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Chapter 8
Autonomous Platforms

Jeremy J. H. Karouta and Angela Ribeiro

Abstract In this chapter, we discuss how robotics is used in precision agriculture 
for orchards and vineyards to automate and simplify tasks. We focus on the aspects 
required for a system to function autonomously and less on the actual task. Topics 
include ways in which platforms track their positions, such as GPS; what types of 
sensors are generally used on top of location; and how this data is used for decision- 
making and human safety within the navigation and mobility concept. We also dis-
cuss other high-level topics, such as path planning and optimization and fleet 
management, to explain the necessary aspects that play behind the scenes. Lastly, 
we present an overview of existing commercial and emerging technologies for 
applications in orchards and vineyards.

8.1  Introduction

As more and more sensing, perception, and actuation applications emerge in the 
fields discussed in previous chapters, it is becoming more difficult to consider every 
aspect manually. The increasing workload is intensified by the labor shortage within 
several sectors (Taylor et al., 2012; Rye & Scott, 2017), as well as the increasing 
demand to feed the growing population. To implement new technologies, farmers, 
therefore, need to rely on autonomous platforms to carry out the tasks. We define an 
autonomous platform in an agricultural setting as a robot that carries out operations 
without manual intervention, often used to automate repetitive, hazardous, and/or 
easy operations to make the agricultural task more convenient for the human being. 
Carrying out operations without manual intervention requires the system to meet 
two basic autonomy principles: autonomous navigation and autonomous manipula-
tion. This chapter will discuss the aspects of the first in more detail, as the latter 
requires this platform when striving for full autonomy.
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For autonomous navigation to be possible, the system needs to be aware of its sur-
roundings in several ways. Firstly, knowledge of the platform’s location is crucial for 
the overall task, such that the platform can make decisions based on its position. 
Secondly, being able to perceive the local environment is also of great importance to 
avoid obstacles such as trees or vines, other obstacles, and people. Additionally, the 
system will need to be able to make decisions based on the perceived environment, 
such as reducing or eliminating the need for manual intervention.

In short, although it is possible to know and document the exact planting location 
of the trees and vines with high precision and low uncertainty, plants grow naturally. 
An autonomous system will therefore need to base its actions on the actual state of 
its surroundings to avoid obstacles such as branches and reduce the potential dam-
age to plants, crops, and the robot itself.

This chapter starts with a section on sensing, which explains the systems needed 
for positioning purposes and other sensing capabilities found in agricultural robots. 
Section 8.3 discusses the decision-making algorithms and how data processing is 
carried out. Section 8.4 is dedicated to planning and optimization architectures, 
which guide robotic platforms on a higher level. A brief discussion of the imple-
mentation actuators and their control systems is presented in Sect. 8.5, followed by 
an overview of necessities for fleet operation in Sect. 8.6. Section 8.7 presents some 
other solutions as well as examples of existing commercial and emerging technolo-
gies. Finally, concluding remarks are covered in Sect. 8.8.

8.2  Sensing

Agricultural autonomous platforms are designed to move themselves and the 
attached equipment to certain positions to carry out tasks. This means these systems 
will need to know their exact position and understand their environment before 
being able to make decisions. This section discusses the different sensing tech-
niques used within autonomous platforms and is structured to discuss course sens-
ing first and precision sensing last.

8.2.1  Absolute Positioning

To position themselves, autonomous platforms generally comprise a geospatial 
positioning system, often consisting of a global navigation satellite system (GNSS) 
receiver to make sense of GPS, Galileo, or other satellite positioning data. GNSS 
work by triangulating the distances measured from multiple satellite sources. 
Unfortunately, regular GNSS data only allows for positioning accuracy of about 
2–4 m, which can be sufficient for (autonomous) cars on a fixed road network. Still, 
depending on the required application, it often is too large for precision actuation on 
crops. Distances between vineyard rows can be as small as 50 cm, which requires a 
higher accuracy to navigate than in orchards with larger spaces between the trees. 
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To overcome this shortcoming, some studies increase accuracy using object detec-
tion and local sensing methods (García-Pérez et al., 2008). These methods are dis-
cussed in Sects. 8.2.2 and 8.2.3.

