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Chapter 9
Management Information Systems 
and Emerging Technologies

Aikaterini Kasimati, Vasilis Psiroukis, Hercules Panoutsopoulos, 
Sofia Mouseti, Nikolaos Mylonas, and Spyros Fountas

Abstract  The following chapter addresses the principles of farm management 
information systems, i.e., computational, communication, and algorithmic subsys-
tems, that integrate sensing, actuation, data management and analysis, knowledge 
of horticultural practices, and decision-making to automate the operation and man-
agement of modern orchards and vineyards. Topics include types of data and infor-
mation, infrastructures, architectures, standardization, data ownership and sharing, 
and decision support system technologies.

9.1 � Introduction

9.1.1 � Farm Management Information Systems 
for Crop Production

During the last few years, rapid technological developments have introduced radical 
changes in the working environment in the agricultural sector. The level of com-
plexity for farming enterprises has gradually increased in recent decades. Agriculture 
has entered a new data-driven era, in which access to accurate and timely informa-
tion is of vital importance. Simple production units have evolved into agricultural 
businesses with multifunctional service sectors (Fountas et al., 2015a). Thus, mod-
ern farms can survive financially and be sustainable only when well managed 
(Husemann & Novkovic, 2014). However, farm management is a challenging and 
time-consuming task (Paraforos et al., 2017), with farm operations and activities 
often not being properly logged systematically and analytically (Fountas 
et al., 2015a).
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Farmers need an effective way to manage large volumes of information and tech-
nological tools to help them make optimal and sustainable decisions year-round 
(Paraforos et al., 2016). Farm management information systems (FMISs) are sys-
tems that support the collection, processing, and storage of data in a form that allows 
for the accurate scheduling and execution of farming operations (Fountas et  al., 
2015a; Sørensen et al., 2010) or provide farmers with valuable information to sup-
port decision-making. Figure 9.1 shows a commercial FMIS application for crop 
production, extensively used in vineyards, called SITI4farmer. ABACO’s precision 

Fig. 9.1  Weather stations’ latest readings and historical weather data are stored in the SITI4farmer, 
ABACO’s precision farming tool. SITI4farmer is an example of a crop management platform and 
a decision support system, widely used in viticulture
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farming tool collects sensor-based data, such as weather and soil, satellite data, and 
other historical data. It provides the user with easy-to-understand visualizations of 
this information.

Several FMIS structures and software architectures have been presented, while a 
constantly increasing number of commercial solutions are available on the market, 
such as 365FarmNet, AgriWebb, Agworld, FarmLogs, and FarmWorks (Ampatzidis 
et al., 2016; Nikkilä et al., 2010; Paraforos et al., 2017).

9.1.1.1 � Historical Overview

The first agricultural FMISs were developed in the 1970s and focused on record-
keeping and operations planning. In contrast, more complex record-keeping plat-
forms with integrated decision support tools covering irrigation, pest management, 
and fertilizer applications appeared during the next decade. It was not until the late 
2000s that precision agriculture (PA) as a concept emerged and introduced the con-
sideration of agricultural fields as heterogeneous entities that required selective 
treatment instead of homogenous entities that are treated equally (Aubert et  al., 
2012). For this reason, new information systems focused on accurate farming opera-
tions were required (Cardín-Pedrosa & Alvarez-López, 2012). For the first time, 
farmers obtained the ability to generate large amounts of data using sensors and 
satellite systems (Tozer, 2009). As a result, efficient data management became a top 
priority, and sophisticated information systems using the newly introduced concept 
of “field variability” became necessary.

9.1.1.2 � FMIS for Precision Agriculture

PA refers to information technologies and electronic communications and the 
implementation of more accurate Global Positioning Systems (GPS) that enable 
farmers to collect large amounts of data to use effectively for site-specific crop man-
agement (Aubert et al., 2012). Sensor arrays provide constant streams of data on soil 
properties such as moisture, temperature, humidity, and crop growth parameters 
information derived mainly from crop spectral reflectance. These data can help 
understand field variability and allow appropriate management practices to be 
implemented accordingly (Matese et al., 2009). This has created the need to design 
and develop dedicated FMISs to cope with the increased amount of data generated 
by applying PA in field production (Fountas et al., 2015b). Similarly, digital agricul-
ture is a broader term that refers to digital sensor-derived data to support farm man-
agement decisions (Keogh & Henry, 2016).

9  Management Information Systems and Emerging Technologies
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9.1.1.3 � FMIS Adoption and Profitability

FMIS development and adoption are strongly related to system profitability, with 
benefits extending to the value of improved decision-making. However, this is often 
difficult to quantify, as the benefits of using an FMIS could depend on the user’s 
level of satisfaction. Younger farmers without farming experience can benefit from 
using an FMIS, which automatically generates documentation data and reduces the 
required task time while providing better management.

Agricultural management software mainly includes production planning, pro-
cess integration, performance management, quality and environmental resource 
management, and sales order and contract management. Moreover, field operations 
management, best practices and predictions, finance, machinery management, 
traceability, and quality assurance are additional functions or services that many 
commercial FMISs offer to farm managers. An analysis of commercial software 
solutions revealed that current FMISs mostly target everyday farm office tasks 
related to financial management and reporting, particularly those related to sales, 
inventory, and field operations management (Fountas et al., 2015a).

9.1.2 � Applications for Tree Fruit Orchards and Vineyards

Tree fruit orchard and vineyard products are considered specialty crops of high 
value since they require a significant amount of labor at various stages. Despite 
being characterized by high production costs, they have emerged as a fast-growing 
agribusiness segment. Increasing importance is directed toward detailed traceability 
systems for the product’s origin and especially for the treatments used in production 
(Tsiropoulos & Fountas, 2015).

Fruit production is a demanding sector where trees have high fertilizer and irriga-
tion needs, which should be carefully planned and applied. Optimal pest manage-
ment, irrigation scheduling, and harvest timing are strongly related to the final 
quality of the yield (Tamirat & Pedersen, 2019). Furthermore, the timing of harvest 
is critical to the quality of the yield. For this reason, selective harvesting based on 
the ripeness level of the fruit in different zones of the orchard is often used. Finally, 
during critical periods when farming tasks should be planned and executed with 
utmost accuracy, farm machinery should constantly operate at optimal rates 
(Tsiropoulos & Fountas, 2015).

9.1.2.1 � Pest Control Information Systems

Pest control and applying plant protection products (PPPs) are one of the most criti-
cal factors in crop production due to the severe consequences for human health and 
the environment from irresponsible practices. Agrochemicals directly impact the 

A. Kasimati et al.



199

quality of yields and the market-selling price of the products. Excessive PPP use 
financially burdens the farmers and results in high residues of hazardous chemicals 
on the products that subsequently enter the food chain. FMIS can determine periods 
when disease outbreaks are more likely to occur and help growers apply the exact 
amount of PPP needed, avoiding overapplication. These systems can comply with 
legal regulations and agricultural production standards to ensure food safety and 
environmental protection (Fountas et al., 2015b). Modern spraying machinery for 
orchards stores spray data for each spray application to automatically produce the 
farm calendar that records all plant protection product treatments and provides full 
product traceability (Berger & Laurent, 2019).

9.1.2.2 � Irrigation Management Information Systems

Irrigation is a crucial factor in crop growth and product quality. Despite how simple 
it may appear, irrigation planning and management is an extremely complicated 
procedure that requires enormous amounts of real-time data and utmost accuracy 
and timeliness to achieve optimal results. Soil water content and water availability 
for the plants depend on several parameters, including soil, climate, and topography. 
When rainfall is insufficient to meet crop water needs at critical growth stages, 
water stress can cause major losses in fruit orchards. Several projects, such as 
USERPA (USability of Environmentally sound and Reliable technologies in 
Precision Agriculture), propose holistic precision agriculture solutions for tree 
orchards and vineyards, with the focus being directed on irrigation and harvest man-
agement to increase the quality characteristics of fruits by optimizing input use 
while preserving environmental sustainability.

