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1 Introduction 

Ipsen et al [3] and Mason [7] have proved under general conditions that a trimmed 
subordinator satisfies a self-standardized central limit theorem [CLT]. One of their 
basic tools was a classic representation for subordinators (e.g., Rosiński [9]). Ipsen 
et al [3] used conditional characteristic function methods to prove their CLT, 
whereas Mason [7] applied a powerful normal approximation result for standardized 
infinitely divisible random variables by Zaitsev [12]. In this note, we shall examine 
self-standardized CLTs for trimmed subordinated subordinators. It turns out that 
there are two ways to trim a subordinated subordinator. One way leads to CLTs for 
the usual trimmed subordinator treated in [3] and [7], and a second way to a closely 
related subordinated trimmed subordinator and CLTs for it. 

We begin by describing our setup and establishing some basic notation. Let 
.V = (V (t) , t ≥ 0) and .X = (X (t) , t ≥ 0) be independent 0 drift subordinators 
with Lévy measures .�V and .�X on .R+ = (0,∞), respectively, with tail function 
.�V (x) = �V ((x,∞)), respectively, .�X(x) = �X((x,∞)), defined for .x > 0, 
satisfying 

.�V (0+) = �X (0+) = ∞. (1) 

For .u > 0, let  .ϕV (u) = sup{x : �V (x) > u}, where .sup∅ := 0. In the same way,  
define . ϕX. 

Remark 1 Observe that we always have 
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. ϕV (u) → 0, as u → ∞.

Moreover, whenever .�V (0+) = ∞, we have  

. ϕV (u) > 0 for all u > 0.

For details, see Remark 1 of Mason [7]. The same statement holds for . ϕX. 

Recall that the Lévy measure .�V of a subordinator V satisfies 

. 

∫ 1

0
x�V (dx) < ∞, equivalently, for all y > 0,

∫ ∞

y

ϕV (x) dx < ∞.

The subordinator V has Laplace transform defined for .t ≥ 0 by 

. E exp (−θV (t)) = exp (−t�V (θ)) , θ ≥ 0,

where 

. �V (θ) =
∫ ∞

0
(1 − exp (−θv)) �V (dv) ,

which can be written after a change of variable to 

. =
∫ ∞

0
(1 − exp (−θϕV (u))) du.

In the same way, we define the Laplace transform of . X.

Consider the subordinated subordinator process 

.W = (W (t) = V (X (t)) , t ≥ 0) . (2) 

Applying Theorem 30.1 and Theorem 30.4 of Sato [11], we get that the process W 
is a 0 drift subordinator W with Lévy measure .�W defined for Borel subsets B of 
.(0,∞) by 

.�W (B) =
∫ ∞

0
P {V (y) ∈ B} �X (dy) , (3) 

with Lévy tail function 

. �W (x) = �W ((x,∞)) , for x > 0.

Remark 2 Notice that (1) implies 

.�W (0+) = ∞.
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To see this, we have by (3) that 

. �W (0+) = lim
n→∞

∫ ∞

0
P

{
V (y) ∈

(
1

n
,∞

)}
�X (dy) .

Now .�V (0+) = ∞ implies that for all .y > 0, .P {V (y) ∈ (0,∞)} = 1. Hence by 
the monotone convergence theorem, 

. lim
n→∞

∫ ∞

0
P

{
V (y) ∈

(
1

n
,∞

)}
�X (dy) = �X (0+) = ∞.

For later use, we note that W has Laplace transform defined for .t ≥ 0 by 

. E exp (−θW (t)) = exp (−t�W (θ)) , θ ≥ 0,

where 

. �W (θ) =
∫ ∞

0

(
1 − e−θx

)
�W (dx)

. =
∫ ∞

0

∫ ∞

0

(
1 − e−θx

)
P (V (y) ∈ dx) �X (dy)

. =
∫ ∞

0

(
1 − ey�V (θ)

)
�X (dy) .

Definition 30.2 of Sato [11] calls the transformation of V into W given by . W (t) =
V (X (t)) subordination by the subordinator X, which is sometimes called the 
directing process. 

