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1 Introduction

The aim of this note is to compile a number of smaller results that extend some
classical as well as more recent concentration inequalities for bounded or sub-
Gaussian random variables to random variables with heavier (but still exponential
type) tails. In detail, we shall consider random variables X that satisfy

.P(|X − EX| ≥ t) ≤ 2 exp(−tα/Cα
1,α) (1.1)

for any .t ≥ 0, some .α ∈ (0, 2], and a suitable constant .C1,α > 0. Such random
variables are sometimes called .α-subexponential (for .α = 2, they are sub-Gaussian)
or sub-Weibull.(α) (cf. [23, Definition 2.2]).

There are several equivalent reformulations of (1.1), e. g., in terms of .Lp norms:

.‖X‖Lp ≤ C2,αp1/α (1.2)

for any .p ≥ 1. Another characterization is that these random variables have finite
Orlicz norms of order .α, i. e.,

.C3,α := ‖X‖�α
:= inf{t > 0 : E exp((|X|/t)α) ≤ 2} < ∞. (1.3)

If .α < 1, .‖·‖�α is actually a quasi-norm; however, many norm-like properties
(such as a triangle-type inequality) can nevertheless be recovered up to .α-dependent
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constants (see, e. g., [12, Appendix A]). In fact, .C1,α , .C2,α , and .C3,α can be chosen
such that they only differ by a constant .α-dependent factor.

Note that .α-subexponential random variables have log-convex (if .α ≤ 1) or
log-concave (if .α ≥ 1) tails, i. e., .t �→ − logP(|X| ≥ t) is convex or concave,
respectively. For log-convex or log-concave measures, two-sided .Lp norm estimates
for polynomial chaos (and as a consequence, concentration bounds) have been
established over the last 25 years. In the log-convex case, results of this type have
been derived for linear forms in [17] and for forms of any order in [12, 21]. For log-
concave measures, starting with linear forms again in [10], important contributions
have been made in [3, 24, 25, 27].

In this note, we mainly present four different results for functions of .α-
subexponential random variables: a Hanson–Wright-type inequality in Sect. 2, a
version of the convex concentration inequality in Sect. 3, a uniform Hanson–Wright
inequality in Sect. 4, and finally a convex concentration inequality for simple
random tensors in Sect. 5. These results are partly based on and generalize recent
research, e. g., [20] and [42]. In fact, they partially build upon each other: for
instance, in the proofs of Sect. 5, we apply results both from Sects. 2 and 3. A more
detailed discussion is provided in each of the sections.

Finally, let us introduce some conventions that we will use in this chapter.

Notations. If X1, . . . , Xn is a sequence of random variables, we denote by X =
(X1, . . . , Xn) the corresponding random vector. Moreover, we shall need the
following types of norms throughout the paper:

• The norms ‖x‖p := (
∑n

i=1|xi |p)1/p for x ∈ R
n

• The Lp norms ‖X‖Lp := (E|X|p)1/p for random variables X (cf. (1.2))
• The Orlicz (quasi-)norms ‖X‖�α as introduced in (1.3)
• The Hilbert–Schmidt and operator norms ‖A‖HS := (

∑
i,j a2

ij )
1/2, ‖A‖op :=

sup{‖Ax‖2 : ‖x‖2 = 1} for matrices A = (aij )

The constants appearing in this chapter (typically denoted C or c) may vary from
line to line. Without subscript, they are assumed to be absolute, and if they depend
on α (only), we shall write Cα or cα .

2 A Generalized Hanson–Wright Inequality

Arguably, the most famous concentration result for quadratic form is the Hanson–
Wright inequality, which first appeared in [16]. We may state it as follows: assuming
.X1, . . . , Xn are centered, independent random variables satisfying .‖Xi‖�2 ≤ K for
any i and .A = (aij ) is a symmetric matrix, we have for any .t ≥ 0

.P
(|XT AX − EXT AX| ≥ t

) ≤ 2 exp
(

− 1

C
min

( t2

K4‖A‖2
HS

,
t

K2‖A‖op

))
.
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For a modern proof, see [33], and for various developments, cf. [2, 4, 18, 43].
In this note, we provide an extension of the Hanson–Wright inequality to random

variables with bounded Orlicz norms of any order .α ∈ (0, 2]. This complements the
results in [12], where the case of .α ∈ (0, 1] was considered, while for .α = 2, we
get back the actual Hanson–Wright inequality.

Theorem 2.1 For any .α ∈ (0, 2], let .X1, . . . , Xn be independent, centered random
variables such that .‖Xi‖�α ≤ K for any i and .A = (aij ) be a symmetric matrix.
Then, for any .t ≥ 0,

.P
(|XT AX − EXT AX| ≥ t

) ≤ 2 exp
(

− 1

Cα

min
( t2

K4‖A‖2
HS

,
( t

K2‖A‖op

) α
2
))

.

Theorem 2.1 generalizes and implies a number of inequalities for quadratic forms
in .α-subexponential random variables (in particular for .α = 1) that are spread
throughout the literature. For a detailed discussion, see [12, Remark 1.7]. Note
that it is possible to sharpen the tail estimate given by Theorem 2.1, cf., e. g., [12,
Corollary 1.4] for .α ∈ (0, 1] or [3, Theorem 3.2] for .α ∈ [1, 2] (in fact, the proof
of Theorem 2.1 works by evaluating the family of norms used therein). The main
benefit of Theorem 2.1 is that it uses norms that are easily calculable and in many
situations already sufficient for applications.

Before we give the proof of Theorem 2.1, let us briefly mention that for the
standard Hanson–Wright inequality, a number of selected applications can be found
in [33]. Some of them were generalized to .α-subexponential random variables
with .α ≤ 1 in [12], and it is no problem to extend these proofs to any order
.α ∈ (0, 2] using Theorem 2.1. Here, we just focus on a single example that yields
a concentration result for the Euclidean norm of a linear transformation of a vector
X having independent components with bounded Orlicz norms around the Hilbert–
Schmidt norm of the transformation matrix. This is a variant and extension of [12,
Proposition 2.1] and will be applied in Sect. 5.

Proposition 2.2 Let .X1, . . . , Xn be independent, centered random variables such
that .EX2

i = 1 and .‖Xi‖�α ≤ K for some .α ∈ (0, 2] and let .B 	= 0 be an .m × n

matrix. For any .t ≥ 0, we have

.P(|‖BX‖2 − ‖B‖HS| ≥ tK2‖B‖op) ≤ 2 exp(−tα/Cα). (2.1)

In particular, for any .t ≥ 0, it holds

.P(|‖X‖2 − √
n| ≥ tK2) ≤ 2 exp(−tα/Cα). (2.2)

For the proofs, let us recall some elementary relations that we will use throughout
the paper to adjust the constants in the tail bounds we derive.

Adjusting constants. For any two constants C1 > C2 > 1, we have for all r ≥ 0
and C > 0
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.C1 exp(−r/C) ≤ C2 exp
(

− log(C2)

C log(C1)
r
)

(2.3)

whenever the left-hand side is smaller or equal to 1 (cf., e. g., [35, Eq. (3.1)]).
Moreover, for any α ∈ (0, 2), any γ > 0, and all t ≥ 0, we may always estimate

. exp(−(t/C)2) ≤ 2 exp(−(t/C′)α), (2.4)

using exp(−s2) ≤ exp(1 − sα) for any s > 0 and (2.3). More precisely, we may
choose C′ := C/ log1/α(2). Note that strictly speaking, the range of t/C ≤ 1 is
not covered by (2.3); however, in this case (in particular, choosing C′ as suggested),
both sides of (2.4) are at least 1 anyway so that the right-hand side still provides a
valid upper bound for any probability.