9.1.2.3 � Harvest Management Information Systems

Harvesting is an extremely challenging procedure due to the short time window in 
which fruit is at optimum ripeness for picking. Fruit harvested prematurely or 
beyond optimal time can potentially affect how desirable the product is to consum-
ers (Chauvin et al., 2009). Accurate and timely collection of data is driving harvest-
related decisions on the farm. A harvest management information system that allows 
access to real-time harvest data was developed in California, USA, in 2016. This 
integrated system could automatically generate yield maps that provide farmers 
with data on the productivity of their farms and allow them to investigate factors 
related to potential spatial yield variability (Ampatzidis et al., 2016).

9  Management Information Systems and Emerging Technologies
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9.2 � Big Data in the Emerging Technologies

Big Data is a hot research topic that has attracted much attention from the scientific 
community. Although there is extensive literature on the benefits that can be reaped 
from the exploitation of Big Data, no consensus exists about what a typical defini-
tion of the term is. As for existing definition attempts are concerned, it can be 
observed that these have focused on a wide spectrum of issues and aspects, ranging 
from Big Data sources, characteristics, and types to technical requirements and the 
potential impact of Big Data analysis on the socioeconomic level.

Big Data is generated, intentionally or unintentionally, by interactions and trans-
actions digitally performed in our everyday personal and professional lives and 
ubiquitous sensor-based devices (George et  al., 2014). Continuously increasing 
capacities of tools and infrastructures for collecting, logging, and transmitting data 
are the main reasons for data abundance, yet big volumes of produced data along 
with divergence in data types (i.e., structured, semi-structured, and unstructured 
data) and the increasing rates of data generation keep pushing demands for storage 
and process-related affordances (De Mauro et al., 2016; George et al., 2014).

To make sense of this overwhelming amount of data, it is often broken down and 
characterized into the following dimensions, often referred to as “Vs.” The “Vs” of 
Big Data constitute concise and comprehensive summarizations of distinctive char-
acteristics of Big Data and, by focusing upon its key properties, serve excellently as 
a basis for a Big Data management discussion. Starting with Volume, Velocity, and 
Variety, the Big Data property list has been extended to further include Veracity and 
Value, Volatility and Validity (Khan et al., 2014), and Vulnerability, Variability, and 
Visualization (Firican, 2017). It is the big volume and high rates at which Big Data 
is made available, the wide range of available types and formats, trustworthiness of 
the sources of Big Data, potential inconsistencies in the data, and its lifespan along 
with security and privacy issues that pose challenges for Big Data management at 
various levels.

The digital revolution is transforming agriculture, and the advent of new tech-
nologies increases the amount of data collected. The term agricultural Big Data 
refers to the variety and volume of data collected either directly in the field or from 
other sources. Chi et al. (2016) support the “Vs” approach by defining data in terms 
of volume, velocity, variety, and veracity:

•	 Volume: refers to the size of data collected for analysis.
•	 Velocity: measuring the flow of data and the time frame when it is useful and 

relevant.
•	 Variety: reflecting the frequent lack of structure or design to the data.
•	 Veracity: reflecting the quality, reliability, accuracy, and credibility of the data 

(Chi et al., 2016).

Although the “Vs” can describe big agricultural data, their analysis does not have 
to satisfy all dimensions (Rodriguez et al., 2017). Terms of big agricultural data are 
more about the combination of technology and advanced analytics than just the 
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volume of data that creates a new way of processing information in a more useful 
and timely manner (Coble et al., 2018).

The following sections present information on capturing agricultural data and 
tools to perform data management and data analytics, including machine learning 
techniques. However, since the data revolution hasn’t reached every agricultural 
sector yet and Big Data and AI are not yet specific to orchards and vineyards, the 
following description is general to all horticultural systems, including orchards and 
vineyards.

9.2.1 � Sensing and Monitoring

The digital revolution transforms agriculture by using modern machinery, comput-
erized tools, and emerging information and communication technologies (ICTs) to 
improve decision-making and productivity. The evolution and revolution in agricul-
tural Big Data come from the expansion of small agricultural data. Growers can 
collect data about their operations by spreading several cutting-edge techniques and 
technologies. Vast amounts of agricultural data and many datasets are collected 
from GPS and remote sensing to artificial intelligence and machine learning, robot-
ics, and the Internet of Things (IoT). Agricultural data originate from various 
sources, including:

•	 Farmers’ fields utilize ground sensors, such as weather stations and soil sensors.
•	 Handheld crop sensors or tractor-mounted sensors.
•	 Data from aerial sensors, namely, unmanned aerial vehicles, airplanes, and 

satellites.
•	 Governmental and third-party organizations gather spatial and temporal histori-

cal data or distribute it via online repositories and web services.
•	 Real-time farm data via online web services and crowdsourcing-based tech-

niques from mobile phones.

Challenges Related to Big Data in Horticulture
The basis for enhanced and effective decision-making is the availability of timely, 
high-quality data. The demand for large volumes of data and the lack of significance 
of limited amounts of data create challenges in developing Big Data applications in 
the agriculture sector, especially in orchards and vineyards. In addition, the sources 
mentioned above are mostly heterogeneous. The data are represented in different 
types and formats and differ in volume and velocity and in the way they are updated 
and governed (Kamilaris et al., 2017).

Most agricultural data sources are fragmented, difficult, and time-consuming to 
use. At the individual farm level, many digital agriculture applications are not true 
Big Data applications. Therefore, data errors may be a critical limiting factor in the 
utility of farm management information systems. Data errors can arise from multi-
ple sources, including low-quality data and errors associated with poor data analyt-
ics and processing. This suggests that the full potential of such data and information 
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is not being completely utilized. Integrating a variety of data into a coherent man-
agement information system is expected to remedy this situation (Fountas 
et al., 2015a).

A range of indicators suggests that the availability of farm-level sensors and 
other precision agriculture technologies, such as mapping and tracking technolo-
gies, have already changed the management of many farming systems. Effective 
collection, storage, sharing, and use of data can support farming decisions toward 
increased yield and quality of agricultural products and decreased use of inputs, 
thus increasing profitability and sustainability of farming. However, technical and 
governance barriers to collecting, storing, and transferring data hinder farmers’ 
transition to digital agriculture. Various management systems, database network 
structures, and software architectures have already been proposed to improve 
functionality.

9.2.2 � Data Management

Data utilization and decision-making about the application of targeted crop man-
agement and harvesting methods are at the core of precision agriculture, which is 
defined as “a holistic and environmentally friendly farming strategy in which prac-
titioners can vary cultivation and input methods to match varying soil types and 
cross conditions in a field” (Srinivasan, 2006) to increase “the number of (correct) 
decisions per unit area of land per unit time with associated net benefits” (McBratney 
et al., 2005). However, the continuous evolution of digital devices’ and infrastruc-
tures’ capacities to capture and stream data of various formats and types at ever-
increasing rates has led to a shift from precision agriculture to smart farming, a 
novel paradigm of data-driven holistic farm management (Pivoto et  al., 2018; 
Vermesan & Friess, 2016). Smart farming does not rely exclusively on data col-
lected in the field but rather views farm management decisions and operations from 
a broader perspective of context- and situation-awareness (Wolfert et  al., 2017), 
which can be developed through systematic processes of sourcing, integrating, pro-
cessing, and analyzing agricultural Big Data.

Nowadays, FMIS has increased in sophistication through the development and 
integration of new technologies and advances in hardware and software capabilities 
of mobile phones. Web- and app-based applications enable real-time data recording 
and automated data transfer (Fountas et al., 2015a; Nikkilä et al., 2010; Peets et al., 
2012). Cloud-based FMIS improves operational planning and optimizes the work 
performed in the fields (Ampatzidis et  al., 2016; Kaloxylos et  al., 2014). Cloud 
platforms and cloud computing improve flexibility and accessibility, reduce infra-
structure, and streamline processes while offering possibilities for large-scale stor-
ing, preprocessing, analysis, and data visualization (Barrett et  al., 2014; Nativi 
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et al., 2015). In many cases, computational capacity, both in terms of speed and 
volume, allows to conduct novel analysis on large volumes of data and use it for 
actionable decision-making previously not possible (Coble et al., 2018).

