35% biochar and 
30% bio-oil by mass. Charcoal furnace is less controlled in which slow pyrolysis 
framework is included. Detachment of gases and bio oil is incredible in this 
framework. Hence, the biochar production in slow pyrolysis can change among 
25–60% (El-Naggar et al. 2019).

 2. Flash pyrolysis, is especially intended to boost the bio-oil production, in which 
the yields are generally 60% bio-oil and 40% biochar and gas.

6.4  Importance of Biochar for Crop Productivity

Biochar enhances the soil fertility resulting in better crop yield (Zhang et al. 2017). 
Kimetu et  al. (2008) reported that using biochar from the leaves of Eucalyptus 
enhanced maize production (Zea mays L.) two times in the degraded African soil. 
Using Biochar of pine wood on Sorghum bicolor L. improved growth in a spare 
sandy soil in pot experimentation (Laghari et al. 2015). Results also revealed that 
dry weight of Sorghum enhanced by 18–22% as compared to control soil. The effect 
of biochar on soil increasing the fertility and crop product was also reported by 
Lehmann and Joseph (2015). Glaser et al. (2002) observed biochar usage enhanced 
biomass in Vigna unguiculata (L.), Oryza sativa (L.) and Vigna unguiculata (L). 
Triticum durum L. showed more growth ahead to 30% in biochar mixing soil 
(Vaccari et al. 2011).

Biomass and grain in (Zea mays L.) maize showed maximum growth in charcoal 
added soil compared with normal soil (Oguntunde et al. 2004).

Similarly maize crop productivity also increased with charcoal application in 
soil (Kimetu et al. 2008). Many studies have shown the powerful potential of bio-
char usage for rising crop yields, especially on nutrient less soils (Zhang et  al. 
2012a, b). Jeffery et al. (2011) reported that biochar application improves soil struc-
ture, composition and chemical characteristics. Jeffery et  al. (2011) studied bird 
litter for biochar feed stock was best (28%) as compared with the biochar from 
biosolid waste (28%) on crop productivity. Feng et al. (2015) studied the productiv-
ity of summer maize and winter wheat crop for 3 years. They reported biochar usage 
has significant effects for the yield productivity with additive production over the 
first four increasing periods.

Most of the studies were run for short period of time 1–2 year’s duration to find 
out the effects of biochar on crop productivity (Ashfaq et al. 2021; Athar et al. 2021; 
Ibad et al. 2022; Irfan et al.2021; Khadim et al. 2021a, b; Muhammad et al. 2022; 
Subhan et al. 2020; Wiqar et al. 2022; Zafar et al. 2020). Thus, long time duration 
experiments are required to check the effect of biochar on soil for better yield pro-
ductivity in the long run. Spokas et al. (2009) searched out forty-four research arti-
cles that revealed the effect of biochar on crop and found that half of the articles data 
gave results for the improvement of crop yield while rest of them not showed any 
better results about the yield amount.
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Application of biochar on soil enhanced the surface area and soil consistency 
(Thies and Rillig 2012), water holding capacity, nutrient possession (Yamato et al. 
2006) and limiting impact (Liu et al. 2013) is particularly responsible for stepped 
forward crop productiveness. Biochar from plant biomass residues including ashes, 
waste of plants having much concentration of phosphorus and nitrogen similar to 
commercial fertilizer containing the nutrients (Luo et al. 2019). Similarly, Major 
et  al. (2010) reported biochar increases crop productivity due to presence of 
Ca and Mg.

For increasing crop yield with fertilizer, biochar has a positive interactive impact 
on the soil (2007) getting more yield four to twelve times in the rice and sorghum 
crop with the mixing of biochar in soil with compost as compared using fertilizer 
alone. Fertilizer including nitrogen, phosphorus and potassium with biochar pro-
vided two folds more yield of sorghum and rice in comparison with only NPK fertil-
izer (Christoph et al. 2007). Accumulation of biochar with inoculation of arbuscular 
mycorrhiza (AM) fungal spores which is a great source of phosphorus for uptake, 
availability to maize yield and crop productivity enhanced, but in case of limited 
biochar there was no improvement in maize yield or phosphorus intake for increased 
yield crop (Mau and Utami 2014).

Biochar is known to produce a vast positive impact for better yield of crop under 
some soil conditions including salinity and drought stress of crop (Haider et  al. 
2015). Consequently, the development in wheat harvesting crop of biochar finished 
soils might be utilized as a sign of the general vertical push in plant accessible water 
(Liu et al. 2014). An experimental study conducted in the boreal sandy clay loam, 
biochar application in such soil recorded (10  t  ha−1) improved yield in dry sea-
son (2011).

Such results showed enhancement of water holding capacity of soil by biochar 
(Tammeorg et al. 2014). Biochar is a source of crop yield production in low fertile 
soils (Laghari et al. 2015). Crop production may be increased by way of the usage 
of biochar utility in less fertile soil (Zhang et al. 2017). Biochar usage in less nutri-
ent and degraded soils giving rise to growth of the crop and productiveness is also 
reported (Laghari et al. 2015; Van Zwieten et al. 2010; Zhang et al. 2012a, b, c) 
(Fig. 6.1).

6.5  Soil Physical and Chemical Properties

Climate changing is affecting soil and agriculture productivity globally (Fahad and 
Bano 2012; Fahad et al. 2013, 2014a, b, 2015a, b, 2016a, b, c, d, 2017, 2018a, b, 
2019, 2020, 2021a, b, c, d, e, f, 2022a, b; Al-Zahrani et al. 2022; Atif et al. 2021). 
To combat the adverse effect of climate change, biochar can play an important role. 
Biochar enhances the pH of soil, porosity, water holding capacity and stabilizes soil 
organic content through increased soil accumulation and reduced soil bulk 
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Fig. 6.1 Biochar impacts on soil properties. (Source: Shabaan et al. 2018)

distribution ductile energy (Liu et al. 2016). The soils having small amount of debris 
and density with excessive porosity compared to the biochar which has high values 
and preserves much amount of air and water. This is the reason for diminishing the 
soil majority tightness (Downie et  al. 2012). Soil mixing up with the biochar 
enhanced the water holding capacity which affects the root growth and enhances 
microbial pastime.

Zhang et al. (2012a, b, c) mentioned that biochar enhanced the growth factors in 
soil due to decreased soil bulk density and rice production in some cycles of rice 
increase. In another look, soil bulk density also reduced due to biochar addition in 
efficient clarion loam (Laird et al. 2010. Tammeorg et al. (2014) demonstrated that 
plants need excess amount of water in its first 360 days within the height 20 cm of 
soil and this will be improved by biochar by reducing the soil bulk density. The 
researcher also conclude that biochar usage might decrease the soil tensile energy to 
decrease tillage expenses (Vaccari et al. 2011).

Biochar usage in soil reduced −18 kilo pascal in soil energy power (a hundred 
ton per hectare) which is especially advantageous for growth of root, mycorrhizal 
nutrient production and enhanced the germination of seed (Chan et al. 2007). Laird 
et al. (2010) reported after applying the biochar in clarion loam soil showing 69% 
growth rate increased after in super optimal broth with catabolite repression. 
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Biochar acted otherwise to super optimal broth with catabolite repression liquid 
association due to its very inert disintegration rate, it yield significant gain to soil via 
accumulation, water and holding of nutrients (Atkinson et al. 2010).

6.6  Biochar for Better Nutrient Availability in Soil

Application of biochar significantly alters soil pH, electrochemical properties 
thereby positively regulating the nutrient availability in crops (Oguntunde et  al. 
2004). Biochar enhanced the magnesium and calcium accessibility due to its confin-
ing impression, enhanced the productivity of maize yield (Liu et al. 2013). In rice 
field due to addition of biochar, nitrogen content increased with 20 and 40 t ha−1 by 
5.43% to 18.77% respectively (Zhang et al. 2012a, b, c). Utilization of biochar not 
only increases the concentration of nitrogen as well but also increases some other 
micro nutrients including boron (Rondon et al. 2007). Research data describes the 
importance of biochar for increasing the crop productiveness in degraded soil, bar-
ren land by enhancing the crop growing capability using biochar in such soils 
(Randolph et al. 2017). However, some researches have reported that biochar is not 
a powerful source for enhancing the productivity of crop in less fertile or compact 
soils (Schmidt et al. 2015).

6.7  Nutrient Supply and Retention

Biochar is a matter having the capability to maintain macro nutrients at once, includ-
ing nitrogen (Gul and Whalen 2016; Zhang et al. 2017). This can be attributed to the 
nutritious contented material of biochar itself (Shepherd et al. 2017). Biochar is a 
material which holds out the macro nutrients including nitrogen concentration 
involved for the growth of plant (Zhang et al. 2017). This can be worked by biochar 
for maintaining the nutrient content material (Shepherd et al. 2017). Biochar is a 
product of biomass having various amount of content including soil vitamins used 
as organic fertilizer for enhancing the soil fertility (Gul and Whalen 2016).

Biochar has various other advantageous for plant nutrient cycling having poten-
tial to reduce the leaching with increasing retention thereby enhancing soil growing 
capability (Randolph et al. 2017). Laghari et al. (2015) reported that biochar usage 
in the soil enhancing the total capacity of soil due to addition of nutrient content 
including calcium by 69–75%, phosphorus via 68–70%, potassium by using 
37–42%, carbon 7–11%. In this way, some other results revealed through X-ray vis-
ible radiation analysis which does not neglect the full distribution of compounds on 
surfaces of material and does not depicting their accessibility in soils. Nevertheless, 
the alternative fertility factor along with soil physical characteristics and crop grow-
ing showed sizeable intensification in biochar (Fig. 6.2).
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Fig. 6.2 Biochar pyrolysis and usage. (Source: Kumar et al. 2019)

6.8  Biochar Increased Soil Fertility

The function of biochar in soil fertility is connected with the material consistency, 
water protective potential, liming capability, redox properties and nutrient posses-
sion (Guo et al. 2020). Biochar can be assessed by the pore size distribution, water 
protecting capability, particle density to assess the bodily structure of biomass (Yi 
et al. 2020).

Due to spongy shape of biochar, having macropores (pore diameter >50 μm) 
provides vast surface area for the soil fuel transport, hydrology and for the disper-
sion of other microbes. Chemically biochar is made up of total carbon and nitrogen, 
pH, comprehend sorption (Al-Wabel et  al. 2019), electrical conduction (Cantrell 
et al. 2012). Biochar also have natural coating and various elements on its surfaces 
(Yi et al. 2015).

Biochar boosts the plant activity and growth of microbes but with its advantages 
some of dangerous material also leach which caused the toxicity of biochar 
(Godlewska et al. 2021). In this way toxicity of biochar mean fabrication tempera-
ture and feed stock transforms the pH of biochar, electric conductivity, polycyclic 
aromatic hydrocarbons, massive metals that leaching into environment and effects 
of toxic materials on organism. In every field of study, biochar has its particular 
possession for particular execution primarily based on its physiochemical charac-
teristics. Hence, it’s far critical to correspond biochar domestic earlier any 
soil usage.

Chemical restriction which impacts plant life are salinity, alkalinity, acidity and 
nutrient deficiency. Overflowing pH > eight reduces bio availability of vitamins to 
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the vegetation. Chemically soil spoilage by the addition of acidity, alkalinity, salin-
ity and nutrient deficiency. High pH > eight reduces bio availability of vitamins to 
the plant life. Less amount of Mg, Ca and K ions refer to the enhancement of Na 
ions causing sodicity and high salts in the soil causing salinity. Plant growth reduced 
by the salinity via osmotic pressure and root growth reduced by the sodicity all of 
this causing reduction of crop (Ramrez-Rodrguez et al. 2007).

The cation exchange potential will be increased by the usage of charge tightness 
per unit of living thing count. Nutrients leaching regulated by biochar due to its 
unique adsorption mechanism (Xiao et al. 2018) and decorate plant productivity in 
peculiar while united with various natural matter inclusive of organic and compost 
(Wang et al. 2019). Biochar is made up of biomass containing elemental composi-
tion, different vitamins and nurture substances. It is used for enhancing the soil 
fertility by increasing the nutrients in the soil due to its special characters of nutri-
tious storage on biochar channel (Hagemann et al. 2017). Biochar incorporated into 
the agricultural soils which stimulated the soil character. Bulk compactness of soil 
crinkle and its holey construction is modified resultant in adjustments in water 
retentive ability (Al-Wabel et al. 2019).

Research data describes that reduced miserableness favors rhizosphere microbial 
pastime aerobatic conditions intensify N2O, CH4 discharge and suppresses the com-
pacted soil drops off the productiveness of soybean and corn (Yu et al. 2019). Thus, 
the biochar attributes makes it a suitable candidate for rising soil fitness. The forth-
coming subdivision gives the biochar utilization consequences on soil fitness and its 
numerous physio-chemical and organic attributes as mentioned in piece of ground 
trials. Soil is fruitful if it contains up to capacity to deliver critical nutritious and 
water convey to enhance development of plant life without the presence of poison-
ous factors, which can prevent development of plant (Voltr 2012). Fertility of soil is 
governed by using chemical, physical and organic attribute of soils (Igalavithana 
et al. 2017).

Less fertile soil is a common place content in various regions of the sector (FAO 
2019). For instance, semi-arid and arid area soils specifically have less water main-
taining ability and deficient nourishing demand ranges for maximum crops (Khalifa 
and Yousef 2015). For tropic rain forest area, it’s far basically provocative to support 
rural assembling as significant plant nutrients are fast drained from texture of soil 
because of high precipitation in total with low cation restricting limit. Besides, 
shockingly high warm conditions and decomposer’ overflow led to better accumula-
tion of minerals soil improvement normal count (Bruun et al. 2015).

Modification in soil porosity is in particular because of the permeable internal 
construction (intrapores), the attribute and sharpness paces of among biochar, bio-
char pores and soil flotsam and jetsam (inter-pores), molecule length game plan of 
the changed soil, and assimilation location of biochar’s (Yi et al. 2020).

As biochar property, abiotic floor responses modify surface science, substitute 
the molecule length conveyance, and decline hydrophobic quality, development of 
dissolved organic carbon draining on the grounds that it in essence breaks down 
with water influence (Liu et al. 2016).
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6.9  Physical Enhancement of Soil Fertility by Biochar

Yadav et al. (2018) described biochar has uncovered to build the capability of soil 
to keep water. Razzaghi et  al. (2020) contemplated meta-assessment at the after 
effect on soil of biochar water maintenance and established that the capability of 
soil to protect water, particularly in coarse-finished soils. Peake et  al. (2014) 
expressed that biochar had a magnificent effect in the loamy sand and sandy topsoil 
soils to protect water.

Oladele (2019) reported soil limit for saving the water stretched out with enlarge 
biochar usage. Biochar decreased malleable property and split of subsurface soil 
(Mandal et al. 2020a, b) and stifled soil decrement by utilizing expanding the capac-
ity of dirt to save water in this manner, soil composition become progressed (Fu 
et al. 2019). Nair et al. (2017) confirmed that biochar ventured forward soil water 
maintenance, diminished mass thickness and balanced out soil regular recall. 
Likewise, it transformed into affirmed that were hydrophilic helpful organizations 
on the floor and pores of biochar with an exorbitant relationship for water biochar 
utilization became demonstrated to soil development water maintenance more in a 
sand like soil than a loamy soil or a dirt soil (Mandal et al. 2020a, b). Biochar fur-
thermore affirmed a decent impact on surface locale of soil (Anawar et al. 2015), 
which changed with biochar variety (Tomczyk et al. 2020).

6.10  Biochar Interactions in Soil

The role of biochar is diverse due to its physical and biochemical characteristics 
(Czimczik et  al. 2002; Downie et  al. 2009; Schimmelpfennig and Glaser 2012). 
Microbial activities in soil are greatly influenced by biochar (Glaser et  al. 2002; 
Kuzyakov et al. 2009; Glaser and Birk 2012; Yin et al. 2000). Bacterial and fungal 
communities largely make up the microbial community in rhizosphere. Apart from 
bacterial communities, fungal diversity performs a variety of functions such as 
organic matter decomposition and nutrient recycling (Duponnois et  al. 2005; 
Zeilinger et al. 2016; Ye et al. 2020). These complex communities in rhizospheric 
region play significant role in interactions with soil (Will et al. 2010). Unfortunately, 
very little is known about the effects of biochar amendment on ecological roles that 
are played by soil fungi.

Physical structure and pore size of biochar effects the degree of fungal coloniza-
tion. Diameter of fungal hyphae mostly lies between 3 and 6 μm and therefore, that 
they can colonize pores only larger than their hyphal diameter (Allen 2007; Ritz 
2007; Ottow 2011). It has been known for many years that biochar can act as a habi-
tat for mycorrhizal fungi (Ogawa and Yamabe 1986; Saito 1990; Gaur and Adholeya 
2000; Ezawa et al. 2002). An increased rate of mycorrhizal root colonization was 
found on wheat after adding a biochar-mineral fertilizer mixture despite periods of 
drought (Solaimann et al. 2010). Other than structural feature of biochar, elemental 
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and biochemical properties are also important for fungi. Nutrient availability on 
biochar surface (charcoal) is one of the possible reasons for saprophytic white rot 
fungal colonization (Ascough et al. 2010). Microorganisms also use these pores as 
protection against natural predators (Saito and Muramota 2002; Warnock et  al. 
2007). Compaction is a kind of soil deterioration that involves deterioration of soil 
structure, texture and a pronounced reduction in pore sizes. Growth and develop-
ment of the fungal hyphae will be limited under high soil compaction 
(Goicoechea 2020).

Further as a consequence of drought, the respiration of microbes is decreased by 
about 30% at low moisture, and growth productivity estimates based on carbon 
immobilization vs. net mineralization of nitrogen is affected. Thus, indicating dis-
turbance of cellular activities in microbes (Schimel 2018). Soil amendment with 
biochar results in an increased soil porosity, which helps in the transport of water, 
nutrients, and gases. These alterations encourage root formation and increased 
microbial respiration (Dai et al. 2017). The mechanisms for improved fungal diver-
sity and abundance appear to be correlated more with the physical microstructure of 
biochar and the recalcitrant organic carbon than other factors (Li et  al. 2019). 
Biochar also acts as a niche form mycorrhization helper bacteria (Warnock 
et al. 2007).

Mycorrhization helper bacteria trigger morphological and physiological changes 
in plant roots. Thus, in return facilitate their colonization by mycorrhizal fungi 
(Rigamonte et al. 2010). There is scientific evidence for production of biochar like 
compounds by fungi as well (Glaser and Knorr 2008). Aspergillin, the black pig-
ment of Aspergillus niger being ubiquitous in soils contains condensed aromatic 
structures (Lund et al. 1953) similar to those of biochar (Brodowski et al. 2005).

Complex interactions exist between soil properties, biochar properties, the plant, 
and the microbiome, making it difficult to predict the outcome of biochar amend-
ment. Evidence suggests that the biochar application rate, its properties, or the pro-
duction conditions are the key factors influencing the fungal communities and the 
supply of nutrients for the sustainable management of agricultural ecosystems 
(Wiedner and Glaser 2013). However, it can be broadly said that soil fungi can help 
to improve compaction along with biochar amendment.

6.11  Conclusion

Burning biomass in low-oxygen situations creates biochar, a carbon-rich substance 
that a few researcher revealed as the key to soil fertilization. Relatively moderate- 
weight and porous, biochar can act like a sponge and serve as a habitat for masses 
beneficial soil microorganisms which can be useful for soil and plant fitness. Biochar 
has properties to increase surface area, high carbon and nitrogen content. Such sub-
stances needed to improve soil health for better growth of plants. Here it is con-
cluded to improve the soil quality for maximum yield of crops biochar mitigate the 
soil compaction stress.
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Chapter 7
Biochar for Mitigation of Heat Stress 
in Crop Plants

Muhammad Zeeshan, Abdul Salam, Muhammad Siddique Afridi, 
Mehmood Jan, Attiq Ullah, Yuxin Hu, Muhammad Ammar, 
Muhammad Sajid, and Zhixiang Zhang

Abstract Global warming is accelerating heat stress in plants, thus requiring agri-
cultural strategies for the global food security. For instance, soil modification can be 
used to minimize the effect of heat stress on crops. Here we review the incorpora-
tion of biochar in soil to mitigate heat stress, and its detail mechanisms. Soil amend-
ment with biochar improves the physio-chemical characteristics of soil, with an 
increase of 56% of organic matter and of 5% of the bulk density under heat stress. 
Similarly, 235–561% higher surface area, root length, and dry weight of rice plant 
under stress are observed by addition of biochar under heat stress. Biochar also 
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restores pollen fertility of rice. Biochar amendment in soil can increase the supply 
of photosynthetic products, thereby enhancing crop biomass, grain weight by 15% 
and yield by 13%.

Keyword High temperature · Soil amendment · Climate change · Food security

7.1  Introduction

Abiotic factors are the most prominent threats to achieving the global food demand 
for a rapidly growing population in the present era (Zeeshan et  al. 2021, 2022; 
Habib et al. 2017; Hafiz et al. 2016, 2019; Ghulam et al. 2021; Guofu et al. 2021; 
Hafeez et al. 2021; Khan et al. 2021; Kamaran et al. 2017; Muhammad et al. 2019; 
Safi et al. 2021; Sajjad et al. 2019; Saud et al. 2013, 2014, 2016, 2017, 2020, 2022a, 
b; Shah et al. 2013; Qamar et al. 2017; Hamza et al. 2021; Irfan et al. 2021; Wajid 
et al. 2017; Yang et al. 2017; Zahida et al. 2017; Depeng et al. 2018). Globally high 
temperature (HT) is a key environmental cause that adversely influences the plants’ 
growth and production (Fahad et al. 2016a, b, 2017, 2018a). Human activities are 
the major causes for environmental disturbance. For example, the emission of dif-
ferent gases from industries such as methane, nitrous oxides, chlorofluorocarbons 
and more importantly CO2 considerably increases greenhouse gas concentration, a 
major contributing factor to temperature alteration (Hasanuzzaman et al. 2013a). 
Inter-governmental Panel on Climatic Change (IPCC) statement mentioned that a 
rise of 0.3  °C temperature will be seen per decade (IPCC 2007), indicating an 
increase of 1 and 3 °C by the years 2025 and 2100b respectively. This raises the 
temperature and may alter the cultivation seasons for some crops and their geo-
graphical allocation (Porter 2005). High HS has diverse effects on the plant’s devel-
opmental, and physiological processes and negatively affects crop yield 
(Hasanuzzaman et al. 2012, 2013a).

High temperature stress promotes a high accumulation of reactive oxygen spe-
cies (ROS) (Fahad et al. 2016c, d), which leads to oxidative stress (Hasanuzzaman 
et al. 2012, 2013b). Therefore, high temperature/heat stress is a matter of high con-
cern to the current world food security. Plants, up to some extent, can tolerate the 
adverse effects of heat stress by modifying their metabolism in several ways, mostly 
(i) maintaining the turgidity of a cell by osmotic changes, (ii) regulate plant proteins 
by the help of compatible solute, and (iii) activate the self-defense system (antioxi-
dant system) to scavenge the reactive oxygen species (ROS) and restore the cellular 
redox homeostasis (Valliyodan and Nguyen 2006; Janská et al. 2010). Similarly, the 
alteration in gene expression such as regulation of some of the transcription factors 
and osmoprotectants genes provide direct defense from heat shocks (Krasensky and 
Jonak 2012; Semenov et  al. 2014). Furthermore, under heat stress, changes in 
physio-biochemical processes by altering the gene regulation, enhanced the toler-
ance to temperature stress via promoting plant acclimation, and/or otherwise adap-
tation (in ideal cases) to high adverse temperature (Moreno and Orellana 2011).
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7.2  Effect of Heat Stress on Crop Production

Since last decades, the unprecedented and unexpected increase in temperature 
exposed many problems related to living organisms. Significant yield losses were 
observed globally in different important food crops (Lobell and Field 2007; Lobell 
et al. 2008). Like most of the other regions of the world, most of China, particularly 
in the northern parts, has also noticed a rise in the temperature since half century. 
For instance, hot days and heatwaves have been reported in China particularly in 
region of Xinjiang and Yangtze River (Ding et al. 2010). Due to this, Yangtze River 
Valley (YRV), which is consider main rice-growing area in China, is severely 
affected, and leads in large losses of rice yield (Tian et al. 2009). Such heat stress 
episode of 2003 caused an area of 3 million ha to loss about 5.18 million tons in rice 
yield in China (Tian et al. 2009; Li et al. 2003). Lobell et al. (2008) also found that 
rice production declined 4–14% in South -East Asia, because of a single degree 
increase in temperature. You et  al. (2009), concluded from previous data 
(1979–2000), that 10% of the reduction of wheat crop in China, might be associated 
with the rise in temperature (Easterling 2007). Moreover, several studies have 
emphasized the ever-increasing liability of the vital wheat-growing areas by high 
temperature (Chatrath et al. 2007; Joshi et al. 2007; Singh et al. 2007). These areas 
include part of India, Bangladesh, Eastern Gangetic Plains (EGP), and other part of 
South Asia.

Similarly, in France, increasing temperatures above 32 °C showed significantly 
negative impact on maize yield (Hawkins et  al. 2013). In the Pannonian zone 
(Bulgaria, Hungary, Romania, and Serbia) also recorded the undesirable conse-
quences of rising temperature on crops (Olesen et  al. 2011). Likewise, part of 
Europe known for wheat production, desiccated and warm summer reduced the 
maturity period and an apparent decrease in grain yield (Semenov et al. 2014). A 
study conducted in Africa comprised of 20,000 maize experiment droughtful and 
rainfed regimes concluded that each degree rises in temperature over 30 °C resulted 
in 1% to 1.7% yield reduction (Lobell et al. 2011a, b). In the USA, the analysis of 
change in temperature patterns during 1976–to 2006 revealed future yield reduction 
of 16% and 13% in soybean and corn crops, respectively (Kucharik and Serbin 
2008). The shocking is that a 30% yield reduction in corn and 46% loss in soybean 
were predicted in the USA by 2100 using the asymmetric and nonlinear temperature 
and yield relationship analysis (Schlenker and Roberts 2009). According to the tem-
perature change models, a potential 16% yield reduction has been reported from 
1976 to 2006 in USA (Kucharik and Serbin 2008). High temperature resulted in, 
according to an estimate, a $1.0 billion loss due to the reduction of a significant 
amount of 8 million tons per year in barley yield from 1981 to 2002 (Ding et al. 
2010). Because of the increasing agricultural systems problems and higher confir-
mations of the adverse effects of heat stress on crops worldwide, instant information 
and knowledge is needed about sustainable and renovate methods that can produce 
more yield during the climate change scenario.
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Lately, Lobell et al. (2012) from a satellite data of 9 years on wheat growth dem-
onstrated significant losses in grain yield due to temperature going above 34 °C. In 
the same way, maize crops, because of rising temperatures, lose 12 million tons, 
with a financial loss of $1.2 billion per year from 1981 to 2002 (Ding et al. 2010). 
Furthermore, a study reported a 10% reduction in maize yield resulted from 6 °C 
enhancement in temperature at the time of reproductive phase (Thompson 1975). 
Kucharik and Serbin (2008) estimated further yield losses in maize was based on 
the models of temperature change recorded from 1976 to 2006  in the USA. The 
global temperature trend analysis revealed a reduction of 3.8% in maize yield from 
1980 up to 2008 (Lobell et al. 2011a, b).

7.3  Heat Stress Toxicity in Plants

Researchers have been proposed that high heat stress may trigger the production of 
excessive reactive oxygen species such as hydrogen peroxide (H2O2), superoxide 
(O2

¯), and hydroxyl radical (H¯) which can directly damage the plants cellular 
machinery (Hasanuzzama et al. 2013a, b; Fang et al. 2015; Fahad et al. 2013, 2014a, 
b, 2015a, b, 2016a, b, c, d, 2017, 2018a, b, 2019a, b, 2020, 2021a, b, c, d, e, f, 2022a, 
b; Hesham and Fahad 2020). Stimulating reactive oxygen species in mitochondria 
and chloroplasts are key consequences of abiotic stress in plants (Zeeshan et  al. 
2020a, b). Of which, H2O2 has a longer shelf life (~1 ms), is also more diffusible 
reactive oxygen species than others and can easily escape from the organelle in 
which it was produced (Levine et al. 1994). Some recent studies have suggested that 
H2O2 acts as a crucial molecule in the complex network of tolerance to plants (Liu 
et  al. 2016). Besides, in higher concentration, it could also initiate program cell 
death (Quan et al. 2008).

A study on cytoplasmic male sterility in rice confirmed reactive oxygen species 
role in program cell death, which is directly linked with pollen sterility (Wan et al. 
2007). When plants were exposed to high heat stress or other abiotic stresses, 
calamitous events were initiated such as membrane inefficiency, reactive oxygen 
species activity due to metabolic toxicity and reduction in nutrients (Fahad et al. 
2016b, d; Zeeshan et al. 2020a; Hussain et al. 2020; Hafiz et al. 2018, 2020a, b; 
Shafi et al. 2020; Wahid et al. 2020; Subhan et al. 2020; Zafar-ul-Hye et al. 2020a, 
b; Zafar et al. 2021; Adnan et al. 2020; Ilyas et al. 2020; Saleem et al. 2020a, b, c; 
Rehman et al. 2020; Farhat et al. 2020; Wu et al. 2019, 2020; Mubeen et al. 2020; 
Farhana et al. 2020; Jan et al. 2019; Ahmad et al. 2019; Baseer et al. 2019; Tariq 
et al. 2018; Fahad and Bano 2012).

To scavenge reactive oxygen species and maintain redox homeostasis to avoid 
unnecessary accumulation, plants activate its internal defense system that includes 
ascorbate peroxidase, glutathione, catalase, peroxidase, and superoxide dismutase 
(Zhao et  al. 2018; Zeeshan et  al. 2020a; Fahad et  al. 2013, 2014a, b, 2015a, b, 
2016a, b, c, d, 2017, 2018a, b, 2019a, b, 2020, 2021a, b, c, d, e, f, 2022a, b; Hesham 
and Fahad 2020). Among them, ascorbate peroxidase (EC 1.11.1.11), is consider a 
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crucial antioxidant, belongs to class 1 haem containing peroxidase and detoxifies 
H2O2 into water molecules and oxygen molecules using ascorbate as an electron 
donor (Teixeira et al. 2004). Enhanced expression of ascorbate peroxidase genes in 
rice has been reported in biotic and abiotic stress, including heat stress (Jiang et al. 
2016). For example, the overexpression of cytosolic ascorbate peroxidase genes 
protected the plant from cold and salt stress by enhancing H2O2 scavenging by 
ascorbate peroxidase enzyme (Zhang et al. 2013). Similarly, catalases also play a 
vital role in removing H2O2 from mitochondria and peroxisomes (Mhamdi et  al. 
2010). Several studies on cytoplasmic male sterile plants have noted the high 
amount of reactive oxygen species in their anthers compared to their wild types with 
normal fertility. The interaction of antioxidant enzymes and removal of reactive 
oxygen species/oxidative stress from the pollen of cytoplasmic male sterile plants 
strongly relates to pollen viability. Furthermore, under certain abiotic stresses, i.e., 
high temperature and drought, the modulation in the antioxidants enzymes in 
anthers are induced (Nguyen et al. 2009; Zhao et al. 2016; Fahad et al. 2013, 2014a, 
b, 2015a, b, 2016a, b, c, d, 2017, 2018a, b, 2019a, b, 2020, 2021a, b, c, d, e, f, 2022a, 
b; Hesham and Fahad 2020).

7.4  Effect of Biochar on Plant Growth and Physiology Under 
Heat Stress

Global warming, an increase in average temperature near the surface of the earth 
during the two centuries, is a crucial cause of climate change that threatens net crop 
yield (Horie 2019). Rise in average temperature can significantly reduce the 
morpho- physiological growth of crops resulting in limited yield. Though, soil mod-
ification can be used to reduce the consequences of heat stress. There is ample evi-
dence that soil amendment by using biochar positively affect the soil physio-chemical 
properties, thus promoting plant growth and nitrogen utilization (Huang et  al. 
2013, 2018).

Biochar is defined as a carbon-rich finely grained material produced from the 
pyrolysis of biomass in partial or absence of oxygen (Sohi et al. 2010). Biochar is 
believed that can store carbon in the soil for thousands of years prompting the reduc-
tion in greenhouse gases. Biochar improves the physical (i.e., hydraulic conductiv-
ity, soil water retention), chemical (i.e., cations, pH, N, P, Ca), and biological 
characteristics of soil as shown in Fig. 7.1. Moreover, biochar has prodigious poten-
tial in ameliorating soil aggregation, porosity, and structure. It also favors the pro-
liferation of beneficial microorganisms in the soil. With these attributes, biochar 
may offer a win-win strategy in alleviating food security and global warming (Peng 
et al. 2011; Fahad et al. 2016a, b, c, d; Yang et al. 2022; Ahmad et al. 2022; Shah 
et al. 2022; Muhammad et al. 2022; Wiqar et al. 2022; Farhat et al. 2022; Niaz et al. 
2022; Ihsan et al. 2022; Chao et al. 2022; Qin et al. 2022; Xue et al. 2022; Ali et al. 
2022; Mehmood et al. 2022; El Sabagh et al. 2022; Ibad et al. 2022).
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Fig. 7.1 Effect of heat stress on plants and their alleviation with biochar amendments. The text in 
yellow on right side shows the effect of heat stress/high temperature on plant and root zone, while 
the text in green on left side indicates the impact of biochar on plants and root zone. The up and 
down arrows inside the boxes indicate positive and negative effects of biochar and heat stress 
respectively

Previous studies have proven that improving nitrogen use efficiency can alleviate 
the adverse impact of heat stress on many economically important crops including 
potato, maize and rice among others (Liu et al. 2019; Ordóñez et al. 2015; Tawfik 
et al. 1996; Anam et al. 2021; Deepranjan et al. 2021; Haider et al. 2021; Amjad 
et al. 2021; Sajjad et al. 2021a, b; Fakhre et al. 2021; Khatun et al. 2021; Ibrar et al. 
2021; Bukhari et al. 2021; Haoliang et al. 2022; Sana et al. 2022; Abid et al. 2021; 
Zaman et al. 2021; Rehana et al. 2021). A study has shown that under heat stress, 
the application of optimal nitrogen (N) rate and its uptake induced the heat shock 
protein accumulation (Heckathorn et al. 1996), which in term consider a vital com-
ponent of bringing heat stress tolerance in plants (Nussenzweig et al. 1997).

Huang et al. (2021) mentioned that biochar amendment has changed the physio- 
chemical characteristics of soil, such as improved the organic matter as well as 
reduced in bulk density of soil in heat stress condition. Furthermore, they observed 
that when rice plants were treated with biochar, has improved the surface area, facil-
itated the root length, and accumulated high dry weight under heat stress with lower 
soil bulk density than the relevant control. It was reported that lower bulk density of 
soil promotes root architecture and allow the roots penetration deeply into the soil 
(Xie et al. 2013). The improvements in root architecture parameters and dry weight 
of plant under biochar incorporation attribute to the presence of higher content of 
organic matter in soil. Li et al. (2018) mentioned that higher soil organic matter is 
playing crucial role in improving soil health by reducing soil compaction. Under 

M. Zeeshan et al.



165

stress conditions, biochar may support plant growth by holding nutrients in con-
taminated soil and improving microbial biomass as well as soil physio-chemical 
characteristics (Parvage et al. 2013) and by increasing porosity and surface area that 
results in retaining soil moisture (Glaser et al. 2002). These changes suggest that 
biochar application result in improving nitrogen uptake and its accumulation in 
above the ground tissues as well as promoting the root architecture which eventually 
lead to alleviating the negative influence of heat stress on plants.

Prasad et al. (2006) reported that heat stress/high temperature at anthesis stage 
affect the growth of flower tube together with pollen grain germination, resulting in 
low fertilization efficiency. Biochar effectively decreases the negative influence of 
heat stress on plants and soil. Moreover, high tomato yield was obtained from the 
biochar added soil due to the increase water holding capacity of soil under biochar 
application (Akhtar et  al. 2014). Similarly, biochar application improve anther 
dehiscence and pollen development through simultaneous alteration in soil organic 
matter and increasing nutrient release specifically nitrogen and phosphorus into the 
soil (Thies and Rillig 2009). Fahad et al. (2015) found that high temperature caused 
depletion in pollen of indica rice varieties (IR-64 and Huanghuazhan) when hap-
pened at night, while biochar and phosphorus (P) addition substantially decreased 
this heat induced adverse effects and augmented pollen germination rate along with 
pollen fertility retention and, anther dehiscence in comparison with corresponding 
control.

Biochar addition into soil can increase the supply of photosynthetic products, 
thereby enhancing crop biomass, weight and yield of grain of plants (Minhas et al. 
2020; Hafez et al. 2021). Moreover, study has stated that biochar addition increased 
gas exchange attributes such as net photosynthesis rate (Pn), stomata conductance 
(Gs), and transpiration rate (Tr) under heat stress (Wang et al. 2021). Increase in gas 
exchange attributes is positively correlated with increase in growth and biomass of 
plant (Gul et al. 2019; Salam et al. 2022). As the global temperature is rising and 
severe heat events are forecasted to occur in future. Recent studies have focused on 
the influence of heat stress on growth and production of crops and the application of 
biochar is one of the possible approach for enhancing crop tolerance to heat stress 
(Deepranjan et  al. 2021; Haider et  al. 2021; Li et  al. 2021; Ikram et  al. 2021; 
Jabborova et al. 2021; Khadim et al. 2021a, b; Manzer et al. 2021; Muzammal et al. 
2021; Abdul et al. 2021a, b; Ashfaq et al. 2021; Amjad et al. 2021; Atif et al. 2021; 
Athar et al. 2021; Adnan et al. 2018a, b, 2019; Akram et al. 2018a, b; Aziz et al. 
2017a, b; Chang et al. 2021; Chen et al. 2021; Emre et al. 2021).

An increase in variability, intensity, and frequency of temperature has appeared 
as a potential menace to the sustainability and productivity of crops. Elevated tem-
perature stress induces morphological, physio-biochemical, and anatomical varia-
tions in plants. High-temperature stress prompts leaf transpiration and lessens water 
availability to plants. Heat stress can simultaneously stimulate oxidative stress due 
to reactive oxygen species production (Fahad et al. 2016a, b, c, d). It also induces 
hormonal imbalance, excess or deficit of selective metabolites, and can impair res-
piration and photosynthesis in plants (Ahmad and Prasad 2012; Iqra et al. 2020; 
Akbar et  al. 2020; Mahar et  al. 2020; Noor et  al. 2020; Bayram et  al. 2020; 
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Amanullah and Fahad 2017, 2018a, b; Amanullah et al. 2020, 2021; Rashid et al. 
2020; Arif et al. 2020; Amir et al. 2020; Saman et al. 2020; Muhammad Tahir et al. 
2020; Md Jakir and Allah 2020; Mahmood et al. 2021; Farah et al. 2020).