Let us now turn to the proof of Theorem 2.1. In what follows, we actually show
that for any p ≥ 2,

.‖XT AX − EXT AX‖Lp ≤ CαK2(p1/2‖A‖HS + p2/α‖A‖op
)
. (2.5)

From here, Theorem 2.1 follows by standard means (cf. [34, Proof of Theorem 3.6]).
Moreover, we may restrict ourselves to α ∈ (1, 2], since the case of α ∈ (0, 1] has
been proven in [12].

Proof of Theorem 2.1 First we shall treat the off-diagonal part of the quadratic form.
Let w

(1)
i , w

(2)
i be independent (of each other as well as of the Xi) symmetrized

Weibull random variables with scale 1 and shape α, i. e., w
(j)
i are symmetric

random variables with P(|w(j)
i | ≥ t) = exp(−tα). In particular, the w

(j)
i have

logarithmically concave tails.
Using standard decoupling and symmetrization arguments (cf. [8, Theorem 3.1.1

& Lemma 1.2.6]) as well as [3, Theorem 3.2] in the second inequality, for any p ≥ 2,
it holds

.‖
∑

i 	=j

aijXiXj‖Lp ≤ CαK2‖
∑

i 	=j

aijw
(1)
i w

(2)
j ‖Lp

≤ CαK2(‖A‖N{1,2},p + ‖A‖N{{1},{2}},p), (2.6)

where the norms ‖A‖NJ ,p
are defined as in [3]. Instead of repeating the general

definitions, we will only focus on the case we need in our situation. Indeed, for the
symmetric Weibull distribution with parameter α, we have (again, in the notation of
[3]) N(t) = tα , and so for α ∈ (1, 2], it follows that N̂(t) = min(t2, |t |α). Hence,
the norms can be written as follows:

.‖A‖N{1,2},p = 2 sup
{ ∑

i,j

aij xij :
n∑

i=1

min
(∑

j

x2
ij ,

( ∑

j

x2
ij

)α/2) ≤ p
}
,
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‖A‖N{{1},{2}},p = sup
{ ∑

i,j

aij xiyj :
n∑

i=1

min(x2
i , |xi |α)

≤ p,

n∑

j=1

min(y2
j , |yj |α) ≤ p

}
.

Before continuing with the proof, we next introduce a lemma that will help to rewrite
the norms in a more tractable form. �
Lemma 2.3 For any p ≥ 2, define

.I1(p) := {
x = (xij ) ∈ R

n×n :
n∑

i=1

min
(( n∑

j=1

x2
ij

)α/2
,

n∑

j=1

x2
ij

) ≤ p
}
,

I2(p) := {
xij = ziyij ∈ R

n×n :
n∑

i=1

min(|zi |α, z2
i ) ≤ p, max

i=1,...,n

n∑

j=1

y2
ij ≤ 1

}
.

Then I1(p) = I2(p).

Proof The inclusion I1(p) ⊇ I2(p) is an easy calculation, and the inclusion
I1(p) ⊆ I2(p) follows by defining zi = ‖(xij )j‖ and yij = xij /‖(xij )j‖ (or 0,
if the norm is zero). �
Proof of Theorem 2.1, continued For brevity, for any matrix A = (aij ), let us write
‖A‖m := maxi=1,...,n(

∑n
j=1 a2

ij )
1/2. Note that clearly, ‖A‖m ≤ ‖A‖op.

Now, fix some vector z ∈ R
n such that

∑n
i=1 min(|zi |α, z2

i ) ≤ p. The condition
also implies

.p ≥
n∑

i=1

|zi |α1{|zi |>1} +
n∑

i=1

z2
i 1{|zi |≤1} ≥ max

( n∑

i=1

z2
i 1{|zi |≤1},

n∑

i=1

|zi |1{|zi |>1}
)
,

where in the second step we used α ∈ [1, 2] to estimate |zi |α1{|zi |>1} ≥ |zi |1{|zi |>1}.
So, given any z and y satisfying the conditions of I2(p), we can write

.|
∑

i,j

aij ziyij | ≤
n∑

i=1

|zi |
( n∑

j=1

a2
ij

)1/2(
n∑

j=1

y2
ij

)1/2 ≤
n∑

i=1

|zi |
( n∑

j=1

a2
ij

)1/2

≤
n∑

i=1

|zi |1{|zi |≤1}
( n∑

j=1

a2
ij

)1/2 +
n∑

i=1

|zi |1{|zi |>1}
( n∑

j=1

a2
ij

)1/2

≤ ‖A‖HS
( n∑

i=1

z2
i 1{|zi |≤1}

)1/2 + ‖A‖m

n∑

i=1

|zi |1{|zi |>1}.
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So, this yields

.‖A‖N{1,2},p ≤ 2p1/2‖A‖HS + 2p‖A‖m ≤ 2p1/2‖A‖HS + 2p‖A‖op. (2.7)

As for ‖A‖N{{1},{2}},p , we can use the decomposition z = z1 + z2, where (z1)i =
zi1{|zi |>1} and z2 = z − z1, and obtain

.‖A‖N{{1},{2}},p ≤ sup
{∑

ij

aij (x1)i(y1)j : ‖x1‖α ≤ p1/α, ‖y1‖α ≤ p1/α
}

+ 2 sup
{ ∑

ij

aij (x1)i(y2)j : ‖x1‖α ≤ p1/α, ‖y2‖2 ≤ p1/2}

+ sup
{ ∑

ij

aij (x2)i(y2)j : ‖x2‖2 ≤ p1/2, ‖y2‖2 ≤ p1/2}

= p2/α sup{. . .} + 2p1/α+1/2 sup{. . .} + p‖A‖op

(in the braces, the conditions ‖·‖β ≤ p1/β have been replaced by ‖·‖β ≤ 1). Clearly,
since ‖x1‖α ≤ 1 implies ‖x1‖2 ≤ 1 (and the same for y1), all of the norms can be
upper bounded by ‖A‖op, i. e., we have

.‖A‖N{{1},{2}},p ≤ (p2/α + 2p1/α+1/2 + p)‖A‖op ≤ 4p2/α‖A‖op, (2.8)

where the last inequality follows from p ≥ 2 and 1/2 ≤ 1/α ≤ 1 ≤ (α+2)/(2α) ≤
2/α.

Combining the estimates (2.6), (2.7), and (2.8) yields

.‖
∑

i,j

aijXiXj‖Lp ≤ CαK2(2p1/2‖A‖HS + 6p2/α‖A‖op
)
.

To treat the diagonal terms, we use Corollary 6.1 in [12], as X2
i are independent

and satisfy ‖X2
i ‖�α/2 ≤ K2, so that it yields

.P
(|

n∑

i=1

aii(X
2
i − EX2

i )| ≥ t
) ≤ 2 exp

(
− 1

CαK2 min
( t2

∑n
i=1 a2

ii

,

( t

maxi=1,...,n|aii |
)α/2))

.

Now it is clear that maxi=1,...,n|aii | ≤ ‖A‖op and
∑n

i=1 a2
ii ≤ ‖A‖2

HS. In particular,

.‖
n∑

i=1

aii(X
2
i − EX2

i )‖Lp ≤ CαK2(p1/2‖A‖HS + p2/α‖A‖op).
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The claim (2.5) now follows from Minkowski’s inequality. �
Finally, we prove Proposition 2.2.