A more generalized approach to improve accuracy is to use GNSS augmentation. 
Satellite-Based Augmentation Systems (SBAS), like Europe’s EGNOS technology, 
or Ground-Based Augmentation Systems (GBAS), like Differential GPS (DGPS), 
can typically increase positioning accuracies to errors smaller than 1 m and in favor-
able conditions up to 2–5  cm. An example of such a technology is Real-Time 
Kinematic (RTK) positioning, widely applied in many commercial applications. 
This method falls under Observation Space Representation (OSR) technologies and 
relies on the user to send its approximate location to a processing station, which 
compares the measurement with those from base stations with known positions and 
sends a corrected position back to the user. Studies like Garrido et al. (2015, 2019) 
and Bengochea-Guevara et al. (2018) rely on this technology to accurately measure 
positioning. Nevertheless, this approach needs to be close to a base station (typi-
cally within 30–40  km) to assure high accuracy and needs two-way 
communication.

Specific approaches aim to lower the necessity for two-way communication and 
proximity to base stations by using State Space Representation (SSR) methods 
(Wabbena et al., 2005; Wang et al., 2018). SSR also uses base stations but uses their 
measurements to model the disturbances over an entire area and sends this correc-
tion model to the user.

Another way to improve accuracy is dead reckoning. This approach aims to com-
pute a current location using a previously known location (and orientation) and 
increment it with known or estimated speeds over the elapsed time. The term odom-
etry is also often used, which describes using motion sensors to estimate a change 
of position over time. A widely applied sensor is the inertial measurement unit 
(IMU), a composite sensor that comprises accelerometers, gyroscopes, and some-
times magnetometers (or compasses). Moreover, typically, an IMU has one of each 
sensor per axis of the vehicle to measure changes in any direction. Other solutions 
use encoder data obtained from the wheels or separate accelerometers, gyroscopes, 
and compasses. Studies such as Lan et al. (2019) aim to use the data from these sen-
sors to improve accuracy or reduce the required amount of GNSS data necessary. 
Note that when using dead reckoning, errors increase over time, and hence, regular 
inputs of reliable positioning data are necessary to maintain an accurate position 
over time. Nevertheless, also, in this case, other local sensing methods could be 
introduced to keep the errors low and reliable (Yang et al., 2020).

8.2.2  Relative Positioning

Another common issue with GNSS signals is that the canopy of the orchard or vine-
yard and other surfaces (e.g., agricultural vehicles themselves) reflect them and 
thereby induce extra uncertainty to the measurements (Valbuena et al. 2010). Even 
though odometry/dead reckoning is one available solution to overcome this by 
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augmenting the available signals, another way is to position oneself relatively to the 
plants. Relative positioning is defined as the placement of the vehicle with respect 
to other objects. In the case of agriculture, objects may refer to crops, plants, or the 
produce but also the ground and human beacons placed for local positioning pur-
poses such as (colored) poles or tags. Studies like Aqel et al. (2016) and Zaman 
et al. (2019) discuss visual odometry, which mainly focuses on tracking the robot’s 
motion by using camera images. Other studies focus on object detection to deduce 
location directly (Azevedo et al., 2019).

Furthermore, relative positioning is also used for a broader application, namely, 
object detection and avoidance (García-Pérez et al., 2005; Vasconez et al., 2019), 
but also that of object recognition for precision application purposes (Burgos- 
Artizzu et al., 2011; Gonzalez-de-Santos et al., 2017). The first has a goal to assess 
risks and take actions to minimize them, not only for the autonomous platform itself 
but also for the human operators and the crops. The goal of the latter use would be 
to perform the necessary action in a precise location, for example, fruit picking, 
which requires the robot to see where the fruit is with respect to its equipment, or a 
weeding robot that only applies herbicide on the weeds. The sensors used for these 
applications are discussed in Sect. 8.2.3, whereas the processing thereof and 
decision- making are discussed in Sect. 8.3.

