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Preface

Modern tree fruit orchards and vineyards constitute complex production systems 
exposed to highly dynamic and stochastic natural, financial, and societal forces and 
face demands for increased production using fewer resources with reduced environ-
mental impact. Successful operation of orchards and vineyards under these condi-
tions necessitates careful and extensive use of state-of-the-art automation 
technologies and careful planning of future operations (e.g., training systems when 
replanting) that can be enabled by knowledge of emerging technologies and future 
trends. Also, improving existing automation technologies and developing novel 
future systems cannot be accomplished without a working understanding of the tree 
and vine biological production systems, their management needs, and the capabili-
ties and limitations of existing automation systems. This book aims to provide the 
necessary knowledge to achieve the above goals to readers who don’t necessarily 
have engineering or horticultural backgrounds.

In Chap. 1, the book introduces basic tree and vine physiology, water and nutri-
ent propagation through the soil-plant-atmosphere continuum, and pressures from 
pests and diseases. The establishment of modern orchards and vineyards using vari-
ous training systems is also presented.

In Chap. 2, basic canopy management operations such as hedging and pruning 
are presented, emphasizing robotic pruning operations. Also, existing and emerging 
canopy sensing technologies are discussed.

Water management in orchards and vineyards is discussed in Chaps. 3 and 4, 
respectively. Principles and technologies for remote and proximal sensing for soil 
and plant water and nutrient status are presented, as well as state-of-the-art methods 
to determine the necessary irrigation inputs, including model-based decision sup-
port systems. Current and emerging technologies for sensing and actuation systems 
for precise automated application of inputs are discussed in detail.

Chapter 5 presents principles, methods, and hardware and software technologies 
to sense (detect, classify, and quantify) pests and disease and discusses state-of-the- 
art actuation technologies for targeted pest and disease control; ground and aerial 
platforms are included.



vi

Chapter 6 discusses crop load management. Fruit trees generally bloom more 
flowers and set more fruit than they can support to grow the desired yield of high- 
quality fruit. Precise crop load management practices aim to optimize the yield and 
specific desired quality parameters by reducing the number of fruits set and grown 
in a given tree. The chapter discusses the opportunities and challenges of robotic 
solutions for tree fruit production with modern planar tree canopy management, 
including the importance of modern tree canopy systems, robot-canopy interaction, 
robotic system control, in-field sensing for object detection, and three-dimensional 
(3D) reconstruction, and a case study on the robotic branch pruning for apples with 
modern tree canopies.

Chapter 7 covers harvesting mechanization by providing a general overview of 
many of the fundamental factors and challenges surrounding mechanical harvesting 
and the development of mechanical harvesting systems, plus providing some exam-
ples of various current and possible future concepts.

Chapter 8 covers the topic of autonomous platforms. It discusses how robots are 
used in precision agriculture for orchards and vineyards to automate and simplify 
tasks. Topics include ways in which platforms track their positions, such as GPS; 
what types of sensors are generally used on top of location; and how this data is 
used for decision-making and human safety within the navigation and mobility con-
cept. It also discusses other high-level topics, such as path planning and optimiza-
tion and fleet management, to explain the necessary aspects that play behind the 
scenes. The chapter closes with examples of existing commercial and emerging 
autonomous systems for orchards and vineyards.

Chapter 9 discusses the principles of farm management information systems, 
i.e., computation, communication, and algorithmic sub-systems, that integrate sens-
ing, actuation, data management and analysis, knowledge of horticultural practices, 
and decision-making to help automate the operation and management of modern 
orchards and vineyards. Topics include types of data and information, infrastruc-
tures, architectures, standardization, data ownership and sharing, and decision sup-
port system technologies.

Finally, Chap. 10 discusses the economics of automation related to fruit and 
grape production, the impact of automation on the environmental footprint of pro-
duction, and the societal impacts of increasing automation on growers, farmwork-
ers, and rural communities in general.

As stated above, this book aims to reach a wider audience. To achieve this goal, 
the book introduces the fundamental functions (physiology) of fruit trees and grape 
vines. It also tries to cover the fundamentals of automation for managing both 
orchards and vineyards in a systematic, integrated manner that highlights common-
alities and differences. Furthermore, it discusses both current commercial and 
emerging automation technologies. Our wish—and hope—is that this book will 
prove helpful to a broad audience of readers that spans undergraduate and graduate 
students, researchers, engineers, and, hopefully, farmers, policymakers, and stake-
holders in specialty crops production.

Davis, CA, USA Stavros G. Vougioukas
Prosser, WA, USA Qin Zhang

Preface
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Chapter 1
Fundamentals of Tree and Vine Physiology

Alexander Levin and Theodore M. DeJong

Abstract Orchards and vineyards can be considered biologically based solar 
energy-capturing systems designed to capture solar energy and use that energy to 
convert CO2, water, and nutrients into edible fruit products. However, most of the 
water that is inadvertently needed for this process is not used in making fruit but 
passes through the trees or vines in exchange for taking up CO2 from the atmo-
sphere to make carbohydrates that are used to transport energy around the plants 
and construct the plants and their fruit. The distribution and use of carbohydrates by 
the trees and vines are governed by genetically determined patterns of development 
and growth of their individual organs, the environment surrounding organs, and 
competition for carbohydrates among organs. The architecture of trees and vines is 
governed by the genetically determined growth habits of their branches and built-in 
responses to manipulations of their canopies, such as pruning. It is now understood 
that tree and vine canopies can develop naturally strong structures without pruning 
but that pruning can be necessary to optimize conditions for high-quality fruit pro-
duction and to facilitate efficient orchard or vineyard operations.

1.1  Introduction

1.1.1  Specialized Solar Energy Collection

From an engineering perspective, a fruit or nut tree orchard or a vineyard can be 
viewed as a massive network of solar energy collectors. The individual solar collec-
tion plates (grana stacks) are located in chloroplasts, green microscopic structures 
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within biological cells of the leaves (Taiz et al., 2015). Each leaf contains thousands 
of chloroplasts that function as solar energy cells. Trees or vines, in turn, support 
and display thousands of leaves and are arrayed and managed in an orchard or vine-
yard to efficiently capture and/or distribute light within canopies in a manner that is 
intended to either maximize total light interception or optimize light interception 
and distribution to simultaneously manage both fruit quality and yield. In orchard 
crops such as nuts, in which there are minimal premiums for size or light exposure- 
related quality characteristics, the emphasis is on maximizing yield and thus maxi-
mizing light interception. In fruit crops in which there are premiums paid for size 
and quality, light exposure of the fruit or fruit-bearing shoots is important. Thus, 
managing light distribution within canopies can be as important as the total light 
interception of the orchard or vineyard canopies.

The solar energy cells (chloroplasts) only function if they are in aqueous solu-
tion, so leaves are specially designed to maintain the solar cells in a hydrated state 
inside the biological cells even though leaves are usually exposed to dry ambient 
conditions (Taiz et al., 2015). In this analogy, the woody framework of the tree and 
trellis structures in orchards and vineyards can be viewed as providing the structure 
by which the plants are capable of exposing optimal numbers of solar cells to light 
energy. In addition to providing the structural framework for optimum light expo-
sure, the wood and bark provide a vascular tissue for transporting water and nutri-
ents to the leaves and chemical energy (photosynthates) from the solar cells 
(chloroplasts) in the leaves to other parts of the plant. The efficiency of a tree or vine 
as a solar energy collector network depends on the capture and conversion of light 
energy into chemical energy (photosynthesis) and the subsequent transport, storage, 
and utilization of that chemical energy for fruit production. This concept is sup-
ported by the fact that maximum yields of orchards, when optimally managed, have 
been shown to be directly related to the percentage of daily solar radiation inter-
cepted (Lampinen et  al., 2012; Palmer et  al., 2002; Wunsche & Lakso, 2000). 
Similarly, vineyards with higher amounts of exposed leaf area per vine or more 
closely planted rows – resulting in more exposed leaf area per hectare – are very 
productive and/or produce high-quality fruit (Dokoozlian, 2009; Kliewer & 
Dokoozlian, 2005).

Looking at the functioning of trees and vines from this perspective is useful for 
both scientific and practical horticultural reasons. Because of the importance of 
photosynthesis to the efficient functioning of plants as solar energy collectors, sci-
entists have been intensively studying the process of photosynthesis for more than 
100 years with the hope of increasing its efficiency. However, there is little evidence 
that scientists have or will be able to increase this efficiency in crop plants in the 
near future (Horton, 2000). Nevertheless, there is substantial evidence that fruit 
trees naturally distribute nutrient resources, adapt leaf photosynthetic competency, 
and adjust leaf angles in different parts of their canopies, to optimize use of resources 
for capturing sunlight as it passes through their canopies (Auzmendi et al., 2013; 
DeJong & Doyle, 1985; DeJong et al., 1989; Niinemets, 1995, 1997; Rosati et al., 
1999, 2000, 2002). On the other hand, grapevines are naturally climbing lianas and 
in nature are adapted to climb on top of other plants or structures. Thus, each leaf is 

A. Levin and T. M. DeJong
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adapted to operate independently and take advantage of all light that it can intercept 
(Gamon & Pearcy, 1989). Indeed, considering that cultivated grapevines are most 
often grown on a trellis designed to display foliage in a particular way and that 
vineyards consist of discontinuous canopies oriented in a fixed row direction, leaf 
angle and azimuth are often a function of vineyard trellis design and row orientation 
(Mabrouk et al., 1997).

Trees and vines have evolved to optimize these processes in the context of sur-
vival and reproduction in diverse natural environments. So why should horticultur-
ists and orchard/vineyard managers be concerned about studying and understanding 
photosynthesis and the distribution of photosynthates in trees and vines? The horti-
culturist’s objective is to optimize orchard/vineyard conditions such that trees and 
vines carry out photosynthesis and efficiently distribute and use photosynthates 
toward obtaining an economically valuable crop. The orchard or vineyard manag-
er’s objective is to optimize cultural inputs that influence these optimal conditions. 
While the former is more ecophysiological and the latter more operational, both 
objectives require a basic understanding of the plant’s fundamental processes and 
the factors that influence them.