Proof of Proposition 2.2 It suffices to prove (2.1) for matrices satisfying ‖B‖HS =
1, as otherwise we set B̃ = B‖B‖−1

HS and use the equality

.{|‖BX‖2 − ‖B‖HS| ≥ ‖B‖opt} = {|‖B̃X‖2 − 1| ≥ ‖B̃‖opt}.

Now let us apply Theorem 2.1 to the matrix A := BT B. An easy calculation
shows that trace(A) = trace(BT B) = ‖B‖2

HS = 1, so that we have for any t ≥ 0

.P
(|‖BX‖2 − 1| ≥ t

) ≤ P
(|‖BX‖2

2 − 1| ≥ max(t, t2)
)

≤ 2 exp
(

− 1

Cα

min
(max(t, t2)2

K4‖B‖2
op

,
(max(t, t2)

K4‖B‖2
op

)α/2))

≤ 2 exp
(

− 1

Cα

min
( t2

K4‖B‖2
op

,
( t2

K4‖B‖2
op

)α/2))

≤ 2 exp
(

− 1

Cα

( t

K2‖B‖op

)α)
.

Here, the first step follows from |z − 1| ≤ min(|z2 − 1|, |z2 − 1|1/2) for z ≥ 0, in
the second step, we have used the estimates ‖A‖2

HS ≤ ‖B‖2
op‖B‖2

HS = ‖B‖2
op and

‖A‖op ≤ ‖B‖2
op, and moreover, the fact that since EX2

i = 1, K ≥ Cα > 0 (cf.,
e. g., [12, Lemma A.2]), while the last step follows from (2.4) and (2.3). Setting
t = K2s‖B‖op for s ≥ 0 finishes the proof of (2.1). Finally, (2.2) follows by taking
m = n and B = I . �

3 Convex Concentration for Random Variables with
Bounded Orlicz Norms

Assume .X1, . . . , Xn are independent random variables each taking values in some
bounded interval .[a, b]. Then, by convex concentration as established in [19, 29, 38],
for every convex 1-Lipschitz function .f : [a, b]n → R,

.P(|f (X) − Ef (X)| > t) ≤ 2 exp
(

− t2

2(b − a)2

)
(3.1)

for any .t ≥ 0 (see, e. g., [36, Corollary 3]).
While convex concentration for bounded random variables is by now standard,

there is less literature for unbounded random variables. In [31], a Martingale-type
approach is used, leading to a result for functionals with stochastically bounded
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increments. The special case of suprema of unbounded empirical processes was
treated in [1, 28, 40]. Another branch of research, begun in [29] and continued,
e. g., in [5, 13–15, 36, 37], is based on functional inequalities (such as Poincaré or
log-Sobolev inequalities) restricted to convex functions and weak transport-entropy
inequalities. In [20, Lemma 1.8], a generalization of (3.1) for sub-Gaussian random
variables (.α = 2) was proven, which we may extend to any order .α ∈ (0, 2].
Proposition 3.1 Let .X1, . . . , Xn be independent random variables, .α ∈ (0, 2] and
.f : Rn → R convex and 1-Lipschitz. Then, for any .t ≥ 0,

.P(|f (X) − Ef (X)| > t) ≤ 2 exp
(

− tα

Cα‖maxi |Xi |‖α
�α

)
.

In particular,

.‖f (X) − Ef (X)‖�α ≤ Cα‖max
i

|Xi |‖�α . (3.2)

Note that the main results of the following two sections can be regarded as
applications of Proposition 3.1. If f is separately convex only (i. e., convex is every
coordinate with the other coordinates being fixed), it is still possible to prove a
corresponding result for the upper tails. Indeed, it is no problem to modify the
proof below accordingly, replacing (3.1) by [7, Theorem 6.10]. Moreover, note that
.‖maxi |Xi |‖�α cannot be replaced by .maxi‖|Xi |‖�α (a counterexample for .α = 2 is
provided in [20]). In general, the Orlicz norm of .maxi |Xi | will be of order .(log n)1/α

(cf. Lemma 5.6).

Proof of Proposition 3.1 Following the lines of the proof of [20, Lemma 3.5], the
key step is a suitable truncation that goes back to [1]. Indeed, write

.Xi = Xi1{|Xi |≤M} + Xi1{|Xi |>M} =: Yi + Zi (3.3)

with .M := 8Emaxi |Xi | (in particular, .M ≤ Cα‖maxi |Xi |‖�α , cf. [12, Lemma
A.2]), and let .Y = (Y1, . . . , Yn), .Z = (Z1, . . . , Zn). By the Lipschitz property
of f ,

.

P(|f (X) − Ef (X)| > t)

≤ P(|f (Y ) − Ef (Y )| + |f (X) − f (Y )| + |Ef (Y ) − Ef (X)| > t)

≤ P(|f (Y ) − Ef (Y )| + ‖Z‖2 + E‖Z‖2 > t),

(3.4)

and hence, it suffices to bound the terms in the last line.
Applying (3.1) to Y and using (2.4) and (2.3), we obtain

.P(|f (Y ) − Ef (Y )| > t) ≤ 2 exp
(

− tα

Cα
α‖maxi |Xi |‖α

�α

)
. (3.5)
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Furthermore, below we will show that

.‖‖Z‖2‖�α ≤ Cα‖max
i

|Xi |‖�α . (3.6)

Hence, for any .t ≥ 0,

.P(‖Z‖2 ≥ t) ≤ 2 exp
(

− tα

Cα
α‖maxi |Xi |‖α

�α

)
, (3.7)

and by [12, Lemma A.2],

.E‖Z‖2 ≤ Cα‖max
i

|Xi |‖�α . (3.8)

Temporarily writing .K := Cα‖maxi |Xi |‖�α , where .Cα is large enough so that
(3.5), (3.7), and (3.8) hold, (3.4) and (3.8) yield

.P(|f (X) − Ef (X)| > t) ≤ P(|f (Y ) − Ef (Y )| + ‖Z‖2 > t − K)

if .t ≥ K . Using subadditivity and invoking (3.5) and (3.7), we obtain

.P(|f (X) − Ef (X)| > t) ≤ 4 exp
(

− (t − K)α

(2K)α

)
≤ 4 exp

(
− tα

cα(2K)α

)
,

where the last step holds for .t ≥ K + δ for some .δ > 0. This bound extends trivially
to any .t ≥ 0 (if necessary, by a suitable change of constants). Finally, the constant
in front of the exponential may be adjusted to 2 by (2.3), which finishes the proof.

It remains to show (3.6). To this end, recall the Hoffmann-Jørgensen inequality
(cf. [30, Theorem 6.8]) in the following form: if .W1, . . . ,Wn are independent
random variables, .Sk := W1 + . . . + Wk , and .t ≥ 0 is such that .P(maxk |Sk| >

t) ≤ 1/8, then

.Emax
k

|Sk| ≤ 3Emax
i

|Wi | + 8t.

In our case, we set .Wi := Z2
i , .t = 0, and note that by Chebyshev’s inequality,

.P(max
i

Z2
i > 0) = P(max

i
|Xi | > M) ≤ Emax

i
|Xi |/M = 1/8,

and consequently, recalling that .Sk = Z2
1 + . . . + Z2

k ,

.P(max
k

|Sk| > 0) ≤ P(max
i

Z2
i > 0) ≤ 1/8.
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Thus, together with [12, Lemma A.2], we obtain

.E‖Z‖2
2 ≤ 3Emax

i
Z2

i ≤ Cα‖max
i

Z2
i ‖�α/2 .