7.5  Biochar Mitigation of Heat Stress by Decreasing 
Greenhouse Gas Emission

Global warming has engendered cloud cover which results in the reduction of radia-
tion heat loss causing high intense atmospheric temperature and vigorous re- 
occurring heat waves (Mendoza et al. 2021; Al-Zahrani et al. 2022; Rajesh et al. 
2022). Elevated heat/temperature induces CH4 and N2O fluxes from soil which 
results in warming. Scientific approaches have proposed that the biochar amend-
ment can alleviate the global climate crisis via the reduction of green-house gases. 
Biochar can alter different N2O processes by transmuting soil pH, sorption of labile 
C, N-availability, water retention, and soil aeration leading to variability in nitrify-
ing and denitrifying microorganisms in the soil. Depending upon soil amendment, 
biochar could also alter CH4 uptake from arable soil by revamping sorption of C and 
N, pH, soil moisture, and aeration (Bamminger et al. 2018). Biochar changes the 
surface albedo of agricultural soil which reduces the climate crises (13–22%) 
(Meyer et al. 2012). Biochar addition into agricultural soil alters the carbon cycle 
and CO2 emissions by altering soil properties and its microbial community. Meta- 
analysis study concluded that biochar improved the crop yield by 10%, however, the 
results may differ in different soil and with different crops (Jeffery et al. 2011).

7.6  Biochar Mitigation of Heat Stress by Improving the Root 
Zone Environment

7.6.1  Improvement of the Soil Water Holding Capacity

Enhancing the water-holding capacity of the agricultural soil could be an important 
work in terms of improving the crop yield. In this regard, biochar has come forward 
as a potential solution to retain water. Biochar amended soil could retain more rain-
fall water and reduce the need for irrigation water. Biochar is derived from different 
biomass feedstocks; therefore, they have variable pore sizes depending upon the 
feedstock used. Such pores are important in improving the available water capacity. 
Biochar interacts with soil to create more interstitial pore space within the soil, 
reduces the bulk density of soil to improve water retention, as high bulk density 
reduces the water content (Li et al. 2021). However, the method used, and the depth 
of biochar incorporation greatly influence the water retention capacity. There are 
two methods i.e., deep banding and uniform top mixing. Biochar can be mixed with 
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manure, lime, or fertilizers prior to application on the field which could reduce the 
number of operations needed: however, mixing is not suitable in all cropping sys-
tems. In deep banding, biochar is placed close to the roots or below the seeds which 
also reduces the need for fertilizers (Major 2010). Enough scientific data have been 
published to back the use of biochar for improving the soil water holding capacity. 
For example, application of switchgrass biochar increased water retention by 15.9% 
of sandy loamy soil (Novak et al. 2009), while green-waste biochar enhanced the 
water holding capacity of Alfisol (Chan et al. 2007). Similarly, biochar produced 
from hardwood increased 15% water holding capacity of Mollisol of Midwestern 
agricultural soils (Laird et al. 2010).

7.6.2  Improvement of Soil Bulk Density

Biochar could be improvised as a long-term adaptive strategy as it has the potential 
to improve the physiochemical properties of soil. It promotes the water holding 
capacity, porosity, decreases the bulk density, and increases the sodium (Na), cal-
cium (Ca), magnesium (Mg), and potassium (K) concentration in soil (Nelissen 
et al. 2015). Determining the physical and chemical impact of biochar on soil helps 
define the fertility of the soil. One mechanism by which biochar improves soil fertil-
ity is by retaining water in small pores. Other mechanism includes the formation of 
stable soil aggregates which enhances the crop yield and prohibit degradation of soil 
(Ding et  al. 2016; Sadam et  al. 2020; Unsar et  al. 2020; Fazli et  al. 2020; Md. 
Enamul et  al. 2020; Gopakumar et  al. 2020; Zia-ur-Rehman 2020; Ayman et  al. 
2020; Mohammad I. Al-Wabel et al. 2020a, b; Senol 2020; Amjad et al. 2020; Ibrar 
et al. 2020; Sajid et al. 2020; Muhammad et al. 2021; Sidra et al. 2021; Zahir et al. 
2021; Sahrish et al. 2022). For instance, rice husk biochar increases soil aggregation 
(8–36%), soil pore structure (20%), and soil shear strength (Lu et al. 2014). However, 
the effect of biochar directly on roots traits is still controversial. Root biomass may 
enhance (Prendergast-Miller et al. 2011; Varela Milla et al. 2013) reduce (Aguilar- 
Chávez et al. 2012; van de Voorde et al. 2014) or either remain unaffected (Macdonald 
et al. 2014; Keith et al. 2015) by biochar amendment. Such variability in results is 
not astounding because response of roots toward biochar depends on multiple fac-
tors. For instance, the type of biochar, the pyrolysis conditions or the material used 
for production are all important in determining the efficacy of biochar. The cumula-
tive amount, application rate and characteristics of biochar are crucial in altering the 
root environment. Biochar improves the soil environment, nutrient availability, and 
microbial community which consequently affect the plant root growth (Palareti 
et  al. 2016). Moreover, biochar is often combined with fertilizers which interac-
tively promotes plant root architecture (Alburquerque et al. 2015).
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7.6.3  Biochar Application Increases Soil Organic 
Matter Content

The incorporation of biochar into the soil enhances the soil organic matter, decreases 
organic nitrogen (N) turnover, accelerates N dynamics, or can alter the carbon (C) 
cycling. The impact of biochar is subtle because soil organic matter is a heteroge-
neous mixture containing various compounds of variable degradability. Therefore, 
biochar effect is studied on different fractions of soil organic matter individually 
(Tian et al. 2016). For instance, light fraction organic C, microbial biomass C, and 
dissolved organic C content were enhanced in biochar amended soil (Liang et al. 
2010). In contrast, during field experiment it had no impact on dissolved organic C 
and dissolved organic nitrogen (Jones and Willett 2006) and on the other hand, it 
reduced the dissolved organic C (Prommer et al. 2014). These controverting results 
have been ascribed to the varying climate, soil biological characteristics, fertiliza-
tion, and crop rotation. Biochar produces micropores because of its own porous 
nature. These micropores sorb and immobilize the organic as well as inorganic mat-
ter in soil. Dissolved organic matter is also sorbed by biochar. However, the poten-
tial of biochar to sorb dissolved organic matter can be affected by alkaline ash 
produced along with biochar in pyrolysis process, because ash affects the solubility 
of dissolved organic matter. Therefore, if its solubility increases by biochar amend-
ments, this may lead liberate the sorbed dissolved organic matter in soil. Which 
might enhance the carbon flux and dissolved organic matter bioavailability in soil 
(Smebye et al. 2016).

7.6.4  Reshaping Soil Microbial Community’s Structures

Apart from soil physio-chemical properties, biochar amendments also improve the 
biological soil properties. The management of soil biota by the addition of biochar 
is gaining increased interest. Biochar can affect the soil microbial community by 
altering the nutrients availability, plant-microbe signaling, or by affecting other 
microbial communities (Palansooriya et al. 2019). Domene et al. (2015) noted an 
increase of 5–56% in microbial population when using corn stover biochar. Possible 
reasons may include less competition, increased habitat suitability, increased poros-
ity, enhanced water holding capacity, and abundance of organic matter and nutrients 
on biochar surface (Domene et al. 2015). Carbon and nutrient availability affect the 
microbial population in soil, and they are influenced by the type of biochar used for 
amendment. In nutrient deficient soil, microbial abundance increases after the 
excess of nutrient supply by biochar as biochar retains or releases the nutrients 
(Lehmann et al. 2011).

Biochar also changes soil pH according to its nature which provides favorable 
conditions to specific microbial communities. Pietri and Brookes (2008) gradually 
increased the pH from 3.7 to 8.3 and observed an increase in microbial biomass 
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ninhydrin-N (0.5–4.5 μg ninhydrin N−1) and microbial biomass C (20–180 μg bio-
mass C g−1). Similarly, (Rousk et al. 2010) showed that increasing soil pH to 7 only 
enhances the bacterial population while the fungi population remains unaffected. 
Microorganisms can also sorb to biochar surfaces which makes them less suscepti-
ble to leaching. Biochar also protects the microbial community from periodic dry-
ing of soil by retaining water in the soil (Ding et al. 2016). Furthermore, the pore 
structure of biochar can provide microorganisms with a living environment. This 
pore habitat protects both fungi and bacteria from their competitors and predators 
(Thies and Rillig 2009).

7.7  Conclusion

Soil amendment with biochar improves plant health and productivity by enhancing 
cation exchange capacity, nutrient use efficiency and water holding capacity. The 
mechanism behind this aforementioned potential: it increases root-zone surface, 
organic matter content and transforms the microbial community composition. 
Biochar plays a key role in climate change mitigation through reduction of green-
house gases emission, methanogens activities and carbon sequestration. Plant and 
soil responses to biochar depend on its doses, use methods and context (soil chem-
istry, crop, environment) and feedstock and pyrolysis temperature, hence a compre-
hensive study on biochar needs before application. The effect of adverse 
environmental conditions on biochar heterogeneous nature is also unexplored. 
Systematic study is needed to investigate the relationship of biochar with different 
plant species, soil type in various environmental conditions.
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Chapter 8
Biochar Application to Soil for Mitigation 
of Nutrients Stress in Plants

Hafiz Muhammad Rashad Javeed, Mazhar Ali, 
Muhammad Shahid Ibni Zamir, Rafi Qamar, Atique-ur-Rehman, 
Hina Andleeb, Najma Qammar, Sonia Kanwal, Abu Bakr Umer Farooq, 
Maham Tariq, Muhammad Tahir, Muhammad Shahzad, Raheela Jabeen, 
Muhammad Zahid Ihsan, Iftikhar Ahmad, Hasseb ur Rehman, 
and Ayman E. L. Sabagh

Abstract  Nutrient stress is a worldwide problem which may alter the biochemical, 
physiological, and molecular processes in all kinds of plants. In addition, such nutri-
tional stress is the major cause of malnutrition in the developing and poor countries. 
Generally, plants require 17 macro and micro nutrients for the optimum growth, 
development, and yield. Moreover, some other additional mineral elements are very 
crucial for the survival of the plants under stress conditions or help the farmer to 
produce the quality products. The proper and timely management could reduce its 
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impacts. The impact of nutrient stress depends on plant age, soil types, plant  species, 
ecology, climatic conditions, and genome of it. Usually, morphological characteris-
tics of the plants are considered the quick, valuable, accurate, and strong identifica-
tion of nutritional deficiency of the specific nutrients. Biochar (BC) is a  cheap 
potential source of Carbon (C) which not only improves health and fertility of soil 
but also improves the quality and productivity of crops both in normal and under 
stress conditions. Here we reviewed that BC is the source of various kind of ele-
ments such as C, H, N, P, K, Mg, Ca, S and some other nutrients that are key 
for healthy plant growth. Moreover, it improves the soil physico-chemical proper-
ties such soil porosity, surface area, CEC, soil hydrophobic capacity, soil aeration 
and soil surface oxidation which results into increase in soil nutrients availability 
and further their retention in the rhizosphere. In conclusion, all these properties of 
BC could help the plant to survive under the nutrients stress conditions. 

Keywords Nutrient stress · Biochar · Environmental factors · Climate change · 
Plant growth

8.1  Introduction

The human global population will expected to reach 9.7 billion in 2050 (Rodés- 
Guirao 2013) and definitely will increase the demand of human food and feed 
requirements (Golden and Cotter 2021). Numerous abiotic stresses are threatening 
the global food security (Crandall et al. 2022). In addition to water and carbon diox-
ide, the plant growth needs balanced and sustainable nutrient acquisition to roots 
from soil for the production of carbohydrate (Amsili et al. 2021). Nutrient stress is 
a significant environmental factor that influences the plant growth and development 
(Bechtaoui et al. 2021). In addition, all stages of plant growth and development, 
including the whole plant, individual tissues and cells, and even subcellular levels 
are significantly affected (Holland et al. 2020). Some time, longer period of stress 
can harm plants by disturbing the protein aggregation and increased membrane lip-
ids fluidity (Ogden et al. 2018; Li et al. 2020b). The healthy cell can create the cross 
link of different polymers and proteins and hence improve the stiffness of cell wall 
(Wang et al. 2016). The cell wall structure and components dictate the cell and tis-
sue morphology depending the nutrient availability. Moreover, some time, it changes 
the pattern of cell growth and development (Ogden et al. 2018). The enzymes inac-
tivation in mitochondria and chloroplast can be happened in some sever nutrient 
stress (Borysiuk et al. 2022).

Balanced proportions of macro-nutrients (carbon, hydrogen, oxygen, nitrogen, 
phosphorus, potassium, calcium, magnesium and sulfur and micro-nutrients (iron, 
zinc, manganese, copper, boron and molybdenum are vital for optimal growth and 
plant harvest (Pandey 2018). Nutrient stress could be resulted into nutrient specific 
phenotypes, growth inhibition, incomplete plant phenology and oftentimes, 
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reorganization of root architecture (van der Bom et al. 2020; Al-Zahrani et al. 2022; 
Rajesh et al. 2022; Anam et al. 2021; Deepranjan et al. 2021; Haider et al. 2021; 
Amjad et al. 2021; Sajjad et al. 2021a, b; Fakhre et al. 2021; Khatun et al. 2021; 
Ibrar et  al. 2021). Crops have some native ability in coping and tolerating these 
stress signals that communicate with one another (Bukhari et al. 2021; Haoliang 
et al. 2022; Sana et al. 2022; Abid et al. 2021; Zaman et al. 2021; Sajjad et al. 2021a, 
b; Rehana et al. 2021; Yang et al. 2022; Ahmad et al. 2022; Shah et al. 2022). The 
productive phase includes the development of male and female floral components, 
the variation of both gender flowery parts and the formation of both gender charac-
teristics is heavenly dependent on the nutrition (Souri and Hatamian 2019). Although 
each phase reacts to nutrient stress differently leading to decrease in net production. 
However, any stress during the productive stage (Zhang et al. 2018a;) has substan-
tial implications since productive parts are essential elements of yield and the pri-
mary source of nutrition for the whole human population (Souri and Hatamian 
2019; Muhammad et al. 2022; Wiqar et al. 2022; Farhat et al. 2022; Niaz et al. 2022; 
Ihsan et al. 2022; Chao et al. 2022, Qin et al. 2022; Xue et al. 2022; Ali et al. 2022; 
Mehmood et al. 2022; El Sabagh et al. 2022; Ibad et al. 2022).

Reactive oxygen species have a detrimental effect on cellular metabolic pro-
cesses and harm all biological components (Nieves-Cordones et al. 2019). Therefore, 
it is crucial to detoxify these reactive oxygen species, and plants have evolved 
extensive defenses against them (Hasanuzzaman et  al. 2018a; Fahad and Bano 
2012; Fahad et al. 2013, 2014a, b, 2015a, b, 2016a, b, c, d, 2017, 2018a, b, 2019a, 
b, 2020, 2021a, b, c, d, e, f, 2022a, b). Plant cells often increase the action of reac-
tive oxygen species sifting enzymes and boost their creation of anti-oxidants in 
response to elevated reactive oxygen species levels in order to maintain redox equi-
librium (Mittler et al. 2022).

Different management practice is being used to combat the different kind of 
stresses (Saud et al. 2013, 2014, 2016, 2017, 2020, 2022a, b). Biochar a carbon- 
based solid created through the burning of organic substances, including wood, ani-
mal dung, poultry manure, and municipal sludge (Amoakwah et al. 2020; Adnan 
et al. 2018a, b, 2019, 2020). It is sometimes referred to as burned biomass or black 
carbon. Controlling plant nutrition can help plants become more resilient to other 
different kind of environmental stresses (Fig. 8.1). The discovery and breeding of 
nutrient stress tolerant cultivars are now being worked on with better root architec-
ture (Campobenedetto et al. 2021). One of these uses is utilizing a soil conditioner 
like biochar to shield plants from the harm caused by salt stress (Ameur et al. 2018).

8.2  Biochar to Alleviate Nutrient Stress

In the current climate change era, poor crop productivity has been obstructed due to 
unexpected seasonal climatic variations such as decreased precipitation/intense pre-
cipitation for short period, a length dry period, a short duration increases in mois-
ture, frequent thunder storm and abrupt increase in temperature. These issues are 
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Fig. 8.1 Effect of biochar 
on physicochemical 
properties of soil. CEC 
cation exchange capacity, 
GHG greenhouse gases

very much challenging for agriculture in arid and semi-arid regions (Hasanuzzaman 
et al. 2018a). It is not possible to stop these challenges but can be managed and their 
destructive effects on the crops can be minimizes. Nowadays, a serious issue of 
nutrients stress tolerance is seen in Pakistan and around the globe. Althoufh scientist 
are working on it but it takes time. The plants show different kind of responses 
against the nutrient stress in different environmental conditions. But, all kind of 
plants show multiple biological responses such as production of reactive oxygen 
species. All the plant species can easily manage reactive active species in their sys-
tems but they require the proper dose of all nutrients.

Processed carbonous material can sustain for longer period of time as compared 
to non-processed organic material in arid and semi-arid climate where high tem-
perature always burned the organic matter (Dalal and Carter 2019) resulting into to 
no addition of organic masses into the soil systems. Therefore, plant-based materi-
als such as biochar is an integrated approach for soil fertility management under 
environment-based nutrient stress which may help achieve sustainable agricultural 
outputs; nevertheless, these methods require significant land modification and finan-
cial commitment (Fig. 8.2). Such kind of organic amendments has been widely used 
in many developed but least in developing countries which are revitalizing the nutri-
ent deficiency in all kind of soils. Additionally, producing biochar from organic 
waste is an economical way to recycle the agricultural waste materials (Dai 
et al. 2016).

Burning agricultural waste significantly negatively affects the environment 
because it produces carbon dioxide, the main greenhouse gas generated by human 
activities. To overcome the drawbacks of direct burning, it has been proposed to 
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Fig. 8.2 Methods of biochar production from raw biomass

carbonize woody wastes to produce biochar, a material like charcoal. Due to its 
resistance to biological deterioration, biochar's acoustic impacts may last far longer 
in terrestrial settings than compost or plant leftovers. Carbonization by pyrolysis to 
generate biochar is a useful technology to reduce negative impacts on environmen-
tal and health. Global warming is lessened by a dark material called biochar, which 
includes refractory organic carbon. High solubility of water and nutrient could be a 
reason of biochar addition to soil as a soil conditioner to increase soil nutrient con-
tent (Da Silva Mendes et  al. 2021). Furthermore, biochar increases pH, cation 
exchange capacity, organic carbon, and nutrient content in soils while reducing car-
bon dioxide emissions. Thus, the soil amendments should be an alternative and 
short-term solution for sustainable nutrients under the nutrient stress (Clough et al. 
2013; Chintala 2014; De Jesus Duarte et al. 2019; DeLuca and Gao 2019).

8.3  Nutrients Stress and Plant Growth

In order to maintain cell sustainablity and ensure life under the nutrient stress, plants 
have developed several adaptive/resistance mechanisms. Sever nutrient stress dis-
turbs the flexibility of membrane lipids, which might alter the structure of the mem-
brane (Peng et  al. 2019b). By sifting reactive oxygen species produced under 
nutrient stress, nitrogen oxides may serve as an antioxidant and defend plants 
against stress (Rai 2022). According to several prior studies, nitrogen oxide signals 
to development of thermotolerance in plants by activating enzymes that use oxygen 
(Hasanuzzaman et al. 2018b; Ahmed et al. 2020; Li et al. 2020b; Fonseca-García 
et  al. 2021). Moreover, enhancing a plant's ability to withstand environmental 
shocks requires proper nourishment for the plant (Adetunji et al. 2020). Similarly, 
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potassium is crucial for agricultural plants to survive under challenging environ-
mental conditions (Kong et al. 2020). It can improve the process of photosynthesis, 
turgidity maintenance and stress-induced enzyme activation under nutrient stress 
(Saghaiesh and Souri 2018). In most of cases, the potassium stress may hamper the 
carbon dioxide fixation, cell ion channels and cell wall permeability (Zhang et al. 
2018b). Such turbulences lead to an excess of photosynthesis-generated electrons, 
which increases electron transport to oxygen and subsequently stimulates reactive 
oxygen species production (Kong et al. 2020). The sustainable transport of photo-
synthetic electrons transportation is heavenly disturbed during the nutrient defi-
ciency because it causes oxygen to be converted to reactive oxygen species 
(Nieves-Cordones et  al. 2019). Sometime, the cell sustainablity may be shielded 
against oxidative damage brought on by nutrient signalling in low potassium soil 
media (Wu et al. 2018). However, increasing the potassium concentration of irriga-
tion water significantly protected the cell and its function.

8.4  Nutrient Stress and Plant Cell Functions

In order to achieve the necessary gains in food production, it is predicted that fertil-
izer use will need to double over the next 20 years (Fischer and Connor 2018). In 
order to increase crop production and maintain soil fertility, research on plant nutri-
tion looks to be a top priority in the future decades (Hackman et al. 2022). To sur-
vive and produce when faced with environmental obstacles, crop plants must 
develop adaptive mechanisms to prevent or minimize nutrient stress (Ahmed et al. 
2020). Phosphorus is required for strength generation, magnesium and nitrogen are 
structural components of chlorophyll that are necessary for photosynthesis while 
potassium is necessary for osmotic control and enzyme activation, and phosphorus 
is a structural part of essential plant compounds (de Souza Osório et  al. 2020). 
Therefore, a plant that receives enough nutrition should produce more smooth and 
sustainable growth (Sung et al. 2018). Moreover, the hydraulic conductivity of the 
cortical root cells was much lower in plants that were nitrogen and phosphorous 
deficient (Praveen and Gupta 2018). In addition, availability of proper plant nutrient 
concentration are crucial to increase the water use efficiency and nutrient use effi-
ciency enhancement of the crops (El-Nakhel et al. 2019).

Numerous studies have shown the sufficient availability of different kind of 
nutrients may help the plant in reducing the effects of different abiotic stressors. For 
example, silicon and potassium have been shown to boost tolerance of wheat crop 
against nutrient and salt stress (Sales et al. 2021). Nitrogen deficiency reduce the 
plant ability to tolerate the different kind of stresses i.e. cold, heat and salinity 
stresses (Ahmed et  al. 2020). In addition, these stresses impaired impair plant 
growth and nutrient uptake. The suitable concentration of nitrogen may trigger the 
light harvesting and hence accelerate the process of photosynthesis (Ahmed et al. 
2020). So that is why, health plant growth and yield could be achieved. Sometime, 
the surplus of unused light energy is anticipated in nitrogen deficient leaves, 
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increasing the likelihood of photo-oxidative damage (Rai 2022). Similarly, a lack of 
nitrogen in rice plants exposed to intense light is associated with increased lipid 
peroxidation in the cell system (Yoo et al. 2018).

The role of sun energy in electron movement during kelvin was greater in nitro-
gen sufficient crops compared to nitrogen-deficient crops (Bloch et  al. 2020). 
Additionally, nitrogen deficient plants may withstand high levels of photosynthetic 
activity and the production of defensive mechanisms (Rai 2022). To protect against 
photo-oxidative damage caused by excessive light, the thylakoid membrane pro-
vides an additional energy release mechanism, which releases heat (Manoj et al. 
2020). However, in nitrogen-deficient plants, the generation of zeaxanthin and the 
conversion of xanthophyll cycle pigments increased, decreasing the chlorophyll 
concentration (Gebregziabher et al. 2021). Compared to nitrogen adequate spinach 
plants, nitrogen deficient spinach plants lose up to 64 percent more of the light 
energy that is absorbed (Moriwaki et al. 2019). This gap was attributed to altera-
tions in the xanthophyll cycle pigments, with zeaxanthin and antheraxanthin 
accounting for around 65% of total xanthophyll pigments in plants havening less 
nitrogen (Moriwaki et al. 2019). Similarly, the use of captivated sun energy in car-
bon dioxide fixation is decreased in nitrogen deficient plants, leading to a more 
significant need for protection against excessive light energy (Prescott et al. 2020). 
As a method of releasing excess light energy, it was discovered that bean leaves 
provided with nitrate converted violaxanthin to zeaxanthin more strongly than those 
supplied with ammonium (Holzmann et al. 2022). Similarly, the bean plants grown 
in nitrate were more resistant to photodamage than bean plants grown in ammo-
nium (Posso et al. 2020). Ammonium-grown plants showed greater lipid peroxida-
tion levels and antioxidative enzymes due to the increased light intensity 
(Fonseca-García et al. 2021).

8.5  Physiological Alteration and Role of Micronutrients 
Under Nutrient Stress

Different element had different function inside the plant body and the deficiency of 
any other them may halt the numerous physiological processes and require for ser-
val co-factors and enzymes of metabolism (Janpen et al. 2019). Moreover, some 
elements play their role at the earlier stage of plant growth and some require at the 
grain filling and ripening of crop. Plants are unable to complete their life cycle suc-
cessfully without availability of specific elements (Zhou et  al. 2021). Generally, 
macro-element is available to plants but they do not have micro-elements which are 
equally important for plant health active. Acute nutrient (micro-nutrient) stress 
directly harms plants by causing protein denaturation and aggregation and increased 
membrane lipid fluidity. The balance presence of different elements is very vital and 
sometime their antagonistic effect may lead to abnormal growth. Therefore, it may 
induce different changes in the biosynthesis of different compounds and structural 
components.
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Such nutrients stress for longer period can lead to over production and accumula-
tion of reactive oxygen species that could had toxic effect to nucleic acids, metabo-
lites, proteins, and lipids of plant cells (Ogden et al. 2018). Most common ROS that 
plants produce under the nutrient stress including singlet oxygen, superoxide anion, 
and hydrogen peroxide which are generated in to all cell organelles i.e., mitochon-
dria, peroxisomes, and chloroplast (Kim et al. 2021). However, the maintaining of 
some specific physiological level of reactive oxygen species is a matter of life and 
death for the aerobic living organism otherwise leading to death within a few hours. 
The proper concentration of different types of micronutrients helps the plant cell to 
produce the antioxidant defensive systems which is dully supported by the enzy-
matic and non-enzymatic compounds to tackle the harmful effects of reactive oxy-
gen species (Nadeem and Farooq 2019).

Calcium ion is a vital ubiquitous intracellular messenger, which play a lead role 
in several signal cell trans transduction pathways. Moreover, the transient perturba-
tions such as free cytosolic calcium are indispensable and translate the cell signals 
into various biological responses. The increase in cytosolic calcium levels resulted 
into higher production of calcium sensor relay proteins such as calmodulin that is 
called calcium biding proteins. calmodulin regulated the several transcription fac-
tors which involved in many physiological, bio-chemical, and molecular functions 
in the cell. Some time, cytosolic calcium activates the calmodulin-binding transcrip-
tion activator which is major contributor of transcription factors. Moreover, calcium 
is thought to be essential for healing from stress free because it promotes the cellu-
lar membranes protein adenosine triphosphatase, which is required to transport 
back nutrients depleted during cell damage. calcium modulates the pressure 
throughout freezing damage, repair work, and cold tolerance adaptation (Pathak 
et al. 2020). Moreover, it also fastens the process of repairing of the damage cells 
and it is observed that it also enhances the tolerance against the freezing injury 
(Thor and Kathrin 2019; Zhang et al. 2020). In addition, it stimulates the adenosine 
triphosphatase enzymes which help the cell wall to recover aggressively in cold 
damage by mobilizing the available cell resources. Calcium is also an important 
element in maintaining cell structure and cell integrity (Zhang et al. 2020).

Through several physiological and biochemical processes, magnesium influences 
plant growth phase (Pickering et al. 2020). It is necessary for several metabolic pro-
cesses, including photosynthesis (Xie et al. 2021). Even slight variations in magne-
sium levels significantly affect numerous necessary chloroplast enzymes (Peng et al. 
2019a). Both a magnesium shortage and an excess are harmful to plant photosynthe-
sis (Veronese et  al. 2020). However, the rate of photosynthesis is noticeably 
decreased in the leaves of magnesium deficient plants. The nutrient stress causes 
several metabolic pathways in various cellular compartments, such as chloroplast, 
mitochondria, and peroxisomes, to continuously produce reactive oxygen species. 
Mineral nutrient deficit stress includes oxidative stress (Zhang et al. 2019). In addi-
tion, magnesium increased the content of antioxidant molecules and the activity of 
antioxidant enzymes in bean (Torabian et al. 2018), maize (Iqbal et al. 2020), wheat 
(Tian et al. 2021), rice (Ahmed et al. 2021) and pepper (Zirek and Ozlem 2020).
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Additionally, plants lacking in micro-nutrients such as iron, boron and magne-
sium which decrease the accumulation of malondialdehyde into the cell (Oustric 
et al. 2021). The sustainable availability of these nutrients increase the root growth 
and surface area that helps the plants to absorb water and nutrients from the deeper 
layer of soils (Ali et al. 2020). In addition, they also rise the quantity of sucrose in 
the leaves and improves sucrose transfer from the leaves to the roots. Sometime, 
they also improve phloem export to boost glucose translocation under temperature 
stress (high or low). Moreover, the improved feeding of micronutrients increase the 
photosynthetic rate leading to higher yield by maintaining chloroplast structure in 
Cassava plants (Busener et  al. 2020). However, sometimes, protein synthesis is 
inhibited leading to inhibition and membrane integrity is lost due to higher level of 
deficiency.

8.6  Management of Nutrient Stress

Traditional agriculture has been replaced by intensive crop cultivation due to food 
demand and supply (Garnier et al. 2019). Intensive (or tiring) agricultural farming 
has reduced the availability of plant nutrients, which harms plant protentional badly 
(El-Nakhel et al. 2019). Healthier crop nutrition may help plants become more resil-
ient to different kind of stresses and increase the production of antioxidant system. 
The anti-oxidants protect chloroplast membrane integrity, reduce photo-oxidation, 
scavenge reactive oxygen species, and promote photosynthesis in the plants (de 
Souza Osório et  al. 2020). It was also seen the availability and management of 
healthy concentration of macro-and micronutrient may increase the chlorophyll 
contents (Purbajanti et al. 2019). It was worth noted that availability of nutrients can 
increase of generation of strong chlorophyll pigments and general plant progress in 
cow pea plants even under water stress (Laranjeira et al. 2021). Moreover, the suf-
ficient concentration of potassium and calcium encourage water uptake, assisting 
stomata and improves the ability of plants to withstand temperature pressure by 
sustaining a steady temperature.

8.7  Sustainable Plant Growth Under a Stressed Environment 
with Biochar

The rosehip seeds biochar applied at the rate of 2% (200 gram per pot) improved the 
shoot dry weight of sugar beet (29.82 gram per plant) under drought stress condition 
as compared to control (with no biochar treatment) (Durukan et al. 2020). Due to 
typical nature of biochar towards the binding of various micro and macro-nutrients 
on its charged sites due its electrostatic attractions, can increase the biding of water 
particles and thus decrease the frequency of irrigation and plant may save the plants 
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from drought susceptibility (Khan et al. 2021). In addition, under nutrition stress 
environment, comparative higher surface area and porous structure of biochar that 
increase its adhesive and cohesive forces with the water and nutrients in the soils 
may result into slow release and gradual availability of nutrients and water to plants 
(Kätterer et  al. 2019; Abideen et  al. 2020). It was also noted that the functional 
groups especially oxygen related functional groups help the biochar to conserve 
more water molecules and plant may use in stressed environment (Suliman 
et al. 2017).

Enough Biochar addition to plants can elevate the stresses on stomatal conduc-
tance transpiration, photosynthesis, respiration, and turgor pressure by improving 
the nutrient and water availability (Phillips et  al. 2020). The addition of biochar 
(600 °C) at rate of 2% increase the biomass (shoot and root) of licorice by 80% and 
40% under the saline environment (50 mM NaCl). In addition, it also improved the 
root architectural characteristics such as root surface area, root length, root volume, 
project area and nodulation (Egamberdieva et al. 2021). Moreover, in alternate root- 
zone drying irrigation, overall growth (plant height and shoot biomass) and yield 
(grain yield) of quinoa by 11.7%, 18.8 and 10.2 % respectively compared to defi-
cient irrigation (Yang et al. 2020). During the growth period of quinoa, it was noted 
that the water use efficiency, stomatal conductance and leaf photosynthetic rate and 
leaf Abscisic acid was also improved under the saline stress conditions as compared 
to non-saline environment (Yang et al. 2020).

Acceleration of nutrient cycling and carbon sequestration in the upper soil layer 
(0–15  cm) was achieved in the rice straw biochar treatments and improved the 
reduced the soil bulk density and increase the availability of nutrients. Ultimately, 
this phenomenon was enhanced vegetative biomass and yield (Wu et  al. 2021). 
Similarly, the microbiome population in the soil reduced the production of reactive 
oxygen species under nutrients stress and improved the carbon stock leading to bet-
ter nutrient availability to plants (Tang et al. 2020). Stress tolerance with biochar are 
associated with the release of considerable concentration of micro-nutrients (car-
bon, nitrogen, phosphorus, and potassium) and macro-nutrients (calcium, manga-
nese, iron, zinc, coper) (Abd El-Mageed et al. 2020). In addition to earlier reports, 
positive effects of biochar materials were noted on the plant growth and develop-
ment. But it was concomitant with the release of essential soil nutrients such as 
nitrogen, potassium, calcium and magnesium into the soil media (Zhao et al. 2020).

8.8  Physiochemical Changes in Soil After Biochar Addition

The physiochemical properties of all kind of soils play vital role towards the allevia-
tion of nutritional stress and availability of nutrients. Hence, biochar is magical 
material which had the ability to enhance the plant growth and improve the soil 
health (Sattar et al. 2020). Biochar had the ability to play magical role even in nutri-
tionally dead soil (Minhas et  al. 2020). Generally, it can change the pH, cation 
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exchange capacity, electrical conductivity, inherent nutritional capacity, electrical 
conductivity, solubilization ability and hence, improve the access of plant to nutri-
ents into the soil media (Zhu et al. 2020). Biochar had the ability to clean the soils 
from different organic and inorganic pollutants which are increasing the soils after 
the haphazard application of chemicals to agricultural crops (El-Naggar et al. 2020; 
Khalid et al. 2020). Moreover, the leaching of fertilizers and runoff of soil is very 
common phenomenon in the arid and semi-arid areas. It reduces the efficiency and 
loss of outputs and other hand its polluting the fresh water resource. Hence, continu-
ous and repeated application of biochar not only reduce the runoff and leaching but 
also sustaining the soil productivity (Ippolito et al. 2020).

Biochar application into the soil increase the soil moisture and resistant to micro-
bial degradation which slows down the degradation process (may decrease to 0.3% 
per year) leading to long term sustainable availability of nutrients and accelerated 
the process of carbon sequestration in the arid climate (Papageorgiou et al. 2021). It 
was worth noted that the activities of proteases, acid phosphomonoesterases and 
soil fluorescein diacetate hydrolase was improved under the saline condition by the 
addition of biochar (600  °C) at rate of 2% under the saline conditions (50 mM 
NaCl) (Egamberdieva et al. 2021).

Significant concentration of some minerals i.e., magnesium, iron, and calcium 
and inorganic carbonates has been increased after the application of biochar into 
soil that improved the plant growth and development. In addition, soil carbon con-
tents, soil permeability and soil productivity were also improved when was observed 
during the crop growing period and at harvest (Antala et al. 2019; Leng et al. 2019). 
Moreover, the biochar stimulate the microbial activities in the rhizosphere that 
increase the yield by improve the soil nutrients availability and soil water contents 
(Zhu et al. 2017). The soil porosity and cation exchange capacity was also enhanced 
but it was more prominent in the clay soils as compared to sandy and silt soils 
(Nguyen et al. 2017). Due to change in electrostatic charges of soil, it increase the 
release and retention of nutrients in soils, improving the plant nutrient use efficiency 
resulting to higher plant yield (Akhtar et al. 2014).

Addition of biochar could initiate and accelerate the process of different bio-
chemical and enzymatic activities in the soil. Initially, the soil microbial abundance 
and activities has been started and provided the food to all kind of soil biota. 
Furthermore, they may coordinate and fasten the nutrients cycling process (Liu 
et  al. 2017). Many nutrients solubilizing microbes like Bacillus mucilaginosus, 
Bacillus edaphicus and Azotobacter chroococcum may starts their actives from 
sluggishness due to unavailability of nutrition (Rahimzadeh et al. 2015). They min-
eralize the fix/Nex/chelate nutrients into solution form. The activities of some 
Bacillus species could be promoted by 5-fold when they are incubated with biochar 
of corn stover (0.6%). The nutrients release activities of soil is increased by 80% 
(Liu et al. 2017). It has been worth noted that application of B. mucilaginosus into 
mica rich soil boost up the growth and development of lemon grass. This could be 
due to more mobilization of the potassium from the available resources of mica 
(Basak et al. 2021) (Fig. 8.3).
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Fig. 8.3 Soil nutrient availability to plants

8.9  Management of Nutrients by Biochar Under 
Nutritional Stress

The biochar had the ability to mitigate numerous environmental stresses such as 
drought, salinity, heavy metals, nutritional stress, heat stress, climate change effects 
and pollution effects etc. from the plants. Usually, it was noted that all plants accu-
mulates ethylene under the stresses including the nutritional stress (Khan et  al. 
2015). That production of ethylene under stress condition is high dangerous to plant 
cell and starting its damage from degradation of cell membrane lapis of chloroplast 
and then further activates the chlorophyllase gene (chlase) (Michaud and Jouhet 
2019). The chlorophyllase may lead to degradation of chlorophyll and finally chlo-
rosis may result. Biochar could slow down the process of ethylene production by 
providing of nutrients through its slow-release mechanism. Thus, a large number 
researcher reported that biochar could eliminate the nutrient stress in all kind of 
soils (Wacal et al. 2019; Chen et al. 2022; Shaheen et al. 2022).

Biochar is generated from biomass that has been paralyzed in a low-oxygen envi-
ronment and is a fine-grained charcoal with a high concentration of refractory 
organic carbon (Lehmann and Joseph 2015; Amoakwah et al. 2020). Its application 
in agricultural soils to capture carbon, enhance soil functioning, and other purposes 
has been hotly contested (Lehmann 2007). Carbon-rich biochar may increase soil 
fertility by enhancing the ability of soil to retain nutrients. All the crop nutritionist 
suggested that carbon-rich biochar is the game changer to enhance the soil fertility 
of poor soil in the arid and semi-arid climate. Moreover, the structure of carbon 
based material is aromatic which give it a lot of characteristics like low density, 
large surface area, high ion exchange capability, and great porosity which make it 
more resistive to disintegration (Agegnehu et al. 2017). The material and pore vol-
ume of carbon-based material can greatly enhance the physical and chemical prop-
erties of soil, which are essential for soil cooling and crop production. These 
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properties include water retention, hydraulic properties, aggregate stability, pH, 
organic carbon, and cation exchange capacity (Dai et  al. 2016; Baiamonte et  al. 
2019). Moreover, the physical properties of soil has been improved because of pres-
ence of micropores and less density of carbon based particles (Lehmann et al. 2011). 
Additionally, the presence of nitrogen in biochar may alter the dynamics of soil 
nitrogen by influencing the quantity of soil nitrogen that is available to plants, and 
it increases its ability to absorb more nitrogen, and accelerate the biological pro-
cesses of nitrification (Ameur et al. 2018; Amoakwah et al. 2020).

Moreover, by enhancing the physical environment of the soil, which prevents or 
lowers anaerobic denitrification, carbon dioxide flow, and methane gas generation, 
applying biochar to soil may also reduce greenhouse gas emission (Ali et al. 2017). 
Additionally, adding biochar to field improves infiltration and water-holding capac-
ity, particularly in soils with a coarse texture or a high concentration of macrospores 
(Agegnehu et al. 2017). Biochar contains different amounts of nitrogen and carbon 
depending on its feedstock and production conditions and its additives sequester 
more carbon and nutrients in the soil because of their promotive properties. The 
natural ability of biochar in controlling nutrients uptake that is ultimately reduces 
the reactive oxygen species and abscisic acid in the cabbage seedlings. Under the 
nutrients stress conditions, biochar was effective at reducing Nitrate (NO3), 
Ammonium (NH4+), phosphate (PO4 3-), potassium (K+), calcium (Ca2+), and mag-
nesium (Mg2+) (Gao and DeLuca 2018). In addition, it is worth noted that potassium 
leaching is significantly reduced with the addition of biochar.