8.2.3  Onboard Sensors

As explained in the previous section, autonomous platforms need different types of 
information to make good decisions. There are many types of sensors available and 
built into commercial equipment. We will mainly discuss noninvasive sensing tech-
niques, as many invasive ones (like soil and crop sampling) require relatively long 
processing times and are therefore not suitable for making real-time decisions. The 
first sensor we will discuss is perhaps the easiest to imagine; however, it is not as 
easy to implement.

8.2.3.1  Cameras

Briefly summarized, a camera is a device that captures (in our case, visible) light 
through a lens set and projects it on a photosensitive sensor that captures the inten-
sity values of certain wavelengths. The most common camera is the RGB (red, 
green, blue) camera, which can be found in most smartphones, but also the larger 
reflex cameras belong to this type. They are a good way to feed a system with the 
information that we humans are used to obtaining with our eyes. However, until 
recently, it was computationally very expensive to process this data into useful 
information. Current machine and deep learning techniques give us a digital way of 
mimicking brain-learning functions, thus making it possible to make images under-
standable to robots.
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Fig. 8.1 3D reconstruction of a vineyard (left) and adapted view of the data (right). (From Comba 
et al., 2018)

Studies such as the ones by Gottschalk et al. (2008) and Burgos-Artizzu et al. 
(2011) propose real-time image processing techniques, and others (e.g., Howarth 
et al., 2010; Morellos et al., 2016) propose machine learning techniques to identify 
mature crops and soil composition, respectively.

An interesting possibility is that of 3D reconstruction using photogrammetry. 
When taking multiple pictures from different perspectives, depth information can 
be extracted and used to the advantage of our system. Using the changing perspec-
tive of a system in motion can provide the necessary depth of information. Studies 
such as Westoby et al. (2012) and Comba et al. (2018) propose exactly this type of 
technology (see Fig. 8.1).

8.2.3.2  LiDAR and Other 3D Imaging Techniques

LiDAR, or Light Detection and Ranging sensors, function similarly to radar and 
measure the distance to any object within the range of its light source. Instead of 
radio waves, LiDAR functions by emitting a light of a certain wavelength in a spe-
cific direction and measuring the time of the signal to come back. By doing so in 
many directions sequentially, it maps its environment by creating a so-called point 
cloud that can then be converted to 3D reconstructions of the environment of the 
autonomous platform. This type of sensing is more robust for outdoor uses because 
it carries its light source but can be more costly to operate.

LiDAR data (as depicted in Fig. 8.2) can be useful for a variety of applications, 
from phenotyping (French et al., 2016) to regular 3D reconstruction of the plants 
(Garrido et al., 2015) or combinations thereof (Sankey et al., 2017).

While LiDAR remains one of the most widely used sensing technologies for 3D 
imaging, there are other options, as explained in Vázquez-Arellano et al. (2016). 
One interesting sensor is the Microsoft Kinect v2 sensor, used extensively in scien-
tific research such as Bengochea-Guevara et al. (2018) to reconstruct vineyard rows 
or Rosell-Polo et al. (2017) for a more generalized approach. The Kinect v2 sensor 
is the second-generation sensor initially designed for the Microsoft Xbox gaming 
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Fig. 8.2 Example of LiDAR point clouds. (From Sankey et al., 2017)

Fig. 8.3 Example of 3D reconstruction of vineyard row using data from Kinect v2 sensor. Left, 
RGB image; middle, depth information; right, 3D reconstruction. (From Bengochea-Guevara 
et al., 2018)

system, which uses an infrared laser projector to project a pseudo-random pattern of 
dots. An infrared camera is placed near the projector. The sensor uses triangulation 
for each dot between the expected position and the perceived position to infer the 
distances of the objects in the projected field of view. This typically results in ren-
derings like the one depicted in Fig. 8.3.