Now it is easy to see that .‖maxi Z2
i ‖�α/2 ≤ ‖maxi |Xi |‖2

�α
, so that altogether we

arrive at

.E‖Z‖2
2 ≤ Cα‖max

i
|Xi |‖2

�α
. (3.9)

Furthermore, by [30, Theorem 6.21], if .W1, . . . , Wn are independent random
variables with zero mean and .α ∈ (0, 1],

.‖
n∑

i=1

Wi‖�α ≤ Cα(‖
n∑

i=1

Wi‖L1 + ‖max
i

|Wi |‖�α).

In our case, we consider .Wi = Z2
i −EZ2

i and .α/2 (instead of .α). Together with the
previous arguments (in particular, (3.9)) and [12, Lemma A.3], this yields

.‖
n∑

i=1

(Z2
i − EZ2

i )‖�α/2 ≤ Cα(E|‖Z‖2
2 − E‖Z‖2

2| + ‖max
i

|Z2
i − EZ2

i |‖�α/2)

≤ Cα(E‖Z‖2
2 + ‖max

i
Z2

i ‖�α/2) ≤ Cα‖max
i

|Xi |‖2
�α

.

Combining this with [12, Lemma A.3] and (3.9), we arrive at (3.6). �

4 Uniform Tail Bounds for First- and Second-Order Chaos

In this section, we discuss bounds for the tails of the supremum of certain chaos-
type classes of functions. Even if we are particularly interested in quadratic forms,
i. e., uniform Hanson–Wright inequalities, let us first consider linear forms.

Let .X1, . . . , Xn be independent random variables, let .α ∈ (0, 2], and let
.{ai,t : i = 1, . . . , n, t ∈ T } be a compact set of real numbers, where .T is some
index set. Consider .g(X) := supt∈T

∑n
i=1 ai,tXi . Clearly, g is convex and has

Lipschitz constant .D := supt∈T (
∑n

i=1 a2
i,t )

1/2. Therefore, applying Proposition 3.1,
we immediately obtain that for any .t ≥ 0,

.P(|g(X) − Eg(X)| ≥ t) ≤ 2 exp
(

− tα

CαDα‖maxi |Xi |‖α
�α

)
. (4.1)

For bounded random variables, corresponding tail bounds can be found, e. g., in [32,
Eq. (14)], and choosing .α = 2, we get back this result up to constants.
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Our main aim is to derive a second-order analogue of (4.1), i. e., a uniform
Hanson–Wright inequality. A pioneering result in this direction (for Rademacher
variables) can be found in [39]. Later results include [2] (which requires the
so-called concentration property), [22], [9], and [11] (certain classes of weakly
dependent random variables). In [20], a uniform Hanson–Wright inequality for sub-
Gaussian random variables was proven. We may show a similar result for random
variables with bounded Orlicz norms of any order .α ∈ (0, 2].
Theorem 4.1 Let .X1, . . . , Xn be independent, centered random variables and
.K := ‖maxi |Xi |‖�α , where .α ∈ (0, 2]. Let .A be a compact set of real symmetric
.n × n matrices, and let .f (X) := supA∈A(XT AX −EXT AX). Then, for any .t ≥ 0,

.P(f (X) − Ef (X) ≥ t) ≤ 2 exp
(

− 1

CαKα
min

( tα

(E supA∈A‖AX‖2)α
,

tα/2

supA∈A‖A‖α/2
op

))
.

For .α = 2, this gives back [20, Theorem 1.1] (up to constants and a different
range of t). Comparing Theorems 4.1 to 2.1, we note that instead of a sub-Gaussian
term, we obtain an .α-subexponential term (which can be trivially transformed into
a sub-Gaussian term for .t ≤ E supA∈A‖AX‖2, but this does not cover the complete
.α-subexponential regime). Moreover, Theorem 4.1 only gives a bound for the upper
tails. Therefore, if .A just consists of a single matrix, Theorem 2.1 is stronger. These
differences have technical reasons.

To prove Theorem 4.1, we shall follow the basic steps of [20] and modify those
where the truncation comes in. Let us first repeat some tools and results. In the
sequel, for a random vector .W = (W1, . . . ,Wn), we shall denote

.f (W) := sup
A∈A

(WT AW − g(A)), (4.2)

where .g : Rn×n → R is some function. Moreover, if A is any matrix, we denote by
.Diag(A) its diagonal part (regarded as a matrix with zero entries on its off-diagonal).
The following lemma combines [20, Lemmas 3.2 & 3.5].

Lemma 4.2

(1) Assume the vector W has independent components that satisfy .Wi ≤ K a.s.
Then, for any .t ≥ 1, we have

.f (W) − Ef (W) ≤ C
(
K(E sup

A∈A
‖AW‖2 + E sup

A∈A
‖Diag(A)W‖2)

√
t

+ K2 sup
A∈A

‖A‖opt
)

with probability at least .1 − e−t .
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(2) Assuming the vector W has independent (but not necessarily bounded) compo-
nents with mean zero, we have

.E sup
A∈A

‖Diag(A)W‖2 ≤ CE sup
A∈A

‖AW‖2.

From now on, let X be the random vector from Theorem 4.1, and recall the
truncated random vector Y that we introduced in (3.3) (and the corresponding
“remainder” Z). Then, Lemma 4.2 (1) for .f (Y ) with .g(A) = EXT AX yields

.f (Y ) − Ef (Y ) ≤ C
(
M(E sup

A∈A
‖AY‖2 + E sup

A∈A
‖Diag(A)‖2)t

1/α

+ M2t2/α sup
A∈A

‖A‖op
)

(4.3)

with probability at least .1 − e−t (actually, (4.3) even holds with .α = 2, but in the
sequel we will have to use the weaker version given above anyway). Here we recall
that .M ≤ Cα‖maxi |Xi |‖�α .

To prove Theorem 4.1, it remains to replace the terms involving the truncated
random vector Y by the original vector X. First, by Proposition 3.1 and since
.supA∈A‖AX‖2 is .supA∈A‖A‖op-Lipschitz, we obtain

.P( sup
A∈A

‖AX‖2 > E sup
A∈A

‖AX‖2 + Cα‖max
i

|Xi |‖�α sup
A∈A

‖A‖opt
1/α) ≤ 2e−t .

(4.4)
Moreover, by (3.8),

.|E sup
A∈A

‖AY‖2 − E sup
A∈A

‖AX‖2| ≤ Cα‖max
i

|Xi |‖�α sup
A∈A

‖A‖op. (4.5)

Next we estimate the difference between the expectations of .f (X) and .f (Y ).

Lemma 4.3 We have

.|Ef (Y ) − Ef (X)| ≤ Cα

(‖max
i

|Xi |‖�αE sup
A∈A

‖AX‖2 + ‖max
i

|Xi |‖2
�α

sup
A∈A

‖A‖op
)
.

Proof First note that

.f (X) = sup
A∈A

(Y T AY − EXT AX + ZT AX + ZT AY)

≤ sup
A∈A

(Y T AY − EXT AX) + sup
A∈A

|ZT AX| + sup
A∈A

|ZT AY |

≤ f (Y ) + ‖Z‖2 sup
A∈A

‖AX‖2 + ‖Z‖2 sup
A∈A

‖AY‖2.