Various technologies directly linked to smart farming can be used for data collec-
tion and transmission to processing and storage. However, technology requirements 
for (agricultural) Big Data exploitation and management go far beyond the capaci-
ties of a single machine. Therefore, to take full advantage of agricultural Big Data 
and smart farming necessitates the deployment of systems and services on top of 
technologies that can handle the complexities of Big Data. One such technology is 
Apache Hadoop (https://hadoop.apache.org/), a state-of-the-art distributed frame-
work consisting, among others, of three core components, including (i) HDFS (i.e., 
Hadoop Distributed File System) for handling data storage, (ii) YARN for resource 
management and optimization, and (iii) MapReduce for workload distribution 
across multiple nodes of commodity hardware.

Another typical example of cutting-edge Big Data technology is Apache Spark 
(https://spark.apache. org/), a “fast and general-purpose cluster computing plat-
form” designed mainly for the execution of computations in memory. Apache Spark 
can also run applications on disk more efficiently than MapReduce and accommo-
date real-time processing of large sets of streamed data. It can easily be integrated 
with other tools in the Hadoop ecosystem and thus exploited in various architectures 
while accessing via custom APIs in widely adopted programming languages, such 
as Java, Python, Ruby, and SQL.

Other storage solutions for Big Data, tailored to different data structures, are 
provided by NoSQL databases which have gained momentum against traditional 
relational database management systems (RDBMSs) in recent years. According to 
Tiwari (2011), “NoSQL is used today as an umbrella term for all databases and data 
stores that don’t follow the popular and well-established RDBMS principles and 
often refer to large datasets accessed and manipulated at web-scale” (Tiwari, 2011). 
There are several different NoSQL data store types, each of which adopts a specific 
data model (e.g., key-value pairs, column-based, document-based, and graph data 
models) to best accommodate the particularities of the data structures they have 
been designed for. Scalability, efficiency, flexibility, high access rates to data, and 
availability of a range of data models targeting different storage needs are some of 
the NoSQL data store system advantages over traditional RDBMSs (Nayak 
et al., 2013).

Another concept that is highly relevant to the need for efficient Big Data storage 
infrastructures is that of data lakes. Data lakes can be conceptualized as repositories 
containing large collections of loosely annotated data ingested from various sources 
(Hai et al., 2016). The key idea behind data lakes is to create collections of various 
types of data available to be integrated on-demand and utilized to create actionable 
insights and value. Apart from data extraction and ingestion, it is also necessary to 
extract metadata from data sources to efficiently support data reasoning, query pro-
cessing, and data quality management (Hai et al., 2016).

Increased demands for Big Data storage and processing coupled with the high 
costs for in-premise hosting/maintenance of hardware and difficulties in setting up 
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and configuring Big Data tools have led to a market for cloud-based processing 
and storage services. Cloud computing platform providers, such as Amazon AWS, 
Cloudera, and MapR, offer on-demand access to storage and integrated suites of 
analytics tools under Platform-as-a-Service (PaaS) and/or Infrastructure-as-a-
Service (IaaS) schemes, tailored to a range of individual and corporate needs. 
With access to easily configurable solutions, users can design and execute 
resource-intensive tasks without worrying about parameterization and workload 
optimization.

9.2.3 � Big Data Analytics

Big Data analytics is the complex process of examining large and diverse amounts 
of data to uncover information such as hidden patterns, correlations, market trends, 
and various other insights that can help organizations make informed decisions. 
Data analysis is categorized into five different stages:

	1.	 Identification of required data types: Find what you want to analyze and 
determine the questions you want to ask. Having the solution to a problem in 
mind, Big Data analytics is a means to an end. Therefore, the solution process 
needs to commence by identifying what data needs to be collected to gain data-
driven insights. The discussion about required data is not confined to formats 
and types but involves data sources that should be accounted for.

	2.	 Data acquisition/collection: Collect data and determine which is best to use. 
Having answered the question about the data that should be collected, the fol-
lowing step is to proceed to the actual data collection. Many issues should be 
considered as part of this step. For example, data may have to be extracted from 
multiple databases and stored in a central repository. In this case, setting up ETL 
(i.e., extract-transform-load) processes is necessary. Other scenarios may involve 
real-time or near real-time processing. Streaming technologies or systems for 
temporary data storage are, in such cases, issues to be considered. When it comes 
to large raw data streams, we may also have to encounter data relevance issues. 
This means that not all data is important. Thus, filtering out irrelevant data is 
critical for optimal resource utilization. Yet, filters need to be carefully selected 
to avoid discarding useful information.

	3.	 Data preprocessing: Identify anomalies and correct duplicates, missing entries, 
or inconsistent data. Put in place standards to ensure data entry is consistent, 
but also expect that you will need to do regular maintenance over time. Data 
cannot be provided as input to analytics algorithms in its raw form because we 
need to integrate and aggregate data available in different formats. Apart from 
that, there may also be errors and inconsistencies. Format conversion and data 
cleaning are core to this step. Data anonymization is also an issue to consider 
when the data includes sensitive personal details.

A. Kasimati et al.
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	4.	 Analyze: Several data analysis methods can be considered depending on the 
problem. In this context, a discussion of different kinds of Big Data analytics is 
applicable. An outline of the different types of data analytics is provided below:

–– Descriptive analytics focus on answering questions about who, where, what, 
when, and how many.

–– Diagnostic analytics is concerned with responding to queries about why 
something happened.

–– Predictive analytics investigates and identifies trends in relationships between 
variables, determines the degree of relationships’ correlation, and hypothe-
sizes causality.

–– Prescriptive analytics focuses on investigating future scenarios and attempts 
to give answers to what-if questions and subsequently propose courses of 
relevant actions. Machine learning models based on Big Data play a signifi-
cant role in this endeavor as they allow the prediction of outcomes consider-
ing a range of variables.

	5.	 Interpretation of data analysis results: Once you have the data and understand 
it, what can you do with it? The final step is about making decisions and taking 
action regarding problem-solving. To successively do so, developing an under-
standing of analysis outcomes is necessary. Results’ reports and visualizations 
have the potential to facilitate data-driven insights and, thus, inform problem-
solving actions.

The scientific discourse on Big Data goes hand in hand with the extraction of value. 
As Gandomi and Haider (2015) characteristically point out, “the potential value of 
Big Data is only unlocked when leveraged to drive decision making.” Yet, to “enable 
evidence-based decision making, there is a need for efficient processes to turn high 
volumes of fast-moving and diverse data into meaningful insights” (Gandomi & 
Haider, 2015). This is the exact point at which Big Data analytics comes into play. 
Exactly like in the case of Big Data, there are several definitions of Big Data analyt-
ics found in the literature. A brief review of this reveals that the term focuses on 
applying fit-for-purpose analysis methods and tools tailored to the particular char-
acteristics and properties of Big Data. Starting from the need to solve a problem, the 
intention is to acquire actionable insights and knowledge to support decision-
making and arrive at a problem solution. However, the extraction of knowledge 
from Big Data is not a one-step process. It involves multiple interconnected steps 
needed to be executed, most of the time, in an iterative fashion until outcomes are 
reached. This chain of Big Data analysis-related tasks is illustrated in a straightfor-
ward manner in a definition, according to which (Big) data analytics is “the process 
of extracting, transforming, loading, modeling, and drawing conclusions from data 
for decision-making.”

It is important to investigate how existing Big Data analytics methods fit with 
agricultural Big Data and the knowledge needs they are collected for. According to 
Coble et al. (2018), machine learning, artificial neural networks (ANNs), decision 
trees, and clustering are some methods and tools that can be exploited for 
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agricultural Big Data analysis purposes. For example, by utilizing available weather 
data, machine learning can be exploited for building weather forecasting models 
aiming to support decision-making by farmers. Other machine learning applications 
are linked to crop disease protection and crop yield prediction and selection. 
Clustering methods (e.g., K-nearest neighbors), decision trees, and ANN models 
can also facilitate crop yield prediction and selection. Irrigation-related models 
(built upon rainfall and water level predictions) and price prediction models (based 
on crop production outputs, input cost changes, market demand and supply, market 
price trends, wages, and costs of cultivation, transportation, and marketing) can also 
be built with the help of ANNs. Kamilaris et al. (2017) contribute to the discussion 
on the potential use of Big Data analytics in agriculture by linking specific sectors 
to agricultural Big Data sources and Big Data analytics (Kamilaris et al., 2017). 
Machine learning methods and tools, such as clustering, decision trees, support vec-
tor machines, logistic regression, and artificial neural networks, are prominent with 
applications in weather and climate change, land use, weed control, animal research, 
crops and soils, and food security and availability. Analytics tailored to geospatial 
data is core to the sectors of remote sensing, food security and availability, and 
weather and climate change. In addition to the above, interesting use cases for 
advanced image recognition and processing concerning weed control, remote sens-
ing, and land use-related applications can be found.