Physical and chemical soil factors such as, water-holding capacity, cation 
exchange capacity, pH, surface area, porosity, bulk density, carbon, nitrogen, nitro-
gen used efficiency, and total accessible nitrogen and phosphorus are between the 
physical and chemical soil parameters that biochar affects. It was noted that major-
ity of macro and micro-nutrients such as hydrogen, oxygen, magnesium, and mac-
ronutrients including nitrogen, phosphorus, and potassium are all present in biochar 
and can help most crops throughout the globe grow more quickly. It was seen the 
biochar increased the nitrogen retention efficiency that in return decrease the use of 
synthetic fertilizer to the crops. Upon the addition of maize residue biochar at the 
rate of 1–2% (weight/weight), the amount of total nitrogen increased by 41%, the 
amount of accessible P by 165%, the amount of available potassium by 160% 
(Saffari et al. 2020). In addition, Adekiya et al. (2020) recorded that soils that have 
amendment of biochar had higher levels of essential nutrients.

Biochar improved the nitrogen concentration in the stem, root, fruits, and leaves 
under the normal and stress conditions as compared to control treatments (no bio-
char). Under drought stress condition, the rosehip seeds biochar applied at the rate 
of 2% (200 gram per plant) increased the nitrogen concertation at 1.72% as com-
pared to control treatments (no biochar) (Park et al. 2019; Durukan et al. 2020). 
Moreover, the electrostatic attraction among the various micro and macro-nutrients 
and the charges sites of biochar may increase the concentration of ammonium and 
nitrate ions. However, this higher release of ammonium ions was seen when the 
biochar was produced at low temperature (400–500  °C) (Xu et  al. 2019; Zhou 
et al. 2019).
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Biochar can alter the amount of accessible phosphorus in soil in solution form to 
plants and prevent its fixation and sorption on the clay minerals (Uchimiya et al. 
2015; Zhao et  al. 2016). Moreover, biochar could help the farmers of poor and 
developing countries in increase the soil phosphorous use efficiency and reducing 
the phosphorus losses due to its ability of slow releasing of nutrients. Hence, it may 
work as phosphorus fertilizers for future generations and could increase phosphorus 
use efficiency for longer term especially in nutrient deficient period (Li et al. 2020a). 
The success stories of its residual effects on crop growth and development are also 
confirmed. Due to different surface properties like as basic, acidic, heterogeneous a 
and hydrophilic characteristics, biochar can increase solubility and availability of 
phosphorus under the various climatic conditions (Trazzi et al. 2016; Glaser and 
Lehr 2019). The rosehip seeds biochar applied at the rate of 0.5% (50 gram per 
plant) increased the nitrogen concertation at 1.01% as compared to control treat-
ments (no biochar) (Durukan et al. 2020).

Soil potassium is divided into four types basis on its availability such as exchange-
able/soluble potassium, non-exchangeable potassium, water-soluble potassium, and 
mineral potassium. All these potassium fate into the soil systems is in dynamic 
equilibrium and play vital role for its availability and update into the plant system 
(He et al. 2015). Although the potassium reserves are large in the soil system of arid 
and semi-arid system of the globe but are in non-exchangeable potassium form. 
However, application of biochar at different rates was significantly increased the 
proportion of exchangeable potassium into the soil media that is readily available to 
plant rooting system from the longer period. In addition, some time, potassium is 
present in mineral potassium or exchangeable potassium forms that is sparingly or 
partial available in the rhizosphere (Oram et al. 2014). A lot of research question are 
still unexplored regarding to interaction of biochar time/amount and potassium or 
biochar application and type of clay minerals. Moreover, the specific interactions 
and process between the biochar application timing and its interaction with the soil 
components and the processes involved in it. Moreover, the rosehip seeds biochar 
applied at the rate of 2% (200 gram per plant) increased the potassium concertation 
at 2.33% as compared to control treatments (no biochar) (Durukan et al. 2020).

On the other hand, potassium is conserved during the biochar production process 
and easily available in the form of potassium containing salt having high solubility 
but its ability is heavenly dependent on the input material from which it is produced. 
So, that is why, several past studies indicated that potential source of potassium in 
the form of biochar could be a chief substitute of conventional and synthetic fertil-
izers. Some studies exhibited that quick release of potassium may result into 
unavailability of potassium after first year but non the other hand, it was noted in the 
previous studies that role of soil properties such as including soil texture, type, pH, 
inherent potassium-reserves, and concentration of clay minerals is determined the 
dynamic of potassium into the soil and rhizosphere.

The rosehip seeds biochar applied at the rate of 2% (200 gram per plant) was 
improved the micro-nutrient concentration (magnesium and manganese) in the stem 
of sugar beet (Durukan et al. 2020). The electrostatic attraction among the opposite 
charges ions may increase the concentration of many micro-nutrients such as 
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calcium, iron and magnesium etc. (Chandra et al. 2020). In addition, biochar helps 
the soil media to release the significant concentration of fixed micro-nutrients such 
as manages, iron, calcium, copper, and zinc. Hence more concentration these micro- 
nutrients was noted in the plant body (Abd El-Mageed et al. 2020). In long run, the 
application of handful amount of biochar into soil may reduce the need of synthetic 
fertilizers and pesticides because it can improve the concentration of micro- 
nutrients, organic matter, soil carbon concertation, nutrients cycling, soil enzymes 
activities, soil fertility and soil microbial activities leading to achieve the sustain-
ablity and profitability of the farming community (Abd El-Mageed et al. 2020).

It was seen the under nutrient stress, the addition of biochar to the crop may cor-
rect the imbalance concentration of calcium, iron, zinc, and sulfur etc. that are vital 
from plant growth and development (Mwando et al. 2020). Moreover, biochar plays 
vital role in improving the human and animal nutritional status that are heavenly 
dependent on the plants for its nutrition. Generally, it was observed that micro- 
nutrients (magnesium, calcium and manganese) was fixed into the soil particles but 
was easily released into soil system in long term field experiments when biochar 
(corn straw biochar) was added to soil before the seed sowing (Zhao et al. 2020).

8.10  Conclusion

Nutrient-nutrient interconnection and responses and further its impact on ions accu-
mulation into the cell are well explored. However, the nutrient based cell signalling 
is still a topic to debate. Such signal may deceive the cell other signal. So, it may 
disturb the cell routine activities. How all the terrestrial plants crop with poor nutri-
tional acquisition in soil is an interesting question in biology. Now a days, nutrient 
stress along with climate change challenges which plants are facing in nature. That 
is why, sudden changes in growth capacity of plants can be seen due to abrupt 
changes in ion homeostasis interactions with in plant cell system (Fig. 8.4).

The combinatorial signal mechanism among the different cell of the plant under 
the nutrient stress yet to be focused in the future research program. Moreover, there 
is dire need to improve the plant genetic system to tackle the combined stresses and 
it may lead to development of plant species with better genetic architectures that 
may handle each individual stress response. Therefore, future research program 
should be designed to exploring the answer the question of how the nutrient homeo-
stasis in plant body push the plant to change its genetic architecture and how it 
identifies the effect of the combination of different nutrient stress on a single plant 
in the field condition. Moreover, the lack of research of the role of molecular mech-
anism of integrated nutrient stressed cell signals for the development process of cell 
is the demand of the current era. Similarly, the use of 3D network modelling could 
be a handy tool to understand and predict the ionome for any combination of nutri-
ents for any specific genotype at the given time and space. The interaction of differ-
ent nutrients stress singles with ionome and growth and how they change the 
different mechanism pathways in the cell that may re-regulate ion homeostasis and 
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Fig. 8.4 Effect of nutritional stress on plant cell metabolism. PP pentose phosphate Pathway, 
DNA deoxyribonucleic acid, PAL Phenylalanine ammonia lyase, 4CL 4-coumarate: CoA ligase 
gene, amp amplification, CGA chlorogenic acid, ROS reactive oxygen species

plant development. Sometimes, such signals deceive the plant systems with immune 
signaling pathways that produces different chemicals into the soil. These chemicals 
are very necessary to cohabitate plants with soils to manage the limited nutrients in 
the soil system. This interconnection between the cell signalling and immunity 
needs a lot of attention of plant researchers. Therefore, cellular level improvement 
is needed to cope with nutrient stress signalling system. So, any molecular mecha-
nism improvement that may help the plant breeder to introduce the plant ideotypes. 
It will be a game changer in precision farming era and ensure the food security in 
the climate change scenarios.
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Chapter 9
Biochar from On-Farm Feedstocks 
for Sustainable Potassium Management 
in Soils

Waqas Ali Akbar, Muhammad Ilyas, Muhammad Arif, Hafeez Ur Rahim, 
Fazal Munsif, Muhammad Mudassir, Shah Fahad, Fazal Jalal, 
and Sajjad Zaheer

Abstract Potassium is an essential soil macronutrient for crop production, yet a 
large proportion of potassium is either lost or accumulates in plant tissues. Therefore, 
recycling potassium accumulated in plant tissues and reducing potassium losses 
from the soil is a major challenge for the agricultural system. In this context, the 
development of biochar from on-farm feedstocks and plant tissues appears as a 
sustainable solution for ensuring environmental and agricultural sustainability. In 
this review, we show that that potassium accumulated in on-farm feedstocks can be 
retained and converted into stable potassium in biochar. Potassium-enriched biochar 
is sustainable potassium source that reduces potassium loss.

Keywords On-farm feedstocks · Biochar · Potassium · Recycling · Sustainable 
agriculture

W. A. Akbar · M. Mudassir 
Department of Soil and Environmental Sciences, The University of Agriculture,  
Peshawar, Pakistan 

M. Ilyas · M. Arif (*) · F. Munsif · S. Zaheer 
Department of Agronomy, The University of Agriculture, Peshawar, Pakistan
e-mail: marifkhan75@aup.edu.pk 

H. U. Rahim (*) 
Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
e-mail: hafeez.kalpani@aup.edu.pk 

S. Fahad · F. Jalal 
Department of Agriculture, Abdul Wali khan University Mardan, Mardan,  
Khyber Pakhtunkhwa, Pakistan

© The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2023
S. Fahad et al. (eds.), Sustainable Agriculture Reviews 61, Sustainable 
Agriculture Reviews 61, https://doi.org/10.1007/978-3-031-26983-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26983-7_9&domain=pdf
mailto:marifkhan75@aup.edu.pk
mailto:hafeez.kalpani@aup.edu.pk
https://doi.org/10.1007/978-3-031-26983-7_9


220

9.1  Introduction

Potassium is a crucial macronutrient after nitrogen and phosphorus and plays an 
important role in sustainable crop production (Prajapati et  al. 2012; Wang et  al. 
2018). It is involved in many physiological processes in plants, such as photosyn-
thesis, stomatal conductance, and enzyme activation (Abd El-Rheem et al. 2015). It 
boosts crop growth and yield by increasing nutrient uptake by root development and 
increasing the roots’ ability to absorb more nutrients from the soil solution (Wakeel 
et al. 2002; Wu et al. 2019).

Plant metabolism is severely impacted by potassium shortage because it alters 
metabolite concentrations within plant tissues and influences gene transcription by 
modifying the activity of several enzymes (Armengaud et al. 2009). Potassium not 
only affect assimilates transport; but also helps in regulating the photosynthetic rate 
in plants. It improves the physical quality and shelf life of fruits and vegetables and 
the feeding value of grain and forage crops, contributing significantly to crop qual-
ity (Rezaeian et al. 2014).

Chemical fertilizers are the primary source of potassium utilized all over the 
world. Inorganic potassium fertilizers come from two different sources: potassium 
chloride and potassium sulfate. The farmers cannot afford potassium sulfate because 
of its high price. Potassium chloride contains chlorine, and its excessive application 
in soil raises its chloride level, which is toxic and detrimental to crop performance 
(Tariq et al. 2011).

As a result, using chemical fertilizers continuously raises production costs while 
accelerating soil erosion and environmental risks. The plant nutritionist should seek 
other potassium sources in this situation to increase crop yield and soil fertility over 
time at the lowest cost of production. Organic farm waste can be used as a source of 
potassium fertilizer or developed into an organic potassium fertilizer (Arshad 
et al. 2007).

Organic residues considerably enhance the soil’s chemical, physical, and bio-
logical properties (Olatunji et  al. 2006). Continuous treatment of organic wastes 
improves soil properties over time (Adeniyan et al. 2005). Compared to using inor-
ganic fertilizers, applying organic manures raised farm income (Olatunji et  al. 
2006). Agricultural wastes from farms can be recycled and used as a source of plant 
nutrients such as Nitrogen, Phosphorus, and Potassium (Aziz et al. 2010). Due to 
the rising cost of synthetic fertilizers and issues with waste disposal, interest in 
using these waste products produced on farms is becoming crucial. By addressing 
nutrient deficits, crop residues satisfy the crops’ need for nutrients.

Biochar has attracted widespread attention in recent decades as a novel material 
for environmental applications and fertilizer control (Ghodszad et al. 2021; Rahim 
et  al. 2022). Soil fertility and potassium availability issues can be solved by the 
application of biochar in the soil (Rahim et  al. 2020). Biochar contains a lot of 
exchangeable potassium, which boosts soil potassium levels and plant potassium 
consumption (Chan et al. 2009; Wang et al. 2018). Potassium, in contrast to other 
elements, is typically conserved and converted into potassium containing salts with 
high solubility during pyrolysis (Karim et al. 2017).
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Fig. 9.1 Potassium dynamics, cycling and availability from different organic and inorganic sources

According to research, biochar can replace a sizable percentage of conventional 
potassium fertilizers (Angst et  al. 2013). The potassium cycling and availability 
from different organic and inorganic sources in the soil are systematically illustrated 
in Fig. 9.1. In this context, this chapter briefly discusses agricultural residues and 
their biochar-based potassium recharge routes and ensures sustainable potassium 
cycling in the soil system for maximum crop production.

9.2  Forms of Potassium in Soil

Potassium in the soil is found mainly in four farms, water-soluble, exchangeable, 
slowly available (fixed), and mineral potassium. The uptake of potassium forms by 
plants and its ultimate cycling is illustrated in Fig. 9.2. These fractions coexist in a 
state of dynamic equilibrium, and these forms, in turn, control the potassium nutri-
tion in plants (Lalitha et al. 2014).

Water-soluble potassium is more important because plants can quickly absorb it 
and are found in soil solutions or on the surface of the clay. When the amount of 
soluble potassium in the soil solution drops, additional potassium is released into 
the solution via exchangeable forms, and plants quickly absorb it. potassium in soil 
solution, which accounts for a minor portion of soil’s total potassium, is a crucial 
sign of potassium availability (Afari-Sefa et al. 2004).
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Fig. 9.2 Potassium forms in soil, associated cycling and their uptake by crops. (Source: https://
www.pda.org.uk)

Fixed potassium exits between the layers or plates of clay minerals such as illite, 
vermiculite, and chlorite. The slow availability of potassium accumulated in this 
way prevents plants from making considerable use of it in a single growing season. 
However, the soil’s capacity to supply potassium over a long period is influenced by 
the presence of fixed potassium. Different exchangeable potassium sites are present 
in the soil that is typically accessible for the plants to meet their needs. In general, 
90–98% of the total potassium in soils is in the form that is comparatively difficult 
to get, 1–10% is available slowly, and 0.1–2% is accessible quickly (Afari-Sefa 
et al. 2004; Follet et al. 1981).

9.3  Potassium in Field Crops Residues and Its Release

Crop residues are an important source of potassium in soil (Andrews et al. 2021). 
Typically, nutrient content in crop residues is influenced by nutrient and water man-
agement, soil characteristics, crop specific nutrient demands, and phenological 
stage at harvest as plant potassium dynamics change over these factors (Öborn et al. 
2005; Zipori et al. 2020). Plant residue potassium is predominantly present in solu-
ble form in cell cytosol and represents its content (Li et al. 2014; Rosolem et al. 
2005; Sardans et al. 2015).

Numerous investigations have shown that a water extraction mechanism causes 
potassium to be rapidly released from plant residues (Dong et  al. 2019; Hougni 
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Table 9.1 Estimated potassium content in field crops residues

Source Crop Feed stock Estimated potassium (%) Reference

Maize Straw 1.48 Dong et al. (2019)
Maize Residues 1.53–1.69 Madar et al. (2020)
Rice Residues 2.1 Singh et al. (2014)
Rice Straw 2.19 Su et al. (2014)
Wheat Straw 2.26–2.60 Madar et al. (2020)
Wheat Straw 3.78 Wei et al. (2015)

et al. 2021; Li et al. 2014). This process is typically characterized by extremely high 
release rates after initial water application, followed by a slower release stage (Cobo 
et al. 2002; Rodriguez-Lizana et al. 2010).

The quantity and frequency of applied water determine the rate and total amount 
of potassium solubilization from plant material. For instance, Hougni et al. (2021) 
found potassium released rapidly from cacao pod husks at rates that varied as a 
function of rainfall frequency and quantity. A study comparing straw residues found 
that 10–20 mm of precipitation led to the greatest potassium release while less than 
5 mm of precipitation did not release significant amounts of potassium (Rosolem 
et al. 2005).

Maize and soybean residues released around 95% of total potassium contents 
under 275 mm precipitation over 2 months (Dong et al. 2019). When inundated with 
water, rice straw residues have been shown to release 90% total potassium after 
3 days (Li et al. 2014). Considering potassium solubilization is driven by water, and 
plant potassium uptake occurs through water uptake, strategically timed water 
applications during periods of crop demand could be used to supply potassium from 
residues in a fashion similar to inorganic fertilizers (Table 9.1).

9.4  Potassium in Biochar and Its Release

Post-harvest processing can influence residue potassium concentrations; for exam-
ple, biochar can substantially increase potassium content (Hossain et al. 2020). The 
potassium concentration of biochar varies with feedstock type and pyrolysis tem-
perature, as shown in Table 9.2.

Biochar produced from rice husks, corn stalks, and apple branches had more 
potassium than poultry litter, chicken manure, rice straw, and bamboo biochar 
(Hossain et al. 2020). Abu Zied Amin (2016) found 6.05 g kg-1 soluble potassium 
content in maize cob biochar, and Nguyen et  al. (2020b) obtained 8.50  g  kg−1 
replaceable potassium in rice husk biochar. Xiao et  al. (2018) discovered that 
increasing the pyrolytic temperature from 250 °C to 550 °C raised the potassium 
content in chicken manure biochar from 4.16% to 5.93%.

At pyrolytic temperatures of 400 °C and 600 °C, poultry litter-derived biochar 
contained 3.88% and 5.88% potassium (Subedi et al. 2016). Similarly, Vaughn et al. 
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Table 9.2 Potassium in Biochar derived from different feedstocks at different pyrolysis 
temperature

Source crop
Pyrolysis temp 
(°C)

Potassium 
(%) References

Maize straw 300 3.40 Song et al. (2018)
Maize straw 450 3.41 Song et al. (2018)
Maize straw 600 3.40 Song et al. (2018)
Rice straw 550–650 2.19 Si et al. (2018)
Wheat straw 300 0.25 Beheshti et al. (2017)
Wheat straw 350–550 0.25 Zheng et al. (2017)
Corn Stover 300 1.71 Enders et al. (2012)
Corn Stover 600 2.46 Enders et al. (2012)
Elephant 
grass

400 1.61 Ferreira et al. (2019)

Elephant 
grass

500 1.61 Ferreira et al. (2019)

Elephant 
grass

600 1.61 Ferreira et al. (2019)

Bamboo 600 2.78 Lu et al. (2018)
Hardwood 550 2.78 Nguyen et al. (2018)
Hardwood 600–650 0.13 Aller et al. (2017) and Khanmohammadi et al. 

(2017)
Sewage 
sludge

350 0.26 Zhao et al. (2018)

Sewage 
sludge

500 0.52 Enders et al. (2012)

Leaves waste 500 1.08 Enders et al. (2012)
Grass waste 500 6.13 Enders et al. (2012)
Food waste 400 1.46 Prakongkep et al. (2015)
Cofee waste 400–500 0.35

(2018) synthesized bio-solid biochar at temperatures 300, 400, 500, 700, and 
900  °C, with potassium contents of 3.89, 3.98, 4.06, 4.02, 8.12, and 9.83%, 
respectively.

Potassium release is influenced by microstructure, surface characteristics, and 
biochar degradation; these factors can be managed by altering the pyrolysis proce-
dure (Nguyen et al. 2020a). It has been reported that pyrolysis at temperatures above 
700 °C resulted in potassium losses (Johansen et al. 2011). Altering the pyrolysis 
temperature from 200 °C to 600 °C increased potassium solubility by an order of 
magnitude, demonstrating that adjusting the pyrolysis temperature is an effective 
approach for accelerating potassium release.

Condensation of organic C provides highly porous media and a larger interface 
area at these temperatures, allowing more potassium to be released from the biochar 
structure. Potassium release can be influenced by the structure by enhancing potas-
sium adsorption on exchange sites or boosting phytolith dissolution, which results 
in phytolith encapsulated potassium releases (Dove et al. 1992; Fraysse et al. 2006; 
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Ngoc Nguyen et al. 2014). Prior to Si being released by OH- groups through nucleo-
philic attack, Si-OH groups must be deprotonated and Si-O-Si linkages polymer-
ized. As a result, more extensive potassium releases occur when the amount of 
OH- on the surface of phytoliths increases.

9.5  Potassium Enriched Biochar a Way 
to Agricultural Sustainability

The main challenge with present agricultural systems is increasing crop yield in a 
more sustainable and environmentally favorable manner (Hamilton et  al. 2016; 
Srivastav 2020). Following the green revolution, agricultural practices increased 
their reliance on organic fertilizer to ensure higher crop productivity. Chemical fer-
tilizers boost crop productivity but endanger environmental sustainability by caus-
ing ecological imbalances such as biodiversity loss, global warming, and heavy 
metal inclusion in living species (Mandal et al. 2016).

Adopting a more natural farming method can reduce reliance on chemical fertil-
izers sustaining agricultural production and productivity. More recently, biochar 
blended with inorganic potassium fertilizer is considered an auspicious soil condi-
tioner to sustain nutrients in the soil and ensure sustainable agricultural nutrient 
management (El-Naggar et al. 2018; Yu et al. 2018).

Several studies report an increase in crop yield in response to biochar mixed with 
inorganic fertilizer, particularly potassium. Likewise, Ye et al. (2020) reported that 
when biochar was added along with inorganic potassium fertilizer, benefits to crop 
yield increased to 48%, thus rendering a 22% greater increase in yield than the addi-
tion of fertilizer alone. A study by Song et al. (2018) reported that the application of 
maize straw biochar produced at different pyrolysis temperatures enriched with 
potassium fertilizer (KCl) resulted in an increase in crop yield and quality through 
substantial increment in potassium uptake by wheat crop.

Furthermore, the application of maize straw biochar produced at a pyrolysis tem-
perature of 300 °C enriched with potassium results in potassium uptake of 0.95 g 
pot-1 and yield of 10.33 g pot-1. However, maize straw biochar produced at a pyroly-
sis temperature of 450 °C enriched with potassium results in potassium uptake of 
1.06 g pot-1 and yield of 11.48 g pot-1 in wheat crop.

Moreover, Zhang et al. (2012) also found an increase in maize yield of 10.5% in 
response to biochar coupled with potassium fertilizer. Zahedifar et al. (2017) found 
a pronouncing effect of application of biochar at the rate of 1.5% combined with 
potassium fertilizer at the rate of 300 mg kg−1on yield of Basil (Ocimumbasilicum) 
increasing in fresh weight of 12.77%, dry weight of 5.74%, potassium content of 
12.65 mg kg−1 in Basil respectively.

The synergistic effect of potassium enriched biochar on growth and yield of dif-
ferent crops might be due to the absorption and slow release nature of potassium 
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from biochar resulting in over long availability of potassium improving potassium 
use efficiency leads to sustainable crop production.

9.6  Conclusion

With a growing global population, it is difficult to ensure sustainable crop produc-
tion on nutrient-depleted soils. Among others, increasing soil carbon sequestration 
with biochar and consequently increased crop-use efficiency of potassium fertilizer 
are the two measures to reduce chemical fertilizer inputs. Before using biochar, it is 
crucial to choose the right type, pace, and affinity with agro-growing systems. 
Biochar is a technique for slowing nutrient release and protecting the environment 
without sacrificing crop output. Biochar application may improve soil quality, boost 
the resilience of agroecosystems and agroforestry, and aid in their adaptability to 
changing climatic circumstances. However, the effects of biochar would be site- 
specific. Of course, biochar is not a remedy for all agroecosystem problems. 
However, it could be a significant strategy worth considering in the future establish-
ing a potassium sustainable agroecosystem.
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Chapter 10
Biochar for Crop Protection from Soil 
Borne Diseases

Fatima Abid, Rabia Naz, and Tayyaba Asif

Abstract Pest diseases in crop soils are likely to increase under the warming effects 
of climate change, calling for advanced practices to control pest and maintain food 
production. Biochar application, for example, is improving soil health by supplying 
nutrients, removing toxic compounds, increasing the population of mycorrhizal 
fungi, nutrient retention and influencing beneficial microorganisms which are 
known to enhance plant growth and resist phytopathogens. Few reports show that 
biochar protects to plants against soil borne diseases via induced systemic resis-
tance and systemic acquired resistance. Here we review biochar uses with focus on 
properties, effects on plant-soil microflora interactions, plant health, plant growth 
improvement, and control of soilborne diseases.

Keywords Biochar · Induced resistance · Disease control · Soilborne pathogens · 
Organic amendment · Microbial community

10.1  Introduction

Two most significant and tough challenges being faced by our society, are to feed 
the continuously rising populace and to evade the change of climate (Fahad et al. 
2019, 2020, 2021, 2022). To diminish the effect of utilization of more land on vari-
ous ecosystem amenities, the scientists must enormously focus on the eco-friendly 
and good approaches which are sustainable for our agriculture (Kolton et al. 2017; 
Shah et al. 2022; Al-Zahrani et al. 2022). The sustainability of agriculture is at stake 
due to various factors which are deteriorating the soil properties and soil health 
including soilborne diseases (Shaaban et al. 2018; Toju et al. 2018; Naz et al. 2021a; 
Bamagoos et al. 2021).
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Healthy soil can efficiently improve the plant health and production while soil-
borne diseases are majorly affecting the soil health as well as quality production of 
food and feed (Yang et al. 2019; Riaz et al. 2021). The repeated cultivation of the 
same crop is known to deteriorate the soil physico-chemical properties and its nutri-
ent status which can further worsen the soil for succeeding crop productivity and 
cause soil sickness (Wang et al. 2019; Liu et al. 2019; Zia et al. 2021). Seedling 
blight, damping-off, seed and root rots are the most communal soilborne diseases in 
plants which are particularly being instigated by Rhizoctonia solani and Pythium 
spp., causing significant crop yield losses for instance eggplant, cucumber, melon, 
pepper, corn, potato and tomato (Fischer and Glaser 2012; Nikraftar et al. 2013; 
Jaiswal et al. 2014).

Farmers usually rely on the use of certain chemicals and fungicides to eliminate 
the pathogens; however, these chemicals and fungicides may damage the plants and 
the beneficial microflora, besides being expensive (Naz et al. 2018; Jaiswal et al. 
2019). Thus, control of soil borne pathogens is the essential step for preserving soil 
health and may be supportive for sustainable soil management to strengthen the 
agriculture (Xiang et al. 2019).

Consequently, there is a need to find the non-chemical, alternative approaches to 
reduce the incidence of soilborne diseases. One developing method that holds 
potential for eradicating the pathogens causing soilborne diseases is the addition of 
biochar which has fascinated extensive consideration owing to its key role in 
improving soil (Jaiswal et al. 2019). Biochar, the compact co-product of biomass 
pyrolysis, has increased significant research and profitable interest over the past 
time for a variety of reasons comprising increased soil fertility status (Frenkel et al. 
2017; Ibad et al. 2022; Irfan et al. 2021; Khadim et al. 2021a, b; Khan et al. 2021; 
Khatun et al. 2021; Muhammad et al. 2022; Subhan et al. 2020; Tariq et al. 2018; 
Wiqar et al. 2022; Wu et al. 2020; Wu et al. 2019; Xue et al. 2022), pollutant fixation 
(Ho et al. 2017), improved plant efficiency (Ahmed et al. 2017). Soil amendments 
with biochar applications has been reported to increase tomato, maize, pepper, soy-
bean and wheat plant growth and yield attributes (Graber et al. 2010; Islami et al. 
2011; Alburquerque et al. 2013; Egamberdieva et al. 2016).

Moreover, the exogenous treatments of plants with biochar have also reduced the 
incidence of soilborne diseases by inducing ISR against fungal phytopathogens 
(Elad et al. 2011) including Botrytis cinerea (Mehari et al. 2015), Fusarium oxyspo-
rum in tomato (Akhter et  al. 2016) R. solani in cucumber (Jaiswal et  al. 2014). 
Hence, the biochar application has mitigated the harmful effects of soil reaction by 
adjusting the soil microflora (Wang et  al. 2020) and have revealed the potential 
proficiency to subdue the soilborne plant diseases (Beesley et al. 2011). Meeting the 
twin challenges of rising food call and climate alteration, it is imperious to take 
environmental performs for maintainable farming.

Various studies have described that biochar applications also have impending 
role for modifying climate change by lasting reclamation of carbon and inducing 
greenhouse gas changes in soil, and biochar treatments has been recommended as 
an active countermeasure to lessen emissions of nitrous oxide and methane 
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(Kolton et al. 2017). The biochar treatments have increased leaching of nutrients 
and supplementation for better plant growth (Xiang et  al. 2019) and biochar 
adjusted soils had higher cation exchange, water holding, pH, larger surface area 
and lower soil bulk density, compared with the unamended soils (Enders 
et al. 2012).

10.2  Biochar to Improve Soil Health

Growth and expansion into biochar, the addition of charcoal to soil, has been grow-
ing significantly over the last few decades. As a consequence of rising alarm over 
worldwide climate variation caused by synthetic, anthropogenic greenhouse gas 
releases, there is a global effort to move from a petro economy powered by fossil 
carbon to a budget driven by renewable energy assets, containing biomass. Biochar 
is a dense by-product of biomass formed by pyrolysis or by higher temperatures 
about 250 °C, under limited supply of or in the whole absenteeism of air (Mao et al. 
2012). Being an exothermic procedure, pyrolysis of biomass gathers more energy 
than is keen in the heating procedure (Murakami et al. 2007). The gaseous and liq-
uid co-products are used for energy or chemicals, while the biochar is useful to 
the soil.

Biochar is trumped up of vital elements for instance hydrogen, carbon, nitrogen, 
sulfur and oxygen as well as reserves in the ash portion. Biochar is highly spongy, 
black and finely grained, with light mass, enormous surface area and pH, all of 
which have a progressive influence on its use to soil. The raw material (biomass) 
used and handling parameters grasp the properties of the biochar.

Wood chips, cow manure, grass, wheat straw, casava rhizome and rice husk are 
being used as raw resources by pyrolysis technology to make biochar (Ronsse et al. 
2013). Various other materials including agronomic wastes (husks, peels, bark, 
straw, sawdust, seeds bagasse, wood chunks, corn cobs and stalks, urban waste and 
industrial wastes and urban/civic wastes (Kameyama et al. 2016) have been expan-
sively utilized, therefore also attaining waste managing through its manufacture and 
usage (Woolf et al. 2010). The biomass utilized for the manufacture of biochar is 
chiefly composed of hemicellulose, cellulose and lignin polymers (Sullivan and 
Ball 2012). Between these, cellulose has been originated to be the chief constituent 
of maximum plant-derived biomasses, but lignin is also imperative in woody 
biomass.

Essentially, biochar additions to soil have been displayed to expressively increase 
soil nutrient preservation and accessibility to vegetation, and crop output 
(McCormack et al. 2019). The modification of topsoil with biochar has been stated 
to increase plant growth and yield indices. Furthermore, biochar grips the ability as 
an appropriate carrier of microbial inoculants to expand plant growth. The biochar 
uses improved water holding capacity, soil cation exchange capacity and organic 
material.

10 Biochar for Crop Protection from Soil Borne Diseases



234

10.3  Improvement of Soil Microflora and Plant Growth by 
Biochar Amendment

Various studies have been reported in displaying the ability of biochar to improve 
the soil microflora, resulting in greater accretion of carbon in soil. Also adsorbing 
nutrients organic constituents, and gases, biochar is expected to offer a locale for 
actinomycetes, bacteria and fungi (Thies and Rillig 2012). The improvement of 
water holding after biochar utilization in soil has been well known (Busscher et al. 
2010) and this could disturb the microbial inhabitants of soil. Numerous interpreta-
tions stated that phosphate solubilizing fungi in combination with biochar improved 
growth and yield attributes of Glycine max and Vigna radiate plants, compared to 
untreated control (Saxena et al. 2017). The usage of biochar enhanced mycorrhizal 
growth because this association has provided the best conditions to plant roots for 
more colonization (Solaiman et al. 2010).

Biochar applications are also reported in Phaseolus vulgaris to improve the bio-
logical N2 fixation largely due to larger accessibility of micronutrients to plants. 
Moreover, biochar reduced leaching of NH4

+ by supporting it in the apparent soil 
where it was existing for plant approval (Lehmann et al. 2003). Mycorrhizal fungi 
were frequently involved in crop administration approaches as they were broadly 
utilized as additions for soil inoculum (Schwartz et al. 2006). The bacterial and fun-
gal hyphae that inhabit the biochar bits (or other porous materials) may be threatened 
from soil predators such as Collembola, mites, nematodes and protozoans (Ezawa 
et al. 2002). Biochar can upsurge the cost of unharvested crop yields and confirm the 
efficient plant growth (Oguntunde et al. 2004). Biochar applications to the soil, has 
significantly enhanced the rice yield with small P availability (Silber et al. 2010).

Several properties are interrelated and may turn synergistically to enlarge crop 
output. The straight helpful properties of biochar mixing for the suitability of nutri-
ents are largely because of the higher content of phosphorus, zinc, and potassium 
accessibility and, to a reduced level of copper and calcium. Very few studies have 
examined the ability for altering biochar in soil to influence plant competition 
against pathogens. Alterations regarding charcoal additions reported to have nega-
tive impact on the proliferation of phytopathogens (Matsubara et al. 2002). It has 
been reported that the powdered hardwood when used to make biochar and supple-
mented to asparagus grown soil exhibited a prominent decrease in root lesions insti-
gated by F. asparagi, F. oxysporum and F. proliferatum compared to control soil 
where biochar was not added (Novak et al. 2009).

10.4  Effects of Biochar Application on Plant Diseases

Few studies have described the strength of biochar soil adjustment against soilborne 
diseases to influence the level of plant resistance. The charcoal based biochar appli-
cation has been documented for their suppressive effects against soilborne Fusarium 
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sp. (Matsubara et al. 2002; Elmer and Pignatello 2011). The suppression of soil-
borne pathogens owing to biochar applications is dependent upon several mecha-
nisms, including: (i) nutrient solubilization and distribution to plant for improving 
growth and resisting pathogenic microflora (ii) improving the defense system of soil 
microbes against phytopathogens via enhancing antibiotic production and parasit-
ism (iii) presence of organic compounds in biochar compositions result in propaga-
tion of resilient communities of beneficial microbes; (iv) the elicitors released by 
biochar applications may persuade the systemic defense pathways (Atkinson et al. 
2010; Frenkel et al. 2017).

Microorganisms which cause reduction in toxic organic pollutants are usually 
considered extra resistant to a diversity of lethal organic compounds as well as 
pathogenic attacks. Moreover, volatile compounds and antibiotic producers are 
also found to be resilient to an assembly of antibiotics (Ahmed et  al. 2017). 
Microorganisms producing antibiotic compounds have been reported in biochar- 
amended soil for instance Pseudomonas aeruginosa and Pseudomonas men-
docina (Graber et al. 2010). The prospect that biochar encourages plant systemic 
resistance responses against disease microorganisms has been thoughtful in 
numerous different systems linking foliar pathogens. The severity of diseases 
triggered by biotrophic (Oidiopsis sicula) and necrotrophic (Botrytis cinerea) 
pathogens in tomato and pepper (Graber et al. 2010) was sigificantly reduced in 
biochar-amended treatments. Biochar soil adjustments in strawberry plants addi-
tionally resulted in destruction of pathogens including Podosphaera aphanis, 
B. cinerea, and Colletotrichum acutatum (Meller Harel et al. 2012).

Induced resistance in plants, was found to be effective against a wide range of 
pathogens and parasites comprising fungi, viruses, bacteria and nematodes. ISR is a 
functional state of enhanced defensive capability provoked by exact stimuli, 
whereby the plant’s innate defenses are potentiated against succeeding diseases 
(Vallad and Goodman 2004).

10.4.1  Biochar to Control of Soilborne Phytopathogens

The concerns as food safety, decreasing soil richness, profitability and climate vari-
ation are the active components after the introduction of new skills or new agricul-
tural schemes. The alteration of soils for their stress alleviation goals at dipping the 
danger of pollutant handover to entities in closeness. Biochar can aid as a standard 
select for this drive because its basis is biological and it might be applied directly as 
pretreatment to soils (Beesley et al. 2011). There are dual features which mark bio-
char adjustment higher to other organic supplies: the main is the high permanency 
against deterioration, with the aim of persisting in soil for lengthier times showing 
enduring helps to soil and the another is having extra competence to keep the nutri-
ents available. Biochar adjustment increases the soil quality by increasing the num-
ber of beneficial microbes, improving pH, cation-exchange capacity and 
moisture-holding ability (Mensah and Frimpong 2018).
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The mixing of biochar to the soil has exposed the increase in accessibility of 
prime cations as well as in absorptions of nitrogen and phosphorus (Lehmann et al. 
2003). Various studies have revealed the dominance of biochar in controlling phyto-
pathogens. Biochar has been found to be very suppressive against soilborne 
(R. solani and species of Phytophthora and Fusarium) as well as airborne pathogens 
(powdery mildew and B. cinerea) (Bonanomi et al. 2015). The claim of the biochar 
resulting from citrus wood was proficient of decreasing the incidence of air-borne 
gray mold in chili caused by B. cinerea. However, the available data is very scarce 
regarding the disease suppressive potential of biochar against soilborne pathogens 
(Elmer and Pignatello 2011).

Additionally, biochar application was established to lessen plant diseases by 
influencing systemic resistance in plants in contradiction of different fungal patho-
gens, containing R. solani in cucumber, F. oxysporum and B. cinerea in tomato 
(Azeem et  al. 2021). Biochar applications alone as well as in combination with 
mycorrhizal fungi to asparagus soils, has not only increased the asparagus biomass 
but also decreased the root rot infections caused by Fusarium (Elmer and Pignatello 
2011; Thies and Rillig 2012; Akhter et al. 2016); Ogawa (2009) stated the usage of 
biochar and biochar edited manures for monitoring the diseases caused by fungi and 
bacteria in topsoil.

10.4.2  Role of Biochar in Induced Resistance Against 
Soilborne Phytopathogens

Generally, there are two well defined systems of induced resistance which are 
termed as are induced systemic resistance (ISR) and systemic acquired resistance 
(SAR). The chemical composition of elicitors as well as controlling pathways for 
both of these systems are prominently different from each other. SAR is connected 
with the production of pathogenesis-related (PR) proteins and arbitrated through a 
salicylic acid dependent procedure (Naz et  al. 2018, 2021a). The hypersensitive 
reaction is known as the initiative response of SAR against pathogenic. However, 
certain fungal and bacterial species particularly PGPR colonization with plant roots 
develop systemically the ISR mechanism (Van der Ent et al. 2009; Ullah et al. 2020).