8.2.3.3  Hyperspectral and Infrared Imaging

Hyperspectral sensing may refer to collecting information within the electromag-
netic spectrum but outside the visible light range. In general, they can be seen as 
specialized cameras containing a sensor that is sensitive to wavelengths outside the 
visible spectrum. As discussed in Hartel et al. (2015), current applications range 
from quality and safety inspections for foods and produce to plant quality evalua-
tions, such as phenotyping (Sankey et al., 2017) or nitrogen mapping within the 
plants (Yu et al., 2014). The latter application might greatly influence the choices a 
system makes as to where in a field it will need to go next.
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Infrared sensing, effectively a subcategory of hyperspectral sensing, has impor-
tant usage within agriculture on its own, as it can be used to detect live vegetation 
using the Normalized Difference Vegetation Index (NDVI). This brings possibilities 
to distinguish the plant from the soil faster and easier, which can be used to avoid 
obstacles, as explained by Hamuda et al. (2016). Future applications might be able 
to use the infrared spectrum to detect humans and improve safety measures, as 
shown in Aspiras et al. (2018).

8.2.3.4  Other Sensing Techniques

Other sensing techniques exist, but many of them are not as popular or have less 
potential than those discussed before. This section discusses these technologies and 
applications, which are less common but interesting.

IMU
Although an inertial measurement unit (IMU) is a sensor most generally used for 
odometry and dead reckoning purposes (as explained in Sect. 8.2.1), this section 
briefly discusses other potential uses for IMUs. An IMU consists of accelerometers, 
gyroscopes, and, optionally, magnetometers to measure orientation changes. It can 
be used to reduce the uncertainty of the current position by using linear acceleration 
and rotational rate measurements to estimate the change in position since the last 
known location.

Besides its primary use, an IMU may also be used to detect obstacles, as it will 
detect a crash or slipping of the wheels if the vehicle is stuck somewhere (Cismas 
et al., 2017; Xiong et al., 2019). It could also indicate rough terrain and, therefore, 
can be used to inspect certain areas that might have changed due to animal activity.

Ultrasound
Ultrasound is sound with a higher frequency than the upper audible limit of human 
hearing. Although ultrasound is a powerful tool within agriculture in the battle 
against bacteria and other microorganisms (Gordon, 1963), ultrasonic proximity 
sensors have been employed in many robotic applications. They are finding their 
way into agricultural platforms (Tang et al., 2011). This process is called echoloca-
tion and uses the same concept as radars and LiDARs to infer the position of objects 
by using the time difference between the sent signal and the perception of its echo.

Physical Sensors
Although most studies aim for noninvasive sensing techniques, physical switches 
and buttons are often implemented as failsafe. Such sensors are often used as prox-
imity sensors to make sure undetected obstacles are detected, albeit later than regu-
lar operation would require, or as safety switches intended to guarantee the safety of 
the operators.
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8.3  Decision-Making and Data Processing

After collecting a multitude of different sensor measurements, an autonomous plat-
form will need to make decisions based on this information. This section highlights 
the two main decision categories an autonomous platform must take, namely, deci-
sions relating to safety and task planning. This is followed by a section on how data 
may be processed to be able to make these decisions.

8.3.1  Decision-Making

8.3.1.1  Safety

Safety-related decisions are those decisions made whenever risks for damage are 
mitigated. Possible danger to humans and the robot itself and/or the crops fall in this 
category. When a robot crosses path with a human, an example would be to halt 
dangerous movements or slow down or interrupt other movements.

As Vasconez et  al. (2019) stated, most human-robot accidents are caused by 
human errors. Therefore, a big factor in reducing the number and severity of acci-
dents is eliminating and mitigating the risks involved in human-robot interactions 
(HRIs). For safety, it is important that safety signals and the decisions derived from 
them can overrule the task planning decisions. Studies such as García-Pérez et al. 
(2005), Cherubini et al. (2016), and Pereira and Althoff (2018) propose predicting 
and adapting to potential risks to mitigate possibly dangerous situations.