2 Two Methods of Trimming W 

In order to talk about trimming W , we must first discuss the ordered jump sequences 
of V , X, and W . For any .t > 0, denote the ordered jump sequence . m(1)

V (t) ≥
m

(2)
V (t) ≥ · · · of V on the interval .[0, t]. Let .ω1, ω2, . . . be i.i.d. exponential random 

variables with parameter 1, and for each .n ≥ 1, let  .�n = ω1 + . . . + ωn. It is well-
known that for each .t > 0, 

.

(
m

(r)
V (t)

)
r≥1

D=
(

ϕV

(
�r

t

))
r≥1

, (4) 

and hence for each .t > 0,
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.V (t) =
∞∑

r=1

m
(r)
V (t)

D=
∞∑

r=1

ϕV

(
�r

t

)
=: Ṽ (t). (5) 

See, for instance, equation (1.3) in IMR [3] and the references therein. It can also 
be inferred from a general representation for subordinators due to Rosiński [9]. 

In the same way, we define for each .t > 0, .
(
m

(r)
X (t)

)
r≥1

and .
(
m

(r)
W (t)

)
r≥1

, 

and we see that the analogs of the distributional identity (4) hold with .m(r)
V and . ϕV

replaced by .m
(r)
X and . ϕX , respectively, .m(r)

W and . ϕW . Recalling (2), observe that for 
all .t > 0, 

.W (t) =
∑
0<s≤t

�W (s) = V (X (t)) =
∑

0<s≤X(t)

�V (s) . (6) 

From (6) and the version of (4) with .m
(r)
V and . ϕV replaced by .m

(r)
W and . ϕW , we have  

for each . t > 0

. W(t) =
∞∑

r=1

m
(r)
W (t)

D=
∞∑

r=1

ϕW

(
�r

t

)
=: W̃ (t).

Let .V,X and .(�r)r≥1 be independent. In particular, V is independent of 

. 

{(
m

(r)
X (y)

)
r≥1

, y > 0

}
and (�r)r≥1 .

Next consider for each . t > 0

. 

(
m

(r)
V (X (t))

)
r≥1

.

Note that conditioned on . X (t) = y

. 

(
m

(r)
V (X (t))

)
r≥1

D=
(
m

(r)
V (y)

)
r≥1

.

Therefore, using (4), we get for each . t > 0

. 

(
m

(r)
V (X (t))

)
r≥1

D=
(

ϕV

(
�r

X (t)

))
r≥1

,

and thus by (5), 

.V (X (t)) =
∞∑

r=1

m
(r)
V (X (t))

D=
∞∑

r=1

ϕV

(
�r

X (t)

)
=: Ṽ (X (t)).
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Here are two methods of trimming .W(t) = V (X(t)). 

Method I For each .t > 0, trim  .W(t) = V (X(t)) based on the ordered jumps of 
V on the interval .(0, X (t)] . In this case, for each .t > 0 and .k ≥ 1, define the kth 
trimmed version of . V (X (t))

. V (k)(X (t)) := V (X (t)) −
k∑

r=1

m
(r)
V (X (t)),

which we will call the subordinated trimmed subordinator process. We note that 

. V (k)(X (t))
D= Ṽ (X (t)) −

k∑
r=1

ϕV

(
�r

X (t)

)
=: Ṽ (k)(X (t)).

Method II For each .t > 0, trim  .W(t) based on the ordered jumps of W on the 
interval .(0, t] . In this case, for each .t > 0 and .k ≥ 1, define the kth trimmed 
version of . W(t)

. W(k)(t) := W(t) −
k∑

r=1

m
(r)
W (t)

. 
D= W̃ (t) −

k∑
r=1

ϕW

(
�r

t

)
=: W̃ (k)(t).

Remark 3 Notice that in method I trimming for each .t > 0, we treat .V (X (t)) as 
the subordinator V randomly evaluated at .X (t), whereas in method II trimming we 
consider .W = V (X) as the subordinator, which results when the subordinator V is 
randomly time changed by the subordinator X. 

