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Preface

The tradition of the High Dimensional Probability (HDP) conferences can be traced
back to the International Conferences on Probability in Banach Spaces. The first
of these took place in Oberwolfach, Germany, in 1975, and the last in Bowdoin
College, United States, in 1991. In 1994, after eight Probability in Banach Spaces
meetings, in order to reflect the growing community and scope of the conference, a
decision was taken to give the series its current name: the International Conference
on High Dimensional Probability. The first High Dimensional Probability confer-
ence was also held in Oberwolfach, in 1996, and the proceedings were published in
1998.

The present volume is an outgrowth of the Ninth High Dimensional Probability
Conference (HDP IX), which due to the COVID-19 epidemic had to be held online
from June 15th to June 19th, 2020. The thematic range and quality of the talks
and contributed papers demonstrate that high-dimensional probability remains a
very active field of research, with connections to diverse fields of pure and applied
mathematics.

The origins of high-dimensional probability are related to the investigation of
limit theorems for random vectors and regularity of stochastic processes. The first
investigations were motivated by the study of necessary and sufficient conditions
for the boundedness and continuity of trajectories of Gaussian processes and the
extension of classical limit theorems, such as laws of large numbers, laws of the
iterated logarithm, and central limit theorems, to Hilbert and Banach space-valued
random variables as well as empirical processes.

The techniques developed to this end turned out to be extremely fruitful beyond
the original area. The methods of high-dimensional probability and especially
its offshoots, the concentration of measure phenomenon and generic chaining,
soon found numerous applications in seemingly distant areas of mathematics, as
well as statistics and computer science, in particular in random matrix theory,
convex geometry, asymptotic geometric analysis, nonparametric statistics, empirical
process theory, statistical learning theory, compressed sensing, strong and weak
approximations, distribution function estimation in high dimensions, combinatorial
optimization, random graph theory, stochastic analysis in infinite dimensions, and

vii



viii Preface

information and coding theory. At the same time, these areas gave new momentum
to the high-dimensional probability community, suggesting new problems and
directions.

The fruitful interactions with various fields last to this day, and have given
rise to many substantial developments in the area in recent years. In particu-
lar, numerous important results have been obtained concerning the connections
between various functional inequalities related to the concentration of measure
phenomenon, the Kannan-Lovász-Simonovits conjecture for the spectral gap of
log-concave probability measures, the application of generic chaining methods
to study the suprema of stochastic processes and norms of random matrices, the
Malliavin–Stein theory of Gaussian approximation, functional inequalities for high-
dimensional models of statistical physics, connections between convex geometry
and information theory, and various stochastic inequalities and their applications in
high-dimensional statistics and computer science. This breadth is duly reflected in
the diverse contributions contained in the present volume.

Before presenting the content of this volume, let us mention that the HDP
community sadly lost in the last few years three of its most esteemed and prominent
members: Richard Dudley, Elizabeth Meckes, and Joel Zinn. This book is dedicated
to their memory.

The contributed papers of this volume are divided into four general areas:
inequalities and convexity, limit theorems, stochastic processes, and high-
dimensional statistics. To give readers an idea of their scope, in the following
we briefly describe them by subject area and in the order they appear in this volume.

Inequalities and Convexity
• Covariance representations, .Lp-Poincaré inequalities, Stein’s kernels and high-

dimensional CLTs, by B. Arras and C. Houdré. This paper explores connections
between covariance representations, Bismut-type formulas, and Stein’s method.
The authors establish covariance representations for several well-known prob-
ability measures on .R

d and apply them to the study of .Lp-.Lq covariance
estimates. They also revisit the .Lp-Poincaré inequality for the standard Gaussian
measure from the point of view of covariance representations. Further, using
Bismut-type formulas they obtain .Lp-Poincaré and pseudo-Poincaré inequalities
for .α-stable measures. Finally using the construction of Stein’s kernels by
closed forms techniques, they obtain quantitative high-dimensional CLTs in 1-
Wasserstein distance with sharp convergence rates and explicit dependence on
parameters when the limiting Gaussian probability measure is anisotropic.

• Volume properties of high-dimensional Orlicz balls, by F. Barthe and P. Wolff.
The authors obtain asymptotic estimates for the volume of families of Orlicz balls
in high dimensions. As an application, they describe a large family of Orlicz balls
which verify the famous conjecture of Kannan, Lovász, and Simonovits about
spectral gaps. The paper also studies the asymptotic independence of coordinates
of uniform random vectors on Orlicz balls, as well as integrability properties of
their linear functionals.
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• Entropic isoperimetric inequalities, by S. G. Bobkov and C. Roberto. The
paper discusses a family of inequalities, known in Information Theory as
entropic isoperimetric inequalities, that compare Rényi entropies to the Fisher
information. Connecting these inequalities to the Gagliardo–Nirenberg inequality
enables the authors to obtain optimal bounds for several ranges of parameters.

• Transport proofs of some functional inverse Santaló inequalities, by M. Fradelizi,
N. Gozlan and S. Zugmeyer. This paper presents a simple proof of a recent
result of the second author which establishes that functional inverse Santaló
inequalities follow from Entropy-Transport inequalities. Then, using transport
arguments together with elementary correlation inequalities, the authors prove
these sharp Entropy-Transport inequalities in dimension 1, which therefore
gives an alternative transport proof of the sharp functional Mahler conjecture
in dimension 1, for both the symmetric and the general case. The proof of the
functional inverse Santaló inequalities in the n-dimensional unconditional case
is also revisited using these transport ideas.

• Tail bounds for sums of independent two-sided exponential random variables, by
J. Li and T. Tkocz. The authors establish upper and lower bounds with matching
leading terms for tails of weighted sums of two-sided exponential random
variables. This extends Janson’s recent results for one-sided exponentials.

• Boolean functions with small second order influences on the discrete cube, by
K. Oleszkiewicz. The author studies the concept of second-order influences,
introduced by Tanguy, in a specific context of Boolean functions on the discrete
cube. Some bounds which Tanguy obtained as applications of his more general
approach are extended and complemented. The main result asserts that a Boolean
function with uniformly small second-order influences is close to a constant
function or a dictatorship/antidictatorship function, which may be regarded a
modification of the classical theorems of Kahn–Kalai–Linial and Friedgut–
Kalai–Naor.

• Some notes on concentration for .α-subexponential random variables, by H.
Sambale. This paper provides extensions of classical concentration inequalities
for random variables which have .α-subexponential tail decay for any .α ∈ (0, 2].
This includes Hanson–Wright type and convex concentration inequalities in
various situations. In particular, uniform Hanson–Wright inequalities and convex
concentration results for simple random tensors are obtained in the spirit of recent
works by Klochkov–Zhivotovskiy and Vershynin.

Limit Theorems
• Limit theorems for random sums of random summands, by D. Grzybowski. This

paper establishes limit theorems for sums of randomly chosen random variables
conditioned on the summands. Several versions of the corner growth setting are
considered, including specific cases of dependence amongst the summands and
summands with heavy tails. A version of Hoeffding’s combinatorial central limit
theorem and results for summands taken uniformly from a random sample are
also obtained.
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• A note on central limit theorems for trimmed subordinated subordinators, by
D. M. Mason. This article establishes self-standardized central limit theorems
(CLTs) for trimmed subordinated subordinators. Two ways are considered to
trim a subordinated subordinator. One way leads to CLTs for the usual trimmed
subordinator and a second way to a closely related subordinated trimmed
subordinator and CLTs for it.

• Functional central limit theorem via nonstationary projective conditions, by
F. Merlevède and M. Peligrad. This paper surveys some recent progress on
the Gaussian approximation for nonstationary dependent structures via martin-
gale methods. It presents general theorems involving projective conditions for
triangular arrays of random variables as well as various applications for rho-
mixing and alpha-dependent triangular arrays, stationary sequences in a random
time scenery, application to the quenched FCLT, application to linear statistics
with alpha-dependent innovations, and application to functions of a triangular
stationary Markov chain.

Stochastic Processes
• Sudakov minoration, by W. Bednorz. The author considers the problem of

bounding suprema of canonical processes based on a class of log-concave
random vectors satisfying some additional structural conditions. The main result
is a version of Sudakov minoration, providing lower bounds for expected
suprema over well separated sets. Under additional assumptions on the growth
of moments, this leads to a Fernique–Talagrand type theorem giving two-sided
bounds for expected suprema over general sets expressed in terms of geometric
functionals based on appropriate partition schemes.

• Lévy measures of infinitely divisible positive processes: examples and distribu-
tional identities, by N. Eisenbaum and J. Rosiński. The authors present a variety
of distributional identities for Lévy processes based on the knowledge of their
Lévy measures, treating in particular the case of Poisson processes, Sato pro-
cesses, stochastic convolutions, and tempered stable subordinators. Connections
with infinitely divisible random measures and transference principles for path
properties of general nonnegative infinitely divisible processes are also discussed

• Bounding suprema of canonical processes via convex hull, by R. Latała. This
paper discusses the method of bounding suprema of canonical processes based
on the inclusion of their index set into a convex hull of a well-controlled set of
points. While the upper bound is immediate, the reverse estimate was established
to date only for a narrow class of regular stochastic processes. It is shown that for
specific index sets, including arbitrary ellipsoids, regularity assumptions may be
substantially weakened.

High-Dimensional Statistics
• Random geometric graph: some recent developments and perspectives, by Q.

Duchemin and Y. De Castro. The Random Geometric Graph (RGG) is a random
graph model for network data with an underlying spatial representation. This
paper surveys various models of RGG and presents the recent developments
from the lens of high-dimensional settings and nonparametric inference. The
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authors discuss tools used in the analysis of these models, involving results from
probability, statistics, combinatorics, or information theory. They also present
a list of challenging open problems motivated by applications and of purely
theoretical interest.

• Functional estimation in log-concave location families, by V. Koltchinskii and
M. Wahl. The authors investigate estimation of smooth functionals of the location
parameter in location families given as shifts of log-concave densities on .R

d ,
generalizing Gaussian shift models. Under appropriate regularity assumptions,
they construct estimators based on i.i.d. samples with minimax optimal error rates
measured by the .L2-distance as well as by more general Orlicz norm distances.

Warszawa, Poland Radosław Adamczak
Paris, France Nathael Gozlan
Palaiseau, France Karim Lounici
Newark, DE, USA Mokshay Madiman
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Covariance Representations,
.Lp-Poincaré Inequalities, Stein’s Kernels,
and High-Dimensional CLTs

Benjamin Arras and Christian Houdré

2020 Mathematics Subject Classification: 26D10; 35R11; 47D07; 60E07;
60F05

1 Introduction

Covariance representations and Bismut-type formulas play a major role in modern
probability theory. The most striking (and simple) instances are without a doubt the
ones regarding the standard Gaussian probability measure on .R

d . These identities
have many applications, ranging from functional inequalities to concentration
phenomena, regularization along semigroups, continuity of certain singular integral
operators, and Stein’s method. The main objective of the present manuscript is to
illustrate this circle of ideas. While some of the results presented here might be well
known to specialists, others seem to be new. Let us further describe the main content
of these notes.

In the first section, we revisit covariance identities based on closed form
techniques and semigroup arguments. In particular, when strong gradient bounds
are available, .Lp-.Lq asymmetric covariance estimates (.p ∈ [1,+∞) and .q =
p/(p − 1)) are put forward.

In the second section, based on various representation formulas, we discuss .Lp-
Poincaré inequalities (.p ≥ 2) and pseudo-Poincaré inequality for the standard
Gaussian measure and the nondegenerate symmetric .α-stable probability measures

Research supported in part by the grant # 524678 from the Simons Foundation.

B. Arras (�)
Univ. Lille, CNRS, UMR 8524 – Laboratoire Paul Painlevé, Lille, France
e-mail: benjamin.arras@univ-lille.fr

C. Houdré
School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
e-mail: houdre@math.gatech.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Adamczak et al. (eds.), High Dimensional Probability IX, Progress in
Probability 80, https://doi.org/10.1007/978-3-031-26979-0_1
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4 B. Arras and C. Houdré

on .R
d with .α ∈ (1, 2). In particular, in Proposition 3.2, we give proof of the

Gaussian .Lp-Poincaré inequalities, .p ≥ 2, with sharp constants based on the
covariance representation (2.26). Propositions 3.1 and 3.4 are concerned with .Lp-
Poincaré-type and pseudo-Poincaré inequalities for the nondegenerate symmetric
.α-stable, .α ∈ (1, 2), probability measures on .R

d . These two results are based
on the various Bismut-type formulas obtained in [9, Proposition .2.1] and in
Proposition 3.3.

Finally, in the third section, as an application of our methodology, we build
Stein’s kernels in order to obtain, in the 1-Wasserstein distance, stability results and
rates of convergence for high-dimensional central limit theorems (CLTs) when the
limiting probability measure is a centered Gaussian measure with a nondegenerate
covariance matrix. Theorems 4.2 and 4.3 are the main results of this section. The
methodology is based on Stein’s method for multivariate Gaussian probability
measures and on closed form techniques under a finite Poincaré-type constant
assumption.

2 Notations and Preliminaries

In the sequel, let us adopt and recall the notations of [9, Section 1]. Throughout,
the Euclidean norm on .R

d is denoted by .‖ · ‖ and the Euclidean inner product
by .〈; 〉. Then .X ∼ ID(b,�, ν) indicates that the d-dimensional random vector
X is infinitely divisible with a characteristic triplet .(b,�, ν). In other words, its
characteristic function .ϕX is given, for all .ξ ∈ R

d , by

.ϕX(ξ) = exp

(
i〈b; ξ 〉 − 1

2
〈�ξ ; ξ 〉 +

∫
Rd

(ei〈ξ ;u〉 − 1 − i〈ξ ; u〉1‖u‖≤1)ν(du)

)
,

where .b ∈ R
d , where .� is a symmetric positive semi-definite .d × d matrix and

where .ν, the Lévy measure, is a positive Borel measure on .R
d such that .ν({0}) = 0

and .
∫
Rd (1 ∧‖u‖2)ν(du) < +∞. In particular, if .b = 0, .� = Id , (the .d × d identity

matrix), and .ν = 0, then X is a standard Gaussian random vector with law .γ , and
its characteristic function is given, for all .ξ ∈ R

d , by

.γ̂ (ξ) :=
∫
Rd

ei〈y;ξ〉γ (dy) = exp

(
−‖ξ‖2

2

)
. (2.1)

For .α ∈ (0, 2), let .να be a Lévy measure such that, for all .c > 0,

.c−αTc(να)(du) = να(du), (2.2)

where .Tc(να)(B) := να(B/c), for all B Borel set of .R
d \ {0}. Recall that such a

Lévy measure admits the polar decomposition
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.να(du) = 1(0,+∞)(r)1Sd−1(y)
dr

rα+1 σ(dy), (2.3)

where .σ is a positive finite measure on the Euclidean unit sphere of .R
d , denoted by

.S
d−1. In the sequel, it is assumed that the measure .σ is symmetric and that .να is

nondegenerate in that

. inf
y∈Sd−1

∫
Sd−1

|〈y; x〉|αλ1(dx) �= 0, (2.4)

where .λ1, the spectral measure, is a symmetric finite positive measure on .S
d−1

proportional to .σ (namely, .λ1(dx) = − cos(απ/2)�(2 − α)/(α(α − 1))σ (dx),
.α ∈ (1, 2), where .� is the Euler gamma function). Let .μα be the .α-stable probability
measure on .R

d defined through the corresponding characteristic function, for all
.ξ ∈ R

d , by

.ϕα(ξ) :=
∫
Rd

ei〈y;ξ 〉μα(dy) =

⎧⎪⎨
⎪⎩

exp
(∫

Rd (e
i〈u;ξ 〉 − 1 − i〈ξ ; u〉)να(du)

)
, α ∈ (1, 2),

exp
(∫

Rd

(
ei〈u;ξ 〉 − 1 − i〈ξ ; u〉1‖u‖≤1

)
ν1(du)

)
, α = 1,

exp
(∫

Rd (e
i〈u;ξ 〉 − 1)να(du)

)
, α ∈ (0, 1).

(2.5)

For .σ symmetric, [66, Theorem 14.13.] provides a useful alternative representation
for the characteristic function .ϕα given, for all .ξ ∈ R

d , by

.ϕα(ξ) = exp

(
−

∫
Sd−1

|〈y; ξ 〉|αλ1(dy)

)
. (2.6)

Let .λ denote a uniform measure on the Euclidean unit sphere of .R
d (i.e., .λ is

a positive finite measure on .S
d−1 proportional to the spherical part of the d-

dimensional Lebesgue measure). For .α ∈ (1, 2), let .νrot
α be the Lévy measure on

.R
d with polar decomposition

.νrot
α (du) = cα,d1(0,+∞)(r)1Sd−1(y)

dr

rα+1 λ(dy) (2.7)

and with

.cα,d = −α(α − 1)�
(

α+d
2

)
4 cos

(
απ
2

)
�
(

α+1
2

)
π

d−1
2 �(2 − α)

. (2.8)

Finally, denote by .μrot
α the rotationally invariant .α-stable probability measure on .R

d

with the Lévy measure given by (2.7) and with the choice of .λ ensuring that, for all
.ξ ∈ R

d ,



6 B. Arras and C. Houdré

.ϕrot
α (ξ) = μ̂rot

α (ξ) = exp

(
−‖ξ‖α

2

)
. (2.9)

As well known, the probability measure .μrot
α is absolutely continuous with respect

to the d-dimensional Lebesgue measure, and its Lebesgue density, denoted by .prot
α ,

is infinitely differentiable and is such that, for all .x ∈ R
d ,

.
C2

(1 + ‖x‖)α+d
≤ prot

α (x) ≤ C1

(1 + ‖x‖)α+d
,

for some constants .C1, C2 > 0 depending only on .α and d. For .α ∈ (1, 2), let .να,1
be the Lévy measure on .R given by

.να,1(du) = cα

du

|u|α+1 , (2.10)

with

.cα =
(

−α(α − 1)

4�(2 − α) cos
(

απ
2

)
)

. (2.11)

Next, let .μα,1 be the .α-stable probability measure on .R with Lévy measure .να,1 and
with the corresponding characteristic function defined, for all .ξ ∈ R, by

.μ̂α,1(ξ) = exp

(∫
R

(
ei〈u;ξ〉 − 1 − i〈u; ξ 〉

)
να,1(du)

)
= exp

(
−|ξ |α

2

)
. (2.12)

Finally, throughout, let .μα,d = μα,1 ⊗· · ·⊗μα,1 be the product probability measure
on .R

d with the corresponding characteristic function given, for all .ξ ∈ R
d , by

.μ̂α,d(ξ) =
d∏

k=1

μ̂α,1(ξk) = exp

(∫
Rd

(
ei〈ξ ;u〉 − 1 − i〈ξ ; u〉

)
να,d(du)

)
(2.13)

and with

.να,d (du) =
d∑

k=1

δ0(du1) ⊗ · · · ⊗ δ0(duk−1) ⊗ να,1(duk) ⊗ δ0(duk+1) ⊗ · · · ⊗ δ0(dud),

(2.14)

where .δ0 is the Dirac measure at 0.
In the sequel, .S(Rd) is the Schwartz space of infinitely differentiable functions,

which, with their derivatives of any order, are rapidly decreasing, and .F is the
Fourier transform operator given, for all .f ∈ S(Rd) and all .ξ ∈ R

d , by
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.F(f )(ξ) =
∫
Rd

f (x)e−i〈x;ξ〉dx.

On .S(Rd), the Fourier transform is an isomorphism and the following well-known
inversion formula holds:

.f (x) = 1

(2π)d

∫
Rd

F(f )(ξ)ei〈ξ ;x〉dξ, x ∈ R
d .

.C∞
c (Rd) is the space of infinitely differentiable functions on .R

d with compact
support, and .‖ · ‖∞,R denotes the supremum norm on .R. Let .Cb(R

d) be the
space of bounded continuous functions on .R

d and let .C1
b(Rd) be the space of

continuously differentiable functions which are bounded on .R
d together with their

first derivatives. For .p ∈ (1,+∞), .Lp(μα) denotes the space of equivalence classes
(with respect to .μα-almost everywhere equality) of functions which are Borel
measurable and which are p-summable with respect to the probability measure
.μα . This space is endowed with the usual norm .‖ · ‖Lp(μα) defined, for all suitable
f , by

.‖f ‖Lp(μα) :=
(∫

Rd

|f (x)|pμα(dx)

) 1
p

.

Similarly, for .p ∈ (1,+∞), .Lp(Rd , dx) denotes the classical Lebesgue space
where the reference measure is the Lebesgue measure. It is endowed with the norm
.‖ · ‖Lp(Rd ,dx) defined, for all suitable f , by

.‖f ‖Lp(Rd ,dx) :=
(∫

Rd

|f (x)|pdx

) 1
p

.

Next, let us introduce two semigroups of operators acting on .S(Rd) naturally
associated with .γ and .μα . Let .(P

γ
t )t≥0 and .(P

να
t )t≥0 be defined, for all .f ∈ S(Rd),

all .x ∈ R
d , and all .t ≥ 0, by

.P
γ
t (f )(x) =

∫
Rd

f (xe−t +
√

1 − e−2t y)γ (dy), (2.15)

.P
να
t (f )(x) =

∫
Rd

f (xe−t + (1 − e−αt )
1
α y)μα(dy). (2.16)

The semigroup (2.15) is the classical Gaussian Ornstein-Uhlenbeck semigroup,
and the semigroup (2.16) is the Ornstein-Uhlenbeck semigroup associated with
the .α-stable probability measure .μα and recently put forward in the context of
Stein’s method for self-decomposable distributions (see [6–8]). Finally, denoting by
.((P

να
t )∗)t≥0 the adjoint of the semigroup .(P

να
t )t≥0, the “carré de Mehler” semigroup

is defined, for all .t ≥ 0, by
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.Pt = (P
να
t
α

)∗ ◦ P
να
t
α

= P
να
t
α

◦ (P
να
t
α

)∗. (2.17)

In the sequel, .∂k denotes the partial derivative of order 1 in the variable .xk , .∇ the
gradient operator, .� the Laplacian operator, and .Dα−1, .(Dα−1)∗, and .Dα−1 the
fractional operators defined, for all .f ∈ S(Rd) and all .x ∈ R

d , by

.Dα−1(f )(x) :=
∫
Rd

(f (x + u) − f (x))uνα(du), (2.18)

.(Dα−1)∗(f )(x) :=
∫
Rd

(f (x − u) − f (x))uνα(du), (2.19)

.Dα−1(f )(x) := 1

2

(
Dα−1 (f ) (x) − (Dα−1)∗ (f ) (x)

)
. (2.20)

Let us introduce also a gradient length, .∇ν , which is linked to the energy form
appearing in the Poincaré-type inequality for the infinitely divisible probability
measures (see [47, Corollary 2]). For any Lévy measure .ν on .R

d , all .f ∈ S(Rd),
and all .x ∈ R

d ,

.∇ν(f )(x) =
(∫

Rd

|f (x + u) − f (x)|2ν(du)

) 1
2

. (2.21)

Also, let us recall the definition of the gamma transform of order .r > 0. For .(Pt )t≥0
a .C0-semigroup of contractions on a Banach space, with generator .A, the gamma
transform of order .r > 0 is defined, for all suitable f , by

. (E − A)−
r
2 f = 1

�( r
2 )

∫ +∞

0

e−t

t1− r
2
Pt(f )dt, (2.22)

where E is the identity operator and where the integral on the right-hand side has to
be understood in the Bochner sense. Moreover, for all .λ > 0, all .r > 0, and all f

suitable,

. (λE − A)−
r
2 f = 1

�( r
2 )

∫ +∞

0

e−λt

t1− r
2
Pt (f )dt,

In particular, when this makes sense, as .λ tends to .0+,

. (−A)−
r
2 f = 1

�( r
2 )

∫ +∞

0
t

r
2 −1Pt(f )dt.
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Finally, the generators of the two semigroups can be obtained through Fourier
representation formulas, and it is straightforward to check that the respective
generators are given, for .α ∈ (1, 2), for all .f ∈ S(Rd), and for all .x ∈ R

d , by

.Lγ (f )(x) = −〈x; ∇(f )(x)〉 + �(f )(x), (2.23)

.Lα(f )(x) = −〈x; ∇(f )(x)〉 +
∫
Rd

〈∇(f )(x + u) − ∇(f )(x); u〉να(du).

(2.24)

Recall also one of the main results of [9], giving a Bismut-type formula for the
nondegenerate symmetric .α-stable probability measures on .R

d with .α ∈ (1, 2): for
all .f ∈ S(Rd), all .x ∈ R

d , and all .t > 0,

.Dα−1P
να
t (f )(x) = e−(α−1)t

(
1 − e−αt

)1− 1
α

∫
Rd

yf
(
xe−t + (1 − e−αt )

1
α y

)
μα(dy).

(2.25)

Finally, recall the covariance representation obtained in [47, Proposition 2] for .X ∼
ID(b,�, ν): for all .f, g ∈ S(Rd),

. Cov(f (X), g(X)) =
∫ 1

0
E [〈�∇(f )(Xz); ∇(g)(Yz)〉

+
∫
Rd

�u(f )(Xz)�u(g)(Yz)ν(du)

]
dz, (2.26)

where .�u(f )(x) = f (x + u) − f (x) and where, for all .z ∈ [0, 1], .(Xz, Yz) has a
characteristic function given, for all .ξ1, ξ2 ∈ R

d , by

.ϕ(ξ1, ξ2) = (ϕX(ξ1)ϕX(ξ2))
1−zϕX(ξ1 + ξ2)

z.

Next, let us investigate new covariance identities based on semigroup techniques
(inspired from [6, Section 5]) and the corresponding asymmetric covariance esti-
mates (see, e.g., [28] for log-concave measures and [44] for convex measures,
which include Cauchy-type probability measures on .R

d ). But, first, as a simple
consequence of the covariance identity (2.26) combined with Hölder’s inequality,
one has the following proposition for the Gaussian and the general infinitely
divisible cases (we refer to [47] and to [66] for any unexplained definitions regarding
infinitely divisible distributions).
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Proposition 2.1

(i) Let .X ∼ γ . Then, for all .f, g ∈ S(Rd), all .p ∈ [1,+∞), and .q = p/(p − 1)

(with .q = +∞ when .p = 1),

.| Cov(f (X), g(X))| ≤ ‖∇(f )‖Lp(γ )‖∇(g)‖Lq(γ ). (2.27)

(ii) Let .X ∼ ID(b, 0, ν). Then, for all .f, g ∈ S(Rd), all .p ∈ [1,+∞), and .q =
p/(p − 1) (with .q = +∞ when .p = 1),

.| Cov(f (X), g(X))| ≤ ‖∇ν(f )‖Lp(μ)‖∇ν(g)‖Lq(μ), (2.28)

where .X ∼ μ.

In the context of Stein’s method for self-decomposable laws, a general covariance
identity has been obtained in [8, Theorem .5.10] in the framework of closed sym-
metric nonnegative definite bilinear forms with dense domain under some coercive
assumption. Indeed, the identity .(5.15) there can be understood as a generalization
of .(2.5) in [28] and of .(3.2) in [44] from which asymmetric covariance estimates
can be obtained. Let us generalize Proposition 2.1 beyond the scope of infinitely
divisible distributions. Key properties in order to establish these Brascamp-Lieb-
type inequalities are subcommutation and/or some form of regularization (see, e.g.,
[5, 28]). Actually, let us provide, first, a slight extension of [8, Theorem .5.10].

Theorem 2.1 Let H be a real Hilbert space with inner product .〈·; ·〉H and induced
norm .‖ · ‖H . Let .E be a closed symmetric nonnegative definite bilinear form with
dense linear domain .D(E). Let .{Gα : α > 0} and .{Pt : t > 0} be, respectively,
the strongly continuous resolvent and the strongly continuous semigroup on H

associated with .E . Moreover, let there exist a closed linear subspace .H0 ⊂ H and a
function .ψ continuous on .(0,+∞) with values in .(0, 1] such that . lim

t→+∞ψ(t) = 0,

.

∫ +∞

0
ψ(t)dt < +∞,

and such that, for all .t > 0 and all .u ∈ H0,

.‖Pt(u)‖H ≤ ψ(t)‖u‖H . (2.29)

Let .G0+ be the operator defined by

.G0+(u) :=
∫ +∞

0
Pt(u)dt, u ∈ H0, (2.30)

where the above integral is understood to be in the Bochner sense. Then, for all
.u ∈ H0, .G0+(u) belongs to .D(E) and, for all .v ∈ D(E),
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.E (G0+(u), v) = 〈u; v〉H . (2.31)

Moreover, for all .u ∈ H0,

.E (G0+(u),G0+(u)) ≤
(∫ +∞

0
ψ(t)dt

)
‖u‖2

H . (2.32)

Proof The proof follows closely the lines of the one of [8, Theorem .5.10] and so is
omitted. ��
Remark 2.1

(i) Note that from the semigroup property, for all .n ≥ 1, all .t > 0, and all
.f ∈ H0,

.‖Pt (f )‖H ≤
(

ψ

(
t

n

))n

‖f ‖H .

Then the behavior at .0+ of the function .ψ can lead to an exponential
convergence result. Indeed, assuming that the function .ψ is regular near 0
with .ψ(0+) = 1 and with .ψ ′(0+) < 0, one gets, for all .t > 0,

. lim
n→+∞

(
ψ

(
t

n

))n

= exp
(
ψ ′(0)t

)
.

(ii) Let us next consider a rather long list of examples where our results provide
covariance identities and .L2-estimates. In some situations, where strong
gradient bounds are known, it is possible to obtain .Lp − Lq asymmetric
covariance estimates. First, very classically, the Dirichlet form associated
with the standard Gaussian probability measure on .R

d is given, for all (real-
valued) .f, g ∈ S(Rd), by

.Eγ (f, g) =
∫
Rd

〈∇(f )(x); ∇(g)(x)〉γ (dx), (2.33)

and an integration by parts formula ensures that .Eγ is closable. The associated
semigroup is the Ornstein-Uhlenbeck semigroup .(P

γ
t )t≥0 given in (2.15)

with the generator given by (2.23). It is well known, thanks to the Gaussian
Poincaré inequality, that, for all .f ∈ S(Rd) with .γ (f ) := ∫

Rd f (x)γ (dx) =
0 and all .t > 0,

.‖P γ
t (f )‖L2(γ ) ≤ e−t‖f ‖L2(γ ).

Thus, Theorem 2.1 provides the following covariance representation: for all
.f, g ∈ S(Rd) with .

∫
Rd f (x)γ (dx) = 0,
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.

∫
Rd

f (x)g(x)γ (dx) =
∫
Rd

〈∇(f̃γ )(x); ∇(g)(x)〉γ (dx) = Eγ (g, f̃γ ), (2.34)

where

.f̃γ =
∫ +∞

0
P

γ
t (f )dt = (−Lγ )−1(f ).

A straightforward application of Theorem 2.1 ensures, for all .f ∈ S(Rd)

with .
∫
Rd f (x)γ (dx) = 0, that

.Eγ (f̃γ , f̃γ ) ≤ ‖f ‖2
L2(γ )

≤ Eγ (f, f ),

so that, by the Cauchy-Schwarz inequality,

.

∣∣∣∣
∫
Rd

f (x)g(x)γ (dx)

∣∣∣∣ ≤ Eγ (g, g)
1
2 Eγ (f, f )

1
2 ,

which is a particular instance of Proposition 2.1 (i), with .p = q = 2. To
obtain the general .Lp − Lq covariance estimates based on the covariance
representation (2.34), one can use the commutation formula .∇(P

γ
t (f )) =

e−tP
γ
t (∇(f )) so that the following inequality holds true: for all .p ∈ (1,+∞)

and all .f ∈ S(Rd) with .
∫
Rd f (x)γ (dx) = 0,

.‖∇(f̃γ )‖Lp(γ ) ≤ ‖∇(f )‖Lp(γ ). (2.35)

A direct application of Hölder’s inequality combined with (2.34) and
with (2.35) provides the general case of Proposition 2.1 (i). Note that
the previous lines of reasoning do not depend on the dimension of the
ambient space so that the covariance estimate (2.27) extends to the infinite-
dimensional setting and the Malliavin calculus framework (see, e.g., [55,
Section 2.9]). The details are left to the interested reader (see, also [46, 48]).

(iii) Next, let us consider another hypercontractive semigroup related to a classical
probability measure on .R with finite exponential moments. (The correspond-
ing multidimensional version follows by tensorization.) Let .α ≥ 1/2 and let
.γα,1 be the gamma probability measure on .(0,+∞) with shape parameter .α

and scale parameter 1. Let .Eα denote the Dirichlet form associated with the
Laguerre dynamics and given, for all .f, g ∈ C∞

c ((0,+∞)), by

.Eα(f, g) =
∫ +∞

0
xf ′(x)g′(x)γα,1(dx).

This closable symmetric bilinear form generates the well-known Laguerre
semigroup .(P

α,1
t )t≥0 (see, e.g., [10, 13]) with the generator given, for all .f ∈

C∞
c ((0,+∞)) and all .x ∈ (0,+∞), by
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.Lα,1(f )(x) = xf ′′(x) + (α − x)f ′(x).

Recall that the Poincaré inequality for this dynamics follows, e.g., from the
spectral expansion of a test function belonging to .D(Eα) along the Laguerre
orthonormal polynomials which are the eigenfunctions of .Lα,1. Moreover,
letting .∂σ be the differential operator defined, for all .f ∈ C∞

c ((0,+∞)) and
all .x ∈ (0,+∞), by

.∂σ (f )(x) := √
xf ′(x),

the following intertwining formula has been proved in [10, Lemma 11]: for
all .f ∈ C∞

c ((0,+∞)), all .x ∈ (0,+∞), and all .t > 0,

.∂σ (P
α,1
t (f ))(x) = e− t

2 E

⎛
⎜⎜⎝

(
e− t

2
√

x +
√

1−e−t

2 Z

)

(Xx
t )

1
2

∂σ (f )(Xx
t )

⎞
⎟⎟⎠ ,

(2.36)

where Z is a standard normal random variable and where .Xx
t is given by

.Xx
t = (1 − e−t )X

α− 1
2 ,1 +

(
e− t

2
√

x +
√

1 − e−t

2
Z

)2

,

with .Xα−1/2,1 ∼ γα−1/2,1 independent of Z. Using (2.36), the following
subcommutation inequality holds true: for all .f ∈ C∞

c ((0,+∞)), all .x > 0,
and all .t > 0,

.|∂σ (P
α,1
t (f ))(x)| ≤ e− t

2 P
α,1
t (|∂σ (f )|)(x). (2.37)

Performing a reasoning similar to the one in the Gaussian case, one gets the
following asymmetric covariance estimate: for all .f, g ∈ C∞

c ((0,+∞)), all
.p ∈ (1,+∞), and .q = p/(p − 1),

.
∣∣Cov(f (Xα,1), g(Xα,1))

∣∣ ≤ 2‖∂σ (g)‖Lq(γα,1)‖∂σ (f )‖Lp(γα,1).

The previous subcommutation inequality can be seen as a direct consequence
of the Bakry-Emery criterion since for this Markov diffusion semigroup,
.�2(f ) ≥ �(f )/2, for all .f ∈ C∞

c ((0,+∞)).

(iv) Next, let us consider the Jacobi semigroup .(Q
α,β
t )t≥0, related to the beta

probability measures on .[−1, 1] of the form

.μα,β(dx) = Cα,β(1 − x)α−1(1 + x)β−11[−1,1](x)dx,
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with .α > 0, β > 0 such that .min(α, β) > 3/2 and where .Cα,β > 0 is a
normalization constant. The generator of the Jacobi semigroup is given, for
all .f ∈ C∞

c ([−1, 1]) and all .x ∈ [−1, 1], by

.Lα,β(f )(x) = (1 − x2)f ′′(x) + ((β − α) − (α + β)x)f ′(x).

Moreover, the corresponding “carré du champs” operator is .�α,β(f )(x) =
(1 − x2)(f ′(x))2, for all .f ∈ C∞

c ([−1, 1]) and all .x ∈ [−1, 1], so that
the natural gradient associated with the Jacobi operator is given, for all
.f ∈ C∞

c ([−1, 1]) and all .x ∈ [−1, 1], by

.∂α,β(f )(x) :=
√

1 − x2f ′(x).

According to [13, Section .2.1.7], this Markov diffusion operator satisfies a
curvature-dimension condition of type .CD(κα,β, nα,β) for some .κα,β, nα,β >

0 depending only on .α and .β. In particular, it satisfies a curvature dimension
condition .CD(κα,β,∞), and so one has the following subcommutation
formula: for all .f ∈ C∞

c ([−1, 1]), all .t > 0, and all .x ∈ [−1, 1],

.

∣∣∣∂α,β

(
Q

α,β
t (f )

)
(x)

∣∣∣ ≤ e−κα,β tQ
α,β
t

(∣∣∂α,β(f )
∣∣) (x).

The covariance representation then reads as follows: for all .f, g ∈
C∞

c ([−1, 1]) with .μα,β(f ) = 0,

. Cov(f (Xα,β), g(Xα,β)) =
∫

[−1,1]
(1 − x2)g′(x)f̃ ′(x)μα,β(dx),

f̃ =
∫ +∞

0
Q

α,β
t (f )dt,

where .Xα,β ∼ μα,β . Applying the same strategy as before gives the
following asymmetric covariance estimate: for all .f, g ∈ C∞

c ([−1, 1]), all
.p ∈ (1,+∞), and .q = p/(p − 1),

.
∣∣Cov(f (Xα,β), g(Xα,β))

∣∣ ≤ 1

κα,β

‖∂α,β(f )‖Lp(μα,β )‖∂α,β(g)‖Lq(μα,β ).

(v) Let .μ be a centered probability measure on .R
d given by

.μ(dx) = 1

Z(μ)
exp (−V (x)) dx,

where .Z(μ) > 0 is a normalization constant and where V is a nonnegative
smooth function on .R

d such that
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. Hess(V )(x) ≥ κId, x ∈ R
d ,

for some .κ > 0, and where .Id is the identity matrix. It is well known that
such a probability measure satisfies a Poincaré inequality with respect to the
classical “carré du champs” (see, e.g., [13, Theorem .4.6.3]), namely, for all
f smooth enough on .R

d ,

. Varμ(f ) ≤ Cκ

∫
Rd

‖∇(f )(x)‖2μ(dx),

for some .Cκ > 0 depending on .κ and on .d ≥ 1 (here and in the sequel,
.Varμ(f ) denotes the variance of f under .μ). In particular, from the Brascamp
and Lieb inequality, .Cκ ≤ 1/κ . For all .f, g ∈ C∞

c (Rd), let

.Eμ(f, g) =
∫
Rd

〈∇(f )(x); ∇(g)(x)〉μ(dx).

The bilinear form .Eμ is clearly symmetric on .L2(μ), and let us discuss briefly
its closability following [20, Section .2.6]. The Lebesgue density of .μ, is such
that, for all .p ∈ (1,+∞) and for any compact subset, K , of .R

d ,

.

∫
K

ρμ(x)
− 1

p−1 dx < +∞. (2.38)

Based on (2.38), it is not difficult to see that the weighted Sobolev norms
.‖ · ‖1,p,μ, defined, for all .f ∈ C∞

c (Rd), by

.‖f ‖1,p,μ = ‖f ‖Lp(μ) +
d∑

k=1

‖∂k(f )‖Lp(μ),

are closable. In particular, for .p = 2, this provides the closability of the form
.Eμ. Then, thanks to Theorem 2.1, for all .f, g ∈ S(Rd) with .μ(f ) = 0,

.Eμ(g, f̃μ) = 〈f ; g〉L2(μ), f̃μ =
∫ +∞

0
P

μ
t (f )dt, (2.39)

with .(P
μ
t )t≥0 being the symmetric Markovian semigroup generated by the

smallest closed extension of the symmetric bilinear form .Eμ. Finally, for all
.f ∈ S(Rd),

.�2(f )(x) =
∑
j,k

(
∂2
j,k(f )(x)

)2 + 〈∇(f )(x); Hess(V )(x)∇(f )(x)〉 ≥ κ�(f )(x).
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In other words, the curvature-dimension condition .CD(κ,∞) is satisfied so
that the following strong gradient bound holds true: for all .t > 0 and all
.f ∈ S(Rd),

.

√
�(P

μ
t )(f )(x) ≤ e−κtP

μ
t

(√
�(f )

)
(x).

Then the following asymmetric covariance estimate holds true: for all .f, g ∈
S(Rd), all .p ∈ (1,+∞), and .q = p/(p − 1),

. |Cov(f (X); g(X))| ≤ 1

κ
‖∇(g)‖Lq(μ)‖∇(f )‖Lp(μ),

with .X ∼ μ. Combining (2.39) with estimates from [28], one retrieves the
Brascamp and Lieb inequality for strictly log-concave measures (i.e., such
that .Hess(V )(x) > 0, for all .x ∈ R

d ), as well as its asymmetric versions (see,
e.g., [28, Theorem .1.1]).

(vi) Again, let us discuss a class of probability measures that lies at the interface of
the nonlocal and local frameworks. Let .m > 0 and let .μm be the probability
measure on .R

d given by

.μm(dx) = cm,d

(
1 + ‖x‖2

)−m−d/2
dx,

for some normalization constant .cm,d > 0 depending only on m and d. First,
the characteristic function of a random vector with law .μm is given (see [70,
Theorem II]), for all .ξ ∈ R

d , by

.ϕm(ξ) = exp

(∫
Rd

(
ei〈ξ ;u〉 − 1 − i〈u; ξ 〉

1 + ‖u‖2

)
νm(du)

)
. (2.40)

Above, .νm is the Lévy measure on .R
d given by

.νm(du) = 2

‖u‖d

(∫ +∞

0
gm(2w)Ld

2

(√
2w‖u‖

)
dw

)
du, (2.41)

with, for all .w > 0,

.gm(w) = 2

π2w

1

J 2
m(

√
w) + Y 2

m(
√

w)
, Ld

2
(w) = 1

(2π)
d
2

w
d
2 Kd

2
(w),

with .Jm, .Ym, and .Kd/2 denoting respectively the Bessel functions of the first
and second kind and the modified Bessel function of order .d/2. Based on the
representations (2.40) and (2.41), it is clear that .μm is self-decomposable so
that it is naturally associated with the nonlocal Dirichlet form given, for all
.f, g ∈ C∞

c (Rd), by
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.Em(f, g) =
∫
Rd

∫
Rd

�u(f )(x)�u(g)(x)νm(du)μm(dx).

Moreover, since .μm is infinitely divisible, [47, Corollary 2] ensures that .μm

satisfies the following Poincaré-type inequality, for all f smooth enough on
.R

d :

. Varm(f ) ≤
∫
Rd

∫
Rd

|f (x + u) − f (x)|2νm(du)μm(dx)

(see [8, Proposition .5.1] for proof based on a semigroup argument when .m >

1/2). Since .μm ∗ νm � μm, the symmetric bilinear form .Em is closable
so that .(Pm

t )t≥0, the symmetric semigroup generated by the smallest closed
extension .(Em,D(Em)), verifies the following ergodic property: for all .f ∈
L2(μm) with .

∫
Rd f (x)μm(dx) = 0,

.‖Pm
t (f )‖L2(μm) ≤ e−t‖f ‖L2(μm).

Then one can apply Theorem 2.1 to obtain the following covariance represen-
tation: for all .f ∈ S(Rd) with .μm(f ) = 0 and all .g ∈ S(Rd),

.Em(g, f̃m) = 〈f ; g〉L2(μm), f̃m =
∫ +∞

0
Pm

t (f )dt. (2.42)

Now, this class of probability measures has been investigated in the context
of weighted Poincaré-type inequality (see, e.g., [19, 22]). Indeed, for all f

smooth enough on .R
d and all .m > 0,

. Varm(f ) ≤ Cm,d

∫
Rd

f (x)(−Lσ
m)(f )(x)μm(dx),

where the operator .Lσ
m is given, on smooth functions, by

.Lσ
m(f )(x) = (1 + ‖x‖2)�(f )(x) + 2

(
1 − m − d

2

)
〈x; ∇(f )(x)〉

and where .Cm,d > 0 is a constant depending on m and d, which can be
explicitly computed or bounded depending on the relationships between m

and d (see [22, Corollaries .5.2 and .5.3]). The corresponding Dirichlet form is
given, for all .f, g ∈ C∞

c (Rd), by

.Eσ
m(f, g) =

∫
Rd

(
1 + ‖x‖2

)
〈∇(f )(x); ∇(g)(x)〉μm(dx).

Once again, using the exponential .L2(μm)-convergence to the equilibrium of
the semigroup induced by the form .Eσ

m (denoted by .(Pm,σ
t )t≥0), one obtains



18 B. Arras and C. Houdré

the following covariance representation formula: for all .f, g ∈ C∞
c (Rd) with

.μm(f ) = 0,

.Eσ
m(f̃ σ

m , g) = 〈f ; g〉L2(μm), f̃ σ
m =

∫ +∞

0
Pm,σ

t (f )dt. (2.43)

Now, using either (2.42) or (2.43), one gets

. |Cov(f (Xm), g(Xm))| ≤ ‖∇νm(f )‖L2(μm)‖∇νm(g)‖L2(μm),

|Cov(f (Xm), g(Xm))| ≤ Cm,d‖σ∇(f )‖L2(μm)‖σ∇(g)‖L2(μm),

with .Xm ∼ μm and .σ(x)2 = (1 + ‖x‖2), for all .x ∈ R
d .

(vii) Let us return to the .α-stable probability measures on .R
d , .α ∈ (0, 2). Let .E be

the nonnegative definite symmetric bilinear form given, for all .f, g ∈ S(Rd),
by

.E(f, g) =
∫
Rd

∫
Rd

�u(f )(x)�u(g)(x)να(du)μα(dx).

Recall that since .μα∗να � μα , the bilinear form .E is closable. The associated
semigroup, .(Pt )t≥0, is the “carré de Mehler” semigroup defined in (2.17),
whose .L2(μα)-generator is given, for all .f ∈ S(Rd), by

.L(f ) = 1

α

(
Lα + (Lα)∗

)
(f )

and already put forward in [8, 9]. Moreover, the Poincaré-type inequality
for the .α-stable probability measure implies that, for all .f ∈ L2(μα) with
.μα(f ) = 0 and all .t > 0,

.‖Pt (f )‖L2(μα) ≤ e−t‖f ‖L2(μα).

Thus, Theorem 2.1 provides the following covariance representation: for all
.f, g ∈ S(Rd) with .

∫
Rd f (x)μα(dx) = 0,

.

∫
Rd

f (x)g(x)μα(dx)=
∫
Rd

∫
Rd

�u(g)(x)�u(f̃ )(x)να(du)μα(dx)= E(g, f̃ ),

where

.f̃ =
∫ +∞

0
Pt (f )dt = (−L)−1(f ).

Moreover, still from Theorem 2.1, for all .f ∈ S(Rd) with .
∫
Rd f (x)μα(dx)

.= 0,
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.E(f̃ , f̃ ) ≤ ‖f ‖2
L2(μα)

≤ E(f, f ),

so that, by the Cauchy-Schwarz inequality,

.

∣∣∣∣
∫
Rd

f (x)g(x)μα(dx)

∣∣∣∣
2

≤ E(g, g)E(f, f ),

which is a particular instance of Proposition 2.1 (ii), with .p = q = 2 and
with .ν = να .

(viii) Finally, let us discuss the case of the infinitely divisible probability measures
on .R

d , .d ≥ 1, in full generality. Let .ν be a Lévy measure on .R
d , as defined

at the beginning of this section. Let .μ be the infinitely divisible probability
measure on .R

d , defined through its Fourier transform, for all .ξ ∈ R
d , by

.μ̂(ξ) = exp

(∫
Rd

(
ei〈ξ ;u〉 − 1 − i〈u; ξ 〉1‖u‖≤1

)
ν(du)

)
. (2.44)

Now, let .Eν be the associated bilinear symmetric nonnegative definite form
defined, for all .f, g ∈ S(Rd), by

.Eν(f, g) =
∫
Rd

∫
Rd

(f (x + u) − f (x))(g(x + u) − g(x))μ(dx)ν(du).

(2.45)

Thanks to [30, Lemma .4.1], .μ ∗ ν � μ so that the form .
(
Eν,S(Rd)

)
is

closable. Then let us denote by .(Eν,D(Eν)) its smallest closed extension with
dense linear domain .D(Eν) in .L2(μ). Then in the sequel, let us denote by
.(Pν

t )t≥0 and by .Lν the corresponding symmetric contraction semigroup on
.L2(μ) and its self-adjoint .L2(μ)-generator. In particular, recall that, for all
.f ∈ D(Lν) and all .g ∈ D(Eν),

.〈(−Lν)(f ); g〉L2(μ) = Eν(f, g). (2.46)

Moreover, the following Poincaré-type inequality holds true: for all .f ∈
D(Eν) such that .Ef (X) = 0,

.Ef (X)2 ≤
∫
Rd

∫
Rd

|f (x + u) − f (x)|2ν(du)μ(dx), (2.47)

where .X ∼ μ. Then by standard arguments, for all .f ∈ L2(μ) with .Ef (X) =
0 and all .t ≥ 0,

.‖Pν
t (f )‖L2(μ) ≤ e−t‖f ‖L2(μ).
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Reasoning as in the previous cases implies the following covariance identity:
for all .f, g ∈ S(Rd) with .Ef (X) = 0,

.Ef (X)g(X) = Eν(f̃ , g),

where .f̃ is defined by

.f̃ =
∫ +∞

0
Pν

t (f )dt = (−Lν)−1(f ).

In particular, one retrieves, as previously, Proposition 2.1 (ii), with .p = q = 2
and with a general .ν.

As detailed next, it is possible to refine the existence result given by Theorem 2.1 by
using a celebrated characterization of surjective, closed and densely defined linear
operators on a Hilbert space by a priori estimates on their adjoints. This abstract
existence result is well known in the theory of partial differential equations (see,
e.g., [26, Theorem .2.20]) and seems to go back to [45, Lemma .1.1]. Combined
with integration by parts and the Poincaré inequality, it allows the retrieval of
the covariance representations of Remark 2.1. In particular, this characterization
result allows going beyond the assumption of Poincaré inequality for the underlying
probability measure in order to prove the existence of Stein’s kernels.

Theorem 2.2 Let H be a separable real Hilbert space with inner product .〈·; ·〉H
and induced norm .‖ · ‖H . Let .A be a closed and densely defined linear operator on
H with domain .D(A) and such that, for all .u ∈ D(A∗),

.‖u‖H ≤ C‖A∗(u)‖H , (2.48)

for some .C > 0 not depending on u and where .(A∗,D(A∗)) is the adjoint of
.(A,D(A)). Then, for all .u ∈ H , there exists .G(u) ∈ D(A) such that, for all .v ∈ H ,

.〈A(G(u)); v〉H = 〈u; v〉H .

Moreover, if .A is self-adjoint, then, for all .u ∈ H ,

. |〈A(G(u));G(u)〉| ≤ C‖u‖2
H .

Let us further provide the Banach-space version of the previous result (see, e.g., [26,
Theorem .2.20] for proof).

Theorem 2.3 Let E and F be two Banach spaces with respective norms .‖ · ‖E and
.‖ · ‖F . Let .A be a closed and densely defined linear operator on E with domain
.D(A) and such that, for all .u∗ ∈ D(A∗),

.‖u∗‖F ∗ ≤ C‖A∗(u∗)‖E∗ , (2.49)
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for some .C > 0 not depending on .u∗ and where .(A∗,D(A∗)) is the adjoint of
.(A,D(A)). Then, for all .u ∈ F , there exists .G(u) ∈ D(A) such that

.A(G(u)) = u.

Conversely, if .A is surjective, then, for all .u∗ ∈ D(A∗),

.‖u∗‖F ∗ ≤ C‖A∗(u∗)‖E∗ , (2.50)

for some .C > 0 not depending on .u∗.

Remark 2.2 Let us briefly explain how one can apply the previous existence
theorem in the classical Gaussian setting. Let .H = L2(γ ), let .H0 = {f ∈
H,

∫
Rd f (x)γ (dx) = 0}, and let .A = −Lγ . Note that if .f ∈ D(A) then, for

all .c ∈ R, .f + c ∈ D(A) so that .f0 = f − ∫
Rd f (x)γ (dx) ∈ D(A). Moreover, .Lγ

is a linear densely defined self-adjoint operator on H . Finally, from the Gaussian
Poincaré inequality, for all .f ∈ D(A) such that .

∫
Rd f (x)γ (dx) = 0,

.‖f ‖2
H ≤

∫
Rd

f (x)
(−Lγ

)
(f )(x)γ (dx),

and so the Cauchy-Schwarz inequality gives, for all such f ,

.‖f ‖H ≤ ‖(−Lγ )∗(f )‖H .

Thus, from Theorem 2.2, for all .f ∈ H0, there exists .f̃ ∈ D0(A) such that, for all
.v ∈ H0,

.〈A(f̃ ); v〉H = 〈f ; v〉H , (2.51)

where .D0(A) = D(A) ∩ H0. Equation (2.51) extends to all .v ∈ H by translation.

To conclude, this section discusses an example where the underlying probability
measure does not satisfy an .L2-.L2 Poincaré inequality with respect to the classical
energy form but for which it is possible to obtain a covariance identity with the
standard “carré du champs operator” and the corresponding estimates.

Proposition 2.2 Let .δ ∈ (0, 1) and let .μδ be the probability measure on .R given by

.μδ(dx) = Cδ exp(−|x|δ)dx = pδ(x)dx,

for some normalizing constant .Cδ > 0. Let .p ∈ [2,+∞) and let .g ∈ Lp(μδ) be
such that .

∫
R

g(x)μδ(dx) = 0. Let .fδ be defined, for all .x ∈ R, by

.fδ(x) = 1

pδ(x)

∫ +∞

x

g(y)pδ(y)dy = − 1

pδ(x)

∫ x

−∞
g(y)pδ(y)dy. (2.52)
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Then, for all .r ∈ [1,+∞) such that .r/(r − 1) > q = p/(p − 1),

.‖fδ‖Lr(μδ) ≤ C(p, δ, r)‖g‖Lp(μδ),

for some .C(p, δ, r) > 0 depending only on p, .δ, and r . Moreover, .fδ is a weak
solution to

.Aδ(fδ) = g,

where, for all .f ∈ C∞
c (R) and all .x ∈ R \ {0},

.Aδ(f )(x) = −f ′(x) + δ|x|δ−1 sign(x)f (x). (2.53)

Proof First, applying Hölder’s inequality, for all .x ∈ R,

. |fδ(x)| ≤ 1

pδ(x)

(∫ +∞

x

pδ(y)dy

) 1
q

‖g‖Lp(μδ) = Gδ(x)‖g‖Lp(μδ), (2.54)

with .Gδ(x) = 1
pδ(x)

(∫ +∞
x

pδ(y)dy
) 1

q
, for all .x ∈ R. Moreover, by a change of

variables, for all .x > 0,

.

∫ +∞

x

pδ(y)dy = 1

δ

∫ +∞

xδ

z
1
δ
−1e−zdz = 1

δ
�

(
1

δ
, xδ

)
,

where .�
(

1
δ
, x

)
is the incomplete gamma function at .x > 0. Now,

.�

(
1

δ
, x

)
∼

x→+∞ x
1
δ
−1e−x ⇒

∫ +∞

x

pδ(y)dy ∼
x→+∞

1

δ
x1−δe−xδ

,

and similarly as .x → −∞ for the integral .
∫ x

−∞ pδ(y)dy (recall that .μδ is
symmetric). Now,

.

∫ +∞

0
|fδ(x)|rμδ(dx) ≤ ‖g‖r

Lp(μδ)

(∫ +∞

0
pδ(x)(Gδ(x))rdx

)
,

≤ C1,p,δ,r‖g‖r
Lp(μδ)

,

with

.C1,p,δ,r :=
∫ +∞

0
pδ(x)(Gδ(x))rdx < +∞
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since .r/(r − 1) > q. A similar estimate holds true for the integral of .|fδ|r on
.(−∞, 0), thanks to the second integral representation of .fδ . Finally, for all .ψ ∈
C∞

c (R),

.

∫
R

Aδ(fδ)(x)ψ(x)pδ(x)dx =
∫
R

fδ(x)ψ ′(x)pδ(x)dx =
∫
R

g(x)ψ(x)pδ(x)dx.

The conclusion follows. ��
The next proposition investigates the properties of the unique primitive function .Fδ

of .fδ such that .
∫
R

Fδ(x)pδ(x)dx = 0.

Proposition 2.3 Let .δ ∈ (0, 1), let .p ∈ [2,+∞), let .g ∈ Lp(μδ) with .μδ(g) = 0,
and let .fδ be given by (2.52). Let .Fδ be defined, for all .x ∈ R, by

.Fδ(x) = Fδ(0) + 1(0,+∞)(x)

∫ x

0
fδ(y)dy − 1(−∞,0)(x)

∫ 0

x

fδ(y)dy, (2.55)

with

.Fδ(0) =
∫ 0

−∞

(∫ 0

x

fδ(y)dy

)
pδ(x)dx −

∫ +∞

0

(∫ x

0
fδ(y)dy

)
pδ(x)dx.

Then, for all .r ∈ [1,+∞) such that .r/(r − 1) > q = p/(p − 1),

.‖Fδ‖Lr(μδ) ≤ C2(p, δ, r)‖g‖Lp(μδ), (2.56)

for some .C2(p, δ, r) > 0 depending only on p, .δ, and r . Moreover, .Fδ is a weak
solution to

.(−Lδ)(Fδ) = g,

where, for all .f ∈ C∞
c (R) and all .x ∈ R \ {0},

.Lδ(f )(x) = f ′′(x) − δ|x|δ−1 sgn(x)f ′(x). (2.57)

Proof Let .δ, p, and r be as in the statement of the lemma. Then by convexity and
Fubini’s theorem,

.

∫ +∞

0

∣∣∣∣
∫ x

0
fδ(y)dy

∣∣∣∣
r

pδ(x)dx ≤
∫ +∞

0
xr−1

(∫ x

0
|fδ(y)|rdy

)
pδ(x)dx,

≤
∫ +∞

0
|fδ(y)|r

(∫ +∞

y

xr−1pδ(x)dx

)
dy.

Using (2.54),
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.

∫ +∞
0

∣∣∣∣
∫ x

0
fδ(y)dy

∣∣∣∣
r

pδ(x)dx ≤ ‖g‖r
Lp(μδ)

∫ +∞
0

(Gδ(y))r
(∫ +∞

y
xr−1pδ(x)dx

)
dy.

Now, since .r/(r − 1) > q = p/(p − 1),

.

∫ +∞

0
(Gδ(y))r

(∫ +∞

y

xr−1pδ(x)dx

)
dy < +∞.

A similar analysis can be performed for the integral of .| ∫ 0
x

fδ(y)dy|r over .(−∞, 0).
This proves the .Lp − Lr estimate (2.56). Noticing that .(−Lδ)(Fδ) = Aδ(fδ), the
end of the proof follows. ��
To finish this section, let us discuss the higher dimensional situations, namely .d ≥ 2.
As above, the second order differential operator under consideration is given, for all
.f ∈ C∞

c (Rd) and all .x ∈ R
d \ {0}, by

.Ld,δ(f )(x) = �(f )(x) − δ‖x‖δ−2〈x; ∇(f )(x)〉.

Once again, integration by parts ensures that the operator is symmetric on .C∞
c (Rd)

with

.

∫
Rd

(−Ld,δ)(f )(x)g(x)μd,δ(dx) =
∫
Rd

〈∇(f )(x); ∇(g)(x)〉μd,δ(dx),

and thus closable. This operator is essentially self-adjoint as soon as the logarithmic
derivative of the Lesbegue density of the probability measure .μd,δ belongs to the
Lesbegue space .L4(μd,δ), which is the case when .δ ∈ (1 − d/4, 1) (see [53]). Note
that if .d ≥ 4, this is true for all .δ ∈ (0, 1). Next, let .ϕδ be the function defined, for
all .t ∈ (0,+∞), by

.ϕδ(t) = exp
(
−t

δ
2

)

so that .pd,δ(x) = Cd,δϕδ(‖x‖2), for all .x ∈ R
d , and let us consider the .R

d -valued
function .τδ = (τδ,1, . . . , τδ,d ) defined, for all .k ∈ {1, . . . , d} and all .x ∈ R

d , by

.τδ,k(x) = 1

2ϕδ(‖x‖2)

∫ +∞

‖x‖2
ϕδ(t)dt.

Then by a straightforward integration by parts, for all .ψ ∈ C∞
c (Rd) and all .k ∈

{1, . . . , d},

.

∫
Rd

τk,δ(x)∂k(ψ)(x)μd,δ(dx) =
∫
Rd

xkψ(x)μd,δ(dx).
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Moreover, it is clear that .‖τδ,k‖L2(μd,δ)
< +∞, for all .k ∈ {1, . . . , d}. More

generally, let .g = (g1, . . . , gd) ∈ L2(μd,δ) with .
∫
Rd gk(x)μd,δ(dx) = 0, for all

.k ∈ {1, . . . , d}, and let us study the following weak formulation problem:

.Ld,δ(f ) = g,

∫
Rd

f (x)μd,δ(dx) = 0.

A first partial answer to the previous weak formulation problem is through the
use of semigroup techniques combined with weak Poincaré-type inequality. From
[64, Example .1.4, c)], the semigroup, .(P δ

t )t≥0, generated by the self-adjoint
extension of .Ld,δ satisfies the following estimate: for all .g ∈ L∞(μd,δ) with
.
∫
Rd g(x)μd,δ(dx) = 0 and all .t ≥ 0,

.‖P δ
t (g)‖L2(μd,δ)

≤ c1‖g‖L∞(μd,δ) exp
(
−c2t

δ
4−3δ

)
,

for some .c1, c2 > 0 depending only on .d, δ. Thus, setting

.f̃δ =
∫ +∞

0
P δ

t (g)dt

and reasoning as in Theorem 2.1, for all .ψ ∈ C∞
c (Rd),

.

∫
Rd

〈∇(f̃δ)(x); ∇(ψ)(x)〉μd,δ(dx) = 〈g;ψ〉L2(μd,δ)
,

namely, .f̃δ is a solution to the weak formulation problem with .g ∈ L∞(μd,δ) such
that .μd,δ(g) = 0 and with

.‖f̃δ‖L2(μd,δ)
≤ Cd,δ‖g‖L∞(μd,δ).

3 Representation Formulas and Lp-Poincaré Inequalities

Let us start this section with a new result valid for the nondegenerate symmetric
.α-stable probability measures on .R

d , .α ∈ (1, 2).

Proposition 3.1 Let .d ≥ 1, let .α ∈ (1, 2), and let .μα be a nondegenerate symmetric
.α-stable probability measure on .R

d . Let .p ∈ (1,+∞) and let .p1, p2 be such that
.1/p = 1/p1 + 1/p2 with .1 < p1 < α. Then, for all f smooth enough on .R

d ,

.‖f − μα(f )‖Lp(μα) ≤
(∫ +∞

0
qα(t)dt

) (
E‖X‖p1

) 1
p1 ‖∇(f )‖Lp2 (μα),

where .X ∼ μα and .qα is defined, for all .t > 0, by
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.qα(t) = e−t

(1 − e−αt )1− 1
α

(
(1 − e−αt )α−1 + e−α2t+αt

) 1
α

.

Proof A straightforward application of the Bismut formula (2.25) (see also [9,
Proposition .2.1]) for the action of the operator .Dα−1 on .P

να
t (f ), .t > 0 and

.f ∈ S(Rd), together with the decomposition of the nonlocal part of the generator
of the .α-stable Ornstein-Uhlenbeck semigroup, implies, for all .f ∈ S(Rd) and all
.x ∈ R

d , that

.f (x) − Ef (X) =
∫ +∞

0

∫
Rd

〈xe−t − e−αty

(1 − e−αt )1− 1
α

; ∇(f )(xe−t

+ (1 − e−αt )
1
α y)〉μα(dy)dt,

where .X ∼ μα . Therefore,

. |f (x) − Ef (X)| ≤
∫ +∞

0
EY

∣∣∣∣∣〈xe−t − e−αtY

(1 − e−αt )1− 1
α

; ∇(f )(xe−t

+ (1 − e−αt )
1
α Y )〉

∣∣∣ dt,

with .Y ∼ μα . Thus, by Minkowski’s integral inequality and Jensen’s inequality,

.
(
EX|f (X) − Ef (X)|p) 1

p ≤
∫ +∞

0

(
EX,Y

∣∣∣∣∣〈Xe−t − e−αt

(1 − e−αt )1− 1
α

Y ; ∇(f )
(
Xe−t

+ (1 − e−αt )
1
α Y

)
〉
∣∣∣p

) 1
p

dt.

Now, thanks to the stability property, under the product measure .μα ⊗ μα , .Xe−t +
(1 − e−αt )

1
α Y is distributed according to .μα . Moreover,

.Xe−t − e−αtY

(1 − e−αt )1− 1
α

=L

(
e−αt + e−α2t

(1 − e−αt )α−1

) 1
α

X.

Finally, observe that, for all .t > 0,

.qα(t) =
(

e−αt (1 − e−αt )α−1 + e−α2t+αt

(1 − e−αt )α−1

) 1
α

= e−t

(1 − e−αt )1− 1
α

(
(1 − e−αt )α−1 + e−α2t+αt

) 1
α

.
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Let .F1 and .F2 be the two functions defined, for all .x, y ∈ R
d and all .t > 0, by

.F1(x, y, t) = xe−t − e−αty

(1 − e−αt )1− 1
α

,

F2(x, y, t) = ∇(f )
(
xe−t + (1 − e−αt )

1
α y

)
.

Then from the generalized Hölder’s inequality, for all .p ∈ (1,+∞),

.‖〈F1(, t);F2(, t)〉‖Lp(μα⊗μα) ≤ ‖F1(, t)‖Lp1 (μα⊗μα)‖F2(, t)‖Lp2 (μα⊗μα),

where .1/p1 + 1/p2 = 1/p. Take .1 < p1 < α. From the previous identities in law,
one gets

.‖f − μα(f )‖Lp(μα) ≤ ‖X‖Lp1 (μα)‖∇(f )‖Lp2 (μα)

(∫ +∞

0
qα(t)dt

)
.

This concludes the proof of the proposition. ��
Before moving on, let us briefly comment on the Gaussian situation. Let .γ be
the standard Gaussian probability measure on .R

d . Following lines of reasoning
as above, it is not difficult to obtain the corresponding inequality for the standard
Gaussian probability measure on .R

d . However, a crucial difference with the general
symmetric .α-stable situation is that, under the product probability measure .γ ⊗ γ ,
the Gaussian random vectors given, for all .t > 0, by

.Xe−t +
√

1 − e−2t Y, Xe−t − e−2t Y√
1 − e−2t

,

where .(X, Y ) ∼ γ ⊗ γ , are independent of each other and are equal in law to
a standard .R

d -valued Gaussian random vector (up to some constant depending
on t for the second one). Finally, conditioning, one gets the following classical
dimension-free inequality, which is a particular case of a result of Pisier (see, e.g.,
[59, Theorem .2.2]): for all f smooth enough on .R

d and all .p ∈ (1,+∞),

.‖f − γ (f )‖Lp(γ ) ≤ π

2

(
E|Z|p) 1

p ‖∇(f )‖Lp(γ ), (3.1)

where .Z ∼ N (0, 1). Note that the constant in (3.1) is not optimal since for .p = 2,
the best constant is known to be equal to 1 and for large p, it is of the order .

√
p.

Note also that the previous lines of reasoning continue to hold in the vector-valued
setting (namely, when f and g are vector valued in a general Banach space). Finally,
a different estimate has been obtained in [18, Theorem .7.1 and Remark .7.2],
which is linked to the isoperimetric constant and to the product structure of the
standard Gaussian probability measure on .R

d . Note that the dependency on p in [18,
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inequality .7.5] is of the order p. Moreover, in [56, Proposition 3.1], the following
fine version of the .Lp-Poincaré inequality on the Wiener space is proved: for all
even integers .p ≥ 2 and all .F ∈ D

1,p such that .EF = 0,

.
(
E|F |p) 1

p ≤ (p − 1)
1
2
(
E‖DF‖p

H
) 1

p ,

where DF is the Malliavin derivative of F , .H is a real separable Hilbert space
on which the isonormal Gaussian process is defined, and .D

1,p is the .Lp-Sobolev-
Watanabe-Kree space of order 1. Finally, recently, it has been proved in [2, Theorem
.2.6] that, for all .p ≥ 2 and all .F ∈ D

1,p such that .EF = 0,

.
(
E|F |p) 1

p ≤ (p − 1)
1
2
(
E‖DF‖p

H
) 1

p .

As shown next, with an argument based on the covariance identity (2.26), it is
possible to easily retrieve, for .p ≥ 2, such estimates (see also the discussion in
[67, pages 1806–1808]).

Proposition 3.2 Let .d ≥ 1, let .γ be the standard Gaussian probability measure on
.R

d and let .p ∈ [2,+∞). Then, for all .f ∈ S(Rd) such that .
∫
Rd f (x)γ (dx) = 0,

.‖f ‖Lp(γ ) ≤ √
p − 1‖∇(f )‖Lp(γ ). (3.2)

Proof From (2.26), for all .f, g smooth enough and real valued with .
∫
Rd f (x)

.γ (dx) = 0,

.Ef (X)g(X) =
∫ 1

0
E〈∇(f )(Xz); ∇(g)(Yz)〉dz,

where .Xz =L Yz =L X ∼ γ , for all .z ∈ [0, 1]. Next, let .p ≥ 2 and take .g =
�′

p(f )/p where .�p(x) = |x|p, for .x ∈ R. Then since .�p is twice continuously
differentiable on .R,

.∇(g)(x) = 1

p
∇(f )(x)�′′

p(f (x)) = (p − 1)∇(f )(x)|f (x)|p−2, x ∈ R
d .

Thus, for all f smooth enough with mean 0 with respect to the Gaussian measure .γ ,

.E|f (X)|p = (p − 1)

∫ 1

0
E|f (Yz)|p−2〈∇(f )(Xz); ∇(f )(Yz)〉dz.

Using Hölder’s inequality with .r = p/(p −2) and .r∗ = p/2 as well as the Cauchy-
Schwarz inequality,
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.|E|f (Yz)|p−2〈∇(f )(Xz); ∇(f )(Yz)〉| ≤ (
E |f (X)|p)1− 2

p

(
E‖∇(f )(Xz)‖

p
2 ‖∇(f )(Yz)‖

p
2

) 2
p

,

≤ (
E |f (X)|p)1− 2

p
(
E‖∇(f )(X)‖p

) 2
p .

Assuming that .f �= 0, the rest of the proof easily follows. ��
Remark 3.1 From the covariance representation (2.26) in the general case, it is
possible to obtain a version of the .Lp-Poincaré inequality for the centered Gaussian
probability measure with covariance matrix .�. Namely, for all .p ∈ [2,+∞) and all
.f ∈ S(Rd) such that .

∫
Rd f (x)γ�(dx) = 0,

.‖f ‖Lp(γ�) ≤ √
p − 1‖� 1

2 ∇(f )‖Lp(γ�). (3.3)

As a corollary of the previous .Lp-Poincaré inequality, let us prove a Sobolev-type
inequality with respect to the standard Gaussian measure on .R

d .

Corollary 3.1 Let .d ≥ 1, let .γ be the standard Gaussian probability measure on
.R

d , and let .p ∈ [2,+∞). Then, for all .f ∈ S(Rd) such that .
∫
Rd f (x)γ (dx) = 0

and all .λ > 0,

.‖f ‖Lp(γ ) ≤ √
p − 1C(λ, p)

(
λ‖f ‖Lp(γ ) + ‖(−Lγ )(f )‖Lp(γ )

)
,

where .C(λ, p) is given by

.C(λ, p) := γ2(q)

(∫ +∞

0

e−(λ+1)t

√
1 − e−2t

dt

)
, γ2(q) = (E|X|q)

1
q ,

where .X ∼ γ and where .q = p/(p − 1). In particular,

.‖f ‖Lp(γ ) ≤ π

2

√
p − 1γ2(q)‖(−Lγ )(f )‖Lp(γ ).

Proof The proof is rather straightforward and is a consequence of the Bismut
formula for the standard Gaussian measure on .R

d . For all .t > 0, all .f ∈ S(Rd)

with .
∫
Rd f (x)γ (dx) = 0, and all .x ∈ R

d ,

.∇P
γ
t (f )(x) = e−t

√
1 − e−2t

∫
Rd

yf (xe−t + y
√

1 − e−2t )γ (dy).

Now, based on the previous formula, it is clear that

.∇ ◦ (
λE − Lγ

)−1
(f )(x) =

∫ +∞

0
e−λt∇P

γ
t (f )(x)dt,

=
∫
Rd

yI2,λ(f )(x, y)γ (dy),
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with

.I2,λ(f )(x, y) =
∫ +∞

0

e−(1+λ)t

√
1 − e−2t

f
(
xe−t + y

√
1 − e−2t

)
dt.

Next, by duality and Hölder’s inequality,

.‖∇ ◦ (
λE − Lγ

)−1
(f )(x)‖ = sup

z∈Rd , ‖z‖=1

∣∣∣∣
∫
Rd

〈z; y〉I2,λ(f )(x, y)γ (dy)

∣∣∣∣ ,

≤ γ2(q)

(∫
Rd

|I2,λ(f )(x, y)|pγ (dy)

) 1
p

.

Taking the .Lp(γ )-norm and applying Minkowski’s integral inequality give the
following:

.‖∇ ◦ (
λE − Lγ

)−1
(f )‖Lp(γ ) ≤ γ2(q)‖I2,λ(f )‖Lp(γ⊗γ ),

≤ γ2(q)

(∫ +∞

0

e−(λ+1)t

√
1 − e−2t

dt

)
‖f ‖Lp(γ ).

Thus, for all .f ∈ S(Rd) such that .
∫
Rd f (x)γ (dx) = 0,

.‖f ‖Lp(γ ) ≤ √
p − 1‖∇(f )‖Lp(γ ) ≤ √

p − 1γ2(q)

(∫ +∞
0

e−(1+λ)t√
1 − e−2t

dt

)
‖(λE − Lγ )(f )‖Lp(γ ),

≤ √
p − 1γ2(q)

(∫ +∞
0

e−(1+λ)t√
1 − e−2t

dt

) (
λ‖f ‖Lp(γ ) + ‖(−Lγ )(f )‖Lp(γ )

)
.

The conclusion easily follows since

.

∫ +∞

0

e−t

√
1 − e−2t

dt = π

2
.

��
Let us return to the nondegenerate symmetric .α-stable case with .α ∈ (1, 2). Based
on the following decomposition of the nonlocal part of the generator of the stable
Ornstein-Uhlenbeck semigroup (and on Bismut-type formulas),

.Lα(f )(x) = −〈x; ∇(f )(x)〉 +
d∑

j=1

∂jD
α−1
j (f )(x), (3.4)

.Lp-Poincaré-type inequalities for the symmetric nondegenerate .α-stable probability
measures on .R

d with .α ∈ (1, 2) and with .p ∈ [2,+∞) are discussed.
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First, let us provide an analytic formula for the dual semigroup .((P
να
t )∗)t≥0

of the .α-stable Ornstein-Uhlenbeck semigroup. This representation follows
from (2.16). Recall that .pα , the Lebesgue density of a nondegenerate .α-stable
probability measure with .α ∈ (1, 2), is positive on .R

d (see, e.g., [72, Lemma .2.1]).
This result appears to be new.

Lemma 3.1 Let .d ≥ 1, let .α ∈ (1, 2), let .μα be a nondegenerate symmetric .α-
stable probability measure on .R

d , and let .pα be its Lebesgue density. Then, for all
.g ∈ S(Rd), all .t > 0, and all .x ∈ R

d ,

.(P
να
t )∗(g)(x) = 1

(1 − e−αt )
d
α

∫
Rd

g(u)pα(u)pα

(
x − ue−t

(1 − e−αt )
1
α

)
du

pα(x)
,

= etd

(1− e−αt )
d
α

∫
Rd

g(etx + et z)
pα(xet + zet )

pα(x)
pα

(
z

(1 − e−αt )
1
α

)
dz.

(3.5)

Proof Let .f, g ∈ S(Rd) and let .t > 0. Then

.

∫
Rd

P
να
t (f )(x)g(x)pα(x)dx =

∫
R2d

f
(
xe−t + (1 − e−αt )

1
α y

)
pα(y)g(x)pα(x)dxdy.

Now, let us perform several changes of variables: first, change y into .z/(1−e−αt )
1
α ,

then x into .etu, and, finally, .(u + z, u) into .(x, y). Then

.

∫
Rd

P
να
t (f )(x)g(x)pα(x)dx =

∫
R2d

f (x)g(et y)pα(yet )pα

(
x − y

(1 − e−αt )
1
α

)
etddxdy

(1 − e−αt )
d
α

.

This concludes the proof of the lemma. ��
Note that this representation generalizes completely the case .α = 2 for which
.(P

γ
t )∗ = P

γ
t , for all .t ≥ 0. Also, note that the previous representation ensures

that, for all .g ∈ S(Rd) and all .t > 0,

.

∫
Rd

(P
να
t )∗(g)(x)μα(dx) =

∫
Rd

g(x)μα(dx),

which can be seen using a duality argument and the fact that .P
να
t , .t > 0, is

mass conservative. Based on (3.5), let us give a specific representation of the dual
semigroup as the composition of three elementary operators. For this purpose,
denote by .Mα the multiplication operator by the stable density .pα . Namely, for
all .g ∈ S(Rd) and all .x ∈ R

d ,
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.Mα(g)(x) = g(x)pα(x).

The inverse of .Mα corresponds to multiplication by .1/pα . Now, denote by .(T α
t )t≥0

the continuous family of operators, defined, for all .g ∈ S(Rd), all .x ∈ R
d , and all

.t > 0, by

.T α
t (g)(x) =

∫
Rd

g(u)pα

(
x − ue−t

(1 − e−αt )
1
α

)
du

(1 − e−αt )
d
α

,

with the convention that .T α
0 (g) = g. For fixed .t > 0, the previous operator admits

a representation that is close in spirit to the Mehler representation of the semigroup
.(P

να
t )t≥0: for all .g ∈ S(Rd), all .x ∈ R

d , and all .t ≥ 0,

.T α
t (g)(x) = etd

∫
Rd

g
(
etx + (1 − e−αt )

1
α et z

)
μα(dz).

Moreover, from Fourier inversion, for all .g ∈ S(Rd), all .x ∈ R
d , and all .t ≥ 0,

.T α
t (g)(x) = etd

∫
Rd

F(g)(ξ)ei〈ξ ;xet 〉 ϕα(et ξ)

ϕα(ξ)

dξ

(2π)d
. (3.6)

In particular, the Fourier transform of .T α
t (g) is given, for all .ξ ∈ R

d and all .t ≥ 0,
by

.F(T α
t (g))(ξ) = F(g)(e−t ξ )

ϕα(ξ)

ϕα(e−t ξ )
.

Then, thanks to Lemma 3.1, for all .g ∈ S(Rd) and all .t > 0,

.(P
να
t )∗(g) = ((Mα)−1 ◦ T α

t ◦ Mα)(g). (3.7)

The semigroup of operators .((P
να
t )∗)t≥0 is the h-transform of the semigroup

.(T α
t )t≥0 by the positive function .pα (see, e.g., [13, Section .1.15.8]), which is

harmonic for the generator of .(T α
t )t≥0. The next technical lemma gathers standard

properties of the continuous family of operators .(T α
t )t≥0. First, define the following

bilinear form, which appears as a remainder in the product rule for the nonlocal
operator .Dα−1: for all .f, g ∈ S(Rd) and all .x ∈ R

d ,

.Rα(f, g)(x) =
∫
Rd

(f (x + u) − f (x))(g(x + u) − g(x))uνα(du). (3.8)

In particular, this remainder term is null when .α = 2 since the classical product rule
holds in this diffusive situation. Finally, for all .x ∈ R

d ,
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.Dα−1(pα)(x) = −xpα(x), (Dα−1)∗(pα)(x) = xpα(x). (3.9)

The next lemma states and proves many rather elementary properties of the family
of operators .(T α

t )t≥0.

Lemma 3.2 For all .f ∈ Cb(R
d) and all .s, t ≥ 0,

.T α
s+t (f ) = (T α

t ◦ T α
s )(f ) = (T α

s ◦ T α
t )(f ).

For all .f ∈ S(Rd),

. lim
t→+∞T α

t (f )(x) = Mα

(∫
Rd

f (x)dx

)
, lim

t→0+T α
t (f )(x) = f (x).

For all .f ∈ Cb(R
d) and all .t ≥ 0,

.

∫
Rd

T α
t (pαf )(x)dx =

∫
Rd

pα(x)f (x)dx.

For all .f ∈ Cb(R
d) with .f ≥ 0 and all .t ≥ 0,

.T α
t (f ) ≥ 0, T α

t (1) = etd , T α
t (pα) = pα.

For all .f, g ∈ S(Rd) and all .t ≥ 0,

.

∫
Rd

T α
t (f )(x)g(x)dx =

∫
Rd

f (x)P
να
t (g)(x)dx.

Namely, for all .t > 0, the dual operator of .T α
t in standard Lebesgue spaces is given,

for all .f ∈ S(Rd), by

.(T α
t )∗(f ) = P

να
t (f ).

The generator .Aα of .(T α
t )t≥0 is given, for all .f ∈ S(Rd) and all .x ∈ R

d , by

.Aα(f )(x) = df (x) + 〈x; ∇(f )(x)〉 +
∫
Rd

〈∇(f )(x + u) − ∇(f )(x); u〉να(du).

For all .x ∈ R
d ,

.Aα(pα)(x) = 0.

The “carré du champs operator” associated with .Aα is given, for all .f ∈ S(Rd)

and all .x ∈ R
d , by
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.�α(f, g)(x) = −df (x)g(x)

2
+ α

2

∫
Rd

(f (x + u) − f (x))(g(x + u) − g(x))να(du).

For all .f ∈ S(Rd) and all .x ∈ R
d ,

.Aα(pαf )(x) =
d∑

k=1

(
Rα

k (∂k(pα), f )(x) + Rα
k (∂k(f ), pα)(x)

)

+
d∑

k=1

(
∂k(pα)(x)Dα−1

k (f )(x) + pα(x)∂kD
α−1
k (f )(x)

)
.

(3.10)

For all .g ∈ C1
b(Rd), all .u ∈ R

d , all .x ∈ R
d and all .t ≥ 0,

.�u

(
T α

t (g)
)
(x) = etd

∫
Rd

�uet (g)(xet + (1 − e−αt )
1
α et z)μα(dz),

and,

.∇να (T α
t (g))(x) ≤ e

αt
2 T α

t

(∇να (g)
)
(x).

In particular, for all .f ∈ S(Rd) and all .x ∈ R
d ,

.(Lα)∗(f )(x) = ((Mα)−1 ◦ Aα ◦ Mα)(f )(x),

= 1

pα(x)

d∑
k=1

(
Rα

k (∂k(pα), f )(x) + Rα
k (∂k(f ), pα)(x)

)

+
d∑

k=1

(
∂k(pα)(x)

pα(x)
Dα−1

k (f )(x) + ∂kD
α−1
k (f )(x)

)
. (3.11)

Finally, the “carré du champs” operator associated with the generator .(Lα)∗ is
given, for all .f, g ∈ S(Rd) and all .x ∈ R

d , by

.�∗(f, g)(x) = α

2

∫
Rd

(f (x + u) − f (x))(g(x + u) − g(x))να(du)

+ 1

2

d∑
k=1

∂k(pα)(x)

pα(x)
Rα

k (f, g)(x)

+ 1

2pα(x)

d∑
k=1

(
∂kR

α
k (pα, fg)(x) − g(x)∂kR

α
k (pα, f )(x)

−f (x)∂kR
α
k (pα, g)(x)

)
.
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Proof The proof is very classical and based on a characteristic function methodol-
ogy and on the Fourier representation (3.6). The only non-trivial identity is given
by (3.10). So, for all .f ∈ S(Rd) and all .x ∈ R

d ,

.Aα(pαf )(x) = dpα(x)f (x) + 〈x; pα(x)∇(f )(x)〉 + 〈x; f (x)∇(pα)(x)〉 +
d∑

k=1

∂kDα−1
k

(pαf )(x).

Moreover,

.Dα−1
k (pαf )(x) = pα(x)Dα−1

k (f )(x) + f (x)Dα−1
k (pα)(x) + Rα

k (pα, f )(x).

Thus,

.∂kD
α−1
k (pαf )(x) = A + B + C,

where,

.A = ∂kR
α
k (pα, f )(x), B = ∂k

(
pα(x)Dα−1

k
(f )

)
(x), C = ∂k

(
f (x)Dα−1

k
(pα)

)
(x).

Now, using the classical product rule,

.A = Rα
k (∂k(pα), f ) (x) + Rα

k (∂k(f ), pα) (x),

and,

.B = ∂k(pα)(x)Dα−1
k (f )(x) + pα(x)∂kD

α−1
k (f )(x).

Finally, using (3.9),

.C = −xkpα(x)∂k(f )(x) + f (x) (−pα(x) − xk∂k(pα)(x)) ,

and putting everything together concludes the proof of (3.10). ��
From the previous lemma and the decomposition (3.7), it is clear, by duality, that the
linear operator .(P

να
t )∗ is continuous on every .Lp(μα), for .p ∈ (1,+∞). Indeed,

for all .f, g ∈ S(Rd) and all .t ≥ 0,

.〈(P να
t )∗(g); f 〉L2(μα) = 〈T α

t (Mα(g)); f 〉L2(Rd ,dx)

= 〈Mα(g);P
να
t (f )〉L2(Rd ,dx) = 〈g;P

να
t (f )〉L2(μα).

Moreover, based on the last statements of Lemma 3.2, one can infer the correspond-
ing formulas for the generator of the “carré de Mehler” semigroup on .S(Rd) and
for its corresponding square field operator: for all .f, g ∈ S(Rd) and all .x ∈ R

d ,
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.L(f )(x) = 1

α

(
− 〈x; ∇(f )(x)〉 +

d∑
k=1

∂kD
α−1
k (f )(x) + 1

pα(x)

d∑
k=1

∂kR
α
k (pα, f )(x)

+
d∑

k=1

(
∂k(pα)(x)

pα(x)
Dα−1

k (f )(x) + ∂kD
α−1
k (f )(x)

))
,

and,

.�̃(f, g)(x) = 1

α

(
�(f, g)(x) + �∗(f, g)(x)

)
.

Let us now prove two Bismut-type formulas associated with .(P
να
t )t≥0 and

.((P
να
t )∗)t≥0 for integro-differential operators appearing in the generators of the

respective semigroups.

Proposition 3.3 Let .d ≥ 1, let .α ∈ (1, 2), let .μα be a nondegenerate symmetric .α-
stable probability measure on .R

d , and let .pα be its positive Lebesgue density. Then,
for all .f ∈ S(Rd), all .x ∈ R

d , and all .t > 0,

.∇P
να
t (f )(x) = − e−t

(1 − e−αt )
1
α

∫
Rd

∇(pα)(y)

pα(y)
f (xe−t + (1 − e−αt )

1
α y)μα(dy)

(3.12)

and

.Dα−1 (
(P

να
t )∗(f )

)
(x) + 1

pα(x)
Rα

(
pα, (P

να
t )∗(f )

)
(x) = −xe−αt

(1 − e−αt )
(P

να
t )∗(f )(x)

+ e−t(
1−e−αt

) (P
να
t )∗(xf )(x),

(3.13)

for all .x ∈ R
d .

Proof The identity (3.12) is a direct consequence of the commutation relation and
standard integration by parts. Let us prove (3.13). For this purpose, for all .x ∈ R

d

and all .t > 0 fixed, denote by .Fα,x,t the function defined, for all .u ∈ R
d , by

.Fα,x,t (u) = 1(
1 − e−αt

) d
α

pα(u)

pα(x)
pα

(
x − ue−t

(1 − e−αt )
1
α

)
.

Note that .Fα,x,t is a probability density on .R
d . Moreover, for all .t > 0 and all

.u ∈ R
d ,

.

∫
Rd

Fα,x,t (u)pα(x)dx = pα(u).
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First, for all .x ∈ R
d , all .u ∈ R

d , and all .t > 0,

.�u

(
(P

να
t )∗(f )

)
(x) =

∫
Rd

f (v)(Fα,x+u,t (v) − Fα,x,t (v))dv,

=
∫
Rd

f (v)�u(Fα,.,t (v))(x)dv.

Thus,

.Dα−1 (
(P

να
t )∗(f )

)
(x) =

∫
Rd

f (v)

(∫
Rd

�u(Fα,.,t (v))(x)uνα(du)

)
dv.

Similarly, by linearity,

.
1

pα(x)
Rα

(
pα, (P

να
t )∗(f )

)
(x) =

∫
Rd

uνα(du)

(
pα(x + u)

pα(x)
− 1

)
�u

(
(P

να
t )∗(f )

)
(x),

=
∫
Rd

f (v)

(∫
Rd

uνα(du)

(
pα(x + u)

pα(x)
− 1

)
�u(Fα,.,t (v))(x)

)
dv.

Then, for all .t > 0 and all .x ∈ R
d ,

.Dα−1 (
(P

να
t )∗(f )

)
(x) + 1

pα(x)
Rα (

pα, (P
να
t )∗(f )

)
(x) =

∫
Rd

f (v)

(∫
Rd

uνα(du)
pα(x + u)

pα(x)
�u(Fα,.,t (v))(x)

)
dv.

(3.14)

Let us fix .x, v ∈ R
d and .t > 0. Then

.

∫
Rd

uνα(du)
pα(x + u)

pα(x)
�u(Fα,.,t (v))(x) = 1

(1 − e−αt )
d
α

∫
Rd

uνα(du)
pα(x + u)

pα(x)

(
pα(v)

pα(x + u)
pα

⎛
⎝ x + u − ve−t

(1 − e−αt )
1
α

⎞
⎠

− pα(v)

pα(x)
pα

⎛
⎝ x − ve−t

(1 − e−αt )
1
α

⎞
⎠)

,

= pα(v)

pα(x)2
1

(1 − e−αt )
d
α

∫
Rd

uνα(du)

(
pα(x)pα

⎛
⎝ x + u − ve−t

(1 − e−αt )
1
α

⎞
⎠

− pα(x + u)pα

⎛
⎝ x − ve−t

(1 − e−αt )
1
α

⎞
⎠

)
,

= pα(v)

pα(x)2
1

(1 − e−αt )
d
α

∫
Rd

uνα(du)pα(x)

(
pα

⎛
⎝ x + u − ve−t

(1 − e−αt )
1
α

⎞
⎠

− pα

⎛
⎝ x − ve−t

(1 − e−αt )
1
α

⎞
⎠)

− pα(v)

pα(x)2
1

(1 − e−αt )
d
α

×
∫
Rd

uνα(du)(pα(x + u) − pα(x))pα

⎛
⎝ x − ve−t

(1 − e−αt )
1
α

⎞
⎠ .



38 B. Arras and C. Houdré

Recalling that, for all .x ∈ R
d ,

.Dα−1(pα)(x) = −xpα(x).

Thus,

.
pα(v)

pα(x)2

1

(1 − e−αt )
d
α

Dα−1(pα)(x)pα

(
x − ve−t

(1 − e−αt )
1
α

)
= pα(v)

pα(x)

(−x)

(1 − e−αt )
d
α

pα

(
x − ve−t

(1 − e−αt )
1
α

)
,

and from scale invariance,

.
pα(v)

pα(x)

1

(1 − e−αt )
d
α

∫
Rd

uνα(du)� u

(1−e−αt )
1
α

(pα)

⎛
⎝ x − ve−t

(1 − e−αt )
1
α

⎞
⎠ = pα(v)

pα(x)

(1 − e−αt )
1
α −1

(1 − e−αt )
d
α

× Dα−1(pα)

⎛
⎝ x − ve−t

(1 − e−αt )
1
α

⎞
⎠ ,

= − pα(v)

pα(x)

(1 − e−αt )−1

(1 − e−αt )
d
α

(
x − ve−t

)

× pα

⎛
⎝ x − ve−t

(1 − e−αt )
1
α

⎞
⎠ .

Then using (3.14),

.Dα−1 (
(P

να
t )∗(f )

)
(x) + 1

pα(x)
Rα

(
pα, (P

να
t )∗(f )

)
(x) = −xe−αt

(1 − e−αt )
(P

να
t )∗(f )(x)

+ e−t(
1 − e−αt

) (P
να
t )∗(hf )(x),

where .h(v) = v, for all .v ∈ R
d . This concludes the proof of the proposition. ��

Before moving on, let us prove a technical lemma providing a sharp upper bound
for the asymptotic behavior of

.
1

pα(x)
Rα(pα, f )(x),

as .‖x‖ → +∞, with .f ∈ C∞
c (Rd), and when the associated Lévy measure on .R

d

is given by .να(du) = du/‖u‖α+d .

Lemma 3.3 Let .d ≥ 1, let .α ∈ (1, 2), and let .να(du) = du/‖u‖α+d . Let .Rα be
given by (3.8) and let .pα be the positive Lebesgue density of the nondegenerate
symmetric .α-stable probability measure .μα with Lévy measure .να . Then, for all
.f ∈ C∞

c (Rd) and all x large enough,
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.

∥∥∥∥ 1

pα(x)
Rα(pα, f )(x)

∥∥∥∥ ≤ C (1 + ‖x‖) ,

for some positive constant C depending on .α, d, and f .

Proof Without loss of generality, assume that .f ∈ C∞
c (Rd) is a bump function: i.e.,

.Supp(f ) ⊂ B(0, 1), the Euclidean unit ball of .R
d , and .f (x) ∈ [0, 1], for all .x ∈

R
d . Then, for all .x ∈ R

d such that .‖x‖ ≥ 3,

.
1

pα(x)
Rα(pα, f )(x) = 1

pα(x)

∫
Rd

uνα(du) (pα(x + u) − pα(x)) f (x + u),

= 1

pα(x)

∫
B(0,1)

(u − x)
du

‖u − x‖α+d
(pα(u) − pα(x)) f (u).

Thus, since .‖x‖ ≥ 3,

.

∥∥∥∥ 1

pα(x)
Rα(pα, f )(x)

∥∥∥∥ ≤ C

‖x‖α+d

1

pα(x)

∫
B(0,1)

‖u−x‖du |pα(u)−pα(x)| |f (u)|.

Moreover, for all .x ∈ R
d ,

.
C1

(1 + ‖x‖)α+d
≤ pα(x) ≤ C2

(1 + ‖x‖)α+d
, (3.15)

for some .C1, C2 > 0 two positive constants depending on .α and d. Thus, for all
.‖x‖ ≥ 3,

.

∥∥∥∥ 1

pα(x)
Rα(pα, f )(x)

∥∥∥∥ ≤ Cα,d,f

(1 + ‖x‖)α+d

‖x‖α+d
(1 + ‖x‖) ,

≤ Cα,d,f (1 + ‖x‖) .

This concludes the proof of the lemma. ��
Next, let us investigate pseudo-Poincaré inequality (see, e.g., [51] and the references
therein) for the dual semigroup .((P

να
t )∗t≥0) in .Lp(μα), for all .p ∈ (1, α). To start,

let .(Rα)∗ be defined, for all .f, g ∈ S(Rd) and all .x ∈ R
d , by

.(Rα)∗(g, f )(x) =
∫
Rd

(g(x − u) − g(x))(f (x − u) − f (x))uνα(du).

Proposition 3.4 Let .d ≥ 1, let .α ∈ (1, 2), let .μα be a nondegenerate symmetric
.α-stable probability measure on .R

d , and let .pα be its positive Lebesgue density.
Further, assume that
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.

∥∥∥∥∇(pα)

pα

∥∥∥∥
Lp(μα)

< +∞, p ∈ (1,+∞) (3.16)

and that, for all .p ∈ (1, α) and all .f ∈ C∞
c (Rd),

.

∥∥∥∥ 1

pα

(Rα)∗(pα, f )

∥∥∥∥
Lp(μα)

< +∞. (3.17)

Then, for all .p ∈ (1, α), all .f ∈ C∞
c (Rd), and all .t > 0,

.‖(P να
t )∗(f ) − f ‖Lp(μα) ≤ Cαt1− 1

α

∥∥∥∥(Dα−1)∗(f ) + 1

pα

(Rα)∗(pα, f )

∥∥∥∥
Lp(μα)

∥∥∥∥∇(pα)

pα

∥∥∥∥
Lp(μα)

, (3.18)

for some .Cα > 0 depending only on .α.

Proof The argument is based on duality and on (3.12). Let .f, g ∈ C∞
c (Rd), let

.p ∈ (1, α), and let .p∗ = p/(p − 1). Then by standard semigroup arguments,

.〈(P να
t )∗(f ) − f ; g〉

L2(μα)
=

∫ t

0
〈f ;LαP

να
s (g)〉

L2(μα)
ds,

= −
∫ t

0
〈xf ; ∇P

να
s (g)〉

L2(μα)
ds +

∫ t

0
〈f ; ∇.Dα−1P

να
s (g)〉

L2(μα)
ds,

=
∫ t

0

〈
−xf + (Dα−1)∗(pαf )

pα
; ∇P

να
s (g)

〉
L2(μα)

ds.

First, thanks to (3.12), for all .s ∈ (0, t] and all .x ∈ R
d ,

.∇P να
s (g)(x) = − e−s

(
1 − e−αs

) 1
α

∫
Rd

∇(pα)(y)

pα(y)
g
(
xe−s + (1 − e−sα)

1
α y

)
μα(dy).

Moreover, for all .x ∈ R
d ,

.
(Dα−1)∗(pαf )(x)

pα(x)
= (Dα−1)∗(f )(x) + xf (x) + 1

pα(x)
(Rα)∗(pα, f )(x),

where

.(Rα)∗(pα, f )(x) =
∫
Rd

(pα(x − u) − pα(x))(f (x − u) − f (x))uνα(du).

Thus,

.〈(P να
t )∗(f ) − f ; g〉

L2(μα)
=

∫ t

0

〈
(Dα−1)∗(f ) + 1

pα
(Rα)∗(pα, f ); ∇P

να
s (g)

〉
L2(μα)

ds.
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Now, for all .s ∈ (0, t],

.

〈
(Dα−1)∗(f ) + 1

pα
(Rα)∗(pα, f ); ∇P

να
s (g)

〉
L2(μα)

= − e−s

(
1 − e−αs

) 1
α

∫
Rd

∫
Rd

〈(Dα−1)∗(f )(x)

+ 1

pα(x)
(Rα)∗(pα, f )(x); ∇(pα)(y)

pα(y)
〉

× g

(
xe−s + (1 − e−αs )

1
α y

)
μα(dx)μα(dy).

By Hölder’s inequality,

.

∣∣∣∣∣
〈
(Dα−1)∗(f ) + 1

pα
(Rα)∗(pα, f ); ∇P

να
s (g)

〉
L2(μα)

∣∣∣∣∣ ≤ e−s

(1 − e−αs )
1
α

∥∥∥∥∇(pα)

pα

∥∥∥∥
Lp(μα)

‖g‖
Lp∗

(μα)

×
∥∥∥∥(Dα−1)∗(f ) + 1

pα
(Rα)∗(pα, f )

∥∥∥∥
Lp(μα)

.

Standard arguments allow to conclude the proof of the proposition. ��
The inequality (3.18) is a straightforward generalization of the Gaussian pseudo-
Poincaré inequality. Before moving on, let us discuss the condition (3.16). In the
rotationally invariant case, recall the following classical pointwise bounds: for all
.x ∈ R

d ,

.
C2

(1 + ‖x‖)α+d
≤ prot

α (x) ≤ C1

(1 + ‖x‖)α+d
, (3.19)

for some .C1, C2 positive constants. Moreover (see, e.g., [33]), for all .x ∈ R
d ,

.‖∇(prot
α )(x)‖ ≤ C3

(1 + ‖x‖)α+d+1 ,

for some positive constant .C3, so that the logarithmic derivative of .prot
α is uniformly

bounded on .R
d and so belongs to .Lp(μα), for all .p ≥ 1. Another interesting

case is when the coordinates are independent and distributed according to the same
symmetric .α-stable law on .R with .α ∈ (1, 2). It is straightforward to check that, in
this case, the logarithmic derivative is uniformly bounded on .R

d .

Remark 3.2 Let us end the .α-stable case, .α ∈ (1, 2), with a discussion on .Lp-
Poincaré inequalities, for .p ≥ 2. Classically, by formal semigroup arguments,

.‖f ‖p

Lp(μα) = Ef (Xα)g(Xα) = −
∫ +∞

0
E(Lα)∗(P να

t )∗(f )(Xα)g(Xα)dt,

with .f ∈ C∞
c (Rd) such that .μα(f ) = 0, with .p ≥ 2 and with .g(x) =

sign(f (x))|f (x)|p−1. Moreover, using standard integration by parts and (3.13), for
all .t > 0,
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.E(Lα)∗(P να
t )∗(f )(Xα)g(Xα) = −

∫
Rd

〈 −xe−αt

(1 − e−αt )
(P

να
t )∗(f )(x)

+ e−t(
1 − e−αt

) (P να
t )∗(hf )(x); ∇(g)(x)

〉
μα(dx).

Now, based on Proposition 3.4 and on the fact that .p ≥ 2, it does not seem possible
to reproduce the semigroup proof of the .Lp-Poincaré inequality presented in the
Gaussian case. Indeed, the bad concentration properties of the .α-stable probability
measures, with .α ∈ (1, 2), as well as the occurrence of the remainder terms .Rα

and .(Rα)∗ prohibit the use of Hölder’s inequality, followed by the Cauchy-Schwarz
inequality.

Very recently, moment estimates for heavy-tailed probability measures on .R
d of

Cauchy-type have been obtained in [1, Corollary 4.3.] (see, also .(4.2) and .(4.3)

and the discussion above these) based on weighted Beckner-type inequalities. Note
that the right-hand sides of these inequalities put into play weighted norms of the
classical gradient operator. Let us observe that it is possible to obtain these weighted
Poincaré inequalities from the non-local ones in some cases, as shown in the next
proposition.

Proposition 3.5 Let .μ be the standard exponential probability measure on
.(0,+∞) and let .ν be the associated Lévy measure on .(0,+∞). Then, for all
.f ∈ S(R),

.

∫
(0,+∞)

∫
(0,+∞)

|f (x + u) − f (x)|2ν(du)μ(dx) ≤
∫

(0,+∞)

w|f ′(w)|2μ(dw).

Proof First, by Jensen’s inequality,

.|f (x + u) − f (x)|2 ≤ u2
∫ 1

0
|f ′(x + tu)|2dt.

Thus, since .ν(du)/du = e−u/u, .u > 0,

.

∫
(0,+∞)2

|f (x + u) − f (x)|2ν(du)μ(dx) ≤
∫
(0,+∞)2

u

(∫ 1

0
|f ′(x + tu)|2dt

)
e−ue−xdxdu.

Now, for all .t ∈ (0, 1), let .Dt = {(w, z) ∈ (0,+∞)2 : w > tz} and let .�t be the
.C1-diffeomorphism from .(0,+∞)2 to .Dt defined, for all .(x, u) ∈ (0,+∞)2, by

.�t(x, u) = (x + tu, u).

Thus, by the change of variables with .�t ,
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.

∫
(0,+∞)2

|f (x + u) − f (x)|2ν(du)μ(dx) ≤
∫
(0,+∞)2

z

(∫ 1

0
|f ′(w)|2dt

)
1Dt

(w, z)e−ze−(w−tz)dwdz,

≤
∫ +∞

0

∫ 1

0
|f ′(w)|2e−w

(∫ +∞
0

ze−zetz1Dt
(w, z)dz

)
dtdw.

Now,

.

∫ 1

0

(∫ w
t

0
ze−zezt dz

)
dt =

∫ 1

0

(∫ w

0

y

t
e− y

t ey dy

t

)
dt,

=
∫ w

0
yey

(∫ 1

0
e− y

t
dt

t2

)
dy =

∫ w

0
yey e−y

y
dy = w.

This concludes the proof of the lemma. ��

4 Stein’s Kernels and High-Dimensional CLTs

This section shows how to apply [8, Theorem 5.10.] or Theorem 2.1 to build
Stein’s kernels to provide stability results for Poincaré-type inequality and rates
of convergence, in the 1-Wasserstein distance, in a high-dimensional central limit
theorem. Let .d ≥ 1 and let .� be a covariance matrix, which is not identically null,
and let .γ� be the centered Gaussian probability measure on .R

d with covariance
matrix .�; i.e., the characteristic function of the corresponding Gaussian random
vector is given, for all .ξ ∈ R

d , by

.γ̂�(ξ) = exp

(
−〈ξ ;�(ξ)〉

2

)
.

Next, let .U� be the Poincaré functional formally defined, for all suitable .μ ∈
M1(R

d) (.M1(R
d) is the set of probability measures on .R

d ), by

.U�(μ) := sup
f ∈H�(μ)

Varμ(f )∫
Rd 〈∇(f )(x);� (∇(f )(x))〉μ(dx)

,

where .H�(μ) is the set of Borel measurable real-valued functions f defined on .R
d

such that

.

∫
Rd

|f (x)|2 μ(dx) < +∞, 0 <

∫
Rd

〈∇(f )(x);� (∇(f )(x))〉μ(dx) < +∞

and such that .Varμ(f ) > 0. It is well known since the works [23, Theorem 3] and
[31, Theorem .2.1] that the functional .U� is rigid. Let us adopt the methodology
developed in [7, 8, 34, 41] using Stein’s method to obtain a stability result that
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generalizes the one for the isotropic case. For the sake of completeness, the
rigidity result is re-proved next via semigroup methods, although the result is rather
immediate from (2.26). Note that in [31, Theorem .2.1], the given covariance matrix
.� = (

σi,j

)
1≤i,j≤d

is such that .σi,i > 0, for all .i ∈ {1, . . . , d}.
Lemma 4.1 Let .d ≥ 1 and let .� be a not identically null .d × d covariance
matrix. Then

.U�(γ�) = 1.

Proof The proof is very classical and relies on a semigroup argument to prove the
Poincaré inequality for the Gaussian probability measure .γ� and on the fact that
the functions .x �→ xj , for all .j ∈ {1, . . . , d}, are eigenfunctions of the Ornstein-
Uhlenbeck operator associated with .γ� . Let .(P �

t )t≥0 be the Ornstein-Uhlenbeck
semigroup given, for all .f ∈ Cb(R

d), all .t ≥ 0, and all .x ∈ R
d , by

.P �
t (f )(x) =

∫
Rd

f
(
xe−t +

√
1 − e−2t y

)
γ�(dy).

From the above Mehler formula, it is clear that the probability measure .γ� is an
invariant measure for the semigroup .(P �

t )t≥0; that .S(Rd) is a core for the generator,
denoted by .L� , of .(P �

t )t≥0; and that, for all .f ∈ S(Rd) and all .x ∈ R
d ,

.L�(f )(x) = −〈x; ∇(f )(x)〉 + ��(f )(x),

with

.��(f )(x) = 1

(2π)d

∫
Rd

F(f )(ξ)ei〈x;ξ〉〈iξ ;�(iξ)〉dξ = 〈�; Hess(f )(x)〉HS,

where .〈A;B〉HS = Tr(AtB). Next, let .f ∈ S(Rd) be such that .
∫
Rd f (x)γ�(dx) =

0. Differentiating the variance of .P �
t (f ) with respect to the time parameter gives

.
d

dt

(
EP �

t (f )(X)2
)

= 2EP �
t (f )(X)L�P �

t (f )(X),

where .X ∼ γ� . Hence, for all .t ≥ 0,

.
d

dt

(
EP �

t (f )(X)2
)

= 2EP �
t (f )(X)

(−〈X; ∇(P �
t (f ))(X)〉 + 〈�; Hess

(
P �

t (f )
)
(X)〉HS

)
.

Now, since .S(Rd) is a core for .L� ; invariant with respect to .P �
t , for all .t ≥ 0; and

stable for the pointwise multiplication of functions,

.E〈X; ∇
(
P �

t (f )2
)

(X)〉 = E〈�; Hess
(
P �

t (f )2
)

(X)〉HS.
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Thus, using the Leibniz formula, for all .t ≥ 0,

.
d

dt

(
EP �

t (f )(X)2
)

= −
(
E〈�; Hess

(
P �

t (f )2
)

(X)〉HS − 2EP �
t (f )(X)〈�; Hess

(
P �

t (f )
)
(X)〉HS

)
,

= −E〈�; Hess
(
P �

t (f )2
)

(X) − 2P �
t (f )(X) Hess

(
P �

t (f )
)
(X)〉HS,

= −2E〈∇ (
P �

t (f )
)
(X); �

(∇ (
P �

t (f )
)
(X)

)〉.

Now, the commutation formula, .∇ (
P �

t (f )
) = e−tP �

t (∇(f )), ensures that

.E〈∇
(
P�

t (f )
)

(X); �
(
∇

(
P�

t (f )
)

(X)
)
〉 = e−2t

E〈P�
t (∇(f )) (X); �P�

t (∇(f )) (X)〉,

= e−2t
E〈√�P�

t (∇(f )) (X); √
�P�

t (∇(f )) (X)〉,

= e−2t
E〈P�

t

(√
�(∇(f ))

)
(X); P�

t

(√
�(∇(f ))

)
(X)〉,

= e−2t
E

∥∥∥P�
t

(√
�(∇(f ))

)
(X)

∥∥∥2
,

≤ e−2t
EP�

t

(∥∥∥√
�(∇(f ))

∥∥∥2
)

(X),

≤ e−2t
E

∥∥∥√
�(∇(f ))(X)

∥∥∥2
.

Thus, for all .t ≥ 0,

.
d

dt

(
EP �

t (f )(X)2
)

≥ −2e−2t
E

∥∥∥√
�(∇(f ))(X)

∥∥∥2
.

Integrating with respect to t between 0 and .+∞ ensures that

.Ef (X)2 ≤ E

∥∥∥√
�(∇(f ))(X)

∥∥∥2
. (4.1)

This last inequality implies that .U�(γ�) ≤ 1. Next, for all .j ∈ {1, . . . , d}, let .gj be
the function defined, for all .x ∈ R

d , by .gj (x) = xj . Now, for all .j ∈ {1, . . . , d},

. Varγ� (gj ) =
∫
Rd

x2
j γ�(dx) = σj,j =

∫
Rd

〈∇(gj )(x);�(∇(gj ))(x)〉γ�(dx),

where .� = (σi,j )1≤i,j≤d . Thus, .U�(γ�) ≥ 1. This concludes the proof of the
lemma. ��
Remark 4.1 The proof of the Poincaré-type inequality (4.1) for the probability
measure .γ� could have been performed without using the semigroup .(P �

t )t≥0.
Instead, one could use the covariance representation (2.26). Indeed, taking .g =
f and using the Cauchy-Schwarz inequality, one retrieves the inequality (4.1).
Following the end of the proof of Lemma 4.1, one can conclude that .U�(γ�) = 1
also when .� is generic but different from 0.
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The next lemma provides the rigidity result for .U� .

Lemma 4.2 Let .d ≥ 1 and let .� = (σi,j )1≤i,j≤d be a not identically null .d ×
d covariance matrix. Let .μ be a probability measure on .R

d with a finite second
moment such that, for all .i ∈ {1, . . . , d},

.

∫
Rd

xμ(dx) = 0,

∫
Rd

x2
i μ(dx) = σi,i .

Then .U�(μ) = 1 if and only if .μ = γ� .

Proof The sufficiency is a direct consequence of Lemma 4.1 or Remark 4.1. Thus,
let us prove the direct implication. Assume that .U�(μ) = 1. Then, for all .f ∈
H�(μ),

. Varμ(f ) ≤
∫
Rd

��(f, f )(x)μ(dx) =: E�(f, f ), (4.2)

with, for all .x ∈ R
d ,

.��(f, f )(x) = 〈∇(f )(x);�(∇(f )(x))〉 =
∥∥∥√

�(∇(f )(x))

∥∥∥2
.

Now, for all .j ∈ {1, . . . , d} and all .ε ∈ R with .ε �= 0, let .fj be defined, for all
.x ∈ R

d , by

.fj (x) = gj (x) + εf (x),

for some .f ∈ S(Rd) and with .gj (x) = xj . Then, for all .j ∈ {1, . . . , d},

. Varμ(fj ) = Covμ(gj + εf, gj + εf ) = Varμ(gj ) + 2ε Covμ(gj , f ) + ε2 Varμ(f )

and

.E�(fj , fj ) = E�(gj , gj ) + 2εE�(gj , f ) + ε2E�(f, f ).

(Here and in the sequel, .Covμ(f, g) indicates the covariance of f and g under
.μ). Thus, thanks to (4.2), for all .j ∈ {1, . . . , d},

. Covμ(gj , f ) = E�(gj , f ).

Namely, for all .j ∈ {1, . . . , d} and all .f ∈ S(Rd),

.EXjf (X) = E〈�(ej ); ∇(f )(X)〉, X ∼ μ,
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with .ej = (0, . . . , 0, 1, 0, . . . , 0)T . The end of the proof follows easily by a standard
argument involving the characteristic function. Indeed, via Fourier inversion and
duality, for all .j ∈ {1, . . . , d} and all .ξ ∈ R

d ,

.∂ξj

(
ϕμ

)
(ξ) = −〈�(ej ); ξ 〉ϕμ(ξ),

where .ϕμ is the characteristic function of .μ, which is .C1 on .R
d , since .μ has a finite

second moment. Then, for all .ξ ∈ R
d ,

.〈ξ ; ∇(ϕμ)(ξ)〉 = −〈ξ ;�(ξ)〉ϕμ(ξ).

Passing to spherical coordinates, for all .(r, θ) ∈ (0,+∞) × S
d−1,

.∂r

(
ϕμ

)
(rθ) = −r〈θ;�(θ)〉ϕμ(rθ).