1.1.2  Photosynthesis

Simply summarized, photosynthesis is the process (Fig. 1.1) by which light energy 
from the sun is captured by green pigments in plant tissues (chlorophyll, mostly 
found in leaves) and converted into chemical energy. This chemical energy is then 
used to combine carbon dioxide gas (CO2) and liquid water (H2O) into simple car-
bohydrates that eventually become more complex sugars ([CH2O]n). These sugars 
are exported from leaves and distributed throughout the plant to be used as an energy 
source for growth and development. However, they are also stored for later redistri-
bution and use. The reverse process, whereby energy is recovered from these sugars 
(and oxygen gas released), is called respiration and is common among all plants and 
animals (Taiz et al., 2015).

The actual photosynthetic process is a complex set of reactions involving many 
of the nutrients green plants require. For example, nitrogen (N) is a constituent of 
photosynthetic enzymes and chlorophyll; phosphorus (P) is important in the energy 

Fig. 1.1 Diagrammatic summary of photosynthesis and respiration

1 Fundamentals of Tree and Vine Physiology
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transfer process; magnesium (Mg) is an essential part of the chlorophyll molecule; 
potassium (K), iron (Fe), manganese (Mn), and other nutrients play important roles 
in specific photosynthetic reactions (Taiz et al., 2015). The carbohydrate products of 
photosynthesis are collectively called photosynthates. A principal product is glu-
cose, a six-carbon sugar. It is transformed into other simple sugars, i.e., fructose, 
sucrose, and sorbitol, a sugar alcohol. In most plants, sucrose is the predominant 
carbohydrate transported from the leaves to other parts of the plant; however, in 
most rosaceous fruit trees, sorbitol is the primary transported carbohydrate 
(Bieleski, 1982).

The CO2 for photosynthesis comes from the air surrounding the leaf, and the 
water comes up from the soil through the plant’s vascular system. CO2, which makes 
up only about 0.040% of the earth’s atmosphere (~400 ppm in air), diffuses through 
the stomata located in the lower epidermis of almost all fruit tree and grapevine 
leaves. Stomata not only allow entry of CO2 into the leaf but also allow water vapor 
to escape from the leaf. Thus, to minimize water loss from the leaf (transpiration), 
the stomata have an active mechanism for controlling their opening to permit just 
enough carbon dioxide into the leaf to allow photosynthesis to continue without 
excessive loss of water (Taiz et al., 2015).

1.1.3  Interactions Between Photosynthesis and Water Use

During the daylight hours when photosynthesis occurs, stomata are open, and leaves 
lose (transpire) as much as 400 molecules of H2O for every molecule of CO2 that is 
absorbed depending on the ambient temperature and relative humidity (Taiz et al., 
2015). The water that is lost from leaves is replenished by water transported through 
the tree or vine from the soil. If the soil around the tree or vine is moist, water also 
evaporates into the air directly from the soil. The total quantity of water lost by 
plants and soil is generally called evapotranspiration (ET) and crop ET (ETc) in crop 
production specifically (Allen et al., 1998).

A vast majority of total ETc is accounted for by plant transpiration. Accordingly, 
there has been increased research emphasis placed on developing plants with 
improved photosynthetic water use efficiency (WUE) due to increasing competition 
for water resources in many agricultural growing areas. However, most of this 
research has had limited success because photosynthesis can only be carried out in 
aqueous solution within leaf cells. The laws of physics (diffusion) govern the 
amount of water loss when stomata are open to allow CO2 to enter the leaf to supply 
the photosynthetic process (Taiz et al., 2015; Blum, 2009). As a consequence, the 
primary research successes in increasing orchard and vineyard WUE have been 
achieved by improving irrigation delivery system efficiencies, such as changing to 
micro-irrigation systems that more precisely deliver water to trees and vine where 
they need it and scheduling irrigation so that water is delivered when the plants most 
need it (Blum, 2009; Auzmendi et al., 2011; Lopez et al., 2016; Marsal et al., 2016; 
Behboudian et al., 2011).

A. Levin and T. M. DeJong
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1.2  Factors That Influence Photosynthesis in Fruit Trees 
and Vines

1.2.1  Light

Since an orchard or vineyard’s primary function is to be a solar energy farm, light is 
the most important driver of photosynthesis. However, there is seemingly a flaw in 
this system since photosynthesis of many individual tree leaves, as well as leaves of 
many other crop plants, is light-saturated at approximately one-third to one-half full 
sunlight if a leaf is exposed perpendicular to the sun’s rays (Taiz et  al., 2015; 
DeJong, 1983; Li & Lakso, 2004). In addition, the light saturation point of photo-
synthesis for a given leaf likely depends on the conditions under which it developed 
(Kriedemann, 1968). However, only leaves on the outer surface of a tree canopy are 
ever exposed to direct sunlight for long periods, and even those leaves are usually 
oriented vertically and often folded at the midrib. Thus, they only receive direct 
exposures for very short periods of the day as the orientation of the sun to the tree 
changes from east to west (DeJong & Doyle, 1985; Rosati et al., 1999). Each leaf, 
located in its zone of the tree canopy, has its own ever-changing light environment 
(DeJong & Doyle, 1985). Light is shared among leaves in deciduous fruit tree cano-
pies so that most leaves in a mature tree function most of the day on the steep rather 
than the light-saturated portion of the photosynthetic light-response curve (Rosati 
et al., 2002). Light becomes limiting for photosynthesis along a gradient from the 
outer, exposed edge to the center of the foliar canopy, and often this gradient is 
depicted as a continuous reduction of light intensity toward the interior of tree cano-
pies (Robinson et al., 1991). However, much of the light intercepted by many leaves 
is in the form of sun flecks, and the light exposure of interior leaves is a function of 
the amount of time leaves are exposed to sun flecks as opposed to being in shade 
(DeJong & Doyle, 1985). Thus, interior leaves contribute less photosynthates to the 
local fruit-bearing shoots to which they are attached, and those shoots develop less 
leaf area and are less productive than more exposed shoots. These shoots may even-
tually die if total light interception is below the threshold for shoot survival 
(Lampinen et al., 2011), reinforcing the importance of solar energy collection in a 
tree’s economy.

Leaves of vines operate a little differently. Vines are by nature climbing lianas, 
and they are adapted to climb on trees and other structures. Thus, individual leaves 
of vines are generally adapted to be oriented perpendicular to prevailing sun rays 
and not “share” light with other leaves in a canopy. Accordingly, grapevines tend to 
have thicker leaves than deciduous trees, and their photosynthesis is light-saturated 
at higher light levels than deciduous tree leaves (Mullins et al., 1992).

1 Fundamentals of Tree and Vine Physiology
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1.2.2  Sink Strength

In horticulture, much attention has been paid to the question of whether photosyn-
thesis of fruit trees and vines is strongly controlled by plant demands for carbohy-
drates, as opposed to environmental drivers of photosynthesis such as light (Neales 
& Incoll, 1968). Researchers have reported that photosynthesis can be substantially 
increased in the presence of high demand for carbohydrates by fruits in several fruit 
crops (Avery, 1975; Hansen, 1970; Maggs, 1963), and this led some researchers to 
assert that fruit demand for carbohydrates is a major factor controlling photosynthe-
sis in fruit trees. Indeed, photosynthetic rates have been shown to be reduced in 
de-fruited grapevines (Downton et al., 1987; Edson et al., 1993). However, other 
research has indicated that the effect of fruit on photosynthesis can be relatively 
minor (DeJong, 1986). Close analysis of much of the literature reporting strong 
effects of crop load on photosynthesis indicates that those effects are mainly present 
when there are factors such as dwarfing rootstocks (Palmer et al., 2005) or girdling 
(Ben Mimoun et al., 1996; Harrell & Williams, 1987) that limit the flow of photo-
synthates to alternative sinks and cause a feedback-mediated reduction in carbohy-
drate movement from the leaves. While there may be a tendency for stomata to 
function less conservatively in controlling the ratio of CO2 uptake to H2O loss in the 
presence of fruit (DeJong, 1986), there does not appear to be strong evidence for 
crop load being a primary regulator of photosynthesis in the absence of some “arti-
ficial” mechanism that limits the capacity of alternative sinks to utilize photosyn-
thates for growth. This corresponds with the concept that a plant species’ success 
and survival in nature are expected to be associated with garnering as much carbo-
hydrate resource as possible to grow and compete for space in addition to reproduc-
ing (Stephenson, 1981).

1.2.3  Temperature

Photosynthesis functions optimally at leaf temperatures between about 20 and 
30 °C in many temperate deciduous species (Ro et al., 2001), though this optimum 
range may shift depending on the conditions under which the leaf developed 
(Mullins et al., 1992; Kriedemann, 1968). While the temperature-based limits for 
temperate deciduous trees and vines are dictated most often by winter and spring 
cold events or lack of winter chill, rather than photosynthetic temperature optima, 
growing season temperatures can influence fruit quality and yield through effects on 
photosynthesis. Crops that have fruits with high sugar contents, such as many stone 
fruits and grapes, tend to be sweeter in climates where daytime maximum tempera-
tures are greater than 30 °C, whereas many starch-accumulating fruit species do 
better in areas where temperatures rarely exceed 30 °C. More research is needed to 
explore whether this is related to the photosynthetic process or downstream carbo-
hydrate metabolism in these species. It is important to note that even at leaf 

A. Levin and T. M. DeJong
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temperatures approaching 45  °C, photosynthetic rates of field-grown grapevine 
leaves may still be 50% of their maximum (Mullins et al., 1992). Moreover, even in 
regions where maximum temperatures often exceed 30 °C, these temperatures usu-
ally only occur for a relatively short period in a day (afternoon) in most regions 
where temperate deciduous crops are commercially grown.

All commercial fruit-bearing species use what is known as C3 photosynthesis 
(the first carbon compound assimilated in the photosynthetic process has three car-
bon atoms) (Taiz et al., 2015). Some plant scientists have suggested that the produc-
tivity of temperate deciduous fruit trees and vines could be enhanced if they could 
be converted to the C4 photosynthetic pathway found in some other plants, such as 
corn (Zea mays). This is highly unlikely, since C4 photosynthesis would not be as 
efficient as C3 photosynthesis in early spring when temperatures are relatively low 
(Taiz et al., 2015), and there is no competitive advantage of C4 photosynthesis under 
the shady conditions (Pearcy & Ehleringer, 1984) that are common within the cano-
pies of most fruit tree and vine species.

