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Chapter 5
Pest and Disease Management

Won Suk Lee and Javier Tardaguila

Abstract This chapter describes the current sensing and actuation technologies for 
pests and plant diseases in orchards and vineyards. The technologies for pests 
include machine vision and imaging, trapping, data mining, nuclear magnetic reso-
nance (NMR), DNA analysis, landscape and soil management, vibrational signals, 
precision spraying, and bird control. Some new technologies for pests were devel-
oped, such as predicting future infestation using artificial intelligence and pest iden-
tification using smartphone apps; however, more efforts will still be needed. The 
technologies utilized in plant disease detection and management include computer 
vision, thermography, spectroscopy, chlorophyll fluorescence, multi- and hyper-
spectral imaging, plant volatile organic compounds, biosensors, sensing platforms 
and robots, and artificial intelligence. Overall, new, reliable, easy-to-use, and objec-
tive methods will still be needed, along with continued support and interest from 
growers and industries.

5.1  Orchard and Vineyard Management for Pests 
and Diseases

Modern and sustainable agriculture requires objective and continuous monitoring of 
the crop. New technologies, sensors, artificial intelligence, and automation will play 
a more significant role in the agriculture of the future. Today, there is a wide range 
of new technologies whose use in monitoring crops has provided us with objective, 
robust, and reliable results. Subsequently, after an objective and reliable diagnosis 
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of the vineyards and tree fruit orchards, we need to take action to optimize the man-
agement of pests and diseases. Efficient management of agricultural diseases and 
pests is crucial for eventually increasing crop yield and profit.

Agricultural pests are defined as “organisms that diminish the value of resources 
in which man is interested. They interfere with the production and utilization of 
crops and livestock used for food and fiber” (USDA ERS, 1999). They include “all 
noxious and damaging organisms: insects, mites, nematodes, plant pathogens, 
weeds, and vertebrates.” This chapter is focused on insects, mites, nematodes, and 
vertebrates.

Common insect pests in orchards are apple maggot, brown marmorated stink 
bug, codling moth, leafrollers, spider mites, spotted wing drosophila, and woolly 
apple aphid (Beers et al., 1993). The major arthropod pests in vineyards are phy-
tophagous mites, phylloxera, leafhoppers, mealybugs, and grape berry moths 
(Bostanian et  al., 2012). For citrus production, common insects are Asian citrus 
psyllid, citrus leaf miner, citrus root weevils, citrus rust mites, spider mites, 
Caribbean fruit fly, and thrips (Diepenbrock et al., 2019a, b; Duncan & Mannion, 
2019; Qureshi et al., 2019).

Most insect pests are controlled by cultural, biological, physical, semiochemical, 
and chemical controls (Bostanian et  al., 2012). They emphasized that “the main 
challenge for integrated pest management remains the development and coordina-
tion of all information and technologies into an optimally relevant package to grow-
ers in a given area.” Some new technologies were reported for site-specific viticulture 
(Tisseyre et  al., 2007). The technologies included georeferencing information, 
equipment, and people and yield monitoring, in-vineyard quality monitoring, can-
opy and vigor monitoring, soil monitoring, water stress monitoring, and variable 
rate technology. They provided some example management practices for spatial and 
temporal variabilities. For non-pesticide management, Wilson and Daane (2017) 
reviewed ecological approaches for pest management in California vineyards. The 
methods included mating interruption, ant control for mealybugs, habitat manage-
ment, natural enemy augmentation, animal integration, and biodynamic prepara-
tions. They emphasized that these practices should be “reliable and affordable” to 
growers for wide adoption.

Fungi, bacteria, mycoplasmas, and viruses can cause important diseases in crops. 
Infected plants usually show different visual and typical symptoms in different 
organs such as stems, leaves, and fruits; however, some plant infections can be 
symptomless, mainly in the early infection stages of the infection (Fig. 5.1).

Diseases can negatively affect the yield and quality of the fruit trees and can even 
induce the death of the plant. Crop diseases cause significant economic losses in 
agricultural production over the world. The environmental and economic impacts of 
crop protection are significant (Pimentel et  al., 2005). A major impact is caused 
when the plant develops when the infection occurs. Plant pathogen detection is 
important as the first step in crop protection in agriculture. An early pathogen detec-
tion system can decrease such losses caused by plant diseases and reduce the spread 
of diseases (Mahlein, 2016; Mahlein et al., 2018, 2019; Thomas et al., 2018).
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Fig. 5.1 Commercial vineyard infected by grapevine trunk diseases (GTD). Visual symptoms in 
leaves, shoots, and clusters are shown. Asymptomatic leaves were observed. (Photo: Javier 
Tardaguila)

This chapter presents principles, methods, and hardware and software technolo-
gies to detect, classify, and quantify pests and diseases. It also discusses state-of- 
the-art and emerging actuation technologies for targeted control of pests and 
diseases using ground and aerial platforms.

5.2  Sensing and Actuation Technologies for Pests

5.2.1  State-of-the-Art Sensing and Actuation Technologies 
for Pests

Pests are one of the main problems in crop production. Efficient and effective pest 
management is crucial for increasing yield and profit. Many different technologies 
have been used for pest infestation and crop damage to achieve this goal.

5.2.1.1  Machine Vision and Imaging Technologies

One of the most common methods for pest detection is machine vision, including 
multispectral and hyperspectral imaging. Image-based insect detection methods 
were developed to identify eight insect species. A correct classification rate of 87% 
was reported (Wen & Guyer, 2012), using various features such as geometry, 
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contour, texture, and color. Another study (Hassan et al., 2014) also utilized color 
and shape features and a support vector machine (SVM) classifier to develop an 
automatic insect classification method for grasshoppers and butterflies as examples. 
They reported 92% detection accuracy. Machine vision algorithms could be used 
for autonomous selective pesticide spraying in vineyards (Berenstein et al., 2010), 
which reported a 30% reduction of applied pesticide agents.