The ISR resistance mechanism is arbitrated by jasmonic acid and ethylene signal-
ing however, the induction of PR-proteins is not included in such type of resistance 
mechanism (Van der Ent et al. 2009). The biological as well as chemical elicitors 
which can be released from nonpathogenic or pathogenic microorganisms, can elicit 
SAR (Ali et al. 2018; Naz et al. 2021b). For instance, the compounds released from 
Trichoderma spp. can influence SAR as much as they stimulate ISR (Nawrocka and 
Małolepsza 2013). Chemical stimulators of systemic resistance comprise the syn-
thetic SA-analogues acibenzolar-S-methyl and 2,6- dichloroisoniciotinic acid, methyl 
jasmonate, chitin and chitosan, β-aminobutyric acid and laminarin, silicon, fatty 
acids, amino acids, and phosphate salts, remains can also produce systemic resis-
tance, as can ecological agents such as moisture, osmotic, temperature stresses and 
mechanical wounding (Romero-Puertas et al. 2008).
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Primed plants show sooner and sturdier instigation of cellular defense follow-
ing pathogen challenge relative to the un-primed or untreated plants (Zimmerman 
et  al. 2011; Naz et  al. 2021a, 2022), comprising earlier oxidative eruption and 
strongly up-regulating the expression of defense genes (Zimmerman et al. 2011; 
Meller Harel et al. 2012; Naz et al. 2014; Butt et al. 2019). While the molecular 
and physiological mechanisms underlying well-informed responses are widely 
unidentified, priming has been detected to be an essential part of both ISR and 
SAR (Yasmin et al. 2020). Molecular indication for the induction of plant defenses 
systemically via both ISR and SAR paths by biochar was observed (Meller Harel 
et al. 2012; Jaiswal et al. 2020). Biochar addition to the hitting medium of straw-
berry plants repressed fungal diseases produced B. cinerea, C. acutatum, and 
P. apahanis.

The biochar amendments to plant roots confirmed the ethylene and SA-induced 
expression by increasing the expression of defense-related genes including 
FaWRKY1, FaPR1, Falox, Faolp2 and Fra a3 (Meller Harel et al. 2012). The ques-
tion increases, which mechanism(s) are employed by biochar to induce ISR and 
SAR defense systems, PGPF and PGPR root colonization is known to develop ISR 
systemically in plants (Hossain et  al. 2017). The Bacteroidetes associated 
Flavobacterium was found to be the most intensely tempted by the biochar. 
Adherents of the Flavobacterium, usually own a storage of extracellular enzymes 
for example chitinases and proteinases with having the potential to damage fungi, 
insects, nematode and bacteria residents (Bernardet and Bowman 2006). Also, 
many other species of genus Flavobacterium are commonly known to release sec-
ondary metabolites including antibiotics (Enisoglu-Atalay et al. 2018).

In addition, some Flavobacterium strains were proficient of instigating a fighting 
response of plants to diverse diseases (Kolton et  al. 2011; Enisoglu-Atalay et  al. 
2018). Further, hydrolytic enzyme-producing genera including Cellvibrio 
(Betaproteobacteria) were also persuaded in the rhizosphere of the biochar-altered 
pepper plants (Kolton et  al. 2011). Stimulatingly, biochar alteration was found to 
antagonize the Pseudoxanthomonas genus (Rajkumar et al. 2008; Kolton et al. 2011). 
It rests to be grasped what types of biochar can persuade conflict responses, seeing 
the very big inconsistency in chemical and chemical properties that biochar display, 
contingent on original pyrolysis and conditions (Sohi et al. 2009). Yet, we imagine 
that disease control efficiency will differ with other biochar production, biomass 
sources, temperatures, plant growth systems, plant species and diseases (Table 10.1).

10.5  Status

Biochar as an important constituent of soil-less substrates has been tried in several 
experiments; which were focused with numerous types of biochars, and several 
studies intricate mixtures of biochar with other additions for instance fertilizers and 
mycorrhiza (Costell et al. 2012) and humic acid harvests (Vickers 2017). The stud-
ies verified elevated percentages of biochar: growing media frequently reaching 
very high biochar percentages (>60%) (Dumroese et  al. 2011). Analyses 
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Table 10.1 Impact of biochar amendments on diseases caused by soilborne pathogens

Host
Pathogen/
disease

Biochar 
feedstock

Biochar 
concentration

Type of 
experiment References

Asparagus Fusarium 
oxysporum
f. sp. asparagi;
F. proliferatum 
(fusarium 
crown and root 
rot)

Hardwood dust
Charcoal

0, 1.5 and 3% 
(w/w)

Pots 
(greenhouse 
conditions) 
and field 
conditions

Elmer and 
Pignatello 
(2011)

Tomato Botrytis cinerea Olive pomace
Citrus wood
Greenhouse 
waste
Eucalyptus wood

0.05, 1 and 
3%
3 and 5%
0.05, 1 and 
3%
0.05, 1 and 
3%

Pot experiment Elad et al. 
(2011) and 
Mehari et al. 
(2015)

Tomato Fusarium 
oxysporum
f.sp lycopersici

Wood & Green 
waste biochar

3% Growth 
chamber and 
field conditions

Akhter et al. 
(2016)

Red oak 
and

Phytophthora Pine 0, 5, 10 and 
20%

Pots 
(greenhouse 
conditions)

Zwart and 
Kim (2012)

Red maple Cinnamomic 
and P. cactorum 
(stem canker)

Rice Meloidogyne 
gramini

Oak wood (0.6, 1.2, 2.5, 
5%)

Pot experiment Huang et al. 
(2015)

Bean Rhizoctonia 
solani 
(damping-off 
and root rot)

(i) Eucalyptus 
wood chips
(ii) Greenhouse 
waste

0, 0.5, 1 and 
3%
(w/w)

Pots 
(greenhouse 
conditions)

Graber et al. 
(2014)

Cucumber Rhizoctonia 
solani 
(damping-off 
and root rot)

(i) 
Eucalyptuswood 
chips
(ii) Greenhouse
Waste

0, 0.5, 1 and 
3%
(w/w)

Pots 
(greenhouse 
conditions)

Jaiswal et al. 
(2014)

Asparagus Fusarium 
oxysporum
f. sp. asparagi
(Fusarium root 
rot)

Coconut fiber
Charcoal

0, 10 and 
30% (v/v)

Pots 
(greenhouse 
conditions)

Matsubara 
et al. (2002)

encompassed chemical properties and several parameters of plant development and 
additional measurements for instance photosynthetic pigments (Fascella 2015). 
Mostly, biochar had an impartial or helpful influence on plant growth paralleled 
with peat media when present in absorptions lower than 30%, and in some works 
even an abundant concentration was found to be not injurious (Méndez et al. 2015; 
Nieto et al. 2016).
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A helpful impact of biochar on reducing plant fungal diseases was first reported 
about 170 years ago and described consideration in the last decade where numerous 
pathosystems particularly soilborne pathogens, were considered by different crowds 
globally (Elad et al. 2011; Postma et al. 2013; Iyyer et al. 2014). Later, Bonanomi 
et al. 2015 summarized the data from 13 pathosystems that shown the result of bio-
char on plant diseases. In their study, they described that 85% of the studies exposed 
a helpful effect of biochar in reducing the severity of plant disease, 12% showed no 
result, and only 3% presented that biochar mixing up were favorable to plant disease 
(Zhang and Lin 2014). Though, their analysis did not deliberate the detail that many 
of these revisions exposed that plant resistance and(or) vulnerability to disease was 
reliant on the critical aspect of the biochar dosage (Conversa et al. 2015).

10.6  Conclusion

Biochar can be potentially amended to soil for improving the plant growth, perfor-
mance and alleviating the negative impacts of soilborne diseases which eventually 
can reduce the crop yield losses. Biochar amendments cause such changes of con-
trolling pathogens and enhancing the community of beneficial microbes by making 
adjustments in the soil microflora. Biochar alterations has been reported in this 
chapter to significantly enhance the beneficial bacterial community which is known 
to improve the soil and plant health by improving the physico-chemical properties 
of soil. Moreover, the biochar treatment should be taken as ecofriendly and very 
efficient practice as it can effectively suppress the pathogenic growth and, applied 
as a sustainable approach in agriculture systems for soil management.

Therefore, it can be decided by this inclusive review in this chapter that biochar 
has the potential to increase the soil properties, microbial abundance, plant growth, 
inhibiting soilborne pathogens and biological nitrogen fixation. Consequently, it is 
suggested to practice biochar as a soil adjustment for long-term carbon sink renovation.
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Chapter 11
Biofertilizers to Improve Soil Health 
and Crop Yields

Anas Iqbal, Muhammad Izhar Shafi, Mazhar Rafique, Waqar-un-Nisa, 
Ayesha Jabeen, Sofia Asif, Maid Zaman, Izhar Ali, Bushra Gul, 
Xiangru Tang, and Ligeng Jiang

Abstract Current soil management practices depend highly on mineral fertilizers, 
which are costly and unsustainable. Alternatively, eco-friendly strategies such as 
applications of plant growth-promoting rhizobacteria, endo-mycorrhizal fungi, cya-
nobacteria, and other beneficial microorganisms, have recently emerged to enhance 
nutrient uptake and plant tolerance to abiotic stress. These biofertilizers have thus 
become vital in agriculture due to their potential to improve food safety. Here we 
review the role of biofertilizers in improving soil health and sustainable agriculture 
production. Applying biofertilizers promotes plant water and uptake, growth, and 
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tolerance to abiotic and biotic factors. We explain how biofertilizers control crop 
functional attributes such as growth and yield of plants, nutrient characteristics, 
plant defensive performance and protection. Here we focus the activation of growths 
and defense-related genes in the signaling network of cellular pathways, causing 
cellular response and thus crop improvement.

Keywords Chemical fertilizers · Soil · Bio-fertilizers · Biotic factors · 
Microorganisms · Crop production

Abbreviations

PGPR Plant growth promoting rhizobacteria
AARI Ayub Agricultural Research Institute, Faisalabad, Pakistan
NIAB Nuclear Institute of Agriculture and Biology, Faisalabad, 

Pakistan
ACC-deaminase Amino cyclopropane-carboxylic acid
NIBGE National Institute for Biotechnology and Genetic Engineering, 

Faisalabad, Pakistan
NARC National Agricultural Research Centre, Islamabad, Pakistan
ISES Institute of Soil and Environmental Sciences, University of 

Agriculture, Faisalabad, Pakistan

11.1  Introduction

Soils are one of the world’s most significant natural resources, and protecting, main-
taining, and improving them is crucial for the survival of life on Earth. The soil’s 
fertility allows for supplying critical chemical elements in the quantities and ratios 
required for the growth of plants (Itelima et al. 2018). It is critical for crop produc-
tion, yet poor soils and runoff remain a management concern in many world regions. 
The basic reason is that researchers and farmers commonly assess soil fertility using 
different theories and ambiguous literature findings (Yageta et al. 2019). As a result, 
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understanding soil fertility is critical for enhanced soil production and appropriate 
land management strategies. Soil researchers have created numerous chemical, 
physically, and biological methods for measuring soil fertility, but the assessment is 
not confined to scientific measurements and is based on farmers’ qualitative judg-
ments (Karlen et al. 2003; Ali et al. 2020; Iqbal et al. 2020; 2021a).

Disparagement of the ineffectiveness of major technology implementation and 
scientific allocation of material by extension facilities has increased interest in the 
importance and incorporation of farmers’ understanding (Berazneva et  al. 2018; 
Guzman et al. 2018). Farmers apply their local soil skills to make daily land mana-
gerial decisions by observing and evaluating (Bado and Bationo 2018). Incorporating 
indigenous data assists extension staff in matching their energies to native require-
ments and may increase the uptake of co-produced technologies (Ingram et  al. 
2018). Farmers’ assessments of soil health are widely reported as ‘regional’ or 
‘farmer’s soil awareness’ in many ethno-pedological research Fields (Barrera- 
Bassols and Zinck 2003), demonstrating that farmers may be aware of the mecha-
nism and scientific attributes of soil type but use different connotations or 
conceptions to interact and plan their soil productivity. As a result of how local 
information systems differ from scientific knowledge systems, shared understand-
ing among farmers and researchers is difficult (Agrawal 1995). According to 
(Barrios et  al. 2006), while both systems share indispensable concepts, like the 
importance of water in plant growth, every information system comprises gaps that 
others fill. They also claimed that attempting to strike a balanced scientific precision 
and local relevance broadens common information, resulting in a new, hybrid 
knowledge base. Farmers and agronomists both begin their appraisal of soil fertility 
with the same question: crop growth efficiency (Murage et al. 2000). Apart from 
that, growers also define the qualities of healthy or unfertile topsoil, primarily 
through physical and morphological traits like color and texture, which are regarded 
as universal soil fertility criteria (Mairura et al. 2007). Soil scientists use quantita-
tive analysis to assess soil as a natural resource, whereas growers assess soils as part 
of their day-to-day work in the field. Producers have more knowledge or ‘technical 
experience’ of soil, whereas scientists have more scientific expertise or understand-
ing of the soil (Ingram et al. 2010). Such distinctions can be classified into three 
parts: awareness of additional environmental knowledge, spatial scale, and timing. 
Examining the various approaches by growers and researchers reveals the potential 
worth of increased consciousness regarding indigenous descriptions of soil quality, 
which indicate full forms of information and livelihood knowledge and have impli-
cations for developing an integrated soil approach to the management (Yageta 
et al. 2019).

Sustainable development in the agricultural system might be accomplished without 
affecting future generations’ environmental resources or capacity to meet their needs 
(Umesha et al. 2018). Excessive usage of synthetic fertilizers depletes favorable living 
circumstances since residues that act as secondary contaminants might infiltrate food 
chains and eventually humans (Kumar et al. 2019). Secondary pollutants can linger in 
the ecosystem for an extended time, posing a health risk (Uosif et al. 2014). The use 
of biofertilizers rather than agrochemicals may usher in a new era of industry. 

11 Biofertilizers to Improve Soil Health and Crop Yields
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Biofertilizers could help plants get the necessary nutrients while not harming the envi-
ronment (Mishra and Dash 2014). This section could assist as a helpful guide for 
developing biofertilizers and using them to accomplish agricultural sustainability.

11.2  Current Fertility Status of Pakistani Soils

The optimum crop yield depends on good soil fertility (Hesham and Fahad 2020. 
Iqra et al. 2020; Akbar et al. 2020; Mahar et al. 2020; Noor et al. 2020; Amanullah, 
Fahad S 2017, 2018a, b; Amanullah et al. 2020, 2021; Amir et al. 2020; Mahmood 
et al. 2021; Farhana et al. 2020; Farhat et al. 2020, 2022; Liu et al. 2023). Soil analy-
sis over time is essential and provides basic and present soil quality. For several 
reasons, soils in arid and semi-arid parts of the globe are often infertile Fields 
(Vanlauwe et  al. 2011). Nutrient loss reduces soil fertility when restoration with 
organic or inorganic inputs impacts crop development and production (Chukwuka 
2009; Luo et al. 2020, Ullah et al. 2020). The loss in soil quality is thought to be a 
major contributor to the low productivity of crops such as rice, wheat, sugarcane, 
maize and tobacco (Belachew and Abera 2010; Yuan et al. 2022).

Pakistan is primarily a dryland region, with 80% of its land area classified as 
desert or semi-arid, 12% classified as sub-humid, and 8% classified as humid (Khan 
et al. 2013). As a result, soils in arid and semi-arid locations are subjected to various 
degradation processes. The significant reasons for soil deterioration, desertification, 
and reduced agronomic productivity are salinization, drought stress, soil erosion 
and reduction of soil fertility and soil organic matter contents (Smith et al. 2020). 
Therefore, knowing the climate-soil-productivity nexus is critical for satisfying the 
expanding population’s food and nutrition needs. Pakistan’s population grew from 
approximately 30 million to 201 million from 1947 to 2018 and is expected to reach 
244 million in 2030 and 352 million in 2100 (Lal 2018).

However, the current annual growth rate of approximately 2.0% is falling and is 
anticipated to reach 0.3% by 2100. As evidenced by the rapid growth of the popula-
tion of particular cities, the rise in global population is indicative of Pakistan’s 
strong urbanization tendency (Alam et  al. 2007). From 1960 to 2018, Pakistan’s 
population grew by 4.5 million, while overall cereals (wheat, sorghum, maize, rice, 
millet, etc.) increased by 6.5 million metric tons (from 6.6 to 43.0 million metric 
tons). Therefore, per capita cereal crop yields increased significantly between 1961 
and 1980 but remained stable between 1980 and 2016 at 220 kg per person. Despite 
the tremendous improvements, there is no reason to be complacent because much 
greater difficulties are already soon. Not only will the population double between 
now and 2100, but nutritional tastes may move towards animal-based goods because 
of rising wealth and overall economic success. Promoting food security and nutri-
tion is exacerbated further by the ever-increasing hazards of soil pollution, expand-
ing suburbanization, global warming, and decreasing aquifers (Lal 2018).
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Indus plains in Pakistan have the lowest soil organic carbon contents, ranging 
from 0.5% to 0.1% in the root zone. Low soil organic carbon content impacts 
agronomic production and input performance Field (Lal 2018), particularly in 
Pakistan’s rice-wheat and other crop cultivation. However, implementing effective 
management techniques can regain soil organic carbon concentration. The goal is 
to improve the soil/ecosystem by expanding the use of biofertilizers. As a result, 
site-specific best management practices such as cover crops, irrigation tillage, 
conservation tillage, mulches, Integrated Nutrient Management incorporating 
manure/compost input, usage of biochar, biofertilizers, contour farming and crop 
interaction with livestock and plants are always recommended (Sarfaraz 
et al. 2020).

11.3  Biofertilizers

Biofertilizers are organic and include metabolites derived from microbes or bacteria 
themselves (Mishra and Dash 2014). Microorganisms extracted from soil (rhizo-
sphere), air and water are used to make bio-fertilizers, then purified for use in the 
field. Microorganisms start creating agriculturally important metabolites in response 
to particular environmental conditions, and plants may use these metabolites to sup-
port numerous biochemical processes (Salar et al. 2017). Microbes and microbial 
metabolites facilitate the breakdown of complicated soil minerals/particles into sim-
pler forms, and the resulted forms work as a growth stimulator for specific crops. 
Certainly, biofertilizers could be applied for various purposes (Kaur and Purewal 
2019; Xie et al. 2021) (Fig. 11.1).

Fig. 11.1 Biofertilizers functions in soil
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11.3.1  Types of Biofertilizers

Biofertilizers are one of the most effective current agricultural fertility contributors. 
Organic fertilizers are used in agriculture as an alternative to traditional fertilizers, 
including compost, domestic garbage, and green manure (Mishra et al. 2013; Ali 
et  al. 2021; Iqbal et  al. 2021c). Synthetic fertilizers are more successful in this 
regard. As a result, farmers frequently use chemical fertilizers for crop production. 
Still, on the other hand, their excessive use harms the ecosystem by polluting water, 
air, and soil (Iqbal et al. 2019, 2021b). Furthermore, they can potentially deplete soil 
health in the long-term (Itelima et al. 2018, Wu et al. 2021). Biofertilizers comprise 
microorganisms that encourage appropriate nutrient supply to the host plants and 
maintain optimal growth and physiological regulation. Organic fertilizers are made 
using several living microorganisms (Xie et al. 2021). Only microorganisms with 
specialized functions to improve plant growth and reproduction are employed 
(Gupta et al. 2015). Biofertilizers, as fundamental constituents of organic agricul-
ture, develop the quality and stability of soil classified into several types based on 
their kind, action, and availability (Kaur and Purewal 2019).

11.3.2  Phosphate-Solubilizing Microbe Biofertilizers

Phosphorus is an important macronutrient because it influences root growth, protein 
synthesis, signal transduction, respiration, and Nitrogen fixation in plants, (Ahmad 
et al. 2019; Izhar Shafi et al. 2020). Plants cannot utilize it as it is present in unavail-
able forms in the soil. The proper use of plants and routine taking must be converted 
to plant-available forms from unavailable Fields(Shafi and Sharif 2019). Many 
strains of useful bacteria can reduce phosphorus into its most basic form, allowing 
it to be easily absorbed by the root system. Phosphate-solubilizing microbes are, 
although naturally common, different in numbers depending on the soil type and 
place from isolated (Awais et  al. 2017). In developing nations, phosphate- 
solubilizing microbe biofertilizers, in combination with rock phosphate of poor 
quality, could be a substitute for pricey phosphate fertilizer fields (Rafique et al. 
2017; Mahanta et al. 2018). In this regard, research activities are being done world-
wide to identify microbes that may be important in maintaining agricultural sustain-
ability. According to various researchers, bacterial strains such as micrococcus, 
achromobactin, erwinia, pseudomonas and aerobacter play a prominent role in the 
solubilization of unavailable insoluble complexed forms of phosphate (Chen et al. 
2006). Aerobic and anaerobic microbes coexist in the rhizospheric soil. Bacterial 
strains or spores have different degrees of phosphorous solubilization depending on 
the places from where they are collected, and among all, the spores isolated from 
the rhizosphere had the highest phosphorus solubilization capacity. Phosphorus can 
bind with iron, aluminum and potassium to generate complex compounds,(Wahid 
et al. 2019). The entire conversion process is made up of a series of biochemical 
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processes involving the action of several enzymes caused by bacterial strains. The 
conversion of strongly bounded phosphorus into organic and inorganic acids takes 
place in the first stage, which reduces the soil pH and maximizes the accessibility of 
phosphorous to growing plants.

11.3.3  Rhizobium Biofertilizers

In developing countries, critical nutrient deficiencies in food crops are more diffi-
cult to overcome (Kumari et al. 2018). To solve these issues, there is a strong focus 
on employing microbial consortiums, particularly for continuous plant growth and 
meeting food requirements in the future (Khatoon et  al. 2020). Rhizobium is a 
nitrogen- fixing, continually evolving of the Rhizobiaceae family. Rhizobium infects 
plant roots, causing the production of particular rhizosphere soil (Gouda et  al. 
2018). According to (Kumari et  al. 2018), the more common rhizobium isolates 
BHU-M and BHU-B13-398 were extracted from mung bean roots. These strains 
enhance the shoot and root growth, the plants’ height and yield as they are associ-
ated with plant roots and capture nutrients for plant growth. Moreover, the rhizo-
bium inoculation was reported to regulate phytochelatin-related gene expressions in 
Medicago sativa and defend the plants against excessive copper stress (Chen et al. 
2018). Their findings revealed that rhizobium strains inoculation enhanced the 
plant’s growth through higher Nitrogen uptake by the plants. When untreated and 
rhizobium-inoculated treated plants were compared, a significant increase in copper 
uptake was noted. Several scientific studies have found that inoculating chickpeas 
with efficient microbial strains at planting time increases the total grain yield, 
(Funga et al. 2016).

Microorganisms in root nodules degrade molecular nitrogen to ammonia, which 
is then used by the plant system to synthesize proteins, vitamins, and other Nitrogen 
containing substances,(Belhadi et  al. 2018). The use of Rhizobium in particular 
legumes and other host plants aids in maintaining major agricultural benefits (Sahu 
et al. 2019). These bacteria are harmless and have shown no negative environmental 
impact (Singh et al. 2011). Despite their occurrence in leguminous plant nodules, 
several artificially created Rhizobium formulations are also available in the market.

11.3.4  Arbuscular Mycorrhizal Biofertilizers

Natural resources are constantly subjected to abiotic stressors at various growth and 
development phases where soil microbes can cope with it (Wahid et al. 2019). Plants 
begin manufacturing a particular type of minor metabolites when stressed to battle 
the excessive production of reactive oxygen species (Kaur et al. 2018a; b). To some 
extent, the creation of certain ingredients aids the plant’s survival under severe con-
ditions. One of the essential factors contributing to crop plant health is the 
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symbiosis interaction. Arbuscular mycorrhizal fungi are essential symbionts with 
roots that aid in nutrient uptake and numerous enzymatic activities in most plants 
(Yang et al. 2018; Ortas et al. 2021). The Arbuscular mycorrhizal fungi connections 
with plant rhizospheres give a variety of growth-promoting effects such as improved 
nutrition, increased resistance, drought tolerance, and modified soil composition 
(Berruti et al. 2016; Rafique and Ortas 2018). Water-soluble chemical fertilizers are 
avoided in organic farming, and it involves a variety of crop rotations. According to 
scientific investigation, this increases Arbuscular mycorrhizal fungi infection in 
soils with maximum nutrient uptake (Ortaş et  al. 2017). As a result, Arbuscular 
mycorrhizal fungi may be a viable alternative to chemical fertilizers.

11.3.5  Azotobacter Biofertilizers

Azotobacter is anaerobic bacteria from the family Azotobacteraceae (Sethi and 
Adhikary 2012). It is no symbiont, gram-positive diazotrophs, that give numerous 
benefits to plants and its interaction with growing crops enables them to maintain 
stable growth with enhancing production. The use of azotobacter as a bio-fertilizer 
to maximize production and cropping yield is recommended by several researchers. 
It also helps improve plant dry matter, yield and secondary metabolite synthesis 
(Damir et al. 2011). Azotobacter strains with imperative practical qualities (enhanc-
ing the health of soil and nitrogen fixation, promoting growth and production of 
crops, and assisting plants against drought and pathogens) could be a boon for sus-
tainable farming techniques (Shirinbayan et  al. 2019). In certain conditions, 
Azotobacter and related bacteria begin to develop cysts- a normal defensive mecha-
nism against various environmental factors (Socolofsky and Wyss 1962). The strains 
commence the production of pigments from deep brown to yellowish-green and 
purple color throughout the Nitrogen fixation process. The fundamental reason 
strains produce pigment during the nitrogen fixation process is to shield nitrogenase 
from the destructive impact of the oxygen (Shivprasad and Page 1989). Azotobacter 
is now produced using a fermenter and a mixer on a commercial scale. The use of a 
fermenter is a scientific and automated method for the proliferation of microbes. 
Specific nutritional media essential to maintain microorganism development are 
created and pasteurized, and the pH of the medium may be controlled to commence 
appropriate microbial populations. Mother culture (1–2% of the total) may be 
employed to enhance growth. Other significant needs include a constant supply of 
oxygen and the ability to maintain a constant temperature. Depending on the 
required demand, growth can be accelerated by utilizing a shaker, which increases 
the rate of nutrient absorption in a brief period.

A. Iqbal et al.
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11.3.6  Azospirillum Biofertilizers

Azospirillum is another type of biofertilizer that aids crops in maintaining differ-
ent biochemical reactions essential for agricultural production (Llorente et  al. 
2016). It is an essential member of the group Rhodospirillales and is closely asso-
ciated with grasses and occasionally with monocots, particularly rice and corn 
(Ruíz-Sánchez et al. 2011). Their interaction is directly related to nitrification, the 
release of particular fungicides and plant hormones (Gonzalez et  al. 2015). 
Azospirillum is capable of producing phytohormones such as salicylic acid (Sahoo 
et  al. 2014), auxins (Spaepen and Vanderleyden 2015) and indole-3-acetic acid 
(Fukami et al. 2018). Azospirillum improves the moisture and nutrient retention by 
plants and defends the plants against environmental stress, resulting in a higher 
total production (Fukami et al. 2018). Azospirillum inoculation in plants results in 
dramatic morpho-physiological alterations, including shoots and grains with 
increased nitrogen content. When Azospirillum is used on the field, it requires less 
synthetic fertilizer than the fields without its application (Cassán and Diaz-
Zorita 2016).

11.3.7  Azolla and Blue Green Algae Biofertilizers

Azolla is a member of the Salviniaceae family, which includes seven different spe-
cies of duckweed phototrophic ferns (Roger and Ladha 1992). Depending on 
numerous circumstances, including soil properties, Azolla could develop to gener-
ate massive biomass in as little as 10 days. Azolla is a tiny free-floating plant hav-
ing rough leaves and flowing roots. It is well known for its Nitrogen fixing symbiotic 
relationship with Anabaena azollae in developing and underdeveloped nations 
(Emrooz et al. 2018). Rice crops are widely recognized for their high-water use, 
and growers use Azolla to prevent extreme weed development. It can deliver up to 
10 tons of proteins and other critical nutrients to rice crops in the cultivation (Yao 
et al. 2018). Blue green algae are Nitrogen fixing microorganisms filamentous by 
nature and have a type of cell called a heterocyst (micronodules). Heterocysts dem-
onstrate nitrogen fixation process functioning. These microorganisms form symbi-
otic partnerships with fungal strains, ferns, and flowering plants for nitrogen 
fixation (Soma et al. 2018). Blue-green algae are particularly important in agricul-
ture because of their fast activity and effective nitrogen fixation. Despite Nitrogen 
fixing, they also fix phosphorus, potassium, zinc, sulfur and other nutrients (Adeniyi 
et al. 2018).
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11.3.8  Silicon-Solubilizing Microbe Biofertilizers

The disintegration of silica and silica-based rocks and minerals can change the soil 
layer (Vasanthi et al. 2018). Microbial consortia of several types play a significant 
part in silicon’s decay, transformation and activation and its derivatives. Microbial 
consortia’s action is determined by the soil’s availability of condensation, pH condi-
tions, and growth regulators. These are involved in synthesizing various enzymes 
and metabolic products that may be useful in the mineralization (Gadd 2010). 
Biological methods of converting tough silicon derivative products into the simplest 
eatable forms have gained significance over chemical and physical methods. 
Biological methods include microbial activities, which are self-manageable and 
inexpensive and can result in conversation in a small period. Thiobacillus thiooxi-
dans and Bacillus globisporus showed the greatest ability to leach silicon (Friedrich 
et al. 1991; Sheng et al. 2008).

11.4  Biofertilizer Effect on Cucumber

Several studies have been conducted on studying the effect of bio-fertilizers on soil 
for different crops and vegetables. When applied to various crops in combination 
with synthetic or other fertilizers, it showed promising results in meeting the plant’s 
nutritional demand in an eco-friendly manner. A detailed study about the efficiency 
of bio-fertilizers in cucurbits is available (Kumar et al. 2018). The useful insight and 
use of bio-fertilizers and their effects on cucumber as a case study are outlined in 
Table 11.1.

11.5  Market Characteristics for the Release of Biofertilizer

Farmers’ use of biofertilizers for increased crop production is one of the foremost 
constraints in the farming sector. Although various biofertilizers are now commer-
cially available, their quality and quantity may fluctuate based on the manufacturing 
division. Biofertilizers should have the following characteristics before it is released 
to the market. Biofertilizers should be widely available in the marketplace. Farmers 
benefit from reduced transportation costs and save time. The formulation should be 
water-soluble to decrease costs and allow for spray application in larger field areas. 
Biofertilizers’ formulations must be reliable in a broad range of climate circum-
stances. The strength of the preparation must not deteriorate over time. Biofertilizers 
should be used in small quantities in the field and must successfully provide a bal-
anced mix of nutrients to the plants. The formulation should provide crops with an 
immediate supply of nutrients while causing no adverse effects. It should be simple 
to use and have no negative effects on the health of growers. It must be affordable 
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Table 11.1 Use of Bio-fertilizer and Integrated Nutrient Management practices in cucumber crop

Treatments Characters enhanced in cucumber crop References

1 Application of mineral 
(25%) and organic N 
(75%)

Increase in plant growth, yield, and 
quality

Mahmoud et al. (2009)

2 Use of bio-fertilizers Increase the fruit count, fruit length, 
average fruit weight and fruit yield

Jilani et al. (2009)

3 Use of farmyard manure/
vermicompost

An increase in the yield was observed Narayanamma et al. 
(2010)

4 Use of biofertilizers Enhanced yield and yield attributing 
characters

Isfahani and Besharati 
(2012) and Saeed et al. 
(2015)

5 Use of vermicompost An increase in yield and fruit weight 
was noted

Ghasem et al. (2014)

6 Use of poultry manure 
with NPK

A significant increase in the weight, 
number of leaves, fruit count and size 
with quality and yield were found

Okoli and Nweke (2015) 
and Solaiman et al. 
(2020)

7 Use of biofertilizers Significant increase in the fruit length 
and diameter, fruit count, average fruit 
weight, and yield

Kanaujia and Daniel 
(2016)

8 Use of poultry manure at 
20 ton/ha

An increase in yield was noted Khan et al. (2017)

to growers, as it impacts crop prices. It should be season-independent and accessible 
to farmers throughout the year.

11.6  Pakistan and Biofertilizers

Presently, Pakistan spends significant money on importing and producing 8.41 mil-
lion nutrient tons of synthetic fertilizers. On the other hand, a huge opportunity 
exists to enhance biofertilizers use in sustainable agriculture. In Pakistan, saving 
10.0 billion rupees annually is possible through adding a 10% contribution of bio-
fertilizers to the total fertilizer consumption (Ali et al. 2012). Various groups/orga-
nizations are engaged in biofertilizers research and innovation in Pakistan. They 
have stated substantial rises in yield and yield components of important crops due 
to microorganism inoculation (Zahir et al. 2005; Alam et al. 2007) . The extent to 
which these bio-fertilizers benefit depends on their quantity and efficiency, which is 
ruled by a diversity of environmental and soil elements. In comparison to chemical 
fertilizer plants, the system used for biofertilizers production is much simpler and 
the costs for its installation are very negotiable. Furthermore, using biofertilizers for 
a long time is efficient, more cost-effective, eco-friendly, and readily available to 
growers. A list of major problems, limitations, and recommendations regarding pro-
ducing biofertilizers on large-scale and future technologies in the county have also 
been discussed in detail.
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11.6.1  History of Biofertilizers in Pakistan

Rhizobium is the world’s oldest biofertilizer for leguminous plants and soil quality 
enricher “Theophrastus, 372 287 BC” as observed by (Danso 1992). 
J.B. Boussingault, a French chemist and agronomist, proposed the classic concept 
of biological nitrogen fixation in 1834 and later on, (Hellriegel and Wilfarth 1888) 
confirmed it. Beijerinck isolated the Nitrogen fixing organisms Rhizobium in 1888, 
Azotobacter in 1901 and Azospirillum in 1925. Rhizobium is a nitrogen fixer, was 
first commercialized in the United States in 1895 under the trade name “Nitragin” 
and was developed by Noble and Hiltner in 1896. Stalstrom (1903) was the first to 
report microbial phosphorus solubilization and Pikovskaya isolated microbes 
in 1948.

Before establishing Pakistan in early 1920, India’s first Agricultural College, 
named the Punjab Agricultural College and Research Institute Lyallpur, began 
research on biological Nitrogen fixation. After 6  years, in 1926, these research 
activities were boosted when an independent post of “Agricultural Bacteriologist” 
was established at the institute. The microbiological center was developed in 1927 in 
Lyallpur (Naveed et al. 2015). The laboratories were developed, and field trials were 
conducted at a larger scale in Lyallpur and Gurdaspur area to evaluate the effective-
ness of synthetic inoculum on chickpea, Egyptian and Persian clover, alfalfa, sweet 
clover, mash beans, mung bean, and cluster bean. It was concluded from the early 
research that seeds treated with inoculum generated more yields of higher quality 
than untreated seeds (Naveed et al. 2015). After this, the commercial production of 
Rhizobia inoculum began in 1956 in the region.

11.6.2  Biofertilizer Research and Development in Pakistan

The uniqueness and capabilities of microbes, particularly in specific cultural and 
environmental conditions, have shown that they have the potential to resolve food 
security issues in agriculture and other fields of life. Several organizations, research 
groups and institutes in Pakistan are working on the research and development of 
biofertilizers to overcome food scarcity and increase the country’s agricultural pro-
duction. As summarized in the following sections, research and development efforts 
are underway to expand the role of biofertilizers in Pakistan.

11.6.3  Ayub Agricultural Research Institute, Faisalabad

The Ayub Agricultural Research Institute in Faisalabad, formerly known as the 
Punjab Agricultural Research Institute Lyallpur, is a parallel research institute of the 
Punjab Agricultural College. Lyallpur was the country’s first and earliest biological 
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nitrogen fixation and biofertilizers research institute. Work on research and innova-
tion began in the early 1920s and was aimed at various times. Since 1956, AARI 
scientists have provided organic fertilizers with the trade name “Associative 
Diazotrophs”. The fruitful and steady approval of legumes rhizobium cultures in the 
field (Naveed et al. 2015) prompted the AARI’s “Soil Bacteriology” portion to col-
laborate for useful microbial associations prevalent in different crops in the early 
1990s, Azospirillum and Azotobacter inoculants were introduced. Their consortia 
were released as a commercial product in the mid-1990s under the trade name 
“Fasloon ka jarasimi teeka”. It contains phosphate solubilizing microbes familiar-
ized, which achieved the attention of many growers who were struggling with 
P-fertilizer scarcity market prices. Data from the field experiments resulted in a 
20% increase in the yield of leguminous and non-leguminous crops by applying 
rhizobial, diazotrophic and phosphate solubilizing microbes’ inoculants. On a lim-
ited scale, the AARI’s Soil Bacteriology Section was manufacturing and providing 
38800.0 carrier-based 250.0 g inoculum culture bags in the region. It was adequate 
for the inoculation of 14,000 ha of plants during 2000–2011 (Naveed et al. 2015).

11.6.4  The Nuclear Institute of Agriculture and Biology 
and National Institute for Biotechnology 
and Genetic Engineering

In 1972, NIAB established a very energetic biological nitrogen fixation-research 
center in the department of Soil Biology, having published work at the national and 
international levels. They have conducted some research by using Azolla anabaena 
as nitrogen fixing blue green algae used as symbiont on rice biofertilizers “Azolla” 
a water-fern. Punjab’s severe hot environmental conditions did not respond accord-
ing to its potential on a larger scale. In contrast, this technology provided its best in 
rice production in northern areas where the environmental conditions were mild and 
humid (Malik et al. 2002).

With the foundation of NIBGE in 1992, Dr. Kausar Abdullah Malik led the 
“Biofertilizers Division” by securing funding from several donor agencies like the 
International Centre for Nuclear Research, International Atomic Energy Agency, 
International Centre for Genetic Engineering and Biotechnology: and Islamic 
Development Bank for the development of a Biofertilizers Resource Centre in the 
South Asian region. In 1996, they successfully introduced the commercial organic 
fertilizer “BioPower”. Rhizobium species are isolated from chickpea, mash bean, 
soybean, mung bean, cowpea and alfalfa was used during legume bio-fertilizers. In 
contrast, implicit nitrogen-fixing and plant growth-promoting rhizobacteria (PGPR) 
were used in crops such as wheat and maize. The research revealed that biofertiliz-
ers could meet 40–70% of crop plant nitrogen requirements, improving crop yield 
by 60–80% (Hafeez et al. 1998). After pot and field trials, the “BioPower” was used 
commercially on an area of 11,000 ha with different testing crops in Punjab, and a 
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50–70% reduction in nitrogen fertilizer costs with a 20% increase in crop produc-
tion was claimed by the research team (Naveed et al. 2015). It was revealed that the 
half-recommended dose of basal fertilizer’s (i.e., nitrogen, phosphorus, and potas-
sium) with “BioPower” produced the same results as with the full recommended 
dose of basal fertilizers alone. NIBGE joined public and private sector entrepre-
neurs to popularize biofertilizers, transfer manufacturing capabilities, and provide 
proper training to the farmers. Farmers were able to save a significant amount of 
money (up to $292 USD ha−1) by using “BioPower” in several crops, as per the 
benefit-cost ratio of the technology (Naveed et al. 2015). The NIBGE has a fully 
established biofertilizers pilot production unit to scale up biofertilizers production 
to meet rising demand. “BioPower” has been supplied between 9000 and 12,000 
Hectares (Naveed et al. 2015).