9.2.4 � Machine Learning

Machine learning (ML) is a branch of computer science, an application of artificial 
intelligence, which gives computers the ability to learn without being explicitly 
programmed. It can be used to construct various mathematical algorithms to exploit 
the potential value of Big Data, which makes learning possible.

Machine learning is comprised of a two-step process. The first process involves 
the machine “learning” the input data, and in the second process, the machine trans-
lates and analyzes both the input and output data. This leads to the creation of 
machine algorithms that then construct a system model to predict future values.

9.2.4.1 � Types of Machine Learning Algorithms

There are three types of machine learning algorithms:

	1.	 Supervised learning (SL): When input and output variables are provided, learn-
ing becomes supervised. In this type of ML, the algorithm uses various training 
examples, and the machine analyzes the inputs and corresponding outputs. More 
widely used SL algorithms include artificial neural networks, decision trees, 
K-means clustering, support vector machines, and Bayesian networks. SL is fur-
ther divided into two subparts, regression and classification, as explained below.
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Regression: The output data can be continuous (i.e., in the range of 0–5000) or 
percentage-wise. Let’s take the example of predicting downy mildew disease in 
vineyards and approaching this as a simple regression problem. Based on the 
agronomic knowledge, humidity is a parameter that escalates the downy mildew 
presence and expansion. Thus, using regression analysis, we can correlate the 
severity of disease presence to the air humidity measurements. Data from previ-
ous years will provide humidity measurements (x) and disease presence (y). So, 
a function y = f(x) will be established considering a specific regression order that 
shows how accurately we fit the regression to our reference data x, y. Based on 
the relevance of the new input humidity measurements (xi) and the regression 
order, we can predict the severity of the disease (yi).
Classification: The output data is in discrete form, i.e., 0, 1, 2, but it should not 
be a fraction. Using the example of apple scab disease, we assign images of 
healthy leaves to class 0 and images of infested leaves to class 1, when using 
cameras to detect the problematic areas (Fig. 9.2). The classifier in this example 
is the k-nearest neighbor (k-NN). Each image is accompanied by a set of fea-
tures, in most cases (i) color features, (ii) shape features, and (iii) texture fea-
tures. Considering that apple scab appears as visible color anomalies on leaves, 
we expect major differences in color features during the classification process.
Consequently, in the training phase, we defined a set of features associated with 
healthy apple leaves (class 0) and apple scab leaves (class 1). So, in every new 
apple image of an unknown class, the features are calculated, and this observa-
tion will be placed on the feature map. We consider a 2D feature plane with a 
y-axis for color features and an x-axis for shape features. Depending on the 
k-nearest features (k = 1 in the example), the new observation is assigned either 
in class 0 or 1, based on its proximity to the already known classes (dmin).

	2.	 Unsupervised learning (UL): Here, we provide data whose input is known but 
whose output is unknown. Techniques such as clustering, which groups data into 

Fig. 9.2  k-nearest neighbor classification example
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separate classes, are popular in this analysis. More widely used UL algorithms 
are self-organizing map (SOM), partial-based, hierarchical, K-means, COBWEB, 
and density-based spatial clustering. Applications using UL detect anomalies 
that do not fit any group or segmented datasets by some shared attributes. For 
example, DBSCAN is a clustering method that employs density and topology 
information to segment vegetation pixels from bare soil pixels in many agricul-
ture vision applications.

	3.	 Reinforcement learning (RL): This is a special type of machine learning that 
focuses on learning through penalties and rewards. It is mostly implemented in 
video games and robotics. The learning process for RL is based on the principle 
of feedback. The idea is that every action impacts the system, which is then 
reported back to the algorithm, modifying its behavior. Exposing the fundamen-
tal concept of this method used in orchard and vineyard farming, many agricul-
ture robots learn from mistakes such as colliding with obstacles or failing to pick 
fruit through penalty scores. At the same time, they figure out the shortest path 
to bypass obstacles or grab a fruit with the minimum number of motions through 
rewarding optimum practices.

All the methods mentioned above constitute different approaches to increasing 
the intelligence of a computing system. Another term often used in the artificial 
intelligence world is deep learning (DL). DL is a subset of machine learning and 
refers to the computer software technique that mimics the network of neurons in a 
brain. Deep learning co-exists with the learning methods listed above but offers 
great advantages in feature extraction and prediction accuracy.

9.2.4.2 � Application Domains

ML provides a powerful and flexible framework for data-driven decision-making 
and the incorporation of expert knowledge into the system. These are some of the 
key characteristics of the ML techniques that make them widely used in many 
domains and highly applicable to precision agriculture (Chlingaryan et al., 2018).

Covering a large portion of ML applications in agriculture, a recent study indi-
cated (i) crop management, including applications for yield prediction, disease and 
weed detection, crop quality, and species recognition; (ii) water management; and 
(iii) soil management as the most important categories in the farm management 
cycle (Liakos et al., 2018). The following section will showcase ML applications 
covering the categories that play a crucial role in the orchard and vineyard produc-
tion cycle.

For yield prediction purposes, a study on coffee trees employed 42 color features 
in digital images and supervised learning methods to count the fruits on the branches 
and provide information on the maturity stage and weight in each measurement 
(Ramos et al., 2017). Another approach focusing on yield prediction in apples with 
unsupervised learning offered promising results by considering the driving factors 
affecting yields, such as soil texture (clay and sand content), soil electrical conduc-
tivity (EC), and potassium (K), phosphorus (P), organic matter (OM), calcium (Ca), 
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and zinc (Zn) content (Papageorgiou et  al., 2013). In grapevines, a 3D imaging 
technique combined with ML managed to estimate the yield accurately before rip-
ening with 98% accuracy and 96% during ripening (Dey et al., 2012).

As far as disease detection is concerned, ML has found fertile ground in many 
applications related to detecting diseased leaves and fruits accurately. Color cam-
eras provide useful color, shape, and textural information that allow the ML classi-
fiers to decide if the content of an image belongs to the healthy or diseased class. 
But what happens when the visible spectrum cannot reveal evidence of disease? 
Multispectral, hyperspectral, and thermal cameras provide more sophisticated 
information on the crop reflectance, allowing the effective detection of diseases 
even at the presymptomatic stage when disease stress is not visible to the naked eye. 
Such research concepts are tested in diseased crops, including citrus (Sankaran & 
Ehsani, 2013), banana, lemon, and mango (Arivazhagan et al., 2013), and downy 
mildew and black rot diseases in grapevines (Waghmare et al., 2016). However, the 
unstructured field environment challenges the field deployment of such computer 
vision techniques. Fruit occlusion and poor lighting conditions are the major prob-
lems that vision-based systems are suffering.

Crop quality is another application domain of ML that facilitates the accurate 
crop status assessment. For example, unsupervised learning techniques utilized soil 
data (e.g., electric conductivity) and NDVI measurements to estimate grape quality 
and effectively delineate into separate farm management zones (Tagarakis et  al., 
2013). In pear orchards, hyperspectral imaging and supervised learning techniques 
were used to discriminate deciduous-calyx pears (high quality) from persistent-
calyx pears (low quality) (Hu et al., 2017).

Regarding water management in orchards and vineyards, several studies have 
been conducted to estimate daily, weekly, and monthly evapotranspiration. This is a 
complex process that requires sufficient water resource management and the effec-
tive design of irrigation systems. ML techniques are ideal tools for understanding 
patterns and sequences of meteorological data; thus, two studies used temperature 
records from 1961 to 2014 (Feng et al., 2017) and 1951 to 2010 (Mehdizadeh et al., 
2017) to estimate evapotranspiration. Finally daily dew point temperature is an 
important element for identifying expected weather phenomena, so a relevant study 
employed ML techniques to estimate daily dew temperature, having two local 
weather stations as a source of input data (Mohammadi et al., 2015).