Some study was conducted to identify spectral characteristics of insect pest 
infestation. Using reflectance measurement of infested leaves, Blanchfield et  al. 
(2006) investigated an indirect method for detecting phylloxera infestation through 
leaf pigment composition. They reported a reduction of leaf chlorophyll and an 
increase in photoprotective pigment concentrations due to phylloxera infestation. 
Spectral measurement was also used for detecting damages by nematodes, even 
though the study was conducted for cotton (Lawrence et al., 2007) or sugar beet 
(Hillnhütter et al., 2011).

For machine vision applications, multispectral and hyperspectral imaging is 
commonly used. One such study was conducted by Benheim et al. (2012). They 
implemented multispectral and hyperspectral imaging to detect phylloxera infesta-
tion in vineyards. They reported that these imaging methods had some potential. 
However, they might not be able to detect the infestation since many other factors 
were showing similar spectral signatures, such as water stress or nitrogen deficiency. 
They pointed out that soil temperature, moisture content, salinity, and apparent elec-
trical conductivity were highly correlated with the establishment and distribution of 
phylloxera.

UAV is also commonly used for orchard and vineyard pest management. Vanegas 
et al. (2018) utilized various cameras installed on a UAV to detect different levels of 
grape phylloxera infestation. Airborne color, multispectral, and hyperspectral 
images were acquired from two phylloxera-infested vineyards in Victoria, Australia. 
Color images and various vegetation indices were used to determine infesta-
tion levels.

Even though for other crops such as strawberries or soybean, a color image pro-
cessing algorithm was implemented to detect thrips (Thysanoptera) for greenhouse 
strawberries (Ebrahimi et  al., 2017). Combined with a support vector machine 
(SVM) classifier, they could correctly detect thrips with a mean detection error of 
2.3% using 20 testing images. Hyperspectral transmittance images were used to 
detect insect-damaged vegetable soybean (Huang et  al., 2013). These methods 
could be applied to crops in orchards and vineyards.

Electrical conductivity (EC) was used along with imaging (Bruce et al., 2009). 
Early detection of grapevine phylloxera was investigated using traps, soil samples, 
electromagnetic surveys, aerial multispectral images, and a reflectance sensor 
(GreenSeeker). They found that soil EC and chemical analysis indicated a potential 
for early detection and reported more infestation in higher soil EC areas and high 
magnesium contents. They described that remote sensing techniques should be able 
to distinguish symptoms from other stress factors, contrary to Benheim et al. (2012).
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Fig. 5.2 Camera-supported trapping probe for detecting soil microarthropods with protecting tube 
(left) and without it (right). (Adapted from Florian et al. 2020)

Multispectral imaging also was used for nematode detection. Even for another 
crop (soybean), Kulkarni et al. (2008) utilized aerial four-band multispectral imag-
ing to identify nematode population density. There was a potential for remote sens-
ing and some difficulties due to the complicated relationship between soil nematode 
population and crop damage.

5.2.1.2  Trapping

Trapping is another method to detect insect pests. Hillier and Lefebvre (2012) used 
pheromone trapping to detect insect pests in vineyards. Renkema et  al. (2014) 
developed a plastic jar trap for Drosophila suzukii and compared it with commercial 
traps for trapping performance. They reported some results related to trapping entry 
size, colors, the existence of holes, attractant volumes, headspace volume, replace-
ment frequency, etc. More recently, Florian et al. (2020) developed a trap with an 
optoelectronic ring and camera for detecting soil microarthropods such as spring-
tails (Collembola), mites (Acari), coleopterans (Coleoptera), dipteran larvae 
(Diptera), isopods (Isopoda), and diplopods (Diplopoda). The proposed trapping 
probe is shown in Fig. 5.2. Their success rate was 60–70%.

5.2.1.3  Data Mining

Tripathy et al. (2011) implemented a wireless sensor network and data mining tech-
niques to identify relationships between pest insect (thrips) infestation and weather 
conditions. Using the naïve Bayes algorithm and rapid association rule mining, they 
identified a correlation between weather data and pest infestation and developed a 
multivariate regression model which can predict insect establishment and degree of 
infestation.

5 Pest and Disease Management
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5.2.1.4  Nuclear Magnetic Resonance (NMR)

Tucker et al. (2007) used nuclear magnetic resonance (NMR) spectroscopy to detect 
phylloxera in grapevine leaves. Infested leaves showed metabolic changes, and their 
extracts, such as unsaturated fatty acids, exhibited infestation markers, even though 
very similar to nitrogen stress.

5.2.1.5  DNA Analysis

DNA analysis was also used. Bruce et  al. (2011) integrated phylloxera-specific 
DNA analysis from grid soil samples with their previous study. They reported that 
soil-based DNA assays have the potential to detect phylloxera; however, more eval-
uation would be needed.

5.2.1.6  Landscape Elements and Soil Management

Landscape elements were used for insect pest management. Judt et al. (2019) inves-
tigated the effect of landscape elements and inter-row management on the arthropod 
populations using 15 commercial vineyards in Andalusia, Spain. The landscape ele-
ments included semi-natural vegetation, olive orchards, vineyards, and other agri-
cultural areas. The inter-row management included vegetation cover and bare soil. 
The number of arthropods decreased when there were other surrounding vineyards. 
Also, they reported that semi-natural and olive orchards didn’t affect the arthro-
pods’ population but found more arthropods from inter-row vegetation and more 
spiders from bare soil. These findings suggested integration of local landscape 
structure and inter-row management should be considered for more effective pest 
management.