The same holds if we reverse the roles of X and Y . As a consequence,
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.|f (X) − f (Y )| ≤ ‖Z‖2 sup
A∈A

‖AX‖2 + ‖Z‖2 sup
A∈A

‖AY‖2, (4.6)

and thus, taking expectations and applying Hölder’s inequality,

.|Ef (X) − Ef (Y )| ≤ (E‖Z‖2
2)

1/2((E sup
A∈A

‖AX‖2
2)

1/2 + (E sup
A∈A

‖AY‖2
2)

1/2).

(4.7)
We may estimate .(E‖Z‖2

2)
1/2 using (3.9). Moreover, by related arguments as in

(3.8), from (4.4), we get that

.E sup
A∈A

‖AX‖2
2 ≤ Cα((E sup

A∈A
‖AX‖2)

2 + ‖max
i

|Xi |‖2
�α

sup
A∈A

‖A‖2
op).

Arguing similarly and using (4.5), the same bound also holds for .(E supA∈A
.‖AY‖2

2)
1/2. Taking roots and plugging everything into (4.7) complete the proof. �

Finally, we prove the central result of this section.

Proof of Theorem 4.1 First, it immediately follows from Lemma 4.3 that

.Ef (Y ) ≤ Ef (X) + Cα

(‖max
i

|Xi |‖�αE sup
A∈A

‖AX‖2 + ‖max
i

|Xi |‖2
�α

sup
A∈A

‖A‖op
)
.

(4.8)
Moreover, by (4.5) and Lemma 4.2 (2),

.E sup
A∈A

‖AY‖2 + E sup
A∈A

‖Diag(A)Y‖2 ≤ Cα(E sup
A∈A

‖AX‖2

+ ‖max
i

|Xi |‖�α sup
A∈A

‖A‖op). (4.9)

Finally, it follows from (4.6), (4.4), and (4.5) that

.|f (X) − f (Y )| ≤ ‖Z‖2 sup
A∈A

‖AX‖2 + ‖Z‖2 sup
A∈A

‖AY‖2

≤ Cα(‖Z‖2E sup
A∈A

‖AX‖2 + ‖Z‖2‖max
i

|Xi |‖�α sup
A∈A

‖A‖opt
1/α)

with probability at least .1 − 4e−t for all .t ≥ 1. Using (3.7), it follows that

.|f (X) − f (Y )| ≤ Cα(‖max
i

|Xi |‖�αE sup
A∈A

‖AX‖2t
1/α

+ ‖max
i

|Xi |‖2
�α

sup
A∈A

‖A‖opt
2/α) (4.10)

with probability at least .1 − 6e−t for all .t ≥ 1. Combining (4.8), (4.9), and (4.10)
and plugging into (4.3) thus yield that with probability at least .1−6e−t for all .t ≥ 1,
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.f (X) − Ef (X) ≤ Cα(‖max
i

|Xi |‖�αE sup
A∈A

‖AX‖2t
1/α

+ ‖max
i

|Xi |‖2
�α

sup
A∈A

‖A‖opt
2/α)

=: Cα(at1/α + bt2/α).

If .u ≥ max(a, b), it follows that

.P(f (X) − Ef (X) ≥ u) ≤ 6 exp
(

− 1

Cα

min
((u

a

)α

,
(u

b

)α/2))
.

By standard means (a suitable change of constants, using (2.3)), this bound may be
extended to any .u ≥ 0, and the constant may be adjusted to 2. �

5 Random Tensors

By a simple random tensor, we mean a random tensor of the form

.X := X1 ⊗ · · · ⊗ Xd = (X1,i1 · · ·Xd,id )i1,...,id ∈ R
nd

, (5.1)

where all .Xk are independent random vectors in .R
n whose coordinates are

independent, centered random variables with variance one. Concentration results
for random tensors (typically for polynomial-type functions) have been shown in
[6, 12, 26], for instance.

Recently, in [42], new and interesting concentration bounds for simple random
tensors were shown. In comparison to previous work, these inequalities focus on
small values of t , e. g., a regime where sub-Gaussian tail decay holds. Moreover, in
contrast to previous papers, [42] provides constants with optimal dependence on d.
One of these results is the following convex concentration inequality: assuming that
n and d are positive integers, .f : Rnd → R is convex and 1-Lipschitz, and the .Xij

are bounded a.s., then for any .t ∈ [0, 2nd/2],

.P(|f (X) − Ef (X)| > t) ≤ 2 exp
(

− t2

Cdnd−1

)
, (5.2)

where .C > 0 only depends on the bound of the coordinates. Using Theorem 2.1
and Proposition 3.1, we may extend this result to unbounded random variables as
follows:

Theorem 5.1 Let .n, d ∈ N and .f : Rnd → R be convex and 1-Lipschitz. Consider
a simple random tensor .X := X1 ⊗ · · · ⊗ Xd as in (5.1). Fix .α ∈ [1, 2], and assume
that .‖Xi,j‖�α ≤ K . Then, for any .t ∈ [0, cαnd/2(log n)1/α/K],
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.P(|f (X) − Ef (X)| > t) ≤ 2 exp
(

− 1

Cα

( t

d1/2n(d−1)/2(log n)1/αK

)α)
.

On the other hand, if .α ∈ (0, 1), then, for any .t ∈ [0, cαnd/2(log n)1/αd1/α−1/2/K],

.P(|f (X) − Ef (X)| > t) ≤ 2 exp
(

− 1

Cα

( t

d1/αn(d−1)/2(log n)1/αK

)α)
.

The logarithmic factor stems from the Orlicz norm of .maxi |Xi | in Proposi-
tion 3.1. For a slightly sharper version that includes the explicit dependence on
these norms (and also gives back (5.2) for bounded random variables and .α = 2),
see (5.12) in the proof of Theorem 5.1. We believe that Theorem 5.1 is non-optimal
for .α < 1 as we would expect a bound of the same type as for .α ∈ [1, 2]. However,
a key difference in the proofs is that in the case of .α ≥ 1 we can make use of
moment-generating functions. This is clearly not possible if .α < 1, so that less
subtle estimates must be invoked instead.

For the proof of Theorem 5.1, we first adapt some preliminary steps and compile
a number of auxiliary lemmas whose proofs are deferred to the appendix. As a start,
we need some additional characterizations of .α-subexponential random variables
via the behavior of the moment-generating functions:

Proposition 5.2 Let X be a random variable and .α ∈ (0, 2]. Then, the properties
(1.1), (1.2), and (1.3) are equivalent to

.E exp(λα|X|α) ≤ exp(Cα
4,αλα) (5.3)

for all .0 ≤ λ ≤ 1/C4,α . If .α ∈ [1, 2] and .EX = 0, then the above properties are
moreover equivalent to

.E exp(λX) ≤
{

exp(C2
5,αλ2) if |λ| ≤ 1/C5,α

exp(C
α/(α−1)

5,α |λ|α/(α−1)) if |λ| ≥ 1/C5,α and α > 1.
(5.4)

The parameters .Ci,α , .i = 1, . . . , 5, can be chosen such that they only differ by
constant .α-dependent factors. In particular, we can take .Ci,α = ci,α‖X‖�α .