1.3  Principles of Photosynthate Distribution and Use

Over the past couple of decades, the concept that carbohydrate partitioning at the 
whole plant level is primarily driven by growth and development of individual 
organs has become widely accepted (Gifford & Evans, 1981; Ho, 1988; Lacointe, 
2000; Marcelis, 1994; Watson & Casper, 1984; Weinstein & Yanai, 1994). Grossman 
and DeJong (1995b) used this concept in the development of the PEACH model, 
and later DeJong (1999) outlined the following four principle steps for applying this 
concept to logically understand carbon partitioning in fruit trees.

1.3.1  First Principle: A Tree or Vine Is a Collection 
of Semiautonomous Organs, and Each Organ Has 
a Genetically Determined, Organ-Specific Developmental 
Pattern and Growth Potential

Although much emphasis is often placed on considering plants as highly integrated 
organisms, the concept of semi-autonomy among organs is widely recognized 
(Harper, 1980; Sprugel et al., 1991; Watson & Casper, 1984; White, 1979). Indeed, 
the primary morphological features that distinguish one species or cultivar from 
another are at the organ or sub-organ level (i.e., fruit or leaf shape and size, floral 
characteristics, etc.), not at the whole plant level. Furthermore, although variation 
exists, the developmental patterns and growth rates of individual organs under spe-
cific environmental conditions are generally predictable. Models have been devel-
oped for the growth of fruit (DeJong & Goudriaan, 1989; Genard & Huguet, 1996; 

1 Fundamentals of Tree and Vine Physiology
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Genard & Souty, 1996; Grossman & DeJong, 1995b; Pavel & DeJong, 1993b; 
Lakso et al., 1995 ), shoots and branches (Costes et al., 1993; Costes & Guédon, 
1996; Costes et  al., 2014; Genard et  al., 1998; Grossman & DeJong, 1995c; 
Lescourret et  al., 1998; Johnson & Lakso, 1986), and roots (Bidel et  al., 2000). 
Although pruning and training can drastically alter the shape of trees and vines, they 
generally have very little effect on individual organ characteristics other than those 
explained by changes in the local microenvironment of the organs or changes in the 
availability of carbohydrates due to the proximity of other sinks.

The fact that there appears to be some level of branch autonomy (Sprugel et al., 
1991; Heerema et  al., 2008) in fruit trees further reinforces this first principle. 
Branch autonomy tends to functionally isolate some sinks from sources of carbohy-
drates. When sinks are manipulated through pruning or fruit thinning to create an 
apparent abundance of photosynthate in one part of the plant and an under-supply 
somewhere else, the carbon does not freely move to the location of greatest demand. 
When one scaffold of Y-shaped peach trees was de-fruited, the remaining fruit on 
the fruited scaffold benefited very little from the carbon that should have been avail-
able for fruit growth from the de-fruited scaffold (Marsal et al., 2003). Interestingly, 
scaffold diameter growth appeared to be one of the sinks that benefited most from 
the removal of fruit, while root growth was only marginally affected. There is much 
to be learned about the movement of carbohydrates within the context of whole 
trees and vines. The role of branch autonomy in early spring, when much of the 
carbon used for growth is mobilized from storage in the root, trunk, and major 
branches and is presumably transported in the xylem, is still being elucidated 
(Zwieniecki et al., 2015).

Carbon partitioning at the branch level has been studied explicitly with radioac-
tive tracer studies (Corelli-Grappadelli et al., 1996) and by manipulating leaf num-
ber and fruit load in isolated branches (Genard et al., 1998). Implicit conclusions 
about carbon partitioning within shoots have also been drawn from fruit thinning 
studies to determine optimal fruit positioning for fruit size (Marini & Sowers, 1994; 
Spencer & Couvillon, 1975). These studies support the idea that fruits are strong 
sinks for carbon within shoots, but their influence on where recently fixed carbon 
goes varies substantially within the local context of the stem unit.

1.3.2  Second Principle: The Genetic Growth Potential 
of an Organ Is Activated or Deactivated by 
Organ- Specific, Endogenous and/or 
Environmental Signals

The semiautonomous nature of individual organs is further demonstrated by the fact 
that individual organs on a tree or vine can be experimentally activated by manipu-
lating factors that stimulate the growth of specific organs independently from pro-
cesses occurring in organs elsewhere on the plant. For instance, exposing individual 
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buds on a branch to rest-breaking treatments can induce bud break in those buds, 
while similar buds on other parts of a tree remain inactive (Chandler, 1942). 
Similarly, grafting multiple cultivars with differing chilling requirements onto one 
trunk will not influence the inherent chilling exposure required for activation by the 
branch of each specific cultivar. Also, removing the apical meristem on a shoot will 
promote the activation of growth of lateral buds on the remaining part of the shoot, 
while buds on other shoots are unaffected (Harris, 1983). Although the exact mech-
anisms of the environmental and/or endogenous signals that activate growth are not 
fully understood, the primary site of activation is clearly at the organ or sub-organ 
level. This is certainly one area where hormones play key roles in influencing car-
bon partitioning at the whole tree level, as suggested by data on hormone concentra-
tion in xylem sap (Sorce et al., 2002).

1.3.3  Third Principle: After an Organ Is Activated, Current 
Environmental Conditions and Genetic Growth Potential 
Interact to Determine Conditional Organ 
Growth Capacity

Although often overlooked, ambient temperature is probably the single most impor-
tant environmental factor influencing organ growth. Its importance is related to the 
strong dependence of respiration on temperature. All irreversible plant organ growth 
is dependent on metabolic activity and enzyme function, and these processes are 
linked to respiration. Plant respiration generally has a temperature response quo-
tient (Q10) of about 2 (respiration doubles for every 10 °C increase in temperature 
between 5 and 35 °C, Amthor, 1989). Therefore, the conditional growth capacity of 
any organ is highly dependent on ambient temperature. The conditional growth 
capacity of fruits growing under near-optimal field conditions has been modeled for 
several peach and apple cultivars using mathematical functions responsive to heat 
accumulation (Berman et  al., 1998; DeJong & Goudriaan, 1989; Grossman & 
DeJong, 1995a; Lakso et al., 1999; Pavel & DeJong, 1993a; Reyes et al., 2016). 
That other environmental factors such as water status can also have a substantial 
effect on organ growth is well-documented (Bradford & Hsiao, 1982). Extension 
growth of shoots has been successfully modeled by considering temperature and 
dynamic changes in shoot water status (Basile et  al., 2003; Berman & DeJong, 
1997a). Although fruit growth is generally quite sensitive to water stress, it is impor-
tant to distinguish between growth in fresh and dry matter since the former is much 
more sensitive than the latter (Berman & DeJong, 1997b; Girona et  al., 1993). 
Indeed, grape berry growth during the ripening phase (when sugar concentration 
and dry weight are increasing) is relatively insensitive to mild water deficits (Roby 
& Matthews, 2004).

Nutrient availability also can strongly influence conditional organ growth capac-
ity because certain nutrients are required as constituents for growing organs. 
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Accordingly, Saenz et al. (1997) have demonstrated that limited N (nitrogen) avail-
ability can increase the developmental rates of peach fruit. Similarly, withholding P 
(phosphorus) from grapevines has been shown to greatly inhibit reproductive devel-
opment (Skinner & Matthews, 1989).

It should also be noted that conditional organ growth capacity generally operates 
as a relative growth rate function. Thus, the conditional organ growth capacity for 
any future time interval is partially dependent on the realized growth achieved over 
previous time intervals. This means that if an organ’s potential growth is not real-
ized during any preceding time interval due to stress or lack of resources to supply 
the growth demands of an organ, all subsequent growth is a function of what was 
achieved previously, and there is no compensatory growth to make up for previously 
lost growth potential.

1.3.4  Fourth Principle: Actual Organ Growth Is 
a Consequence of Conditional Organ Growth Capacity, 
Resource Availability (Assimilate and Nutrient Supply), 
and Inter-organ Competition for Those Resources

Inter-organ competition for carbohydrates is a function of location relative to 
sources and sinks of carbohydrates, transport resistances, organ sink efficiency, and 
organ microenvironment. When conditional growth capacity of an organ is set, 
organ growth should proceed at a rate equal to the conditional growth capacity as 
long as transport is not limited and enough resources (carbohydrates) are available 
to support that organ’s growth, as well as the growth of all other competing organs. 
However, if the tree does not have enough carbohydrates to support the conditional 
growth capacity of all organs or carbohydrate transport within the tree is limited, 
then the growth of an individual organ will be a function of its ability to compete for 
available carbohydrates with other organs. When flowering and pollination occur 
under favorable conditions, many fruit tree and vine cultivars set very heavy fruit 
loads. Therefore, lack of available assimilates and inter-fruit competition for carbo-
hydrates are generally the primary factors that limit realized fruit growth in these 
situations (Keller et al., 2008), and fruit thinning is essential to manage this compe-
tition (Cain & Mehlenbacher, 1956; Costa & Vizzoto, 2000; DeJong & Grossman, 
1995; Dorsey & McMunn, 1928; Grossman & DeJong, 1995b; Goffinet et  al., 
1995). Certainly, there are some limitations to carbohydrate transport within trees 
(DeJong & Grossman, 1995; Marsal et al., 2003), but these are difficult to quantify 
specifically. There is substantial evidence that fruit growth of many species can 
compete effectively for carbohydrates with shoot, trunk, and root growth when crop 
loads are high and all fruits are considered as a collective sink (Grossman & DeJong, 
1995a; Marsal et al., 2003; Proebsting, 1958). Yet, there is some evidence to the 
contrary when pruning stimulates excessive vegetative shoot growth (Grossman & 
DeJong, 1998). There is also clear documentation of the capacity of individual fruit 
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organs to compete with each other and/or vegetative sinks at the local branch level 
(Genard et al., 1998). A further complication is that the ability of fruit to compete 
for carbohydrates appears to vary with the stage of fruit development (DeJong & 
Grossman, 1995) and location within a tree (Basile et al., 2007).