11.6.5  The National Agricultural Research Centre

During the early 1980s, the Soil Biology and Biochemistry Department of NARC’s 
Land Resources Research Program began investigating Nitrogen fixation in 
legumes. They investigated the effects of imported rhizobial strains (from NifTAL, 
Hawaii) on legume production in Pakistan. Later, local rhizobium spp. was isolated 
and used to inoculate important crop legume crops (lentil, chickpea, mash bean, 
mung bean, groundnut, soybean, Egyptian clover, pea, alfalfa and sesbania). The 
NARC “Rhizobium Gene Bank” contains over 200 isolates of various rhizobia. In 
1990, the center introduced “Biozote,” a biofertilizer product. The efficacy of 
“Biozote” was assessed commercially during a combined project of the Pakistan 
Agricultural Research Council, Islamabad, and Engro-Chemical Pakistan Ltd. This 
project ran for 3  years to assess different leguminous crops, and approximately 
60,000 packets of the “Biozote” were provided to growers. Data from 300 growers’ 
fields revealed a 20–50% improvement in crop production using “Biozote”. 
Additionally, it was added that the benefit-cost ratio of technology was 30:1, and if 
applied to 50% of the leguminous area, it has the potential to improve the national 
economy by enhancing crop yield (Naveed et al. 2015). The center could produce 
150,000 culture bags per year and currently, it is supplying about 2000 culture bags 
to the growers annually.

11.6.5.1  Institute of Soil and Environmental Sciences (ISES), University 
of Agriculture, Faisalabad

In 2003, the University of Agriculture, Faisalabad’s Department of Soil Science, 
was upgraded to the status of “Institute of Soil and Environmental Sciences.” The 
institute is vigorously involved in basic and applied research on soil microbiology 
and biotechnology etc., by isolating soil microbes with various beneficial strains 
creation and using it as biofertilizers. The researchers are not using only living cells 
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of inoculants but also proposed using microbial metabolites or plant growth regula-
tors, which could be the best approach to improve crop growth (Khalid et al. 2009). 
In 2002, they created a liquid preparatory work of microbial metabolite-based bio-
fertilizers called “Rice-Biofert”.

Data collected from multi-location experimental fields for 3 years indicated an 
increase of 20% in rice production (Zahir and Arshad 2004). The Soil Microbiology 
and Biochemistry Group has also isolated various cultures of Azotobacter from 
various soils, and their performance in rising crop production has been extensively 
studied. Many PGPRs such as Burkholderia, Pseudomonas, Serratia, bacillus and 
others, have been isolated and demonstrated their value as plant-growth promoters. 
Amino cyclopropane-carboxylic acid (ACC-deaminase) is an enzyme that hydro-
lyzes ACC (ethylene precursor) into ammonia and -ketobutyrate in various PGPR 
strains. The growth promoting rhizobacteria having ACC-deaminase acts as ACC 
reservoir when colonized with plant roots and lowers the plant ethylene concentra-
tion. This mechanism has the potential to inhibit the impact of high ethylene con-
centrations in plants and promote stronger root structure and function. These plants 
also develop anti-environmental stressed qualities like anti-drought, salinity, heavy 
metals etc. (Nadeem et al. 2010; Ahmad et al. 2011) .

A series of field trials were conducted by ISES at growers’ land to demonstrate 
the potential impact of PGPR-based bio-fertilizer “Uni Grow” for the purpose of 
encouraging the biofertilizers in farmer community and received highly encourag-
ing results (Shahzad et al. 2008). According to the literature, the combined applica-
tion of chemical, bio and organic fertilizers has the potential to increase crop yield 
and meet the food demands of the country. Under field conditions, inoculation of 
rhizobia in leguminous as well as in non-leguminous crops produced prominent 
results (Hussain et al. 2009; Mehboob et al. 2011). The ISES recently developed a 
combined culture of ACC-deaminase containing PGPR and rhizobium named as 
“Rhizogold”, which enhanced 40–45% yield of legumes. Another multi-strain bio- 
fertilizer named as “RhizogoldPlus” was obtained from effective strains of PGPR 
having ACC-deaminase with the purpose of mitigating the salinity stress on cereal 
crops (Khan et al. 2013; Naveed et al. 2015).

11.6.6  The Nature Farming Research 
and Development Foundation

The effective microorganism technique was introduced by a former scientist of the 
Soil Science Department of the University of Agriculture, Faisalabad, who brought 
it from a Japanese Scientist Dr. Teruo Higa and used it as biological input for sus-
tainable yield. After his tremendous work, the foundation of the Nature Farming 
Research Centre was laid at University of Agriculture, Faisalabad-Pakistan to work 
on this technology. Further, the soil fertility and productivity were enhanced by 
using Beneficial Microorganisms in combination with manure, crop residues, waste 
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from industries, green manures, and composts from various sources. This technol-
ogy reduced the costly application of chemical fertilizers. A new type of beneficial 
microorganisms fermenter/super fermenter has been developed to achieve the mini-
mum number of organisms available and to use salt water to irrigate with beneficial 
microorganisms Technology (Hussain et  al. 2009). This center has done many 
experimental projects in the grower’s field to assess the efficacy of this technology 
for preserving soil fertility and productivity, encouraging the sustainable use of soil, 
proliferating soil biological activities, reducing pollution and recycling waste of 
plants and animals. It was concluded that using the technology improved the soil’s 
biological activities, increased crop yield and profit per hectare and improved the 
quality of soil and water resources. Many of the products of effective microorgan-
ism -technology are under practice by the farmers in Punjab, e.g., for crop produc-
tion and fish farming, EM-BIOAAB is used, whereas for animal and poultry 
production EM-BIOVET is preferably used. EM-BIOCONTROL, which is not a 
pesticide or insecticide, is used to control insect/pests diseases in crops, vegetables 
and fruits (Hussain et al. 2009).

11.6.7  Biofertilizer Studies in Higher Education Institutes 
of Pakistan

At various higher education institutions across the nation, researchers are studying 
soil-microbial prospects and plant-microbe relations to understand how they affect 
the health of soil and plants. Various higher institutes of Pakistan like Quaid-i-Azam 
University Islamabad, Comsat University, Islamabad; Karachi University Karachi, 
PMAS-Arid Agriculture University, Rawalpindi; Punjab University, Lahore; The 
University of Agriculture, Peshawar; Azad Jammu Kashmir University, 
Muzaffarabad, University of Poonch, Rawalakot and many others have outstanding 
contributions. An extended list of research work published in national and interna-
tional journals has been documented. Relationships among rhizobium and legumi-
nous and non-leguminous crops, isolation and identification of various 
microorganism sp. for disease management (Hussain et al. 2009; Mehboob et al. 
2011) have been studied deeply. Microflora supplying resistance to various stresses 
(Saleem et al. 2007; Arshad et al. 2008), microorganisms production of phytohor-
mones (Qureshi et al. 2013), exploitation of bacterial and fungal populations for 
improved health of soil and plants, assessment of variations and development of 
markers for maintaining and evaluating microbial efficacies (Malusà et al. 2016), 
phytoremediation of soil and environment (Naveed et al. 2015). Research is being 
conducted at various universities and higher research centers, providing applied 
research strategies. Interaction among research and educational institutes can lead 
to the translation of scientific concepts into authenticity. Academia and industrial 
linkages for the cheap, sustainable, and easy supply of the product to the consumers 
(farmers) are the need of the time.
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11.7  Problems of Mass Scale Production 
and Commercialization of Biofertilizers in Pakistan

Although microbes’ technology has shown its value when used in various agricul-
tural and environmental issues with remarkable success over the past 50 years, it has 
not been widely accepted. It is often difficult to replicate its positive effects in vari-
ous fields. Conditions are most common in the upper and lower extremities. The 
following are the major barriers to mass production and technological advancement 
in the country.

 1. Regulations for the production and selling of biofertilizers have yet to be estab-
lished at the national level in Pakistan. As a result, substandard inoculants are 
among the significant limitations.

 2. An insufficient community of growers know microbial inoculants.
 3. As most biofertilizers are environmental and ecological specific, they do not 

produce the required results sometime and eventually; the growers lose faith in 
this technology.

 4. The communication difference between marketing, extension work and 
end-users.

 5. Lack of qualified labor and the excessive cost of making high-quality organic 
fertilizers.

 6. The country lacks transportation and storage facilities to prevent 
contamination.

 7. Extreme climatic conditions frequently cause biofertilizers result to be 
inconsistent.

 8. A low amount of soil organic matter prevents beneficial microorganisms from 
surviving and interacting positively with plants.

 9. An insufficient supply of appropriate excipients for biofertilizers production.
 10. Poor labelling and packaging of biofertilizers damage their reliability.

11.8  Recommendations

Several concerns need to be addressed by the government in future studies for a 
more comprehensive production and application of biofertilizers.

 1. Necessary legislation to monitor bio-fertilizers, its quality, and any harmful 
effects on humans and plant species. This grave concern must be evaluated and 
necessitates government and private sectors collaboration.

 2. The government should sponsor the production of biofertilizers, or there should 
be the availability of loans from the government to produce biofertilizers on a 
small-scale e.g., seed money, agriculture preneurs startups etc.

 3. The country is in desperate need of microbial strains banks. All characterized 
microbes/potential bio-fertilizer candidates from various institutes and inde-
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pendent scientists should be collected, conserved, molecular tagging interna-
tionally and validated chemo taxonomically if necessary.

 4. Farmer’s community and stakeholders should be trained by adopting intensive 
training and extension workshops to use bio-fertilizer technology with its full 
potential.

 5. Development of biofertilizers by using microbial consortia having active, com-
petitive, and stress-tolerant microbial strains.

 6. The ability of biofertilizers to provide micronutrients and bio fortify food plants 
should be investigated.

 7. Phosphate solubilizing microorganisms and phosphorus mobilizers such as vesic-
ular-arbuscular mycorrhizae, which are less commonly used bio- fertilizers, show 
promising results providing phosphorus and other micronutrients. So, the labora-
tory-produced strains of these symbionts will allow testing of their performance in 
the field. The genetic basis for competitive advantage must still be determined.

 8. Selection of a low-cost synthetic carrier capable of maintaining a high viable 
count and developments in inoculation procedures to guarantee the soil estab-
lishment and perseverance.

 9. Creation of poly microbial biofertilizers such as PGPR, Rhizobia, phosphate 
solubilizing microorganisms, and vesicular-arbuscular mycorrhizae.

 10. Locally available organic wastes should be converted into value-added 
biofertilizers.

 11. Endophyte molecular breeding is also required to improve endophyte host plant 
interactions. Endophytic bacteria genetic engineering should be a much simpler 
process than crop genetic engineering. Endophytes that have been genetically 
modified by using helpful genes will introduce new characteristics to host 
plants that have been inoculated with these strains.

 12. Synthetic fertilizers coated with promising microbial strains may mark the start 
of a new understanding of synthetic/natural sources of nutrition, potentially 
providing knowledge of “microbial-enhanced fertilizer use efficiency.

11.9  Conclusion

Understanding the production and application of biofertilizers is needed for a coun-
try’s economic growth. Knowing the basic sustainability principles in agriculture 
requires understanding the design, method of production, utilization, and storage 
conditions. Sustainability in agriculture is extremely beneficial in resolving the 
actual problems in the agriculture sector with crop production. Furthermore, mar-
ginal farmers in developing countries must be trained in the biotechnological fea-
tures of biofertilizers in agricultural system planning. This chapter is an in-depth 
examination of the efficacy of biofertilizers in achieving sustainable agriculture. 
Biofertilizers can meet agro-industry challenges and create novel prospects for 
growers’ benefit in the agriculture sector and business and for the research, aca-
demia, and other government sectors.
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Chapter 12
Biochar Application to Soils to Improve 
the Management of Irrigation Water

M. Abdulaha-Al Baquy, Jackson Nkoh Nkoh, Mahedy Alam, 
and M. M. Masud

Abstract Climate change has accentuated extreme events such as drought and 
flooding, thus altering the supply of water to plants. To solve this issue, the applica-
tion of biochar to soils appears promising for managing soil water loss and improv-
ing the quality of irrigation water. Here we review the impact of biochar on irrigation 
with focus on soil water holding capacity, surface runoff and erosion, hydraulic 
conductivity, nutrients and pollutants. We found that biochar can improve soil water 
holding capacity by 12–60%, or by 98% when biochar is engineered, reduce surface 
runoff and erosion by 5.1–77.2%, increase hydraulic conductivity by 328%, reduce 
nitrate leaching by 75%, and accelerate phosphate leaching by 72%. The underlying 
mechanisms are discussed.
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12.1  Introduction

With the growing world population, water usage in agricultural systems may 
become a vital factor in ensuring food security. There is increasing evidence that 
climate change will affect water availability in some areas which will lead to intense 
drought and increased food shortage. Even in areas where water is available for 
agricultural use, increased contamination of this water by untreated wastes is caus-
ing serious health and environmental risks (Fahad and Bano 2012; Fahad et  al. 
2013, 2014a, b, 2015a, b, 2016a, b, c, d, 2017, 2018a, b, 2019a, b, 2020, 2021a, b, 
c, d, e, f, 2022a, b; Hesham and Fahad 2020; Al-Zahrani et al. 2022). To address this 
concern, several studies have looked into the potential of different soil amendments 
in enhancing soil water retention ability (Yu et al. 2017; Mansoor et al. 2021) and 
reducing pollutants uptake by plants (Nkoh et al. 2022).

Soil amendment materials have diverse properties and tend to affect soil physi-
cochemical properties in several ways (Ibad et al. 2022; Irfan et al. 2021; Khadim 
et al. 2021a, b; Khan et al. 2021; Khatun et al. 2021; Muhammad et al. 2022; Subhan 
et al. 2020; Tariq et al. 2018; Wiqar et al. 2022; Wu et al. 2019, 2020; Xue et al. 
2022). Of these amendments, biochar has received considerable attention due to its 
role in the management of acid soils (Shi et al. 2017), pollution remediation (Jiang 
et al. 2012; Xu and Zhao 2013), improvement of soil fertility (Baquy et al. 2020), 
carbon sequestration (Xie et  al. 2015), and mitigation of climate change (Wang 
et al. 2015). Biochar is a porous carbon-rich material comprised chiefly of aromatic 
carbons and/or heteroatoms (Zhu et  al. 2020). Biochar can be derived from the 
pyrolysis of a range of materials including plants, animal wastes, and sewage sludge, 
under a limited supply or in the absence of oxygen, and at varying temperatures 
(Nkoh et al. 2021).

Due to its high porosity and large specific surface area, biochar can improve soil 
water-holding capacity and reduce drought-related stress on plants (Yu et al. 2017; 
Mansoor et al. 2021). The use of biochar in soil management has experienced geo-
metric growth in the recent four decades. The last decade alone has over 60% of the 
total number of publications on biochar from the web of science database (Nkoh 
et al. 2022). This shows that the last decade has experienced greater public aware-
ness of the importance of biochar in improving soil quality, and the scientific com-
munity is putting more effort into exploring other uses of biochar such as biofuel 
production (Bolan et al. 2021).

Generally, the observed effects of biochar in influencing soil chemical or physi-
cal properties are to a larger extent influenced by biochar feedstock, production 
conditions, and soil properties. Some experimental studies have shown that biochar 
can negatively influence soil adsorptive (Almaroai and Eissa 2020) and physical 
properties (Yargicoglu et al. 2015). Nevertheless, a comprehensive review that high-
lights the role of biochar in soil water retention is still lacking. Thus, this chapter 
summarizes the positive and negative impacts of biochar application on soil water 
retention properties and the different factors influencing the properties of biochar 
vis-à-vis its role in influencing soil water retention.
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12.2  Impact of Biochar on Irrigation Water Movement, 
Retention, and Quality

The alteration of soil physicochemical properties by biochar can play an important 
role in influencing irrigation water movement, retention, and quality. When biochar 
is added to soil, chemical and physical interactions occur. In the case of chemical 
interactions, biochar functional groups (or base cations) interact with soil minerals 
to form soil-biochar complexes (e.g. Soil-O-biochar or Soil-cation-biochar-cation-
soil). These chemical interactions result in the formation of soil aggregates with 
modified physicochemical properties. For instance, soil-biochar composites usually 
have higher pH, contents of base cations, cation exchange capacity, and pH buffer-
ing capacity compared to unamended soils (Shi et  al. 2018a; Nkoh et  al. 2022). 
Figure 12.1 summarizes this section and shows the relationship between biochar, 
the production conditions, its effect on soil physicochemical properties, and soil 
water quality indicators.

- Sources of feedstock

- Pyrolysis condition

- Application rate 

Water holding 
capacity 

Surface runoff

Surface erosion

Hydraulic 
conductivity

Soil water repellency

Nutrient leaching

Heavy metal 
mobilization

- Surface area
- Intraporosity
- Cation exchange capacity
- Zeta potential
- Hydrophobicity
- Surface charge
- Functional groups
- Crude oil

Irrigation water quality 
indicators

Factors/mechanisms involved

- Modified/Engineered biochar

- Biochar co-application 

Biochar

Fig. 12.1 Biochar production conditions and basic properties and the relationship with irrigation 
water quality. Biochar’s influencing factors such as feedstock and production conditions greatly 
influence its basic properties including surface area, hydrophobicity, the content of function 
groups, and general reactivity. These also tend to influence biochar’s effect on soil water quality 
indicators
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12.2.1  Effect of Biochar on Soil Water Holding Capacity

The addition of biochar to soils can increase water-holding capacity and reduce the 
amount of groundwater used in agricultural applications. This effect of biochar on 
improving soil water holding capacity is related to biochar’s porosity and surface 
area, implying that biochar with larger porosity and surface area will induce a more 
significant effect on soil water retention. Previous studies have found that biochar 
has a significant impact on enhancing water retention capacity across a variety of 
metrics. The study by Toková et al. (2020) revealed that the interaction of biochar 
with soil could increase soil porosity by up to 12% which contributed significantly 
to enhancing soil water holding capacity.

The incorporation of hardwood biochar into sandy loam soil raised the gravity- 
drained water content by 23% compared to the control (Basso et al. 2013). According 
to Yu et al. (2013), biochar increased the water-holding capacity of loamy sand soil 
by about 1.7% by mass for each 1% of added biochar over the agriculturally rele-
vant range and improved irrigation effectiveness, reduced non-point source agricul-
tural pollution, and mitigated runoff. In another study, it was found that the addition 
of biochar to a hydrophilic soil with a low total organic carbon level enhanced the 
soil water holding capacity (Mao et al. 2019) while fine-textured biochar particles 
increased gravimetric water holding capacity by 60% (Verheijen et al. 2019).

Surface modification of biochar either through chemical or biological methods 
can improve biochar’s chemical properties, porosity and specific surface area. This 
implies that when applied to soils, these engineered biochars can as well alter soil 
water-holding capacity. For instance, biochar produced with 10  wt.% 
K3PO4 + 10 wt.% clinoptilolite as catalysts increased soil water holding capacity by 
98% and 57% compared to the treatments without biochar and with 10 wt.% clino-
ptilolite, respectively (Mohamed et  al. 2016). Additionally, the incorporation of 
manure-based biochar enhanced the water-holding capacity of soil and improved 
crop yield with the conservation of rainfall water in arid regions (Rehman et  al. 
2020). Nevertheless, the observed effect of biochar on soil water holding capacity is 
much under the influence of biochar’s basic properties and feedstock type, as well 
as soil type and physicochemical properties (Nkoh et al. 2021).

12.2.2  Effect of Biochar on Soil Surface Runoff and Erosion

Surface runoff and soil erosion are major environmental issues (Adimassu et  al. 
2014) since they induce land degradation and soil productivity reduction. As a 
result, protecting agricultural soil from runoff loss and erosion is a hot topic for 
managing long-term productivity. According to previous studies (Jien and Wang 
2013; Hseu et al. 2014), biochar application might be a strategy for reducing runoff 
and erosion. It was found that biochar-treated soil reduced runoff volume and soil 
loss with the runoff by 5.1–15.4% and 43.5–77.2%, respectively (Shen et al. 2021). 
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This plays a significant role in reducing the mobility and bioavailability of heavy 
metals. The authors also observed that while biochar particle size had no significant 
effect, biochar produced at higher pyrolysis temperatures induced less runoff and 
more infiltration, and performed better at preventing erosion. Elsewhere, the incor-
poration of vinasse-produced biochar in sandy clay loam soils showed promising 
results in decreasing runoff and soil erosion (runoff volume decreased by 46.4–98.5% 
and soil loss by 1.12–1.44 g L− 1) (Sadeghi et al. 2016).

12.2.3  Effect of Biochar on Soil Hydraulic Conductivity

Hydraulic conductivity of soil is an essential physical quantitative property that 
evaluates the ease with which water may flow from saturated soil when subjected to 
hydraulic gradients with the permission of pores. Soils amended with biochar from 
a variety of feedstocks and pyrolytic conditions changed the hydraulic conductivity 
of the soils in positive ways, as shown in the cases of sandy soil (Zhang et al. 2016); 
biochar-sand mixture (Liu et al. 2016a); and silty clay soil (Li et al. 2018). For com-
pacted kaolin clay, biochar addition at rates of 5% and 20% increased saturated 
hydraulic conductivity from 1.2*10−9 to 2.1*10−9 and 1.3*10−8 ms−1, respectively 
(Wong et al. 2018). The interaction of biochar with soil particles to form soil- biochar 
complex results in some of the intrinsic properties of biochar being transferred to 
the complex. Often, this results in a decrease in soil bulk density, an increase in soil 
porosity, and enhanced hydraulic conductivity (Burrell et al. 2016; Omondi et al. 
2016). It was found that the hydraulic properties of silty loam (Toková et al. 2020) 
and compacted clay soil (Wong et al. 2018) improved with an increment in the rate 
of biochar application. These results were even more significant in a study by Barnes 
et al. (2014) who showed that biochar increased the hydraulic conductivity of clay- 
rich soil by 328%.

12.2.4  Effect of Biochar on Soil Water Repellency

Biochar production conditions have a significant effect on its hydrophobicity and 
thus, its effect on water repellence. Low-temperature biochars are generally more 
hydrophobic and water-repellent than high-temperature biochars. For instance, it 
was shown that biochars produced at 300 °C were about 13-times more hydrophobic 
than those produced at 500 °C (Kinney et al. 2012). The process of biochar produc-
tion induces chemical transformation processes such as dehydrogenation, oxidation, 
decarboxylation, de-hydroxylation, and de-methylation. When this occurs, aliphatic 
carbons of the feedstocks are converted to aromatic carbons and become fused, 
forming larger clusters which are connected by aliphatic or aromatic side chains 
(Nkoh et  al. 2021). As aliphatic functional units are removed from the biochar’s 
surface at higher temperatures, its hydrophobicity increases (Gray et al. 2014).
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Soil water repellency affects a variety of hydrological channels, including runoff, 
infiltration rate, water retention and bypass flow. It also affects water entrance and 
distribution in the soil as well as organic matter breakdown and microbial activity 
(Blanco-Canqui 2017). Severe soil water repellency can obstruct water penetration 
by forming preferential flow, promoting soil erosion and increasing the risk of 
groundwater contamination (Mao et  al. 2019). According to the findings of 
Ebrahimzadeh Omran et al. (2020), fine-sized biochar can reduce soil hydrophobic-
ity due to the presence of functional groups and crude oil in biochar.

Contrasting effects of biochar on water repellency have been reported. For exam-
ple, Herath et al. (2013) observed that treating an Alfisol and an Andisol with bio-
char did not affect soil water repellency. Also, Briggs et al. (2012) demonstrated that 
fresh biochars are more water-resistant and would negatively impact soil water 
repellency. Even though the basic properties of biochar (e.g. hydrophobicity) sug-
gest that when added to soil it can enhance water repellence, little experimental 
evidence exists to support this. The study by Devereux et al. (2012) reported that 
soil water repellency was reduced by about 5-folds when soils were treated with 5% 
biochar and the reduction of water repellence was observed even at a 15% biochar 
application rate. In another study, Głąb et al. (2016) observed that while 4% biochar 
slightly increased water repellence compared to 0.5%, 1% and 2% biochar applica-
tion showed no effect.

12.2.5  Effect of Biochar on Nutrient Leaching and Mobility

Biochar as a soil supplement improves soil fertility by reducing nutrient loss through 
leaching. The degree of leaching inhibition varies for different soil types and bio-
char feedstocks. For instance, Ghorbani et al. (2019) observed that when rice husk 
biochar was applied to different soils, there was a significant inhibition of nitrate 
leaching in clay soil compared to loamy sand soil. Similar results also revealed that 
biochar application could decrease nitrate leaching by 75% due to increased water 
sorption and retention capacity in amended soils (Knowles et al. 2011; Ventura et al. 
2013; Kanthle et al. 2016; Haider et al. 2017). In addition to nitrate leaching, bio-
char application can reduce phosphorus leaching when water-saving irrigation is 
considered for crop production in biochar-amended soils (Xie et al. 2021).

Due to a large number of negative charges on biochar surface, there are bound to 
be repulsive forces between biochar and anionic species such as PO4

3− and NO3
−, 

thereby reducing the retention of these nutrient ions in soils and enhancing their 
mobility. For example, rice husk biochar accelerated phosphate leaching from 
loamy soil by up to 72% (Pratiwi et al. 2016). Another study found that applying 
biochar to an Oxisol resulted in considerable amounts of inorganic nitrogen, cal-
cium, magnesium and potassium being leached (Major et al. 2012). Also, the co-
application of biochar and nutrients enhanced nitrogen, phosphorus and potassium 
leaching by 53–78, 5–11and 69–112%, respectively (Hardie et al. 2015).
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To prevent the high mobility and continuous contamination of water bodies by 
anionic species, engineered biochars have been tested in soils and shown to have a 
higher affinity for these anions (Peng et  al. 2021). For instance, the phosphate 
adsorption capacity of biochar was increased by 88.5% after modification with 
magnesium (Yao et al. 2013). The MgCl2 modification of biochar introduced small 
masses of nanoparticles on the surface of biochar, thereby enhancing its ability to 
adsorb phosphate (Haddad et al. 2018). Also, magnesium- and aluminum-modified 
biochar can significantly reduce phosphorus leaching due to the greater (59.9%) 
phosphate interception capacity (Zheng et al. 2020).

12.2.6  Effect of Biochar on Heavy metals and Organic 
Pollutants Reduction in Irrigation Water

Biochar could be a feasible alternative for reducing the harmful effects of heavy 
metals in untreated household and industrial wastewater irrigation systems due to its 
high adsorption capacity for both inorganic and organic pollutants (Kamran et al. 
2020; Nkoh et  al. 2022). Tahir et  al. (2018) showed that when co-applied with 
manure, biochar decreased nickel concentrations in soil irrigated with wastewater. 
In another study, it was observed that biochar can reduce cadmium and nickel 
uptake by crop plants in sewage-irrigated polluted soils (Younis et  al. 2015). 
Furthermore, biochar can significantly adsorb cadmium and zinc from wastewater- 
irrigated soil and reduced the uptake by crop plants (Nzediegwu et al. 2019).

The ability of biochar to reduce heavy metal bioavailability in soils is related to 
its high alkalinity, cation exchange capacity, and pH, as well as the large content of 
oxygen-containing functional groups. The high alkalinity and pH of the soil-biochar 
complex favor the hydrolysis of heavy metal cations and improve their retention in 
soils while the increased cation exchange capacity provides abundant negative sorp-
tion sites to retain cationic species (e.g. metal cations and hydrolyzed cations) (Jiang 
et al. 2012; Nkoh et al. 2022). Besides, the oxygen-containing functional units of 
biochar provide both negative sorption and complexation sites for heavy metals 
in soil.

Although biochar has been widely utilized to reduce soil and irrigation water 
pollution, there are several recent studies which have focused on the detrimental 
influence of biochar in terms of contamination. Some biochars produced from low- 
quality feedstock may contain contaminants such as zinc and manganese, existing 
as monovalent and divalent cations (von Gunten et al. 2017). Also, some heavy met-
als may be easily adsorbed into the matrix of biochar and released when soil is being 
irrigated for crop production (Forghani et al. 2012). Biochar may cause environ-
mental hazards by acting as an active carrier in the co-transportation of carbona-
ceous nanocomposites (Song et al. 2019), and these nanocomposites can promote 
cadmium mobilization in water-saturated soils by forming nanocomposites-Cd 
complexes (Chen et al. 2019).
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Other pollutants of concern found in biochar are metal cyanides (e.g. KCN and 
NaCN). The highly toxic CN− ion was found to be highly concentrated in feedstock 
containing large amounts of nitrogen, potassium, and sodium. Of the 18 feedstock 
studied, the largest amount of CN− ion was reported for biochar produced from food 
waste, phycocyanin, and corn protein modified with K2CO3, with concentrations of 
40,286, 85,870, and 23,251 mg kg−1, respectively (Luo et al. 2020). Also, polycyclic 
aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins are carcinogenic 
pollutants formed in biochar as a result of incomplete combustion (De la Rosa et al. 
2019). When added to soils, these contaminants in biochar may become available 
via dissolution reactions of biochar’s soluble organic fractions and cause serious 
environmental concerns.

12.3  Factors Influencing the Effectiveness of Biochar

12.3.1  Source of Feedstock

Irrigation water quality and moisture-determining features in soil depend on the 
properties of biochars which mainly vary with the source of feedstock. Under simi-
lar conditions, the application of biochar derived from switchblade grass enhanced 
water holding capacity in soil by 228% whereas biochar derived from hemlock 
increased it by 133% (Yu et al. 2017). Furthermore, the application of biochars from 
rice husk, wheat straw, and oilseed rape straw improved water use efficiency by 
17.3%, 10.1% and 16.2%, respectively (Bitarafan et al. 2020). A similar observation 
was reported for biochar derived from wood pellets, softwood bark, and switchgrass 
straw (Streubel et al. 2011).

The differences in feedstock effects on soil properties can be attributed to differ-
ences in the types and nature of biochar functional groups and contents of base 
cations. For instance, biochar produced from peanut straw had 81.9, 39.2, 64.1, and 
147.5 cmol kg−1 more functional group units than biochar derived from corn, wheat, 
rice, and faba bean straws, respectively (Nkoh et al. 2022). Changes in biochar’s 
functional units with feedstock will therefore have a significant effect on its hydro-
phobicity and water repellence. Thus, it is evident that the source of feedstock for 
biochar is one of the important factors that influence irrigation water quality.

12.3.2  Pyrolysis Conditions/Process

Different types of biochar are produced using various pyrolysis settings and pro-
cesses, and each biochar has a particular impact on soil water characteristics. 
Concerning the pyrolysis temperature, biochar’s aromaticity increases with tem-
perature as aliphatic carbons are converted to aromatic carbons. This results in a 
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relative increase in carbon content and a decrease in the contents of hydrogen, oxy-
gen and heteroatoms (Nkoh et al. 2021). During this transformation, there is a sig-
nificant decrease in biochar’s acidic functional groups, an increase in surface 
negative charge groups, an increase in the concentration of alkali salts, and a cor-
responding increase in biochar’s alkalinity (Shi et al. 2017). Thus, the process of 
aromatization and alkalization at higher temperatures produces biochar with larger 
surface areas and greater influence on soil water behavior.

According to Ebrahimzadeh Omran et  al. (2020), biochars produce at higher 
pyrolysis temperatures have functional units with greater affinity for crude oil func-
tional groups. Thus, when added to crude oil-contaminated soils, high-temperature 
biochars can alleviate water repellency better than low-temperature biochars. Also, 
sawdust-derived biochar produced at 400 and 700 °C increased soil water holding 
capacity by 14% and 57%, decreased soil hydraulic conductivity by 15% and 42% 
and increased soil moisture retention capacity by 16% and 59%, respectively 
(Laghari et al. 2016). This observation was also reported when biochar produced at 
700 °C increased available soil water content by 23% compared to that produced at 
400 °C (Marshall et al. 2019). Thus, biochars produced at higher temperatures inter-
act favorably with soils, creating suitable soil-biochar complexes for water retention 
and cation immobilization.

12.3.3  Biochar Application Rate

Biochar application rate has a significant impact on soil physicochemical proper-
ties. Soil properties such as pH, cation exchange capacity, soil organic carbon, the 
content of base cations, and pH buffering capacity increase with biochar application 
rate (Shi et  al. 2017, 2018a, b). Given that these parameters also influence soil 
aggregate properties; it is convenient to infer that biochar application rate can also 
impact irrigation water parameters. Specifically, the application of biochar signifi-
cantly increased soil water content and plant available water, with the effect being 
dependent on the biochar application rate (Toková et al. 2020).

In crude oil-contaminated soils, biochar application reduced water repellency, 
and the effect increased with application rate as more biochar functional units were 
added at higher biochar dosage (Ebrahimzadeh Omran et  al. 2020). Also, the 
increasing effect of biochar on gravity-drained water content was dependent on the 
biochar application rate (Basso et al. 2013). This differential effect of biochar on 
soil water properties can be attributed to an increase in soil carbon and water hold-
ing capacity at higher amendment rates (Streubel et  al. 2011). However, these 
effects often vary from one soil or biochar type to another and with biochar produc-
tion conditions.
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12.3.4  Biochar Basic Properties

The incorporation of biochar into the soil increases soil porosity thereby contribut-
ing to the enhancement of water-holding capacity. Because biochar’s porosity is 
directly connected with soil’s physical attributes, e.g. water retention, surface area, 
it has a considerable impact on irrigation water requirements. A high intraporosity 
of irregularly shaped biochar can significantly boost water storage conditions in 
coarse-textured soils (Liu et  al. 2017). In sandy soil, biochar with a higher pore 
capacity enhances water retention and reduces water loss through evaporation 
(Zhang et al. 2016). Also, amending soils with biochar of particle size 0.15–2 mm 
significantly enhanced soil porosity and had a stronger synergistic effect on water 
retention and water availability compared to biochar with larger particle sizes (de 
Jesus Duarte et al. 2019).

Furthermore, cation exchange capacity and zeta potential are also vital factors 
that influence water holding capacity because they are related to the adsorption of 
hydrated ions on the biochar surface. Generally, the higher the cation exchange 
capacity and negative zeta potential, the greater the water-holding capacity (Batista 
et al. 2018). Interestingly, the zeta potential and cation exchange capacity of biochar 
are directly related to the types and nature of functional groups on the surface of 
biochar. A high cation exchange capacity and negative zeta potential suggest a bio-
char surface covered by anionic functional groups, e.g. R-COO−. This implies that 
biochars whose surfaces are saturated with more negative functional groups are 
likely to promote soil aggregation as biochar–mineral–organic matter com-
plexes.  Moreover, the surface charge and hydrophobicity of biochar also play a 
crucial role in the water retention capacity of biochar-amended soils (Marshall 
et al. 2019).

Also, the content of biochar’s exchangeable base cations, which is related to the 
cation exchange capacity, equally plays an important role in bridging negatively 
charged minerals during soil aggregation (Kleber et  al. 2015; Song et  al. 2020). 
Given that soil aggregates play an important role in soil water retention, it is inferred 
that biochar’s ability to influence water retention will be related to its effect on soil 
aggregation, and different biochars will affect these processes differently.

12.3.5  Co-application of Biochar with Other Amendments

When applied together with other soil amendments materials (e.g. compost, chemi-
cal fertilizers and organic nutrient sources), biochar’s effects on soil’s physical and 
chemical properties are altered. For example, the application of biochar with both 
maize compost and sewage sludge improved available water content in soil by 4% 
when compared to maize compost and sewage sludge alone (Głąb et  al. 2018). 
When lignite fly ash was applied in combination with biochar in heavy metal- 
polluted soil, interactive water, air, and nutrients circle was generated as the growth 
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of different enzymes was favored (Masto et al. 2013). This suggests that the nega-
tive effects of biochar on certain soil microbes (Chen et al. 2015) can be mitigated 
when applied in combination with other amendments. Also, the combined applica-
tion of co-composted agricultural manure and biochar reduced the availability of 
heavy metals such as Cd in soil and cereal crops (Bashir et al. 2020). Nevertheless, 
in the presence of biochar, other amendment materials such as organic manure can 
promote the biodegradation of organic matter in soil and induce water repellency 
(Scott 2000).

12.3.6  Biochar Modification

The modification of biochar is generally aimed at producing function-specific bio-
char. These modifications can often produce biochars with increased surface func-
tional groups, increased/decreased porosity and surface area, improved surface 
charge characteristics and increased cation exchange capacity. Such changes in bio-
char’s physical, mechanical, and chemical properties may influence soil-water 
interaction, and consequently the irrigation water quality. For instance, the use of 
engineered orange peel-derived biochar significantly lowered soil bulk density, 
enhanced porosity and hydraulic conductivity, and altered the irrigation water qual-
ity (Kalderis et al. 2019).

Biochars are often engineered to have enhanced surface positive/negative charges 
to improve anion/cation retention and/or adsorption from irrigation water (Yao et al. 
2012; Liu et al. 2016b; He et al. 2020). Given that biochar engineering alters bio-
char’s basic properties by introducing other functional units besides organic func-
tional groups (e.g. metals, metal oxides, clay minerals and carbonaceous materials), 
very few studies have investigated the effect of these modified biochars on soil 
properties. Thus, more studies are required to investigate the fate of modified bio-
char in soil and its effects on soil physicochemical properties and irrigation water 
quality.

12.4  Conclusion

Biochar utilization in agriculture has shown the potential in mitigating the adverse 
effects of different pollutants on plants, improving soil water quality, and enhancing 
soil fertility. The different strategies used to produce biochar are often aimed at 
improving the basic properties and functionality of biochar, and this often has 
extended effects on biochar’s behavior in the environment.
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Chapter 13
Role of Biochar in the Adsorption of Heavy 
Metals

Muhittin Onur Akca and Osman Sonmez

Abstract Some heavy metals are highly toxic and can be stored for long periods in 
any ecosystem. This is a very sensitive issue because heavy metals can enter the 
food chain and exert negative effects on human health. This hazard should thus be 
reduced or eliminated. For that, biochar, a carbon-rich material can be added to soils 
for adsorbing heavy metals. Here we review the mechanisms of biochar applications 
on heavy metal adsorption in soil, with focus on feedstock of biochar, pyrolysis 
conditions, biochar properties, and soil characteristics. Biochar application does not 
entirely remove heavy metals from the soil environment. Hence biochar-applied 
metal-contaminated soils should be regularly monitored for heavy metal toxicity 
since the biochar’s immobilization capacity may decline with time.

Keywords Biochar · Heavy metal · Adsorption mechanism · Carbon · 
Environment

13.1  Introduction

Like global warming, which threatens the livelihood of all organisms, heavy metal 
pollution poses a major environmental threat on global scale. Heavy metals are 
types of toxic pollutants that are emitted into the environment in great amounts 
through industrial activities – like iron and steel production – volcanic eruptions, 
erosion of rocks, fertilizer applications, pesticide use, and mining (Lu et al. 2014; 
Mendez et al. 2014; Palansooriya et al. 2020). In the wake of rapid urbanization, 
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industrialization, industrial product manufacturing activities, and global-scale envi-
ronmental disasters, many environmental problems resulting from heavy metals 
have emerged (Sun et al. 2018; Bilal et al. 2019). These anthropogenic impacts have 
been disrupting the ecosystems relied upon by humanity throughout the course of 
history (Ma et al. 2016). Heavy metals generate many negative effects on the atmo-
sphere, soil, oceans, and ground water (Bai et al. 2020). These negative effects have 
been regarded as a significant environmental issue, especially in the United States, 
the European Union, Australia and many Asian countries (Ahmad et  al. 2019; 
El-Naggar et al. 2020).