Fixing .θ ∈ S
d−1, integrating with respect to r , and using .ϕμ(0) = 1, for all .(r, θ) ∈

(0,+∞) × S
d−1,

.ϕμ(rθ) = exp

(
− r2

2
〈θ;�(θ)〉

)
.

This concludes the proof of the lemma. ��
Before moving to the proof of the stability result, let us recall some well-known
facts about Stein’s method for the multivariate Gaussian probability measure .γ� on
.R

d . The standard references are [14, 24, 29, 42, 43, 54, 55, 57, 58, 60, 62, 63, 65,
68, 69]. In the sequel, let .h ∈ C∞

c (Rd) be such that

.‖h‖Lip := sup
x,y∈Rd , x �=y

|h(x) − h(y)|
‖x − y‖ = sup

x∈Rd

‖∇(h)(x)‖ ≤ 1

and let .fh be defined, for all .x ∈ R
d , by

.fh(x) = −
∫ +∞

0

(
P �

t (h)(x) − Eh(X)
)
dt, X ∼ γ�. (4.3)

The next lemma recalls regularity results for .fh as well as a representation formula
for its Hessian matrix, which allows to obtain dimension-free bounds for the
supremum norms involving the operator or the Hilbert-Schmidt norms of .Hess(fh).

Lemma 4.3 Let .d ≥ 1 and let .� be a nondegenerate .d × d covariance matrix. Let
.h ∈ C∞

c (Rd) be such that .‖h‖Lip ≤ 1 and let .fh be given by (4.3). Then, .fh is well
defined, twice continuously differentiable on .R

d , and
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. sup
x∈Rd

‖∇(fh)(x)‖ ≤ 1, sup
x∈Rd

‖ Hess(fh)(x)‖op ≤
√

2

π
‖�− 1

2 ‖op, sup
x∈Rd

‖ Hess(fh)(x)‖HS ≤ ‖�− 1
2 ‖op.

Moreover, if .h ∈ C∞
c (Rd) is such that

. sup
x∈Rd

‖ Hess(h)(x)‖op ≤ 1,

then

. sup
x∈Rd

‖ Hess(fh)(x)‖op ≤ 1

2
.

Finally, if .h ∈ C∞
c (Rd) is such that

.M̃2(h) := sup
x∈Rd

‖ Hess(h)(x)‖HS ≤ 1,

then

. sup
x∈Rd

‖ Hess(fh)(x)‖HS ≤ 1

2
.

Proof Thanks to the Mehler formula, for all .t ≥ 0 and all .x ∈ R
d ,

.
∣∣P �

t (h)(x) − Eh(X)
∣∣ ≤

∫
Rd

∣∣∣h (
xe−t +

√
1 − e−2t y

)
− h(y)

∣∣∣ γ�(dy),

≤ ‖h‖Lip

(
e−t‖x‖ +

∣∣∣1 −
√

1 − e−2t

∣∣∣
∫
Rd

‖y‖γ�(dy)

)
.

The right-hand side of the previous inequality is clearly integrable, with respect
to t , on .(0,+∞). Thus, .fh is well defined on .R

d . The fact that .fh is twice con-
tinuously differentiable on .R

d follows from the commutation formula .∇P �
t (h) =

e−tP �
t (∇(h)). Now, for all .x ∈ R

d ,

.∇(fh)(x) = −
∫ +∞

0
e−tP �

t (∇(h))(x)dt.

Thus, for all .u ∈ R
d such that .‖u‖ = 1,

.〈∇(fh)(x); u〉 = −
∫ +∞

0
e−tP �

t (〈u; ∇(h)〉)(x)dt.

Then, for all .x ∈ R
d and all .u ∈ R

d such that .‖u‖ = 1,
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. |〈∇(fh)(x); u〉| ≤
(∫ +∞

0
e−t dt

)
‖h‖Lip ≤ 1.

Next, let us deal with the Hessian matrix of .fh. For all .k, � ∈ {1, . . . , d} and all
.x ∈ R

d ,

.∂k∂� (fh) (x) = −
∫ +∞

0
e−2tP �

t (∂k∂�(h))(x)dt.

Moreover, thanks to Bismut’s formula, for all .k, � ∈ {1, . . . , d}, all .x ∈ R
d , and all

.t > 0,

.P �
t (∂k∂�(h))(x) =

∫
Rd

∂k∂�(h)
(
xe−t +

√
1 − e−2t y

)
γ�(dy)

= 1√
1 − e−2t

∫
Rd

〈�−1(e�); y〉∂k(h)
(
xe−t +

√
1 − e−2t y

)
γ�(dy),

and so, for all .�, k ∈ {1, . . . , d} and all .x ∈ R
d ,

.∂k∂� (fh) (x) = −
∫ +∞

0

e−2t√
1 − e−2t

(∫
Rd

〈�−1(e�); y〉∂k(h)
(
xe−t +

√
1 − e−2t y

)
γ�(dy)

)
dt.

Thus, for all .x ∈ R
d ,

. Hess(fh)(x) = −
∫ +∞

0

e−2t√
1 − e−2t

∫
Rd

�−1(y)
(
∇(h)

(
xe−t +

√
1 − e−2t y

))T
γ�(dy)dt.

(4.4)

Now, let .u, v ∈ R
d be such that .‖u‖ = ‖v‖ = 1. Then, for all .x ∈ R

d ,

. |〈Hess(fh)(x)u; v〉| =
∣∣∣∣
∫ +∞

0

e−2t

√
1 − e−2t

(∫
Rd

〈�−1(y); v〉〈∇(h)
(
xe−t +

√
1 − e−2t y

)
; u〉γ�(dy)

)
dt

∣∣∣∣ ,

≤
(∫ +∞

0

e−2t

√
1 − e−2t

dt

)∫
Rd

∣∣∣〈�−1(y); v〉
∣∣∣ γ�(dy),

≤
∫
Rd

∣∣∣〈�− 1
2 (y); v〉

∣∣∣ γ (dy),

≤ ‖�− 1
2 ‖op

(∫
R

|x|e− x2
2

dx√
2π

)
,

≤
√

2

π
‖�− 1

2 ‖op,

where .γ is the standard Gaussian measure on .R
d (i.e., with the covariance matrix

given by .Id ) and since, under .γ , for all .u ∈ S
d−1, .〈�− 1

2 (y);u〉 is a centered normal
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random variable with variance .‖�− 1
2 (u)‖2. It remains to estimate the Hilbert-

Schmidt norm of .Hess(fh)(x) based on (4.4). Through a similar argument and using
Hölder’s inequality for Schatten norms, for all .x ∈ R

d ,

.‖ Hess(fh)(x)‖HS ≤ sup
A∈Md×d (R), ‖A‖HS=1

‖A�− 1
2 ‖HS ≤ ‖�− 1

2 ‖op,

where .Md×d(R) denotes the set of .d ×d matrices with real coefficients. Finally, let
us prove that when .h ∈ C∞

c (Rd) with

. sup
x∈Rd

‖ Hess(h)(x)‖op ≤ 1,

then

. sup
x∈Rd

‖ Hess(fh)(x)‖op ≤ 1

2

(and similarly with the operator norm replaced by the Hilbert-Schmidt norm). From
the previous computations, for all .�, k ∈ {1, . . . , d} and all .x ∈ R

d ,

.∂�∂k (fh) (x) = −
∫ +∞

0
e−2tP �

t (∂k∂�(h))(x)dt.

Then, for all .u, v ∈ S
d−1 and all .x ∈ R

d ,

.〈Hess(fh)(x)u; v〉 = −
∫ +∞

0
e−2tP �

t (〈Hess(h)u; v〉) (x)dt.

The conclusion easily follows. ��
Remark 4.2

(i) To the best of our knowledge, the bound,

. sup
x∈Rd

‖ Hess(fh)(x)‖HS ≤ ‖�− 1
2 ‖op, (4.5)

for .h ∈ C1(Rd) with .‖h‖Lip ≤ 1, is the best available in the literature. It
generalizes the bound obtained in [29, Lemma .2.2] for the isotropic case,
amends [54, Proof of Lemma 2], and improves the bound obtained in [58,
Inequality .(13)] (see also [57, Lemma .3.3]).

(ii) Assuming that .d = 2 and that .� = I2, let us compute the quantity

.J (A) :=
∫
R2

‖A(y)‖γ (dy),
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for some specific values of A, a .2 × 2 matrix with .‖A‖HS = 1. Take, for
instance, .A = I2/

√
2. Then, by standard computations using polar coordinates,

.J

(
1√
2
I2

)
= 1√

2

∫
R2

‖y‖ exp

(
−‖y‖2

2

)
dy

2π
=

√
π

2
,

which seems to question the bound obtained in [54, Proof of Lemma 2, page
161].

(iii) In [38, proof of Theorem .1.2], the bound (4.5) appears as the corrected
inequality .(3.13) in there.

Next, let us discuss the notion and the existence of Stein’s kernels with respect
to the Gaussian probability measure .γ� . The idea is the following: let .μ be a
probability measure on .R

d with a finite second moment such that .
∫
Rd xμ(dx) = 0

and .Cov(Xμ,Xμ) = �, where .Xμ ∼ μ. Moreover, assume that there exists .τμ,
a function defined on .R

d with values in .Md×d(R), such that, for all appropriate
vector-valued functions f defined on .R

d ,

.

∫
Rd

〈τμ(x); ∇(f )(x)〉HSμ(dx) =
∫
Rd

〈x; f (x)〉μ(dx). (4.6)

In the vector-valued case, .∇(f ) denotes the Jacobian matrix of f . Then the classical
argument for bounding distances goes as follows: let .h ∈ C1(Rd) be such that
.‖h‖Lip ≤ 1, and let .fh be given by (4.3). (Actually, in finite dimension, one can take,
without loss of generality, .h ∈ C∞

c (Rd), the main point being that .‖h‖Lip ≤ 1.) Then
.fh is a strong solution to the following partial differential equation: for all .x ∈ R

d ,

. − 〈x; ∇ (fh) (x)〉 + 〈�; Hess (fh) (x)〉HS = h(x) − Eh(X), X ∼ γ�.

Integrating with respect to .μ and using the formal definition of .τμ give

.
∣∣Eh(Xμ) − Eh(X)

∣∣ = ∣∣E (−〈Xμ; ∇ (fh) (Xμ)〉 + 〈�; Hess (fh) (Xμ)〉HS

)∣∣ ,
= ∣∣E (〈� − τμ(Xμ); Hess (fh) (Xμ)〉HS

)∣∣ ,
with .Xμ ∼ μ. Then by the Cauchy-Schwarz inequality and the bound obtained in
Lemma 4.3,

.
∣∣Eh(Xμ) − Eh(X)

∣∣ ≤ ‖�− 1
2 ‖op

(
E

(
‖τμ(Xμ) − �‖2

HS

)) 1
2
. (4.7)

Observe that the right-hand side of the previous inequality does not depend on h

anymore. In the sequel, let us explain how to prove the existence of .τμ and how to
bound the Stein discrepancy based on closed form techniques. For this purpose, let
us consider the following bilinear symmetric nonnegative definite form defined, for
all .f, g ∈ C∞

c (Rd ,Rd), by
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.E�,μ(f, g) =
∫
Rd

〈� (∇(g)(x)) ; ∇(f )(x)〉HSμ(dx),

where .� is a nondegenerate covariance matrix and where .μ is a probability measure
on .R

d with a finite second moment such that

.

∫
Rd

xμ(dx) = 0,

∫
Rd

xxT μ(dx) = �.

Proposition 4.1 Let .d ≥ 1 and let .� be a nondegenerate .d × d covariance
matrix. Let .μ be a probability measure on .R

d with a finite second moment such
that

.

∫
Rd

xμ(dx) = 0,

∫
Rd

xxT μ(dx) = �.

Let the form .
(
E�,μ, C∞

c (Rd ,Rd)
)
be closable. Finally, let there exists .U�,μ > 0

such that, for all .f ∈ C∞
c (Rd ,Rd) with .

∫
Rd f (x)μ(dx) = 0,

.

∫
Rd

‖f (x)‖2μ(dx) ≤ U�,μ

∫
Rd

〈� (∇(f )(x)) ; ∇(f )(x)〉HSμ(dx). (4.8)

Then there exists .τμ such that, for all .f ∈ D(E�,μ),

.

∫
Rd

〈x; f (x)〉μ(dx) =
∫
Rd

〈∇(f )(x); τμ(x)〉HSμ(dx).

Moreover,

.

∫
Rd

‖τμ(x)‖2
HSμ(dx) ≤ U�,μ ‖�‖2

HS .

Proof First, let us build Stein’s kernel .τμ. Since the form .
(
E�,μ, C∞

c (Rd ,Rd)
)

is
closable, consider its smallest closed extension denoted by .

(
E�,μ,D(E�,μ)

)
, where

.D(E�,μ) is its dense linear domain. Moreover, let .Lμ, .(G
μ
δ )δ>0, and .(P

μ
t )t≥0 be

the corresponding generator, the strongly continuous resolvent, and the strongly
continuous semigroup. In particular, recall that, for all .f ∈ L2(Rd ,Rd , μ) and all
.δ > 0,

.G
μ
δ (f ) =

∫ +∞

0
e−δtP

μ
t (f )dt.

Next, let .f ∈ C∞
c (Rd ,Rd) be such that .

∫
Rd f (x)μ(dx) = 0. Then by the very

definition of the generator .Lμ and integration by parts,
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.
d

dt

(
E‖Pμ

t (f )(Xμ)‖2
)

= 2E〈Pμ
t (f )(Xμ);LμP

μ
t (f )(Xμ)〉 = −2E�,μ

(
P

μ
t (f ), P

μ
t (f )

)

≤ − 2

U�,μ
E‖Pμ

t (f )(Xμ)‖2,

with .Xμ ∼ μ. Then, for all .f ∈ C∞
c (Rd ,Rd) such that .

∫
Rd f (x)μ(dx) = 0,

.
∥∥P

μ
t (f )

∥∥2
L2(Rd ,Rd ,μ)

≤ exp

(
− 2t

U�,μ

)
‖f ‖2

L2(Rd ,Rd ,μ)
,

which, via a density argument, clearly extends to all .f ∈ L2(Rd ,Rd , μ) with
.
∫
Rd f (x)μ(dx) = 0. Then from Theorem 2.1, for all .g ∈ L2(Rd ,Rd , μ) such

that .
∫
Rd g(x)μ(dx) = 0 and all .f ∈ D(E�,μ),

.E�,μ(G
μ

0+(g), f ) =
∫
Rd

〈g(x); f (x)〉μ(dx). (4.9)

Now, since .μ has a finite second moment and since .
∫
Rd xμ(dx) = 0, then set

.g(x) = x, for all .x ∈ R
d , and so for .μ-a.e. .x ∈ R

d ,

.τμ(x) = �∇ (
G

μ

0+(g)
)
(x).

Finally, taking .f (x) = �G
μ

0+(g)(x), .μ-a.e. .x ∈ R
d , in (4.9) gives

.

∫
Rd

‖τμ(x)‖2
HSμ(dx) =

∫
Rd

〈�x;G
μ

0+(g)(x)〉μ(dx)

=
∫
Rd

〈� 1
2 x;�

1
2 G

μ

0+(g)(x)〉μ(dx).

Then by the Cauchy-Schwarz inequality,

.

∫
Rd

‖τμ(x)‖2
HSμ(dx) ≤ U�,μ ‖�‖2

HS .

This concludes the proof of the proposition. ��
Remark 4.3

(i) Let us analyze the closability assumption on the bilinear form .
(
E�,μ, C∞

c (Rd ,

.R
d)

)
. If .μ = γ , then by the Gaussian integration by parts, for all .f, g ∈

C∞
c (Rd ,Rd),

.

∫
Rd

〈∇ (f ) (x); ∇ (g) (x)〉HSγ (dx) =
∫
Rd

〈f (x); (−L) (g)(x)〉γ (dx),
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where, for all .x ∈ R
d and all .j ∈ {1, . . . , d},

.L(gj )(x) = −〈x; ∇(gj )(x)〉 + �(gj )(x).

Now, let .(fn)n≥1 be a sequence of functions such that, for all .n ≥ 1,
.fn ∈ C∞

c (Rd ,Rd), .‖fn‖L2(Rd ,Rd ,γ ) → 0, as n tends to .+∞, and
.(∇(fn))n≥1 is a Cauchy sequence in .L2(Rd ,H, γ ), where .(H, 〈·; ·〉H) =
(Md×d(R), 〈·; ·〉HS). Since .L2(Rd ,H, γ ) is complete, there exists .F ∈
L2(Rd ,H, γ ) such that .∇(fn) → F , as n tends to .+∞. Moreover, for all
.ψ ∈ C∞

c (Rd ,Rd),

.

∫
Rd

〈F ; ∇(ψ)(x)〉HSγ (dx) = lim
n→+∞

∫
Rd

〈∇(fn)(x); ∇(ψ)(x)〉HSγ (dx),

= lim
n→+∞

∫
Rd

〈fn(x); (−L) (ψ)(x)〉γ (dx),

= lim
n→+∞〈fn; (−L)(ψ)〉L2(Rd ,Rd ,γ ) = 0.

Since this is true for all .ψ ∈ C∞
c (Rd ,Rd), .F = 0 in .L2(Rd ,H, γ ), and

therefore, the form is closable.
(ii) Let us assume that .μ(dx) = ψ(x)dx, where .ψ is the positive Radon-Nikodym

derivative of .μ with respect to the Lebesgue measure. Moreover, let us assume
that .� = Id , the .d × d identity matrix, and that .ψ ∈ C1(Rd) with

.

∫
Rd

∣∣∣∣∂j (ψ)(x)

ψ(x)

∣∣∣∣
2

μ(dx) < +∞, j ∈ {1, . . . , d}. (4.10)

Then through standard integration by parts, for all .f, g ∈ C∞
c (Rd ,Rd),

.

∫
Rd

〈∇(f )(x); ∇(g)(x)〉HSμ(dx) =
∫
Rd

〈f (x); (−Lψ)(g)(x)〉μ(dx),

with, for all .i ∈ {1, . . . , d} and all .x ∈ R
d ,

.Lψ(gi)(x) = �(gi)(x) +
〈∇(ψ)(x)

ψ(x)
; ∇(gi)(x)

〉
.

Finally, reasoning as in .(i), one can prove that the form .
(
Eμ, C∞

c (Rd ,Rd)
)

is
closable since .ψ ∈ C1(Rd) and since the condition (4.10) holds.

(iii) In [27] (see also [3]), sharper sufficient conditions are put forward which
ensure that the form .

(
Eμ, C∞

c (Rd ,Rd)
)

is closable. Indeed, assume that
.μ(dx) = ψ(x)2dx with .ψ ∈ H 1

loc(R
d , dx), where .H 1

loc(R
d , dx) is the

set of functions in .L2
loc(R

d , dx) such that their weak gradient belongs to
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.L2
loc(R

d , dx) (here, .L2
loc(R

d , dx) is the space of locally square-integrable
functions on .R

d ). Then reasoning as in .(i) and .(ii), one can prove that the
induced form is closable since, for any K compact subset of .R

d ,

.

∫
K

‖∇(ψ)(x)‖2 dx < +∞.

Let us pursue the discussion with a first stability result.

Theorem 4.1 Let .d ≥ 1 and let .� be a nondegenerate .d × d covariance matrix.
Let .γ� be the centered Gaussian probability measure with covariance matrix .� and
let .μ be a probability measure on .R

d with a finite second moment such that

.

∫
Rd

xμ(dx) = 0,

∫
Rd

xxT μ(dx) = �.

Let the form .
(
E�,μ, C∞

c (Rd ,Rd)
)
be closable. Finally, let there exists .U�,μ > 0

such that, for all .f ∈ C∞
c (Rd ,Rd) with .

∫
Rd f (x)μ(dx) = 0,

.

∫
Rd

‖f (x)‖2μ(dx) ≤ U�,μ

∫
Rd

〈� (∇(f )(x)) ; ∇(f )(x)〉HSμ(dx).

Then

.W1(μ, γ�) ≤ ‖�− 1
2 ‖op‖�‖HS

√
U�,μ − 1. (4.11)

Proof Recall that

.W1(μ, γ�) = sup
‖h‖Lip≤1

∣∣Eh(Xμ) − Eh(X)
∣∣ ,

with .Xμ ∼ μ and .X ∼ γ� . Moreover, by standard approximation arguments (see
Lemmas 5.1 and 5.2 of the Appendix),

.W1(μ, γ�) = sup
h∈C∞

c (Rd ), ‖h‖Lip≤1

∣∣Eh(Xμ) − Eh(X)
∣∣ .

Now, let .h ∈ C∞
c (Rd) be such that .‖h‖Lip ≤ 1. Thus, thanks to Lemma 4.3 and to

Stein’s method applied to the multivariate Gaussian probability measure .γ� ,

.
∣∣Eh(Xμ) − Eh(X)

∣∣ ≤ ‖�− 1
2 ‖op

(
E

(
‖τμ(Xμ) − �‖2

HS

)) 1
2
.

Next, from (4.6) and Proposition 4.1,
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.E
∥∥τμ

(
Xμ

) − �
∥∥2

HS
= E‖τμ(Xμ)‖2

HS + ‖�‖2
HS − 2E〈τμ(Xμ);�〉HS,

= E‖τμ(Xμ)‖2
HS + ‖�‖2

HS − 2E〈Xμ;�Xμ〉,
= E‖τμ(Xμ)‖2

HS − ‖�‖2
HS,

≤ ‖�‖2
HS

(
U�,μ − 1

)
.

��
Remark 4.4

(i) When .� = Id , the inequality (4.11) boils down to

.W1(μ, γ ) ≤ √
d
√

UId,μ − 1, (4.12)

which matches the upper bound obtained in [34, Theorem .4.1] for the 2-
Wasserstein distance based on [52, Proposition .3.1].

(ii) Note that the previous reasoning ensures as well the following bound (which
is relevant in an infinite dimensional setting): for all .μ as in Theorem 4.1,

.d̃W2(μ, γ�) ≤ 1

2
‖�‖HS

√
U�,μ − 1, (4.13)

with

.d̃W2(μ, γ�) := sup
h∈C2(Rd ),‖h‖Lip≤1, M̃2(h)≤1

∣∣∣∣
∫
Rd

h(x)μ(dx) −
∫
Rd

h(x)γ�(dx)

∣∣∣∣ .

In the forthcoming result, a regularization argument shows how to remove the
closability assumption.

Theorem 4.2 Let .d ≥ 1 and let .� be a nondegenerate .d × d covariance matrix.
Let .γ� be the centered Gaussian probability measure with covariance matrix .� and
let .μ be a probability measure on .R

d with a finite second moment such that

.

∫
Rd

xμ(dx) = 0,

∫
Rd

xxT μ(dx) = �.

Finally, let there exists .U�,μ > 0 such that for all .f ∈ C∞
c (Rd ,Rd) with

.
∫
Rd f (x)μ(dx) = 0,

.

∫
Rd

‖f (x)‖2μ(dx) ≤ U�,μ

∫
Rd

〈� (∇(f )(x)) ; ∇(f )(x)〉HSμ(dx).

Then
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.W1(μ, γ�) ≤ ‖�− 1
2 ‖op‖�‖HS

√
U�,μ − 1. (4.14)

Proof Let .d ≥ 1 and let .� be a nondegenerate covariance matrix. Let .ε > 0 and let
.γε be the centered Gaussian probability measure on .R

d with the covariance matrix
given by .ε2�. Let .μ be a centered probability measure on .R

d with a finite second
moment such that

.

∫
Rd

xxT μ(dx) = �,

and satisfying the Poincaré-type inequality (4.8) with constant .U�,μ. Next, let .με be
the probability measure on .R

d defined through the following characteristic function:
for all .ξ ∈ R

d ,

.μ̂ε (ξ) := μ̂(ξ) exp

(
−ε2〈ξ ;�(ξ)〉

2

)
,

and let .Xε ∼ με. Then

.Xε = LXμ + Zε,

where .(Xμ,Zε) are independent with .Xμ ∼ μ and .Zε ∼ γε and where .= L stands
for equality in distribution. Next, let .Eε be the bilinear symmetric form defined, for
all .f, g ∈ C∞

c (Rd ,Rd), by

.Eε(f, g) =
∫
Rd

〈�ε (∇(f )(x)) ; ∇(g)(x)〉HSμε(dx),

where .�ε := (1 + ε2)�. In particular, the probability measure .με is absolutely
continuous with respect to the Lebesgue measure with density .ψε given, for all
.x ∈ R

d , by

.ψε(x) =
∫
Rd

pε(x − y)μ(dy),

where .pε is the density of the nondegenerate Gaussian probability measure .γε. Let
us prove that the form .

(
Eε, C∞

c (Rd ,Rd)
)

is closable. Let .(fn)n≥1 be a sequence of
functions in .C∞

c (Rd ,Rd) such that .‖fn‖L2(Rd ,Rd ,με)
tends to 0 as n tends to .+∞ and

such that .(∇(fn))n≥1 is a Cauchy sequence in .L2(Rd ,H, με), where .(H, 〈·; ·〉H)

is given by .(Md×d(R), 〈�ε·; ·〉HS). Since .�ε is nondegenerate, .L2(Rd ,H, με) is
complete. Thus, there exists .F ∈ L2(Rd ,H, με) such that

.∇(fn) −→
n→+∞ F, L2(Rd ,H, με).
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Next, let .� ∈ C∞
c

(
R

d ,Md×d(R)
)
. Then integrating by parts,

.

∫
Rd

(1 + ε2)〈�F(x);�(x)〉HSψε(x)dx = (1 + ε2) lim
n−→+∞

∫
Rd

〈∇(fn)(x);��(x)〉HSψε(x)dx,

= (1 + ε2) lim
n−→+∞

d∑
i,j=1

∫
Rd

∂i (fn,j )(x)(��)i,j (x)ψε(x)dx,

= (1 + ε2) lim
n−→+∞

d∑
i,j=1

−
∫
Rd

fn,j (x)∂i

(
(��)i,j (x)ψε(x)

)
dx,

= (1 + ε2) lim
n−→+∞

d∑
i,j=1

−
∫
Rd

fn,j (x)

(
∂i

(
(��)i,j

)
(x)ψε(x)

+ (��)i,j (x)∂i (ψε) (x)

)
dx.

Now, by the Cauchy-Schwarz inequality, for all .n ≥ 1, all .i, j ∈ {1, . . . , d}, and all
.ε > 0,

.

∣∣∣∣
∫
Rd

fn,j (x)∂i

(
(��)i,j

)
(x)ψε(x)dx

∣∣∣∣ ≤ Ci,j (�,�)‖fn,j‖L2(Rd ,R,με)
,

where .Ci,j (�,�) > 0 depends on .i, j , .�, and .� only. Moreover, by the Cauchy-
Schwarz inequality again, for all .n ≥ 1, all .i, j ∈ {1, . . . , d}, and all .ε > 0,

.

∣∣∣∣
∫
Rd

fn,j (x)(��)i,j (x)
∂i (ψε) (x)

ψε(x)
ψε(x)dx

∣∣∣∣ ≤ C̃i,j (�, �) ‖fn,j ‖L2(Rd ,R,με)

∥∥∥∥ ∂i (ψε)

ψε

∥∥∥∥
L2(K� ,R,με)

,

for some .C̃i,j (�,�) > 0 only depending on .i, j , .�, and .� and for some compact
subset .K� of .R

d depending only on .�. In particular, note that, for all .ε > 0 and all
compact subsets K of .R

d ,

.

∥∥∥∥∂i(ψε)

ψε

∥∥∥∥
2

L2(K,R,με)

=
∫

K

∣∣∣∣∂i(ψε)(x)

ψε(x)

∣∣∣∣
2

ψε(x)dx < +∞

since .ψε ∈ C1(Rd) and .ψε > 0. Thus, for all .� ∈ C∞
c (Rd ,Md×d(R)),

.

∫
Rd

(1 + ε2)〈�F(x);�(x)〉HSψε(x)dx = 0,

which ensures that the form is closable. Moreover, for all .f ∈ C∞
c (Rd ,Rd) with

.
∫
Rd f (x)με(dx) = 0,

.

∫
Rd

‖f (x)‖2με(dx) ≤ U�,μ,ε

∫
Rd

〈�(∇(f ))(x); ∇(f )(x)〉HSμε(dx).



Covariance Representations, .Lp-Poincaré Inequalities, Stein’s Kernels, and. . . 59

Finally, note that the nondegenerate Gaussian probability measure .γε verifies
the following Poincaré-type inequality: for all .f ∈ C∞

c (Rd ,Rd) such that
.
∫
Rd f (x)γε(dx) = 0,

.

∫
Rd

‖f (x)‖2γε(dx) ≤ ε2
∫
Rd

〈�∇(f )(x); ∇(f )(x)〉HSγε(dx),

so that, with obvious notation, .U�(γε) = ε2U�,ε(γε) = ε2. So, to conclude, let
us find an upper bound for the Poincaré constant .U�,μ,ε based on the fact that the
probability measure .με is the convolution of .μ and .γε, both satisfying a Poincaré-
type inequality with the energy form given, for all .f ∈ C∞

c (Rd ,Rd), by

.E�(f, f ) =
∫
Rd

〈�∇(f )(x); ∇(f )(x)〉HSμ(dx)

and with respective constants .U�,μ and .ε2. The proof follows closely the one of [23,
Theorem 2, (vii)]. Let .f ∈ C∞

c (Rd ,Rd) be such that .
∫
Rd f (x)με(dx) = 0 and let

.x ∈ R
d be fixed. Then

.

∫
Rd

‖τx(f )(y) −
∫
Rd

τx(f )(y)μ(dy)‖2μ(dy) ≤ U�,μ

∫
Rd

〈�∇(τx(f ))(y); ∇(τx(f ))(y)〉HSμ(dy),

(4.15)

where .τx is the translation operator defined, for all f smooth enough and all .y ∈ R
d ,

by .τx(f )(y) = f (x + y). Developing the square gives

.

∫
Rd

‖τx(f )(y)‖2μ(dy) ≤ U�,μ

∫
Rd

〈�∇(τx(f ))(y); ∇(τx(f ))(y)〉HSμ(dy)

+
∥∥∥∥
∫
Rd

τx(f )(y)μ(dy)

∥∥∥∥
2

.

Integrating the previous inequality in the x variable with respect to the probability
measure .γε gives

.

∫
Rd

‖f (z)‖2με(dz) ≤ U�,μ

∫
Rd

〈�∇(f )(z); ∇(f )(z)〉HSμε(dz)

+
∫
Rd

∥∥∥∥
∫
Rd

τx(f )(y)μ(dy)

∥∥∥∥
2

γε(dx).

Now, since .f ∈ C∞
c (Rd ,Rd), the function G defined, for all .x ∈ R

d , by

.G(x) :=
∫
Rd

τx(f )(y)μ(dy)
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is in .C1(Rd) with the Jacobian matrix given, for all .x ∈ R
d , by

.∇(G)(x) =
∫
Rd

∇(f )(x + y)μ(dy).

Thus,

.

∫
Rd

‖G(x)‖2 γε(dx) ≤ ε2
∫
Rd

〈�∇(G)(x); ∇(G)(x)〉HSγε(dx) +
∥∥∥∥
∫
Rd

G(x)γε(dx)

∥∥∥∥
2
.

But .
∫
Rd G(x)γε(dx) = 0. Finally, by Jensen’s inequality, for all .x ∈ R

d ,

.〈�∇(G)(x); ∇(G)(x)〉HS =
∥∥∥�

1
2 ∇(G)(x)

∥∥∥2

HS
,

=
∥∥∥∥�

1
2

∫
Rd

∇(f )(x + y)μ(dy)

∥∥∥∥
2

HS

,

≤
∫
Rd

∥∥∥�
1
2 ∇(f )(x + y)

∥∥∥2

HS
μ(dy).

Then

.

∫
Rd

‖G(x)‖2 γε(dx) ≤ ε2
∫
Rd×Rd

∥∥∥�
1
2 ∇(f )(x + y)

∥∥∥2

HS
μ(dy)γε(dx),

which implies that .U�,μ,ε ≤ U�,μ + ε2. So from Theorem 4.1,

.W1 (με, γ̃ε) ≤ ‖�− 1
2

ε ‖op‖�ε‖HS

√
U�,μ,ε − 1, (4.16)

where .γ̃ε is a nondegenerate centered Gaussian probability measure with the
covariance matrix given by .�ε = (1 + ε2)�. Now, by Lévy’s continuity theorem,
it is clear that .με and .γ̃ε converge weakly, respectively, to .μ and .γ� , as .ε → 0+.
Thus, let .h ∈ C∞

c (Rd) be such that .‖h‖Lip ≤ 1. From the proof of Theorem 4.1,

.

∣∣∣∣
∫
Rd

h(x)με(dx) −
∫
Rd

h(x)γ̃ε(dx)

∣∣∣∣ ≤ ‖�− 1
2

ε ‖op‖�ε‖HS

√
U�,μ + ε2 − 1.

Letting .ε → 0+ and then taking the supremum over all .h ∈ C∞
c (Rd) with .‖h‖Lip ≤

1 leads to

.W1 (μ, γ�) ≤ ‖�− 1
2 ‖op‖�‖HS

√
U�,μ − 1,

which concludes the proof of the theorem. ��
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As an application of the previous techniques, let us provide a rate of convergence
in the 1-Wasserstein distance in the multivariate central limit theorem where the
limiting centered Gaussian probability measure on .R

d has a covariance matrix given
by .�. The argument is based on a specific representation of the Stein kernel of the
standardized sum given, for all .n ≥ 1, by

.Sn = 1√
n

n∑
k=1

Xk, (4.17)

where .(Xk)k≥1 is a sequence of independent and identically distributed (iid)
centered random vectors of .R

d with a finite second moment such that

.EX1X
T
1 = �

and whose law satisfies the Poincaré-type inequality (4.8). This result is new.

Theorem 4.3 Let .d ≥ 1 and let .� be a nondegenerate .d×d covariance matrix. Let
.γ� be the nondegenerate centered Gaussian probability measure on .R

d with the
covariance matrix given by .�. Let .μ be a centered probability measure on .R

d with
finite second moments such that

.

∫
Rd

xxT μ(dx) = �,

and which satisfies the Poincaré-type inequality (4.8) for some .U�,μ > 0. Let
.(Xk)k≥1 be a sequence of independent and identically distributed random vectors of
.R

d with law .μ and let .(Sn)n≥1 be the sequence of normalized sums defined by (4.17)
and with respective laws .(μn)n≥1. Then, for all .n ≥ 1,

.W1(μn, γ�) ≤ ‖�− 1
2 ‖op‖�‖HS√

n

√
U�,μ − 1. (4.18)

Proof First, let us assume that .μ is such that the form .
(
Eμ, C∞

c (Rd ,Rd)
)

is closable.
Then by Proposition 4.1, there exists .τμ such that, for all .f ∈ D(E�,μ),

.

∫
Rd

〈x; f (x)〉μ(dx) =
∫
Rd

〈∇(f )(x); τμ(x)〉HSμ(dx).

Next, let .τn be defined, for all .n ≥ 1, by

.τn(x) = E

[
1

n

n∑
k=1

τμ(Xk)|Sn = x

]
.

Observe that, for all .n ≥ 1 and all f smooth enough,



62 B. Arras and C. Houdré

.

∫
Rd

〈τn(x); ∇(f )(x)〉HSμn(dx) = 1

n

n∑
k=1

E〈τμ(Xk); ∇(f )(Sn)〉HS,

= E〈Sn; f (Sn)〉,

as the sequence .(Xk)k≥1 is a sequence of iid random vectors of .R
d and that .τμ is a

Stein kernel for the law of .X1. Next, let .h ∈ C∞
c (Rd) be such that .‖h‖Lip ≤ 1. Then

from the proof of Theorem 4.1, for all .n ≥ 1

. |Eh(Sn) − Eh(X)| ≤ ‖�− 1
2 ‖op

(
E

(
‖τn(Sn) − �‖2

HS

)) 1
2
,

where .X ∼ γ� . So let us estimate the Stein discrepancy, i.e., the last term on the
right-hand side of the above inequality. By Jensen’s inequality, independence, since
.Eτμ(X1) = � and from the proof of Theorem 4.1,

.E‖τn(Sn) − �‖2
HS ≤ 1

n2

n∑
k=1

E‖τμ(X1) − �‖2
HS,

≤ 1

n
E‖τμ(X1) − �‖2

HS

≤ ‖�‖2
HS

n

(
U�,μ − 1

)
.

Thus, for all .n ≥ 1,

. |Eh(Sn) − Eh(X)| ≤ ‖�− 1
2 ‖op‖�‖HS√

n

√
U�,μ − 1,

and so the bound (4.18) is proved when the form .
(
Eμ, C∞

c (Rd ,Rd)
)

is clos-
able. A regularization argument as in the proof of Theorem 4.2 allows to get the
bound (4.18) for the general case, concluding the proof of the theorem. ��
Remark 4.5

(i) In Theorem 4.3, one could have assumed that .(Xk)k≥1 is a sequence of
independent random vectors of .R

d with laws .(μ̃k)k≥1 such that, for all .k ≥ 1,

.

∫
Rd

xμ̃k(dx) = 0,

∫
Rd

xxT μ̃k(dx) = �,

and with Poincaré constants .(U�,μ̃k
)k≥1. Then by a completely similar argu-

ment, for all .n ≥ 1,
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.W1(μn, γ�) ≤ ‖�− 1
2 ‖op‖�‖HS

n

(
n∑

k=1

(U�,μ̃k
− 1)

) 1
2

, (4.19)

with .Sn ∼ μn.
(ii) When .� = Id , the bound (4.18) boils down to

.W1(μn, γ ) ≤
√

d

n

√
Ud,μ − 1,

which matches exactly the bound obtained in [34, Theorem .4.1] for the 2-
Wasserstein distance (recall that by Hölder’s inequality, .W1(μ, ν) ≤ W2(μ, ν),
with .μ, ν two probability measures on .R

d with a finite second moment).
Recently, a large amount of work has been dedicated to rates of convergence
in transportation distances for high-dimensional central limit theorems. Let us
briefly recall some of these most recent results. In [73], under the condition
that .‖X1‖ ≤ β a.s., for some .β > 0, the bound,

.W2(μn, γ�) ≤ 5
√

dβ (1 + log n)√
n

, (4.20)

is proved, where .μn is the law of the normalized sum .Sn defined by (4.17). In
particular, note that [73, Theorem .1.1] is established for all covariance matrices
.� and not only for .� = Id . Thus, our bound gets rid of the term .β

√
d in

the general nondegenerate case under a finite Poincaré constant assumption,
which is not directly comparable to the condition .‖X1‖ ≤ β a.s. (see the
discussion after [34, Theorem .4.1] and [15]). Note that, in the isotropic
case, the bound (4.20) scales linearly with the dimension since .β ≥ √

d .
An improvement of the bound (4.20) has been obtained in [36, Theorem 1]
with .log n replaced by .

√
log n. Similarly, in [39, Theorem .B.1], using Stein’s

method and the Bismut formula, the following bound is obtained at the level
of the 1-Wasserstein distance:

.W1(μn, γ ) ≤ Cdβ (1 + log n)√
n

,

for some .C > 0 and under the assumption that .‖Xi‖ ≤ β a.s. for all .i ≥ 1.
The anisotropic case is not covered by this last result, but the nonidentically
distributed case is. In [21, Theorem 1], under .E‖X1‖4 < +∞, the following
holds true:

.W2(μn, γ ) ≤ Cd
1
4 ‖EX1X

T
1 ‖X1‖2‖

1
2
HS√

n
,
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for some .C ∈ (0, 14). The previous bound scales at least linearly with
the dimension as well. Finally, let us mention [40], where sharp rates of
convergence in the p-Wasserstein distances, for .p ≥ 2, are obtained under
various (strong) convexity assumptions.

(iii) Thanks to an inequality of Talagrand (see [71]), quantitative rates of conver-
gence, in relative entropy, toward the Gaussian probability measure .γ on .R

d

imply quantitative rates of convergence in the 2-Wasserstein distance. In [11,
Theorem 1] and [49, Theorem .1.3], under a spectral gap assumption, a rate
of convergence of order .1/n is obtained in relative entropy in dimension 1,
while [12, Theorem 1.1] provides a quantitative entropy jump result under
log-concavity in any dimension. Finally, [34] and [36] contain quantitative
high-dimensional entropic CLTs under various assumptions.

(iv) There is vast literature on quantitative multivariate central limit theorems for
different probability metrics. For example, in [16], a rate of convergence is
obtained for the convex distance. Namely, for all .n ≥ 1,

.sup
A∈C

|P (Sn ∈ A) − P (Z ∈ A)| ≤ cd
1
4√
n
E‖�− 1

2 X1‖3,

where .C is the set of all measurable convex subsets of .R
d , Z is a centered

Gaussian random vector of .R
d with nondegenerate covariance matrix .�, c is

a positive constant which can be made explicit (see [61]), and .(Xi)i≥1 is a
sequence of iid random vectors of .R

d such that .EX1 = 0, .EX1X
T
1 = �, and

.E‖X1‖3 < +∞. In [37], quantitative high-dimensional CLTs are investigated
by means of Stein’s method but where the set .C is replaced by the set of
hyperrectangles of .R

d . In particular, [37, Theorem .1.1] provides an error
bound using Stein’s kernels, which holds in the nondegenerate anisotropic
case. Note that [37, Corollary .1.1] uses the results contained in [40] in order to
build Stein’s kernels when the sampling distribution is a centered probability
measure on .R

d with a log-concave density and a nondegenerate covariance
matrix .� with diagonal entries equal to 1. Finally, in [35], the optimal growth
rate of the dimension with the sample size for the probability metric over all
hyperrectangles is completely identified under general moment conditions.

Remark 4.6

(i) Let .d ≥ 1, let .� be a .d × d nondegenerate covariance matrix, and let V be a
nonnegative function defined on .R

d , which is twice continuously differentiable
everywhere on .R

d . Let

.CV

∫
Rd

e−V (x)dx = 1,

for some constant .CV > 0 which depends on V and d. Let .μV denote the
induced probability measure on .R

d and let us assume that
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.

∫
Rd

xμV (dx) = 0,

∫
Rd

xxT μV (dx) = �.

Assume further that, for all .x ∈ R
d ,

. Hess(V )(x) ≥ κ�−1, (4.21)

for some .κ ∈ (0, 1] (where the order is in the sense of positive semi-definite
matrices). Since .� is nondegenerate, (4.21) ensures that the probability mea-
sure .μV is strongly log-concave. Thus, by the Brascamp and Lieb inequality
(see, e.g., [25, 28]), for all .f ∈ C∞

c (Rd) with .
∫
Rd f (x)μV (dx) = 0,

.

∫
Rd

|f (x)|2 μV (dx) ≤
∫
Rd

〈∇(f )(x); Hess(V )(x)−1∇(f )(x)〉μV (dx).

The previous inequality readily implies, for all .f ∈ C∞
c (Rd ,Rd) with

.
∫
Rd f (x)μV (dx) = 0, that

.

∫
Rd

‖f (x)‖2μV (dx) ≤
∫
Rd

〈∇(f )(x); Hess(V )(x)−1∇(f )(x)〉HSμV (dx),

which gives, thanks to (4.21),

.

∫
Rd

‖f (x)‖2μV (dx) ≤ 1

κ

∫
Rd

〈∇(f )(x);�∇(f )(x)〉HSμV (dx).

In particular, if .κ = 1, then .μV = γ� . Moreover, Theorem 4.3 provides the
following bound for .X1 ∼ μV : for all .n ≥ 1,

.W1(μn, γ�) ≤ ‖�− 1
2 ‖op‖�‖HS√

n

√
1

κ
− 1.

(ii) Since [17], it is well known that log-concave probability measures (i.e., prob-
ability measures with log-concave densities with respect to the Lebesgue
measure) on .R

d satisfy a Poincaré-type inequality. Let .d ≥ 1, let .� = Id ,
and let .μ be a log-concave probability measure on .R

d in an isotropic position,
i.e., such that

.

∫
Rd

xμ(dx) = 0,

∫
Rd

xxT μ(dx) = Id .

Then, for all .f ∈ C∞
c (Rd) such that .

∫
Rd f (x)μ(dx) = 0,

.

∫
Rd

|f (x)|2μ(dx) ≤ Cp(μ)

∫
Rd

〈∇(f )(x); ∇(f )(x)〉μ(dx),
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where .Cp(μ) > 0 is the best constant for which the previous inequality
holds. According to the well-known Kannan-Lovász-Simonovits (KLS) con-
jecture (see, e.g., [4]), the constant .Cp(μ) should be uniformly upper bounded
by some universal constant .C ≥ 1 (independent of the dimension) for all log-
concave probability measures on .R

d in an isotropic position. In Theorem 4.3,
this conjecture would imply that, for all .n ≥ 1,

.W1(μn, γ ) ≤
√

d

n

√
C − 1,

if .X1 ∼ μ. To date, the best-known bound on the constant .CP (μ) is
provided by the very recent result in [32], which ensures a lower bound on
the isoperimetric constant of an isotropic log-concave probability measure .μ

on .R
d :

.IP (μ) ≥ d
−c′

(
log log d

log d

) 1
2

,

for some .c′ > 0 (see also [50] for an even more recent improvement). Accord-
ing to Cheeger’s inequality (see, e.g., [17]),

.CP (μ) ≤ c1d
c2

(
log log d

log d

) 1
2

,

for some positive numerical constants .c1 and .c2.
In analogy with the Kannan, Lovász, and Simonovits (KLS) conjecture and

with regard to the general anisotropic case with a nondegenerate covariance
matrix .�, it seems natural to wonder whether the functional .U�,μ is uniformly
bounded over the class of centered log-concave probability measures on .R

d

with covariance structure .� and whether the corresponding upper bound is
dimension free.

5 Appendix

Lemma 5.1 Let d ≥ 1 and let μ, ν be two probability measures on Rd with a finite
first moment. Then

.W1(μ, ν) = sup
h∈C∞(Rd ), ‖h‖Lip≤1

∣∣∣∣
∫
Rd

h(x)μ(dx) −
∫
Rd

h(x)ν(dx)

∣∣∣∣ . (5.1)

Proof Recall that by duality,
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.W1(μ, ν) = sup
h∈Lip,‖h‖Lip≤1

∣∣∣∣
∫
Rd

h(x)μ(dx) −
∫
Rd

h(x)ν(dx)

∣∣∣∣ , (5.2)

where Lip is the space of Lipschitz functions on R
d with the Lipschitz semi-norm

.‖h‖Lip = sup
x,y∈Rd ,x �=y

|h(x) − h(y)|
‖x − y‖ .

So, at first, it is clear that

.W1(μ, ν) ≥ sup
h∈C∞(Rd ), ‖h‖Lip≤1

∣∣∣∣
∫
Rd

h(x)μ(dx) −
∫
Rd

h(x)ν(dx)

∣∣∣∣ .

Next, let h ∈ C1(Rd) be such that ‖h‖Lip ≤ 1. Let ε > 0 and let pε be the centered
multivariate Gaussian density with covariance matrix εId ; i.e., for all y ∈ R

d ,

.pε(y) = 1

(2πε)
d
2

exp

(
−‖y‖2

2ε

)
.

Moreover, let

.hε(x) =
∫
Rd

h(x − y)pε(y)dy, x ∈ R
d .

It is clear that hε ∈ C∞(Rd) and that

.‖hε‖Lip ≤ 1, ε > 0,

since ‖h‖Lip ≤ 1. Moreover, for all ε > 0 and all x ∈ R
d ,

. |h(x) − hε(x)| ≤ ‖h‖Lip

∫
Rd

‖z‖pε(z)dz,

≤ Cd

√
ε,

for some constant Cd > 0 depending only on d ≥ 1. Thus,

.W1(μ, ν) ≤ sup
h∈C∞(Rd ), ‖h‖Lip≤1

∣∣∣∣
∫
Rd

h(x)μ(dx) −
∫
Rd

h(x)ν(dx)

∣∣∣∣ + 2Cd

√
ε.

Letting ε → 0+ concludes the proof of this reduction principle. ��
Lemma 5.2 Let d ≥ 1 and let μ, ν be two probability measures on Rd with a finite
first moment. Then
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.W1(μ, ν) = sup
h∈C∞

c (Rd ), ‖h‖Lip≤1

∣∣∣∣
∫
Rd

h(x)μ(dx) −
∫
Rd

h(x)ν(dx)

∣∣∣∣ . (5.3)

Proof Let h be a Lipschitz function on R
d such that

.‖h‖Lip = sup
x,y∈Rd ,x �=y

|h(x) − h(y)|
‖x − y‖ ≤ 1.

Recall that by Rademacher’s theorem, such a function h is differentiable almost
everywhere on R

d . Actually, as shown next, it is possible to restrict the supremum
appearing in (5.2) to bounded Lipschitz functions h defined on R

d and such that
‖h‖Lip ≤ 1. Indeed, let R > 0 and let GR be the function defined, for all y ∈ R, by

.GR(y) = (−R) ∨ (y ∧ R) .

GR is clearly bounded on R by R, and, for all y ∈ R fixed,

. lim
R→+∞GR(y) = y.

Moreover, ‖GR‖Lip ≤ 1 by construction. Thus, for all R > 0, let hR be defined,
for all x ∈ R

d , by hR(x) = GR(h(x)). The function hR is bounded on R
d and

1-Lipschitz by composition; moreover, lim
R→+∞GR(h(x)) = h(x), for all x ∈ R

d .

Then

.

∣∣∣∣
∫
Rd

h(x)μ(dx) −
∫
Rd

h(x)ν(dx)

∣∣∣∣ ≤
∣∣∣∣
∫
Rd

hR(x)μ(dx) −
∫
Rd

hR(x)ν(dx)

∣∣∣∣
+

∣∣∣∣
∫
Rd

(hR(x) − h(x))μ(dx)

∣∣∣∣ +
∣∣∣∣
∫
Rd

(hR(x) − h(x))ν(dx)

∣∣∣∣ .

Thus,

.

∣∣∣∣
∫
Rd

h(x)μ(dx) −
∫
Rd

h(x)ν(dx)

∣∣∣∣ ≤ sup
h∈Lipb, ‖h‖Lip≤1

∣∣∣∣
∫
Rd

h(x)μ(dx) −
∫
Rd

h(x)ν(dx)

∣∣∣∣

+
∣∣∣∣
∫
Rd

(hR(x) − h(x))μ(dx)

∣∣∣∣ +
∣∣∣∣
∫
Rd

(hR(x) − h(x))ν(dx)

∣∣∣∣ ,

where Lipb is the set of bounded Lipschitz functions on R
d . Next, without loss of

generality, let us assume that h(0) = 0. Now, since, for all x ∈ R
d and all R > 0,

. |hR(x) − h(x)| ≤ 2|h(x)| ≤ 2‖x‖,

the dominated convergence theorem ensures that
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. lim
R→+∞

∫
Rd

(hR(x) − h(x))μ(dx) = 0,

and similarly for ν. Thus,

.

∣∣∣∣
∫
Rd

h(x)μ(dx) −
∫
Rd

h(x)ν(dx)

∣∣∣∣ ≤ sup
h∈Lipb, ‖h‖Lip≤1

∣∣∣∣
∫
Rd

h(x)μ(dx) −
∫
Rd

h(x)ν(dx)

∣∣∣∣ .

Next, applying the regularization procedure of Lemma 5.1, one has

.W1(μ, ν) = sup
h∈C∞

b (Rd ), ‖h‖Lip≤1

∣∣∣∣
∫
Rd

h(x)μ(dx) −
∫
Rd

h(x)ν(dx)

∣∣∣∣ ,

where C∞
b (Rd) is the space of infinitely differentiable bounded functions on R

d .
Finally, let h ∈ C∞

b (Rd) be such that ‖h‖Lip ≤ 1 and let ψ be a smooth compactly
supported function with values in [0, 1] and with support included in the Euclidean
ball centered at the origin and of radius 2 such that, for all x ∈ R

d with ‖x‖ ≤ 1,
ψ(x) = 1. Then let

.h̃R(x) = ψ
( x

R

)
h(x), R ≥ 1, x ∈ R

d .

Clearly, h̃R ∈ C∞
c (Rd); moreover, for all x ∈ R

d and all R ≥ 1,

.∇(h̃R)(x) = 1

R
∇(ψ)(

x

R
)h(x) + ψ

( x

R

)
∇(h)(x).

Then, for all x ∈ R
d ,

.‖∇(h̃R)(x)‖ ≤ 1 + 1

R
‖h‖∞‖∇(ψ)‖∞.

Thus,

.

∣∣∣∣
∫
Rd

h(x)μ(dx) −
∫
Rd

h(x)ν(dx)

∣∣∣∣ ≤
∣∣∣∣
∫
Rd

h̃R(x)μ(dx) −
∫
Rd

h̃R(x)ν(dx)

∣∣∣∣ +
∣∣∣∣
∫
Rd

(h(x) − h̃R(x))μ(dx)

∣∣∣∣

+
∣∣∣∣
∫
Rd

(h(x) − h̃R(x))ν(dx)

∣∣∣∣ ,

≤
(

1 + 1

R
‖h‖∞‖∇(ψ)‖∞

)
sup

h∈C∞
c (Rd ), ‖h‖Lip≤1

∣∣∣∣
∫
Rd

h(x)μ(dx) −
∫
Rd

h(x)ν(dx)

∣∣∣∣

+
∣∣∣∣
∫
Rd

h(x)
(

1 − ψ
( x

R

))
μ(dx)

∣∣∣∣ +
∣∣∣∣
∫
Rd

h(x)
(

1 − ψ
( x

R

))
ν(dx)

∣∣∣∣ .

But
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.

∣∣∣∣
∫
Rd

h(x)
(

1 − ψ
( x

R

))
μ(dx)

∣∣∣∣ ≤ ‖h‖∞
∫

‖x‖≥R

μ(dx),

and similarly for ν. Thus, letting R → +∞,

.

∣∣∣∣
∫
Rd

h(x)μ(dx) −
∫
Rd

h(x)ν(dx)

∣∣∣∣ ≤ sup
h∈C∞

c (Rd ), ‖h‖Lip≤1

∣∣∣∣
∫
Rd

h(x)μ(dx) −
∫
Rd

h(x)ν(dx)

∣∣∣∣ ,

which concludes the proof of the lemma. ��
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Volume Properties of High-Dimensional
Orlicz Balls
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Lebesgue spaces play a central role in functional analysis and enjoy remarkable
structural properties. A natural extension of this family is given by the class of Orlicz
spaces, which also enjoy a wealth of remarkable properties, see, e.g., [21]. Similarly,
for .p ≥ 1, the unit balls of .R

n equipped with the .�p-norm, often denoted by
.Bn

p = {x ∈ R
n; ∑

i |xi |p ≤ 1}, are well studied convex bodies, and usually the first
family of test cases for new conjectures. Their simple analytic description allows
for many explicit calculations, for instance, of their volume. A simple probabilistic
representation of uniform random vectors on .Bn

p, given in terms of i.i.d. random
variables of law .exp(−|t |p) dt/Kp, is available, see [4]. It allows to investigate
various fine properties of the volume distribution on .Bn

p. The study of general Orlicz
balls is more difficult, due to the lack of explicit formulas, in particular for the
volume of the set itself.

In this note, we show that probabilistic methods allow to derive precise asymp-
totic estimates of the volume of Orlicz balls when the dimension tends to infinity,
and rough estimates which are valid in every dimension. This allows us to
complement a result of Kolesnikov and Milman [13] on the spectral gap of uniform
measures on Orlicz balls, by giving an explicit description of the range of parameters
where their result applies, see Sect. 5. In Sect. 6, we show, among other results, the
asymptotic independence of a fixed set of coordinates of uniform random vectors on
some families of Orlicz balls of increasing dimensions. This is a natural extension of
a classical observation (going back to Maxwell) about uniform vectors on Euclidean
spheres and balls. The last section deals with properties of linear functionals of
random vectors on Orlicz balls.
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After this research work was completed, we learned by J. Prochno of his
independent work [10] with Z. Kabluchko about similar volume asymptotics for
Orlicz balls. Their paper uses sophisticated methods from the theory of large
deviations, which have the potential to give more precise results for a given sequence
of balls in increasing dimensions. Our approach is more elementary and focuses
on uniform convergence over some wide range of parameters, as required by our
applications to the spectral gap conjecture.

1 Notation and Statement

Throughout this paper, a Young function is a non-negative convex function on .R

which vanishes only at 0. Note that we do not assume symmetry at this stage. For a
given Young function .� : R → R

+, denote

.Bn
� =

{
x ∈ R

n :
n∑

i=1

�(xi) ≤ 1
}

the corresponding n-dimensional Orlicz ball. Our aim is to estimate the asymptotic
volume of .Bn

�/En
= {x ∈ R

n : ∑n
i=1 �(xi) ≤ En} for relevant sequences .En of

linear order in the dimension.
Let .λ > 0. Consider the following probability measure on .R,

.μλ(dt) = e−λ�(t) dt

Zλ

,

with .Zλ being a normalization constant. Let X be a random variable with the
distribution .μλ. Set

.m = mλ = E�(X), σ 2 = σ 2
λ = Var

(
�(X)

)
.

Our aim is to prove

Theorem 1.1 Consider a Young function .� and .λ > 0. Let .n ≥ 1 be an integer
and .α ∈ R. Set

.E := mλn + ασλ

√
n,

then

.

Vol
(
Bn

�/E

) = (Zλe
λmλ)n

1

λσλ

√
2πn

e−α2/2eλσλ
√

nα(1 + O(n−1/2))

= Zn
λeλE

λσλ

√
2πn

e−α2/2(1 + O(n−1/2)),
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where the term .O(n−1/2) depends on .λ,�, and non-decreasingly in .|α|.
Corollary 1.2 Consider a Young function .� and .λ > 0. Let .(an)n≥1 be a bounded
sequence, and .En := mλn + an

√
n. Then when the dimension n tends to .∞,

.Vol
(
Bn

�/En

) ∼ Zn
λeλEn

λσλ

√
2πn

e−a2n/(2σ 2
λ ).

Let us mention that the above results can be applied to .Bn
�/En

when .En = mn +
an

√
nwhere .m > 0 is fixed and .(an)n is a bounded sequence. Indeed the next lemma

ensures the existence of a .λ > 0 such that .m = mλ.

Lemma 1.3 Let .� be as above. Then the map defined .(0,+∞) to .(0,+∞) by

.λ 	→ R(λ) :=
∫

�(t)e−λ�(t)dt
∫

e−λ�(t)dt

is onto.

Proof By hypothesis, .
∫
exp(−λ�) < ∞ for all .λ > 0. This fact allows us to apply

the dominated convergence theorem, and to show that the ratio .R(λ) is a continuous
function of .λ > 0. Let us show that .limλ→0+ R(λ) = ∞ and .limλ→∞ R(λ) = 0.
The claim will then follow by continuity.

Consider an arbitrary .K > 0. Since .� ≥ 0,

.

∫
�e−λ�

∫
e−λ�

≥ K
∫
�≥K

e−λ�

∫
e−λ�

= K

(

1 −
∫
�<K

e−λ�

∫
e−λ�

)

≥ K

(

1 − Vol({x;�(x) < K})
∫

e−λ�

)

.

By monotone convergence, .limλ→0+
∫

e−λ� = ∞. Hence, .lim infλ→0+ R(λ) ≥ K .
Since this holds for every .K > 0, we conclude that .limλ→0+ R(λ) = ∞.

Let .ε > 0. As above, since .� ≥ 0,

.

∫
�e−λ�

∫
e−λ�

≤ ε +
∫
�>ε

�e−λ�

∫
e−λ�

.

Next, using .x ≤ ex and for .λ > 2,

.

∫

�>ε

�e−λ� ≤
∫

�>ε

e−(λ−1)� =
∫

�>ε

e−�e−(λ−2)� ≤ e−(λ−2)ε
∫

e−�,

and
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.

∫

e−λ� ≥
∫

�≤ε/2
e−λ� ≥ e−λε/2Vol({x;�(x) ≤ ε/2}).

Since .�(0) = 0 and .� is continuous, the latter quantity is positive. Combining the
above three estimates, we get

.

∫
�e−λ�

∫
e−λ�

≤ ε + e−( λ
2−2)ε

∫
e−�

Vol({x;�(x) ≤ ε/2}) .

Letting .λ → ∞ yields .lim supλ→∞ R(λ) ≤ ε, for all .ε > 0. 
�

2 Probabilistic Formulation

We start with a formula relating the volume with an expectation expressed in
terms of independent random variables. Let .λ > 0. Let .(Xi)i∈N∗ be i.i.d. r.v.’s
with the distribution .μλ(dt) = e−λ�(t) dt/Zλ. Recall that .mλ = E�(Xi) and
.σ 2

λ = Var
(
�(Xi)

)
. We denote by .Sn the normalized central limit sums:

.Sn = 1

σλ

√
n

n∑

i=1

(�(Xi) − mλ).

With this notation, we get the following representation for any .λ > 0

.Vol
(
Bn

�/E

) =
∫

1{∑n
i=1 �(xi)≤E}dx

=
∫

1{∑n
i=1 �(xi)≤E}Zn

λeλ
∑n

i=1 �(xi)
n∏

i=1

μλ(dxi)

= Zn
λE

(
eλ

∑n
i=1 �(Xi)1{∑n

i=1 �(Xi)≤E}
)

= (Zλe
λmλ)nE

(

eλσλ
√

nSn1{Sn≤ E−mλn

σλ
√

n
}

)

. (2.1)

By the Central Limit Theorem, .Sn converges in distribution to a standard Gaussian
random variable when n tends to infinity. Such Gaussian approximation results
allow to estimate the asymptotic behavior of the above expectations. Nevertheless,
a direct application of the CLT or the Berry–Esseen bounds does not seem to be
sufficient for our purposes. A more refined analysis is required, built on classical
results and techniques on the distribution of sums of independent random variables
which go back to Cramér [7] (see also [2]).
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Theorem 1.1 is a direct consequence of the following one, applied to .Yi =
(�(Xi) − mλ)/σλ. For a random variable V , let .PV and .ϕV denote the distribution
and the characteristic function.

Theorem 2.1 Let .(Yi)i≥1 be a sequence of i.i.d. real random variables such that
.E|Yi |3 < ∞, .EYi = 0 and .Var(Yi) = 1. Suppose .ε, δ > 0 are such that so-called
Cramér’s condition is satisfied for .Yi:

.|ϕYi
(t)| ≤ 1 − ε for |t | > δ. (2.2)

For .n ≥ 1, let .Sn = (Y1 + · · · + Yn)/
√

n. Then for .� > 0 and .α ∈ R,

.E

(
e�

√
n Sn1Sn≤α

)
= 1

�
√
2πn

e�
√

nα−α2/2(1 + O(n−1/2)
)
.

Remark 2.2 The term .O(n−1/2) involves an implicit dependence in .�, α and the
law of .Y1. For .n ≥ 16�2 + (2|α| + 1)2�−2, our argument provides a term .O(n−1/2)

which depends only on .(�, δ, 1/ε, ν3 := E|Yi |3, |α|). Moreover the dependence is
continuous in the parameters, and non-decreasing in all the parameters but .�. This
allows for uniform bounds when the parameters are in compact subsets of their
domain.

Remark 2.3 Note that non-trivial .ε and .δ exist by the Riemann–Lebesgue lemma as
soon has the law of .Yi is absolutely continuous.

3 Probabilistic Preliminaries

We start with some useful lemmas. The first one is a key estimate for quantitative
central limit theorems, quoted from Petrov’s book [18].

Lemma 3.1 ([18], Lemma V.2.1, p. 109) Let .X1, . . . , Xn be independent random
variables, .EXj = 0, .E|Xj |3 < ∞ (.j = 1, . . . , n). Denote .Bn = ∑n

j=1 EX2
j ,

.Ln = B
−3/2
n

∑n
j=1 E|Xj |3 and .Sn = B

−1/2
n

∑n
j=1 Xj . Then

.|ϕSn(t) − e−t2/2| ≤ 16Ln|t |3e−t2/3

for .|t | ≤ 1
4Ln

.

Lemma 3.2 ([18], Lemma I.2.1, p. 10) For any characteristic function .ϕ,

.1 − |ϕ(2t)|2 ≤ 4(1 − |ϕ(t)|2)

holds for all .t ∈ R.
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Lemma 3.3 Let .(Sn) be as in Theorem 2.1. Let T be independent of .(Sn) and
assume that its characteristic function .ϕT is Lebesgue integrable. Then for all .n ≥ 1,
the density of .Sn + T

n
is bounded by a number .C = C(1/ε, δ, ν3, ‖ϕT ‖1), which is

non-decreasing in each of its parameters.

Proof of Lemma 3.3 Since .ϕSn+T/n = ϕSnϕT (·/n) is Lebesgue integrable, the
inversion formula ensures that the density of .Sn + 1

n
T at x equals

.

g
Sn+ 1

n
T
(x) = 1

2π

∫ ∞

−∞
e−itxϕSn(t)ϕT

(
t/n

)
dt

= 1

2π

∫ ∞

−∞
e−itxe−t2/2ϕT

(
t/n

)
dt

+ 1

2π

∫ ∞

−∞
e−itx(ϕSn(t) − e−t2/2)ϕT

(
t/n

)
dt

≤ 1√
2π

+ 1

2π

∫ ∞

−∞
|ϕSn(t) − e−t2/2| |ϕT

(
t/n

)| dt.

To bound the last integral, we apply Lemma 3.1 with .Bn = n and .Ln = ν3n
−1/2.

We get

.

gSn+T/n(x) ≤ 1√
2π

+ 1

2π

∫

|t |≤
√

n
4ν3

16ν3√
n

|t |3e−t2/3 dt

+ 1

2π

∫

|t |>
√

n
4ν3

(|ϕSn(t)| + e−t2/2)|ϕT

(
t/n

)| dt

≤ 1√
2π

+ 72ν3
π

√
n

+ 1

2π

∫

|t |>
√

n
4ν3

|ϕSn(t)| |ϕT

(
t/n

)| dt

︸ ︷︷ ︸
I

+ 1

2π

∫

|t |>
√

n
4ν3

e−t2/2 dt.

For integral (I) from the last line we use (2.2) which implies

.|ϕSn(t)| =
∣
∣
∣ϕY1

(
t/

√
n
)n

∣
∣
∣ ≤ (1 − ε)n for |t | ≥ δ

√
n.

However, .δ might be larger than .
1
4ν3

, i.e., .4ν3δ ≥ 1. If this is so, we use Lemma 3.2
on characteristic functions: since (2.2) implies

.1 − |ϕYi
(t)|2 ≥ ε for |t | ≥ δ,
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Lemma 3.2 implies that for any non-negative integer k,

.1 − |ϕYi
(t)|2 ≥ 4−kε for |t | ≥ 2−kδ.

Taking .k = �log2(4ν3δ)�) implies .2−kδ ≤ 1
4ν3

and .4−k ≥ 1
(8ν3δ)2

and hence

.|ϕYi
(t)|2 ≤ 1 − ε

(8ν3δ)2
for |t | ≥ 1

4ν3
.

In any case, we obtain that

.|ϕSn(t)| ≤
(

1 − ε

max(1, (8ν3δ)2)

)n/2

for |t | ≥
√

n

4ν3
. (3.1)

Using the above we estimate the integral (I) as follows. Using the rough estimate

.(1 − x)m = em log(1−x) ≤ e−mx = 1

emx
≤ 1

mx
,

valid for any .m > 0 and .x ∈ (0, 1), we get

.

I ≤
(

1 − ε

max(1, (8ν3δ)2)

)n/2

n

∫ ∞

0
|ϕT (u)| du

≤ n
2max(1, (8ν3δ)2)

nε
‖ϕT ‖1 ≤ 2‖ϕT ‖1 1 + (8ν3δ)2

ε
.

Finally we obtain that the density of .Sn + 1
n
T is bounded by .C1 + C2ν3 +

C3‖ϕT ‖1 1+(ν3δ)
2

ε
for some constants .C1, C2, C3 > 0. 
�

Denote by .φ the density of the standard normal distribution on .R and let . be
its cumulative distribution function. Our last two preliminary statements are easy
consequences of the equality .eγ tφ(t) = eγ 2/2φ(t − γ ) satisfied by the Gaussian
density

Lemma 3.4 Let Z be a standard normal random variable. For any Borel set
.A ⊂ R,

.EeγZ1Z∈A = eγ 2/2
P(Z ∈ A − γ ). (3.2)

Lemma 3.5 For any .s > 0 and .α ∈ R, and .λ such .λs − α
s

> 1, it holds

.

∫ ∞

0
λe−λx 1√

2πs
e
− (x−α)2

2s2 dx = 1√
2πs

e
− α2

2s2

(

1 + O

(
1 + |α|

s

λs − α
s

))

.
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In particular if s and .α stay bounded in the sense that .s ∈ [1/S, S], .|α| ≤ A

holds for some .A, S > 0, then for .λ > 2AS−2 + S−1, the last factor simplifies to

.1 + OA,S

(
1
λ

)
.

Proof Using a standard Gaussian random variable Z, we rewrite the left-hand side
as

.

T :=
∫ ∞

0
λe−λx 1√

2πs
e
− (x−α)2

2s2 dx = λEe−λ(sZ+α)1Z>− α
s

= λe−λαeλ2s2/2
P

(
Z > λs − α

s

)

= λe
− α2

2s2 e(λs− α
s
)2/2

(
1 − 

(
λs − α

s

))
,

where the second equality follows from (3.2). Next we use the classical bound, for
.t > 0,

.
1

t
≥ √

2π et2/2(1 − (t)
) ≥ 1√

t2 + 2
,

which implies that for .t > 1, .
√
2π tet2/2

(
1−(t)

) = 1+O(1/t2). When .λs− α
s

>

1 we obtain that

.

√
2πs e

α2

2s2 T = λs

λs − α
s

(

1 + O
( 1

(λs − α
s
)2

))

=
(

1 +
α
s

λs − α
s

)

·
(

1 + O
( 1

(λs − α
s
)2

))

= 1 + O

(
1 + |α|

s

λs − α
s

)

.

The case when .α and s are bounded readily follows. 
�

4 Proof of Theorem 2.1

Our aim is to show that for any .α ∈ R, .I = J × (1 + O(n−1/2)) where

.I = Ee�
√

nSn1{Sn≤α} and J = 1

�
√
2πn

e�
√

nαe−α2/2.

Let Z be a standard Gaussian random variable, independent of the .Yi’s. The first
step is to introduce the modified quantity

.I2 = Ee�
√

n(Sn+n−1Z)1{Sn+n−1Z≤α},
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and to check that it is enough for our purpose to establish .I2 = J ×(1+O(n−1/2)).
In order to do so we estimate the difference between .I and .I2.

By the triangle inequality:

.

|I2 − I| ≤ Ee�
√

nSn |e�n−1/2Z − 1|1{Sn≤α}

+ Ee�
√

n(Sn+n−1Z)
∣
∣1{Sn+n−1Z≤α} − 1{Sn≤α}

∣
∣

= I3 + I4 + I5,

where

.I3 = Ee�
√

nSn |e�n−1/2Z − 1|1{Sn≤α}

I4 = Ee�
√

n(Sn+n−1Z)1{α<Sn≤α−n−1Z}

I5 = Ee�
√

n(Sn+n−1Z)1{α−n−1Z<Sn≤α}.

By independence .I3 = I · E|e�n−1/2Z − 1|. Next, we use that for .t ∈ [0, 1],

.E|etZ − 1| ≤
√
E

(
e2tZ − 2etZ + 1

) =
√

e2t
2 − 2et2/2 + 1 ≤ 3t.

Thus, under the hypothesis .n ≥ 16�2 we obtain that .I3 ≤ 3�√
n
I ≤ 3I/4.

For the term .I4, we introduce .T = U +U ′ where U and .U ′ are independent ran-
dom variables uniformly distributed in .(−1, 1) and note that .ϕT (u) = (sin(u)/u)2

is Lebesgue integrable. Since .|T | ≤ 2 a.s.,

.

I4 ≤ e�
√

nα

∫ ∞

0
P(α < Sn ≤ α + n−1x)φ(x) dx

≤ e�
√

nα

∫ ∞

0
P(α − 2/n < Sn + T/n ≤ α + (x + 2)/n)φ(x) dx.

By Lemma 3.3, .Sn + T/n has a density which is bounded by a constant, say .C > 0.
Then

.

I4 ≤ e�
√

nα

∫ ∞

0
C

x + 4

n
φ(x) dx = C

n
e�

√
nα(π−1/2 + 2)

= C√
n

· �
√
2π eα2/2J · (π−1/2 + 2) = J · O(n−1/2).

The term .I5 is estimated in a similar way:
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.

I5 ≤ e�
√

nα

∫ ∞

0
e�xn−1/2

P(α − x/n < Sn ≤ α)φ(x) dx

≤ e�
√

nα

∫ ∞

0
e�xn−1/2

P(α − (x + 2)/n < Sn + T/n ≤ α + 2/n)φ(x) dx

≤ e�
√

nα

∫ ∞

0
e�xC

x + 4

n
φ(x) dx = J · O(n−1/2).

This concludes the first step of the proof, which guarantees that for .n ≥ 16�2

.|I2 − I| ≤ 3�√
n
I + O

( 1√
n

)
J . (4.1)

Our next task is to prove that .I2 = J × (1 + O(n−1/2)). We use the Fourier
transform approach. It relies on the Parseval formula, which ensures that whenever
random variables V and W have square integrable densities .gV and .gW , their
characteristic functions are also square integrable and the following relation holds:

.

∫ ∞

−∞
gV (x)gW (x) dx = 1

2π

∫ ∞

−∞
ϕV (t)ϕW (t) dt. (4.2)

Given n, set .W = α − (Sn + 1
n
Z). Then

.I2 = Ee�
√

n(Sn+n−1Z)1{Sn+n−1Z≤α} = e�
√

nα
Ee−�

√
nW 1W≥0

= e�
√

nα

�
√

n

∫ ∞

0
�
√

ne−�
√

nx dPW(x).

Let V be a random variable having exponential distribution with parameter .�
√

n.
We have proved that

.̃I2 := �
√

ne−�
√

nαI2 =
∫

gV (x) dPW (x).

Observe that our goal is to establish that .̃I2 = 1√
2π

e−α2/2(1 + O(n−1/2)).

Since .PW is given by the convolution of a probability measure and of the
bounded density of .Z/n, it is absolutely continuous with bounded (and thus square
integrable) density. Hence, we may apply the Parseval formula (4.2) to V and W .
Since .ϕW(t) = eiαtϕSn(t)e

−t2/(2n2), we obtain

.̃I2 = 1

2π

∫ ∞

−∞
1

1 − it
�
√

n

e−iαtϕSn(t)e
−t2/(2n2) dt = M + E

2π
,
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where

.M =
∫ ∞

−∞
e−iαt

1 − it
�
√

n

e−t2/2e−t2/(2n2) dt

E =
∫ ∞

−∞
e−iαt

1 − it
�
√

n

(ϕSn(t) − e−t2/2)e−t2/(2n2) dt.

Applying Parseval’s formula as before, but replacing .Sn with and independent
standard Gaussian variable G yields .M/(2π) = ∫

gV dPW̃ where .W̃ = α − (G +
Z/n) has .N (α, 1 + n−2) distribution. Therefore

.
M
2π

=
∫ ∞

0
�
√

ne−�
√

nx e
− (x−α)2

2(1+n−2)

√
2π(1 + n−2)

dx.

Lemma 3.5 with .λ := �
√

n and .s2 := 1 + n−2 yields, provided .�
√

n ≥ 2|α| + 1,

.

M
2π

= 1
√
2π(1 + n−2)

e
− α2

2(1+n−2) (1 + O(n−1/2))

= 1√
2π

e− α2
2 (1 + O(n−1/2)).

It remains to bound the error term:

.

|E | =
∣
∣
∣
∣
∣
∣

∫ ∞

−∞
e−iαt

1 − it
�
√

n

(ϕSn(t) − e−t2/2)e−t2/(2n2) dt

∣
∣
∣
∣
∣
∣

≤
∫ ∞

−∞
∣
∣ϕSn(t) − e−t2/2

∣
∣ e−t2/(2n2) dt

≤
∫

|t |≤√
n/(4ν3)

16ν3n
−1/2|t |3e−t2/3 dt

+
∫

|t |>√
n/(4ν3)

∣
∣ϕSn(t)

∣
∣ e−t2/(2n2) dt +

∫

|t |>√
n/(4ν3)

e−t2/2 dt

≤ Cν3n
−1/2 + I + II,

where the second inequality follows from Lemma 3.1. The estimate of the term II

is immediate:

.II ≤ 2e−n/(32ν23 ).
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In order to estimate I , we use (3.1) and a variant of its previous application using
the bound .(1 − x)m ≤ 1/emx ≤ 2/(mx)2 for .x ∈ (0, 1):

.I ≤
(

1 − ε

max(1, (8ν3δ)2)

)n/2

n
√
2π = O

ν3,
1
ε
,δ
(n−1/2).

Hence .E = O(n−1/2) = e−α2/2O(eα2/2n−1/2) = e−α2/2O|α|(n−1/2). This ends the
proof of the second step, asserting .I2 = J × (1+ O(n−1/2)). Combining the latter
with (4.1) yields the claim of the theorem.

5 Application to Spectral Gaps

Our volume asymptotics for Orlicz balls allow to complement a result of Kolesnikov
and Milman [13] about a famous conjecture by Kannan, Lovász, and Simonovits,
which predicts the approximate value of the Poincaré constants of convex bodies
(a.k.a. inverse spectral gap of the Neumann Laplacian). More precisely if .μ is a
probability measure on some Euclidean space, one denotes by .CP (μ) (respectively,
.CLin

P (μ)) the smallest constant C such that for all locally Lipschitz (respectively,
linear) functions f , it holds

.Varμ(f ) ≤ C

∫

|∇f |2dμ.

Obviously .CLin
P (μ) ≤ CP (μ), and the KLS conjecture predicts the existence of a

universal constant c such that for any dimension n and any convex body .K ⊂ R
n,

.CP (λK) ≤ c CLin
P (λK),

where .λK stands for the uniform probability measure on K . The conjecture turned
out to be central in the understanding in high-dimension volume distributions of
convex sets. We refer to, e.g., [1, 5, 6, 13, 14] for more background and references,
and to [12] for a recent breakthrough. Kolesnikov and Milman have verified the
conjecture for some Orlicz balls. We state next a simplified version of their full
result on generalized Orlicz balls. Part of the simplification is unessential, as it
amounts to reduce by dilation and translations to a convenient setting. A more
significant simplification, compared to their work, is that we consider balls where
all coordinates play the same role.

Theorem 5.1 ([13]) Let .V : R → R
+ be a convex function with .V (0) = 0 and

such that .dμ(x) = e−V (x)dx is a probability measure. We also assume that the
function .x 	→ xV ′(x), defined almost everywhere, belongs to the space .L2(μ). For
each dimension .n ≥ 1, let
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.Leveln(V ) :=
{

E ≥ 0; e−EVoln
(
Bn

V/E

) ≥ 1

e

nne−n

n!
}

.

Then there exists a constant c, which depends only on V (through .‖xV ′(X)‖L2(μ))
such that for all .E ∈ Leveln(V ),

.CP (λBn
V/E

) ≤ c CLin
P (λBn

V/E
).

Moreover, .Leveln(V ) is an interval of length at most .e n!en

nn = e
√
2πn(1 + o(1)) as

.n → ∞, and

.1 + n

∫

R

V (x)e−V (x)dx ∈ Leveln(V ).

We can prove more about the set .Leveln(V ) and in particular we show that its length
is of order .

√
n:

Proposition 5.2 Let .V : R → R
+ be a Young function such that .dμ(x) =

e−V (x)dx is a probability measure. Let .m1 = ∫
V e−V be the average of V with

respect to .μ, and .σ 2
1 its variance. For every .ε ∈ (0, 1) there exists an integer

.n0 = n0(V , ε) depending on V such that for all .n ≥ n0,

.

[
m1n − σ1(1 − ε)

√
2n ; m1n + σ1(1 − ε)

√
2n

]
⊂ Leveln(V ).

Proof We apply Theorem 1.1, with .� = V and .λ = 1. With the notation of the
theorem .μ = μ1 and .Z1 = ∫

e−V = 1. We choose E of the following form:
.E = m1n + ασ1

√
n with .|α| ≤ (1 − ε)

√
2. The theorem ensures that

.Vol
(
Bn

V/E

) = eE

σ1
√
2πn

e−α2/2
(

1 + O
( 1√

n

))

,

where the .O(n−1/2) is uniform in .α ∈ [−(1−ε)
√
2, (1−ε)

√
2]. A sharp inequality

due to Nguyen and Wang ensures that .σ 2
1 = Vare−V (V ) ≤ 1 (see [17, 22], [16] and

for a short proof [9]). Therefore

.e−EVol
(
Bn

V/E

) ≥ 1√
2πn

e−(1−ε)2
(

1 + O
( 1√

n

))

,

whereas

.
1

e

nne−n

n! = e−1

√
2πn

(1 + o(1)).
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Hence for n large enough and for all .α in the above interval .e−EVol
(
Bn

V/E

) ≥
1
e

nne−n

n! . 
�
Corollary 5.3 Let .V : R → R

+ be a Young function such that .dμ(x) = e−V (x)dx

is a probability measure. Let .m1 and .σ 2
1 denote the average and the variance of V

with respect to .μ. We also assume that the function .x 	→ xV ′(x) belongs to the
space .L2(μ). Let .ε ∈ (0, 1). Then there exists .c = c(V, ε) such that for all .n ≥ 1

and all .E ∈
[
m1n − σ1(1 − ε)

√
2n ; m1n + σ1(1 − ε)

√
2n

]
,

.CP (λBn
V/E

) ≤ c CLin
P (λBn

V/E
).

Proof Combining the later proposition and theorem yields the result for .n ≥
n0(V , ε). In order to deal with smaller dimensions, we simply apply known
dimension dependent bounds: e.g., Kannan, Lovász, and Simonovits [11] proved
that .CP (λK) ≤ κnCLin

P (λK) for all convex bodies K in .R
n, with .κ a universal

constant. 
�

6 Asymptotic Independence of Coordinates

A classical observation, going back to Maxwell, but also attributed to Borel and to
Poincaré, states that for a fixed k, the law of the first k coordinates of a uniform
random vector on the Euclidean sphere of .R

n, centered at the origin and of radius
.
√

n, tends to the law of k independent standard Gaussian random variables as n

tends to infinity. Quantitative versions of this asymptotic independence property
were given by Diaconis and Freedman [8], as well as a similar result for the unit
sphere of the .�1-norm, involving exponential variables in the limit. Extensions to
random vectors distributed according to the cone measure on the surface of the
unit ball .Bn

p were given by Rachev and Rüschendorf [20], while Mogul’skiı̆ [15]
dealt with the case of the normalized surface measure. Explicit calculations, or the
probabilistic representation put forward in [4], easily yield asymptotic independence
results for the first k coordinates of a uniform vector on the set .Bn

p itself, when k is
fixed and n tend to infinity.

In this section we study marginals of a random vector .ξ (n) uniformly distributed
on .Bn

�/En
, where .En and n tend to .∞.

Let us start with the simple case when .En = mn for some .m > 0, which can be
written as .m = mλ for some .λ > 0. Let .k ≥ 1 be a fixed integer, then the density at
.(x1, . . . , xk) ∈ R

k of the first k coordinates .(ξ
(n)
1 , . . . , ξ

(n)
k ) is equal to

.
Voln−k

(
Bn

/En
∩ {y ∈ R

n; yi = xi, ∀i ≤ k})

Vol
(
Bn

/En

) =
Vol

(
Bn−k

�/(En−∑k
i=1 �(xi))

)

Vol
(
Bn

�/En

)
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We apply Corollary 1.2 twice: once for the denominator, and once for the numerator
after writing

.mλn −
∑

i≤k

�(xi) = mλ(n − k) + mλk − ∑
i≤k �(xi)√

n − k

√
n − k.

We obtain that the above ratio is equivalent to

.
Zn−k

λ eλ(En−∑
i≤k �(xi ))

λσλ

√
2π(n − k)

· λσλ

√
2πn

Zn
λeλEn

∼ e−λ
∑k

i=1 �(xi)

Zk
λ

·

Thus we have proved the convergence in distribution of .(ξ
(n)
1 , . . . , ξ

(n)
k ) to .μ⊗k

λ as
n tends to infinity. In other words the first k coordinates of .ξ (n) are asymptotically
i.i.d. of law .μλ. This is true for more general balls and for a number of coordinates
going also to infinity:

Theorem 6.1 Let .En = mλn+αnσλ

√
n, where .(αn)n≥1 is bounded. Let the random

vector .ξ (n) be uniformly distributed on .Bn
�/En

. For any .kn = o(
√

n),

. lim
n→∞ dT V

(
(ξ

(n)
1 , . . . , ξ

(n)
kn

), μ
⊗kn

λ

) = 0.

Proof Below, we simply write .ξi for .ξ
(n)
i . Recall that .(Xi) are i.i.d. r.v.’s with the

distribution .μλ. Set .tn := n1/4k
1/2
n so that .tn = o(

√
n) and .kn = o(tn). The total

variation distance between the law of .(ξ
(n)
1 , . . . , ξ

(n)
kn

) and .μ
⊗kn

λ is

.

∫

Rkn

∣
∣
∣
∣
∣

1

Vol(Bn
�/En

)

∫

Rn−kn

1{(x,y)∈Bn
�/En

} dy − 1

Z
kn

λ

e−λ(�(x1)+···+�(xkn ))

∣
∣
∣
∣
∣
dx

≤
∫

B
kn
�/tn

∣
∣
∣
∣
∣
∣
∣

Vol
(
B

n−kn

�/(En−∑kn
i=1 �(xi))

)

Vol(Bn
�/En

)
− 1

Z
kn

λ

e−λ(�(x1)+···+�(xkn ))

∣
∣
∣
∣
∣
∣
∣

dx

+ P
(
(ξ1, . . . , ξkn) �∈ B

kn

�/tn

) + P
(
(X1, . . . , Xkn) �∈ B

kn

�/tn

)

=
∫ tn

0

∣
∣
∣
∣
∣

Vol
(
B

n−kn

�/(En−t)

)

Vol(Bn
�/En

)
− e−λt

Z
kn

λ

∣
∣
∣
∣
∣

d

dt
Vol(Bkn

�/t ) dt (6.1)

+ P

(
kn∑

i=1

�(ξi) > tn

)

+ P

(
kn∑

i=1

�(Xi) > tn

)

.
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By Markov’s inequality,

.P

(
kn∑

i=1

�(Xi) > tn

)

≤ E
( ∑kn

i=1 �(Xi)
)

tn
= knmλ

tn
= o(1).

Similarly, and since by definition .
∑n

i=1 �(ξi) ≤ En and the .ξi’s are exchangeable

.P

(
kn∑

i=1

�(ξi) > tn

)

≤ E
( ∑kn

i=1 �(ξi)
)

tn
≤ knEn

ntn
= knmλ

tn
= o(1).

In order to estimate (6.1), we use Theorem 1.1. Since .kn = o(
√

n) and .tn = o(
√

n),
we know that .En − t = mλ(n − kn) + βnσλ

√
n − kn, where

.βn := αn

√
n

n − kn

+ mλkn − t

σλ

√
n − kn

is a bounded sequence such that .βn − αn = o(1), both properties holding uniformly
in .t ∈ [0, tn]. Therefore, Theorem 1.1 applied to .B

n−kn

�/(En−t) gives

.Vol
(
B

n−kn

�/(En−t)

) = Z
n−kn

λ eλ(En−t)

λσλ

√
2π(n − kn)

e−β2
n/2(1 + o(1))

uniformly in .t ∈ [0, tn]. On the other hand, Theorem 1.1 applied to .Bn
�/En

yields

.Vol
(
Bn

�/En

) = Zn
λeλEn

λσλ

√
2πn

e−α2
n/2(1 + o(1)).

Combining the above two asymptotic expansions, we obtain

.
Vol

(
B

n−kn

�/(En−t)

)

Vol(Bn
�/En

)
= e−λt

Z
kn

λ

(1 + o(1))

uniformly in .t ∈ [0, tn]. Therefore the term (6.1) equals

.o(1)
∫ tn

0

e−λt

Z
kn

λ

d

dt
Vol(Bkn

�/t ) dt = o(1) · P
(

kn∑

i=1

�(Xi) ≤ tn

)

= o(1).


�
The next result gives the asymptotic distribution of a sort of distance to the

boundary for high-dimensional Orlicz balls.
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Theorem 6.2 Let .En = mλn+αnσλ

√
n, where .(αn)n≥1 is bounded. Let the random

vector .ξ (n) be uniformly distributed on .Bn
�/En

. Then the following convergence in
distribution occurs as n goes to infinity:

.λ ·
(
En −

n∑

i=1

�
(
ξ

(n)
i

)) −→ Exp(1).

Proof Let .Sn := En − ∑n
i=1 �

(
ξ

(n)
i

) ≥ 0. For .t ≥ 0,

.P(Sn ≥ t) = P

(
n∑

i=1

�
(
ξ

(n)
i

) ≤ En − t

)

= Vol
(
Bn

�/(En−t)

)

Vol
(
Bn

�/En

) ·

As before, Theorem 1.1 applied to .Bn
�/En

yields

.Vol
(
Bn

�/En

) ∼ Zn
λeλEn

λσλ

√
2πn

e−α2
n/2,

whereas applied to .Bn
�/En−t

it gives

.Vol
(
Bn

�/En−t

) ∼ Zn
λeλ(En−t)

λσλ

√
2πn

e
−

(
αn− t

σλ
√

n

)2
/2

.

Taking the quotient gives .limn P(Sn ≥ t) = e−λt . 
�

7 Integrability of Linear Functionals

Linear functionals of uniform random vectors on convex bodies are well studied
quantities. Their density function, known as the parallel section function, measures
the volume of hyperplane sections in a given direction.We refer, e.g., to the book [5],
and in particular to its sections 2.4 and 8.2 about the .ψ1 and .ψ2 properties, which
describe uniform integrability features (exponential integrability for .ψ1, Gaussian
type integrability for .ψ2). They can be expressed by upper bounds on the Laplace
transform.

In this section, we deal with even Young functions .�, so that the corresponding
sets .Bn

� are origin-symmetric, and actually unconditional. The forthcoming study is
valid for any dimension, without taking limits, so we consider the dimension n fixed
and write .ξ = (ξ1, . . . , ξn) for a uniform random vector on .Bn

� . We show that the
arguments of [3] for .�n

p unit balls extend to Orlicz balls.

Lemma 7.1 Let .a ∈ R
n, and .ξ be uniform on .Bn

� , then
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.Ee〈a,ξ 〉 ≤
n∏

i=1

Eeaiξ1 .

Proof Let .ε1, . . . , εn be i.i.d. random variables with .P(εi = 1) = P(εi = −1) =
1
2 , and independent of .ξ . Then by symmetry of .�, .(ε1ξ1, . . . , εnξn) has the same
distribution as .ξ . Hence,

.Ee〈a,ξ〉 = E

n∏

i=1

eaiεiξi = E

(

E

( n∏

i=1

eaiεiξi

∣
∣
∣ ξ

)
)

= E

n∏

i=1

cosh(aiξi).

Next by the subindependence property of coordinates, due to Pilipczuk and Woj-
taszczyk [19], and using the symmetry again as well as exchangeability:

.Ee〈a,ξ 〉 ≤
n∏

i=1

E cosh(aiξi) =
n∏

i=1

Eeaiξi =
n∏

i=1

Eeaiξ1 .


�
The above lemma shows that the Laplace transform of any linear functional .〈a, ξ 〉
can be upper estimated using the Laplace transform of the first coordinate .ξ1.
Therefore it is natural to study the law of .ξ1. For .t ∈ R consider the section of .Bn

� :

.S(t) := {y ∈ R
n−1; (t, y) ∈ Bn

�}

and .f (t) := Voln−1(S(t)). Then .Pξ1(dt) = f (t)dt/Voln(Bn
�). By the Brunn

principle, f is a log-concave function. It is also even by symmetry of the ball,
therefore it is non-increasing on .R

+. We observe that a slightly stronger property
holds:

Lemma 7.2 Let .� be an even Young function and .f (t) = Voln
({y ∈

R
n−1; (t, y) ∈ Bn

�}). Then the function .log f ◦�−1 is concave and non-increasing
on .R

+. Here .�−1 is the reciprocal function of the restriction of .� to .R
+.

Proof Let .t, u ≥ 0. Let .a ∈ S(t) and .b ∈ S(u). Then by definition

.�(t) +
n−1∑

i=1

�(ai) ≤ 1 and �(u) +
n−1∑

i=1

�(bi) ≤ 1.

Averaging these two inequalities and using the convexity of .�, we get for any .θ ∈
(0, 1):

.(1 − θ)�(t) + θ�(u) +
n−1∑

i=1

� ((1 − θ)ai + θbi) ≤ 1. (7.1)



Volume Properties of High-Dimensional Orlicz Balls 93

This can be rewritten as

.(1 − θ)a + θb ∈ S
(
�−1 ((1 − θ)�(t) + θ�(u))

)
.

Hence we have shown that

.(1 − θ)S(t) + θS(u) ⊂ S
(
�−1 ((1 − θ)�(t) + θ�(u))

)
,

and by the Brunn–Minkowski inequality, in multiplicative form

.f (t)1−θf (u)θ ≤ f
(
�−1 ((1 − θ)�(t) + θ�(u))

)
.

Note that if in (7.1) we had used convexity in the form .�((1 − θ)t + θu) ≤ (1 −
θ)�(t) + θ�(u), then we would have derived the Brunn principle from the Brunn–
Minkowski inequality. 
�

The next result shows that .� is more convex than the square function, the
corresponding Orlicz balls enjoy the .ψ2 property. This applies in particular to .Bn

p

for .p ≥ 2, a case which was treated in [3].

Theorem 7.3 Let .� be an even Young function, such that .t > 0 	→ �(
√

t) is
convex. Let .ξ be a uniform random vector on .Bn

� . Then for all .a ∈ R
n,

.Ee〈a,ξ〉 ≤
(

Ee
|a|√

n
ξ1

)n

≤ e
1
2E

(
〈a,ξ〉2

)

.

Proof Let .LX(t) = EetX denote the Laplace transform of a real valued random
variable. Then with the notation of Lemma 7.2,

.Lξ1(t) =
∫

etuf (u)
du

Vol(Bn
�)

.

Lemma 7.2 ensures that there exists a concave function c such that for all .u ≥ 0,
.log f (u) = c(�(u)). Note that c is also non-increasing on .R

+ since the section
function f is. Hence

.u ≥ 0 	→ log f (
√

u) = c(�(
√

u))

is concave. Theorem 12 of [3] ensures that .t ≥ 0 	→ ∫
R

eu
√

t f (u) du is log-concave.
In other words,

.t ≥ 0 	→ logLξ1(
√

t)

is concave.
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From Lemma 7.1, using symmetry and the above concavity property

.Ee〈a,ξ〉 ≤
n∏

i=1

Lξ1(ai) =
n∏

i=1

Lξ1

(√
a2i

)

≤
(

Lξ1

(√
1

n

∑

i

a2i

))n

= Lξ1

( |a|√
n

)n

.

To conclude we need the bound .Lξ1(t) ≤ et2E(ξ21 )/2 (it follows from the fact that
.t ≥ 0 	→ logLξ1(

√
t) is concave, hence upper bounded by its tangent application at

0, which is easily seen to be .tE(ξ21 )/2). We obtain

.Ee〈a,ξ〉 ≤ e
1
2 |a|2E(ξ21 ),

and we conclude using the symmetries of .ξ since

.E
(〈a, ξ 〉2) =

∑

i

a2i E(ξ2i ) +
∑

i �=j

aiajE(ξiξj ) = |a|2E(ξ21 ).


�
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Entropic Isoperimetric Inequalities
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1 Introduction

The entropic isoperimetric inequality asserts that

.N(X) I (X) ≥ 2πe n (1.1)

for any random vector X in .R
n with a smooth density. Here

.N(X) = exp
{

− 2

n

∫
p(x) log p(x) dx

}
and I (X) =

∫ |∇p(x)|2
p(x)

dx

denote the Shannon entropy power and the Fisher information of X with density p,
respectively (with integration with respect to Lebesgue measure dx on .R

n which
may be restricted to the supporting set .supp(p) = {x : p(x) > 0}).

This inequality was discovered by Stam [15] where it was treated in dimension
one. It is known to hold in any dimension, and the standard normal distribution
on .R

n plays an extremal role in it. Later on, Costa and Cover [6] pointed out
a remarkable analogy between (1.1) and the classical isoperimetric inequality
relating the surface of an arbitrary body A in .R

n to its volume .voln(A). The
terminology “isoperimetric inequality for entropies” goes back to Dembo, Costa,
and Thomas [8].
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As Rényi entropies have become a focus of numerous investigations in the recent
time, it is natural to explore more general relations of the form

.Nα(X) I (X) ≥ cα,n (1.2)

for the functional

.Nα(X) =
( ∫

p(x)αdx
)− 2

n(α−1)
. (1.3)

It is desirable to derive (1.2) with optimal constants .cα,n independent of the density
p, where .α ∈ [0,∞] is a parameter called the order of the Rényi entropy power
.Nα(X). Another representation

.Nα(X)−
n
2 = ‖p‖Lα−1(p(x) dx)

shows that .Nα is non-increasing in .α. This allows one to define the Rényi entropy
power for the two extreme values by the monotonicity to be

.N∞(X) = lim
α→∞ Nα(X) = ‖p‖− 2

n∞ , (1.4)

N0(X) = lim
α→0

Nα(X) = voln(supp(p))
2
n ,

where .‖p‖∞ = ess sup p(x). As a standard approach, one may also put .N1(X) =
limα↓1 Nα(X) which returns us to the usual definition of the Shannon entropy power
.N1(X) = N(X) under mild moment assumptions (such as .Nα(X) > 0 for some
.α > 1).

Returning to (1.1)–(1.2), the following two natural questions arise.

Question 1 Given n, for which range .An of the values of .α does (1.2) hold with
some positive constant?

Question 2 What is the value of the optimal constant .cα,n and can the extremizers
in (1.2) be described?

The entropic isoperimetric inequality (1.1) answers both questions for the order
.α = 1 with an optimal constant .c1,n = 2πe n. As for the general order, let us first
stress that, by the monotonicity of .Nα with respect to .α, the function .α 	→ cα,n

is also non-increasing. Hence, the range in Question 1 takes necessarily the form
.An = [0, αn) or .An = [0, αn] for some critical value .αn ∈ [0,∞]. The next assertion
specifies these values.

Theorem 1.1 We have

.An =

⎧
⎪⎪⎨
⎪⎪⎩

[0,∞] for n = 1,

[0,∞) for n = 2,

[0, n
n−2 ] for n ≥ 3.
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Thus, in the one dimensional case there is no restriction on .α (the range is full).
In fact, this already follows from the elementary sub-optimal inequality

.N∞(X)I (X) ≥ 1, (1.5)

implying that .cα,1 ≥ 1 for all .α. To see this, assume that .I (X) is finite, so that X has
a (locally) absolutely continuous density p, thus differentiable almost everywhere.
Since p is non-negative, any point .y ∈ R such that .p(y) = 0 is a local minimum,
and necessarily .p′(y) = 0 (as long as p is differentiable at y). Hence, applying the
Cauchy inequality, we have

.

∫ ∞

−∞
|p′(y)| dy =

∫

p(y)>0

|p′(y)|√
p(y)

√
p(y) dy

≤
( ∫

p(y)>0

p′(y)2

p(y)
dy

)1/2 ( ∫

p(y)>0
p(y) dy

)1/2 = √
I (X).

It follows that p has a bounded total variation not exceeding .
√

I (X), so .p(x) ≤√
I (X) for every .x ∈ R. This amounts to (1.5) according to (1.4) for .n = 1.
Turning to Question 2, we will see that the optimal constants .cα,1 together with

the extremizers in (1.2) may be explicitly described in the one dimensional case for
every .α using the results due to Nagy [13]. Since the transformation of these results
in the information-theoretic language is somewhat technical, we discuss this case in
detail in the next three sections (Sects. 2, 3, and 4). Let us only mention here that

.4 ≤ cα,1 ≤ 4π2,

where the inequalities are sharp for .α = ∞ and .α = 0, respectively, with
extremizers

.p(x) = 1

2
e−|x| and p(x) = 2

π
cos2(x) 1{|x|≤ π

2 }.

The situation in higher dimensions is more complicated, and only partial answers
to Question 2 will be given here. Anyway, in order to explore the behavior of the
constants .cα,n, one should distinguish between the dimensions .n = 2 and .n ≥ 3
(which is also suggested by Theorem 1.1). In the latter case, these constants can be
shown to satisfy

.4πn(n − 2)
(�(n

2 )

�(n)

) 2
n ≤ cα,n ≤ 4π2n, 0 ≤ α ≤ n

n − 2
,

where the left inequality is sharp and corresponds to the critical order .α = n
n−2 .

With respect to the growing dimension, these constants are asymptotically .2πen +
O(1), which exhibits nearly the same behavior as for the order .α = 1. However
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(which is rather surprising), the extremizers for the critical order exist for .n ≥ 5
only and are described as densities of the (generalized) Cauchy distributions on .R

n.
We discuss these issues in Sect. 7, while Sect. 6 deals with dimension .n = 2, where
some description of the constants .cα,2 will be given for the range .α ∈ [ 1

2 ,∞).
We end this introduction by giving an equivalent formulation of the isoperimetric

inequalities (1.2) in terms of functional inequalities of Sobolev type. As was noticed
by Carlen [5], in the classical case .α = 1, (1.1) is equivalent to the logarithmic
Sobolev inequality of Gross [9], cf. also [4]. However, when .α = 1, a different class
of inequalities should be involved. Namely, using the substitution .p = f 2/

∫
f 2

(here and in the sequel integrals are understood with respect to the Lebesgue
measure on .R

n), we have

.Nα(X) =
( ∫

f 2α
)− 2

n(α−1)
( ∫

f 2
) 2α

n(α−1)

and

.I (X) = 4
∫

|∇f |2/
∫

f 2.

Therefore (provided that f is square integrable), (1.2) can be equivalently reformu-
lated as a homogeneous analytic inequality

.

( ∫
|f |2α

) 2
n(α−1) ≤ 4

cα,n

∫
|∇f |2

( ∫
f 2

) α(2−n)+n
n(α−1)

, (1.6)

where we can assume that f is smooth and has gradient .∇f (however, when
speaking about extremizers, the function f should be allowed to belong to the
Sobolev class .W 2

1 (Rn)). Such inequalities were introduced by Moser [11, 12] in
the following form

.

( ∫
|f |2+ 4

n

)
≤ Bn

∫
|∇f |2

( ∫
f 2

) 2
n
. (1.7)

More precisely, (1.7) corresponds to (1.6) for the specific choice .α = 1+ 2
n

. Here, the
one dimensional case is covered by Nagy’s paper with the optimal factor .B1 = 4

π2 .

This corresponds to .α = 3 and .n = 1, and therefore .c3,1 = π2 which complements
the picture depicted above. To the best of our knowledge, the best constants .Bn for
.n ≥ 2 are not known. However, using the Euclidean log-Sobolev inequality and the
optimal Sobolev inequality, Beckner [2] proved that asymptotically .Bn ∼ 2

πen
.

Both Moser’s inequality (1.7) and (1.6) with a certain range of .α enter the general
framework of Gagliardo–Nirenberg’s inequalities

.

( ∫
|f |r

) 1
r ≤ κn(q, r, s)

( ∫
|∇f |q

) θ
q
( ∫

|f |s
) 1−θ

s
(1.8)
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with .1 ≤ q, r, s ≤ ∞, .0 ≤ θ ≤ 1, and .
1
r

= θ ( 1
q

− 1
n
) + (1 − θ) 1

s
. We will make

use of the knowledge on Gagliardo–Nirenberg’s inequalities to derive information
on (1.2).

In the sequel, we denote by .‖f ‖r = (
∫ |f |r ) 1

r the .Lr -norm of f with respect to
the Lebesgue measure on .R

n (and use this functional also in the case .0 < r < 1).

2 Nagy’s Theorem

In the next three sections we focus on dimension .n = 1, in which case the entropic
isoperimetric inequality (1.2) takes the form

.Nα(X) I (X) ≥ cα,1 (2.1)

for the Rényi entropy

.Nα(X) =
(∫

p(x)αdx

)− 2
α−1

and the Fisher information

.I (X) =
∫

p′(x)2

p(x)
dx = 4

∫ ( d

dx

√
p(x)

)2
dx.

In dimension one, our basic functional space is the collection of all (locally)
absolutely continuous functions on the real line whose derivatives are understood
in the Radon–Nikodym sense. We already know that (2.1) holds for all .α ∈ [0,∞].

According to (1.6), the family (2.1) takes now the form

.

∫
|f |2α ≤

( 4

cα,1

) α−1
2

( ∫
f ′2) α−1

2
( ∫

f 2
) α+1

2
(2.2)

when .α > 1, and

.

∫
f 2 ≤

( 4

cα,1

) 1−α
1+α

( ∫
f ′2) 1−α

1+α
( ∫

|f |2α
) 2

1+α
(2.3)

when .α ∈ (0, 1).
In fact, these two families of inequalities can be seen as sub-families of the

following one, studied by Nagy [13],

.

∫
|f |γ+β ≤ D

( ∫
|f ′|p

) β
pq

( ∫
|f |γ

)1+ β(p−1)
pq
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with

.p > 1, β, γ > 0, q = 1 + γ (p − 1)

p
, (2.4)

and some constants .D = Dγ,β,p depending on .γ, β, and p, only. For such
parameters, introduce the functions .yp,γ = yp,γ (t) defined for .t ≥ 0 by

.yp,γ (t) =

⎧
⎪⎪⎨
⎪⎪⎩

(1 + t)
p

p−γ if p < γ,

e−t if p = γ,

(1 − t)
p

p−γ 1[0,1](t) if p > γ.

To involve the parameter .β, define additionally .yp,γ,β implicitly as follows. Put
.yp,γ,β(t) = u, .0 ≤ u ≤ 1, with

.t =
∫ 1

u

(
sγ (1 − sβ)

)− 1
p
ds

if .p ≤ γ . If .p > γ , then .yp,γ,β(t) = u, .0 ≤ u ≤ 1, is the solution of the above
equation for

.t ≤ t0 =
∫ 1

0

(
sγ (1 − sβ)

)− 1
p ds

and .yp,γ,β(t) = 0 for all .t > t0. With these notations, Nagy established the
following result.

Theorem 2.1 ([13]) Under the constraint (2.4), for any (locally) absolutely contin-
uous function .f : R → R,

(i)

.‖f ‖∞ ≤
(q

2

) 1
q
( ∫

|f ′|p
) 1

pq
( ∫

|f |γ
) p−1

pq
. (2.5)

Moreover, the extremizers take the form .f (x) = ayp,γ (|bx + c|) with .a, b, c

constants (.b = 0).
(ii)

.

∫
|f |β+γ ≤

(
q

2
H

( q

β
,
p − 1

p

)) β
q ( ∫

|f ′|p
) β

pq
( ∫

|f |γ
)1+ β(p−1)

pq
,

(2.6)
where
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.H(u, v) = �(1 + u + v)

�(1 + u) �(1 + v)

( u

u + v

)u( v

u + v

)v

, u, v ≥ 0.

Moreover, the extremizers take the form .f (x) = ayp,γ,β(|bx + c|) with .a, b, c

constants (.b = 0).

Here, .� denotes the classical Gamma function, and we use the convention that
.H(u, 0) = H(0, v) = 1 for .u, v ≥ 0. It was mentioned by Nagy that H is monotone
in each variable. Moreover, since .H(u, 1) = (1 + 1

u
)−u is between 1 and .

1
e
, one has

.1 > H(u, v) > (1 + 1
u
)−u > 1

e
for all .0 < v < 1. This gives a two-sided bound

.1 ≥ H
( q

β
,
p − 1

p

)
>

(
1 + β

q

)− q
β

>
1

e
.

3 One Dimensional Isoperimetric Inequalities for Entropies

The inequalities (2.2) and (2.3) correspond to (2.6) with parameters

.p = γ = q = 2, β = 2(α − 1) in the case α > 1

and

.p = 2, β = 2(1 − α), γ = 2α, q = 1 + α in the case α ∈ (0, 1),

respectively. Hence, as a corollary from Theorem 2.1, we get the following state-
ment which solves Question 2 when .n = 1. Note that, by Theorem 2.1, the extremal
distributions (their densities p) in (2.1) are determined in a unique way up to non-
degenerate affine transformations of the real line. So, it is sufficient to indicate just
one specific extremizer for each admissible collection of the parameters. Recall the
definition of the optimal constants .cα,1 from (2.1).

Theorem 3.1

(i) In the case .α = ∞, we have

.c∞,1 = 4.

Moreover, the density .p(x) = 1
2 e−|x|

.(x ∈ R) of the two-sided exponential
distribution represents an extremizer in (2.1).

(ii) In the case .1 < α < ∞, we have

.cα,1 = 2π

α − 1

( 2

α + 1

) α−3
α−1

(
�( 1

α−1 )

�( α+1
2(α−1)

)

)2

.
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Moreover, the density .p(x) = a cosh(x)−
2

α−1 with a normalization constant

.a = 1√
π

�( α+1
2(α−1)

)

�( 1
α−1 )

represents an extremizer in (2.1).

(iii) In the case .0 < α < 1,

.cα,1 = 2π

1 − α

( 2

1 + α

) 1+α
1−α

(
�( 1+α

2(1−α)
)

�( 1
1−α

)

)2

.

Moreover, the density .p(x) = a cos(x)
2

1−α 1[− π
2 , π

2 ](x) with constant .a =
1√
π

�( 3−α
1−α

)

�( 3−α
2(3−α)

)
represents an extremizer in (2.1).

To prove the theorem, we need a simple technical lemma.

Lemma 3.2

(i) Given .a > 0 and .t ≥ 0, the (unique) solution .y ∈ (0, 1] to the equation
.
∫ 1
y

ds

s
√

1−sa
= t is given by

.y =
[

cosh
(at

2

)]− 2
a
.

(ii) Given .a, b > 0 and .c ∈ R, we have

.

∫ ∞

−∞
cosh(|bx + c|)−a dx =

√
π

b

�(a
2 )

�(a+1
2 )

.

(iii) Given .a ∈ (0, 1) and .u ∈ [0, 1], we have

.

∫ 1

u

ds

sa
√

1 − s2(1−a)
= 1

1 − a
arccos(u1−a).

Remark 3.3 Since .�(a+1
2 ) = �(m + 1

2 ) = (2m)!
4mm!

√
π for .a = 2m with an integer

.m ≥ 1, for such particular values of a, we have

.

∫ ∞

−∞
cosh(|bx + c|)−a dx = 1

b
· 4mm! (m − 1)!

(2m)! .

Proof of Lemma 3.2 Changing the variable .u = √
1 − sa , we have

.

∫ 1

y

ds

s
√

1 − sa
= 2

a

∫ √
1−ya

0

du

1 − u2 = 1

a
log

(1 + √
1 − ya

1 − √
1 − ya

)
.

Inverting this equality leads to the desired result of item (i).
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For item (ii) we use the symmetry of the .cosh-function together with the change
of variables .u = bx + c and then .t = sinh(u)2 to get

.

∫ ∞

−∞
cosh(|bx + c|)−a dx = 1

b

∫ ∞

−∞
cosh(|u|)−a du

= 2

b

∫ ∞

0
cosh(u)−a du = 1

b

∫ ∞

0
t−

1
2 (1 + t)−

a+1
2 dt.

To obtain the result, we need to perform a final change of variables .v = 1
1+t

. This
turns the last integral into

.

∫ 1

0
(1 − v)−

1
2 v

a
2 −1 dv = B

(1

2
,
a

2

)
= √

π
�(a

2 )

�(a+1
2 )

,

where we used the beta function .B(x, y) = ∫ 1
0 (1 − v)x−1vy−1 dv = �(x)�(y)

�(x+y)
,

.x, y > 0.
Finally, in item (iii), a change of variables leads to

.

∫ 1

u

ds

sa
√

1 − s2(1−a)
= 1

1 − a

∫ 1

u

ds1−a

√
1 − s2(1−a)

= 1

1 − a

∫ 1

u1−a

dv√
1 − v2

= 1

1 − a
arccos(u1−a).

��
Proof of Theorem 3.1 When .α = ∞ as in the case (i), (2.2) with .

∫
f 2 = 1

becomes

.‖f ‖∞ ≤
( 4

c∞,1

∫
f ′2) 1

4
.

This corresponds to (2.5) with parameters .p = q = γ = 2. Therefore, item (i) of
Theorem 2.1 applies and leads to

.‖f ‖∞ ≤
( ∫

f ′2) 1
4
,

that is, .c∞,1 = 4. Moreover, the extremizers in (2.5) are given by

.f (x) = ay2,2(|bx + c|) = a e−|bx+c|, b = 0, a, c ∈ R.

But, the extremizers in (2.1) are of the form .p = f 2/
∫

f 2 with f an extremizer in
(2.5). The desired result then follows after a change of variables.
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Next, let us turn to the case (ii), where .1 < α < ∞. Here (2.1) is equivalent to
(2.2) and corresponds to (2.6) with .p = γ = q = 2 and .β = 2(α − 1). Therefore,

by Theorem 2.1, .( 4
cα,1

)
α−1

2 = H( 1
α−1 , 1

2 )α−1, so that

.cα,1 = 4

H( 1
α−1 , 1

2 )2
= 4

�(1 + 1
α−1 )2 �( 3

2 )2

�( 3
2 + 1

α−1 )2

( 1
α−1 + 1

2
1

α−1

) 2
α−1

( 1
α−1 + 1

2
1
2

)

= π

( 1
α−1
α+1

2(α−1)

)2 �( 1
α−1 )2

�( α+1
2(α−1)

)2

(α + 1

2

) 2
α−1

(α + 1

α − 1

)
,

where we used the identities .�(3/2) = √
π/2 and .�(1 + z) = z�(z). This leads to

the desired expression for .cα,1.
As for extremizers, item (ii) of Theorem 2.1 applies and asserts that the equality

cases in (2.2) are reached, up to numerical factors, for functions .f (x) = y(|bx+c|),
with .b = 0, .c ∈ R, and .y : [0,∞) → R defined implicitly for .t ∈ [0,∞) by
.y(t) = u, .0 ≤ u ≤ 1, with

.t =
∫ 1

u

(
s2(1 − s2(α−1))

)− 1
2
ds =

∫ 1

u

1

s
√

1 − s2(α−1)
ds.