Upon examining these principles for carbon partitioning in plants, it becomes 
apparent that phenological patterns of organ growth are the principal determinants 
of carbon partitioning. When experiments are conducted involving different crop 
load treatments or some other treatment that dramatically favors the growth of one 
type of organ over others, biomass data collected at the end of the season appear to 
indicate that some organs are in direct competition with others (Chalmers & Vanden 
Ende, 1975; Proebsting, 1958). However, when seasonal patterns of growth are ana-
lyzed, it is apparent that direct competition between different organ types is often 
limited by temporal separation of growth activities (Berman & DeJong, 2003; 
DeJong et al., 1987; Miller & Walsh, 1988; Rufat & DeJong, 2001). Generally, in 
late-maturing fruit cultivars and grapes, shoot and root growth is the dominant sink 
shortly after bud break in the spring. This period is followed by a peak of fruit 
growth, and then there is a resurgence of root growth (Pace, unpublished data) and 
shoot diameter growth after harvest (Berman & DeJong, 2003; Grossman & DeJong, 
1995a; Williams & Matthews, 1990). It is interesting that breeding efforts to create 
cultivars with early fruit ripening times have apparently interfered with the natural 
temporal separation of dominant sink activities in fruit trees. The dominant period 
of fruit growth of early-maturing peach cultivars often coincides directly with the 
early peak of shoot growth. This increased competition between fruit and shoot 
growth results in decreased yield potential (DeJong et  al., 1987; Grossman & 
DeJong, 1995a). There is also some evidence that selection for early-maturing cul-
tivars has involved coincidental selection for decreases in the total fruit growth 
potential and dry matter content, and these factors account for some of the differ-
ences in yield potential between early- and late-maturing cultivars (Berman et al., 
1998). Selection for early-maturing fruit has also increased the competition for car-
bohydrates between sub-organs within the fruit such that seed and endocarp devel-
opment corresponds with the period of flesh enlargement (Pavel & DeJong, 1993a) 
as well as increasing the individual fruit relative growth rates so that the tree cannot 
support as many fruits at one time (Grossman & DeJong, 1995a, b).

1.4  Carbohydrate Storage

Where does “allocation to storage” fit into this scheme of carbon partitioning? 
Long-term carbohydrate storage is essential for tree and vine survival during adverse 
conditions (particularly winter for temperate deciduous crops) and subsequent pro-
ductivity. However, there has been confusion about factors controlling storage 
reserves in trees (Epron et al., 2012). The prevailing view has been that trees store 
carbohydrate reserves during times of “excess” photosynthate production (when 
current supply exceeds demands for growth and tissue metabolism) and deplete 
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reserves when the potential rate of carbohydrate utilization exceeds the rate of cur-
rent photosynthate production (Oliveira & Priestley, 1988; Kozlowski et al., 1991; 
Dickson, 1991). This has created the notion that carbohydrate storage occurs only 
when photosynthates are in excess of demand.

Some researchers have challenged this passive concept of carbohydrate storage 
arguing that storage reserves are extremely important and storage sinks should not 
be conceived of as passive reservoirs (Cannell & Dewar, 1994). They have cited 
examples of control mechanisms for the use of carbohydrate reserves and that stor-
age sinks are refilled at the same time as the growth of other carbohydrate sinks 
(Weinstein et al., 1991). Indeed, careful evaluation of seasonal dynamics of reserve 
mobilization and accumulation that correspond to periods of shoot and fruit growth 
indicates that, although rates of reserve accumulation are generally lower when fruit 
growth rates are high, reserve accumulation still occurs during this period even 
though potential fruit growth rates are likely not at a maximum (Ryugo & Davis, 
1959; Priestley, 1970). Similarly, although autumn appears to be the main period for 
accumulation of carbohydrate reserves in temperate deciduous trees, some reserves 
are accumulated while growth is still occurring during summer (Barbaroux & 
Bréda, 2002; Landhäusser & Lieffers, 2003; Wong et al., 2003; Winkler & Williams, 
1945). Wargo (1979) reported that substantial storage of carbohydrates preceded 
radial growth of Acer saccharum roots and even speculated that root storage of that 
species may have priority overgrowth for transported carbohydrates.

Da Silva et al. (2014) pointed out that long-term carbohydrate storage in trees is 
a function of the volume of xylem and phloem parenchyma tissue in the tree. 
Furthermore, the volume of xylem parenchyma greatly exceeds the volume of 
phloem parenchyma. Thus, the collective storage “organ” of a tree or vine is the 
woody parenchyma tissues of the tree. The storage capacity of that “collective 
organ” is mainly comprised of the overall mass of xylem and phloem parenchyma, 
the maximum potential concentration of carbohydrates in the xylem and phloem 
parenchyma, the minimum amount of carbohydrates remaining in the xylem and 
phloem parenchyma after maximum mobilization, and the relative change in stor-
age activity with xylem aging.

If tree or vine carbohydrate storage capacity is determined primarily as wood is 
formed, and only current-year sapwood growth can be affected by environmental 
conditions in a given year, the overall ability for a tree or vine to adjust its storage 
capacity in response to environmental conditions is very limited. However, this also 
opens up important questions for future research into the effects of growing condi-
tions on the development of carbohydrate storage capacity in perennial plants, the 
dynamics of storage and mobilization over time, and the transport of substances 
from low in the plant to the top at different periods during the season (DeJong, 
2016). While most carbohydrate transport is usually thought of as occurring in the 
phloem, it is clear that much of the upward transport of carbohydrate mobilized 
from xylem parenchyma in the spring occurs in the xylem (Bonhomme et al., 2010; 
Ameglio et al., 2002). Tixier et al. (2017) have proposed a novel concept for how 
carbohydrates stored in lower parts of a tree can be delivered to growing shoot tips 
in the xylem before there is little or no transpiration to facilitate xylem flow. In 
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addition, while seasonal changes in stored carbohydrates have been known to occur 
for a long time (Kozlowski et al., 1991), recently it has been shown that diurnal and 
seasonal changes in temperature patterns cause dynamic changes in starch storage 
throughout dormancy and facilitate redistribution of storage carbohydrates in 
response to changes in temperature (Zwieniecki et al., 2015; Sperling et al., 2017). 
It appears likely that the dynamics of carbohydrate storage in trees may influence 
tree phenology to a much greater extent than previously recognized (Sperling 
et al., 2019).

1.5  Fruit Tree Canopy Architecture

1.5.1  Tree Architecture

In recent years, there have been major advances in the understanding of fruit tree 
architecture. While the growth characteristics of specific fruit tree species and culti-
vars have been generally recognized for many years, recent advances in statistically 
based analyses and descriptions of bud fate distributions and shoot and branch 
growth patterns of multiple species have revealed previously underappreciated sim-
ilarities and differences in growth characteristics of numerous fruit tree species 
(Durand et al., 2005; Costes et al., 2006). This has led to a greater understanding 
that trees are composed of repeating growth units with similarities in patterning of 
lateral vegetative and floral buds along their axes (Prats-Llinàs et al., 2019) and that 
patterns at the shoot level lead to differences in fruit bearing at the shoot level and 
overall tree architecture at the whole tree level (Costes et al., 2014).

These types of statistical analyses of tree architecture have been used to describe 
differences in growth and architectural development of different apple (Costes & 
Guedon, 2002; Costes et al., 2003) and almond (Prunus dulcis) cultivars (Negron 
et al., 2013), the influence of dwarfing apple rootstocks on scion growth and flower-
ing (Costes & García-Villanueva, 2007; Seleznyova et al., 2003), and similarities 
and differences in bud fate structures among rosaceous species (Costes et al., 2014). 
It also has been used in developing simulation models (Fig.  1.2) to demonstrate 
canopy growth dynamics in apple (Renton et  al., 2006), sweet cherry (Prunus 
avium) (Lang et al., 2004), peach (Lopez et al., 2008; Lescourret et al., 2011), and 
almond (Lopez et  al., 2018), as well as grapevine canopy light interception in 
response to differential irrigation or fertilization regimes (Iandolino et al., 2013).

1.5.2  Architecture-Informed Pruning

In fruit crops, it is well recognized that there are two objectives with regard to opti-
mizing the capture of solar energy to achieve maximum economic yields: (1) opti-
mizing the total light interception by the canopy and (2) distributing the light within 
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Fig. 1.2 Computer simulations of the tree structures of three almond cultivars resulting from the 
branching habits of the cultivars (bottom), compared with pictures of trees in the field (top). (From: 
Lopez et al., 2018)

the canopy to obtain as many high-quality fruit as possible while nurturing high- 
quality fruiting spurs/shoots for the following year’s crop. The increased under-
standing derived from shoot growth and tree architecture models has been valuable 
in developing canopy management strategies that optimize pruning procedures that 
work with the natural growth characteristics of trees to achieve these goals (Costes 
et al., 2006; Lauri, 2002). This has led to the development of “centrifugal” pruning 
techniques involving “spur extinction” in apples (Lauri et al., 2004, 2009; Tustin 
et al., 2011) and less intrusive training systems in stone fruits that adapt pruning 
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practices to the natural growth characteristics of trees (Day et  al., 2013; Lang, 
2001). Recent research in nut crops, for which concerns about distribution of light 
within tree canopies to maintain quality are less than for fruit crops but they have 
been traditionally pruned similarly to fruit crops, has led to the realization that the 
growth habits and architectures of some nut tree species naturally lend themselves 
to efficient capture of solar energy. Thus, high yields can be achieved without exten-
sive pruning and training (Tombesi et  al., 2011). In California, it is now recom-
mended that young almond and walnut (Juglans regia) orchards be managed without 
traditional, annual pruning (Duncan, 2010; Lampinen et al., 2015).