Soil management affects insect pest infestation. Sáenz-Romo et al. (2019) stud-
ied the effects of soil management techniques (tillage, spontaneous cover, and 
flower-driven cover) on insect predators and pests in Mediterranean vineyards. 
Relative abundance (%), defined as the “proportion of collected insects from each 
study’s taxa of the total number,” was used to compare the effect by ANOVA. They 
found that the cover crop vegetation increased beneficial insects such as carabids 
and forficulids. The spontaneous cover vegetation increased the abundance of 
ground beetles and the carnivorous genus Nebria, indicating management of spon-
taneous cover vegetation is the most important for conservation biological control.

5.2.1.7  Vibrational Signals

Korinsek et al. (2016) proposed one unique approach for pest control, which used 
species- and sex-specific substrate-borne vibrational signals. They analyzed the 
male and female leafhopper mating calls and proved the concept of using the audio 
signal for developing an insect trap.

W. S. Lee and J. Tardaguila
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5.2.1.8  Precision Spraying

Many studies were conducted for precision chemical spraying for efficient insect 
pest control. Kang et al. (2011) developed a laser-based trunk size detection system 
to precisely spray barriers for cutworms in vineyards. A 40 Hz laser sensor was 
installed on both sides of a small trailer with three different nozzles to achieve vari-
able rates depending on the trunk size. In a field trial, they reported about 5 mm 
error in trunk radius estimation at five different travel speeds and average targeted 
spray efficiencies of 65–71% with 90–91% cost savings compared to typical 
application.

Escola et al. (2013) developed a variable rate sprayer using a LiDAR sensor for 
canopy volume measurement, a controller for determining spray rates, and electro-
magnetic variable valves as actuators for tree fruit orchards. They compared the 
algorithm determined and actual spray rates and found a strong relationship with a 
coefficient of determination of 0.94.

Gil et al. (2013) developed a similar variable rate sprayer using ultrasonic sen-
sors, variable rate electro valves, and a controller for vineyards. They tested the 
sprayer at Merlot and Cabernet Sauvignon vineyards and reported a good relation-
ship between the algorithm determined and actual spray rates and 22% savings 
compared to a conventional application.

Adamides et al. (2014) investigated different interaction interfaces for a teleoper-
ated vineyard sprayer tested by 30 different human operators. They tested a single 
camera and multiple camera systems and found that the multiple view system was 
more efficient in spraying and yielded fewer collisions with various obstacles but 
took more time to complete tasks than a single camera system. Further, Adamides 
et al. (2017) developed a semi-autonomous vineyard sprayer and investigated the 
human interface with a robotic system.

Using plant cell density (PCD, a ratio of near-infrared band over a red band), 
Roman et  al. (2020) compared variable pesticide application rates in vineyards. 
They calculated the PCD from airborne multispectral images, used to estimate plant 
vigor and application rates. They reported pesticide savings of more than 25% com-
pared to standard treatment.

Li et  al. (2009) constructed an automatic sprayer for insects using binocular 
stereo- vision constructed from a single camera for other crops. In a laboratory envi-
ronment, the system scanned sample plants from bottom to top to identify the loca-
tion of artificial insects using depth information and sprayed them. However, no test 
results regarding spraying performance were reported in the study. Further, Li et al. 
(2015) utilized multifractals, defined as “an extension of fractals with multiple 
scales,” to identify small-sized insects like whiteflies in greenhouses. From their 
testing with paprika plants in a greenhouse, their proposed method yielded 87% of 
correct detection.

5.2.1.9  Bird Control

Bird control is another important aspect of pest control for orchards and vineyards.
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Ampatzidis et  al. (2015) developed an autonomous bird control system using 
UAVs, a wireless ground sensor network, wearable devices, and a cloud-based deci-
sion system. The system posed visual (with large size drone), audio (unique sound), 
and chemical (target spraying of methyl anthranilate, a bird irritant) threats to pest 
birds. Even though they simulated bird detection events, the developed system suc-
cessfully created UAV flight paths to bird location, spot-sprayed chemicals, and 
turned on speakers autonomously. They pointed out that short flight time, insuffi-
cient sprayer size, chemical efficiency, and bird detection accuracy could be poten-
tial problems.

A multilayer artificial neural network was utilized to detect pest birds in vine-
yards (Dolezel et al., 2016). Their study focused on a few representative species to 
be more effective. Previously recorded sound of birds was used to identify the pres-
ence of a target bird using labeled features by the linear prediction coding (LPC) as 
input vectors of the neural network. They reported 89% detection accuracy for the 
European starling (Sturnus vulgaris) and emphasized that the network would be 
suitable for field implementation since it does not require high computing power.

Another study was conducted for pest bird control. Bhusal et al. (2017) devel-
oped a bird detection system for wine grapes using outdoor cameras installed at four 
corners of a field and a Gaussian mixture-based segmentation algorithm. The most 
common problem birds in wine grapes were starlings, robins, and finches. Bird 
tracking was implemented using the Kalman filter. They reported an 85% precision 
in detecting and counting birds in a 30 m × 30 m testing plot by comparing manual 
and algorithm counts. They reported that shape features were not very useful due to 
distortion by motion blurriness. They counted 89 incoming and 46 outgoing birds 
during 2 h in the morning in 6 days.