Now, Lemma 3.2 provides the solution .y(t) = (cosh((α − 1) t))−
1

α−1 . Therefore,
the extremizers in (2.2) are reached, up to numerical factors, for functions of the
form

.f (x) = (cosh(|bx + c|))− 1
α−1 , b = 0, c ∈ R.

Similarly to the case (i), the extremizers in (2.1) are of the form .p = f 2/
∫

f 2 with
f an extremizer in (2.2). Therefore, by Lemma 3.2, with some .b > 0 and .c ∈ R,

.p(x) = cosh(|bx + c|)− 2
α−1

∫
cosh(|bx + c|)− 2

α−1 dx
= b√

π

�( α+1
2(α−1)

)

�( 1
α−1 )

cosh(bx + c)−
2

α−1

as announced.
Finally, let us turn to item (iii), when .α ∈ (0, 1). As already mentioned, (2.1) is

equivalent to (2.3) and therefore corresponds to (2.6) with .p = 2, .β = 2(1 − α),
.γ = 2α, and .q = 1 + α. An application of Theorem (2.1) leads to the desired
conclusion after some algebra (which we leave to the reader) concerning the explicit
value of .cα,1. In addition, the extremizers are of the form .p(x) = ay2(|bx+c|), with
a a normalization constant, .b = 0, and .c ∈ R. Here .y = y(t) is defined implicitly
by the equation
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.t =
∫ 1

y

1

sα
√

1 − s2(1−α)
ds

for .t ≤ t0 = ∫ 1
0

1

sα
√

1−s2(1−α)
ds and .y(t) = 0 for .t > t0. Item (iii) of Lemma 3.2

asserts that

.t0 = π

2(1 − α)
and y(t) =

(
cos((1 − α) t)

) 1
1−α

1[0, π
2(1−α)

](t).

This leads to the desired conclusion. ��

4 Special Orders

As an illustration, here we briefly mention some explicit values of .cα,1 and
extremizers for specific values of the parameter .α in the one dimensional entropic
isoperimetric inequality

.Nα(X) I (X) ≥ cα,1. (4.1)

The order .α = 0 The limit in item (iii) of Theorem 3.1 leads to the optimal
constant

.c0,1 = lim
α→0

cα,1 = 4π2.

Since all explicit expressions are continuous with respect to .α, the limits of the
extremizers in (2.1) for .α → 0 represent extremizers in (2.1) for .α = 0. Therefore,
the densities

.p(x) = 2b

π
cos2(bx + c) 1[− π

2 ; π
2 ](bx + c), b > 0, c ∈ R,

are extremizers in (2.1) with .α = 0.

The order .α = 1
2 Direct computation leads to .c 1

2 ,1 = (4/3)3π2. Moreover, the
extremizers in (2.1) are of the form

.p(x) = 8b

3π
cos4(bx + c) 1[− π

2 ; π
1 ](bx + c), b > 0, c ∈ R.

The order .α = 1 This case corresponds to Stam’s isoperimetric inequality for
entropies. Here .c1,1 = 2πe, and, using the Stirling formula, one may notice that
indeed
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.c1,1 = lim
α→1

cα,1 = 2πe.

Moreover, Gaussian densities can be obtained from the extremizers .p(x) =
cosh(bx + c)−

2
α−1 with .b = b′√α − 1, .c = c′√α − 1 in the limit as .α ↓ 1. (Note

that the limit .α ↑ 1 would lead to the same conclusion.)

The order .α = 2 A direct computation leads to .c2,1 = 12 with extremizers of the
form

.p(x) = b

2 cosh2(bx + c)
, b > 0, c ∈ R.

In this case, the entropic isoperimetric inequality may equivalently be stated in terms
of the Fourier transform .p̂(t) = ∫

eitxp(x), .t ∈ R, of the density p. Indeed, thanks
to Plancherel’s identity, we have

.N2(X)−1/2 =
∫

p2 = 1

2π

∫
|p̂|2.

Therefore, the (optimal) isoperimetric inequality for entropies yields the relation

.

∫
|p̂|2 ≤ π

√
I (X)

3

which is a global estimate on the .L2-norm of .p̂. In [18], Zhang derived the following
pointwise estimate: If the random variable X with density p has finite Fisher
information .I (X), then (see also [3] for an alternative proof)

.|p̂(t)| ≤ I (X)

I (X) + t2
, t ∈ R.

The latter leads to some bounds on .c2,1, namely

.N2(X)−1/2 = 1

2π

∫
|p̂|2 ≤ 1

2π

∫
I (X)2

(I (X) + t2)2 dt = 1

2

√
I (X).

Hence .N2(X)I (X) ≥ 4 that should be compared to .N2(X)I (X) ≥ 12.

The order .α = 3 Then .c3,1 = π2, and the extremizers are of the form

.p(x) = b

π cosh(bx + c)
, b > 0, c ∈ R.

The order .α = ∞ From Theorem 3.1, .c∞,1 = 4, and the extremizers are of the
form

.p(x) = b e−|bx+c|, b > 0, c ∈ R.
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5 Fisher Information in Higher Dimensions

In order to perform the transition from the entropic isoperimetric inequality (1.2)
to the form of the Gagliardo–Nirenberg inequality such as (1.8) via the change
of functions .p = f 2/

∫
f 2 and back, and to justify the correspondence of the

constants in the two types of inequalities, let us briefly fix some definitions and
recall some approximation properties of the Fisher information. This is dictated by
the observation that in general f in (1.8) does not need to be square integrable, and
then p will not be defined as a probability density.

The Fisher information of a random vector X in .R
n with density p may be

defined by means of the formula

.I (X) = I (p) = 4
∫

|∇√
p|2. (5.1)

This functional is well-defined and finite if and only if .f = √
p belongs to

the Sobolev space .W 2
1 (Rn). There is the following characterization: A function f

belongs to .W 2
1 (Rn), if and only if it belongs to .L2(Rn) and

. sup
h =0

[
1

|h| ‖f (x + h) − f (x)‖2

]
< ∞.

In this case, there is a unique vector-function .g = (g1, . . . , gn) on .R
n with

components in .L2(Rn), called a weak gradient of f and denoted .g = ∇f , with
the property that

.

∫
gv = −

∫
f ∇v for all v ∈ C∞

0 (Rn). (5.2)

As usual, .C∞
0 (Rn) denotes the class of all .C∞-smooth, compactly supported

functions on .R
n. Still equivalently, there is a representative .f̄ of f which is

absolutely continuous on almost all lines parallel to the coordinate axes and whose
partial derivatives .∂xk

f̄ belong to .L2(Rn). In particular, .gk(x) = ∂xk
f̄ (x) for almost

all .x ∈ R
n (cf. [19], Theorems 2.1.6 and 2.1.4).

Applied to .f = √
p with a probability density p on .R

n, the property that .f ∈
W 2

1 (Rn) ensures that p has a representative .p̄ which is absolutely continuous on
almost all lines parallel to the coordinate axes and such that the functions .∂xk

p̄/
√

p

belong to .L2(Rn). Moreover,

.I (p) =
n∑

k=1

∥∥∥∂xk
p̄√
p

∥∥∥
2

2
.

Note that .W 2
1 (Rn) is a Banach space for the norm defined by
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.‖f ‖2
W 2

1
= ‖f ‖2

2 + ‖∇f ‖2
2

= ‖f ‖2
2 + ‖g1‖2

2 + · · · + ‖gn‖2
2 (g = ∇f ).

We use the notation .Nα(X) = Nα(p) when a random vector X has density p.

Proposition 5.1 Given a (probability) density p on .R
n such that .I (p) is finite, there

exists a sequence of densities .pk ∈ C∞
0 (Rn) satisfying as .k → ∞

.(a) .I (pk) → I (p), and
.(b) .Nα(pk) → Nα(p) for any .α ∈ (0,∞), .α = 1.

Proof Let us recall two standard approximation arguments. Fix a non-negative
function .ω ∈ C∞

0 (Rn) supported in the closed unit ball .B̄n(0, 1) = {x ∈ R
n :

|x| ≤ 1} and such that .
∫

ω = 1, and put .ωε(x) = ε−nω(x/ε) for .ε > 0. Given a
locally integrable function f on .R

n, one defines its regularization (mollification) as
the convolution

.fε(x) = (f ∗ ωε)(x) =
∫

ωε(x − y)f (y) dy

=
∫

f (x − εy)ω(y) dy, x ∈ R
n. (5.3)

It belongs to .C∞(Rn), has gradient .∇fε = f ∗ ∇ωε, and is non-negative, when f

is non-negative. From the definition it follows that, if .f ∈ L2(Rn), then

.‖fε‖2 ≤ ‖f ‖2, lim
ε→0

‖fε − f ‖2 = 0.

Moreover, if .f ∈ W 2
1 (Rn), then, by (5.2)–(5.3), we have .∇fε = ∇f ∗ ωε. Hence

.‖∇fε‖2 ≤ ‖∇f ‖2, lim
ε→0

‖∇fε − ∇f ‖2 = 0,

so that

.‖fε‖W 2
1

≤ ‖f ‖W 2
1
, lim

ε→0
‖fε − f ‖W 2

1
= 0. (5.4)

Thus, .C∞(Rn) ∩ W 2
1 (Rn) is dense in .W 2

1 (Rn).
To obtain .(a), define .f = √

p. Given .δ ∈ (0, 1
2 ), choose .ε > 0 such that .‖fε −

f ‖W 2
1

< δ. Let us take a non-negative function .w ∈ C∞
0 (Rn) with .w(0) = 1 and

consider a sequence

.ul(x) = fε(x)w(x/l).
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These functions belong to .C∞
0 (Rn), and by the Lebesgue dominated convergence

theorem, .ul → fε in .W 2
1 (Rn) as .l → ∞. Hence

.‖u − f ‖W 2
1

< δ

for some .u = ul , which implies

.| ‖u‖2 − 1| = | ‖u‖2 − ‖f ‖2| ≤ ‖u − f ‖2 < δ

and thus .‖u‖2 > 1
2 . As a result, the normalized function .f̃ = u/‖u‖2 satisfies

.‖f̃ − f ‖W 2
1

=
‖u − ‖u‖2 f ‖W 2

1

‖u‖2
≤

δ + δ‖f ‖W 2
1

‖u‖2
< 4δ ‖f ‖W 2

1
,

where we used .‖f ‖W 2
1

≥ ‖f ‖2 = 1. This gives

.| ‖∇f̃ ‖2 − ‖∇f ‖2| < 4δ ‖f ‖W 2
1

≤ 2 ‖f ‖W 2
1

and hence

.
∣∣ ‖∇f̃ ‖2

2 − ‖∇f ‖2
2

∣∣ ≤ 4δ ‖f ‖W 2
1

(‖∇f̃ ‖2 + ‖∇f ‖2
)

≤ 4δ ‖f ‖W 2
1

(
2 ‖f ‖W 2

1
+ 2 ‖∇f ‖2

)

= 8δ
(‖f ‖2

W 2
1

+ ‖f ‖W 2
1
‖∇f ‖2

)
.

Here .‖f ‖2
W 2

1
= 1 + I (p) and

.‖f ‖W 2
1
‖∇f ‖2 ≤ 1

2
‖f ‖2

W 2
1

+ 1

2
‖∇f ‖2

2 ≤ 1

2
+ I (p).

Eventually, the probability density .p̃ = f̃ 2 satisfies

.|I (p̃) − I (p)| ≤ 4δ (3 + 4I (p)). (5.5)

With .δ = δk → 0, we therefore obtain a sequence .pk = p̃ such that .I (pk) → I (p)

as .k → ∞, thus proving .(a).
Let us see that similar functions .pk may be used in .(b) when

.

∫
p(x)α dx =

∫
f (x)2α dx = ∞

which corresponds to the case where .Nα(p) = 0 for .α > 1 and .Nα(p) = ∞ for .0 <

α < 1. Returning to the previously defined functions .ul , we observe that .‖ul‖2α →
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‖fε‖2α as .l → ∞. Hence, it is sufficient to check that .‖fε‖2α → ‖f ‖2α = ∞ for
some sequence .ε = εk → 0. Indeed, since .‖f ‖2 = 1, the function f is locally
integrable, implying that .fε(x) → f (x) as .ε → 0 for almost all points .x ∈ R. This
follows from (5.2) and the Lebesgue differentiation theorem which yields

.|fε(x) − f (x)| ≤
∫

ωε(x − y) |f (y) − f (x)| dy

≤ ‖ω‖∞ ε−n

∫

|y−x|<ε

|f (y) − f (x)| dy → 0 a.e.

Hence, by Fatou’s lemma, .‖f ‖2α ≤ lim infε→0 ‖fε‖2α , and we are done.
Now, let us turn to the basic case where .

∫
p(x)α dx < ∞, .α ∈ (0,∞). To

prove .(b), we borrow arguments from the proof of Theorem 2.3.2 in [19]. Consider
a partition .{wi}∞i=0 of unity of .R

n subordinate to the covering .Gi = Bn(0, i + 1) \
B̄n(0, i −1), in which .Bn(0,−1) = Bn(0, 0) = ∅. Every function .wi is supposed to
be in .C∞

0 (Rn) with a support lying in .Gi , to be non-negative, and all of them satisfy

.

∞∑
i=0

wi(x) = 1, x ∈ R
n. (5.6)

As before, let .f = √
p. Given .0 < δ < 1

2 , for each .i ≥ 0 choose .εi > 0 small
enough such that .(wif )εi

is still supported in .Gi and

.‖(wif )εi
− wif ‖W 2

1
< 2−i−1δ. (5.7)

The latter is possible due to the property (5.3) applied to .wif .
By the integrability assumption on p, we have .‖wif ‖2α < ∞, implying

.‖(wif )ε − wif ‖2α → 0 as ε → 0 (5.8)

as long as .2α ≥ 1. Since .f ∈ L2(Rn), we similarly have .‖(wif )ε − wif ‖2 → 0.
The latter implies that (5.8) holds in the case .2α < 1 as well, since .wif is supported
on a bounded set. Therefore, in addition to (5.7), we may require that

.

∫
|(wif )εi

− wif |2α dx < (2−i−1δ)max(2α,1). (5.9)

Now, by (5.6), .f (x) = ∑∞
i=0 wi(x)f (x), where the series contains only finitely

many non-zero terms. More precisely,

.f (x) =
m∑

i=0

wi(x)f (x), |x| < m + 1.
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Similarly, for the function .u(x) = ∑∞
i=0(wi(x)f (x))εi

, we have

.u(x) =
m∑

i=0

(wi(x)f (x))εi
, |x| < m + 1.

This equality shows that u is non-negative and belongs to the class .C∞
0 (Rn). In

addition, by (5.7),

.‖u − f ‖W 2
1

≤
∞∑
i=0

‖(wif )εi
− wif ‖W 2

1
< δ.

Hence

.‖u − f ‖2 < δ, (5.10)

and repeating the arguments from the previous step, we arrive at the bound (5.5) for
the density .p̃ = f̃ 2 with .f̃ = u/‖u‖2.

Next, if .α ≥ 1
2 , by the triangle inequality in .L2α , from (5.9) we also get .‖u −

f ‖2α < δ, so

.| ‖u‖2α − ‖f ‖2α| < δ. (5.11)

If .α < 1
2 , then, applying the inequality .(a1+· · ·+aN)2α ≤ a2α

1 +· · ·+a2α
N (.ak ≥ 0),

from (5.9) we deduce that

.

∫
|u − f |2α dx ≤

∞∑
i=1

∫
|u − wif |2α dx < δ.

This yields

.

∣∣∣
∫

u2α dx −
∫

f 2α dx

∣∣∣ < δ

and therefore, by Jensen’s inequality,

.| ‖u‖2α − ‖f ‖2α| < (2δ)1/(2α). (5.12)

In view of (5.10), inequalities similar to (5.11)–(5.12) hold also true for the
function .f̃ = u/‖u‖2 in place of u. Applying this with .δ = δk → 0, we obtain
a sequence .f̃k such that the probability densities .p̃ = f̃ 2 satisfy .(a) − (b) for any
.α = 1. ��
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Corollary 5.2 For any .α > 0, .α = 1, the infimum

. inf
I (p)<∞

[
Nα(p)I (p)

]

may be restricted to the class of compactly supported, .C∞-smooth densities p on
.R

n with finite Fisher information.

6 Two Dimensional Isoperimetric Inequalities for Entropies

In this section we deal with dimension .n = 2. As will be clarified, the entropic
isoperimetric inequality

.Nα(X)I (X) ≥ cα,2 (6.1)

holds true for any .α ∈ [0,∞) with a positive constant .cα,2 and does not hold for
.α = ∞ which answers Question 1 in the introduction. In addition, we will give a
certain description of the optimal constants .cα,2 in (6.1) for the range .α ∈ [ 1

2 ,∞),
thus answering partially Question 2.

When .n = 2, the family of inequalities (1.6) takes now the form

.

( ∫
|f |2α

) 1
2α ≤

( 4

cα,2

) α−1
2α

( ∫
|∇f |2

) θ
2
( ∫

f 2
) 1−θ

2
(6.2)

with .θ = α−1
α

when .α > 1, and

.

( ∫
f 2

) 1
2 ≤

( 4

cα,2

) 1−α
2

( ∫
|∇f |2

) θ
2
( ∫

|f |2α
) 1−θ

2α
(6.3)

with .θ = 1 − α when .α ∈ (0, 1).
Both inequalities enter the framework of Gagliardo–Nirenberg’s inequality (1.8).

The best constants and extremizers in (1.8) are not known for all admissible
parameters. The most recent paper on this topic is due to Liu and Wang [10] (see
references therein and historical comments). The case .q = s = 2 in (1.8) that
corresponds to (6.2) with .r = 2α goes back to Weinstein [17] who related the best
constants to the solutions of non-linear Schrödinger equations.

We present now part of the results of [10] that are useful for us. Since we will
use them for any dimension .n ≥ 2, the next statement does not deal only with the
case .n = 2. Also, since all the inequalities of interest for us deal with the .L2-norm
of the gradient only, we may restrict ourselves to .q = 2 for simplicity, when (1.8)
becomes
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.

( ∫
|f |r

) 1
r ≤ κn(2, r, s)

( ∫
|∇f |2

) θ
2
( ∫

|f |s
) 1−θ

s
(6.4)

with parameters satisfying .1 ≤ r, s ≤ ∞, .0 ≤ θ ≤ 1, and .
1
r

= θ( 1
2 − 1

n
)+ (1−θ) 1

s
.

This inequality may be restricted to the class of all smooth, compactly supported
functions .f ≥ 0 on .R

n. Once (6.4) holds in .C∞
0 (Rn), this inequality is extended by a

regularization and density arguments to the Sobolev space of functions .f ∈ Ls(Rn)

such that .|∇f | ∈ L2(Rn) (the gradients in this space are understood in a weak
sense).

The next statement relates the optimal constant in (6.4) to the solutions of the
ordinary non-linear equation

.u′′(t) + n − 1

t
u′(t) + u(t)r−1 = u(t)s−1 (6.5)

on the positive half-axis. Put

.σ =
{

n+2
n−2 if n ≥ 3,

∞ if n = 2.

We denote by .|x| the Euclidean norm of a vector .x ∈ R
n.

Theorem 6.1 ([10]) In the range .1 ≤ s < σ , .s < r < σ + 1,

.κn(2, r, s) = θ− θ
2 (1 − θ)

θ
2 − 1

r M
− θ

n
s , Ms =

∫

Rn

us
r,s(|x|) dx,

where the functions .ur,s = ur,s(t) are defined for .t ≥ 0 as follows.

(i) If .s < 2, then .ur,s is the unique positive decreasing solution to the equation
(6.5) in .0 < t < T (for some T ), satisfying .u′(0) = 0, .u(T ) = u′(T ) = 0, and
.u(t) = 0 for all .t ≥ T .

(ii) If .s ≥ 2, then .ur,s is the unique positive decreasing solution to (6.5) in .t > 0,
satisfying .u′(0) = 0 and .limt→∞ u(t) = 0.

Moreover, the extremizers in (6.4) exist and have the form .f (x) = aur,s(|bx+c|)
with .a ∈ R, .b = 0, .c ∈ R

n.

Note that (6.2) corresponds to Gagliardo–Nirenberg’s inequality (6.4) with .s =
2, .r = 2α, and .θ = α−1

α
for .α > 1, while (6.3) with .α ∈ [ 1

2 , 1) corresponds to (6.4)
with .r = 2, .s = 2α, and .θ = 1 − α. Applying Corollary 5.2, we therefore conclude
that

.κ2(2, r, s) = (4/cα,2)
α−1
2α when α > 1,

κ2(2, r, s) = (4/cα,2)
1−α

2 when α ∈ [1/2, 1).
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Together with Liu–Wang’s theorem, we immediately get the following corollary,
where we put as before

.Ms =
∫

R2
us(|x|) dx = 2π

∫ ∞

0
us(t) tdt.

Corollary 6.2

(i) For any .α > 1, we have

.cα,2 = 4(α − 1) α− 1
α−1 M2,

where .M2 is defined for the unique positive decreasing solution .u(t) on
.(0,∞) to the equation .u′′(t) + u′(t)

t
+ u(t)2α−1 = u(t) with .u′(0) = 0 and

.limt→∞ u(t) = 0.
(ii) For any .α ∈ [ 1

2 , 1), we have

.cα,2 = 4(1 − α) α
α

1−α M2α,

where .M2α is defined for the unique positive decreasing solution .u(t) to .u′′(t)+
1
t
u′(t) + u(t) = u(t)2α−1 in .0 < t < T with .u′(0) = 0, .u(T ) = u′(T ) = 0,

and .u(t) = 0 for all .t ≥ T .

In both cases the extremizers in (6.1) represent densities of the form .p(x) =
b
M

u2(|bx + c|), .x ∈ R
2, with .b > 0 and .c ∈ R

2.
So far, we have seen that (6.1) holds for any .α ∈ [1/2,∞). Since, as observed

in the introduction, .α 	→ cα,n is non-increasing, (6.1) holds also for .α < 1/2 and
therefore for any .α ∈ [0,∞). Note that the case .α = 1, which is formally not
contained in the results above, is the classical isoperimetry inequality for entropies
(1.1). Let us now explain why (6.1) cannot hold for .α = ∞. The functional form
for (6.1) should be the limit case of (6.2) as .α → ∞, when it becomes

.‖f ‖2∞ ≤ D

∫
|∇f |2 dx (6.6)

with .D = 4/c∞,2. To see that (6.6) may not hold with any constant D, we reproduce
Example 1.1.1 in [14]. Let, for .x ∈ R

2,

.f (x) =
{

log | log |x| | if |x| ≤ 1/e,

0 otherwise.

Then, passing to radial coordinates, we have

.

∫
|∇f |2 = 2π

∫ 1/e

0

dr

r| log r|2 = 2π,
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while f is not bounded. In fact, (6.6) is also violated for a sequence of smooth
bounded approximations of f .

7 Isoperimetric Inequalities for Entropies in Dimension
n = 3 and Higher

One may exhibit two different behaviors between .n = 3, 4, and .n ≥ 5 in the entropic
isoperimetric inequality

.Nα(X)I (X) ≥ cα,n. (7.1)

Let us rewrite the inequality (1.6) separately for the three natural regions, namely as

.

( ∫
|f |2α

) 1
2α ≤

( 4

cα,n

) n(α−1)
4α

( ∫
|∇f |2

) θ
2
( ∫

f 2
) 1−θ

2
(7.2)

with .θ = n(α−1)
2α

when .1 < α ≤ n
n−2 ,

.

( ∫
|f |2α

) θ
2α

( ∫
f 2

) 1−θ
2 ≤ 2√

cα,n

( ∫
|∇f |2

) 1
2

(7.3)

with .θ = 2α
n(α−1)

when .α > n
n−2 (observe that .θ ∈ (0, 1) in this case), and finally

.

( ∫
f 2

) 1
2 ≤

( 4

cα,n

) n(1−α)
2[α(2−n)+n] ( ∫

|∇f |2
) θ

2
( ∫

|f |2α
) 1−θ

2α
(7.4)

with .θ = n(1−α)
α(2−n)+n

when .α ∈ (0, 1).
Both (7.2) and (7.4) enter the framework of Gagliardo–Nirenberg’s inequality

(1.8). As for (7.3), we will show that such an inequality cannot hold. To that aim, we
need to introduce the limiting case .θ = 1 in (7.2), which corresponds to .α = n

n−2 .
It amounts to the classical Sobolev inequality

.

( ∫
|f | 2n

n−2

) n−2
2n ≤ Sn

( ∫
|∇f |2

) 1
2

(7.5)

which is known to hold true with best constant

.Sn = 1√
πn(n − 2)

( �(n)

�(n
2 )

) 1
n
.
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Moreover, the only extremizers in (7.5) have the form

.f (x) = a

(1 + b |x − x0|2) n−2
2

, a ∈ R, b > 0, x0 ∈ R
n (7.6)

(sometimes called the Barenblatt profile), see [1, 7, 16]. If .f ∈ L2(Rn) and .|∇f | ∈
L2(Rn), then, by (7.3), we would have that .f ∈ Lp(Rn) with .p = 2α > 2n

n−2 which
contradicts the Sobolev embeddings. Therefore (7.3) cannot be true, so that (7.1)
holds only for .α ∈ [0, n

n−2 ].
As for the value of the best constant .cα,n in (7.1) and the form of the extremizers,

we need to use again Theorem 6.1 which can, however, be applied only for .n ≤ 5.
As in Corollary 6.2, we adopt the notation

.Ms =
∫

Rn

us(|x|) dx

for a function u satisfying the non-linear ordinary differential equation

.u′′(t) + n − 1

t
u′(t) + u(t)2α−1 = u(t), 0 < t < ∞, (7.7)

or (in a different scenario)

.u′′(t) + n − 1

t
u′(t) + u(t) = u(t)2α−1, 0 < t < T . (7.8)

Corollary 7.2 Let .3 ≤ n ≤ 5.

(i) For any .1 < α < n
n−2 , we have

.cα,n = 2n(α − 1)

α

( 2α

α(2 − n) + n

) n(α−1)−2
n(α−1)

M
2
n

2 ,

where .M2 is defined for the unique positive decreasing solution .u(t) to (7.7) on
.(0,∞) with .u′(0) = 0 and .limt→∞ u(t) = 0.

(ii) For any .α ∈ [ 1
2 , 1),

.cα,n = 4
n(1 − α)

α(2 − n) + n

( 2α

α(2 − n) + n

) 2α
n(1−α)

M
2
n

2α

where .M2α is defined for the unique positive decreasing solution .u(t) to (7.8)
with .u′(0) = 0, .u(T ) = u′(T ) = 0, and .u(t) = 0 for all .t ≥ T .

In both cases, the extremizers in (7.1) are densities of the form .p(x) =
b
M

u2(|bx + c|), .x ∈ R
n, with .b > 0 and .c ∈ R

n.

For the critical value of .α, the picture is more complete but is different.
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Corollary 7.3 Let .n ≥ 3 and .α = n
n−2 . Then

.cα,n = 4πn(n − 2)
(�(n

2 )

�(n)

) 2
n
.

(i) For .n = 3 and .n = 4, (7.1) has no extremizers, i.e., there does not exist any
density p for which equality holds in (7.1) with the optimal constant.

(ii) For .n ≥ 5, the extremizers in (7.1) exist and have the form

.p(x) = a

(1 + b|x − x0|2)n−2 , a, b > 0, x0 ∈ R
n. (7.9)

Remark 7.4 Recall that .c1,n = 2πen. Using the Stirling formula, it is easy to see
that, for .α = n

n−2 ,

.cα,n ∼ 2πen − 2πe (2 + log 2) + O
(1

n

)
as n → ∞.

In particular, .cα,n ≥ 2πen − c0 for all .0 ≤ α ≤ n
n−2 with some absolute constant

.c0 > 0. To get a similar upper bound, it is sufficient to test (7.1) with .α = 0 on some
specific probability distributions. In this case, this inequality becomes

.voln(supp(p))
2
n I (X) ≥ c0,n. (7.10)

Suppose that the random vector .X = (X1, . . . , Xn) in .R
n has independent

components such that every .Xk has a common density .w(s) = 2
π

cos2(s), .|s| ≤ π
2 .

As we already mentioned in Sect. 4, this one dimensional probability distribution
appears as an extremal one in the entropic isoperimetric inequality (1.2) for the
parameter .α = 0. The random vector X has density

.p(x) = w(x1) . . . w(xn), x = (x1, . . . , xn) ∈ R
n,

so that

.N0(X) = N0(X1) = π2, I (X) = nI (X1) = 4n.

Therefore, from (7.10) we may conclude that .c0,n ≤ 4π2n.

Proof of Corollaries 7.2–7.3 The first corollary is obtained by a straight forward
application of Theorem 6.1 with

.s = 2, r = 2α, θ = n(α − 1)

2α
, κn(2, r, s) = (

4/cα,n

) n(α−1)
4α
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when .1 < α < n
n−2 , and with

.q = r = 2, s = 2α, θ = n(1 − α)

α(2 − n) + n
, κn(2, r, s) = (

4/cα,n

) n(1−α)
2[α(2−n)+n]

when .α ∈ (0, 1). Details are left to the reader.
For the second corollary, we first observe that (7.2) can be recast for .n ≥ 3 and

.α = n
n−2 as

.

( ∫
|f | 2n

n−2

) n−2
2n ≤

( 4

cα,n

)1/2( ∫
|∇f |2

) 1
2
. (7.11)

Therefore .
4

cα,n
= S2

n from which the explicit value of .cα,n follows (recalling
Corollary 5.2).

Now, in order to analyze the question about the extremizers in (7.1), suppose that
we have an equality in it for a fixed (probability) density p on .R

n. In particular,
we should assume that the function .f = √

p belongs to .W 2
1 (Rn). Rewriting (7.1)

in terms of f , we then obtain an equality in (7.11), which is the same as (7.5). As
mentioned earlier, this implies that f must be of the form (7.6), thus leading to (7.9).
However, whether or not this function p is integrable depends on the dimension.
Using polar coordinates, one immediately realizes that

.

∫
dx

(1 + b|x − x0|2)n−2

has the same behavior as .
∫ ∞

1
1

rn−3 dr . But, the latter integral converges only if .n ≥ 5.
��
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Transport Proofs of Some Functional
Inverse Santaló Inequalities
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1 Introduction

The classical Blaschke-Santaló inequality [27] gives the following sharp relation
between the volume of a convex body K in .R

n and the volume of its polar .K∗ =
{y ∈ R

n; x · y ≤ 1,∀ x ∈ K}: there exists .z ∈ R
n such that .|K||(K − z)∗| ≤ |Bn

2 |2,
where .Bn

2 denotes the Euclidean ball of radius one. Mahler [22] conjectured that the
following optimal lower bound holds:

.|K||K∗| ≥ 4n

n! ,

for any centrally symmetric convex body K , with equality, for example, if K is
a cube. Among general convex bodies K , the conjecture is that the lower bound
should be reached for simplices. Both conjectures were proved by Mahler in
dimension 2 [21], while the conjecture for symmetric bodies was established by
Iriyeh and Shibata in dimension 3 [17] (see also [8]). The conjectures were proved
for particular families of convex bodies like unconditional convex bodies [23, 30],
zonoids [13, 25], bodies having symmetries [3, 18]. Bourgain and Milman [5] (see
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also [1, 2, 4, 15, 20, 24]) established an asymptotic form of the conjectures by
proving that there exists a constant c such that .|K||K∗| ≥ cn/n!.

Functional forms of the Mahler conjectures were proposed, where the convex
bodies are replaced by log-concave functions and polar convex bodies by the
Fenchel-Legendre transform. More precisely, it is conjectured that, for any convex
function .V : Rn → R ∪ {+∞} such that .0 <

∫
e−V dx < +∞, it holds

.

∫
e−V dx

∫
e−V ∗

dx ≥ en,

where the Fenchel-Legendre transform of V is defined by

.V ∗(y) = sup
x∈Rn

{x · y − V (x)} , y ∈ R
n.

If, in addition, V is even, it is conjectured that

.

∫
e−V dx

∫
e−V ∗

dx ≥ 4n.

These functional forms were proved in dimension 1 in [9–11] and the even case was
proved in dimension 2 in [12]. The inequality was proved for unconditional func-
tions in [9, 10]. These conjectures are slightly stronger than Mahler’s conjectures
for sets, because the latter are implied by the former, whereas the inequality for
sets must be true in any dimension for the functional inequality to hold, as proved
in [10].

To present the class of Entropy-Transport inequalities considered in this work,
we need to introduce some definitions and notations.

The set of all Borel probability measures on .R
n will be denoted by .P(Rn). For

.k ≥ 1, we will denote by .Pk(R
n) the subset of .P(Rn) of probability measures

admitting a finite moment of order .k. Recall that .η ∈ P(Rn) is called log-concave, if
it admits a density with respect to the Lebesgue measure of the form .e−V , where .V :
R

n → R∪{+∞} is a lower semicontinuous convex function. The function V will be
referred to as the potential of .η. Note that we will not consider log-concave measures
supported by a strict affine subspace of .R

n. The moment measure associated with
a log-concave probability measure .η with potential V is the measure .ν = ∇V #η

defined as the pushforward of .η under the map .∇V : in other words, for any bounded
measurable test functions, it holds

.

∫
f (x) ν(dx) =

∫
f (∇V (x)) η(dx).

We recall that convex functions are differentiable Lebesgue almost everywhere, so
that this definition makes sense. When .η does not have full support, i.e., when
.supp(η) �= R

n, some extra regularity will be required at the boundary. We will
say that a log-concave probability measure .η, with potential V , has an essentially
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continuous density, if .e−V (x) = 0 for .Hn−1 almost all .x ∈ ∂ Supp(η), where
.Supp(η) denotes the support of .η. Note that this terminology slightly differs from
the one of [7] where it was the potential V that was called essentially continuous.

Definition 1.1 (Entropy-Transport inequality) We will say that the inequality
.ETn(c) is satisfied for some constant .c > 0 if, for all log-concave probability
measures .η1, η2 on .R

n having essentially continuous densities, it holds

.H(η1) + H(η2) ≤ −n log(ce2) + T (ν1, ν2), (1)

where .ν1, ν2 are the moment measures of .η1, η2.
Similarly, we say that .ETn,s(c) is satisfied, if equation (1) holds for all log-concave
measures .η1, η2 that are also symmetric (i.e., such that .νi(A) = νi(−A) for all
measurable sets A).

In the definition above, .H(η) denotes the relative entropy of .η with respect to the
Lebesgue measure (which is also equal to minus the Shannon entropy of .η) and is
defined by

.H(η) =
∫

log(
dη

dx
) dη.

The quantity .T appearing in (1) is the so-called maximal correlation optimal
transport cost, defined, for any .μ1, μ2 ∈ P1(R

n), by

.T (μ1, μ2) = inf
f ∈F(Rn)

{∫
f dμ1 +

∫
f ∗ dμ2

}

,

where .F(Rn) is the set of convex and lower semicontinuous functions .f : Rn →
R ∪ {+∞} which are proper (i.e., take at least one finite value). Since elements
of .F(Rn) always admit affine lower bounds, note that .

∫
g dμi makes sense in

.R ∪ {+∞} for all .g ∈ F(Rn), so that .T (μ1, μ2) is well defined whenever

.μ1, μ2 ∈ P1(R
n). In the case where .μ1, μ2 ∈ P2(R

n), it follows from the
Kantorovich duality theorem [31] that

.T (μ1, μ2) = sup
X1∼μ1,X2∼μ2

E[X1 · X2] = sup
π∈�(μ1,μ2)

∫
x · y π(dxdy),

where .�(μ1, μ2) denotes the set of probability measures on .R
n×R

n with marginals
.μ1 and .μ2.

Definition 1.1 is motivated by a recent result of the second author [14],
which states that inequality (1) is equivalent to the functional version of Mahler’s
conjecture (also called inverse Santaló inequality), as formulated by Klartag and
Milman [19] and Fradelizi and Meyer [10] that we now recall.

Definition 1.2 (Inverse Santaló inequality) We will say that the inequality .ISn(c)

is satisfied for some c, if for all functions .f ∈ F(Rn) such that both .
∫

e−f (x)dx and
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.
∫

e−f ∗(x)dx are positive, it holds

.

∫
e−f (x) dx

∫
e−f ∗(x) dx ≥ cn. (2)

Similarly, we say that .ISn,s(c) is satisfied if equation (2) holds for all even functions
in .F(Rn).

With this definition, the functional forms of Mahler’s conjectures are .ISn(e) and
.ISn,s(4).

Theorem 1.3 ([14]) The inequality .ETn(c) (respectively, .ETn,s(c)) is equivalent to
.ISn(c) (respectively, .ISn,s(c)).

As shown in Theorem 1.2 of [14], inequalities .ETn(c) or .ETn,s(c) can be restated as
improved versions of the Gaussian log-Sobolev inequality. In particular, the results
of [9, 10] lead to sharp lower bounds on the deficit in the Gaussian log-Sobolev
inequality for unconditional probability measures (see Theorem 1.4 of [14]).

The main contributions of the paper are the following. In Sect. 2 we give a new
proof of the implication

.ETn(c) ⇒ ISn(c),

and we show, in particular in Corollary 2.5, that only a restricted form of the
inequality .ETn(c) is enough to get .ISn(c). This new proof significantly simplifies
the proof given in [14]. Then, we prove in Sect. 3, using transport arguments
together with correlation inequalities, that .ET1(e) and .ET1,s(4) are satisfied. In
particular, this gives new and short proofs of the sharp functional Mahler conjecture
in dimension 1. Finally, in Sect. 4, we propose a short proof of .ISn,s(4) when we
restrict ourselves to unconditional functions, i.e., functions that are symmetric with
respect to all coordinate hyperplanes, blending tools from this paper and the proof
given in [10].

2 Entropy-Transport and Inverse Santaló Inequalities

2.1 From Entropy-Transport to Inverse Santaló Inequalities

The following result provides the key identity connecting the quantities appearing
in the inverse functional inequalities to their dual transport-entropy counterparts.

Lemma 2.1 Let .V : R
n → R ∪ {+∞} be a convex function such that .Z :=∫

e−V dx ∈ (0,∞) and let .ν be the moment measure of .η(dx) = 1
Z

e−V dx. Then,
it holds
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. − log(

∫
e−V dx) =

∫
−V ∗ dν + T (ν, η) + H(η). (3)

Proof According to Proposition 7 of [7] and its proof, .V ∗ ∈ L1(ν) and .V ∈ L1(η).
We claim that

.T (ν, η) =
∫

V ∗ dν +
∫

V dη =
∫

x · ∇V (x) η(dx). (4)

Namely, if .f ∈ F(Rn), then

.

∫
f ∗ dν +

∫
f dη =

∫
f ∗(∇V (x)) + f (x) η(dx)

≥
∫

∇V (x) · x η(dx)

=
∫

V ∗(∇V (x)) + V (x) η(dx)

=
∫

V ∗ dν +
∫

V dη

≥ T (ν, η).

Therefore, optimizing over .f ∈ F(Rn) gives (4). To conclude the proof of (3), just
observe that

.H(η) = − log Z −
∫

V dη.

��
Note that we proved Lemma 2.1 for general convex V , but it turns out that the

quantity .T (η, ν) appearing in the conclusion of this lemma simplifies when the
measure .η is smooth enough, as the following result shows.

Lemma 2.2 For any essentially continuous log-concave probability measure .η ∈
P(Rn), its moment measure .ν satisfies .T (η, ν) = n.

The proof is straightforward when V has full domain and is .C1-smooth and follows
by an integration by part (see also Corollary 3 in [14], for general V with full
domain). The proof of the general case is given in the appendix. In this case,
equation (3) reduces to

. − log(

∫
e−V dx) =

∫
−V ∗ dν + n + H(η).

In what follows, it will be convenient to introduce a particular class of potentials.
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Definition 2.3 We denote by .V(Rn) the class of all convex functions .V : Rn → R

such that .V ∗ : Rn → R (thus .V, V ∗ are continuous and with full domain).

Thanks to Lemma 2.1, we can show the following.

Proposition 2.4 Let .V ∈ V(Rn); denote by .η(dx) = 1
Z

e−V dx, .η∗(dx) =
1

Z∗ e−V ∗
dx, where .Z,Z∗ are the normalizing constants, and let .ν, ν∗ be the moment

measures associated with .η, η∗.
If

.H(η) + H(η∗) ≤ −n log(ce2) + T (ν, ν∗), (5)

then

.

∫
e−V dx

∫
e−V ∗

dx ≥ cn.

Note that, according to, e.g., Lemma 4 in [14], if .V ∈ V(Rn) then .Z := ∫
e−V dx

and .Z∗ := ∫
e−V ∗

dx are both finite, and so the log-concave probability measures
.η and .η∗ are well defined.

Proof Applying Lemmas 2.1 and 2.2 to V and .V ∗ yields

. − log(

∫
e−V dx) =

∫
−V ∗ dν + T (ν, η) + H(η) =

∫
−V ∗ dν + n + H(η)

− log(

∫
e−V ∗

dx) =
∫

−V dν∗ + n + H(η∗).

Adding these two identities yields

. − log(

∫
e−V dx

∫
e−V ∗

dx) = −(

∫
V ∗ dν +

∫
V dν∗) + H(η) + H(η∗) + 2n

≤ −T (ν, ν∗) + H(η) + H(η∗) + 2n

≤ −n log(ce2) + 2n = − log(cn),

where the first inequality comes from the definition of .T (ν, ν∗) and the second
inequality from (5). ��
Corollary 2.5 Inequality .ISn(c) (respectively, .ISn,s(c)) holds true as soon as for
all .V ∈ V(Rn) (respectively, for all symmetric .V ∈ V(Rn))

.H(η) + H(η∗) ≤ −n log(ce2) + T (ν, ν∗),

where .η(dx) = 1
Z

e−V dx, .η∗(dx) = 1
Z∗ e−V ∗

dx with .Z,Z∗ the normalizing
constants and where .ν, ν∗ are the moment measures associated with .η, η∗.
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Proof According to Proposition 2.4, it holds

.

∫
e−V dx

∫
e−V ∗

dx ≥ cn,

for all .V ∈ V(Rn). Let .V ∈ F(Rn) be such that .0 <
∫

e−V dx
∫

e−V ∗
dx < ∞.

For all .k ≥ 1, consider

.Vk(x) = V � (k
| · |2

2
)(x) + |x|2

2k
, x ∈ R

n,

where .| · | denotes the standard Euclidean norm on .R
n and .� is the infimum

convolution operator, defined by

.f � g(x) = inf{f (y) + g(x − y) : y ∈ R
n}, x ∈ R

n.

Since the infimum convolution leaves the class of convex functions stable, it is clear
that .Vk is still convex for all .k ≥ 1. It is also clear that .Vk takes finite values on
.R

n. Since .(f + g)∗ = f ∗ � g∗ and (equivalently) .(f � g)∗ = f ∗ + g∗ for all
.f, g ∈ F(Rn), it is not difficult to check that

.V ∗
k (y) = (V ∗ + | · |2

2k
) � (k

| · |2
2

)(y), y ∈ R
n

and so .V ∗
k takes finite values on .R

n. In other words, .Vk ∈ V(Rn) for all .k ≥ 1. Since

.Vk ≥ V � (k
| · |2

2
) and V ∗

k ≥ V ∗ � (k
| · |2

2
),

one gets that

.

∫
e−V�(k

| · |2
2 ) dx

∫
e−V ∗�(k

| · |2
2 ) dx ≥

∫
e−Vk dx

∫
e−V ∗

k dx ≥ cn.

Note that .V � (k
| · |2

2 ) is the Moreau-Yosida approximation of V . In particular, it is

well known that if .V ∈ F(Rn) then .V � (k
| · |2

2 )(x) → V (x), for all .x ∈ R
n, as

.k → ∞ (see, e.g., [12, Lemma 3.6]). Since .V � (k
| · |2

2 ) ≥ V � (
| · |2

2 ), it easily
follows, from the dominated convergence theorem, that

.

∫
e−V�(k

| · |2
2 ) dx →

∫
e−V dx,

as .k → ∞. Reasoning similarly for the other integral, one concludes that

.

∫
e−V dx

∫
e−V ∗

dx ≥ cn,
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which completes the proof. ��
Remark 2.6 Note that the functions .Vk and .V ∗

k are both continuously differentiable
on .R

n. This follows from a well known regularizing property of the Moreau-
Yosida approximation (see, e.g., [26, Theorem 26.3]). Therefore, the conclusion of
Corollary 2.5 is still true if the Entropy-Transport inequality (5) is only assumed to
hold for .V ∈ V1(R

n), where .V1(R
n) denotes the set of .V ∈ V(Rn) such that V and

.V ∗ are continuously differentiable.

2.2 Different Equivalent Formulations of Inverse Santaló
Inequalities

The following result gathers different equivalent formulations of .ISn(c).

Theorem 2.7 Let .c > 0; the following statements are equivalent:

.(i) The inequality .ISn(c) holds.
.(ii) The inequality .ETn(c) holds.

.(iii) For all .V ∈ V(Rn),

.H(η) + H(η∗) ≤ −n log(ce2) + T (ν, ν∗),

where .η, η∗ are the log-concave probability measures with respective poten-
tials .V, V ∗ and associated moment measures .ν, ν∗.

.(iv) For all .V ∈ V(Rn),

.H(η) + H(η∗) ≤ −n log(ce2) +
∫

V ∗ dν +
∫

V dν∗,

with the same notation as above.

The same equivalence is true for .ISn,s(c) and .ESn,c(c) assuming in .(iii) and .(iv)

that .V ∈ V(Rn) is symmetric.

Proof .(i) ⇒ (ii) follows from Theorem 1.3 proved in [14].
.(ii) ⇒ (iii) is straightforward.
.(iii) ⇒ (iv) follows from the inequality .T (ν, ν∗) ≤ ∫

V ∗ dν + ∫
V dν∗.

.(iv) ⇒ (i) follows from the proof of Proposition 2.4 and Corollary 2.5. ��
Remark 2.8 Let us make some comments on Theorem 2.7.

(a) The proof of .(i) ⇒ (ii) given in [14] makes use of the following variational
characterization of moment measures due to Cordero-Klartag [7] and Santam-
brogio [28]: a measure .ν is the moment measure of a log-concave probability
measure .η with an essentially continuous density if and only if it is centered and
not supported by an hyperplane; moreover, the measure .η is the unique (up to
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translation) minimizer of the functional

.P1(R
n) → R ∪ {+∞} : η �→ T (ν, η) + H(η).

(b) In [14], the implication .(ii) ⇒ (i) has been established using the following
duality formula: for all .V ∈ V(Rn) such that .

∫
e−V ∗

dx > 0, it holds

.L(V ) := − log

(∫
e−V ∗

dx

)

= sup
ν∈P1(Rn)

{∫
−V dν − K(ν)

}

,

with .K(ν) = infη∈P1(Rn){T (ν, η) + H(η)}, .ν ∈ P1(R
n). This equality,

established in [14], shows that the functionals L and K are in convex duality.
The route followed in the present paper, based on the key Lemma 2.1, turns out
to be simpler and more direct.

(c) Let us finally highlight the fact that the equivalence of .(iii) and .(iv) is a
bit surprising. Namely, for a fixed .V ∈ F(Rn), the formulation .(iii) is in
general strictly stronger than .(iv), because the inequality .T (ν, ν∗) ≤ ∫

V ∗ dν+∫
V dν∗ is strict in general. Indeed, equality here means that .(V ∗, V ) is a couple

of Kantorovich potentials between .ν and .ν∗. If .ν has a density with respect to
Lebesgue, this means that .∇V ∗ transports .ν onto .ν∗ which is not true in general.

3 Proofs of Entropy-Transport Inequalities in Dimension 1

In this section, we show that inequalities .ET1,s(4) and .ET1(e) hold true. The reason
why the case of dimension 1 is simple is that optimal transport maps for the cost
.T are given in an explicit form. Recall that the cumulative distribution function of
.μ ∈ P(R) is the function

.Fμ(x) = μ((−∞, x]), x ∈ R.

Its generalized inverse is the function denoted .F−1
μ defined by

.F−1
μ (t) = inf{x : Fμ(x) ≥ t}, t ∈ (0, 1).

Lemma 3.1 Let .η1, η2 ∈ P1(R) be such that .T (η1, η2) is finite. It holds

.T (η1, η2) ≥
∫ 1

0
F−1

η1
(x)F−1

η2
(x) dx,

with equality if .η1, η2 ∈ P2(R). More generally, if .ν1 = S1#η1 and .ν2 = S2#η2
with .S1, S2 : R → R two measurable maps, and if .ν1, ν2 ∈ P1(R) and satisfy that
.T (ν1, ν2) is finite, then
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.T (ν1, ν2) ≥
∫ 1

0
S1(F

−1
η1

)(x)S2(F
−1
η2

)(x) dx.

Proof It is well known that, if X is uniformly distributed on .(0, 1), then
.(F−1

η1
(X), F−1

η2
(X)) is a coupling between .η1 and .η2 called the monotone coupling.

Therefore, .(S1(F
−1
η1

(X)), S2(F
−1
η2

(X))) is a coupling between .ν1, ν2. Suppose that
.T (ν1, ν2) is finite, then, if .f ∈ F(R) is such that .f ∈ L1(ν1) and .f ∗ ∈ L1(ν2),
Young’s inequality yields

.f (S1(F
−1
η1

(X))) + f ∗(S2(F
−1
η2

(X))) ≥ S1(F
−1
η1

(X))S2(F
−1
η2

(X)).

Therefore, .[S1(F
−1
η1

(X))S2(F
−1
η2

(X))]+ is integrable, and taking expectation, we get

.

∫ 1

0
S1(F

−1
η1

(x))S2(F
−1
η2

(x)) dx = E[S1(F
−1
η1

(X))S2(F
−1
η2

(X))]

≤
∫

f dν1 +
∫

f ∗ dν2.

Optimizing over f gives the desired inequality. In the case where .S1 = S2 = Id
and .η1, η2 have finite moments of order 2, then it is well known that the monotone
coupling is optimal for .W 2

2 (the square of the 2-Wasserstein distance), and so also
for .T . ��
Lemma 3.2 The inequality .ET1(c) is satisfied as soon as for all concave functions
.f1, f2 : [0, 1] → R+ such that .f1(0) = f2(0) = f1(1) = f2(1) = 0,

.

∫ 1

0
log(f1f2) dx ≤ − log(e2c) +

∫ 1

0
f ′

1f
′
2 dx. (6)

Similarly, the inequality .ET1,s(c) is satisfied as soon as inequality (6) holds for all
functions .f1, f2 that are also symmetric with respect to .1/2, i.e., .fi(x) = fi(1 − x)

for all .x ∈ [0, 1].
Proof Let .ηi(dx) = e−Vi dx, .i = 1, 2 be two log-concave probability measures on
.R with essentially continuous densities. This latter condition means that, for some
.−∞ ≤ ai < bi ≤ +∞, the convex function .Vi takes finite values on .(ai, bi), is
.+∞ on .R \ (ai, bi) and is such that .Vi(x) → +∞ when .x → ai and .x → bi .

To prove .ET1(c), one can assume that .T (ν1, ν2) is finite, otherwise there is
nothing to prove. Using Lemma 3.1 with .Si = V ′

i , we see that the inequality

.H(η1) + H(η2) ≤ − log(ce2) +
∫ 1

0
V ′

1(F
−1
η1

(x))V ′
2(F

−1
η2

(x)) dx (7)

implies .ET1(c). For .i = 1, 2, define
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.fi(x) = F ′
ηi

◦ F−1
ηi

(x) = exp(−Vi ◦ F−1
ηi

(x)), x ∈ (0, 1).

Note that, since .Fηi
is strictly increasing and differentiable on .(ai, bi), the function

.F−1
ηi

is the regular inverse of the restriction of .Fηi
to .(ai, bi) and is also differentiable

on .(0, 1). Since .F−1
ηi

(x) → bi as .x → 1 and .exp(−Vi(y)) → 0 as .y → bi ,
one sees that .fi(x) → 0 as .x → 1. Similarly, .fi(x) → 0 as .x → 0. Setting
.fi(0) = fi(1) = 0 thus provides a continuous extension of .fi to .[0, 1]. The function
.fi is moreover concave on .[0, 1]. Indeed, denoting by .f ′

i and .V ′
i the left derivatives

of .fi, Vi which are well defined everywhere on .(0, 1), we see that for all .x ∈ (0, 1),

.f ′
i (x) = (F ′

ηi
◦ F−1

ηi
)′(x) = F ′′

ηi
◦ F−1

ηi
(x)

F ′
ηi

◦ F−1
ηi

(x)
= −V ′

i (F
−1
ηi

(x)).

So, .f ′
i is decreasing on .(0, 1), and thus .fi is concave. Finally, note that

.H(η1) + H(η2) =
∫ 1

0
log(f1f2) dx

and

.

∫ 1

0
V ′

1(F
−1
η1

)V ′
2(F

−1
η2

) dx =
∫ 1

0
f ′

1f
′
2 dx,

so that inequality (7) becomes

.

∫ 1

0
log(f1f2) dx ≤ − log(e2c) +

∫ 1

0
f ′

1f
′
2 dx.

It is furthermore clear that whenever .η1, η2 are symmetric, then .f1, f2 are also
symmetric with respect to .1/2, which concludes the proof. ��
Remark 3.3 The functions .fi are related to the isoperimetric profiles of the
measures .ηi in dimension 1. Moreover, there is a one to one correspondence between
log-concave measures .η and concave f on .(0, 1), see, for example, [6, Proposition
A.1].

3.1 The One-Dimensional Symmetric Case

Theorem 3.4 The inequality ET1,s(4) is satisfied and the constant 4 is optimal.

Proof Let f1, f2 be two concave functions on [0, 1], equal to zero at 0 and 1, and
symmetric with respect to 1/2. Let us show that inequality (6) holds true with c = 4.
It is enough to prove that
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.

∫ 1/2

0
log(f1f2) dx ≤ −1 − log(2) +

∫ 1/2

0
f ′

1f
′
2 dx.

We use the following classical correlation inequality: if h, k : R → R are two non-
increasing functions (or non-decreasing), and if μ is a finite measure on R, then

.

∫

R

h(x)μ(dx)

∫

R

k(x) μ(dx) ≤ μ(R)

∫

R

h(x)k(x) μ(dx), (8)

which follows from the integration of the inequality

.(h(x) − h(y))(k(x) − k(y)) ≥ 0.

As a result, since f ′
1 and f ′

2 are non-increasing, we get, for all x ∈ [0, 1], that

.f1(x)f2(x) =
∫ x

0
f ′

1(t) dt

∫ x

0
f ′

2(t) dt ≤ x

∫ x

0
f ′

1(t)f
′
2(t) dt. (9)

For a later use, note that this inequality holds also even if f1, f2 are not symmetric.
By symmetry, f ′

1(t)f
′
2(t) ≥ 0 for all t ∈ [0, 1/2], so we get

.f1(x)f2(x) ≤ x

∫ 1/2

0
f ′

1(t)f
′
2(t) dt, ∀x ∈ [0, 1/2].

Thus, after integrating,

.

∫ 1/2

0
log(f1(x)f2(x)) dx ≤

∫ 1/2

0
log(x) dx + 1

2
log(

∫ 1/2

0
f ′

1(t)f
′
2(t) dt)

≤ 1

2
log(

1

2
) − 1

2
+

∫ 1/2

0
f ′

1(t)f
′
2(t) dt + 1

2
log(

1

2
) − 1

2

= −1 − log(2) +
∫ 1/2

0
f ′

1(t)f
′
2(t) dt,

where we used the inequality log(x) − log(1/2) ≤ 2x − 1.
To see that this inequality is sharp, we can use the functions f1(x) = min(x, 1 −

x) and f2 an approximation of the constant function equal to 1/2. The optimal
constant is reached at the limit. ��
Remark 3.5 The choice f1(x) = min(x, 1 − x) corresponds to the log-concave
probability measure η(dx) = e−|x| dx/2, the polar transform of which is the
uniform probability measure on [−1, 1]. These densities are the equality case in
the functional Mahler inequality [10]. However, the uniform probability measure
on [−1, 1] is not an admissible measure in our case, since it is not essentially
continuous, thus the optimality is only reached at the limit.
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Remark 3.6 Inequality (6) is also satisfied if we assume only one of the functions
to be symmetric. Indeed, if f2 is symmetric with respect to 1/2, define f̃1(x) =
1
2 (f (x) + f (1 − x)). On the one hand, using the concavity of the logarithm,

.

∫ 1

0
log(f̃1(x)f2(x)) dx =

∫ 1

0
log f̃1(x) dx +

∫ 1

0
log f2(x) dx

≥ 1

2

∫ 1

0
log(f1(x)) + log(f1(1 − x)) dx

+
∫ 1

0
log f2(x) dx

=
∫ 1

0
log f1(x) dx + log f2(x) dx

=
∫ 1

0
log(f1(x)f2(x)) dx,

and on the other hand,

.

∫
f̃ ′

1f
′
2 dx = 1

2

∫ 1

0
f ′

1(x)f ′
2(x) dx − 1

2

∫ 1

0
f ′

1(x)f ′
2(1 − x) dx,

hence the claim, since f ′
2(x) = −f ′

2(1 − x) for all x ∈ [0, 1].

3.2 The One-Dimensional General Case

Theorem 3.7 The inequality ET1(e) is satisfied and the constant e is sharp.

Proof Let us show that, if f1, f2 : [0, 1] → R
+ are concave functions vanishing at

0 and 1, then

.

∫ 1

0
log(f1f2) dx ≤ −3 +

∫ 1

0
f ′

1f
′
2 dx.

Just like before, it is enough to show that

.

∫ 1/2

0
log(f1f2) dx ≤ −3

2
+

∫ 1/2

0
f ′

1f
′
2 dx.

Applying the inequality log(b) ≤ log(a) + (b−a)
a

to b = f1f2 and a = x(1 − x),
x ∈ (0, 1), and using again the correlation inequality (9), we get



136 M. Fradelizi et al.

.

∫ 1/2

0
log(f1f2) dx ≤

∫ 1/2

0
(
f1(x)f2(x)

x(1 − x)
+ log(x(1 − x)) − 1) dx

≤ −3

2
+

∫ 1/2

0

1

1 − x
(

∫ x

0
f ′

1(t)f
′
2(t)dt) dx

= −3

2
+

∫ 1/2

0
f ′

1(t)f
′
2(t) log(2 − 2t) dt,

and Lemma 3.9 below concludes the proof of the inequality.
To see that the inequality is optimal, we choose for f1 and f2 approximations of

the functions x �→ x and x �→ 1 − x, which of course are not admissible, since they
are not zero on the boundary. It is a straightforward calculation to see that equality
is reached at the limit. ��
Remark 3.8 The function f1(x) = x is the isoperimetric profile of the log-concave
probability measure ν(dx) = e−(1+x)1[−1,+∞[(x) dx, which density is an equality
case in the functional Mahler inequality [10].

Lemma 3.9 Let f, g : [0, 1] → R+ be two concave functions vanishing at 0 and
1. The following inequality holds:

.

∫ 1/2

0
f ′(t)g′(t) log(2 − 2t) dt ≤

∫ 1/2

0
f ′(t)g′(t) dt. (10)

Proof For 0 ≤ t ≤ 1/2, we define ϕ(t) = 1 − log(2) − log(1 − t) and �(t) =∫ t

0 ϕ(x) dx. Notice that ϕ is increasing on [0, 1/2] and ϕ(0) = 1−log(2) > 0, hence
ϕ > 0 on [0, 1/2]. Let u = f ′ and v = g′. The functions u and v are non-increasing
and satisfy

∫ 1
0 u dx = ∫ 1

0 v dx = 0. Applying the correlation inequality (8) again,
and integrating with respect to the measure with density ϕ on [0, 1/2], we get

.

∫ 1/2

0
ϕ dx

∫ 1/2

0
uvϕ dx ≥

∫ 1/2

0
uϕ dx

∫ 1/2

0
vϕ dx.

Integrating by parts, one has

.

∫ 1/2

0
uϕ dx =

[
u�

]1/2

0
+

∫ 1/2

0
(−u′)� dx = u

(
1

2

)

�

(
1

2

)

+
∫ 1/2

0
(−u′)� dx.

A quick calculation shows that �(1/2) = 1 − log(2) = ϕ(0). Since ϕ is increasing,
it follows that �(x) ≥ ϕ(0)x = �(1/2)x. Using this inequality, the fact that u is
non-increasing and integrating again by parts, we get

.

∫ 1/2

0
(−u′(x))�(x) dx ≥ �

(
1

2

)∫ 1/2

0
(−u′(x))x dx = �

(
1

2

) (

−
[
u(x)x

]1/2

0

+
∫ 1/2

0
u(x) dx

)

.
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Thus, using that u is non-increasing again, we get

.

∫ 1/2

0
uϕ dx ≥ �

(
1

2

) (
1

2
u

(
1

2

)

+
∫ 1/2

0
u(x) dx

)

≥ �

(
1

2

)∫ 1

0
u(x) dx = 0.

One also has
∫ 1/2

0 vϕ dx ≥ 0, so we conclude that
∫ 1/2

0 uvϕ dx ≥ 0, which
establishes (10). ��

4 Revisiting the Unconditional Case

Recall that a function .V : Rn → R is called unconditional if

.V (x1, . . . , xn) = V (|x1|, . . . , |xn|), ∀x ∈ R
n.

The following result is due to Fradelizi and Meyer [9, 10].

Theorem 4.1 Let .V : Rn → R ∪ {+∞} be a convex unconditional function such
that .0 <

∫
Rn e−V dx < ∞ then

.

∫

Rn

e−V dx

∫

Rn

e−V ∗
dx ≥ 4n. (11)

Below, we show how Lemma 2.1 can be used to shorten the proof of [10]. More
precisely, from Lemma 2.1 we quickly derive the inequality (13) below, which is
the key step of the argument, and then the rest of the proof follows the same path as
in [10].

Proof Reasoning as in the proof of Corollary 2.5, it is enough to prove (11) when
.V, V ∗ have full domain and are continuously differentiable on .R

n. Since V and .V ∗
are unconditional, it is clear that (11) is equivalent to

.

∫

R
n+

e−V dx

∫

R
n+

e−V ∗
dx ≥ 1. (12)

Let us prove (12) by induction on n.

– For .n = 1, (12) follows from Theorem 3.4.
– Let .V : R

n → R, with .n ≥ 2, satisfying the assumption of the theorem. For
all .t > 0, let .a(t) = ∫

R
n+ e−tV dx and .ηt (dx) = 1

a(t)
e−tV (x)1R

n+(x) dx, and let
.νt be the moment measure of .ηt . Applying Lemma 2.1 to .ηt , and then Jensen’s
inequality, we get

.H(ηt ) + n + log a(t) =
∫

(tV )∗dνt = t

∫
V ∗ (x

t

)
νt (dx)

= t

∫
V ∗(∇V ) dηt ≥ tV ∗

(∫

R
n+

∇V dηt

)
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for .t > 0. Here, we have used that .T (ν, η) = ∫
R

n+ x · ∇V (x)e−V (x) dx = n

because the boundary terms in the integration by parts are 0. A simple integration
by parts shows that, for all .t > 0,

.

∫

R
n+

∇V dηt = G(t)

ta(t)
,

where .G(t) = (a1(t), . . . , an(t)) and .ai(t) = ∫
R

n−1+
e−tVi (x) dx, with

.Vi(x) = V (x1, . . . , xi−1, 0, xi+1, . . . , xn), x ∈ R
n−1+ .

Since .H(ηt ) + log a(t) = t
a′(t)
a(t)

, we get

.
a′(t)
a(t)

+ n

t
≥ V ∗

(
G(t)

ta(t)

)

, ∀t > 0. (13)

Denoting .α(t) = ∫
R

n+ e−tV ∗
dx and .
(t) = (α1(t), . . . , αn(t)), with .αi(t) =

∫
R

n−1+
e−t (V ∗)i (x) dx, a similar calculation gives

.
α′(t)
α(t)

+ n

t
≥ V

(

(t)

tα(t)

)

, ∀t > 0. (14)

Adding (13) and (14) and applying Young’s inequality gives, for all .t > 0,

.
a′(t)
a(t)

+ α′(t)
α(t)

+ 2n

t
≥ V ∗

(
G(t)

ta(t)

)

+ V

(

(t)

tα(t)

)

≥ G(t)

ta(t)
· 
(t)

tα(t)

= 1

t2a(t)α(t)

n∑

i=1

ai(t)αi(t).

Note that for all .1 ≤ i ≤ n, .(Vi)
∗ = (V ∗)i because V is non-decreasing with

respect to each coordinate. By induction, for all .1 ≤ i ≤ n and .t > 0,

.tn−1ai(t)αi(t) =
∫

R
n−1+

e−tVi dx

∫

R
n−1+

e−(tVi )
∗
dx ≥ 1.

Therefore, for all .t > 0,

.
a′(t)
a(t)

+ α′(t)
α(t)

+ 2n

t
≥ n

tn+1a(t)α(t)
,
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which amounts to

.F ′(t) ≥ ntn−1,

with .F(t) = t2na(t)α(t). Since .F(0) = 0, one gets .F(1) ≥ 1, which is exactly
(12).

��

Appendix: Proof of Lemma 2.2

For completeness’ sake, we provide here the proof of Lemma 2.2, which mostly
follows the arguments given in [7].

Proof Let .η(dx) = e−V (x) dx be an essentially continuous probability measure,
and .ν = ∇V #η its moment measure. Recall that we want to prove that .T (η, ν) = n.
As established in Lemma 2.1, the maximal correlation is given by

.T (μ, ν) =
∫

x · ∇V (x)e−V (x) dx.

Assuming everything is smooth, an integration by parts immediately proves that

.T (μ, ν) =
∫

div(x)e−V (x) dx −
∫

∂ dom V

x · ndom V (x)e−V (x) dHn−1(x) = n,

since .e−V (x) = 0 for .Hn−1-almost all .x ∈ ∂ dom V . In the general case, however, V
is only Lipschitz on the interior of its domain. Thus, let us choose .x0 in the interior
of the domain of V . According to [7, Lemma 4],

.

∫
∇V (x)e−V (x) dx = 0

by essential continuity, and thus

.T (μ, ν) =
∫

x · ∇V (x)e−V (x) dx =
∫

(x − x0) · ∇V (x)e−V (x) dx.

Convexity of V implies that the function .x �→ (x − x0) · ∇V (x) is bounded
from below by some constant (which is, of course, integrable against .η), and so,
if .(KN)N∈N is an increasing sequence of compact sets such that .

⋃
N KN = dom V ,

.

∫
(x − x0) · ∇V (x)e−V (x) dx = lim

N→∞

∫

KN

(x − x0) · ∇V (x)e−V (x) dx.
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For .N ∈ N, with .N > min V , the sets .{V ≤ N} are convex, closed because
of lower semicontinuity, with nonempty interior since .

∫
e−V > 0, bounded since

.lim|x|→+∞ V (x) = +∞ and strictly increasing by the essential continuity of .e−V .
Since convex bodies may be approximated by smooth convex bodies (see [16,
Lemma 2.3.2]), we can find a sequence .(KN) of smooth convex bodies such that

.{V ≤ N} ⊂ KN ⊂ {V ≤ 2N}

for all .N > min V . It is clear that then .
⋃

N KN = dom V . Since .KN is smooth, and
V is Lipschitz on .KN , the divergence theorem applies:

.

∫

KN

(x − x0) · ∇V (x)e−V (x) dx =
∫

KN

div(x)e−V (x) dx

−
∫

∂KN

nKN
(x) · (x − x0)e

−V (x) dHn−1(x),

where .nKN
(x) is the outer normal vector to .KN at x. Clearly,

. lim
N→∞

∫

KN

div(x)e−V (x) dx = n lim
N→+∞ η(KN) = n,

and we will show that the second term converges towards zero. To that end, note
that since .e−V (x) is integrable, there exist constants .a > 0 and b such that .V (x) ≥
a|x| + b. As an immediate consequence, for all .N > b, the sublevel set .{V ≤ N} is
included in the ball of center 0 and of radius .RN = (N − b)/a. Hence, whenever N

is large enough so that .x0 ∈ KN ,

.|
∫

∂KN

nKN
(x) · (x − x0)e

−V (x) dHn−1(x)| ≤
∫

∂KN

|x − x0|e−V (x) dHn−1(x)

≤ 2R2N e−NHn−1(∂KN).

Finally, if .K,L are two convex bodies such that .K ⊂ L, then .Hn−1(∂K) ≤
Hn−1(∂L) (see [29, (5.25)]), and so .Hn−1(∂KN) ≤ Rn−1

2N Hn−1(S
n−1), which is

enough to conclude that

.|
∫

∂KN

nKN
(x) · (x − x0)e

−V (x) dHn−1(x)| ≤ p(N)e−N,

where p is some polynomial, which proves our claim. ��
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Tail Bounds for Sums of Independent
Two-Sided Exponential Random
Variables

Jiawei Li and Tomasz Tkocz

2020 Mathematics Subject Classification: 60E15; 60G50

1 Introduction

Concentration inequalities establish conditions under which random variables are
close to their typical values (such as the expectation or median) and provide
quantitative probabilistic bounds. Their significance cannot be overestimated, both
across probability theory and in applications in related areas (see [1, 2]). Particularly,
such inequalities often concern sums of independent random variables.

Let .X1, . . . , Xn be independent exponential random variables, each with mean
1. Consider their weighted sum .S = ∑n

i=1 aiXi with some positive weights
.a1, . . . , an. Janson in [11] showed the following concentration inequality: for every
.t > 1,

.
1

2eα
exp

( − α(t − 1)
) ≤ P (S ≥ tES) ≤ 1

t
exp

( − α(t − 1 − log t)
)
, (1)

where .α = ES
maxi≤n ai

(in fact, he derived (1) from its analogue for the geometric
distribution). Note that as .t → ∞, the lower and upper bounds are of the same

order .e−αt+o(t). Moreover, .e−αt = P

(
X1 > t ES

maxi≤n ai

)
. In words, the asymptotic
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behaviour of the tail of the sum S is the same as that of one summand carrying the
largest weight.

The goal of this short note is to exhibit that the same behaviour holds for sums
of two-sided exponentials (Laplace). Our main result reads as follows.

Theorem 1 Let .X1, . . . , Xn be independent standard two-sided exponential ran-
dom variables (i.e., with density .

1
2e

−|x|, .x ∈ R). Let .S = ∑n
i=1 aiXi with .a1, . . . , an

be positive. For every .t > 1,

.
1

57

1√
αt

exp
( − αt

) ≤ P

(
S > t

√
Var(S)

)
≤ exp

(

−α2

2
h

(
2t

α

))

, (2)

where .α =
√
Var(S)

maxi≤n ai
=

√
2

∑n
i=1 a2i

maxi≤n ai
, .h(u) = √

1 + u2 − 1 − log 1+
√

1+u2

2 , .u > 0.

In (2), as .t → ∞, the lower and the upper bounds are of the same order, .e−αt+o(t)

(plainly, .h(u) = u + o(u)).
Our proof of Theorem 1 presented in Sect. 2 is based on an observation that

two-sided exponentials are Gaussian mixtures, allowing to leverage (1) (this idea
has recently found numerous uses in convex geometry, see [4, 5, 15]). In Sect. 3,
we provide further generalisations of Janson’s inequality (1) to certain nonnegative
distributions, which also allows to extend Theorem 1 to a more general framework.
We finish in Sect. 4 with several remarks (for instance, we deduce from (2) a formula
for moments of S).

2 Proof of Theorem 1

For the upper bound, we begin with a standard Chernoff-type calculation. Denote

.σ = √
Var(S) =

√
2
∑

a2i . For .θ > 0, we have

.P (S ≥ tσ ) ≤ e−θtσ
EeθS

and

.EeθS =
∏

EeθaiXi =
∏ 1

1 − θ2a2i

= exp
{
−

∑
log(1 − θ2a2i )

}
,

for .θ < 1
a∗ , .a∗ = maxi≤n ai . By convexity,

. −
∑

log(1 − θ2a2i ) ≤ −
∑ a2i

a2∗
log(1 − θ2a2∗),

so changing .θ to .θ/a∗, for every .0 < θ < 1, we have
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.P (S ≥ tσ ) ≤ exp

{

−θtα − α2

2
log(1 − θ2)

}

= exp

{

−α2

2

(
2t

α
θ + log(1 − θ2)

)}

,

where .α = σ
a∗ . Optimising over .θ and using

. sup
θ∈(0,1)

(
θu + log(1 − θ2)

)
=

√
1 + u2 − 1 − log

1 + √
1 + u2

2
, u > 0

gives the upper bound in (2) and thus finishes the argument.
For the lower bound, we shall use that a standard two-sided exponential random

variable with density .
1
2e

−|x|, .x ∈ R, has the same distribution as .
√
2YG, where

Y is an exponential random variable with mean 1 and G is a standard Gaussian
random variable independent of Y (this follows, for instance, by checking that the
characteristic functions are the same; see also a remark following Lemma 23 in
[5]). This and the fact that sums of independent Gaussians are Gaussian justify the
following claim, central to our argument.

Proposition 2 The sum .S = ∑n
i=1 aiXi has the same distribution as

.(2
∑n

i=1 a2i Yi)
1/2G with .Y1, . . . , Yn being independent mean 1 exponential random

variables, independent of the standard Gaussian G.

Recall .α = σ
max ai

. Fix .t > 1. By Proposition 2, for .θ > 0, we have

.P (S ≥ tσ ) = P

(√

2
∑

a2i YiG ≥ tσ

)

≥ P

(√

2
∑

a2i Yi

≥
√

θtσ 2, G ≥
√

θ−1t
)

= P

(∑
a2i Yi ≥ 1

2
θtσ 2

)

P

(
G ≥

√
θ−1t

)
.

Case 1. .t ≥ α. With hindsight, choose .θ = 1
α
. Applying (1) to the first term

yields

.P

(∑
a2i Yi ≥ 1

2
θtσ 2

)

= P

(∑
a2i Yi ≥ t

α

∑
a2i

)

≥ 1

eα2 exp

{

−α2

2

(
t

α
− 1

)}

.

For the second term we use a standard bound on the Gaussian tail,
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.P (G > u) ≥ 1√
2π

u

u2 + 1
e−u2/2, u > 0,

≥ 1

2
√
2π

1

u
e−u2/2, u ≥ 1 (3)

and as .θ−1t = αt ≥ √
2, (3) applies in our case. Combining the above estimates

gives

.P (S ≥ tσ ) ≥ exp(α2/2)

2
√
2πeα2

1√
αt

exp
( − αt

) ≥ 1

4
√
2π

1√
αt

exp
( − αt

)
,

where in the last inequality we use that .infx>1
1
x
ex/2 = e

2 .
Case 2. .t ≤ α. With hindsight, choose .θ = 1

t
. Then

.P

(∑
a2i Yi ≥ 1

2
θtσ 2

)

= P

(∑
a2i Yi ≥

∑
a2i

)
.

In order to lower-bound the last expression, we use a standard Paley-Zygmund type
inequality (see, e.g. Lemma 3.2 in [17]).

Lemma 3 Let .Z1, . . . , Zn be independent mean 0 random variables such that
.EZ4

i ≤ C(EZ2
i )

2 for all .1 ≤ i ≤ n for some constant .C ≥ 1. Then for
.Z = Z1 + · · · + Zn,

.P (Z ≥ 0) ≥ 1

161/3 max{C, 3} .

Proof We can assume that .P (Z = 0) < 1. Since Z has mean 0,

.E|Z| = 2EZ1Z≥0 ≤ 2(EZ4)1/4P (Z ≥ 0)3/4 .

Moreover, by Hölder’s inequality, .E|Z| ≥ (EZ2)3/2

(EZ4)1/2
, so

.P (Z ≥ 0) ≥ 16−1/3 (EZ2)2

EZ4 .

Using independence, .EZi = 0 and the assumption .EZ4
i ≤ C(EZ2

i )
2, we have

.EZ4 =
n∑

i=1

EZ4
i + 6

∑

i<j

EZ2
i EZ2

j ≤ max{C, 3}
⎛

⎝
n∑

i=1

(EZ2
i )

2 + 2
∑

i<j

EZ2
i EZ2

j

⎞

⎠

= max{C, 3}(EZ2)2.
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Take .Zi = ai(Yi − 1). We have, .E(Yi − 1)2 = 1, .E(Xi − γ )4 = 9. Thus we can
apply Lemma 3 with .C = 9 and obtain

.P

(∑
a2i Yi ≥

∑
a2i

)
≥ 1

9 · 161/3 . (4)

By (3),

.P

(
G ≥

√
θ−1t

)
= P (G ≥ t) ≥ 1

2
√
2π

1

t
e−t2/2 ≥ 1

2
√
2π

1√
αt

e−αt/2,

where in the last inequality we use that in this case .t ≤ √
αt . Moreover, since

.αt ≥ √
2, .e−αt/2 ≥ e1/

√
2e−αt . Thus,

.P (S ≥ tσ ) ≥ e1/
√
2

18 · 161/3√2π

1√
αt

exp
( − αt

)
>

1

57

1√
αt

exp
( − αt

)
.

Combining Case 1 and 2 finishes the proof of the lower bound in (2) and thus the
proof of Theorem 1 is complete. 	


3 Generalisations

In this section, we provide general tail bounds for weighted sums of nonnegative
random variables which for certain distributions allow to capture the same behaviour
as featured in Janson’s inequality (1), viz. asymptotically the sum has the same tail
as the summand carrying the largest weight.

Theorem 4 Let .X1, . . . , Xn be i.i.d. nonnegative random variables, .μ = EX1. Let
.S = ∑n

i=1 aiXi with .a1, . . . , an positive. For every .t > 1,

.P (S ≥ ES) r((t − 1)αμ) ≤ P (S > tES) ≤ exp {−αI (μt)} , (5)

where .α =
∑n

i=1 ai

maxi≤n ai
, for .v > 0,

.r(v) = inf
u>0

P (X1 > u + v)

P (X1 > u)
(6)

and for .t > 0,

.I (t) = sup
θ>0

(
tθ − logEeθX1

)
. (7)

Before presenting the proof, we look at the example of the exponential and gamma
distribution.
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3.1 Examples

When the .Xi are exponential rate 1 random variables, .I (t) = t − 1 − log t , .r(v) =
e−v , .P (S ≥ ES) ≥ 1

9·161/3 (see (4)) and we obtain

.
1

9 · 161/3 e−α(t−1) ≤ P (S > tES) ≤ e−α(t−1−log t).

Comparing with (1), the extra factor .
1
t
in the upper bound was obtained in [11]

through rather delicate computations for the moment generating function specific
for the exponential distribution. Since .α ≥ 1, our lower bound up to a universal
constant recovers the one from (1) (improves on it as long as .α > 9 · 161/3/(2e)
and is worse otherwise). Along the same lines, for the gamma distribution with
parameter .γ > 0 (i.e., with density .�(γ )−1xγ−1e−x , .x > 0), we have .μ = γ ,
.I (tμ) = γ (t − 1 − log t) and with some extra work,

.rγ (v) =
{

1
2�(γ )

min{vγ−1, 1}e−v, 0 < γ < 1,

e−v, γ ≥ 1.

Moreover, via Lemma 3, .P (S ≥ ES) > 1
3·161/3(1+2γ −1)

. Then (5) yields

.
1

3 · 161/3(1 + 2γ −1)
rγ

(
αγ (t − 1)

) ≤ P (S > tES) ≤ exp
( − αγ (t − 1 − log t)

)
.

(8)
In particular, .P (S > tES) = exp{−αγ t + o(t)} as .t → ∞. It would perhaps be
interesting to find a larger class of distributions for which the upper and lower
bounds from (5) are asymptotically tight. For more precise results involving the
variance of S for weighted sums of independent Gamma random variables (not
necessarily with the same parameter), we refer to Theorem 2.57 in [1].

3.2 Proof of Theorem 4: The Upper Bound

For the log-moment generating function .ψ : R → (−∞,∞],

.ψ(u) = logEeuX1 , u ∈ R,

we have .ψ(0) = 0, .ψ is convex (by Hölder’s inequality). Thus, by the monotonicity
of slopes of convex functions,

.R � u �→ ψ(u)

u
is nondecreasing. (9)
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This is what Janson’s proof specified to the case of exponentials relies on. We turn
to estimating the tails (using of course Chernoff-type bounds). Fix .t > 1. For .θ > 0,
we have

.P (S ≥ tES) = P

(
eθS ≥ eθtES

)
≤ e−θtES

EeθS = e−θtES
n∏

i=1

EeθaiXi

= exp

{

−θtES +
n∑

i=1

ψ(θai)

}

.

Let .a∗ = maxi≤n ai . Thanks to (9),

.

n∑

i=1

ψ(θai) =
n∑

i=1

(θai)
ψ(θai)

θai

≤
n∑

i=1

(θai)
ψ(θa∗)

θa∗

=
∑n

i=1 ai

a∗
ψ(θa∗) = αψ(θa∗),

where we set .α =
∑n

i=1 ai

a∗ . Note .ES = μ
∑

ai = μαa∗. We obtain

.P (S ≥ tES) ≤ exp {−θtES + αψ(θa∗)} = exp {−α (tμθa∗ − ψ(θa∗))} ,

so optimising over .θ gives the upper bound of (5). 	


3.3 Proof of Theorem 4: The Lower Bound

We follow a general idea from [11]. The whole argument is based on the following
simple lemma.

Lemma 5 Suppose X and Y are independent random variables and Y is such that
.P (Y ≥ u + v) ≥ r(v)P (Y ≥ u) for all .u ∈ R and .v > 0, for some function .r(v).
Then .P (X + Y ≥ u + v) ≥ r(v)P (X + Y ≥ u) for all .u ∈ R and .v > 0.

Proof By independence, conditioning on X, we get

.P (X + Y ≥ u + v) = EXPY (Y ≥ u − X + v) ≥ r(v)EXPY (Y ≥ u − X)

= r(v)P (X + Y ≥ u) .

	

Let .S = ∑n

i=1 aiXi be the weighted sum of i.i.d. random variables and without
loss of generality let us assume .a1 = maxi≤n ai . Fix .t > 1. We write .S = S′ +
a1X1, with .S′ = ∑n

i=2 aiXi . Note that the definition of function r from (6) remains
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unchanged if the infimum is taken over all .u ∈ R (since .X1 is nonnegative). Thus
Lemma 5 gives

.P (S ≥ tES) = P (S ≥ ES + (t − 1)ES) ≥ r

(

(t − 1)
ES

a1

)

P (S ≥ ES) ,

as desired. 	


4 Further Remarks

4.1 Moments

The upper bound from (2) allows us to recover precise estimates for moments (a
special case of Gluskin and Kwapień results from [8]), with a straightforward proof.
Here and throughout, .‖a‖p = (

∑n
i=1 |ai |p)1/p denotes the p-norm of a sequence

.a = (a1, . . . , an), .p > 0, and .‖a‖∞ = maxi≤n |ai |.
Theorem 6 (Gluskin and Kwapień, [8]) Under the assumptions of Theorem 1, for
every .p ≥ 2,

.

√
2e√

2e + 1

(
p‖a‖∞+√

p‖a‖2
) ≤ (

E |S|p)1/p ≤ 4
√
2
(
p‖a‖∞+√

p‖a‖2
)
. (10)

Proof For the upper bound, letting .S̃ = S√
Var(S)

and using (2), we get

.E|S̃|p =
∫ ∞

0
ptp−1

P

(
|S̃| > t

)
dt ≤

∫ 1

0
ptp−1dt

+ 2
∫ ∞

1
ptp−1 exp

(

−α2

2
h

(
2t

α

))

dt.

We check that as u increases, .h(u) behaves first quadratically, then linearly. More
precisely,

.h(u) ≥ 1

5
u2, u ∈ (0,

√
2), h(u) ≥ 1

4
u, u ∈ (

√
2,∞). (11)

Thus the second integral .
∫ ∞
1 . . . dt can be upper bounded by (recall that .Var(S) =

2‖a‖22, . α√
2

= ‖a‖2‖a‖∞ > 1),

.

∫ α/
√
2

1
ptp−1 exp

(

−α2

2

1

5

(
2t

α

)2
)

dt +
∫ ∞

α/
√
2
ptp−1 exp

(

−α2

2

1

4

2t

α

)

dt
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≤
∫ ∞

0
ptp−1 exp

(

−2

5
t2

)

dt +
∫ ∞

0
ptp−1 exp

(

−1

4
αt

)

dt

=
(
5

2

)p/2

�
(p

2
+ 1

)
+

(
4

α

)p

�(p + 1).

Using .�(x + 1) ≤ xx , .x ≥ 1, yields

.
(
E|S|p)1/p = √

2‖a‖2
(
E|S̃|p

)1/p ≤ √
2‖a‖2

(

1 + 2

(
5p

4

)p/2

+ 2

(
4p

α

)p
)1/p

≤ 4
√
2(p‖a‖∞ + √

p‖a‖2).

For the lower bound, suppose .a1 = ‖a‖∞. Then, by independence and Jensen’s
inequality,

.E|S|p ≥ E
∣
∣a1X1 + E(a2X2 + · · · + anXn)

∣
∣p = a

p

1 E|X1|p = a
p

1 �(p + 1).

Using .�(x + 1)1/x ≥ x/e, .x > 0 (Stirling’s formula, [10]), this gives

.(E|S|p)1/p ≥ p

e
‖a‖∞.

On the other hand, by Proposition 2, and Jensen’s inequality,

.E|S|p = E

(
2
∑

a2i Yi

)p/2
E|G|p ≥

(
2
∑

a2i

)p/2
E|G|p.

Using .E|G|p ≥ (p/e)p/2, .p ≥ 1 (again, by, e.g., Stirling’s approximation), we
obtain

.(E|S|p)1/p ≥
√
2

e

√
p‖a‖2.

Combining gives

.(E|S|p)1/p ≥ max

{
1

e
p‖a‖∞,

√
2

e

√
p‖a‖2

}

≥
√
2e√

2e + 1

(
p‖a‖∞ + √

p‖a‖2
)
,

which finishes the proof. 	

Remark 7 Using Markov and Payley–Zygmund type inequalities, it is possible to
recover two-sided tail bounds from moment estimates (like (10)), but incurring loss
of (universal) constants in the exponents, as it is done in, e.g., [8], or [9].
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4.2 Upper Bounds on Upper Tails from S-Inequalities

Let S be as in (1). The upper bound in (1) for .t = 1 is trivial, whereas as a
result of Lemma 3, viz. (4), we obtain .P (S ≥ ES) ∈ ( 1

24 ,
23
24 ), where the upper

bound .
23
24 is obtained by applying Lemma 3 to .−Z. Letting .a > 0 be such that

.P (S ≥ ES) = P (X1 ≥ a) = e−a , by the S-inequality for the two-sided product
exponential measure and the set .{x ∈ R

n,
∑

ai |xi | ≤ ES} (Theorem 2 in [13]), we
obtain that for every .t ≥ 1,

.P (S ≥ tES) ≤ P (X1 ≥ ta) = e−at ≤
(
23

24

)t

. (12)

This provides an improvement of (1) for small enough t (of course the point of (1)
is that it is optimal for large t). The same can be said about the upper bound in
(8) for .γ ≥ 1 (in view of (4) and the results from [14] for gamma distributions
with parameter .γ ≥ 1). Complimentary to such concentration bounds are small
ball probability estimates and anti-concentration phenomena, typically treating,
however, the regime of .t = O(1/ES) (under our normalisation). We refer, for
instance, to the comprehensive survey [16] of Nguyen and Vu, as well as the recent
work [12] of Li and Madiman for further results and references. Specific reversals
of (12) concerning the exponential measure can be found, e.g., in [5] (Corollary 15),
[18] (Proposition 3.4), [19] ((5.5) and Theorem 5.7).

4.3 Heavy-Tailed Distributions

Janson’s as well as this paper’s techniques strongly rely on Chernoff-type bounds
involving exponential moments to establish the largest-weight summand tail asymp-
totics from (1) or (2). Interestingly, when the exponential moments do not exist,
i.e., for heavy-tailed distributions, under some natural additional assumptions
(subexponential distributions), a different phenomenon occurs: in the simplest case
of i.i.d. summands, we have

.P (X1 + · · · + Xn > t) = (1 + o(1))P

(

max
i≤n

Xi > t

)

as t → ∞,

often called the single big jump or catastrophe principle. We refer to the monograph
[7] (Chapters 3.1 and 5.1), as well as the papers [3] and [6] for extensions including
weighted sums and continuous time, respectively.
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4.4 Theorem 1 in a More General Framework

A careful inspection of the proof of Theorem 1 shows that thanks to Theorem 2.57
from [1] (or the simpler but weaker bound (8)), the former can be extended to the
case where the .Xi have the same distribution as .

√
YiGi with the .Yi being i.i.d.

gamma random variables and the .Gi independent standard Gaussian. For simplicity,
we have decided to present it for the symmetric exponentials.

Acknowledgments We are indebted to an anonymous referee for many valuable comments,
leading in particular to the remarks in Sects. 4.2 and 4.3.
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Boolean Functions with Small
Second-Order Influences on the Discrete
Cube

Krzysztof Oleszkiewicz

2020 Mathematics Subject Classification: 60E15; 42C10

1 Introduction

Throughout the chapter, n stands for an integer greater than 1, and we use the
standard notation .[n] := {1, 2, . . . , n}. We equip the discrete cube .{−1, 1}n =
{−1, 1}[n] with the normalized counting (uniform probability) measure .μn =
( 1

2δ−1 + 1
2δ1)

⊗n. Let .E denote the expectation with respect to this measure, and
let .r1, .r2, . . . , .rn be the standard Rademacher functions on the discrete cube, i.e.,
the coordinate projections .ri(x) = xi for .x ∈ {−1, 1}n and .i ∈ [n]. Furthermore,
for .A ⊆ [n], we define the Walsh functions by .wA = ∏

i∈A ri , with .w∅ ≡ 1.
The Walsh functions .(wA)A⊆[n] form a complete orthonormal system in

.L2 ({−1, 1}n, μn). Thus, every .f : {−1, 1}n → R admits a unique Walsh–Fourier
expansion .f = ∑

A⊆[n] f̂ (A)wA, whose coefficients are given by

.f̂ (A) = 〈f,wA〉 = E[f · wA] = 1

2n

∑

x∈{−1,1}n
f (x)wA(x).

For .p ≥ 1, we abbreviate .‖f ‖Lp({−1,1}n,μn) to .‖f ‖p.
In a standard way, for .i ∈ [n], we define the influence of the i-th coordinate on

the function f by

.Ii = Ii(f ) :=
∑

A⊆[n]: i∈A

(
f̂ (A)

)2 =
∑

A⊆[n]: i∈A

f̂ 2(A),
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and given distinct integers .i, j ∈ [n], we define (following, up to a minor
modification, the notation of Kevin Tanguy’s paper [6]) the influence of the couple
.(i, j) on the function f by

.Ii,j = Ii,j (f ) :=
∑

A⊆[n]: i,j∈A

f̂ 2(A).

Note that if f is Boolean, i.e., .{−1, 1}-valued, then .Ii, Ii,j ≤ 1, since, by the
orthonormality of the Walsh–Fourier system, .

∑
A⊆[n] f̂ 2(A) = E

[
f 2

] = 1.

2 Main Results

Theorem 2.1 There exists a universal constant C > 0 with the following property.
Let n ≥ 2 be an integer. Assume that f : {−1, 1}n → {−1, 1} satisfies the bound
Ii,j (f ) ≤ αn−2 ln2 n for all 1 ≤ i < j ≤ n for some α > 0. Then f̂ 2(∅) ≥ 1 −Cα,
or there exists exactly one i ∈ [n] such that f̂ 2({i}) ≥ 1 − Cαn−1 ln n.

We postpone the proof of Theorem 2.1 till Sect. 4. This theorem says that
if a Boolean function f on the discrete cube has uniformly small second-order
influences, then it has to be close to one of the functions 1,−1, or very close to one
of the dictatorship/antidictatorship functions r1,−r1, . . . , rn,−rn. Thus, it may be
viewed as a modified version of two classical theorems: the KKL theorem of Kahn,
Kalai, and Linial, [4], which says that if a Boolean function f on the discrete cube
has influences Ii uniformly bounded from above by αn−1 ln n, then f̂ 2(∅) ≥ 1−Cα,
where C > 0 is some universal constant, and the FKN theorem of Friedgut, Kalai,
and Naor, [2], which says that if a Boolean function on the discrete cube is close—
in a certain sense, different from the assumptions of Theorem 2.1—to an affine
function, then it must be close to one of the constant functions or to one of the
dictatorship/antidictatorship functions.

While the numerical value of the constant C that can be deduced from the proof
of Theorem 2.1 is quite large (with some additional effort, many numerical constants
in the proofs can be improved, though perhaps at the cost of clarity), it is not difficult
to obtain a reasonable estimate in the case of α close to zero.

Theorem 2.2 There exists a bounded function C : (0,∞) → (0,∞) such that
limα→0+ C(α) = 4 and with the following property. Let n ≥ 2 be an integer. Assume
that a function f : {−1, 1}n → {−1, 1} satisfies the bound max1≤i<j≤n Ii,j (f ) ≤
αn−2 ln2 n for some α > 0. Then f̂ 2(∅) ≥ 1 − C(α)α, or there exists exactly one
i ∈ [n] such that f̂ 2({i}) ≥ 1 − C(α)αn−1 ln n.
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3 Auxiliary Notation and Tools

For any .g : {−1, 1}n → R and .t ≥ 0, we define .Ptg : {−1, 1}n → R by

.Ptg =
∑

A⊆[n]
e−|A|t ĝ(A)wA.

.(Pt )t≥0 is called the heat semigroup on the discrete cube. By the classical hypercon-
tractive inequality of Bonami [1], .‖Ptg‖2 ≤ ‖g‖1+e−2t .

Given .f : {−1, 1}n → R and .i ∈ [n], define the discrete partial derivative
.Dif : {−1, 1}n → R of f by .(Dif )(x) = (

f (x) − f (xi)
)
/2, where

.xi = (x1, . . . , xi−1,−xi, xi+1, . . . , xn) for x ∈ {−1, 1}n.

Given distinct integers .i, j ∈ [n], let .Di,j = Di ◦ Dj , so that .Di,j f = Di(Djf ).
Note that

.Dif =
∑

A⊆[n]: i∈A

f̂ (A)wA and Di,j f =
∑

A⊆[n]: i,j∈A

f̂ (A)wA,

so that .Ii(f ) = ‖Dif ‖2
2 and .Ii,j (f ) = ‖Di,j f ‖2

2.
A slightly different partial derivative operator .∂i is defined by the formula

.(∂if )(x) = (
f (xi→1) − f (xi→ −1)

)
/2, where

.xi→ε = (x1, . . . , xi−1, ε, xi+1, . . . , xn) for x ∈ {−1, 1}n, ε ∈ {−1, 1}.

Again, given distinct integers .i, j ∈ [n], let .∂i,j = ∂i ◦∂j , i.e., .∂i,j f = ∂i(∂jf ). One
easily checks that .Dif = ri · ∂if , and thus, .Di,j f = rirj · ∂i,j f for all functions f .
The Rademacher functions .ri and .rj are .{−1, 1}-valued, so .‖Dif ‖p = ‖∂if ‖p and
.‖Di,j f ‖p = ‖∂i,j f ‖p for every .p ≥ 1. Furthermore, .PtDi,j f = e−2t rirj · Pt∂i,j f

(this identity is an easy consequence of the same equality for Walsh functions that
is easy to verify), and thus, .e2t ‖PtDi,j f ‖p = ‖Pt∂i,j f ‖p for all .p ≥ 1, .t ≥ 0, and
.f : {−1, 1}n → R.

Lemma 3.1 For every .f : {−1, 1}n → R, there is

.

∑

A⊆[n]: |A|≥2

f̂ 2(A) = 4
∑

i,j : 1≤i<j≤n

∫ ∞

0

(
e2t − 1

)‖PtDi,j f ‖2
2 dt.

Proof Since .PtDi,j f = ∑
A⊆[n]: i,j∈A e−|A|t f̂ (A)wA, we have

.

∑

i,j : i<j

‖PtDi,j f ‖2
2 =

∑

i,j : i<j

∑

A⊆[n]: i,j∈A

e−2|A|t f̂ 2(A)
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. =
∑

A⊆[n]: |A|≥2

∑

i,j∈A: i<j

e−2|A|t f̂ 2(A) =
∑

A⊆[n]: |A|≥2

( |A|
2

)

e−2|A|t f̂ 2(A),

so that

.

∑

i,j : 1≤i<j≤n

∫ ∞

0

(
e2t − 1

)‖PtDi,j f ‖2
2 dt

. =
∑

A⊆[n]: |A|≥2

|A|(|A| − 1)

2
f̂ 2(A) ·

∫ ∞

0

(
e2t − 1

)
e−2|A|t dt.

It remains to note that, for .k > 1,

.

∫ ∞

0

(
e2t − 1

)
e−2kt dt = 1

2(k − 1)
− 1

2k
= 1

2k(k − 1)
.

��
Lemma 3.2 For every .f : {−1, 1}n → {−1, 1} and integers .1 ≤ i < j ≤ n, there
is

.

∫ ∞

0

(
e2t − 1

)‖PtDi,j f ‖2
2 dt ≤ 2Ii,j

ln2(2/Ii,j )
,

where .Ii,j denotes the influence of the pair .(i, j) on the function f .

Proof Bonami’s hypercontractive bound applied to .g = ∂i,j f yields

.e4t‖PtDi,j f ‖2
2 = ‖Pt∂i,j f ‖2

2 ≤ ‖∂i,j f ‖2
1+e−2t = (

E
[|∂i,j f |1+e−2t ]) 2

1+e−2t .

Note that .∂i,j f is .{−1,−1/2, 0, 1/2, 1}-valued because f is Boolean. Since

.|w|1+e−2t ≤ 21−e−2t · w2 for every .w ∈ {−1,−1/2, 0, 1/2, 1}, we also have

.E
[|∂i,j f |1+e−2t ] ≤ 21−e−2t · E[

(∂i,j f )2] = 21−e−2t · ‖∂i,j f ‖2
2 = 21−e−2t · Ii,j ,

therefore,

.‖PtDi,j f ‖2
2 ≤ e−4t · 4

1−e−2t

1+e−2t · I

2
1+e−2t

i,j = (1 − u)2

(1 + u)2
· 4u · I 1+u

i,j ,

where we use the change of variables .u = 1−e−2t

1+e−2t ∈ [0, 1], i.e., .t = ln(1+u)−ln(1−u)
2 ,

and thus .
dt
du

= 1
2

(
1

1+u
+ 1

1−u

)
= 1

(1−u)(1+u)
. Hence,
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.

∫ ∞

0

(
e2t − 1

)‖PtDi,j f ‖2
2 dt ≤

∫ 1

0

2u

1 − u
· (1 − u)2

(1 + u)2
· 4u · I 1+u

i,j · du

(1 − u)(1 + u)

. = 2
∫ 1

0

4u u

(1 + u)3 I 1+u
i,j du ≤ 2Ii,j

∫ ∞

0
u

(
Ii,j

2

)u

du = 2Ii,j

ln2(2/Ii,j )
.

We have used the fact that, by the convexity of the exponential function, .2u ≤ 1 +u

for .u ∈ [0, 1]. ��
Lemma 3.3 For every .f : {−1, 1}n → R and .i ∈ [n], there is

.Ii(f ) − f̂ 2({i}) =
∑

A⊆[n]: |A|≥2, i∈A

f̂ 2(A) = 2
∑

j∈[n]\{i}

∫ ∞

0
e2t ‖PtDi,j f ‖2

2 dt.

Proof Since .PtDi,j f = ∑
A⊆[n]: i,j∈A e−|A|t f̂ (A)wA, we have

.

∑

j∈[n]\{i}
‖PtDi,j f ‖2

2 =
∑

j∈[n]\{i}

∑

A⊆[n]: i,j∈A

e−2|A|t f̂ 2(A)

. =
∑

A⊆[n]: |A|≥2, i∈A

∑

j∈A\{i}
e−2|A|t f̂ 2(A) =

∑

A⊆[n]: |A|≥2, i∈A

(|A| − 1) e−2|A|t f̂ 2(A),

so that

.

∑

j∈[n]\{i}

∫ ∞

0
e2t ‖PtDi,j f ‖2

2 dt =
∑

A⊆[n]: |A|≥2, i∈A

(|A| − 1) f̂ 2(A)

∫ ∞

0
e2t e−2|A|t dt

. =
∑

A⊆[n]: |A|≥2, i∈A

(|A| − 1) f̂ 2(A)
1

2|A| − 2
= 1

2

∑

A⊆[n]: |A|≥2, i∈A

f̂ 2(A).

��
Lemma 3.4 For every .f : {−1, 1}n → {−1, 1} and integers .1 ≤ i < j ≤ n, there
is

.

∫ ∞

0
e2t ‖PtDi,j f ‖2

2 dt ≤ Ii,j

ln(1/Ii,j )
,

where .Ii,j denotes the influence of the pair .(i, j) on the function f .

Proof In the same way as in the proof of Lemma 3.2, we obtain the bound

.‖PtDi,j f ‖2
2 ≤ e−4t · 4

1−e−2t

1+e−2t · I

2
1+e−2t

i,j = (1 − u)2

(1 + u)2
· 4u · I 1+u

i,j ,
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where again .u = 1−e−2t

1+e−2t ∈ [0, 1], .t = ln(1+u)−ln(1−u)
2 , and .

dt
du

= 1
(1−u)(1+u)

. Hence,

.

∫ ∞

0
e2t ‖PtDi,j f ‖2

2 dt ≤
∫ 1

0

1 + u

1 − u
· (1 − u)2

(1 + u)2 · 4u · I 1+u
i,j · du

(1 − u)(1 + u)

. =
∫ 1

0

4u

(1 + u)2
I 1+u
i,j du ≤

∫ ∞

0
I 1+u
i,j du = Ii,j

ln(1/Ii,j )
.

We have once more used the fact that .2u ≤ 1 + u for .u ∈ [0, 1]. ��
Lemma 3.5 Let .z ∈ [0, 1/4) and .0 ≤ x ≤ y ≤ x2 + z. Then either .y ≤ 2z or
.x ≥ 1 − 2z.

Proof Note that .
( 1

4 − z
)1/2 ≥ 1

2 − 2z for .z ∈ [0, 1/4], so it suffices to prove that
.y ≤ x1 or .x ≥ x2, where

.x1 = 1

2
−

(1

4
− z

)1/2
and x2 = 1

2
+

(1

4
− z

)1/2
.

This is easy: since .x ≤ x2 + z, we have .x ∈ (−∞, x1] ∪ [x2,∞). Thus, if .x < x2,
then .x ∈ [0, x1], which in turn implies that

.y ≤ x2 + z ≤ x2
1 + z = x1.

��
We will also make use of the following slightly more precise observation.

Remark 3.6 Let .z ∈ [0, 1/4) and .0 ≤ x ≤ y ≤ x2 + z. Then either .y ≤ z + 4z2 or
.x ≥ 1 − z − 4z2. To prove this, it suffices to replace in the proof of Lemma 3.5 the
.
( 1

4 − z
)1/2 ≥ 1

2 − 2z bound by a stronger one, .
( 1

4 − z
)1/2 ≥ 1

2 − z − 4z2, which is
also satisfied for all .z ∈ [0, 1/4].
Lemma 3.7 For every .f : {−1, 1}n → {−1, 1} and .i ∈ [n], the influence .Ii of the
i-th coordinate on the function f satisfies the inequality

.|f̂ ({i})| ≤ Ii = |f̂ ({i})|2 +
∑

A⊆[n]: |A|≥2, i∈A

f̂ 2(A).

Proof Using the triangle inequality and the fact that .∂if is .{−1, 0, 1}-valued, so
that .|∂if | ≡ (∂if )2, we arrive at

.|f̂ ({i})| = |E[∂if ]| ≤ E[|∂if |] = E
[
(∂if )2] = Ii .

��
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4 Proof of the Main Results

Proof of Theorem 2.1 Let us define a positive constant κ by

.κ = min

(

inf
n≥2

n

16 ln n
, inf

n≥2

n

ln2 n

)

,

and let C = max
(
κ−1, 20

)
. For α ≥ κ , the assertion of the theorem holds true in a

trivial way; therefore, we may and will assume that 0 < α < κ .
Since α < n/ ln2 n and Ii,j ≤ αn−2 ln2 n, we have

. ln(2/Ii,j ) ≥ ln(1/Ii,j ) > ln n,

and thus also

.
Ii,j

ln2(2/Ii,j )
≤ α

n2 and
Ii,j

ln(1/Ii,j )
≤ α ln n

n2

for all 1 ≤ i < j ≤ n, so that

.

∑

i,j : 1≤i<j≤n

Ii,j

ln2(2/Ii,j )
≤

(
n

2

)

· α

n2
≤ α

2

and, for every i ∈ [n],

.

∑

j∈[n]\{i}

Ii,j

ln(1/Ii,j )
≤ (n − 1) · α ln n

n2
≤ α ln n

n
.

Using Lemma 3.1 and Lemma 3.2, we arrive at

.

∑

A⊆[n]: |A|≥2

f̂ 2(A) ≤ 4α,

and from Lemma 3.3 and Lemma 3.4, we obtain, for every i ∈ [n],

.

∑

A⊆[n]: |A|≥2, i∈A

f̂ 2(A) ≤ 2αn−1 ln n.

Applying Lemma 3.5 to x = |f̂ ({i})|, y = Ii(f ), and z = 2αn−1 ln n < 1/4,
we deduce from Lemma 3.7 that, for every i ∈ [n], either Ii(f ) ≤ 4αn−1 ln n or
|f̂ ({i})| ≥ 1 − 4αn−1 ln n.
Case 1: Ii(f ) ≤ 4αn−1 ln n for all i ∈ [n]. Then, by Lemma 3.7, for all i ∈ [n], we
have |f̂ ({i})| ≤ 4αn−1 ln n, so that
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.

∑

i∈[n]
f̂ 2({i}) ≤ n · 16α2n−2 ln2 n < 16α,

and therefore,

.f̂ 2(∅) = 1 −
∑

A⊆[n]: |A|=1

f̂ 2(A) −
∑

A⊆[n]: |A|≥2

f̂ 2(A) ≥ 1 − 16α − 4α ≥ 1 − Cα.

Case 2: |f̂ ({i})| ≥ 1 − 4αn−1 ln n for some i ∈ [n]. Then we obviously have
f̂ 2({i}) ≥ 1 − 8αn−1 ln n > 1/2, which implies that there is exactly one such
i ∈ [n] (recall that

∑
A⊆[n] f̂ 2(A)=1). It remains to note that C > 8. ��

Proof of Theorem 2.2 It suffices to repeat the proof of Theorem 2.1, using
Remark 3.6 instead of Lemma 3.5 when α is close to zero. ��
Remark 4.1 Throughout the chapter, we have restricted our interest to the uniform
estimate assumption. However, it is easy to see that the assumption is used in the
proof only via the

.α ≥ max

⎛

⎝
∑

i,j : 1≤i<j≤n

2Ii,j

ln2(2/Ii,j )
,

n

ln n
· max

i∈[n]
∑

j∈[n]\{i}

Ii,j

ln(1/Ii,j )

⎞

⎠

condition, allowing for significant extensions. In particular, if a function f :
{−1, 1}n → {−1, 1} satisfies

. max
1≤i<j≤n

Ii,j (f ) ≤ n−γ and max
i∈[n]

∑

j∈[n]\{i}
Ii,j (f ) ≤ β

ln2 n

n

for some constants β > 0 and γ ∈ (0, 1], then the proof works for α = βγ −2,
so that f̂ 2(∅) ≥ 1 − Cβγ −2, or there exists a unique i ∈ [n] such that f̂ 2({i}) ≥
1 − Cβγ −2n−1 ln n, where C > 0 is the universal constant from Theorem 2.1.

5 Alternative Proof

Here we present another proof of Theorem 2.1, based on a quite different approach.
We will prove the following more general statement.

Theorem 5.1 Let .n ≥ 2. For a function .f : {−1, 1}n → {−1, 1}, let

.θ = max
i∈[n]

∑

j∈[n]\{i}
Ii,j (f ).
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Assume .θ ≤ 1/25. Then either there exists exactly one .i ∈ [n] such that

.
∣
∣f̂ ({i})∣∣ ≥ 1 − 8θ

ln(1/θ)

or

. max
k∈[n] Ik(f ) ≤ 4θ

ln(1/θ)
.

For a function .ϕ : {−1, 1}n → R, let us denote by .I (ϕ) its total influence,

.I (ϕ) =
∑

i∈[n]
Ii(ϕ).

Since .P0ϕ ≡ ϕ, Bonami’s bound .∀t≥0 ‖Ptϕ‖2 ≤ ‖ϕ‖1+e−2t yields

.
d

dt
‖Ptϕ‖2

∣
∣
∣
t=0+ ≤ d

dt
‖ϕ‖1+e−2t

∣
∣
∣
t=0+ ,

which amounts to the classical logarithmic Sobolev inequality,

.2 I (ϕ) ≥ Ent
(
ϕ2) = E

[
ϕ2 ln

(
ϕ2)] − E

[
ϕ2] lnE

[
ϕ2].

If the function .ϕ is .{0, 1}-valued, then .ϕ2 ≡ ϕ and .ϕ2 ln
(
ϕ2

) ≡ 0. In this
well-known way, we derive a weak functional version of the edge-isoperimetric
inequality:

Lemma 5.2 For every function .h : {−1, 1}n → {0, 1}, there is

.I (h) ≥ 1

2
· E[h] · ln(1/E[h]) = 1

2
· P(h = 1) · ln

(
1/P(h = 1)

)
.

Remark 5.3 A slightly stronger version of this inequality is known to hold true,
with .ln replaced by .log2. It can be deduced from Harper’s solution [3] of the edge-
isoperimetric problem for the discrete cube (this result has also been proved by
Lindsey, Bernstein, and Hart).

Corollary 5.4 For each .n ≥ 2 and every function .g : {−1, 1}n → {−1, 0, 1}
satisfying .I (g) ≤ 1/25, there exists .η ∈ {−1, 0, 1} such that

.P(g �= η) ≤ 4 · I (g)/ ln
(
1/I (g)

)
.

Proof Since .P(g = −1) + P(g = 0) + P(g = 1) = 1, certainly there exists .η ∈
{−1, 0, 1} for which .P(g = η) ≥ 1/3, so that .P(g �= η) ≤ 2/3. We will prove that
the bound of Corollary 5.4 holds true for this .η. Let us define .h : {−1, 1}n → {0, 1}
by .h = 1g �=η. Then, for every .x ∈ {−1, 1}n and every .i ∈ [n],
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.|∂ih(x)| = ∣
∣h

(
xi→1) − h

(
xi→−1)∣∣/2 = ∣

∣1g �=η

(
xi→1) − 1g �=η

(
xi→−1)∣∣/2

. = 1

2

∣
∣
∣1{−1,0,1}\{η}

(
g
(
xi→1)

)
− 1{−1,0,1}\{η}

(
g
(
xi→−1)

)∣
∣
∣

. ≤ ∣
∣g

(
xi→1) − g

(
xi→−1)∣∣/2 = |∂ig(x)|,

because .1{−1,0,1}\{η} : {−1, 0, 1} → {0, 1} is 1-Lipschitz. Therefore,

.I (h) =
∑

i∈[n]
Ii(h) =

∑

i∈[n]
‖∂ih‖2

2 ≤
∑

i∈[n]
‖∂ig‖2

2 =
∑

i∈[n]
Ii(g) = I (g),

so that, by Lemma 5.2,

.P(h = 1) ≤ 2I (h)/ ln
(
1/P(h = 1)

) ≤ 2I (g)/ ln
(
1/P(h = 1)

)

. = 2I (g)/ ln
(
1/P(g �= η)

) ≤ 2I (g)/ ln(3/2) ≤ 5I (g) ≤ √
I (g).

Thus, applying Lemma 5.2 again, we get

.P(g �= η) = P(h = 1) ≤ 2I (h)

ln
(
1/P(h = 1)

) ≤ 2I (g)

ln
(
1/

√
I (g)

) = 4 · I (g)

ln
(
1/I (g)

) .

��
Proof of Theorem 5.1 Let .i ∈ [n]. Since the function f is .{−1, 1}-valued, its i-th
partial derivative .∂if is .{−1, 0, 1}-valued. Note that

.I (∂if ) =
∑

j∈[n]
Ij (∂if ) =

∑

j∈[n]\{i}
‖∂j (∂if )‖2

2 =
∑

j∈[n]\{i}
Ii,j (f ) ≤ θ ≤ 1/25.

Applying Corollary 5.4 to .g = ∂if and using the fact that the function .(0, 1) �
x �→ x/ ln(1/x) is increasing, we prove the existence of .ηi ∈ {−1, 0, 1} such that
.P(∂if �= ηi) ≤ 4θ/ ln(1/θ). Obviously, this .ηi is unique, because .4θ/ ln(1/θ) ≤
0.16/ ln(25) < 1/20, so that .P(∂if = ηi) > 1/2.