1.6  Orchard and Vineyard Pests and Diseases

There is a plethora of pests and diseases that can attack or infect tree and vine 
crops – too many to cover in this short chapter. Leaf-feeding insects and pathogens 
decrease the effectiveness of the solar energy collection system, while sucking 
insects and endophytic pathogens can directly feed on photosynthates or inhibit the 
flow of water, nutrients, and sugars in transport streams. Other insects and patho-
gens can attack flowers or fruit and directly affect the quantity and quality of har-
vested fruit. In recent years, there has been an increase in organisms that affect the 
structure of trees and vines and wood-decaying organisms that decrease the func-
tional life of orchards and vineyards. Finally, insects can vector bacterial and viral 
diseases that negatively impact water transport, photosynthesis, and carbohydrate 
partitioning and use.

Other than selecting resistant or tolerant genotypes to plant in orchards or vine-
yards, the primary defense against most of these insects and pathogens is proper tree 
and vine care to avoid severe stress or opening up infection sites and the application 
of pesticides. Increased environmental concerns have also increased the importance 
of efficient pesticide application reduction of off-target spray drift. All fruit produc-
tion systems must take these factors into account.

1.7  Concluding Remarks

While it is important to continually increase knowledge and understanding of fun-
damental aspects of the physiology of fruit trees and vines and there is still much to 
be learned, it also is important to recognize that researchers have had very little 
success in improving upon what eons of natural selection has provided in terms of 
fundamental tree functioning. This should not be a surprise, since trees are solar 
energy collection systems that have been evolving these systems for millions of 
years. Most horticultural progress has been achieved through empirical research or 
using physiological knowledge and understanding to improve tree and orchard man-
agement practices, rather than improving physiological processes.
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Chapter 2
Mechanical Management of Modern 
Planar Fruit Tree Canopies

Long He, Xin Zhang, and Azlan Zahid

Abstract This chapter will discuss the opportunities and challenges of robotic 
solutions for tree fruit production with modern planar tree canopy management, 
including the importance of modern tree canopy systems, robot-canopy interaction, 
robotic system control, in-field sensing for object detection, and three-dimensional 
(3D) reconstruction. A case study will be presented in robotic branch pruning for 
apples with modern tree canopies, followed by conclusions and future directions.

2.1  Introduction

2.1.1  Importance of Modern Tree Canopy Management

The US tree fruit industry is an important component of the national agricultural 
sector, representing ~26% ($11 billion) of all specialty crop production (Perez & 
Plattner, 2015; USDA-NASS, 2015). The industry is highly labor-intensive and is 
becoming less sustainable due to rising labor costs and growing labor shortages 
(Calvin & Martin, 2010; Fennimore & Doohan, 2008). Properly managing the tree 
canopies with branch training and pruning is an essential task in developing 
machine-friendly tree architectures, which could greatly benefit the tree fruit indus-
try by adopting new and innovative robotic technologies.
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New tree fruit orchards are increasingly planted in modern, high-density archi-
tectures that use dwarfing rootstocks and training systems designed for maximum 
sunlight interception, higher fruit yields and quality, and easier worker access 
(Milkovich, 2015; Warrington et al., 1996; Zhang et al., 2015). These new fruit tree 
training systems and rootstocks could potentially advance and improve the eco-
nomic benefits of growing highly productive trees with excellent fruit quality 
(Baugher, 2017; Schupp et  al., 2017). The key to maximizing profitability in an 
orchard operation, however, is the ability to integrate these architectures with mech-
anized/robotic systems that should perform multiple and diverse tasks. Previous 
research has indicated that trellis-trained fruiting wall orchards are greatly amena-
ble to robotic/mechanized harvesting (He et al., 2017a, b; Silwal et al., 2016; Zhang 
et al., 2018a, b) and pruning (Zahid et al., 2020a, b). Some private companies, such 
as Abundant Robotics, Inc. (founded in 2015) and FFRobotics Ltd. (founded in 
2014), are also seeking robotic solutions with these high-density modern planar tree 
orchards. The well-managed tree canopies would be a core for the successful imple-
mentation of mechanical and robotic operations in the orchards.

2.1.2  Conventional Tree Canopy Management

Typically, tree canopy management is done through training and pruning. Training 
begins at planting and may be required for several years to guide the trees to grow 
into a specific canopy shape or structure. Pruning is an action of removing branches 
to control the tree size, fruit quality, and yield, and appropriate pruning can also 
improve pest and disease control. The operation is generally carried out during win-
ter when the branches are easily visible without leaves (dormant pruning), whereas 
it sometimes includes summer pruning called hedging. Traditionally, both tree train-
ing and pruning are done manually through skilled workers. Figure 2.1a shows tree 
branch pruning using a long lopper, and Fig. 2.1b shows tying a branch to trellis 
wire using an electrical tap to form a fruiting wall canopy.

Fig. 2.1 Manual pruning and training for apple tree canopy management. (a) Branch pruning 
using a long lopper and (b) canopy training by tying a branch onto trellis wire
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Fig. 2.2 Alternative pruning solutions for tree fruit orchards. (a) Pruning assist platform system 
(Bandit, Automated Ag) and (b) mechanical hedging system (FAMA hedger)

Manual canopy management operations are labor-intensive and costly, and the 
decision varies from person to person based on the skills and experiences of the 
individual. For pruning, workers make the cutting decision by considering the 
branch diameter, number, distribution (density), and quality. The availability of 
farm labor is also becoming an issue for the tree fruit industry. To improve the work-
ing efficiency, orchard platforms are used to reduce the time for climbing ladders 
(Fig. 2.2a). Meanwhile, mechanical hedgers that remove the sides and tops of the 
canopies have been tested for fruit tree pruning (Fig. 2.2b). The degree of success 
for hedging is limited by factors such as unwanted vegetative growth, reduced fruit 
quality, and higher fruit density (Martí & González, 2010; Webster, 1998). 
Mechanical pruning works well for evergreen fruit-bearing trees like citrus but is 
found unsuitable for other fruit trees due to complex tree architecture, which 
requires selective pruning (Childers, 1983). Robotic selective pruning would be a 
potential solution for these trees.

2.1.3  Tree Fruit Production Mechanization with Modern 
Tree Canopies

An integrated robotic system for tree fruit production generally includes the robot- 
canopy interaction for creating a collision-free path for the robot to reach the target, 
a machine vision system to provide object detection, a manipulator to position the 
end-effector, and an end-effector to conduct the task (Fig. 2.3). The manipulation of 
a mechanical system (robotic arm/manipulator) inside the tree canopy to reach the 
target positions and perform desired tasks, such as a fruit or a branch, is referred to 
as robot-canopy interaction. For an agricultural robot, environment perception is 
gathered from a sensing system, followed by the manipulation and control of the 
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Fig. 2.3 The illustration of an integrated robotic system for tree fruit production

mechanical system to reach the targets. However, the maneuvering of the manipula-
tor in a constrained agriculture workspace poses great challenges. The crucial ele-
ments required for superior robot-canopy interactions include kinematic dexterity 
and spatial requirements of the manipulator, manipulation controls, path planning, 
and obstacle avoidance. The current research on agricultural manipulators mainly 
focused on developing fast and efficient machine vision systems for the recognition 
and localization of the targets. In addition, efforts are underway to improve manipu-
lation controls and optimize path planning and obstacle avoidance. For efficient 
mechanical or robotic operation, it is important to precisely reconstruct the tree 
canopy environment and understand the interaction between the canopy and robot, 
thus developing a collision-free path.

2.2  Robot-Canopy Interaction

2.2.1  Kinematic Dexterity and Spatial 
Manipulation Requirements

A manipulator/robotic arm is a mechanical system comprising links connected, viz., 
joints, that perform tasks in one-two-three-dimensional workspaces. The manipula-
tor positions the end-effector close to the target. The last joint of the manipulator is 
usually connected to an end-effector unit to perform the required task (Kondo et al., 
1993). The manipulator is defined in terms of its degrees of freedom (DoFs), link 
length, link angle, and link offset. Each joint in the manipulator has one DoF, and 
the kinematic dexterity and spatial requirements are directly related to the number 
and type of DoFs used in the manipulator assembly (Bac et al., 2017; Burks et al., 
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2018). The industrial manipulators are well suited to perform repetitive tasks with 
uniform objects in a free workspace, but agriculture is a complex dynamic environ-
ment, and the objects involved vary in shape, size, position, and orientation 
(Simonton, 1991). Thus, the adoption of robotics for fruit tree canopies has many 
challenges, which require better assimilation between manipulator abilities and its 
workspace environment (Kondo & Ting, 1998; Simonton, 1991). For efficient 
manipulation in an agricultural environment, the manipulators should be designed 
considering their intended applications, followed by the optimization of the kine-
matic framework for the said applications (Kondo & Ting, 1998). However, the 
optimization of manipulator kinematics is challenging due to natural variability 
between tree architectures and the available workspace for maneuvering. The 
manipulator could be designed based on various configurations, such as the type of 
joints and required DoFs, which affect the kinematic dexterity and spatial require-
ments during manipulation (Bac et al., 2017; Zahid et al., 2020b). Considering the 
tree canopy environment, the selection of a suitable configuration is critical for effi-
cient robot-canopy interaction.

In the past decade, researchers have developed several manipulators to carry out 
different operations on tree fruits, such as harvesting (Silwal et al., 2017; Sivaraman, 
2006; Zhang & Schueller, 2015) and pruning (Botterill et al., 2017; Zahid et al., 
2020b). Considering the total DoF, three-DoF manipulators were the most common 
choice due to their simple design and control (Harrell et al., 1990). These manipula-
tors could reach the target locations inside the canopy using inverse kinematics, but 
the orientation of the end-effector tool could not be altered due to low DoFs. The 
reduced manipulation could result in poor operational performance during robot- 
canopy interaction, especially when the targets are occluded behind leaves or 
branches, reducing the manipulator’s efficiency. Adding more DoFs, i.e., using a 
four-DoF manipulator for cherry harvesting (Tanigaki et al., 2008) or a five-DoF 
manipulator for apple tree pruning (Zahid et al., 2020a), could enhance the manipu-
lator’s capabilities to adjust the orientation of the end-effector to some extent. 
However, the possible orientations of the end-effector tool at any target point in the 
manipulator workspace are still limited. Considering the constrained workspace 
inside tree canopies, these low DoF manipulators may not be suitable for harvesting 
or pruning due to the presence of obstacle branches.