Then, Bhusal et al. (2018) implemented unmanned aerial vehicles (UAVs) in a 
15,000 m2 (about 3.8 acres) commercial vineyard to keep away birds (starlings and 
robins). They tested the system over 14 days with a 5-hour flight each day. Two 
UAVs (Matrice M600 Pro and Phantom 4, DJI Inc., China) were flown 3–6 m above 
the canopies. Using ANOVA, they compared the effectiveness of flying UAVs rela-
tive to when no drones were used and found a significant difference in the number 
of birds when UAVs were used (about 50% less number of birds). Their future study 
included detecting incoming birds and redirecting them away from the vineyards.

Further, Bhusal et al. (2019) adopted the convolutional neural network (CNN) 
using very high 4 K resolution images (3840 × 2160 pixels) to enhance bird detec-
tion. They observed that classification accuracy increased from 70% to 92% using 
super-resolution images, but a more reliable model would be needed.

5.2.1.10  Summary

In summary, various methods were used to detect and control pests in orchards and 
vineyards. Most of the methods focused on detecting and managing insect pests. 
More efforts will be needed to develop sensing technologies for other pests such as 
mites, nematodes, and vertebrates. More research and field experiments will be 
needed for actual field implementation by growers.

W. S. Lee and J. Tardaguila
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5.2.2  Emerging Technologies for Pests

Based on the National Grape Research Alliance (https://graperesearch.org/), some 
of their top research priorities are building improved mechanization and automation 
systems to enhance labor efficiency and improve pest and disease detection, model-
ing, and control systems. However, as Rieger (2019) reported, most vineyard sens-
ing technologies are currently focused on meteorological and soil conditions and 
water status for irrigation. He also reported that machine learning and artificial 
intelligence (AI) are heavily used to assess data and develop decision support models.

Some studies for insect pest detection use traditional artificial neural networks 
(Fedor et al., 2009); however, the current explosion of AI applications started with 
AlexNet, developed by Krizhevsky et al. (2012). AI has been used to detect insect 
pests (Ding & Graham, 2016; Shen et al., 2018; Xia et al., 2018) and can be used to 
predict future infestation. Among many studies, Nam and Hung (2018) compared 
the performance of VGG16 and SSD (single-shot multibox detector) for detecting 
insects on sticky traps and found that SSD was better for identifying insects.

More recently, instead of manual crop scouting in citrus production, an auto-
mated insect detection system was developed using machine vision and AI for the 
Asian citrus psyllid (ACP), which is the vector of the devastating Huanglongbing 
(or citrus greening) disease for citrus (Partel et al., 2019). By implementing pneu-
matic tapping rods, as shown in Fig. 5.3, images of insects collected on a viewing 
board were acquired and were analyzed by two consecutive convolutional neural 
networks (YOLO v3 and then YOLO v1) to increase detection accuracy. After test-
ing on 90 citrus trees, precision (accuracy) and recall (sensitiveness) were reported 
to be 80% and 95%, respectively.

Along with the development of mobile AI, smartphone apps will be available in 
the near future. Schumann et al. (2020) reported an accuracy of 89% for identifying 
pests, disease, and nutrient deficiencies using a smartphone app trained by a deep 
neural network. However, they noted that it would not replace traditional diagnostic 
lab methods soon. A startup company, Bloomfield Robotics (https://bloomfield.ai/), 
is developing a mobile sensor platform and implementing AI and robotics in vine-
yard management for monitoring vine growth and berry yield. Another company 
(Vayyar Ltd., Israel) seems to be of interest to us, which developed a sensor that can 
create high-resolution 3D images by measuring the radiofrequency reflectance of 
objects. Niu et al. (2020) utilized the sensor to detect nematodes in walnut leaves 
and reported a 72% accuracy for classifying nematode infestation levels.

An attempt has been made to replace high spatial resolution UAV images with 
satellite images for managing a vineyard. In a recent study by Sozzi et al. (2020), 
NDVI from two different imaging platforms, i.e., Sentinel-2 satellite and UAV, were 
compared for precision vineyard management. Images were acquired from 30 vine-
yards in France, and the spatial resolution was the same as 10 m for both Sentinel-2 
and UAV (upscaled from its original 0.08 m). Sentinel-2 images detected the same 
degree of variability when no individual vine management is needed, and no inter- 
row grass is used in NDVI calculation.

5 Pest and Disease Management
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Fig. 5.3 Automated insect (Asian citrus psyllid) detection system. (Adapted from Partel et al., 
2019)

A new integrated pest management (IPM) model (Fig. 5.4) was proposed by Dara 
(2019), which includes management, business, and sustainability aspects. The man-
agement aspect includes pest management, knowledge, resources for pest and tech-
nology, planning and data organization, communication among growers and the 
public, and research and outreach. In the business aspect, public education was 
emphasized for efficient IPM and traditional training for growers. In the sustainabil-
ity aspect, conventional farming can be safer and more sustainable as long as IPM 
principles are emphasized, rather than organic farming, which is traditionally con-
sidered safe but can cause some “social inequality and a false sense of well-being.”

A more precise spraying system was developed using a laser. Chen et al. (2019) 
tested a laser-guided intelligent sprayer in tree crop nurseries to investigate the effi-
ciency of controlling insects and diseases. They found 52–56% of pesticide reduc-
tion and equal or a smaller number of insects (leafhoppers and aphids). A commercial 
sprayer is already available using this technology.

In predicting pest infestation, spatial interpolation using GIS and machine learn-
ing can be useful tools. While describing the IPM of mites, Liburd et al. (2019) 
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Fig. 5.4 A new model for integrated pest management. (Adapted from Dara, 2019)

suggested spatial interpolation of pest density using GIS to predict pests at unsam-
pled locations in a field. This information can be used for site-specific spot spraying 
of insecticides. They expected that machine learning could be useful for identifying 
the distribution and infestation of pests and predatory insect species.