Finally, soil properties such as soil drying, condition, temperature, and moisture 
content are pivotal elements of the production cycle, while the mechanisms and 
processes are difficult to be determined. ML has proven to be a promising tool in 
identifying the soil status since soil measurements are generally time-consuming 
and expensive for mapping the soil properties in large-scale vineyards and orchards. 
One notable study managed to estimate the daily soil temperature at six different 
soil depths of 5, 10, 20, 30, 50, and 100 cm (Nahvi et  al., 2016), while another 
research used ML techniques to predict soil moisture only from the force data 
derived from tillage machines and the working speed (Johann et al., 2016).
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9.3 � Decision-Making and Intervention

In data-driven agriculture, high-quality data is the most valuable currency in the 
sector. Producers need an enormous amount of information to enable efficient plan-
ning and decision-making throughout the entire growing season. Nutrient deficien-
cies, water stress, and disease occurrence can be effectively managed during the 
growing season (Usha & Singh, 2013). These problems can be solved with constant 
data sources that provide valuable information on crop health and stress, nutrient 
requirements, and infestation threat levels. However, the challenging aspect of the 
agricultural sector is that data loses value the later it becomes available. Decisions 
such as disease control or inputs application require utmost accuracy in their timing, 
with a miss of a few days resulting in major losses in the final yield. Therefore, 
agricultural decision-makers at all levels need an increasing amount of information 
to better understand the possible outcomes of their decisions and to assist them in 
developing plans and policies that meet their goals.

Many decision support systems (DSS) have been developed, and farmers have 
shown great interest in limiting uncertainty in decision-making (Stone & Hochman, 
2004). However, DSS-related “problem of implementation” remains in many cases 
because of the “lack of sustained use in a way that influences practice” (McCown, 
2012). Factors that may influence the implementation of a DSS in agriculture 
include profitability, user-friendly design, the time requirement for DSS usage, 
credibility, adaptation of the DSS to the farm situation, information update, and 
level of knowledge of the user (Kerr, 2004).

Even though most of the technical problems related to DSS (farmer’s access and 
connectivity issues) have been solved during the past few years (Rossi et al., 2014), 
the following restrictions remain and could be the next challenge for the future 
developers of agricultural DSS: (a) they often fail to see crop production holisti-
cally, and most DSS is problem-specific; (b) they have poor quality because of 
insufficient validation; (c) they could be more user-friendly; (d) they are time-
consuming, because of delays in data processing or complex input requirements; (e) 
information is sometimes delivered to users asynchronously related to decision-
making timing and the need for action; (f) there is a need for constant maintenance 
and updates; (g) they have low capacity of modification and customization; and (h) 
they often describe a result as the optimal solution which is discouraging to the 
farmer who usually wants to take part in the decision-making process.

9.3.1 � Agricultural Decision Support Systems (DSS)

Agri-information systems can be defined as a system for collecting, processing, 
storing, and disseminating data in the form needed to carry out a farm’s operations 
and functions or providing farmers with valuable information to support decision-
making and farm management. Agricultural decision support systems (DSS) are 
computing systems that help decision-makers leverage field data and agronomical 
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models to solve problems and develop carefully planned strategies to meet their 
production targets. Sophisticated DSS aims to improve the performance of agricul-
tural production units by analyzing enormous volumes of information and translat-
ing it into complex decisions that often cannot be made by human means.

Spatial DSS (SDSS) are computer-based systems designed to solve complex 
problems related to multiple parameters that demonstrate spatial variability. 
Typically, an SDSS consists of a geo-informatic system (GIS) and a DSS. Geospatial 
cyber-infrastructure (GCI) is the most current version of a DSS, using data resources, 
network protocols, computing platforms, and computational services. They support 
functionalities such as data acquisition, storage, management, and integration of 
both static (e.g., pedology, geology) and dynamic data (e.g., daily climate), data 
visualization, and on-the-fly computer applications (such as those enabling simula-
tion modeling for the determination of water stress), all potentially accessible via 
the web (Terribile et al., 2017).

In general terms, most DSS used in agriculture have similar basic architecture:

•	 Collection, organization, and integration of several types of information required 
for producing a crop or describing complex multifactorial processes in agricul-
tural units. Data is entered either from the farmer, via the web, which provides 
site-specific information, for each field decision unit, or obtained automatically 
(often in real time) by sensors positioned on the farm. In general, these data may 
include cropping and plant parameters (dimensions, growth stage, reflection of 
light in certain frequencies), field data (altitude, sun exposure), soil data (dynam-
ics, temperature, water, nitrogen, salinity, carbon balance), climate data (tem-
perature, humidity, rainfall, direction and strength of wind), and farm management 
practices (irrigation, fertilization, pest control).

•	 All this information is then analyzed and processed, usually by a server, as part 
of a web infrastructure in most cases that provides output to the farmer to support 
his field management. The processing and interpretation of the data are facili-
tated through crop models, classified as either empirical/statistical or dynamic. 
Empirical models usually exploit the statistical relationship between all param-
eters mentioned above; they are computationally demanding (e.g., regressions) 
and are widely accepted (Terribile et  al., 2017). However, they have various 
weak points, such as the high level of calibration required (when applied to a new 
environment). Most importantly, they do not address the nonlinear relationships 
between plant and environmental factors. On the other hand, dynamic models 
attempt to solve the nonlinear relationships and allow for greater generalization 
of crop growth processes and, consequently, a better adaptation to new environ-
ments and an overall much better performance. Generally, dynamic models sim-
ulate plant growth development daily and consider site features at specific 
locations (Terribile et al., 2017).

•	 After processing and interpretation, depending on the type of the DSS, it may 
recommend the most appropriate action or action choices. Depending on the type 
and specificity of the DSS, these suggestions could concern (a) planting dates 
based on soil and weather conditions; (b) harvest dates based on maturity, along 
with soil and weather conditions; (c) daily irrigation based on daily values or soil 
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water depletion; (d) fertilizer additions, based on read-in values or automatic 
conditions; (e) application of residues and other organic materials (plant, ani-
mal); (f) prevention steps if disease risk is detected; and (g) both daily opera-
tional and long-range farm-related strategic decisions.

9.3.2 � Types of Agricultural DSS

9.3.2.1 � Irrigation DSS

Regulated deficit irrigation (RDI) is a strategy in which water is saved by reducing 
or completely restricting irrigation at certain crop growth stages to control the 
growth of shoots. This technique has been widely used for many decades to increase 
the quality of fruit yields; however, its application in drought-sensitive orchards car-
ries the risk of imposing too much water stress. For this reason, DSS is often used 
when such practices are adopted to ensure that no critical mistakes occur when 
accuracy matters the most. Marsal and Stöckle (2012) carried out an experimental 
pilot to test the efficiency of CropSyst in a pear orchard where an RDI program was 
applied. The model performed exceptionally well, especially for the period after 
applying deficit irrigation (Marsal & Stöckle, 2012). In 2012, Peets et al. described 
the development and validation process of a GIS-based SDSS for precision irriga-
tion management of tree crops. Their system combined crop growth data generated 
by various field sensors under environmental conditions and irrigation regimes in 
orchards with abiotic soil, elevation, and climatic data to construct a site-specific 
orchard irrigation DSS.

9.3.2.2 � Fertilization DSS

Excessive use of fertilizers has both environmental and economic impacts. The 
farmer spends money without improving his yield, and increased concentrations of 
nutrients in the soil often cause phytotoxicity, which leads to yield decrease and 
quality degradation. On the other end, the under-application of fertilizers does not 
allow the crops to reach their maximum productivity since available nutrients are 
not sufficient for their needs. Both cases result in low nitrogen use efficiency.

Fertilization DSS is based on agricultural models after vigorous tests on a large 
number of fertilization experiments for each crop type. Therefore, the ability to 
estimate the optimal application rates and dosages for each fertilizer application is 
essential for efficient farm management (Papadopoulos et  al., 2011). Figure  9.3 
shows a commercial application of a crop management platform and a decision sup-
port system with the proposed variable rate fertilization that can be visualized.
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Fig. 9.3  A pH soil map of a vineyard (top image) and a “Precision Farming Project” suggesting 
variable rate fertilization of the field (bottom image), as suggested by ABACO’s SITI4farmer DSS

9.3.2.3 � Pest Management DSS

The pest control methods and timing require deep knowledge of pests and the mech-
anisms that affect their spreading, setting pest DSS as an essential part of pest man-
agement programs. Advanced integrated pest management (IPM) programs require 
complex tactical decisions for planning and execution. Agrochemicals are often 
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applied when there is no actual infestation and when the farmer decides when to 
spray. Therefore, knowledge derived from field data is needed to enable accurate 
decisions on pest management.