Heavy metals, with high toxicity, long-term persistence in environments, carci-
nogenic properties, and bioaccumulation risks, in even very low concentrations, are 
regarded as very hazardous environmental pollutants (Zahida et  al. 2017; Anam 
et al. 2021; Manzer et al. 2021; Ashfaq et al. 2021; Zafar et al. 2020a). As a result 
of these characteristics, heavy metals pose a high-risk threat to food security and 
human health (Hou et al. 2018; Peng et al. 2018; Zama et al. 2018). Heavy metals 
can be present in soil, water, and aerial mediums in varying concentrations. When 
the concentrations exceed a certain threshold, heavy metals result in environmental 
pollution and have adverse consequences for any organisms exposed to them. For 
example, heavy metals can enter the food chain and ultimately lead to negative 
impacts on all living organisms, not least of all, humans (Wang et al. 2019). It is 
reported that with the increasing entry of heavy metals to the food chain, illnesses 
and deaths within a population will rise (Rai et al. 2019). To protect soil from all the 
above-mentioned hazards and ensure the sustainability of ecosystems, strategies 
aimed at the remediation of soil from heavy metal pollution need to be developed. 
Unless precautionary measures are taken, the world will face the risk of losing these 
soils and of the pollution of ecosystems (Liu et al. 2022).

Many methods have been utilized to remove heavy metals from soil, including 
membrane technology, ion-exchange, electrochemical treatment, soil washing, and 
phytoremediation (Shannon et al. 2008; Ge and Li 2018; He et al. 2019; Wang et al. 
2020; Saleem et al. 2020). However, many of these solutions are complex and costly 
and leave residual chemicals in the soil (Tan et al. 2020; Yang et al. 2020). As an 
alternative to these methods, an adsorption process can be applied to remove heavy 
metals from the soil environment (Deng et al. 2020). In this process, it has been 
shown that the use of carbon containing materials prevents heavy metal toxicity 
(Yang et al. 2019). There has been an increasing demand for remediation of heavy 
metal-contaminated soil applications that are novel, applicable, and economically 
feasible, and that include raw materials obtained from waste (Ahmad et al. 2014; 
Bolan et al. 2014; Wang et al. 2018). It is furthermore important that these materials 
used in the applications be retrieved from resources abundant in nature, renewable, 
and potentially recyclable (Bolan et al. 2014; Rinklebe and Shaheen 2015).

Recently, biochar, a carbon-rich solid product of biomass pyrolysis, which takes 
place under an anoxic or limited oxygen environment, has been reported to be an 
efficient tool for removing heavy metals thanks to biochar environmentally-friendly, 
low cost, and high adsorption capacity properties (Shaheen et al. 2019; Arif et al. 
2020; Hesham and Fahad 2020; Rashid et al. 2020; Subhan et al. 2020; Ashfaq et al. 
2021; Athar et al. 2021; Atif et al. 2021; Irfan et al. 2021; Dawar et al. 2021 a, b; 
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Ibad et al. 2022; Muhammad et al. 2022; Wiqar et al. 2022; Zafar et al. 2020b). The 
biochar use in soil remediation via heavy metal adsorption has become increasingly 
more common owing to biochar’s wide specific surface area, porous surface struc-
ture, and high functional group content (Peng et al. 2019; Sun et al. 2020). Overall, 
the inherent characteristics of biochar, such as abundance of binding sites on the 
surface (hydroxyl, carboxyl, and phenolic hydroxyl groups), porous structure, high 
cation exchange capacity, and high specific surface area, make it a useful, practical, 
and efficient adsorbent material for heavy metal remediation purposes (Li et  al. 
2019). The porous structure of biochar is variable. In terms of size, the pores can be 
nano- (<0.9 nm), micro- (<2 nm) or macro (>50 nm), characteristics that are crucial 
for heavy metal adsorption. When the pore size is too small, regardless of the 
charges or polarities, biochar will be unsuccessful in adsorbing heavy metal, or 
large sorbates in general (Ahmedna et al. 2004).

The pyrolysis temperature and type of biochar raw material are the two main 
factors that determine the functional groups of biochar. The pyrolysis temperature, 
heating rate, and retention time characteristics of the biochar production process are 
crucial for the biochar heavy metal adsorption capacity (Senthilkumar and Prasad 
2020). These characteristics have an overall considerable effect on the functional 
group content and surface area of biochar. Recent studies have revealed that the 
pyrolysis temperature has an important impact on pH, cation exchange capacity, 
specific surface area, surface functional groups, and mineral concentrations of bio-
char (Sizmur et al. 2017; Zhang et al. 2018). An increase in the pyrolysis tempera-
ture reduces the content of H2, N2, S and other elements and reduces the cation 
exchange capacity and oxygen containing functional groups on the biochar surface. 
Moreover, an increase in pyrolysis temperature will increase aromaticity. Although 
these said effects of higher pyrolysis temperatures negatively impact the heavy 
metal adsorption of biochar, higher pyrolysis temperatures also increase biochar’s 
specific surface area, porosity, and alkalinity, which in turn increase heavy metal 
adsorption capacity (Gai et al. 2014; Qiu et al. 2021).

In terms of adsorption properties, the most suitable pyrolysis temperature was 
determined to be 400 °C under a slow pyrolysis method (Wu et al. 2012). In one 
study, the adsorption sites of biochar that was pyrolyzed above 400 °C were clogged 
(Jung et  al. 2016). Increasing the pyrolysis temperature gradually reduces the 
absorption peaks corresponding to –OH, C–O–C, –CH2-, C=O groups, which means 
a reduction in their content (Wang et al. 2021). For instance, higher temperature in 
pyrolysis provides wider surface area, which prevents the negative effects of differ-
ent proximal function groups that complexate one another and reduce overall heavy 
metal adsorption. When biochar is applied to heavy metal contaminated soils, the 
soils do not destroy heavy metals, but rather, adsorb them and reduce heavy metal’s 
water solubility and bioavailability (Guo et al. 2020). It is imperative to understand 
the mechanism governing heavy metal adsorption on biochar surface to obtain bio-
char with the desired heavy metal adsorption capability (Fig. 13.1). A comprehen-
sive review that highlights the role of biochar in soil heavy metal relations is still 
lacking. This chapter summarizes the direct and indirect mechanisms of biochar 
applications on heavy metal adsorption in soil.
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Fig. 13.1 Heavy metal-biochar interactions in contaminated soils. (Source: He et al. 2019)

13.2  Interactions Between Biochar and Heavy Metals

Different raw materials and pyrolysis conditions produce distinctive characteristics 
in biochar that consequently affect the heavy metal adsorption on biochar surfaces. 
These differences lead to variations in the pH, organic carbon content, cation 
exchange capacity, micropore structure, specific surface area, active functional 
groups, and mineral content of biochar. In addition to the variations in soil charac-
teristics, these differences also affect the soil-heavy metal interactions and result in 
changes in heavy metal mobility-bioavailability (Qi et al. 2017). The heavy metal 
adsorption of biochar in a soil environment is explained on the basis of two main 
factors. As Fig. 13.1 illustrates, the first factor is related to the direct interactions of 
biochar and heavy metals, while the second factor is related to the changing soil 
characteristics after the biochar application and the indirect results these have on the 
soil mobility of heavy metals (He et al. 2019).

13.2.1  Direct Interactions Between Biochar and Heavy Metals 
in Soils

The adsorption mechanisms occurring via direct interactions are mainly complex-
ation, ion-exchange, precipitation, and electrostatic attraction (Table 13.1) (He et al. 
2019). It has been reported that these aforementioned mechanisms – electrostatic 
interactions, ion-exchange and complexation – are closely related to the binding 
sites, electrostatic forces, and the interactions of heavy metal and surface functional 
groups via covalent bond formation (Yang et al. 2019).
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Table 13.1 The direct impact mechanisms for heavy metal adsorption of biochar

Biochar Heavy metal Mechanism Reference

Orange peel As (V) Complextion Yoon et al. (2020)
Rice husk Cr (III) Ion exchange Dias et al. (2020)
Pine wood sawdust Pb and cd Precipitation Xia et al. (2019)
Corn stalk Zn (II) Electrostatic attraction Song et al. (2020)

13.2.1.1  Complexation

The presence of abundant functional groups on biochar surface constitutes rich 
binding sites for heavy metal (Yang et al. 2019). These functional groups, especially 
for low mineral content biochar, immobilize heavy metals via the surface complex-
ation pathway. For instance, biochar derived from plant wastes mainly adsorb heavy 
metals through the surface complexation path (Xu et  al. 2017). The functional 
groups present on the biochar surface (e.g. –OH, –COOH, –C=O– and C=N) create 
binding sites for heavy metal complexation that increase biochar specific adsorp-
tion. The primary impact of oxygen-containing functional groups on adsorption 
capacity is the enhancement of surface reactions and hydrophilicity (Li et al. 2021). 
If the obtained biochar contains inorganic ions, such as Si, S, and Cl, these ions can 
react with heavy metals and decrease heavy metal’s mobility (e.g., reduced mobility 
of Cd) (Tan et al. 2017). In a study performed on the heavy metal adsorption of 
functional groups, it was reported that total adsorbed Pb (II) was in the range of 
38.2–42.3% (Lu et al. 2012). In another study, Uchimiya et al. (2011) reported that 
the adsorption of Cd2+, Cu2+, Ni2+, and Pb2+ loaded heavy metals via biochar was 
carried out largely through surface complexation in ligand-like functional groups of 
biochar (e.g., carboxylic, hydroxyl, phenolic groups).

13.2.1.2  Ion Exchange

Ion exchange is governed by the electrostatic interaction between the negative 
charges on biochar surfaces and the positive charges in soil media. Carboxyl 
(-COOH), and oxygen-containing functional groups in general, adsorb heavy met-
als via ion-exchange processes (Ho et al. 2017). Variations in surface charges can 
originate from different chemical reactions involving protonation, deprotonation, 
and ligand-binding changes in amphoteric functional groups (Chintala et al. 2016). 
Over time, the increase in the number of biochar functional groups (particularly in 
carboxyl groups, but also in phenolic, hydroxyl, carbonyl or quinone carbon forms) 
alters the surface positive charge of biochar particles and increases the negative 
charge (Cheng et al. 2006; Cheng et al. 2008). These negatively charged particles 
increase the charge load on biochar, resulting in pH reduction in soil and a conse-
quent cation exchange capacity increase (Liang et al. 2006). This situation is con-
sidered to be related to the increase in heavy metals adsorption via increase in cation 
exchange capacity (Tang et al. 2013). Under certain conditions, the immobilization 
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of metals through the use of biochar is not solely associated with ion-exchange. The 
metal adsorption process of biochar is an endothermic process (Liu and Zhang 
2009; Harvey et al. 2011), where the positively-charged metal cations are retained 
by their electrostatic interactions with C=O or C=C-related π-electrons.

The heavy metal ions on soil water solutions are initially adsorbed by biochar via 
heavy metal ions cation exchange in cases where the biochar contains Ca2+, Mg2+, 
Na+, K+ and H+ ions (Fidel et al. 2018). Owing to soil’s high cation exchange capac-
ity, biochar emits Ca (II) and Mg (II) from soil’s surfaces, and these cations are 
exchanged with heavy metals (Li et al. 2015). It is known that animal-based biochar 
contains higher concentrations of Ca (II) compared to those of plant-based ones. 
This property of animal-based biochar makes them more effective in ion-exchange 
and immobilization of Cd (II) and Cu (II) (Lei et al. 2019).

13.2.1.3  Precipitation

Precipitation is another mechanism of biochar applications that removes heavy met-
als from soil. It is reported that biochar can effectively reduce the activity of heavy 
metal via adsorption/solution/precipitation of mineral contents (Rees et al. 2014). 
Under different conditions, however, there are also phosphate and carbonate pre-
cipitations. For instance, from the biochar obtained from Pb-loaded sewage sludge, 
only lead phosphate silicate precipitation was observed under pH of 5.0 (Lu et al. 
2012). Lead oxides, which are bound to specific minerals found in some biochar, 
can also form chloride and sulfate precipitates (Meng et al. 2014; Liu et al. 2016). 
In another study, the adsorption capacity of the biochar produced from rice stalk 
under 700 °C via precipitation was found to be 57%, while another biochar obtained 
from sewage sludge under the same pyrolysis temperature had 62% adsorption 
capacity (Gope and Saha 2021).

13.2.1.4  Electrostatic Interaction

Electrostatic interaction takes place between charged biochar and heavy metal ions, 
with the resulting impact being a reduction in heavy metal mobility (Mukherjee 
et al. 2011). For this mechanism, the zeta potential of utilized biochar material is 
used to describe its electrostatic potential. Studies in the literature have demon-
strated that in cases where biochars have high electronegativity, this can facilitate 
the electrostatic attraction of positively-charged heavy metal ions (Ahmad et  al. 
2016, 2018). Biochar density is important in electrostatic interaction. This density 
varies depending on the surface charge generated by the pH-induced increasing 
negativity of a negatively charged functional group (Faria et al. 2004; Cho et al. 
2010). Studies conducted on this topic have shown that the initial concentrations of 
heavy metals will also increase the electrostatic interaction with biochar (Dai et al. 
2015), and that a one-unit increase in pH is sufficient for increasing Cu (II) adsorp-
tion to the biochar (Tong et al. 2011).
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13.2.2  Indirect Interactions Between Biochar and Heavy 
Metals in Soils

The indirect effects of biochar on heavy metal mobility and bioavailability result 
from the changes in soil properties and metal-soil interactions. After the introduc-
tion of biochar to soil, the soil pH, cation exchange capacity, dissolved organic 
carbon, and mineral content properties are altered, resulting in a change to heavy 
metal-soil interactions.

13.2.2.1  Changes in Soil pH Resulting from Biochar Application

Soil pH is an important parameter insofar as it controls the mobility of heavy metals 
(Dong et  al. 2009). Many studies have reported that biochar applications to soil 
increase soil pH (Van Zwieten et al. 2010; Bell and Worrall 2011). The solubility of 
metal varies according to pH, where higher pH generally reduces metal solubility 
(Beesley et al. 2015). Increasing the pH in soil results in increasing adsorption of 
heavy metals on negatively charged surfaces. As biochar has alkaline properties, 
especially when applied to acidic soils, it can act as a “soil conditioner” (Yu et al. 
2019). With this alkaline property, biochar can increase hydrolysis of heavy metals 
and heavy metals adsorbance by soil. Moreover, alkaline properties can also increase 
the oxide forms of heavy metals (Bolan et al. 2014). One study reported that a bio-
char application increased heavy metal complexations in a soil media, which conse-
quently decreased Pb (II) desorption (Jiang et al. 2012).

13.2.2.2  Changes in Soil Cation Exchange Capacity Resulting 
from Biochar Application

The relatively high cation exchange capacity of biochar corresponds to the higher 
number of functional groups on the surface. Knowing the cation exchange capacity 
value of biochar allows for a better understanding of its capacity to adsorb heavy 
metals, that is, cation exchange capacity acts a guide for the biochar’s heavy metal 
adsorption capacity. Usually, biochar has high cation exchange capacity values, 
which means biochar application to soil also increases the soil’s cation exchange 
capacity value (Zhang et al. 2017). The studies conducted on this subject have indi-
cated that increasing doses of a biochar application decreases heavy metal concen-
trations and solubilities via the increase in cation exchange capacity (Li et al. 2016; 
Bashir et  al. 2018). Biochar added to soil was found to increase the soil cation 
exchange capacity after 30 days, which in turn increased Pb (II) adsorption (Jiang 
et  al. 2012). Similarly, increasing soil cation exchange capacity was shown to 
increase the adsorption of Cu (II) and Pb (II) (Ma et  al. 2010). Another study 
reported that when biochar has a high mineral content, such as Na+, Ca2+, Mg2+, K+, 
these positively charged cations are released to the soil and establish different 
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mineral phases on the biochar surface, furthering increasing heavy metal adsorption 
(Rees et al. 2014).

13.2.2.3  Changes in Dissolved Organic Carbon in Soil Resulting 
from Biochar Application

A biochar application to soil increases the dissolved organic carbon content of the 
soil pore water (Beesley and Dickinson 2011). Higher amounts of organic matter in 
the soil also increases the amount of water extractable organic carbon. Although 
dissolved organic carbon represents a small fraction of organic matter in soil, its 
mobility and reactivity give it significant value in the soil ecosystem (Lin et  al. 
2012). Increasing the amount of organic carbon in soil increases heavy metal 
adsorption, and thus, reduces heavy metal bioavailability (Zhu et  al. 2016). This 
mechanism is explained via the complexation between oxygen-containing func-
tional groups in biochar and heavy metals (Dong et al. 2014). Beesley et al. (2011) 
reported that biochar applications on arid and semi-arid soils resulted in the stabili-
zation of organic matter in organo-metal complexes with a Cu element. Abdelhafez 
et al. (2014) reported that the increase in organic matter resulting from a biochar 
application converted Pb (II) to less mobile organic-bounded lead and therefore 
reduced plant Pb (II) uptake.

13.2.2.4  Changes in Mineral Matter Content of Soils Resulting 
from Biochar Application

Biochar contains high amounts of mineral matter, such as Na, Ca, P, Mg, K. This 
mineral content is emitted when the biochar is applied to soil. Heavy metals are able 
to be adsorbed more due the established mineral phases on the surface of biochar 
(Rees et al. 2014). In one study, when increasing amounts of biochar were added to the 
soil, greater increases in the P ratio were observed. This increase resulted in the devel-
opment of stable phosphate minerals in the soil and Pb (II) adsorption (Cao et al. 2009).

13.3  Conclusion

Biochar has been shown to have major potential for heavy metal adsorption, and 
more recently, it has attracted attention for being a carbon-rich material. In terms of 
remediating heavy metal-contaminated environments caused by anthropogenic 
activities, biochar is a very promising application. This chapter specifically focused 
on the role of biochar in the soil adsorption of heavy metals. Biochar adsorbs heavy 
metal directly via numerous paths, including complexation, ion-exchange, precipi-
tation, and electrostatic interaction, and indirectly via the changes it brings about to 
the soil pH, cation exchange capacity, dissolved organic carbon, and mineral 
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content. It is important to note that biochar does not completely remove heavy met-
als from the environment, which means heavy metal-contaminated soil where bio-
char has been applied should be regularly monitored for heavy metal toxicity, as the 
immobilization power of the biochar might decline over time.
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Chapter 14
Positive and Negative Impacts of Biochar 
on Microbial Diversity

Muhammad Ammar Javed, Muhammad Nauman Khan , Baber Ali, 
Sana Wahab, Israr Ud Din, and Sarah Abdul Razak

Abstract Excessive exploitation of agricultural land has degraded the environ-
ment. Biochar application to soil has gained attention as an ecofriendly method to 
improve soil fertilization and crop production. Despite many advantages, some con-
cerns regarding the benefits of biochar in the long run need to be addressed. For 
instance biochar can sequester nutrients and water, and thus make them unavailable 
to microorganisms and plants. Here we review the advantages and drawbacks of 
applying biochar in agricultural fields.
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14.1  Introduction

In the past few decades, soil quality and health have been improved by the extortion-
ate use of chemical fertilizers which has raised concerns regarding environmental 
problems (Bogusz et  al. 2021). So the use of alternate strategies has become a 
necessity to improve soil fertility. In this regard, biochar has emerged as a promising 
solution and has gained much attention (Ayaz et al. 2021). Biochar is a carbon-rich 
material produced by pyrolysis of the feedstock under the limited or absence of 
oxygen (Lehmann et al. 2002). Biochar can be prepared from both woody i.e. resi-
dues of trees and forests and non-woody biomass i.e. industrial, urban, and soil 
waste, agricultural residues, and crops (Jafri et al. 2018). The nature of biochar is 
defined by the source from which it is prepared (Bourke et al. 2007).

Biochar alters the physical, chemical, and biological properties of soil. Biochar 
increases the water retention capacity of soil because of its porous nature. Biochar 
absorbs the water molecules as well as nutrients in the soil thus reducing nutrients 
leaching. In this way, it serves as a long-term storage house for nutrients and water 
(Matuštík et  al. 2020). Biochar can also be used for the mitigation of pesticide- 
polluted soils (Ren et al. 2016). Such physiochemical modifications directly or indi-
rectly affect the soil microbial community positively or negatively (Li et al. 2019). 
Most of the work done, cites the benefits of using the biochar in developing the 
beneficial microbial species and very less information is gathered on the negative 
impacts of biochar on soil biota. This chapter focuses on the benefits as well as 
detrimental effects of biochar on the diversity of soil microbial populations.

14.2  Positive Impact of Biochar on Microbiota 
and Their Secretions

Soil serves as a natural habitat for the diverse population of microbial species. 
Advancements in molecular studies have enabled researchers to dig deep into the 
complexity of processes involved in bringing the interactions between plants, 
microorganisms, and soil (Mueller et al. 2019). There are three domains of life in 
soil, e.g. archaea, prokaryotes, and third fungi, protists, animals, and plants. The 
diversity of microorganisms in soil is altered by the biochar amendment. For 
instance, compared to temperate forest soil, biochar amended soil have more abun-
dance of microorganisms which proves that biochar provides a favorable environ-
ment for community development (Muhammad et al. 2018). Many researches have 
backed the amendment of soil by biochar to favor the microbial communities in the 
soil as discussed in Table 14.1.
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Table 14.1 Effect of biochar on microorganisms

Feedstock Type of soil Impact of biochar References

Chicken manure 
(500 °C)

Sedimentary 
alfisol

Increase in activities of 
microorganisms in soil

Meier et al. 
(2017)

Corn straw (500 °C) Sandy loam Microbial biomass increased
Increase in gram positive bacteria
Increase in fungal population

Lu et al. (2014)

Cotton straw 
(450 °C)

Calcaric 
Fluvisol

Increase in enzyme activity, 
microbial activity, as well as 
microbial biomass

Liao et al. 
(2016)

Date palm waste 
(300 °C)

– Sorption of heavy metals
Increased the microbial biomass, 
soil respiration and soil organic 
matter

Al-Wabel et al. 
(2019)

Gliricidia sepium 
wood (300 °C, 
900 °C)

Serpentine soil Increased overall soil enzymatic 
activity
Sorption of heavy metals

Bandara et al. 
(2017)

Gliricidia sepium 
wood (900 °C)

– Microbial biomass increased
Increase in bacterial and fungal 
count
Increase in plant growth-promoting 
bacteria population
Absorption of heavy metals

Herath et al. 
(2017)

Glucose Forest and 
arable soil

Increase in gram positive bacteria Steinbeiss et al. 
(2009)

Maize straw 
(400 °C)

Silt loam Arbuscular mycorrhizal fungi/
saprotrophic fungi ratio affected

Luo et al. (2017)

Oak pellet (550 °C) Clay
Sandy loam

40–64% increase in phospholipid 
fatty acid biomass

Awad et al. 
(2018)

Pinus radiata Silt-loam Beneficial for phosphate solubilizing 
bacteria and carbon degrading 
bacteria

Anderson et al. 
(2011)

Pinus sp.
Dairy + bull manure 
(500 °C)

Fertile Mollisol Enhances the microbial biomass and 
microbial activity

Kolb et al. 
(2009)

Rice straw (550 °C) Clay loam Improved soil organic carbon 
mineralization
Slight increase in microbial biomass

Pan et al. (2016)

Sawdust (550 °C) Sandy loam Increase soil organic matter
Increase in phospholipid fatty acid 
biomass

Gomez et al. 
(2014)

Sugarcane bagasse 
(450 °C)

Sandy loam Reduction the bioavailability of 
heavy metals
Increase in Actinomycetes 
population (280%)

Nie et al. (2018)

Pine cone and 
vegetable waste 
(200 °C)

Sandy loam Absorbed the heavy metals and 
increased microbial abundance

Igalavithana 
et al. (2017)

(continued)
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Table 14.1 (continued)

Feedstock Type of soil Impact of biochar References

Wheat straw 
(450 °C)

Anthrosol Decreased the bioavailability of 
heavy metals
Increase in fungal (370–930%) and 
Actinomycetes (19–38%) population

–

Willow leaves 
(470 °C)

Flinty clay loam Nitrogen cycling is affected
Bacteria +28%
Actinobacteria +62%
Gram-negative bacteria +27%

Prayogo et al. 
(2014)

Willow wood
Swine manure 
(350 °C)

Temperature 
sandy loam

Microbial biomass increased
Increase in gram-positive and 
gram-negative bacteria

Ameloot et al. 
(2013)

Yeast Arable and 
forest soil

Nutrients levels enhanced
Fungal population increased

Steinbeiss et al. 
(2009)

14.3  Biochar Colonization by Microorganisms

Decades of studies have been carried out to understand the physical and chemical 
processes involved in the colonization of different substrates by bacteria and the 
formation of biofilm on their surfaces but no general conclusion has been drawn 
because of the diversity of substrates as well as microorganisms (Rummel et  al. 
2017). Biochar contains pores that can be used by microorganisms as shelter houses. 
However, spatial heterogeneity exists between fungi and bacteria on internal and 
external pores of biochar (Quilliam et al. 2013a, b). The aging periods of biochar 
also determine the colonization of bacteria on surfaces and in pores. For instance, 
Methanosarcina barkeri and Geobacter metallireducens are attached to the surfaces 
of biochar within the first 20 days. Thus, adjustments in aging periods of biochar 
can help to improve the colonization of bacteria and fungi on the surfaces and pores 
of biochar (Quilliam et al. 2013b).

The negative charge surface, high pore volume, and large surface area help the 
biochar to sorb nutrients. Biochar itself is enriched with nutrients for example phos-
phorus, nitrogen, sodium, magnesium, and potassium. Cation exchange capacity of 
soil indicates the nutrients retaining ability of soil (Chen et  al. 2012). Biochar 
improves the cation exchange capacity of soil and increases the nutrient holding 
capacity of soil and protects them from leaching. This provides an edge to the 
microorganisms especially the species inhabiting soils with low organic matter 
(Lehmann 2007). However, the sorption of nutrients mainly depends on the type of 
feedstock and the pyrolysis temperature used. For instance, the manure-derived bio-
char has higher ash content compared to wood-derived biochar which enables them 
to supply nutrients more efficaciously (Akhter et al. 2015). Similarly higher pyroly-
sis temperature favors the ash content in the manure- and crop-derived biochar (Xu 
and Chen 2013).

Biochar releases the nutrients in the soil at different rates. That’s why biochar is 
regarded as a slow-release fertilizer. Such properties bring long-term advantages to 
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soil fertility and microorganisms (Mukherjee and Zimmerman 2013). Biochar can 
also affect one microbial community by regulating the microbial functions of other 
species. For example, Fox et al. (2014) observed that biochar increased the popula-
tion of rhizobacteria that could transform the organic phosphorous and sulfur into 
bioavailable forms. This indirectly promoted the growth of Lolium perenne and 
other microorganisms that could utilize inorganic phosphorous and sulfur. Biochar 
contains functional groups like oxygen-containing groups on its surface that sorb 
inorganic anions and nutrient cations and then supply nutrients to microorganisms 
(Chen et al. 2015).

The aromatic nature of biochar is the reason behind their defiant behavior towards 
microbial decomposition. Biochar contains higher carbon to nitrogen ratio, there-
fore, they have less carbon available for microbial degradation. As a result, the car-
bon sequestration of soil is improved after amendment with biochar (Demisie et al. 
2014). Bacteria and fungi react and respond to the changes in pH, water conditions, 
and other environmental factors in their own way. Soil macro aggregates (>200) are 
better colonized by fungi compared to bacteria because fungi are favored in higher 
soil organic carbon and higher carbon to nitrogen ratio. In this way, fungi are favored 
over bacteria in biochars that promote macro aggregates formation (Ascough et al. 
2010; Zhang et al. 2015).

14.4  Reduction in Toxicity of Contaminants 
to Microorganisms

Biochar has the potential to reduce the toxicity of soil contaminants for microbial 
communities. Koltowski et  al. (2017) revealed that microbe mortality could be 
reduced by the use of willow biochar (700 °C) in soils contaminated with organic 
pollutants and heavy metals (Farooq et al. 2022; Ma et al. 2022a, b, c; Nawaz et al. 
2022; Naz et al. 2024). It also enhanced the reproduction of Folsomia candida and 
reduced the leachate toxicity to Vibrio fischeri. The possible mechanism involved is 
the immobilization of organic pollutants and heavy metals (Zainab et al. 2021; Bibi 
et al. 2024; Saleem et al. 2022) like nickel, manganese, chromium, cobalt, cadmium 
and aluminum on the surface or pore of biochar. This mitigates the soil pollutants 
and provides favorable conditions for the growth of microorganisms as well as 
plants (Zielińska and Oleszczuk 2016).

Application of rice straw biochar reduced the concentration of zinc, lead, copper, 
and cadmium by up to 68%. This truncates the heavy metal stress from 
Bradyrhizobium japonicum i.e. N-fixing bacteria which in response fixes the nitro-
gen for plant growth (Seneviratne et al. 2017). Moreover, alleviating the stress of the 
heavy metal from microorganisms improves the interaction between soil microbial 
communities and biochar which have profound effects on the fertility of the soil.

14 Positive and Negative Impacts of Biochar on Microbial Diversity
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14.5  Modification of Microbial Habitats

Biochar improves the physical properties of soil and thus modifies the microbial 
habitats indirectly. It controls the transport of microorganisms, enhances soil aera-
tion, and reduces bulk density. Biochar increases water retention and improves the 
availability of nutrients to the microbial cells (Abit et al. 2012; Abel et al. 2013). In 
addition, it protects against dry-wet cycles occurring in the natural ecosystem which 
are detrimental to microbial activities (Liang et al. 2006). Biochar also modifies the 
pH of soil. Compared to chemical variables i.e. electrical conductivity, carbon and 
nitrogen content, a slight change in the pH (0.2–0.3 units) can affect the soil micro-
bial community. Mitigation of heavy metals (for example aluminum) and increase 
in pH simultaneously increase the abundance of bacteria in soil (Qian et al. 2013).

Bacteria and fungi respond differently to different pH because bacteria are more 
sensitive to slight changes and can tolerate a narrow range of pH. So bacteria and 
fungi retort differently in biochar amended soils which may alter the structure of 
microbial communities in soil (Rousk et al. 2010). In North to South America, the 
population of Bacteroidetes, Actinobacteria, and Acidobacteria increased in soil 
when biochar bring the soil pH in the range of 3.2–9.0 (Lauber et al. 2009). Biochar 
pH has a direct relation with pyrolysis temperature i.e. increases with increasing 
pyrolysis temperature because of a reduction in volatile matter content and acidic 
functional groups. Thus biochar prepared at high temperature is more efficacious in 
improving the pH of the soil (Mukherjee et al. 2011).

14.6  Negative Impacts of Biochar on Microbial Diversities

Most investigations center around the effect of biochar on physiochemical charac-
teristics of soil rather than biological properties. Soil microbial community is sensi-
tive towards the environmental changes and their activities can stipulate the 
environmental changes before head. The amendment of soil with biochar can affect 
the diversity of soil microbial communities directly by changing the microbial com-
munity or indirectly by influencing the environmental factors (Sun and Lu 2014). 
The surface characteristics and highly aromatic hydrocarbon structure provides a 
habitat for specific bacteria, algae, and fungi and can resist the non-specific popula-
tion of microorganisms.

Many studies have postulated the negative impacts of biochar on the microbial 
activities in the soil as shown in Table 14.2. The activity of large cockroaches is 
reduced by ~20–25% by the use of pine extract biochar (Bastos et  al. 2014). 
Similarly, it also affects the diversity of microbial communities in the soil. In an 
experiment, Anderson et  al. (2011) added biochar to contaminated water and 
observed a reduction in the microbial count of water, especially Micromonospora 
(7%) and Streptomyces (11%). Many studies have reported a potential drop in plant 
growth, crop yield, and availability of nutrients after the amendment of soil with 
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Table 14.2 Impact of various types of biochar on microbial communities

Feedstock Soil Effect Impact of biochar References

Apple tree 
(500 °C)

Paddy soil – Inhibition of photosynthetic 
microorganisms

Jia et al. 
(2018)

Corn Stover 
(600 °C)

Loamy 
temperate soil

0/− It reduced the bacteria-to-fungi ratio 
and basal soil respiration.
No change in microbial biomass

Domene 
et al. (2015)

Eucalyptus 
marginata Donn 
ex Sm. (600 °C)

Tensol
Grey Orthic
Sandy soil

– Reduction in microbial mass, 
organic matter decomposition, and 
microbial community because of the 
decreased N mineralization by 
biochar addition

Dempster 
et al. (2012)

Maize corn cob 
rachis 
(450–500 °C)

Haploxerept
Fluventic
Sandy loam

– No change in functional microbial 
diversity
Depletion of microbial biomass

Andrés 
et al. (2019)

Maize straw 
(450 °C)

Fluco-aquic 
loamy soil

– Decrease in microbial biomass
G+, G−, fungi and bacterial content 
reduced

Wang et al. 
(2015)

Maize straw 
(450 °C)

Hapli-Ustic 
Cambiso

+ Reduced C mineralization
Increased microbial biomass
Increase in bacterial and fungal 
diversity

Chen et al. 
(2019)

Sawdust, Hickory 
and oak wood 
(500 °C)

Coarse-silty 
loam
Aridisol

0 No change in enzyme activity, 
microbial biomass, diversity, and 
mycorrhizal fungal biomass

Elzobair 
et al. (2016)

Panicum virgatum 
L. 
(two-stage- 
pyrolysis)

Aridisol
Fine

– Crop shoot biomass is inversely 
proportional to biochar
Affected microbial population
Reduction in fungi to bacteria ratio

Kelly et al. 
(2015)

Quercus robur L., 
Fagus sylvatica 
L., and Fraxinus 
excelsior L. 
(480 °C)

Eutric 
Cambisol

0 The population of decomposing 
bacteria increased
Fungal population declined

Jones et al. 
(2012)

Quercus robur L., 
Fagus sylvatica 
L., and Fraxinus 
excelsior L. 
(480 °C)

Eutric 
Cambisol

0 No long term effect on bacterial 
growth
Initially decreased the fungal 
population which stabilizes later

Rousk et al. 
(2013)

Rice husk 
(>480 °C)

Pristine 
agricultural soil

+/− Microbial biomass increased
Fungal population declined
Increased bacterial population

Anyanwu 
et al. (2018)

Rice straw 
(500 °C)

Hydromorphic 
paddy soil

+/− Actinomyces increased by 20%
Crop yield reduced
Fusarium oxysporum and fungi 
decreased

Chen et al. 
(2018)

(continued)
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Table 14.2 (continued)

Feedstock Soil Effect Impact of biochar References

Wheat straw 
(350–550 °C)

Anthrosol
Hydroagric
Paddy
Stagnic

+/− Microbial biomass increased
Fungi to bacteria ratio declined

Liu et al. 
(2019)

Wheat straw 
(350–550 °C)

Hydragric
Anthrosol
Sandy loam

+/− Decrease in Glomeromycota, 
Ascomycota, Hydrogenophilaceae, 
and Methylophilaceae
Microbial biomass remains 
unaffected
Bacterial population increased
Fungal population declined

Chen et al. 
(2013)

Wheat straw 
(350–550 °C)

Hydragric
Anthrosol
Sandy loam

– Increased α-bacterial diversity
Reduced population of 
Basidiomycota (66%) and 
Ascomycota (11%)
Declined fungal population

Zheng et al. 
(2016)

Switch grass 
(450–600 °C)

Sandy loam
Calcined clay

– Reduced the population of bacteria 
especially E. coli in soil

Gurtler 
et al. (2020)

Wheat straw 
(500 °C)

Planting soil – Population of Fusarium spp. 
declined significantly

Wang et al. 
(2020)

biochar. In one experiment, it reduced the yield of perennial ryegrass production, 
and in another reduced the wheat production by 46% and 70% (Baronti et al. 2010; 
Khan et al. 2022; Saini et al. 2022). Nie et al. (2018) observed a substantial reduc-
tion in the fungus population with the increase in biochar application.

As biochar enhances the nutrients and water availability it reduces the need for 
mycorrhizal associations. In this way, biochar increases the phosphorous availabil-
ity and reduces fungi abundance. Similarly, biochar can also affect microbial bio-
mass in soil. Compared to the control, the soil amended with biochar faced a 
significant reduction in biomass of microorganisms as revealed by Dempster et al. 
(2012). In another field experiment by Castaldi et al. (2011) no change was promi-
nent in microbial biomass even after 3–14 months of wood biochar addition.

14.7  Bactericidal and Anti-pathogenic Effects

Some types of biochar contain nitrification inhibitors which result in nitrification 
reduction. Biochar may be equipped with bactericidal or fungicidal compounds like 
α- and β-pinene, ethylene, pinecarveol, aldehydes, and acetaldehydes which can 
restrain the activities of microorganisms in the soil (Nguyen et al. 2017). The bacte-
ricidal activity of biochar depends upon the content of volatile organic compounds, 
pyrolysis temperature, and the type used for biochar (Clough et  al. 2013). For 
instance, α-pinene retained in the Pinus biochar halts the population of Nitrosomonas 
(Ward et al. 1997).
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Similarly, the denitrification process is also affected by biochar amendment. It 
reduces nitrous oxide emissions by up to 50%. Nitrous oxide may bind to the metal 
ions (Copper or Ferric) embedded in biochar leading to a reduction of nitrous oxide 
emission (Cayuela et al. 2014). Biochar reduces the substrate availability by absorb-
ing carbon and nitrogen. In this way it reduces the accessibility of nitrogen and 
carbon into the soil which limits the activities of microorganisms in soil especially 
the population of denitrifying bacteria decreases drastically because biochar absorbs 
soil organic matter and distribute it into organo-mineral fractions (Joseph et al. 2010).

Biochar strengthens the structural and functional diversity of the rhizosphere 
which triggers a rivalry between natural soil biota and pathogens for food resources 
available in the soil. The exact mechanism of pathogen resistance is not clear yet. 
However, the complex interaction between pathogen, host plant, and soil environ-
ment could bring disease suppression mechanism (Debode et al. 2020; Al-Zaban 
et al. 2022; Solanki et al. 2022). Biochar has a diverse array of mechanisms to sup-
press the growth of pathogens (Metayi et al. 2022; Mehmood et al. 2021). They 
have pores in which they absorb the beneficial microorganisms and protect them 
from pathogens as shown in the Fig. 14.1. It may activate the plant defenses indi-
rectly and resist pathogens in the rhizosphere (Amna et al. 2021).

Five mechanisms of pathogenic resistance were summarized while studying the 
13 pathosystems. These mechanisms include changes in nutrient availability (Adnan 
et al. 2018a, b, 2019, 2020, 2022; Deepranjan et al. 2021; Guofu et al. 2021; Zafar 
et al. 2020a, b, 2021), and abiotic conditions (Ali et al. 2022d; Dola et al. 2022; 

Fig. 14.1 Biochar contains pores that serve as a habitat for beneficial microorganisms and their 
population grows. This provokes competition between beneficial and pathogenic microorganisms
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Faryal et al. 2022; Saeed et al. 2022; Wahab et al. 2022; Abdul et al. 2021a, b), 
increase in abundance of symbiotic microorganisms, strengthening of plant resis-
tance, sorption of phytotoxic and allelopathic compounds that are hazardous to 
plants, or availability of fungi toxic compounds on the surface of biochar.