8.3.1.2  Task Planning

Task planning decisions are made when considering the best approach to carry out 
a specific task. Decisions on how to avoid fixed obstacles and path planning algo-
rithms fall into this category. Also, approaches combining multiple sensor inputs to 
reduce errors, as done in García-Pérez et al. (2008), belong here.

Task planning decision-making is important such that the use of energy and 
resources can be optimized. For example, a weed detecting algorithm with many 
false positives will be carrying out the weeding on places that do not require treat-
ment, and route planning moving around a small stone might use more energy than 
driving over it. These parameters need rigorous tuning for robotics to be feasible 
within agriculture.

Task planning can be divided into multiple categories, where overall planning 
is discussed in more detail in Sect. 8.4, whereas fleet coordination and planning 
are explained in Sect. 8.6. The remaining planning tasks can be carried out locally 
and consist of the movement of the autonomous platform to place the application 
device in the right spot for treatment. Those can range from end-effector or grip-
per placement, an important task for applications that require flexibility, such as 
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trimming (Kaljaca et al., 2019) or harvesting (Bac et al., 2014), to vehicle motion 
for applications such as spraying (Conesa-Muñoz et  al., 2016c) or monitoring 
(GRAPE, 2020).

8.3.2  Data Processing

To make good decisions, the data needs to be interpreted. This also means that irrel-
evant data is discarded and the relevant information understood. A good example is 
the data from depth sensors such as LiDARs.

Depending on the application, it is not necessary to know the exact shape of the 
objects in the direct vicinity of the platform. Still, an approximate shape and a loca-
tion would be enough. This type of data refinement typically results in lower data 
density but a higher information value.

An example of data refinement is carried out in Digumarti et al. (2018), in which 
a model is proposed to segment the data into branches and leaves. This can then be 
used for decision-making, plant monitoring, and/or obstacle avoidance.

In many cases, the information derived from the sensors is stored in databases for 
future reference. Saving this information with respect to the location in the field and 
subsequently superposing it on a map of the field is an intuitive way of visualizing 
it. Studies such as Comba et al. (2018) and Jiang et al. (2019) produce maps similar 
to those shown in Fig. 8.1. Besides being intuitive for the user to understand and see 
the field’s current status, having this information available per location makes it 
possible to make local decisions. An autonomous vehicle can potentially base its 
decision not only on what is perceived currently but also on the history of sensor and 
actuation information. An example would be sensing a plant needs fertilizer but 
refraining from giving it because it got a dose the previous time.

8.4  Control Systems

Control systems are the techniques used to manage and regulate the behavior of a 
device. In essence, robotics is applied control systems. Widely used control setups 
are closed-loop systems. These systems use inputs from sensors; compare the val-
ues against some reference or planned signal, which results in a current error; and 
aim to reduce said error by the design of the controller.

Many platforms already consist of some low-level control interfaces for some 
electrical components, such as engine, powertrain, or brake control modules. 
Therefore, most autonomous vehicles consist of a central computing unit, which 
makes high-level decisions and gives a more abstract command to the interface of 
the specific components. Instead of measuring deceleration and using feedback con-
trol to adapt the force on each of the vehicle’s brakes, the system can just decide to 
break, and the brake control module will take care of the rest. This does not mean 
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that we do not need any feedback control. On the contrary, most central processing 
units will be full of it.

Another commonly used approach for the control of autonomous systems is 
fuzzy control. This field of study is widely used in systems that mimic human 
behavior, which often cannot be described in a purely binary form. For example, a 
vehicle’s steering, braking, and accelerating are typically not performed in a binary 
or discrete way (either not braking or fully braking) but in a more analog way 
(breaking a little or breaking more). The concepts of fuzzy logic make it possible to 
control vehicles in such a way and make the programming logic more understand-
able for humans. Applications vary from generic autonomous navigation 
(Mohammadzadeh & Taghavifar, 2020) to specific agricultural tasks (Bengochea- 
Guevara et al., 2016). Other studies aim to reduce the error of the navigation control 
systems by using extra information ranging from low-cost IMUs (Si et al., 2019) to 
the use of visual odometry (Zaman et al., 2019).