Overall, some new technologies have been developed and are currently being 
investigated for fruit orchards and vineyards. With more interest and support from 
growers, industries, and state and federal agencies, more effort will still be needed 
for pest detection and management.

5.3  Sensing and Actuation Technologies for Plant Diseases

Advanced technologies can also be applied for detecting plant diseases in agricul-
ture with several advantages versus conventional methods. Emerging technologies 
can be used for quantitative and qualitative evaluation of plant diseases (Ali et al., 
2019; Mahlein et al., 2018, 2019; Ray et al., 2017; Sankaran et al., 2010).

Visual symptoms of infected plants can be evaluated by optical sensors directly 
in the field using computer vision sensors mounted on the ground and aerial plat-
forms. However, visual symptoms assessment is a conventional first step for plant 
disease diagnosis. Still, it fails to detect a pathogen in early infection stages when 
plant infections are asymptomatic. Early detection of plant pathogens can be very 
important for crop health monitoring. It allows for optimized crop protection in the 
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field during different stages and minimizes the risk of the spread of disease infec-
tions and reduces spray treatments. Indeed, early detection of plant disease is needed 
in agriculture to reduce the economic and environmental impact. Hyperspectral sen-
sors are shown as one of the most powerful technologies for early disease detection 
in agriculture (Mahlein et al., 2018, 2019; Thomas et al., 2018). Moreover, machine 
learning and recently deep learning have been successfully developed and applied 
in phytopathology to make a prediction from data and to improve the decision- 
making process in crop protection (Zhu et al., 2017; Mahlein et al., 2019; Polder 
et al., 2019; Sladojevic et al., 2016) in the context of precision farming.

5.3.1  State-of-the-Art Sensing and Actuation Technologies 
for Plant Diseases

In agriculture, diseases in plants are typically verified using several conventional 
methods. Traditionally, plant disease incidence is assessed by the interpretation of 
visual symptoms. Visual assessment and culturing are subjective methods and 
require trained personnel and considerable time to complete a diagnosis. Other cur-
rent and conventional methods were based on the laboratory analysis of samples 
collected in the field, manually at a single plant. Enzyme-linked immunosorbent 
assays (ELISA), immunology-based methods, polymerase chain reaction (PCR), 
and real-time PCR (RT-PCR) can be used for plant disease detection (Fang & 
Ramasamy, 2015; Ray et al., 2017). These methods are time-consuming and require 
complex and expensive instruments, which are not appropriate for infield operation. 
A summary of the advantages and limitations of these methods is shown in Table 5.1. 
All these lab methods were precise with high accuracy for plant pathology diagnosis; 
however, they required collecting plant samples before wet chemistry analysis, 
limiting their infield applications. Consequently, there is strong interest in develop-
ing new and reliable technologies for plant disease detection under field conditions.

Table 5.1 Current and conventional methods in plant disease detection

Method Advantages Limitations

Visual assessment Easy to operate Subjective
Time-consuming
Trained personnel

Culturing methods Cheap and simple Non-rapid
Subjective
Trained personnel

Isoenzyme analysis Precise and rapid Low level of polymorphism in 
fungi
Not suitable for infield operation

Immunology-based methods Accurate Low sensitivity
Not suitable for infield operation

Polymerase chain reaction 
(PCR)

High accuracy and 
sensitivity

Expensive
Not suitable for infield operation

W. S. Lee and J. Tardaguila



105

The above methods for plant disease detection have been mainly applied in 
research, breeding, and phenotyping; however, they are not suitable for infield oper-
ation. The applications of these lab methods in commercial agriculture have been 
limited. Currently, new techniques for rapidly and cost-effectively assessing dis-
eases in vineyards and fruit orchards are needed.

5.3.2  Emerging Technologies for Plant Diseases

New sensors and technologies can be used to evaluate crop status quickly and inex-
pensively. New technologies can assess plant diseases with reliability, precision, 
and accuracy (Mahlein, 2016; Mahlein et al., 2018, 2019; Ray et al., 2017; Sankaran 
et al., 2010). It is important to emphasize that the non-destructive nature of many of 
these technologies implies the absence of damage or any modification of the plant 
material under analysis. Some of the main non-invasive detection technologies used 
for crop monitoring include computer vision, thermography, spectroscopy, chloro-
phyll fluorescence, and multi- and hyperspectral imaging.

These sensing technologies can be implemented in portable sensors. However, 
they can also be mounted on vehicles such as quads, tractors, or robots and even 
aerial platforms such as drones, aircraft, or satellites. Proximal and remote sensing 
technologies are playing an increasingly prominent role in modern agriculture, 
making it easier to gather data quickly and affordably. Furthermore, the new and 
powerful non-invasive sensors can obtain georeferenced information in most cases. 
It is possible to generate maps of the different parameters and establish zones that 
require different management practices within precision agriculture.

5.3.2.1  Plant Volatile Organic Compounds

Recently, it was suggested that plant volatile organic compounds could be used in 
agriculture to improve crop defense strategies (Brilli et al., 2019). The pathogen- 
plant interaction could result in the release of specific volatile organic compounds 
that highly indicate the plant disease (Fang et al., 2014; Fang & Ramasamy, 2015; 
Ray et al., 2017). Gas chromatography combined with mass spectroscopy has been 
used for analyzing volatile organic compounds emitted by diseased plants (Fang & 
Ramasamy, 2015). However, before analyzing the volatile compounds by gas chro-
matography, several complex strategies and procedures for obtaining these volatile 
compounds from a single plant should be defined and performed (Tholl et al., 2006). 
This technique has been used for detecting fungal diseases in various plants (Fang 
et al., 2014; Vikram et al., 2006).