Many studies have been carried out to alleviate the pathogenic species from the 
rhizosphere of plants. Elmer and Pignatello (2011) used commercial quest biochar 
for the growth of Asparagus sp. which protected the plant against the Fusarium 
crown and root rot. Silva et al. (2020) used the biochar made from Eucalyptus uro-
phylla and Eucalyptus saligna which reduced the Fusarium wilt in tomatoes. 
Fusarium oxysporum and Fusarium asparagi were also inhibited by coconut 
charcoal- carbonized Chaff biochar when applied on Asparagus officinalis 
(Matsubara et al. 2002).

Postma et al. (2013) used biochar made from pig bone to alleviate the disastrous 
effects of Fusarium oxysporum from Lycocperisicon esculentum. In Zea mays field 
poultry fecal waste biochar was used to inhibit Fusarium verticilloides (Akanmu 
et al. 2020). Citrus wood biochar could be against Leveillula taurica for Capsium 
annum plant species (Elad et al. 2010). Zwart and Kim (2012) used biochar pro-
duced from Pinus ellioti, Pinus palustris, Pinus taeda, and Pinus echinata to inhibit 
growth of Phytophthora cactorum, and Phytophthora cinnamomi in Quercus rubra 
and Acer rubrum. Postama et  al. (2013) used pig bone biochar in fields of 
Lycopersicon esculentum to protect them from Phytium aphanidermatum. Ocimum 
basilicum and Capsicum annuum could be protected from Pythium ultimum using 
the spruce bark biochar. However, it did not affect the reduction of pathogenicity 
(Gravel et al. 2013).

In Cucumis sativus, biochar from eucalyptus wood chips could be used against 
Pythium aphanidermatum (Jaiswal et  al. 2019). Harel et  al. (2012) reported the 
effectiveness of biochar made from Citrus wood–crop wastes in Fragaria ananassa 
against Podosphaera aphanis. Ralstonia solanacearum in Lycopersicon esculentum 
can be resisted by biochar made from municipal waste and peanuts shells (Nerome 
et al. 2005). Moreover, Jaiswal et al. (2014) reported the positive impact of biochar 
produced by pyrolysis of greenhouse waste and Eucalyptus wood chips in Phaseolus 
vulgaris and Crocus sativus against Rhizoctonia solani.

14.8  Impact of Toxic Biochar Compounds

Biochar has the ability to alleviate the infertility of soil by mitigating various pollut-
ants like polycyclic aromatic hydrocarbons, pesticide residues, polychlorinated 
biphenyls, and other potentially toxic metals (El-Naggar et al. 2019). However, bio-
char has also been reported as a source of dangerous organic compounds which 
might be hazardous to microorganisms in soil. For example, polychlorinated diben-
zodioxins, and dibenzofurans produced during the pyrolysis of biochar can pose a 
threat to the microbial population (Lyu et  al. 2016). Similarly in another study, 
Kookana et al. (2011) found that compounds like acrolein, formaldehyde, xylenols, 
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cresols, and PAHs are hazardous to microorganisms as well as plants and soil. 
Volatile organic compounds are produced during the pyrolysis of biomass.

Volatile organic compounds include chemicals with low molecular weight (cre-
sol, phenol, methylate phenol, methanol, propionic butyric, and acetic acid). All of 
these chemicals, individually or in a mixture, are toxic and carcinogenic for humans 
(Brtnicky et al. 2021). Volatile organic compounds are also produced by bacteria as 
signal molecules that recruit other microbial populations e.g. bacterial volatile 
organic compounds recruit rhizobacteria to promote plant growth (Ali et al., 2022a, 
b, c, d; Raza et al. 2021; Afridi et al. 2022). These volatile organic compounds can 
also alter the nitrogen cycling through inhibition of nitrification. So the presence of 
volatile organic compounds in biochar can also alter the diversity of microorgan-
isms. They can halt the mycelial growth of fungi (Chen et al. 2013).

The polycyclic aromatic hydrocarbons concentration in biochar is usually 
defined by the method and conditions used for the biochar production. The polycy-
clic aromatic hydrocarbons concentration in biochar was analyzed by Brown et al. 
(2006). They indicated that pyrolysis temperature determines polycyclic aromatic 
hydrocarbons level. At low temperature, polycyclic aromatic hydrocarbons having 
low molecular weight were in abundance and at high pyrolysis temperature, polycy-
clic aromatic hydrocarbons with high molecular weight were in abundance. Wang 
et al. (2017) found that the speed of the pyrolysis process also determines polycyclic 
aromatic hydrocarbons content. Fast pyrolysis and short residence time resulted in 
high polycyclic aromatic hydrocarbons yield compared to slow pyrolysis and long 
residence time. Moreover, the facility used for biochar production also affects the 
polycyclic aromatic hydrocarbons content.

The use of traditional kilns in which tar oils and syngas is not eliminated results 
in a 10% increase in polycyclic aromatic hydrocarbons content in biochar (De la 
Rosa et al. 2016). Therefore, different threshold levels of polycyclic aromatic hydro-
carbons have been assigned to the biochar. Various biochar products have various 
concentration of polycyclic aromatic hydrocarbons ranging from 0.1 to 10,000 mg/
kg. That’s why the intended properties of biochar to be used should be determined 
before exercising it in the agricultural soil (Wang et al. 2017).

14.9  Indirect Impact of Biochar on Microorganisms

Most of the literature highlights the benefits of biochar amendments, but there are 
also some limitations to these benefits. First and foremost, agricultural soil faces 
inhibitory effects because of biochar aging which increases the need for intermittent 
addition of fresh biomass to sustain a normal soil-water environment and nutrient 
cycling. For example, Anyanwu et al. (2018) revealed that the growth of fungi and 
earthworms was affected by the pernicious effects of biochar aging in soil. Moreover, 
the underground root biomass of Solanum lycopersicum and Oryza sativa were also 
reduced by biochar aging. In addition, the amendment of soil with specific biochar 
is limited to specific soil. Thus same biochar cannot be used for different types of 
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soil and if used may have baneful effects on soil fertility and microbial populations 
(Zhu et al. 2015). Moreover, biochar amendment also boosts the growth of weeds 
which compete with plants and soil biota for nutrients and survival.

In a study carried out by Safaei Khorram et al. (2018), an increase of 200% in 
weed growth was evident after application of 15 t/ha, and repeated application of 
biochar was suggested to worsen the condition. In another experiment, Vaccari et al. 
(2015) found that after the application of biochar on targeted parts of plants only the 
vegetative growth increased but the fruit yield remained unchanged. It could also 
delay the flowering of plants (Hol et al. 2017). Biochars came up as a solution to 
mitigate pollutants in the soil which could help microorganisms to develop better 
communities in the soil but this attribute of biochar is very selective. For example, 
biochar amendment could not help with the mitigation of di-chloro diphenyl tri-
chloro ethane (DDT) (Denyes et al. 2016).

Another drawback of biochar is that it has a very high content of ash if it is pro-
duced at a very high temperature. This may produce a noxious effect on plant growth 
and soil microbial community (Butnan et  al. 2015). In many cases, biochar also 
absorbs the available nitrogen and traps essential nutrients which are required for 
the growth of plants and the sustainability of microbial populations. It may act as a 
competitor by reacting with soil nutrients instead of ensuring their availability for 
plants and microorganisms (Joseph et al. 2018). For example, phosphate is absorbed 
by the biochar when phosphorus fertilizer is applied with biochar for synergistic 
benefits. This sorption results in the unavailability of phosphorus for plants and 
microorganisms (Xu et al. 2016).

14.10  Conclusion

Biochar has come forward as a solution to alleviate the infertility of soils. It can 
ameliorate the soil’s physiochemical as well as biological properties directly or indi-
rectly because of its structure and properties. Soils amended with biochar have 
improved phosphorous and nitrogen availability, pH, SOM, water-holding capacity, 
and nutrient availability. These advantages of biochar help specific microorganisms 
in their survival and growth. Microorganisms colonize the biochar because of its 
porosity and biochar protects them from pathogens. It serves as a storehouse of nutri-
ents and water, alleviates the toxic heavy metals from the soil, and modifies the habi-
tat for microorganisms in degraded and sandy soils. However, the benefits of biochar 
are limited by the type of feedstock used, pyrolysis temperature, pyrolysis speed, and 
the aging of biochar. It may have no or negative effects on the abundance of micro-
organisms. It may contain bactericidal, fungicidal (α- and β-pinene, ethylene, pine-
carveol, aldehydes, and acetaldehydes) or toxic compounds) that are detrimental to 
microbial populations. In the review of the discussed pros and cons of biochar, it 
seems to be a valuable supplement if its effects and properties are tested before 
amendments in agricultural fields. Further studies are needed to address the negative 
effects to improve the efficacy of biochar in favor of microorganisms, plants, and soil.
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Chapter 15
Biochar and Arbuscular Mycorrhizae 
Fungi to Improve Soil Organic Matter 
and Fertility

Hafiz Muhammad Rashad Javeed, Mazhar Ali, 
Muhammad Shahid Ibni Zamir, Rafi Qamar, Sonia Kanwal, Hina Andleeb, 
Najma Qammar, Kiran Jhangir, Amr Elkelish, Muhammad Mubeen, 
Muhammad Aqeel Sarwar, Samina Khalid, Mariyam Zain, Fahim Nawaz, 
Khuram Mubeen, Muhammad Adnan Bukhari, Ali Zakir, 
Muhammad Amjad Farooq, and Nasir Masood

Abstract Increasing feeding mouths are the vital element of increased food pro-
duction and demand. The required resources (i.e. land, water and nutrients) to pro-
duce food are limited and decreasing with the passage of time. Moreover, intensive 
farming and poor soil management are depleting the soil organic matter and hence 
the maintenance of soil fertility status is a critical issue for the scientists. In brief, 
soil fertility and health are directly linked with farm profitability. In this scenario, 
the biochar (BC) and arbuscular mycorrhizae fungi (AMF) have the tremendous 
ability to sustain soil fertility and productivity. In addition, the application of both 
BC and AMF not only increases the production per unit area but also improves soil 
health for future generations. Here we reviewed that biochar improved the soil 
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porosity and stability, soil structure, soil aggregation, tensile strength, soil infil-
tration, soil penetration resistance, nutrient cycling, water holding capacity, and 
reduce the runoff and erosion. Moreover, BC is attracting global scientists to pro-
mote sustainable and environmentally friendly agriculture because it may help to 
decrease  fertilizer requirements and reduce  carbon emissions. The synergism 
effect of BC and AMF was noted. Reviewed literature indicated that combined 
application of BC and AMF resulted in significant increase in AMF spore num-
ber, microbial biomass, and soil enzyme activities both in the fertile and non-
fertile soils. Moreover, they also promote growth, physiological petameters, root 
architecture and morphology.

Keywords Arbuscular mycorrhizae fungi · Soil organic carbon · Biochar · 
Microbial activities · Soil productivity

15.1  Introduction

Soil plays an important role in ecosystem services, landscape production, human 
development, agriculture production, and climate change mitigation (He et  al. 
2021). Soil health plays an important role in the growth of the plant in a natural 
environment. In the past years, ecological and environmental issues such as soil 
degradation, soil contamination, water shortages, climate change, and fertility loss 
have decreased crop yield, increased the abiotic and biotic stresses, and posed seri-
ous risks to food security (Murtaza et al. 2021; Abdul et al. 2021a, b; Abdi et al. 
2021; Adnan et al. 2018a, b, 2019, 2020; Deepranjan et al. 2021).

It is mandatory to consider the quality parameters of soil, they do not always 
respond similarly to organic matter and microbial Inoculation. And plant efficiency 
responses depend on experimental conditions, which consist of the choice of organic 
matter, type of plant and species, experimental conditions, type of experiment  
(studies of field or pot), and nutrient ratios (Vahedi et al. 2021). Greenhouse gas 
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emission, organic matter mineralization, nutrient cycling, and decomposition pro-
cesses can be controlled and highly influenced by micro-biome in soil. Microbes in 
soil have great importance for soil function.

The activity of soil microbes regulates almost 80% of the functions in soil. Using 
microbial biomass in the soil can indicate the soil and activities of microbes. Further, 
we can monitor all the changes which occurred in the soil after the addition of sev-
eral amendments like soil pollution and management practices (Oladele et al. 2019). 
Biochar applications can enhance the physical health of the soil, consisting of tex-
ture, air, structure, density, water temperature, etc. Biochar amendments in the soil 
enhance the firmness of soil aggregates, especially in (sandy clay). Eventually, it is 
efficient for improving drought conditions by water holding capacity in soil (Das 
et al. 2020). The specific surface area stands for an expressed as per unit of mass and 
it represents the surface area of each particle in the sample. A larger surface area 
promotes additional colonization of native Microorganisms, and all biological 
activities are affected by specific surface area in soil. After increasing specific sur-
face area and applying biochar amendments, water retention can increase in soil 
(Barna et al. 2020).

For soil nutrients, soil organic matter is the main source in soil. Soil organic mat-
ter is useful for enhancing the microbial activities in soil and for, increasing nitro-
gen absorption and reducing the loss of nitrogen through volatilization (Mandal 
et al. 2021). The formation stability of aggregates in the soil is influenced by biotic 
and abiotic factors, consisting of soil moisture, community structure, soil organic 
matter, plant species, fertilization, microbiome, tillage, and activity of soil fauna 
(Barna et al. 2020). Furthermore, soil organic matter can improve the structure’s 
growth in soil, crop development, and physical properties (Tan et al. 2017). Soil 
dissolved organic matter is a major source of carbon in the soil for the microbial 
community. Microbes interact with terrace metals in soil, influencing their fate, 
bioavailability, and transportation. In soil, dissolved organic matter consists of bio-
logically obtained materials like polysaccharides, humic substances with low 
molecular mass, and proteins (Yang et al. 2019). Carbon in soil occurs in two forms 
such as soil organic carbon and soil inorganic carbon. Soil organic carbon is an 
important tool to control the behaviour of organic and inorganic soil pollutants 
(Khalid et al. 2020).

Different important soil components like microbial biomass dissolved organic 
matter and light fraction organic matter can be influenced by Active organic matter 
in the soil. Active soil organic matter improves the soil quality and impacts the soil 
material cycle. Moreover, active soil organic matter is good for maintenance and 
stabilizes the granular structure in the soil. Furthermore, they provide phosphorus, 
nitrogen, potassium, and some essential micro-nutrients in the soil, which are 
required for plants. But the concentration of active soil organic matter is impacted 
by temperature, cation exchange capacity, water content, pH and soil physical prop-
erties (Tan et al. 2017). Organic carbon in the soil is obtained from the carbon inputs 
in a plant through roots, arbuscular mycorrhizal fungi, and shoots (Huang et  al. 
2021). Soil stability is known as the sensitivity of soil to artificial and natural 
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disturbances. In addition, soil quality indicators are considered several biological 
properties like microbial biomass, amino acids, activities of earthworms, respira-
tion, and soil enzymes (Mandal et al. 2021).

Modification with several organic waste materials like manure, straw, compost, 
and crop residues can create the soil organic matter in the degraded soil, which 
plays a major role in restoring chemical, ecological, biological, and physical func-
tionality. If soil organic increases, it can directly affect the structure of the microbial 
community, mineralization of nutrients, biomass turnover, and soil microclimate 
(Amoah-Antwi et al. 2020). However, it was seen that the any increased concentra-
tion of salt can affect the ability of the plant to absorb water and thus, it disturbs the 
osmotic balance, guard cell activities, hydraulic conductivity, metabolic processes, 
nutrient absorbances, net photosynthetic rate, stomatal conductance, and intercel-
lular carbon dioxide concentration. These all factors have adverse effects on the 
ability of plant development and growth (Elhindi et al. 2017).

15.2  Arbuscular Mycorrhizal Fungi

Arbuscular mycorrhizal fungi are an important component of a sustainable plant 
system in plants among the other microorganism that live in the rhizosphere of 
plants. Arbuscular mycorrhizal fungi are an essential, integral part of the soil-
plant system, which forms a symbiotic relationship with land plants. The word 
“mycorrhiza” is known as fungus roots (Upadhyay 2015). Mycorrhiza has a 
symbiotic relationship with the endophytic root fungi and plants. It is known as 
one of the earliest and worldwide interactions considered most important for 
plant biomass production. In an ecosystem between other functions, mycorrhizal 
fungi provide mineral nutrients to their host plants, and In return, they get pho-
tosynthetically derived carbohydrates (Hammer et al. 2015). In terrestrial eco-
systems, arbuscular mycorrhizal fungi are present worldwide. Arbuscular 
mycorrhizal fungi allow nutrient uptake in plants and improve the regulation of 
carbon dynamics in soil. It consists of more than 200,000 species and present in 
grasses, trees, hornworts, and herbs habitat. They represent greater than 80% of 
plant species in the terrestrial ecosystem (Wei et al. 2019). Nutrient uptake and 
root colonization of plants increase due to arbuscular mycorrhizal fungi hyphal 
networks, which grow in the outer depletion zone of roots (Fig. 15.1). Compared 
to other weed agronomic species, “velvetleaf” is considered a strong arbuscular 
mycorrhizal fungi host with greater colonization rates. When arbuscular mycor-
rhizal fungi colonization increased in the field, both nutrient shoot tissue, and 
biomass has been increased. Another study indicated that fungal Inoculation 
could increase the (Cu, P, K, Mn, and Mn) in both roots and shoots of chicory 
(Zhao et al. 2021).
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Fig. 15.1 Role of arbuscular mycorrhizal fungi is the soil ecosystem

15.3  Classification of Arbuscular Mycorrhizal Fungi

• Vesicular-arbuscular mycorrhizae: It is a member of zygomycetes fungi and 
derived from the ‘arbuscular’ characteristic structure. That occurs in vesicular 
and cortical cells.

• Ectomycorrhiza: They are from basidiomycetes. Around roots, they form a man-
tel, and between root cells. They form a Hartig net.

• Orchid mycorrhizae: They are linked with orchid roots and create hyphal coils 
inside roots and stems.

• Ericoid Mycorrhiza: This is a type of plant that members of Ericales like tea, 
kiwi fruit, rhododendron, persimmon, blueberry, azalea, and cranberry. They 
produce hyphal coils of root hair in epidermal cells. Arbuscular mycorrhizal 
fungi are among the most popular and oldest symbiosis among all of them. 
According to an estimate, it evolved 400 million years in the form of first land 
plants (Upadhyay 2015).

15.4  Symbiosis of Arbuscular Mycorrhizal Fungi with Plants

A symbiotic relationship between arbuscular mycorrhizal fungi and roots benefits 
the soil structure formation, such as pore structure, wetting rates, and aggregate 
stability. Moreover, Arbuscular mycorrhizal fungi promote tolerance of stress in 
plants under severe drought, heavy metals, salinity and nutritional stress (Guo et al. 
2013). Arbuscular mycorrhizal fungi are a primary biotic soil component and com-
prise the number of obligate biotrophs roots which exchange 80% benefits of the 
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mutual plant and consider a natural biofertilizer because they provide nutrients, 
pathogen protection, interchange for photosynthetic products, and water to their 
host. Its appearance coexists with the emergence of plants on land, which are ancient 
root symbionts. If it is not present in an adequate amount in the soil ecosystem, it 
can decrease the functioning of the efficient ecosystem. Many factors like inocula-
tion timing, compatibility of species with another target environment, the extent of 
spatial competition in a target niche with other organisms affected the success of the 
inoculation process, and arbuscular mycorrhizal fungi persistence in soil (Berruti 
et al. 2016). The changes in arbuscular mycorrhizal fungi community diversity and 
composition reflect some nutrients demanded in agricultural soil (Zhu et al. 2016). 
Moreover, arbuscular mycorrhizal fungi globally claimed that they can aid in the 
mitigation of nutrition and water stress in plants (Cheng et al. 2021).

For more than 30 years, arbuscular mycorrhizal fungi has been used to restore 
mine areas due to their obligate root symbionts nature, and they can improve the 
establishment and survival of the plant (Ohsowski et al. 2018). However, there is a 
huge difference between the colonized plant of arbuscular mycorrhizal fungi and 
plants that are non-colonized. Under nutritional stress, mycorrhiza improve the 
absorption of phosphorus, calcium, and potash. Moreover, in sever soil stresses, the 
balance between different ionic concentration such as Ca/Na and K/Na is improved 
due to arbuscular mycorrhizal fungi (Elhindi et al. 2017).

The efficiency of arbuscular mycorrhizal fungi is improved along the application 
of biochar in all type of soil systems. In the presence of biochar, arbuscular mycor-
rhizal fungi increases the root colonization and hence improved the root architecture 
(Wang et al. 2020). In addition, the increase in colonization is linked with the char-
acteristics of biochar in the existence of some organic matter in soil (Atkinson et al. 
2010). Moreover, microorganisms in soil like arbuscular mycorrhizal fungi repre-
sent an essential link between mineral nutrients in soil and plant. They can ensure 
the availability of nutrients from the soil and act as natural fertilizers (Begum et al. 
2019). The arbuscular mycorrhizal fungi mycelium belongs to the root system 
(Diagne et al. 2020). From the volume of soil, they obtain nutrients that are unavail-
able to roots. Moreover, fungal hyphae are thinner than roots, and because of that, it 
penetrates the smaller pores (Jiang et al. 2021).

Mineral nutrients and carbohydrates can exchange inside the roots over the inter-
face between fungus and plants (Berruti et al. 2016). Arbuscular mycorrhizal fungi 
colonize the root cortex and shape the structure of branches inside the cell, for 
example, “arbuscules,” which is known as a functional site for nutrient exchange. It 
has been observed that arbuscular mycorrhizal fungi control and regulated the nitro-
gen dioxide emission by improving plant nitrogen uptake and assimilation 
(Nanjundappa et al. 2019). Consequently, it reduces soluble nitrogen in the soil and 
causes a limitation of denitrification. Because of anthropogenic activities, if it is not 
present in sufficient quantity in the soil, it can reduce the functioning of an efficient 
ecosystem (Berruti et al. 2016). The presence of arbuscular mycorrhizal fungi can 
stimulate the activities of microbes in soil and promote the activity of soil microbial 
biomass and phosphates (Vahedi et al. 2021). The availability of phosphorus can 
interrupt the symbiotic interaction of arbuscular mycorrhizal. Arbuscular 
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mycorrhizal fungi positively affect plant production in an open field and under con-
trolled conditions, which add some nutritional benefits to host plants due to soil 
fungal symbionts (Atkinson et al. 2010).

Arbuscular mycorrhizal fungi have been considered good for promoting growth 
in stressful conditions. The working of fungi is started along with formation of colo-
nization that improve nutritional, physiological, and morphological changes to 
enhance the vigour and plant growth by improving the water and nutrients access 
through slight modification of the root architecture. However, in some cases, it was 
seen that it improve the photosynthesis rate in the host plant by changing the physi-
ological status and enhancing the phosphorus content in the leaf area (Hashem et al. 
2019). Consequently, aggregate formation is affected by secreted exudates. 
Glomalin, known as glycoprotein, acts as a glue in soil aggregation. Arbuscular 
mycorrhizal fungi secreted hyphae and become an important part of soil organic 
matter fraction called glomalin soil protein (Liu et al. 2020). Due to microbial deg-
radation, resistance, and insolubility in water, glomalin becomes extremely stable. 
There is a close relationship between extraradical hyphae, intraradical arbuscular 
mycorrhizal fungi colonization, and macroaggregate of water-stable content in the 
soil (Barna et  al. 2020). Arbuscular mycorrhizal fungus interaction includes the 
alteration in the signalling process of mycorrhizal fungi changing in soil physico-
chemical properties. Biochar work as a refuge for arbuscular mycorrhizal fungi 
(Han et al. 2016).

Around 95% of plants in the terrestrial ecosystem characteristically belong to 
mycorrhizal families, which means arbuscular mycorrhizal fungi symbiosis hap-
pens in most habitats (Liang et al. 2009). Arbuscular mycorrhizal fungi occur as a 
community in roots and soil, so they collectively contributed to nutrient uptake such 
as phosphorus. Reconstructed communities of Arbuscular mycorrhizal fungi 
increase the plant growth in soil (Wang et al. 2007). It was noted that arbuscular 
mycorrhizal fungi contribute mainly to soil organic matter by generating demand 
for the sink as plant carbon and distributing it to underground biomass of hyphal. In 
addition, arbuscular mycorrhizal fungi impacted the soil carbon by affecting the rate 
of decomposition of soil organic matter by interacting with other biotas in the soil 
(Bi et al. 2020). However, arbuscular mycorrhizal fungi do not directly influence the 
decomposition of organic matter (Ren et al. 2021). But it depends on saprophytic 
microbes which decompose the complex carbon sources for nitrogen availability. 
Interaction between microbes and arbuscular mycorrhizal fungi can be because by 
rhizodeposition of hyphal exudates (Parihar et al. 2020).

15.5  Biochar as Soil Amendment

Biochar is a recalcitrant organic residues produced to improve the soil carbon accre-
tion through biomass degradation thermally under anaerobic conditions (Lustosa 
Carvalho et al. 2020). Pyrolysis is a thermal decomposition of biomass that produce 
biochar as a product. Biochar has become important due to its sustainable use in soil 
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management practices and global climate change issues (Namgay et  al. 2010). 
Global biochar production differs from 0.05 to 0.3 GT C year−1. On the other side, 
the net worldwide production of the plants is about 60 GT C year−1 (Atkinson et al. 
2010). After applying biochar, it becomes better to retain moisture in the soil. 
Biochar improves overall soil quality through many energy sources, mineral nutri-
tion, and carbon for the reproduction and development of microbes (Tan et al. 2017; 
Ashfaq et  al. 2021; Atif et  al. 2021; Fahad et  al. 2015, 2016; Ibad et  al. 2022; 
Hesham and Fahad 2020; Irfan et al. 2021; Khadim et al. 2021a, b; Khan et al. 2021; 
Khatun et al. 2021; Muhammad et al. 2022; Subhan et al. 2020; Tariq et al. 2018; 
Wiqar et al. 2022; Wu et al. 2019, 2020; Xue et al. 2022).

Biochar preparation includes some methods, including carbonization, pyrolysis, 
flash carbonization, laser, hydrothermal, gasification, microwave carbonization, tor-
refaction, and plasma cracking. The most common methods for preparing biochar 
are hydrothermal carbonization, pyrolysis, and gasification (Anae et  al. 2021). 
Biochar includes several types of biomasses as source material, for example, animal 
manure, crop residues, and woodchips which instantly increase the temperature of 
pyrolytic sugar cane straw manufacture (Puga et al. 2015). The presence of aromatic 
sheets on the surface of biochar makes it more amphoteric for adsorbates and 
enables strong non-linear adsorption. The presence and absence of soil fauna are 
important factors for stability of biochar in soil (Sashidhar et  al. 2020). Biochar 
consists of extreme stability, a larger surface area, abundant nutrients, a high level 
of carbon, high porosity, and rich functional groups (Sun et al. 2021). The nature of 
the feedstock and operational conditions determined the nutrient content in biochar 
(Pathy et al. 2020).

15.6  Biochar and Soil Physiochemical Properties

Biochar addition improves the soil quality and sequestration of carbon dioxide. 
Some studies indicate that biochar can change soil pH, bulk density, cation exchange 
capacity, and physicochemical properties (Zhao et al. 2014). Biochar works as a 
carbon-rich residue, a relatively charred organic material to improve soil nutrient 
status. It can change the physicochemical properties of soil by directly releasing 
nutrients and indirectly changing the concentration of plant-available nutrients 
(Ohsowski et al. 2018). Biochar can also produce through a straw for the improve-
ment of soil properties. When biochar is added to sandy loam soil, it reduces the soil 
bulk density and increases the water holding capacity (Li et al. 2021a). However, 
application of biochar in agricultural coarse texture soil can improve the water hold-
ing capacity of soil so plants can get more water and soil porosity (Zhou et al. 2019).

The applications of biochar in the soil have the potential to increase the microbial 
community, soil fertility, carbon storage capacity, and soil structure and immobilize 
the toxic metals in the soil (He et al. 2021). Microorganisms are essential for the 
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ecosystem and services in soil. For example, for maintenance of soil health and 
quality, suppressing pathogens, maintaining soil health and quality, and driving bio-
geochemical cycles (Palansooriya et al. 2019). Moreover, the application of biochar 
in the soil can increase the diversity, abundance, and microbial activities in soil. In 
addition, provision of good substrates and microbial habitats to their metabolic 
activities can improve the microbial activities by promoting ecological functions, 
for example, element cycling, plant productivity, enzyme activities, and polluted 
soil decontamination (Palansooriya et al. 2019). Thus, manure-based biochar is a 
source of nitrogen for plants. Applying manure-based biochar in the soil can increase 
the nitrogen mineralization due to release of high nitrogen contents in to the soil 
system (Dong et al. 2020). After applying manure-based biochar to soil, C: N ratio 
becomes important due to nitrogen mineralization and immobilization (Puga 
et al. 2020).

After stimulation of microorganisms, the C:N ratio and pH of organic amend-
ments are also important for nitrogen mineralization (Ameloot et al. 2015). In addi-
tion, biochar is considered an ideal carrier for favourable microbes in the soil 
ecosystem. Due to the presence of volatile organic compounds, minerals, and free 
radicals in biochar, it can increase soil enzyme activity, microbial niches, and bio-
geochemical catalysis (Pokharel et al. 2020). However, it has the potential to reshape 
the microbial diversity which presents in soil. Due to surface area, negative surface 
charge, and high pore volume, biochar increases the nutrients availability in the soil- 
to- soil organisms. Biochar material is rich in releasable minerals like nitrogen, 
phosphorus, potassium, magnesium, calcium and sulfur, essential for microbial 
growth (Buss et al. 2022). Due to high cation exchange capacity, Biochar can retain 
cations for a longer time. The application of biochar can reduce nutrient loss in soil, 
increasing microbial metabolism and increasing their growth (Piash et al. 2021).

Biochar consists of aromatic and aliphatic carbons, which directly influence the 
characteristics and structure of dissolved organic matter in soil. The dissolved 
organic matter released from the biochar matrix can chemically alter the nature of 
nutrients in the soil (Feng et al. 2021). Biochar change encourages microbial activi-
ties, alters soil properties, and increases the sorption of organic and inorganic com-
pounds. However, biochar stability depends on the O:C molar ratio. Furthermore, 
smaller organic particles and minerals can store in these pores (Gliniak et al. 2019). 
Previous studies proved that biochar application could affect the soil organic carbon 
pool. The contents of soil organic carbon usually govern soil processes for example 
reduction, oxidation, desorption, and reduction. This process can affect soil chem-
istry by changing cation ion exchange capacity, buffering capacity, pH, and redox 
status of the soil. Consequently, it can alter the pesticide desorption and sorption in 
soil (Khalid et al. 2020). Previous literature has proved that biochar amendments on 
have the potential to increase nutrient efficiency and crop yield and decrease the 
nitrogen dioxide emission in soil. Amendment of biochar ensures the environmental 
and agronomic benefits (Santos and Pires 2018; El-Naggar et al. 2019; Guo et al. 
2020; Hossain et al. 2020).
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15.7  Factors Affecting the Properties of Biochar

The biochar produced from different materials could improves the energy, mineral 
nutrients, and carbon, which increases the physical quality of soil and maintains the 
soil quality (Vahedi et al. 2021). Biochar produced from Conocarpus plants reduces 
the infiltration rate and saturated hydraulic conductivity improves the wet aggregate 
firmness and water holding capacity in soil (sandy loam) (Khajavi-Shojaei et  al. 
2020). Similarly, addition of biochar from pine wood shows the zero increase in 
carbon dioxide respiration but on the other hand biochar from grass materials 
increase the rate of carbon dioxide respiration (Das et al. 2020). During incubation 
of fresh pyrolyzed biochar, it was noticed that different enzyme behaviour was 
enhanced (Yadav et  al. 2019). The production of biochar at low temperature can 
reduce the native organic matter via decomposition by aggregation. In addition, it 
can reduce the potential of biochar for clogging and cementing soil pores (Du et al. 
2017). Moreover, the low temperature production biochar had the ability to slow 
down the release of minerals but provide a constant supply of nitrate, ammonia, and 
phosphate when applied to improve soil fertility through chemical fertilizers. In the 
end, nutrient content in biochar from diverse feedstock can result in the availability 
of nutrients in the soil and reduce the need for chemical fertilizers application 
(Murtaza et al. 2021).

The sensitivity of biochar at higher temperature pyrolysis can be reduced. So, the 
uncooperative impact of biochar on the aggregation of soil is associated with greater 
sensitivity of biochar which bring disturbance in changing conditions of moisture 
that causes changes in intensive and frequent leaching events (Teutscherova et al. 
2020). The previous studies indicated that the feedstock is usually based on wood- 
produced biochar with the highest surface area (Shaheen et  al. 2019; Zhu et  al. 
2019; Leng et al. 2021; Cao et al. 2022) and straw-based feedstock produces the 
highest cation exchange capacity (Chandra and Bhattacharya 2019; Luo et al. 2019; 
Bonga et al. 2020; Singh et al. 2020). That is why, mostly biochar produced from 
such materials which is alkaline with the capacity of acid-neutralizing till (33%) of 
agricultural lime because of its hydroxide and carbonate oxide nature. Hence, it 
reduces the redox potential of soil (Joseph et al. 2021). So, the application of such 
biochar increases the total average of nitrogen content in the soil. Additionally, bio-
char with higher calcium contents in their structure, which have the ability to 
improve nutrient retention, improve moisture, and control release in soil for longer 
period (Mandal et al. 2021). Biochar which is derived from wood having a 2–80 μm 
pore diameter, can be beneficial for the activities of mycorrhizal fungi. Moreover, 
woody biochar from Pinus radiate can increase the bacterial and fungal abundance 
and enhance the phosphorus solubilizing bacteria. It is demonstrated that fungal 
hyphae can penetrate inert materials pore (Thompson 2021). For example, inocula-
tion vermiculite is used to prepare arbuscular mycorrhizal fungi (Kumsao and 
Youpensuk 2021). Some time, arbuscular mycorrhizal fungi inside clay cavities 
form the spores on clay particle surfaces (Morris et al. 2019).

H. M. R. Javeed et al.



341

15.8  Arbuscular Mycorrhizal Fungi and Biochar Interaction

The combination of mycorrhizal fungi and biochar approaches the objective of sus-
tainable plant growth in a viable soil environment (Gliniak et al. 2019). In addition 
both arbuscular mycorrhizal fungi and biochar enhance soil carbon storage 
(Agnihotri et  al. 2022) rather than the sole application of biochar (Fig.  15.2). 
Although biochar is rich source of carbon but its functionality was improved along 
with arbuscular mycorrhizal fungi or inherited availability of mycorrhizal fungi. 
Initially, it may increase carbon dioxide emission by improving microbial activity 
for a short duration. Moreover, the carbon emission effect could be significantly 
reduce through the application of arbuscular mycorrhizal fungi into the soil before 
the application of biochar (Parihar et  al. 2020). It was noted that inoculation of 
arbuscular mycorrhizal fungi in dry agricultural land improves the light fraction of 
organic carbon and soil particulate organic carbon mostly due to the increase in 
glomalin content and mycelia length (Li and Cai 2021; Li et al. 2021b). However, 
the strong symbiosis between arbuscular mycorrhizal fungi and biochar are seen in 
all kind of stress environment with the naturally occurring mycorrhizal fungi com-
munity (Mickan et al. 2016).

No harmful effect on crop growth and development of arbuscular mycorrhizal 
fungi and biochar was noted. But still, many research questions need answer about the 
biochar and plant-promoting mycorrhizal fungi on the soil microbial activities 
(Hammer et al. 2015). Moreover, biochar applications interact with arbuscular mycor-
rhizal fungi in different ways with respect to different soil properties and hence, they 
affect the modification of soil pH and their feedback on the availability of nutrients and 
structure of microbial communities, which alter the nutrient release, immobilization, 
or retention, capacity of water retention change and provision of shelter in opposed to 
fungivore grazing (Wen et al. 2022). Some eternal factor such as intense grazing of 
animals can decrease the total hyphae in the soil matrix leading to an increase in viable 

Fig. 15.2 Effects of the interaction of biochar and arbuscular mycorrhizal fungi on soil properties
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hyphae that interact with biochar (Gujre et al. 2021). So, this is known that arbuscular 
mycorrhizal fungi increase the nutrient-rich patches in (inorganic and organic). In 
addition, arbuscular mycorrhizal fungi uptake nutrients through the external mycelium 
active part especially from the tips of the growing hyphal (Jabborova et al. 2021).

The presence of long hyphae is necessary to increase uptake of nutrients from 
larger surface area, mainly for lower mobility ions like phosphate. Moreover, particles 
of biochar consist of fertile microsites and a high concentration of phosphorus in 
smaller pores which are unreachable for the direct contact of phosphorus, nitrate, 
nitrite and other immobilizing minerals (Cheng et al. 2021). In addition, fertile micro-
sites can benefit plants due to their association with arbuscular mycorrhizal fungi that 
can associate the roots to the surface of charged biochar. The association of arbuscular 
mycorrhizal fungi is directly correlated with rate of loss of nutrients like ammonium 
and phosphate from rhizosphere and hence improve the cycling process of nutrients. 
Biochar rich in cations that could enhance the efficiency of arbuscular mycorrhizal 
fungi leading to better productivity and efficiency (Xin et al. 2022). For example, a 
higher amount of phosphorus is transferred and absorbed by plants (Li and Cai 2021). 
The presence of mycorrhizal fungi in soil or application with biochar can approach the 
adsorbed nutrients and then available to the plants (Hammer et al. 2014).

Arbuscular mycorrhizal fungi have an associated relationship with all kind of 
terrestrial plants but its species may vary with respect to different kind of environ-
mental conditions. It will improve the nutrients uptake such as potassium, phospho-
rus, nitrogen, magnesium, and calcium after its inoculation with the plants or 
inherent present of mycorrhiza into the soil. Additionally, they increase the carot-
enoid and chlorophyll content and increase the antioxidant enzymes, such as dis-
mutase, peroxides, superoxide, ascorbate peroxides, and catalase (Nahuelcura et al. 
2022; Wang et al. 2022). Moreover, the addition of mycorrhiza improves crop veg-
etative, and enhance the branching of root systems in plants (Ren et  al. 2019). 
Although sole application of biochar significantly improves the morphological traits 
of root and plant growth and has positive effects on soil enzymatic activities but its 
combination with arbuscular mycorrhizal fungi promoted the growth and increase 
the spinach yield at much higher rate (Jabborova et al. 2021). They also improved 
the nutritional values.

Biochar can be affected arbuscular mycorrhizal fungi by in four possible ways:

 1. Biochar can alter the availability and nutrients level (phosphorus, nitrogen, pot-
ash, and carbon) through changes in the physicochemical parameters of soil such 
as water holding capacity, pH, and cation ion exchange capacity, that affect host 
plant and fungus.

 2. Biochar can change the microbiome of the rhizosphere, which promotes the 
growth of plants i.e., phosphate mobilizing bacteria and mycorrhizal helper 
bacteria.

 3. Biochar can change the process of arbuscular mycorrhizal fungi signalling in 
plants (concentration and transport of signal molecules) when allelochemicals 
are absorbed, they alter the arbuscular mycorrhizal fungi root colonization.