Observe that if .∂if (x) = 1 for some .x = (x1, x2, . . . , xn) ∈ {−1, 1}n, then
.f

(
xi→1

) = 1 and .f
(
xi→−1

) = −1, i.e., .f (x) = xi . In other words, .{f �= ri} ⊆
{∂if �= 1}. In a similar way, we prove .{f �= −ri} ⊆ {∂if �= −1}. Thus, if there
exists .i ∈ [n] for which .ηi ∈ {−1, 1}, then

.P(f �= ηiri) ≤ 4θ/ ln(1/θ),

and since

.f̂ ({i}) = E[f · ri] = P(f = ri) − P(f �= ri) = P(f �= −ri) − P(f �= ri)

. = 1 − 2P(f �= ri) = 2P(f �= −ri) − 1,
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we arrive at

.
∣
∣f̂ ({i})∣∣ ≥ 1 − 8θ/ ln(1/θ),

as desired. The uniqueness of i follows from .f̂ 2({i}) > (9/10)2 > 1/2.
It remains to consider the case .η1 = η2 = . . . = ηn = 0, in which

.Ii(f ) = E
[
(∂if )2] = E[1∂if �=0] = P(∂if �= 0) ≤ 4θ/ ln(1/θ)

for each .i ∈ [n], as desired. Since .
∣
∣f̂ ({i})∣∣ ≤ √

Ii(f ) and .4θ/ ln(1/θ) < 1/20, the
assertion of Theorem 5.1 is an exclusive disjunction, as stated. ��

Theorem 2.1 easily follows from Theorem 5.1 by considering .θ = αn−1 ln2 n

(and using the KKL theorem to derive the .f̂ 2(∅) ≥ 1 − Cα estimate from the upper
bound on .maxi∈[n] Ii(f ), as explained in Sect. 2). If .α ≤ 1/25, then also .θ ≤ 1/25,
and by taking .C ≥ 25, we make the case .α > 1/25 trivial.

For the standard tribes function .T : {−1, 1}n → {−1, 1}, with disjoint tribes
of size .∼ log2(n/ ln n) each, one easily checks that .Ii,j (T ) � n−2 ln2 n if i and j

belong to different tribes, but .Ii,j (T ) � n−1 ln n if i and j belong to the same tribe—
Remark (1) on page 703 of [6] is not correct. Thus, T cannot serve as an example
showing the essential optimality of Theorem 2.1, though to some extent it does
the job for Theorem 5.1, with .θ � n−1 ln2 n and .Ii(T ) � |T̂ ({i})| � n−1 ln n �
θ/ ln(1/θ) uniformly for all .i ∈ [n].

This is complemented by the example of .V : {−1, 1}n → {−1, 1} defined by

.V (x) = x1 ·
(

1 − 2
n∏

k=2

(1 + xk

2

)
)

.

The function V satisfies the assumptions of Theorem 5.1 with .θ � n · 2−n, i.e.,
.θ/ ln(1/θ) � 2−n, whereas .V̂ ({1}) = 1 − 4 · 2−n and .I1(V ) = 1.

Very recently, Tomasz Przybyłowski [5] established a nice counterpart of
Theorem 2.1 for influences of orders higher than 2. Following an advice of Peter
Keevash, he also provided an example demonstrating the essential optimality of
Theorem 2.1.
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Some Notes on Concentration for
.α-Subexponential Random Variables

Holger Sambale
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1 Introduction

The aim of this note is to compile a number of smaller results that extend some
classical as well as more recent concentration inequalities for bounded or sub-
Gaussian random variables to random variables with heavier (but still exponential
type) tails. In detail, we shall consider random variables X that satisfy

.P(|X − EX| ≥ t) ≤ 2 exp(−tα/Cα
1,α) (1.1)

for any .t ≥ 0, some .α ∈ (0, 2], and a suitable constant .C1,α > 0. Such random
variables are sometimes called .α-subexponential (for .α = 2, they are sub-Gaussian)
or sub-Weibull.(α) (cf. [23, Definition 2.2]).

There are several equivalent reformulations of (1.1), e. g., in terms of .Lp norms:

.‖X‖Lp ≤ C2,αp1/α (1.2)

for any .p ≥ 1. Another characterization is that these random variables have finite
Orlicz norms of order .α, i. e.,

.C3,α := ‖X‖�α
:= inf{t > 0 : E exp((|X|/t)α) ≤ 2} < ∞. (1.3)

If .α < 1, .‖·‖�α is actually a quasi-norm; however, many norm-like properties
(such as a triangle-type inequality) can nevertheless be recovered up to .α-dependent
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constants (see, e. g., [12, Appendix A]). In fact, .C1,α , .C2,α , and .C3,α can be chosen
such that they only differ by a constant .α-dependent factor.

Note that .α-subexponential random variables have log-convex (if .α ≤ 1) or
log-concave (if .α ≥ 1) tails, i. e., .t �→ − logP(|X| ≥ t) is convex or concave,
respectively. For log-convex or log-concave measures, two-sided .Lp norm estimates
for polynomial chaos (and as a consequence, concentration bounds) have been
established over the last 25 years. In the log-convex case, results of this type have
been derived for linear forms in [17] and for forms of any order in [12, 21]. For log-
concave measures, starting with linear forms again in [10], important contributions
have been made in [3, 24, 25, 27].

In this note, we mainly present four different results for functions of .α-
subexponential random variables: a Hanson–Wright-type inequality in Sect. 2, a
version of the convex concentration inequality in Sect. 3, a uniform Hanson–Wright
inequality in Sect. 4, and finally a convex concentration inequality for simple
random tensors in Sect. 5. These results are partly based on and generalize recent
research, e. g., [20] and [42]. In fact, they partially build upon each other: for
instance, in the proofs of Sect. 5, we apply results both from Sects. 2 and 3. A more
detailed discussion is provided in each of the sections.

Finally, let us introduce some conventions that we will use in this chapter.

Notations. If X1, . . . , Xn is a sequence of random variables, we denote by X =
(X1, . . . , Xn) the corresponding random vector. Moreover, we shall need the
following types of norms throughout the paper:

• The norms ‖x‖p := (
∑n

i=1|xi |p)1/p for x ∈ R
n

• The Lp norms ‖X‖Lp := (E|X|p)1/p for random variables X (cf. (1.2))
• The Orlicz (quasi-)norms ‖X‖�α as introduced in (1.3)
• The Hilbert–Schmidt and operator norms ‖A‖HS := (

∑
i,j a2

ij )
1/2, ‖A‖op :=

sup{‖Ax‖2 : ‖x‖2 = 1} for matrices A = (aij )

The constants appearing in this chapter (typically denoted C or c) may vary from
line to line. Without subscript, they are assumed to be absolute, and if they depend
on α (only), we shall write Cα or cα .

2 A Generalized Hanson–Wright Inequality

Arguably, the most famous concentration result for quadratic form is the Hanson–
Wright inequality, which first appeared in [16]. We may state it as follows: assuming
.X1, . . . , Xn are centered, independent random variables satisfying .‖Xi‖�2 ≤ K for
any i and .A = (aij ) is a symmetric matrix, we have for any .t ≥ 0

.P
(|XT AX − EXT AX| ≥ t

) ≤ 2 exp
(

− 1

C
min

( t2

K4‖A‖2
HS

,
t

K2‖A‖op

))
.
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For a modern proof, see [33], and for various developments, cf. [2, 4, 18, 43].
In this note, we provide an extension of the Hanson–Wright inequality to random

variables with bounded Orlicz norms of any order .α ∈ (0, 2]. This complements the
results in [12], where the case of .α ∈ (0, 1] was considered, while for .α = 2, we
get back the actual Hanson–Wright inequality.

Theorem 2.1 For any .α ∈ (0, 2], let .X1, . . . , Xn be independent, centered random
variables such that .‖Xi‖�α ≤ K for any i and .A = (aij ) be a symmetric matrix.
Then, for any .t ≥ 0,

.P
(|XT AX − EXT AX| ≥ t

) ≤ 2 exp
(

− 1

Cα

min
( t2

K4‖A‖2
HS

,
( t

K2‖A‖op

) α
2
))

.

Theorem 2.1 generalizes and implies a number of inequalities for quadratic forms
in .α-subexponential random variables (in particular for .α = 1) that are spread
throughout the literature. For a detailed discussion, see [12, Remark 1.7]. Note
that it is possible to sharpen the tail estimate given by Theorem 2.1, cf., e. g., [12,
Corollary 1.4] for .α ∈ (0, 1] or [3, Theorem 3.2] for .α ∈ [1, 2] (in fact, the proof
of Theorem 2.1 works by evaluating the family of norms used therein). The main
benefit of Theorem 2.1 is that it uses norms that are easily calculable and in many
situations already sufficient for applications.

Before we give the proof of Theorem 2.1, let us briefly mention that for the
standard Hanson–Wright inequality, a number of selected applications can be found
in [33]. Some of them were generalized to .α-subexponential random variables
with .α ≤ 1 in [12], and it is no problem to extend these proofs to any order
.α ∈ (0, 2] using Theorem 2.1. Here, we just focus on a single example that yields
a concentration result for the Euclidean norm of a linear transformation of a vector
X having independent components with bounded Orlicz norms around the Hilbert–
Schmidt norm of the transformation matrix. This is a variant and extension of [12,
Proposition 2.1] and will be applied in Sect. 5.

Proposition 2.2 Let .X1, . . . , Xn be independent, centered random variables such
that .EX2

i = 1 and .‖Xi‖�α ≤ K for some .α ∈ (0, 2] and let .B 	= 0 be an .m × n

matrix. For any .t ≥ 0, we have

.P(|‖BX‖2 − ‖B‖HS| ≥ tK2‖B‖op) ≤ 2 exp(−tα/Cα). (2.1)

In particular, for any .t ≥ 0, it holds

.P(|‖X‖2 − √
n| ≥ tK2) ≤ 2 exp(−tα/Cα). (2.2)

For the proofs, let us recall some elementary relations that we will use throughout
the paper to adjust the constants in the tail bounds we derive.

Adjusting constants. For any two constants C1 > C2 > 1, we have for all r ≥ 0
and C > 0
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.C1 exp(−r/C) ≤ C2 exp
(

− log(C2)

C log(C1)
r
)

(2.3)

whenever the left-hand side is smaller or equal to 1 (cf., e. g., [35, Eq. (3.1)]).
Moreover, for any α ∈ (0, 2), any γ > 0, and all t ≥ 0, we may always estimate

. exp(−(t/C)2) ≤ 2 exp(−(t/C′)α), (2.4)

using exp(−s2) ≤ exp(1 − sα) for any s > 0 and (2.3). More precisely, we may
choose C′ := C/ log1/α(2). Note that strictly speaking, the range of t/C ≤ 1 is
not covered by (2.3); however, in this case (in particular, choosing C′ as suggested),
both sides of (2.4) are at least 1 anyway so that the right-hand side still provides a
valid upper bound for any probability.

Let us now turn to the proof of Theorem 2.1. In what follows, we actually show
that for any p ≥ 2,

.‖XT AX − EXT AX‖Lp ≤ CαK2(p1/2‖A‖HS + p2/α‖A‖op
)
. (2.5)

From here, Theorem 2.1 follows by standard means (cf. [34, Proof of Theorem 3.6]).
Moreover, we may restrict ourselves to α ∈ (1, 2], since the case of α ∈ (0, 1] has
been proven in [12].

Proof of Theorem 2.1 First we shall treat the off-diagonal part of the quadratic form.
Let w

(1)
i , w

(2)
i be independent (of each other as well as of the Xi) symmetrized

Weibull random variables with scale 1 and shape α, i. e., w
(j)
i are symmetric

random variables with P(|w(j)
i | ≥ t) = exp(−tα). In particular, the w

(j)
i have

logarithmically concave tails.
Using standard decoupling and symmetrization arguments (cf. [8, Theorem 3.1.1

& Lemma 1.2.6]) as well as [3, Theorem 3.2] in the second inequality, for any p ≥ 2,
it holds

.‖
∑

i 	=j

aijXiXj‖Lp ≤ CαK2‖
∑

i 	=j

aijw
(1)
i w

(2)
j ‖Lp

≤ CαK2(‖A‖N{1,2},p + ‖A‖N{{1},{2}},p), (2.6)

where the norms ‖A‖NJ ,p
are defined as in [3]. Instead of repeating the general

definitions, we will only focus on the case we need in our situation. Indeed, for the
symmetric Weibull distribution with parameter α, we have (again, in the notation of
[3]) N(t) = tα , and so for α ∈ (1, 2], it follows that N̂(t) = min(t2, |t |α). Hence,
the norms can be written as follows:

.‖A‖N{1,2},p = 2 sup
{ ∑

i,j

aij xij :
n∑

i=1

min
(∑

j

x2
ij ,

( ∑

j

x2
ij

)α/2) ≤ p
}
,
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‖A‖N{{1},{2}},p = sup
{ ∑

i,j

aij xiyj :
n∑

i=1

min(x2
i , |xi |α)

≤ p,

n∑

j=1

min(y2
j , |yj |α) ≤ p

}
.

Before continuing with the proof, we next introduce a lemma that will help to rewrite
the norms in a more tractable form. �
Lemma 2.3 For any p ≥ 2, define

.I1(p) := {
x = (xij ) ∈ R

n×n :
n∑

i=1

min
(( n∑

j=1

x2
ij

)α/2
,

n∑

j=1

x2
ij

) ≤ p
}
,

I2(p) := {
xij = ziyij ∈ R

n×n :
n∑

i=1

min(|zi |α, z2
i ) ≤ p, max

i=1,...,n

n∑

j=1

y2
ij ≤ 1

}
.

Then I1(p) = I2(p).

Proof The inclusion I1(p) ⊇ I2(p) is an easy calculation, and the inclusion
I1(p) ⊆ I2(p) follows by defining zi = ‖(xij )j‖ and yij = xij /‖(xij )j‖ (or 0,
if the norm is zero). �
Proof of Theorem 2.1, continued For brevity, for any matrix A = (aij ), let us write
‖A‖m := maxi=1,...,n(

∑n
j=1 a2

ij )
1/2. Note that clearly, ‖A‖m ≤ ‖A‖op.

Now, fix some vector z ∈ R
n such that

∑n
i=1 min(|zi |α, z2

i ) ≤ p. The condition
also implies

.p ≥
n∑

i=1

|zi |α1{|zi |>1} +
n∑

i=1

z2
i 1{|zi |≤1} ≥ max

( n∑

i=1

z2
i 1{|zi |≤1},

n∑

i=1

|zi |1{|zi |>1}
)
,

where in the second step we used α ∈ [1, 2] to estimate |zi |α1{|zi |>1} ≥ |zi |1{|zi |>1}.
So, given any z and y satisfying the conditions of I2(p), we can write

.|
∑

i,j

aij ziyij | ≤
n∑

i=1

|zi |
( n∑

j=1

a2
ij

)1/2(
n∑

j=1

y2
ij

)1/2 ≤
n∑

i=1

|zi |
( n∑

j=1

a2
ij

)1/2

≤
n∑

i=1

|zi |1{|zi |≤1}
( n∑

j=1

a2
ij

)1/2 +
n∑

i=1

|zi |1{|zi |>1}
( n∑

j=1

a2
ij

)1/2

≤ ‖A‖HS
( n∑

i=1

z2
i 1{|zi |≤1}

)1/2 + ‖A‖m

n∑

i=1

|zi |1{|zi |>1}.
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So, this yields

.‖A‖N{1,2},p ≤ 2p1/2‖A‖HS + 2p‖A‖m ≤ 2p1/2‖A‖HS + 2p‖A‖op. (2.7)

As for ‖A‖N{{1},{2}},p , we can use the decomposition z = z1 + z2, where (z1)i =
zi1{|zi |>1} and z2 = z − z1, and obtain

.‖A‖N{{1},{2}},p ≤ sup
{∑

ij

aij (x1)i(y1)j : ‖x1‖α ≤ p1/α, ‖y1‖α ≤ p1/α
}

+ 2 sup
{ ∑

ij

aij (x1)i(y2)j : ‖x1‖α ≤ p1/α, ‖y2‖2 ≤ p1/2}

+ sup
{ ∑

ij

aij (x2)i(y2)j : ‖x2‖2 ≤ p1/2, ‖y2‖2 ≤ p1/2}

= p2/α sup{. . .} + 2p1/α+1/2 sup{. . .} + p‖A‖op

(in the braces, the conditions ‖·‖β ≤ p1/β have been replaced by ‖·‖β ≤ 1). Clearly,
since ‖x1‖α ≤ 1 implies ‖x1‖2 ≤ 1 (and the same for y1), all of the norms can be
upper bounded by ‖A‖op, i. e., we have

.‖A‖N{{1},{2}},p ≤ (p2/α + 2p1/α+1/2 + p)‖A‖op ≤ 4p2/α‖A‖op, (2.8)

where the last inequality follows from p ≥ 2 and 1/2 ≤ 1/α ≤ 1 ≤ (α+2)/(2α) ≤
2/α.

Combining the estimates (2.6), (2.7), and (2.8) yields

.‖
∑

i,j

aijXiXj‖Lp ≤ CαK2(2p1/2‖A‖HS + 6p2/α‖A‖op
)
.

To treat the diagonal terms, we use Corollary 6.1 in [12], as X2
i are independent

and satisfy ‖X2
i ‖�α/2 ≤ K2, so that it yields

.P
(|

n∑

i=1

aii(X
2
i − EX2

i )| ≥ t
) ≤ 2 exp

(
− 1

CαK2 min
( t2

∑n
i=1 a2

ii

,

( t

maxi=1,...,n|aii |
)α/2))

.

Now it is clear that maxi=1,...,n|aii | ≤ ‖A‖op and
∑n

i=1 a2
ii ≤ ‖A‖2

HS. In particular,

.‖
n∑

i=1

aii(X
2
i − EX2

i )‖Lp ≤ CαK2(p1/2‖A‖HS + p2/α‖A‖op).
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The claim (2.5) now follows from Minkowski’s inequality. �
Finally, we prove Proposition 2.2.

Proof of Proposition 2.2 It suffices to prove (2.1) for matrices satisfying ‖B‖HS =
1, as otherwise we set B̃ = B‖B‖−1

HS and use the equality

.{|‖BX‖2 − ‖B‖HS| ≥ ‖B‖opt} = {|‖B̃X‖2 − 1| ≥ ‖B̃‖opt}.

Now let us apply Theorem 2.1 to the matrix A := BT B. An easy calculation
shows that trace(A) = trace(BT B) = ‖B‖2

HS = 1, so that we have for any t ≥ 0

.P
(|‖BX‖2 − 1| ≥ t

) ≤ P
(|‖BX‖2

2 − 1| ≥ max(t, t2)
)

≤ 2 exp
(

− 1

Cα

min
(max(t, t2)2

K4‖B‖2
op

,
(max(t, t2)

K4‖B‖2
op

)α/2))

≤ 2 exp
(

− 1

Cα

min
( t2

K4‖B‖2
op

,
( t2

K4‖B‖2
op

)α/2))

≤ 2 exp
(

− 1

Cα

( t

K2‖B‖op

)α)
.

Here, the first step follows from |z − 1| ≤ min(|z2 − 1|, |z2 − 1|1/2) for z ≥ 0, in
the second step, we have used the estimates ‖A‖2

HS ≤ ‖B‖2
op‖B‖2

HS = ‖B‖2
op and

‖A‖op ≤ ‖B‖2
op, and moreover, the fact that since EX2

i = 1, K ≥ Cα > 0 (cf.,
e. g., [12, Lemma A.2]), while the last step follows from (2.4) and (2.3). Setting
t = K2s‖B‖op for s ≥ 0 finishes the proof of (2.1). Finally, (2.2) follows by taking
m = n and B = I . �

3 Convex Concentration for Random Variables with
Bounded Orlicz Norms

Assume .X1, . . . , Xn are independent random variables each taking values in some
bounded interval .[a, b]. Then, by convex concentration as established in [19, 29, 38],
for every convex 1-Lipschitz function .f : [a, b]n → R,

.P(|f (X) − Ef (X)| > t) ≤ 2 exp
(

− t2

2(b − a)2

)
(3.1)

for any .t ≥ 0 (see, e. g., [36, Corollary 3]).
While convex concentration for bounded random variables is by now standard,

there is less literature for unbounded random variables. In [31], a Martingale-type
approach is used, leading to a result for functionals with stochastically bounded
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increments. The special case of suprema of unbounded empirical processes was
treated in [1, 28, 40]. Another branch of research, begun in [29] and continued,
e. g., in [5, 13–15, 36, 37], is based on functional inequalities (such as Poincaré or
log-Sobolev inequalities) restricted to convex functions and weak transport-entropy
inequalities. In [20, Lemma 1.8], a generalization of (3.1) for sub-Gaussian random
variables (.α = 2) was proven, which we may extend to any order .α ∈ (0, 2].
Proposition 3.1 Let .X1, . . . , Xn be independent random variables, .α ∈ (0, 2] and
.f : Rn → R convex and 1-Lipschitz. Then, for any .t ≥ 0,

.P(|f (X) − Ef (X)| > t) ≤ 2 exp
(

− tα

Cα‖maxi |Xi |‖α
�α

)
.

In particular,

.‖f (X) − Ef (X)‖�α ≤ Cα‖max
i

|Xi |‖�α . (3.2)

Note that the main results of the following two sections can be regarded as
applications of Proposition 3.1. If f is separately convex only (i. e., convex is every
coordinate with the other coordinates being fixed), it is still possible to prove a
corresponding result for the upper tails. Indeed, it is no problem to modify the
proof below accordingly, replacing (3.1) by [7, Theorem 6.10]. Moreover, note that
.‖maxi |Xi |‖�α cannot be replaced by .maxi‖|Xi |‖�α (a counterexample for .α = 2 is
provided in [20]). In general, the Orlicz norm of .maxi |Xi | will be of order .(log n)1/α

(cf. Lemma 5.6).

Proof of Proposition 3.1 Following the lines of the proof of [20, Lemma 3.5], the
key step is a suitable truncation that goes back to [1]. Indeed, write

.Xi = Xi1{|Xi |≤M} + Xi1{|Xi |>M} =: Yi + Zi (3.3)

with .M := 8Emaxi |Xi | (in particular, .M ≤ Cα‖maxi |Xi |‖�α , cf. [12, Lemma
A.2]), and let .Y = (Y1, . . . , Yn), .Z = (Z1, . . . , Zn). By the Lipschitz property
of f ,

.

P(|f (X) − Ef (X)| > t)

≤ P(|f (Y ) − Ef (Y )| + |f (X) − f (Y )| + |Ef (Y ) − Ef (X)| > t)

≤ P(|f (Y ) − Ef (Y )| + ‖Z‖2 + E‖Z‖2 > t),

(3.4)

and hence, it suffices to bound the terms in the last line.
Applying (3.1) to Y and using (2.4) and (2.3), we obtain

.P(|f (Y ) − Ef (Y )| > t) ≤ 2 exp
(

− tα

Cα
α‖maxi |Xi |‖α

�α

)
. (3.5)
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Furthermore, below we will show that

.‖‖Z‖2‖�α ≤ Cα‖max
i

|Xi |‖�α . (3.6)

Hence, for any .t ≥ 0,

.P(‖Z‖2 ≥ t) ≤ 2 exp
(

− tα

Cα
α‖maxi |Xi |‖α

�α

)
, (3.7)

and by [12, Lemma A.2],

.E‖Z‖2 ≤ Cα‖max
i

|Xi |‖�α . (3.8)

Temporarily writing .K := Cα‖maxi |Xi |‖�α , where .Cα is large enough so that
(3.5), (3.7), and (3.8) hold, (3.4) and (3.8) yield

.P(|f (X) − Ef (X)| > t) ≤ P(|f (Y ) − Ef (Y )| + ‖Z‖2 > t − K)

if .t ≥ K . Using subadditivity and invoking (3.5) and (3.7), we obtain

.P(|f (X) − Ef (X)| > t) ≤ 4 exp
(

− (t − K)α

(2K)α

)
≤ 4 exp

(
− tα

cα(2K)α

)
,

where the last step holds for .t ≥ K + δ for some .δ > 0. This bound extends trivially
to any .t ≥ 0 (if necessary, by a suitable change of constants). Finally, the constant
in front of the exponential may be adjusted to 2 by (2.3), which finishes the proof.

It remains to show (3.6). To this end, recall the Hoffmann-Jørgensen inequality
(cf. [30, Theorem 6.8]) in the following form: if .W1, . . . ,Wn are independent
random variables, .Sk := W1 + . . . + Wk , and .t ≥ 0 is such that .P(maxk |Sk| >

t) ≤ 1/8, then

.Emax
k

|Sk| ≤ 3Emax
i

|Wi | + 8t.

In our case, we set .Wi := Z2
i , .t = 0, and note that by Chebyshev’s inequality,

.P(max
i

Z2
i > 0) = P(max

i
|Xi | > M) ≤ Emax

i
|Xi |/M = 1/8,

and consequently, recalling that .Sk = Z2
1 + . . . + Z2

k ,

.P(max
k

|Sk| > 0) ≤ P(max
i

Z2
i > 0) ≤ 1/8.
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Thus, together with [12, Lemma A.2], we obtain

.E‖Z‖2
2 ≤ 3Emax

i
Z2

i ≤ Cα‖max
i

Z2
i ‖�α/2 .

Now it is easy to see that .‖maxi Z2
i ‖�α/2 ≤ ‖maxi |Xi |‖2

�α
, so that altogether we

arrive at

.E‖Z‖2
2 ≤ Cα‖max

i
|Xi |‖2

�α
. (3.9)

Furthermore, by [30, Theorem 6.21], if .W1, . . . , Wn are independent random
variables with zero mean and .α ∈ (0, 1],

.‖
n∑

i=1

Wi‖�α ≤ Cα(‖
n∑

i=1

Wi‖L1 + ‖max
i

|Wi |‖�α).

In our case, we consider .Wi = Z2
i −EZ2

i and .α/2 (instead of .α). Together with the
previous arguments (in particular, (3.9)) and [12, Lemma A.3], this yields

.‖
n∑

i=1

(Z2
i − EZ2

i )‖�α/2 ≤ Cα(E|‖Z‖2
2 − E‖Z‖2

2| + ‖max
i

|Z2
i − EZ2

i |‖�α/2)

≤ Cα(E‖Z‖2
2 + ‖max

i
Z2

i ‖�α/2) ≤ Cα‖max
i

|Xi |‖2
�α

.

Combining this with [12, Lemma A.3] and (3.9), we arrive at (3.6). �

4 Uniform Tail Bounds for First- and Second-Order Chaos

In this section, we discuss bounds for the tails of the supremum of certain chaos-
type classes of functions. Even if we are particularly interested in quadratic forms,
i. e., uniform Hanson–Wright inequalities, let us first consider linear forms.

Let .X1, . . . , Xn be independent random variables, let .α ∈ (0, 2], and let
.{ai,t : i = 1, . . . , n, t ∈ T } be a compact set of real numbers, where .T is some
index set. Consider .g(X) := supt∈T

∑n
i=1 ai,tXi . Clearly, g is convex and has

Lipschitz constant .D := supt∈T (
∑n

i=1 a2
i,t )

1/2. Therefore, applying Proposition 3.1,
we immediately obtain that for any .t ≥ 0,

.P(|g(X) − Eg(X)| ≥ t) ≤ 2 exp
(

− tα

CαDα‖maxi |Xi |‖α
�α

)
. (4.1)

For bounded random variables, corresponding tail bounds can be found, e. g., in [32,
Eq. (14)], and choosing .α = 2, we get back this result up to constants.
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Our main aim is to derive a second-order analogue of (4.1), i. e., a uniform
Hanson–Wright inequality. A pioneering result in this direction (for Rademacher
variables) can be found in [39]. Later results include [2] (which requires the
so-called concentration property), [22], [9], and [11] (certain classes of weakly
dependent random variables). In [20], a uniform Hanson–Wright inequality for sub-
Gaussian random variables was proven. We may show a similar result for random
variables with bounded Orlicz norms of any order .α ∈ (0, 2].
Theorem 4.1 Let .X1, . . . , Xn be independent, centered random variables and
.K := ‖maxi |Xi |‖�α , where .α ∈ (0, 2]. Let .A be a compact set of real symmetric
.n × n matrices, and let .f (X) := supA∈A(XT AX −EXT AX). Then, for any .t ≥ 0,

.P(f (X) − Ef (X) ≥ t) ≤ 2 exp
(

− 1

CαKα
min

( tα

(E supA∈A‖AX‖2)α
,

tα/2

supA∈A‖A‖α/2
op

))
.

For .α = 2, this gives back [20, Theorem 1.1] (up to constants and a different
range of t). Comparing Theorems 4.1 to 2.1, we note that instead of a sub-Gaussian
term, we obtain an .α-subexponential term (which can be trivially transformed into
a sub-Gaussian term for .t ≤ E supA∈A‖AX‖2, but this does not cover the complete
.α-subexponential regime). Moreover, Theorem 4.1 only gives a bound for the upper
tails. Therefore, if .A just consists of a single matrix, Theorem 2.1 is stronger. These
differences have technical reasons.

To prove Theorem 4.1, we shall follow the basic steps of [20] and modify those
where the truncation comes in. Let us first repeat some tools and results. In the
sequel, for a random vector .W = (W1, . . . ,Wn), we shall denote

.f (W) := sup
A∈A

(WT AW − g(A)), (4.2)

where .g : Rn×n → R is some function. Moreover, if A is any matrix, we denote by
.Diag(A) its diagonal part (regarded as a matrix with zero entries on its off-diagonal).
The following lemma combines [20, Lemmas 3.2 & 3.5].

Lemma 4.2

(1) Assume the vector W has independent components that satisfy .Wi ≤ K a.s.
Then, for any .t ≥ 1, we have

.f (W) − Ef (W) ≤ C
(
K(E sup

A∈A
‖AW‖2 + E sup

A∈A
‖Diag(A)W‖2)

√
t

+ K2 sup
A∈A

‖A‖opt
)

with probability at least .1 − e−t .
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(2) Assuming the vector W has independent (but not necessarily bounded) compo-
nents with mean zero, we have

.E sup
A∈A

‖Diag(A)W‖2 ≤ CE sup
A∈A

‖AW‖2.

From now on, let X be the random vector from Theorem 4.1, and recall the
truncated random vector Y that we introduced in (3.3) (and the corresponding
“remainder” Z). Then, Lemma 4.2 (1) for .f (Y ) with .g(A) = EXT AX yields

.f (Y ) − Ef (Y ) ≤ C
(
M(E sup

A∈A
‖AY‖2 + E sup

A∈A
‖Diag(A)‖2)t

1/α

+ M2t2/α sup
A∈A

‖A‖op
)

(4.3)

with probability at least .1 − e−t (actually, (4.3) even holds with .α = 2, but in the
sequel we will have to use the weaker version given above anyway). Here we recall
that .M ≤ Cα‖maxi |Xi |‖�α .

To prove Theorem 4.1, it remains to replace the terms involving the truncated
random vector Y by the original vector X. First, by Proposition 3.1 and since
.supA∈A‖AX‖2 is .supA∈A‖A‖op-Lipschitz, we obtain

.P( sup
A∈A

‖AX‖2 > E sup
A∈A

‖AX‖2 + Cα‖max
i

|Xi |‖�α sup
A∈A

‖A‖opt
1/α) ≤ 2e−t .

(4.4)
Moreover, by (3.8),

.|E sup
A∈A

‖AY‖2 − E sup
A∈A

‖AX‖2| ≤ Cα‖max
i

|Xi |‖�α sup
A∈A

‖A‖op. (4.5)

Next we estimate the difference between the expectations of .f (X) and .f (Y ).

Lemma 4.3 We have

.|Ef (Y ) − Ef (X)| ≤ Cα

(‖max
i

|Xi |‖�αE sup
A∈A

‖AX‖2 + ‖max
i

|Xi |‖2
�α

sup
A∈A

‖A‖op
)
.

Proof First note that

.f (X) = sup
A∈A

(Y T AY − EXT AX + ZT AX + ZT AY)

≤ sup
A∈A

(Y T AY − EXT AX) + sup
A∈A

|ZT AX| + sup
A∈A

|ZT AY |

≤ f (Y ) + ‖Z‖2 sup
A∈A

‖AX‖2 + ‖Z‖2 sup
A∈A

‖AY‖2.

The same holds if we reverse the roles of X and Y . As a consequence,
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.|f (X) − f (Y )| ≤ ‖Z‖2 sup
A∈A

‖AX‖2 + ‖Z‖2 sup
A∈A

‖AY‖2, (4.6)

and thus, taking expectations and applying Hölder’s inequality,

.|Ef (X) − Ef (Y )| ≤ (E‖Z‖2
2)

1/2((E sup
A∈A

‖AX‖2
2)

1/2 + (E sup
A∈A

‖AY‖2
2)

1/2).

(4.7)
We may estimate .(E‖Z‖2

2)
1/2 using (3.9). Moreover, by related arguments as in

(3.8), from (4.4), we get that

.E sup
A∈A

‖AX‖2
2 ≤ Cα((E sup

A∈A
‖AX‖2)

2 + ‖max
i

|Xi |‖2
�α

sup
A∈A

‖A‖2
op).

Arguing similarly and using (4.5), the same bound also holds for .(E supA∈A
.‖AY‖2

2)
1/2. Taking roots and plugging everything into (4.7) complete the proof. �

Finally, we prove the central result of this section.

Proof of Theorem 4.1 First, it immediately follows from Lemma 4.3 that

.Ef (Y ) ≤ Ef (X) + Cα

(‖max
i

|Xi |‖�αE sup
A∈A

‖AX‖2 + ‖max
i

|Xi |‖2
�α

sup
A∈A

‖A‖op
)
.

(4.8)
Moreover, by (4.5) and Lemma 4.2 (2),

.E sup
A∈A

‖AY‖2 + E sup
A∈A

‖Diag(A)Y‖2 ≤ Cα(E sup
A∈A

‖AX‖2

+ ‖max
i

|Xi |‖�α sup
A∈A

‖A‖op). (4.9)

Finally, it follows from (4.6), (4.4), and (4.5) that

.|f (X) − f (Y )| ≤ ‖Z‖2 sup
A∈A

‖AX‖2 + ‖Z‖2 sup
A∈A

‖AY‖2

≤ Cα(‖Z‖2E sup
A∈A

‖AX‖2 + ‖Z‖2‖max
i

|Xi |‖�α sup
A∈A

‖A‖opt
1/α)

with probability at least .1 − 4e−t for all .t ≥ 1. Using (3.7), it follows that

.|f (X) − f (Y )| ≤ Cα(‖max
i

|Xi |‖�αE sup
A∈A

‖AX‖2t
1/α

+ ‖max
i

|Xi |‖2
�α

sup
A∈A

‖A‖opt
2/α) (4.10)

with probability at least .1 − 6e−t for all .t ≥ 1. Combining (4.8), (4.9), and (4.10)
and plugging into (4.3) thus yield that with probability at least .1−6e−t for all .t ≥ 1,
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.f (X) − Ef (X) ≤ Cα(‖max
i

|Xi |‖�αE sup
A∈A

‖AX‖2t
1/α

+ ‖max
i

|Xi |‖2
�α

sup
A∈A

‖A‖opt
2/α)

=: Cα(at1/α + bt2/α).

If .u ≥ max(a, b), it follows that

.P(f (X) − Ef (X) ≥ u) ≤ 6 exp
(

− 1

Cα

min
((u

a

)α

,
(u

b

)α/2))
.

By standard means (a suitable change of constants, using (2.3)), this bound may be
extended to any .u ≥ 0, and the constant may be adjusted to 2. �

5 Random Tensors

By a simple random tensor, we mean a random tensor of the form

.X := X1 ⊗ · · · ⊗ Xd = (X1,i1 · · ·Xd,id )i1,...,id ∈ R
nd

, (5.1)

where all .Xk are independent random vectors in .R
n whose coordinates are

independent, centered random variables with variance one. Concentration results
for random tensors (typically for polynomial-type functions) have been shown in
[6, 12, 26], for instance.

Recently, in [42], new and interesting concentration bounds for simple random
tensors were shown. In comparison to previous work, these inequalities focus on
small values of t , e. g., a regime where sub-Gaussian tail decay holds. Moreover, in
contrast to previous papers, [42] provides constants with optimal dependence on d.
One of these results is the following convex concentration inequality: assuming that
n and d are positive integers, .f : Rnd → R is convex and 1-Lipschitz, and the .Xij

are bounded a.s., then for any .t ∈ [0, 2nd/2],

.P(|f (X) − Ef (X)| > t) ≤ 2 exp
(

− t2

Cdnd−1

)
, (5.2)

where .C > 0 only depends on the bound of the coordinates. Using Theorem 2.1
and Proposition 3.1, we may extend this result to unbounded random variables as
follows:

Theorem 5.1 Let .n, d ∈ N and .f : Rnd → R be convex and 1-Lipschitz. Consider
a simple random tensor .X := X1 ⊗ · · · ⊗ Xd as in (5.1). Fix .α ∈ [1, 2], and assume
that .‖Xi,j‖�α ≤ K . Then, for any .t ∈ [0, cαnd/2(log n)1/α/K],
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.P(|f (X) − Ef (X)| > t) ≤ 2 exp
(

− 1

Cα

( t

d1/2n(d−1)/2(log n)1/αK

)α)
.

On the other hand, if .α ∈ (0, 1), then, for any .t ∈ [0, cαnd/2(log n)1/αd1/α−1/2/K],

.P(|f (X) − Ef (X)| > t) ≤ 2 exp
(

− 1

Cα

( t

d1/αn(d−1)/2(log n)1/αK

)α)
.

The logarithmic factor stems from the Orlicz norm of .maxi |Xi | in Proposi-
tion 3.1. For a slightly sharper version that includes the explicit dependence on
these norms (and also gives back (5.2) for bounded random variables and .α = 2),
see (5.12) in the proof of Theorem 5.1. We believe that Theorem 5.1 is non-optimal
for .α < 1 as we would expect a bound of the same type as for .α ∈ [1, 2]. However,
a key difference in the proofs is that in the case of .α ≥ 1 we can make use of
moment-generating functions. This is clearly not possible if .α < 1, so that less
subtle estimates must be invoked instead.

For the proof of Theorem 5.1, we first adapt some preliminary steps and compile
a number of auxiliary lemmas whose proofs are deferred to the appendix. As a start,
we need some additional characterizations of .α-subexponential random variables
via the behavior of the moment-generating functions:

Proposition 5.2 Let X be a random variable and .α ∈ (0, 2]. Then, the properties
(1.1), (1.2), and (1.3) are equivalent to

.E exp(λα|X|α) ≤ exp(Cα
4,αλα) (5.3)

for all .0 ≤ λ ≤ 1/C4,α . If .α ∈ [1, 2] and .EX = 0, then the above properties are
moreover equivalent to

.E exp(λX) ≤
{

exp(C2
5,αλ2) if |λ| ≤ 1/C5,α

exp(C
α/(α−1)

5,α |λ|α/(α−1)) if |λ| ≥ 1/C5,α and α > 1.
(5.4)

The parameters .Ci,α , .i = 1, . . . , 5, can be chosen such that they only differ by
constant .α-dependent factors. In particular, we can take .Ci,α = ci,α‖X‖�α .

To continue, note that .‖X‖2 = ∏d
i=1‖Xi‖2. A key step in the proofs of

[42] is a maximal inequality that simultaneously controls the tails of .
∏k

i=1‖Xi‖2,
.k = 1, . . . , d, where the .Xi have independent sub-Gaussian components, i. e.,
.α = 2. Generalizing these results to any order .α ∈ (0, 2] is not hard. The following
preparatory lemma extends [42, Lemma 3.1]. Note that in the proof (given in the
appendix again), we apply Proposition 2.2.

Lemma 5.3 Let .X1, . . . , Xd ∈ R
n be independent random vectors with indepen-

dent, centered coordinates such that .EX2
i,j = 1 and .‖Xi,j‖�α ≤ K for some

.α ∈ (0, 2]. Then, for any .t ∈ [0, 2nd/2],
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.P

( d∏

i=1

‖Xi‖2 > nd/2 + t
)

≤ 2 exp
(

− 1

Cα

( t

K2d1/2n(d−1)/2

)α)
.

To control all .k = 1, . . . , d simultaneously, we need a generalized version of the
maximal inequality [42, Lemma 3.2] that we state next.

Lemma 5.4 Let .X1, . . . , Xd ∈ R
n be independent random vectors with indepen-

dent, centered coordinates such that .EX2
i,j = 1 and .‖Xi,j‖�α ≤ K for some

.α ∈ (0, 2]. Then, for any .u ∈ [0, 2],

.P

(
max

1≤k≤d
n−k/2

k∏

i=1

‖Xi‖2 > 1 + u
)

≤ 2 exp
(

− 1

Cα

( n1/2u

K2d1/2

)α)
.

The following Martingale-type bound is directly taken from [42]:

Lemma 5.5 ([42], Lemma 4.1) Let .X1, . . . Xd be independent random vectors.
For each .k = 1, . . . , d, let .fk = fk(Xk, . . . , Xd) be an integrable real-valued
function and .Ek be an event that is uniquely determined by the vectors .Xk, . . . , Xd .
Let .Ed+1 be the entire probability space. Suppose that for every .k = 1, . . . , d, we
have

.EXk
exp(fk) ≤ πk

for every realization of .Xk+1, . . . , Xd in .Ek+1. Then, for .E := E2 ∩· · ·∩Ed , we have

.E exp(f1 + . . . + fd)1E ≤ π1 · · · πd.

Finally, we need a bound for the Orlicz norm of .maxi |Xi |.
Lemma 5.6 Let .X1, . . . , Xn be independent, centered random variables such that
.‖Xi‖�α ≤ K for any i and some .α > 0. Then,

.‖max
i

|Xi |‖�α ≤ CαK max
{(√

2 + 1√
2 − 1

)1/α

, (log n)1/α
( 2

log 2

)1/α}
.

Here, we may choose .Cα = max{21/α−1, 21−1/α}.
Note that for .α ≥ 1, [8, Proposition 4.3.1] provides a similar result. However, we

are also interested in the case of .α < 1 in the present note. The condition .EXi = 0
in Lemma 5.6 can easily be removed only at the expense of a different absolute
constant.

We are now ready to prove Theorem 5.1.



Some Notes on Concentration for .α-Subexponential Random Variables 183

Proof of Theorem 5.1 We shall adapt the arguments from [42]. First let

.Ek :=
{ d∏

i=k

‖Xi‖2 ≤ 2n(d−k+1)/2
}
, k = 1, . . . , d,

and let .Ed+1 be the full space. It then follows from Lemma 5.4 for .u = 1 that

.P(E) ≥ 1 − 2 exp
(

− 1

Cα

( n1/2

K2d1/2

)α)
, (5.5)

where .E := E2 ∩ · · · ∩ Ed .
Now fix any realization .x2, . . . , xd of the random vectors .X2, . . . , Xd in .E2, and

apply Proposition 3.1 to the function .f1(x1) given by .x1 �→ f (x1, . . . xd). Clearly,
.f1 is convex, and since

.|f (x⊗x2⊗· · ·⊗xd)−f (y⊗x2⊗· · ·⊗xd)| ≤ ‖x−y‖2

d∏

i=2

‖xi‖2 ≤ ‖x−y‖22n(d−1)/2,

we see that it is .2n(d−1)/2-Lipschitz. Hence, it follows from (3.2) that

.‖f − EX1f ‖�α(X1) ≤ cαn(d−1)/2‖max
j

|X1,j |‖�α (5.6)

for any .x2, . . . , xd in .E2, where .EX1 denotes taking the expectation with respect to
.X1 (which, by independence, is the same as conditionally on .X2, . . . , Xd ).

To continue, fix any realization .x3, . . . , xd of the random vectors .X3, . . . , Xd

that satisfy .E3 and apply Proposition 3.1 to the function .f2(x2) given by .x2 �→
EX1f (X1, x2, . . . , xd). Again, .f2 is a convex function, and since

.|EX1f (X1 ⊗ x ⊗ x3 ⊗ . . . ⊗ xd) − EX1f (X1 ⊗ y ⊗ x3 ⊗ . . . ⊗ xd)|

≤ EX1‖X1 ⊗ (x − y) ⊗ x3 ⊗ . . . ⊗ xd‖2 ≤ (E‖X1‖2
2)

1/2‖x − y‖2

d∏

i=3

‖xi‖2

≤ √
n‖x − y‖2 · 2n(d−2)/2 = ‖x − y‖2 · 2n(d−1)/2,

.f2 is .2n(d−1)/2-Lipschitz. Applying (3.2), we thus obtain

.‖EX1f − EX1,X2f ‖�α(X2) ≤ cαn(d−1)/2‖max
j

|X2,j |‖�α (5.7)

for any .x3, . . . , xd in .E3. Iterating this procedure, we arrive at

.‖EX1,...,Xk−1f − EX1,...,Xk
f ‖�α(Xk) ≤ cαn(d−1)/2‖max

j
|Xk,j |‖�α (5.8)
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for any realization .xk+1, . . . , xd of .Xk+1, . . . , Xd in .Ek+1.
We now combine (5.8) for .k = 1, . . . , d. To this end, we write

.	k := 	k(Xk, . . . , Xd) := EX1,...,Xk−1f − EX1,...,Xk
f

and apply Proposition 5.2. Here we have to distinguish between the cases where
.α ∈ [1, 2] and .α ∈ (0, 1). If .α ≥ 1, we use (5.4) to arrive at a bound for the
moment-generating function. Writing .Mk := ‖maxj |Xk,j |‖�α , we obtain

.E exp(λ	k) ≤
{

exp((cαn(d−1)/2Mk)
2λ2)

exp((cαn(d−1)/2Mk)
α/(α−1)|λ|α/(α−1))

for all .xk+1, . . . , xd in .Ek+1, where the first line holds if .|λ| ≤ 1/(cαn(d−1)/2Mk)

and the second one if .|λ| ≥ 1/(cαn(d−1)/2Mk) and .α > 1. For the simplicity of
presentation, temporarily assume that .cαn(d−1)/2 = 1 (alternatively, replace .Mk

by .cαn(d−1)/2Mk in the following arguments) and that .M1 ≤ . . . ≤ Md . Using
Lemma 5.5, we obtain

. E exp(λ(f − Ef ))1E = E exp(λ(	1 + · · · + 	d))1E

≤ exp((M2
1 + . . . + M2

k )λ2 + (M
α/(α−1)

k+1 + . . . + M
α/(α−1)
d )|λ|α/(α−1))

for .|λ| ∈ [1/Mk+1, 1/Mk], where we formally set .M0 := 0 and .Md+1 := ∞. In
particular, setting .M := (M2

1 + . . . + M2
d )1/2, we have

.E exp(λ(f − Ef ))1E ≤ exp(M2λ2)

for all .|λ| ≤ 1/Md = 1/(maxk Mk). Furthermore, for .α > 1, it is not hard to see
that

.(M2
1 + . . .+M2

k )λ2 +(M
α/(α−1)

k+1 + . . .+M
α/(α−1)
d )|λ|α/(α−1) ≤ Mα/(α−1)|λ|α/(α−1)

If .|λ| ∈ [1/Mk+1, 1/Mk] for some .k = 0, 1, . . . , d − 1 or .|λ| ∈ [1/M, 1/Md ]
for .k = d. Indeed, by monotonicity (divide by .λ2 and compare the coefficients),
it suffices to check this for .λ = 1/Mk+1 or .λ = 1/M if .k = d. The cases of
.k = 0 and .k = d follow by simple calculations. In the general case, set .x2 =
(M2

1 + . . .+M2
k+1)/M

2
k+1 and .yα/(α−1) = (M

α/(α−1)

k+2 + . . .+M
α/(α−1)
d )/M

α/(α−1)

k+1 .
Clearly, .(x2 + yα/(α−1))(α−1)/α ≤ (x2 + y2)1/2 since .x ≥ 1 and .α/(α − 1) ≥ 2.
Moreover, .y2 ≤ (M2

k+2 + . . .+M2
d )/M2

k+1, which proves the inequality. Altogether,
inserting the factor .cαn(d−1)/2 again, we therefore obtain

.E exp(λ(f − Ef ))1E = E exp(λ(	1 + · · · + 	d))1E
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≤
{

exp((cαn(d−1)/2)2M2λ2)

exp((cαn(d−1)/2)α/(α−1)Mα/(α−1)|λ|α/(α−1)),
(5.9)

where the first line holds if .|λ| ≤ 1/(cαn(d−1)/2M) and the second one if .|λ| ≥
1/(cαn(d−1)/2M) and .α > 1.

On the other hand, if .α < 1, we use (5.3). Together with Lemma 5.5 and the
subadditivity of .| · |α for .α ∈ (0, 1), this yields

.

E exp(λα|f − Ef |α)1E ≤ E exp(λα(|	1|α + · · · + |	d |α))1E

≤ exp((cαn(d−1)/2)α(Mα
1 + · · · + Mα

d )λα)
(5.10)

for .λ ∈ [0, 1/(cαn(d−1)/2 maxk Mk)].
To finish the proof, first consider .α ∈ [1, 2]. Then, for any .λ > 0, we have

.

P(f − Ef > t) ≤ P({f − Ef > t} ∩ E) + P(Ec)

≤ P(exp(λ(f − Ef ))1E > exp(λt)) + P(Ec)

≤ exp
(

−
( t

cαn(d−1)/2M

)α)
+ 2 exp

(
− 1

Cα

( n1/2

K2d1/2

)α)
,

(5.11)

where the last step follows by standard arguments (similarly as in the proof of
Proposition 5.2 given in the appendix), using (5.9) and (5.5). Now, assume that
.t ≤ cαnd/2M/(K2d1/2). Then, the right-hand side of (5.11) is dominated by the
first term (possibly after adjusting constants), so that we arrive at

.P(f − Ef > t) ≤ 3 exp
(

− 1

Cα

( t

n(d−1)/2M

)α)
.

The same arguments hold if f is replaced by .−f . Adjusting constants by (2.3), we
obtain that for any .t ∈ [0, cαnd/2M/(K2d1/2)],

.P(|f (X) − Ef (X)| > t) ≤ 2 exp
(

− 1

Cα

( t

n(d−1)/2M

)α)
. (5.12)

Now it remains to note that by Lemma 5.6, we have

.‖max
j

|Xi,j |‖�α ≤ Cα(log n)1/α max
j

‖Xi,j‖�α ≤ Cα(log n)1/αK.

If .α ∈ (0, 1), similarly to (5.11), using (5.10), (5.5) and Proposition 5.2,

.P(|f − Ef | > t) ≤ P({|f − Ef | > t} ∩ E) + P(Ec)
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≤ 2 exp
(

−
( t

cαn(d−1)/2Mα

)α)
+ 2 exp

(
− 1

Cα

( n1/2

K2d1/2

)α)
,

where .Mα := (Mα
1 + . . . + Mα

d )1/α . The rest follows as above. �

Appendix A

Proof of Proposition 5.2 The equivalence of (1.1), (1.2), (1.3), and (5.3) is easily
seen by directly adapting the arguments from the proof of [41, Proposition 2.5.2]. To
see that these properties imply (5.4), first note that since in particular ‖X‖�1 < ∞,
the bound for |λ| ≤ 1/C′

5,α directly follows from [41], Proposition 2.7.1 (e). To see
the bound for large values of |λ|, we infer that by the weighted arithmetic–geometric
mean inequality (with weights α − 1 and 1),

.y(α−1)/αz1/α ≤ α − 1

α
y + 1

α
z

for any y, z ≥ 0. Setting y := |λ|α/(α−1) and z := |x|α , we may conclude that

.λx ≤ α − 1

α
|λ|α/(α−1) + 1

α
|x|α

for any λ, x ∈ R. Consequently, using (5.3), assuming C4,α = 1, for any |λ| ≥ 1,

.E exp(λX) ≤ exp
(α − 1

α
|λ|α/(α−1)

)
E exp(|X|α/α)

≤ exp
(α − 1

α
|λ|α/(α−1)

)
exp(1/α) ≤ exp(|λ|α/(α−1)).

This yields (5.4) for |λ| ≥ 1/C′′
5,α . The claim now follows by taking C5,α :=

max(C′
5,α, C′′

5,α).
Finally, starting with (5.4), assuming C5,α = 1, let us check (1.1). To this end,

note that for any λ > 0,

.P(X ≥ t) ≤ exp(−λt)E exp(λX) ≤ exp(−λt + λ21{λ≤1} + λα/(α−1)1{λ>1}).

Now choose λ := t/2 if t ≤ 2, λ := ((α − 1)t/α)α−1 if t ≥ α/(α − 1), and λ := 1
if t ∈ (2, α/(α − 1)). This yields

.P(X ≥ t) ≤

⎧
⎪⎪⎨

⎪⎪⎩

exp(−t2/4) if t ≤ 2,

exp(−(t − 1)) if t ∈ (2, α/(α − 1)),

exp(− (α−1)α−1

αα tα) if t ≥ α/(α − 1).
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Now use (2.3), (2.4), and the fact that exp(−(t − 1)) ≤ exp(−tα/Cα
α ) for any

t ∈ (2, α/(α − 1)). It follows that

.P(X ≥ t) ≤ 2 exp(−tα/C′α
1,α)

for any t ≥ 0. The same argument for −X completes the proof. �
Proof of Lemma 5.3 By the arithmetic and geometric means inequality and since
E‖Xi‖2 ≤ √

n, for any s ≥ 0,

.

P

( d∏

i=1

‖Xi‖2 > (
√

n + s)d
)

≤ P

( 1

d

d∑

i=1

(‖Xi‖2 − √
n) > s

)

≤ P

( 1

d

d∑

i=1

(‖Xi‖2 − E‖Xi‖2) > s
)
.

(A.1)

Moreover, by (2.2) and [12, Corollary A.5],

.
∥
∥‖Xi‖2 − E‖Xi‖2

∥
∥

�α
= ∥

∥‖Xi‖2 − √
n − (E‖Xi‖2 − √

n)
∥
∥

�α
≤ CαK2

for any i = 1, . . . , d. On the other hand, if Y1, . . . , Yd are independent centered
random variables with ‖Yi‖�α ≤ M , we have

.P

( 1

d

∣
∣
∣

d∑

i=1

Yi

∣
∣
∣ ≥ s

)
≤ 2 exp

(
− 1

Cα

min
(( s

√
d

M

)2
,
( s

√
d

M

)α))

≤ 2 exp
(

− 1

Cα

( s
√

d

M

)α)
.

Here, the first estimate follows from [10] (α > 1) and [17] (α ≤ 1), while
the last step follows from (2.4). As a consequence, (A.1) can be bounded by
2 exp(−sαdα/2/(K2αCα)).

For u ∈ [0, 2] and s = u
√

n/2d, we have (
√

n + s)d ≤ nd/2(1 + u). Plugging
in, we arrive at

.P

( d∏

i=1

‖Xi‖2 > nd/2(1 + u)
)

≤ 2 exp
(

− 1

Cα

( n1/2u

K2d1/2

)α)
.

Now set u := t/nd/2. �
Proof of Lemma 5.4 Let us first recall the partition into “binary sets” that appears
in the proof of [42, Lemma 3.2]. Here we assume that d = 2L for some L ∈ N (if
not, increase d). Then, for any 
 ∈ {0, 1, . . . , L}, we consider the partition I
 of
{1, . . . , d} into 2
 successive (integer) intervals of length d
 := d/2
 that we call
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“binary intervals.” It is not hard to see that for any k = 1, . . . , d, we can partition
[1, k] into binary intervals of different lengths such that this partition contains at
most one interval of each family I
.

Now it suffices to prove that

.P

(
∃0 ≤ 
 ≤ L, ∃I ∈ I
 :

∏

i∈I

‖Xi‖2 > (1 + 2−
/4u)nd
/2
)

≤ 2 exp
(

− 1

Cα

( n1/2u

K2d1/2

)α)

(cf. Step 3 of the proof of [42, Lemma 3.2], where the reduction to this case is
explained in detail). To this end, for any 
 ∈ {0, 1, . . . , L}, any I ∈ I
, and d
 :=
|I | = d/2
, we apply Lemma 5.3 for d
 and t := 2−
/4nd
/2u. This yields

.P

( ∏

i∈I

‖Xi‖2 > (1 + 2−
/4u)nd
/2
)

≤ 2 exp
(

− 1

Cα

( n1/2u

2
/4K2d
1/2



)α)

= 2 exp
(

− 1

Cα

(
2
/4 n1/2u

K2d1/2

)α)
.

Altogether, we arrive at

.

P

(
∃
 ∈ {0, 1, . . . , L}, ∃I ∈ I
 :

∏

i∈I

‖Xi‖2 > (1 + 2−
/4u)nd
/2
)

≤
L∑


=0

2
 · 2 exp
(

− 1

Cα

(
2
/4 n1/2u

K2d1/2

)α)
.

(A.2)

We may now assume that (n1/2u/(K2d1/2))α/Cα ≥ 1 (otherwise the bound in
Lemma 5.4 gets trivial by adjusting Cα). Using the elementary inequality ab ≥
(a + b)/2 for all a, b ≥ 1, we arrive at

.2
α/4 1

Cα

( n1/2u

K2d1/2

)α ≥ 1

2

(
2
α/4 + 1

Cα

( n1/2u

K2d1/2

)α)
.

Using this in (A.2), we obtain the upper bound

.2 exp
(

− 1

2Cα

( n1/2u

K2d1/2

)α) L∑


=0

2
 exp(−2
α/4−1) ≤ cα exp
(

− 1

2Cα

( n1/2u

K2d1/2

)α)
.

By (2.3), we can assume cα = 2. �
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To prove Lemma 5.6, we first present a number of lemmas and auxiliary
statements. In particular, recall that if α ∈ (0,∞), then for any x, y ∈ (0,∞),

.cα(xα + yα) ≤ (x + y)α ≤ c̃α(xα + yα), (A.3)

where cα := 2α−1 ∧ 1 and c̃α := 2α−1 ∨ 1. Indeed, if α ≤ 1, using the concavity
of the function x �→ xα , it follows by standard arguments that 2α−1(xα + yα) ≤
(x +y)α ≤ xα +yα . Likewise, for α ≥ 1, using the convexity of x �→ xα , we obtain
xα + yα ≤ (x + y)α ≤ 2α−1(xα + yα).

Lemma A.1 Let X1, . . . , Xn be independent, centered random variables such that
‖Xi‖�α ≤ 1 for some α > 0. Then, if Y := maxi |Xi | and c := (c−1

α log n)1/α , we
have

.P(Y ≥ c + t) ≤ 2 exp(−cαtα)

with cα as in (A.3).

Proof We have

.P(Y ≥ c + t) ≤ nP(|Xi | ≥ c + t) ≤ 2n exp(−(c + t)α)

≤ 2n exp(−cα(tα + cα) = 2 exp(−cαtα),

where we have used (A.3) in the next-to-last step. �
Lemma A.2 Let Y ≥ 0 be a random variable that satisfies

.P(Y ≥ c + t) ≤ 2 exp(−tα)

for some c ≥ 0 and any t ≥ 0. Then,

.‖Y‖�α ≤ c̃1/α
α max

{(√
2 + 1√
2 − 1

)1/α

, c
( 2

log 2

)1/α}

with c̃α as in (A.3).

Proof By (A.3) and monotonicity, we have Yα ≤ c̃α((Y − c)α+ + cα), where x+ :=
max(x, 0). Thus,

.E exp
(Yα

sα

)
≤ exp

( c̃αcα

sα

)
E exp

( c̃α(Y − c)α+
sα

)

= exp
(cα

tα

)
E exp

( (Y − c)α+
tα

)
=: I1 · I2,

where we have set t := sc̃
−1/α
α . Obviously, I1 ≤ √

2 if t ≥ c(1/ log
√

2)1/α . As for
I2, we have
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.I2 = 1 +
∫ ∞

1
P((Y − c)+ ≥ t (log y)1/α)dy

≤ 1 + 2
∫ ∞

1
exp(−tα log y)dy = 1 + 2

∫ ∞

1

1

ytα
dy ≤ √

2

if t ≥ ((
√

2 + 1)/(
√

2 − 1))1/α . Therefore, I1I2 ≤ 2 if t ≥ max{((√2 + 1)/(
√

2 −
1))1/α, c(2/ log 2)1/α}, which finishes the proof. �

Having these lemmas at hand, the proof of Lemma 5.6 is easily completed.

Proof of Lemma 5.6 The random variables X̂i := Xi/K obviously satisfy the
assumptions of Lemma A.1. Hence, setting Y := maxi |X̂i | = K−1 maxi |Xi |,

.P(c1/α
α Y ≥ (log n)1/α + t) ≤ 2 exp(−tα).

Therefore, we may apply Lemma A.2 to Ŷ := c
1/α
α K−1 maxi |Xi |. This yields

.‖Ŷ‖�α ≤ c̃1/α
α max

{(√
2 + 1√
2 − 1

)1/α

, (log n)1/α
( 2

log 2

)1/α}
,

i. e., the claim of Lemma 5.6, where we have set C := (̃cαc−1
α )1/α . �
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Limit Theorems for Random Sums 
of Random Summands 
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1 Introduction and Statement of Results 

This chapter employs concentration of measure to prove limit theorems for sums of 
randomly chosen random numbers. This is a particular example of a quenched limit 
theorem. A quenched limit theorem involves two sources of randomness: a random 
environment X and a random object conditioned on that environment. In our case, 
we have a collection of random numbers and an independent selection of a subset 
of those numbers. The numbers, or weights, are the components of a random n-
dimensional vector X and the random subset . σ of size m. Our results describe the 

limiting distribution of .
∑

a∈σ

Xa − EXa√
m

, or something similar, where the weights are 

taken as fixed, so that randomness only comes from . σ . 
It is worth distinguishing our situation from the classical problem concerning 

the distribution of .
N∑

i=1

Xi , where both N and the .{Xi}∞i=1 are independent random 

variables. Here we are interested in the case that the summands are already 
sampled from their respective distributions, and we do not specify a fixed order 
of summation. Thus, we consider the distribution of the sum conditioned on the 
summands and choose the summands randomly. We also take N to be deterministic 
and consider the limiting behavior of the distribution as N diverges to . ∞. 

In [5], the authors address the corner-growth setting: X is indexed by elements 
of .�N,M = {(i, j) : 1 ≤ i ≤ N, 1 ≤ j ≤ M} with .M = �ξN�, ξ > 0. Notionally, 
one traverses this grid from .(1, 1) to .(N,M), and so . σ is chosen to represent an 
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up-right path, i.e., .σ = {(ik, jk) : k = 1, . . . ,M + N − 1} with .(i1, j1) = (1, 1), 
.(iN+M−1, jN+M−1) = (N,M), and .(ik+1 − ik, jk+1 − jk) is either .(1, 0) or .(0, 1). 
They provide moment conditions for a quenched limit theorem when . σ is chosen 
according to three different schemes: 

1. The up-right path . σ is chosen from those proceeding from .(1, 1) to . (N,M)

without additional restriction. 
2. As . 1., but the up-right path . σ is also specified to pass through points 

.(�ζiN�, �ξiM�) for a finite set of numbers, .0 < ζ1 < · · · < ζk < 1 and 

.0 < ξ1 < · · · < ξk < ξ . 
3. As . 1., but  .M = N and the up-right path . σ is also specified to avoid a central 

square with side .(�βN�), β ∈ (0, 1). 

See the sources cited in [5] for more information on the corner-growth setting. 
This chapter generalizes the concentration result used in [5] and proves limit 

theorems in both the corner-growth setting and other settings. In particular, that 
paper is concerned only with independent weights, whereas we cover certain forms 
of dependency among the weights, and we present results for weak convergence 
in probability as well as almost-sure convergence in distribution. We also extend 
to cases with heavy-tailed weights. Beyond the corner-growth setting, we prove a 
version of Hoeffding’s combinatorial central limit theorem and results related to the 
empirical distribution of a large random sample. 

Definition 1.1 Let .{μn}∞n=1 be a sequence of random probability measures. We say 
.{μn}∞n=1 converges weakly in probability (WIP) to . μ if 

. P

[∣∣∣∣
∫

f dμn −
∫

f dμ

∣∣∣∣ > ε

]
→ 0

for every .ε > 0 and every test function .f ∈ C, where . C is a class of functions such 

that if .
∫

f dνn → ∫
f dν for every .f ∈ C, then .νn

D−→ ν. 

We typically take . C to be a more restricted class of functions than the bounded, 
continuous functions used to define convergence in distribution. In particular, we 
will here take . C to be convex 1-Lipschitz functions.1 

Our first three results concern the corner-growth setting. The following is a 
small extension of the theorems from [5] and involves both weak convergence in 
probability and .PX-a.s. convergence: 

Theorem 1.2 Under each of the three methods for sampling . σ described above, 
suppose the weights are independent with mean 0, variance 1, and . E|Xa|p ≤ K <

∞. If .p > 8, then

1 The sufficiency of convergence for convex 1-Lipschitz functions to establish convergence in 
distribution can be demonstrated in several ways. One such way is to approximate power functions 
by convex Lipschitz functions. For . x2n, we can find an approximating function using Lemma 5 in 
[13]. For .x2n+1, we approximate .x2n+11x≥0 and .x2n+11x≤0 separately. See [5], [6], and [12] for  
alternative arguments. 
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. 
1√

M + N − 1

∑

(i,j)∈σ

Xi,j
WIP−−−→ N (0, 1), as N → ∞,

and if .p > 12, then 

. 
1√

M + N − 1

∑

(i,j)∈σ

Xi,j
D−→ N (0, 1), as N → ∞,

.PX-almost surely. 

The next result concerns dependent weights: the uniform distributions on the 
sphere and on two simplices. 

Theorem 1.3 Under each of the three methods for sampling . σ described above, 
suppose w has  the  uniform  distribution  on. . . :  

1. .
√

NMSNM−1. 
2. .�(MN,=) = {x ∈ R

MN+ : x1 + · · · + xMN = MN}. 
3. .�(MN,≤) = {x ∈ R

MN+ : x1 + · · · + xMN ≤ MN}. 
Then, 

. 
1√

M + N − 1

∑

(i,j)∈σ

(
Xi,j − EXi,j

) D−→ N (0, 1), as N → ∞,

.PX-almost surely. 

For the above cases, we can offer a physical interpretation: .
√

NMSNM−1 and 
.�(MN,=) are level sets of specific functions of the weights, meaning that some 
notion of “energy” is constant. In .�(MN,≤), this “energy” is merely bounded. 
Notably, this “energy” is constrained for the whole system, not merely for the 
particularly chosen summands. 

Concentration is loose for stable vectors, but we can prove the following: 

Theorem 1.4 In each of the three situations above, suppose the weights are 
distributed as follows. Let Y be .α-stable, .α > 3

2 , with distribution . να . Define 
.
k = {(i, j) : i + j − 1 = k}. Let the components of X all be independent, and let 
all the components indexed by elements of . 
k have the same distribution as .k−τ Y . 
If .τ > 2, then 

. 
1

(2N − 1)1/γ
∑

(i,j)∈σ

Xi,j
WIP−−−→ ν∞,

and if .τ > 3, then
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. 
1

(2N − 1)1/γ
∑

(i,j)∈σ

Xi,j
D−→ ν∞,

.PX-almost surely, where . ν∞ has characteristic exponent 

. ψ(t) = −κα lim
n→∞

n∑

k=1

k−ατ

nα/γ
|t |α

(
1 − ıβ sign(t) tan

πα

2

)
,

. κ and . β are constants determined by . να , and .γ = α
1−ατ

. 

Our version of Hoeffding’s combinatorial central limit theorem is as follows. 

Theorem 1.5 Let .XN be an .N × N array of independent random variables 
.Xi,j , 1 ≤ i, j ≤ N , with mean 0, variance 1, and .E|Xi,j |p < K for all . i, j . Let 
. π be a permutation of .(1, . . . , N) chosen uniformly and .SN = 1√

N

∑N
i=1 Xi,π(i). If  

.p > 4, then 

. SN
WIP−−−→ N (0, 1), as N → ∞,

and if .p > 6, then 

. SN
D−→ N (0, 1), as N → ∞,

.PX-almost surely. 

Hoeffding proved his combinatorial central limit theorem in 1951 [8] for  
deterministic weights, and it has been refined and proved in many ways since. 
Random weights were apparently first considered in [7]. In [2], a version is proved 
with random weights using concentration of measure and Stein’s method. 

When we select finitely many numbers, we have the following result: 

Theorem 1.6 Let .X = {Xn}Nn=1 be a sample of i.i.d. random variables with 
common distribution . μ such that .E|X1|p < ∞ for some .p > 2. If  . σ ⊂ {1, . . . , N}
is chosen uniformly from subsets of size m, with m fixed, then 

. 
∑

j∈σ

Xj
WIP−−−→ μ∗m, as N → ∞.

If .E|X1|p < ∞ for some .p > 4, then 

. 
∑

j∈σ

Xj
D−→ μ∗m, as N → ∞,

.PX-almost surely.
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When .m = 1, this is a form of the Glivenko–Cantelli theorem. In addition, 
we have the following result for the uniform distributions on the sphere and two 
simplices. 

Theorem 1.7 Let X be uniformly distributed on .K ⊂ R
N and . σ be chosen 

uniformly from subsets of .{1, . . . , N} of size m, which is fixed. If .K = . . . : 

1. .
√

NSN−1, then 

. m−1/2
∑

j∈σ

Xj
D−→ N (0, 1) as N → ∞

2. .�N,= or .�N,≤, then 

. 
∑

j∈σ

Xj
D−→ �m,1 as N → ∞

.PX-almost surely, where .�m,1 is the Gamma distribution with shape parameter m 
and scale parameter 1. 

2 Concentration and Convergence 

2.1 General Concentration 

We employ a classical result from Talagrand [16] as stated in [15]: 

Theorem 2.1 Let .X = (X1, . . . , Xn) be a random vector with independent 
components such that for all .1 ≤ i ≤ n, .|Xi | ≤ 1-almost surely, and let . f : R → R

be a convex 1-Lipschitz function. Then for all .t > 0, 

. P[|f (X) − Ef (X)| > t] ≤ Ce−ct2 ,

where .C, c > 0 are absolute constants. 

Talagrand’s theorem is an example of sub-Gaussian concentration (SGC): 

. P
[|f (X) − Ef (X)| > t

] ≤ Ce−ct2

for a specified class of 1-Lipschitz functions f . C and c are not dependent on 
dimension, but they do vary depending on the distribution of X. Examples of 
distributions for X satisfying SGC include i.i.d. components satisfying a log-
Sobolev inequality, independent bounded components (for convex 1-Lipschitz 
functions, per Theorem 2.1), and the uniform distribution on a sphere. As this last
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example shows, this property does not require independence among the components 
of X, but it does require all their moments to be finite. 

We will use SGC in the form of Theorem 2.1 as a component in our general 
concentration result and to prove a similar result for dependent weights. In addition, 
we also have subexponential concentration (SEC). The inequality becomes 

. P
[|f (X) − Ef (X)| > t

] ≤ Ce−ct ,

for a specified class of 1-Lipschitz functions f . SEC is proved for the two simplices 
.�(N,=) and .�(N,≤) in [1] and [14]. 

We now present our new concentration lemma, which generalizes the result from 
[5]. As setting, suppose . � is a set with n elements equipped with independent 
weights .{Xa : a ∈ �} with mean zero and .E|Xa|p ≤ K < ∞ for some .p > 1. Let  
. σ be a random subset of . � with m elements chosen independently of X. We will 
specify the distribution of . σ in applications. . PX and . Pσ are the respective marginals. 
For a test function .f : R → R, we set  

. 

∫
f dμX = Eσ f

(
m−1/α

∑

a∈σ

Xa

)

for some .0 < α ≤ ∞. Also set  .L =
( ∑

a∈� Pσ (a ∈ σ)2
)1/2

. Finally, recall the 

1-Wasserstein distance between probability measures . μ and . ν: 

. dW (μ, ν) = sup
|f |L≤1

∣∣∣∣
∫

f dμ −
∫

f dν

∣∣∣∣,

where .|f |L is the Lipschitz constant of f . 

Lemma 2.2 In the setting described above, there exist absolute constants . C, c > 0
such that for any .s, t, R, 0 < α ≤ ∞, any probability measure . ν, and any convex 
1-Lipschitz function .f : R → R: 

1. If .1 ≤ p < 2, then 

. PX

[∣∣∣∣
∫

f dμX −
∫

f dν

∣∣∣∣ ≥ D + LKn

m1/αRp−1
+ s + t

]
≤ LKn

m1/αRp−1s
+

C exp

[
− c

m2/αt2

L2R2

]

2. If .EX2
a = 1 for all a and .2 ≤ p, then 

.PX

[∣∣∣∣
∫

f dμX −
∫

f dν

∣∣∣∣ ≥ D + L
√

Kn

m1/α
√

Rp−2
+ s + t

]
≤ L2Kn

m2/αRp−2s2
+

C exp

[
− c

m2/αt2

L2R2

]
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where .D = max
σ

dW (ρσ , ν) and . ρσ is the distribution of .m−1/α ∑
a∈σ Xa condi-

tioned on . σ . 

Proof First assume .α < ∞. We take the same approach as in the proof of the 
concentration lemma of [5]. For a fixed .R > 0, we define the truncations . X(R)

a =
Xa1|Xa |≤R and denote the distribution of .m−1/α ∑

a∈σ X
(R)
a conditioned on X as 

.μ
(R)
X . We split the integral 

.

∣∣∣∣
∫

f dμX −
∫

f dν

∣∣∣∣ ≤
∣∣∣∣
∫

f dμX −
∫

f dμ
(R)
X

∣∣∣∣. (2.1) 

+
∣∣∣∣
∫

f dμ  (R) 
X − EX

∫
f dμ  (R) 

X

∣∣∣∣. (2.2) 

+
∣∣∣∣EX

∫
f dμ  (R) 

X − EX

∫
f dμX

∣∣∣∣. (2.3) 

+
∣∣∣∣EX

∫
f dμX −

∫
f dν

∣∣∣∣. (2.4) 

Each of these items can be bounded individually, either absolutely or with high 
probability. The easiest is (2.4), which is bounded absolutely by Fubini’s theorem. 

. 

∣∣∣∣EX

∫
f dμX −

∫
f dν

∣∣∣∣ =
∣∣∣∣EXEσ f

(
m−1/α

∑

a∈σ

Xa

)
−

∫
f dν

∣∣∣∣

≤Eσ

∣∣∣∣EXf

(
m−1/α

∑

a∈σ

Xa

)
−

∫
f dν

∣∣∣∣

≤max
σ

dW (ρσ , ν).

(2.2) is next. As in [5], we can set 

. F(X) =
∫

f dμX = Eσ f

(
m−1/α

∑

a∈σ

Xa

)
,

which is convex and Lipschitz. For .X,X′ ∈ R
� , 

.|F(X) − F(X′)| ≤Eσ

∣∣∣∣f
(

m−1/α
∑

a∈σ

Xa

)
− f

(
m−1/α

∑

a∈σ

X′
a

)∣∣∣∣

≤m−1/α
Eσ

∣∣∣∣
∑

a∈σ

Xa −
∑

a∈σ

X′
a

∣∣∣∣

≤m−1/α
Eσ

∑

a∈σ

|Xa − X′
a|

≤m−1/αL||X − X′||2,
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so F is .
L

m1/α -Lipschitz. Applying Theorem 2.1 gives 

. PX

[∣∣∣∣
∫

f dμ
(R)
X − EX

∫
f dμ

(R)
X

∣∣∣∣ ≥ t

]
≤ C exp

[
− c

m2/αt2

L2R2

]
.

For the other terms, the situation differs depending on case . 1. or case . 2. In either 
case, we use the Lipschitz estimate 

. 

∣∣∣∣
∫

f dμX −
∫

f dμ
(R)
X

∣∣∣∣ ≤ L

m1/α ||X − X(R)||2

= L

m1/α

( ∑

a∈�

X2
a1|Xa |>R

)1/2

.

In case . 2., we can use Hölder’s and Chebyshev’s inequalities to give 

. EX

( ∑

a∈�

X2
a1|Xa |>R

)1/2

≤(
EX|Xa|p

)2/p(
PX[|Xa| > R])1−2/p

≤ EX|Xa|p
Rp(1−2/p)

≤ KL

Rp−2 .

By Markov’s and Chebyshev’s inequalities, then 

. PX

[ ∑

a∈�

X2
a1|Xa |>R ≥ u

]
≤ nK

uRp−2 ,

from which we have an absolute bound on (2.3) 

. 

∣∣∣∣EX

∫
f dμX − EX

∫
f dμ

(R)
X

∣∣∣∣ ≤ L
√

Kn

m1/α
√

Rp−2

and a high-probability bound on (2.1) 

. PX

[∣∣∣∣
∫

f dμX −
∫

f dμ
(R)
X

∣∣∣∣ ≥ s

]
≤ nKL2

m2/αRp−2s2
.

Combining these bounds gives the result. 
In case . 1., the weights are not guaranteed to have finite variance, so we need to 

use
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. 

( ∑

a∈�

X2
a1|Xa |>R

)1/2

≤
∑

a∈�

|Xa|1|Xa |>R,

and again by Hölder’s and Chebyshev’s inequalities, 

. EX|Xa|1|Xa |>R ≤(EX|Xa|p)1/pPX(|Xa| > R)(p−1)/p

≤(EX|Xa|p)1/p
(
EX|Xa|p

Rp

)(p−1)/p

=EX|Xa|p
Rp−1

= K

Rp−1 .

From this result and Markov’s inequality, 

. PX

[ ∑

a∈�

|Xa|1|Xa |>R ≥ u

]
≤ Kn

uRp−1
,

so that 

. 

∣∣∣∣EX

∫
f dμX − EX

∫
f dμ

(R)
X

∣∣∣∣ ≤ LKn

m1/αRp−1

and 

. PX

[∣∣∣∣
∫

f dμX −
∫

f dμ
(R)
X

∣∣∣∣ ≥ s

]
≤ LKn

m1/αRp−1s
.

For .α = ∞, this corresponds to the case of the sums not being rescaled at all. The 
result in this case follows by observing that removing the term .m−1/α altogether 
does not change the validity of the above argument. �

The next lemma covers the SGC and SEC cases. For this, we recall the Bounded 
Lipschitz distance between two probability measures . μ and . ν: 

. dBL(μ, ν) = sup
|f |BL≤1

∣∣∣∣
∫

f dμ −
∫

f dν

∣∣∣∣,

where .|f |BL = max{||f ||∞, |f |L}. It is worth noting that the bounded Lipschitz 
distance metrizes weak convergence. 

Lemma 2.3 Let the assumptions and notation be as in Lemma 2.2, except that X no 
longer needs to have independent components, f no longer needs to be convex, and 
.|f |BL ≤ 1. If for bounded Lipschitz functions X has, with constants C and c,. . . :
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1. SGC, then 

. PX

[∣∣∣∣
∫

f dμX −
∫

f dν

∣∣∣∣ > E + t

]
≤ C exp

(
− c

m2/αt2

L2

)

2. SEC, then 

. PX

[∣∣∣∣
∫

f dμX −
∫

f dν

∣∣∣∣ > E + t

]
≤ C exp

(
− c

m1/αt

L

)

where .E = max
σ

dBL(ρσ , ν) and . ρσ is the distribution of .m−1/α ∑
a∈σ Xa condi-

tioned on . σ . 

Proof The proof is the same as for Lemma 2.2 except that the truncation step is not 
necessary. We have 

. 

∣∣∣∣
∫

f dμX −
∫

f dν

∣∣∣∣ ≤
∣∣∣∣
∫

f dμX − EX

∫
f dμX

∣∣∣∣ +
∣∣∣∣EX

∫
f dμX −

∫
f dν

∣∣∣∣.

The first term is bounded with high probability by SGC or SEC, and the second is 
bounded according to Fubini’s theorem. Since we have specified .|f |BL ≤ 1, we can 
use the Bounded Lipschitz distance instead of the Wasserstein distance. �

For a further extension, let us first recall the definition of stable distributions. 

Definition 2.4 A random variable X has an .α-stable distribution .να, 0 < α < 2, 
if its characteristic function .φX(t) = EeıXt = eψ(t) where 

.ψ(t) = −κα|t |α(
1 − ıβ sign(t) tan

πα

2

)
, (2.5) 

for some .β ∈ [−1, 1] and .κ > 0. For  a  d-dimensional .α-stable random vector, the  
characteristic exponent is 

.ψ(t) = −t

∫

Sd−1

∫ ∞

0
dλ(ξ)1B(rξ,0)e

ıtx − 1 − ıtx1|t |<1r
−(α+1)drdλ(ξ) (2.6) 

with . λ a finite positive measure on .Sd−1. The double integral can be rewritten as a 
single integral with respect to a measure called the Lévy measure. 

Case . 1. of Lemma 2.2 covers stable weights and weights in the domain of 
attraction of a stable distribution, but unfortunately, it is insufficient for proving 
convergence of any kind, nor are most concentration results for infinitely divisible 
vectors any better. The following is one useful result, however, from [11]. 

Theorem 2.5 For .α > 3
2 , let  X be a d-dimensional .α-stable random vector 

with characteristic exponent as in Definition 2.4. For any 1-Lipschitz function 
.f : Rd → R,
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. P[|f (X) − Ef (X)| ≥ x] ≤ Kλ
(
Sd−1

)

xα

for every x such that 

. xα ≥ Kαλ
(
Sd−1)

where K is an absolute constant and . Kα is a constant depending only on . α. 

Further concentration results can be found in [9], [10], and [11]. From this 
concentration inequality, we can prove a result leading to Theorem 1.4. Notice that 
here we distinguish between the index of stability for the vectors and the exponent 
used in rescaling the sum. 

Lemma 2.6 With the same assumptions and notation as in Lemma 2.2 except that 
X is an .α′-stable random vector with .α′ > 3

2 , d = n and Lévy measure as in (2.6) 
and .α < ∞. For any 1-Lipschitz function .f : R → R, 

. PX

[∣∣∣∣
∫

f dμX −
∫

f dν

∣∣∣∣ > D + t

]
≤ KLαλ

(
Sd−1

)

mtα

for any t satisfying 

. tα
′ ≥ LαKα′λ

(
Sd−1)m−1/α.

Proof The proof is the same as for Lemma 2.3 except using Theorem 2.5 instead of 
SGC. �

2.2 Convergence Conditions 

In this section, we apply the concentration results of Lemmas 2.2, 2.3, and 2.6 
to prove convergence results from which the main results will follow as simple 
corollaries. For this purpose, we assume an infinite family of random vectors . XN

with entries indexed by finite index sets . �N , from which we take subsets .σN ⊂ �N , 
all in turn indexed by .N ∈ N. 

We will assume here .n = n(N) = |�N | ∼ Nη,m = m(N) = |σN | ∼ Nμ, and 
.L = L(N) ∼ Nλ where .η > 0, μ ≥ 0, and . λ are constants. Our result establishes 
the necessary relationships between .α, p, η, μ, and . λ for convergence theorems. The 
truncation parameter R offers a measure of freedom, so we will assume . R(N) ∼
Nρ, ρ ≥ 0. Naturally, .μ ≤ η. 

Lemma 2.7 Let the setting be as in Lemma 2.2 and described above. For .α < ∞, 
if we have .λ <

μ
α
and .p >

αη
μ−αλ

, then
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. PXN

[∣∣∣∣
∫

f dμXN
−

∫
f dν

∣∣∣∣ ≥ DN + o(1)

]
→ 0, as N → ∞,

where .DN is the value D in Lemma 2.2 for . XN , and if additionally .p >
α(η+1)
μ−αλ

, 
then 

. 

∞∑

N=1

PXN

[∣∣∣∣
∫

f dμXN
−

∫
f dν

∣∣∣∣ > DN + MN,i + o(1)

]
< ∞,

where .i = 1, 2 stands for the case in Lemma 2.2: in case . 1., . MN,1 =
L(N)Kn(N)

m(N)1/αR(N)p−1 , and in case . 2., .MN,2 = L(N)
√

Kn(N)

m(N)1/α
√

R(N)p−2
. 

The same results apply when .α = ∞ with moment conditions .p >
η

−λ
and 

.p >
η+1
−λ

provided .0 > λ. 

Proof In case . 1., take .s = o(1), .t = o(1), and .R ∼ Nρ . Using Lemma 2.2, the first 
convergence requires 

.λ + η − μ

α
− ρ(p − 1) < 0 (2.7) 

and 

.
2μ

α
− 2λ − 2ρ > 0. (2.8) 

The second condition implies .λ <
μ
α
. Taking .ρ = μ

α
− λ − ε > 0 with .ε > 0 gives 

.p >
α(η−ε)

μ−αλ−αε
. We pass to the limit .ε → 0+ to give the appropriate lower bound for 

p. 
For summability, the first condition becomes 

.λ + η − μ

α
− ρ(p − 1) < −1, (2.9) 

which now gives .p >
α(η+1)
μ−αλ

. 
In case . 2., equation (2.8) is the same, but (2.7) and (2.9) are replaced with 

. 2λ + η − 2μ

α
− ρ(p − 2) < 0 or − 1,

respectively, which, interestingly, gives the same conditions as in case . 1.
For .α = ∞, the same process gives the result, simply removing the m terms. The 

condition on . λ is required so that .ρ > 0. �
When Lemma 2.3 applies, convergence is easier.
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Lemma 2.8 Let the setting be as in Lemma 2.7 except that f need not be convex 
and .|f |BL ≤ 1 and .XN has SGC or SEC for all N . If .μ

α
> λ, then 

. PXN

[∣∣∣∣
∫

f dμXN
−

∫
f dν

∣∣∣∣ ≥ EN + o(1)

]
→ 0, as N → ∞,

and 

. 

∞∑

N=1

PXN

[∣∣∣∣
∫

f dμXN
−

∫
f dν

∣∣∣∣ > EN + o(1)

]
< ∞.

Proof This follows from Lemma 2.3 in the same way as Lemma 2.7 follows from 
Lemma 2.2. �

Finally, we have a convergence result from Lemma 2.6. 

Lemma 2.9 Let the setting be as in Lemma 2.6 and the vectors .XN be .α′-stable 
with .α′ > 3

2 and characteristic exponents as in Definition 2.4. Suppose further 
.λN(Sn(N)−1) = O

(
N−τ

)
, τ > 0. If .αλ − τ − μ < 0, then 

. PXN

[∣∣∣∣
∫

f dμXN
−

∫
f dν

∣∣∣∣ ≥ DN + o(1)

]
→ 0, as N → ∞,

and if .αλ − τ − μ < −1, then 

. 

∞∑

N=1

PXN

[∣∣∣∣
∫

f dμXN
−

∫
f dν

∣∣∣∣ > DN + o(1)

]
< ∞.

Proof This follows from Lemma 2.6 in the same way that Lemma 2.7 follows from 
Lemma 2.3. �

3 Proofs of Main Results 

Proving the main theorems requires only a little bit more than the results from the 
previous section. The first desideratum is for .lim sup

N→∞
DN = 0 or .lim sup

N→∞
EN = 0, 

which is guaranteed by appropriate choice of target measure . ν. The second is a 
bound on . λ, which we recall to be such that .L = L(N) ∼ Nλ. In Section 3 of [5], 
the authors prove the following: 

Lemma 3.1 In the corner-growth setting, in each of the three cases listed in 
Section 1, .λ < 1

4 . 

This allows us to prove all our results in the corner-growth setting.
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Proof of Theorems 1.2, 1.3, and, 1.4 Theorem 1.2 follows from Lemma 2.7, the  
Borel–Cantelli lemma, Lemma 3.1, and a central limit theorem along the lines of 
[4]. Notice that such a theorem requires bounded . 3rd absolute moments, which are 
guaranteed by our conditions. 

Theorem 1.3 for the sphere follows from Lemma 2.8 (on account of SGC), 
Lemma 3.1, and the following reasoning. For . 1., follows from a result from [3]: 
the authors prove a convergence result in the total variation distance (Inequality (1)) 

.dT V (L(Xσ ),L(Z)) ≤ 2(N + M + 2)

NM − N − M − 2
, (3.1) 

where . Xσ is the vector of weights indexed by . σ and Z is a vector of i.i.d. standard 
Gaussian random variables. Since .dBL(μ, ν) ≤ dT V (μ, ν), the triangle inequality 
gives the following: 

. 

∣∣∣∣
∫

f dμX −
∫

f dν

∣∣∣∣ ≤
∣∣∣∣
∫

f dμX −
∫

f

(
(N + M − 1)−1/2

( N+M−1∑

i=1

Zi

))
dL(Z)

∣∣∣∣−

∣∣∣∣
∫

f

(
(N + M − 1)−1/2

( N+M−1∑

i=1

Zi

))
dL(Z) −

∫
f dν

∣∣∣∣

≤dBL(L(Xσ ),L(Z)) + dBL(L((N + M − 1)−1/2(Z1 + · · · + ZN+M−1), ν),

(3.2) 

where .ν ∼ N (0, 1). The second term on the right-hand side of (3.2) is 0, so (3.1) 
gives the result. For . 2., the proof is the same except that we use (3.4) from [3], which 
gives a similar bound on the total variation distance between the coordinates of the 
simplex and a vector of i.i.d. 1-exponential random variables, and . dBL(L((N +M −
1)−1/2(x1 + · · · + xN+M−1), ν) → 0 by the classical central limit theorem. Similar 
reasoning gives the result for . 3.

Theorem 1.4 follows from Lemma 2.9, the Borel–Cantelli lemma, Lemma 3.1, 

and the following reasoning. As a preliminary, observe that .
N∑

k=1

k−γ = O(N1−γ ). 

Next, observe that by construction .(2N − 1)−1/γ
∑

(i,j)∈σ

X(i,j) has the same dis-

tribution, . νN , regardless of . σ , and that distribution converges to . ν∞, again  by  
construction. To confirm .dW (νN, ν∞) converges to 0, for any 1-Lipschitz function 
.f : R → R, 

. 

∣∣∣∣
∫

f dνN −
∫

f dν∞
∣∣∣∣ ≤E||XN − X∞||

≤E|X|
(

lim
n→∞

n∑

k=1

k−τ

n1/γ
−

n∑

k=1

k−τ

n1/γ

)
,

where .XN and .X∞ have distributions . νN and . ν∞, respectively.
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The final step is to show that under the specified conditions, .λ(S2N−2) satisfies 
Lemma 2.9. By construction, 

. λ(S2N−2) =1 +
N∑

n=2

2N−2∑

k=N

2k−τ + (2N − 1)−τ

≤2
N∑

n=1

N1−τ

≤2N2−τ ,

so the conditions satisfy Lemma 2.9. �
In the case of . σ being uniformly distributed over subsets of size m, we can 

compute . λ exactly. 

Lemma 3.2 When . σ is chosen uniformly from subsets of size m, .λ = μ − η
2 . 

Proof In this case, the probability that any particular element of . � is in . σ is . 
(n−1
m−1)
(n
m)

=
m
n
, so .L2 = m2

n
∼ N2μ−η. Thus, .λ = μ − η

2 . �
Proof of Theorems 1.6 and 1.7 Theorem 1.6 follows from Lemma 2.7, the  Borel–  
Cantelli lemma, and Lemma 3.2, taking .α = ∞, η = 1, and .μ = 0, since by 
construction .D = 0. 

Theorem 1.7 follows from Lemmas 2.8, 3.2, and the same reasoning as in the 
proof of Theorem 1.3. For the case of the simplex, recall that the m entries in the sum 
are approximately independent 1-exponential random variables, the sum of which 
has a Gamma distribution with shape parameter m and scale parameter 1. �

Another simple corollary of Lemma 3.2 vaguely connected to the corner-growth 
setting comes from taking .α = η = 2 and .μ = 1. 

Corollary 3.3 Let the setting be as in Lemma 2.4 with .α = η = 2 and .μ = 1, and 
. σ is chosen uniformly from subsets of . � of size m. If .p > 4, then 

. 
1√

M + N − 1

∑

(i,j)∈σ

Xi,j
WIP−−−→ N (0, 1), as N → ∞,

and if .p > 6, then 

. 
1√

M + N − 1

∑

(i,j)∈σ

Xi,j
D−→ N (0, 1), as N → ∞,

.PX-almost surely. 

In the setting for the combinatorial central limit theorem, we again can compute 
. λ exactly.
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Lemma 3.4 When X is an .N × N rectangular array of numbers, so that . � =
{(i, j) : 1 ≤ i, j ≤ N}, with . σ chosen uniformly from subsets each containing 
exactly one number from each row, .λ = 0. 

Proof For fixed i, the probability that .(i, j) ∈ σ is exactly the same regardless of 
j , so it is . 1

N
. Thus, .L2(N) = ( 1

N2

)
N2 = 1, so .λ = 0. �

Proof of Theorem 1.5 Take .α = η = 2 and .μ = 1. The result follows from 
Lemma 2.7, the Borel–Cantelli lemma, and Lemma 3.4. �
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A Note on Central Limit Theorems for 
Trimmed Subordinated Subordinators 

David M. Mason 

2020 Mathematics Subject Classification: 60F05; 60G51 

1 Introduction 

Ipsen et al [3] and Mason [7] have proved under general conditions that a trimmed 
subordinator satisfies a self-standardized central limit theorem [CLT]. One of their 
basic tools was a classic representation for subordinators (e.g., Rosiński [9]). Ipsen 
et al [3] used conditional characteristic function methods to prove their CLT, 
whereas Mason [7] applied a powerful normal approximation result for standardized 
infinitely divisible random variables by Zaitsev [12]. In this note, we shall examine 
self-standardized CLTs for trimmed subordinated subordinators. It turns out that 
there are two ways to trim a subordinated subordinator. One way leads to CLTs for 
the usual trimmed subordinator treated in [3] and [7], and a second way to a closely 
related subordinated trimmed subordinator and CLTs for it. 

We begin by describing our setup and establishing some basic notation. Let 
.V = (V (t) , t ≥ 0) and .X = (X (t) , t ≥ 0) be independent 0 drift subordinators 
with Lévy measures .�V and .�X on .R+ = (0,∞), respectively, with tail function 
.�V (x) = �V ((x,∞)), respectively, .�X(x) = �X((x,∞)), defined for .x > 0, 
satisfying 

.�V (0+) = �X (0+) = ∞. (1) 

For .u > 0, let  .ϕV (u) = sup{x : �V (x) > u}, where .sup∅ := 0. In the same way,  
define . ϕX. 

Remark 1 Observe that we always have 
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. ϕV (u) → 0, as u → ∞.

Moreover, whenever .�V (0+) = ∞, we have  

. ϕV (u) > 0 for all u > 0.

For details, see Remark 1 of Mason [7]. The same statement holds for . ϕX. 

Recall that the Lévy measure .�V of a subordinator V satisfies 

. 

∫ 1

0
x�V (dx) < ∞, equivalently, for all y > 0,

∫ ∞

y

ϕV (x) dx < ∞.

The subordinator V has Laplace transform defined for .t ≥ 0 by 

. E exp (−θV (t)) = exp (−t�V (θ)) , θ ≥ 0,

where 

. �V (θ) =
∫ ∞

0
(1 − exp (−θv)) �V (dv) ,

which can be written after a change of variable to 

. =
∫ ∞

0
(1 − exp (−θϕV (u))) du.

In the same way, we define the Laplace transform of . X.

Consider the subordinated subordinator process 

.W = (W (t) = V (X (t)) , t ≥ 0) . (2) 

Applying Theorem 30.1 and Theorem 30.4 of Sato [11], we get that the process W 
is a 0 drift subordinator W with Lévy measure .�W defined for Borel subsets B of 
.(0,∞) by 

.�W (B) =
∫ ∞

0
P {V (y) ∈ B} �X (dy) , (3) 

with Lévy tail function 

. �W (x) = �W ((x,∞)) , for x > 0.

Remark 2 Notice that (1) implies 

.�W (0+) = ∞.
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To see this, we have by (3) that 

. �W (0+) = lim
n→∞

∫ ∞

0
P

{
V (y) ∈

(
1

n
,∞

)}
�X (dy) .

Now .�V (0+) = ∞ implies that for all .y > 0, .P {V (y) ∈ (0,∞)} = 1. Hence by 
the monotone convergence theorem, 

. lim
n→∞

∫ ∞

0
P

{
V (y) ∈

(
1

n
,∞

)}
�X (dy) = �X (0+) = ∞.

For later use, we note that W has Laplace transform defined for .t ≥ 0 by 

. E exp (−θW (t)) = exp (−t�W (θ)) , θ ≥ 0,

where 

. �W (θ) =
∫ ∞

0

(
1 − e−θx

)
�W (dx)

. =
∫ ∞

0

∫ ∞

0

(
1 − e−θx

)
P (V (y) ∈ dx) �X (dy)

. =
∫ ∞

0

(
1 − ey�V (θ)

)
�X (dy) .

Definition 30.2 of Sato [11] calls the transformation of V into W given by . W (t) =
V (X (t)) subordination by the subordinator X, which is sometimes called the 
directing process. 

2 Two Methods of Trimming W 

In order to talk about trimming W , we must first discuss the ordered jump sequences 
of V , X, and W . For any .t > 0, denote the ordered jump sequence . m(1)

V (t) ≥
m

(2)
V (t) ≥ · · · of V on the interval .[0, t]. Let .ω1, ω2, . . . be i.i.d. exponential random 

variables with parameter 1, and for each .n ≥ 1, let  .�n = ω1 + . . . + ωn. It is well-
known that for each .t > 0, 

.

(
m

(r)
V (t)

)
r≥1

D=
(

ϕV

(
�r

t

))
r≥1

, (4) 

and hence for each .t > 0,
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.V (t) =
∞∑

r=1

m
(r)
V (t)

D=
∞∑

r=1

ϕV

(
�r

t

)
=: Ṽ (t). (5) 

See, for instance, equation (1.3) in IMR [3] and the references therein. It can also 
be inferred from a general representation for subordinators due to Rosiński [9]. 

In the same way, we define for each .t > 0, .
(
m

(r)
X (t)

)
r≥1

and .
(
m

(r)
W (t)

)
r≥1

, 

and we see that the analogs of the distributional identity (4) hold with .m(r)
V and . ϕV

replaced by .m
(r)
X and . ϕX , respectively, .m(r)

W and . ϕW . Recalling (2), observe that for 
all .t > 0, 

.W (t) =
∑
0<s≤t

�W (s) = V (X (t)) =
∑

0<s≤X(t)

�V (s) . (6) 

From (6) and the version of (4) with .m
(r)
V and . ϕV replaced by .m

(r)
W and . ϕW , we have  

for each . t > 0

. W(t) =
∞∑

r=1

m
(r)
W (t)

D=
∞∑

r=1

ϕW

(
�r

t

)
=: W̃ (t).

Let .V,X and .(�r)r≥1 be independent. In particular, V is independent of 

. 

{(
m

(r)
X (y)

)
r≥1

, y > 0

}
and (�r)r≥1 .

Next consider for each . t > 0

. 

(
m

(r)
V (X (t))

)
r≥1

.

Note that conditioned on . X (t) = y

. 

(
m

(r)
V (X (t))

)
r≥1

D=
(
m

(r)
V (y)

)
r≥1

.

Therefore, using (4), we get for each . t > 0

. 

(
m

(r)
V (X (t))

)
r≥1

D=
(

ϕV

(
�r

X (t)

))
r≥1

,

and thus by (5), 

.V (X (t)) =
∞∑

r=1

m
(r)
V (X (t))

D=
∞∑

r=1

ϕV

(
�r

X (t)

)
=: Ṽ (X (t)).
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Here are two methods of trimming .W(t) = V (X(t)). 

Method I For each .t > 0, trim  .W(t) = V (X(t)) based on the ordered jumps of 
V on the interval .(0, X (t)] . In this case, for each .t > 0 and .k ≥ 1, define the kth 
trimmed version of . V (X (t))

. V (k)(X (t)) := V (X (t)) −
k∑

r=1

m
(r)
V (X (t)),

which we will call the subordinated trimmed subordinator process. We note that 

. V (k)(X (t))
D= Ṽ (X (t)) −

k∑
r=1

ϕV

(
�r

X (t)

)
=: Ṽ (k)(X (t)).

Method II For each .t > 0, trim  .W(t) based on the ordered jumps of W on the 
interval .(0, t] . In this case, for each .t > 0 and .k ≥ 1, define the kth trimmed 
version of . W(t)

. W(k)(t) := W(t) −
k∑

r=1

m
(r)
W (t)

. 
D= W̃ (t) −

k∑
r=1

ϕW

(
�r

t

)
=: W̃ (k)(t).

Remark 3 Notice that in method I trimming for each .t > 0, we treat .V (X (t)) as 
the subordinator V randomly evaluated at .X (t), whereas in method II trimming we 
consider .W = V (X) as the subordinator, which results when the subordinator V is 
randomly time changed by the subordinator X. 

Remark 4 Though for each .t > 0, .V (X (t)) = W(t), typically we cannot conclude 
that for each .t > 0 and . k ≥ 1

. V (k)(X (t))
D= W(k)(t).

This is because it is not necessarily true that 

. 

(
m

(r)
V (X (t))

)
r≥1

D=
(
m

(r)
W (t)

)
r≥1

.

See the example in Appendix 1.
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3 Self-Standardized CLTs for W 

3.1 Self-Standardized CLTs for Method I Trimming 

Set .V (0)(t) := V (t), and for any integer .k ≥ 1, consider the trimmed subordinator 

. V (k)(t) := V (t) − m
(1)
V (t) − · · · − m

(k)
V (t),

which on account of (4) says for any integer .k ≥ 0 and . t > 0

.V (k)(t)
D=

∞∑
i=k+1

ϕV

(
�i

t

)
=: Ṽ (k)(t). (7) 

Let T be a strictly positive random variable independent of 

.

{(
m

(r)
V (t)

)
r≥1

, t > 0

}
and (�r)r≥1 . (8) 

Clearly, by (4), (7), and (8), we have for any integer . k ≥ 0

. V (k)(T )
D= Ṽ (k)(T ).

Set for any . y > 0

. μV (y) :=
∫ ∞

y

ϕV (x) dx and σ 2
V (y) :=

∫ ∞

y

ϕ2
V (x) dx.

We see by Remark 1 that (1) implies that 

. σ 2
V (y) > 0 for all y > 0.

Throughout these notes, Z denotes a standard normal random variable. We shall 
need the following formal extension of Theorem 1 of Mason [7]. Its proof is nearly 
exactly the same as the proof of the Mason [7] version, and just replace the sequence 
of positive constants .{tn}n≥1 in the proof of Theorem 1 of Mason [7] by  .{Tn}n≥1. 
The proof of Theorem 1 of Mason [7] is based on a special case of Theorem 1.2 of 
Zaitsev [12], which we state in the digression below. Here is our self-standardized 
CLT for method I trimmed subordinated subordinators. 

Theorem 1 Assume that .�V (0+) = ∞. For any sequence of positive integers 
.{kn}n≥1 and sequence of strictly positive random variables .{Tn}n≥1 independent 
of .(�k)k≥1 satisfying
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. 

√
TnσV

(
�kn/Tn

)
ϕV

(
�kn/Tn

) P→ ∞, as n → ∞,

we have uniformly in x, as .n → ∞, 

. 

∣∣∣∣∣P
{

Ṽ (kn) (Tn) − TnμV

(
�kn/Tn

)
√

TnσV

(
�kn/Tn

) ≤ x|�kn, Tn

}
− P {Z ≤ x}

∣∣∣∣∣
P→ 0,

which implies as . n → ∞

.
Ṽ (kn) (Tn) − TnμV

(
�kn/Tn

)
√

TnσV

(
�kn/Tn

) D→ Z. (9) 

The remainder of this subsection will be devoted to examining a couple of special 
cases of the following example of Theorem 1. 

Example For each .0 < α < 1, let .Vα = (Vα (t) , t ≥ 0) be an .α-stable process with 
Laplace transform defined for .θ > 0 by 

. E exp (−θVα(t)) = exp

(
−t

∫ ∞

0
(1 − exp(−θx)) α� (1 − α) x−1−αdx

)

. = exp

(
−t

∫ ∞

0

(
1 − exp(−θcαu−1/α)

)
du

)
= exp

(−tθα
)
, (10) 

where 

. cα = 1/�1/α (1 − α) .

(See Example 24.12 of Sato [11].) Note that for . Vα , 

. ϕVα (x) =: ϕα(x) = cαx−1/α1{x>0}.

We record that for each . t > 0

.Vα (t)
D= Ṽα(t) := cα

∞∑
i=1

(
�i

t

)−1/α

. (11) 

For any .t > 0, denote the ordered jump sequence .m(1)
α (t) ≥ m

(2)
α (t) ≥ . . . of . Vα

on the interval .[0, t]. Consider the kth trimmed version of .Vα (t) defined for each 
integer . k ≥ 1

.V (k)
α (t) = Vα (t) − m(1)

α (t) − · · · − m(k)
α (t) , (12)
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which for each . t > 0

.
D= Ṽ (k)

α (t) := cα

∞∑
i=1

(
�k+i

t

)−1/α

. (13) 

In this example, for ease of notation, write for each .0 < α < 1 and .y > 0, . μVα (y) =
μα (y) and .σ 2

Vα
(y) = σ 2

α (y). With this notation, we get that 

. μα (y) =
∫ ∞

y

cαv−1/αdv = cαα

1 − α
y1−1/α

and 

. σ 2
α (y) =

∫ ∞

y

c2αv−2/αdv = c2αα

2 − α
y1−2/α.

From (13), we have that for any .k ≥ 1 and . T > 0

.

Ṽ
(k)
α (T ) − T μα

(
�k

T

)

T 1/2σα

(
�k

T

) =
∑∞

i=1 (�k+i )
−1/α − α

1−α
�
1−1/α
k√

α
2−α

�
1/2−1/α
k

. (14) 

Notice that 

.

√
T σα

(
�k

T

)

ϕα(
�k

T
)

= (�k)
1/2

√
α

2 − α
. (15) 

Clearly by (15) for any sequence of positive integers .{kn}n≥1 converging to infinity 
and sequence of strictly positive random variables .{Tn}n≥1 independent of .(�k)k≥1, 

. 

√
Tnσα

(
�kn/Tn

)
ϕα

(
�kn/Tn

) = (
�kn

)1/2 √
α

2 − α

P→ ∞, as n → ∞.

Hence, by rewriting (9) in the above notation, we have by Theorem 1 that as . n → ∞

.

Ṽ
(kn)
α (Tn) − Tnμα

(
�kn

Tn

)

T
1/2
n σα

(
�kn

Tn

) D→ Z. (16) 

Digression To make the presentation of our Example more self-contained, we shall 
show in this digression how a special case of Theorem 1.2 of Zaitsev [12] can be 
used to give a direct proof of (16).
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It is pointed out in Mason [7] that Theorem 1.2 of Zaitsev [12] implies the  
following normal approximation. Let Y be an infinitely divisible mean 0 and 
variance 1 random variable with Lévy measure . � and Z be a standard normal 
random variable. Assume that the support of . � is contained in a closed interval 
.[−τ, τ ] with .τ > 0; then for universal positive constants . C1 and . C2 for any . λ > 0
all . x ∈ R

. P {Z ≤ x − λ} − C1 exp

(
− λ

C2τ

)
≤ P {Y ≤ x}

. ≤ P {Z ≤ x + λ} + C1 exp

(
− λ

C2τ

)
. (17) 

We shall show how to derive (16) from (17). Note that 

.

∑∞
i=1 (�k+i )

−1/α − α
1−α

�
1−1/α
k√

α
2−α

�
1/2−1/α
k

D=
∑∞

i=1

(
1 + �′

i

�k

)−1/α − α
1−α

�k√
α

2−α
�
1/2
k

, (18) 

where .
(
�′

i

)
i≥1

D= (�i)i≥1 and is independent of .(�i)i≥1. Let  . Yα = (Yα (y) , y ≥ 0)
be the subordinator with Laplace transform defined for each .y > 0 and .θ ≥ 0, by  

. E exp (−θYα (y)) = exp

(
−y

∫ 1

0
(1 − exp(−θx)) αx−α−1dx

)

. =: exp
(

−y

∫ 1

0
(1 − exp(−θx)) �α (dx)

)
. (19) 

Observe that the Lévy measure . �α of . Yα has Lévy tail function on . (0,∞)

. �α (x) = (
x−α − 1

)
1{0<x≤1}

with . ϕ function 

. ϕYα (u) = (1 + u)−1/α 1{u>0}.

Thus from (5), for each .y > 0, 

. Yα (y)
D=

∞∑
i=1

(
1 + �′

i

y

)−1/α

.

Also, we find by differentiating the Laplace transform of .Yα (y) that for each . y > 0

.EYα (y) = αy

1 − α
=: βαy and V arYα (y) = αy

2 − α
=: γ 2

α y, (20)
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and hence, 

. Zα (y) := Yα (y) − βαy

γα
√

y

is a mean 0 and variance 1 infinitely divisible random variable whose Lévy measure 
has support contained in the closed interval .[−τ (y) , τ (y)], where 

.τ (y) = 1/
(
γα

√
y
)
. (21) 

Thus by (17) for universal positive constants . C1 and . C2 for any .λ > 0 all .x ∈ R and 
.λ > 0, 

. P {Z ≤ x − λ} − C1 exp

(
− λ

C2τ (y)

)
≤ P {Zα (y) ≤ x}

. ≤ P {Z ≤ x + λ} + C1 exp

(
− λ

C2τ (y)

)
. (22) 

Clearly, since .
(
�′

i

)
i≥1

D= (�i)i≥1 and .
(
�′

i

)
i≥1 is independent of .

(
�kn

)
n≥1, we  

conclude by (22) and (21) that 

. P {Z ≤ x − λ} − C1 exp

(
−λγα

√
�kn

C2

)
≤ P

{
Zα

(
�kn

) ≤ x|�kn

}

. ≤ P {Z ≤ x + λ} + C1 exp

(
−λγα

√
�kn

C2

)
. (23) 

Now by the arbitrary choice of .λ > 0, we get from (23) that uniformly in x, as  
.kn → ∞, 

. 

∣∣∣∣∣P
{

Yα

(
�kn

) − βα�kn

γα

√
�kn

≤ x|�kn

}
− P {Z ≤ x}

∣∣∣∣∣
P→ 0.

This implies as . n → ∞

.
Yα

(
�kn

) − βα�kn

γα

√
�kn

D→ Z. (24) 

Since the identity (14) holds for any .k ≥ 1 and .T > 0, (16) follows from (18) 
and (24). Of course, there are other ways to establish (24). For instance, (24) can be 
shown to be a consequence of Anscombe’s Theorem for Lévy processes. For details, 
see Appendix 2.
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Remark 5 For any .0 < α < 1 and .k ≥ 1, the random variable .Yα (�k) has Laplace 
transform 

. E exp (−θYα (�k)) =
(
1 +

∫ 1

0
(1 − exp(−θx)) �α (dx)

)−k

, θ ≥ 0.

It turns out that for any . t > 0

. Yα (�k)
D= V (k)

α (t) /m(k)
α (t) ,

where .V (k)
α (t) and .m(k)

α (t) are as in (12). See Theorem 1.1 (i) of Kevei and Mason 
[6]. Also refer to page 1979 of Ipsen et al [4]. 

Next we give two special cases of our example, which we shall return to in the 
next subsection when we discuss self-standardized CLTs for method II trimming. 

Special Case 1: Subordination of Two Independent Stable Subordinators 
For .0 < α1, α2 < 1, let  . Vα1 , respectively . Vα2 , be an  .α1-stable process, respectively 
an .α2-stable process, with a Laplace transform of the form (10). Assume that . Vα1

and .Vα2 are independent. Set for . t ≥ 0

. W (t) = Vα1

(
Vα2 (t)

)

and 

. W = (W (t) , t ≥ 0) .

One finds that for each . t ≥ 0

. W (t) = Vα1

(
Vα2 (t)

) =
∑

0<s≤Vα2 (t)

�Vα1 (s) .

Moreover, W is a stationary independent increment process, and for each .t ≥ 0 and 
.θ ≥ 0, 

. E exp (−θW (t)) = E exp
(−Vα2 (t) θα1

)

. = exp
(−tθα1α2

)
. (25) 

This says that W is the .α1α2-stable subordinator .Vα1α2 with Laplace transform (25). 
(See Example 30.5 on page 202 of Sato [11].) Thus for each .t ≥ 0 and .θ ≥ 0, 

.E exp (−θW (t)) = E exp
(−θVα1α2 (t)

)
. (26)
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Therefore, with .c (α1α2) = 1
�1/(α1α2)(1−α1α2)

, we get 

. c (α1α2)

∞∑
i=1

(
�i

t

)−1/(α1α2)

=: Ṽα1α2(t),

which by (11), (25), and (26) for each fixed .t > 0 is 

. 
D= Vα1

(
Vα2 (t)

)
.

Here we get that for any sequence of positive integers .{kn}n≥1 converging to infinity 
and sequence of positive constants .{sn}n≥1, by setting .Tn = Vα2 (sn) , for .n ≥ 1, we  
have by (16) that as . n → ∞

. 

Ṽ
(kn)
α1

(
Vα2 (sn)

) − Vα2 (sn) μα1

(
�kn

Vα2 (sn)

)
√

Vα2 (sn)σα1

(
�kn

Vα2 (sn)

) D→ Z.

Special Case 2: Mittag-Leffler Process 
For each .0 < α < 1, let  . Vα be the .α-stable process with Laplace transform (10). 
Now independent of V , let  .X = (X (s) , s ≥ 0) be the standard Gamma process, 
i.e., X is a zero drift subordinator with density for each . s > 0

. fX(s) (x) = 1

� (s)
xs−1e−x , for x > 0,

mean and variance 

. EX (s) = s and V arX (s) = s,

and Laplace transform for . θ ≥ 0

. E exp (−θX (s)) = (1 + θ)−s ,

which after a little computation is 

. = exp

[
−s

∫ ∞

0
(1 − exp (−θx)) x−1e−xdx

]
.

Notice that X has Lévy density 

. ρ (x) = x−1e−x , for x > 0.