To continue, note that .‖X‖2 = ∏d
i=1‖Xi‖2. A key step in the proofs of

[42] is a maximal inequality that simultaneously controls the tails of .
∏k

i=1‖Xi‖2,
.k = 1, . . . , d, where the .Xi have independent sub-Gaussian components, i. e.,
.α = 2. Generalizing these results to any order .α ∈ (0, 2] is not hard. The following
preparatory lemma extends [42, Lemma 3.1]. Note that in the proof (given in the
appendix again), we apply Proposition 2.2.

Lemma 5.3 Let .X1, . . . , Xd ∈ R
n be independent random vectors with indepen-

dent, centered coordinates such that .EX2
i,j = 1 and .‖Xi,j‖�α ≤ K for some

.α ∈ (0, 2]. Then, for any .t ∈ [0, 2nd/2],
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.P

( d∏

i=1

‖Xi‖2 > nd/2 + t
)

≤ 2 exp
(

− 1

Cα

( t

K2d1/2n(d−1)/2

)α)
.

To control all .k = 1, . . . , d simultaneously, we need a generalized version of the
maximal inequality [42, Lemma 3.2] that we state next.

Lemma 5.4 Let .X1, . . . , Xd ∈ R
n be independent random vectors with indepen-

dent, centered coordinates such that .EX2
i,j = 1 and .‖Xi,j‖�α ≤ K for some

.α ∈ (0, 2]. Then, for any .u ∈ [0, 2],

.P

(
max

1≤k≤d
n−k/2

k∏

i=1

‖Xi‖2 > 1 + u
)

≤ 2 exp
(

− 1

Cα

( n1/2u

K2d1/2

)α)
.

The following Martingale-type bound is directly taken from [42]:

Lemma 5.5 ([42], Lemma 4.1) Let .X1, . . . Xd be independent random vectors.
For each .k = 1, . . . , d, let .fk = fk(Xk, . . . , Xd) be an integrable real-valued
function and .Ek be an event that is uniquely determined by the vectors .Xk, . . . , Xd .
Let .Ed+1 be the entire probability space. Suppose that for every .k = 1, . . . , d, we
have

.EXk
exp(fk) ≤ πk

for every realization of .Xk+1, . . . , Xd in .Ek+1. Then, for .E := E2 ∩· · ·∩Ed , we have

.E exp(f1 + . . . + fd)1E ≤ π1 · · · πd.

Finally, we need a bound for the Orlicz norm of .maxi |Xi |.
Lemma 5.6 Let .X1, . . . , Xn be independent, centered random variables such that
.‖Xi‖�α ≤ K for any i and some .α > 0. Then,

.‖max
i

|Xi |‖�α ≤ CαK max
{(√

2 + 1√
2 − 1

)1/α

, (log n)1/α
( 2

log 2

)1/α}
.

Here, we may choose .Cα = max{21/α−1, 21−1/α}.
Note that for .α ≥ 1, [8, Proposition 4.3.1] provides a similar result. However, we

are also interested in the case of .α < 1 in the present note. The condition .EXi = 0
in Lemma 5.6 can easily be removed only at the expense of a different absolute
constant.

We are now ready to prove Theorem 5.1.
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Proof of Theorem 5.1 We shall adapt the arguments from [42]. First let

.Ek :=
{ d∏

i=k

‖Xi‖2 ≤ 2n(d−k+1)/2
}
, k = 1, . . . , d,

and let .Ed+1 be the full space. It then follows from Lemma 5.4 for .u = 1 that

.P(E) ≥ 1 − 2 exp
(

− 1

Cα

( n1/2

K2d1/2

)α)
, (5.5)

where .E := E2 ∩ · · · ∩ Ed .
Now fix any realization .x2, . . . , xd of the random vectors .X2, . . . , Xd in .E2, and

apply Proposition 3.1 to the function .f1(x1) given by .x1 �→ f (x1, . . . xd). Clearly,
.f1 is convex, and since

.|f (x⊗x2⊗· · ·⊗xd)−f (y⊗x2⊗· · ·⊗xd)| ≤ ‖x−y‖2

d∏

i=2

‖xi‖2 ≤ ‖x−y‖22n(d−1)/2,

we see that it is .2n(d−1)/2-Lipschitz. Hence, it follows from (3.2) that

.‖f − EX1f ‖�α(X1) ≤ cαn(d−1)/2‖max
j

|X1,j |‖�α (5.6)

for any .x2, . . . , xd in .E2, where .EX1 denotes taking the expectation with respect to
.X1 (which, by independence, is the same as conditionally on .X2, . . . , Xd ).

To continue, fix any realization .x3, . . . , xd of the random vectors .X3, . . . , Xd

that satisfy .E3 and apply Proposition 3.1 to the function .f2(x2) given by .x2 �→
EX1f (X1, x2, . . . , xd). Again, .f2 is a convex function, and since

.|EX1f (X1 ⊗ x ⊗ x3 ⊗ . . . ⊗ xd) − EX1f (X1 ⊗ y ⊗ x3 ⊗ . . . ⊗ xd)|

≤ EX1‖X1 ⊗ (x − y) ⊗ x3 ⊗ . . . ⊗ xd‖2 ≤ (E‖X1‖2
2)

1/2‖x − y‖2

d∏

i=3

‖xi‖2

≤ √
n‖x − y‖2 · 2n(d−2)/2 = ‖x − y‖2 · 2n(d−1)/2,

.f2 is .2n(d−1)/2-Lipschitz. Applying (3.2), we thus obtain

.‖EX1f − EX1,X2f ‖�α(X2) ≤ cαn(d−1)/2‖max
j

|X2,j |‖�α (5.7)

for any .x3, . . . , xd in .E3. Iterating this procedure, we arrive at

.‖EX1,...,Xk−1f − EX1,...,Xk
f ‖�α(Xk) ≤ cαn(d−1)/2‖max

j
|Xk,j |‖�α (5.8)
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for any realization .xk+1, . . . , xd of .Xk+1, . . . , Xd in .Ek+1.
We now combine (5.8) for .k = 1, . . . , d. To this end, we write

.	k := 	k(Xk, . . . , Xd) := EX1,...,Xk−1f − EX1,...,Xk
f

and apply Proposition 5.2. Here we have to distinguish between the cases where
.α ∈ [1, 2] and .α ∈ (0, 1). If .α ≥ 1, we use (5.4) to arrive at a bound for the
moment-generating function. Writing .Mk := ‖maxj |Xk,j |‖�α , we obtain

.E exp(λ	k) ≤
{

exp((cαn(d−1)/2Mk)
2λ2)

exp((cαn(d−1)/2Mk)
α/(α−1)|λ|α/(α−1))

for all .xk+1, . . . , xd in .Ek+1, where the first line holds if .|λ| ≤ 1/(cαn(d−1)/2Mk)

and the second one if .|λ| ≥ 1/(cαn(d−1)/2Mk) and .α > 1. For the simplicity of
presentation, temporarily assume that .cαn(d−1)/2 = 1 (alternatively, replace .Mk

by .cαn(d−1)/2Mk in the following arguments) and that .M1 ≤ . . . ≤ Md . Using
Lemma 5.5, we obtain

. E exp(λ(f − Ef ))1E = E exp(λ(	1 + · · · + 	d))1E

≤ exp((M2
1 + . . . + M2

k )λ2 + (M
α/(α−1)

k+1 + . . . + M
α/(α−1)
d )|λ|α/(α−1))

for .|λ| ∈ [1/Mk+1, 1/Mk], where we formally set .M0 := 0 and .Md+1 := ∞. In
particular, setting .M := (M2