Remark 4 Though for each .t > 0, .V (X (t)) = W(t), typically we cannot conclude 
that for each .t > 0 and . k ≥ 1

. V (k)(X (t))
D= W(k)(t).

This is because it is not necessarily true that 

. 

(
m

(r)
V (X (t))

)
r≥1

D=
(
m

(r)
W (t)

)
r≥1

.

See the example in Appendix 1.
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3 Self-Standardized CLTs for W 

3.1 Self-Standardized CLTs for Method I Trimming 

Set .V (0)(t) := V (t), and for any integer .k ≥ 1, consider the trimmed subordinator 

. V (k)(t) := V (t) − m
(1)
V (t) − · · · − m

(k)
V (t),

which on account of (4) says for any integer .k ≥ 0 and . t > 0

.V (k)(t)
D=

∞∑
i=k+1

ϕV

(
�i

t

)
=: Ṽ (k)(t). (7) 

Let T be a strictly positive random variable independent of 

.

{(
m

(r)
V (t)

)
r≥1

, t > 0

}
and (�r)r≥1 . (8) 

Clearly, by (4), (7), and (8), we have for any integer . k ≥ 0

. V (k)(T )
D= Ṽ (k)(T ).

Set for any . y > 0

. μV (y) :=
∫ ∞

y

ϕV (x) dx and σ 2
V (y) :=

∫ ∞

y

ϕ2
V (x) dx.

We see by Remark 1 that (1) implies that 

. σ 2
V (y) > 0 for all y > 0.

Throughout these notes, Z denotes a standard normal random variable. We shall 
need the following formal extension of Theorem 1 of Mason [7]. Its proof is nearly 
exactly the same as the proof of the Mason [7] version, and just replace the sequence 
of positive constants .{tn}n≥1 in the proof of Theorem 1 of Mason [7] by  .{Tn}n≥1. 
The proof of Theorem 1 of Mason [7] is based on a special case of Theorem 1.2 of 
Zaitsev [12], which we state in the digression below. Here is our self-standardized 
CLT for method I trimmed subordinated subordinators. 

Theorem 1 Assume that .�V (0+) = ∞. For any sequence of positive integers 
.{kn}n≥1 and sequence of strictly positive random variables .{Tn}n≥1 independent 
of .(�k)k≥1 satisfying
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. 

√
TnσV

(
�kn/Tn

)
ϕV

(
�kn/Tn

) P→ ∞, as n → ∞,

we have uniformly in x, as .n → ∞, 

. 

∣∣∣∣∣P
{

Ṽ (kn) (Tn) − TnμV

(
�kn/Tn

)
√

TnσV

(
�kn/Tn

) ≤ x|�kn, Tn

}
− P {Z ≤ x}

∣∣∣∣∣
P→ 0,

which implies as . n → ∞

.
Ṽ (kn) (Tn) − TnμV

(
�kn/Tn

)
√

TnσV

(
�kn/Tn

) D→ Z. (9) 

The remainder of this subsection will be devoted to examining a couple of special 
cases of the following example of Theorem 1. 

Example For each .0 < α < 1, let .Vα = (Vα (t) , t ≥ 0) be an .α-stable process with 
Laplace transform defined for .θ > 0 by 

. E exp (−θVα(t)) = exp

(
−t

∫ ∞

0
(1 − exp(−θx)) α� (1 − α) x−1−αdx

)

. = exp

(
−t

∫ ∞

0

(
1 − exp(−θcαu−1/α)

)
du

)
= exp

(−tθα
)
, (10) 

where 

. cα = 1/�1/α (1 − α) .

(See Example 24.12 of Sato [11].) Note that for . Vα , 

. ϕVα (x) =: ϕα(x) = cαx−1/α1{x>0}.