Nowadays, plant volatile compound analysis is time-consuming and requires a 
pre-sampling manually in the field, so infield application was very limited. Several 
recent reviews have discussed the different strategies for monitoring volatile com-
pounds for plant disease detection (Sankaran et al., 2010; Fang & Ramasamy, 2015; 
Martinelli et al., 2015).
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5.3.2.2  Biosensors

Biosensors are a novel diagnostic tool for detecting plant diseases. On-site detection 
of plant pathogens can be performed using biosensors. Integration of different tech-
niques in portable devices led to the development of biosensors. Table 5.2 summa-
rizes the main biosensors used to detect numerous fungal pathogens. Biosensors 
used in plant disease detection have been recently reviewed by Ray et al. (2017). 
Biosensors are gaining much interest for detecting fungal plant diseases and can be 
a promising alternative tool in crop protection. Some recent reviews have described 
the strategies of the different biosensors for detecting plant diseases (Ray et  al., 
2017; Khater et  al., 2017). Several biosensors based on different techniques are 
commercially available to detect several plant pathogens such as Phytophthora, 
Pythium, Oidium, and Botrytis cinerea (Ray et  al., 2017; Khater et  al., 2017). 
Commercial biosensors are portable small/pocket devices for detecting diseases at 
the leaf or plant level, and they can be used under lab or field conditions (Khater 
et al. 2017).

Table 5.2 Main biosensors used in plant fungal pathogen detection

Type of method Biosensor Pathogen

Optical biosensors Fluorescence-based biosensors Phytophthora palmivora

Chemiluminescence-based biosensors Saccharomyces cerevisiae
Hansenula anomala

Surface plasmon resonance (SPR)-
based biosensors

Phytophthora infestans

Volatile biosensors Electronic nose system Botrytis sp.
Penicillium sp.

Field asymmetric ion mobility 
spectrometry (FAIMS)

Oidium neolycopersici

Electrochemical 
biosensors

Amperometric platform Saccharomyces cerevisiae
Cerrena unicolor

Potentiometric platform Lentinus sajor-caju

Impedimetric platform Phakopsora pachyrhizi
Penicillium sclerotigenum

Conductometric platform Candida albicans, 
Aspergillus niger

Mass-sensitive 
biosensors

Quartz crystal microbalance (QCM) 
biosensors

Candida albicans
Candida glabrata

Cantilever-based biosensors Aspergillus niger
Saccharomyces cerevisiae

Point-of-care (POC) 
tests

Lateral flow assays (LFAs) Phytophthora species
Microfluidic paper-based analytical 
devices (μPADs)

Botrytis cinerea
Peronospora destructor

Nanomaterial-based 
biosensors

Aspergillus niger
Metarhizium anisopliae

Adapted from Ray et al. (2017)
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5.3.2.3  Non-destructive/Non-invasive Sensing Technologies

Non-destructive/non-invasive sensing technologies are gaining much interest for 
detecting plant diseases and can be a promising alternative tool in crop protection. 
Non-destructive/non-invasive (both terms are interchanged, generally) techniques 
are defined as methods that do not alter the physical state of an object. These tech-
nologies have been successfully implemented to measure some important physio-
logical parameters in non-invasive ways. Non-invasive sensing technologies are 
associated with remote and proximal sensing, which acquire information from the 
plant-pathogen interaction. Most of these technologies are based on the interaction 
between electromagnetic radiation and the plant. The electromagnetic spectrum 
provides information about plant physiological status, and consequently, an infected 
plant generally displays a different spectral signature to that of a healthy plant (Ali 
et al., 2019; Delalieux et al., 2007; Sankaran et al., 2010).

Non-destructive technologies used for detecting plant diseases were reviewed by 
several authors (Ali et  al., 2019; Mahlein et  al., 2018, 2019; Ray et  al., 2017; 
Sankaran et  al., 2010; Thomas et  al., 2018). Table  5.3 summarizes non-invasive 
sensing technologies employed for detecting diseases in vineyards and tree fruit 
orchards. Non-invasive technologies include fluorescence, thermography, X-ray, 
spectroscopy, computer vision, multispectral imaging, and hyperspectral imaging. 
They were applied in grapevine, citrus, apple, pear, avocado, kiwifruit, raspberry, 
etc. Numerous important crop pathogens and diseases such as citrus greening dis-
ease (Huanglongbing), citrus canker (Xanthomonas citri), apple scab (Venturia 
inaequalis), phytophthora root rot disease, downy mildew (Plasmopara viticola), 
powdery mildew (Erysiphe necator), Botrytis cinerea, Flavescence dorée, grape-
vine leafroll disease, and grapevine trunk diseases (GTD) were detected using non- 
invasive technologies.

Non-invasive sensing technologies can be integrated into portable devices and 
ground and aerial platforms, as discussed in the next section. Some technologies are 
commercially available for disease detection in grapevine and fruit trees, while oth-
ers are being developed.