9.3.3 � Examples of DSS in Agriculture

Many new technologies have been developed for or adapted to agricultural use in 
the last 30 years. The most recent information systems that support agriculture deci-
sions allow the segregation of minor differences, both objective and statistically 
significant. Existing tools are even now designed to better manage crop adaptation 
between different parcels, focusing on the variability within the parcel. Many of 
these processing systems have been initialized in the framework of research proj-
ects, but they are often transformed into commercial services offered to single farms.

DSSAT (Decision Support System for Agrotechnology Transfer) is a software 
application program for simulating crop models which incorporates models for 42 
different crops, in constant development, since its beginning as a research program. 
It has a modular structure with multiple components, including soil, crop, water, 
weather, soil-plant-atmosphere competition, management, pest control module, etc.

Many DSS have been developed especially for vineyard management, research, 
and commercial purposes. Vite.net is a research project in Italy developed for the 
sustainable management of vineyards and is intended for the vineyard manager 
(Rossi et al., 2014). The DSS consists of two main parts: (i) an integrated system for 
real-time monitoring of vineyard components (air, soil, plants, pests, and diseases) 
and (ii) a web-based tool that analyzes these data by using advanced modeling tech-
niques and then provides up-to-date information for managing the vineyard in the 
form of alerts and decision supports. GeoVit (Terribile et al., 2017), developed as a 
GCI, may provide an important web-based operational tool for high-quality viticul-
ture as it better connects the farm and landscape levels. It supports the acquisition, 
management, and processing of static and dynamic data, data visualization, and 
computer applications to perform simulation modeling, all potentially accessible 
via the web. The NAV (Network Avanzato per il Vigneto  – Advanced Vineyard 
Network) system is a wireless sensor network (WSN) designed and developed for 
remote real-time monitoring and collecting micro-meteorological parameters in a 
vineyard. VineSens is a hardware and software platform for supporting pest man-
agement decision-making. Using a WSN and epidemiological models can predict 
and prevent diseases, most usually faced by vine growers, such as downy mildew. In 
commercial services, several companies offer solutions for monitoring and manag-
ing vineyards, combining hardware and software with most of them provided and 
supported through web-based platforms, such as VintiOS, a precision viticulture 
software, supporting vine growers and oenologists on the grapevine production and 
quality.
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9.4 � Discussion and Conclusions

This chapter presented an overview of farm management information system 
(FMIS) principles that integrate sensing, data management and analysis, and 
decision-making to automate the operation and management of modern orchards 
and vineyards. It investigated how existing emerging technologies, such as Big Data 
analytics methods and machine learning, fit with agricultural Big Data for tree fruit 
orchards and vineyards and the knowledge needs for which they are collected.

Farmers need an effective way to manage large volumes of information and tech-
nological tools to assist them in making year-round optimal and sustainable deci-
sions. The integration of a variety of data into a coherent management information 
system is the solution. Farm management information systems support the collec-
tion, processing, and storage of data in a form that enables accurate scheduling and 
execution of farming operations or provides farmers with valuable information to 
support decision-making. The availability of farm-level sensors and other precision 
agriculture technologies has changed the management of many farming systems. 
Nowadays, FMIS has increased in sophistication through the development and inte-
gration of new technologies and advances in hardware and software capabilities of 
mobile phones. Web- and app-based applications enable real-time data recording 
and automated data transfer. Several technologies directly linked to smart farming 
can also be used for data transmission, processing, and storage.

References

Ampatzidis, Y., Tan, L., Haley, R., & Whiting, M.  D. (2016). Cloud-based harvest manage-
ment information system for hand-harvested specialty crops. Computers and Electronics in 
Agriculture, 122, 161–167. https://doi.org/10.1016/j.compag.2016.01.032

Arivazhagan, S., Shebiah, R. N., Ananthi, S., & Vishnu Varthini, S. (2013). Detection of unhealthy 
region of plant leaves and classification of plant leaf diseases using texture features. Agricultural 
Engineering International: CIGR Journal, 15(1), 211–217.

Aubert, B. A., Schroeder, A., & Grimaudo, J. (2012). IT as enabler of sustainable farming: An 
empirical analysis of farmers’ adoption decision of precision agriculture technology. Decision 
Support Systems, 54(1), 510–520. https://doi.org/10.1016/j.dss.2012.07.002

Barrett, B., Nitze, I., Green, S., & Cawkwell, F. (2014). Assessment of multi-temporal, multi-
sensor radar and ancillary spatial data for grasslands monitoring in Ireland using machine 
learning approaches. Remote Sensing of Environment, 152, 109–124. https://doi.org/10.1016/j.
rse.2014.05.018

Berger, C., & Laurent, F. (2019). Trunk injection of plant protection products to protect trees from 
pests and diseases. Crop Protection, 124, 104831. https://doi.org/10.1016/j.cropro.2019.05.025

Cardín-Pedrosa, M., & Alvarez-López, C.  J. (2012). Model for decision-making in agricultural 
production planning. Computers and Electronics in Agriculture, 86, 131–139. https://doi.
org/10.1016/j.compag.2011.12.004

Chauvin, M. A., Whiting, M., & Ross, C. F. (2009). The influence of harvest time on sensory prop-
erties and consumer acceptance of sweet cherries. HortTechnology, 19(4), 748–754. https://doi.
org/10.21273/hortsci.19.4.748

9  Management Information Systems and Emerging Technologies

https://doi.org/10.1016/j.compag.2016.01.032
https://doi.org/10.1016/j.dss.2012.07.002
https://doi.org/10.1016/j.rse.2014.05.018
https://doi.org/10.1016/j.rse.2014.05.018
https://doi.org/10.1016/j.cropro.2019.05.025
https://doi.org/10.1016/j.compag.2011.12.004
https://doi.org/10.1016/j.compag.2011.12.004
https://doi.org/10.21273/hortsci.19.4.748
https://doi.org/10.21273/hortsci.19.4.748


216

Chi, M., Plaza, A., Benediktsson, J. A., Sun, Z., Shen, J., & Zhu, Y. (2016). Big Data for remote 
sensing: Challenges and opportunities. Proceedings of the IEEE, 99, 1–13. https://doi.
org/10.1109/JPROC.2016.2598228

Chlingaryan, A., Sukkarieh, S., & Whelan, B. (2018). Machine learning approaches for crop yield 
prediction and nitrogen status estimation in precision agriculture: A review. Computers and 
Electronics in Agriculture, 151, 61–69. https://doi.org/10.1016/J.COMPAG.2018.05.012

Coble, K. H., Mishra, A. K., Ferrell, S., & Griffin, T. (2018). Big Data in agriculture: A chal-
lenge for the future. Applied Economic Perspectives and Policy, 40(1), 79–96. https://doi.
org/10.1093/aepp/ppx056

De Mauro, A., Greco, M., & Grimaldi, M. (2016). A formal definition of Big Data based on its 
essential features. Library Review, 65(3), 122–135. https://doi.org/10.1108/LR-06-2015-0061

Dey, D., Mummert, L., & Sukthankar, R. (2012). Classification of plant structures from uncali-
brated image sequences. In Proceedings of IEEE workshop on applications of computer vision 
(pp. 329–336). IEEE. https://doi.org/10.1109/WACV.2012.6163017

Feng, Y., Peng, Y., Cui, N., Gong, D., & Zhang, K. (2017). Modeling reference evapotranspiration 
using extreme learning machine and generalized regression neural network only with tem-
perature data. Computers and Electronics in Agriculture, 136, 71–78. https://doi.org/10.1016/j.
compag.2017.01.027

Firican, G. (2017). The 10 vs of Big Data. Transforming Data With Intelligence.
Fountas, S., Carli, G., Sørensen, C. G., Tsiropoulos, Z., Cavalaris, C., Vatsanidou, A., et al. (2015a). 