A manipulator with six DoFs (Botterill et  al., 2017) could reach positions in 
Cartesian space (x, y, and z) at any desired angular (yaw, pitch, and roll) compo-
nents (Corke, 2017). However, for such manipulators, the inverse kinematics result 
in two poses (elbow up and elbow down) for any desired target position and orienta-
tion. This increases the control complexity during collision avoidance, possibly 
damaging the manipulator, fruit, and/or branches (Burks et  al., 2018). For up to 
six-DoF manipulators, another challenge is their limitation to attain a single pose at 
any point in the workspace, which could fail to avoid the obstacles (Burks et al., 
2018). However, for efficient robot-canopy interaction, ideally, the robot should be 
able to avoid all obstacles during maneuvering to reach the target fruits and branches. 
The manipulator with at least one excess DoF, such as seven DoFs (Mehta et al., 
2014; Silwal et al., 2016) referred to as redundant manipulators, could be a solution 
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for collision avoidance. These redundant manipulators have an infinite number of 
poses for any target position in the workspace and could possibly avoid the obsta-
cles by changing the pose to the optimal, presenting a solution for developing 
manipulators for fruit trees (Burks et  al., 2018). However, the additional DoF 
enhances the kinematic dexterity and manipulability, which are essential to avoid 
obstacles. But it exponentially increases the manipulation controls’ complexity 
(Choset et al., 2005).

Manipulators for fruit trees could also be categorized based on their types of 
joints. The performance of the manipulator is influenced by the selection of joint 
types such as prismatic, revolute, or their combinations. These combinations affect 
the manipulator’s workspace, dexterity, and spatial capabilities during manipula-
tion (Bac et al., 2017). The manipulator should have fewer spatial requirements 
during manipulation to ensure efficient robotic operation in the complex canopy 
environment. During maneuvering inside the canopy, each joint contributes to 
altering the manipulator pose and orientation. The parts of the manipulator that 
contribute more to its pose change are referred to as the positioning links, and the 
part that adjusts the orientation of the end-effector tool is referred to as the wrist. 
With a greater degree of change of pose, the chances for collision with branches 
increase; thus, the joints for the manipulator positioning links should be selected in 
ways that result in minimum pose change. Zahid et al. (2020b) developed a manip-
ulator by combining the revolute and prismatic joints for tree pruning. The revolute 
joints were added directly to the end-effector to reduce the spatial requirements 
during maneuvering, and the prismatic joints were used for positioning the end-
effector to avoid the obstacles. As the low pose change attributes are associated 
with the prismatic joints, it could be a potential solution for collision avoidance 
without the need for redundant manipulators. Figure 2.4 shows a few examples of 
different configurations for a six-DoF manipulator integrated with spherical wrist 
shear pruner end-effector. The first three joints could be used for the Cartesian 
positioning (x-, y-, and z-axis) and the last three joints for adjusting the orientation 
of the end-effector. Each of the shown manipulators has a different workspace 
(mentioned in the figure caption) and spatial requirements during manipulation 
inside the canopy. For example, the positioning joints of the Cartesian system, as 
shown in Fig. 2.4a, may work outside the canopy with a slight pose change and 
could have decreased spatial capability for maneuvering the end-effector to reach 
the targets within the tree canopy. Similarly, other joint combinations (Fig. 2.4b–d) 
could affect the manipulator pose change differently during maneuvering within 
the tree canopy to reach a target. In addition, the manipulator design should con-
sider the tree features, such as canopy sizes and structures, to reduce the collision 
potentials with branches.
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Fig. 2.4 Illustration of a manipulator having different joint configurations integrated with spheri-
cal wrist (RRR) end-effector: (a) Cartesian (PPP), (b) cylindrical (PPR), (c) articulated (RRR), and 
(d) spherical (RRP)

2.2.2  Manipulation Controls

The information about the surrounding environment gathered by a sensing system 
is provided to the manipulator for efficient manipulation control, also referred to as 
vision-based controls. The visual-based manipulation provides essential informa-
tion, such as the position and orientation of the target objects and the obstacles. This 
information is particularly important for the fruit tree operations with variable posi-
tion and orientation of the targets, such as fruits and branches. The manipulator 
could use the visual information for manipulation control to accurately reach the 
target as well as avoid obstacles (Zhao et al., 2016). Any inefficiencies of vision- 
based control could reduce the performance of the robotic manipulator; thus, they 
should be given serious attention. The advancement of sensing technologies and 
control algorithms is leading the way to establishing improved controls for agricul-
tural manipulators.

The vision-based controls are grouped into two classes: global viewing or eye- 
hand coordination system and visual navigation or visual servo control system 
(Zhao et  al., 2016). In the past, researchers have reportedly used both types of 
vision-based manipulation controls for agricultural operations. The global viewing 
system, also referred to as open-loop control, is operated based on a “fixed-point 
looking followed by moving” scheme. The sensing system scans the entire scene to 
gather information about the surrounding environment and then starts moving to the 
target. For open-loop controls, the positioning accuracy depends on the correctness 
of the information gathered from the sensors, such as cameras, as well as the accu-
racy of the kinematic model of the manipulator (Yau & Wang, 1996). Botterill et al. 
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(2017) used an open-loop control scheme to establish the manipulation control for 
pruning grapevine. Silwal et al. (2017) used an RGB-D camera to establish an open- 
loop visual control for manipulation to harvest apple trees. The studies reported the 
accumulation of position and calibration errors due to the inefficiency of the vision 
system. To achieve higher position accuracy, the open-loop system could be inte-
grated with other sensory information, such as range, proximity, and position sen-
sors, to precisely measure the distance to the target (Zhao et al., 2011; Ringdahl 
et al., 2019). Han et al. (2012) successfully established the open-loop visual control 
for manipulation using an RGB stereoscope camera and a laser sensor to measure 
the distance from the target, with the positing error of less than 1 mm. As there is no 
position feedback in an open-loop control system, the manipulation efficiency is 
usually expected to be lower in a dynamic agricultural environment where the tar-
gets are under the influence of wind or movement from other reasons, which could 
change the fruit or branch position.

The second class of vision-based control is the closed-loop or feedback-based 
control, also referred to as visual servo control (Corke & Hager, 1998). The visual 
servo control operates the scheme of “simultaneous looking and moving” or “on the 
fly sensing,” making it a completely dynamic system. A sensor-in-hand system pro-
vides the on-the-fly information about the position and orientation of the target and 
the end-effector, which is then used for manipulation control (Hashimoto, 2003). A 
major advantage of closed-loop control is that the manipulation performance is 
unaffected by the accuracy of the kinematic model and the calibration of the vision- 
manipulator system. Harrell et al. (1990) and Mehta and Burks (2014) implemented 
a visual servo control using a fixed camera for a citrus-harvesting robot, with a posi-
tion accuracy of 15 mm. However, as the manipulation is solely controlled using the 
on-the-fly sensor information, the performance depends on the accuracy of the 
vision system. Zhao et al. (2011) successfully implemented the visual servo con-
trols by using a charge-coupled device (CCD) camera in an eye-in-hand mode for 
an apple-harvesting robot. You et al. (2020) used an eye-in-hand RGB-D camera 
configuration to execute visual servo manipulation control for pruning sweet cherry. 
These studies reported that the depth estimates from the vision system were not 
always accurate, resulting in lower position accuracy in reaching the targets. In 
general, visual servo control performs better than open-loop control for different 
applications; however, it still requires higher target localization accuracy for better 
manipulation control. Furthermore, as repetitive images are required throughout the 
operation, the closed-loop control system usually has a higher processing time 
(Silwal et al., 2017). One key consideration to achieve the desired performance is to 
match the bandwidth of the controllers with the frame rate of the visual information 
from the camera sensing system.

A comparison of both types of control is presented in Table 2.1. Both types of 
visual controls have some advantages and drawbacks; however, the selection for the 
manipulation control depends on the intended work and the test environment. 
Additionally, as agriculture is a dynamic and unstructured environment, natural fac-
tors, such as wind, should be considered for the selection of a manipulation control 
scheme. Considering the limitations of both schemes, a combination of open-closed 
loop could be a possible solution for manipulation control in fruit trees. Font et al. 
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Table 2.1 A comparison of two types of visual manipulation controls

Visual 
control Principle Advantages Drawbacks

Open-loop 
visual 
control

Hierarchical controlling 
based on precise 3D 
positioning

Control is simple; 
controllability and region 
of stability are good

High accuracy of vision 
system required; 
manipulator and camera 
calibration required

Closed-loop 
visual servo 
control

Dynamic interaction 
between the 
manipulator and visual 
information

No calibration is required; 
object-friendly; real-time 
tracking could be achieved

High bandwidth required; 
local minima of 
unpredicted camera path

(2014) combined open-loop and visual servo controls in their study. With the open- 
loop control, the end-effector moved quickly in the proximity of the target, followed 
by adjusting the position and orientation of the end-effector at the target using on- 
the- fly guidance from the visual servo.

2.2.3  Path Planning and Task Sequencing

The prioritization or sequencing of tasks, such as harvesting fruits or pruning 
branches following an optimal order, is an important element of robot-canopy inter-
action. The optimal order could be developed based on various parameters, includ-
ing minimum rotation of the manipulator’s joints, least collision in the workspace, 
shorter path length, and/or minimal time to reach the target. These optimal sequenc-
ing of the robot tasks, also referred to as path or motion sequence planning, are 
essential to achieve higher performance as well as to ensure the safe operation of the 
robot during interaction with the canopy (Raja & Pugazhenthi, 2012). In agricul-
ture, the concept of path planning is crucial for successful operation and should be 
understood based on the types of obstacle environments. Path planning can be cat-
egorized into two groups: offline and online path planning (Zhao et  al., 2016). 
Offline path planning requires complete information about the environment before 
initializing pathfinding, also referred to as global path strategy (commonly referred 
to as global camera system). For a constrained workspace, where collision avoid-
ance and task sequencing are essential, this approach could be implemented for the 
static environment (stationary obstacles). On the other hand, online path planning, 
referred to as local planning, gathers information about the scene as it moves 
through the environment. In this strategy, pathfinding starts as offline and then 
switches to online mode during manipulation using the closed-loop feedback sys-
tem (Zhao et  al., 2016). This strategy is useful in the case of dynamic obstacles 
likely to occur in the agricultural environment.