5.3.2.4  Hyperspectral Imaging

Hyperspectral imaging (HSI) is one of the most powerful non-invasive technolo-
gies. Hyperspectral imaging has been applied in agriculture, forestry, environment, 
defense, medicine, water, food quality, and safety control. Spectral resolution (nar-
rower wavelengths) and the band number are the key features that characterize 
HSI. Hyperspectral imaging provides one full spectrum for each pixel of the col-
lected image. Hyperspectral sensor and imaging techniques have shown a great 
potential for detecting plant diseases. Several authors have recently reviewed HSI 
applications in phytopathology (Mahlein et al., 2018, 2019; Thomas et al., 2018). 
Specific spectral indices can be developed for disease detection and monitoring in 
precision agriculture (Mahlein et al., 2013).
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Table 5.3 Non-invasive sensing technologies for detecting diseases in apple trees, citrus, 
grapevine, and tree fruit plants

Technology Plant Disease/pathogen References

Fluorescence Citrus Citrus canker (Xanthomonas citri) Belasque et al. (2008)
and Lins et al. (2009)

Grapevine Powdery mildew (Erysiphe necator)
Downy mildew  
(Plasmopara viticola)
Downy mildew  
(Plasmopara viticola)

Bélanger et al. (2008), 
Cséfalvay et al. (2009) and 
Latouche et al. (2015)

Thermography Apple Apple scab (Venturia inaequalis) Oerke et al. (2011)
Kiwifruit Pseudomonas syringae pv. actinidiae 

(Psa)
Maes et al. (2014)

Grapevine Downy mildew  
(Plasmopara viticola)

Stoll et al. (2008)

Olive tree Verticillium Calderón et al. (2013)
X-ray Raspberry Botrytis cinerea Goodman et al. (1992)

Grapevine Grapevine trunk disease (GTD) Vaz et al. (2012)
Spectroscopy Apple Apple scab (Venturia inaequalis) Delalieux et al. (2007)

Citrus Anthracnose Blasco et al. (2007)
Grapevine Grapevine leafroll disease

Grapevine trunk disease (GTD)
Naidu et al. (2015)
and Levasseur-Garcia et al. 
(2016)

Computer vision Apple Apple scab (Venturia inaequalis) Wijekoon et al. (2008)
Citrus Anthracnose Blasco et al. (2007)
Grapefruit Greasy spot (Mycosphaerella citri), 

melanose (Diaporthe citri), and scab 
(Elsinoe fawcettii)

Pydipati et al. (2006)

Avocado Phytophthora root rot disease Salgadoe et al. (2018)
Grapevine Powdery mildew (Erysiphe necator) Oberti et al. (2014)

Multispectral 
imaging

Citrus Citrus greening disease 
(Huanglongbing)

Kumar et al. (2012)

Grapevine Grapevine leafroll disease (GLD)
Flavescence dorée
Armillaria

Hou et al. (2016)
and Albetis et al. (2017)
Candiago et al. (2015)

Olive tree Verticillium Calderón et al. (2013)
Hyperspectral 
imaging

Apple Apple rottenness (Penicillium) Zhang et al. (2015)
Pear Pear black spot disease (Alternaria 

alternata)
Pan et al. (2019)

Citrus Citrus canker (Xanthomonas citri)
Citrus greening disease 
(Huanglongbing)
Citrus greening disease 
(Huanglongbing)

Qin et al. (2008), Lee et al. 
(2008) and Moriya et al. 
(2019)

Grapevine Downy mildew  
(Plasmopara viticola)
Powdery mildew (Erysiphe necator)

Oerke et al. (2016)
and Pérez-Roncal et al. 
(2020)
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Table 5.4 Hyperspectral imaging (HSI) applications in grapevine and fruit tree orchards

Plant
Imaging 
conditions Disease/pathogen References

Citrus Field Citrus greening disease 
(Huanglongbing)

Moriya et al. (2019)

Pear Laboratory Pear black spot disease  
(Alternaria alternata)

Pan et al. (2019)

Apple Laboratory Apple rottenness (Penicillium) Zhang et al. (2015)
Olive Field Xylella fastidiosa Zarco-Tejada et al. (2018)
Grapevine Laboratory Downy mildew  

(Plasmopara viticola)
Oerke et al. (2016)

Grapevine Laboratory/field Downy mildew  
(Plasmopara viticola)

Poblete-Echeverría & 
Tardaguila, (2023) 

Grapevine Laboratory Powdery mildew (Erysiphe necator) Pérez-Roncal et al. (2020)

Table 5.4 summarizes HSI applications in grapevine and fruit tree orchards. HSI 
was employed in citrus, pear, apple, grapevine, etc. Several important plant patho-
gen diseases such as citrus greening disease (Huanglongbing), pear black spot dis-
ease (Alternaria alternate), apple rottenness (Penicillium), downy mildew 
(Plasmopara viticola), and powdery mildew (Erysiphe necator) were detected 
under laboratory and field conditions.

Hyperspectral imaging is a powerful technology, but it has been typically used 
under laboratory conditions. Very few attempts at infield hyperspectral imaging 
have been reported in the literature, due to the difficulties, such as natural and irreg-
ular illumination or unknown a priori sample positioning in the recorded scene, that 
are necessary to face.

Gutiérrez et al. (2018) have used HSI as a ground platform for grapevine pheno-
typing on the go. This study acquired hyperspectral images under natural illumina-
tion with a VIS-NIR hyperspectral camera (400–1000 nm) mounted on an all-terrain 
vehicle moving at 5 km/h in a commercial Tempranillo vineyard in Spain (Fig. 5.5). 
The same mobile hyperspectral sensing ground platform could be used for disease 
detection in commercial vineyards (Tardaguila et al. unpublished data). HSI sensor 
was also mounted into aircraft for detecting citrus greening disease (Huanglongbing) 
in Brazil (Moriya et al., 2019). Xylella fastidiosa, one of the most dangerous plant 
pathogens, was detected at the previsual stage in the olive orchard by hyperspectral 
and thermal sensors mounted in an airborne (Zarco-Tejada et al., 2018).