(See Applebaum [1] pages 54–55.)
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Consider the subordinated process 

. W = (W (s) := Vα (X (s)) , s ≥ 0) .

Applying Theorem 30.1 and Theorem 30.4 of Sato [11], we see that W is a drift 0 
subordinator with Laplace transform 

. E exp (−θW (s)) = E exp (−V (X (s)))

. = E exp
(−X (s) θα

) = (
1 + θα

)−s

. = exp

[
−s

∫ ∞

0

(
1 − exp

(−θαy
))

y−1e−ydy

]
, θ ≥ 0.

It has Lévy measure .�W defined for Borel subsets B of .(0,∞), by  

. �W (B) =
∫ ∞

0
P {Vα (y) ∈ B} y−1e−ydy.

In particular, it has Lévy tail function 

. �W (x) =
∫ ∞

0
P {V (y) ∈ (x,∞)} y−1e−ydy, for x > 0.

For later use, we note that 

. 

∫ ∞

0

(
1 − e−θx

)
�W (dx) =

∫ ∞

0

∫ ∞

0

(
1 − e−θx

)
PVα(y) (dx) ay−1e−bydy

. =
∫ ∞

0

(
1 − eyθα

)
y−1e−ydy.

Such a process W is called the Mittag-Leffler process. See, e.g., Pillai [8]. 

By Theorem 4.3 of Pillai [8] for each .s > 0, the exact distribution function 
.Fα,s(x) of .W (s) is for . x ≥ 0

. Fα,s(x) =
∞∑

r=0

(−1)r
� (s + r) xα(s+r)

� (s) r!� (1 + α (s + r))
,

which says that for each .s > 0 and . x ≥ 0

. P {W (s) ≤ x} = P {Vα (X (s)) ≤ x}

. = P
{
Ṽα (X (s)) ≤ x

} = Fα,s(x).
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In this special case, for any sequence of positive integers .{kn}n≥1 converging to 
infinity and sequence of positive constants .{sn}n≥1, by setting .Tn = X (sn) , for 
.n ≥ 1, we get by (16) that as . n → ∞

. 
Ṽ

(kn)
α (X (sn)) − X (sn) μα

(
�kn/X (sn)

)
√

X (sn)σα

(
�kn/X (sn)

) D→ Z.

3.2 Self-Standardized CLTs for Method II Trimming 

Let W be a subordinator of the form (2). Set for any . y > 0

. μW (y) :=
∫ ∞

y

ϕW (x) dx and σ 2
W (y) :=

∫ ∞

y

ϕ2
W (x) dx.

We see by Remarks 1 and 2 that (1) implies that 

. σ 2
W (y) > 0 for all y > 0.

For easy reference for the reader, we state here a version of Theorem 1 of 
Mason [7] stated in terms of a self-standardized CLT for the method II trimmed 
subordinated subordinator W . 

Theorem 2 Assume that .�W(0+) = ∞. For any sequence of positive integers 
.{kn}n≥1 and sequence of positive constants .{tn}n≥1 satisfying 

. 

√
tnσW

(
�kn/tn

)
ϕW

(
�kn/tn

) P→ ∞, as n → ∞,

we have uniformly in x, as .n → ∞, 

. 

∣∣∣∣∣P
{

W̃ (kn) (tn) − tnμW

(
�kn/tn

)
√

tnσW

(
�kn/tn

) ≤ x|�kn

}
− P {Z ≤ x}

∣∣∣∣∣
P→ 0,

which implies as . n → ∞

. 
W̃ (kn) (tn) − tnμW

(
�kn/tn

)
√

tnσW

(
�kn/tn

) D→ Z.

Remark 6 Theorem 1 of Mason [7] contains the added assumption that .kn → ∞, 
as .n → ∞. An examination of its proof shows that this assumption is unnecessary. 
Also we note in passing that Theorem 1 implies Theorem 2.
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For the convenience of the reader, we state the following results. Corollary 1 is 
from Mason [7]. The proof of Corollary 2 follows after some obvious changes of 
notation that of Corollary 1. 

Corollary 1 Assume that .W (t), .t ≥ 0, is a subordinator with drift 0, whose Lévy 
tail function .�W is regularly varying at zero with index . −α, where .0 < α < 1. 
For any sequence of positive integers .{kn}n≥1 converging to infinity and sequence of 
positive constants .{tn}n≥1 satisfying .kn/tn → ∞, we have, as .n → ∞, 

.
W̃ (kn) (tn) − tnμW (kn/tn)√

tnσW (kn/tn)

D→
√

2

α
Z. (27) 

Corollary 2 Assume that .W (t), .t ≥ 0, is a subordinator with drift 0, whose Lévy 
tail function .�W is regularly varying at infinity with index . −α, where .0 < α < 1. 
For any sequence of positive integers .{kn}n≥1 converging to infinity and sequence of 
positive constants .{tn}n≥1 satisfying .kn/tn → 0, as .n → ∞, we have (27). 

The subordinated subordinator introduced in Special Case 1 above satisfies the 
conditions of Corollary 1, and the subordinated subordinator in Special Case 2 above 
fulfills the conditions of Corollary 2. Consider the two cases. 

Special Case 1 To see this, notice that in Special Case 1, by (25) necessarily W 
has Lévy tail function on . (0,∞)

. �W(y) = � (1 − α1α2) y−α1α21{y>0},

for .0 < .α1, α2 < 1, which is regularly varying at zero with index . −α, where 
.0 < α = α1α2 < 1. In this case, from Corollary 1, we get (27) as long as 
.kn → ∞ and .kn/tn → ∞, as . n → ∞.

Special Case 2 In Special Case 2, observe that .W = Vα (X) , with .0 < α < 1, 
where .Vα = (Vα (t) , t ≥ 0) is an .α-stable process with Laplace transform 
(10), .X = (X (s) , s ≥ 0) is a standard Gamma process, and . Vα and X are 
independent. The process .r−1/αW (r) has Laplace transform .(1 + θα/r)−r , for  
.θ ≥ 0, which converges to .exp (−θα) as .r → ∞. This implies that for all . t > 0

. r−1/αW (rt)
D→ Vα (t) , as r → ∞.

By part (ii) of Theorem 15.14 of Kallenberg [5] and (10) for all . x > 0

. r�W

(
r1/αx

)
→ � (1 − α) x−α, as r → ∞.

This implies that W has a Lévy tail function .�W(y) on .(0,∞), which is regularly 
varying at infinity with index . −α, .0 < α < 1. In this case, by Corollary 2, we  
can conclude (27) as long as .kn → ∞ and .kn/tn → 0, as .n → ∞.
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4 Appendix 1 

Recall the notation of Special Case 1. Let . Vα1 , . Vα2 , and .(�k)k≥1 be independent and 

.W = Vα1

(
Vα2

)
. For any .t > 0, let .m(1)

Vα1
(Vα2 (t)) ≥ m

(2)
Vα1

(Vα2 (t)) ≥ · · · denote the 
ordered jumps of .Vα1 on the interval .

[
0, Vα2 (t)

]
. They satisfy 

. 

(
m(k)

α1
(Vα2 (t))

)
k≥1

D=
(

c (α1)

(
�k

Vα2 (t)

)−1/α1
)

k≥1

.

Let .m(1)
W (t) ≥ m

(2)
W (t) ≥ · · · denote the ordered jumps of W on the interval .[0, t]. 

In this case, for each . t > 0

. 

(
m

(k)
W (t)

)
k≥1

D=
(

c (α1α2)

(
�k

t

)−1/(α1α2)
)

k≥1

.

Observe that for all . t > 0

.W (t) =
∑
0<s≤t

�W (s) =
∑

0<s≤Vα2 (t)

�Vα1 (s) =
∞∑

k=1

m(k)
α1

(Vα2 (t)). (28) 

Note that though (28) holds, .
(
m

(k)
α1 (Vα2 (t))

)
k≥1

is not equal in distribution to 

.

(
m

(k)
W (t)

)
k≥1

. To see this, notice that 

.

(
m

(k)
α1 (Vα2 (t))

m
(1)
α1 (Vα2 (t))

)

k≥1

D=
((

�k

�1

)−1/α1
)

k≥1

, (29) 

whereas 

.

(
m

(k)
W (t)

m
(1)
W (t)

)

k≥1

D=
((

�k

�1

)−1/(α1α2)
)

k≥1

. (30) 

Obviously, the sequences (29) and (30) are not equal in distribution and thus 

.

(
m(k)

α1
(Vα2 (t))

)
k≥1

D	=
(
m

(k)
W (t)

)
k≥1

.
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5 Appendix 2 

A straightforward modification of the proof of Theorem 1 of Rényi [10] gives  the  
following Anscombe’s theorem for Lévy processes. 

Theorem A Let .X = (X (t) , t ≥ 0) be a mean zero Lévy process with . EX2 (t) = t

for .t ≥ 0, and let .η = (η (t) , t > 0) be a random process such that .η (t) > 0 for all 

.t > 0 and for some .c > 0, .η (t) /t
P→ c, as .t → ∞, then 

. X (η (t)) /
√

η (t)
D→ Z.

A version of Anscombe’s theorem is given in Gut [2]. See his Theorem 3.1. In our 
notation, his Theorem 3.1 requires that .{η (t) , t ≥ 0} be a family of stopping times. 

Example A Let .Yα = (Yα (y) , y ≥ 0) be the Lévy process with Laplace transform 
(19) and mean and variance functions (20). We see that 

. X :=
(

X (y) = Yα (y) − βαy

γα

, y ≥ 0

)

defines a mean zero Lévy process with .EX2 (y) = y for .y ≥ 0. Now  let  
.η = (η (t) , t ≥ 0) be a standard Gamma process independent of X. Notice that 

.η (t) /t
P→ 1, as .t → ∞. Applying Theorem A, we get as .t → ∞, 

. X (η (t)) /
√

η (t)
D→ Z.

In particular, since for each integer .k ≥ 1, .η (k)
D= �k , this implies that (24) holds 

for any sequence of positive integers .(kn)n≥1 converging to infinity as .n → ∞, i.e., 

. 
Yα

(
�kn

) − βα�kn

γα

√
�kn

D→ Z.
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9. Rosiński, J.: Series representations of Lévy processes from the perspective of point processes. 
In Lévy processes, 401–415. Birkhäuser Boston, Boston, MA (2001) 

10. Rényi, A.: On the asymptotic distribution of the sum of a random number of independent 
random variables. Acta Math. Acad. Sci. Hungar. 8 193–199 (1957) 

11. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press, 
Cambridge (2005) 

12. Zaı̆tsev, A. Yu: On the Gaussian approximation of convolutions under multidimensional 
analogues of S. N. Bernstein’s inequality conditions. Probab. Theory Related Fields 74, 535– 
566 (1987)



Functional Central Limit Theorem via 
Nonstationary Projective Conditions 

Florence Merlevède and Magda Peligrad 

2020 Mathematics Subject Classification: 60F17; 60G48 

1 Introduction and Notations 

A time-dependent series, in a discretized form, consists of a triangular array of 
random variables. Examples of this kind are numerous, and we can cite, for 
instance, the time-varying regression model. On the other hand, a Markov chain 
with stationary transition operator is not stationary when it does not start from 
its equilibrium and it rather starts at a point. Nonstationary type of behavior also 
appears when we study evolutions in random media. It is also well-known that 
the blocking procedure, used to weaken the dependence for studying a stationary 
process or a random field, introduces triangular arrays of variables. Furthermore, 
many of the results for functions of stationary random fields often incorporate 
in their proofs complicated inductions, which lead to triangular arrays of random 
variables. 

Historically, the most celebrated limit theorems in nonstationary setting are, 
among others, the limit theorems involving nonstationary sequences of martingale 
differences. For more general dependent sequences, one of the basic techniques is 
to approximate them with martingales. A remarkable early result obtained by using 
this technique is due to Dobrushin [8], who studied the central limit theorem for 
nonstationary Markov chains. In order to treat more general dependent structures, 
McLeish [23, 24] introduced the notion of mixingales, which are martingale-like 
structures, and imposed conditions to the moments of projections of an individual 
variable on past sigma fields to derive the functional form of the central limit 
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theorem. This method is very fruitful but still involves a large degree of stationarity. 
In general, the theory of nonstationary martingale approximation has remained 
much behind the theory of martingale methods for stationary processes. In the 
stationary setting, the theory of martingale approximations was steadily developed. 
We mention the well-known results, such as the celebrated results by Gordin [13], 
Heyde [19], and Maxwell and Woodroofe [22], and the more recent results by 
Peligrad and Utev [31], Zhao and Woodroofe [44], and Gordin and Peligrad [15], 
among many others. In the context of random fields, the theory of martingale 
approximation has been developed in the last decade, with several results by Gordin 
[14], Volný and Wang [42], Cuny et al. [3], El Machkouri and Giraudo [11], Peligrad 
and Zhang [33–35], Giraudo [12], and Volný [40, 41]. Due to these results, we  
know now the necessary and sufficient conditions for various types of martingale 
approximations, which lead to a variety of maximal inequalities and limit theorems. 

The goal of this paper is to survey some results obtained in the recent book [27] 
and the recent papers [25, 26] concerning the functional form of the central limit 
theorem (CLT) for non-necessarily stationary dependent structures. These results 
are obtained by using nonstationary martingale techniques, and, as we shall see, the 
results are in the spirit of those obtained by McLeish [23, 24]. More precisely, the 
conditions can be compared to the mixingale conditions imposed in his paper. 

Still concerning Gaussian approximation for non-necessarily stationary depen-
dent structures, we would like to mention the paper by Wu and Zhou [43] who  
show that, under mild conditions, the partial sums of a nonhomogeneous function 
of an i.i.d. sequence can be approximated, on a richer probability space, by sums of 
independent Gaussian random variables with nearly optimal errors in probability. As 
a by-product, a CLT can be derived, provided the underlying random variables have 
moments of order .2 + δ, .δ > 0. Their proof combines martingale approximation 
with m-dependent approximation. The fact that the random variables are functions 
of an i.i.d. sequence is a crucial assumption in their paper. 

We shall point out classes of nonstationary time series, satisfying certain 
projective criteria (i.e., conditions imposed to conditional expectations), which 
benefit from a martingale approximation. We shall stress the nonstationary version 
of the Maxwell-Woodroofe condition, which will be essential for obtaining maximal 
inequalities and asymptotic results for the following examples: functions of linear 
processes with nonstationary innovations, quenched version of the functional central 
limit theorem for a stationary sequence, evolutions in random media such as a 
process sampled by a shifted Markov chain, and nonstationary . ρ−mixing and 
. α−mixing processes. 

The basic setting will be mostly of a sequence of real-valued random variables 
.(Xk)k≥1 defined on the probability space .(�,K, P ), adapted to an increasing 
filtration .Fk ⊂ K. Set .Sn = ∑n

i=1 Xi for .n ≥ 1 and .S0 = 0. 
We shall also consider real-valued triangular arrays .(Xk,n)1≤k≤n adapted to 

.Fk,n ⊂ K. This means that .Xk,n is .Fk,n-measurable and .Fk−1,n ⊂ Fk,n for all 

.n ≥ 1 and all . 1 ≤ k ≤ n.

In this case we set .Sk = Sk,n = ∑k
i=1 Xi,n .n ≥ 1, and .S0 = 0. 

We shall be interested in both CLT, i.e.,
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. 
Sn − an

bn

⇒ N(0, σ 2),

where . ⇒ denotes the convergence in distribution and N is a normal distributed 
variable, and also in its functional (FCLT) form, i.e., 

. {Wn(t), t ∈ [0, 1]} ⇒ |σ |W in (D([0, 1]), ‖ · ‖∞),

where .Wn(t) = b−1
n (S[nt] − a[nt]) and W is a standard Brownian motion (here and 

everywhere in the paper . [x] denotes the integer part of x). 
We shall consider centered real-valued random variables that are square inte-

grable. The normalizations will be taken .an = 0 and .b2
n = n or .b2

n = σ 2
n = Var(Sn). 

In the sequel, we shall often use the notation .Ei (X) = E(X|Fi ), to replace the 
conditional expectation. In addition, all along the paper, we shall use the notation 
.an 	 bn to mean that there exists a universal constant C such that, for all n, 
.an ≤ Cbn. 

2 Projective Criteria for Nonstationary Time Series 

One of the first projection condition, in the nonstationary setting, goes back to 
McLeish [23]. To simplify the exposition, let us state it in the adapted case, i.e., 
when .(Fi )i≥0 is a nondecreasing sequence of .σ -algebras, such that .Xi is .Fi-
measurable for any .i ≥ 1. 

Theorem 1 Let .(Xk)k∈Z be a sequence of random variables, centered, with finite 
second moment and adapted to a nondecreasing sequence .(Fk)k∈Z of .σ -algebras. 
Assume that .(X2

k)k∈Z is uniformly integrable and that, for any k and i, 

.‖E(Xi+k|Fi )‖2 ≤ Ck−1/2(log k)−(1+ε) , (1) 

and there exists a nonnegative constant . c2 such that 

. 
E(S2[nt])

n
→ c2t for any t ∈ [0, 1] and Ek−m(Sk+n − Sk)

2

n
→ c2 in L1 ,

as .min(k,m, n) → ∞. Then, .{n−1/2S[nt], t ∈ [0, 1]} ⇒ cW in (.D([0, 1]), ‖ · ‖∞), 
where W is a standard Brownian motion. 

However, in the stationary case, a more general projection condition than (1) 
is known to be sufficient for both CLT and its functional form. Let us describe it 
briefly. 

Let .(Xk)k∈Z be a strictly stationary and ergodic sequence of centered real-valued 
random variables in . L2, adapted to a strictly stationary filtration .(Fk)k∈Z and such 
that
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.

∑

k≥1

‖E0(Sk)‖2

k3/2 < ∞. (2) 

Under condition (2), Maxwell-Woodroofe [22] proved the CLT under the normal-
ization .

√
n and Peligrad-Utev [31] proved its functional form, namely, 

. {n−1/2S[nt], t ∈ [0, 1]} ⇒ cW in (D([0, 1]), ‖ · ‖∞),

where .c2 = limn n−1
E(S2

n). 
It is known that (2) is equivalent to .

∑
k≥0 2−k/2‖E0(S2k )‖2 < ∞ and it is 

implied by 

.

∑

k>0

k−1/2‖E0(Xk)‖2 < ∞. (3) 

It should be noted that condition (2) is a sharp condition in the sense that if it is 
barely violated, then the sequence .(n−1/2Sn) fails to be stochastically bounded (see 
[31]). 

The Maxwell-Woodroofe condition is very important for treating the class 
of . ρ−mixing sequences whose definition is based on maximum coefficient of 
correlation. In the stationary case, this is 

. ρ(k) = sup corr
(
f (Xi,, i ≤ 0), g(Xj , j ≥ k)

) → 0,

where sup is taken over all functions .f, g which are square integrable. 
It can be shown that condition (2) is implied by .

∑
k≥0 ρ(2k) < ∞ (which is 

equivalent to .
∑

k≥1 k−1ρ(k) < ∞). It is therefore well adapted to measurable 
functions of stationary Gaussian processes. To give another example of a sequence 
satisfying, (2) let  

. Xk = f
( ∑

i≥0

aiεk−i

)
− Ef

( ∑

i≥0

aiεk−i

)
,

where .(εk) are i.i.d. with variance . σ 2 and let f be a function such that 

. |f (x) − f (y)| ≤ c(|x − y|) for any (x, y) ∈ R
2,

where c is a concave nondecreasing function such that 

. 
∑

k≥1

k−1/2c
(

2σ
∑

i≥k

|ai |
)

< ∞ .

Then, (3) holds (and then (2) also).  
The question is, could we have similar results, which extend condition (2) to the  

nonstationary case and improve on Theorem 1?



Functional Central Limit Theorem via Nonstationary Projective Conditions 233

2.1 Functional CLT Under the Standard Normalization
√

n 

We shall discuss first FCLT in the nonstationary setting under the normalization . 
√

n. 
With this aim, we impose the Lindeberg-type condition in the form: 

. sup
n≥1

1

n

n∑

j=1

E(X2
j ) ≤ C < ∞ and, for any ε > 0,

lim
n→∞

1

n

n∑

k=1

E{X2
kI (|Xk| > ε

√
n)} = 0 . (4) 

For any . k ≥ 0, let  

. δ(k) = max
i≥0

‖E(Sk+i − Si |Fi )‖2

and for any .k,m ≥ 0, let  

. θm
k = m−1

m−1∑

i=1

Ek(Sk+i − Sk).

The following FCLT in the nonstationary setting under the normalization .
√

n was 
proven by Merlevède et al. [26, 27]. 

Theorem 2 Assume that the Lindeberg-type condition (4) holds. Suppose also that 

.

∑

k≥0

2−k/2δ(2k) < ∞ (5) 

and there exists a constant . c2 such that, for any .t ∈ [0, 1] and any .ε > 0, 

. lim
m→∞ lim sup

n→∞
P

(∣
∣
∣
1

n

[nt]∑

k=1

(
X2

k + 2Xkθ
m
k

) − tc2
∣
∣
∣ > ε

)
= 0 . (6) 

Then, .{n−1/2S[nt], t ∈ [0, 1]} ⇒ cW in (.D([0, 1]), ‖ · ‖∞). 

We mention that (5) is equivalent to .
∑

k>0 k−3/2δ(k) < ∞ and it is implied by 

.

∑

k>0

k−1/2 sup
i≥0

‖Ei (Xk+i )‖2 < ∞. (7) 

About condition (6) we would like to mention that in the stationary and ergodic 
case, it is verified under condition (2). Indeed, by the ergodic theorem, for any .k ≥ 0,
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. lim
n→∞E

∣
∣
∣
1

n

[nt]∑

k=1

(X2
k + 2Xkθ

m
k ) − c2t

∣
∣
∣ = t

∣
∣EX2

0 + 2E(X0θ
m
0 ) − c2

∣
∣ .

Note that, under condition (2), it has been proved in [31] that 

. 
1

m
E(S2

m) = E(X2
0) + 2E(X0θ

m
0 ) → c2 as m → ∞.

Therefore, Theorem 2 is indeed a generalization of the results in Peligrad and Utev 
[31]. 

The first application of Theorem 2 is the following: 

Example 3 (Application to Stationary Sequences in a Random Time Scenery) We 
are interested to investigate the limiting behavior of the partial sums associated with 
the process defined by 

. Xk = ζk+φk
,

where .{ζj }j∈Z is a stationary sequence (observables/random scenery) and . {φk}k≥0
is a Markov chain (random time). 

The sequence .{φn}n≥0 is a “renewal”-type Markov chain defined as follows: 
.{φk; k ≥ 0} is a discrete Markov chain with the state space .Z

+ and transition matrix 
.P = (pi,j ) given by .pk,k−1 = 1 for .k ≥ 1 and .p0,j−1 := pj = P(τ = j), 
.j = 1, 2, . . .. 

We assume that .e[τ ] < ∞, which ensures that .{φn}n≥0 has a stationary 
distribution .π = (πi, i ≥ 0) given by 

. πj = π0

∞∑

i=j+1

pi , j = 1, 2 . . . where π0 = 1/e(τ ) .

We also assume that .pj > 0 for all .j ≥ 0. Hence, the Markov chain is 
irreducible. 

We are interested by the asymptotic behavior of 

. 
{
n−1/2

[nt]∑

k=1

Xk, t ∈ [0, 1]}

when the Markov chain starts at 0 (so under .Pφ0=0). 
Under .Pφ0=0, one can prove that .E(X1X2) �= E(X2X3), and, hence, stationarity 

is ruled out immediately. Let us assume the following assumption on the random 
time scenery: 

Condition (. A1) .{ζj }j≥0 is a strictly stationary sequence of centered random 
variables in . L2, independent of .(φk)k≥0 and such that
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. 
∑

k≥1

‖E(ζk|G0)‖2√
k

< ∞ and lim
n→∞ sup

j≥i≥n

‖E(ζiζj |G0) − E(ζiζj )‖1 = 0,

where .Gi = σ(ζk, k ≤ i). 

Corollary 4 Assume that .E(τ 2) < ∞ and that .{ζj }j≥0 satisfies condition (. A1). 
Then, under .Pφ0=0, .{n−1/2S[nt], t ∈ [0, 1]} converges in distribution in .D[0, 1] to a 
Brownian motion with parameter . c2 defined by 

. c2 = E(ζ 2
0 )

(
1 + 2

∑

i≥1

iπi

)
+ 2

∑

m≥1

E(ζ0ζm)

m∑

j=1

(P j )0,m−j ,

where .(P j )0,b = Pφ0=0(φj = b). 

The idea of proof is the following. We take .A = σ(φk, k ≥ 0) and . Fk =
σ(A, Xj , 1 ≤ j ≤ k). One can show that 

. sup
k≥0

‖E(Xk+m|Fk)‖2
2 ≤ b2([m/2]) + b2(0)P(τ > [m/2]),

where .b(k) = ‖E(ζk|G0)‖2. To prove that condition (6) holds, we use, in particular, 
the ergodic theorem for recurrent Markov chains (together with many tedious 
computations). 

An Additional Comment In the stationary case, other projective criteria can be 
considered to get the FCLT, such as the so-called Hannan’s condition [18]: 

. E(X0|F−∞) = 0 a.s. and
∑

i≥0

‖P0(Xi)‖2 < ∞ ,

where .P0(·) = E0(·) − E−1(·). 
Hannan’s condition and condition (2) have different areas of applications and are 

not comparable (see [10]). 
If the scenery is a sequence of martingale difference sequence and the process is 

sampled by the renewal Markov Chain, then under .Pφ0=0, one can prove that 

. sup
k≥0

‖Pk−m(Xk)‖2 ∼ C
√
P(τ > m).

Hence, in this case, .supk≥0 ‖Pk−m(Xk)‖2 and .supk≥0 ‖E(Xk+m|Fk)‖2 are of the 
same order of magnitude and 

. 
∑

m≥0

sup
k≥0

‖Pk−m(Xk)‖2 < ∞ ⇐⇒
∑

m≥0

√
P(τ > m) < ∞ .

On the other hand, (7) holds provided .
∑

k≥1
√
P(τ > k)/

√
k < ∞.
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2.2 A More General FCLT for Triangular Arrays 

Let .{Xi,n, 1 ≤ i ≤ n} be a triangular array of square integrable (. E(X2
i,n) <

∞), centered (.E(Xi,n) = 0), real-valued random variables adapted to a filtration 
.(Fi,n)i≥0. 

We write as before .Ej,n(X) = E(X|Fj,n) and set 

.Sk,n =
k∑

i=1

Xi,n and θm
k,n = m−1

m−1∑

i=1

Ek,n(Sk+i,n − Sk,n) . (8) 

We assume that the triangular array satisfies the following triangular Lindeberg-type 
condition: 

. sup
n≥1

n∑

j=1

E(X2
j,n) ≤ C < ∞, and lim

n→∞

n∑

k=1

E{X2
k,nI (|Xk,n| > ε)} = 0,

for any ε > 0. (9) 

For a nonnegative integer u and positive integers .,m, define the following 
martingale-type dependence characteristics: 

. A2(u) = sup
n≥1

n−1∑

k=0

‖Ek,n(Sk+u,n − Sk,n)‖2
2

and 

. B2(,m) = sup
n≥1

[n/]∑

k=0

‖S̄k,n(,m)‖2
2 ,

where 

. S̄k,n(,m) = 1

m

m−1∑

u=0

(
E(k−1)+1,n(S(k+1)+u,n − Sk+u,n)

)
.

We mention that if .Xk,n = Xk/
√

n, 

. A2(u) ≤ δ2(u) and B2(,m) ≤ δ2( − 1)/.

The next theorem was proved by Merlevède et al. [26]. 

Theorem 5 Assume that the Lindeberg condition (9) holds and that 

. lim
j→∞ 2−j/2A(2j ) = 0 and lim inf

j→∞
∑

≥j

B(2, 2j ) = 0 . (10)
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Moreover, assume that there exists a sequence of nondecreasing and right-
continuous functions .vn(·) : [0, 1] → {0, 1, 2, . . . , n} and a nonnegative real 
. c2 such that, for any .t ∈ (0, 1], 

. lim
m→∞ lim sup

n→∞
P

(∣
∣
∣

vn(t)∑

k=1

(
X2

k,n + 2Xk,nθ
m
k,n

) − tc2
∣
∣
∣ > ε

)
= 0 . (11) 

Then, .
{ ∑vn(t)

k=1 Xk,n, t ∈ [0, 1]} converges in distribution in .D([0, 1]) to cW , where 
W is a standard Brownian motion. 

The proof is based on a suitable triangular (nonstationary) martingale approxi-
mation. More precisely, for any fixed integer m, we write 

.X,n = Dm
,n + θm

−1,n − θm
,n + Ym

−1,n , (12) 

where .θm
,n is defined in (8), .Ym

,n = 1
m
E,n(S+m,n − S,n) and, with the notation 

.P,n(·) = E,n(·) − E−1,n(·), 

.Dm
,n = 1

m

m−1∑

i=0

P,n(S+i ) = 1

m

m−1∑

i=0

P(S+i − S−1) . (13) 

Then, we show that the FCLT for .
{∑vn(t)

k=1 Xk,n, t ∈ [0, 1]} is reduced to prove the 
FCLT for sums associated to a triangular array of martingale differences, namely, 
for .

{∑vn(t)
k=1 D

mn

k,n, t ∈ [0, 1]}, where .(mn) is a suitable subsequence. 

Comment 6 Let us make some comments on the Lindeberg-type condition (9), 
which is commonly used to prove the CLT when we deal with dependent structures. 
We refer, for instance, to the papers by Neumann [28] or Rio [37] where this 
condition is also imposed and examples satisfying such a condition are provided. 
In addition, in many cases of interest, the considered triangular array takes the 
following form: .Xk,n/σn where .σ 2

n = Var(Sn), and then the first part of (9) reads as 
the following: there exists a positive constant C such that, for any .n ≥ 1, 

.

n∑

k=1

E(X2
k,n) ≤ CVar(Sn) , (14) 

which then imposed a certain growth of the variance of the partial sums. Let us give 
another example where this condition is satisfied. Assume that .Xi = fi(Yi) where 
. Yi is a Markov chain satisfying .ρY (1) < 1, and then according to [29, Proposition 
13], .C ≤ (1 + ρY (1))(1 − ρY (1))−1. Here, .(ρY (k))k≥0 is the sequence of .ρ-mixing 
coefficients of the Markov chain .(Yi)i . On the other hand, avoiding a condition 
as (14) is a big challenge and is one of the aims of Hafouta’s recent paper [16]. 
His main new idea is a linearization of the variance of the partial sums, which, to 
some extent, allows us to reduce the limit theorems to the case when .Var(Sn) grows
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linearly fast in n. To give more insights, the partial sums are partitioned into blocks, 
so we write .Sn = ∑kn

i=1 Yi,n, where . kn is of order .Var(Sn) and the summands . Yi,n

are uniformly bounded in some .Lp (see [16, section 1.4] for more details). Then, 
the FCLT has to be obtained for the new triangular array .(Yi,n, 1 ≤ i ≤ kn). 

To verify condition (11), one can use the following proposition proved in [26]: 

Proposition 7 Assume that the Lindeberg-type condition (9) holds. Assume also 
that, for any nonnegative integer . , 

. lim
b→∞ lim sup

n→∞

n∑

k=b+1

‖Ek−b,n(Xk,nXk+,n) − E0,n(Xk,nXk+,n)‖1 = 0

and, for any .t ∈ [0, 1], 

. lim
m→∞ lim sup

n→∞
P

(∣
∣
∣

vn(t)∑

k=1

(
E0,n(X

2
k,n) + 2E0,n(Xk,nθ

m
k,n)

) − tc2
∣
∣
∣ > ε

)
= 0 . (15) 

Then, condition (11) is satisfied. 

Starting from (12) and summing over . , we get 

. 

vn(t)∑

=1

(X2
,n + 2X,nθ

m
,n) =

vn(t)∑

=1

(Dm
,n)

2 + (θm
0,n)

2 − (θm
vn(t),n)

2

+
vn(t)∑

=1

2Dm
,n(θ

m
−1 + Ym

−1,n) + Rn ,

where 

. Rn =
vn(t)−1∑

=0

(Ym
,n)

2 + 2
vn(t)−1∑

k=0

θm
k Ym

k,n .

Clearly, 

. 

vn(t)∑

=1

E(X2
,n + 2X,nθ

m
,n) =

vn(t)∑

=1

E(Dm
,n)

2 + E(θm
0,n)

2 − E(θm
vn(t),n)

2 + E(Rn) .

The Lindeberg condition implies that .E(θm
0,n)

2 + E(θm
vn(t),n)

2 is tending to zero as 
.n → ∞, whereas 

.E(Rn) 	 m−2(A2(m) + A(m)

m∑

i=1

A(i)
)
.
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Hence, if we assume that .m−1A2(m) → 0 as .m → ∞, we derive 

. lim
m→∞ lim sup

n→∞

∣
∣
∣

vn(t)∑

=1

E(X2
,n + 2X,nθ

m
,n) −

vn(t)∑

=1

E(Dm
,n)

2
∣
∣
∣ = 0 .

Note also that under the Lindeberg condition and the following reinforced version 
of condition (10) 

. lim
m→∞ m−1/2A(m) = 0 and lim

m→∞
∑

≥[log2(m)]
B(2,m) = 0 , (16) 

we have 

. lim
m→∞ lim sup

n→∞

∥
∥
∥

vn(t)∑

=1

X,n −
vn(t)∑

=1

Dm
,n

∥
∥
∥

2
= 0 .

Lemma 5.4 in [26] can be used to see this (note that, in this lemma, there is a 
misprint in the statement since, in the last term of the RHS of its inequality, the term 
.2−j/2 has to be deleted, as it can be clearly derived from their inequality (5.22)). 
Therefore, as soon as we consider .F0,n = {∅,�} (so .E0,n(·) = E(·)), condition (15) 
can be verified with the help of the following proposition: 

Proposition 8 Assume that the Lindeberg-type condition (9) holds and that (16) is 
satisfied. Assume also that there exists a constant . c2 such that, for any .t ∈ [0, 1], 

.E(S2
vn(t),n) → c2t . (17) 

Then, 

. lim
m→∞ lim sup

n→∞

∣
∣
∣

vn(t)∑

k=1

E
(
X2

k,n + 2Xk,nθ
m
k,n

) − tc2
∣
∣
∣ = 0 .

3 Applications 

3.1 Application to ρ-mixing Triangular Arrays 

Theorem 5 gives the following result for .ρ-mixing triangular arrays: 
Let .{Xi,n, 1 ≤ i ≤ n} be a triangular array of square integrable centered real-

valued random variables. Denote by .σ 2
k,n = Var

( ∑k
=1 X,n

)
and .σ 2

n = σ 2
n,n. For  

.0 ≤ t ≤ 1, let
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.vn(t) = inf
{
k; 1 ≤ k ≤ n : σ 2

k,n

σ 2
n

≥ t
}

and Wn(t) = σ−1
n

vn(t)∑

i=1

Xi,n . (18) 

Assume that the triangular array is .ρ-mixing in the sense that 

. ρ(k) = sup
n≥1

max
1≤j≤n−k

ρ
(
σ(Xi,n, 1 ≤ i ≤ j), σ (Xi,n, j + k ≤ i ≤ n)

) → 0

where .ρ(U, V ) = sup{|corr(X, Y )| : X ∈ L2(U), Y ∈ L2(V )}. 
The following is a FCLT for .ρ-mixing triangular arrays: 

Theorem 9 Assume that 

. sup
n≥1

σ−2
n

n∑

j=1

E(X2
j,n) ≤ C < ∞ ,

. lim
n→∞ σ−2

n

n∑

k=1

E{X2
k,nI (|Xk,n| > εσn)} = 0 , for any ε > 0

and 

. 
∑

k≥0

ρ(2k) < ∞ .

Then, .
{
Wn(t), t ∈ [0, 1]} converges in distribution in .D([0, 1]) (equipped with the 

uniform topology) to W . 

This is the functional version of the CLT obtained by Utev [39]. It answers an 
open question raised by Ibragimov in 1991. 

Theorem 9 follows from an application of Theorem 5 to the triangular array 
.{σ−1

n Xk,n, 1 ≤ k ≤ n}n≥1 and the .σ -algebras .Fk,n = σ(Xi,n, 1 ≤ i ≤ k) for . k ≥ 1
and .Fk,n = {∅,�} for .k ≤ 0. 

In what follows, to soothe the notations, we omit the index n involved in the 
variables and in the .σ -algebras. 

To check condition (5), we used the fact that, by the definition of the .ρ-mixing 
coefficient, for any .b > a ≥ 0, 

. ‖Ek(Sk+b − Sk+a)‖2 ≤ ρ(a)‖Sk+b − Sk+a‖2 ,

and that, under .
∑

k≥0 ρ(2k) < ∞, by the variance inequality of Utev [39], there 
exists . κ such that, for any integers a and b,
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. ‖Sb − Sa‖2
2 ≤ κ

b∑

i=a+1

‖Xi‖2
2 .

We then obtain 

. m−1A2(m) 	 {
ρ2([√m]) + m−1/2} and B(2r , m) 	 ρ(2r − 1) .

Since .ρ(n) → 0, in order to prove condition (11), we use both Proposition 7 (by 
recalling that .F0,n is the trivial field .{∅,�}) and Proposition 8. Therefore, the proof 
of (11) is reduced to show that 

. σ−2
n E

(
S2

vn(t)

) → t , as n → ∞,

which holds by the definition of .vn(t) and the Lindeberg condition (9). 
For the . ρ−mixing sequences, we also obtain the following corollary: 

Corollary 10 Let .(Xn)n≥1 be a sequence of centered random variables in .L2(P). 
Let .Sn = ∑n

k=1 Xk and .σ 2
n = Var(Sn). Suppose that the Lindeberg condition is 

satisfied and that .
∑

k≥0 ρ(2k) < ∞. In addition, assume that .σ 2
n = nh(n), where h 

is a slowly varying function at infinity. Then, . Wn = {
σ−1

n

∑[nt]
k=1 Xk, t ∈ (0, 1]}

converges in distribution in .D([0, 1]) to W , where W is a standard Brownian 
motion. 

If .Wn converges weakly to a standard Brownian motion, then necessarily . σ 2
n =

nh(n), where .h(n) is a slowly varying function. If in Corollary 10 we assume that 
.σ 2

n = nαh(n), where .α > 0, then one can prove that .Wn ⇒ {G(t), t ∈ [0, 1]} in 
.D([0, 1]), where .G(t) = √

α
∫ t

0 u(α−1)/2dW(u). 
In the strictly stationary case, condition .

∑
k≥0 ρ(2k) < ∞ implies that . σ 2

n /n →
σ 2 and if .σ 2

n → ∞, then .σ > 0. Therefore, the functional limit theorem holds under 
the normalization .

√
nσ . We then recover the FCLT obtained by Shao [38] (the CLT  

was first proved by Ibragimov [20]). In this context, condition . 
∑

k≥0 ρ(2k) < ∞
is minimal as provided by several examples by Bradley, which are discussed in [1, 
Chap. 34]. 

Comment 11 In a recent paper, denoting by . PX the law of a random variable X and 
by .Ga the normal distribution .N(0, a), Dedecker et al. [7] have proved quantitative 
estimates for the convergence of .PSn/σn to . G1, where . Sn is the partial sum associated 
with either martingale difference sequences or more general dependent sequences, 
and .σ 2

n = Var(Sn). In particular, they considered the case of .ρ-mixing sequences, 
and, under reinforced conditions compared to those imposed in Theorem 9 or in 
Corollary 10, they obtained rates in the CLT. Let us describe their result. Let . (Xi)i≥1
be a sequence of centered (.E(Xi) = 0 for all i), real-valued bounded random 
variables, which are .ρ-mixing in the sense that



242 F. Merlevède and M. Peligrad

. ρ(k) = sup
j≥1

sup
v>u≥j+k

ρ
(
σ(Xi, 1 ≤ i ≤ j), σ (Xu,Xv)

) → 0 , as k → ∞ ,

where .σ(Xt , t ∈ A) is the .σ -field generated by the r.v.’s . Xt with indices in A. Let  
us assume the following set of assumptions: 

. (H) :=

⎧
⎪⎨

⎪⎩

1)� = ∑
k≥1 kρ(k) < ∞ .

2)For any n ≥ 1, Cn := max
1≤≤n

∑n
i= E(X2

i )

E(Sn − S−1)2 < ∞ .

Denoting by .Kn = max1≤i≤n ‖Xi‖∞, they proved in their Sect. 4.2 that if .Kn is 
uniformly bounded, then, for any positive integer n, 

. 

∫

R

|Fn(t) − �(t)|dt 	 Cnσ
−1
n log(2 + Cnσ

2
n ) and

‖Fn − �‖∞ 	 σ
−1/2
n

√
Cn log(2 + Cnσ 2

n ) ,

where . Fn is the c.d.f. of .Sn/σn and . � is the c.d.f. of a standard Gaussian r.v. We also 
refer to [16, Section 2.2] for related results concerning rates in the FCLT in terms of 
the Prokhorov distance. 

3.2 Application to Functions of Linear Processes 

Assume that 

. Xk = fk

( ∑

i≥0

aiεk−i

) − Efk

( ∑

i≥0

aiεk−i

)
,

where .(εi)i∈Z are independent random variables such that . (ε2
i )i∈Z is a uniformly 

integrable family and .supi∈Z ‖εi‖2 := σ . The functions . fk are such that, for any k, 

. |fk(x) − fk(y)| ≤ c(|x − y|) for any (x, y) ∈ R
2 ,

where c is concave, nondecreasing, and such that .limx→0 c(x) = 0 (we shall say 
that .fk ∈ L(c)). 

Applying Theorem 5 with .Xk,n = Xk/σn, we derive the following FCLT: 

Corollary 12 Assume that .σ 2
n = nh(n), where .h(n) is a slowly varying function at 

infinity such that .lim infn→∞ h(n) > 0 and 

.

∑

k≥1

k−1/2c
(

2σ
∑

i≥k

|ai |
)

< ∞ . (19)
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Then, .
{
σ−1

n

∑[nt]
k=1 Xk, t ∈ [0, 1]} converges in distribution in .D([0, 1]) to a 

standard Brownian motion. 

The detailed proof can be found in Section 5.6 of [26], but let us briefly describe the 
arguments allowing to verify conditions (7) and (11) with .vn(t) = [nt] and . Xk,n =
Xk/σn (recall that (7) implies (5), which in turn implies (10) since .σ 2

n = nh(n) with 
.lim infn→∞ h(n) > 0). 

We first consider the following choice of .(Fi )i≥0: .F0 = {∅,�} and . Fi =
σ(X1, . . . , Xi), for .i ≥ 1. Denote by . Eε the expectation with respect to . ε := (εi)i∈Z
and note that since .Fi ⊂ Fε,i where .Fε,i = σ(εk, k ≤ i), for any .i ≥ 0, 
.‖E(Xk+i |Fi )‖2 ≤ ‖E(Xk+i |Fε,i)‖2. Next, for any .i ≥ 0, note that 

. 
∣
∣E(Xk+i |Fε,i)

∣
∣ =

∣
∣
∣Eε

(
f

( k−1∑

=0

aε
′
k+i− +

∑

≥k

aεk+i−

))

− Eε

(
f

( k−1∑

=0

aε
′
k+i− +

∑

≥k

aε
′
k+i−

))∣
∣
∣ ,

where .(ε′
i )i∈Z is an independent copy of .(εi)i∈Z. Therefore, using [6, Lemma 5.1], 

. ‖E(Xk+i |Fi )‖2 ≤
∥
∥
∥c

( ∑

≥k

|a||εk+i− − ε′
k+i−|

)∥
∥
∥

2
≤ c

(
2σε

∑

≥k

|a|
)

,

proving that (7) holds under (19). 
On the other hand, to verify condition (11) with .vn(t) = [nt] and .Xk,n = Xk/σn, 

Proposition 7 can be used. Hence, because of the Lindeberg condition and the choice 
of the filtration .(Fi )i≥0, it is sufficient to prove 

. lim
b→∞ lim sup

n→∞
σ−2

n

n∑

k=b+1

‖Ek−b(XkXk+) − E(XkXk+)‖1 = 0 (20) 

and that, for any .t ∈ [0, 1], 

. lim
m→∞ lim sup

n→∞
1

σ 2
n

∣
∣
∣

[nt]∑

k=1

{
E(X2

k) + 2E(Xkθ
m
k )

}
− t

∣
∣
∣ = 0 . (21) 

Condition (20) can be proved by using similar arguments as those leading to (7). On  
the other hand, (21) follows from an application of Proposition 8 with . vn(t) = [nt]
and .Xk,n = Xk/σn. Indeed, the Lindeberg condition can be verified, (7) is satisfied, 
and it is also assumed that .σ 2

n = nh(n), where .h(n) is a slowly varying function at 
infinity with .lim infn→∞ h(n) > 0.
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3.3 Application to the Quenched FCLT 

We should also note that the general FCLT in Theorem 2 also leads as an application 
to the quenched FCLT under Maxwell-Woodroofe condition (previously proved by 
Cuny-Merlevède [2], with a completely different proof). 

More precisely, the result is the following: 

Corollary 13 Let .(Xk)k∈Z be an ergodic stationary sequence of . L2 centered 
random variables, adapted to .(Fk) and satisfying 

. 
∑

k>0

k−3/2‖E0(Sk)‖2 < ∞.

Then, .limn→∞ n−1/2
E(S2

n) = c2 and, on a set of probability one, for any continuous 
and bounded function f from .(D([0, 1), ‖ · ‖∞) to . R, 

. lim
n→∞E0(f (Wn)) =

∫

f (zc)W(dz) ,

where .Wn = {n−1 ∑[nt]
k=1 Xk, t ∈ [0, 1]} and W is the distribution of a standard 

Wiener process. 

The idea of proof is to work under . P0 (the conditional probability given . F0)

and verify that the conditions of our general FCLT hold with probability one. For 
instance, we need to verify (6); that is, with probability one, there exists a constant 
. c2 such that, for any .t ∈ [0, 1], 

. lim
m→∞ lim sup

n→∞
P0

(∣
∣
∣
1

n

[nt]∑

k=1

(
X2

k + 2

m
Xk

m−1∑

i=1

Ek(Sk+i − Sk)
) − tc2

∣
∣
∣ > ε

)
= 0 .

But, by the ergodic theorem, 

. lim
m→∞ lim

n→∞
∣
∣
∣
1

n

[nt]∑

k=1

(X2
k + 2

m
Xk

m−1∑

i=1

Ek(Sk+i − Sk)) − tc2
∣
∣
∣ = 0 a.s.

Hence, by the properties of the conditional expectation, the desired convergence 
follows. 

3.4 Application to Locally Stationary Processes 

Let us consider .
{
n−1/2 ∑[nt]

k=1 Xk,n, t ∈ [0, 1]} when .(Xk,n, 1 ≤ k ≤ n) is a locally 
stationary process in the sense that .Xk,n can be locally approximated by a stationary
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process .X̃k(u) in some neighborhood of u, i.e., for those k where .|(k/n) − u| is 
small. 

Assume that .E(Xk,n) = 0. For each .u ∈ [0, 1], let .X̃k(u) be a stationary and 
ergodic process such that 

.(S0) . max1≤j≤n n−1/2
∣
∣
∣
∑j

k=1 Xk,n − ∑j

k=1 X̃k(k/n)

∣
∣
∣ →P 0.

.(S1) supu∈[0,1] ‖X̃k(u)‖2 < ∞ and 

. lim
ε→0

sup
|u−v|≤ε

‖X̃k(u) − X̃k(v)‖2 = 0.

.(D) There exists a stationary nondecreasing filtration .(Fk)k≥0 such that, for 
each .u ∈ [0, 1], .X̃k(u) is adapted to .Fk and the following condition holds: 
.
∑

k≥0 2−k/2 δ̃(2k) < ∞, where . δ̃(k) = supu∈[0,1] ‖E(S̃k(u)|F0)‖2 and . S̃k(u) =
∑k

i=1 X̃i(u). 

Let us give an example. For any .u ∈ [0, 1], let  

. Yk(u) =
∑

i≥0

(α(u))iεk−i and X̃k(u) = f (Yk(u)) − Ef (Yk(u))

with .f ∈ L(c) (this space of functions has been defined in Sect. 3.2) and .α(·) a 
Lipschitz continuous function such that .supu∈[0,1] |α(u)| = α < 1. 

Define 

. Xk,n = X̃k(k/n) + n−3/2un(εk + · · · + εk−n)

where .un → 0. 
Condition .(S0) is satisfied and conditions .(S1) and .(D) also, provided 

. 

∫ 1

0

c(t)

t
√| log t |dt < ∞ .

Theorem 14 Assume the above conditions. Then, there exists a Lebesgue inte-
grable function .σ 2(·) on .[0, 1] such that, for any .u ∈ [0, 1], 

. lim
m→∞E(S̃m(u))2 = σ 2(u)

and the sequence of processes .{n−1/2 ∑[nt]
k=1 Xk,n, .t ∈ [0, 1]} converges in distribu-

tion in .D([0, 1]) to 

.

{ ∫ t

0
σ(u)dW(u), t ∈ [0, 1]

}
,
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where W is a standard Brownian motion. 

Compared to the results in Dahlhaus, Richter, and Wu [4], this result has 
a different range of applications. In addition, we do not need to assume that 
.‖ supu∈[0,1] |X̃k(u)|‖2 < ∞ nor that .X̃k(u) takes the form .H(u, ηk) with H a 
measurable function and .ηk = (εj , j ≤ k), where .(εj )j∈Z a sequence of i.i.d. 
real-valued random variables. 

4 The Case of α-Dependent Triangular Arrays 

We start this section by defining weak forms of strong-mixing-type coefficients for 
a triangular array of random variables .(Xi,n). For any integer . i ≥ 1, let . fi,n(t) =
1{Xi,n≤t} − P(Xi,n ≤ t). For any nonnegative integer k, set  

. α1,n(k) = sup
i≥0

max
i+k≤u

sup
t∈R

∥
∥E

(
fu,n(t)|Fi,n

)∥
∥

1 ,

and 

. α2,n(k) = sup
i≥0

max
i+k≤u≤v

sup
s,t∈R

∥
∥E

(
fu,n(t)fv,n(s)|Fi,n

) − E
(
fu,n(t)fv,n(s)

)∥
∥

1 ,

where, for .i ≥ 1, .Fi,n = σ(Xj,n1 ≤ j ≤ i} and .F0,n = {∅,�}. In the definitions 
above, we extend the triangular arrays by setting .Xi,n = 0 if .i > n. Assume that 

.σ 2
n,n = Var

( n∑

=1

X,n

)
= 1 , (22) 

and, for .0 ≤ t ≤ 1, define .vn(t) and .Wn(t) as in (18). 
We shall now introduce two conditions that combine the tail distributions of the 

variables with their associated .α-dependent coefficients: 

. lim
m→∞ lim sup

n→∞

n∑

k=1

n∑

i=m

∫ α1,n(i)

0
Q2

k,n(u)du = 0 (23) 

and 

. lim
m→∞ lim sup

n→∞

n∑

k=1

∫ α2,n(m)

0
Q2

k,n(u)du = 0 , (24) 

where .Qk,n is the quantile function of .Xk,n i.e., the inverse function of . t �→
P(|Xk,n| > t).
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Under the conditions above and using a similar martingale approximation 
approach as in the proof of Theorem 2, the following result holds (see [25]): 

Theorem 15 Suppose that (9), (22), (23), and (24) hold. Then, . 
{
Wn(t), t ∈ [0, 1]}

converges in distribution in .D([0, 1]) (equipped with the uniform topology) to . W,

where W is a standard Brownian motion. 

Under the assumptions of Theorem 15, we then get that .
∑n

k=1 Xk,n ⇒ N(0, 1). 
To see this, it suffices to notice that by (22), proving that . 

∥
∥Wn(1)−∑n

k=1 Xk,n

∥
∥

2 →
0 is reduced to prove that .Cov(

∑vn(1)
k=1 Xk,n,

∑n
k=1+vn(1) Xk,n) → 0, which follows 

from (23) by using Rio’s covariance inequality [36] and taking into account the 
Lindeberg condition. 

Very often, for the sake of applications, it is convenient to express the conditions 
in terms of mixing rates and moments: 

Corollary 16 Assume that conditions (9) and (22) hold. Suppose in addition that, 
for some .δ ∈ (0,∞], 

. sup
n

n∑

k=1

‖Xk,n‖2
2+δ < ∞ and

∑

i≥1

i2/δα1(i) < ∞

and that 

. lim
m→∞ lim sup

n→∞
α2,n(m) = 0 .

Then, the conclusion of Theorem 15 holds. 

There are numerous counterexamples to the CLT, involving stationary strong 
mixing sequences, in papers by Davydov [5], Bradley [1], Doukhan et al. [9], and 
Häggström [17], among others. We know that in the stationary case our conditions 
reduce to the minimal ones. These examples show that we cannot just assume that 
only the moments of order 2 are finite. Furthermore, the mixing rate is minimal in 
some sense (see [9]). 

We also would like to mention that a central limit theorem was obtained by Rio 
[37], which also implies the CLT in Corollary 16. 

4.1 Application to Functions of α-Dependent Markov Chains 

Let .Yi,n = fi,n(Xi), where .X = (Xi)i∈Z is a stationary Markov process with Kernel 
operator K and invariant measure . ν and, for each i and n, .fi,n is such that . ν(fi,n) =
0 and .ν(f 2

i,n) < ∞. Let .σ 2
n = Var(

∑n
i=1 Yi,n) and .Xi,n = σ−1

n Yi,n. Note that the 
weak dependence coefficients .α1(i) of . X can be rewritten as follows: Let .BV1 be 
the class of bounded variation functions h such that .|h|v ≤ 1 (where .|h|v is the total 
variation norm of the measure dh). Then,
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. α1(i) = 1

2
sup

f ∈BV1

ν
(|Ki(f ) − ν(f )|) .

We mention that .α2(i) will have the same order of magnitude as .α1(i) if the space 
.BV1 is invariant under the iterates .Kn of K , uniformly in n, i.e., there exists a 
positive constant C such that, for any function f in .BV1 and any .n ≥ 1, 

. |Kn(f )|v ≤ C|f |v .

The Markov chains such that .α2(n) → 0, as .n → ∞, are not necessarily mixing in 
the sense of Rosenblatt. 

Let us give an example. In what follows, for .γ ∈]0, 1[, we consider the Markov 
chain .(Xk)k≥1 associated with the transformation . Tγ defined from .[0, 1] to .[0, 1] by 

. Tγ (x) =
{

x(1 + 2γ xγ ) if x ∈ [0, 1/2[
2x − 1 if x ∈ [1/2, 1] .

This is the so-called LSV [21] map with parameter . γ . There exists a unique .Tγ -
invariant measure . νγ on .[0, 1], which is absolutely continuous with respect to the 
Lebesgue measure with positive density denoted by . hγ . We denote by .Kγ the 
Perron-Frobenius operator of . Tγ with respect to . νγ (recall that, for any bounded 
measurable functions f and g, .νγ (f · g ◦ Tγ ) = νγ (Kγ (f )g)). Then, .(Xi)i≥0 will 
be the stationary Markov chain with transition Kernel .Kγ and invariant measure . νγ . 
In addition, we assume that, for any i and n fixed, .fi,n is monotonic on some open 
interval and 0 elsewhere. It follows that the weak dependence coefficients associated 
with .(Xi,n) are such that .α2,n(k) ≤ Ck1−1/γ , where C is a positive constant not 
depending on n. By applying Corollary 16, we derive that if the triangular array 
.(Xi,n) satisfies the Lindeberg condition (9) and if 

. γ ∈ (0, 1/2) and sup
n≥1

1

σ 2
n

n∑

i=1

( ∫ 1

0
f 2+δ

i,n (x)x−γ dx
)2/(2+δ)

< ∞

for some δ >
2γ

1 − 2γ
,

then the conclusion of Theorem 15 is satisfied for the triangular array .(Xi,n) defined 
above. 

4.2 Application to Linear Statistics with α−Dependent 
Innovations 

We consider statistics of the type
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.Sn =
n∑

j=1

dn,jXj , (25) 

where .dn,j are real-valued weights and .(Xj ) is a strictly stationary sequence of 
centered real-valued random variables in . L2. This model is also useful to analyze 
linear processes with dependent innovations and regression models. It was studied 
in Peligrad and Utev [30] and Rio [37] and also in Peligrad and Utev [32], where 
a central limit theorem was obtained by using a stronger form of the mixing 
coefficients. 

We assume that the sequence of constants satisfies the following two conditions: 

.

n∑

i=1

d2
n,i → c2 and

n∑

i=1

(dn,j − dn,j−1)
2 → 0 as n → ∞ , (26) 

where .c2 > 0. Also, we impose the conditions 

.

∑

i≥0

∫ α1(i)

0
Q2(u)du < ∞ (27) 

and 

.α2(m) → 0, (28) 

where Q is the quantile function associated with . X0. 
Condition (27) implies that .

∑
k≥0 |Cov(X0, Xk)| < ∞ and therefore that the 

sequence .(Xj ) has a continuous spectral density .f (x). Note also that if the spectral 
density f is continuous and (26) is satisfied, then 

. σ 2
n = Var(Sn) → 2πc2f (0), as n → ∞ .

We refer, for instance, to [27, Lemma 1.5] for a proof of this fact. Note also 
that (26) implies the Lindeberg condition (4). Indeed, condition (26) entails that 
.max1≤≤n |dn,| → 0, as .n → ∞ (see [27, Lemma 12.12]). 

By applying Theorem 15, we obtain the following result (see Merlevède-Peligrad 
[25]): 

Theorem 17 Let .Sn = ∑n
j=1 dn,jXj , where .dn,j are real-valued weights and . (Xj )

is a strictly stationary sequence. Assume that (26), (27), and (28) are satisfied. Then, 
. Sn converges in distribution to .

√
2πf (0)|c|N , where N is a standard Gaussian 

random variable. Let .v2
k,n = ∑k

i=1 d2
n,i . Define
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. vn(t) = inf
{
k; 1 ≤ k ≤ n : v2

k,n ≥ c2t
}
and Wn(t) =

vn(t)∑

i=1

dn,iXi .

Then, .Wn(·) converges weakly to .
√

2πf (0)|c|W , where W is the standard Brownian 
motion. 

Comment 18 To apply Theorem 15, we do not need to impose condition (26) in its 
full generality. Indeed, this condition can be replaced by the following ones: 

.

n∑

i=1

d2
n,i → c2 and max

1≤≤n
|dn,| → 0 as n → ∞ , (29) 

and, for any positive k, there exists a constant . ck such that 

. lim
n→∞

∑n−k
=1 dn,dn,+k
∑n

=1 d2
n,

→ ck . (30) 

Indeed, condition (29) implies the Lindeberg condition (4), whereas condition (30) 
together with .

∑
k≥0 |Cov(X0, Xk)| < ∞ (which is, in particular, implied by (27)) 

entails that 

.
σ 2

n∑n
=1 d2

n,

→ σ 2 = Var(X0) + 2
∑

k≥1

ckCov(X0, Xk) , as n → ∞ . (31) 

Note that if condition (26) holds, then (30) is satisfied with .ck = 1 for all positive 
integer k and therefore .σ 2 = 2πf (0). Hence, if, in the statement of Theorem 17, 
condition (26) is replaced by conditions (29) and (30), then its conclusions hold with 
. σ 2 replacing .2πf (0), where . σ 2 is defined in (31). To end this comment, let us give 
an example where conditions (29) and (30) are satisfied but the second part of (26) 
fails. With this aim, let . x be a real such that .x /∈ πZ and let .dn,k = sin(xk)/

√
n. 

For this choice of triangular array, we have .
∑n

i=1 d2
n,i → 1/2 and, for any positive 

k, .
∑n−k

=1 dn,dn,+k → 2−1 cos(xk). Therefore, (30) is satisfied with . ck = cos(xk)

and (26) does not hold. 

Remark 19 We refer to Dedecker et al. [7, Section 4] for various results concerning 
rates of convergence in the central limit theorem for linear statistics of the above 
type with dependent innovations. In particular, they proved the following result (see 
their corollary 4.1 and their remark 4.2). Let .p ∈ (2, 3]. Assume that 

. P(|X0| ≥ t) ≤ Ct−s for some s > p and
∑

k≥1

k(α2(k))2/p−2/s < ∞ ,

and that the spectral density of .(Xi) satisfies .inft∈[−π,π ] |f (t)| = m > 0. Then, 
setting .mn = max1≤≤n |dn,|, the following upper bounds hold: for any positive 
integer n,
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. 

∫

R

|Fn(t) − �(t)|dt 	 C(n, p) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m
p−2
n

σn

( n∑

=1

d2
n,

)(3−p)/2
if p ∈ (2, 3)

mn

σn

log
(
m−1

n

n∑

=1

d2
n,

)
if p = 3,

(32) 
where we recall that . Fn is the c.d.f. of .Sn/σn and . � is the c.d.f. of a standard 
Gaussian r.v. Note that if we replace the condition that the spectral density has to 
be bounded away from 0 by the weaker one: .f (0) > 0, and if, as a counterpart, we 
assume the additional condition .

∑
k>0 k2|Cov(X0, Xk)| < ∞, then an additional 

term appears in (32); namely, we get 

. 

∫

R

|Fn(t) − �(t)|dt 	 C(n, p) +
(∑n+1

k=1(dn,k − dn,k−1)
2
)1/2

σn

.

See [7, Corollary 4.2]. 

In what follows, we apply Theorem 17 to the model of the nonlinear regression 
with fixed design. Our goal is to estimate the function .(x) such that 

. y(x) = (x) + ξ(x),

where .  is an unknown function and .ξ(x) is the noise. If we fix the design points 
. xn,i , we get 

. Yn,i = y(xn,i) = (xn,i) + ξi(xn,i).

According to [32], the nonparametric estimator of . (x) is defined to be 

.̂n(x) =
n∑

i=1

wn,i(x)Yn,i , (33) 

where 

. wn,i(x) = K
(xn,i − x

hn

)
/

n∑

i=1

K
(xn,i − x

hn

)
.

We apply Theorem 17 to find sufficient conditions for the convergence of the 
estimator .̂n(x). To fix the ideas we shall consider the following setting: The kernel 
K is a density function, continuous with compact support .[0, 1]. The design points 
will be .xn,i = i/n and .(ξi(xn,1), . . . , ξi(xn,i)) is distributed as . (X1, . . . , Xn),

where .(Xk)k∈Z is a stationary sequence of centered sequence of random variables 
satisfying (27) and (28). We then derive the normal asymptotic limit for



252 F. Merlevède and M. Peligrad

. Vn(x) =
(

n∑

i=1

w2
n,i(x)

)−1/2 (
̂n(x) − E(̂n(x))

)
.

The following theorem was established in Merlevède-Peligrad [25]. 

Theorem 20 Assume for x fixed that .̂n(x) is defined by (33) and the sequence 
.(Xj ) is a stationary sequence satisfying (27) and (28). Assume that the kernel K 
is a density, is square integrable, has compact support, and is continuous. Assume 
.nhn → ∞ and .hn → 0. Then, .

√
nhn(̂n(x) − E(̂n(x))) converges in distribution 

to .
√

2πf (0)|c|N , where N is a standard Gaussian random variable and . c2 is the 
second moment of K . 

4.3 Application to Functions of a Triangular Stationary 
Markov Chain 

Let us consider a triangular version of the Markov chain defined in Example 3. 
For any positive integer n, .(ξi,n)i≥0 is a homogeneous Markov chain with state 

space . N and transition probabilities given by 

. P(ξ1,n = i|ξ0,n = i + 1) = 1 and P(ξ1,n = i|ξ0,n = 0) = pi+1,n for i ≥ 1,

where, for .i ≥ 2, .pi,n = ca/(vni
a+2) with .a > 0, .ca

∑
i≥2 1/ia+2 = 1/2, . (vn)n≥1

a sequence of positive reals and .p1,n = 1 − 1/(2vn). .(ξi,n)i≥0 has a stationary 
distribution .πn = (πj,n)j≥0 satisfying 

. π0,n =
( ∑

i≥1

ipi,n

)−1
and πj,n = π0,n

∑

i≥j+1

pi,n for j ≥ 1.

Let .Yi,n = Iξi,n=0 − π0,n. Let .b2
n = Var

( ∑n
k=1 Yk,n

)
and set .Xi,n = Yi,n/bn. 

Provided that .a > 1 and .vn/n → 0, .(Xk,n)k>0 satisfies the functional central limit 
theorem given in Theorem 15. 
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Part III 
Stochastic Processes



Sudakov Minoration for Products of 
Radial-Type Log-Concave Measures 

Witold Bednorz 

2020 Mathematics Subject Classification: 60G15; 60G17 

1 Introduction 

Consider a random vector X, which takes values in . Rd . Let  T be a subset of . Rd , 
and we can define canonical process as 

. (Xt )t∈T , where Xt =
d∑

i=1

tiXi = 〈t, X〉.

One of the basic questions in the analysis of stochastic processes is to characterize 
.SX(T ) = E supt∈T Xt , where .(Xt )t∈T is a family of random variables. It is well-
known that usually .SX(T ) < ∞ is equivalent to .P(supt∈T |Xt | < ∞) = 1, i.e., 
that paths are a.s. bounded. In order to avoid measurability questions formally, 
.SX(T ) should be defined .supF⊂T E supt∈F Xt , where the supremum is over all finite 
subsets F of T . The main tool invented to study the quantity is the generic chaining. 
Although the idea works neatly whenever the upper bound is concerned, the lower 
bound is a much more subtle matter. What one can use toward establishing the lower 
bound for .E supt∈T Xt is the growth condition that can be later used in the partition 
scheme [18] or construction of a special family of functionals [19]. The core of the 
approach is the Sudakov minoration. Basically, the minoration means that we can 
answer the question about understanding .E supt∈T Xt in the simplest setting, where 
points in T are well separated. Before we state the condition, let us make a simple 
remark. 
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Remark 1 Let .p � 1. Suppose that .|T | � ep, and .‖Xt‖p � A for each .t ∈ T . 
Then, .E| supt∈T Xt | � eA. 

Proof Indeed, we have 

. E| sup
t∈T

Xt | � E

[
∑

t∈T

|Xt |p
]1/p

�
[
E
∑

t∈T

|Xt |p
]1/p

� eA.

�	
The Sudakov minoration means that something opposite happens. Namely, we 
require that .|T | � ep, .p � 1 and for all .s, t ∈ T , .s 
= t , .‖Xt − Xs‖p � A. 
These assumptions should imply 

.E sup
t∈T

Xt � K−1A, (1) 

where K is an absolute constant. The problem has a long history, which we outline 
below. 

The property was first proved in 1969 for X-Gaussian, i.e., .X = G= (gi)
d
i=1, . gi

are independent standard normal variables. Sudakov [14, 15] provides the result, 
although some other researchers could be aware of the fact. In 1986 Pajor and 
Tomczak-Jaegermann [12] observed that the property for Gaussian X can be 
established in the dual way. Then, Talagrand [16] proved in 1990 that the minoration 
works for .X = ε = (εi)

d
i=1, . εi are independent Rademachers. He invented 

the result, when studying properties of infinitely divisible processes. Later, in 
1994, Talagrand [17] realized that the minoration holds also for exponential-type 
distributions. The result was improved by Latala [5] in 1997, so that it holds 
for X, which has independent entries of log-concave tails. The problem to go 
beyond the class of independent entries occurred to be unexpectedly hard. First 
result toward this direction was due to Latala [6], 2014 and concerned X of 
density .exp(−U(‖x‖p)), where U is an increasing convex function and . ‖x‖p =(∑d

i=1 |xi |p
)1/p

. Then, in 2015, Latala and Tkocz [7] proved that the minoration 

in the case of independent entries necessarily requires that entries are .α-regular, 
which basically means that they behave like variables of log-concave distribution. 
Finally, it has to be mentioned that some new ideas appeared how a proof of the 
minoration could be established, for example, the dimension reduction—the work 
of Mendelson, Milman, and Paouris [10]. In this paper they covered some simple 
cases, though it is known that the program cannot succeed in full generality. 

The aim of the paper is to prove that the minoration works for a certain class 
of log-concave distributions that extends mentioned examples. More precisely, we 
show that the property holds for X of density 

.μX(dx) = exp(−
M∑

k=1

Uk(‖xk‖pk
pk

))dx, (2)
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where . Uk are increasing convex functions, .pk > 1 and .xk = (xi)i∈Jk
, and . Jk are 

pairwise disjoint and cover .[d] = {1, 2, . . . , d}. We use the notation .nk = |Jk| and 
. qk for . p∗

k , i.e., .1/pk + 1/qk = 1. It will be clear from our proof that we can say 
something about the minoration also if .pk � 1; however, if we want the constant . K
not to depend on the problem setting, we need some cutoff level for . pk from . 1. 

The distribution .μX has some properties that are important for the proof of 
minoration, namely: 

1. Isotropic position 
2. One unconditionality 
3. Log-concavity 
4. Structural condition 

Let us comment on them below: 

(1) Isotropic position. We say that X is in isotropic position if 

. EX = 0, i.e.EXi = 0, i ∈ [d], CovX = Idd , i.e. Cov(XiXj ) = δi,j .

(3) 

Note that by an affine transformation we can impose the property, keeping the 
structural assumption (2). Note also that it is a very natural modification, which 
makes the Euclidean distance important, i.e., .‖Xt −Xs‖2 = d2(s, t) = ‖t −s‖2. 

(2) We say that X is one-unconditional if 

.(X1, X2, . . . , Xd)
d= (ε1|X1|, ε2|X2|, . . . , εd |Xd |), (4) 

where . |Xi |, .i ∈ [d] and independent random signs . εi , .i ∈ [d] that are 
independent of all . |Xi |, .i ∈ [d]. Observe that the assumption makes it possible 
to consider .(Xt )t∈T in the following form: 

. Xt =
d∑

i=1

tiXi
d=

d∑

i=1

tiεi |Xi |.

(3) Log-concavity. We assume that X has the distribution 

.μ(dx) = exp(−U(x))dx, (5) 

where U is a convex function. Due to the result of [7], the assumption is almost 
necessary. More formally, what we need is the comparison of moments. For 
log-concave and 1-unconditional X, we have that for all .0 < p < q and . t ∈ R

d

(see [11] or [1] for the proof) 

.‖Xt‖q � �(q + 1)
1
q

�(p + 1)
1
p

‖Xt‖p � q

p
‖Xt‖p. (6)
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The necessary condition for the Sudakov minoration formulated in [7] states 
that X must be .α-regular, which means that there exists .α � 1 such that, for all 
. 2 � p < q

.‖Xt − Xs‖q � α
q

p
‖Xt − Xs‖p. (7) 

Clearly, for log-concave and 1-unconditional X, the inequality (7) works with 
.α = 1. 

(4) Structural assumption. As we have explained in (2), we assume that the 
distribution of X has a certain structure. More precisely, we require that 

.U(x) =
M∑

k=1

Uk(‖xk‖pk
pk

), pk > 1. (8) 

Therefore, we can treat X as .(Xk)
M
k=1, where vectors . Xk with values in . Rnk

are independent. The fact, which we use later, is that each . Xk has the same 
distribution as .RkVK , where . Rk and . Vk are independent and . Rk is distributed 
on .R+ with the density .xn−1 exp(−Uk(x

pk ))|∂B
nk
pk

| and . Vk is distributed on 
.∂B

nk
pk

with respect to the (probabilistic) cone measure . νk—for details see, e.g., 
[13]. The most important property of the cone measure is that for any integrable 
. f : Rnk → R

. 

∫

R
nk

f (x)dx = |∂Bnk
pk

|
∫

R+

∫

∂B
nk
pk

f (rθ)rnk−1νk(dθ)dr.

Note that here .Bnk
pk

= {x ∈ R
nk : ‖x‖pk

� 1} and . ∂B
nk
pk

= {x ∈ R
nk :

‖x‖pk
= 1}. 

2 Results 

Following the previous section, we can formulate the main result of this paper: 

Theorem 1 Suppose that .X ∈ R
d is a random vector whose density is of the form 

.μX = μ1 ⊗ μ2 ⊗ . . . ⊗ μM and . μk is a log-concave distribution on .R
nk given by 

. μk(dxk) = exp(−Uk(‖xk‖pk
pk

))dxk, where xk = (xi)i∈Jk
,

where . Jk are disjoint sets such that .
⋃M

k=1 Jk = [d] and .pk � 1 + ε for some 
.ε > 0. Then, the Sudakov minoration holds, i.e., for every set .T ⊂ R

d such that 
.‖Xt − Xs‖p � A, .s 
= t , .s, t ∈ T for some .p � 1, the following inequality holds:



Sudakov Minoration for Products of Radial-Type Log-Concave Measures 261

. E sup
t∈T

Xt � K−1A,

where K depends on . ε only. 

The proof is quite complicated; that is why it is good to give a sketch of our 
approach. 

1. Simplifications. We show that Theorem 1 has to be established for .A = p, X in 
the isotropic position and sets T such that for each .t ∈ T , .t = (ti)

d
i=1, . ti ∈ {0, ki}

for some positive . ki , .i ∈ [d] and .‖Xt −Xs‖p � p, .s 
= t , .s, t ∈ T . Moreover, for 
each .t ∈ T , .

∑d
i=1 |ti | and .∑d

i=1 1ti=ki
are much smaller than p. In other words, 

minoration should be proved for cube-like sets with thin supports. 
2. Moments. The next step is a careful analysis of the condition .‖Xt −Xs‖p � p. In  

particular, we are going to use the structure assumption .X = (X1, X2, . . . , XM), 
where entries .Xk ∈ R

nk are independent. The main trick here is to define 
a random vector .Y = (Y1, Y2, . . . , YM) such that Y has all coordinates 
independent, i.e., not only .Yk ∈ R

nk are independent, but also coordinates of 
each . Yk are independent. Due to our structure assumption, it will be possible 
to represent .Xk = RkVk , .Yk = R̃kVk , where .Rk, R̃k ∈ R+ are some .α-
regular variables and . Vk are distributed with respect to cone measures on .∂B

nk
pk
, 

respectively. 
3. Split. We observe that we can split each point .t ∈ T into . t∗ (small part) and . t†

(large part). More precisely, we decide whether . t∗k is . tk or 0 and, respectively, . t†k
is 0 or . tk , depending on how large some norm of . tk is. Moreover, we show that 
either there is a subset .S ⊂ T , .|S| � ep/2 such that .‖Xt∗ − Xs∗‖p � p for any 
.s 
= t .s, t ∈ S or we can find .S ⊂ T , .|S| � ep/2 such that .‖Xt† − Xs†‖p � p for 
any .s 
= t , . s, t in S. 

4. Small part. If the “small part” case holds true, then we show that one may forget 
about variables .Rk, R̃k and in this way we may deduce the minoration from such 
a result for the random vector Y . 

5. Large part. If the “large part” case holds true, then we prove that variables . Vk

are not important; more precisely, we prove, following the approach from the 
“simplifications” step, that not only .ti ∈ {0, ki}, but we have such a property for 
.t
†
k = (t

†
i )i∈Jk

, namely, .t†k ∈ {xk, 0} for some .xk ∈ R
nk . Consequently, we may 

deduce the minoration from such a result for the random vector .(Xxk
)Mk=1. 

It is a standard argument that having the minoration one can prove the comparison 
between .E supt∈T Xt and .γX(T ). However, this approach requires some two 
additional conditions. First, we need that there exists .ε > 0 such that 

.‖Xt‖2n+1 � (1 + ε)‖Xt‖2n , n � 0. (9) 

The property works if there is a cutoff level for all . pk below . ∞. Moreover, there 
must hold a certain form of measure concentration. What suffices is that there exist 
constants .K,L � 1 such that for any .p � 2 and set .T ⊂ R

d
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.

∥∥∥∥∥

(
sup
t∈T

Xt − KE sup
t∈T

Xt

)

+

∥∥∥∥∥
p

� L sup
s,t∈T

‖Xt − Xs‖p. (10) 

The result is known only in few cases. Fortunately, in our setting, it can be derived 
from the infimum convolution [8]. Note that the problem can be easily reduced to 
the one where T is a gauge of some norm in . Rd . Moreover, the main concentration 
inequality—.CI (β) from [8]—holds for radial log-concave densities, and it can 
be tensorized, namely, if .CI (β) holds for measures .μ1, μ2, . . . , μM , then . CI (β ′)
holds for .μ1 ⊗ μ2 ⊗ . . . ⊗ μM with some dependence between . β and . β ′, i.e., . β ′ is 
some multiplication of . β. 

Theorem 2 Under the assumption of Theorem 1 and assuming additionally that 
.pk � p∞ < ∞, the following holds true 

. E sup
t∈T

Xt � γX(T ).

The result is quite standard and goes through the idea of growth condition—[18]. 
Before we start the proof of Theorem (1), we need a preliminary result, which 

explains that the Sudakov minoration has to be established only for sets T that have 
a cube-like structure. 

3 Cube-Like Sets 

The first step concerns some basic simplifications of the problem. We first note that 
the minoration has to be proved only for certain cube-like sets T . We use symbols 
.�,�,� whenever we compare quantities up to a numerical constant comparable 
to 1. 

We have to start from the Bobkov Nazarov [2] inequality or rather from its basic 
consequence: 

.‖Xt − Xs‖p � ‖Et − Es‖p, (11) 

where .(Ei )
d
i=1 are independent symmetric standard exponential variables. The 

Bobkov Nazarov inequality concerns one-unconditional and log-concave distribu-
tions in the isotropic position. However, the inequality (11) may hold in a bit 
more general setting. For example, it is also true if entries of an isotropic X are 
independent and .α-regular. That is why we may simply refer to (11) as the basic 
requirement. In the proof of our simplification, the condition is used together with 
the Kwapien-Gluskin result [3]: 

.‖Et‖p ∼ p‖t‖∞ + √
p‖t‖2. (12)
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On the other hand, by the result of Hitczenko [4], we also have the lower bound: 

.‖Xt‖p � ‖εt‖p ∼
∑

1�i�p

|t∗i | + √
p

⎛

⎝
d∑

i>p

|t∗i |2
⎞

⎠
1/2

, (13) 

where .(t∗i )di=1 is the rearrangement of t such that .|t∗1 | � |t∗2 | � . . . � |t∗d |. The  
last tool we need is that Sudakov minoration works for the random vector .(εi)

d
i=1. 

As we have already mentioned, the result was first proved in [16]. We are ready to 
formulate the main simplification result: 

Proposition 1 Suppose that X is in the isotropic position and fix .p � 2. Suppose 
that: 

1. X is one-unconditional. 
2. X is log-concave. 
3. X satisfies (11). 

Then, to show the Sudakov minoration, it suffices to prove the property for all sets 
T such that: 

1. .exp(p) � |T | � 1 + exp(p) and .0 ∈ T . 
2. for each . i ∈ [d] = {1, 2, . . . , d}

. ti ∈ {0, ki}, where ki � ρ,

where .ρ � e−1 and .ρ/ log 1
ρ

= 4Cδ. 
3. for each . t ∈ T

.

∑

i∈I (t)

ki � 2Cδp, where I (t) = {i ∈ [d] : ti = ki}. (14) 

4. for all .s, t ∈ T , . s 
= t

. ‖Xt − Xs‖p � p,

where . δ is suitably small and .C � 1 a universal constant, and that the following 
inequality holds true: 

. E sup
t∈T

Xt � K−1p,

where K is a universal constant. 

Proof The proof is based on a number of straightforward steps. 

Step 1 Obviously, it suffices to show that the Sudakov minoration works for . A =
p. Let  .mp(t, s) = ‖∑n

i=1(ti − si)εi‖p. We may assume that .p � 1 is 
suitably large. Moreover, we may consider T such that .0 ∈ T , .|T | �
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exp( p 
2 ) + exp( 3p 

4 ) and .mp(t, 0) � δp for all .t ∈ T , where .δ � 1 can be 
suitably small. 

By Talagrand’s result [17] (see also [18] for the modern exposition), if 
.N(T ,mp, u) � exp(p

4 ) − 1, then .E sups,t∈T

∑n
i=1(ti − si)εi � L−1u, for  

a universal L. Therefore, the result holds true with either .K = 2−1L−1δ or 
.E sups,t∈T

∑n
i=1(ti − si)εi < 2−1L−1δp and then 

. N(T ,mp,
1

2
δp) � exp(

p

4
) − 1 �

exp(p
2 )

1 + exp( 14p)
.

It implies that there exists .t0 ∈ T such that 

. {t ∈ T : mp(t, t0) � δp}| � |T |1 + exp( 14p)

exp(p
2 )

� exp(
p

2
) + exp(

3p

4
).

Therefore, we may consider set .T ′ = {t − t0 : mp(t, t0) � δp}, which satisfies all 
the requirements we have promised. 

Step 2 Let .δ � e−1 and .ρ/ log(1/ρ) = 4Cδ. We may assume that .0 ∈ T , . |T | �
1 + exp(p

4 ) and additionally 

. ti ∈ (ki − ρ, ki + ρ) ∪ (−ρ, ρ) for all t ∈ T and i ∈ [d],

where . ki are given numbers such that .ki � ρ, where .ρ � e−1 and it 
satisfies 

. ρ log
1

ρ
= 4δ � e−1, where C � 1

is a universal constant, which we choose later on. 

Indeed, consider measure .μ = ⊗d
i=1μi , where .μi(dx) = 1

2e
−|x|dx for all . i ∈

[d]. For any .x ∈ R
d , .x = (xi)

d
i=1 and .t ∈ T , . t = (ti)

d
i=1

. Tx = {t ∈ T : ti ∈ (xi − ρ, xi + ρ) ∪ (−ρ, ρ), i ∈ [d]}

and 

. At = {x ∈ R
d : ti ∈ (xi − ρ, xi + ρ) ∪ (−ρ, ρ), i ∈ [d]}.

Now, there are two possibilities, either 

.μi({xi : ti ∈ (xi − ρ, xi + ρ) ∪ (−ρ, ρ)}) � ρe−|ti |−ρ (15)
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or 

.μi({xi : ti ∈ (xi − ρ, xi + ρ) ∪ (−ρ, ρ)}) = 1, if |ti | < ρ. (16) 

Applying (13) we get for some . C � 1

.mp(t, 0) = ‖
d∑

i=1

tiεi‖p � C−1

⎛

⎜⎝
∑

i�p

|ti |∗ + √
p

⎛

⎝
∑

i>p

|t∗i |2
⎞

⎠

1
2
⎞

⎟⎠ (17) 

where . |t∗i | is the nondecreasing rearrangement of . |ti |. Also  (13) implies that 

.mp(t, 0) � C

⎛

⎜⎝
∑

i�p

|ti |∗ + √
p

⎛

⎝
∑

i>p

|t∗i |2
⎞

⎠

1
2
⎞

⎟⎠ , (18) 

for suitably large .C � 1. Therefore, using (17) and .ρ/ log 1
ρ

= 4Cδ we obtain 

.|{i ∈ {1, ..., d} : |ti | � ρ}| � p

4 log 1
ρ

� p

4
. (19) 

Again using (17) this shows 

.

d∑

i=1

|ti |1|ti |�ρ � Cδp. (20) 

Consequently, by (15,16) 

. μ(At) � ρ

p

4 log 1
ρ exp(−2Cδp) � exp(−p

2
).

However, using that .|T | � exp( 3p4 ), we infer 

. 

∫ ∑

t∈T

1At (x)μ(dx) � |T | exp(−p

2
) � exp(

p

4
).

Therefore, we get that there exists at least one point .k ∈ R
d such that 

. |Tk| � exp(
p

4
).

It is obvious that . |ki | may be chosen in a way that .|ki | � ρ. Combining (20) with 
.|ki | � ρ and .ti ∈ (ki − ρ, ki + ρ), we obtain
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. 

d∑

i=1

(|ki | − ρ) ∨ ρ1|ti |�ρ � Cδp.

Clearly, .(|ki | − ρ) ∨ ρ � 1
2 |ki |, and therefore 

. 
1

2

d∑

i=1

|ki |1|ti |�ρ � Cδp,

which implies (14). Clearly, by the symmetry of each . Xi , we may only consider 
positive .ki � ρ. 

Step 3 It suffices to consider set T , which additionally satisfies .ti ∈ {0, ki} where 
.ki � ρ. Moreover, .exp(p/4) � T � 1 + exp(p/4), .0 ∈ T and 

.‖Xt − Xs‖p � p

2
, for all s, t ∈ T , s 
= t. (21) 

Consider the following function: 

. ϕi(ti) =
{
0 if |ti | < ρ

ki if |ti | � ρ
.

Let .ϕ(t) = (ϕi(ti))
d
i=1. We show that .‖Xϕ(t) − Xϕ(s)‖p � p

2 . It requires 
some upper bound on .‖Xt−ϕ(t)‖p. Consider any .s ∈ T , then using (12) 

. ‖Xs‖p � C′(p‖s‖∞ + √
p‖s‖2).

Note that for .s = t − ϕ(t) we get by the contraction principle . mp(s, 0) �
pρ + mp(t, 0) and hence using (18) 

. ‖Xs‖p � C′(p‖s‖∞ + √
p‖s‖2) � 2C′ρp + CC′mp(s, 0)

� C′(2 + C)ρp + CC′mp(t, 0)) � C′((2 + C)ρ + Cδ)p � p

4
,

for suitably small . δ and hence also suitably small . ρ. Therefore, 

. ‖Xϕ(t) −Xϕ(s)‖p � ‖Xt −Xs‖p −‖Xt −Xϕ(t)‖p −‖Xs −Xϕ(s)‖p � p

2
.

Suppose we can prove the main result for the constructed set T , which 
satisfies .|T | � exp(p/4). Formally, we select a subset .S ⊂ T such that 
.0 ∈ S and .exp(p/4) � |S| � 1 + exp(p/4). The Sudakov minoration for 
cube-like sets gives
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. E sup
t∈S

Xϕ(t) � K−1p,

for some universal K . Recall that 

. ‖Xt−ϕ(t)‖p � C′((2 + C)ρ + Cδ)p

and therefore by Remark 1 and .exp(p/4) � |S| � 1 + exp(p/4), .0 ∈ S, 
we get 

. E sup
t∈S

Xt−ϕ(t) � eC′ ((2 + C)ρ + Cδ) p.

Thus, 

. E sup
t∈S

Xt = E sup
t∈S

Xϕ(t)+Xt−ϕ(t) � E sup
t∈S

Xϕ(t)−E sup
t∈S

Xt−ϕ(t) �
1

2
K−1p,

for suitably small . δ, i.e., .2eC′ ((2 + C)ρ + Cδ) � K−1. Obviously, the 
set S is the required simplification in this step. 

Step 4 The final step is to replace p by 4p so that . exp(p) � |T | � 1 + exp(p)

and .0 ∈ T . Then, obviously, by(7) (with .α = 1) 

. 4‖Xt − Xs‖p � ‖Xt − Xs‖4p � 2p.

Thus, we may to redefine . ti as . 2ti . Consequently, the theorem holds true 
with slightly rearranged constants, namely, we set .δ′ = 2δ instead of . δ and 
. ρ′ (instead of . ρ) that satisfies .ρ′/ log(1/ρ′) = 4Cδ′. Obviously, . ρ′ � e−1

if . δ was suitably small. 
�	

The above proof is a slightly rearranged version of the argument presented in 
[5]—we have stated the proof here for the sake of completeness. Note also that 
without much effort the argument works for .α-regular X, i.e., when the inequality 
(7) is satisfied for all .s, t ∈ R

d . 

Remark 2 There are suitably small . δ′ and . δ′′ such that for any set T that satisfies 
properties from Preposition 1, then for all .t ∈ T the following holds true: 

.|I (t)| � δ′p, ‖t‖1 =
∑

i∈I (t)

ki � δ′′p, (22) 

Proof Indeed by (14) we get .‖t‖1 � 2Cδp. On the other hand, . ρ|I (t)| � ‖t‖1 �
2Cδp. Since .4Cδ/ρ = 1/ log(1/ρ), this implies
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. |I (t)| � 1

2

1

log 1
ρ

p.

We set .δ′ = 2Cδ and .δ′′ = 1/(2 log(1/ρ)). �	
There is another property that we can add to our list of conditions that T has to 
satisfy. Namely, it suffices to prove minoration only when .‖Xt − Xs‖p � p for all 
.t ∈ T . 

Proposition 2 Suppose that random vector X satisfies (7), then it suffices to prove 
the minoration only for sets T such that .p � ‖Xt − Xs‖p � 2αp. 

Proof The argument is rather standard and can be found, e.g., in [9]. Basically, 
either there is at least .ep/2 points that are within the distance .2αp from some point 
in T or one can find at least .ep/2 points that are .2αp separated, i.e., . ‖Xt − Xs‖p �
2αp for all .s, t .s 
= t in the set. However, then .‖Xt − Xs‖p/2 � 2α

2α p = p, then 
.‖Xt − Xs‖p/2 � p. We continue with this set instead of T . It is easy to understand 
that in this way we have to find a subset . T ′ of T that counts at least .ep/2m

elements, 
where .2m � p, such that 

. p � ‖Xt − Xs‖p/2m � 2αp s, t ∈ T ′.

In this case, obviously, for .t̃ = t/2m and .T̃ = {t̃ : t ∈ T ′}, we get . ‖Xt̃ −Xs̃‖p/2m �
p/2m. Then, by our assumption that the minoration works for . T̃ and . p/2m

. 
p

K2m
� E sup

t̃∈T̃

Xt̃ = E sup
t∈T ′

Xt/2m � 1

2m
E sup

t∈T

Xt .

Otherwise, if we reach m such that .2m � p < 2m+1, we obtain that there are at 
least two points . s, t , .s 
= t such that .‖Xt −Xs‖2 � p. This immediately implies the 
minoration, since 

. E sup
t∈T

Xt �
1

2
E|Xt − Xs | � 1

2
√
2
‖Xt − Xs‖2 � p.

Obviously, by homogeneity 

. E sup
t∈T

Xt � E sup
t∈T̄

Xt/2m = 1

2m
E sup

t∈T ′
Xt � K−1p,

which ends the proof. �	
There is one more useful remark. As explained in the previous works on the 
problem—see Lemma 2.6 in [6] or Section 4 in [10]—the case when .p � d is 
“easy.” More precisely, 

Remark 3 If the Sudakov minoration holds for .p = d, then it holds also for .p � d.
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4 How to Compute Moments 

The second step concerns basic facts on moments of . Xt , .t ∈ T . Recall that we work 
with a random vector .X = (X1, X2, . . . , Xd), which is 1-unconditional, isotropic, 
and log-concave. In particular, it implies that for any . t ∈ R

d

. Xt = 〈X, t〉 =
d∑

i=1

tiXi
d=

d∑

i=1

tiεi |Xi |,

where .ε = (εi)
d
i=1 is a vector of independent Rademacher variables, which is 

independent of X. We start from a series of general facts that are known in this case. 
We also discuss moments of X with independent, symmetric, and .α-regular entries. 
It will be discussed later that due to our basic simplification—Proposition 1—we 
have to compute .‖Xt‖p only when .d � p, which is a bit simpler than the general 
case. We start from the characterization proved in [6]. 

Theorem 3 Suppose that X has 1-unconditional and log-concave distribution 
.μX(dx) = exp(−U(x))dx. We assume also that X is in the isotropic position. 
Then, for any . p � d

.‖Xt‖p � sup

{
d∑

i=1

|ti |ai : U(a) − U(0) � p

}
. (23) 

In [6], there is also an alternative formulation of this result 

Theorem 4 Under the same assumptions as in Theorem 3, we have for any . p � d

.‖Xt‖p � sup

{
d∑

i=1

|ti |ai : P

(
d⋂

i=1

{|Xi | � ai}
)
� e−p

}
. (24) 

Note that a similar characterization works when X has independent and .α-regular 
entries. There is also a version of the above fact formulated in terms of moments, 
namely, 

Theorem 5 Under the same assumptions as in Theorem 3, we have for any . p � d

.‖Xt‖p � sup

{
d∑

i=1

|ti |‖Xi‖ai
:

d∑

i=1

ai � p

}
. (25) 

Proof We prove the result for the sake of completeness. For simplicity we consider 
only log-concave, one-unconditional, isotropic case. The .α-regular case can be 
proved in the similar way. Consider .ai � 0, .i ∈ [d] such that .∑d

i=1 ai � p. Since 
X is isotropic .ai < 2 are unimportant, that is why we use .ai ∨ 2. It is well-known 
that moments and quantiles are comparable, namely, for some constant .C � 1
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. P
(
|tiXi | � C−1‖tiXi‖ai∨2

)
� C−1e−ai∨2

and hence 

.

d∏

i=1

P
(
|tiXi | � C−1‖tiXi‖ai∨2

)
� C−de−∑d

i=1 ai∨2. (26) 

Consequently, 

. ‖Xt‖p � C−2

(
d∑

i=1

‖tiXi‖ai∨2

)
e
−∑d

i=1
ai∨2

p

� C−2e−3
d∑

i=1

‖tiXi‖ai∨2,

where we have used that 

. 

d∑

i=1

ai ∨ 2 � 2p +
d∑

i=1

ai � 3p.

We turn to prove the converse inequality. Let .|X| = (|Xi |)di=1 and . |X|t =∑d
i=1 |ti ||Xt |. Since .p � d, .‖X‖p � ‖|X|t‖p � 2‖Xt‖p. By the homogeneity 

of the problem, we can assume that .‖|X|t‖p = p (possibly changing point t by 
a constant). We have to prove that there exists . ai such that .

∑d
i=1 ai � p whereas 

.
∑d

i=1 ‖tiXi‖ai
� C−1p. It is clear that it suffices to prove the result for p is suitably 

large, in particular, for .p � 2. Let  . γ be a constant, which we determine later. We 
define . ri as: 

1. .ri = 2 if .‖tiXi‖2 � 2γ . 
2. .ri = p if .‖tiXi‖p � pγ . 
3. Otherwise, .ri = inf{r ∈ [2, p] : ‖tiXi‖r = rγ }. 
We first observe that if .ri0 � p, then there is nothing to prove since by choosing 
.ai0 = ri0 and other . ai equal 0 we fulfill the requirement .ri0 = ∑d

i=1 ai � p, 
whereas 

. 

d∑

i=1

‖tiXi‖ai∨2 � ‖tiXi‖ai0
� γ ai0 � γp.

Therefore, we may assume that .ri < p for all .i ∈ [d]. Now, suppose that we can 
find a subset .J ⊂ [d] with the property .∑i∈J ri � 3p and J does not contain a 
smaller subset with the property. Therefore, necessarily .

∑
i∈J ri � 4p since . ri � p

for any .i ∈ [d]. Obviously,
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. 

d∑

i=1

‖tiXi‖ri �
∑

i∈J

‖tiXi‖ri � γ
∑

i∈J

(ri − 2) � γp

and hence we can set .ai = ri/4, which implies that .
∑d

i=1 ai � p and 

. 4
d∑

i=1

‖tiXi‖ai∨2 �
d∑

i=1

‖tiXi‖ri � γp.

Therefore, to complete the proof, we just need to prove that .
∑d

i=1 ri � 4p. By the  
log-concavity for .ri � 2, . u � 1

. P
(
ti |Xi | � eu‖tiXi‖ri

)
� e−riu

and therefore 

. P
(

ti |Xi |
γ e

� riu

)
� e−riu = P(|Ei | � riu),

where we recall that . Ei are symmetric standard exponentials. Consequently, 

. ‖|X|t‖p �
(

eγ

d∑

i=1

ri

)
+

+
⎡

⎣E
(

d∑

i=1

|ti ||Xi |1|tiXi |�γ eri

)p
⎤

⎦

1
p

�

� (eγ

d∑

i=1

ri) + γ e

(
E|

d∑

i=1

|Ei |1|Ei |�ri |p
) 1

p

�
(

eγ

d∑

i=1

ri

)
+ γ e‖Z‖p,

where Z is of gamma distribution .�(d, 1). Clearly, .‖Z‖p � (p + d) � 2p and 
therefore 

. p = ‖|X|t‖p � γ e

d∑

i=1

ri + 4γ ep.

Therefore, choosing .γ = 1/(8e)
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. 
1

2
‖|X|t‖p � 1

8

d∑

i=1

ri .

It proves that .
∑d

i=1 ri � 4p, which completes the proof. �	
We turn to prove some remarks on moments in our case. We are interested in 
moments of .‖Xt‖p for X that satisfies our structural assumption. In order to explain 
all the ideas, we need a lot of random variables. It is good to collect their definitions 
in one place in order to easily find the right reference. 

Definition 1 We define the following random variables: 

• Let .X ∈ R
d be a random vector in the isotropic position. 

• Let .X = (X1, X2, . . . , XM) where .Xk ∈ R
nk , .k ∈ [M] are independent and . Xk

has the density 

. exp(−Uk(‖xk‖pk
pk

)), where Uk is convex, increasing, xk = (xi)i∈Jk
.

• Sets . Jk , .1 � k � M are disjoint and .|Jk| = nk . 
• We denote .Xk = (Xi)i∈Jk

, and we also use the ordering .Xk = (Xk1, Xk2, . . . , Xknk
). 

• Random variables .Rk ∈ R+, .Vk ∈ R
nk , .k ∈ [M], are such that .Xk = RkVk . 

• Random vector .Vk = (Vk1, Vk2, . . . , Vknk
) is distributed with respect to the cone 

measure on .∂B
nk
pk
. 

• Random variable . Rk is distributed on . R+ with respect to the density 

.gk(s) = sn−1 exp(−Uk(s
pk ))|∂Bnk

pk
|1R+(s). (27) 

• Let .Y = (Y1, Y2, . . . , YM), where .Yk ∈ R
nk , .k ∈ [M] are independent and . Yk

has the density 

.fk(xk) =
∏

i∈Jk

b

1
pk

k

2�
(
1 + 1

pk

)e−bk |xi |pk
, where bk =

[
�( 3

pk
)

�( 1
pk

)

] pk
2

. (28) 

• We denote .Yk = (Yi)i∈Jk
, and we also use the ordering .Yk = (Yk1, Yk2, . . . , Yknk

). 
• Random variables .R̃k ∈ R+, Vk ∈ R

nk , are such that .Yk = R̃kVk; moreover, . Vk

is already defined and distributed like the cone measure on .∂B
nk
pk
. 

• Random variable . R̃k is distributed on . R+ with respect to the density 

.g̃k(s) = b

nk
pk

k
1
pk

�(
nk

pk
)
snk−1 exp(−bks

pk )1R+(s), bk =
[

�( 3
pk

)

�( 1
pk

)

] pk
2

. (29)
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There are some basic consequences of these definitions. Note that two of them, i.e., 
formulas (27, 29), have been mentioned above. 

Remark 4 There is a list of basic properties of variables described in Definition 1. 

• Variables . Rk , .k ∈ [M] and . Vk , .k ∈ [M] are all independent of each other. 
• Variables . R̃k , .k ∈ [M] and . Vk , .k ∈ [M] are all independent of each other. 
• All variables . Yi , .i ∈ Jk , .k ∈ [M] are independent and isotropic, in fact . Yi , . i ∈ Jk

has the density 

. 
b

1
pk

k

2�
(
1 + 1

pk

)e−bk |x|pk
, x ∈ R.

• Variables . Vk , .k ∈ [M] are 1-unconditional. 
• We have .|∂B

nk
pk

| = pk (2� (1 + 1/pk))
nk /�(nk/pk). 

• Clearly .Xtk = Rk〈Vk, tk〉 and hence .‖Xtk‖r = ‖Rk‖r‖〈Vk, tk〉‖r , .r > 0. In  
particular, 

.1 = EX2
ki = ER2

kEV 2
ki , i = 1, 2, . . . , nk. (30) 

• In  the same way  .Ytk = R̃k〈Vk, tk〉 and hence .‖Ytk‖r = ‖R̃k‖r‖〈Vk, tk〉‖r , .r > 0. 
In particular, 

.1 = EY 2
ki = ER̃2

kEV 2
ki , i = 1, 2, . . . , nk. (31) 

Let .Ik(t) = {i ∈ Jk : |ti | > 0}. Using Theorem 3 we get for .r � |Ik(t)|, where 

.‖〈Yk, tk〉‖r = ‖R̃k‖r‖〈Vk, tk〉‖r � r1/pk‖tk‖qk
. (32) 

On the other hand, 

. ‖R̃k‖r = b
− 1

pk

k

�
(

nk+r
pk

) 1
r

�
(

nk

pk

) 1
r

� (nk + r)
1

pk .

Consequently, 

Proposition 3 The following holds: 

.‖〈Vk, tk〉‖r �

⎧
⎪⎨

⎪⎩

‖tk‖qk

r
1

pk

n

1
pk
k

if |Ik(t)| � r � nk

‖tk‖qk
if r > nk
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It remains to explain the role of .‖Rk‖r . For all .k ∈ [M] we define 

. Sk = R
pk

k , Ũk satisfies exp(−Ũk(x))1R+(x) = exp(−Uk(x))
1

pk

|∂Bnk
pk

|1R+(x).

(33) 

Clearly, . Sk has the density 

. hk(x) = x
nk
pk

−1
exp(−Uk(x))

1

pk

|∂Bnk
pk

|1R+(x) = x
nk
pk

−1
exp(−Ũk(x))1R+(x).

Note that .‖Rk‖r = ‖Sk‖
1

pk

r/pk
. We use the result of Ball [1]—Lemma 4. 

Lemma 1 For any .0 < p < q, the following holds: 

. e−Ũ (0)q�(p + 1)q+1
[∫

R+
xqe−Ũ (x)dx

]p+1

� e−Ũ (0)p�(q + 1)p+1
[∫

R+
xpe−Ũ (x)dx

]q+1

, (34) 

where .Ũ (x) is a convex, increasing function on . R+. 

Note that we use the above result for . Ũk defined in (33). Consequently, we get 

Corollary 1 For any .r � 1, we have 

. ‖Rk‖r = ‖Sk‖
1

pk
r

pk

� e
1
nk

Ũk(0)
�
(

nk+r
pk

) 1
r

�
(

nk

pk

) 1
r
+ 1

nk

.

We have to bound .exp(−Ũk(0)/nk). First, using the isotropic position of . Yk , we get 

. 1 = EV 2
kiER̃2

k = 1

b

2
pk

k

�
(

nk+2
pk

)

�
(

nk

pk

) EV 2
ki ,

hence 

.EV 2
ki =

b

2
pk

k �
(

nk

pk

)

�
(

nk+2
pk

) .
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Therefore, by Lemma 1, we get 

. 
1

E(Vki)2
= ER2

k � e
2
nk

Ũk(0)
�
(

nk+2
pk

)

�
(

nk

pk

)1+ 2
nk

.

It proves the following inequality: 

.e
1
nk

Ũk(0) � b
− 1

pk

k �

(
nk

pk

) 1
nk

. (35) 

In order to prove the upper bound, we need a Hensley-type inequality. First, observe 
that 

. P(Rk � t) =
∫ t

0
xnk−1e−Ũk(x

pk )dx �
∫ t

0
xnk−1e−Ũk(0)dx = 1

nk

tnk e−Ũk(0).

Let .Fk(t) = 1
nk

tnk e−Ũk(0) for .0 � t � t∗, where .t∗ =
(
nke

Ũk(0)
)1/nk

. We can 

calculate 

. 
1

E(Vk)
2
i

= ER2
k = 2

∫ ∞

0
tP(Rk > t)dt

� 2
∫ t∗

0
t (1 − Fk(t))dt � 2

∫ t∗

0
t (1 − tnk )dt

= t2∗ − 2
1

nk + 2
tnk+2∗ e−Ũk(0) 1

nk

= t2∗ − 2

nk + 2
t2∗ = nk

nk + 2
t2∗ .

Therefore, 

. 

(
nke

Ũk(0)
) 2

nk � nk + 2

nk

�
(

nk+2
pk

)

b

nk
pk

k �
(

nk

pk

) .

This means 

.e
1
nk

Ũk(0) � 1

n

1
nk

k

(nk + 2)
1
2

n
1
2
k

�
(

nk+2
pk

) 1
2

b

1
pk

k �
(

nk

pk

) 1
2

. (36)
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It finally proves 

. 

�
(

nk

pk

) 1
nk

b

1
pk

k

� e
1
nk

Ũk(0) � 1

n

1
nk

k

(nk + 2)
1
2

n
1
2
k

�
(

nk+2
pk

) 1
2

b

1
pk

k �
(

nk

pk

) 1
2

and hence 

. e
1
nk

Ũk(0) � 1

‖Vki‖2 � n

1
pk

k .

Together with Corollary 1, it shows that 

.‖Rk‖r � n

1
pk

k

�
(

nk+r
pk

) 1
r

�
(

nk

pk

) 1
nk

+ 1
r

. (37) 

Note that 

. 

�
(

nk+r
pk

) 1
r

�
(

nk

pk

) 1
nk

+ 1
r

�
(
1 + r

nk

) nk+r

pkr

.

That is why 

.‖Rk‖r � (nk + r)1/pk . (38) 

In particular, .‖Rk‖r � n
1/pk

k for .1 � r � nk . We introduce variables . Pk =
Rk/‖Rk‖2, .Qk = R̃k/‖R̃k‖2, .Wk = ‖Rk‖2Vk . This helps since now vectors 
.(εkPk)

M
k=1, .(εkQk)

M
k=1 are in the isotropic position, where . εk , .k = 1, 2, . . . ,M are 

independent Rademacher variables, independent of all . Pk and . Qk . Obviously, also 
. Wk , .k = 1, 2, . . . ,M are isotropic, independent and independent of all . Pk . Thus, in 
particular, .‖Pk‖r , ‖Qk‖r � 1, for .1 � r � nk . Once again due to Lemma 1 

.e
−Ũk(0)(

nk+q

pk
−1)

�

(
nk + p

pk

) nk+q

pk

[∫

R+
x

nk+q

pk
−1

e−Ũk(x)dx

] nk+p

pk

� e
−Ũk(0)(

nk+p

pk
−1)

�

(
nk + q

pk

) nk+p

pk

[∫

R+
x

nk+p

pk
−1

e−Ũk(x)dx

] nk+q

pk

.
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Therefore, 

. ‖Rk‖
q(nk+p)

pk
q � e

Ũk(0)
(q−p)

pk

�
(

nk+q
pk

) nk+p

pk

�
(

nk+p
pk

) nk+q

pk

‖Rk‖
p(nk+q)

pk
p .

which is 

.‖Rk‖q � e
Ũk(0)

(q−p)
q(nk+p)

�
(

nk+q
pk

) 1
q

�
(

nk+p
pk

) nk+q

q(nk+p)

‖Rk‖
p(nk+q)

q(nk+p)

p . (39) 

Note that 

. 

�
(

nk+q
pk

) 1
q

�
(

nk+p
pk

) nk+q

q(nk+p)

� (nk + q)
nk+q

pkq

(nk + p)
nk+q

pkq

�
(

nk + q

nk + p

) nk+q

qpk

.

Moreover, for . p � 1

. e
Ũk(0)

(q−p)
q(nk+p) � (n

1
pk

k )
(q−p)nk
q(nk+p) � ‖Rk‖

(q−p)nk
q(nk+p)

p

and since 

. 
(q − p)nk

q(nk + p)
+ p(nk + q)

q(nk + p)
= 1

it proves that 

.‖Rk‖q �
(

nk + q

nk + p

) 1
pk ‖Rk‖p, (40) 

which means that . Rk is .α-regular. In particular, .εkRk , .k = 1, 2, . . . , M are 
independent symmetric .α-regular variables. It also implies that . R̃k have the fastest 
growth among all the possible distributions of . Rk . 

We end this section with the characterization of .‖Xt − Xs‖p. Recall our notation 
.Pk = Rk/‖Rk‖2 and .Wk = ‖Rk‖2Vk . We show  

Proposition 4 Under the assumptions as in Theorem 3 and assuming that all the 
properties mentioned in Preposition 1 are satisfied, the following result holds:
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.‖Xt − Xs‖p � sup

{
M∑

k=1

‖Pk‖rk‖〈Wk, tk − sk〉‖rk1rk�|Ik(t)�Ik(s)|| :
M∑

k=1

rk = p

}
. 

(41)

‖Yt − Ys‖p � sup

{
M∑

k=1

‖Qk‖rk‖〈Wk, tk − sk〉‖rk1rk�|Ik(t)�Ik(s)|| : 
M∑

k=1 

rk = p

}
. 

(42) 

Moreover, if .rk � |Ik(t)�Ik(s)||, then 

. ‖Qk‖rk‖〈Wk, tk − sk〉‖rk = ‖Ytk‖rk ∼ r
1/pk

k ‖tk‖qk
� ‖Pk‖rk |〈Wk, tk − sk〉‖rk

= ‖Xtk‖rk .

Proof We use that .Xt − Xs = ∑M
k=1〈Xk, tk − sk〉 and . Xk are independent, log-

concave vectors. Observe that 

. Xtk−sk = 〈Xk, tk − sk〉 = Pk〈Wk, tk − sk〉.

Let us denote also .Ik(t) = Jk ∩ I (t). By Proposition 1—see (22)—the number of 
.k ∈ M for which .tk − sk is nonzero is much smaller than p. We use Theorem 5 
treating .Xt − Xs as .

∑M
k=1 Xtk−sk , and it yields 

. ‖Xt − Xs‖p � sup

{
M∑

k=1

‖Xtk‖rk :
M∑

k=1

rk = p

}
.

Since .‖Xtk−sk‖rk = ‖Pk‖rk‖〈Wk, tk − sk〉‖rk , we get 

.‖Xt − Xs‖p � sup

{
M∑

k=1

‖Pk‖rk‖〈Wk, tk − sk〉‖rk :
M∑

k=1

rk = p

}
. (43) 

Moreover, 

. ‖Pk‖r � 1, for r � nk, ‖Pk‖r �
r

1
pk

k

n

1
pk

k

, r > nk.

and 

.‖〈Wk, tk − sk〉‖r �
{

r1/pk‖tk − sk‖qk
for |Ik(t)�Ik(s)| � r � nk

n
1/pk

k ‖tk − sk‖qk
for r > nk

.
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We stress that we should not care about .rk < |Ik(t)�Ik(s)| since, by (22), 
.
∑M

k=1 |Ik(t)�Ik(s)| is much smaller than p. Thus, .rk < |Ik(t)�Ik(s)| can be 
ignored when estimating .‖Xt − Xs‖p. Thus, finally, 

. ‖Xt − Xs‖p �
{

M∑

k=1

‖Pk‖rk‖〈Wk, tk − sk〉‖rk1rk�|Ik(t)�Ik(s)|| :
M∑

k=1

rk = p

}

as required. The proof for .‖Yt −Ys‖p follows the same scheme: we have to use (32). 
�	

We will use the above result many times in the subsequent proofs, even without 
mentioning it. 

5 Positive Process 

We are going to show that it suffices to prove that for all . p � 1

. E sup
t∈T

M∑

k=1

|Xtk | �
1

K
p.

For simplicity we define .|X|t =∑M
k=1 |Xtk |. We show  

Lemma 2 Suppose that T satisfies simplifications from Proposition 1. Then, 
.E supt∈T |X|t � 1

K
p, which implies also that .E supt∈T Xt � 1

4K p. 

Proof Before we start, let introduce notation: writing . EI for .I ⊂ [M] we mean the 
integration over vectors .(Xk)k∈I . Note, in particular, that .E = EI,I c . 

Let us observe that 

. E sup
t∈T

Xt = E sup
t∈T

M∑

k=1

Xtk

= E sup
t∈T

M∑

k=1

εkXtk � E sup
t∈T

M∑

k=1

εk|Xtk |,

where .(εk)
M
k=1 are independent random signs. The last inequality is due to Bernoulli 

comparison and the inequality 

.||Xtk | − |Xsk || � |Xtk − Xsk |.
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Now, the standard argument works, namely, 

. E sup
t∈T

M∑

k=1

εk|Xtk | =
∑

I⊂[M]

1

2M
EI,I c sup

t∈T

∑

k∈I

|Xtk | −
∑

k∈I c

|Xtk |

�
∑

I⊂[M]

1

2M
EI sup

t∈T

(
∑

k∈I

|Xtk | −
∑

k∈I c

EI c |Xtk |
)

�
∑

I⊂[M]

1

2M
E
∑

k∈I

|Xtk | − δ"p � 1

2
E sup

t∈T

M∑

k=1

|Xtk | − δ"p,

where we have used Jensen’s inequality and (22) which implies 

. 
∑

k∈I c

E|Xtk | �
∑

i∈I (t)

kiE|Xi | �
∑

i∈I (t)

ki � δ"p.

It suffices that .δ" � 1/(4K). �	
The above result enables us to split points . tk into small and large part. More 
precisely, let us split .tk = t∗k + t

†
k , where 

.small part : t∗k = tk if Dqk‖tk‖qk
qk

� Apknk and 0 otherwise, . (44) 

large part : t
† 
k = tk if Dqk‖tk‖qk 

qk > Apk nk and 0 otherwise. (45) 

We will need that .A,D � 1 and A is such that .Apk � Dqk for each .k ∈ [M]. This  
is the moment when we take advantage of the cutoff level .pk � 1+ ε, since then we 
can find such A that does depend on . ε only. In fact, we could do better since our split 
is not important when .qk > nk . Indeed, then .n

1/qk

k � 1, .‖tk‖qk
� ‖tk‖∞, and it is 

well-known that we can require in the proof of minoration that each . |ti |, .i ∈ I (t) is 
large enough. That means, for . pk too close to 1, the first case simply cannot happen. 
In general, we do not want to bound . nk from above, but, fortunately, it is possible 
to reduce the dimension of our problem by a simple trick. Note that T has about 
. ep points whose supports are thin—much smaller than p. Thus, there are only . pep

important coordinates on which we can condition our basic vector X. Moreover, 
due to the Prekopa-Leindler theorem, such a reduced problem is still of log-concave 
distribution type. Since it does not affect the computation of .‖Xt − Xs‖p moments 
. s, t , we end up in the question, where .d � pep, which together with Remark 3 
shows that we should care only for .p � d � pep. The trouble with this approach is 
that it introduces dependence of . ε on p, which we do not like in our considerations. 