Farm management information systems: Current situation and future perspectives. Computers 
and Electronics in Agriculture, 115, 40–50. https://doi.org/10.1016/j.compag.2015.05.011

Fountas, S., Sorensen, C. G., Tsiropoulos, Z., Cavalaris, C., Liakos, V., & Gemtos, T. (2015b). 
Farm machinery management information system. Computers and Electronics in Agriculture, 
110, 131–138. https://doi.org/10.1016/j.compag.2014.11.011

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big Data concepts, methods, and analytics. 
International Journal of Information Management, 35(2), 137–144. https://doi.org/10.1016/j.
ijinfomgt.2014.10.007

George, G., Haas, M.  R., & Pentland, A. (2014). Big Data and management. Academy of 
Management Journal, 59(5), 1493–1507. https://doi.org/10.5465/amj.2014.4002

Hai, R., Geisler, S., & Quix, C. (2016). Constance: An intelligent data lake system. In Proceedings 
of the ACM SIGMOD international conference on management of data. https://doi.
org/10.1145/2882903.2899389.

Hu, H., Pan, L., Sun, K., Tu, S., Sun, Y., Wei, Y., & Tu, K. (2017). Differentiation of deciduous-
calyx and persistent-calyx pears using hyperspectral reflectance imaging and multivariate 
analysis. Computers and Electronics in Agriculture, 137, 150–156. https://doi.org/10.1016/j.
compag.2017.04.002

Husemann, C., & Novkovic, N. (2014). Farm management information systems: A case study 
on a German multifunctional farm. Ekonomika Poljoprivrede, 61(2), 441–453. https://doi.
org/10.5937/ekopolj1402441h

Johann, A. L., de Araújo, A. G., Delalibera, H. C., & Hirakawa, A. R. (2016). Soil moisture model-
ing based on stochastic behavior of forces on a no-till chisel opener. Computers and Electronics 
in Agriculture, 121, 420–428. https://doi.org/10.1016/j.compag.2015.12.020

Kaloxylos, A., Groumas, A., Sarris, V., Katsikas, L., Magdalinos, P., Antoniou, E., et al. (2014). 
A cloud-based farm management system: Architecture and implementation. Computers and 
Electronics in Agriculture, 100, 168–179. https://doi.org/10.1016/j.compag.2013.11.014

Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017, December 1). A review on the 
practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 
23–37. https://doi.org/10.1016/j.compag.2017.09.037.

Kerr, D. (2004). Factors influencing the development and adoption of knowledge-based decision 
support systems for small, owner-operated rural businesses. Artificial Intelligence Review, 22, 
127–147. https://doi.org/10.1023/B:AIRE.0000045503.74951.7a

A. Kasimati et al.

https://doi.org/10.1109/JPROC.2016.2598228
https://doi.org/10.1109/JPROC.2016.2598228
https://doi.org/10.1016/J.COMPAG.2018.05.012
https://doi.org/10.1093/aepp/ppx056
https://doi.org/10.1093/aepp/ppx056
https://doi.org/10.1108/LR-06-2015-0061
https://doi.org/10.1109/WACV.2012.6163017
https://doi.org/10.1016/j.compag.2017.01.027
https://doi.org/10.1016/j.compag.2017.01.027
https://doi.org/10.1016/j.compag.2015.05.011
https://doi.org/10.1016/j.compag.2014.11.011
https://doi.org/10.1016/j.ijinfomgt.2014.10.007
https://doi.org/10.1016/j.ijinfomgt.2014.10.007
https://doi.org/10.5465/amj.2014.4002
https://doi.org/10.1145/2882903.2899389
https://doi.org/10.1145/2882903.2899389
https://doi.org/10.1016/j.compag.2017.04.002
https://doi.org/10.1016/j.compag.2017.04.002
https://doi.org/10.5937/ekopolj1402441h
https://doi.org/10.5937/ekopolj1402441h
https://doi.org/10.1016/j.compag.2015.12.020
https://doi.org/10.1016/j.compag.2013.11.014
https://doi.org/10.1016/j.compag.2017.09.037
https://doi.org/10.1023/B:AIRE.0000045503.74951.7a


217

Keogh, M., & Henry M. (2016). The implications of digital agriculture and big data for Australian 
agriculture: April 2016. Australian Farm Institute.

Khan, M. A. U. D., Uddin, M. F., & Gupta, N. (2014). Seven V’s of Big Data understanding Big 
Data to extract value. In Proceedings of the 2014 zone 1 conference of the American society for 
engineering education – Engineering education: Industry involvement and interdisciplinary 
trends (p. 1). ASEE Zone. https://doi.org/10.1109/ASEEZone1.2014.6820689

Liakos, K., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agri-
culture: A review. Sensors, 18(8), 2674.

Marsal, J., & Stöckle, C. O. (2012). Use of CropSyst as a decision support system for schedul-
ing regulated deficit irrigation in a pear orchard. Irrigation Science, 30, 139–147. https://doi.
org/10.1007/s00271-011-0273-5

Matese, A., Di Gennaro, S. F., Zaldei, A., Genesio, L., & Vaccari, F. P. (2009). A wireless sensor 
network for precision viticulture: The NAV system. Computers and Electronics in Agriculture, 
69(1), 51–58. https://doi.org/10.1016/j.compag.2009.06.016

McBratney, A., Whelan, B., Ancev, T., & Bouma, J. (2005). Future directions of precision agricul-
ture. Precision Agriculture, 6, 7–23. https://doi.org/10.1007/s11119-005-0681-8

McCown, R. L. (2012). A cognitive systems framework to inform delivery of analytic support 
for farmers’ intuitive management under seasonal climatic variability. Agricultural Systems, 
105(1), 7–20. https://doi.org/10.1016/j.agsy.2011.08.005

Mehdizadeh, S., Behmanesh, J., & Khalili, K. (2017). Using MARS, SVM, GEP and empiri-
cal equations for estimation of monthly mean reference evapotranspiration. Computers and 
Electronics in Agriculture, 139, 103–114. https://doi.org/10.1016/j.compag.2017.05.002

Mohammadi, K., Shamshirband, S., Motamedi, S., Petković, D., Hashim, R., & Gocic, M. (2015). 
Extreme learning machine-based prediction of daily dew point temperature. Computers and 
Electronics in Agriculture, 117, 214–225. https://doi.org/10.1016/j.compag.2015.08.008

Nahvi, B., Habibi, J., Mohammadi, K., Shamshirband, S., & Al Razgan, O. S. (2016). Using self-
adaptive evolutionary algorithm to improve the performance of an extreme learning machine 
for estimating soil temperature. Computers and Electronics in Agriculture, 124, 150–160. 
https://doi.org/10.1016/j.compag.2016.03.025

Nativi, S., Mazzetti, P., Santoro, M., Papeschi, F., Craglia, M., & Ochiai, O. (2015). Big Data chal-
lenges in building the global earth observation system of systems. Environmental Modelling 
and Software, 68, 1–26. https://doi.org/10.1016/j.envsoft.2015.01.017

Nayak, A., Poriya, A., & Poojary, D. (2013). Type of NOSQL databases and its comparison with 
relational databases. International Journal of Applied Information Systems, 5(4), 16–19.

Nikkilä, R., Seilonen, I., & Koskinen, K. (2010). Software architecture for farm management 
information systems in precision agriculture. Computers and Electronics in Agriculture, 70(2), 
328–336. https://doi.org/10.1016/j.compag.2009.08.013

Papadopoulos, A., Kalivas, D., & Hatzichristos, T. (2011). Decision support system for nitrogen 
fertilization using fuzzy theory. Computers and Electronics in Agriculture, 78(2), 130–139. 
https://doi.org/10.1016/j.compag.2011.06.007

Papageorgiou, E. I., Aggelopoulou, K. D., Gemtos, T. A., & Nanos, G. D. (2013). Yield predic-
tion in apples using Fuzzy Cognitive Map learning approach. Computers and Electronics in 
Agriculture, 91, 19–29. https://doi.org/10.1016/j.compag.2012.11.008

Paraforos, D. S., Vassiliadis, V., Kortenbruck, D., Stamkopoulos, K., Ziogas, V., Sapounas, A. A., & 
Griepentrog, H. W. (2016). A farm management information system using future internet tech-
nologies. IFAC-PapersOnLine, 49(16), 324–329. https://doi.org/10.1016/j.ifacol.2016.10.060