We record that for each . t > 0

.Vα (t)
D= Ṽα(t) := cα

∞∑
i=1

(
�i

t

)−1/α

. (11) 

For any .t > 0, denote the ordered jump sequence .m(1)
α (t) ≥ m

(2)
α (t) ≥ . . . of . Vα

on the interval .[0, t]. Consider the kth trimmed version of .Vα (t) defined for each 
integer . k ≥ 1

.V (k)
α (t) = Vα (t) − m(1)

α (t) − · · · − m(k)
α (t) , (12)
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which for each . t > 0

.
D= Ṽ (k)

α (t) := cα

∞∑
i=1

(
�k+i

t

)−1/α

. (13) 

In this example, for ease of notation, write for each .0 < α < 1 and .y > 0, . μVα (y) =
μα (y) and .σ 2

Vα
(y) = σ 2

α (y). With this notation, we get that 

. μα (y) =
∫ ∞

y

cαv−1/αdv = cαα

1 − α
y1−1/α

and 

. σ 2
α (y) =

∫ ∞

y

c2αv−2/αdv = c2αα

2 − α
y1−2/α.

From (13), we have that for any .k ≥ 1 and . T > 0

.

Ṽ
(k)
α (T ) − T μα

(
�k

T

)

T 1/2σα

(
�k

T

) =
∑∞

i=1 (�k+i )
−1/α − α

1−α
�
1−1/α
k√

α
2−α

�
1/2−1/α
k

. (14) 

Notice that 

.

√
T σα

(
�k

T

)

ϕα(
�k

T
)

= (�k)
1/2

√
α

2 − α
. (15) 

Clearly by (15) for any sequence of positive integers .{kn}n≥1 converging to infinity 
and sequence of strictly positive random variables .{Tn}n≥1 independent of .(�k)k≥1, 

. 

√
Tnσα

(
�kn/Tn

)
ϕα

(
�kn/Tn

) = (
�kn

)1/2 √
α

2 − α

P→ ∞, as n → ∞.

Hence, by rewriting (9) in the above notation, we have by Theorem 1 that as . n → ∞

.

Ṽ
(kn)
α (Tn) − Tnμα

(
�kn

Tn

)

T
1/2
n σα

(
�kn

Tn

) D→ Z. (16) 

Digression To make the presentation of our Example more self-contained, we shall 
show in this digression how a special case of Theorem 1.2 of Zaitsev [12] can be 
used to give a direct proof of (16).



A Note on Central Limit Theorems for Trimmed Subordinated Subordinators 219

It is pointed out in Mason [7] that Theorem 1.2 of Zaitsev [12] implies the  
following normal approximation. Let Y be an infinitely divisible mean 0 and 
variance 1 random variable with Lévy measure . � and Z be a standard normal 
random variable. Assume that the support of . � is contained in a closed interval 
.[−τ, τ ] with .τ > 0; then for universal positive constants . C1 and . C2 for any . λ > 0
all . x ∈ R

. P {Z ≤ x − λ} − C1 exp

(
− λ

C2τ

)
≤ P {Y ≤ x}

. ≤ P {Z ≤ x + λ} + C1 exp

(
− λ

C2τ

)
. (17) 

We shall show how to derive (16) from (17). Note that 

.

∑∞
i=1 (�k+i )

−1/α − α
1−α

�
1−1/α
k√

α
2−α

�
1/2−1/α
k

D=
∑∞

i=1

(
1 + �′

i

�k

)−1/α − α
1−α

�k√
α

2−α
�
1/2
k

, (18) 

where .
(
�′

i

)
i≥1

D= (�i)i≥1 and is independent of .(�i)i≥1. Let  . Yα = (Yα (y) , y ≥ 0)
be the subordinator with Laplace transform defined for each .y > 0 and .θ ≥ 0, by  

. E exp (−θYα (y)) = exp

(
−y

∫ 1

0
(1 − exp(−θx)) αx−α−1dx

)

. =: exp
(

−y

∫ 1

0
(1 − exp(−θx)) �α (dx)

)
. (19) 

Observe that the Lévy measure . �α of . Yα has Lévy tail function on . (0,∞)

. �α (x) = (
x−α − 1

)
1{0<x≤1}

with . ϕ function 

. ϕYα (u) = (1 + u)−1/α 1{u>0}.