1 + . . . + M2
d )1/2, we have

.E exp(λ(f − Ef ))1E ≤ exp(M2λ2)

for all .|λ| ≤ 1/Md = 1/(maxk Mk). Furthermore, for .α > 1, it is not hard to see
that

.(M2
1 + . . .+M2

k )λ2 +(M
α/(α−1)

k+1 + . . .+M
α/(α−1)
d )|λ|α/(α−1) ≤ Mα/(α−1)|λ|α/(α−1)

If .|λ| ∈ [1/Mk+1, 1/Mk] for some .k = 0, 1, . . . , d − 1 or .|λ| ∈ [1/M, 1/Md ]
for .k = d. Indeed, by monotonicity (divide by .λ2 and compare the coefficients),
it suffices to check this for .λ = 1/Mk+1 or .λ = 1/M if .k = d. The cases of
.k = 0 and .k = d follow by simple calculations. In the general case, set .x2 =
(M2

1 + . . .+M2
k+1)/M

2
k+1 and .yα/(α−1) = (M

α/(α−1)

k+2 + . . .+M
α/(α−1)
d )/M

α/(α−1)

k+1 .
Clearly, .(x2 + yα/(α−1))(α−1)/α ≤ (x2 + y2)1/2 since .x ≥ 1 and .α/(α − 1) ≥ 2.
Moreover, .y2 ≤ (M2

k+2 + . . .+M2
d )/M2

k+1, which proves the inequality. Altogether,
inserting the factor .cαn(d−1)/2 again, we therefore obtain

.E exp(λ(f − Ef ))1E = E exp(λ(	1 + · · · + 	d))1E
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≤
{

exp((cαn(d−1)/2)2M2λ2)

exp((cαn(d−1)/2)α/(α−1)Mα/(α−1)|λ|α/(α−1)),
(5.9)

where the first line holds if .|λ| ≤ 1/(cαn(d−1)/2M) and the second one if .|λ| ≥
1/(cαn(d−1)/2M) and .α > 1.

On the other hand, if .α < 1, we use (5.3). Together with Lemma 5.5 and the
subadditivity of .| · |α for .α ∈ (0, 1), this yields

.

E exp(λα|f − Ef |α)1E ≤ E exp(λα(|	1|α + · · · + |	d |α))1E

≤ exp((cαn(d−1)/2)α(Mα
1 + · · · + Mα

d )λα)
(5.10)

for .λ ∈ [0, 1/(cαn(d−1)/2 maxk Mk)].
To finish the proof, first consider .α ∈ [1, 2]. Then, for any .λ > 0, we have

.

P(f − Ef > t) ≤ P({f − Ef > t} ∩ E) + P(Ec)

≤ P(exp(λ(f − Ef ))1E > exp(λt)) + P(Ec)

≤ exp
(

−
( t

cαn(d−1)/2M

)α)
+ 2 exp

(
− 1

Cα

( n1/2

K2d1/2

)α)
,

(5.11)

where the last step follows by standard arguments (similarly as in the proof of
Proposition 5.2 given in the appendix), using (5.9) and (5.5). Now, assume that
.t ≤ cαnd/2M/(K2d1/2). Then, the right-hand side of (5.11) is dominated by the
first term (possibly after adjusting constants), so that we arrive at

.P(f − Ef > t) ≤ 3 exp
(

− 1

Cα

( t

n(d−1)/2M

)α)
.

The same arguments hold if f is replaced by .−f . Adjusting constants by (2.3), we
obtain that for any .t ∈ [0, cαnd/2M/(K2d1/2)],

.P(|f (X) − Ef (X)| > t) ≤ 2 exp
(

− 1

Cα

( t

n(d−1)/2M

)α)
. (5.12)

Now it remains to note that by Lemma 5.6, we have

.‖max
j

|Xi,j |‖�α ≤ Cα(log n)1/α max
j

‖Xi,j‖�α ≤ Cα(log n)1/αK.

If .α ∈ (0, 1), similarly to (5.11), using (5.10), (5.5) and Proposition 5.2,

.P(|f − Ef | > t) ≤ P({|f − Ef | > t} ∩ E) + P(Ec)
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≤ 2 exp
(

−
( t

cαn(d−1)/2Mα

)α)
+ 2 exp

(
− 1

Cα

( n1/2

K2d1/2

)α)
,

where .Mα := (Mα
1 + . . . + Mα

d )1/α . The rest follows as above. �

Appendix A

Proof of Proposition 5.2 The equivalence of (1.1), (1.2), (1.3), and (5.3) is easily
seen by directly adapting the arguments from the proof of [41, Proposition 2.5.2]. To
see that these properties imply (5.4), first note that since in particular ‖X‖�1 < ∞,
the bound for |λ| ≤ 1/C′

5,α directly follows from [41], Proposition 2.7.1 (e). To see
the bound for large values of |λ|, we infer that by the weighted arithmetic–geometric
mean inequality (with weights α − 1 and 1),

.y(α−1)/αz1/α ≤ α − 1

α
y + 1

α
z

for any y, z ≥ 0. Setting y := |λ|α/(α−1) and z := |x|α , we may conclude that

.λx ≤ α − 1

α
|λ|α/(α−1) + 1

α
|x|α

for any λ, x ∈ R. Consequently, using (5.3), assuming C4,α = 1, for any |λ| ≥ 1,

.E exp(λX) ≤ exp
(α − 1

α
|λ|α/(α−1)

)
E exp(|X|α/α)

≤ exp
(α − 1

α
|λ|α/(α−1)

)
exp(1/α) ≤ exp(|λ|α/(α−1)).

This yields (5.4) for |λ| ≥ 1/C′′
5,α . The claim now follows by taking C5,α :=

max(C′
5,α, C′′

5,α).
Finally, starting with (5.4), assuming C5,α = 1, let us check (1.1). To this end,

note that for any λ > 0,

.P(X ≥ t) ≤ exp(−λt)E exp(λX) ≤ exp(−λt + λ21{λ≤1} + λα/(α−1)1{λ>1}).

Now choose λ := t/2 if t ≤ 2, λ := ((α − 1)t/α)α−1 if t ≥ α/(α − 1), and λ := 1
if t ∈ (2, α/(α − 1)). This yields

.P(X ≥ t) ≤

⎧
⎪⎪⎨

⎪⎪⎩

exp(−t2/4) if t ≤ 2,

exp(−(t − 1)) if t ∈ (2, α/(α − 1)),

exp(− (α−1)α−1

αα tα) if t ≥ α/(α − 1).
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Now use (2.3), (2.4), and the fact that exp(−(t − 1)) ≤ exp(−tα/Cα
α ) for any

t ∈ (2, α/(α − 1)). It follows that

.P(X ≥ t) ≤ 2 exp(−tα/C′α
1,α)

for any t ≥ 0. The same argument for −X completes the proof. �
Proof of Lemma 5.3 By the arithmetic and geometric means inequality and since
E‖Xi‖2 ≤ √

n, for any s ≥ 0,

.

P

( d∏

i=1

‖Xi‖2 > (
√

n + s)d
)

≤ P

( 1

d

d∑

i=1

(‖Xi‖2 − √
n) > s

)

≤ P

( 1

d

d∑

i=1

(‖Xi‖2 − E‖Xi‖2) > s
)
.