Paraforos, D. S., Vassiliadis, V., Kortenbruck, D., Stamkopoulos, K., Ziogas, V., Sapounas, A. A., 
& Griepentrog, H. W. (2017). Multi-level automation of farm management information sys-
tems. Computers and Electronics in Agriculture, 142, 504–514. https://doi.org/10.1016/j.
compag.2017.11.022

Peets, S., Mouazen, A. M., Blackburn, K., Kuang, B., & Wiebensohn, J. (2012). Methods and pro-
cedures for automatic collection and management of data acquired from on-the-go sensors with 

9  Management Information Systems and Emerging Technologies

https://doi.org/10.1109/ASEEZone1.2014.6820689
https://doi.org/10.1007/s00271-011-0273-5
https://doi.org/10.1007/s00271-011-0273-5
https://doi.org/10.1016/j.compag.2009.06.016
https://doi.org/10.1007/s11119-005-0681-8
https://doi.org/10.1016/j.agsy.2011.08.005
https://doi.org/10.1016/j.compag.2017.05.002
https://doi.org/10.1016/j.compag.2015.08.008
https://doi.org/10.1016/j.compag.2016.03.025
https://doi.org/10.1016/j.envsoft.2015.01.017
https://doi.org/10.1016/j.compag.2009.08.013
https://doi.org/10.1016/j.compag.2011.06.007
https://doi.org/10.1016/j.compag.2012.11.008
https://doi.org/10.1016/j.ifacol.2016.10.060
https://doi.org/10.1016/j.compag.2017.11.022
https://doi.org/10.1016/j.compag.2017.11.022


218

application to on-the-go soil sensors. Computers and Electronics in Agriculture, 81, 104–112. 
https://doi.org/10.1016/j.compag.2011.11.011

Pivoto, D., Waquil, P. D., Talamini, E., Finocchio, C. P. S., Dalla Corte, V. F., & de Vargas Mores, 
G. (2018). Scientific development of smart farming technologies and their application in Brazil. 
Information Processing in Agriculture, 5(1), 21–32. https://doi.org/10.1016/j.inpa.2017.12.002

Ramos, P. J., Prieto, F. A., Montoya, E. C., & Oliveros, C. E. (2017). Automatic fruit count on 
coffee branches using computer vision. Computers and Electronics in Agriculture, 137, 9–22. 
https://doi.org/10.1016/J.COMPAG.2017.03.010

Rodriguez, D., de Voil, P., Rufino, M. C., Odendo, M., & van Wijk, M. T. (2017). To mulch or to 
munch? Big modelling of Big Data. Agricultural Systems, 153, 32–42. https://doi.org/10.1016/j.
agsy.2017.01.010

Rossi, V., Salinari, F., Poni, S., Caffi, T., & Bettati, T. (2014). Addressing the implementation 
problem in agricultural decision support systems: The example of vite.net®. Computers and 
Electronics in Agriculture, 100, 88–99. https://doi.org/10.1016/j.compag.2013.10.011

Sankaran, S., & Ehsani, R. (2013). Comparison of visible-near infrared and mid-infrared spec-
troscopy for classification of Huanglongbing and citrus canker infected leaves. Agricultural 
Engineering International: CIGR Journal, 15, 75–79.

Sørensen, C. G., Fountas, S., Nash, E., Pesonen, L., Bochtis, D., Pedersen, S. M., & Blackmore, 
S. B. (2010). Conceptual model of a future farm management information system. Computers 
and Electronics in Agriculture, 72(1), 37–47. https://doi.org/10.1016/j.compag.2010.02.003

Srinivasan, A. (2006). Handbook of precision agriculture: Principles and applications. The 
Haworth Press.

Stone, P., & Hochman, Z. (2004). If interactive decision support systems are the answer, have we 
been asking the right questions. In Proceedings of the international crop science congress. The 
Regional Institute Ltd.

Tagarakis, A., Liakos, V., Fountas, S., Koundouras, S., & Gemtos, T. A. (2013). Management zones 
delineation using fuzzy clustering techniques in grapevines. Precision Agriculture, 14, 18–39. 
https://doi.org/10.1007/s11119-012-9275-4

Tamirat, T. W., & Pedersen, S. M. (2019). Precision irrigation and harvest management in orchards: 
An economic assessment. Journal of Central European Agriculture, 20(3), 1009–1022. https://
doi.org/10.5513/JCEA01/20.3.2160

Terribile, F., Bonfante, A., D’Antonio, A., De Mascellis, R., De Michele, C., Langella, G., et al. 
(2017). A geospatial decision support system for supporting quality viticulture at the land-
scape scale. Computers and Electronics in Agriculture, 140, 88–102. https://doi.org/10.1016/j.
compag.2017.05.028

Tiwari, S. (2011). Professional NoSQL. Wiley.
Tozer, P. R. (2009). Uncertainty and investment in precision agriculture – Is it worth the money? 

Agricultural Systems, 100(1–3), 80–87. https://doi.org/10.1016/j.agsy.2009.02.001
Tsiropoulos, Z., & Fountas, S. (2015). Farm management information system for fruit orchards. 

Precision agriculture 2015 – Papers presented at the 10th European conference on precision 
agriculture, ECPA. https://doi.org/10.3920/978-90-8686-814-8_53

Usha, K., & Singh, B. (2013). Potential applications of remote sensing in horticulture-A review. 
Scientia Horticulturae, 153, 71–83. https://doi.org/10.1016/j.scienta.2013.01.008

Vermesan, O., & Friess, P. (2016). Digitising the industry – Internet of things connecting the physi-
cal, digital and virtual worlds. River Publishers. https://doi.org/10.13052/rp-9788793379824

Waghmare, H., Kokare, R., & Dandawate, Y. (2016). Detection and classification of diseases of 
Grape plant using opposite colour Local Binary Pattern feature and machine learning for auto-
mated Decision Support System. In 2016 3rd International conference on Signal Processing 
and Integrated Networks (SPIN) (pp. 513–518). IEEE.

Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017, May 1). Big Data in smart farming – A 
review. Agricultural Systems, 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023.

A. Kasimati et al.

https://doi.org/10.1016/j.compag.2011.11.011
https://doi.org/10.1016/j.inpa.2017.12.002
https://doi.org/10.1016/J.COMPAG.2017.03.010
https://doi.org/10.1016/j.agsy.2017.01.010
https://doi.org/10.1016/j.agsy.2017.01.010
https://doi.org/10.1016/j.compag.2013.10.011
https://doi.org/10.1016/j.compag.2010.02.003
https://doi.org/10.1007/s11119-012-9275-4
https://doi.org/10.5513/JCEA01/20.3.2160
https://doi.org/10.5513/JCEA01/20.3.2160
https://doi.org/10.1016/j.compag.2017.05.028
https://doi.org/10.1016/j.compag.2017.05.028
https://doi.org/10.1016/j.agsy.2009.02.001
https://doi.org/10.3920/978-90-8686-814-8_53
https://doi.org/10.1016/j.scienta.2013.01.008
https://doi.org/10.13052/rp-9788793379824
https://doi.org/10.1016/j.agsy.2017.01.023

	Chapter 9: Management Information Systems and Emerging Technologies
	9.1 Introduction
	9.1.1 Farm Management Information Systems for Crop Production
	9.1.1.1 Historical Overview
	9.1.1.2 FMIS for Precision Agriculture
	9.1.1.3 FMIS Adoption and Profitability

	9.1.2 Applications for Tree Fruit Orchards and Vineyards
	9.1.2.1 Pest Control Information Systems
	9.1.2.2 Irrigation Management Information Systems
	9.1.2.3 Harvest Management Information Systems


	9.2 Big Data in the Emerging Technologies
	9.2.1 Sensing and Monitoring
	9.2.2 Data Management
	9.2.3 Big Data Analytics
	9.2.4 Machine Learning
	9.2.4.1 Types of Machine Learning Algorithms
	9.2.4.2 Application Domains


	9.3 Decision-Making and Intervention
	9.3.1 Agricultural Decision Support Systems (DSS)
	9.3.2 Types of Agricultural DSS
	9.3.2.1 Irrigation DSS
	9.3.2.2 Fertilization DSS
	9.3.2.3 Pest Management DSS

	9.3.3 Examples of DSS in Agriculture

	9.4 Discussion and Conclusions
	References