Thus from (5), for each .y > 0, 

. Yα (y)
D=

∞∑
i=1

(
1 + �′

i

y

)−1/α

.

Also, we find by differentiating the Laplace transform of .Yα (y) that for each . y > 0

.EYα (y) = αy

1 − α
=: βαy and V arYα (y) = αy

2 − α
=: γ 2

α y, (20)
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and hence, 

. Zα (y) := Yα (y) − βαy

γα
√

y

is a mean 0 and variance 1 infinitely divisible random variable whose Lévy measure 
has support contained in the closed interval .[−τ (y) , τ (y)], where 

.τ (y) = 1/
(
γα

√
y
)
. (21) 

Thus by (17) for universal positive constants . C1 and . C2 for any .λ > 0 all .x ∈ R and 
.λ > 0, 

. P {Z ≤ x − λ} − C1 exp

(
− λ

C2τ (y)

)
≤ P {Zα (y) ≤ x}

. ≤ P {Z ≤ x + λ} + C1 exp

(
− λ

C2τ (y)

)
. (22) 

Clearly, since .
(
�′

i

)
i≥1

D= (�i)i≥1 and .
(
�′

i

)
i≥1 is independent of .

(
�kn

)
n≥1, we  

conclude by (22) and (21) that 

. P {Z ≤ x − λ} − C1 exp

(
−λγα

√
�kn

C2

)
≤ P

{
Zα

(
�kn

) ≤ x|�kn

}

. ≤ P {Z ≤ x + λ} + C1 exp

(
−λγα

√
�kn

C2

)
. (23) 

Now by the arbitrary choice of .λ > 0, we get from (23) that uniformly in x, as  
.kn → ∞, 

. 

∣∣∣∣∣P
{

Yα

(
�kn

) − βα�kn

γα

√
�kn

≤ x|�kn

}
− P {Z ≤ x}

∣∣∣∣∣
P→ 0.

This implies as . n → ∞

.
Yα

(
�kn

) − βα�kn

γα

√
�kn

D→ Z. (24) 

Since the identity (14) holds for any .k ≥ 1 and .T > 0, (16) follows from (18) 
and (24). Of course, there are other ways to establish (24). For instance, (24) can be 
shown to be a consequence of Anscombe’s Theorem for Lévy processes. For details, 
see Appendix 2.
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Remark 5 For any .0 < α < 1 and .k ≥ 1, the random variable .Yα (�k) has Laplace 
transform 

. E exp (−θYα (�k)) =
(
1 +

∫ 1

0
(1 − exp(−θx)) �α (dx)

)−k

, θ ≥ 0.

It turns out that for any . t > 0

. Yα (�k)
D= V (k)

α (t) /m(k)
α (t) ,

where .V (k)
α (t) and .m(k)

α (t) are as in (12). See Theorem 1.1 (i) of Kevei and Mason 
[6]. Also refer to page 1979 of Ipsen et al [4]. 

Next we give two special cases of our example, which we shall return to in the 
next subsection when we discuss self-standardized CLTs for method II trimming. 

Special Case 1: Subordination of Two Independent Stable Subordinators 
For .0 < α1, α2 < 1, let  . Vα1 , respectively . Vα2 , be an  .α1-stable process, respectively 
an .α2-stable process, with a Laplace transform of the form (10). Assume that . Vα1

and .Vα2 are independent. Set for . t ≥ 0

. W (t) = Vα1

(
Vα2 (t)

)

and 

. W = (W (t) , t ≥ 0) .

One finds that for each . t ≥ 0

. W (t) = Vα1

(
Vα2 (t)

) =
∑

0<s≤Vα2 (t)

�Vα1 (s) .