5.3.2.5  Sensing Platforms and Robots

Plant disease detection could be performed by integrating non-invasive sensing 
technologies into different platforms: portable devices (apps, smartphones, etc.), 
ground platforms (quads, tractors, robots, etc.), and aerial platforms (drones, air-
craft, etc.) and satellites. Emerging technologies can be used for quantitative and 
qualitative evaluation of plant diseases (Ali et al., 2019; Mahlein et al., 2019; Ray 
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Table 5.5 Sensing platforms for detecting diseases in vineyards and tree fruit orchards under field 
conditions

Platform Plant Disease/pathogen References

Portable Avocado 
tree

Phytophthora root rot Salgadoe et al. (2018)

Ground 
platforms

Grapevine Downy mildew
Grapevine trunk diseases (GTD)

Tardaguila et al. 
(unpublished data)

Drone/UAV Grapevine
Grapevine
Grapevine
Citrus

Flavescence dorée
Grapevine trunk diseases (GTD)
Armillaria
Citrus greening disease 
(Huanglongbing)

Albetis et al. (2017)
Albetis et al. (2019)
Candiago et al. (2015)
and Garcia-Ruiz et al. (2013)

Aircrafts Olive
Citrus
Citrus

Xylella fastidiosa
Citrus greening disease 
(Huanglongbing)
Citrus greening disease 
(Huanglongbing)

Zarco-Tejada et al. (2018)
Garcia-Ruiz et al. (2013)
and Moriya et al. (2019)

Satellites Citrus Citrus greening disease 
(Huanglongbing)

Li et al. (2015)

Fig. 5.5 Hyperspectral imaging camera mounted on an all-terrain vehicle moving at 5 km/h used 
for monitoring a commercial vineyard in Spain. (Photo: Javier Tardaguila)

et  al., 2017; Sankaran et  al., 2010). The potential of aerial platforms to evaluate 
biotic and abiotic stress factors in precision agriculture has been recently reviewed 
(Sankaran et al., 2015). Table 5.5 summarizes sensing platforms that have been used 
for disease detection in vineyards and tree fruit orchards.

Phytophthora root rot incidence was assessed in an avocado orchard using RGB 
images taken by a smartphone camera. Visual symptoms of downy mildew and 
grapevine trunk diseases (GTD) in commercial vineyards were evaluated and 
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mapped using an RGB sensor mounted on a mobile sensing platform at 5 km/h 
(Tardaguila et al. unpublished data).

Several diseases were detected in vineyards and citrus orchards using different 
remote sensing technologies integrated on aerial platforms such as drones or UAVs 
(Albetis et al., 2017; Albetis et al., 2019; Candiago et al., 2015; Garcia-Ruiz et al. 
2013) and aircraft (Garcia-Ruiz et  al., 2013; Moriya et  al., 2019; Zarco-Tejada 
et al., 2018). Additionally, citrus greening disease (Huanglongbing) was detected 
using multispectral satellite information (Li et al., 2015).

The development and use of robotics can greatly facilitate the application of 
precision crop protection in the future, as it makes autonomous and continuous 
surveillance of the vineyards and orchards possible and optimizes any subsequent 
automated intervention based on the information obtained.

Sensing platforms offer the potential to map disease incidence in the plot. It can 
allow differential fungicide application using variable-rate technology. These new 
technologies will improve sprays’ timing and volume, reducing agronomical dam-
age, economic losses, and environmental impact.

5.3.2.6  Artificial Intelligence for Crop Protection

New technologies, sensor systems, artificial intelligence, and automation will be the 
key to the agriculture of the future. Artificial intelligence is a revolution at different 
work and industrial levels to deal with data. Machine learning has evolved greatly 
within artificial intelligence during the last decades, providing tools to make com-
puters learn. These algorithms are used in many fields due to their high versatility 
for any data-related tasks, generating knowledge and information, and improving 
the decision-making process (Gutiérrez, 2019).

Advances in non-invasive sensing technologies allow the acquisition of high 
amounts of data from the vineyard. Still, these data alone are not enough to be used 
when decisions need to be made, and they need to be transformed into actionable 
information. Therefore, the combination of non-invasive sensors and artificial intel-
ligence needs to be applied to meet the requirements needed to apply digital agricul-
ture and data-driven agriculture.

Data are the key to disease diagnosis and decision-making in vineyards and fruit 
orchards (Mahlein, 2016; Mahlein et  al., 2019). Artificial intelligence, machine 
learning, and big data will help the growers of the future to make decisions and 
optimize the crop protection management of their vineyards to meet their estab-
lished objectives, providing useful information both in the vineyard and fruit 
orchards (Mahlein et  al., 2019; Gutiérrez et  al., 2018). The combination of data 
from different sources of soil-plant-environment could be important to obtain infor-
mation and make forecasts to optimize crop protection management, leading to sus-
tainable agriculture.
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5.4  Conclusions

Many new technologies have been developed and are currently being investigated 
for fruit orchards and vineyards for managing pests and diseases. New technologies 
can be applied to crop protection. New reliable, objective, rapid, and field- deployable 
crop disease and pest detection methods are needed. Artificial intelligence and new 
non-invasive technologies will help growers in the future to make decisions and 
optimize fruit orchards and vineyard management in line with set targets. Combining 
data on both the plant and environmental factors will be important in obtaining use-
ful information and making predictions that can optimize pest and disease manage-
ment and hence sustainable vineyards and tree fruit orchards. Even though many 
new technologies have been developed and applied to crop production, more effort 
will still be needed, especially for disease and pest management, with more interest 
and support from growers, industries, and state and federal agencies.
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