(A.1)

Moreover, by (2.2) and [12, Corollary A.5],

.
∥
∥‖Xi‖2 − E‖Xi‖2

∥
∥

�α
= ∥

∥‖Xi‖2 − √
n − (E‖Xi‖2 − √

n)
∥
∥

�α
≤ CαK2

for any i = 1, . . . , d. On the other hand, if Y1, . . . , Yd are independent centered
random variables with ‖Yi‖�α ≤ M , we have

.P

( 1

d

∣
∣
∣

d∑

i=1

Yi

∣
∣
∣ ≥ s

)
≤ 2 exp

(
− 1

Cα

min
(( s

√
d

M

)2
,
( s

√
d

M

)α))

≤ 2 exp
(

− 1

Cα

( s
√

d

M

)α)
.

Here, the first estimate follows from [10] (α > 1) and [17] (α ≤ 1), while
the last step follows from (2.4). As a consequence, (A.1) can be bounded by
2 exp(−sαdα/2/(K2αCα)).

For u ∈ [0, 2] and s = u
√

n/2d, we have (
√

n + s)d ≤ nd/2(1 + u). Plugging
in, we arrive at

.P

( d∏

i=1

‖Xi‖2 > nd/2(1 + u)
)

≤ 2 exp
(

− 1

Cα

( n1/2u

K2d1/2

)α)
.

Now set u := t/nd/2. �
Proof of Lemma 5.4 Let us first recall the partition into “binary sets” that appears
in the proof of [42, Lemma 3.2]. Here we assume that d = 2L for some L ∈ N (if
not, increase d). Then, for any 
 ∈ {0, 1, . . . , L}, we consider the partition I
 of
{1, . . . , d} into 2
 successive (integer) intervals of length d
 := d/2
 that we call
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“binary intervals.” It is not hard to see that for any k = 1, . . . , d, we can partition
[1, k] into binary intervals of different lengths such that this partition contains at
most one interval of each family I
.

Now it suffices to prove that

.P

(
∃0 ≤ 
 ≤ L, ∃I ∈ I
 :

∏

i∈I

‖Xi‖2 > (1 + 2−
/4u)nd
/2
)

≤ 2 exp
(

− 1

Cα

( n1/2u

K2d1/2

)α)

(cf. Step 3 of the proof of [42, Lemma 3.2], where the reduction to this case is
explained in detail). To this end, for any 
 ∈ {0, 1, . . . , L}, any I ∈ I
, and d
 :=
|I | = d/2
, we apply Lemma 5.3 for d
 and t := 2−
/4nd
/2u. This yields

.P

( ∏

i∈I

‖Xi‖2 > (1 + 2−
/4u)nd
/2
)

≤ 2 exp
(

− 1

Cα

( n1/2u

2
/4K2d
1/2



)α)

= 2 exp
(

− 1

Cα

(
2
/4 n1/2u

K2d1/2

)α)
.

Altogether, we arrive at

.

P

(
∃
 ∈ {0, 1, . . . , L}, ∃I ∈ I
 :

∏

i∈I

‖Xi‖2 > (1 + 2−
/4u)nd
/2
)

≤
L∑


=0

2
 · 2 exp
(

− 1

Cα

(
2
/4 n1/2u

K2d1/2

)α)
.

(A.2)

We may now assume that (n1/2u/(K2d1/2))α/Cα ≥ 1 (otherwise the bound in
Lemma 5.4 gets trivial by adjusting Cα). Using the elementary inequality ab ≥
(a + b)/2 for all a, b ≥ 1, we arrive at

.2
α/4 1

Cα

( n1/2u

K2d1/2

)α ≥ 1

2

(
2
α/4 + 1

Cα

( n1/2u

K2d1/2

)α)
.

Using this in (A.2), we obtain the upper bound

.2 exp
(

− 1

2Cα

( n1/2u

K2d1/2

)α) L∑


=0

2
 exp(−2
α/4−1) ≤ cα exp
(

− 1

2Cα

( n1/2u

K2d1/2

)α)
.

By (2.3), we can assume cα = 2. �
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To prove Lemma 5.6, we first present a number of lemmas and auxiliary
statements. In particular, recall that if α ∈ (0,∞), then for any x, y ∈ (0,∞),

.cα(xα + yα) ≤ (x + y)α ≤ c̃α(xα + yα), (A.3)

where cα := 2α−1 ∧ 1 and c̃α := 2α−1 ∨ 1. Indeed, if α ≤ 1, using the concavity
of the function x �→ xα , it follows by standard arguments that 2α−1(xα + yα) ≤
(x +y)α ≤ xα +yα . Likewise, for α ≥ 1, using the convexity of x �→ xα , we obtain
xα + yα ≤ (x + y)α ≤ 2α−1(xα + yα).

Lemma A.1 Let X1, . . . , Xn be independent, centered random variables such that
‖Xi‖�α ≤ 1 for some α > 0. Then, if Y := maxi |Xi | and c := (c−1

α log n)1/α , we
have

.P(Y ≥ c + t) ≤ 2 exp(−cαtα)

with cα as in (A.3).

Proof We have

.P(Y ≥ c + t) ≤ nP(|Xi | ≥ c + t) ≤ 2n exp(−(c + t)α)

≤ 2n exp(−cα(tα + cα) = 2 exp(−cαtα),

where we have used (A.3) in the next-to-last step. �
Lemma A.2 Let Y ≥ 0 be a random variable that satisfies

.P(Y ≥ c + t) ≤ 2 exp(−tα)

for some c ≥ 0 and any t ≥ 0. Then,

.‖Y‖�α ≤ c̃1/α
α max

{(√
2 + 1√
2 − 1

)1/α

, c
( 2

log 2

)1/α}

with c̃α as in (A.3).

Proof By (A.3) and monotonicity, we have Yα ≤ c̃α((Y − c)α+ + cα), where x+ :=
max(x, 0). Thus,

.E exp
(Yα

sα

)
≤ exp

( c̃αcα

sα

)
E exp

( c̃α(Y − c)α+
sα

)

= exp
(cα

tα

)
E exp

( (Y − c)α+
tα

)
=: I1 · I2,

where we have set t := sc̃
−1/α
α . Obviously, I1 ≤ √

2 if t ≥ c(1/ log
√

2)1/α . As for
I2, we have
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.I2 = 1 +
∫ ∞

1
P((Y − c)+ ≥ t (log y)1/α)dy

≤ 1 + 2
∫ ∞

1
exp(−tα log y)dy = 1 + 2

∫ ∞

1

1

ytα
dy ≤ √

2

if t ≥ ((
√

2 + 1)/(
√

2 − 1))1/α . Therefore, I1I2 ≤ 2 if t ≥ max{((√2 + 1)/(
√

2 −
1))1/α, c(2/ log 2)1/α}, which finishes the proof. �

Having these lemmas at hand, the proof of Lemma 5.6 is easily completed.

Proof of Lemma 5.6 The random variables X̂i := Xi/K obviously satisfy the
assumptions of Lemma A.1. Hence, setting Y := maxi |X̂i | = K−1 maxi |Xi |,

.P(c1/α
α Y ≥ (log n)1/α + t) ≤ 2 exp(−tα).

Therefore, we may apply Lemma A.2 to Ŷ := c
1/α
α K−1 maxi |Xi |. This yields

.‖Ŷ‖�α ≤ c̃1/α
α max

{(√
2 + 1√
2 − 1

)1/α

, (log n)1/α
( 2

log 2

)1/α}
,

i. e., the claim of Lemma 5.6, where we have set C := (̃cαc−1
α )1/α . �
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