We have two possibilities: 

• There exists .S ⊂ T , .|S| � ep/2 such that for any .s, t ∈ S, .s 
= t and
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.

M∑

k=1

Dqk‖t∗k − s∗
k ‖qk

qk
=

M∑

k=1

∑

i∈Ik(t
∗)�Ik(s

∗)
Dqkk

qk

i � p. (46) 

• There is a point .t0 ∈ T and a subset .S ⊂ T , .|S| � ep/2 such that for any . t ∈ S

the following inequality holds true 

.

M∑

k=1

Dqk‖t∗k − t∗0k‖qk
qk

=
M∑

k=1

∑

i∈Ik(t
∗)�Ik(t

∗
0 )

Dqkk
qk

i < p. (47) 

Let .EP ,EW denote the integration with respect to .(Pk)
M
k=1 and .(Wk)

M
k=1. Note that 

we have 

. E sup
t∈T

|X|t � E sup
t∈T

M∑

k=1

|Pk||〈Wk, tk〉|

� EW sup
t∈T

M∑

k=1

EP |Pk||〈Wk, tk〉| � E sup
t∈T

M∑

k=1

|〈Wk, tk〉|. (48) 

For simplicity, we denote 

. |X̃|t =
M∑

k=1

|〈Wk, tk〉|.

Obviously, .|X̃|t � |X̃|t∗ . We are going to prove that, in the case of small coefficients 
(cf. (44)), necessarily .E supt∈T |X̃|t∗ � K−1p. 

6 Small Coefficients 

Recall that we work in the cube-like setting introduced in Proposition 1. We are  
going to prove the Sudakov minoration, in the setting where there are a lot of well-
separated points in T , in the sense of (46). Toward this goal, we need the process 
.(Yt )t∈T —see (28). We slightly modify the process, namely, let 

. Zt =
M∑

k=1

∑

i∈Ik(t)

εi (ki |Yi |) ∧ Dqkk
qk

i , |Z|t =
M∑

k=1

∑

i∈Ik(t)

(ki |Yi |) ∧ Dqkk
qk

i ,

where as usual . εi , .i ∈ [d] are independent random signs. Since now the entrances 
are independent, in order to prove that .E supt∈S Zt∗ � K−1p, it suffices to show 
that .‖Zt∗ − Zs∗‖p � p/D. We prove that this works under the condition (46).
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Lemma 3 Suppose that (46) holds true. Then, .‖Zt∗ − Zs∗‖p � p/D. 

Proof Note that for some . 
∑M

k=1
∑

i∈Ik
rki = p

. ‖Zt∗ − Zs∗‖p �
M∑

k=1

∑

i∈Ik(t
∗)�Ik(s

∗)
‖ (ki |Yi |) ∧ Dqkk

qk

i ‖rki
.

However, it is clear that .‖ (ki |Yi |) ∧ Dqkk
qk

i ‖rki
� ‖kiYi‖rki

∧ Dqkk
qk

i . Since 

.‖kiYi‖rki
� kir

1
pk

ki , we get 

. ‖Zt∗ − Zs∗‖p �
M∑

k=1

∑

i∈Ik(t
∗)�Ik(s

∗)

(
kir

1
pk

ki

)
∧ Dqkk

qk

i .

Our assumption is that 

. 

M∑

k=1

∑

i∈Ik(t
∗)�Ik(s

∗)
Dqkk

qk

i � p,

which means that we can select sets .Ik ⊂ Ik(t
∗)�Ik(s

∗) such that . rki = Dqkk
qk

i

for each .i ∈ Ik and .rki = 0 for .i ∈ Jk\Ik , which satisfy .
∑M

k=1
∑

i∈Ik
Dqkk

qk

i � p. 
Then, 

. ‖Zt∗ − Zs∗‖p �
M∑

k=1

∑

i∈Ik

Dqk−1k
qk

i � p/D.

This proves the result. �	
We have proved that .E supt∈S Zt∗ � K−1p. This implies that 

. K−1p � E sup
t∈S

M∑

k=1

⎛

⎝
∑

i∈Ik(t
∗)

kiεi |Yi |
⎞

⎠ ∧ Dqk‖tk‖qk
qk

.

The crucial thing is to establish a similar inequality replacing . 
∣∣∑

i∈Ik(t)
kiεi |Yi |

∣∣
with .

∑
i∈Ik(t)

ki |Yi |. This can be done following the approach we have used in the 
proof of the positive process lemma—Lemma 2. Namely, we have 

Lemma 4 The following inequality holds: 

.E sup
t∈S

M∑

k=1

⎛

⎝
∑

i∈Ik(t
∗)

kiεi |Yi |
⎞

⎠ ∧ Dqk‖tk‖qk
qk

� K−1p. (49)
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Proof Let us observe that 

. E sup
t∈S

M∑

k=1

|
∑

i∈Ik(t
∗)

kiYi

∣∣ ∧ ‖tk‖qk
qk

= 1

2d

∑

I⊂[d]
EI,I c sup

t∈S

⎛

⎝
M∑

k=1

∣∣
∑

i∈Ik(t
∗)∩I

ki |Yi | −
∑

i∈Ik(t
∗)∩I c

ki |Yi |
∣∣ ∧ Dqk‖tk‖qk

qk

⎞

⎠

� 1

2d

∑

I⊂[d]
EI sup

t∈S

⎛

⎝
M∑

k=1

⎛

⎝
∑

i∈Ik(t
∗)∩I

ki |Yi |
⎞

⎠ ∧ Dqk‖tk‖qk
qk

− EI c

∑

i∈Ik(t
∗)∩I c

ki |Yi |
⎞

⎠

� 1

2d

∑

I⊂[d]
E sup

t∈S

M∑

k=1

⎛

⎝
∑

i∈Ik(t
∗)∩I

ki |Yi |
⎞

⎠ ∧ Dkq ‖tk‖qk
qk

− δ′′p

� 1

2
E sup

t∈S

M∑

k=1

⎛

⎝
∑

i∈Ik(t
∗
ki |Yi |

⎞

⎠ ∧ Dqk‖tk‖qk
qk

− δ′′p,

where we have used .E|Yi | � 1 and .
∑

i∈I (t) ki � δ′′p—Proposition 1, see  (22). We  
have also used that for positive .a, b, c, inequalities .|a − b| ∧ c � a ∧ c − b and 
.a ∧ c + b ∧ c � (a + b) ∧ c hold true. For suitably small . δ′′, this implies 

. (4K)−1p � E sup
t∈S

M∑

k=1

∣∣
∑

i∈Ik(t
∗)

kiεi |Yi |
∣∣ ∧ Dqk‖tk‖qk

qk
.

�	
Let us recall our notation .Qk = R̃k/‖R̃k‖2, .Wk = Vk‖R̃k‖2, .Qk〈Wk, tk〉 = Ytk . 
Consequently, the above result can be rewritten in the following form: 

.(4K)−1p � E sup
t∈S

M∑

k=1

(
Qk|〈Wk, t

∗
k 〉|) ∧ Dqk‖tk‖qk

qk
. (50) 

and finally 

. E sup
t∈S

M∑

k=1

(
Qk|〈Wk, t

∗
k 〉|) ∧ Dqk‖tk‖qk

qk

� E sup
t∈S

M∑

k=1

(
C|〈Wk, t

∗
k 〉|) ∧ Dqk‖tk‖qk

qk

+ E sup
t∈S

M∑

k=1

(
(Qk − C)+|〈Wk, t

∗
k 〉|) ∧ Dqk‖tk‖qk

qk
. (51)
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We prove that the latter term is small comparable to p. Recall that . |S| � |T | �
1 + ep, we are done if we show that 

.

∥∥∥∥∥

M∑

k=1

(
(Qk − C)+|〈Wk, t

∗
k 〉|) ∧ Dqk‖tk‖qk

qk

∥∥∥∥∥
p

� cp (52) 

for c is suitably small. We prove this result in the next theorem. This is the main 
estimate in this section. 

Theorem 6 For suitably large C, (52) holds with c, which can be suitably small. 

Proof Clearly, for . u > C̃

. P(Qk > u + C̃) = b

nk
pk

k
1
pk

�(
nk

pk
)

∫ ∞

‖R̃k‖2(C̃+u)

xnk−1e−bkx
pk

dx

= b

nk
pk

k
1
pk

�(
nk

pk
)

∫ ∞

‖R̃k‖2u
(‖R̃k‖2C̃ + x)nk−1e−bk(‖R̃k‖2C̃+x)pk

dx

� 2nk−1 exp(−bk‖R̃k‖pk

2 Cpk )
b

nk
pk

k
1
pk

�(
nk

pk
)

∫ ∞

‖R̃k‖2u
xnk−1e−bkx

pk
dx

= 2nk−1 exp(−bk‖R̃k‖pk

2 C̃pk )P(Qk > u).

Therefore, choosing .C̃ = C/2, we have .(Qk−C)+, which can be replaced by .δkQk , 
where . δk is independent of . Qk; moreover, .δk ∈ {0, 1} and 

. P(δk = 1) = 2nk−1 exp(−bk‖R̃k‖pk

2 C̃pk ).

Note that 

. bk‖R̃‖pk

2 =
�
(

nk+2
pk

) pk
2

�
(

nk

pk

) pk
2

� nk + 2

pk

,

and therefore, for suitably large C, 

.P(δk = 1) � exp(−nk(C/4)pk ).
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We denote by .Eδ,EQ,W integration with respect to variables .(δk)
M
k=1 and 

.(Qk,Wk)
M
k=1. We have  

. ‖
M∑

k=1

(
(Qk − C)+|〈Wk, t

∗
k 〉|) ∧ Dqk‖tk‖qk

qk
‖p

� ‖
M∑

k=1

δk

(
Qk|〈Wk, t

∗
k 〉|) ∧ Dqk‖tk‖qk

qk
‖p

=
⎡

⎣Eδ

∑

K⊂[M]

∏

k∈K

1δk=1

∏

l∈Kc

1δl=0EQ,W

[
∑

k∈K

(Qk|〈Wk, tk〉|) ∧ Dqk‖tk‖qk
qk

]p
⎤

⎦

1
p

.

(53) 

We use Proposition 4—Eq. (42) to get 

. 

(
EQ,W

[
∑

k∈K

(
Qk|〈Wk, t

∗
k 〉|) ∧ Dqk‖tk‖qk

qk

]p) 1
p

� ‖
M∑

k=1

Qk|〈Wk, t
∗
k 〉| ∧ Dqk‖tk‖qk

qk
‖p

�
M∑

k=1

(
r

1
pk

k ‖t∗k ‖qk
∧ Dqk‖tk‖qk

qk

)
1rk>|Ik(t)|

for some .
∑M

k=1 rk = p. Let us denote by . K0 the subset of .[M] that consists of k 
such that .r1/pk

k ‖t∗k ‖qk
� Drk . Clearly, 

. 
∑

k∈K0

r

1
pk

k ‖t∗k ‖qk
∧ Dqk‖tk‖qk

qk
� D

∑

k∈K0

rk � Dp.

On the other hand, if for some .k ∈ [M], .r1/pk

k ‖t∗k ‖qk
> Drk , then, obviously, 

.tk = t∗k and .rk � Dqk‖tk‖qk
qk
. However, in the case of small coefficients (44), we  

have .Dqk‖tk‖qk
qk

� Apknk and hence .rk � Apknk for all .k ∈ Kc
0 .. Once again by 

Proposition 4-Eq. (41) 

.

∑

k∈Kc
0

r
1/pk

k ‖t∗k ‖qk
1rk>|Ik(t)| � A‖

M∑

k=1

|Pk|〈Wk, t
∗
k 〉|‖p � A‖Xt∗‖p � Ap,
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where we have used the simplification from Proposition 2—i.e., .‖Xt‖p � 2p and 
the Bernoulli comparison, which gives .‖Xt∗‖p � ‖Xt‖p. In this way we get 

. 

(
EQ,W

[
∑

k∈K

(
Qk|〈Wk, t

∗
k 〉|) ∧ Dqk‖tk‖qk

qk

]p) 1
p

� max{A,D}p.

Let us return to our bound (53). Note that we should only care for .K ⊂ M such that 

. ‖
∑

k∈K

(
Qk|〈Wk, t

∗
k 〉|) ∧ Dqk‖tk‖qk

qk
‖p � pc.

We use now that .Dqk‖t∗k ‖qk
qk

� Apknk , and hence .
∑

k∈K Apknk � pc. But then 

. Eδ

∏

k∈K

1δk=1 = exp(−
∑

k∈K

(C/4)pknk) � exp(−(C/(4A))cp) � exp(−p/c),

whenever .C � 4A/c2. Finally, we should observe that due to (22) we have . |I (t)| �
δ′p. Therefore, there are at most .2pδ′

sets K for which we have to use the second 
method. With respect to (53) the above bounds imply 

. ‖
M∑

k=1

(
(Qk − C)+|〈Wk, t

∗
k 〉|) ∧ Dqk‖tk‖qk

qk
‖p � cp + 2δ′

e− 1
c max{A,D}p � cp

if c is suitably small. It proves the result. �	
Consequently, by (1) 

. E sup
t∈S

M∑

k=1

(
(Qk − C)+|〈Wk, t

∗
k 〉|) ∧ Dqk‖tk‖qk

qk
� ecp.

which together with (50) and (51) gives 

. E sup
t∈S

M∑

k=1

|〈Wk, t
∗
k 〉| ∧ Dqk‖tk‖qk

qk
� C−1(8K)−1p,

for c is suitably small, i.e., .ec � (8K)−1. Hence, .E supt∈S |X̄|t � (8CK)−1p. As  
stated in (48) we have solved the case of small coefficients (cf. (44)).
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7 Large Coefficients 

We work in the cube-like setting formulated in Proposition 1 accompanied by the 
simplification from Proposition 2. Our goal is to prove the minoration for large 
coefficients—see (45). Recall now that we can work under the condition (47). 
Therefore, we may assume that there is a point .t0 ∈ T and a subset .S ⊂ T such that 
.|S| � ep/2 and 

. 

M∑

k=1

∑

i∈Ik(t
∗)�Ik(t

∗
0 )

Dqkk
qk

i < p.

We are going to show that in this case .‖Xt† − Xs†‖p � p for all .s 
= t , .s, t ∈ S. 
It suffices to prove that .‖Xt∗ − Xt∗0 ‖p and .‖Xs∗ − Xt∗0 ‖p are a bit smaller than p. 
More precisely, 

Lemma 5 If D is suitably large, then .‖Xt∗ − Xt∗0 ‖p � p/4 for any .t ∈ S. 

Proof Consider .
∑M

k=1 rk = p and 

. ‖Xt∗ − Xt∗0 ‖p �
M∑

k=1

‖Pk‖rk‖〈Wk, t
∗
k − t∗0k〉‖rk .

Not that we have the inequality 

. ‖Pk‖rk |〈Wk, t
∗
k − t∗0k〉‖rk � r

1
pk

k ‖t∗k − t∗0k‖qk
.

Using that .a1/pkb1/qk � a/pk + b/qk , we get 

. ‖Pk‖rk |〈Wk, t
∗
k − t∗0k〉‖rk � p−1

k

rk

D
+ q−1

k D
qk
pk ‖t∗k − t∗0k‖qk

qk
.

Clearly, .qk/pk = 1/(pk − 1). Now, we can benefit from the condition (47) namely, 
we have 

. 

M∑

k=1

∑

i∈Ik(t
∗)�Ik(t

∗
0 )

D
1

pk−1 k
qk

i < p/D.

For D is suitably small, it proves that .‖Xt∗ − Xt∗0 ‖p � p/4. �	
Consequently, since .‖Xt − Xs‖p � p for .s 
= t , .s, t ∈ S, we obtain 

.‖Xt† − Xs†‖p � ‖Xt − Xs‖p − ‖Xt∗ − Xt∗0 ‖p − ‖Xs∗ − Xt∗0 ‖p � p/2. (54)
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The last result we need stems from the fact that .‖Xt†‖p � ‖Xt‖p � p, which is due 
to Bernoulli comparison and Proposition 2. Namely, we have 

Lemma 6 For any .t ∈ T , the following inequality holds true: 

. 

M∑

k=1

n

1
pk

k ‖t†k ‖qk
� p.

Moreover, .
∑M

k=1 nk1t
†
k 
=0 � pc, where c can be suitably small. 

Proof Obviously, .‖Xt†‖p = ‖∑M
k=1 Pk〈Wk, t

†
k 〉‖p, so since .‖Xt†‖p � p there 

must exist . rk , .1 � k � M such that .
∑M

k=1 rk = p and 

. 

M∑

k=1

‖Pk‖rk‖〈Wk, t
†
k 〉‖rk � p.

If .rk � nk , we can use 

. ‖Pk‖rk‖〈Wk, t
†
k 〉‖rk � n

1
pk

k ‖t†k ‖qk
.

Our aim is to show that we can use .rk � nk for all k. This is possible if 

. 

M∑

k=1

nk1t†k 
=0 � p.

Suppose conversely that .
∑

k∈J nk1t
†
k 
=0 � p, for  some .J ⊂ [M], then the inequality 

.‖Xt†‖p � p gives 

. 
∑

k∈J

n

1
pk

k ‖t†k ‖qk
� p.

However, if .t†k 
= 0, then .D‖t†k ‖qk
> Apk−1n

1
qk

k by (45). This is exactly the moment, 
where we need our technical assumption that . pk are not too close to 1. Namely, 

if .A � max{D 1
pk−1 }, we get .∑k∈J

∑M
k=1 nk1t

†
k 
=0 > p, which is a contradiction. 

Consequently, we can select .rk � nk for any k such that .t†k 
= 0. Thus, finally, 

.

M∑

k=1

n

1
pk

k ‖t†k ‖qk
� p.
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Moreover, 

. 

M∑

k=1

nk

Apk−1

D
� p.

Since A can be much larger than .maxD
1

pk−1 , it completes the proof. �	
We can start the main proof in the case of large coefficients—cf. (45). We are going 
to use a similar trick to the approach presented in the “simplification lemma”— 
Proposition 1. The point is that on each .Rnk = R

|Jk | we impose a radial-type 
distribution. Namely, let . μk be the probability distribution on .R

nk with density 

. μk(dx) = exp

(
− 1

B
n

1
pk

k ‖x‖qk

)
n

nk
pkqk

k

B
nk
qk �

(
nk

qk

)
|∂B

nk
qk

|
dx.

The fundamental property of . μk is that 

. μk(n
− 1

pk BuBnk
qk

) = 1

�
(

nk

qk

)
∫ u

0
s

nk
qk

−1
e−sds.

The median value of . u0 the distribution .�
(

nk

qk
, 1
)
is comparable to . nk

qk
and hence 

for .u = ρ
nk

qk
, where . ρ is smaller than 1 we have 

. 
1

�
(

nk

qk

)
∫ u

0
s

nk
qk

−1
e−sds � ρ

nk
qk � 1

2

(
u

u0

) nk
qk

.

Since .u0 � nk/qk , it gives  

. μk(ρBn

1
qk

k q−1
k ) � ρ

nk
qk ,

for any . ρ which is a bit smaller than 1. Furthermore, by the construction 

.μk

(
t
†
k + ρBn

1
qk

k q−1
k Bnk

qk

)
� ρ

nk
qk e−B−1n

1
pk
k ‖t†k ‖qk

= exp

(
−nk

qk

log
1

ρ
− B−1n

1
pk

k ‖t†k ‖qk

)
.
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Due to Lemma 6 we may find constant .B � 1 in such a way that for any .t ∈ T , 

.B−1
M∑

k=1

n

1
pk

k ‖t†k ‖qk
� p/8. (55) 

Moreover, by the same result, we may require that 

. log

(
1

ρ

)
·

M∑

k=1

nk1t
†
k 
=0 � p/8 (56) 

for some suitably small . ρ. 
Let . μ be a measure defined on . Rd by .μ = μ1 ⊗ μ2 ⊗ . . . ⊗ μM . We define also 

. At =
(

x ∈ R
d : ‖t†k − xk‖qk

� ρBn

1
qk

k q−1
k , or ‖t†k ‖qk

� ρBn

1
qk

k q−1
k ,

for all k ∈ [M]) .

Using (55) and (56), we get 

. μ(At) � exp

(
−

M∑

k=1

(
nk

qk

log
1

ρ
1
t
†
k 
=0 + n

1
pk

k ‖t†k ‖qk

))
� e−p/4.

However, there are at least .ep/2 points in S and hence 

. 
∑

t∈S

μ(At ) � ep/4.

We define 

. Ax =
(

t ∈ T : ‖t†k − xk‖qk
� ρBn

1
qk

k q−1
k , or ‖t†k ‖qk

� ρBn

1
qk

k q−1
k ,

for all k ∈ [M])

and observe that 

.

∫
|Ax |μ(dx) =

∑

t∈T

∫
1t∈Ax μ(dx) =

∑

t∈T

∫
1x∈At μ(dx)

=
∑

t∈T

μ(At ) � ep/4.
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Consequently, there must exists .x ∈ R
d such that .|Ax | counts at least .ep/4 points. 

Note that we can require that .‖xk‖qk
> ρBn

1
qk

k q−1
k . Let us denote the improved set 

S by . S̄, in particular, .|S̄| > ep/4. 
The final step is as follows. We define the function: 

. ϕk(t) =
⎧
⎨

⎩
xk ∈ R

nk if ‖tk‖qk
> ρBn

1
qk q−1

k ,

0 ∈ R
nk if ‖tk‖qk

� ρBn

1
qk

k q−1
k

Let .ϕ = (ϕk)
M
k=1. Note that if .ϕk(t) = 0, then .t†k = 0 by (45). Therefore, we are 

sure that .‖t†k − ϕk(t)‖qk
� ρBn

1
qk

k q−1
k . 

Lemma 7 The following inequality holds: 

. ‖Xt† − Xϕ(t)‖p � cp,

where c is suitably small. 

Proof Indeed it suffices to check for .
∑M

k=1 rk = p that 

. 

M∑

k=1

r

1
pk

k ‖t†k − ϕk(t)‖qk
� cp.

We use the inequality .a1/pkb1/qk � a/pk + b/qk and . ‖tk − ϕk(t)‖qk
� ρBn

1
qk

k q−1
k

to get 

. r

1
pk

k ‖t†k − ϕk(t)‖qk
� 1

pk

crk + 1

qk

c
− 1

pk−1 ρqkBqkq
−qk

k nk1t
†
k 
=0.

It remains to notice that if only . ρBq−1
k � c

. 

M∑

k=1

1

qk

c
− 1

pk−1 ρqkBqkq
−qk

k nk1t
†
k 
=0 � c

M∑

k=1

nk1t
†
k 
=0 � pc.

However, . ρ can be suitably small; thus, the result follows: �	
Now, if c is suitably small, we get that 

. ‖Xϕ(t) − Xϕ(s)‖p � p/4.

Indeed, this is the consequence of (54) and .‖Xϕ(t) − Xt†‖p � p/8 and . ‖Xϕ(s) −
Xϕ(t0)‖p � p/8, namely,
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. ‖Xϕ(t) − Xϕ(s)‖p � ‖Xt† − Xs†‖p − ‖Xϕ(t) − Xt†‖p − ‖Xϕ(s) − Xϕ(t0)‖p.

Moreover, by Remark 1 and .S̄ ⊂ S ⊂ T , .0 ∈ T and . |T | � 1 + ep

. E sup
t∈S̄

(Xϕ(t) − Xt†) � ecp.

It proves that 

. E sup
t∈S̄

Xϕ(t) � E sup
t∈S̄

Xt† + E sup
t∈S̄

(Xϕ(t) − Xt†) � E sup
t∈S̄

Xt† + ecp.

It remains to observe that .Xϕk(t) is either 0 or . Xxk
. But vector .(Xxk

)Mk=1 is one-
unconditional and log-concave with independent entries, so we may use the standard 
Sudakov minoration—the main result of [5]. Therefore, 

. E sup
t∈S̄

Xϕ(t) �
1

K
p.

It completes the proof of Sudakov minoration in the case of large coefficients (cf. 
(45)). In this way we have completed the program described in Sect. 2. 

8 The Partition Scheme 

Having established the Sudakov minoration, one can prove that partition scheme 
works and in this way establish the characterization of .SX(T ) = E supt∈T Xt . We  
need here additionally that (9) holds. 

Let us recall the general approach to obtain/get the lower bound on .SX(T ). We  
define a family of distances .dn(s, t) = ‖Xt − Xs‖2n . Moreover, let .Bn(t, ε) be 
the ball centered at t with radius . ε in . dn distance and in similarly .n(A) be the 
diameter of .A ⊂ T in . dn distance. By (6) we know that .dn+1 � 2dn, and moreover, 
the condition (9) reads as .(1 + ε)dn � dn+1. Let us recall that this property holds 
true if all . pk are smaller than some .p∞ < ∞. Note that the assumption is not easily 
removable, since for Bernoulli canonical processes the theory which we describe 
below does not work. 

We follow the generic chaining approach for families of distances described in 
[18]. Let .Nn = 22

n
, .n � 1, .N0 = 1. The natural candidate for the family .Fn,j is 

.Fn,j = F , where .F(A) = KE supt∈A Xt , .A ⊂ T for suitably large constant K . 
We have to prove the growth condition, namely, that for some .r = 2κ−2 � 4 and 
fixed .n0 � 0 for any given .n � n0 and .j ∈ Z if we can find points . t1, t2, . . . tNn ∈
Bn(t, 2nr−j ), which are .2n+1r−j−1 separated in .dn+1 distance, then for any sets 
.Hi ⊂ Bn+κ(ti , 2n+κr−j−2) the following inequality holds true:
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.F

(
Nn⋃

i=1

Hi

)
� 2nr−j−1 + min

1�i�Nn

F (Hi). (57) 

Note that in our setting 

.Bn(t, 2
nrj−2) ⊂ Bn+1(t, 2

n+1rj−2) ⊂ . . . ⊂ Bn+κ(t, 2n+κr−j−2) (58) 

and also 

.Bn+κ(t, 2n+κr−j−2) ⊂ Bn

(
t,
2n+κr−j−2

(1 + ε)κ

)
⊂ Bn

(
t,
2n+2r−j−1

(1 + ε)κ

)
. (59) 

In particular, we get from (59) that 

.Hi ⊂ Bn+κ(ti , 2
n+κr−j−2) ⊂ Bn

(
ti ,

2n+2r−j−2

(1 + ε)κ

)
(60) 

and hence we have that . Hi are small when compared with the separation level 
.r−j−1. Clearly, if .dn+1(ti , tj ) � 2n+1r−j−1, then 

. dn(ti , tj ) � 2−1dn+1(ti , tj ) � 2nr−j−1.

The last property we need is a special form of concentration, i.e., 

.‖(E sup
t∈A

Xt − sup
t∈A

Xt)+‖p � L sup
t∈A

‖Xt‖p. (61) 

Let us recall that due to the result of [8] and some straightforward observations 
fortunately the inequality holds in our setting. We turn to prove the main result of 
this section. 

Proposition 5 Suppose that . Xt satisfies assumptions on the regularity of distances 
as well as the concentration inequality (61), then .Fn,j = F , . F(A) = KE supt∈A Xt

satisfies the growth condition (57) for some r and . n0. 

Proof Let us define .A =⋃Nn

i=1 Hi and .Hi ⊂ Bn+1(ti , 2n+1r−j−1). We have  

.F(A) � KE sup
1�i�Nn

Xti + sup
t∈Hi

(Xt − Xti )

� KE sup
1�i�Nn

Xti + min
1�i�Nn

F (Hi − ti )

− K(E sup
1�i�Nn

(E sup
t∈Hi

(Xt − Xti ) − sup
t∈Hi

(Xt − Xti ))

� 2n+1r−j−1 + min
1�i�Nn

F (Hi) − 2KL sup
1�i�Nn

‖(E sup
t∈Hi

(Xt − Xti )
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− sup 
t∈Hi 

(Xt − Xti ))+‖2n

� 2n+1r−j−1 + min 
1�i�Nn 

F(Hi) − 2KL max 
1�i�N

n(Hi), 

where we have used here the Sudakov minoration. Using (60), we get 

. n(Hi) �
2n+3rj−1

(1 + ε)κ
.

Therefore, choosing sufficiently large . κ , we can guarantee that 

. F(A) � 2nr−j−1

as required. �	
The basic result of [18] is that, having the growth condition for families of distances, 
it is true that .SX(T ) = E supt∈T Xt is comparable with .γX(T ), where 

. γX(T ) = inf
A

sup
t∈T

∞∑

n=0

n(An(t)).

It completes the proof of Theorem 2. Namely, for some absolute constant K , 

. K−1γX(T ) � E sup
t∈T

Xt � KγX(T ).

In this way it establishes a geometric characterization of .SX(T ), assuming our list 
of conditions. 
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Lévy Measures of Infinitely Divisible 
Positive Processes: Examples and 
Distributional Identities 

Nathalie Eisenbaum and Jan Rosiński 

2020 Mathematics Subject Classification: 60E05; 60E07; 60G51; 60G57; 
60G55 

1 Introduction 

A random process is infinitely divisible if all its finite dimensional marginals are 
infinitely divisible. Let .ψ = (ψ(x), x ∈ E) be a nonnegative infinitely divisible 
process with no drift. The infinite divisibility of . ψ is characterized by the existence 
of a unique measure . ν on . RE+, the space of all functions from E into . R+, such that 
for every .n > 0, every .α1, .., αn in .R+ and every .x1, .., xn in E: 

.E[exp{−
n∑

i=1

αiψ(xi)}] = exp{−
∫

RE
+
(1 − e−∑n

i=1 αiy(xi ))ν(dy)}. (1.1) 

The measure . ν is called the Lévy measure of . ψ . The existence and uniqueness of 
such measures was established in complete generality in [16]. In Sect. 2, we recall 
some definitions and facts about Lévy measures. 

It might be difficult to obtain an expression for the Lévy measure . ν directly 
from (1.1). In [3], a general expression for . ν has been established. Its proof is based 
on several identities involving . ψ . Among them: 
For every .a ∈ E with .0 < E[ψ(a)] < ∞, there exists a nonnegative process 
.(r(a)(x), x ∈ E) independent of . ψ such that 
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.ψ + r(a) has the law of ψ under E
[ ψ(a)

E[ψ(a)] , ·
]

(1.2) 

Actually, the existence of .(r(a), a ∈ E) characterizes the infinite divisibility of . ψ . 
This characterization has been established in [2] (see also [16, Proposition 4.7]). 

Under an assumption of stochastic continuity for . ψ , the general expression for . ν

obtained in [3] is the following: 

.ν(F ) =
∫

E

E
[ F(r(a))∫

E
r(a)(x)m(dx)

]
E[ψ(a)]m(da), (1.3) 

for any measurable functional F on . RE+, where m is any .σ -finite measure with 
support equal to E such that .

∫
E
E[ψ(x)]m(dx) < ∞. 

Moreover, the law of .r(a) is connected to . ν as follows (see [3, 16]): 

.E[F(r(a))] = 1

E[ψ(a)]
∫

RE
+

y(a)F (y) ν(dy). (1.4) 

The problem of determining . ν is hence equivalent to the one of the law of .r(a) for 
every a in E. But knowing . ν, one can not only write (1.2) but many other identities 
of the same type. In each one, the process .r(a) is replaced by a process with an 
absolutely continuous law with respect to . ν (see [16, Theorem 4.3(a)]). 

Some conditionings on . ψ lead to a splitting of . ν. This allows to obtain 
decompositions of . ψ into independent infinitely divisible components (see [3, 
Theorems 1.1, 1.2 and 1.3]). As an example: 
For every .a ∈ E, there exists a nonnegative infinitely divisible process . (L(a)(x), x ∈
E) independent of an infinitely divisible process .((ψ(x), x ∈ E)|ψ(a) = 0) such 
that 

.ψ
(law)= (ψ | ψ(a) = 0) + L(a) . (1.5) 

By Eisenbaum [3, Theorem 1.2], the processes .(ψ | ψ(a) = 0) and .L(a) have the 
respective Lévy measures . νa and . ̃νa , where 

.νa(dy) = 1{y(a)=0}ν(dy) and ν̃a(dy) = 1{y(a)>0}ν(dy) . (1.6) 

In Sect. 3, to illustrate the relations and identities (1.1)–(1.5), we choose to 
consider simple examples of nonnegative infinitely divisible processes. In each 
case the Lévy measure is directly computable from (1.1) or from the stochastic 
integral representation of . ψ (see [12]). Thanks to (1.2) and its extensions and (1.5), 
we present remarkable identities satisfied by the considered nonnegative infinitely 
divisible processes. Moreover, the general expression (1.3) provides alternative 
formulas for the Lévy measure, which are also remarkable. We treat the cases of 
Poisson processes, Sato processes, stochastic convolutions, and tempered stable
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subordinators. We also point out a connection with infinitely divisible random 
measures. We end Sect. 3 by reminding the case of infinitely divisible permanental 
processes, which is the first case for which identities in law of the same type as (1.2) 
have been established. In this case, such identities in law are called “isomorphism 
theorems” in reference to the very first one established by Dynkin [1], the so-called 
“Dynkin isomorphism theorem.” 

When . ψ is an infinitely divisible permanental process, the two processes .r(a) and 
.L(a) have the same law. If, moreover, . ψ is a squared Gaussian process, Marcus and 
Rosen [9] have established correspondences between path properties of . ψ and the 
ones of .L(a). The extension of these correspondences to general infinitely divisible 
permanental processes has been undertaken by several authors (see [3, 4, 10] or  
[11]). Similarly, in Sect. 4, we consider a general infinitely divisible nonnegative 
process . ψ and state some trajectory correspondences between . ψ and .L(a), resulting 
from an iteration of (1.5) (see also [16]). 

Finally, observing that, given an infinitely divisible positive process . ψ , .r(a) is 
not a priori “naturally” connected to . ψ , we present, in Sect. 5, .r(a) as the limit of a 
sequence of processes naturally connected to . ψ . 

2 Preliminaries on Lévy Measures 

In this section we recall some definitions and facts about general Lévy measures 
given in [16, Section 2]. Some additional material can be found in [15]. Let 
.(ξ(x), x ∈ E) be a real-valued infinitely divisible process, where E is an arbitrary 
nonempty set. A measure . ν defined on the cylindrical .σ -algebra .RE of . RE is called 
the Lévy measure of . ξ if the following two conditions hold: 

(i) For every .x1, . . . , xn ∈ E, the Lévy measure of the random vector 
.(ξ(x1), . . . , ξ(xn)) coincides with the projection of . ν onto .R{x1,...,xn}, modulo 
the mass at the origin. 

(ii) .ν(A) = ν∗(A \ 0E) for all .A ∈ RE , where . ν∗ denotes the inner measure and 
. 0E is the origin of . RE . 

The Lévy measure of an infinitely divisible process always exists and (ii) guarantees 
its uniqueness. Condition (i) implies that .

∫
RE (f (x)2 ∧ 1) ν(df ) < ∞ for every 

.x ∈ E. 
A Lévy measure . ν is .σ -finite if and only if then there exists a countable set 

.E0 ⊂ E such that 

.ν{f ∈ RE : f|E0 = 0} = 0. (2.1) 

Actually, if (i) and (2.1) hold, then does so (ii) and . ν is a .σ -finite Lévy measure. 
Condition (2.1) is usually easy to verify. For instance, if an infinitely divisible 

process .(ξ(x), x ∈ E) is separable in probability, then its Lévy measure satis-
fies (2.1), so is  .σ -finite. The separability in probability is a weak assumption. It
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says that there is a countable set .E1 ⊂ E such that for every .x ∈ E there is a 
sequence .(xn) ⊂ E1 such that .ξ(xn) → ξ(x) in . P. Infinitely divisible processes 
whose Lévy measures do not satisfy (2.1) include such pathological cases as an 
uncountable family of independent Poisson random variables with mean 1. 

If the process . ξ has paths in some “nice” subspace of . RE , then, due to the transfer 
of regularity [16, Theorem 3.4], its Lévy measure . ν is carried by the same subspace 
of . RE . Thus, one can investigate the canonical process on .(RE,RE) under the 
law of . ξ and also under the measure . ν and relate their properties. This approach 
was successful in the study of distributional properties of subadditive functionals of 
paths of infinitely divisible processes [17] and the decomposition and classification 
of stationary stable processes [13], among others. 

If an infinitely divisible process . ξ without Gaussian component has the Lévy 
measure . ν, then it can be represented as 

.(ξ(x), x ∈ E)
(law)=

( ∫

RE
f (x) [N(df )−χ(f (t))ν(df )]+b(x), x ∈ E

)
(2.2) 

where N is a Poisson random measure on .(RE,RE) with intensity measure . ν, 
.χ(u) = 1[−1,1](u), and .b ∈ RE is deterministic. Relation (2.2) can be strengthen to 
the equality almost surely under some minimal regularity conditions on the process 
. ξ , provided the probability space is rich enough (see [16, Theorem 3.2]). This is 
an extension to general infinitely divisible processes of the celebrated Lévy-Itô 
representation. 

Obviously, all the above apply to processes presented in the introduction but 
in a more transparent form. Namely, if .(ψ(x), x ∈ E) is an infinitely divisible 
nonnegative process, then its Lévy measure . ν is concentrated on .RE+ and (2.2) 
becomes 

.(ψ(x), x ∈ E)
(law)=

(
f0(x) +

∫

RE
+

f (x)N(df ), x ∈ E
)
, (2.3) 

where N is a Poisson random measure on .RE+ with intensity measure . ν such that 
.
∫
RE

+
(f (x) ∧ 1) ν(df ) < ∞ for every .x ∈ E. Moreover, .E[ψ(x)] < ∞ if and only 

if .
∫
RE

+
f (x) ν(df ) < ∞ and .f0 ≥ 0 is a deterministic drift. 

Since N can be seen as a countable random subset of . RE+, one can write (2.3) as  

.(ψ(x), x ∈ E)
(law)=

(
f0(x) +

∑

f ∈N

f (x), x ∈ E
)
. (2.4) 

We end this section with a necessary and sufficient condition for a measure . ν
to be the Lévy measure of a nonnegative infinitely divisible process. It is a direct 
consequence of [16] section 2. From now on we will assume that . ψ has no drift, in 
which case .f0 = 0 in (2.3)–(2.4).
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Let . ν be a measure on .(RE+,BE), where . BE denotes the cylindrical .σ -algebra 
associated to . RE+ the space of all functions from E into . R+. There exists an infinitely 
divisible nonnegative process .(ψ(x), x ∈ E) such that for every .n > 0, every  
.x1, .., xn in E: 

. E[exp{−
n∑

i=1

αiψ(xi)}] = exp{−
∫

R
E+
(1 − e−∑n

i=1 αiy(xi ))ν(dy)},

if and only if . ν satisfies the two following conditions: 

(L1) For every .x ∈ E .ν(y(x) ∧ 1)) < ∞. 
(L2) For every .A ∈ BE , .ν(A) = ν∗(A \ 0E), where . ν∗ is the inner measure. 

3 Illustrations 

By a standard uniform random variable we mean a random variable with the uniform 
law on .[0, 1]. A random variable with exponential law and mean 1 will be called 
standard exponential. 

3.1 Poisson Process 

A Poisson process .(Nt , t ≥ 0) with intensity . λm, where .λ > 0 and m is the 
Lebesgue measure on . R+, is the simplest Lévy process, but its Lévy measure . ν
is even simpler. It is a .σ -finite measure given by 

.ν(F ) = λ

∫ ∞

0
F

(
1[s,∞)) ds, (3.1) 

for every measurable functional .F : R[0,∞)
+ 	→ R+. Thus, (3.1) says that . ν is the 

image of . λm by the mapping .s 	→ 1[s,∞) from .R+ into .R
[0,∞)
+ . 

Formula (3.1) is a special case of [16, Example 2.23]. We will derive it here for 
the sake of illustration and completeness. 

Let .(Nt , t ≥ 0) be a Poisson process as above. By a routine computation of the 
Laplace transform, we obtain that for every .0 ≤ t1 < · · · < tn the Lévy measure 
.νt1,...,tn of .(Nt1 , . . . , Ntn) is of the form 

.νt1,...,tn =
n∑

i=1

λ	ti δui
,
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where .	ti = ti − ti−1, .t0 = 0, and .ui = (0, . . . , 0︸ ︷︷ ︸
i−1 times

, 1, . . . , 1) ∈ Rn, .i = 1, . . . , n. 

To verify that (3.1) satisfies (i) of Sect. 1, consider a finite dimensional functional 
F , that is, .F(f ) = F0(f (t1), . . . , f (tn)), where .F0 : Rn+ 	→ R+ is a Borel function 
with .F0(0, . . . , 0) = 0 and .0 ≤ t1 < · · · < tn. From  (3.1) we have 

. ν(F ) = λ

∫ ∞

0
F

(
1[s,∞)

)
ds = λ

∫ ∞

0
F0(1[s,∞)(t1), . . . ,1[s,∞)(tn)) ds

= λ

n∑

i=1

∫ ti

ti−1

F0(ui ) ds =
∫

Rn
+

F0(x) νt1,...,tn (dx)

which proves (i). Condition (2.1) holds for any unbounded set, for instance, . E0 =
N. Indeed, 

. ν{f ∈ R
[0,∞)
+ : f|N = 0} = λ

∫ ∞

0
1{s : 1[s,∞)(n) = 0 ∀n ∈ N}) ds = 0,

so that . ν is the Lévy measure of .(Nt , t ≥ 0). 
The next proposition exemplifies remarkable identities resulting from (1.5) 

and (1.2). It also gives an alternative “probabilistic” form of the Lévy measure . ν. 

Proposition 3.1 Let .N = (Nt , t ≥ 0) be a Poisson process with intensity . λm, 
where m is the Lebesgue measure on .R+ and .λ > 0. 

(a1) Given .a > 0, let  .r(a) be the process defined by .r(a)(t) := 1[aU,∞)(t), t ≥ 0, 
where U is a standard uniform random variable independent of .(Nt , t ≥ 0). 
Then, .(ra(t), t ≥ 0) satisfies (1.2), that is, 

. (Nt + 1[aU,∞)(t), t ≥ 0)
(law)= (Nt , t ≥ 0) under E

[Na

λa
; .

]
.

(b1) For any nonnegative random variable Y whose support equals .R+ and . EY <

∞, the Lévy measure . ν of .(Nt , t ≥ 0) can be represented as 

. ν(F ) = λ E
[
Yh(UY) F

(
1[UY,∞)

)]

for every measurable functional .F : R[0,∞)
+ 	→ R+, where U is a standard 

uniform random variable independent of Y and .h(x) = 1/P[Y ≥ x]. 
In particular, if Y is a standard exponential random variable independent 

of U , then 

. ν(F ) = λ E
[
YeUY F

(
1[UY,∞)

)]
.

(c1) The components of the decomposition (1.5): .N
(law)= (N | Na = 0) + L(a), can 

be identified as
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. (Nt , t ≥ 0 | Na = 0)
(law)= (Nt∨a − Na, t ≥ 0).

and 

. (L(a)
t , t ≥ 0)

(law)= (Nt∧a, t ≥ 0).

The Lévy measures . νa and . ̃νa of .(Nt , t ≥ 0 | Na = 0) and of .(L(a)
t , t ≥ 0), 

respectively, are given by 

. νa(F ) = λ

∫ ∞

a

F
(
1[s,∞)

)
ds,

and 

. ̃νa(F ) = λ

∫ a

0
F

(
1[s,∞)

)
ds,

for every measurable functional .F : R[0,∞)
+ 	→ R+. 

Proof 

(a1) By (1.4) we have for any measurable functional . F : R[0,∞) 	→ R+

. EF(r
(a)
t , t ≥ 0) = 1

ENa

∫
F(y) y(a) ν(dy)

= 1

a

∫ ∞

0
F(1[s,∞))1[s,∞)(a) ds

= 1

a

∫ a

0
F(1[s,∞)) ds = EF(1[aU,∞)).

Thus, .(r(a)
t , t ≥ 0)

(law)= (1[aU,∞)(t), t ≥ 0). Choosing U independent of N , 

we have (1.2) for .r
(a)
t = 1[aU,∞)(t), .t ≥ 0, which completes the proof of (a1). 

(b1) This point is an illustration of the invariance property in m of (1.3). Indeed, 
since the process .(Nt , t ≥ 0) is stochastically continuous, we have for every 
.σ -finite measure . m̃ whose support is .[0,∞) and . 

∫ ∞
0 t m̃(dt) < ∞

. ν(F ) =
∫ ∞

0
E

[
F(r(a))

∫ ∞
0 r

(a)
s m̃(ds)

]
E[Na] m̃(da)

= λ

∫ ∞

0
E

[
F(1[aU,∞))

m̃([aU,∞))

]
a m̃(da).

If . m̃ is the law of a nonnegative random variable Y , then
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. ν(F ) = λ

∫ ∞

0
E

[
a h(aU)F (1[aU,∞))

]
m̃(da)

= λE
[
Yh(UY)F (1[UY,∞))

]
,

which is the formula in (b1). 
(c1) Since .(Nt , t ≥ 0 | Na = 0) has the Lévy measure . νa(dy) = 1{y(a)=0}ν(dy)

(see [3]), by (3.1) we get 

. νa(F ) =
∫

F(y)1{y(a)=0}ν(dy)

= λ

∫ ∞

0
F(1[s,∞))1{1[s,∞)(a)=0} ds

= λ

∫ ∞

a

F (1[s,∞)) ds .

Since .ν̃a = ν − νa , by  (3.1) we have 

. ̃νa(F ) = λ

∫ a

0
F(1[s,∞)) ds.

Let .0 = t0 < t1 < · · · < tn be such that .tm = a for some .m ≤ n. For  . αi > 0
we obtain 

. E exp
{

−
n∑

i=1

αi(L(a)
ti

− L(a)
ti−1

)
}

= exp{−ν̃a(1 − e−∑n
i=1 αi(y(ti )−y(ti−1)))}

= exp{−λ

∫ a

0
(1 − e−∑n

i=1 αi(1[s,∞)(ti )−1[s,∞)(ti−1))) ds}

= exp{−λ

m∑

i=1

∫ ti

ti−1

(1 − e−∑n
i=1 αi(1[s,∞)(ti )−1[s,∞)(ti−1))) ds}

= exp{−λ

m∑

i=1

(ti − tt−1)(1 − e−αi )}

= E exp
{

−
n∑

i=1

αi(Nti∧a − Nti−1∧a)
}

which shows that .(L(a)
t , t ≥ 0)

(law)= (Nt∧a, t ≥ 0). 

Since .(Nt∧a, t ≥ 0) and .(Nt∨a − Na, t ≥ 0) are independent and they add to 

.(Nt , t ≥ 0), .(Nt , t ≥ 0 | Na = 0)
(law)= (Nt∨a − Na, t ≥ 0). �
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Remarks 3.2 

(1) By Proposition 3.1(b1) the Lévy measure . ν of N can be viewed as the law of 
the stochastic process 

. (1[UY,∞)(t), t ≥ 0)

under the infinite measure .λYh(UY) dP. This point of view provides some 
intuition about the support of a Lévy measure and better understanding how its 
mass is distributed on the path space. 

(2) The process .(r(a)
t , t ≥ 0) of Proposition 3.1(a1) is not infinitely divisible. 

Indeed, for each .t > 0, .r(a)
t is a Bernoulli random variable. 

(3) While the decomposition (1.5) is quite intuitive in case (c1), it is not so for 
general infinitely divisible random fields (cf. [3]). 

3.2 Sato Processes 

Recall that a process .X = (Xt , t ≥ 0) is H -self-similar, .H > 0, if for every . c > 0

. (Xct , t ≥ 0)
(law)= (cH Xt , t ≥ 0) .

It is well-known that a Lévy process is H -self-similar if and only if it is strictly 
.α-stable with .α = 1/H ∈ (0, 2] (see [19, Proposition 13.5]). In short, there are only 
obvious examples of self-similar Lévy processes. 

Sato [18] showed that, within a larger class of additive processes, there is a rich 
family of self-similar processes, which is generated by self-decomposable laws. 
These processes are known as Sato processes and will be precisely defined below. 

Recall that the law of a random variable S is said to be self-decomposable if for 
every .b > 1 there exists an independent of S random variable . Rb such that 

. S
(law)= b−1S + Rb.

Wolfe [21] and Jurek and Vervaat [7] showed that a random variable S is self-
decomposable if and only if 

.S
(law)=

∫ ∞

0
e−s dYs (3.2) 

for some Lévy process .Y = (Ys, s ≥ 0) with .E(ln+ |Y1|) < ∞. Moreover, there 
is a 1–1 correspondence between the laws of S and . Y1. The process Y is called the 
background driving Lévy process (BDLP) of S.
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Sato [18] proved that a random variable S has the self-decomposable law if and 
only if for each .H > 0 there exists a unique additive H -self-similar process . (Xt , t ≥
0) such that .X1

(law)= S. An additive self-similar process, whose law at time 1 is self-
decomposable, will be called a Sato process. 

Jeanblanc et al. [6, Theorem 1] gave the following representation of Sato 
processes. Let Y be the BDLP specified in (3.2) and let .Ŷ = (Ŷs, s ≥ 0) be an 
independent copy of Y . Then, for each .H > 0, the process 

.Xr :=
{∫ ∞

ln(r−1)
e−Ht dt (YHt ) if 0 ≤ r ≤ 1

X1 + ∫ ln r

0 eHt dt (ŶHt ) if r ≥ 1.
(3.3) 

is the Sato process with self-similarity exponent H . Stochastic integrals in (3.2) 
and (3.3) can be evaluated pathwise by parts due to the smoothness of the integrants. 
We will give another form of this representation that is easier to use for our purposes. 

Theorem 3.3 Let .Ȳ = (Ȳs, s ∈ R) be a double-sided Lévy process such that . Ȳ0 =
0 and .E(ln+ |Ȳ1|) < ∞. Then, for each .H > 0, the process 

.Xt :=
∫ ∞

ln(t−H )

e−s dȲs , t ≥ 0, (3.4) 

is a Sato process with self-similarity exponent H . Conversely, any Sato process with 
self-similarity exponent H has a version given by (3.4). 

Proof By definition, a double-sided Lévy process . Ȳ is indexed by . R, has stationary 
and independent increments, càdlàg paths, and .Ȳ0 = 0 a.s. Since (3.4) coincides 
with (3.2) when .t = 1, the improper integral .X1 = ∫ ∞

0 e−s dȲs converges a.s. and 
it has a self-decomposable distribution. Moreover, 

. X0+ = lim
t↓0

∫ ∞

ln(t−H )

e−s dȲs = 0 a.s.

For every .0 < t1 < · · · < tn and .uk = ln(t−H
k ) the increments 

. Xtk − Xtk−1 =
∫ ∞

uk

e−s dȲs −
∫ ∞

uk−1

e−s dȲs =
∫ uk−1

uk

e−s dȲs, k = 2, . . . , n

are independent as . Ȳ has independent increments. Thus, X is an additive process. 
To prove the H -self-similarity of X, notice that since X is an additive process, it 

is enough to show that for every .c > 0 and . 0 < t < u

.Xcu − Xct
(law)= cH (Xu − Xt). (3.5)
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Since . Ȳ has stationary increments, we get 

. Xcu − Xct =
∫ ln((ct)−H )

ln((cu)−H )

e−s dȲs =
∫ ln(t−H )+ln(c−H )

ln(u−H )+ln(c−H )

e−s dȲs

(law)=
∫ ln(t−H )

ln(u−H )

e−s−ln(c−H ) dȲs = cH (Xu − Xt) ,

which proves (3.5). 
Conversely, let .X = (Xt : t ≥ 0) be a H -self-similar Sato process. By (3.2) there 

exists a unique in law Lévy process .Y = (Yt : t ≥ 0) such that . E(ln+ |Y1|) < ∞
and 

. X1
(law)=

∫ ∞

0
e−s dYs .

Let .Y (1) and .Y (2) be independent copies of the Lévy process Y . Define . Ȳs = Y
(1)
s

for .s ≥ 0 and .Ȳs = Y
(2)
(−s)− for .s < 0. Then . Ȳ is a double-sided Lévy process with 

.Ȳ1
(law)= Y1. Then 

. X̃t :=
∫ ∞

ln(t−H )

e−s dȲs , t ≥ 0,

is a version of X. �
Corollary 3.4 Let .X = (Xt : t ≥ 0) be a H -self-similar Sato process given 
by (3.4). Let . ρ be the Lévy measure of . Ȳ1. Then the Lévy measure . ν of X is given by 

.ν(F ) =
∫

R

∫

R
F(xe−s1[e−s/H ,∞)) ρ(dx)ds. (3.6) 

Proof We can write (3.4) as .Xt = ∫
R ft (s) dȲs , where .ft (s) = e−s1[e−s/H ,∞)(t). 

It follows from [12, Theorem 2.7(iv)] that the Lévy measure . ν of X is the image of 
.m ⊗ ρ by the map .(s, x) 	→ xf(·)(s) from . R2 into .R[0,∞). �

From now on we will consider a H -self-similar nonnegative Sato process with 
finite mean and no drift. By Theorem 3.3 we have 

.ψ(t) =
∫ ∞

ln(t−H )

e−s dȲs , t ≥ 0, (3.7) 

where .Ȳ = (Ȳt , t ∈ R) is a double-sided subordinator without drift such that . Ȳ0 = 0
and .EȲ1 < ∞. Consequently, .Eψ(t) = κtH , .t ≥ 0, where .κ := Eψ(1) = EȲ1.
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Proposition 3.5 Let .(ψ(t), t ≥ 0) be a nonnegative H -self-similar Sato process 
given by (3.7). Therefore, the Lévy measure . ρ of . Ȳ1 is concentrated on . R+. 

(a2) Given .a > 0, let .(r(a)(t), t ≥ 0) be the process defined by: 

. r(a)(t) := aH UV1[aU1/H ,∞)(t), t ≥ 0,

where U is a standard uniform random variable and V has the distribution 
.κ−1xρ(dx), with .U,V and .(ψ(t), t ≥ 0) independent. Then .r(a) satisfies (1.2), 
that is, 

. {ψ(t) + aH UV1[aU1/H ,∞)(t), t ≥ 0}(law)= {ψ(t), t ≥ 0} under E
[ψ(a)

κaH
; .

]
.

(b2) Let G be a standard exponential random variable, U and V be as above, and 
assume that G, U , and V are independent. Then the Lévy measure . ν of the 
process .(ψ(t), t ≥ 0) can be represented as 

. ν(F ) = κE
[
(UV )−1eGU1/H

F (GH UV1[GU1/H ,∞))
]

for every measurable functional .F : R
[0,∞)
+ 	→ R+. Therefore, . ν is 

the law of the process .(GH UV1[GU1/H ,∞)(t), t ≥ 0) under the measure 

.κ(UV )−1eGU1/H
dP. 

(c2) The components of the decomposition (1.5): .ψ
(law)= (ψ | ψ(a) = 0)+L(a), can 

be identified as 

. (ψ(t), t ≥ 0 | ψ(a) = 0)
(law)= (ψ(t ∨ a) − ψ(a), t ≥ 0).

and 

. (L(a)
t , t ≥ 0)

(law)= (ψ(t ∧ a), t ≥ 0).

The Lévy measures . νa and . ̃νa of .(ψ(t), t ≥ 0 | ψ(a) = 0) and of . (L(a)
t , t ≥

0), respectively, are given by 

. νa(F ) =
∫ ln(a−H )

−∞

∫ ∞

0
F(xe−s1[e−s/H ,∞)) ρ(dx)ds

and 

.ν̃a(F ) =
∫ ∞

ln(a−H )

∫ ∞

0
F(xe−s1[e−s/H ,∞)) ρ(dx)ds,
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for every measurable functional .F : R[0,∞)
+ 	→ R+. 

Proof 

(a2) By (1.4) we have for any measurable functional . F : R[0,∞) 	→ R+

. EF(ra
t , t ≥ 0) = 1

Eψ(a)

∫

RE
+

F(y)y(a) ν(dy)

= 1

aHEψ(1)

∫

R

∫

R+
F(xe−s1[e−s/H ,∞))

× xe−s1[e−s/H ,∞)(a) ρ(dx)ds

= a−H

Eψ(1)

∫ ∞

ln(a−H )

∫

R+
F(xe−s1[e−s/H ,∞)) x ρ(dx) e−sds

= a−H

∫ ∞

ln(a−H )

EF(V e−s1[e−s/H ,∞)) e−sds

= E
[
F(aH UV1[aU1/H ,∞))

]
.

Thus, .(ra
t , t ≥ 0)

(law)= (aH UV1[aU1/H ,∞)(t), t ≥ 0). Since U , V , and . ψ are 
independent, (1.2) completes the proof of (a2). 

(b2) Since the process .(ψ(t), t ≥ 0) is stochastically continuous, we have for every 
.σ -finite measure . m̃ whose support is .[0,∞) and . 

∫ ∞
0 tH m̃(dt) < ∞

. ν(F ) =
∫ ∞

0
E

[
F(r(a))

∫ ∞
0 r

(a)
s m̃(ds)

]
E[ψ(a)] m̃(da)

= E[ψ(1)]
∫ ∞

0
E

[
F(aH UV1[aU1/H ,∞))

UV m̃([aU1/H ,∞))

]
m̃(da).

If . m̃ is the law of a nonnegative random variable W , then 

. ν(F ) = E[ψ(1)]
∫ ∞

0
E

[
h(aU1/H )

UV
F(aH UV1[aU1/H ,∞))

]
m̃(da)

= E[ψ(1)]E
[
h(U1/H W)

UV
F(UV WH1[U1/H W,∞))

]

which is the formula in (b2). 
(c2) Since the conditional process .(ψ(t), t ≥ 0 | ψ(a) = 0) has the Lévy measure 

.νa(dy) = 1{y(a)=0}ν(dy) (see [3]), by (3.6) we obtain for any measurable 

functional .F : R[0,∞)
+ 	→ R+ and .a > 0
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. νa(F ) =
∫

F(y)1{y(a)=0}ν(dy)

=
∫

R

∫

R+
F(xe−s1[e−s/H ,∞))1{xe−s1[e−s/H ,∞)

(a)=0} ρ(dx)ds

=
∫ ln(a−H )

−∞

∫ ∞

0
F(xe−s1[e−s/H ,∞)) ρ(dx)ds .

Since .ν̃a = ν − νa , 

. ̃νa(F ) =
∫ ∞

ln(a−H )

∫ ∞

0
F(xe−s1[e−s/H ,∞)) ρ(dx)ds

Let .0 = t0 < t1 < · · · < tn be such that .tm = a for some .m ≤ n. For  .αi > 0 we 
obtain 

. E exp
{

−
n∑

i=1

αi(L(a)
ti

− L(a)
ti−1

)
}

= exp{−ν̃a(1 − e−∑n
i=1 αi(y(ti )−y(ti−1)))}

= exp
{

−
∫ ∞

ln(a−H )

∫ ∞

0
(1 − e

−∑n
i=1 αixe−s (1[e−s/H ,∞)

(ti )−1[e−s/H ,∞)
(ti−1)))

× ρ(dx)ds
}

= exp
{

−
∫ ∞

ln(a−H )

∫ ∞

0
(1 − e

−∑n
i=1 αixe−s1(ti−1,ti ](e

−s/H )
) ρ(dx)ds

}

= exp
{

−
m∑

i=1

∫ ln(t−H
i−1 )

ln(t−H
i )

∫ ∞

0
(1 − e−αixe−s

) ρ(dx)ds
}

=
m∏

i=1

E exp
{ − αi(ψ(ti) − ψ(ti−1))

}

= E exp{−
n∑

i=1

αi(ψ(ti ∧ a) − ψ(ti−1 ∧ a))
}
,

which shows that .(L(a)
t , t ≥ 0)

(law)= (ψ(t ∧ a), t ≥ 0). 
Since .(ψ(t ∧ a), t ≥ 0) and .(ψ(t ∨ a) − ψ(a), t ≥ 0) are independent and they 

add to .(ψ(t), t ≥ 0), we get .(ψ(t), t ≥ 0 | ψ(a) = 0)
(law)= (ψ(t∨a)−ψ(a), t ≥ 0).

�
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3.3 Stochastic Convolution 

Let .Z = (Zt , t ≥ 0) be a subordinator with no drift. For a fixed function . f : R+ 	→
R+ and .t ≥ 0, the stochastic convolution .f ∗ Z is given by 

. (f ∗ Z)(t) =
∫ t

0
f (t − s) dZs .

Assume that .κ := EZ1 ∈ (0,∞) and .
∫ t

0 f (s) ds < ∞ for every .t > 0. Therefore, 
.E[(f ∗ Z)(t)] = κ

∫ t

0 f (s) ds < ∞. Set .f (u) = 0 when .u < 0. 
We will consider the stochastic convolution process 

.ψ(t) :=
∫ t

0
f (t − s) dZs , t ≥ 0. (3.8) 

Clearly, .(ψ(t), t ≥ 0) is an infinitely divisible process. To determine, its Lévy 
measure we write .ψ(t) = ∫ ∞

0 ft (s) dZs , where .ft (s) = f (t − s). It follows from 
[12, Theorem 2.7(iv)] that the Lévy measure . ν of the process . ψ is the image of 
.m ⊗ ρ by the map .(s, x) 	→ xf(·)(s) acting from .R2+ into .R[0,∞). That is, 

.ν(F ) =
∫ ∞

0

∫ ∞

0
F(xf (t − s), t ≥ 0) ρ(dx)ds (3.9) 

for every measurable functional .F : R[0,∞)
+ 	→ R+. 

Proposition 3.6 Let .(ψ(t), t ≥ 0) be a stochastic convolution process as in (3.8). 
Let . ρ be the Lévy measure of . Z1 and .I (a) := ∫ a

0 f (s) ds. 

(a3) Given .a > 0 such that .I (a) > 0, let .r(a) be the process defined by: 

. r(a)(t) := Vf (t − Ua), t ≥ 0

where the random variable . Ua has density .
f (a − s)

I (a)
on .[0, a], V has the law 

.κ−1xρ(dx) on . R+, and . Ua , V , and .(ψ(t) : t ≥ 0) are independent. Then . r(a)

satisfies (1.2), that is, 

. 
(
ψ(t) + Vf (t − Ua), t ≥ 0

) (law)= (
ψ(t), t ≥ 0

)
under E

[ ψ(a)

κI (a)
; .

]

(b3) Suppose that .
∫ ∞
0 e−θsf (s) ds < ∞ for some .θ > 0. Let Y be a random 

variable with the exponential law of mean .θ−1 and independent of V specified 
in (a3). Then the Lévy measure . ν of .(ψ(t), t ≥ 0) can be represented as



312 N. Eisenbaum and J. Rosiński

. ν(F ) = κ

θ
E

[
V −1eθY F (Vf (t − Y ), t ≥ 0)

]
.

for every measurable functional .F : R[0,∞)
+ 	→ R+. Therefore, . ν is the law of 

the process .(Vf (t − Y ), t ≥ 0) under the measure .κθ−1V −1eθY dP. 

(c3) The components of the decomposition (1.5): .ψ
(law)= (ψ | ψ(a) = 0)+L(a), can 

be identified as 

. (ψ(t), t ≥ 0 | ψ(a) = 0)
(law)=

( ∫ t

0
f (t − s)1Da (s) dZs, t ≥ 0

)

and 

. (L(a)
t , t ≥ 0)

(law)=
( ∫ t

0
f (t − s)1Dc

a
(s) dZs, t ≥ 0

)

where .Da = {s ≥ 0 : f (a − s) = 0} and .Dc
a = R+ \ Da . 

The Lévy measures . νa and . ̃νa of .(ψ(t), t ≥ 0 | ψ(a) = 0) and of . (L(a)
t , t ≥

0), respectively, are given by 

. νa(F ) =
∫

Da

∫ ∞

0
F(xf (t − s), t ≥ 0) ρ(dx)ds

and 

. ̃νa(F ) =
∫

Dc
a

∫ ∞

0
F(xf (t − s), t ≥ 0) ρ(dx)ds,

for every measurable functional .F : R[0,∞)
+ 	→ R+. 

Proof 

(a3) From (1.4) and (3.9), we get 

. EF(r
(a)
t , t ≥ 0) = 1

Eψ(a)

∫
F(y) y(a) ν(dy)

= 1

κI (a)

∫ ∞

0

∫ ∞

0
F

(
xf (t − s), t ≥ 0

)
xf (a − s) ρ(dx)ds

=
∫ a

0

∫ ∞

0
F(xf (t − s), t ≥ 0)

xρ(dx)

κ

f (a − s)ds

I (a)

= E
[
F(Vf (t − Ua), t ≥ 0)

]
.

(b3) Since . ψ is stochastically continuous, using (1.3) and (a3), we have for every 
.σ -finite measure . m̃ whose support is .[0,∞) and .

∫ ∞
0 I (a) m̃(da) < ∞
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. ν(F ) =
∫ ∞

0
E

[
F(r(a))

∫ ∞
0 r

(a)
s m̃(ds)

]
E[ψ(a)] m̃(da)

= κ

∫ ∞

0
E

[
F(Vf (t − Ua), t ≥ 0)

V
∫ ∞
0 f (s − Ua) m̃(ds)

]
I (a) m̃(da).

Since . m̃ is the law of Y in our case, it is easy to check that . β :=∫ ∞
0 I (a) m̃(da) < ∞. Also,  

. 

∫ ∞

0
f (s − Ua) m̃(ds) = βθe−θUa .

Then we get 

. ν(F ) = κ

βθ

∫ ∞

0
E

[
V −1eθUaF (Vf (t − Ua), t ≥ 0)

]
I (a)θe−θa da

= κ

βθ

∫ ∞

0

∫ a

0
E

[
V −1eθsF (Vf (t − s), t ≥ 0)

]
f (a − s) ds θe−θa da

= κ

θ

∫ ∞

0
E

[
V −1eθsF (Vf (t − s), t ≥ 0)

]
θe−θs ds

= κ

θ
E

[
V −1eθY F (Vf (t − Y ), t ≥ 0)

]
.

(c3) Since the conditional process .(ψ(t), t ≥ 0 | ψ(a) = 0) has the Lévy measure 
.νa(dy) = 1{y(a)=0}ν(dy) (see [3]), by (3.6) we obtain for any measurable 

functional .F : R[0,∞)
+ 	→ R+ and . a > 0

. νa(F ) =
∫

F(y)1{y(a)=0}ν(dy)

=
∫ ∞

0

∫ ∞

0
F(xf (t − s), t ≥ 0)1{(x,s): xf (a−s))=0} ρ(dx)ds

=
∫ ∞

0

∫ ∞

0
F(xf (t − s), t ≥ 0)1Da (s) ρ(dx)ds .

Using again [12, Theorem 2.7(iv)] we see that . νa is the Lévy measure of the 
process 

. 

( ∫ t

0
f (t − s)1Da (s) dZs, t ≥ 0

)

which is a nonnegative infinitely divisible process without drift. Since the law 
of such process is completely characterized by its Lévy measure, we infer that
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. (ψ(t), t ≥ 0 | ψ(a) = 0)
(law)=

( ∫ t

0
f (t − s)1Da (s) dZs, t ≥ 0

)
.

Since .ν̃a = ν − νa and .ψ
(law)= (ψ | ψ(a) = 0) + L(a), we can apply the same 

argument as above to get 

. (L(a)
t , t ≥ 0)

(law)=
( ∫ t

0
f (t − s)1Da (s) dZs, t ≥ 0

)
.

�

3.4 Tempered Stable Subordinator 

Tempered .α-stable subordinators behave at short time like .α-stable subordinators 
and may have all moments finite, while the latter have the first moment infi-
nite. Therefore, we can make use of tempered stable subordinators to illustrate 
identities (1.2)–(1.5). For concreteness, consider a tempered .α-stable subordinator 
.(ψ(t), t ≥ 0) determined by the Laplace transform 

.Ee−uψ(1) = exp{1 − (1 + u)α} (3.10) 

where .α ∈ (0, 1). When .α = 1/2, . ψ is also known as the inverse Gaussian 
subordinator. A systematic treatment of tempered .α-stable laws and processes can 
be found in [14]. In particular, the Lévy measure of .ψ(1) is given by 

. ρ(dx) = 1

|�(−α)|x
−α−1e−x dx, x > 0 ,

Rosiński [14, Theorems 2.3 and 2.9(2.17)]. Therefore, the Lévy measure . ν of the 
process . ψ is given by 

. ν(F ) =
∫ ∞

0

∫ ∞

0
F(x1[s,∞)) ρ(dx)ds

= 1

|�(−α)|
∫ ∞

0

∫ ∞

0
F(x1[s,∞)) x−α−1e−x dxds , (3.11) 

for every measurable functional .F : R[0,∞)
+ 	→ R+. 

Proposition 3.7 Let .(ψ(t), t ≥ 0) be a tempered .α-stable subordinator as above. 

(a4) Given .a > 0, let .r(a) be the process defined by: 

.r(a)(t) := G1[aU,∞)(t), t ≥ 0
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where G has a .Gamma(1 − α, 1) law and U is a standard uniform random 
variable independent of G. Then .r(a) satisfies (1.2), that is, 

. (ψ(t) + G1[aU,∞)(t), t ≥ 0)
(law)= (ψ(t), t ≥ 0) under E

[ψ(a)

αa
; .

]

(b4) The Lévy measure . ν of .(ψ(t), t ≥ 0) can be represented as 

. ν(F ) = α−1E
[
G−1YeUY F (G1[UY,∞))

]

for every measurable functional .F : R
[0,∞)
+ 	→ R+. Here,  G, U are as in 

(a4), Y is a standard exponential variable, and .G,U , and Y are independent. 
Consequently, . ν is the law of the process .(G1[UY,∞), t ≥ 0) under the 
measure .α−1G−1YeUY dP. 

(c4) The components of the decomposition (1.5): .ψ
(law)= (ψ | ψ(a) = 0)+L(a), can 

be identified as 

. (ψ(t), t ≥ 0 | ψ(a) = 0)
(law)= (ψ(t ∨ a) − ψ(a), t ≥ 0).

and 

. (L(a)
t , t ≥ 0)

(law)= (ψ(t ∧ a), t ≥ 0).

The Lévy measures . νa and . ̃νa of .(ψ(t), t ≥ 0 | ψ(a) = 0) and of . (L(a)
t , t ≥

0), respectively, are given by 

. νa(F ) = 1

|�(−α)|
∫ ∞

a

∫ ∞

0
F

(
x1[s,∞)

)
x−α−1e−x dxds

and 

. ̃νa(F ) = 1

|�(−α)|
∫ a

0

∫ ∞

0
F

(
x1[s,∞)

)
x−α−1e−x dxds,

for every measurable functional .F : R[0,∞)
+ 	→ R+. 

Proof 

(a4) From (3.10) we get .Eψ(a) = αa. Using  (3.11). and (1.4), we get 

.EF(r
(a)
t , t ≥ 0) = 1

Eψ(a)

∫
F(y) y(a) ν(dy)

= 1

αa

∫ ∞

0

∫ ∞

0
F(x1[s,∞)) x1[s,∞)(a) ρ(dx)ds
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= 1

�(1 − α)a

∫ a 

0

∫ ∞ 

0 
F(x1[s,∞)) x−α e−x dxds 

= E
[
F(G1[aU,∞))

]
. 

(b4) We apply [3, Theorem 1.2] to .(ψ(t), t ≥ 0) and .(r(a)
t , t ≥ 0) specified in 

(a4). Proceeding analogously to the previous examples, we get for any .σ -finite 
measure . m̃ whose support equals .R+ and . 

∫
R+ a m̃(da) < ∞

. ν(F ) =
∫ ∞

0
E

[
F(r(a))

∫ ∞
0 r

(a)
s m̃(ds)

]
E[ψ(a)] m̃(da)

= 1

α

∫ ∞

0
E

[
F(G1[Ua,∞))

Gm̃([aU,∞))

]
a m̃(da).

When . m̃ is the law of a standard exponential random variable, we obtain 

. ν(F ) = 1

α

∫ ∞

0
E

[
eaUG−1F(G1[aU,∞))

]
ae−ada

= α−1E
[
G−1YeUY F (G1[UY,∞))

]
.

(c4) We will omit this proof as it is similar to the proof of (c1) in the Poisson case. 
�

3.5 Connection with Infinitely Divisible Random Measures 

Let .M(S) denote the space of finite measures on a Borel space .(S,S). . M(S)

is a Borel space under the topology of weak convergence of finite measures. A 
measurable map .ξ : � 	→ M(S) is called a random measure on S. Any random 
measure . ξ can also be viewed as a stochastic process indexed by . S and having paths 
in .M(S) ⊂ RS , .ξ = {ξ(A), A ∈ S}. A random measure is called infinitely 
divisible if the corresponding stochastic process is infinitely divisible. 

3.5.1 Cluster Representation 

The key result on infinitely divisible random measures is the cluster representation. 
It says that any infinitely divisible random measure . ξ on .(S,S) is of the form 

.ξ = m +
∫

M(S)

μ �(dμ) a.s. (3.12)
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where . � is a Poisson random measure on .M(S) with intensity . λ satisfying 

.

∫

M(S)

(μ(A) ∧ 1) λ(dμ) < ∞, A ∈ S (3.13) 

and .m ∈ M(S) is nonrandom (see [8, Theorem 3.20]). Notice that this result follows 
from (2.3) of Sect. 2 when .E = S and .ψ = ξ . We will sketch a proof to this claim. 
Indeed, since (2.3) in this case states that 

. 
(
ξ(A),A ∈ S

) (law)=
(
f0(A) +

∫

RS
+

f (A)N(df ), A ∈ S
)
,

pathwise additivity of . ξ implies that . ν, the Lévy measure of . ξ , is concentrated on 
finite additive functions .f : S 	→ R+. Since the .σ -algebra . S is countably generated 
and . ξ is pathwise .σ -additive, . ν is a .σ -finite measure concentrated on .M(S) with 
.ν({0}) = 0. It follows that .f0 ∈ M(S). Hence 

. 
(
ξ(A),A ∈ S

) (law)=
(
m(A) +

∫

M(S)

μ(A)N(dμ), A ∈ S
)
.

This equality can be strengthen to the almost sure equality by the usual argument. 
Hence (3.12)–(3.13) hold with .λ = ν, .� = N , and .m = f0. 

3.5.2 A Characterization of Infinitely Divisible Random Measures 

One can make use of (1.2) for nonnegative processes indexed by . S to obtain the 
following characterization of infinitely divisible random measures on S. 

A random measure . ξ on S is infinitely divisible if and only if, for every A in . S
such that .0 < E[ξ(A)] < ∞, there exists a random measure .r(A) on S, independent 
of . ξ such that: 

.ξ + r(A) (law)= ξ under E[ ξ(A)

E[ξ(A)] , . ] (3.14) 

The characterization (3.14) can be connected to another characterization given 
in [8, Theorem 6.17]. Namely, assume that . ξ has a .σ -finite intensity n, then . ξ is 
infinitely divisible if and only if for every a in S there exists a random measure . R(a)

on S, independent of . ξ such that 

.ξ + R(a) (law)= ξa, (3.15) 

where . ξa is the Palm measure of . ξ at point a. 
By definition, the Palm measures .{ξa, a ∈ S} of . ξ satisfy for every A in . S and 

every measurable subset L of .M(S)
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. E[ξ(A); ξ ∈ L] =
∫

A

n(da)P[ξa ∈ L],

which leads to the following relation for A such that . 0 < n(A) < ∞

. P[ ξ + r(A) ∈ L] = 1

n(A)

∫

A

n(da)P[ ξ + R(a) ∈ L].

By computing the Laplace transforms, one finally has: 

.r(A)(law)= 1

n(A)

∫

A

n(da)R(a). (3.16) 

In the special case of a point a of S such that .P[ξ({a}) > 0] > 0 (e.g., S is 
discrete), one obtains .R(a)(law)= r({a}). 

3.5.3 A Decomposition Formula 

Given an infinitely divisible random measure . ξ on S, one can take advantage of (1.6) 
to obtain, for every A such that .0 < E[ξ(A)] < ∞, the existence of an infinitely 
divisible random measure .L(A) on S such that: 

.ξ
(law)= (ξ | ξ(A) = 0) + L(A), (3.17) 

with the two measures on the right-hand side independent. 

3.5.4 Some Remarks 

In this section we take .S = RE+. Let . χ be a finite infinitely divisible random measure 
on .RE+ with no drift and Lévy measure . λ. Assume now that for every a in E: 

. 

∫

RE
+

f (a)

∫

M(RE
+)

μ(df ) λ(dμ) < ∞.

Consider then the nonnegative process . ψ on E defined by .ψ(x) = ∫
RE

+
f (x)χ(df ). 

The process . ψ is infinitely divisible and nonnegative. The following proposition 
gives its Lévy measure. 

Proposition 3.8 The infinitely divisible nonnegative process . (
∫
RE

+
f (x)χ(df ), x ∈

E) admits for the Lévy measure . ν given by:
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. ν =
∫

M(RE
+)

μ λ(dμ).

Proof From (2.3), we know that there exists a Poisson point process . Ñ on . RE+ with 
intensity the Lévy measure of . ψ satisfying . (ψ(x), x ∈ E) = (

∫
RE

+
f (x)Ñ(df ), x ∈

E). Besides, . χ admits the following expression: .χ = ∫
M(RE

+)
μ N(dμ), with N 

Poisson point process on .M(RE+) with intensity . λ. One obtains: 

. (ψ(x), x ∈ E) =
( ∫

RE
+

f (x)

∫

M(RE
+)

μ(df ) N(dμ), x ∈ E
)

.

Using then Campbell formula for every measurable subset A of . RE+, one computes 
the intensity of the Poisson point process . 

∫
M(RE

+)
μ(df ) N(dμ)

. E[
∫

RE
+
1A(f )

∫

M(RE
+)

μ(df ) N(dμ)] =
∫

RE
+
1A(f )

∫

M(RE
+)

μ(df ) λ(dμ)

= ν(A) .

�
Proposition 3.8 allows to write every Lévy measure . ν on .RE+ in terms of a 

Lévy measure on .M(RE+). Indeed, given a Lévy measure . ν on . RE+, denote by 
.(ψ(x), x ∈ E) the corresponding infinitely divisible nonnegative process without 
drift. From (2.3), we know that . ψ admits the representation . (

∫
RE

+
f (x)χ(df ), x ∈

E) with . χ Poisson random measure on .M(RE+). The random measure . χ is hence 
infinitely divisible. Proposition 3.8 gives us: 

.ν =
∫

M(RE
+)

μ λ(dμ) (3.18) 

where . λ is the Lévy measure of . χ . Proposition 3.8 allows to see that, given . ν, the  
Lévy measure . λ satisfying (3.18) is not unique. 

Proposition 3.9 The intensity . ν of a Poisson random measure on .RE+ with Lévy 
measure . λ satisfies: 

.ν =
∫

M(RE
+)

μ λ(dμ).
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3.6 Infinitely Divisible Permanental Processes 

A permanental process .(ψ(x), x ∈ E) with index .β > 0 and kernel . k =
(k(x, y), (x, y) ∈ E × E) is a nonnegative process with finite dimensional Laplace 
transforms satisfying, for every .α1, .., αn ≥ 0 and every . x1, . x2,..,. xn in E: 

.E[exp{−1

2

n∑

i=1

αiψ(xi)}] = det(I + αK)−β (3.19) 

where . α is the diagonal matrix with diagonal entries .(αi)1≤i≤n, I is the .n×n-identity 
matrix and K is the matrix .(k(xi, xj ))1≤i,j≤n. 

Note that the kernel of a permanental process is not unique. 
In case .β = 1/2 and k can be chosen symmetric positive semi-definite, 

.(ψ(x), x ∈ E) equals in law .(η2x, x ∈ E) where .(ηx, x ∈ E) is a centered Gaussian 
process with covariance k. The permanental processes hence represent an extension 
of the definition of squared Gaussian processes. 

A necessary and sufficient condition on .(β, k) for the existence of a permanental 
process .(ψ(x), x ∈ E) satisfying (3.19) has been established by Vere-Jones [20]. 
Since we are interested by the subclass of infinitely divisible permanental processes, 
we will only remind a necessary and sufficient condition for a permanental process 
to be infinitely divisible. Remark that if .(ψ(x), x ∈ E) is infinitely divisible, then, 
for every measurable nonnegative d, .(d(x)ψ(x), x ∈ E) is also infinitely divisible. 
Up to the product by a deterministic function, .(ψ(x), x ∈ E) is infinitely divisible 
if and only if it admits for kernel the 0-potential densities (the Green function) of a 
transient Markov process on E (see [4] and [5]). 

Consider an infinitely divisible permanental process .(ψ(x), x ∈ E) admitting for 
kernel the Green function .(g(x, y), (x, y) ∈ E × E) of a transient Markov process 
.(Xt , t ≥ 0) on E. For simplicity assume that . ψ has index .β = 1. For  . a ∈ E

such that .g(a, a) > 0, denote by .(L(a)∞ (x), x ∈ E) the total accumulated local time 
process of X conditioned to start at a and killed at its last visit to a. In [3], (1.5) has 
been explicitly written for . ψ : 

. ψ
(law)= (ψ |ψ(a) = 0) + L(a)

with .L(a) independent process of .(ψ |ψ(a) = 0), such that . L(a)(law)= (2L(a)∞ (x), x ∈
E). Moreover, .(ψ |ψ(a) = 0) is a permanental process with index 1 and with kernel 
the Green function of X killed at its first visit to a. 

One can also explicitly write (1.2) for . ψ with . (r(a)(x), x ∈ E)
(law)= (2L(a)∞ (x), x ∈

E). Hence the case of infinitely divisible permanental processes is a special case 

since .r(a) is infinitely divisible and .r(a)(law)= L(a). 
The easiest way to obtain the Lévy measure . ν of . ψ is to use (1.3) with m .σ -

measure with support equal to E such that: .
∫
E

g(x, x)m(dx) < ∞, to obtain
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. ν(F ) =
∫

E

E[ F(2L(a)∞ )
∫
E

L
(a)∞ (x)m(dx)

]g(a, a)m(da),

for any measurable functional F on . RE+. 
If, moreover, the 0-potential densities .(g(x, y), (x, y) ∈ E ×E) were taken with 

respect to m, then, for every a, .
∫
E

L
(a)∞ (x)m(dx) represents the time of the last visit 

to a by X starting from a. 

4 Transfer of Continuity Properties 

Using (1.6), a nonnegative infinitely divisible process .ψ = (ψ(x), x ∈ E) with 
Lévy measure . ν and no drift is hence connected to a family of nonnegative infinitely 
divisible processes .{L(a), a ∈ E}. In the case when . ψ is an infinitely divisible 
squared Gaussian process, Marcus and Rosen [9] have established correspondences 
between path properties of . ψ and the ones of .L(a), a ∈ E. To initiate a similar study 
for a general . ψ , we assume that .(E, d) is a separable metric space with a dense set 
.D = {ak, k ∈ N∗}. 

One immediately notes that if . ψ is a.s. continuous with respect to d, then, for 
every a in E, .L(a) is a.s. continuous with respect to d and the measure . ν is supported 
by the continuous functions from E into . R+, i.e., .r(a) is continuous with respect to 
d, for every a in E. 

Conversely, if .L(a) is continuous with respect to d for every a in E, what can be 
said about the continuity of . ψ ? 

As noticed in [16] (Proposition 4.7) the measure . ν admits the following 
decomposition: 

.ν =
∞∑

k=1

1Ak
νk, (4.1) 

where .A1 = {y ∈ RE+ : y(a1) > 0} and for .k > 1, 

. Ak = {y ∈ RE+ : y(ai) = 0,∀i < k and y(ak) > 0}

and . νk is defined by 

. νk(F ) = E[E(ψ(ak)

r
(ak)
ak

1Ak
(r(ak))F (r(ak))]

for every measurable functional .F : RE+ 	→ R+. 
For every k the measure . νk is a Lévy measure. Since the supports of these mea-

sures are disjoint, they correspond to independent nonnegative infinitely divisible
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processes that we denote by .L(k), .k ≥ 1. As a consequence of (4.1), . ψ admits the 
following decomposition: 

.ψ
(law)=

∞∑

k=1

L(k). (4.2) 

Note that 

. L(1)
(law)= L(a1)

and similarly for every .k > 1: 

. L(k)
(law)= (L(ak)|L(ak)|{a1,..,ak−1} = 0).

Consequently, for every .k ≥ 1, .L(k) is continuous with respect to d. 
From (4.2), one obtains all kind of .0 − 1 laws for . ψ . For example: 

– .P[ψ is continuous on E] = 0 or 1. 
– . ψ has a deterministic oscillation function w, such that for every a in E: 

. lim inf
x→a

ψ(x) = ψ(a) and lim sup
x→a

ψ(x) = ψ(a) + w(a).

Exactly as in [3], one shows the following propositions: 

Proposition 4.1 If for every a in E, .L(a) is a.s. continuous, then there exists a 
dense subset . 	 of E such that a.s. . ψ is continuous at each point of . 	 and .ψ|	 is 
continuous. 

Proposition 4.2 Assume that . ψ is stationary. If, for every a in E, .L(a) is a.s. 
continuous, then . ψ is continuous. 

5 A Limit Theorem 

Given a nonnegative infinitely divisible without drift process .(ψx, x ∈ E), the  
following result gives an intrinsic way to obtain .r(a) for every a in E: 

Theorem 5.1 For a nonnegative infinitely divisible process .(ψx, x ∈ E) with Lévy 
measure . ν, denote by .ψ(δ) an infinitely divisible process with Lévy measure . δν. 
Then, for any a in E such that .E[ψa] > 0, .r(a) is the limit in law of the processes 

.ψ(δ) under .E
[

ψ
(δ)
a

E[ψ(δ)
a ] ; ·

]
, as .δ → 0.
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Proof We remind (1.4): .P[r(a) ∈ dy] = y(a)

E[ψa ] ν(dy). Since .E[ψ(δ)
a ] = δE[ψa], 

one obtains immediately .P[r(a) ∈ dy] = y(a)

E[ψ(δ)
a ] δν(dy). Consequently, . r(a)

satisfies: 

. ψ(δ) + r(a) (law)= ψ(δ) under E[ ψ
(δ)
a

E[ψ(δ)
a ]

; . ].

As .δ → 0, .ψ(δ) converges to the 0-process in law, so .ψ(δ) under .E[ ψ
(δ)
a

E[ψ(δ)
a ] ; · ] must 

converge in law to . r(a). �
From (1.2) and (1.5), one obtains in particular: 

.L(a) + r(a)(law)= L(a) under E[ L(a)
a

E[L(a)
a ]

; .] (5.1) 

We know from [3] that the Lévy measure of .L(a) is .ν(dy)1y(a)>0. Denote by . �(a,δ)

a nonnegative process with Lévy measure .δν(dy)1y(a)>0. Using Theorem 5.1, one 

obtains that .r(a) is also the limit in law of .�(a,δ) under E[ �
(a,δ)
a

E[�(a,δ)
a ] ; . ]. 
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16. J. Rosiński, Representations and isomorphism identities for infinitely divisible processes. Ann. 

Probab. 46(6), 3229–3274 (2018) 
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1 Formulation of the Problem 

Let .X = (X1, . . . , Xn) be a centered random vector with independent coordinates. 
To simplify the notation, we will write 

. Xt = 〈t, X〉 =
∑

i

tiXi for t = (t1, . . . , tn) ∈ R
n.

Our aim is to estimate the expected value of the supremum of the process .(Xt )t∈T , 
i.e., the quantity 

. bX(T ) := E sup
t∈T

Xt , T ⊂ R
n nonempty bounded.

There is a long line of research devoted to bounding .bX(T ) via the chaining method 
(cf. the monograph [11]). However, chaining methods do not work well for heavy-
tailed random variables. In this paper, we will investigate another approach based 
on the convex hull method. 

First, let us discuss an easy upper bound. Suppose that there exists . t0, t1, . . . ∈ R
n

such that 

.T − t0 ⊂ conv{±ti : i ≥ 1} (1) 

R. Latała (�) 
Institute of Mathematics, University of Warsaw, Warszawa, Poland 
e-mail: rlatala@mimuw.edu.pl 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
R. Adamczak et al. (eds.), High Dimensional Probability IX, Progress in 
Probability 80, https://doi.org/10.1007/978-3-031-26979-0_13

325

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26979-0protect T1	extunderscore 13&domain=pdf
http://orcid.org/0000-0002-2609-2869

 885 56845
a 885 56845 a
 
mailto:rlatala@mimuw.edu.pl
mailto:rlatala@mimuw.edu.pl
mailto:rlatala@mimuw.edu.pl
https://doi.org/10.1007/978-3-031-26979-0_13
https://doi.org/10.1007/978-3-031-26979-0_13
https://doi.org/10.1007/978-3-031-26979-0_13
https://doi.org/10.1007/978-3-031-26979-0_13
https://doi.org/10.1007/978-3-031-26979-0_13
https://doi.org/10.1007/978-3-031-26979-0_13
https://doi.org/10.1007/978-3-031-26979-0_13
https://doi.org/10.1007/978-3-031-26979-0_13
https://doi.org/10.1007/978-3-031-26979-0_13
https://doi.org/10.1007/978-3-031-26979-0_13
https://doi.org/10.1007/978-3-031-26979-0_13


326 R. Latała

Then, for any .u > 0, 

. E sup
t∈T

Xt = E sup
t∈T

Xt−t0 ≤ E sup
i≥1

|Xti | ≤ u +
∑

i≥1

E|Xti |I{|Xti
|≥u}.

Indeed the equality above follows since .Xt−t0 = Xt − Xt0 and .EXt0 = 0 and all 
inequalities are pretty obvious. To make the notation more compact, let us define for 
nonempty countable sets . S ⊂ R

n

. MX(S) = inf
u>0

[
u +

∑

t∈S

E|Xt |I{|Xt |≥u}
]
,

M̃X(S) = inf
{
m > 0 :

∑

t∈S

E|Xt |I{|Xt |≥m} ≤ m
}
.

It is easy to observe that 

.M̃X(S) ≤ MX(S) ≤ 2M̃X(S). (2) 

To see the lower bound, let us fix .u > 0 and set .m = u + ∑
t∈S E|Xt |I{|Xt |≥u} then 

. 
∑

t∈S

E|Xt |I{|Xt |≥m} ≤
∑

t∈S

E|Xt |I{|Xt |≥u} ≤ m,

so .M̃X(s) ≤ m. For the upper bound, it is enough to observe that for .u > M̃X(S), 
we have .

∑
t∈S E|Xt |I{|Xt |≥u} ≤ u. 

Thus, we have shown that 

.bX(T ) ≤ MX(S) ≤ 2M̃X(S) if T − t0 ⊂ conv(S ∪ −S). (3) 

Remark 1 The presented proof of (3) did not use independence of coordinates of 
X, the only required property is mean zero. 

Main Question When can we reverse bound (3)—what should be assumed about 
variables . Xi (and the set T ) in order that 

.T − t0 ⊂ conv(S ∪ −S) and MX(S) � E sup
t∈T

Xt (4) 

for some .t0 ∈ R
n and nonempty countable set .S ⊂ R

n? 

Remark 2 It is not hard to show (see Sect. 3 below) that . MX(S) ∼ Emaxi |Xti | =
bX(S ∪ −S) if .S = {t1, . . . , tk} and variables .(Xti )i are independent. Thus, our 
main question asks whether the parameter .bX(T ) may be explained by enclosing a 
translation of T into the convex hull of points .±ti for which variables .Xti behave as 
though they are independent.
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Remark 3 The main question is related to Talagrand conjectures about suprema of 
positive selector processes, c.f. [11, Section 13.1], i.e., the case when .T ⊂ R

n+ and 
.P(Xi ∈ {0, 1}) = 1. Talagrand investigates the possibility of enclosing T into a 
solid convex hull, which is bigger than the convex hull. On the other hand, we think 
that in our question, some regularity conditions on variables . Xi are needed (such as 
.4 + δ moment condition (10), which is clearly not satisfied for nontrivial classes of 
selector processes). 

Remark 4 

(i) In the one-dimensional case if .a = inf T , .b = sup T , then . T ⊂ [a, b] =
a+b

2 + conv{ a−b
2 , b−a

2 }. Hence 

. bX1(T ) = Emax{aX1, bX1} = a + b

2
EX1 + E

∣∣∣
b − a

2
X1

∣∣∣

= b − a

2
E|X1| ≥ M̃X1

({b − a

2

})
,

so this case is trivial. Thus, in the sequel, it is enough to consider .n ≥ 2. 
(ii) The set .V := conv(S ∪ −S) is convex and origin-symmetric. Hence, if . T =

−T and .T − t0 ⊂ V , then .T + t0 = −(−T − t0) = −(T − t0) ⊂ V and 
.T ⊂ conv((T − t0) ∪ (T + t0)) ⊂ V . Thus, for symmetric sets, it is enough to 
consider only .t0 = 0. 

(iii) Observe that .bX(conv(T )) = bX(T ) and .T − t0 is a subset of a convex set 
if and only if .conv(T ) − t0 is a subset of this set. Moreover, if .T − T ⊂ V , 
then .T − t0 ⊂ V for any .t0 ∈ V and . bX(T − T ) = bX(T ) + bX(−T ) =
bX(T ) + b−X(T ). So if  X is symmetric, it is enough to consider symmetric 
convex sets T . 

Notation Letters c, C will denote absolute constants which value may differ at each 
occurence. For two nonnegative functions f and g, we write .f � g (or . g � f ) if  
.g ≤ Cf . Notation .f ∼ g means that .f � g and .g � f . We write .c(α), . C(α)

for constants depending only on a parameter . α and define accordingly relations . �α , 
. �α , . ∼α . 

Organization of the paper In Sect. 2, we present another quantity .mX(S), defined 
via .Lp-norms of .(Xt )t∈S and show that for regular variables . Xi , it is equivalent to 
.MX(S). We also discuss there the relation of the convex hull method to the chaining 
functionals. In Sect. 3, we show that for .T = Bn

1 , the bound (3) may be reversed for 
arbitrary independent .X1, . . . , Xn and .S = {e1, . . . , en}. Section 4 is devoted to the 
study of ellipsoids. First, we show that for .T = Bn

2 and symmetric p-stable random 
Variables, .1 < p < 2, one cannot reverse (3). Then, we prove that under . 4 + δ

moment condition, our main question has the affirmative answer for .T = Bn
2 and 

more general case of ellipsoids. We extend this result to the case of linear images of 
.Bn

q -balls, .q ≥ 2 in Sect. 5. We conclude by discussing some open questions in the 
last section.
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2 Regular Growth of Moments 

In this section, we consider variables with regularly growing moments in a sense 
that 

.‖Xi‖2p ≤ α‖Xi‖p < ∞ for p ≥ 1, (5) 

where .‖X‖p = (E|X|p)1/p. 
For such variables, we will prove that there is alternate quantity equivalent to 

.MX(S), namely, 

. mX(S) := inf sup
i

‖Xti ‖log(e+i).

where the infimum runs over all numerations of .S = {ti : 1 ≤ i ≤ N}, .N ≤ ∞. 
It is not hard to check (cf. Lemma 4.1 in [6]) that (5) yields 

.‖Xt‖2p ≤ C0(α)‖Xt‖p for p ≥ 1 (6) 

and as a consequence, we have for .p > 0, 

.P(|Xt | ≥ e‖Xt‖p) ≤ e−p, P(|Xt | ≥ c1(α)‖Xt‖p) ≥ min{c2(α), e−p}, (7) 

where the first bound follows by Chebyshev’s inequality and the second one by the 
Paley-Zygmund inequality. 

Proposition 5 Suppose that . Xi are independent r.v’s satisfying condition (5). Then, 
.MX(S) ∼α mX(S). 

Proof Let .S = {ti : 1 ≤ i ≤ N} and .m := supi ‖Xti ‖log(e+i). Then, for .u > 1, 

. 
∑

s∈S

P(|Xs | ≥ um) ≤
N∑

i=1

P(|Xti | ≥ u‖Xti ‖log(e+i)) ≤
N∑

i=1

u− log(e+i).

Therefore, 

.

∑

s∈S

E|Xs |I{|Xs |≥e2m} =
∑

s∈S

(
e2mP(|Xs | ≥ e2m) + m

∫ ∞

e2
P(|Xs | ≥ um)du

)

≤ m

N∑

i=1

(
e2−2 log(e+i) +

∫ ∞

e2
u− log(e+i)du

)

≤ m

N∑

i=1

(
(e + i)−2

(
e2 + 1

log(e + i) − 1

))
≤ 100m,
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which shows that .MX(S) ≤ 100mX(S) (this bound does not use neither regularity 
neither independence of . Xi). 

To establish the reverse inequality, let us take any .m > 2MX(S) ≥ M̃X(S) and 
enumerate elements of S as .t1, t2, . . . in such a way that that .i → P(|Xti | ≥ m) is 
nonincreasing. By the definition of . M̃X(S), we have  

. 

N∑

i=1

P(|Xti | ≥ m) ≤ 1

m

N∑

i=1

E|Xti |I{|Xti
|≥m} ≤ 1.

In particular, it means that .P(|Xti | ≥ m) ≤ 1/i. By  (7) this yields that for . i >

1/c2(α) .‖Xti ‖log(i) ≤ m/c1(α). Since .log(e + i)/ log(i) ≤ 2 for . i ≥ 3, we have  
.‖Xti ‖log(e+i) ≤ C(α)m for large i. For .i ≤ max{3, 1/c2(α)}, it is enough to observe 
that .log(e + i) ≤ 2k(α), so  

. ‖Xti ‖log(e+i) ≤ C0(α)k(α)
E|Xti | ≤ C0(α)k(α)MX(S).

This shows that .‖Xti ‖log(e+i) �α m for all i, and therefore, .mX(S) �α MX(S). 
�

2.1 γX-Functional 

The famous Fernique-Talagrand theorem [3, 10] states that suprema of Gaussian 
processes may be estimated in geometrical terms by .γ2-functional. This result was 
extended in several directions. One of them is based on the so-called . γX functional. 

For a nonempty subset .T ⊂ R
n, we define 

. γX(T ) := inf sup
t∈T

∞∑

n=0

�n,X(An(t)),

where the infimum runs over all increasing sequences of partitions .(An)n≥0 of T 
such that .A0 = {T } and .|An| ≤ Nn := 22n

for .n ≥ 1, .An(t) is the unique element 
of .An which contains t , and .�n,X(A) denotes the diameter of A with respect to the 
distance .dn(s, t) := ‖Xs − Xt‖2n . 

It is not hard to check that .bX(T ) � γX(T ). The reverse bound was discussed in 
[7], where it was shown that it holds (with constants depending on . β and . λ) if  

.‖Xi‖p ≤ β
p

q
‖Xi‖q and ‖Xi‖λp ≥ 2‖Xi‖p for all i and p ≥ q ≥ 2. (8) 

Moreover, the condition .‖Xi‖p ≤ β
p
q
‖Xi‖q is necessary in the i.i.d. case if the 

estimate .γX(T ) ≤ CbX(T ) holds with a constant independent on n and .T ⊂ R
n.
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The next result may be easily deduced from the proof of [7, Corollary 2.7], but 
we provide its proof for the sake of completeness. 

Proposition 6 Let . Xi be independent and satisfy condition (5) and let T be a 
nonempty subset of . Rn such that .γX(T ) < ∞. Then, there exists set .S ⊂ R

n such 
that for any .t0 ∈ T , .T − t0 ⊂ T − T ⊂ conv(S ∪ −S) and . MX(S) � mX(S) �α

γX(T ). 

Proof Wlog (since it is only a matter of rescaling) we may assume that .EX2
i = 1. 

By the definition of .γX(T ), we may find an increasing sequence of partitions 
.(An) such that .A0 = {T }, .|Aj | ≤ Nj for .j ≥ 1 and 

. sup
t∈T

∞∑

n=0

�n,X(An(t)) ≤ 2γX(T ). (9) 

For any .A ∈ An, let us choose a point .πn(A) ∈ A and set .πn(t) := πn(An(t)). 
Let .Mn := ∑n

j=0 Nj for .n = 0, 1, . . . (we put .N0 := 1). Then, . log(Mn + 2) ≤
2n+1. Notice that there are .|An| ≤ Nn points of the form .πn(t) − πn−1(t), .t ∈ T . 
So we may define . sk , .Mn−1 ≤ k < Mn, .n = 1, 2, . . . as some rearrangement 
(with repetition if .|An| < Nn) of points of the form . (πn(t) − πn−1(t))/‖Xπn(t) −
Xπn−1(t)‖2n+1 , .t ∈ T . Then, .‖Xsk‖log(k+e) ≤ 1 for all .k ≥ 1. 

Observe that 

. ‖t−πn(t)‖2 = ‖Xt −Xπn(t)‖2 ≤ �2,X(An(t)) ≤ �n,X(An(t)) → 0 for n → ∞.

For any .s, t ∈ T , we have .π0(s) = π0(t) and thus 

. s − t = lim
n→∞(πn(s) − πn(t))

= lim
n→∞

(
n∑

k=1

(πk(s) − πk−1(s)) −
n∑

k=1

(πk(t) − πk−1(t))

)
.

This shows that 

. T − T ⊂ R conv{±sk : k ≥ 1},

where 

.R := 2 sup
t∈T

∞∑

n=1

dn+1(πn(t), πn−1(t)) ≤ 2 sup
t∈T

∞∑

n=1

�n+1,X(An−1(t))

≤ C(α) sup
t∈T

∞∑

n=1

�n−1,X(An−1(t)) ≤ 2C(α)γX(T ),
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where the second inequality follows by (6). Thus, it is enough to define . S :=
{Rsk : k ≥ 1}. �
Remark 7 Proposition 6 together with the equivalence .bX(T ) ∼α,λ γX(T ) shows 
that the main question has the affirmative answer for any bounded nonempty set T 
if symmetric random variables . Xi satisfy moment bounds (5). We strongly believe 
that the condition .‖Xi‖λp ≥ 2‖Xi‖p is not necessary—equivalence of .bX(T ) and 
the convex hull bound was established in the case of symmetric Bernoulli r.”s 
(.P(Xi = ±1) = 1/2) in [1, Corollary 1.2]. However, to treat the general case of r.v’s 
satisfying only the condition .‖Xi‖p ≤ β

p
q
‖Xi‖q , one should most likely combine 

. γX functional with a suitable decomposition of the process .(Xt )t∈T , as was done for 
Bernoulli processes. 

3 Toy Case: �1-Ball 

Let us now consider a simple case of .T = Bn
1 = {t ∈ R

n : ‖t‖1 ≤ 1}. Let  

. u0 := inf
{
u > 0 : P

(
max

i
|Xi | ≥ u

) ≤ 1

2

}
.

Since 

. P
(

max
i

|Xi | ≥ u
) ≥ 1

2
min

{
1,

∑

i

P(|Xi | ≥ u)
}

we get 

. E sup
t∈Bn

1

Xt = E max
1≤i≤n

|Xi | =
∫ ∞

0
P
(

max
1≤i≤n

|Xi | ≥ u
)
du

≥ 1

2
u0 +

∫ ∞

u0

1

2

n∑

i=1

P(|Xi | ≥ u)du

= 1

2
u0 + 1

2

n∑

i=1

∫ ∞

u0

P(|Xi | ≥ u)du = 1

2
u0 + 1

2

n∑

i=1

E(|Xi | − u0)+.

Therefore, 

.2u0 +
n∑

i=1

E|Xi |I{|Xi |≥2u0} ≤ 2u0 + 2
n∑

i=1

E(|Xi | − u0)+ ≤ 4E sup
t∈Bn

1

Xt,
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so that .MX({ei : i ≤ n}) ≤ 4E supt∈Bn
1
Xt , where .(ei)i≤n is the canonical basis of 

. Rn. Since .Bn
1 ⊂ conv{±e1, . . . ,±en}, we get the affirmative answer to the main 

question for .T = Bn
1 . 

Proposition 8 If .T = Bn
1 , then estimate (4) holds for arbitrary independent 

integrable r.v’s .X1, . . . , Xn with .S = {e1, . . . , en} and .t0 = 0. 

4 Case II. Euclidean Balls 

Now, we move to the case .T = Bn
2 . Then, .supt∈T 〈t, x〉 = |x|, where .|x| = ‖x‖2 is 

the Euclidean norm of .x ∈ R
n. 

4.1 Counterexample 

In this subsection, .X = (X1, X2, . . . , Xn), where .Xk have symmetric p-stable 
distribution with characteristic function .ϕXk

(t) = exp(−|t |p) and .p ∈ (1, 2). We  
will assume for convenience that n is even. Let G be a canonical n-dimensional 
Gaussian vector, independent of X. Then, 

. E|X| = EXEG

√
π

2
|〈X,G〉| =

√
π

2
EGEX|〈X,G〉| =

√
π

2
EG‖G‖pE|X1|

∼p E‖G‖p ∼ (E‖G‖p
p)1/p ∼ n1/p.

Observe also that for .u > 0, .P(|X1| ≥ u) ∼p min{1, u−p}, so  

. E|X1|I{|X1|≥u} ∼p u min{1, u−p}+
∫ ∞

u

min{1, v−p}dv ∼p min{1, u1−p}, u > 0

and 

. E|Xt |I{|Xt |≥u} = ‖t‖pE|X1|I{|X1|≥u/‖t‖p} ∼p min{‖t‖p, u1−p‖t‖p
p}, u > 0, t ∈ R

n.

Hence, 

. 
∑

t∈S

‖t‖p
p �p up for u > M̃X(S).

Suppose that .Bn
2 ⊂ conv(S ∪ −S) and .MX(S) ∼ M̃X(S) < ∞. We may then 

enumerate elements of S as .(tk)Nk=1, .N ≤ ∞ in such a way that .(‖tk‖p)Nk=1 is 
nonincreasing. Obviously .N ≥ n (otherwise .conv(S ∪ −S) would have empty
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interior). Take .u > M̃X(S) and set .E := span({tk : k ≤ n/2}). Then, . ‖tk‖p
p ≤

Cpup/n for .k > n/2. Thus, 

. Bn
2 ⊂ conv(S ∪ −S) ⊂ E + conv({±tk : k > n/2}) ⊂ E +

(Cp

n

)1/p

uBn
p.

Let .F = E⊥ and . PF denotes the ortogonal projection of . Rn onto the space F . Then, 
.dimF = dimE = n/2 and 

. Bn
2 ∩ F = PF (Bn

2 ) ⊂
(Cp

n

)1/p

uPF (Bn
p).

In particular, 

. n−1/2 ∼ vol2/n

n/2(Bn
2 ∩ F) ≤

(Cp

n

)1/p

uvol2/n

n/2(PF (Bn
p)).

By the Rogers-Shephard inequality [8] and inclusion .Bn
2 ⊂ n1/p−1/2Bn

p, we have  

. voln/2(PF (Bn
p)) ≤

(
n

n/2

)
voln(Bn

p)

voln/2(Bn
p ∩ E)

≤ 2n
voln(Bn

p)

voln/2(n1/2−1/pBn
2 ∩ E)

≤ (Cn−1/p)n/2.

This shows that .u �p n2/p−1/2. Thus, .MX(S) �p n2/p−1/2 � n1/p ∼p bX(Bn
2 ), 

and our question has a negative answer in this case. 

4.2 4 + δ Moment Condition 

In this part we establish positive answer to the main question in the case . T = Bn
2

under the following .4 + δ moment condition: 

.∃r∈(4,8],λ<∞ (EXr
i )

1/r ≤ λ(EX2
i )

1/2 < ∞ i = 1, . . . , n. (10) 

The restriction .r ≤ 8 is just for convenience. The following easy consequence 
of (10) will be helpful in the sequel. 

Lemma 9 Suppose that .X1, . . . , Xn are independent mean zero r.’s satisfying 
condition (10). Then, for any .1 ≤ p ≤ r , 

.

∥∥∥
n∑

i=1

uiXi

∥∥∥
p

∼λ

∥∥∥
n∑

i=1

uiXi

∥∥∥
2

=
( n∑

i=1

u2
i EX2

i

)1/2
(11)
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and 

. 

∥∥∥
∑

1≤i<j≤n

uijXiXj

∥∥∥
p

∼λ

∥∥∥
∑

1≤i<j≤n

uijXiXj

∥∥∥
2

=
( ∑

1≤i<j≤n

u2
ijEX2

i EX2
j

)1/2
.

(12) 

Proof Since it is only a matter of scaling wlog, we may and will assume that . EX2
i =

1 for all i. 
Rosenthal’s inequality [9] gives for .2 ≤ p ≤ r (recall that .r ∈ (4, 8], so constants 

below do not depend on r) 

. 

∥∥∥
n∑

i=1

uiXi

∥∥∥
p

∼
( ∑

i

E|uiXi |2
)1/2 +

( ∑

i

E|uiXi |p
)1/p

∼λ

( ∑

i

u2
i

)1/2 +
( ∑

i

|ui |p
)1/p

∼
( ∑

i

u2
i

)1/2
.

To estimate .‖S‖p for .1 ≤ p ≤ 2 and .S = ∑n
i=1 uiXi , it is enough to note that 

.‖S‖1 ≤ ‖S‖p ≤ ‖S‖2 and .‖S‖2 ≤ ‖S‖1/3
4 ‖S‖2/3

1 ∼λ ‖S‖1/3
2 ‖S‖2/3

1 , so . ‖S‖p ∼λ

‖S‖2. 
To prove the last part of the assertion we will use the hypercontractive method. 

Observe that for a real number u, there exists .θ ∈ [0, 1] such that 

. (1 + u)r ≤
(

1 + ru + r(r − 1)

2
(1 + θu)r−2u2

)
I{|u|<1} + (2|u|)rI{|u|≥1}

≤ 1 + ru + r22r−3u2 + 2r |u|r .

Hence (note that .λ ≥ 1, .EXi = 0, .EX2
i = 1 and .E|Xi |r ≤ λr ) 

. E

(
1 + 1

32λ
uXi

)r ≤ 1 + r22r−3 u2

1024
+ 2−4r |u|r ≤ 1 + ru2

4
+ |u|r

2

≤ 1 + max
{ r

2
u2, |u|r

}
.

Since 

. (E(1 + uXi)
2)r/2 = (1 + u2)r/2 ≥ 1 + max

{ r

2
u2, |u|r

}

we get .‖1 + 1
32λ

uXi‖r ≤ ‖1 + uXi‖2 for any .u ∈ R and the hypercontractivity 
method (cf. [5, Theorem 6.5.2]) yields (12) for .p = r . The case .1 ≤ p ≤ r may be 
obtained in the same way as in the proof of (11). �
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Observe that (10) implies that .Var(X2
i ) ≤ (λ4 − 1)(EX2

i )
2, so . Var(|X|2) ≤∑

i (λ
4 − 1)(EX2

i )
2 ≤ (λ4 − 1)(E|X|2)2. This yields that . E|X|4 ≤ λ4(E|X|2)2

and .(E|X|2)1/2 ≤ λ2
E|X|. 

The next fact is pretty standard; we prove it for completeness. 

Lemma 10 For any k there exists .T ⊂ Bk
2 with .|T | ≤ 5k such that .Bk

2 ⊂ 2conv(T ). 

Proof Let T be the maximal .
1
2 -separated set in . Bk

2 , the standard volumetric 
argument shows that .|T | ≤ 5k . We have .Bk

2 ⊂ T + 1
2Bk

2 ⊂ conv(T ) + 1
2Bk

2 , so  
.Bk

2 ⊂ 2conv(T ). �
The next lemma comes from [4]. 

Lemma 11 For any .1 ≤ k ≤ n, there exists .T ⊂ Bn
2 with .|T | ≤ 2n

k
5k such that 

.Bn
2 ⊂ 2

√
2n
k

conv(T ). 

Proof Let .l = �n/k� ≤ 2n/k and .Rn = F1 ⊕ · · · ⊕ Fl be an orthogonal 
decomposition of .Rn into spaces of dimension at most k. By Lemma 10 we can 
find .Ti ⊂ B2(Fi) := Bn

2 ∩ Fi such that .B2(Fi) ⊂ 2conv(Ti) and .|Ti | ≤ 5k . Let  
.T := ⋃

i≤l Ti . Then, .T ⊂ Bn
2 and .|T | ≤ l5k ≤ 2n

k
5k . 

Fix now .x ∈ Bn
2 and . xi denotes its orthogonal projection on . Fi . Observe that 

. 
∑

i≤l

‖xi‖ ≤ √
l
( ∑

i≤l

‖xi‖2
)1/2 ≤ √

l.

Therefore, 

. x ⊂ √
lconv

{
0,

x1

‖x1‖ , . . . ,
xl

‖xl‖
}

⊂ √
lconv

( ⋃

i≤l

B2(Fi)
)

⊂ 2
√

lconv(T ).

�
Lemma 12 Let Y be a vector uniformly distributed over .Sn−1. Then, 

. E|〈Y, t〉|I{|〈Y,t〉|≥u} ≤ min
{ |t |√

n
,

2(|t |2 + nu2)

nu
e−nu2/(2|t |2)} t ∈ R

n, u > 0.

Proof Observe that .〈Y, t〉 is distributed as .|t |Y1. Hence, 

. E|〈Y, t〉|I{|〈Y,t〉|≥u} = |t |E|Y1|I{|Y1|≥u/|t |}.

We have .E|Y1| ≤ (E|Y1|2)1/2 = n−1/2. Moreover, .P(Y1 ≥ v) ≤ exp(−nv2/2) for 
.v ≥ 0 (cf. [12]). Therefore
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. E|Y1|I{|Y1|≥u} ≤ uP(|Y1| ≥ u) +
∫ ∞

u

P(|Y1| ≥ v)dv

≤ 2ue−nu2/2 + 2
∫ ∞

u

e−nv2/2dv

≤ 2ue−nu2/2 + 2
∫ ∞

u

nv

nu
e−nv2/2dv = 2(1 + nu2)

nu
e−nu2/2.