Moreover, W is a stationary independent increment process, and for each .t ≥ 0 and 
.θ ≥ 0, 

. E exp (−θW (t)) = E exp
(−Vα2 (t) θα1

)

. = exp
(−tθα1α2

)
. (25) 

This says that W is the .α1α2-stable subordinator .Vα1α2 with Laplace transform (25). 
(See Example 30.5 on page 202 of Sato [11].) Thus for each .t ≥ 0 and .θ ≥ 0, 

.E exp (−θW (t)) = E exp
(−θVα1α2 (t)

)
. (26)
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Therefore, with .c (α1α2) = 1
�1/(α1α2)(1−α1α2)

, we get 

. c (α1α2)

∞∑
i=1

(
�i

t

)−1/(α1α2)

=: Ṽα1α2(t),

which by (11), (25), and (26) for each fixed .t > 0 is 

. 
D= Vα1

(
Vα2 (t)

)
.

Here we get that for any sequence of positive integers .{kn}n≥1 converging to infinity 
and sequence of positive constants .{sn}n≥1, by setting .Tn = Vα2 (sn) , for .n ≥ 1, we  
have by (16) that as . n → ∞

. 

Ṽ
(kn)
α1

(
Vα2 (sn)

) − Vα2 (sn) μα1

(
�kn

Vα2 (sn)

)
√

Vα2 (sn)σα1

(
�kn

Vα2 (sn)

) D→ Z.

Special Case 2: Mittag-Leffler Process 
For each .0 < α < 1, let  . Vα be the .α-stable process with Laplace transform (10). 
Now independent of V , let  .X = (X (s) , s ≥ 0) be the standard Gamma process, 
i.e., X is a zero drift subordinator with density for each . s > 0

. fX(s) (x) = 1

� (s)
xs−1e−x , for x > 0,

mean and variance 

. EX (s) = s and V arX (s) = s,

and Laplace transform for . θ ≥ 0

. E exp (−θX (s)) = (1 + θ)−s ,

which after a little computation is 

. = exp

[
−s

∫ ∞

0
(1 − exp (−θx)) x−1e−xdx

]
.

Notice that X has Lévy density 

. ρ (x) = x−1e−x , for x > 0.

(See Applebaum [1] pages 54–55.)
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Consider the subordinated process 

. W = (W (s) := Vα (X (s)) , s ≥ 0) .

Applying Theorem 30.1 and Theorem 30.4 of Sato [11], we see that W is a drift 0 
subordinator with Laplace transform 

. E exp (−θW (s)) = E exp (−V (X (s)))

. = E exp
(−X (s) θα

) = (
1 + θα

)−s

. = exp

[
−s

∫ ∞

0

(
1 − exp

(−θαy
))

y−1e−ydy

]
, θ ≥ 0.

It has Lévy measure .�W defined for Borel subsets B of .(0,∞), by  

. �W (B) =
∫ ∞

0
P {Vα (y) ∈ B} y−1e−ydy.

In particular, it has Lévy tail function 

. �W (x) =
∫ ∞

0
P {V (y) ∈ (x,∞)} y−1e−ydy, for x > 0.

For later use, we note that 

. 

∫ ∞

0

(
1 − e−θx

)
�W (dx) =

∫ ∞

0

∫ ∞

0

(
1 − e−θx

)
PVα(y) (dx) ay−1e−bydy

. =
∫ ∞

0

(
1 − eyθα

)
y−1e−ydy.

Such a process W is called the Mittag-Leffler process. See, e.g., Pillai [8]. 

By Theorem 4.3 of Pillai [8] for each .s > 0, the exact distribution function 
.Fα,s(x) of .W (s) is for . x ≥ 0

. Fα,s(x) =
∞∑

r=0

(−1)r
� (s + r) xα(s+r)

� (s) r!� (1 + α (s + r))
,

which says that for each .s > 0 and . x ≥ 0

. P {W (s) ≤ x} = P {Vα (X (s)) ≤ x}

. = P
{
Ṽα (X (s)) ≤ x

} = Fα,s(x).
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In this special case, for any sequence of positive integers .{kn}n≥1 converging to 
infinity and sequence of positive constants .{sn}n≥1, by setting .Tn = X (sn) , for 
.n ≥ 1, we get by (16) that as . n → ∞

. 
Ṽ

(kn)
α (X (sn)) − X (sn) μα

(
�kn/X (sn)

)
√

X (sn)σα

(
�kn/X (sn)

) D→ Z.