The most common path-establishing strategy is to reach the target without using 
any search algorithm (Jia et al., 2020). The kinematic model of the manipulator is 
used to calculate the displacement toward the target, and the path is established 
using inverse kinematics based on open-loop control (Yau & Wang, 1996) or visual 
servo control (Hashimoto, 2003). However, these path strategies did not consider 
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the task sequencing and obstacles in the workspace. Therefore, obstacle avoidance 
is unlikely. In recent years, with advancements in computing theory, path planning 
along with task sequencing is becoming more efficient. Researchers have reported 
numerous task sequencing strategies for different tree fruits. The most common 
method is to detect and localize the target, followed by the pathfinding and execu-
tion for the individual harvest cycle starting from the manipulator’s home position 
(Roldan et al., 2018). Zahid et al. (2020c) implemented a similar individual cycle- 
based approach for pruning apple tree branches. This single cycle path strategy 
reduces the performance as the path execution time increases. On the other hand, 
task planning was also reported by many researchers with harvesting all fruits 
detected in the scene. Baeten et al. (2008) and Reed et al. (2001) used the all-in-one- 
cycle-based task planning strategy to reduce cycle time by moving target to target.

In addition to task planning, researchers have also reported different optimiza-
tion strategies for task sequencing and optimization in tree fruits. For the case of 
tree fruits, this could be referred to as sequencing pruning cuts, fruit harvesting, or 
fruit thinning to optimize path length or cycle time. The path minimizing strategy, 
based on Traveling Salesman Problem (TSP), is widely adopted for optimizing task 
sequencing (Applegate et  al., 2011). Yuan et  al. (2009) also implemented a TSP 
solver by converting the apple harvesting task into a three-dimensional problem to 
optimize the harvesting sequence. You et al. (2020) implemented a TSP solver for 
cut point sequencing in pruning sweet cherry and executed the optimal sequence 
with a high success rate of 92%, with a cycle time of 13 s per branch. Additionally, 
researchers have presented different amendments to the TSP solver, including Twin- 
TSP (T-TSP), TSP with Neighborhoods (TSP-N), TSP with Neighborhoods and 
Duration visits (TSP-ND), and Generalized TSP with Neighborhoods (G-TSP-N), 
to optimize the manipulator poses, path length, and cycle time. An efficient harvest-
ing sequence plan was implemented by Plebe and Anile (2002) by converting the 
harvesting task into T-TSP and optimizing it to avoid twin collisions using a self- 
organizing map model. Jang et  al. (2017) developed a TSP-N solver for path 
sequencing in dynamic obstacle environment, aiming at improving path quality and 
reduction in the cycle time. These task sequence and optimization strategies could 
solve the optimal sequence and reduce the cycle time and path length. However, the 
manipulator collision with branches might still be problematic.

2.2.4  Obstacle Avoidance

The path followed by the manipulator from start to target point without hitting any 
obstacles is referred to as a collision-free path. In the tree fruit environment, the 
obstacles are generally the branches and leaves. The manipulation in the presence of 
obstacles is a great challenge. Path planning and obstacle avoidance should be given 
attention for successful robotic operation for tree fruits. The term collision avoid-
ance is sometimes interchangeably used with path planning. However, in reality, 
collision avoidance requires a separate set of considerations for path planning in a 
constrained environment. The complexity of path planning increased dramatically 

L. He et al.



35

with the addition of the obstacle detection and avoidance components. In recent 
years, researchers have gained interest in obstacle detection and avoidance for robot 
collision-free path planning in the agricultural environment. Obstacle detection is 
the task performed by the machine vision system, such as camera and proximity and 
laser sensors. Researchers have integrated obstacle detection sensors with harvest-
ing manipulators, such as a camera for litchi (Cao et al., 2019), a proximity sensor 
for apple (Zhao et al., 2011), and Light Detection and Ranging (LiDAR) sensor for 
cherry (Tanigaki et al., 2008). After the detection, the next critical task is to avoid 
the obstacles while maintaining the manipulator pose required to perform the speci-
fied task.

The collision-free path search strategies are categorized into four groups, namely, 
geometric (grid), probabilistic (random sampling), Artificial Potential Field (APF), 
and intelligence-based search algorithms (Li et al., 2019). These search algorithms 
have advantages and drawbacks in terms of path success, search space complexity, 
processing time, and path optimization (Hwang & Ahuja, 1992; Kaluđer et  al., 
2011; Kanehara et al., 2007; Yang & Luo, 2004). A performance comparison of dif-
ferent search algorithms is presented in Table 2.2.

Geometric search algorithms are suitable for multi-objective problems, but these 
algorithms could give satisfactory results with up to two- to three-DoF manipulators 
(Nash et al., 2009). Probabilistic search approaches are sampling-based algorithms 
and are among the successful methods (Li et al., 2019). They are less affected by the 
DoFs of the manipulator but sometimes provide suboptimal solutions (Janson et al., 
2017). The Artificial Potential (AP) search works under the influence of attraction 
and repulsion forces. The potential functions generate attractive forces from the 
target and repulsive forces from the obstacles (Khatib, 1986). Intelligence search 
solves multi-objective problems, such as obstacle avoidance with an optimal path 
using intelligence-based information (Noreen et al., 2016).

Researchers have put forward many strategies for collision-free path planning in 
the agricultural environment. Van Henten et al. (2003) used the A* search method 
(Table 2.2) for collision-free path planning of seven-DoF manipulators, but these 

Table 2.2 A comparison of different search algorithms

Search algorithm Description Limitations

Geometric
(A* and D* search)

High success rate. Medium global 
and local performance

Low performance for 
high-dimensional dynamic 
space. Slow processing 
speed

Probabilistic (rapidly 
exploring random tree, 
batch informed tree, etc.)

Fast search speed in high- 
dimensional space. Low 
experimental dependence. High 
global performance

Poor real-time application. 
Path solution is not always 
optimal; local minima

Artificial potential 
(artificial potential field, 
etc.)

Easy implementation, best suited for 
a local static environment

Path solution is not always 
optimal; local minima

Intelligence (genetic 
algorithm, ant colony, etc.)

High adaptability. Local optimal 
solution. High convergence speed

Slow processing speed. Poor 
stability. Inconsistent 
convergence speed
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search methods give satisfactory results for up to three-DoF manipulators (Noreen 
et al., 2016). For efficient manipulation and collision avoidance, the manipulator 
should have at least six DoFs. However, with the increase in the DoFs of the manip-
ulator, the computational complexity and search time increase exponentially (Choset 
et al., 2005). Thus, these search algorithms may not be suitable for robotic opera-
tions in a tree fruit environment. Luo et al. (2018) investigated the APF-based search 
algorithm for collision-free path planning to harvest grapes. These methods resulted 
in high success, but drawdowns were due to the high processing time as well as non- 
optimal path solutions.

In recent years, many researchers have investigated probabilistic search algo-
rithms such as rapidly exploring random tree (RRT) and Bi-RRT due to their higher 
pathfinding success and applicability for multi-DoF (up to 12 DoFs) manipulators 
(Cao et  al., 2019; LaValle, 1998). You et  al. (2020) investigated Batch Informed 
Tree (BIT*) algorithm for pruning grapevines using a six-DoF manipulator and 
achieved high pathfinding success. The RRT-based search approach is by far the 
most common strategy for collision-free pathfinding in a tree fruit environment. 
Botterill et al. (2017) and Zahid et al. (2020c) implemented RRT for the collision- 
free path planning of grapevine- and apple-pruning robots, respectively. In addition, 
multiple variants of RRT-based algorithms have also been investigated for robot 
collision-free path planning in the agricultural environment. Nguyen et al. (2013) 
implemented an RRT-based collision-free path planning framework to harvest 
apples using a nine-DoF manipulator. The authors used different algorithms and 
concluded that the RRT-Connect is the most efficient for path planning in terms of 
processing time. Cao et al. (2019) also used the RRT algorithm combined with the 
genetic algorithm (GA) for optimized path planning to harvest litchi. RRT usually 
has a longer path length due to intrinsic search properties. The RRT search com-
bined with path smoothing and optimization algorithm was implemented by Zahid 
et al. (2020c) to reduce the path lengths and search time. Bac et al. (2017) imple-
mented Bi-RRT to establish a collision-free path for harvesting sweet pepper in a 
controlled greenhouse environment. These RRT-based studies reported a high suc-
cess rate for collision-free path creation in the agricultural environment, with vary-
ing processing times. The path planning time depends on the sampling resolution, 
which should be optimized considering the required path success rate.

2.3  Tree Canopy In-Field Sensing and 3D Reconstruction 
for Mechanization

2.3.1  In-Field Sensing Technologies

Advanced machine vision systems have been implemented to further develop mech-
anized equipment for tree fruit production, such as pruning, training, and harvest-
ing, where human inputs are needed throughout each process. There are normally 
two types of approaches, namely, tree canopy 3D reconstruction and target object 
identification, depending on the agricultural tasks. Under field light conditions and 
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complex planting patterns, tree canopies need to be reconstructed entirely for some 
of the mechanized tasks for better canopy characterization, localization, path plan-
ning, and geometry measurements. Various technologies have been developed for 
in-field sensing systems, such as photogrammetry and Light Detection and Ranging 
(LiDAR).