8.5  Path Planning and Optimization Systems

Although many aspects can and should be computed in real time to allow for the 
proper functioning of the robotic systems, others cannot. These encompass planning 
and optimization systems, as these typically include (NP-Hard) problems that can-
not be solved in relatively short times.

Although it might look easy at first, route planning becomes more difficult once 
more variables are considered. Examples of extra variables are the number of vehi-
cles, the size of each vehicle’s fuel tank or battery, the location of the refueling or 
charging point, and the turning radius of each vehicle. All of those affect the result 
of an optimal path. Research such as Conesa-Muñoz et  al. (2016b) and Conesa- 
Muñoz et al. (2016a) propose ways to improve current algorithms and take these 
variables into account (Fig. 8.4).

In some orchards, when there is enough space and no irrigation infrastructure 
between trees in a row, optimization could be taken a step further because it is 

Fig. 8.4 Example of results of two path planning optimization algorithms, with total distances of 
7902 m (a) and 7661.6 m (b). (From Conesa-Muñoz et al., 2016a)
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possible to change the paths vehicles take within the field, as they can maneuver 
between the trees. In contrast, in typical vineyards, this is impossible, as they are 
arranged in fixed lines. This can especially be interesting if treatment is not neces-
sary in all regions, which can be the case when treating weeds.

Another emerging optimization field is water use optimization, as carried out by 
Zhang and Guo (2016), aiming to reduce total water use.

8.6  Fleets

As briefly mentioned before within the path optimization section, systems compris-
ing multiple platforms exist and are becoming more prominent in several studies (e.g., 
Conesa-Muñoz et al., 2016a, b, c; Gonzalez-de-Santos et al., 2017). Fleets of robotic 
systems are beneficial as they can induce a reduction in vehicle size but also an increase 
in efficiency and redundancy. As such, they can reduce soil compression and down-
times. Fleet management strategies can be divided into two main categories, namely, 
centralized and decentralized decision-making, both of which have pros and cons, as 
discussed in De Ryck et al. (2020). Both will be explained in more detail below.

8.6.1  Centralized Fleet Management

Centralized fleet management refers to a fleet of multiple robots managed from one 
(external) location, which we will call “the manager.” The platforms will need 
(semi-)continuous communication with the manager to share the collected knowl-
edge and obtain new tasks. The manager, in this case, has an overview of the entire 
operation and can make decisions accordingly. For example, when one vehicle 
encounters an area needing a certain treatment, the correct vehicle can be sent there 
using an optimal route and making sure none of the vehicles collide in the act.

The advantages of these systems are that one entity has all the information, 
which makes it easy to document and log the carried-out tasks. The overview is kept 
in one place, and it is easier to test and check as everything is in one place. Another 
advantage of such a system is that it can consider every vehicle to optimize the tasks 
throughout the entire fleet. As a result of the above, it is easy for the farmer to track 
the overall progress and have a forecast for the remaining time.

This strategy, however, also has some disadvantages. These mainly lie in the 
scalability of the system. Increasing the number of vehicles in the fleet will greatly 
impact the optimization software that generally takes exponentially more time to 
find an optimal solution with respect to the number of vehicles. Often such strate-
gies will favor optimization algorithms that generate known good solutions instead 
of optimal ones as a trade-off for the time needed to compute optimal solutions. 
Another slight disadvantage is that the entire system must be computed again with 
any unexpected change.
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Examples of studies using centralized control are Doering et  al. (2014) and 
Barrientos et al. (2011), in which fleets of aerial vehicles are controlled from a sin-
gle location and where global optimization is carried out.