�
Now, we are able to show that (4) holds for .T = Bn

2 under .4 + δ moment 
condition. 

Proposition 13 Let .X1, . . . , Xn be independent centered r.v’s with variance 1 
satisfying condition (10). Then, there exists .S ⊂ R

n such that .|S| ≤ 10n2, 
.Bn

2 ⊂ conv(S) and 

. MX(S) �r,λ

√
n ∼λ E|X| = bX(Bn

2 ).

Proof By the Rosenthal inequality [9], we have (recall that .r ∈ (4, 8]), 

. 
∥∥|X|2 − n

∥∥
r/2 =

∥∥∥∥
n∑

i=1

(X2
i − 1)

∥∥∥∥
r/2

�
( n∑

i=1

Var(X2
i )

)1/2 +
( n∑

i=1

E|X2
i − 1|r/2

)2/r

�λ n1/2 + n2/r ≤ 2n1/2.

Therefore, 

. E|X|I{|X|≥√
2n} ≤ E

√
2(|X|2 − n)I{|X|≥√

2n} ≤ √
2n1/2−r/2

E(|X|2 − n)r/2

≤ C(λ)n1/2−r/4. (13) 

By Lemma 11 (applied with .k = c(r) log n), there exists .t1, . . . , tN such that 
.Bn

2 ⊂ conv{t1, . . . , tN }, .N ≤ 10n1/2+r/8 and .|ti | ≤ C(r)
√

n/ log n, .1 ≤ i ≤ N . Let  
U be the random rotation (uniformly distributed on .O(n)) then .Uti is distributed as 
.|ti |Y , where Y has uniform distribution on . Sn−1. Thus, by Lemma 12, 

.EUEX|〈X,Uti〉|I{|〈X,Uti 〉|≥u}
= EXEY |〈Y, |ti |X〉|I{|〈Y,|ti |X〉|≥u}

≤ Emin
{ |ti ||X|√

n
,

2(|ti |2|X|2 + nu2)

nu
e−nu2/(2|ti |2|X|2)}

≤ |ti |√
n
E|X|I{|X|≥√

2n} + 4|ti |2 + 2u2

u
e−u2/(4|ti |2).
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Recall that .|ti | �r

√
n/ log n so for sufficiently large .C(r), we get by (13), 

. EUEX|〈X,Uti〉|I{|〈X,Uti 〉|≥C(r)
√

n} ≤ C(λ)n−r/4|ti | + n−2 ≤ C(r, λ)n1/2−r/4.

As a consequence, there exists .U ∈ O(n) such that 

. 

N∑

i=1

EX|〈X,Uti〉|I{|〈X,Uti 〉|≥C(r)
√

n} ≤ NC(r, λ)n1/2−r/4 ≤ 10C(r, λ)n1−r/8.

(14) 
Thus, if we put .S := {Ut1, . . . , UtN } we will have . conv(S) = Uconv{t1, . . . , tN } ⊃
Bn

2 and .MX(S) ≤ C′(r, λ)
√

n. �

4.3 Ellipsoids 

We now extend the bounds from the previous subsection to the case of ellipsoids, 
i.e., sets of the form 

.E :=
{
t ∈ R

n :
n∑

i=1

〈t, ui〉2

a2
i

≤ 1
}
, (15) 

where .u1, . . . , un is an orthonormal system in . Rn and .a1, . . . , an > 0. 
Observe that 

. sup
t∈E

〈t, x〉 =
√√√√

n∑

i=1

a2
i 〈x, ui〉2.

To treat this case, we will need the following Lemma: 

Lemma 14 Let .X = (X1, . . . , Xn), where . Xi are independent mean zero and 
variance one r.v’s satisfying .4 + δ condition (10). 

(i) For any .a1, . . . , an ≥ 0 and any o.n. vectors .u1, . . . , un, 

. E

( n∑

k=1

a2
k 〈X, uk〉2

)1/2 ∼λ

(
E

n∑

k=1

a2
k 〈X, uk〉2

)1/2 =
( n∑

k=1

a2
k

)1/2
.

(ii) For any .n × n matrix B, 

. 

(
E(|BX|2 − ‖B‖2

HS)r/2
)2/r ≤ C(λ)‖BT B‖1/2

HS .

In particular, for any linear supspace .E ⊂ R
n od dimension .k ∈ {1, . . . , n},
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. 

(
E(|PEX|2 − k)r/2

)2/r ≤ C(λ)k1/2.

Proof Part (i) follows from Lemma 9. 
To show part (ii) let .B = (bij )

n
i,j=1, .e1, e2, . . . , en be the canonical basis of . Rn

and let 

. σi,j :=
n∑

l=1

bl,ibl,j = 〈Bei, Bej 〉, 1 ≤ i, j ≤ n.

Then, 

. 
∥∥|BX|2 − ‖B‖2

HS

∥∥
r/2 =

∥∥∥
n∑

i=1

(X2
i − 1)σi,i +

∑

1≤i �=j≤n

XiXjσi,j

∥∥∥
r/2

≤
∥∥∥

n∑

i=1

(X2
i − 1)σi,i

∥∥∥
r/2

+
∥∥∥

∑

1≤i �=j≤n

XiXjσi,j

∥∥∥
r/2

.

Applying Rosenthal’s inequality, we get 

. 

∥∥∥
n∑

i=1

(X2
i − 1)σi,i

∥∥∥
r/2

�
( n∑

i=1

Var(X2
i )σ

2
i,i

)1/2 +
( n∑

i=1

E(X2
i − 1)r/2σ

r/2
i,i

)2/r

�λ

( n∑

i=1

σ 2
i,i

)1/2 +
( n∑

i=1

σ
r/2
i,i

)2/r ≤ 2
( n∑

i=1

σ 2
i,i

)1/2
.

Hypercontractive method (as in the proof of Lemma 9) yields 

. 

∥∥∥
∑

i �=j

XiXjσi,j

∥∥∥
r/2

�λ

∥∥∥
∑

i �=j

XiXjσi,j

∥∥∥
2

=
( ∑

i �=j

σ 2
i,j

)1/2
.

Finally, 

. 

( n∑

i=1

σ 2
i,i

)1/2 +
( ∑

i �=j

σ 2
i,j

)1/2 ≤ 2
( ∑

i,j

σ 2
i,j

)1/2 = 2‖BT B‖HS.

�
Now, we state and prove the main result of this section. 

Theorem 15 Let .X1, . . . , Xn be independent centered r.v’s satisfying the condi-
tion (10) and let T be an ellipsoid in . Rn. Then, there exists .S ⊂ R

n such that 
.|S| ≤ 10n2, .T ⊂ conv(S) and
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. MX(S) �r,λ bX(T ).

Proof Since it is only a matter of scaling, we may and will assume that .EX2
i = 1 for 

all i. Let .T = E be an ellipsoid of the form (15). Then, the first part of Lemma 14 
yields 

. E sup
t∈E

Xt = E

( n∑

k=1

a2
k 〈X, uk〉2

)1/2 ∼λ

√√√√
n∑

k=1

a2
k .

By homogenity, we may assume that .
∑n

k=1 a2
k = 1. 

Define 

. Ik := {i : 2−k−1 < ai ≤ 2−k}, nk := |Ik|, J := {k ∈ Z : Ik �= ∅},
Ek := span{ui : i ∈ Ik}.

Then, 

.1 ≤
∑

k∈J

nk2−2k < 4. (16) 

In particular, J is a subset of nonnegative integers. 
We claim that for any positive sequence .(ck)k∈J such that .

∑
k c−2

k ≤ 1, 

. E ⊂ conv
( ⋃

k∈J

ck2−kB
Ik

2

)
, where B

Ik

2 := Bn
2 ∩ Ek.

Indeed, let .Pkx := ∑
i∈Ik

〈x, ui〉ui be the projection of x onto . Ek , then 

. x =
∑

k∈J

c−1
k 2k|Pkx|ck2−k Pkx

|Pkx|

and for .x ∈ E , 

. 
∑

k∈J

c−1
k 2k|Pkx| ≤

√∑

k∈J

c−2
k

√∑

k∈J

22k|Pkx|2 ≤
√√√√

∑

k∈J

∑

i∈Ik

〈x, ui〉2

a2
i

≤ 1.

Let us for a moment fix .k ∈ J . By Lemma 11 (applied with .k = c(r) log nk), 
there exists .t1, . . . , tNk

∈ Ek such that .BIk

2 ⊂ conv{t1, . . . , tNk
}, . Nk ≤ 10n

1/2+r/8
k

and .|ti | ≤ C(r)
√

nk/ log(nk). Let  U be the random rotation of .Ek (uniformly 
distributed on .O(Ek)) then .Uti is distributed as .|ti |Y , where Y has uniform 
distribution on .SIk := Sn−1 ∩ Ek . Thus, by Lemma  12,
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. EUEX|〈X,Uti〉|I{|〈X,Uti 〉|≥u}
= EXEY |〈Y, |ti |PEk

X〉|I{|〈Y,|ti |PEk
X〉|≥u}

≤ Emin
{ |ti ||PEk

X|√
nk

,
2(|ti |2|PEk

X|2 + nku
2)

nku
e−nku

2/(2|ti |2|PEk
X|2)}

≤ |ti |√
nk

E|PEk
X|I{|PEk

X|≥√
2nk} + 4|ti |2 + 2u2

u
e−u2/(4|ti |2).

We have 

. E|PEk
X|I{|PEk

X|≥√
2nk} ≤ √

2E(|PEk
X|2 − nk)

1/2I{|PEk
X|≥√

2nk}

≤ √
2n

1/2−r/2
k E(|PEk

X|2 − nk)
r/2 ≤ C(λ)n

1/2−r/4
k ,

where the last bound follows by Lemma 14. Recall that .|ti | �r

√
nk/ log nk; thus, 

for sufficiently large .C(r), we get 

. EUEX|〈X,Uti〉|I{|〈X,Uti 〉|≥C(r)
√

n} ≤ C(λ)n
−r/4
k |ti | + n−2

k ≤ C(r, λ)n
1/2−r/4
k .

As a consequence, there exists .U ∈ O(Ek) such that 

. 

Nk∑

i=1

EX|〈X,Uti〉|I{|〈X,Uti 〉|≥C(r)
√

nk} ≤ NkC(r, λ)n
1/2−r/4
k ≤ 10C(r, λ)n

1−r/8
k .

Define .Sk = {tk,1, . . . , tk,Nk
} := {Ut1, . . . , UtNk

}. Then, . conv(Sk) =
Uconv{t1, . . . , tNk

} ⊃ B
Ik

2 , .Nk ≤ 10n
1/2+r/8
k ≤ 10n2

k and 

. 

Nk∑

i=1

EX|〈X, tk,i〉|I{|〈X,tk,i 〉|≥C(r)
√

nk} ≤ C(r, λ)n
1−r/8
k .

Set .ck := 2k+2(2k + nk)
−1/2. By  (16) we get .

∑
k∈J c−2

k ≤ 1, so  

. E ⊂ conv
( ⋃

k∈J

ck2−kB
Ik

2

)
⊂ conv({ck2−ktk,i : k ∈ J, i ≤ Nk}) := conv(S).

We have 

.|S| =
∑

k∈J

Nk ≤
∑

k∈J

10n2
k ≤ 10

( ∑

k∈J

nk

)2 = 10n2.
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Moreover, 

. 
∑

s∈S

E|〈s,X〉|I{|〈s,X〉|≥4C(r)}

=
∑

k∈J

2−kck

Nk∑

i=1

E|〈tk,i , X〉|I{2−kck |〈tk,i ,X〉|≥4C(r)}

≤
∑

k∈J

4(2k + nk)
−1/2

Nk∑

i=1

E|〈tk,i , X〉|I{|〈tk,i ,X〉|≥C(r)
√

nk}

≤
∑

k∈J

4(2k + nk)
−1/2C(r, λ)n

1−r/8
k

≤ 4C(r, λ)
∑

k∈J

(2k + nk)
1/2−r/8

≤ 4C(r, λ)
∑

k≥0

2k(1/2−r/8)

≤ C′(r, λ),

which shows that .MX(S) ∼ M̃X(S) �λ,r 1 ∼ bX(E). 
�

5 Case III. �n 
q-Balls, 2 < q  ≤ ∞  

It turns out that results of the previous sections may be easily applied to get estimates 
in the case when .T = Bn

q is the unit ball in . �n
q and .q ∈ (2,∞]. In the whole section 

by . q ′, we will denote the Hölder dual of q, i.e., .q ′ = q
q−1 , .2 ≤ q < ∞ and . q ′ = 1

for .q = ∞. 

Proposition 16 Let .X1, . . . , Xn be independent centered r.v’s with variance 1 
satisfying condition (10). Then, there exists .S ⊂ R

n such that .|S| ≤ 10n2, 
.Bn

q ⊂ conv(S) and 

. MX(S) �r,λ n1/q ′ ∼λ bX(Bn
q ).

Proof Since .q ′ ∈ (1, 2], condition (10) yields . ‖Xi‖q ′ ∼λ ‖Xi‖2q ′ ∼λ ‖Xi‖2 = 1

and hence .(E‖X‖2q ′
q ′ )1/(2q ′) ∼λ (E‖X‖q ′

q ′)1/q ′
. Therefore, 

.bX(Bn
q ) = E sup

t∈Bn
q

〈t, X〉 = E‖X‖q ′ ∼λ

(
E‖X‖q ′

q ′
)1/q ′ ∼λ n1/q ′

.
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Hölder’s inequality implies .Bn
q ⊂ n1/2−1/qBn

2 = n1/q ′−1/2Bn
2 and the assertion 

easily follows from Proposition 13. �
Now, let us consider the case of linear transformation of .�n

q -ball, i.e. .T = ABn
q . 

Next simple lemma shows how to estimate .bX(T ). 

Lemma 17 Let .X = (X1, . . . , Xn), where . Xi are independent mean zero and 
variance one r.v’s satisfying .4 + δ condition (10). Then, for any .n × n matrix A 
and .2 ≤ q ≤ ∞, we have 

. bX(ABn
q ) = bAT X(Bn

q ) ∼λ

( n∑

i=1

|Aei |q ′)1/q ′
.

Proof Observe that 

. sup
t∈ABn

q

〈X, t〉 = sup
t∈Bn

q

〈AT X, t〉 =
( n∑

i=1

|〈AT X, ei〉|q ′)1/q ′
=

( n∑

i=1

|〈X,Aei〉|q ′)1/q ′
.

Condition (10) (see Lemma 9) implies that  

. ‖〈X,Aei〉‖2q ′ ∼λ ‖〈X,Aei〉‖q ′ ∼λ ‖〈X,Aei〉‖2 = |Aei |.

Hence, .‖ supt∈ABn
q
〈X, t〉‖2q ′ ∼λ ‖ supt∈ABn

q
〈X, t〉‖q ′ and 

. bX(ABn
q ) =

∥∥∥ sup
t∈ABn

q

〈X, t〉
∥∥∥

1
∼λ

∥∥∥ sup
t∈ABn

q

〈X, t〉
∥∥∥

q ′ ∼λ

( n∑

i=1

|Aei |q ′)1/q ′
.

�
As in the proof of Proposition 16, we may include linear image of .Bn

q into 
ellipsoid with the comparable .bX-bound and deduce from Theorem 15 the following 
more general result. 

Theorem 18 Let .X1, . . . , Xn be independent centered r.v’s satisfying condi-
tion (10) and let .T = ABn

q for some .2 ≤ q ≤ ∞ and an .n × n matrix A. 

Then, there exists .S ⊂ R
n such that .|S| ≤ 10n2, .T ⊂ conv(S) and 

. MX(S) �r,λ bX(T ).

Proof Since it is only a matter of scaling, we may and will assume that . EX2
i = 1

for all i. By Lemma 17 it is enough to show that 

.MX(S) �r,λ

( n∑

i=1

|Aei |q ′)1/q ′
.
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By homogenity, we may assume that .
∑n

i=1 |Aei |q ′ = 1. Case .q = 2 was treated in 
Theorem 15, so we may assume that .q > 2, i.e. .q ′ < 2. Moreover, we may assume 
that .Aei �= 0 for all i. 

Let .λi := |Aei |1−q ′/2. Observe that if .t ∈ Bn
q , then by Hölder’s inequality 

. 

n∑

i=1

|λiti |2 ≤
( n∑

i=1

|ti |q
)2/q( n∑

i=1

|λi |2q/(q−2)
)(q−2)/q

=
( n∑

i=1

|ti |q
)2/q( n∑

i=1

|Aei |q ′)(q−2)/q ≤ 1.

This shows that .D−1Bn
q ⊂ Bn

2 , where .D := diag(d1, . . . , dn) and .di := |Aei |q ′/2−1. 
Hence, .ABn

q ⊂ ADBn
2 and 

. bX(ADBn
2 ) ∼λ

( n∑

i=1

|ADei |2
)1/2 =

( n∑

i=1

|Aei |q ′)1/2 = 1.

We get the assertion applying Theorem 15 for the ellipsoid .ADBn
2 . �

6 Concluding Remarks and Open Questions 

We have shown that the main question has the affirmative answer in the case T is an 
ellipsoid (or more general linear image of .�n

q -ball, .2 ≤ q ≤ n) if . Xi are independent 
mean zero r.v’s satisfying the .4+δ moment condition (10). The following questions 
are up to our best knowledge open.

• Does (4) holds for .T = Bn
q , .1 < q < 2 and . Xi satisfying .4+δ moment condition?

• John’s theorem states that for any convex symmetric set T in . Rn, there exists an 
ellipsoid . E such that .E ⊂ T ⊂ √

nE . Hence, Theorem 15 implies that under 
.4 + δ condition (10) one may find finite set S such that . T ⊂ conv(S ∪ −S)

and .MX(S) ≤ C(r, λ)
√

nbX(T ). We do not whether one may improve upon . 
√

n

factor for general sets T .
• Are there heavy-tailed random variables . Xi such that (4) holds for arbitrary set 

T (for heavy-tailed r.v’s approach via chaining functionals described in Sect. 2.1 
fails to work)?

• Let . Xi be heavy-tailed symmetric Weibull r.v’s (i.e. symmetric variables with 
tails .exp(−t r ), .0 < r < 1). Bogucki [2] was able to obtain two-sided bounds 
for .bX(T ) with the use of random permutations (which may be eliminated if T is 
permutationally invariant). We do not know if the convex hull method works in 
this case. 

Acknowledgement Supported by the National Science Centre, Poland grant 2015/18/A/ST1/00553.
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1 Introduction 

1.1 Random Graph Models 

Graphs are nowadays widely used in applications to model real-world complex 
systems. Since they are high-dimensional objects, one needs to assume some 
structure on the data of interest to be able to efficiently extract information on the 
studied system. To this purpose, a large number of models of random graphs have 
been already introduced. The most simple one is the Erdös-Renyi model . G(n, p)

in which each edge between pairs of n nodes is present in the graph with some 
probability .p ∈ (0, 1). One can also mention the scale-free network model of 
Barabasi and Albert [11] or the small-world networks of Watts and Strogatz [93]. 
We refer to [27] for an introduction to the most famous random graph models. 
On real-world problems, it appears that there often exist some relevant variables 
accounting for the heterogeneity of the observations. Most of the time, these 
explanatory variables are unknown and carry a precious information on the system 
studied. To deal with such cases, latent space models for network data emerged 
(see [88]). One of the most studied latent models are the community -random 
graphs where each node is assumed to belong to one (or multiple) community, 
while the connection probabilities between two nodes in the graph depend on 
their respective membership. The well-known stochastic block model has received 
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increasing attention in the recent years, and we refer to [1] for a nice introduction 
to this model and the statistical and algorithmic questions at stake. In the previous 
mentioned latent space models, the intrinsic geometry of the problem is not taken 
into account. However, it is known that the underlying spatial structure of network 
is an important property since geometry affects drastically the topology of networks 
(see [12] and [88]). To deal with embedded complex systems, spatial random graph 
models have been studied such as the random geometric graph (RGG). This paper 
surveys the recent developments in the theoretical analysis of RGGs through the 
prism of modern statistics and applications. 

The theoretical analysis of random graph models is interesting by itself since 
it often involves elegant and important information theoretic, combinatorial, or 
probabilistic tools. In the following, we adopt this mindset trying to provide a 
faithful picture of the state-of-the-art results on RGGs focusing mainly on high-
dimensional settings and nonparametric inference while underlining the main 
technical tools used in the proofs. We want to illustrate how the theory can impact 
real-data applications. To this end, we will essentially be focused on the following 
questions: 

• Detecting geometry in RGGs. Nowadays, real-world problems often involve 
high-dimensional feature spaces. The first natural work is to identify the regimes 
where the geometry is lost in the dimension (see Eq. (1) for a formal definition). 
Several recent papers have made significant progress toward the resolution of 
this question that can be formalized as follows. Given a graph of n nodes, a 
latent geometry of dimension .d = d(n) and edge density .p = p(n), for what 
triples .(n, d, p) is the model indistinguishable from .G(n, p)? 

• Nonparametric estimation in RGGs. By considering other rules for connecting 
latent points, the RGG model can be naturally extended to cover a larger class 
of networks. In such a framework, we will wonder what can be learned in an 
adaptive way from graphs with an underlying spatial structure. We will address 
nonparametric estimation in RGGs and its extension to growth model. 

• Connections between RGGs and community-based latent models. Until 
recently, community and geometric-based random graph models have been 
mainly studied separately. Recent works try to investigate graph models that 
account for both cluster and spatial structures. We present some of them, and 
we sketch interesting research directions for future works. 

1.2 Brief Historical Overview of RGGs 

The RGG model was first introduced by Gilbert [51] to model the communications 
between radio stations. Gilbert’s original model was defined as follows: pick points 
in .R2 according to a Poisson point process of intensity one and join two if 
their distance is less than some parameter .r > 0. The Gilbert model has been 
intensively studied, and we refer to [91] for a nice survey of its properties including
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connectivity, giant component, coverage, or chromatic number. The most closely 
related model is the random geometric graph where n nodes are independently 
and identically distributed on the space. A lot of results are actually transferable 
from one model to the other as presented in [80, Section 1.7]. In this paper, we will 
focus on the n points i.i.d. model which is formally defined in the next subsection 
(see Definition 1). The random geometric graph model was extended to other latent 
spaces such as the hypercube .[0, 1]d , the Euclidean sphere, or the compact Lie group 
[74]. A large body of literature has been devoted to studying the properties of low-
dimensional random geometric graphs [17, 31, 80]. RGGs have found applications 
in a very large span of fields. One can mention wireless networks [55, 72], gossip 
algorithms [92], consensus [46], spread of a virus [84], protein-protein interactions 
[56], and citation networks [97]. One can also cite an application to motion planning 
in [89], a problem which consists in finding a collision-free path for a robot in a 
workspace cluttered with static obstacles. The ubiquity of this random graph model 
to faithfully represent real-world networks has motivated a great interest for its 
theoretical study. 

1.3 Outline 

In Sect. 2, we formally define the RGG and several variant models that will be 
useful for this article. In Sects. 3, 4 and 5, we describe recent results related to high-
dimensional statistic, nonparametric estimation, and temporal prediction. Note that 
in these three sections, we will be working with the d-dimensional sphere .Sd−1 as 
latent space. .Sd−1 will be endowed with the Euclidean metric .‖ · ‖ which is the 

norm induced by the inner product .〈·, ·〉 : (x, y) ∈ (Sd−1)2 �→ ∑d
i=1 xiyi . The  

choice of this latent space is motivated by both recent theoretical developments 
in this framework [3, 26, 32, 58] and by applications [82, 83]. We further discuss 
in Sect. 6 recent works that investigate the connections between community-based 
random graph models and RGGs. Contrary to the previous sections, our goal is not 
to provide an exhaustive review of the literature in Sect. 6 but rather to shed light on 
some pioneering papers. Table 1 summarizes the organization of the paper. 

Table 1 Outline of the paper. Models are defined in Sect. 2 

Section Questions tackled Model 

3 Geometry detection RGG on . Sd−1

4 Nonparametric estimation TIRGG on . Sd−1

5 Nonparametric estimation and temporal prediction MRGG on . Sd−1

6 Connections between community-based models and RGGs
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2 The Random Geometric Graph Model and Its Variants 

The questions that we tackle here can require some additional structure on the 
model. In this section, we define the variants of the RGG that will be useful for 
our purpose. Figure 1 shows the connections between these different models. 

2.1 (Soft-) Random Geometric Graphs 

Definition 1 (Random Geometric Graph: RGG) Let (X , ρ)  be a metric space 
and m be a Borel probability measure on X . Given a positive real number r >  0, 
the random geometric graph with n ∈ N\{0} points and level r >  0 is the random 
graph G such that 

• The n vertices X1, . . . , Xn of G are chosen randomly in X according to the 
probability measure m⊗n on X n. 

• For any i, j ∈ [n] with i 	= j , an edge between Xi and Xj is present in G if and 
only if ρ(Xi,Xj ) ≤ r . 

We denote RGG(n,m, (X , ρ))  the distribution of such random graphs. 

Motivated by wireless ad hoc networks, Soft-RGGs have been more recently 
introduced (see [81]). In such models, we are given some function H : R+ → [0, 1] 
and two nodes at distance ρ in the graph are connected with probability H(ρ). 

Definition 2 (Soft Random Geometric Graph: Soft-RGG) Let (X , ρ)  be a met-
ric space, m be a Borel probability measure on X and consider some function H : 
R+ → [0, 1]. The Soft (or probabilistic) Random Geometric Graph with n ∈ N\{0} 
points with connection function H is the random graph G such that 

• the n vertices X1, . . . , Xn of G are chosen randomly in X according to the 
probability measure m⊗n on X n. 

• for any i, j ∈ [n] with i 	= j , we draw an edge between nodes Xi and Xj with 
probability H

(
ρ(Xi,Xj )

)
. 

Fig. 1 Venn diagram of the 
different random graph 
models
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We denote Soft-RGG(n,m, (X , ρ))  the distribution of such random graphs. 

Note that the RGG model with level r >  0 is a particular case of the Soft-RGG 
model where the connection function H is chosen as ρ �→ 1ρ≤r . The obvious next 
special case to consider of Soft-RGG is the so-called percolated RGG introduced 
in [75] which is obtained by retaining each edge of a RGG of level r >  0 with 
probability p ∈ (0, 1) (and discarding it with probability 1 − p). This reduces to 
consider the connection function H : ρ �→ p × 1ρ≤r . Particular common choices 
of connection function are the Rayleigh fading activation functions which take the 
form 

. HRayleigh(ρ) = exp
[
−ζ

(ρ

r

)η]
, ζ > 0, η > 0.

We refer to [35] and references therein for a nice overview of Soft-RGGs in 
particular the most classical connection functions and the question of connectivity 
in the resulting graphs. 

2.2 Translation Invariant Random Geometric Graphs 

One possible nonparametric generalization of the (Soft)-RGG model is given by 
the W random graph model (see, for example, [38]) based on the notion of graphon. 
In this model, given latent points .x1, . . . , xn uniformly and independently sampled 
in .[0, 1], the probability to draw an edge between i and j is . �i,j := W(xi, xj )

where W is a symmetric function from .[0, 1]2 onto .[0, 1], referred to as a graphon. 
Hence, the adjacency matrix A of this graph satisfies 

. ∀i, j ∈ [n], Ai,j ∼ Ber(�i,j ),

where for any .p ∈ [0, 1], .Ber(p) is the Bernoulli distribution with parameter p. 

Remark Let us point out that graphon models can also be defined by replacing the 
latent space .[0, 1] by the Euclidean sphere .Sd−1 := {x ∈ Rd | ‖x‖2 = 1} in which 
case latent points are sampled independently and uniformly on .Sd−1. 

This model has been widely studied in the literature (see [70]), and it is now 
well-known that, by construction, graphons are defined on an equivalent class up 
to a measure preserving homomorphism. More precisely, two graphons U and W 
define the same probability distribution if and only if there exist measure preserving 
maps .ϕ,ψ : [0, 1] → [0, 1] such that .U(ϕ(x), ϕ(y)) = W(ψ(x), ψ(y)) almost 
everywhere. Hence, it can be challenging to have a simple description from an 
observation given by sampled graph—since one has to deal with all possible 
composition of a bivariate function by any measure preserving homomorphism. 
Such difficulty arises in [94] or in [62] that use, respectively, maximum likelihood 
and least square estimators to approximate the graphon W from the adjacency
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matrix A. In those works, the error measures are based on the so-called cut-distance 
that is defined as an infimum over all measure-preserving transformations. This 
statistical issue motivates the introduction of (Soft)-RGGs with latent metric spaces 
for which the distance is invariant by translation (or conjugation) of pairs of points. 
This natural assumption leads to consider that the latent space has some group 
structure, namely, it is a compact Lie group or some compact symmetric space. 

Definition 3 (Translation Invariant Random Geometric Graph: TIRGG) 
Let .(S, γ ) be a compact Lie group with an invariant Riemannian metric . γ
normalized so that the range of . γ equals .[0, π ]. Let  m be the uniform probability 
measure on S and let us consider some map .p : [−1, 1] → [0, 1], called 
the envelope function. The Translation Invariant Random Geometric Graph 
with .n ∈ N\{0} points is the random graph G such that 

• The n vertices .X1, . . . , Xn of G are chosen randomly in S according to the 
probability measure .m⊗n on . Sn. 

• For any .i, j ∈ [n] with .i 	= j , we draw an edge between nodes . Xi and . Xj with 
probability .p

(
cos γ (Xi,Xj )

)
. 

In Sect. 4, we present recent results regarding nonparametric estimation in the 
TIRGG model with .S := Sd−1 the Euclidean sphere of dimension d from the 
observation of the adjacency matrix. A related question was addressed in [62] where 
the authors derived sharp rates of convergence for the . L2 loss for the stochastic block 
model (which belongs to the class of graphon models). Let us point out that a general 
approach to control the . L2 loss between the probability matrix and a eigenvalue-
tresholded version of the adjacency matrix is the USVT method introduced by 
Chatterjee [28], which was further investigated by Xu [98]. In Sect. 4, another line of 
work is presented to estimate the envelope function . p where the difference between 
the adjacency matrix and the matrix of probabilities . � is controlled in operator 
norm. The cornerstone of the proof is the convergence of the spectrum of the matrix 
of probabilities toward the spectrum of some integral operator associated with the 
envelope function . p. Based on the analysis of [63], the proof of this convergence 
includes in particular matrix Bernstein inequality from [90] and concentration 
inequality for order 2 U-statistics with bounded kernels that was first studied by 
Arcones and Gine [6] and remains an active field of research (see [52, 57], or [60]). 

2.3 Markov Random Geometric Graphs 

In the following, we will refer to growth models to denote random graph models 
in which a node is added at each new time step in the network and is connected 
to other vertices in the graph according to some probabilistic rule that needs to 
be specified. In the last decade, growth models for random graphs with a spatial 
structure have gained an increased interest. One can mention [61, 78], and [99] 
where geometric variants of the preferential attachment model are introduced with
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one new node entering the graph at each time step. More recently, [96] and [95] 
studied a growing variant of the RGG model. Note that in the latter works, the 
birth time of each node is used in the connection function while nodes are still 
sampled independently in . R2. Still motivated by nonparametric estimation, the 
TIRGG model can be extended to a growth model by considering a Markovian 
sampling scheme of the latent positions. Considering a Markovian latent dynamic 
can be relevant to model customer behavior for item recommendation or to study 
bird migrations where animals have regular seasonal movement between breeding 
and wintering grounds [cf. 39]. 

Definition 4 (Markov Random Geometric Graph: MRGG) Let .(S, γ ) be a 
compact Lie group with an invariant Riemannian metric . γ normalized so that the 
range of . γ equals .[0, π ]. Let us consider some map .p : [−1, 1] → [0, 1], called the 
envelope function. The Markov Random Geometric Graph with .n ∈ N\{0} points 
is the random graph G such that 

• The sequence of n vertices .(X1, . . . , Xn) of G is a Markov chain on S. 
• For any .i, j ∈ [n] with .i 	= j , we draw an edge between nodes . Xi and . Xj with 

probability .p
(
cos γ (Xi,Xj )

)
. 

In Sect. 5, we shed light on a recent work from [40] that achieves nonparametric 
estimation in MRGGs on the Euclidean sphere of dimension d. The theoretical 
study of such graphs becomes more challenging because of the dependence induced 
by the latent Markovian dynamic. Proving the consistency of the nonparametric 
estimator of the envelope function . p proposed in Sect. 5 requires in particular 
a new concentration inequality for U-statistics of order 2 of uniformly ergodic 
Markov chains. By solving link prediction problems, [40] also reveal that MRGGs 
are convenient tools to extract temporal information on growing graphs with an 
underlying spatial structure. 

2.4 Other Model Variants 

Choice of the Metric Space The Euclidean sphere and the unit square in . Rd are 
the most studied latent spaces in the literature for RGGs. By the way, [3] offers an  
interesting comparison of the different topological properties of RGGs working on 
one or the other of these two spaces. Nevertheless, one can find variants such as 
in [4] where Euclidean balls are considered. More recently, some researchers left 
the Euclidean case to consider negatively curved—i.e., hyperbolic—latent spaces. 
Random graphs with a hyperbolic latent space seem promising to faithfully model 
real-world networks. Actually, [65] showed that the RGG built on the hyperbolic 
geometry is a scale-free network, that is the proportion of node of degree k is of 
order .k−γ where . γ is between 2 and 3. The scale-free property is found in the most 
part of real networks as highlighted by Xie et al. [96].
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Different Degree Distributions It is now well-known that the average degree 
of nodes in random graph models is a key property for their statistical analysis. 
Let us highlight some important regimes in the random graph community that 
will be useful in this paper. The dense regime corresponds to the case where the 
expected normalized degree of the nodes (i.e., degree divided by n) is independent 
of the number of nodes in the graph. The other two important regimes are the 
relatively sparse and the sparse regimes where the average degree of nodes scales, 
respectively, as log(n)/n and 1/n with the number of nodes n. A direct and 
important consequence of these definitions is that in the (relatively) sparse regime, 
the envelope function p from Definitions 3 and 4 depends on n, while it remains 
independent of n in the dense regime. Similarly, in the (relatively) sparse regime, 
the radius threshold r from Definition 1 (resp. the connection function H from 
Definition 2) depends on n contrary to the dense regime. 

3 Detecting Geometry in RGGs 

To quote [17], “One of the main aims of the theory of random graphs is to determine 
when a given property is likely to appear.” In this direction, several works tried to 
identify structure in networks through testing procedure; see, for example, [23, 50], 
or [49]. Regarding RGGs, most of the results have been established in the low-
dimensional regime .d ≤ 3 [12, 77, 80, 81]. Goel et al. [53] proved in particular 
that all monotone graph properties (i.e., property preserved when adding edges to 
the graph) have a sharp threshold for RGGs that can be distinguished from the one 
of Erdös-Rényi random graphs in low dimensions. However, applications of RGGs 
to cluster analysis and the interest in the statistics of high-dimensional data sets 
have motivated the community to investigate the properties of RGGs in the case 
where .d →∞. If the ambitious problem of recognizing if a graph can be realized as 
a geometric graph is known to be NP-hard [24], one can take a step back and wonder 
if a given RGG still carries some spatial information as .d → ∞ or if geometry 
is lost in high dimensions (see Eq. (1) for a formal definition), a problem known 
as geometry detection. In the following, we present some recent results related to 
geometry detection in RGGs with latent space the Euclidean sphere .Sd−1, and we 
highlight several interesting directions for future research. 

Notations Given two sequences .(an)n∈N and .(bn)n∈N of positive numbers, we 
write .an = On(bn) or .bn = 
n(an) if the sequence .(an/bn)n≥0 is bounded, and we 
write .an = on(bn) or .bn = ωn(an) if .an/bn →

n→+∞ 0. We further denote . an = �(bn)

if .an = On(bn) and .bn = On(an). In the following, we will denote . G(n, p, d)

the distribution of random graphs of size n where nodes .X1, . . . , Xn are sampled 
uniformly on .Sd−1 and where distinct vertices .i ∈ [n] and .j ∈ [n] are connected 
by an edge if and only if .〈Xi,Xj 〉 ≥ tp,d . The threshold value . tp,d ∈ [−1, 1]
is such that .P

(〈X1, X2〉 ≥ tp,d

) = p. Note that .G(n, p, d) is the distribution of 
RGGs on .(Sd−1, ‖ ·‖) sampling nodes uniformly with connection function .H : t �→
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1
t≤√2−2tp,d 

. In the following, we will also use the notation .G(n, d, p) to denote a 

graph sampled from this distribution. We also introduce some definitions of standard 
information theoretic tools with Definition 5. 

Definition 5 Let us consider two probability measures P and Q defined on some 
measurable space .(E,E ). The total variation distance between P and Q is given by 

. TV(P,Q) := sup
A∈E

|P(A)−Q(A)|.

Assuming further that .P � Q and denoting .dP/dQ the density of P with respect 
to Q, 

• The .χ2-divergence between P and Q is defined by 

. χ2(P,Q) :=
∫

E

(
dP

dQ
− 1

)2

dQ.

• The Kullback-Leibler divergence between P and Q is defined by 

. KL(P,Q) :=
∫

E

log

(
dP

dQ

)
dP.

Considering that both p and d depend on n, we will say in this paper that geometry 
is lost if the distributions .G(n, p) and .G(n, p, d) are indistinguishable, namely, if 

.TV(G(n, p),G(n, p, d)) → 0 as n→∞. (1) 

3.1 Detecting Geometry in the Dense Regime 

Devroye et al. [37] is the first to consider the case where .d → ∞ in RGGs. 
In this paper, the authors proved that the number of cliques in the dense regime 
in .G(n, p, d) is close to the one of .G(n, p) provided .d � log n in the asymp-
totic .d →∞. This work allowed them to show the convergence of the total variation 
(see Definition 5) between RGGs and Erdös-Renyi graphs as .d → ∞ for fixed p 
and n. Bubeck et al. [26] closed the question of geometry detection in RGGs in the 
dense regime showing that a phase transition occurs when d scales as . n3 as stated 
by Theorem 1. 

Theorem 1 ([26, Theorem 1]) 

(i) Let .p ∈ (0, 1) be fixed, and assume that .d/n3 → 0. Then 

.TV(G(n, p),G(n, p, d)) → 1 as n→∞.
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(ii) Furthermore, if .d/n3 →∞, then 

. sup
p∈(0,1)

TV(G(n, p),G(n, p, d)) → 0 as n→∞.

The proof of Theorem 1..(i) relies on a count of signed triangles in RGGs. 
Denoting A the adjacency matrix of the RGG, the number of triangles in A 
is .Tr(A3), while the total number of signed triangles is defined as 

. τ(G(n, p, d)) := Tr((A− p(J − I ))3)

=
∑

{i,j,k}∈([n]3 )

(
Ai,j − p

) (
Ai,k − p

) (
Aj,k − p

)
,

where I is the identity matrix and .J ∈ Rn×n is the matrix with every entry equals 
to 1. The analogous quantity in Erdös Renyi graphs .τ(G(n, p)) is defined similarly. 
Bubeck et al. [26] showed that the variance of .τ(G(n, p, d)) is of order . n3, while 
the one of the number of triangles is of order . n4. This smaller variance for signed 
triangles is due to the cancellations introduced by the centering of the adjacency 
matrix. Lemma 1 provides the precise bounds obtained on the expectation and 
the variance of the statistic of signed triangles. Theorem 1..(i) follows from the 
lower bounds (resp. the upper bounds) on the expectations (resp. the variances) of 
.τ(G(n, p)) and .τ(G(n, p, d)) presented in Lemma 1. 

Lemma 1 ([26, Section 3.4]) For any .p ∈ (0, 1) and any .n, d ∈ N\{0} it holds 

. E [τ(G(n, p))] = 0, E [τ(G(n, p, d))] ≥
(

n

3

)
Cp√

d

and max {Var [τ(G(n, p))] ,Var [τ(G(n, p, d))]} ≤ n3 + 3n4

d
,

where .Cp > 0 is a constant depending only on p. 

Let us now give an overview of the proof of the indistinguishable part of 
Theorem 1. Bubeck et al. [26] proved that in the dense regime, the phase transition 
for geometry detection occurs at the regime at which Wishart matrices becomes 
indistinguishable from GOEs (Gaussian Orthogonal Ensemble). In the following, 
we draw explicitly this link in the case . p = 1/2.

An .n× n Wishart matrix with d degrees of freedom is a matrix of inner products 
of n d-dimensional Gaussian vectors denoted by .W(n, d), while an .n × n GOE 
random matrix is a symmetric matrix with i.i.d. Gaussian entries on and above 
the diagonal denoted by .M(n). Let  . X be an .n × d matrix where the entries are 
i.i.d. standard normal random variables, and let .W = W(n, d) = XX� be the 
corresponding .n × n Wishart matrix. Then recalling that for .X1 ∼ N (0, Id) a 
standard gaussian vector of dimension d, .X1/‖X1‖2 is uniformly distributed on the 
sphere .Sd−1, we get that the .n× n matrix A defined by
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. ∀i, j ∈ [n], Ai,j =
{
1 if Wi,j ≥ 0 and i 	= j

0 otherwise.

has the same distribution as the adjacency matrix of a graph sampled 
from .G(n, 1/2, d). We denote H the map that takes W to A. Analogously, one 
can prove that .G(n, 1/2) can be seen as a function of an .n × n GOE matrix. 
Let .M(n) be a symmetric .n× n random matrix where the diagonal entries are i.i.d. 
normal random variables with mean zero and variance 2, and the entries above the 
diagonal are i.i.d.standard normal random variables, with the entries on and above 
the diagonal all independent. Then .B = H(M(n)) is distributed as the adjacency 
matrix of .G(n, 1/2). We then get 

. TV (G(n, 1/2, d),G(n, 1/2)) = TV (H(W(n, d)),H(M(n)))

≤ TV (W(n, d)),M(n)) . (2) 

If a simple application of the multivariate central limit theorem proves that the 
right hand side of (2) goes to zero as .d → ∞ for fixed n, more work is 
necessary to address the case where .d = d(n) = ωn(n

3) and .n → ∞. The  
distributions of .W(n, d) and .M(n) are known and allow explicit computations 
leading to Theorem 2. This proof can be adapted for any .p ∈ (0, 1) leading to 
Theorem 1..(ii) from (2). 

Theorem 2 ([26, Theorem 7]) Define the random matrix ensembles . W(n, d)

and .M(n) as above. If .d/n3 →∞, then 

. TV(W(n, d),M(n)) → 0.

Extensions Considering . Rd as latent space endowed with the Euclidean metric, 
[25] extended Theorem 2 and proved an information theoretic phase transition. 
To give an overview of their result, let us consider the .n × n Wigner matrix . Mn

with zeros on the diagonal and i.i.d. standard Gaussians above the diagonal. For 
some .n × d matrix . X with i.i.d. entries from a distribution . μ on .Rd that has 
mean zero and variance 1, we also consider the following rescaled Wishart matrix 
associated with . X

. Wn,d := 1√
d

(
XX� − diag(XX�)

)
,

where the diagonal was removed. Using a high-dimensional entropic central 
limit theorem, [25] proved Theorem 3 which implies that geometry is lost 
in .RGG(n,μ, (Rd , ‖ · ‖)) as soon as .d � n3 log2(d) provided that the measure . μ
is sufficiently smooth (namely log-concave) and the rate is tight up to logarithmic 
factors. We refer to [85] for a friendly presentation of this result. Note that the 
comparison between Wishart and GOE matrices also naturally arise when dealing
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with covariance matrices. For example, Theorem 2 was used in [19] to study the 
informational-computational tradeoff of sparse principal component analysis. 

Theorem 3 ([25, Theorem 1]) If the distribution . μ is log-concave and . d

n3 log2(d)
→

∞, then . TV(Wn,d ,Mn) → 0.
On the other hand, if . μ has a finite fourth moment and .

d
n3

→ 0, 
then . TV(Wn,d ,Mn)→ 1.

3.2 Failure to Extend the Proof Techniques to the Sparse 
Regime 

Bubeck et al. [26] provided a result in the sparse regime where .p = c
n
showing that 

one can distinguish between .G(n, c
n
) and .G(n, c

n
, d) as long as .d � log3 n. The  

authors conjectured that this rate is tight for the sparse regime (see Conjecture 1). 

Conjecture 1 ([26, Conjecture 1]) Let .c > 0 be fixed, and assume that . d/ log3(n)→
∞. Then, 

. TV
(
G
(
n,

c

n

)
,G
(
n,

c

n
, d
))
→ 0 as n→∞.

The testing procedure from [26] to prove the distinguishability result in the sparse 
regime was based on a simple counting of triangles. Indeed, when p scales as . 1

n
, the  

signed triangle statistic . τ does not give significantly more power than the triangle 
statistic which simply counts the number of triangles in the graph. Recently, [8] 
provided interesting results that give credit to Conjecture 1. First, they proved that 
in the sparse regime, the clique number of .G(n, p, d) is almost surely at most 3 
under the condition .d � log1+ε n for any .ε > 0. This means that in the sparse 
regime, .G(n, p, d) does not contain any complete subgraph larger than a triangle 
like Erdös-Renyi graphs. Hence, it is hopeless to prove that Conjecture 1 is false 
considering the number of k-cliques for .k ≥ 4. Nevertheless, one could believe 
that improving the work of [26] by deriving sharper bounds on the number of 3-
cliques (i.e., the number of triangles), it could possible to statistically distinguish 
between .G(n, p, d) and .G(n, p) in the sparse regime even for some .d � log3 n. In  
a regime that can be made arbitrarily close to the sparse one, [8] proved that this is 
impossible as stated by Theorem 4. 

Theorem 4 ([8, Theorem 5]) Let us suppose that .d � log3 n and .p = θ(n)/n with 
.nm ≤ θ(n) � n for some .m > 0. Then, the expected number of triangles—denoted 
.E[T (n, p, d)]—in RGGs sampled from .G(n, p, d) is of order .

(
n
3

)
p3, meaning that 

there exist two universal constants .c, C > 0 such that for n large enough it holds 

.c

(
n

3

)
p3 ≤ E[T (n, p, d)] ≤ C

(
n

3

)
p3.
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In a nutshell, the work from [8] suggests that a negative result regarding Conjec-
ture 1 cannot be obtained using statistics based on clique numbers. This discussion 
naturally gives rise to the following more general question: 

. Given a random graph model with n nodes, latent geometry in dimension d = d(n) and edge

density p = p(n), for what triples (n, d, p) is the model G(n, p, d) indistinguishable from G(n, p)?

(Q) 

3.3 Toward the Resolution of Geometry Detection 

3.3.1 A First Improvement When d >  n  

A recent work from [21] tackled the general problem (Q) and proved Theorem 5. 

Theorem 5 ([21, Theorem 2.4]) Suppose .p = p(n) ∈ (0, 1/2] satisfies 
that .n−2 log n = On(p) and 

. d � min

{
pn3 logp−1 , p2n7/2(log n)3

√
logp−1

}
,

where d also satisfies that .d � n log4 n. Then, 

. TV(G(n, p),G(n, p, d)) → 0 as n→∞.

Remarks In the dense regime, Theorem 5 recovers the optimal guarantee from 
Theorem 1. In the sparse regime, Theorem 5 states that if .d � n3/2 (log n)7/2, 
then geometry is lost in .G(n, c

n
, d) (where .c > 0). This result improves the work 

from [26]. Nevertheless, regarding Conjecture 1, it remains a large gap between the 
rates .log3 n and .n3/2 (log n)7/2 where nothing is known up to date. Let us sketch 
the main elements of the proof of Theorem 5. In the following, we denote . G =
G(n, p, d) with set of edges .E(G), and for any .i, j ∈ [n], i 	= j , we denote . G∼{i,j}
the set of edges other than .{i, j} in G. One first important step of their approach is 
the following tenzorization Lemma for the Kullback-Leibler divergence. 

Lemma 2 ([64, Lemma 3.4]) Let us consider .(X,B) a measurable space with X 
a Polish space and . B its Borel .σ -field. Consider some probability measure . μ on the 
product space .Xk with .μ = μ1 ⊗ μ2 ⊗ · · · ⊗ μk . Then, for any other probability 
measure . ν on . Xk , it holds 

.KL(ν||μ) ≤
k∑

i=1
Ex∼ν [KL (νi(·|x∼i )||μi)] ,



360 Q. Duchemin and Y. De Castro

where . νi is the probability distribution corresponding to the i-th marginal of . ν and 
where .x∼i := (x1, . . . , xi−1, xi+1, . . . , xk). 

. 2TV(G(n, p, d),G(n, p))2

≤ KL(G(n, p, d)||G(n, p)) from Pinsker′s inequality

≤
∑

1≤i<j≤n

E
[
KL

(
L (1{i,j}∈E(G)|σ(G∼{i,j}))||Bern(p)

)]
from Lemma 2 

≤
(

n 
2

)
× E

[
χ2 (L (1e0∈E(G)|σ(G∼e0)),Bern(p)

)]

=
(

n 
2

)
× E

[
(Q− p)2 

p(1− p)

]
, 

where .Q := P
(
e0 ∈ E(G)|G∼e0

)
is a .σ(G∼e0)-measurable random variable 

corresponding to the probability that a specific edge is included in the graph 
given the rest of the graph. The proof then consists in showing that with high 
probability, Q concentrates near p. To do so, they use a coupling argument that gives 
an alternative way to generate . X1 that provides a direct description of .1e0∈E(G) in 
terms of the random variables introduced in the coupling. If this step may seem 
computationally involved, it is not conceptually difficult since it turns out to be a 
simple re-parametrization of the problem. An integration of this concentration result 
for Q implies that the convergence of Theorem 5 holds when .d � pn3 logp−1. To  
get the convergence result in the regime where .d � p2n7/2(log n)3

√
logp−1 . −

which gives the improvement over [26] in the sparse case . − one additional step of 
coupling is required. More precisely, they decompose .E[(Q−p)2] as . E[(Q−p)×
(Q−p)]. The previous coupling argument gives a concentration inequality allowing 
to bound with high probability the first term .|Q − p|. It remains then to upper 
bound .E[|Q− p|] which relies on a simple observation given by the following 
proposition. 

Proposition 1 ([21, Proposition 5.3]) Let .ν∼e0 denote the marginal distribution 
of G restricted to all edges that are not . e0, and let .ν+∼e0

denote the distribution of G 
conditioned on the event .e0 ∈ E(G). It holds 

.E[|Q− p|] = 2p × TV
(
ν+∼e0

, ν∼e0

)
. (3) 

The proof is then concluded by using another coupling argument between . ν+∼e0
and .ν∼e0 to upper bound the total variation distance involved in Eq. (3), and we give 
a sketch of proof in the following. Given latent positions .X1, . . . , Xn uniformly and 
independently sampled on .Sd−1, we can consider without loss of generality that
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.X1 = (1, 0, . . . 0). Denoting .X2 = (X2,j )j∈[d] and . ϕd the density of .X2,1,1 one 

can define .γ =
√

1−τ 2

1−X2
2,1

and .X+2 := (τ, γX2,2, . . . , γX2,d ) where . τ is a random 

variable in .[−1, 1]with density .ϕ+d,p(x) = p−11x≥tp,d
ϕd(x). Denoting further . G∼e0

(resp. .G+∼e0
) the RGG with threshold .tp,d induced by the latent points . (Xi)i∈[n]

(resp. .(X1, X
+
2 , X3, . . . , Xn)) without the edge .e0 = {1, 2}, .G∼e0 (resp..G+∼e0

) is  
distributed as .ν∼e0 (resp. .ν

+∼e0
). Hence, it holds 

. E[|Q− p|] ≤ 2p × TV
(
ν+∼e0

, ν∼e0

) ≤ 2p × P(G∼e0 	= G+∼e0
)

≤ 2p
n∑

i=3
P
(
1〈X2,Xi 〉≥tp,d

	= 1〈X+2 ,Xi 〉≥tp,d

)
.

The proof is concluded using standard concentration arguments. 

3.3.2 Reaching the Polylogarithmic Regime 

Very recently, [69] came with novels ideas and improved upon the previous bounds 
for geometry detection by polynomial factors in the sparse regime. This significant 
breakthrough presented in Theorem 6 almost solves Conjecture 1. 

Theorem 6 ([69, Theorem 1.2]) For any fixed constant . c ≥ 1, if .d � log36 n, then 

. TV
(
G
(
n,

c

n

)
,G
(
n,

c

n
, d
))
→ 0 as n→∞.

The authors do not limit their analysis to the sparse regime but also provide results 
holding for any regime interpolating between the sparse and the dense cases as 
shown with Theorem 7. 

Theorem 7 ([69, Theorem 1.1 and Lemma A.1]) 

• For any fixed constant . c > 0, if .
c
n

< p < 1
2 and .d � p2n3, then 

. TV (G (n, p) ,G (n, p, d))→ 0 as n→∞.

• If . 1
n2
� p ≤ 1− δ for any fixed constant .δ > 0, then as long as .d � (nH(p))3, 

.TV
(
G
(
n,

c

n

)
,G
(
n,

c

n
, d
))
→ 1 as n→∞,

1 I.e., . ϕd is the density of a one-dimensional marginal of a uniform random point on .Sd−1. 
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where .H(p) = p log 1
p
+ (1 − p) log 1

1−p
is the binary entropy function. This 

result can be achieved using the signed triangle statistic following an approach 
strictly analogous to [26]. 

Liu et al. [69] extend the work from [26] and prove that the signed statistic 
distinguishes between .G(n, p) and .G(n, p, d) not only in the sparse and dense 
cases but also for most p, as long as .d � (nH(p))3. We provide in the 
Appendix “Appendix: Outline of the Proofs of Theorems 6 and 7” a synthetic 
description of the proofs of Theorems 6 and 7. Let us mention that the proofs rely 
on a new concentration result for the area of the intersection of a random sphere cap 
with an arbitrary subset of .Sd−1, which is established using optimal transport maps 
and entropy-transport inequalities on the unit sphere. Liu et al. [69] make use of this 
set-cap intersection concentration lemma for the theoretical analysis of the belief 
propagation algorithm. 

3.4 Open Problems and Perspectives 

The main results we have presented so far look as follows: 

With new proof techniques based on combinatorial arguments, direct couplings, 
and applications of information inequalities, [21] were the first to make a progress 
toward Conjecture 1. Nevertheless, their proof was heavily relying on a coupling 
step involving a De Finetti-type result that requires the dimension d to be larger 
than the number of points n. Liu et al. [69] improved upon the previous bounds 
by polynomial factors with innovative proof arguments. In particular, their analysis 
makes use of the belief propagation algorithm and the cavity method and relies on 
a new sharp estimate for the area of the intersection of a random sphere cap with an 
arbitrary subset of .Sd−1. The proof of this new concentration result is an application 
of optimal transport maps and entropy-transport inequalities. Despite this recent 
progress, a large span of research directions remain open, and we discuss some of 
them in the following:
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Fig. 2 Phase diagram of the .(d, p) regions where geometry detection (on the Euclidean sphere) is 
known to be information theoretically impossible or possible (in polynomial time). Note that the 
figure only presents a simplified illustration of the current state of knowledge for the problem of 
geometry detection on .Sd−1 since the true scales are not respected

1. Closing the gaps for geometry detection on the Euclidean sphere .Sd−1. 
Figure 2 shows that there are still important research directions to investigate 

to close the question of geometry detection regarding RGGs on .Sd−1. First, in 
the sparse regime, it would be desirable to finally know if Conjecture 1 is true, 
meaning that the phase transition occurs when the latent dimension is of the 
order of .log3 n. It could be fruitful to see if some steps in the approach from 
[69] could be sharpened in order to get down to the threshold .log3 n. A question 
that seems even more challenging is to understand what happens in the regimes 
where .p = p(n) ∈ ( 1

n
, 1) and .d = d(n) ∈ ([H(p)n]3, p2n3) (corresponding 

to the white region on Fig. 2). To tackle this question, one could try to extend 
the methods used in the sparse case by Liu et al. [69] to denser cases. Another 
possible approach to close this gap would be to dig deeper into the connections 
between the Wishart and GOE ensembles. One research direction to possibly 
improve the existing impossibility results regarding geometry detection would 
be to avoid the use of the data-processing inequality in Eq. (2) which makes us 
lose the fact that we do not observe the matrices .W(n, d) and .M(n) themselves. 
To some extent, we would like to take into account that some information is lost 
by observing only the adjacency matrices. In a recent work, [22] made the first 
step in this direction. They study the total variation distance between the Wishart 
and GOE ensembles when some given mask is applied beforehand. They proved 
that the combinatorial structure of the revealed entries, viewed as the adjacency 
matrix of a graph G, drives the distance between the two distributions of interest. 
More precisely, they provide regimes for the latent dimension d based exclusively 
on the number of various small subgraphs in G, for which the total variation 
distance goes to either 0 or 1 as .n→∞. 
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2. How specific is the signed triangle statistic to RGGs? 
Let us mention that the signed triangle statistic has found applications beyond 

the scope of spatial networks. In [59], the authors study community-based 
random graphs (namely, the degree corrected mixed membership model) and 
are interested in testing whether a graph has only one community or multiple 
communities. They propose the signed polygon as a class of new tests. In 
that way, they extend the signed triangle statistic to m-gon in the network for 
any .m ≥ 3. Contrary to [26], the average degree of each node is not known, and 
the degree corrected mixed membership model allows degree heterogeneity. In 
[59], the authors define the signal-to-noise ratio (SNR) using parameters of their 
model, and they prove that a phase transition occurs, namely, . (i) when the SNR 
goes to .+∞, the signed polygon test is able to separate the alternative hypothesis 
from the null asymptotically and .(ii) when the SNR goes to 0 (and additional 
mild conditions), then the alternative hypothesis is inseparable from the null. 

3. How the phase transition phenomenon in geometry detection evolves when other 
latent spaces are considered? 

This question is related to the robustness of the previous results with respect 
to the latent space. Inspired by Bubeck et al. [26] and Eldan and Mikulincer [43] 
provided a generalization of Theorem 1 considering an ellipsoid rather than the 
sphere .Sd−1 as latent space. They proved that the phase transition also occurs 
at . n3 provided that we consider the appropriate notion of dimension which takes 
into account the anisotropy of the latent structure. 

In [31], the clustering coefficient of RGGs with nodes uniformly distributed 
on the hypercube shows systematic deviations from the Erdos-Rényi prediction. 

4. What is inherent to the connection function? 
Considering a fixed number of nodes, [45] use a multivariate version of the 

central limit theorem to show that the joint probability of rescaled distances 
between nodes is normal-distributed as .d →∞. They provide a way to compute 
the correlation matrix. This work allows them to evaluate the average number 
of M-cliques, i.e., of fully connected subgraphs with M vertices, in high-
dimensional RGGs and Soft-RGGs. They can prove that the infinite dimensional 
limit of the average number of M-cliques in Erdös-Rényi graphs is the same 
of the one obtained from for Soft-RGGs with a continuous activation function. 
On the contrary, they show that for classical RGGs, the average number of 
cliques does not converge to the Erdös-Rényi prediction. This paper leads to 
think that the behavior of local observables in Soft-RGGs can heavily depend 
on the connection function considered. The work from [45] is one of the first to 
address the emerging questions concerning the high-dimensional fluctuations of 
some statistics in RGGs. If they focused on the number of M-cliques, one can 
also mention the recent work from [54] that provide a central limit theorem for 
the edge counting statistic as the space dimension d tends to infinity. Their work 
shows that the Malliavin–Stein approach for Poisson functionals that was first 
introduced in stochastic geometry can also be used to deal with spatial random 
models in high dimensions.
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Fig. 3 Phase diagram for detecting geometry in the soft random geometric graph .G(n, p, d, q). 
Here, .d = nα and .q = n−β for some . α, β > 0

In a recent work, [67] are interested in extending the previous mentioned results 
on geometry detection in RGGs to Soft-RGGs with some specific connection 
functions. The authors consider the dense case where the average degree of each 
node scales with the size of the graph n and study geometry detection with 
graphs sampled from Soft-RGGs that interpolate between the standard RGG on 
the sphere .Sd−1 and the Erdös-Rényi random graph. Hence, the null hypothesis 
remains that the observed graph G is a sample from .G(n, p), while the alternative 
becomes that the graph is the Soft-RGG where we draw an edge between nodes i 
and j with probability 

. (1− q)p + q1tp,d≤〈Xi,Xj 〉,

where .(Xi)i≥1 are randomly and independently sampled on .Sd−1 and where . q ∈
[0, 1] can be interpreted as the geometric strength of the model. Denoting the 
random graph model .G(n, p, d, q), one can easily notice that .G(n, p, d, 1) is 
the standard RGG on the Euclidean sphere .Sd−1 while .G(n, p, d, 0) reduces 
to the Erdös-Rényi random graph. Hence, by taking .q = 1 in Theorem 8, we  
recover Theorem 1 from [26]. One can further notice that Theorem 8 depicts a 
polynomial dependency on q for geometry detection but when .q < 1 there is 
a gap between the upper and lower bounds as illustrated by Fig. 3 taken from 
[67]. As stated in [67], [...] a natural direction of future research is to consider 
[geometry detection] for other connection functions or underlying latent spaces, 
in order to understand how the dimension threshold for losing geometry depends 
on them. 

Theorem 8 ([67, Theorem 1.1]) Let .p ∈ (0, 1) be fixed. 

(i) If .n3q6/d →∞, then 

. TV(G(n, p),G(n, p, d, q)) → 1 as n→∞.

(ii) If .nq → 0 or .n3q2/d → 0, then 

.TV(G(n, p),G(n, p, d, q)) → 0 as n→∞.
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The same authors in [68] extend the model of the Soft-RGG by considering 
the latent space .Rd where the latent positions .(Xi)i∈[n] are i.i.d. sampled 
with .X1 ∼ N (0, Id). Two different nodes .i, j ∈ [n] are connected with 
probability .p(〈Xi,Xj 〉) where . p is a monotone increasing connection function. 
More precisely, they consider a connection function . p parametrized by . (i) a 
cumulative distribution function .F : R → [0, 1] and .(ii) a scalar .r > 0 and 
given by 

. p : t �→ F

(
t − μp,d,r

r
√

d

)
,

where .μp,d,r is determined by setting the edge density in the graph to be equal to 
p, namely, .E [p(〈X1, X2〉)] = p. They work in the dense regime by considering 
that .p ∈ (0, 1) is independent of n. The parameter r encodes the flatness of the 
connection function and is typically a function of n. The authors prove phase 
transitions of detecting geometry in this framework in terms of the dimension of 
the underlying geometric space d and the variance parameter r . The larger the r , 
the smaller the dimension d at which the phase transition occurs. When .r →

n→∞ 0, 

the connection function becomes an indicator function and the transition appears 
at .d � n3 (recovering the result from Theorem 1 established for RGGs on the 
Euclidean sphere). 

5. Suppose that we know that the latent variables are embedded in a Euclidean 
sphere, can we estimate the dimension d from the observation of the graph? 

When .p = 1/2, [26] obtained a bound on the difference of the expected num-
ber of signed triangles between consecutive dimensions leading to Theorem 9. 

Theorem 9 ([26, Theorem 5]) There exists a universal constant . C > 0, such  
that for all integers n and .d1 < d2, one has 

. TV(G(n, 1/2, d1),G(n, 1/2, d2)) ≥ 1− C

(
d1

n

)2

.

The bound provided by Theorem 9 is tight in the sense that when . d �
n, .G(n, 1/2, d) and .G(n, 1/2, d+1) are indistiguishable as proved in [42]. More 
recently, [5] proposed a method to infer the latent dimension of a Soft-RGG on 
the Euclidean sphere in the low-dimensional setting. Their approach is proved to 
correctly recover the dimension d in the relatively sparse regime as soon as the 
connection function belongs to some Sobolev class and satisfies a spectral gap 
condition. 

6. Extension to hypergraphs and information-theoretic/computational gaps. 
Let us recall that a hypergraph is a generalization of a graph in which an 

edge can join any number of vertices. Extensions of RGGs to hypergraphs have 
already been proposed in the literature (see, for example, [71]). A nice research
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direction would consist in investigating the problem of geometry detection in 
these geometric representations of random hypergraphs. As already discussed, 
it has been conjectured that the problem of geometry detection in RGGs on 
.Sd−1 does not present a statistical-to-algorithmic gap meaning that whenever it 
is information theoretically possible to differ .G(n, p, d) from .G(n, p), we can 
do it with a computational complexity polynomial in n (using the signed triangle 
statistic). Dealing with hypergraphs, one can legitimately think that statistical-to-
algorithmic gaps could emerge. This intuition is based on the fact that most of the 
time, going from a matrix problem to a tensor problem brings extra challenges. 
One can take the example of principal component analysis of Gaussian k-tensors 
with a planted rank-one spike (cf. [13]). In this problem, we assume that we 
observe for any .l ∈ [n], 

. Yl = λu⊗k +Wl ,

where .u ∈ Sd−1 is deterministic, .λ ≥ 0 is the signal-to-noise ratio, and where 
.(Wl )l∈[n] are independent Gaussian k-tensor (we refer to [13] for further details). 
The goal is to infer the “planted signal” or “spike,” u. In the matrix case (i.e., 
when .k = 2), whenever the problem is information theoretically solvable, we 
can also recover the spike with a polynomial time algorithm (using, for example, 
a spectral method). If we look at the tensor version of this problem where .k ≥ 3, 
there is a regime of signal-to-noise ratios for which it is information theoretically 
possible to recover the signal but for which there is no known algorithm to 
approximate it in polynomial time in n. This is a statistical-to-algorithmic gap, 
and we refer to [20, Section 3.8] and references therein for more details. 

7. Can we describe the properties of high-dimensional RGGs in the regimes where 
.TV(G(n, p),G(n, p, d)) → 1 as .n→∞? 

In the low-dimensional case, RGGs have been extensively studied: their 
spectral or topological properties, chromatic number or clustering number, 
are now well known (see, e.g., [80, 91]). One of the first work studying the 
properties of high-dimensional RGGs is [8] where the authors are focused on 
the clique structure. These questions are essential to understand how good high-
dimensional RGGs are as models for the theory of network science. 

8. How to find a relevant latent space given a graph with an underlying geometric 
structure? 

As stated in [85], Perhaps the ultimate goal is to find good representations 
of network data, and hence to faithfully embed the graph of interest into an 
appropriate metric space. This task is known as manifold learning in the machine 
learning community. Recently, [88] proved empirically that the eigenstructure 
of the Laplacian of the graph provides information on the curvature of the 
latent space. This is an interesting research direction to propose model selection 
procedure and infer a relevant latent space for a graph.
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4 Nonparametric Inference in RGGs 

In this section, we are interested in nonparametric inference in TIRGGs (see 
Definition 3) on the Euclidean sphere .Sd−1. The methods presented rely mainly 
on spectral properties of such random graphs. Note that spectral aspects in (Soft-
)RGGs have been investigated for a long time (see, for example, [86]), and it is 
now well known that the spectra of RGGs are very different from the one of other 
random graph models since the appearance of particular subgraphs give rise to 
multiple repeated eigenvalues (see [76] and [16]). Recent works took advantage of 
the information captured by the spectrum of RGGs to study topological properties 
such as [2]. In this section, we will see that random matrix theory is a powerful and 
convenient tool to study the spectral properties of RGGs as already highlighted by 
Dettmann et al. [36]. 

4.1 Description of the Model and Notations 

We consider a Soft-RGG on the Euclidean sphere .Sd−1 endowed with the geodesic 
distance . ρ. We consider that the connection function H is of the form . H : t �→
p(cos(t)) where .p : [−1, 1] → [0, 1] is an unknown function that we want to 
estimate. This Soft-RGG belongs to the class of TIRGG has defined in Sect. 2 and 
corresponds to a graphon model where the graphon W is given by 

. ∀x, y ∈ Sd−1, W(x, y) := p(〈x, y〉).

W , viewed as an integral operator on square-integrable functions, is a compact 
convolution (on the left) operator 

.TW : f ∈ L2(Sd−1) �→
∫

Sd−1 W(x, ·)f (x)σ (dx) ∈ L2(Sd−1), (4) 

where . σ is the Haar measure on .Sd−1. The operator .TW is Hilbert-Schmidt, and 
it has a countable number of bounded real eigenvalues . λ∗k with zero as the only 
accumulation point. The eigenfunctions of .TW have the remarkable property that 
they do not depend on p (see [30, Lemma 1.2.3]): they are given by the real 
Spherical Harmonics. We denote .Hl the space of real Spherical Harmonics of 
degree l with dimension . dl and with orthonormal basis .(Yl,j )j∈[dl ]. We end up with 
the following spectral decomposition of the envelope function . p

. ∀x, y ∈ Sd−1, p(〈x, y〉) =
∑

l≥0
p∗l

dl∑

j=1
Yl,j (x)Yl,j (y) =

∑

l≥0
p∗l clG

β
l (〈x, y〉),

(5)
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where .λ∗ := (p∗0, p∗1, . . . , p∗1, . . . , p∗l , . . . , p∗l , . . . ) meaning that each eigen-

value . p∗l has multiplicity . dl and .Gβ
l is the Gegenbauer polynomial of degree l 

with parameter .β := d−2
2 and .cl := 2l+d−2

d−2 . . p is assumed bounded and as 
a consequence .p ∈ L2((−1, 1), wβ) where the weight function .wβ is defined 
by .wβ(t) := (1− t2)β−1/2. Note that the decomposition (5) shows that it is enough 
to estimate the eigenvalues .(p∗l )l to recover the envelope function . p. 

4.2 Estimating the Matrix of Probabilities 

Let us denote A the adjacency matrix of the Soft-RGG G given by entries . Ai,j ∈
{0, 1} where .Ai,j = 1 if the nodes i and j are connected and .Ai,j = 0 otherwise. 
We denote by . � the .n × n symmetric matrix with entries . �i,j = p

(〈Xi,Xj 〉
)

for .1 ≤ i < j ≤ n and zero diagonal entries. We consider the scaled version of the 
matrices A and . � given by 

. ̂Tn = 1

n
A and Tn = 1

n
�.

Bandeira and van Handel [10] proved a near-optimal error bound for the operator 
norm of .T̂n − Tn. Coupling this result with the Weyl’s perturbation theorem gives a 
control on the difference between the eigenvalues of the matrices . ̂Tn and . Tn, namely, 
with probability greater than .1− exp(−n), it holds, 

.∀k ∈ [n], |λk(T̂n)− λk(Tn)| ≤ ‖T̂n − Tn‖ = O(1/
√

n), (6) 

where .λk(M) is the k-th largest eigenvalue of any symmetric matrix M . This result 
shows that the spectrum of the scaled adjacency matrix . ̂Tn is a good approximation 
of the one of the scaled matrix of probabilities . Tn. 

4.3 Spectrum Consistency of the Matrix of Probabilities 

For any .R ≥ 0, we denote 

.R̃ :=
R∑

l=0
dl, (7) 

which corresponds to the dimension of the space of Spherical Harmonics with 
degree at most R. Proposition 2 states that the spectrum of . Tn converges toward 
the one of the integral operator .TW in the . δ2 metric which is defined as follows:
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Definition 6 Given two sequences .x, y of reals—completing finite sequences by 
zeros—such that .

∑
i x2

i +y2
i <∞, we define the . �2 rearrangement distance . δ2(x, y)

as 

. δ22(x, y) := inf
σ∈Sn

∑

i

(xi − yσ(i))
2 ,

where . Sn is the set of permutations with finite support. This distance is useful to 
compare two spectra. 

Proposition 2 ([32, Proposition 4]) There exists a universal constant .C > 0 such 
that for all .α ∈ (0, 1/3) and for all .n3 ≥ R̃ log(2R̃/α), it holds 

.δ2(λ(Tn), λ
∗) ≤ 2

[
∑

l>R

dl

(
p∗l
)2
]1/2

+ C

√

R̃
(
1+ log(R̃/α)

)
/n, (8) 

with probability at least .1− 3α. 

Proposition 2 shows that the . �2 rearrangement distance between . λ∗ and . λ(Tn)

decomposes as the sum of a bias term and a variance term. The second term on the 
right-hand side of (8) corresponds to the variance. The proof leading to this variance 
bound relies on the Hoffman-Wielandt inequality and borrows ideas from [63]. It 
makes use of recent developments in random matrix concentration by applying 
a Bernstein-type concentration inequality (see [90], for example) to control the 
operator norm of the sum of independent centered symmetric matrices given by 

.

n∑

i=1

(
Y(Xi)Y(Xi)

� − E
[
Y(Xi)Y(Xi)

�]) , (9) 

with . Y(x) = (
Y0,0(x), Y1,1(x), . . . , Y1,d1(x), Y2,1(x), . . . , Y2,d2(x), . . . , YR,1(x),

. . . . , YR,dR
(x)
)� ∈ RR̃ for all .x ∈ Sd−1. The proof of Proposition 2 also exploits 

concentration inequality for U-statistic dealing with a bounded, symmetric, and .σ -
canonical kernel (see [33, Definition 3.5.1]). The first term on the right-hand side 
of (8) is the bias arising from choosing a resolution level equal to R. Its behavior 
as a function of R can be analyzed by considering some regularity condition on 
the envelope . p. Assuming that . p belongs to the Sobolev class .Zs

wβ
((−1, 1)) (with 

regularity encoded by some parameter .s > 0) defined by 

.

⎧
⎨

⎩
g =

∑

k≥0
g∗k ckG

β
k ∈ L2((−1, 1), wβ)

∣∣∣∣ ‖g‖∗Zs
wβ

((−1,1))

:=
[ ∞∑

l=0
dl |g∗l |2

(
1+ (l(l + 2β))s

)
]1/2

<∞
⎫
⎬

⎭
,
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and choosing the resolution level .Ropt = �(n/ log n)
1

2s+d−1 � to balance the 
bias/variance tradeoff appearing on the right-hand side of (8), we get that 

. E
[
δ22
(
λ(Tn), λ

∗)] �
[

n

log n

]− 2s
2s+(d−1)

.

Thus, we recover a classical nonparametric rate of convergence for estimating a 
function with smoothness s in a space of dimension .d − 1. This is also the rate 
toward the probability matrix obtained by Xu [98]. Note that the choice of . Ropt

requires the knowledge of the regularity parameter s. To overcome this issue, [32] 
proposed an adaptive procedure using the Goldenshluger-Lepski method. 

4.4 Estimation of the Envelope Function 

Let us denote .λ := λ(T̂n). For a prescribed model size .R ∈ N\{0}, [32] define the 
estimator . ̂λR of the truncated spectrum . λ∗R := (p∗0, p∗1, . . . , p∗1, . . . , p∗R, . . . , p∗R)

of . λ∗ as 

. ̂λR := (pR
0 (σ̂ ), pR

1 (σ̂ ), . . . , pR
1 (σ̂ ), . . . , pR

1 (σ̂ ), . . . , pR
R(σ̂ ), . . . , pR

R(σ̂ )),

with 

. σ̂ ∈ argmin
σ∈Sn

R∑

l=0

l̃∑

k=̃l−1

(
pR

l (σ )− λσ(k)

)2 +
n∑

k=R̃+1
λ2σ(k) and

pR
l (σ ) = 1

dl

l̃∑

k=̃l−1
λσ(k),

where . Sn is the set of permutations of . [n] and where we used the notation (7) 
with the convention .−̃1 = 1. Using the results of the two previous subsections, 
namely, (6) and Proposition 2, we obtain [32, Theorem.6] which states that 

. E
[
δ22

(
λ̂Ropt , λ∗

)]
�
[

n

log n

]− 2s
2s+(d−1)

.

The envelope function . p can then be approximated by the plug-in estimator . ̂p ≡
∑Ropt

l=0 p
Ropt

l (σ̂ )clG
β
l based on the decomposition (5). One drawback of this 

approach is the exponential complexity in R of the computation of . ̂λR . In the  
next section, we will describe an approach based on a Hierarchical Agglomerative 
Clustering algorithm to estimate the envelope function . p efficiently.
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4.5 Open Problems and Perspectives 

The minimax rate of estimating a s-regular function on a space of (Riemannian) 
dimension .d−1 such as .Sd−1 from n observations is known to be of order .n−

s
2s+d−1 . 

In the framework of this section, even if the domain of the envelope function . p
is .[−1, 1], inputs of . p are the pairwise distances given by inner products of points 
embedded in .Sd−1. Hence, it is still an open question to know if the dimension d 
of the latent space appears in the minimax rate of convergence. Moreover, the 
number of observations in the estimation problem considered is . n2 since the full 
adjacency matrix is known. Nevertheless, the problem suffers from the presence 
of unobserved latent variables. This all contributes to a nonstandard estimation 
problem, and finding the optimal rate of convergence is an open problem. 

5 Growth Model in RGGs 

5.1 Description of the Model 

In [40], a new growth model was introduced for RGGs. The so-called Markov 
Random Geometric Graph (MRGG) already presented in Definition 4 is a Soft-RGG 
where latent points are sampled with Markovian jumps. Namely, [40] consider n 
points .X1, X2, . . . , Xn sampled on the Euclidean sphere .Sd−1 using a Markovian 
dynamic. They start by sampling uniformly .X1 on .Sd−1. Then, for any . i ∈
{2, . . . , n}, they sample 

• A unit vector .Yi ∈ Sd−1 uniformly, orthogonal to . Xi−1
• A real .ri ∈ [−1, 1] encoding the distance between .Xi−1 and . Xi , see  (11). . ri is 

sampled from a distribution .fL : [−1, 1] → [0, 1], called the latitude function 

then . Xi is defined by 

.Xi = ri ×Xi−1 +
√
1− r2i × Yi . (10) 

This dynamic is illustrated in Fig. 4 and can be understood as follows. Consider 
that .Xi−1 is the north pole, then choose uniformly a direction (i.e., a longitude) and, 
in an independent manner, randomly move along the latitudes (the longitude being 
fixed by the previous step). The geodesic distance . γi drawn on the latitudes satisfies 

.γi = arccos(ri) , (11) 

where random variable .ri = 〈Xi,Xi−1〉 has density .fL (ri).
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Fig. 4 Visualization of the 
sampling scheme in . S2

5.2 Spectral Convergences 

In this framework and keeping the notations of the previous section, one can show 
that if .p ∈ Zs

wβ
((−1, 1)) and if .fL satisfies the condition 

. (H ) ‖fL ‖∞ := sup
t∈[−1,1]

|fL (t)| <∞ and fL is bounded away from zero,

then 

.E
[
δ22(λ(Tn), λ

∗) ∨ δ22(λ
Ropt (T̂n), λ

∗)
]
= O

([
n

log2(n)

]− 2s
2s+d−1

)

, (12) 

with .λRopt (T̂n) = (λ̂1, . . . , λ̂R̃opt
, 0, 0, . . . ) and .Ropt = �

(
n/ log2(n)

) 1
2s+d−1 � where 

.λ̂1, . . . , λ̂n are the eigenvalues of . ̂Tn sorted in decreasing order of magnitude. 
This result is the counterpart of Proposition 2 in this Markovian framework. The 
proof follows closely the steps of the one of the previous section, but one needs 
to deal with the dependency of the latent positions. Results from [90] are  no  
longer suited to control the operator norm of (9) since .(Xi)i≥0 is a Markov chain. 
Nevertheless, this can be achieved by using concentration inequalities for sum of 
functions of Markov chains and by exploiting the rank one structure of the random 
matrices .Y(Xi)Y(Xi)

� together with a covering set argument. Another difficulty 
induced by the latent dynamic is the control of a U-statistic of order 2 of the 
Markov chain .(Xi)i≥0 with a bounded kernel. Non-asymptotic results regarding the 
tail behavior of U-statistics of a Markov chain have been so far very little touched. 
In a recent work, [41] proved a concentration inequality for order 2 U-statistics 
with bounded kernels for uniformly ergodic Markov chain. Theorem 10 gives a 
simplified version of their main result. Assuming that the condition .(H ) is fulfilled, 
theMarkov chain .(Xi)i≥1 satisfies the assumptions of Theorem 10 and one can show 
that (12) holds true.
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Theorem 10 ([41, Theorem 2]) Let us consider a Markov chain .(Xi)i≥1 on some 
measurable space .(E,E ) (with E Polish) with transition kernel . P : E × E → R

and a function .h : E × E → R. We assume that 

1. .(Xi)i≥1 is a uniformly ergodic Markov chain with invariant distribution . π , 
2. h is bounded and .π -canonical, namely 

. ∀x ∈ E, EX∼π [h(X, x)] = EX∼π [h(x,X)] = 0,

3. There exist .δ > 0 and some probability measure . ν on .(E,E ) such that 

. ∀x ∈ E, ∀A ∈ E , P (x,A) ≤ δν(A).

Then there exist constants .β, κ > 0 such that for any .u ≥ 1, it holds with probability 
at least .1− βe−u log n, 

. 
1

n(n− 1)

∑

1≤i,j≤n, i 	=j

h(Xi,Xj ) ≤ κ‖h‖∞ log n

{
u

n
+
[u
n

]2 }
,

where . κ and . β only depend on constants related to the Markov chain .(Xi)i≥1. 

Remark Note that Theorem 10 holds for any initial distribution of theMarkov chain. 
In their paper, [41] go beyond the previous Hoeffding tail control by providing a 
Bernstein-type concentration inequality under the additional assumption that the 
chain is stationary. For the sake of simplicity, we presented Theorem 10 for a single 
kernel h, but we point out that their results allow for the dependence of the kernels— 
say . hi,j—on the indexes in the sums which bring technical difficulties since standard 
blocking techniques can no longer be applied. The interest for this concentration 
result goes beyond the scope of random graphs since U-statistics naturally arise in 
online learning [29] or testing procedures [47]. 

5.3 Estimation Procedure 

Recalling the notation of the truncated spectrum .λ∗R (resp. .λR(T̂n)) of  . λ∗ (resp. 
.λ(T̂n)) from Sect. 4.4, [40] introduce a new procedure (namely, the SCCHEi 
algorithm) based on a Hierarchical Agglomerative Clustering that returns a partition 
.Cd0 , . . . ,CdR

,� of the n eigenvalues of . ̂Tn where for any .i ∈ {0, . . . , R}, . |Cdi
| = di

(where we recall that . di is the dimension of the space of Spherical Harmonics of 
degree i). The authors prove that for any fixed resolution level R, n can be chosen 
large enough so that the clusters obtained in polynomial time from the SCCHEi 
algorithm satisfy
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.δ22(λ
∗R, λR(T̂n)) =

R∑

k=0

∑

λ̂∈Cdk

(λ̂− p∗k )2. (13) 

The final estimate of the envelope function with resolution level R is defined as 

. ̂p :=
R∑

k=0
p̂kG

β
k , where ∀k ∈ N, p̂k =

{
1
dk

∑
λ∈Cdk

λ if k ∈ {0, . . . , R}
0 otherwise.

(14) 
Equation (13) is not a sufficient condition to ensure that the . L2 error between the true 
envelope function and the plug-in estimator . ̂p (see Eq. (14)) goes to 0 has . n→+∞.

This is due to identifiability issues coming from the . δ2 metric. In [40, Theorem 3], 
the author obtain a theoretical guarantee on the . L2 error between the true envelope 
function and the plug-in estimate by considering additional assumptions on the 
eigenvalues .(p∗k )k≥0. Let us finally mention that the optimal resolution level . Ropt

is unknown in practice. To bypass this issue, the authors propose a model selection 
procedure based on the slope heuristic (see [7]). 

5.4 Nonparametric Link Prediction 

We are now interested in solving link prediction tasks. Namely, from the observation 
of the graph at time n, we want to estimate the probabilities of connection 
between the upcoming node .n + 1 and the nodes already present in the graph. 
Recalling the definition of the random variables .(Yi)i≥2 from Sect. 5.1 and denot-
ing further .projX⊥n (·) the orthogonal projection onto the orthogonal complement 
of .Span(Xn), the decomposition 

. 〈Xi,Xn+1〉 = 〈Xi,Xn〉〈Xn,Xn+1〉 +
√
1− 〈Xn,Xn+1〉2

√
1− 〈Xi,Xn〉2

× 〈 projX⊥n (Xi)

‖projX⊥n (Xi)‖2 , Yn+1〉, (15) 

shows that latent distances .D1:n = (〈Xi,Xj 〉)1≤i,j≤n ∈ [−1, 1]n×n are enough for 
link prediction. Indeed, it can be achieved by estimating the posterior probabilities 
defined for any .i ∈ [n] by 

. ηi(D1:n) = P
(
Ai,n+1 = 1 | D1:n

)

ηi(D1:n) =
∫

r,u∈(−1,1)
p
(
〈Xi,Xn〉r +

√
1− r2

√
1− 〈Xi,Xn〉2u

)

× fL (r)wd−3
2

(u)
�(d−1

2 )

�(d−2
2 )
√

π
drdu, (16)
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where .Ai,n+1 ∈ {0, 1} is one if and only if node .n + 1 is connected to node i, 

.wd−3
2

(u) := (1 − u2)
d−3
2 − 1

2 and where .� : a ∈]0,+∞[�→ ∫ +∞
0 ta−1e−t dt . 

Using an approach similar to [5, 40] proved that one can get a consistent esti-
mator . ̂G of the Gram matrix of the latent positions .G = (〈Xi,Xj 〉

)
1≤i,j≤n

in 
Frobenius norm. Hence, one can use a traditional plug-in estimator for . ηi(D1:n)
by replacing in (16) . (i) the envelope function . p by . ̂p from (14), .(ii) the pairwise 
distances by their estimates .

(
Ĝi,j

)
1≤i,j≤n

and .(iii) the latitude function .fL by 
a non-parametric kernel density estimator built from the latent distances between 
consecutive nodes .(〈Xi,Xi+1〉)i∈[n−1] estimated by .

(
Ĝi,i+1

)
i∈[n−1]. 

Through the example of MRGG, one can easily grasp the interest of growth 
model for random graphs with a geometric structure. Modeling the time evolution 
of networks, one can hope to solve tasks such as link prediction or collaborative 
filtering. An interesting research direction would be to extend the previous work to 
an anisotropic Markov kernel. 

6 Connections with Community-Based Models 

We have already described open problems and interesting directions to pursue 
regarding the questions tackled in the Sects. 3, 4 and 5. In this last section, we 
want to look at RGGs from a different lens by highlighting a recently born line 
of research that investigates the connections between RGGs and community-based 
models. Without aiming at presenting in a comprehensive manner the literature on 
this question, we rather focus on a few recent works that could inspire the reader to 
contribute in this emerging field. 

A plenty number of random graph models have been so far studied. However, 
real-world problems never match a particular model and most of the time present 
several internal structures. To take into account this complexity, a growing number 
of works have been trying to take the best of several known random graph models. 
Papadopoulos et al. [78] introduced a growth model where new connections with 
the upcoming node are drawn taking into account both popularity and similarity of 
vertices. The motivation is to find a balance between two trends for new connections 
in social networks, namely, homophily and popularity. One can also mention [61] 
who consider a growth model that interpolates between pure preferential attachment 
(essentially the well-known Barabasi–Albert model) and a purely geometric model 
(the online nearest-neighbor graph). As pointed out by Barthélemy [12, Section 
II.B.3.a], it is clear that community detection in spatial networks is a very interesting 
problem which might receive a specific answer.
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6.1 Extension of RGGs to Take into Account Community 
Structure 

Galhotra et al. [48] proposed a new random graph model that incorporates commu-
nity membership in standard RGGs. More precisely, they introduce the geometric 
block model which is defined as follows. Consider .V = V1�V2�· · ·�Vk a partition 
of . [n] in k clusters, .(Xu)u∈[n] independent and identical random vectors uniformly 
distributed on .Sd−1 and let .

(
ri,j
)
1≤i,j≤k

∈ [0, 2]k×k . The geometric block model is 
a random graph with vertices V and an edge exists between .v ∈ Vi and . u ∈ Vj

if and only if .‖Xu − Xv‖ ≤ ri,j . Focusing on the case where . ri,i = rs,∀i
and .ri,j = rd, ∀i 	= j , the authors want to recover the partition V observing 
only the adjacency matrix of the graph. They proved that in the relatively sparse 

regime (i.e., when .rs, rd = 
n

(
log n

n

)
), a simple motif-counting algorithm allows to 

detect communities in the geometric block model and is near-optimal. The proposed 
greedy algorithm affects two nodes to the same community if the number of their 
common neighbors lies in a prescribed range whose bounds depend on . rs and . rd
that are assumed to be known. The method is proved to recover the correct partition 
of the nodes with probability tending to 1 as n goes to . +∞.

In [87], the previous work is extended by considering arbitrary connection 
function. The paper sheds light on interesting differences between the standard 
SBMs and community models that incorporates some geometric structure. We start 
by presenting their model before highlighting some interesting results. Their model 
is the planted partition random connection model (PPCM) that relies on a Poisson 
point process on . Rd with intensity .λ > 0 .ϕ := {X1, X2, . . . } where it is assumed 
that the enumeration of the points . Xi is such that for all .i, j ∈ N, . i > j  ⇒
‖Xi‖∞ ≥ ‖Xj‖∞. Each atom .i ∈ N is marked with a random variable . Zi ∈
{−1,+1}. . ϕ is the marked Poisson point process. The sequence .{Zi}i∈N is i.i.d. 
with each element being uniformly distributed in .{−1,+1}. The interpretation of 
this marked point process is that for any node .i ∈ N, its location label is . Xi

and its community label is . Zi . Considering two connection functions . fin, fout :
R+ → [0, 1], they first construct an infinite graph G with vertex set . N and place an 
edge between any two nodes .i, j ∈ N with probability . fin(‖Xi − Xj‖)1Zi=Zj

+
fout (‖Xi−Xj‖)1Zi 	=Zj

. The graph . Gn is then the induced subgraph of G consisting 
of the nodes 1 through . Nn where .Nn := sup

{
i ≥ 0 : Xi ∈ Bn := [−n1/d

2 , n1/d

2 ]d
}
. 

Considering that the graph is observed and that the connections func-
tions .fin, fout and the location labels .(Xi)i are known, the authors investigate 
conditions on the parameters of their model allowing to extract information on the 
community structure from the observed data. 

Weak Recovery Weak recovery is said to be solvable if for every .n ∈ N\{0}, 
there exists some algorithm that—based on the observed data . Gn and . ϕ—provides 
a sequence of .{−1,+1} valued random variables .{τ (n)

i }Nn

i=1 such that there exists 

a constant .γ > 0 such that the overlap between .{τ (n)
i }Nn

i=1 and .{Zi}Nn

i=1 is 
asymptotically almost surely larger than . γ , namely,



378 Q. Duchemin and Y. De Castro

. lim
n→∞P

(∑Nn

i=1 τ
(n)
i Zi

Nn

≥ γ

)

= 1.

The authors identify regimes where weak recovery can be solved or not. We 
summarize their results with Proposition 3. 

Proposition 3 ([87, Proposition 1 - Corollary 2 - Theorem 2]) For every . fin(·),
.fout (·) such that .{r ∈ R+ : fin(r) 	= fout (r)} has positive Lebesgue measure and 
any .d ≥ 2, there exists a .λc ∈ (0,∞) such that 

• For any .λ < λc, weak recovery is not solvable. 
• For any .λ > λc, there exists an algorithm (which could possibly take exponential 

time) to solve weak recovery. 

Moreover, there exists .λ̃c <∞ (possibly larger than . λc) depending on . fin(·), fout (·)
and d, such that for all .λ > λ̃c , weak recovery is solvable in polynomial time. 

The intrinsic nature of the problem of weak recovery is completely different in the 
PPCM model compared to the standard sparse SBM. Sparse SBMs are known to 
be locally treelike with very few short cycles. Efficient algorithms that solve weak 
recovery in the sparse SBM (such as message passing algorithm, convex relaxation, 
or spectral methods) deeply rely on the local treelike structure. On the contrary, 
PPCMs are locally dense even if they are globally sparse. This is due to the presence 
of a lot of short loops (such as triangles). As a consequence, the standard tools used 
for SBMs are not relevant to solve weak recovery in PPCMs. Nevertheless, the local 
density allows to design a polynomial time algorithm that solves weak recovery 
for .λ > λ̃c (see Proposition 3) by simply considering the neighbors of each node. 
Proposition 3 lets us open the question of the existence of a gap between information 
versus computation thresholds. Namely, is it always possible to solve weak recovery 
in polynomial time when .λ > λc? In the sparse and symmetric SBM, it is known that 
there is no information-computation gap for .k = 2 communities, while for . k ≥ 4
a non-polynomial algorithm is known to cross the Kesten-Stigum threshold which 
was conjectured by Decelle et al. [34] to be the threshold at which weak recovery 
can be solved efficiently. 

Distinguishability The distinguishability problem asks how well one can solve a 
hypothesis testing problem that consists in finding if a given graph has been sampled 
from the PPCM model or from the null, which is given by a plain random connection 
model with connection function .(fin(·)+fout (·))/2 without communities but having 
the same average degree and distribution for spatial locations. Sankararaman and 
Baccelli [87] prove that for every .λ > 0, .d ∈ N and connection functions . fin(·)
and .fout (·) satisfying .1 ≥ fin(r) ≥ fout (r) ≥ 0 for all .r ≥ 0, and . {r ≥ 0 : fin(r) 	=
fout (r)} having positive Lebesgue measure, the probability distribution of the null 
and the alternative of the hypothesis test are mutually singular. As a consequence, 
there exist some regimes (such as .λ < λc and .d ≥ 2) where we can be very sure by 
observing the data that a partition exists but cannot identify it better than at random. 
In these cases, it is out of reach to bring together the small partitions of nodes in
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different regions of the space into one coherent. Such behavior does not exist in 
the sparse SBM with two communities as proved by Mossel et al. [73] and was 
conjectured to hold also for .k ≥ 3 communities in [34]. 

6.2 Robustness of Spectral Methods for Community Detection 
with Geometric Perturbations 

In another line of work, [79] are studying robustness of spectral methods for 
community detection when connections between nodes are perturbed by some 
latent random geometric graph. They identify specific regimes in which spectral 
methods are still efficient to solve community detection problems despite geometric 
perturbations, and we give an overview of their work in what follows. Let us 
consider some fixed parameter .κ ∈ [0, 1] that drives the balance between strength 
of the community signal and the noise coming from the geometric perturbations. 
For the sake of simplicity, they consider a model with two communities where 
each vertex i in the network is characterized by some vector .Xi ∈ R2 with 
distribution .N (0, I2). They consider .p1, p2 ∈ (0, 1) that may depend on the 
number of nodes n with .p1 > p2 and .supn p1/p2 < ∞. Assuming for technical 
reason .κ +max{p1, p2} ≤ 1, the probability of connection between i and j is 

. P
{
i ∼ j | Xi,Xj

} = κ exp
(
−γ ‖Xi −Xj‖2

)

+
{

p1 if i and j belong to the same community
p2 otherwise.

,

where the inverse width .γ > 0 may depend on n. We denote by .σ ∈ {±1/√n}n the 
normalized community vector illustrating to which community each vertex belong 
(.σi = −1/√n if i belongs to the first community and .σi = 1/

√
n otherwise). The 

matrix of probabilities of this model is given by .Q := P0 + P1 where 

. P0 :=
[
p1J p2J

p2J p1J

]
and P1 := κP = κ

(
(1− δi,j )e

−γ ‖Xi−Xj ‖2
)

1≤i,j≤n
.

The adjacency matrix A of the graph can, thus, be written as . A = P0 + P1 +
Ac where . Ac is, conditionnally on the . Xi’s, a random matrix with independent 
Bernoulli entries which are centered. Given the graph-adjacency matrix A, the  
objective is to output a normalized vector .x ∈ {±1/√n}n such that, for some 
.ε > 0, 

• Exact recovery: with probability tending to 1, . |σ�x| = 1,
• Weak recovery (also called detection): with probability tending to 1, .|σ�x| > ε.
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Let us highlight that contrary to the previous section, the latent variables . (Xi)i
are not observed. When .κ = 0, we recover the standard SBM: .Q = P0 has two 
nonzero eigenvalues which are .λ1 = n(p1 + p2)/2 with associated normalized 
eigenvector .v1 = 1√

n
(1, 1, . . . , 1)� and .λ2 = n(p1 − p2)/2 associated to . v2 =

σ = 1√
n
(1, . . . , 1,−1, . . . ,−1)�. Spectral methods can, thus, be used to recover 

communities by computing the second eigenvector of the adjacency matrix A. To  
prove that spectral methods still work in the presence of geometric perturbations, 
one needs to identify regimes in which the eigenvalues of A are well separated and 
the second eigenvector is approximately . v2.

In the regime where .γ � n/ log n, the spectral radius .ρ(P1) of . P1 vanishes, 
and we asymptotically recover a standard SBM. Hence, they focus on the following 
regime: 

.γ →
n→∞ ∞ and

1

γ

n

ln n
→

n→∞ ∞. (A1) 

Under Assumption (A1), [79, Proposition 2] states that with probability tending to 
one, .ρ(P1) is of order . κn

2γ . Using [15, Theorem 2.7] to get an asymptotic upper 
bound on the spectral radius of . Ac, basic perturbation arguments would prove that 
standard techniques for community detection work in the regime where 

. 
κn

2γ
�
√

n(p1 + p2)

2
= √λ1.

Indeed, it is now well known that weak recovery in the SBM can be solved 
efficiently as soon as .λ2 >

√
λ1 (for example, using the power iteration algorithm on 

the non-backtracking matrix from [18]). Hence, the regime of interest corresponds 
to the case where 

.∃c, C > 0 s.t. λ−12
κn

2γ
∈ [c, C], λ2

λ1
∈ [c, C] and λ2 �

√
λ1, (A2) 

which corresponds to the case where the noise induced by the latent random graph 
is of the same order of magnitude as the signal. Under (A2), the problem of weak 
recovery can be tackled using spectral methods on the matrix .S = P0+P1: the goal 
is to reconstruct communities based on the second eigenvector of S. To prove that 
these methods work, the authors first find conditions ensuring that two eigenvalues 
of S exit the support of the spectrum of . P1. Then, they provide an asymptotic lower 
bound for the level of correlation between .v2 = σ and the second eigenvector . w2
of S, which leads to Theorem 11. 

Theorem 11 ([79, Theorem 10]) Suppose that Assumptions (A1) and (A2) hold 
and that .λ1 > λ2 + 2 κ

2γ . Then the correlation .|w�2 v2| is uniformly bounded away 
from 0. Moreover, denoting . μ1 the largest eigenvalue of . P1, if the ratio .λ2/μ1 goes 
to infinity, then .|w�2 v2| tends to 1, which gives weak (and even exact at the limit) 
recovery.
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6.3 Recovering Latent Positions 

From another viewpoint, one can think RGGs as an extension of stochastic block 
models where the discrete community structure is replaced by an underlying 
geometry. With this mindset, it is natural to directly transport concepts and questions 
from clustered random graphs to RGGs. For instance, the task consisting in esti-
mating the communities in SBMs may correspond to the estimation of latent point 
neighborhoods in RGGs. More precisely, community detection can be understood in 
RGGs as the problem of recovering the geometric representation of the nodes (e.g., 
through the Gram matrix of the latent positions). This question has been tackled 
by Eldan et al. [44] and Valdivia [4]. Both works consider random graphs sampled 
from the TIRGG model on the Euclidean sphere .Sd−1 with some envelope function 
. p (see Definition 3), leading to a graphon model similar to the one presented in 
Sect. 4.1. While the result from [4] holds in the dense and relatively sparse regimes, 
the one from [44] covers the sparse case. Thanks to harmonic properties of .Sd−1, the  
graphon eigenspace composed only of linear eigenfunctions (harmonic polynomials 
of degree one) directly relates to the pairwise distances of the latent positions. This 
allows [44] and [4] to provide a consistent estimate of the Gram matrix of the latent 
positions in Frobenius norm using a spectral method. Their results hold under the 
following two key assumptions. 

1. An eigenvalue gap condition. They assume that the d eigenvalues of the 
integral operator . TW—associated with the graphon .W := p(〈·, ·〉) (see (4))— 
corresponding to the Spherical Harmonics of degree one is well separated from 
the rest of the spectrum. 

2. A regularity condition. They assume that the envelope function . p belongs to 
some weighted Sobolev space, meaning that the sequence of eigenvalues of . TW

goes to zero fast enough. 

In addition to similar assumptions, [4] and [44] share the same proof structure. First, 
they need to recover the d eigenvectors from the adjacency matrix corresponding to 
the space of Spherical Harmonics of degree one. Then, the Davis-Kahan Theorem is 
used to prove that the estimate of the Gram matrix based on the previously selected 
eigenvectors is consistent in Frobenius norm. To do so, they require a concentration 
result ensuring that the adjacency matrix A (or some proxy of it) converges in 
operator norm toward the matrix of probabilities . �with entries . �i,j = p

(〈Xi,Xj 〉
)

for .1 ≤ i 	= j ≤ n and zero diagonal entries. Valdivia [4] relies on [10, Corollary 
3.12], already discussed in (6), that provides the convergence .‖A − �‖ → 0 as 
.n → ∞ in the dense and relatively sparse regimes. In the sparse regime, such 
concentration no longer holds. Indeed, in that case, degrees of some vertices are 
much higher than the expected degree, say . deg. As a consequence, some rows of the 
adjacency matrix A have Euclidean norms much larger than .

√
deg, which implies 

that for n large enough, it holds with high probability .‖A − �‖ � √
deg. To cope 

with this issue, [44] do not work directly on the adjacency matrix but rather on 
a slightly amended version of it—say . A′—where one reduces the weights of the
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edges incident to high degree vertices. In that way, all degrees of the new (weighted) 
network become bounded, and [66, Theorem 5.1] ensures that . A′ converges to . � in 
spectral norm as n goes to .+∞. Hence, in the sparse regime, the adjacency matrix 
converges toward its expectation after regularization. The proof of this random 
matrix theory tool is based on a famous result in functional analysis known as the 
Grothendieck-Pietsch factorization. 

Let us finally mention that this change of behavior of the extreme eigenvalues 
of the adjacency matrix according to the maximal mean degree has been studied in 
details for inhomogeneous Erdös-Rényi graphs in [15] and [14]. 

6.4 Some Perspectives 

The paper [87] makes the strong assumption that the locations’ labels . (Xi)i≥1
are known. Hence, it should be considered as an initial work calling for future 
theoretical and practical investigations. Keeping the same model, it would be of 
great interest to design algorithms able to deal with unobserved latent variables 
to allow real-data applications. The first step in this direction was made by 
Avrachenkov et al. [9] where the authors propose a spectral method to recover 
hidden clusters in the soft geometric block model where latent positions are not 
observed. On the theoretical side, [87] describe at the end of their paper several 
open problems. Their suggestions for future works include . (i) the extension of their 
work to a larger number of communities, .(ii) the estimation from the data of the 
parameters of their model (namely . fin and .fout that they assumed to be known), 
and .(iii) the existence of a possible gap between information versus computation 
thresholds; namely, they wonder if there is a regime where community detection is 
solvable, but without any polynomial (in n) time and space algorithms. 

Another possible research direction is the extension of the work from Sect. 6.2 
to study the same kind of robustness results for more than 2 communities and 
especially in the sparse regime where . 1

γ
∼ pi ∼ 1

n
. As highlighted by Péché 

and Perchet [79], the sparse case may bring additional difficulties since standard 
spectral techniques in this regime involve the non-backtracking matrix (see [18]), 
and its concentration properties are quite challenging to establish. Regarding 
Sect. 6.3, for some applications, it may be interesting to go beyond the recovery of 
the pairwise distances by embedding the graph in the latent space while preserving 
the Gram structure. Such question has been tackled, for example, by Perry et al. [83] 
but only for the Euclidean sphere in small dimensions. 

Acknowledgments The authors are in debt to Tselil Schramm who gave a great talk at the S. S. 
Wilks Memorial Seminar in Statistics (at Princeton University) providing insightful comments on 
the problem of geometry detection or more specifically on her paper [69].
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Appendix: Outline of the Proofs of Theorems 6 and 7 

The proofs of Theorems 6 and 7 (cf. Sect. 3.3) are quite complex, and giving their 
formal descriptions would require heavy technical considerations. In the following, 
we provide an overview of the proofs highlighting the nice mathematical tools used 
by Liu et al. [69] and their innovative combination while putting under the rug some 
technical aspects. 

Step 1. Relate the TV distance of the whole graphs to single vertex neighborhood. 

. 2TV(G(n, p, d), G(n, p))2

≤ KL(G(n, p, d)||G(n, p)) from Pinsker’s inequality

≤ n×EGn−1∼G(n−1,p,d)

[
KL

(
νn(·|Gn−1),Bern(p)⊗(n−1))] from Lemma 2 

= EGn−1∼G(n−1,p,d)ES∼νn(·|Gn−1) log
(

νn(S|Gn−1) 
p|S|(1− p)n−1−|S|

)
, (17) 

where .νn(·|Gn−1) denotes the distribution of the neighborhood of vertex n 
when the graph is sampled from .G(n, p, d) conditional on the knowledge of 
the connections between pairs of nodes in .[n−1] given by .Gn−1. Hence, the 
main difference with [21] is that the tensorization argument from Lemma 2 
is used node-wise (and not edge-wise). We are reduced to understand how a 
vertex incorporates a given graph of size .n−1 sampled from the distribution 
.G(n− 1, p, d). At a high level, the authors show that if one can prove that 
for some .ε > 0, with high probability over .Gn−1 ∼ G(n−1, p, d), it holds 

. ∀S ⊆ [n− 1], νn(S|Gn−1) = PG∼G(n,p,d)(NG(n) = S |Gn−1)

= (1± ε)p|S|(1− p)n−1−|S|, (18) 

where .NG(n) denotes the set of nodes connected to node n in the graph G, 
then 

.TV(G(n, p, d),G(n, p)) = on(nε2). (19) 

Step 2. Geometric interpretation of neighbrhood probabilities from Eq. (18). 
For .G ∼ G(n, p, d), if vertex  i is associated to a (random) vector . Xi , 

and .(i, j) is an edge, we consequently know that .〈Xi,Xj 〉 ≥ tp,d . On the  
sphere .Sd−1, the locus of points where . Xj can be conditioned on . (i, j)

being an edge is a sphere cap centered at . Xi with a p fraction of the sphere’s 
surface area, which we denote by .cap(Xi). Similarly, if we know that i and 
j are not adjacent, the locus of points where . Xj can fall is the complement 
of a sphere cap with measure .1 − p namely, .cap(Xi), which we call an 
“anti-cap.” Let us denote . σ is the normalized Lebesgue measure on .Sd−1 so
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that .σ(Sd−1) = 1. Equipped with this geometric picture, we can view the 
probability that vertex n’s neighborhood is exactly equal to .S ⊆ [n− 1] as 
.σ(LS), where .LS ⊆ Sd−1 is a random set defined by 

. LS :=
(⋂

i∈S

cap(Xi)
) ∩ (

⋂

j /∈S

cap(Xj )
)
.

To show that the TV distance between .G(n, p, d) and .G(n, p) is small, 
we need to prove that .σ(LS) concentrates around .p|S|(1 − p)n−1−|S| as 
suggested by Eqs. (18) and (19). 

Step 3. Concentration of measure of intersections of sets in .Sd−1 with random 
spherical caps. 

An essential contribution of [69] is a novel concentration inequality for the area 
of the intersection of a random spherical cap with any subset .L ⊆ Sd−1. 

Lemma 3 ([see 69, Corollary 4.10]) Set-cap intersection concentration Lemma. 
Suppose .L ⊆ Sd−1 and let us denote by . σ the uniform probability measure on 

.Sd−1. Then with high probability over .z ∼ σ , it holds 

. 
∣
∣σ(L ∩ cap(z))

pσ(L)
− 1

∣
∣ = On

(
δn(L)

)
and

∣
∣σ(L ∩ cap(z))

(1− p)σ(L)
− 1

∣
∣ = On

( p

1− p
δn(L)

)
,

where .δn(L) =
√

log 1
p
+log 1

σ(L)√
d

polylog(n). 

Sketch of proof of Lemma 3 We give an overview of the proof of Lemma 3, 
highlighting its interesting connection with optimal transport. Let us consider some 
probability distribution . ν on .Sd−1. Let us denote . D the optimal coupling between 
the measures . ν and . σ , i.e., . D is a probability measure on .Sd−1×Sd−1 with marginals 
. ν and . σ such that 

. W2(ν, σ )2 =
∫
‖x − y‖22dD(x, y),

where .W2(ν, σ ) is the 2-Wasserstein distance between the measures . σ and . ν. Then, 
for any .z ∈ Sd−1, it holds 

. Px∼ν(〈z, x〉 > tp,d) = P(x,y)∼D (〈z, y〉 > tp,d − 〈z, x − y〉)
≤ Py∼σ (〈z, y〉 > tp,d − u(p, d))

+ P(x,y)∼D (|〈z, x − y〉| > u(p, d)), (20) 

for some well-chosen threshold .u(p, d) depending on p and d. The first term in 
the right-hand side of Eq. (20) can be proven to concentrate around p with high 
probability over .z ∼ σ with standard arguments. The second term in Eq. (20)
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quantifies how often a randomly chosen transport vector .x − y with . (x, y) ∼ D
has a large projection in the direction z. One can prove that the optimal transport 
map . D between .x ∼ ν and .y ∼ σ has bounded length with high probability and 
then translate this into a tail bound for the inner product .〈z, x − y〉 for a random 
vector .z ∼ σ . As a consequence, one can bound with high probability over . z ∼ σ

the fluctuations of .
∣∣Px∼ν(〈z, x〉 > tp,d)− p

∣∣ which gives Lemma 3 if we take for . ν

the uniform measure on the set . L ⊆ Sd−1.

Applying Lemma 3 inductively and using a martingale argument, the authors 
prove that intersecting j random caps and .(k − j) random anticaps, we get a 
multiplicative fluctuation for .σ(LS) around .p|S|(1 − p)n−1−|S| that is of the order 
of .(1±√jδ +√k − j

p
1−p

δ). Going back to Eq. (19), this approach is sufficient to 
prove that 

. TV(G(n, p, d),G(n, p)) = on

(n3p2

d

)
,

leading to the first statement of Theorem 7. 

Step 4. The sparse case and the use of the cavity method. 

To get down to a polylogarithmic threshold in the sparse regime, the authors 
changed paradigm. Previously, they were bounding the quantity 

. PG∼G(n,p,d)(NG(n) = S |Gn−1) = EX1,...,Xn−1 |Gn−1EXn∼σ

[
1NG(n)=S

]

= EX1,...,Xn−1 |Gn−1
[
σ(LS)

]
, (21) 

by fixing a specific realization of latent positions .X1, . . . Xn−1 and then analyzing 
the probability that the node n connects to some .S ⊆ [n − 1]. The probability that 
vertex n is adjacent to all vertices in .S ⊆ [n − 1] is exactly equal to the measure 
of the set-caps intersection, which appears to be tight. At a high level, this is a 
worst case approach to upper bound Eq. (21) in the sense that the bound obtained 
from this analysis may be due to an unlikely latent configuration conditioned 
on .X1, . . . , Xn−1 producing .Gn−1. To obtain a polylogarithmic threshold in the 
sparse case, one needs to analyze the concentration of .σ(LS) on average over 
vector embeddings of .Gn−1. To do so, the authors rely on the so-called cavity 
method borrowed from the field of statistical physics. The cavity method allows 
to understand the distribution of .(Xi)i∈S conditional on forming .Gn−1 for any 
.S ⊆ [n − 1] with size of the order .pn = �(1). We provide further details on 
this approach in the following. 

A Simplification Using Tight Concentration for Intersections Involving Anti-
caps Liu et al. [69] first prove that due to tight concentration for the measure of 
the intersection of random anticaps with sets of lower bounded measure, one can 
get high-probability estimates for .νn(S |Gn−1) by studying the probability that . S ⊆
NG(n), namely,
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. P(S ⊆ NG(n) |Gn−1) = P
(∀i ∈ S, 〈Xi,Xn〉 ≥ tp,d |Gn−1

)

= E
Xn∼σ

(Xi)i∈[n−1] ∼σGn−1

∏

i∈S

1〈Xi,Xn〉≥tp,d
, (22) 

where .σGn−1 := [
σ⊗(n−1) |Gn−1

]
. If  .(Xi)i∈S in Eq. (22) was a collection of 

independent random vectors distributed uniformly on the sphere, then Eq. (22) 
would be exactly equal to . p|S|. In the following, we explain how the authors prove 
that both of these properties are approximately true. 

The Cavity Method To bound the fluctuation of Eq. (22) around . p|S|, [69] use  the  
cavity method. Let us consider .S ⊆ [n − 1], .Gn−1 sampled from . G(n − 1, p, d)

and its corresponding latent vectors. Let us denote by .BGn−1(i, �) the ball of radius-
. � around a vertex .i ∈ [n − 1] in the graph .Gn−1. Fixing all vectors except those 
in .K := ⋃

i∈S BGn−1(i, � − 1), the cavity method aims at computing the joint 
distribution of .(Xi)i∈S conditional to .(Xi)i /∈K and .Gn−1. Informally speaking, we 
“carve out” a cavity of depth . � around each vertex .i ∈ S, and we fix all latent vectors 
outside of these cavities as presented with Fig. 5. The choice of the depth . � results 
from the following tradeoff: 

• We want to choose the depth . � small enough so that the balls .BGn−1(i, �) for 
.i ∈ S are all trees and are pairwise disjoint with high probability. 

• We want to choose . � as large as possible in order to get a bound on the 
fluctuations of Eq. (22) around .p|S| as small as possible. 