 4. Biochar serves as a shelter and microrefugia for hyphae consumers.

H. M. R. Javeed et al.



343

15.9  Dynamics of Arbuscular Mycorrhizal Fungi 
in Response to Biochar

The favourable soil conditions for activities and growth of arbuscular mycorrhizal 
fungi should be ensured throughout the management of mycorrhizas in the soil of 
agriculture (Benami et  al. 2020). Such favourable conditions will be provided 
through the application of biochar into the soil at the time of application of fungi 
(Dos Santos Trentin et al. 2022). The growth of arbuscular mycorrhizal fungi could 
be inhibited in sever soil and climatic conditions. Under the suitable condition, the 
arbuscular mycorrhizal fungi abundance increased in the plant root system. The 
optimal amount of biochar is applied, it increases the availability of microhabitats 
in topsoil with lower clay content. This contributed to mycorrhizal benefits, for 
example, enhancing the phosphorus acquisition through plants (Jabborova et  al. 
2021; Jiang et al. 2021). However, degraded soil can require more biochar, but it 
also depend on nutrient status or organic matter of the soil. The significance of bio-
char particle size is rarely considered in association of arbuscular mycorrhizal fungi 
with plant benefits and changes in soil (Jaafar 2014).

Application of biochar in the soil can increase or decrease susceptibility of the 
host to symbiotic relations. However, the adsorptive properties of biochar and their 
high surface area and porosity will promote arbuscular mycorrhizal fungi activity 
by providing them with suitable habitats (Gujre et al. 2021). The effect of glomalin 
and arbuscular mycorrhizal fungi root colonization was improved due to cumulative 
indirect and direct effect of biochar. In addition, biochar provides the nutrients for 
arbuscular mycorrhizal fungi and mitigate the nutrients stress on the plant root sys-
tem (Langeroodia et al. 2022) but the effects of this interaction between biological 
and physiochemical parameters are not clear (Barna et al. 2020). The addition of 
carbonous materials like biochar or compost in soil along with arbuscular mycor-
rhizal fungi in the root zone increases the biological activities in soil and soil quality 
parameters that improve the environment of rhizosphere (Abbaspour and Asghari 
2019). Moreover, arbuscular mycorrhizal fungi inoculation and compost amend-
ment increase the microbial biomass, microbial phosphorus biomasses, and organic 
carbon and amendment of biochar have the same effects on mycorrhizal coloniza-
tion of root similar to the addition of compost (El Amerany et al. 2020) (Fig. 15.3).

Combining the addition of sufficient amount of biochar amendment with arbus-
cular mycorrhizal fungi inoculation enhances the quality and quality of biological 
activities in nutrient stress condition (Dos Santos Trentin et al. 2022). Both biochar 
and arbuscular mycorrhizal fungi inoculation could be alterative to costly chemical 
fertilizer (Vahedi et al. 2021). It was noted the biochar has been successfully enhance 
the spore germination of mycorrhizal fungus and this improvement was because of 
better chemical and physical characteristics via increased availability of nutrients 
(Das et al. 2020). It is observed that the addition of biochar and arbuscular mycor-
rhizal fungi could interact and affect the nitrogen uptake, plant growth, greenhouse 
gas emission, and soil nitrogen availability from the ecosystem (Li et  al. 2019). 
Improvement in the availability of soil nutrients improves the performance of host 
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Fig. 15.3 Benefits of combining biochar and arbuscular mycorrhizal fungi

plant and arbuscular mycorrhizal fungi. It elevates the concentration of tissue nutri-
ents and a high colonization rate for host plant roots through arbuscular mycorrhizal 
fungi (Warnock et al. 2007). Biochar is a suitable habitat for arbuscular mycorrhizal 
fungi that may include these three possible mechanisms.

 1. Arbuscular mycorrhizal fungi improve the availability of nutrients.
 2. Secreting metabolites of bacteria helps the arbuscular mycorrhizal fungi to grow.
 3. Biochar serves as a shelter for colonizing bacteria and fungi from stressful con-

ditions and predators (Madiba et al. 2016).

The combine effect of arbuscular mycorrhizal fungi and biochar are much stronger 
as compared to a single effect of them, and it also caused significant stimulation in 
attributes of photosynthesis, for example, stomatal density, photosynthetic rate, and 
stomatal pore aperture in controlling seedling of chickpea under stress condition 
(Hashem et al. 2019). The synergetic effect of biochar and arbuscular mycorrhizal 
fungi in the soil biological system are;

 1. Biochar provides a suitable shelter or habitat for microorganisms in soil which 
save them from predators.

 2. After the addition of biochar, mycorrhizas can influence the growth of plant and 
soil conditions by altering the properties of physicochemical in soil, such as 
water and pH in the soil.

 3. The interaction of arbuscular mycorrhizal fungi with soil microorganisms can 
decrease the production of harmful compounds or stimulate the manufacture of 
the signalling compound.

Amazingly, arbuscular mycorrhizal fungi improve the soil enzyme activities along 
with increase in microbial communities and microbial attachment on the plant root 
system with the help of biochar (Xu et al. 2019). In addition, biochar increase the 
colonization of mycorrhizal and sporulation (Gujre et al. 2021). At the same time, 
measurement of phosphorus availability in soil and plants is used to indicate the 
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effectiveness of arbuscular mycorrhizal fungi indirectly. Due to extensive hyphal 
networks, fungal hyphae can dominate the surface of biochar. Compared to the 
internal surface, differences in the growth form of hyphal are observed on the exter-
nal surface of the charcoal (Li and Cai 2021). Moreover, the surface of biochar is 
slowly degraded through chemical processes and soil microbes. It can become a 
microbial habitat due to the coated organic material. Some forms of biochar can 
retain the moisture and absorb the cations, which indirectly influence the microbial 
activities in soil on the surface of biochar. Including hyphae of arbuscular mycor-
rhizal fungi, some pores with 1–4 μm and 2–64 μm diameter can be approachable 
to fungal and bacterial hyphae in soil (Basiru et al. 2020). Physical and chemical 
changes in biochar surface can occur when incorporated into the soil along with 
activated arbuscular mycorrhizal fungi (Cheng et al. 2021).

Arbuscular mycorrhizal fungi provide mineral nutrients to their host plants, and 
in return, they receive carbohydrates photosynthetically derived (Saia et al. 2020). 
So, higher content of nutrients in the soil system resulted into the better plant height 
and yield of dry shoot matter. Inoculation of Arbuscular mycorrhizal fungi improves 
the yield of dry shoot matter (Yusif et al. 2016). Moreover, soil amelioration with 
biochar in the degraded landscape can potentially improve the production of grass-
land plants, enrich the microbial population in soil and stimulate the arbuscular 
mycorrhizal persistence (El-Naggar et  al. 2019). It has been noted that the sole 
application of biochar attracts the arbuscular mycorrhizal fungi through the mineral 
nutrients adsorbed on its surface (Liu et al. 2017). However, without fixed carbon 
(simple sugars/carbohydrates) from their host plants, arbuscular mycorrhizal fungi 
cannot complete their life cycle. So, the concentration of carbon in the soil, pro-
vided by biochar, influences the abundance of arbuscular mycorrhizal fungi in the 
soil environment (Warnock et al. 2007). Research indicated that biochar and arbus-
cular mycorrhizal fungi have three types of mechanisms;

 1. Soil quality enhancement.
 2. From fungal grazer providing shelter
 3. Between plants and arbuscular mycorrhizal fungi improving the signalling 

mechanism

Arbuscular mycorrhizal fungi enhance the functions of the soil system and balance 
the nutrient level in the soil. It reproduces spores that are asexual and small multi-
nucleate and significantly increases the numbers of mycelia. Moreover, productivity, 
biodiversity, and ecosystem variability can balance with arbuscular mycorrhizal 
fungi diversity (Wen et al. 2022). About 85% of plant families globally colonized 
through mycorrhizae (Soudzilovskaia et al. 2020). Arbuscular mycorrhizal fungi and 
biochar are the most popular, and challenging research areas posed through alterna-
tive energy production, non-sustainable modern agriculture practices, and global 
warming. Arbuscular mycorrhizal fungi among other soil microbiota (fungi, archaea, 
protozoa, invertebrates, algae, bacteria, nematodes, and arthropods) are regulators 
for soil productivity (Meena et  al. 2020). Under extreme nutritional stress condi-
tions, biochar acts as a buffer to provide a safe habitat for arbuscular mycorrhizal 

15 Biochar and Arbuscular Mycorrhizae Fungi to Improve Soil Organic Matter…



346

fungi, increasing the number of mycelia, arbuscules, spores, and cysts (Begum et al. 
2019). Due to the deterioration in soil quality, environmental challenges and food 
scarcity issues are increasing. The process of green restoration by the combine using 
of arbuscular mycorrhizal fungi and biochar is a suitable option (Gujre et al. 2021).

15.10  Conclusion

This chapter has shown the arbuscular mycorrhizal fungi and biochar interaction 
toward sol organic stabilization. The presence of organic matter in the soil directly 
influences the structure of the microbial community, mineralization of nutrients, 
biomass turnover, and soil microclimate. Arbuscular mycorrhizal fungi are consid-
ering a primary biotic soil component. If it is not present in an adequate amount, it 
can decrease the functioning of the efficient ecosystem. The addition of biochar 
improves the soil quality and sequestration of atmospheric carbon sequestration 
(Fig. 15.4).

Application of both arbuscular mycorrhizal fungi and biochar in the soil can 
increase the diversity, abundance, and microbial activities in soil. Hence, both 
mycorrhizal fungi and biochar combination approach would ensure the food secu-
rity by protecting the environment. In addition, the adsorptive properties of biochar 
and their high surface area and porosity promote arbuscular mycorrhizal fungi 
activity by providing them with suitable habitats. In near future, arbuscular mycor-
rhizal fungi may be recommended as a biofertilizer. Therefore, arbuscular mycor-
rhizal fungi and biochar may sustain the productivity of agricultural sector by 
improving the nitrogen uptake, plant growth, reducing the greenhouse gases emis-
sion, and increasing the soil nitrogen availability from the ecosystem of plant soil.

Fig. 15.4 Soil organic matter stabilization by biochar and arbuscular mycorrhizal fungi
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Chapter 16
Biochar Feedstocks, Synthesis 
and Interaction with Soil Microorganisms

Sammina Mahmood, Adeel Sattar, Adnan Hassan Tahir, 
and Muhammad Abu Bakar Shabbir

Abstract Biochar application to soils allows to enhance soil quality and fertility by 
improving soil structure and replenishment of nutrients. Biochar properties can be 
tuned by the type of feedstock used to synthesize biochar, and by the synthesis con-
ditions. Biochar application also changes the soil microbial community, and, in 
turn, the decomposition rate of biochar and nutrient release. Here we review biochar 
with focus on synthetic methods, feedstocks, interactions with soil microbes.

Keywords Biochar application · Microbe-biochar interaction · Microbial response 
· Microbial community · Soil amendment

16.1  Introduction

Soil is a complex medium, comprising of soil partials and gravels of varying sizes, 
mineral nutrients, organic matter, water, air and microbial communities. All these 
fractions together in variable composition determines the soil physical and chemical 
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properties i.e. soil texture, structure, porosity, pH, cation exchange capacity, water 
holding capacity which ultimately effects water and air movement in soil (Baghdadi 
and Zribi 2016; Maddela et al. 2017). All properties of soil are amendable by using 
multiple tools in which biochar application is one of the most promising technique 
employed now a days.

Biochar standard definition devised by international biochar initiative (IBI) is a 
“solid material usually carbon (C) enriched obtained from thermochemical conver-
sion of organic residues/biomass/feedstock under deprived oxygen condition”. This 
conversion ensures the active bioavailability of nutrients contained by organic resi-
dues/biomass with increased porosity and hence the water holding capacity of bio-
char. This amendment in the physiochemical architecture of biomass, making it an 
excellent absorbent for pollutants and hence a promising biological tool to treat 
non- productive and polluted soils now a days (Ahmad et al. 2014; Aller and tech-
nology 2016; Fahad et al. 2015, 2016; Atif et al. 2021). A vast variety of biomasses/
feedstock is available in nature which could be employed to produce biochar, this 
includes animal waste, agricultural waste, plant residues, sewage and municipal 
waste (Li et al. 2019; Sánchez et al. 2015; Xu et al. 2012). The biochar produced 
itself had its own physio-chemical properties e.g. surface area, porosity, micro- 
macro mineral nutrients, cation exchange capacity, pH, organic matter, C/H ratio, 
C/O ratio, carbon and ash contents, heavy metal load, which determines its potential 
applications (Fryda and Visser 2015; Igalavithana et al. 2017; Libra et al. 2011).

In multiple studies, biochar with its unique physio-chemical architecture exhib-
ited the potential to amend the soil physiochemical properties with least environ-
mental hazards, quality threats and risk management by reducing foul emissions 
from greenhouse gases and methane (CH4) into air (Li et al. 2019; Sánchez et al. 
2015; Xu et al. 2012). Biochar’s usually increase aromatic carbon contents into soil 
which is more stable than carbon present in organic matter (Sohi et al. 2010), lowers 
soil compactness by adding organic matter into soil (Liang et  al. 2010), hence 
improving soil water holding capacity and also nutrients availability to plant by 
emending pH profile (Van Zwieten et al. 2010), reduce emission of carbon dioxide 
(CO2) and ammonia (Cabeza et  al. 2018), enhanced heavy metal sorption and 
microbial (bacteria and fungi) activity in rhizosphere, which in turns promotes plant 
growth and development under stressful situation (Compant et al. 2010).

Soil physio-chemical amendments induce heterogeneous responses of microbial- 
community structure which consequently alters the soil nutrient bioavailability, 
cycling and function (Biederman and Harpole 2013). The components of biochar 
including minerals, free radicals, volatile organic compounds (VOCs) directly influ-
ence the microbial activities and enzymatic activities and hence reshape the micro-
bial community structure (Paz-Ferreiro et al. 2014). Microbial functional activities 
and structure are the two most promising parameters in the assessment of biochar 
impact on soil biological properties.

Microbial activities are usually determined by basal respiration, N2 fixation and 
mineralization, enzymatic activates (dehydrogenase) and functional groups activi-
ties (Paz-Ferreiro and Fu 2016). Community structure and compositions is deter-
mined by polymerase chain reaction, denaturation gradient (DGGE) versus 
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temperature gradient gel electrophoresis (TGGE) and contents of phospholipid fatty 
acid (PLFA) in soil (Nannipieri et al. 2003). Several reports are available reporting 
the positive role of microbe-biochar induced amendment in soil structure and com-
position. This is together proved to be an effective strategy in soil contamination 
degradation (García-Delgado et al. 2015), immobilization of pollutants and heavy 
metals (Fang et al. 2014b; Yang et al. 2016), detoxification of environmental pollut-
ant (Dong et al. 2014). However, specific mechanism of microbe-biochar of interac-
tion is still unclear. The nature, types of biochar produced depending upon the 
feedstock and production processes, biochar interaction with soil which collectively 
modulates and regulates the soil microbial community structure and compositions, 
collectively made the microbe- biochar interaction unpredictable and complex.

The objective of this chapter is to provide comprehended overview of factors 
effecting physio-chemical properties of biochar and its characterization, how struc-
ture of biochar effects physio-chemical properties of soil and finally the role of 
biochar in soil amendment projects particularly by regulating microbial activity in 
the rhizosphere.

16.2  Factors Affecting Quality Standards of Biochar

Biochar properties are determined by two major factor, one is the type of feedstock 
used for generation of biochar and second the procedure/technique used and condi-
tions set to synthesize product.

16.2.1  Physiochemical Characteristics of Biochar Feedstock

Feedstock used for the production of biochar is generally divided into two discrete 
groups i.e. lignocellulosic (wood) and non lignocellulosic (Non woody). 
Lignocellulosic feedstock belongs to plant origin which includes agricultural waste, 
organic waste from household activities and green yard waste, forest land wastes, 
waste from agricultural commodity processing industries e.g. sugar industry, juice 
manufacturing, processed fruit and vegetable industries, and biofuel/bioenergy 
crops. Non lignocellulosic group includes animal manure, microalgae from sea sur-
face and municipal sewage sludge (Filiberto and Gaunt 2013; Kumar et al. 2017; 
Nartey and Zhao 2014). The composition of feedstock determines the characteris-
tics of biochar during thermal decomposition i.e. proximate analysis (moisture con-
tents and ash), cation exchange capacity, pH, carbon contents, percentage of volatile 
compounds (Angın 2013), cellulose, hemicellulose, lignin (Shivaram et al. 2013), 
inorganic compounds, particle size and porosity of decomposed matter, water hold-
ing capacity and optimal concentrations of micro and macro elements (calcium, 
iron, zinc, copper, sodium, potassium, magnesium etc.) (Yang et  al. 2013; Zhou 
et al. 2013).
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This is due to the fact that each feedstock exhibit unique thermal and biochemi-
cal properties and hence differential response to oxygen deficit thermal decomposi-
tion. In general, high lignin content oriented feedstock produce more biochar with 
enhanced porosity which ultimately promotes water retention properties upon 
application to soil amendment projects (Yang et al. 2013). Pore size further influ-
enced by the vascular bundle containing feedstock which upon decomposition 
exhibit large pore size along with increased surface area, which act as an additive to 
soil improvement by providing space for microbial symbiotic relationships (Thies 
and Rillig 2009). High biodegradable property of biochar with increased surface 
area and surface functional groups imparts positive effect on porosity too 
(Hernandez-Mena et al. 2014).

Moisture content in biomass has significant effect on biochar production. 
Moisture exist in multiple forms within a biomass i.e. as free liquid, water vapor and 
chemically bound water (Vassilev et al. 2013). Moisture content is directly associ-
ated with heat energy, time and process required for biochar production. This over 
all determines the physio-chemical properties of biochar produced. Usually low 
moisture content is advisable due to reduction in steps, time and energy required for 
pyrolysis process and to make the process economically feasible (Tripathi et  al. 
2016). Carbon and ash contents depends on cellulose, hemicellulose and lignin con-
tents of biomass. Cellulose helps in the formation of tar (a mixture of organic liquid, 
aldehydes, ketones and char) while lignin favors char production during biochar 
production process (Tripathi et al. 2016; Yu et al. 2014).

Practical examples exist elaborating the effect of biomass type on physiochemi-
cal properties of biochar. In a study in which sugarcane bagasse and rice husk were 
considered for biochar production. Sugarcane bagasse biomass is enriched with cel-
lulose, hemicellulose and moisture contents while rice husk with lignin and ash 
contents. Both produced the biochar with different ration of carbon, ash and surface 
functional groups (El-Gamal et  al. 2017). Cellulose and hemicellulose are com-
prised of sugar monomers which have lower molecular weight compared to lignin, 
hence decompose at lower temperature and release fractional molecules easily and 
quickly. Lignin is high molecular weight biomolecule with aromatic functional 
groups and hence resistant to thermal degradation and required high temperature. 
Inorganic constituents are also important in to determine the physio-chemical prop-
erties of biochar (Lee et al. 2013).

Biochar produced from animal manure and litter exhibited reduced surface area 
compared to woody and crop residues, even at high temperature (Lu et al. 2012). 
This variation may be attributed to contents of H/C, O/C ratios and their cross link-
ages, volatile organic matter and carbon contents and variable inorganic constitu-
ents of both types of biomass (Bourke et al. 2007; Tag et al. 2016; Wang et al. 2015). 
Porosity of biochar depends upon the release of volatile matter (Shaaban et  al. 
2014), which may be blocked by inorganic material. However, decomposition of 
cellulose and hemicellulose add into surface area significantly (Ahmad et al. 2012).

S. Mahmood et al.



359

16.2.2  Technologies for Biochar Production

In general, four thermochemical routes are adopted to produce biochar which are 
pyrolysis, torrefaction, hydrothermal carbonization and gasification. The structure 
of carbon is highly temperature dependent, determines the stability of biochar pro-
duced (Lehmann et al. 2011). The transitory structures of carbon includes (1) transi-
tion biochar raised from crystalline type of feedstock used for synthesis, (2) 
Amorphous carbon obtained from the mixture of feedstock with varying thermal 
properties preserved at low temperature, (3) Graphite/composite carbon obtained 
from the fixation of graphite stacks in their amorphous phase, poorly structured, and 
(4) Turbostratic biochar produced at high temperature dominated by solid graphite 
crystals (Keiluweit et al. 2010; Zhou et al. 2013). Production of biochar with proph-
esied properties requires the selection of appropriate technique along with suitable 
conditions and through knowledge of influencing factors both quantitatively and 
qualitatively (Weber and Quicker 2018; Zhang et al. 2019).

16.2.3  Pyrolysis

Thermal decomposition of feedstock in the absence of oxygen is called pyrolysis. 
The products of pyrolysis includes a liquid (bio-oil, usually the mixture of hydro-
carbon), non-condensable synthetic gas and biochar. The yield proportion of prod-
ucts depends on the type of pyrolysis process i.e. slow, fast and flash pyrolysis, all 
exhibiting varying reaction temperature, heating rate and time, pressure and feed-
stock holding time (Cheah et al. 2016). In slow pyrolysis process, longer retention 
time of feedstock with slow to medium heating rate opted in order to produce more 
yield of biochar. However, when the target is to achieve high yield of biofuel, the 
fast pyrolysis procedure is the methods of choice with high temperature and short 
residence time of feedstock (Daful and Chandraratne 2018). Yuan et  al. (2020) 
reported that high percentage of biochar obtained from the walnut shell under slow 
pyrolysis technique irrespective of the temperature range used during the process, 
which confirms the effectiveness of slow pyrolysis towards biochar production.

Pre-pyrolysis treatment is conditional depending upon the type of feedstock 
selected for biochar production. In case of liquid or semi liquid biomass of feed-
stock, pre-pyrolysis reaction is carried out to remove water from the biomass by 
evaporation. Pre-pyrolysis reaction is followed by primary reaction and finally the 
secondary reaction in order to attain biochar successfully. Primary reaction is con-
ditioned with de-volatilization by following dehydration, de-carboxylation and 
dehydrogenation. During primary decomposition, temperature is set low to medium. 
Secondary reaction is characterized with high temperature for successful cracking 
in heavy organic compounds e.g. lignin as well as re-polymerization and condensa-
tion, in order to produce biochar as final product along with non-condensed syn-
thetic gases e.g. methane (CH4), methylene (CH2), carbon mono oxide (CO) and 
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carbon dioxide (CO2) (Foong et al. 2020; Kan et al. 2016; Rashidi and Yusup 2020; 
Tripathi et al. 2016).

High temperature of pyrolysis thermally crack the pore blocking substances and 
hence increasing the externally available surface area along with pore size and vol-
ume of biochar (Rafiq et al. 2016; Zhao et al. 2017). Volatile compounds produced 
during pyrolysis at high temperature also contribute to porosity positively and sig-
nificantly (Shaaban et  al. 2014). Increase in pyrolysis temperature results in the 
increase in the aromatic properties of the biochar products produced which resist to 
microbial decomposition (Xie et al. 2016). Mechanism of containment removal by 
biochar produced at high temperature is adsorption and sorption produced at low 
temperature (Chen et al. 2008) due to variability in the arrangement of surface func-
tion groups at both temperature extremes which ultimately effect cation exchange 
capacity (Ghani et al. 2013; Mia et al. 2017). Surface functional groups act as elec-
tron donors/acceptors and hence mediates surface area and its properties which 
ranged from acidic to basic. Variation in pH ultimately imparts specific hydrophilic 
and hydrophobic properties to biochar which changes cation exchange capacity 
(Ahmad et al. 2014; Yao et al. 2012). Biochar produced at high temperature exhibit 
less cation exchange capacity due to least active functional groups on the surface 
(Yao et al. 2012). However, contradicting reports are also available in which biochar 
produced at high temperature exhibited increased cation exchange capacity (Banik 
et al. 2018; Kasozi et al. 2010). The contradictions in results may be attributed to 
variation in feedstock, the functional groups present on surface and their specific 
response towards temperature fluctuation and rate of volatilization of different com-
pounds (Banik et al. 2018; Cely et al. 2015; Kasozi et al. 2010; Mia et al. 2017).

16.2.4  Torrefaction

Torrefaction (also  referred as mild pyrolysis) is a physiochemical conversion of 
biomass at mild temperature (200–300 °C) and inert atmospheric pressure for a time 
period half an hour to 2 h (Chen et al. 2018; Daful and Chandraratne 2018). However, 
torrefaction is not considered a promising technique for production of biochar due 
to the fact that; (1) the conditions set for torrefcation are not suitable enough to 
convert the physiochemical properties of biomass completely, hence biomass 
remain in transitory phase, in between the raw biomass and final processed biochar. 
(2) Significant amount of volatile compounds found in biochar produced in this 
process as like raw biomass. (3) Partial or no re-polymerization of heavy organic 
components of biomass occurred. Quality of biochar obtained after the completion 
of torrefaction process is more similar to pre-treatment in pyrolysis. Hence torrefca-
tion is recommended to be used in combination with pyrolysis process for the pro-
duction of biochar. It could be used to remove biomass moisture, densification and 
improve biomass properties or initial processing of biomass for final conversion 
into biochar (Abdullah et  al. 2017; Chen et  al. 2017; Zeng et  al. 2019; Zhu 
et al. 2019).
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16.2.5  Hydrothermal Carbonization

Hydrothermal carbonization also termed as wet pyrolysis. The process of wet pyrol-
ysis is initiated under water-biomass solutions at high temperature (180–250 °C) 
and pressure at longer period of time (Gan et  al. 2018; Zhang et  al. 2019). The 
products of wet pyrolysis are also wet biochar (called hydrochar), biofuel and gas 
product which is mainly CO2 (Saqib et al. 2019). Both dry as well as wet pyrolysis 
have their own advantages and success stories based on the objective and type of 
biomass selected for biochar preparation. The main advantages of hydro-thermal 
carbonization is it required wet environment for the initiation of process. This 
requirement reduces the need of pre-pyrolysis steps required for moisture removal, 
hence time and energy requirement pf procedure are lesser than dry pyrolysis. Water 
present in biomass act as solvent, reactant, catalyst and medium for energy and 
mass transfer during the reaction hence, facilitating hydrolysis, decarboxylation, 
dehydration, de-polymerization and ultimately enhance the speed of decomposition 
process (Guiotoku et al. 2011; Krylova and Zaitchenko 2018; Xu et al. 2018).

It is reported that cellulose, hemicellulose and lignin also decomposed more suc-
cessfully in wet pyrolysis (Jeguirim and Limousy 2019; Wiedner et  al. 2013). 
However, Hydro-char produced through hydro thermal carbonization showed less 
contents of ash and carbon contents compared to bio char. Furthermore, the surface 
area of hydrochar, low porosity and presence of noxious chemicals/products (phe-
nolic compounds etc.), all collectively reduces the efficacy of hydro-char compared 
to biochar in soil ameliorating projects (Garlapalli et al. 2016). This variation in 
product appears mainly due to variable C/H ratio and O/C ratio during wet pyrolysis 
compared to dry pyrolysis (Jeguirim and Limousy 2019; Wiedner et  al. 2013). 
However, maximum benefit of biochar with high quality could be achieved by com-
bining both dry pyrolysis technique with hydro-thermal carbonization.

16.2.6  Gasification

Gasification process preferably utilized when objective is to produce synthetic gas-
ses mainly CO2, CO, CH2, CH4 and H. this process is carried out in the presence of 
gasses preferable the O2. CO2, and other gasses could also be utilized alone or in 
combination. Temperature ranges from 600 to 1200 °C, with residence time 10–20 s 
at heating rate 50–100 °C/Min (Daful and Chandraratne 2018). However, gasifica-
tion is not adopted as preferred method of biochar production. Reason behind this 
avoidance is the products of pyrolysis remains same however the percentage of 
products vary greatly with reduced product quality. The contents of biochar are very 
low and biochar also not of good quality enough to be employed successfully in soil 
ameliorating projects. Biochar produced accompany with several noxious elements 
and heavy metals which instead of reclamation, add toxicity to soil (Sohi 2020; 
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Yang et al. 2019; Zhang et al. 2019) hence less attention is paid to standardization 
of gasification process in terms of biochar production.

16.3  Characterization of Biochar

Biochar and its application in soil amendment projects depends upon its stability 
which is determined by physiochemical properties. These properties directly 
depends on the type of feedstock (plant origin, animal origin etc.) process adopted 
for biochar production (dry or wet pyrolysis, gasification) and conditions set for 
biochar production (residence time, temperature of reaction, pressure, carrier gas, 
heating rate and time). Each factor has its own value in characterization of biochar. 
Characterization is compulsory step after biochar production, as it defines the rate 
of various biochar quality parameters (pH, cation exchange capacity, porosity, sur-
face area, water holding capacity, ash and moisture contents etc.), macro and micro 
nutrients specificity and availability rate, heavy metal load and synthetic gasses 
produced and their rate. The combination of all these parameters overall defines the 
eco-toxicology of biochar produced. Standardization of quality parameters of bio-
char helps to determine dose rate for application of biochar and its suitability to a 
particular soil and hence their performance and success rate could be predicted 
(Fryda and Visser 2015; Igalavithana et  al. 2017; Libra et  al. 2011; Muhammad 
et al. 2022; Subhan et al. 2020; Tariq et al. 2018; Wiqar et al. 2022; Wu et al. 2019, 
2020; Xue et al. 2022).

16.4  Effect of Biochar on Soil Physio-Chemical 
and Biological Properties

Thermal decomposition of feedstock brings physical changes in the structure of 
biomass. Physical alterations along with the rate of decomposition of biomass deter-
mines the chemical properties (pH, cation exchange capacity) and water holding 
capacity of biochar (Shaaban et al. 2014; Yang et al. 2015; Yuan et al. 2011). Usually 
feedstock with high contents of ash produce biochar with high cation exchange 
capacity (increased oxygenated functional groups) and acidity (Yang et al. 2015). 
Feedstock with more alkali groups and their derivatives produce more ash contents, 
thus biochar produced from animal based biomass have higher cation exchange 
capacity than plant based biomass (Tag et al. 2016; Yang et al. 2015). The activity 
of surface functional groups (oxygenated surface functional groups) to determine 
cation exchange capacity which further determine the pH of biochar, directly depen-
dent on temperature and ultimate rate of decomposition of biomass (Fryda and 
Visser 2015; Igalavithana et al. 2017). pH of biochar is usually basic. Variation in 
pH is due to non-pyrolyzed inorganic matter and rate of decomposition of cellulose, 
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hemicellulose and lignin contents in biomass (García-Jaramillo et al. 2015; Yuan 
et al. 2011).

Positive agronomic effects of biochar in soil amendment and hence crop produc-
tion depends upon the stability and site specific dose rate of biochar. As biochar 
interact with soil molecular fractions in a very specific way with the exact properties 
being devised by type of biomass and biochar production conditions. Hence unwise 
and ill-defined use may leads towards negative effect (Janus et al. 2015). Applications 
of biochar into soil may include the amendment in the status of water holding capac-
ity (Revell et al. 2012) and cation exchange capacity (Alburquerque et al. 2014), 
organic matter and other soil particles i.e. sand, silt, clay which occur through 
hydrophobic interactions and wander wall forces (Xueyong et  al. 2018). These 
interactions devise the influence of biochar on soil physio-chemical properties by 
designing the specific cation, anion flow and interaction with organic and inorganic 
constituents of soil (Zhu et al. 2017).

Stability of biochar into soil relies on the residence time of carbon which vary 
greatly depending upon the type of feedstock (Singh et al. 2012). The bonding pat-
tern of carbon in feedstock determine its release and functional activity (based on 
functional groups on the surface) into the soil. Biochar reduced the emission of 
greenhouse gasses (CO2, CH4) and N2O from the soil (Sun et al. 2018; Woolf et al. 
2010). Biochar are also add into the soil enrichment with micro and macro nutrients 
required for plant growth. Addition of biochar to soil results in the agglutination of 
biochar with soil mineral and particulate matter, change their dissociation energies 
that results reduction in the loss of volatile material from soil surface (Ding et al. 
2016; Guo et al. 2012; Jha et al. 2010; Saletnik et al. 2016) reported that biochar 
enriched soil usually exhibit high cation exchange capacity which expectedly 
increase nutrient retention into soil by reducing leaching and volatilization losses 
through changing surface charge energies and organic matter contents into soil. 
Overall increase in mineral content, organic carbon and cation exchange capacity 
influence the pH of soil greatly (Rutkowska et al. 2014).

High cation exchange capacity mainly attributed to oxidation of aromatic carbon 
and release of carboxyl groups into soil (Glaser et al. 2002). The formation of func-
tional groups into soils mechanize two different processes into soils (1) promotes 
surface oxidation of biochar itself, (2) enhance adsorption of organic matter onto the 
surface of biochar (Lehmann et al. 2005). The activation of said processes into soils 
promotes the increase in specific surface area which ultimately improves the poros-
ity of soils particularly the rate of macro pores (Lei and Zhang 2013; Nair et al. 
2017). Increased specific surface area with enhanced sorption capacity of organic 
matter, in long run facilitates in water holding properties of soils (Duong et  al. 
2017). Particularly the hygroscopic moisture contents of soils are improved which 
is the great modification for dry and degraded soils (Cybulak et al. 2016). Overall 
humification, carbon sequestration processes depends highly on the temperature of 
biochar production process. Usually more benefits achieved from the biochar syn-
thesized at low temperature compared to high temperature (Joseph et  al. 2010). 
High temperature biochar have lesser reactivity into soils than low temperature 
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(350–500 °C) due to high recovery of nutrients and carbon which is lost gradually 
with the increase in temperature (Keiluweit et al. 2010).

16.5  Interaction of the Soil Microbial Community 
with Biochar

Humified soils exhibit high water holding capacity, reduced soil temperature, larger 
pore size and nutrient enriched (micro and macro nutrients) so act as ideal habitat 
for microbial growth and development (Briones 2014; Compant et al. 2010; Ibad 
et al. 2022; Irfan et al. 2021; Khadim et al. 2021a, b; Khan et al. 2021; Khatun et al. 
2021;). Amendments in soil physio-chemical properties reshape the soil microbial 
community by modifying bacteria vs. fungi and other microflora ratio along their 
habitat and hence the enzymatic activity (depends upon microflora activity and bio-
mass) within soil (Ahmad et al. 2016; Mackie et al. 2015).

The whole mechanism of biochar interaction with microbe and modulation in 
effects divided into seven discrete categories. (1) Biochar induced variation in soil 
physio-chemical properties (water holding, cation exchange capacity, pH) modify 
the microbial habitat and hence directly effects the establishment, growth and devel-
opment of microbes within soil. (2) Increased soil porosity promotes aeration and 
humification process in soil, both factors determine the conduciveness of growth 
conditions for microbial community and shelter under unfavorable conditions 
(Quilliam et al. 2013). (3) Decomposition of organic feedstock release macro and 
micro nutrients into soil which act as food reservoirs for microbes. Different types 
of feedstocks provide different profile of nutrients. Hence, based on nutrients avail-
ability, differential microbial communities (multiple community structure) develop 
under different biochar application conditions (Joseph et al. 2013). (4) Each micro-
bial strain release specific type of enzyme during decomposition process of biochar. 
The success of biochar in soil amendment projects after pyrolysis and its conditions, 
further depends upon soil condition and microbial community structure. Both fac-
tors are crucial in determining the biochar further decomposition, release, sorption, 
adsorption and leaching of nutrients. Enzymatic activity is determined by microbial 
community structure. Multiple enzyme combinations are found with multiple 
microbial community structure (Lehmann et al. 2011; Yuan et al. 2016). (5) Biochar 
type determines the inter and intra microbial interaction via a combination of sig-
naling molecules released by microbes and their compatibility for each other (Gao 
et al. 2016). (6) Biochar also act as a source to provide toxicity free environment for 
microbial growth. Free radicals (functional group) on biochar surface act as sorp-
tion/adsorption surface for toxic contaminants present with soil. Hence, biochar act 
as soil purifier against heavy metals toxicity (Qin et  al. 2013; Stefaniuk and 
Oleszczuk 2016). (7) Microbes as natural decomposing agents establish compatibil-
ity and stability of biochar to soil and reduce leaching and runoff losses of nutrients 
from soil (Fang et al. 2014a).
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Differential spatial and temporal pattern of microbial colonization and fungal 
hyphae growth observed on surface of biochar and within pore of biochar. Spatial 
differential pattern can be argued by the phenomenon; (1) natural soil is more nutri-
ent enriched than inside of biochar pore. (2) Biochar may be enrich with toxic mate-
rial and (3) Biochar pore may be blocked by organic material of soil (Quilliam et al. 
2013; Kasozi et al. 2010). Aging of biochar and pyrolysis conditions may explain 
the temporal variation in colonization response of microbes (Quilliam et al. 2013). 
Aromaticity (elemental composition) of biochar is responsible for its recalcitrant 
nature against microbial decomposition. Meanwhile some fraction of biochar act as 
source of carbon for microbes which is determined by C/N ratio (Demisie et  al. 
2014). Biochar usually exhibit higher ratio of C/N than their feedstock. Higher C/N 
ratio restrict the use of biochar by microbes by lowering availability of carbon and 
lack of N (Yanardağ et al. 2015).

Bacteria and fungi, due to different morphological growth habit and habitat, have 
different preference for carbon source. Hence tolerance to different soil environ-
mental conditions is also variable among both major type of soil micro flora (Zhang 
et al. 2015). Fungi compared to bacteria are considered more resistant and benefi-
cial microbial agents under deprived carbon condition due to their body morphol-
ogy. Fungi can survive on soil macro aggregation which exhibit higher C/N ratio. 
Hyphal growth supports the fungi under adverse condition by modulating the water 
and nutrient availability through hyphae network, enabling fungi to colonize on 
carbon poor soils (Ascough et al. 2010; Zhang et al. 2015). Hence, biochar which 
promotes soil macro aggregation, favors fungus growth than bacteria. H/C and O/C 
ratios both decrease by increasing the pyrolysis temperature and retention time of 
biochar, resulting in the production of intense aromatic biochar (Xiao et al. 2016).

There is a range of compounds called volatile organic compounds (VOCs), 
released during organic solvent extraction of biochar and dominant product of 
pyrolysis, act as microbial inhibitors in soils. VOCs vary greatly depending upon 
the type of feedstock (Ghidotti et al. 2017; Graber et al. 2010; Spokas et al. 2011). 
Diversity of VOCs sorbed on biochar can be the main contributing factor to variable 
response of microbial life to biochar. However, contradictory reports also found 
which report that VOCs support growth of certain bacteria (Sun et al. 2015). VOCs 
preferable alter the enzymatic reactions of microbial life in soil by modulating the 
surface functional groups. Free radicals induce oxidative stress in living forms of 
soil and destabilize their plasma membrane integrity. As microbes are the living 
forms, damage to membrane lead towards organism death and hence colony lapse 
due to oxidative stress (Liao et al. 2014; Reed et al. 2015; Yang et al. 2015). However, 
further investigations are required to explore the toxicity of biochar to soil micro- 
organism and role of free radicals in shaping the soil microbial communities.
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16.6  Conclusion

This chapter has shown the heterogeneity in biochar depending on the type of feed-
stock and biochar synthesis conditions. Both are most influential factors determin-
ing the biochar properties which includes biochar texture, structure, surface 
functional group, elemental compositions, elemental cycling, redox capacity, cation 
exchange capacity, conductivity, pH and volatile organic compounds. This hetero-
geneous nature of biochar presents a complex combination with soil microbial flora 
and soil conditions on spatial and temporal level. Biochar is strongly recommended 
organic product in soil amendment projects as it modulates the soil physio-chemical 
properties and ameliorates the soil toxic contaminants. However, its interaction with 
soil microbes may be positive or negative depending upon the microbial community 
structure (bacteria, fungi, their abundance, composition, enzymatic reactions).
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