3.2 Self-Standardized CLTs for Method II Trimming 

Let W be a subordinator of the form (2). Set for any . y > 0

. μW (y) :=
∫ ∞

y

ϕW (x) dx and σ 2
W (y) :=

∫ ∞

y

ϕ2
W (x) dx.

We see by Remarks 1 and 2 that (1) implies that 

. σ 2
W (y) > 0 for all y > 0.

For easy reference for the reader, we state here a version of Theorem 1 of 
Mason [7] stated in terms of a self-standardized CLT for the method II trimmed 
subordinated subordinator W . 

Theorem 2 Assume that .�W(0+) = ∞. For any sequence of positive integers 
.{kn}n≥1 and sequence of positive constants .{tn}n≥1 satisfying 

. 

√
tnσW

(
�kn/tn

)
ϕW

(
�kn/tn

) P→ ∞, as n → ∞,

we have uniformly in x, as .n → ∞, 

. 

∣∣∣∣∣P
{

W̃ (kn) (tn) − tnμW

(
�kn/tn

)
√

tnσW

(
�kn/tn

) ≤ x|�kn

}
− P {Z ≤ x}

∣∣∣∣∣
P→ 0,

which implies as . n → ∞

. 
W̃ (kn) (tn) − tnμW

(
�kn/tn

)
√

tnσW

(
�kn/tn

) D→ Z.

Remark 6 Theorem 1 of Mason [7] contains the added assumption that .kn → ∞, 
as .n → ∞. An examination of its proof shows that this assumption is unnecessary. 
Also we note in passing that Theorem 1 implies Theorem 2.
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For the convenience of the reader, we state the following results. Corollary 1 is 
from Mason [7]. The proof of Corollary 2 follows after some obvious changes of 
notation that of Corollary 1. 

Corollary 1 Assume that .W (t), .t ≥ 0, is a subordinator with drift 0, whose Lévy 
tail function .�W is regularly varying at zero with index . −α, where .0 < α < 1. 
For any sequence of positive integers .{kn}n≥1 converging to infinity and sequence of 
positive constants .{tn}n≥1 satisfying .kn/tn → ∞, we have, as .n → ∞, 

.
W̃ (kn) (tn) − tnμW (kn/tn)√

tnσW (kn/tn)

D→
√

2

α
Z. (27) 

Corollary 2 Assume that .W (t), .t ≥ 0, is a subordinator with drift 0, whose Lévy 
tail function .�W is regularly varying at infinity with index . −α, where .0 < α < 1. 
For any sequence of positive integers .{kn}n≥1 converging to infinity and sequence of 
positive constants .{tn}n≥1 satisfying .kn/tn → 0, as .n → ∞, we have (27). 

The subordinated subordinator introduced in Special Case 1 above satisfies the 
conditions of Corollary 1, and the subordinated subordinator in Special Case 2 above 
fulfills the conditions of Corollary 2. Consider the two cases. 

Special Case 1 To see this, notice that in Special Case 1, by (25) necessarily W 
has Lévy tail function on . (0,∞)

. �W(y) = � (1 − α1α2) y−α1α21{y>0},

for .0 < .α1, α2 < 1, which is regularly varying at zero with index . −α, where 
.0 < α = α1α2 < 1. In this case, from Corollary 1, we get (27) as long as 
.kn → ∞ and .kn/tn → ∞, as . n → ∞.

Special Case 2 In Special Case 2, observe that .W = Vα (X) , with .0 < α < 1, 
where .Vα = (Vα (t) , t ≥ 0) is an .α-stable process with Laplace transform 
(10), .X = (X (s) , s ≥ 0) is a standard Gamma process, and . Vα and X are 
independent. The process .r−1/αW (r) has Laplace transform .(1 + θα/r)−r , for  
.θ ≥ 0, which converges to .exp (−θα) as .r → ∞. This implies that for all . t > 0

. r−1/αW (rt)
D→ Vα (t) , as r → ∞.

By part (ii) of Theorem 15.14 of Kallenberg [5] and (10) for all . x > 0

. r�W

(
r1/αx

)
→ � (1 − α) x−α, as r → ∞.