8.6.2  Decentralized Fleet Management

Decentralized fleet management refers to the robots within the fleet making deci-
sions on their own based on their perceived environment and the communication 
with nearby vehicles. These vehicles will, in general, compute and follow subopti-
mal routes; any loss in efficiency could be compensated by adding more vehicles. In 
general, it cannot be guaranteed that the paths chosen will not cause longer non- 
productive paths. The computed solutions will also be more myopic than those com-
puted by centralized management because the future states of the entire system are 
not yet known. A major advantage of decentralized systems is that they are easily 
scalable, as none of the nodes of the system requires a high computational load. 
Also, due to the myopic choices, errors and unexpected changes are mitigated easily 
and do not affect the system as much. Disadvantages include the lack of central 
knowledge and, therefore, easy forecasting and tracking methods. However, this can 
be improved by communicating with a central dispatcher, which enables document-
ing, logging the carried-out tasks, and generating the desired overview. Examples of 
studies in decentralized control mainly focus on the flexibility of the controller’s 
scalability (Ju & Son, 2018) and the flexibility of the vehicle behavior (Franchi 
et al., 2011).

8.7  Examples of Existing Technologies

As part of the SPARKLE Project, co-funded by the Erasmus+ program of the 
European Union, an analysis has been carried out of the state-of-the-art robotics 
within the field of precision agriculture. Part of this analysis showcases existing 
commercial and emerging technologies, of which the most relevant ones within 
orchard and vineyard treatment are outlined in this section, which is expanded with 
other research projects and prototypes.

VITIROVER
As a part of weeds management, Vitirover Solutions (2020) proposes to use fleets of 
robotic lawnmowers to prevent weeds from growing in the first place. Their small, 
lightweight robot is meant to mow the grass in between the rows of trees or plants, 
thus reducing the use of herbicides and glyphosate in particular. As shown in 
Fig. 8.5, it is equipped with a solar panel to extend its working range. It is also 
equipped with GPS to navigate predefined areas and is monitored remotely by a 
technician. This robot is highly independent, as it does not require any human 
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Fig. 8.5 VITIROVER robotic mower fleets can be used to manage grass. This is used to reduce 
weeds in both orchards (left) and a vineyard (right)

interactions. The important decisions are made remotely by a human operator, 
which indicates the use of a centralized control strategy.

Autonomous Orchard Sprayer
The automatic orchard sprayer GUSS (GUSSAG, 2019), shown in Fig. 8.6, is spe-
cifically designed to reduce health threats to operators who would otherwise carry 
out the driving. Furthermore, it allows for fleet operation from a single control loca-
tion. This type of robot uses a wide variety of sensors to guide it along a precise 
route while being safe for its environment.

Naïo TED
An interesting example of mechanical weeding is TED (Naïo Technologies, 2020). 
This robot, shown in Fig. 8.7, and clearly designed for vineyards, can carry various 
tools for different applications. The main task this robot was designed for is weed-
ing, but prototype tools exist for various other tasks such as blossom thinning, trim-
ming, and spraying.

This tool is still experimental to some extent but has a lot of potential due to the 
possibility of testing new applications while already being of use to farmers. It navi-
gates using RTK GPS and follows a map created using drones beforehand. Although 
this does not directly count as a fleet, it has the potential to augment and share data 
from multiple sources, and future heterogeneous fleet implementation is foreseeable.

Vision Robotics Grapevine Pruner
This pruning solution from Botterill et al. (2017) and Vision Robotics Corporation 
(2019) is currently only a prototype and is awaiting financing to be fully developed. 
Although the technology mainly focuses on actuation instead of navigation, the 
finished platform aims to be fully autonomous.

The interesting part of this system is the implementation of artificial perception, 
as shown in Fig. 8.8, to understand the system’s environment as a regular human 
would. A finished system could incorporate many other visual cues to understand 
other aspects, possibly contributing to the vehicle’s autonomy.
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Fig. 8.6 GUSS autonomous orchard mist sprayer

Fig. 8.7 Naïo TED, a mechanical vineyard weeder

Fig. 8.8 Vision Robotics Grapevine Pruning system towed behind an autonomous tractor (left) 
and the artificial perception of branches (right)
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Fig. 8.9 VINBOT vineyard monitoring platform (left) and its 3D interpretation of its environ-
ment (right)

VINBOT
The following system is not a commercial product either and has been developed by 
a consortium within the European Union and is especially interesting for its auton-
omy. VINBOT (2019) is designed as a monitoring vehicle to map and measure criti-
cal aspects of the vines.