To formally analyze the distribution of the unfixed vectors upon resampling them, 
the authors set up a constraint satisfaction problem instance over a continuous 
alphabet that encodes the edges of .Gn−1 within the trees around S: each node has a 

Fig. 5 Illustration of the cavity method to bound the fluctuation of Eq. (22) around .p|S| i.e., to 
bound the deviation of the random variable .σ(LS) conditioned on .X1, . . . , Xn−1 producing .Gn−1. 
With high probability, the neighborhood until depth .� = log n

log log n
of vertices in S are disjoint 

trees. We fix the latent representation of vertices in the set .R := [n − 1]\K . Using the belief 
propagation algorithm, one can compute the distribution of .(Xi)i∈S | (Xj )j∈R where the latent 
positions .(Xj )j∈[n−1] are sampled according to .σGn−1 . This allows to bound the fluctuation of 
Eq. (22) around .p|S|
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Fig. 6 Simple analysis of the belief propagation algorithm when the neighborhood of vertex . 1 ∈ S

at depth . � is a path 

vector-valued variable in .Sd−1, and the constraints are that nodes joined by an edge 
must have vectors with inner product at least . tp,d . The marginal of the latent vectors 
. Xi for .i ∈ S can be obtained using the belief propagation algorithm. Let us recall 
that belief propagation computes marginal distributions over labels of constraints 
satisfaction problems when the constraints graph is a tree. 

A Simple Analysis of Belief Propagation To ease the reasoning, let us suppose 
that .1 ∈ S is such that .BGn−1(1, � − 1) is a path. Without loss of generality, we 
consider that the path is given by Fig. 6. Every vector is passing to its parent along 
the path a convolution of its own measure (corresponding to its “message”) with 
a cap of measure p. Denoting by P , the linear operator is defined so that for any 
function .h : Sd−1 → R, 

. Ph(x) = 1

p

∫

cap(x)

h(y)dσ(y),

the authors prove that for some .a > 0, for any probability measure . μ on .Sd−1 with 
density h with respect to . σ , 

.TV(Ph, σ ) ≤ On

( loga n√
d

)
TV(μ, σ ), (23) 

which is a contraction result. Since at every step of the belief propagation algorithm, 
a vertex sends to its parent the image by the operator P of its own measure, we 
deduce from Eq. (23) that the parent receives a measure which is getting closer to 
the uniform distribution by a multiplicative factor equal to . 1√

d
. The proof of Eq. (23) 

relies on the set-cap intersection concentration result (see Lemma 3). To get an 
intuition of this connection, let us consider that h is the density of the uniform 
probability measure . μ on some set .L ⊆ Sd−1, then 

. Ph(x) = 1

p
PY∼μ(Y ∈ cap(x)) = 1

p

σ(L ∩ cap(x))

σ (L)
,

and we can conclude using Lemma 3 that ensures that with high probability over 
.x ∼ σ , .σ(L ∩ cap(x)) = (1 ± On(

loga n√
d

))pσ(L). Applying Eq. (23) . � = log n
log log n

times for d being some power of .log n, one can show that
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. TV(P �μ, σ ) = On

[( loga n√
d

)�] = on

( 1√
n

)
.

With this approach, one can prove that the distribution of .(Xi)i∈S is approximately 
.σ⊗|S|. This allows to bound the fluctuations of Eq. (22) around .p|S| which leads to 
Theorem 6 using Eqs. (18) and (19). 

As a concluding remark, we mention that [69] demonstrate a coupling of . G− ∼
G(n, p − on(p)), .G ∼ G(n, p, d), and .G+ ∼ G(n, p + on(p)) that satisfies 
.G− ⊆ G ⊆ G+ with high probability. This sandwich-type result holds for a 
proper choice of the latent dimension and allows to transfer known properties 
of Erdös-Renyi random graphs to RGGs in the studied regime. For example, the 
authors use this coupling result to upper bound the probability that the depth-. �
neighborhood of some .i ∈ [n] forms a tree under .G(n, p, d) in the sparse regime 
with .d = polylog(n). 
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1 Introduction

Let P be a log-concave probability distribution in .R
d with density .e−V , .V : Rd �→

R being a convex function, and let .Pθ , .θ ∈ R
d be a location family generated

by .P : .Pθ(dx) = pθ(x)dx = e−V (x−θ)dx, .θ ∈ R
d . In other words, a random

variable .X ∼ Pθ could be represented as .X = θ + ξ, where .θ ∈ R
d is a location

parameter and .ξ ∼ P is a random noise with log-concave distribution. Without loss
of generality, one can assume that .Eξ = 0 (otherwise, one can replace function .V (·)
by .V (· + Eξ)). We will also assume that function V is known and .θ is an unknown
parameter of the model to be estimated based on i.i.d. observations .X1, . . . , Xn of
.X. We will refer to this statistical model as a log-concave location family. Our main
goal is to study the estimation of .f (θ) for a given smooth functional .f : Rd �→ R.A
natural estimator of location parameter is the maximum likelihood estimator (MLE)
defined as

.θ̂ := argmax
θ∈Rd

n∏

j=1
pθ(Xj ) = argmin

θ∈Rd

1

n

n∑

j=1
V (Xj − θ).

Note that by Lemma 2.2.1 in [7] for a log-concave density .e−V , V : Rd �→ R there
exist constants .A,B > 0 such that .e−V (x) ≤ Ae−B‖x‖ for all .x ∈ R

d , implying
that .V (x) →∞ as .‖x‖ → ∞. It is easy to conclude from this fact that MLE does
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exist. Moreover, it is unique if V is strictly convex (this condition is assumed in
what follows). In addition, MLE .θ̂ is an equivariant estimator with respect to the
translation group in .R

d :

.θ̂ (X1 + u, . . . , Xn + u) = θ̂ (X1, . . . , Xn)+ u, u ∈ R
d .

Also note that

.EθV (X − θ ′)− EθV (X − θ) = K(Pθ‖Pθ ′),

where .K(Pθ‖Pθ ′) is the Kullback-Leibler divergence between .Pθ and .Pθ ′ , implying
that .θ is the unique minimal point of .θ ′ �→ EθV (X − θ ′). The uniqueness follows
from the identifiability of parameter .θ : if .θ were not identifiable, we would have
.V (x) = V (x + h), x ∈ R

d for some .h 
= 0, which would contradict the assumption
that .V (x) →∞ as .‖x‖ → ∞.

Moreover, for differentiable .V, the score function of location family is
.
∂
∂θ

logpθ(X) = −V ′(X − θ), and, under some regularity, .EθV
′(X − θ) = 0.

In addition, the Fisher information matrix of such a log-concave location family is
well defined, does not depend on .θ , and is given by

.I = Eθ

∂

∂θ
logpθ(X)⊗ ∂

∂θ
logpθ(X) = EθV

′(X − θ)⊗ V ′(X − θ)

= EV ′(ξ)⊗ V ′(ξ) =
∫

Rd

V ′(x)⊗ V ′(x)e−V (x)dx

(provided that the integral in the right-hand side exists). Under further regularity, for
twice differentiable .V, we also have (via integration by parts)

.I = EV ′′(ξ) =
∫

Rd

V ′′(x)e−V (x)dx.

Finally, if Fisher information .I is non-singular, then, for a fixed d and .n → ∞,

MLE .θ̂ is an asymptotically normal estimator of .θ with limit covariance .I−1 :

.
√

n(θ̂ − θ)
d→ N(0; I−1) as n→∞.

Assumption 1 below suffices for all the above properties to hold.
It seems natural to estimate .f (θ) by the plug-in estimator .f (θ̂), where .θ̂ is

the MLE. Such an approach yields asymptotically efficient estimators for regular
statistical models in the case of fixed dimension d and .n → ∞. In particular, for
our location family, we have by a standard application of the delta method that

.
√

n(f (θ̂)− f (θ))
d→ N(0; σ 2

f (θ)),
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where .σ 2
f (θ) := 〈I−1f ′(θ), f ′(θ)〉. However, it is well known that plug-in

estimators are suboptimal in high-dimensional problems mainly due to their large
bias, and, often, nontrivial bias reduction methods are needed to achieve an optimal
error rate. This has been one of the difficulties in the problem of estimation of
functionals of parameters of high-dimensional and infinite-dimensional models for
a number of years [4, 5, 11, 12, 21, 22, 25, 26].

One approach to this problem is based on replacing f by another function g for
which the bias of estimator .g(θ̂) is small. To find such a function .g, one has to solve
approximately the “bias equation” .Eθg(θ̂) = f (θ), θ ∈ R

d . This equation can be
written as .T g = f, where

.(T g)(θ) := Eθg(θ̂) =
∫

Rd

g(u)P (θ; du), θ ∈ R
d

and .P(θ;A), θ ∈ R
d , A ⊂ R

d is a Markov kernel on .R
d (or, more generally, on

the parameter space .� of statistical model), providing the distribution of estimator
.θ̂ . Denoting .B := T − I, where .I is the identity operator in the space of bounded
functions on .R

d (not to be confused with the Fisher information also denoted by .I),
and assuming that .θ̂ is close to .θ and, as a consequence, operator .B is “small,” one
can view .T = I+B as a small perturbation of identity. In such cases, one can try to
solve the equation .T g = f in terms of Neumann series .g = (I − B + B2 − . . . )f.

In what follows, we denote by

.fk(θ) :=
k∑

j=0
(−1)j (Bj f )(θ), θ ∈ R

d

the partial sum of this series, and we will use .fk(θ̂) (for a suitable choice of k

depending on smoothness of functional f ) as an estimator of .f (θ). It is easy to see
that its bias is

.Eθfk(θ̂)− f (θ) = (Bfk)(θ)+ fk(θ)− f (θ)

= (−1)k(Bk+1f )(θ), θ ∈ R
d .

If .B is “small” and k is sufficiently large, one can hope to achieve a bias reduction
through estimator .fk(θ̂). Another way to explain this approach is in terms of
iterative bias reduction: since the bias of plug-in estimator .f (θ̂) is equal to .(Bf )(θ),

one can estimate the bias by .(Bf )(θ̂), and the first order bias reduction yields the
estimator .f1(θ̂) = f (θ̂)− (Bf )(θ̂). Its bias is equal to .−(B2f )(θ), and the second
order bias reduction yields the estimator .f2(θ̂) = f (θ̂)− (Bf )(θ̂)+ (B2f )(θ̂), etc.
This is close to the idea of iterative bootstrap bias reduction [9, 10, 13].

Let .{θ̂ (k) : k ≥ 0} be the Markov chain with .θ̂ (0) = θ and with transition
probability kernel .P(θ;A), θ ∈ R

d , A ⊂ R
d . This chain can be viewed as an

output of iterative application of parametric bootstrap to estimator .θ̂ in the model
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.X1, . . . , Xn i.i.d. .∼ Pθ , θ ∈ R
d : at the first iteration, the data is sampled from

the distribution with parameter .θ̂ (0) = θ , and estimator .θ̂ (1) = θ̂ is computed; at
the second iteration, the data is sampled from the distribution .P

θ̂
(conditionally on

the value of .θ̂ ) and bootstrap estimator .θ̂ (2) is computed and so on. We will call
.{θ̂ (k) : k ≥ 0} the bootstrap chain of estimator .θ̂ . Clearly, .(T kf )(θ) = Eθf (θ̂ (k))

and, by Newton’s binomial formula, we also have

.(Bkf )(θ) = ((T − I)kf )(θ) =
k∑

j=0
(−1)k−j

(
k

j

)
(T j f )(θ)

= Eθ

k∑

j=0
(−1)k−j

(
k

j

)
f (θ̂ (j)). (1.1)

This means that .(Bkf )(θ) is the expectation of the k-th order difference of function

f along the bootstrap chain .{θ̂ (j) : j ≥ 0}. In the case when .‖θ̂ − θ‖ �
√

d
n

with a high probability, the same bound also holds for the increments .θ̂ (j+1) −
θ̂ (j) (conditionally on .θ̂ (j)). If functional f is k times differentiable and d is small
comparing with .n, one could therefore expect that .(Bkf )(θ) �

(
d
n

)k/2 (based on
the analogy with the behavior of k-th order differences of k times differentiable
functions in the real line). The justification of this heuristic for general parametric
models could be rather involved (see [14–16, 18]), but it will be shown below that it
is much simpler in the case of equivariant estimators .θ̂ (such as the MLE) (see also
[17, 19]).

Inserting representation (1.1) into the definition of .fk and using a simple
combinatorial identity, we obtain the following useful representation of function
.fk(θ):

.fk(θ) = Eθ

k∑

j=0
(−1)j

(
k + 1

j + 1

)
f (θ̂ (j)). (1.2)

The following notations will be used throughout the paper (and some of them
have been already used). For two variables .A,B ≥ 0, .A � B means that there exists
an absolute constant .C > 0 such that .A ≤ CB. The notation .A � B means that .B �
A and .A � B means that .A � B and .B � A. If the constants in the relationships
.�,�,� depend on some parameter(s), say, on .γ, this parameter will be used as a
subscript of the relationship, say, .A �γ B. Given two square matrices A and .B,

.A � B means that .B − A is positive semi-definite and .A � B means that .B � A.

The norm notation .‖ · ‖ (without further subscripts or superscripts) will be used by
default in certain spaces. For instance, it will always denote the canonical Euclidean
norm of .Rd , the operator norm of matrices (linear transformations) and the operator
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norm of multilinear forms. In some other cases, in particular for functional spaces
.L∞, Cs, etc., the corresponding subscripts will be used.

2 Main Results

Recall that, for a convex nondecreasing function .ψ : R+ �→ R+ with .ψ(0) = 0,
the Orlicz .ψ-norm of a r.v. .η is defined as

.‖η‖ψ := inf
{
c ≥ 0 : Eψ

( |η|
c

)
≤ 1

}
.

The Banach space of all r.v. on a probability space .(
,�,P) with finite .ψ-norm is
denoted by .Lψ(P), and to emphasize the dependence on the underlying probability
measure .P, we also write .‖ · ‖ψ = ‖ · ‖Lψ(P). If .ψ(u) = up, u ≥ 0, p ≥ 1, then
the .ψ-norm coincides with the .Lp-norm. Another important choice is .ψα(u) =
euα − 1, u ≥ 0, α ≥ 1. In particular, for .α = 1, .Lψ1 is the space of sub-exponential
r.v. and, for .α = 2, .Lψ2 is the space of sub-gaussian r.v. It is also well known that
the .ψα-norm is equivalent to the following norm defined in terms of moments (or
the .Lp-norms):

.‖η‖ψα � sup
p≥1

p−1/αE1/p|η|p, α ≥ 1. (2.1)

Note that the right-hand side defines a norm for .0 < α < 1, too, whereas the left-
hand side is not a norm in this case since function .ψα is not convex for .0 < α < 1.
Relationship (2.1) still holds for .0 < α < 1, but with constants depending on .α

as .α approaches .0. With a slight abuse of notations, we will define .‖η‖ψα by the
right-hand side of (2.1) for all .α > 0.

We will use the following definition of Hölder .Cs-norms of functions .f : Rd �→
R. For .j ≥ 0, .f (j) denotes the j -th Fréchet derivative of .f. For .x ∈ R

d , .f (j)(x) is a
j -linear form on .R

d and the space of such forms will be equipped with the operator
norm. Clearly, .f (0) = f and .f (1) = f ′ coincides with the gradient .∇f. If f is l

times differentiable and .s = l + ρ, .ρ ∈ (0, 1], define

.‖f ‖Cs := max
0≤j≤l

sup
x∈Rd

‖f (j)(x)‖ ∨ sup
x,y∈Rd ,x 
=y

‖f (l)(x)− f (l)(y)‖
‖x − y‖ρ .

We will also frequently use .L∞ and Lipschitz norms of functions and their
derivatives. For instance, .‖f (j)‖L∞ = supx∈Rd ‖f (j)(x)‖ and .‖f (j)‖Lip =
supx,x′∈Rd ,x 
=x′

‖f (j)(x)−f (j)(x′)‖
‖x−x′‖ .

In what follows, we will use some facts related to isoperimetry and concentration
properties of log-concave measures. Given a Borel probability measure .μ on .R

d , let
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.μ+(A) := lim inf
ε→0

μ(Aε)− μ(A)

ε
, A ∈ B(Rd),

where .Aε denotes the .ε-neighborhood of A and .B(Rd) is the Borel .σ -algebra in .R
d .

The so-called Cheeger isoperimetric constant of .μ is defined as

.IC(μ) := inf
A∈B(Rd )

μ+(A)

μ(A) ∧ (1− μ(A))
.

According to the well-known Kannan-Lovàsz-Simonovits (KLS) conjecture, for
a log-concave probability measure .μ(dx) = e−V (x)dx on .R

d with covariance
operator .�, .IC(μ) � ‖�‖−1/2 with a dimension-free constant. This conjecture
remains open, but the following deep recent result by Chen [8] provides a lower
bound on .IC(μ) that is almost dimension-free.

Theorem 2.1 There exists a constant .b > 0 such that, for all .d ≥ 3 and for all
log-concave distributions .μ(dx) = e−V (x)dx in .R

d with covariance .�,

.IC(μ) ≥ ‖�‖−1/2d−b(
log log d
log d

)1/2
.

Isoperimetric constants .IC(μ) are known to be closely related to important
functional inequalities, in particular to Poincaré inequality and its generalizations
(see, e.g., [6, 24]). It is said that Poincaré inequality holds for a r.v. .ξ in .R

d iff, for
some constant .C > 0 and for all locally Lipschitz functions .g : Rd �→ R (which,
by Rademacher theorem, are differentiable almost everywhere),

.Var(g(ξ)) ≤ CE‖∇g(ξ)‖2.

The smallest value .c(ξ) of constant C in the above inequality is called the Poincaré
constant of .ξ (clearly, it depends only on the distribution of .ξ ). The following
property of Poincaré constant will be frequently used: if r.v. .ξ = (ξ1, . . . , ξn) has
independent components (with .ξj being a r.v. in .R

dj ), then .c(ξ) = max1≤j≤n c(ξj )

(see [20], Corollary 5.7).
If now .ξ ∼ μ in .R

d , then the following Cheeger’s inequality holds (see, e.g.,
[24], Theorem 1.1):

.c(ξ) ≤ 4

I 2C(μ)
.

Moreover, the following .Lp-version of Poincaré inequality holds for all .p ≥ 1 and
for all locally Lipschitz functions .g : Rd �→ R (see [6], Theorem 3.1)

.‖g(ξ)− Eg(ξ)‖Lp � p

IC(μ)
‖‖∇g(ξ)‖‖Lp . (2.2)
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Remark 2.1 Note that, if .ξ ∼ μ and .μ(dx) = e−V (x)dx is log-concave, then (see
[24], Theorem 1.5)

.c(ξ) � 1

I 2C(μ)

and, by Theorem 2.1, we have

.c(ξ) ≤ ‖�‖ d
2b(

log log d
log d

)1/2
. (2.3)

In what follows, we denote the Poincaré constant .c(ξ) of r.v. .ξ ∼ μ with log-
concave distribution .μ(dx) = e−V (x)dx by .c(V ). Bound (2.3) implies that .c(V ) �ε

‖�‖dε for all .ε > 0. Also, with this notation, we can rewrite the .Lp-version (2.2)
of Poincaré inequality as follows:

.‖g(ξ)− Eg(ξ)‖Lp �
√

c(V )p ‖‖∇g(ξ)‖‖Lp . (2.4)

This concentration bound will be our main tool in Sect. 4. It will be convenient
for our purposes to express it in terms of local Lipschitz constants of g defined as
follows:

.(Lg)(x) := inf
U�x

sup
x′,x′′∈U,x′ 
=x′′

|g(x′)− g(x′′)|
‖x′ − x′′‖ , x ∈ R

d

where the infimum is taken over all the balls U centered at .x. Similar definition
could be also used for vector valued functions .g. Clearly, .‖∇g(x)‖ ≤ (Lg)(x), x ∈
R

d and (2.4) implies that

.‖g(ξ)− Eg(ξ)‖Lp �
√

c(V )p ‖(Lg)(ξ)‖Lp . (2.5)

The following assumptions on V will be used throughout the paper.

Assumption 1 Suppose that

(i) V is strictly convex and twice continuously differentiable such that, for some
constants .M,L > 0, .‖V ′′‖L∞ ≤ M and .‖V ′′‖Lip ≤ L.

(ii) For some constant .m > 0, .I � mId.

Under Assumption 1, we have .I = EV ′′(ξ) � MId and thus .m ≤ M .

Remark 2.2 Obviously, Assumption 1 holds in the Gaussian case, when .V (x) =
c1 + c2‖x‖2, x ∈ R

d . In this case, .V ′′(x) = mId, x ∈ R
d for .m = 2c2 > 0, which

is much stronger than Assumption 1, (ii). Assumption 1 also holds, for instance, for
.V (x) = ϕ(‖x‖2), x ∈ R

d , where .ϕ is a .C∞ function in .R such that .ϕ′′ is supported
in .[0, 1], .ϕ′′(t) ≥ 0, t ∈ R and .ϕ′(0) = 0. Of course, in this case, the condition
.V ′′(x) � mId does not hold uniformly in x for any positive .m, but Assumption 1,
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(ii) holds. If .V (x) = c1 + ‖x‖2p, x ∈ R
d for some .p ≥ 1/2, it is easy to check that

Assumption 1 holds only for .p = 1.

We are now ready to state our main result.

Theorem 2.2 Suppose Assumption 1 holds and .d ≤ γ n, where

.γ := c
( m

M
∧ m2

L
√

M

)2

with a small enough constant .c > 0. Let .f ∈ Cs for some .s = k + 1 + ρ, .k ≥ 0,
.ρ ∈ (0, 1]. Then

. sup
θ∈Rd

∥∥∥fk(θ̂)− f (θ)− n−1
n∑

j=1
〈V ′(ξj ), I−1f ′(θ)〉

∥∥∥
Lψ2/3 (Pθ )

�L,M,m,s ‖f ‖Cs

[√c(V )

n

(d

n

)ρ/2 +
(√

d

n

)s]
.

Remark 2.3 Note that, for .k = 0, .fk(θ̂) coincides with the plug-in estimator .f (θ̂).

In particular, it means that, for .s = 2,

. sup
θ∈Rd

∥∥∥f (θ̂)− f (θ)− n−1
n∑

j=1
〈V ′(ξj ), I−1f ′(θ)〉

∥∥∥
Lψ2/3 (Pθ )

�L,M,m,s ‖f ‖C2

[√c(V )

n

(d

n

)ρ/2 + d

n

]
.

It will be clear from the proofs that the term .
d
n
in the above bound controls the

bias of the plug-in estimator .f (θ̂). It is easy to construct examples in which this
bound on the bias of .f (θ̂) is optimal. For instance, consider the case of normal
model .X1, . . . , Xn i.i.d. .∼ N(θ, Id), θ ∈ R

d , for which MLE is just .X̄. Let .f (θ) =
‖θ‖2ϕ(‖θ‖2), θ ∈ R

d , where .ϕ : R �→ [0, 1] is a .C∞-function supported in .[−2, 2]
with .ϕ(u) = 1, u ∈ [0, 1]. Then, .‖f ‖Cs �s 1 for all .s > 0 and it is also easy to
check that the bias of the plug-in estimator .f (X̄) of functional .f (θ) is .� d

n
for all

.θ in a neighborhood of .0. Therefore, the term .
d
n
in the above bound for the plug-in

estimator (as well as in the risk bound (2.7) of Proposition 2.1 below) could not be
improved to become .( d

n
)s/2 for functionals f of smoothness .s > 2 and the bias

reduction is needed to achieve the optimal error rates.

Theorem 2.2 shows that .fk(θ̂)−f (θ) can be approximated by a normalized sum
of i.i.d. mean zero r.v. .n−1

∑n
j=1〈V ′(ξj ), I−1f ′(θ)〉. Moreover, the error of this

approximation is of the order .o(n−1/2) provided that .d � nα for some .α ∈ (0, 1)
satisfying .s > 1

1−α
and that .‖�‖ is bounded by a constant. This follows from

the fact that .c(V ) �ε dε‖�‖ for an arbitrarily small .ε > 0 (see Remark 2.1). In
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addition, by Lemma 3.1 below, r.v. .〈V ′(ξ), I−1f ′(θ)〉 is subgaussian with

.‖〈V ′(ξ), I−1f ′(θ)〉‖ψ2 �
√

M‖I−1f ′(θ)‖ �
√

M

m
‖f ′(θ)‖. (2.6)

As a result, we can obtain the following simple but important corollaries of
Theorem 2.2. Recall that .σ 2

f (θ) = 〈I−1f ′(θ), f ′(θ)〉.
Corollary 2.1 Under the conditions of Theorem 2.2,

. sup
θ∈Rd

∣∣∣‖fk(θ̂)− f (θ)‖L2(Pθ ) − σf (θ)√
n

∣∣∣ �L,M,m,s ‖f ‖Cs

[√c(V )

n

(d

n

)ρ/2

+
(√

d

n

)s]
.

This corollary immediately follows from the bound of Theorem 2.2 and the fact
that the .L2-norm is dominated by the .ψ2/3-norm. It implies the second claim of the
following proposition.

Proposition 2.1 Let .f ∈ Cs for some .s > 0.

1. For .s ∈ (0, 1],

. sup
‖f ‖Cs≤1

sup
θ∈Rd

‖f (θ̂)− f (θ)‖L2(Pθ ) �L,M,m,s

(√
d

n

)s ∧ 1.

2. For .s = k + 1 + ρ for some .k ≥ 0 and .ρ ∈ (0, 1], suppose Assumption 1 holds
and also .‖�‖ � 1. Then

. sup
‖f ‖Cs≤1

sup
θ∈Rd

‖fk(θ̂)− f (θ)‖L2(Pθ ) �L,M,m,s

( 1√
n
∨

(√
d

n

)s) ∧ 1. (2.7)

Combining bound (2.7) with the following result shows some form of minimax
optimality of estimator .fk(θ̂).

Proposition 2.2 Suppose Assumption 1 holds. Then, for all .s > 0,

. sup
‖f ‖Cs≤1

inf
T̂n

sup
‖θ‖≤1

‖T̂n − f (θ)‖L2(Pθ ) �m,M

( 1√
n
∨

(√
d

n

)s) ∧ 1,

where the infimum is taken over all estimators .T̂n = T̂n(X1, . . . , Xn).

The proof of this result is similar to the proof of Theorem 2.2 in [18] in the
Gaussian case. Some further comments will be provided in Sect. 6.

Corollary 2.1 also implies that, for all .θ ∈ R
d ,
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.‖fk(θ̂)− f (θ)‖L2(Pθ ) ≤ σf (θ)√
n
+ C‖f ‖Cs

[√c(V )

n

(d

n

)ρ/2 +
(√

d

n

)s]
,

where C is a constant depending on .M,L,m, s. If .d � nα for some .α ∈ (0, 1) and
.s > 1

1−α
, it easily follows that, for all .B > 0,

. lim sup
n→∞

sup
(f,θ): ‖f ‖Cs

σf (θ)
≤B

√
n‖fk(θ̂)− f (θ)‖L2(Pθ )

σf (θ)
≤ 1. (2.8)

The following minimax lower bound will be proven in Sect. 6.

Proposition 2.3 Suppose Assumption 1 holds, and let .f ∈ Cs for some .s = 1 +
ρ, ρ ∈ (0, 1]. Then, for all .c > 0 and all .θ0 ∈ R

d ,

. inf
T̂n

sup
‖θ−θ0‖≤ c√

n

√
n‖T̂n − f (θ)‖L2(Pθ )

σf (θ)
≥ 1− 3π√

8mc
− 2√

m

‖f ‖Cs

σf (θ0)

( c√
n

)ρ

,

where the infimum is taken over all estimators .T̂n = T̂n(X1, . . . , Xn).

The bound of Proposition 2.3 easily implies that, for all .B > 0,

. lim
c→∞ lim inf

n→∞ inf
(f,θ0): ‖f ‖Cs

σf (θ0)
≤B

inf
T̂n

sup
‖θ−θ0‖≤ c√

n

√
n‖T̂n − f (θ)‖L2(Pθ )

σf (θ)
≥ 1.

Along with (2.8), it shows local asymptotic minimaxity of estimator .fk(θ̂).

The next corollaries will be based on the results by Rio [27] on convergence rates
in CLT in Wasserstein type distances. For r.v. .η1, η2 and a convex nondecreasing
function .ψ : R+ �→ R+ with .ψ(0) = 0, define the Wasserstein .ψ-distance between
.η1 and .η2 as

.Wψ(η1, η2) := WLψ(P)(η1, η2) := inf
{
‖η′1 − η′2‖ψ : η′1 d= η1, η

′
2

d= η2

}
.

For .ψ(u) = up, u ≥ 0, p ≥ 1, we will use the notation .Wp = WLp(P) instead
of .Wψ. For .ψ = ψα, α > 0, we will modify the above definition using a version
of .ψ-norm defined in terms of the moments. To emphasize the dependence of the
underlying probability measure .P involved in the definitions of these distances on
the parameter .θ of our statistical model, we will write .Wψ,Pθ

= WLψ(Pθ ), .Wp,Pθ
=

WLp(Pθ ), etc.
Let .η1, . . . , ηn be i.i.d. copies of a mean zero r.v. .η with .Eη2 = 1. It was proven

in [27] (see Theorem 4.1 and Equation (4.3)) that for all .r ∈ (1, 2],
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.Wr

(η1 + · · · + ηn√
n

,Z
)
� E

1/rηr+2
√

n
,

where .Z ∼ N(0, 1). Applying this bound to .η := 〈V ′(ξ),I−1f ′(θ)〉
σf (θ)

yields

.W2

( 1√
n

n∑

j=1
〈V ′(ξj ), I−1f ′(θ)〉, σf (θ)Z

)
� E

1/2〈V ′(ξ), I−1f ′(θ)〉4
σ 2

f (θ)
n−1/2.

Thus, Theorem 2.2 implies the following corollary.

Corollary 2.2 Under the conditions of Theorem 2.2, for all .θ ∈ R
d

.W2,Pθ

(√
n(fk(θ̂)− f (θ)), σf (θ)Z

)

≤ C1
E
1/2〈V ′(ξ), I−1f ′(θ)〉4

σ 2
f (θ)

n−1/2 + C2‖f ‖Cs

[√
c(V )

(d

n

)ρ/2 +√n
(√

d

n

)s]
,

where .C1 > 0 is an absolute constant and .C2 > 0 is a constant that could depend
on .M,L,m, s.

Using (2.6), it is easy to check that, under Assumption 1,

.E
1/2〈V ′(ξ), I−1f ′(θ)〉4 � M

m2
‖f ′(θ)‖2

and, in addition, .σ 2
f (θ) ≥ M−1‖f ′(θ)‖2. This yields

.
E
1/2〈V ′(ξ), I−1f ′(θ)〉4

σ 2
f (θ)

� M2

m2 .

Therefore, if .d ≤ nα for some .α ∈ (0, 1) and .s > 1
1−α

, then

. sup
‖f ‖Cs≤1

sup
θ∈Rd

W2,Pθ

(√
n(fk(θ̂)− f (θ)), σf (θ)Z

)
→ 0 as n→∞,

implying asymptotic normality of estimator .fk(θ̂) of .f (θ) with rate .
√

n and limit
variance .σ 2

f (θ). It is also easy to show that, under the same conditions on d and .s,

we have, for all .B > 0,

. sup
(f,θ): ‖f ‖Cs

σf (θ)
≤B

W2,Pθ

(√n(fk(θ̂)− f (θ))

σf (θ)
, Z

)
→ 0 as n→∞,



404 V. Koltchinskii and M. Wahl

which implies

. sup
(f,θ): ‖f ‖Cs

σf (θ)
≤B

sup
x∈R

∣∣∣Pθ

{√n(fk(θ̂)− f (θ))

σf (θ)
≤ x

}
− P{Z ≤ x}

∣∣∣ → 0 as n→∞.

It was also proven in [27], Theorem 2.1, that, for i.i.d. copies .η1, . . . , ηn of mean
zero r.v. .η with .Eη2 = 1 and .‖η‖ψ1 <∞ and for some constant .C(‖η‖ψ1) <∞,

.Wψ1

(η1 + · · · + ηn√
n

,Z
)
� C(‖η‖ψ1)√

n
.

We will again apply this to .η := 〈V ′(ξ),I−1f ′(θ)〉
σf (θ)

. In this case, by Lemma 3.1, we
have

.‖〈V ′(ξ), I−1f ′(θ)〉‖ψ1 �
√

M

m
‖f ′(θ)‖.

Also, .σf (θ) ≥ ‖f ′(θ)‖√
M

, implying .‖η‖ψ1 � M
m

. As a result, we get

.Wψ1

(1
n

n∑

j=1
〈V ′(ξj ), I−1f ′(θ)〉, σf (θ)Z√

n

)
�M,m

σf (θ)

n
.

Combining this with the bound of Theorem 2.2 yields the following extension of
Corollary 2.1.

Corollary 2.3 Under the conditions of Theorem 2.2, for all convex nondecreasing
functions .ψ : R+ → R+ with .ψ(0) = 0, satisfying the condition .ψ(u) ≤
ψ2/3(cu), u ≥ 0 for some constant .c > 0,

. sup
θ∈Rd

∣∣∣‖fk(θ̂)− f (θ)‖Lψ(Pθ ) − σf (θ)√
n
‖Z‖ψ

∣∣∣

�L,M,m,s ‖f ‖Cs

[√c(V )

n

(d

n

)ρ/2 +
(√

d

n

)s]
.

Remark 2.4 Similar results were obtained in [17] in the case of Gaussian shift
models, in [19] in the case of more general Poincaré random shift models, and
in [14, 15, 18] in the case of Gaussian models with unknown covariance and
unknown mean and covariance (the analysis becomes much more involved in the
case when the functional depends on unknown covariance). In [16], the proposed
higher order bias reduction method was studied in the case of general models with a
high-dimensional parameter .θ for which there exists an estimator .θ̂ admitting high-
dimensional normal approximation.
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Remark 2.5 If .Eξ = 0, one can also use .X̄ = X1+···+Xn

n
as an estimator of .θ

and construct the corresponding functions .f̄k based on this estimator. In this case, a
bound similar to (2.7) holds for estimator .f̄k(X̄), so, it is also minimax optimal. This
follows from Theorem 2 [19] along with the bound on Poincaré constant .c(V ) (see
Remark 2.1). Normal approximation of estimator .f̄k(X̄) similar to Corollary 2.2
also holds (see [19]). However, the limit variance of estimator .f̄k(X̄) is not equal to
.σ 2

f (θ), but it is rather equal to .〈�ξf
′(θ), f ′(θ)〉. SinceX is an unbiased estimator of

.θ (note that .Eξ = 0), it follows from the Cramér-Rao bound that .�X = �ξ � I−1.
This fact implies that the limit variance of estimator .f̄k(X̄) is suboptimal:

.〈�ξf
′(θ), f ′(θ)〉 ≥ 〈I−1f ′(θ), f ′(θ)〉

and this estimator is not asymptotically efficient. This was the main motivation
for the development of estimators .fk(θ̂) based on the MLE in the current paper.
We conjecture that asymptotic efficiency also holds when the MLE is replaced by
Pitman’s estimator. Since MLE is defined implicitly as a solution of an optimization
problem, there is an additional layer of difficulties in the analysis of the problem
comparing with the case of .X̄. Similar problems in the case of log-concave location-
scale families seem to be much more challenging.

Remark 2.6 The proof of Theorem 2.2 could be easily modified and, in fact,
significantly simplified to obtain the following result under somewhat different
assumptions than Assumption 1 (they are stronger in the sense that the eigenvalues
of the Hessian .V ′′(x) are assumed to be bounded away from zero uniformly in x).

Theorem 2.3 Suppose V is twice continuously differentiable and, for some
.M,m > 0, .‖V ′′‖L∞ ≤ M and .V ′′(x) � mId, x ∈ R

d . Let .f ∈ Cs for some
.s = k + 1+ ρ, .k ≥ 0, .ρ ∈ (0, 1]. Then, for all .d � n,

. sup
θ∈Rd

∥∥∥fk(θ̂)− f (θ)− n−1
n∑

j=1
〈V ′(ξj ), I−1f ′(θ)〉

∥∥∥
Lψ1 (Pθ )

�M,m,s ‖f ‖Cs

[ 1√
n

(d

n

)ρ/2 +
(√

d

n

)s]
.

This result implies that, under the conditions of Theorem 2.3, the bound of
Corollary 2.3 holds for all convex nondecreasing functions .ψ : R+ �→ R+ with
.ψ(0) = 0, satisfying the condition .ψ(u) ≤ ψ1(cu), u ≥ 0 for some constant .c > 0.

3 Error Bounds for the MLE

Our main goal in this section is to obtain upper bounds on the error .‖θ̂− θ‖ of MLE
.θ̂ . Namely, the following result will be proven.
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Theorem 3.1 Suppose Assumption 1 holds and let .t ≥ 1. If .d ∨ t ≤ γ n for

.γ := c
( m

M
∧ m2

L
√

M

)2
(3.1)

with a small enough constant .c > 0, then, with probability at least .1− e−t ,

.‖θ̂ − θ‖ �
√

M

m

(√
d

n
∨

√
t

n

)
.

Several simple facts will be used in the proof.
For a differentiable function .g : Rd �→ R, define the remainder of its first order

Taylor expansion

.Sg(x;h) := g(x + h)− g(x)− 〈g′(x), h〉, x, h ∈ R
d .

The next proposition is straightforward.

Proposition 3.1 Let g be twice differentiable. Then, for all .x, y, h, h′ ∈ R
d , the

following properties hold:

(i) .|Sg(x;h)| ≤ 1
2‖g′′‖L∞‖h‖2.

(ii) .|Sg(x;h)− 1
2 〈g′′(x)h, h〉| ≤ 1

6‖g′′‖Lip‖h‖3.
(iii) .|Sg(x;h)− Sg(x;h′)| ≤ 1

2‖g′′‖L∞‖h− h′‖2 + ‖g′′‖L∞‖h‖‖h− h′‖.
(iv) .|Sg(x;h)− Sg(y;h)| ≤ 1

4‖g′′‖Lip‖h‖2‖x − y‖.
If .g ∈ Cs for .s = 1+ ρ, .ρ ∈ (0, 1], then
(v) .|Sg(x;h)− Sg(x;h′)| � ‖g‖Cs (‖h‖ρ ∨ ‖h′‖ρ)‖h− h′‖.

Let .ξ1, . . . , ξn be i.i.d. copies of .ξ (that is, .ξj := Xj − θ ). Define the following
convex functions:

.g(h) := EV (ξ + h),

gn(h) := n−1
n∑

j=1
V (ξj + h), h ∈ R

d . (3.2)

Note that .Egn(h) = g(h) and .g′′(0) = I.

We will need simple probabilistic bounds for r.v. .g′n(0) = n−1
∑n

j=1 V ′(ξj ) and

.g′′n(0) = n−1
∑n

j=1 V ′′(ξj ). We start with the following lemma.

Lemma 3.1 For all .u ∈ R
d , .〈V ′(ξ), u〉 is a subgaussian r.v. with

.‖〈V ′(ξ), u〉‖ψ2 �
√

M‖u‖.



Functional Estimation in Log-Concave Location Families 407

Proof For all .k ≥ 1, we have

.E〈V ′(ξ), u〉2k =
∫

Rd

〈V ′(x), u〉2ke−V (x)dx.

By Lemma 2.2.1 in [7], there are constants .A,B > 0 such that .e−V (x) ≤ Ae−B‖x‖
for all .x ∈ R

d . Moreover, by Assumption 1, .V ′ is M-Lipschitz which implies that
.‖V ′(x)‖ ≤ ‖V ′(0)‖ +M‖x‖ for all .x ∈ R

d . Combining these two facts, the above
integral is finite for all .k ≥ 1 and we obtain that

.

∫

Rd

〈V ′(x), u〉2ke−V (x)dx =
∫

Rd

〈V ′(x), u〉2k−1〈V ′(x), u〉e−V (x)dx

=
∫

Rd

(2k − 1)〈V ′(x), u〉2k−2〈V ′′(x)u, u〉e−V (x)dx,

where we used integration by parts in the last equality. Therefore,

.E〈V ′(ξ), u〉2k ≤ (2k − 1)M‖u‖2
∫

Rd

〈V ′(x), u〉2k−2e−V (x)dx

= (2k − 1)M‖u‖2E〈V ′(ξ), u〉2(k−1).

It follows by induction that

.E〈V ′(ξ), u〉2k ≤ (2k − 1)!!Mk‖u‖2k.

It is easy to conclude that, for all .p ≥ 1,

.‖〈V ′(ξ), u〉‖Lp � √p
√

M‖u‖,

implying the claim. ��
An immediate consequence is the following corollary.

Corollary 3.1 For all .t ≥ 1, with probability at least .1− e−t

.‖g′n(0)‖ �
√

M
(√

d

n
∨

√
t

n

)
.

Proof Let .Sd−1 be the unit sphere in .R
d and let .A ⊂ Sd−1 be a .1/2-net with

.card(A) ≤ 5d . Then

.‖g′n(0)‖ = sup
u∈Sd−1

〈g′n(0), u〉 ≤ 2max
u∈A

〈g′n(0), u〉.

By Lemma 3.1, we have for all .u ∈ A,
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.‖〈g′n(0), u〉‖ψ2 =
∥∥∥n−1

n∑

j=1
〈V ′(ξj ), u〉

∥∥∥
ψ2

�
√

M√
n

,

implying that with probability at least .1− e−t

.|〈g′n(0), u〉| �
√

M

√
t

n
.

It remains to use the union bound and to replace t by .t + d log(5). ��
Proposition 3.2 For all .t ≥ 1, with probability at least .1− e−t

.‖g′′n(0)− I‖ � M
(√

d

n
∨

√
t

n

)
.

Moreover,

.

∥∥∥‖g′′n(0)− I‖
∥∥∥

ψ2
� M

√
d

n
.

Proof Similarly to the proof of Corollary 3.1, one can use the fact that
.‖〈V ′′(ξ)u, v〉‖ψ2 � ‖〈V ′′(ξ)u, v〉‖L∞ � M,u, v ∈ Sd−1 and discretization of
the unit sphere to prove the first bound.

Moreover, using that .t, d ≥ 1, the first bound implies that

.P

{
‖g′′n(0)− I‖ ≥ C1M

√
d

n

√
t

}
≤ e−t , t ≥ 1,

which is equivalent to the second bound. ��
We now turn to the proof of Theorem 3.1.

Proof Note that the minimum of convex function g from (3.2) is attained at 0 and
also

.ĥ := argmin
h∈Rd

gn(h) = θ − θ̂ , (3.3)

so, to prove Theorem 3.1, it will be enough to bound .‖ĥ‖. We will use the following
elementary lemma.

Lemma 3.2 Let .q : R
d �→ R be a convex function attaining its minimum at

.x̄ ∈ R
d . For all .x0 ∈ R

d and .δ > 0, the condition .‖x̄ − x0‖ ≥ δ implies that
.inf‖x−x0‖=δ q(x)− q(x0) ≤ 0.
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Proof Indeed, assume that .‖x̄ − x0‖ ≥ δ. Clearly, .q(x̄) − q(x0) ≤ 0. Let .x∗ =
λx̄ + (1 − λ)x0 with .λ := δ

‖x̄−x0‖ . Then, .‖x∗ − x0‖ = δ and, by convexity of .q,

.q(x∗) ≤ λq(x̄)+(1−λ)q(x0), implying that .q(x∗)−q(x0) ≤ λ(q(x̄)−q(x0)) ≤ 0.
��

If .‖ĥ‖ ≥ δ, then, by Lemma 3.2,

. inf‖h‖=δ
gn(h)− gn(0) ≤ 0. (3.4)

Note that

.gn(h)− gn(0) = 〈g′n(0), h〉 + Sgn(0;h)

= 〈g′n(0), h〉 + Sgn(0;h)− 1

2
〈g′′n(0)h, h〉 + 1

2
〈g′′n(0)h, h〉.

(3.5)

For .‖h‖ = δ, we have, by Assumption 1, (ii),

.〈g′′n(0)h, h〉 = 〈g′′n(0)h, h〉 − 〈Ih, h〉 + 〈Ih, h〉 ≥ mδ2 − δ2‖g′′n(0)− I‖

and, by Proposition 3.1, (ii),

.Sgn(0;h)− 1

2
〈g′′n(0)h, h〉 ≥ −L

2
δ3.

Inserting these inequalities into (3.5) and using (3.4), we can conclude that if .‖ĥ‖ ≥
δ, then

.‖g′n(0)‖δ +
δ2

2
‖g′′n(0)− I‖ ≥ m

2
δ2 − L

2
δ3. (3.6)

To complete the proof, assume that the bound of Corollary 3.1 holds with constant
.C1 ≥ 1 and the bound of Proposition 3.2 holds with constant .C2 ≥ 1. If constant c

in the definition of .γ is small enough, then the condition .d ∨ t ≤ γ n implies that

.C
(√

d

n
∨

√
t

n

)
≤ m

M
∧ m2

L
√

M

with .C := (16C1) ∨ (4C2). Moreover, let

.δ := 4C1

√
M

m

(√
d

n
∨

√
t

n

)
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Then, .δ ≤ m
4L and, on the event

.E :=
{
‖g′′n(0)− I‖ ≤ C2M

(√
d

n
∨

√
t

n

)}
,

bound (3.6) implies that .δ ≤ 4
m
‖g′n(0)‖. Note also that, by Proposition 3.2, .P(Ec) ≤

e−t . By Corollary 3.1, the event .{δ ≤ 4
m
‖g′n(0)‖} occurs with probability at most

.e−t .Recall that bound (3.6) follows from .‖θ̂−θ‖ = ‖ĥ‖ ≥ δ. Thus, with probability
at least .1− 2e−t , .‖θ̂ − θ‖ ≤ δ. It remains to adjust the constants in order to replace
the probability bound .1− 2e−t with .1− e−t .

The following fact will be also useful.

Corollary 3.2 Suppose Assumption 1 holds and that .d ≤ γ n, where .γ = c
(

m
M
∧

m2

L
√

M

)2
with a small enough constant .c > 0. Then

.

∥∥∥‖θ̂ − θ‖ ∧ m

12L

∥∥∥
ψ2

�
√

M

m

√
d

n
+ m

L
√

γ

1√
n
.

Proof First, for .d ≤ γ n, Theorem 3.1 can be formulated as

.P

{
‖θ̂ − θ‖ > C1

(√M

m

√
d

n
∨
√

M

m

√
t

n

)}
≤ e−t , t ∈ [1, γ n].

This implies that

.P

{
‖θ̂ − θ‖ >

(
C1

√
M

m

√
d

n
∨ m

12L
√

γ

1√
n

)√
t

}
≤ e−t , t ∈ [1, γ n],

using that .t ≥ 1 and .
√

γ ≤ 1
12C1

m2

L
√

M
for c sufficiently small. It follows that

.P

{
‖θ̂ − θ‖ ∧ m

12L
>

(
C1

√
M

m

√
d

n
∨ m

12L
√

γ

1√
n

)√
t

}
≤ e−t , t ≥ 1,

which is equivalent to the claim. ��

4 Concentration Bounds

In this section, we prove concentration inequalities for .f (θ̂), where f is a smooth
function on .R

d . Namely, we will prove the following result.
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Theorem 4.1 Let .f ∈ Cs for some .s = 1 + ρ, .ρ ∈ (0, 1]. Suppose that .d ≤ γ n,

where .γ := c
(

m
M
∧ m2

L
√

M

)2
with a small enough .c > 0. Then

. sup
θ∈Rd

∥∥∥f (θ̂)− Eθf (θ̂)− n−1
n∑

j=1
〈V ′(ξj ), I−1f ′(θ)〉

∥∥∥
Lψ2/3 (Pθ )

�M,L,m

√
c(V )‖f ‖Cs

1√
n

(d

n

)ρ/2
.

To derive concentration bounds for .f (θ̂), we need to bound local Lipschitz
constants of estimator .θ̂ (X1, . . . , Xn) as a function of its variables. A good place
to start is to show the continuity of this function. The following fact is, probably,
well known. We give its proof for completeness.

Proposition 4.1 Suppose that V is strictly convex. Then, MLE .θ̂ (x1, . . . , xn) exists
and is unique for all .(x1, . . . , xn) ∈ R

d × · · · × R
d and the function

.R
d × · · · × R

d � (x1, . . . , xn) �→ θ̂ (x1, . . . , xn) ∈ R
d

is continuous.

Proof Let .(x1, . . . , xn) ∈ R
d × · · · × R

d , (x
(k)
1 , . . . , x

(k)
n ) ∈ R

d × · · · × R
d , k ≥ 1

and .(x
(k)
1 , . . . , x

(k)
n )→ (x1, . . . , xn) as .k →∞. Define

.p(θ) := n−1
n∑

j=1
V (xj − θ), pk(θ) := n−1

n∑

j=1
V (x

(k)
j − θ), θ ∈ R

d , k ≥ 1.

By continuity of .V, .pk(θ) → p(θ) as .k → ∞ for all .θ ∈ R
d . Since .pk and p are

convex, this implies the uniform convergence on all compact subsets of .R
d .

If .‖θ̂ (x
(k)
1 , . . . , x

(k)
n )− θ̂ (x1, . . . , xn)‖ ≥ δ, then, by Lemma 3.2,

. inf
‖θ−θ̂ (x1,...,xn)‖=δ

pk(θ)− pk(θ̂(x1, . . . , xn)) ≤ 0

By the uniform convergence of .pk to p on compact sets,

. inf
‖θ−θ̂ (x1,...,xn)‖=δ

pk(θ)− pk(θ̂(x1, . . . , xn))→ inf
‖θ−θ̂ (x1,...,xn)‖=δ

p(θ)

− p(θ̂(x1, . . . , xn))

as .k → ∞. Due to strict convexity, the minimum .θ̂ (x1, . . . , xn) of .p(θ) exists and
is unique (see the argument in the introduction), and
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. inf
‖θ−θ̂ (x1,...,xn)‖=δ

p(θ)− p(θ̂(x1, . . . , xn)) > 0,

implying that .‖θ̂ (x
(k)
1 , . . . , x

(k)
n ) − θ̂ (x1, . . . , xn)‖ < δ for all large enough k and

thus .θ̂ (x
(k)
1 , . . . , x

(k)
n ) → θ̂ (x1, . . . , xn) as .k →∞. ��

Note that the continuity of .θ̂ also follows from the implicit function theorem in
the case when V is twice differentiable with .V ′′ being positive definite throughout
.R

d .

We will now study Lipschitz continuity properties of .θ̂ as a function of the data
.X1, . . . , Xn needed to prove concentration inequalities.

Proposition 4.2 Let

.A1 :=
{
(x1, . . . , xn) ∈ R

d × · · · × R
d : ‖θ̂ (x1, . . . , xn)− θ‖ ≤ m

12L

}

and

.A2 :=
{
(x1, . . . , xn) ∈ R

d × · · · × R
d :

∥∥∥n−1
n∑

j=1
V ′′(xj − θ)− I

∥∥∥ ≤ m

4

}

and let .A := A1 ∩ A2. Then the function .A � (x1, . . . , xn) �→ θ̂ (x1, . . . , xn) is
Lipschitz with constant . 4M

m
√

n
: for all .(x1, . . . , xn), (x̃1, . . . , x̃n) ∈ A,

.‖θ̂ (x1, . . . , xn)− θ̂ (x̃1, . . . , x̃n)‖ ≤ 4M

m
√

n

( n∑

j=1
‖xj − x̃j‖2

)1/2
.

Proof Due to equivariance, we have

.θ̂ (x1, . . . , xn)− θ̂ (x̃1, . . . , x̃n) = θ̂ (ξ1, . . . , ξn)− θ̂ (ξ̃1, . . . , ξ̃n)

with .ξj = xj−θ and .ξ̃j = x̃j−θ.Hence, if we abbreviate .ĥ = θ−θ̂ (ξ1, . . . , ξn) and
.h̃ = θ − θ̂ (ξ̃1, . . . , ξ̃n), then we have .g′n(ĥ) = 0 with .gn from (3.2) and .g̃′n(h̃) = 0
with

.g̃n(h) := n−1
n∑

j=1
V (ξ̃j + h), h ∈ R

d .

Recall that .g′(0) = 0 and .g′′(0) = I. By the first order Taylor expansion for
function .g′, .g′(h) = Ih+ r(h), where
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.r(h) :=
∫ 1

0
(g′′(λh)− g′′(0))dλ h

is the remainder. Therefore,

.g′(ĥ) = Iĥ+ r(ĥ),

implying that

.ĥ = I−1(g′(ĥ)− g′n(ĥ))− I−1r(ĥ)

= I−1(g′(0)− g′n(0))+ I−1qn(ĥ)− I−1r(ĥ)

= −I−1g′n(0)+ I−1qn(ĥ)− I−1r(ĥ), (4.1)

where

.qn(h) := (gn − g)′(h)− (gn − g)′(0) =
∫ 1

0
(g′′n − g′′)(λh)dλ h.

Similarly, we have .h̃ = −I−1g̃′n(0) + I−1q̃n(h̃) − I−1r(h̃) with .q̃n(h) := (g̃n −
g)′(h) − (g̃n − g)′(0). Using these representations we now bound the difference
between .ĥ and .h̃.

First note that

.‖g′n(0)− g̃′n(0)‖ ≤ n−1
n∑

j=1
‖V ′′(ξj )− V ′′(ξ̃j )‖

≤ Mn−1
n∑

j=1
‖ξj − ξ̃j‖ ≤ M√

n

( n∑

j=1
‖xj − x̃j‖2

)1/2
. (4.2)

Also,

.qn(ĥ)− q̃n(h̃) = ((g′′n − g′′)(0))(ĥ− h̃)

+
∫ 1

0
((g′′n − g′′)(λĥ)− (g′′n − g′′)(0))dλ (ĥ− h̃)

+
∫ 1

0
[(g′′n − g′′)(λĥ)− (g′′n − g′′)(λh̃)]dλ h̃

+
∫ 1

0
(g′′n − g̃′′n)(λh̃)dλ h̃.
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Since, by Assumption 1, .V ′′ is Lipschitz with constant .L, the function .h �→ g′′(h) =
EV ′′(ξ + h) satisfies the Lipschitz condition with the same constant L and the
function .h �→ (g′′n − g′′)(h) is Lipschitz with constant at most .2L. In addition,

.‖(g′′n − g̃′′n)(λh̃)‖ ≤ n−1
n∑

j=1
‖V ′′(ξj + λh̃)− V ′′(ξ̃j + λh̃)‖

≤ L

n

n∑

j=1
‖ξj − ξ̃j‖ ≤ L√

n

( n∑

j=1
‖xj − x̃j‖2

)1/2

.

Therefore, we easily get

.‖qn(ĥ)− q̃n(h̃)‖ ≤ ‖g′′n(0)− g′′(0)‖‖ĥ− h̃‖ + L(‖ĥ‖ + ‖h̃‖)‖ĥ− h̃‖

+ L√
n
‖h̃‖

( n∑

j=1
‖xj − x̃j‖2

)1/2

. (4.3)

Similarly, note that

.r(ĥ)− r(h̃) =
∫ 1

0
(g′′(λĥ)− g′′(λh̃))dλ ĥ+

∫ 1

0
(g′′(λh̃)− g′′(0))dλ (ĥ− h̃)

which implies the following bound:

.‖r(ĥ)− r(h̃)‖ ≤ L

2
(‖ĥ‖ + ‖h̃‖)‖ĥ− h̃‖. (4.4)

It follows from (4.2), (4.3), and (4.4) that

.‖ĥ− h̃‖ ≤ 1

m

(( M√
n
+ L√

n
‖h̃‖

)( n∑

j=1
‖xj − x̃j‖2

)1/2

+ ‖g′′n(0)− g′′(0)‖‖ĥ− h̃‖ + 3

2
L(‖ĥ‖ + ‖h̃‖)‖ĥ− h̃‖

)
.

If .‖g′′n(0)− g′′(0)‖ ≤ m
4 and .‖ĥ‖ ∨ ‖h̃‖ ≤ m

12L, we easily conclude that

.‖ĥ− h̃‖ ≤ 4M

m
√

n

( n∑

j=1
‖xj − x̃j‖2

)1/2
,

which completes the proof. ��
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Since the Lipschitz condition holds for .θ̂ only on set .A, it will be convenient for
our purposes to replace .θ̂ with its “smoothed truncated” version .θ̌ that is Lipschitz
in the whole space. To this end, let .φ : R �→ [0, 1] be defined as follows: .φ(s) =
1, s ≤ 1, .φ(s) = 0, s ≥ 2 and .φ(s) = 2 − s, s ∈ (1, 2). Clearly, .φ is Lipschitz
with constant .1. By Theorem 3.1, .‖θ̂ − θ‖ ≤ m

24L with probability at least .1− e−γ n,

where .γ := c
(

m
M
∧ m2

L
√

M

)2 with a small enough constant .c > 0 and it is assumed

that .d ≤ γ n. Similarly, it follows from Proposition 3.2 that .‖g′′n(0) − g′′(0)‖ ≤ m
8

with probability at least .1 − e−βn, where .β = c( m
M

)2 for a small enough constant
.c > 0 (and under the assumption that .d ≤ βn. Clearly, we can assume that .β ≥ γ,

so, both properties hold with probability at least .1 − 2e−γ n provided that .d ≤ γ n.

Define

.ϕ(x1, . . . , xn) := φ
(24L

m
‖θ̂ (x1, . . . , xn)− θ‖

)
,

ψ(x1, . . . , xn) := φ
( 8

m
‖g′′n(0)(x1 − θ, . . . , xn − θ)− g′′(0)‖

)
.

and let

.θ̌ := (1− ϕψ)θ + ϕψθ̂.

Note that .θ̌ − θ = (θ̂ − θ)ϕψ and .θ̌ = θ̂ on the event .{ϕ = ψ = 1} of probability
at least .1− 2e−γ n.

Proposition 4.3 If .d ≤ γ n, then

.‖Eθ θ̌ − θ‖ �M,L,m

d

n
and E

1/2
θ ‖θ̌ − θ‖2 �M,L,m

√
d

n
.

Proof By representation (4.1) and the fact that .g′(0) = 0,

.θ̌ − θ = (θ̂ − θ)ϕψ = −ĥϕψ

= I−1g′n(0)− I−1g′n(0)(1− ϕψ)− I−1qn(ĥ)ϕψ + I−1r(ĥ)ϕψ. (4.5)

Using Corollary 3.1, we get

.‖‖I−1g′n(0)(1− ϕψ)‖‖L2 ≤ ‖‖I−1g′n(0)‖‖L4‖I (ϕψ 
= 1)‖L4

� 1

m
‖‖g′n(0)‖‖L4e

−γ n/4 �
√

M

m

√
d

n
e−γ n/4.
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Note also that

.‖qn(ĥ)‖ =
∥∥∥

∫ 1

0
(g′′n − g′′)(λĥ)dλ ĥ

∥∥∥ ≤ ‖g′′n(0)− g′′(0)‖‖ĥ‖ + L‖ĥ‖2,

so we also have

.E
1/2‖I−1qn(ĥ)ϕψ‖2 ≤ 1

m
E
1/2‖g′′n(0)− g′′(0)‖2

(
‖ĥ‖ ∧ m

12L

)2

+ L

m
E
1/2

(
‖ĥ‖ ∧ m

12L

)4

≤ 1

m
E
1/4‖g′′n(0)− g′′(0)‖4E1/4

(
‖ĥ‖ ∧ m

12L

)4

+ L

m
E
1/2

(
‖ĥ‖ ∧ m

12L

)4
.

Using the second bound of Proposition 3.2 and the bound of Corollary 3.2, we get

.E
1/2‖I−1qn(ĥ)ϕψ‖2 �M,L,m

d

n
.

Similarly, we can show that

.E
1/2‖I−1r(ĥ)ϕψ‖2 �M,L,m

d

n
,

using the fact that

.‖I−1r(ĥ)ϕψ‖ ≤ L

2m

(
‖ĥ‖ ∧ m

12L

)2

and the bound of Corollary 3.2.
The above bounds and representation (4.5) imply that

.‖Eθ θ̌ − θ‖ �M,L,m

d

n
.

Using also Corollary 3.1, we get

.E
1/2
θ ‖θ̌ − θ‖2 �M,L,m

√
d

n
.

��
Proposition 4.4 The function .(x1, . . . , xn) �→ θ̌ (x1, . . . , xn) is Lipschitz with
constant .� M

m
√

n
: for all .(x1, . . . , xn), (x̃1, . . . , x̃n) ∈ R

d × · · · × R
d ,
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.‖θ̌ (x1, . . . , xn)− θ̌ (x̃1, . . . , x̃n)‖ � M

m
√

n

( n∑

j=1
‖xj − x̃j‖2

)1/2
.

Proof By Proposition 4.2, on the set .A, .θ̂ is Lipschitz with constant .
4M

m
√

n
. This

implies that function .ϕ is also Lipschitz on the same set with constant .
24L
m

4M
m
√

n
.

Note also that

.‖g′′n(0)− g̃′′n(0)‖ ≤ L√
n

( n∑

j=1
‖xj − x̃j‖2

)1/2

,

implying that .ψ is a Lipschitz function (on the whole space) with constant .
8
m

L√
n
.

Using also the fact that .ϕ and .ψ are both bounded by 1 and .‖θ̂ − θ‖ ≤ m
12L on the

set .{ϕ 
= 0}, it is easy to conclude that .θ̌ is Lipschitz on A with constant

. � 4M

m
√

n
+ m

12L

24L

m

4M

m
√

n
+ m

12L

8

m

L√
n
� M

m
√

n
.

It remains to consider the case when .ϕ(x1, . . . , xn) ∈ A and .ϕ(x̃1, . . . , x̃n) ∈ Ac

(the case when both points are in .Ac is trivial). In this case, define .xλ
j = λxj + (1−

λ)x̃j , λ ∈ [0, 1], j = 1, . . . , n. Note that A is a closed set (by continuity of both
.θ̂ (x1, . . . , xn) and .n−1

∑n
j=1 V ′′(xj − θ)). If .λ̄ denotes the supremum of those .λ

for which .(xλ
1 , . . . , xλ

n) ∈ A, then .(xλ̄
1 , . . . , xλ̄

n ) ∈ ∂A, .(ϕψ)(xλ̄
1 , . . . , xλ̄

n ) = 0 and

.θ̌ (xλ̄
1 , . . . , xλ̄

n ) = 0 = θ̌ (x̃1, . . . , x̃1). Therefore,

.‖θ̌ (x1, . . . , xn)− θ̌ (x̃1, . . . , x̃n)‖ = ‖θ̌ (x1, . . . , xn)− θ̌ (xλ̄
1 , . . . , xλ̄

n )‖

� M

m
√

n

( n∑

j=1
‖xj − xλ̄

j ‖2
)1/2

� M

m
√

n

( n∑

j=1
‖xj − x̃j‖2

)1/2

,

where we use the fact that point .(xλ̄
1 , . . . , xλ̄

n ) is in the line segment between
.(x1, . . . , xn) and .(x̃1, . . . , x̃n).

The Lipschitz condition for .θ̌ (x1, . . . , xn) now follows. ��
We will now consider concentration properties of linear forms .〈θ̌ − θ,w〉, w ∈

R
d . The following result will be proven.

Theorem 4.2 Suppose .d ≤ γ n, where .γ := c
(

m
M
∧ m2

L
√

M

)2
with a small enough

.c > 0. Then
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. sup
θ∈Rd

∥∥∥〈θ̌ − θ,w〉 − E〈θ̌ − θ,w〉 − n−1
n∑

j=1
〈V ′(ξj ), I−1w〉

∥∥∥
Lψ2/3 (Pθ )

�
√

c(V )
(M2

m2 +
M3/2L

m3

) 1√
n

√
d

n
‖w‖.

Remark 4.1 Some concentration bounds for linear forms of MLE could be found in
[23].

Proof Using representation (4.1) and the fact that .g′(0) = 0, we get

.〈θ̌ − θ,w〉 = 〈θ̂ − θ,w〉ϕψ = −〈ĥ, w〉ϕψ

= 〈g′n(0), u〉 − 〈g′n(0), u〉(1− ϕψ)− 〈qn(ĥ), u〉ϕψ + 〈r(ĥ), u〉ϕψ, (4.6)

where .u = I−1w. Since

.〈g′n(0), u〉 = n−1
n∑

j=1
〈V ′(ξj ), I−1w〉

has zero mean, it is enough to study the concentration of three other terms in the
right-hand side of (4.6). The first of these terms is .〈g′n(0), u〉(1− ϕψ) and we have

.‖〈g′n(0), u〉(1− ϕψ)‖ψ1 ≤ ‖〈g′n(0), u〉‖ψ2‖1− ϕψ‖ψ2

≤ ‖〈g′n(0), u〉‖ψ2‖I (ϕψ 
= 1)‖ψ2 �
√

M√
n

1√
γ n
‖u‖ �

√
M

γ

1

n
‖u‖,

where we used Lemma 3.1 and the fact that .P{ϕψ 
= 1} ≤ 2e−γ n with .γ from the
statement of Theorem 4.2. Clearly, we also have

.‖〈g′n(0), u〉(1− ϕψ)− E〈g′n(0), u〉(1− ϕψ)‖ψ1 �
√

M

γ

1

n
‖u‖. (4.7)

For two other terms in the right-hand side of (4.6), we will provide bounds
on their local Lipschitz constants. It follows from bound (4.3) and the bound of
Proposition 4.2 that, for all .(x1, . . . , xn), (x̃1, . . . , x̃n) ∈ A,

.‖qn(ĥ)− q̃n(h̃)‖

�
(

M

m
√

n
‖g′′n(0)− g′′(0)‖ + ML

m
√

n
(‖ĥ‖ + ‖h̃‖)

)( n∑

j=1
‖xj − x̃j‖2

)1/2

.
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Recall that function .ϕ is Lipschitz on A with constant .
24L
m

4M
m
√

n
and function .ψ is

Lipschitz on the whole space with constant . 8
m

L√
n
. Note also that

.‖qn(ĥ)‖ =
∥∥∥

∫ 1

0
(g′′n − g′′)(λĥ)dλ ĥ

∥∥∥ ≤ ‖g′′n(0)− g′′(0)‖‖ĥ‖ + L‖ĥ‖2.

Since, on set .A, .‖ĥ‖ ≤ m
12L, we get

.‖qn(ĥ)‖ ≤ m

12L
‖g′′n(0)− g′′(0)‖ + m

12
‖ĥ‖.

Denoting .ϕ := ϕ(x1, . . . , xn), ϕ̃ := ϕ(x̃1, . . . , x̃n), ψ := ψ(x1, . . . , xn), ψ̃ :=
ψ(x̃1, . . . , x̃n), it easily follows from the facts mentioned above that, for all
.(x1, . . . , xn), (x̃1, . . . , x̃n) ∈ A,

.‖qn(ĥ)ϕψ − q̃n(h̃)ϕ̃ψ̃‖

�
(

M

m
√

n
‖g′′n(0)− g′′(0)‖ + ML

m
√

n
(‖ĥ‖ + ‖h̃‖)

)( n∑

j=1
‖xj − x̃j‖2

)1/2

.

This implies the following bound on the local Lipschitz constant of .qn(ĥ)ϕψ on set
.A :

.L(qn(ĥ)ϕψ)(x1, . . . , xn)

�
(

M

m
√

n

(
‖g′′n(0)− g′′(0)‖ ∧ m

4

)
+ ML

m
√

n

(
‖ĥ‖ ∧ m

12L

))
. (4.8)

The same bound trivially holds on the open set .Ac (where .qn(ĥ)ϕψ)(x1, . . . , xn) =
0) and, by the argument already used at the end of the proof of Proposition 4.4, it is
easy to conclude that bound (4.8) holds on the whole space.

Using bound (4.4) and the bound of Proposition 4.2, we get, for all
.(x1, . . . , xn), (x̃1, . . . , x̃n) ∈ A,

.‖r(ĥ)− r(h̃)‖ ≤ 2ML

m
√

n
(‖ĥ‖ + ‖h̃‖)

( n∑

j=1
‖xj − x̃j‖2

)1/2

and we also have .‖r(ĥ)‖ ≤ L
2 ‖ĥ‖2. As a result, we get the following condition for

the function .r(ĥ)ϕψ on set .A :

.‖r(ĥ)ϕψ − r(h̃)ϕ̃ψ̃‖ � 2ML

m
√

n
(‖ĥ‖ + ‖h̃‖)

( n∑

j=1
‖xj − x̃j‖2

)1/2

.
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This implies a bound on the local Lipschitz constant of .r(ĥ)ϕψ on set A that, by
the arguments already used, could be extended to the bound that holds on the whole
space:

.L(r(ĥ)ϕψ)(x1, . . . , xn) �
ML

m
√

n

(
‖ĥ‖ ∧ m

12L

)
.

Denoting

.ζ(x1, . . . , xn) := (−〈qn(ĥ), u〉ϕψ + 〈r(ĥ), u〉ϕψ)(x1, . . . , xn),

we can conclude that

.(Lζ )(x1, . . . , xn) � ‖u‖
(

M

m
√

n

(
‖g′′n(0)− g′′(0)‖ ∧ m

4

)
+ ML

m
√

n

(
‖ĥ‖ ∧ m

12L

))
.

(4.9)

By the second bound of Proposition 3.2,

.

∥∥∥‖g′′n(0)− g′′(0)‖
∥∥∥

ψ2
� M

√
d

n
.

By the bound of Corollary 3.2,

.

∥∥∥‖θ̂ − θ‖ ∧ m

12L

∥∥∥
ψ2

�
√

M

m

√
d

n
+ m

L
√

γ

1√
n
. (4.10)

Substituting the above bounds in (4.9), we conclude that

.

∥∥∥(Lζ )(X1, . . . , Xn)

∥∥∥
ψ2

�
( M2

m
√

n

√
d

n
+ M3/2L

m2
√

n

√
d

n
+ M√

γ

1

n

)
‖u‖

�
( M2

m
√

n

√
d

n
+ M3/2L

m2
√

n

√
d

n

)
‖u‖,

where we also used the fact that the last term is dominated by the other terms.
We are now ready to use concentration inequalities for functions of log-concave

r.v. to control .ζ(X1, . . . , Xn)− Eζ(X1, . . . , Xn). For all .p ≥ 1, we have

.

∥∥∥ζ(X1, . . . , Xn)− Eζ(X1, . . . , Xn)

∥∥∥
Lp

�
√

c(V )p

∥∥∥(Lζ )(X1, . . . , Xn)

∥∥∥
Lp

�
√

c(V )p3/2
∥∥∥(Lζ )(X1, . . . , Xn)

∥∥∥
ψ2

.
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It follows that

.

∥∥∥ζ(X1, . . . , Xn)− Eζ(X1, . . . , Xn)

∥∥∥
ψ2/3

�
√

c(V )

∥∥∥(Lζ )(X1, . . . , Xn)

∥∥∥
ψ2

�
√

c(V )
( M2

m
√

n

√
d

n
+ M3/2L

m2
√

n

√
d

n

)
‖u‖.

Recalling representation (4.6) and bound (4.7), we get

.

∥∥∥〈θ̌ − θ,w〉 − E〈θ̌ − θ,w〉 − 〈I−1g′n(0), w〉
∥∥∥

ψ2/3

�
√

c(V )
( M2

m
√

n

√
d

n
+ M3/2L

m2
√

n

√
d

n

)
‖u‖ +

√
M

γ

1

n
‖u‖.

Since .c(V ) ≥ ‖�‖ ≥ ‖I−1‖ and .M ≥ ‖I‖, we have .c(V )M ≥ 1. Recalling the
definition of .γ and also that .‖u‖ = ‖I−1w‖ ≤ 1

m
‖w‖, it is easy to complete the

proof. ��
We are ready to prove Theorem 4.1.

Proof Note that

.f (θ̌)− f (θ) = 〈f ′(θ), θ̌ − θ〉 + Sf (θ; θ̌ − θ).

Therefore,

.f (θ̌)− Eθf (θ̌)

= 〈f ′(θ), θ̌ − θ〉 − Eθ 〈f ′(θ), θ̌ − θ〉 + Sf (θ; θ̌ − θ)− EθSf (θ; θ̌ − θ).

(4.11)

By the bound of Theorem 4.2,

.

∥∥∥〈f ′(θ), θ̌ − θ〉 − E〈f ′(θ), θ̌ − θ〉 − n−1
n∑

j=1
〈V ′(ξj ), I−1f ′(θ)〉

∥∥∥
ψ2/3

≤ √
c(V )

(M2

m2 +
M3/2L

m3

) 1√
n

√
d

n
‖f ′(θ)‖. (4.12)

Thus, it remains to control .Sf (θ; θ̌ − θ)− EθSf (θ; θ̌ − θ). By Proposition 3.1 (v),
for function .f ∈ Cs, .s = 1+ ρ, .ρ ∈ (0, 1], we have

.|Sf (θ;h)− Sf (θ;h′)| � ‖f ‖Cs (‖h‖ρ ∨ ‖h′‖ρ)‖h− h′‖, θ, h, h′ ∈ R
d .
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Combining this with the bound of Proposition 4.4, we easily get

.

∣∣∣Sf (θ; θ̌ (x1, . . . , xn)− θ)− Sf (θ; θ̌ (x̃1, . . . , x̃n)− θ)

∣∣∣

� ‖f ‖Cs
M

m
√

n
(‖θ̌ (x1, . . . , xn)− θ‖ρ ∨ ‖θ̌ (x̃1, . . . , x̃n)− θ‖ρ)

×
( n∑

j=1
‖xj − x̃j‖2

)1/2
,

which implies the following bound on the local Lipschitz function of function
.Sf (θ; θ̌ − θ) :

.(LSf (θ; θ̌ − θ))(x1, . . . , xn) � ‖f ‖Cs
M

m
√

n
‖θ̌ (x1, . . . , xn)− θ‖ρ.

Using concentration bounds for log-concave r.v., we get

.

∥∥∥Sf (θ; θ̌ − θ)− EθSf (θ; θ̌ − θ)

∥∥∥
Lp

�
√

c(V )p

∥∥∥(LSf (θ; θ̌ − θ))(X1, . . . , Xn)

∥∥∥
Lp

�
√

c(V )p‖f ‖Cs
M

m
√

n

∥∥∥‖θ̌ − θ‖ρ
∥∥∥

Lp

�
√

c(V )p‖f ‖Cs
M

m
√

n

∥∥∥‖θ̌ − θ‖
∥∥∥

ρ

Lp

�
√

c(V )p‖f ‖Cs
M

m
√

n

∥∥∥‖θ̂ − θ‖ ∧ m

12L

∥∥∥
ρ

Lp

�
√

c(V )p1+ρ/2‖f ‖Cs
M

m
√

n

∥∥∥‖θ̂ − θ‖ ∧ m

12L

∥∥∥
ρ

ψ2
,

which, using bound (4.10), implies that

.

∥∥∥Sf (θ; θ̌ − θ)− EθSf (θ; θ̌ − θ)

∥∥∥
ψ2/(2+ρ)

�
√

c(V )‖f ‖Cs
M

m
√

n

∥∥∥‖θ̂ − θ‖ ∧ m

12L

∥∥∥
ρ

ψ2

�
√

c(V )‖f ‖Cs

(
M1+ρ/2

m1+ρ

1√
n

(d

n

)ρ/2 + M

Lρm1−ργ ρ/2

1

n(1+ρ)/2

)
.

Combining this with (4.11) and (4.12), we get
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.

∥∥∥f (θ̌)− Eθf (θ̌)− n−1
n∑

j=1
〈V ′(ξj ), I−1f ′(θ)〉

∥∥∥
ψ2/3

�
√

c(V )‖f ′(θ)‖
(M2

m2 +
M3/2L

m3

) 1√
n

√
d

n

+√
c(V )‖f ‖Cs

(
M1+ρ/2

m1+ρ

1√
n

(d

n

)ρ/2 + M

Lρm1−ργ ρ/2

1

n(1+ρ)/2

)

�M,L,m

√
c(V )‖f ‖Cs

1√
n

(d

n

)ρ/2
.

It remains to replace in the above bound .θ̌ by .θ̂ . To this end, observe that
.|f (θ̂)− f (θ̌)| ≤ 2‖f ‖L∞I (θ̌ 
= θ̂ ). This implies

.‖f (θ̂)− f (θ̌)‖ψ1 ≤ 2‖f ‖L∞‖I (θ̌ 
= θ̂ )‖ψ1 �
‖f ‖L∞

γ n
� ‖f ‖Cs

γ n
,

which allows us to complete the proof. ��

5 Bias Reduction

We turn now to the bias reduction method outlined in Sect. 1. The justification of this
method is much simpler in the case of equivariant estimators .θ̂ of location parameter.
Indeed, in this case

.θ̂ (X1, . . . , Xn) = θ + θ̂ (ξ1, . . . , ξn),

where .ξj = Xj − θ, j = 1, . . . , n are i.i.d. .∼ P, .P(dx) = e−V (x)dx. Denote .ϑ :=
θ̂ (ξ1, . . . , ξn) and let .{ϑk} be a sequence of i.i.d. copies of .ϑ defined as follows:
.ϑk := θ̂ (ξ

(k)
1 , . . . , ξ

(k)
n ), .ξ

(k)
j , j = 1, . . . , n, k ≥ 1 being i.i.d. copies of .ξ. Then,

the bootstrap chain .{θ̂ (k) : k ≥ 0} has the same distribution as the sequence of r.v.
.{θ +∑k

j=1 ϑj : k ≥ 0}. Moreover, let

.ϑ(t1, . . . , tk) :=
k∑

j=1
tjϑj , (t1, . . . , tk) ∈ [0, 1]k.

Then, for .(t1, . . . , tk) ∈ {0, 1} with .
∑n

i=1 ti = j, we have .θ + ϑ(t1, . . . , tk)
d= θ̂ (j).

Therefore, we can write
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.(Bkf )(θ) = Eθ

k∑

j=0
(−1)k−j

(
k

j

)
f (θ̂ (j))

= E

∑

(t1,...,tk)∈{0,1}k
(−1)k−

∑k
j=1 tj f (θ + ϑ(t1, . . . , tk))

= E�1 . . . �kf (θ + ϑ(t1, . . . , tk)),

where

.�jϕ(t1, . . . , tk) := ϕ(t1, . . . , tk)|tj=1 − ϕ(t1, . . . , tk)|tj=0.

If function .ϕ is k times continuously differentiable, then by Newton-Leibniz formula

.�1 . . . �kϕ(t1, . . . , tk) =
∫ 1

0
. . .

∫ 1

0

∂kϕ(t1, . . . , tk)

∂t1 . . . ∂tk
dt1 . . . dtk.

If .f : Rd �→ R is k times continuously differentiable, then

.
∂k

∂t1 . . . ∂tk
f (θ + ϑ(t1, . . . , tk)) = f (k)(θ + ϑ(t1, . . . , tk))[ϑ1, . . . , ϑk]

and we end up with the following integral representation formula:

.(Bkf )(θ) = E

∫ 1

0
. . .

∫ 1

0
f (k)(θ + ϑ(t1, . . . , tk))[ϑ1, . . . , ϑk]dt1 . . . dtk (5.1)

that plays an important role in the analysis of functions .Bkf and .fk.

It will be convenient to apply this formula not directly to MLE .θ̂ , but to its
smoothed and truncated approximation .θ̌ , defined in the previous section. Note that
.θ̌ (X1, . . . , Xn) = θ + ϑ̌, where

.ϑ̌ = ϑ̌(ξ1, . . . , ξn)

:= θ̂ (ξ1, . . . , ξn)φ
(24L

m
‖θ̂ (ξ1, . . . , ξn)‖

)
φ
( 8

m
‖g′′n(0)(ξ1, . . . , ξn)− g′′(0)‖

)
.

Let .ϑ̌k, k ≥ 1 be i.i.d. copies of .ϑ̌ defined as follows:

.ϑ̌k := ϑkφ
(24L

m
‖ϑk‖

)
φ
( 8

m
‖g′′n(0)(ξ (k)

1 , . . . , ξ (k)
n )− g′′(0)‖

)
.

Note that, for all .k ≥ 1, .ϑk = ϑ̌k with probability at least .1− 2e−γ n.
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Let .θ̌ (k) := θ + ∑k
j=1 ϑ̌j , k ≥ 0. We will also introduce the operators

.(Ť g)(θ) := Eθg(θ̌), θ ∈ R
d and .B̌ := Ť − I. Let .f̌k := ∑k

j=0(−1)j B̌j f. Since

.ϑj = ϑ̌j , j = 1, . . . , k with probability at least .1 − 2ke−γ n, we easily conclude
that, if we identify .θ̂ (k) with .θ + ∑k

j=1 ϑj , .k ≥ 0, then the event .E := {θ̌ (j) =
θ̂ (j), j = 1, . . . , k} occurs with the same probability. This immediately implies the
following proposition.

Proposition 5.1 For all .k ≥ 1,

.‖fk − f̌k‖L∞ ≤ k2k+3‖f ‖L∞e−γ n (5.2)

and

.‖fk‖L∞ ≤ 2k+1‖f ‖L∞ , ‖f̌k‖L∞ ≤ 2k+1‖f ‖L∞ . (5.3)

Proof For all .θ ∈ R
d and all .j = 1, . . . , k,

.|Eθf (θ̂ (j))− Eθf (θ̌ (j))| = |Eθf (θ̂ (j))IEc − Eθf (θ̌ (j))IEc |
≤ 2‖f ‖L∞P(Ec) ≤ 4‖f ‖L∞ke−γ n.

Therefore, applying (1.2) to .fk and .f̌k , we arrive at

.|fk(θ)− f̌k(θ)| ≤
k∑

j=0

(
k + 1

j + 1

)
|Eθf (θ̂ (j))− Eθf (θ̌ (j))|

≤ k2k+3‖f ‖L∞e−γ n,

which proofs Proposition (5.1). Bounds (5.3) follow by a similar argument. ��
Similarly to (5.1), we get

.(B̌kf )(θ) = E

∫ 1

0
. . .

∫ 1

0
f (k)(θ + ϑ̌(t1, . . . , tk))[ϑ̌1, . . . , ϑ̌k]dt1 . . . dtk

= Ef (k)(θ + ϑ̌(τ1, . . . , τk))[ϑ̌1, . . . , ϑ̌k], (5.4)

where .ϑ̌(t1, . . . , tk) := ∑k
j=1 tj ϑ̌j , (t1, . . . , tk) ∈ [0, 1]k and .τ1, . . . , τk are i.i.d.

r.v. with uniform distribution in .[0, 1] (independent of .{ϑ̌j }).
The next proposition follows from representation (5.4) and differentiation under

the expectation sign.

Proposition 5.2 Let .f ∈ Cs for .s = k + 1+ ρ, where .k ≥ 1 and .ρ ∈ (0, 1]. Then,
for all .j = 1, . . . , k,
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.‖B̌j f ‖C1+ρ � ‖f ‖Cs (E‖ϑ̌‖)j .

If .E‖ϑ̌‖ ≤ 1/2, then

.‖f̌k‖C1+ρ � ‖f ‖Cs .

We can also use representation (5.4) and smoothness of function .B̌kf to obtain a
bound on the bias of “estimator” .f̌k(θ̌ ).

Proposition 5.3 Let .f ∈ Cs for .s = k + 1+ ρ, where .k ≥ 1 and .ρ ∈ (0, 1]. Then,
for all .θ ∈ R

d ,

.|Eθ f̌k(θ̌ )− f (θ)| � ‖f ‖Cs (E‖ϑ̌‖)k(‖Eϑ̌‖ + E‖ϑ̌‖1+ρ).

Moreover,

.|Eθ f̌k(θ̌ )− f (θ)| �M,L,m ‖f ‖Cs

(√
d

n

)s

.

Proof Note that

.Eθ f̌k(θ̌ )− f (θ) = (−1)k(B̌k+1f )(θ).

We also have

.(B̌k+1f )(θ) = Eθ (B̌kf )(θ̌)− (B̌kf )(θ)

= 〈(B̌kf )′(θ),Eϑ̌〉 + ESB̌kf
(θ; ϑ̌).

Using bounds of Proposition 5.2 and of Proposition 3.1, we get

.|(B̌k+1f )(θ)| � ‖(B̌kf )′‖‖Eϑ̌‖ + ‖B̌kf ‖C1+ρE‖ϑ̌‖1+ρ

� ‖f ‖Cs (E‖ϑ̌‖)k(‖Eϑ̌‖ + E‖ϑ̌‖1+ρ).

Using also Proposition 4.3, we get

.|Eθ f̌k(θ̌ )− f (θ)| �M,L,m ‖f ‖Cs

(d

n

)k/2(d

n
+

(d

n

)(1+ρ)/2)

which allows to complete the proof. ��
In view of bound (5.3), the bound of Proposition 5.1 and the fact that .θ̌ = θ̂ with

probability at least .1 − 2e−γ n, we easily conclude that the following proposition
holds:
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Proposition 5.4 Let .f ∈ Cs for .s = k + 1+ ρ, where .k ≥ 1 and .ρ ∈ (0, 1]. Then,
for all .θ ∈ R

d ,

.|Eθ f̌k(θ̂ )− f (θ)| �M,L,m,s ‖f ‖Cs

(√
d

n

)s

and

.|Eθfk(θ̂)− f (θ)| �M,L,m,s ‖f ‖Cs

(√
d

n

)s

. (5.5)

It is now easy to prove Theorem 2.2.

Proof For all .θ ∈ R
d ,

.

∥∥∥fk(θ̂)− f (θ)− n−1
n∑

j=1
〈V ′(ξj ), I−1f ′(θ)〉

∥∥∥
ψ2/3

≤
∥∥∥f̌k(θ̂ )− Eθ f̌k(θ̂ )− n−1

n∑

j=1
〈V ′(ξj ), I−1f̌ ′k(θ)〉

∥∥∥
ψ2/3

+
∥∥∥n−1

n∑

j=1
〈V ′(ξj ), I−1f̌ ′k(θ)− I−1f ′(θ)〉

∥∥∥
ψ2/3

+ ‖fk − f̌k‖L∞ + |Eθ f̌k(θ̂ )− f (θ)|. (5.6)

Applying Theorem 4.1 to function .f̌k and using the second bound of Proposition 5.2,
we get

.

∥∥∥f̌k(θ̂ )− Eθ f̌k(θ̂ )− n−1
n∑

j=1
〈V ′(ξj ), I−1f̌ ′k(θ)〉

∥∥∥
ψ2/3

�M,L,m

√
c(V )‖f̌k‖C1+ρ

1√
n

(d

n

)ρ/2
�M,L,m

√
c(V )‖f ‖Cs

1√
n

(d

n

)ρ/2
.

Moreover, by Lemma 3.1 and the first bound in Proposition 5.2, we have

.

∥∥∥n−1
n∑

j=1
〈V ′(ξj ), I−1f̌ ′k(θ)− I−1f ′(θ)〉

∥∥∥
ψ2/3

� 1

m

√
M√
n
‖f̌ ′k(θ)− f ′(θ)‖ ≤ 1

m

√
M√
n

k∑

j=1
‖(B̌j f )′(θ)‖ � ‖f ‖Cs

1

m

√
M√
n

.
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Inserting these inequalities into (5.6) and applying Propositions 5.1 and 5.3 to the
last two terms in (5.6) allow to complete the proof. ��

Next we provide the proof of Proposition 2.1.

Proof The minimum with 1 in both bounds is due to the fact that .‖fk‖L∞ �
‖f ‖L∞ ≤ ‖f ‖Cs ; so the left-hand side is trivially bounded up to a constant by
.‖f ‖Cs .

To prove the first claim, note that, for f with .‖f ‖Cs ≤ 1,

.‖f (θ̂)− f (θ)‖L2(Pθ ) ≤
∥∥∥
(
‖θ̂ − θ‖ ∧ m

12L

)s∥∥∥
L2(Pθ )

+ 2
∥∥∥I (‖θ̂ − θ‖ ≥ m/(12L))

∥∥∥
L2(Pθ )

≤
(∥∥∥‖θ̂ − θ‖ ∧ m

12L

∥∥∥
L2(Pθ )

)s

+ 2P1/2
θ

{
‖θ̂ − θ‖ ≥ m/(12L)

}
.

Using the bound of Corollary 3.2, we get

.

(∥∥∥‖θ̂ − θ‖ ∧ m

12L

∥∥∥
L2(Pθ )

)s

�M,L,m

(√
d

n

)s

,

and, by the bound of Theorem 3.1, we easily get

.Pθ

{
‖θ̂ − θ‖ ≥ m/(12L)

}
≤ e−γ n.

The first claim now easily follows.
The proof of the second claim easily follows from Corollary 2.1. We can

assume that .d ≤ γ n (otherwise, the bound is obvious), and we can drop the term

.

√
c(V )

n

(
d
n

)ρ/2
in the bound of Corollary 2.1: it is smaller than .

1√
n
+

(√
d
n

)s

since

.c(V ) �ε dε‖�‖ for all .ε > 0 and .‖�‖ � 1. ��
We will sketch the proof of Theorem 2.3.

Proof Under the stronger condition .V ′′(x) � mId, the proof of Theorem 2.2 could
be significantly simplified. Recall that, for .ĥ = θ − θ̂ , .g′n(ĥ) = 0. This implies that

.g′n(0) = g′n(0)− g′n(ĥ) = −
∫ 1

0
g′′n(λĥ)dλ ĥ. (5.7)

The condition .V ′′(x) � mId easily implies that
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.

∫ 1

0
g′′n(λĥ)dλ =

∫ 1

0
n−1

n∑

j=1
V ′′(ξj + λĥ)dλ � mId.

Therefore, .

∥∥∥
∫ 1
0 g′′n(λĥ)dλ u

∥∥∥ ≥ m‖u‖, u ∈ R
d . Combining this with (5.7) yields

.‖ĥ‖ ≤ ‖g′n(0)‖
m

. By Corollary 3.1, we get that for all .t ≥ 1, with probability at least
.1− e−t

.‖θ̂ − θ‖ = ‖ĥ‖ �
√

M

m

(√
d

n
∨

√
t

n

)
.

Unlike the case of Theorem 3.1, the above bound holds in the whole range of .t ≥ 1,

and it immediately implies that .E
1/2
θ ‖θ̂ − θ‖2 �

√
M
m

√
d
n
, and, moreover, .‖‖θ̂ −

θ‖‖Lψ2 (Pθ ) �
√

M
m

√
d
n
.

Quite similarly, one can show that, unlike the case of Proposition 4.2, the Lips-
chitz condition for the function .R

d×· · ·×Rd � (x1, . . . , xn) �→ θ̂ (x1, . . . , xn) ∈ R
d

holds not just on set .A, but on the whole space. Indeed, recall that .g′n(ĥ) = 0 and
.g̃′n(h̃) = 0. This implies that

.g̃′n(h̃)− g′n(h̃) = g′n(ĥ)− g′n(h̃) =
∫ 1

0
g′′n(h̃+ λ(ĥ− h̃))dλ (ĥ− h̃).

Since .
∫ 1
0 g′′n(h̃+ λ(ĥ− h̃))dλ � mId, we get

.‖g̃′n(h̃)− g′n(h̃)‖ ≥ m‖ĥ− h̃‖,

which implies

.‖θ̃ − θ̂‖ = ‖ĥ− h̃‖ ≤ m−1n−1
n∑

j=1
‖V ′(h̃+ ξ̃j )− V ′(h̃+ ξj )‖

≤ m−1n−1M
n∑

j=1
‖ξ̃j − ξj‖ ≤ M

m
√

n

( n∑

j=1
‖ξ̃j − ξj‖2

)1/2

= M

m
√

n

( n∑

j=1
‖x̃j − xj‖2

)1/2
,

and the Lipschitz condition holds for the function .R
d × · · ·×R

d � (x1, . . . , xn) �→
θ̂ (x1, . . . , xn) ∈ R

d with constant . M
m
√

n
. Due to this fact, there is no need to consider

a “smoothed version” .θ̌ of function .θ̂ in the remainder of the proof (as it was done
in the proof of Theorem 2.2). All the arguments could be applied directly to .θ̂ .
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Finally, recall that, if .ξ ∼ P, .P(dx) = e−V (x)dx with .V ′′(x) � mId, x ∈ R
d ,

then, for all locally Lipschitz functions .g : Rd �→ R, the following logarirthmic
Sobolev inequality holds:

.Eg2(ξ) log g2(ξ)− Eg2(ξ) logEg2(ξ) � 1

m
E‖∇g(ξ)‖2

(see, e.g., [20], Theorem 5.2). It was proven in [2] (see also [1]) that this implies the
following moment bound:

.‖g(ξ)− Eg(ξ)‖Lp �m
√

p‖‖∇g(ξ)‖‖Lp , p ≥ 2.

This bound is used to modify the concentration inequalities of Sect. 4, which yields
the claim of Theorem 2.3. ��

6 Minimax Lower Bounds

In this section, we provide lower bounds for the estimation of the location parameter
and functionals thereof that match the upper bounds obtained in the previous
sections up to constants.

We start with a comment on the proof of Proposition 2.2.

Proof The proof follows the same line of arguments as in the proof of Theorem 2.2
in [18]. It is based on a construction of a set .F of smooth functionals such that the
existence of estimators of .f (θ) for all .f ∈ F with some error rate would allow one
to design an estimator of parameter .θ itself with a certain error rate. This rate is then
compared with a minimax lower bound .inf

θ̂
maxθ∈� Eθ‖θ̂ − θ‖2 in the parameter

estimation problem, where .� is a maximal .ε-net of the unit sphere (for a suitable .ε),
yielding as a result a minimax lower bound in the functional estimation. Minimax
lower bound in the parameter estimation problem can be deduced in a standard
way from Theorem 2.5 of [28] using KL divergence (Fano’s type argument). In
fact, while in the Gaussian location model KL divergence coincides with .1/2 times
the squared Euclidean distance, a similar property also holds for our log-concave
location models:

.K(Pθ‖Pθ ′) = E(V (ξ + θ − θ ′)− V (ξ))

= E(V (ξ + θ − θ ′)− V (ξ)− 〈V ′(ξ), θ − θ ′〉) ≤ M‖θ − θ ′‖2/2,

where we used Proposition 3.1 and Assumption 1 in the inequality. ��
Our next goal is to provide the proof of the local minimax lower bound of

Proposition 2.3. It will be based on Bayes risk lower bounds for the estimation
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of location parameter as well as functionals thereof that might be of independent
interest.

Let .(X ,F , (Pθ )θ∈�) be a statistical model, and let G be a topological group
acting on the measurable space .(X ,F) and .�. Let .� be such that .(Pθ )θ∈� is G-
equivariant, i.e., .Pgθ (gA) = Pθ (A) for all .g ∈ G, θ ∈ � and .A ∈ F . Suppose that
.g �→ Pgθ (A) is measurable for every .A ∈ F , .θ ∈ �.

Recall that, for two probability measures .μ, ν on an arbitrary measurable space
with .μ being absolutely continuous w.r.t. .ν, the .χ2-divergence .χ2(μ, ν) is defined
as

.χ2(μ, ν) :=
∫ (dμ

dν
− 1

)2
dν =

∫ (dμ

dν

)2
dν − 1.

The key ingredient in our proofs is the following version of an equivariant van
Trees type inequality established in [30], Proposition 1.

Lemma 6.1 Let .� be a Borel probability measure on .G, let .ψ : � → R
m be

a derived parameter such that .
∫
G
‖ψ(gθ)‖2�(dg) < ∞ for all .θ ∈ �, and let

.ψ̂ : X → R
m be an estimator of .ψ(θ), based on an observation .X ∼ Pθ , θ ∈ �.

Then, for all .θ ∈ � and all .h1, . . . , hm ∈ G, we have

.

∫

G

Egθ‖ψ̂(X)− ψ(gθ)‖2 �(dg)

≥
( ∑m

j=1
∫
G
(ψj (gh−1j θ)− ψj (gθ))�(dg)

)2
∑m

j=1
(
χ2(Phj θ ,Pθ )+ χ2(� ◦ Rhj

,�)+ χ2(Phj θ ,Pθ )χ2(� ◦ Rhj
,�)

) ,

with .� ◦ Rhj
defined by .(� ◦ Rhj

)(B) = �(Bhj ) for all Borel sets .B ⊂ G.

This lemma will be applied to our log-concave location model with G being the
group of all translations of .R

d . The Bayes risk lower bound will be formulated for
the class of all prior density functions .π : Rd �→ R+ with respect to the Lebesgue
measure on .R

d satisfying one of the following two conditions:

(P1) .π = e−W with .W : Rd �→ R being twice differentiable such that .‖W ′′‖L∞
and .‖W ′′‖Lip are finite,

(P2) .π has bounded support and is twice differentiable such that .‖π(j)‖L∞ and
.‖π(j)‖Lip are finite for .j = 0, 1, 2 (actually, it suffices to assume it only for
.j = 2 since the support is bounded).

Our first result deals with the estimation of the location parameter itself.
We assume that i.i.d. observations .X1, . . . , Xn are sampled from a distribution
belonging to a log-concave location family .e−V (x−θ)dx, θ ∈ R

d with convex
function V satisfying Assumption 1.

Theorem 6.1 Let .� be a probability measure on .R
d with density .π : Rd �→ R+

with respect to the Lebesgue measure satisfying either (P1) or (P2). Suppose that .π
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has finite Fisher information matrix:

.Jπ =
∫

Rd

π ′(θ)⊗ π ′(θ)

π(θ)
dθ.

Then, for all .δ > 0, we have

. inf
θ̂n

∫

Rd

Eθ‖θ̂n − θ‖2 �δ(dθ) ≥ 1

n
tr

((
I + 1

δ2n
Jπ

)−1)
, (6.1)

where .�δ is the prior measure with density .πδ(θ) = δ−dπ(δ−1θ), .θ ∈ R
d and

where the infimum is taken over all estimators .θ̂n = θ̂n(X1, . . . , Xn) based on
.(X1, . . . , Xn).

Let us discuss two simple implications. First, if we choose .π = e−V that satisfies
(P1) (in view of Assumption 1) and let .δ →∞, then Theorem 6.1 implies

. inf
θ̂n

sup
θ∈Rd

Eθ‖θ̂n − θ‖2 ≥ 1

n
tr(I−1).

Secondly, if we choose

.π(θ) =
d∏

j=1

3

4
cos3(θj )I[− π

2 , π
2 ](θj ),

that satisfies (P2), then we have, by an easy computation, .Jπ = 9
2Id . Moreover, for

.δ = 2c
π
√

n
, .c > 0, the prior .πδ has support in .{θ ∈ R

d : maxj |θj | ≤ c√
n
} ⊆ {θ ∈

R
d : ‖θ‖ ≤ c

√
d
n
}, and Theorem 6.1 implies

. inf
θ̂n

sup
‖θ‖≤c

√
d
n

Eθ‖θ̂n − θ‖2 ≥ 1

n
tr

((
I + 9π2

8c2
Id

)−1)
.

The proof of Theorem 6.1 will be based on the following lemma.

Lemma 6.2 Let .π : Rd �→ R+ be a probability density function with respect to the

Lebesgue measure .λ satisfying (P2) and .
∫ ‖π ′‖2

π
dλ < ∞. Moreover, let .p = e−W ,

.W : Rd �→ R, be a probability density function with respect .λ satisfying (P1).
Suppose that p is constant on the support of .π and that .

∫
Rd ‖θ‖2 p(θ)dθ <∞. For

.ε > 0, set

.πε := q + ε

1+ ε
p, q := π∫

πp dλ
. (6.2)
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Then, for every .ε > 0, .πε is a probability density function with respect to .λ satisfying

(P1) and .
∫ ‖π ′ε‖2

πε
dλ <∞. Moreover, as .ε → 0,

.Jπε =
∫

π ′ε ⊗ π ′ε
πε

dλ→
∫

π ′ ⊗ π ′

π
dλ = Jπ .

Proof To see that .πε satisfies (P1), we have to show that .Wε : Rd �→ R defined by
.πε = e−Wε is twice differentiable with .‖W ′′

ε ‖L∞ , ‖W ′′
ε ‖Lip < ∞. Write .qε = q+ε

1+ε

such that .Wε = − log qε +W . Hence,

.W ′′ε = W ′′ − q ′′ε
qε

+ q ′ε ⊗ q ′ε
q2
ε

= W ′′ − q ′′

q + ε
+ q ′ ⊗ q ′

(q + ε)2
.

Using the fact that .q + ε is lower bounded by .ε and that all involved functions
.W ′′, q ′, q ′′ and .q + ε are bounded and have bounded Lipschitz constant, it follows
that .πε satisfies (P1). Moreover, by the assumptions on .π and W , we get

.π ′ε =
q ′e−W + (q + ε)W ′e−W

1+ ε
= q ′e−W + εW ′e−W

1+ ε
,

and

.

∫ ‖π ′ε‖2
πε

dλ ≤ 2

1+ ε

∫ (‖q ′‖2e−W

q + ε
+ ‖W ′‖2e−Wε

)
dλ <∞.

Moreover, using again that W is constant on the support of .π , we get

.Jπε =
1

1+ ε

∫

Rd

( (q ′ ⊗ q ′)e−W

q + ε
+ ε(W ′ ⊗W ′)e−W

)
dλ

→
∫

Rd

(q ′ ⊗ q ′)e−W

q
dλ =

∫
π ′ ⊗ π ′

π
dλ = Jπ as ε → 0,

where we applied the dominated convergence theorem in the last step. ��
We are now ready to prove Theorem 6.1.

Proof We first consider the case where .π satisfies (P1). We assume that the Bayes
risk on the left-hand side in (6.1) is finite because otherwise the result is trivial. Since
the location model is an example of an equivariant statistical model (with translation
group acting on parameter space and sample space), we can apply Lemma 6.1 to
.ψ(θ) = θ , yielding that for any .θ1, . . . , θd ∈ R

d ,
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. inf
θ̂n

∫

Rd

Eθ‖θ̂n − θ‖2 �δ(dθ) (6.3)

≥
( ∑d

j=1〈ej , θj 〉
)2

∑d
j=1

(
χ2(P⊗n

θj
, P⊗n

0 )+ χ2(�δ,θj
,�δ)+ χ2(P⊗n

θj
, P⊗n

0 )χ2(�δ,θj
,�δ)

) ,

where .e1, . . . , ed is the standard basis in .R
d and .�δ,θj

is the probability measure
with density .δ−dπ(δ−1(θ + θj )), .θ ∈ R

d . Let us now apply a limiting argument.
First, we have

.χ2(Pθj
, P0) = Ee2V (ξ)−2V (ξ−θj ) − 1

≤ eL‖θj ‖3Ee2〈V ′(ξ),θj 〉−〈V ′′(ξ)θj ,θj 〉 − 1, (6.4)

where we used Proposition 3.1 in the inequality. If we set .θj = thj with .t > 0 and
.hj ∈ R

d , and then combine (6.4) with Lemma 3.1 and Assumption 1, we get

. lim sup
t→0

1

t2
χ2(Pthj

, P0) ≤ −E〈V ′′(ξ)hj , hj 〉 + 2E〈V ′(ξ), hj 〉2 = 〈hj , Ihj 〉

and thus also

. lim sup
t→0

1

t2
χ2(P⊗n

thj
, P⊗n

0 ) ≤ n〈hj , Ihj 〉.

Moreover, since the prior density .π satisfies (P1), Proposition 3.1 and Lemma 3.1
are still applicable, and we also have

. lim sup
t→0

1

t2
χ2(�δ,thj

,�δ) ≤ 〈hj , δ
−2Jπhj 〉.

Substituting these formulas into (6.3), we get for every .h1, . . . , hd ∈ R
d ,

. inf
θ̂n

∫

Rd

Eθ‖θ̂n − θ‖2 �δ(dθ) ≥
( ∑d

j=1〈ej , hj 〉
)2

∑d
j=1〈hj , (nI + δ−2Jπ )hj 〉

.

Setting .hj = (nI + δ−2Jπ )−1ej , .j ≤ d, we arrive at

. inf
θ̂n

∫

Rd

Eδθ‖θ̂n − δθ‖2 π(θ)dθ = inf
θ̂n

∫

Rd

Eθ‖θ̂n − θ‖2 �δ(dθ)

≥
d∑

j=1
〈ej , (nI + δ−2Jπ )−1ej 〉 = tr((nI + δ−2Jπ )−1). (6.5)
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It remains to extend (6.5) to all densities .π satisfying (P2). To this end, we apply
Lemma 6.2 to get .πε , .ε > 0, from (6.2) satisfying (P1) and .limε→0 Jπε = Jπ . Note
also that .qp = π. Therefore,

. inf
θ̂n

∫

Rd

Eδθ‖θ̂n − δθ‖2 π(θ)dθ = lim
ε→0

inf
θ̂n

∫

Rd

Eδθ‖θ̂n − δθ‖2 (π(θ)+ εp(θ))dθ

= lim
ε→0

1

1+ ε
inf
θ̂n

∫

Rd

Eδθ‖θ̂n − δθ‖2 (q(θ)p(θ)+ εp(θ))dθ

= lim
ε→0

inf
θ̂n

∫

Rd

Eδθ‖θ̂n − δθ‖2 πε(θ)dθ ≥ lim
ε→0

tr((nI + δ−2Jπε )
−1)

= tr((nI + δ−2Jπ )−1),

where we applied (6.5) to .πε. ��
We now turn to the estimation of functionals of the location parameter. For a

continuous function .g : Rd → R
d and .x0 ∈ R

d , the local continuity modulus of g

at point .x0 is defined by

.ωg(x0, δ) = sup
‖x−x0‖≤δ

‖g(x)− g(x0)‖, δ ≥ 0.

Theorem 6.2 Let .f : Rd �→ R be a continuously differentiable function, and let
.θ0 ∈ R

d . Let .π : R �→ R+ be a probability density function satisfying (P2) for
.d = 1. Suppose that

.Jπ =
∫

R

(π ′(s))2

π(s)
ds <∞.

Then there exists .v ∈ R
d with .‖v‖ = 1, such that, for every .δ > 0,

. inf
T̂n

( ∫

R

nEθ0+sv(T̂n − f (θ0 + sv))2 �δ(ds)
)1/2

≥ ‖I−1/2f ′(θ0)‖ −
√

Jπ

δ2n
‖I−1f ′(θ0)‖ −

∫

R

ωI−1/2f ′(θ0, |s|)�δ(ds),

where .�δ is the prior distribution with density .δ−1π(δ−1s), .s ∈ R and where the
infimum is taken over all estimators .T̂n = T̂n(X1, . . . , Xn) based on .(X1, . . . , Xn).

Proof Without loss of generality, we may assume that .θ0 = 0. Our goal is to apply
Lemma 6.1 to .ψ = f and to the one-dimensional subgroup .G = Rv = {sv :
s ∈ R} with direction .v ∈ R

d , .‖v‖ = 1, to be determined later. As in the proof of
Theorem 6.1, we first establish a lower bound for densities .π = e−W satisfying (P1)
with .d = 1 and for the special case that f and .f ′ are bounded on .Rv. In this case,
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applying Lemma 6.1, we get for every .t ∈ R,

. inf
T̂n

∫

R

Esv(T̂n − f (sv))2 �δ(ds)

≥
( ∫

R
(f ((s − t)v)− f (sv))�δ(ds)

)2

χ2(P⊗n
tv , P⊗n

0 )+ χ2(�δ,t ,�δ)+ χ2(P⊗n
tv , P⊗n

0 )χ2(�δ,t ,�δ)
, (6.6)

where .�δ,t is the probability measure with density .πδ,t (s) = δ−1π(δ−1(s + t)),
.s ∈ R. Now, using that .π satisfies (P1), we have

. lim sup
t→0

1

t2
χ2(P⊗n

tv , P⊗n
0 ) ≤ n〈v, Iv〉,

lim sup
t→0

1

t2
χ2(�δ,t ,�δ) ≤ δ−2Jπ = δ−2

∫

R

W ′′(s)e−W(s) ds,

as shown in the proof of Theorem 6.1. Moreover, using that f and .f ′ are bounded on
.Rv, standard results on the differentiation of integrals where the integrand depends
on a real parameter (e.g., [3, Corollary 5.9]) yield

. lim
t→0

1

t

∫

R

(f ((s − t)v)− f (sv))�δ(ds) = −
∫

R

〈f ′(sv), v〉�δ(ds).

Substituting these formulas into (6.3) and letting t go to zero, we get

. inf
T̂n

∫

R

Esv(T̂n − f (sv))2 �δ(ds) ≥
( ∫

R
〈f ′(sv), v〉�δ(ds)

)2

n〈v, Iv〉 + δ−2Jπ

. (6.7)

While this inequality holds for all densities .π satisfying (P1), we can apply
Lemma 6.2 to extend this inequality to all probability densities satisfying (P2) (see
the proof of Theorem 6.1 for the detailed argument). Moreover, for densities .π with
bounded support, we can also drop the boundedness conditions on f and .f ′. In fact,
the latter can be achieved by applying (6.7) to a functional g with .g, g′ bounded
on .Rv and .g = f on the support of .�δ (times v). As a consequence, under the
assumptions of Theorem 6.2, we have for every .v ∈ R, .‖v‖ = 1,

. inf
T̂n

∫

R

Esv(T̂n − f (sv))2 �δ(ds)

≥
( ∫

R
〈f ′(sv), v〉�δ(ds)

)2

n〈v, Iv〉 + δ−2Jπ

= 1

n

( ∫
R
〈f ′(sv), v〉�δ(ds)

)2

〈v, (I + Jπ

δ2n
Id)v〉 .
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Choosing

.v = A−1f ′(0)
‖A−1f ′(0)‖ , A = I + Jπ

δ2n
Id,

we obtain

. inf
T̂n

( ∫

R

nEsv(T̂n − f (sv))2 �δ(ds)
)1/2

≥ |
∫
R
〈A−1/2f ′(sv), A−1/2f ′(0)〉�δ(ds)|

‖A−1/2f ′(0)‖ .

Using the inequality

.|〈A−1/2f ′(sv), A−1/2f ′(0)〉|
≥ ‖A−1/2f ′(0)‖2 − ‖A−1/2f ′(0)‖‖A−1/2f ′(0)− A−1/2f ′(sv)‖
≥ ‖A−1/2f ′(0)‖(‖A−1/2f ′(0)‖ − ωA−1/2f ′(0, |s|)),

we arrive at

. inf
T̂n

( ∫

R

nEsv(T̂n − f (sv))2 �δ(ds)
)1/2

≥ ‖A−1/2f ′(0)‖ −
∫

R

ωA−1/2f ′(0, |s|) d�δ(s). (6.8)

Since .A−1 = I−1 − Jπ

δ2n
A−1I−1 � 0 and .I−2 � A−1I−1, we have

.‖A−1/2f ′(0)‖ = 〈A−1f ′(0), f ′(0)〉1/2

= (〈I−1f ′(0), f ′(0)〉 − 〈 Jπ

δ2n
A−1I−1f ′(0), f ′(0)〉)1/2

≥ 〈I−1f ′(0), f ′(0)〉1/2 − 〈 Jπ

δ2n
A−1I−1f ′(0), f ′(0)〉1/2

≥ ‖I−1/2f ′(0)‖ −
√

Jπ

δ2n
‖I−1f ′(0)‖.

Note also that .A−1 � I−1, implying .‖A−1u‖ ≤ ‖I−1u‖, u ∈ R
d and, as a

consequence, .ωA−1/2f ′(0, |s|) ≤ ωI−1/2f ′(0, |s|). These bounds along with (6.8)
imply the claim of the theorem. ��

Finally, we prove Proposition 2.3.
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Proof Let us choose .π(s) = 3
4 cos

3(θ)I[− π
2 , π

2 ](θ) in which case (P2) holds and

.Jπ = 9
2 . Choosing additionally .δ = 2c

π
√

n
, .c > 0, Theorem 6.2 yields

. inf
T̂n

sup
‖θ−θ0‖≤ c√

n

(nEθ (T̂n − f (θ))2)1/2

≥ ‖I−1/2f ′(θ0)‖ − 3π√
8c
‖I−1f ′(θ0)‖ − ωI−1/2f ′

(
θ0,

c√
n

)
. (6.9)

Under Assumption 1, .‖I−1f ′(θ0)‖ ≤ 1√
m
‖I−1/2f ′(θ0)‖. In addition, for .f ∈ Cs,

where .s = 1+ ρ, .ρ ∈ (0, 1],

.ωI−1/2f ′
(
θ0,

c√
n

)
≤ 1√

m
ωf ′

(
θ0,

c√
n

)
≤ 1√

m
‖f ‖Cs

( c√
n

)ρ

.

Recalling that .‖I−1/2f ′(θ0)‖ = σf (θ0), bound (6.9) implies

. inf
T̂n

sup
‖θ−θ0‖≤ c√

n

√
n‖T̂n − f (θ)‖L2(Pθ )

σf (θ0)

≥ 1− 3π√
8mc

− 1√
m

‖f ‖Cs

σf (θ0)

( c√
n

)ρ

. (6.10)

Note that, for all .θ satisfying .‖θ − θ0‖ ≤ c√
n
,

.|σf (θ)− σf (θ0)| = |‖I−1/2f ′(θ)‖ − ‖I−1/2f ′(θ0)‖|

≤ ωI−1/2f ′
(
θ0,

c√
n

)
≤ 1√

m
‖f ‖Cs

( c√
n

)ρ

.

Therefore,

. sup
‖θ−θ0‖≤ c√

n

√
n‖T̂n − f (θ)‖L2(Pθ )

σf (θ0)

≤ sup
‖θ−θ0‖≤ c√

n

√
n‖T̂n − f (θ)‖L2(Pθ )

σf (θ)
sup

‖θ−θ0‖≤ c√
n

σf (θ)

σf (θ0)

≤ sup
‖θ−θ0‖≤ c√

n

√
n‖T̂n − f (θ)‖L2(Pθ )

σf (θ)

(
1+ sup

‖θ−θ0‖≤ c√
n

|σf (θ)− σf (θ0)|
σf (θ0)

)
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≤ sup
‖θ−θ0‖≤ c√

n

√
n‖T̂n − f (θ)‖L2(Pθ )

σf (θ)

(
1+ 1√

m

‖f ‖Cs

σf (θ0)

( c√
n

)ρ)
.

Using this bound together with (6.10) easily yields

. sup
‖θ−θ0‖≤ c√

n

√
n‖T̂n − f (θ)‖L2(Pθ )

σf (θ)
≥ 1− 3π√

8mc
− 2√

m

‖f ‖Cs

σf (θ0)

( c√
n

)ρ

.
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