This implies that W has a Lévy tail function .�W(y) on .(0,∞), which is regularly 
varying at infinity with index . −α, .0 < α < 1. In this case, by Corollary 2, we  
can conclude (27) as long as .kn → ∞ and .kn/tn → 0, as .n → ∞.
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4 Appendix 1 

Recall the notation of Special Case 1. Let . Vα1 , . Vα2 , and .(�k)k≥1 be independent and 

.W = Vα1

(
Vα2

)
. For any .t > 0, let .m(1)

Vα1
(Vα2 (t)) ≥ m

(2)
Vα1

(Vα2 (t)) ≥ · · · denote the 
ordered jumps of .Vα1 on the interval .

[
0, Vα2 (t)

]
. They satisfy 

. 

(
m(k)

α1
(Vα2 (t))

)
k≥1

D=
(

c (α1)

(
�k

Vα2 (t)

)−1/α1
)

k≥1

.

Let .m(1)
W (t) ≥ m

(2)
W (t) ≥ · · · denote the ordered jumps of W on the interval .[0, t]. 

In this case, for each . t > 0

. 

(
m

(k)
W (t)

)
k≥1

D=
(

c (α1α2)

(
�k

t

)−1/(α1α2)
)

k≥1

.

Observe that for all . t > 0

.W (t) =
∑
0<s≤t

�W (s) =
∑

0<s≤Vα2 (t)

�Vα1 (s) =
∞∑

k=1

m(k)
α1

(Vα2 (t)). (28) 

Note that though (28) holds, .
(
m

(k)
α1 (Vα2 (t))

)
k≥1

is not equal in distribution to 

.

(
m

(k)
W (t)

)
k≥1

. To see this, notice that 

.

(
m

(k)
α1 (Vα2 (t))

m
(1)
α1 (Vα2 (t))

)

k≥1

D=
((

�k

�1

)−1/α1
)

k≥1

, (29) 

whereas 

.

(
m

(k)
W (t)

m
(1)
W (t)

)

k≥1

D=
((

�k

�1

)−1/(α1α2)
)

k≥1

. (30) 

Obviously, the sequences (29) and (30) are not equal in distribution and thus 

.

(
m(k)

α1
(Vα2 (t))

)
k≥1

D	=
(
m

(k)
W (t)

)
k≥1

.
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5 Appendix 2 

A straightforward modification of the proof of Theorem 1 of Rényi [10] gives  the  
following Anscombe’s theorem for Lévy processes. 

Theorem A Let .X = (X (t) , t ≥ 0) be a mean zero Lévy process with . EX2 (t) = t

for .t ≥ 0, and let .η = (η (t) , t > 0) be a random process such that .η (t) > 0 for all 

.t > 0 and for some .c > 0, .η (t) /t
P→ c, as .t → ∞, then 

. X (η (t)) /
√

η (t)
D→ Z.

A version of Anscombe’s theorem is given in Gut [2]. See his Theorem 3.1. In our 
notation, his Theorem 3.1 requires that .{η (t) , t ≥ 0} be a family of stopping times. 

Example A Let .Yα = (Yα (y) , y ≥ 0) be the Lévy process with Laplace transform 
(19) and mean and variance functions (20). We see that 

. X :=
(

X (y) = Yα (y) − βαy

γα

, y ≥ 0

)

defines a mean zero Lévy process with .EX2 (y) = y for .y ≥ 0. Now  let  
.η = (η (t) , t ≥ 0) be a standard Gamma process independent of X. Notice that 

.η (t) /t
P→ 1, as .t → ∞. Applying Theorem A, we get as .t → ∞, 

. X (η (t)) /
√

η (t)
D→ Z.

In particular, since for each integer .k ≥ 1, .η (k)
D= �k , this implies that (24) holds 

for any sequence of positive integers .(kn)n≥1 converging to infinity as .n → ∞, i.e., 

. 
Yα

(
�kn

) − βα�kn

γα

√
�kn

D→ Z.
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