As shown in Fig. 8.9, the mapping capabilities seem promising, and the specified 
capabilities include monitoring of water and heat stress, canopy density and color, 
diseases and nutrient deficiencies, and yield estimations (Lopes et al., 2016).

VineScout
Similar to the previous system (Saiz-Rubio et al., 2018; VineScout, 2020), VineScout 
was developed within a project of the European Union (H2020) to monitor and 
improve yields within vineyards. Figure 8.10 shows the autonomous ground robot, 
which has been designed, built, and demonstrated in commercial vineyards. The 
VineScout goal is to provide massive data such that artificial intelligence techniques 
based on big data may be applied to build solid models. These models are expected 
to assist farmers in decision-making about irrigation and harvesting logistics.

Other interesting solutions funded by the European Union are:

 1. Swarm Robotics SAGA (SAGA, 2020), part of the European ECHORD++ pro-
gram that aims to develop fleets of aerial vehicles to monitor and map the envi-
ronment using a decentralized control strategy.

 2. TrimBot, supported by the Horizon 2020 program  (Hemming et  al., 2018), 
(TrimBot, 2020), focuses on producing a flexible plant trimming and cutting 
robot. It consists of a small autonomous platform and a robotic arm, which holds 
a cutting tool at the end. Because of the robotic arm configuration, the system is 
not tied to fixed cutting and trimming patterns but instead can base the decisions 
on each plant.

 3. GRAPE (GRAPE, 2020), another European ECHORD++ project, aims to make 
a small autonomous robot for vineyard monitoring and protection and a small 
robotic platform with a robotic arm to perform specific tasks in certain locations.
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Fig. 8.10 VineScout vineyard monitoring platform

 4. RHEA (Gonzalez-de-Santos et al., 2017), supported by the 7th Framework pro-
gram, is a fleet of small, heterogeneous robots – ground and aerial – equipped 
with advanced sensors, enhanced end-effectors, and improved decision control 
algorithms, which aims at diminishing the use of agricultural chemical inputs, 
improving crop quality and health and safety for humans, and reducing produc-
tion costs. RHEA can be considered a cooperative robotic system.

8.8  Concluding Remarks

While current autonomous platforms are in constant development, many agricul-
tural tasks are starting to reap the benefits from implementing them in practice. 
Even though most of these platforms are not yet fully industrialized, prototypes and 
rudimentary versions are being tested and show promising results. Autonomous 
platforms are especially useful to tackle the problems arising with the decreasing 
number of both skilled and unskilled workers while at the same time allowing the 
vehicle to stay small to combat soil compaction issues.

Expectations are high when considering the possibilities to combat current eco-
logical challenges such as global warming and the biodiversity issues in agricultural 
regions. Autonomous platforms will become increasingly important as trust and 
knowledge increase, and a couple of specific areas are expected to reap the benefits 
autonomy brings.

Firstly, even though autonomous tractors are being developed, autonomy can 
have a larger impact on other areas of agriculture. One important area is the use of 
fleets, where autonomy serves as a catalyst. Without it, herds of smaller vehicles 
would not be sustainable nor economically sensible. It is expected that the market 
for fleets will make its debut in the coming decade and will grow further in the next.

Another area in which autonomy can be of great importance is within the imple-
ments. While navigational autonomy is not yet fully functional, implements can 
already reap its benefits. Smart implements would only rely on a driver and will be 
able to carry out the tasks without further human intervention. This intermediate 
step can greatly increase acceptance as well as the adoption rate.
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Lastly, drones, or unmanned aerial vehicles, are expected to increase autonomy 
and open an important new market opportunity, namely, data analytics. This field is 
expected to be of huge importance for developing new technologies, as choices 
farmers typically make using experience can be understood and aided from a data- 
driven perspective.
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