2.3.1.1  Photogrammetry Imaging for 3D Reconstruction

Utilizing photogrammetry is one of the most effective and affordable methods. One 
common approach is to use binocular stereo vision systems to reconstruct the target 
canopy or plant. Ni et al. (2016) developed a stereo vision system with two high- 
definition (HD) cameras (LifeCam Studio, Microsoft, Redmond, WA, USA) assem-
bled parallelly. For 3D reconstruction, multiple images from different angles and 
views need to be taken around the target by adopting the Structure-from-Motion 
(SfM) method. The results showed that the true size of the target could be recon-
structed, such as a small lemon tree with leaves. In addition, a time-of-flight-of-
light- based (ToF) 3D camera was also often used, where studies have proven that 
this could reach a more accurate result than stereo vision systems for canopy recon-
struction purposes (Beder et al., 2007). Karkee and Adhikari (2015) developed a 
method for identifying the apple tree trunks and branches for automated pruning 
using a ToF camera (CamCube 3.0, PMD Technologies, Siegen, Germany), which 
was mounted on a pan-and-tilt system under the field conditions. With the camera 
located approximately 1.27 m away from the target trees, all tree trunks and 77% of 
branches were successfully detected through canopy reconstructions. It was worth 
noting that all these target trees were young trees interspacing about 0.46 m trained 
in the tall spindle fruiting wall architectures. Karkee et al. (2014) used the same 
sensing equipment and tested the pruning results based on the algorithm against the 
human workers in the field. Results suggested that the root-mean-square deviation 
(RMSD) was 13% in branch spacing between the workers and the algorithm, which 
showed promise for algorithm-based automated fruit tree pruning.

Another common option for an affordable and portable camera is using the RGB- 
Depth (RGB-D) camera. The sensor uses the ToF principle with an infrared laser, a 
stereo vision system, or a combination of both to acquire depth information. Yang 
et al. (2019) used an RGB-D sensor, Kinect (Kinect v2, Microsoft, Redmond, WA, 
USA), for fruit tree 3D reconstruction where the RGB image (1920 × 1080) can be 
mapped to its depth image (640 × 480) to generate registered 2.5D point cloud data 
using the ToF principle. Such RGB-D information can provide relatively reliable 
spatial coordinates of the canopy objects, such as fruits and branches, within a few 
seconds with much less effort in camera calibration. The results showed an average 
relative error of 2.5%, 3.6%, and 3.2% with respect to the tree’s measurement in 
height, width, and thickness, individually. In addition to Kinect, RealSense cameras 
also play an important role as more compact RGB-D cameras in the market with 
only the need of power consumption from the USB portal, which could potentially 
benefit the field data collection or near-real-time processing. Dong et  al. (2020) 
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adopted a RealSense RGB-D camera (RealSense R200, Intel, Santa Clara, CA, 
USA; “R-series” uses stereo vision for computing the depth information) with a 
hand-held device to map a fruit orchard on a row basis from both sides. By integrat-
ing global features and semantic information, both sides of a series of trees can be 
merged and reconstructed for exploring further canopy characteristics, such as can-
opy volume, fruit count, and trunk diameter. Unlike “R-series,” “D-series” RealSense 
cameras utilize infrared light combined with stereo RGB matching to acquire depth 
information. Such a compact RGB-D camera also can be mounted on an unmanned 
aerial vehicle (UAV or drone) for faster canopy mapping.

2.3.1.2  LiDAR Imaging for 3D Reconstruction

With the fast development of high-performance computational platforms, Light 
Detection and Ranging (LiDAR) has offered an alternative method for outdoor can-
opy 3D reconstructions in addition to conventional ToF sensors. Despite the densely 
sensed data points and more complex calibration and preprocess steps (Moreno 
et al., 2020; Wang et al., 2021), LiDAR scanning can offer the most accurate 3D 
mapping results. Underwood et  al. (2016) presented the work using a terrestrial 
scanning system equipped with LiDAR and other RGB sensors to map flower, can-
opy volume, and fruit distribution in the almond crop. Individual trees were scanned 
from both row sides at different times, where the complex internal branch structure 
and void spaces can be effectively detected by LiDAR mapping. However, there 
were some misaligned situations for 3D canopy reconstruction due to GPS or local-
ization errors. Such misalignment could significantly affect the calculation of can-
opy geometry, such as canopy volume (where the voxel size was assumed as 
0.001 m3 and accumulated over a tree), which should be realigned manually (Rosell 
et al., 2009) or using simultaneous localization and mapping (SLAM) (Cheein & 
Guivant, 2014). While one of the biggest problems is the occlusions induced by 
complex branch structures and leaves for ToF sensors, particularly for dense plants 
where some parts are entirely invisible from the scanner, LiDAR still can provide a 
certain level of accuracy. Bailey and Ochoa (2018) reconstructed a single dense- 
foliage tree by integrating the terrestrial LiDAR point cloud data and ray-tracing 
simulation data (Weber & Penn, 1995), where more than 30,000 leaves were digi-
tally generated and compared. Additionally, some critical canopy parameters at the 
leaf level were also assessed in this work, such as leaf angle 3D distribution and 
measurement for biophysical processes. Another work at the leaf level has been 
completed by Berk et  al. (2020), who assessed the leaf area using a terrestrial 
LiDAR system on 20 apple trees for future precise spraying management. Other 
than RGB and LiDAR data fusion, Narváez et al. (2016) showed the capability of 
integrating the thermal imagery and LiDAR data on avocados using portable devices 
for canopy 3D characterization. Due to the resolution difference between these two 
data types, all single frames must be registered together to obtain the point cloud 
data where each point has a temperature value assigned.
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The agricultural environment can be complex and unpredictable. With the con-
tinued increment in computational performance using advanced hardware and soft-
ware, precise characterization of tree canopies could be achieved for better 
facilitating mechanized and automated operations in orchards. 3D canopy recon-
struction is one of the most effective ways to provide high-resolution, reliable leaf- 
or fruit-wise results, where the 3D location should help agricultural robotics with 
path planning and targets in occlusions, particularly with dense canopies. Some 
major advantages and disadvantages of reconstructing the entire 3D canopy or tree 
are summarized in Table 2.3 for comparison.

However, it is worth noting that offline reconstructed perennial trees and cano-
pies can be retrieved later with integration with Real-Time Kinematics-Global 
Positioning System (RTK-GPS) and Global Navigation Satellite System (GNSS) 
for further intended tasks, such as precision spraying and pruning, because the main 
body of the plant can be permanent for at least about 10 years.

2.3.2  Image Processing Techniques

Typically, target crop localization, detection (Gongal et al., 2015), and segmentation 
(Amatya et  al., 2017) from agricultural in-field imagery were performed using 
methods such as morphological operations and color thresholding. However, due to 
the complex in-field environment and various light conditions, these conventional 
methods are not sufficient. For example, to make the machine vision system work 
properly, the operations need to be conducted during nighttime (Amatya et  al., 
2016), or some other facilitating equipment needs to be installed to reduce the influ-
ence of different lighting conditions during the daytime, such as a black background 
curtain for the over-the-row machine (Gongal et al., 2016). Additionally, the pro-
cessing speed is relatively slow, given the high resolution of imagery acquired for 
precise operations.

Table 2.3 Advantages and limitations of the 3D reconstruction for tree canopy

Advantages
   Accurate 3D location of target objects
   Occlusions can be much avoided for better path planning
   Overall canopy or tree structure can be realized
Limitations
   Time-consuming for data collection
   Complex camera calibration and preprocessing
   Image and point cloud data registration can be challenging
   Cost of the equipment can be high, such as LiDAR
   Offline or not, real-time processing
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2.3.2.1  Deep Learning Algorithms

Deep learning-based algorithms, enabled by state-of-the-art AI technologies, started 
bringing people’s attention to image processing tasks about 10 years ago. In the 
agricultural field, this trend started in 2015. Instead of designing a network from 
scratch, pre-trained deep learning models (also known as transfer learning) are often 
used at the beginning by researchers. Pre-trained networks are rich in different char-
acteristics since they were previously trained using thousands of images from public 
databases, such as ImageNet (Deng et al., 2009) and CIFAR (Krizhevsky & Hinton, 
2009). Compared to randomly initializing a network, a pre-trained network may 
learn better. After considering the three key factors, i.e., accuracy, speed, and size, 
an appropriate network needs to be utilized and, in most cases, slightly modified for 
the output layers. Several commonly used networks are AlexNet (Krizhevsky et al., 
2012), VGGs (Simonyan and Zisserman, 2014), ResNet (He et al., 2016), DenseNet 
(Huang et al., 2017), and NASNet (Zoph et al., 2018).

There are two main purposes for using deep learning in image processing: object 
detection and instance/semantic segmentation in agricultural tasks. Regarding most 
of the in-field mechanized operations for specialty crops, only one or a few specific 
types of target objects need to be focused on instead of the entire scene, such as the 
fruits in fruit harvesting, flowers in blossom thinning, branches in shoot thinning, 
and leaves in targeted pesticide spraying. Therefore, deep learning-based object 
detection has been extensively studied (Kamilaris et al., 2018). Zhang et al. (2018a, 
b) presented the work that deployed a Kinect RGB-D camera and a Region-based 
Convolutional Neural Network (R-CNN; fine-tuned AlexNet) to detect the seg-
ments of apple tree branches. Once all pieces of branch segments have been identi-
fied, the detection boxes and depth information have been integrated to predict the 
trajectory of the branch for automated vibratory apple harvesting in an orchard envi-
ronment. Similar work has been completed by Majeed et al. (2020), where the seg-
ments of the vine cordons were detected and then combined using Faster R-CNN 
and non-maximal suppression algorithms in cordon trajectory estimation for green 
shoot thinning during the dense-foliage stage. In addition to one object detection, 
multiple targets also can be detected at the same time. Zhang et  al. (2020) have 
demonstrated the capability of detecting apples, trunks, and branches using Faster 
R-CNN with the backbones of AlexNet or VGGs. By extracting different objects’ 
coordinates in the image, the exact vibrating location can be precisely estimated to 
proceed with the mechanical harvesting of apples. More specifically, once the 
branches’ trajectories have been determined, the apples’ locations can provide aux-
iliary information to decide the grabbing points for the end-effector while not caus-
ing any damage to the fruits, with about 73% accuracy achieved. Another similar 
work can be found by Gao et al. (2020) that a multi-class of fruit conditions (i.e., 
non-occluded, leaf-occluded, branch−/trellis wire-occluded, and fruit-occluded 
fruits) were investigated so that the harvesting machine can make better decisions to 
direct access to collision-free fruits. Another option to understand the entire scene 
is to conduct image segmentation, for instance, semantic segmentation, where 
images are classified at the pixel level. This technique was initially used in 
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autonomous vehicle driving (LeCun et al., 2015) and was also applied in some agri-
cultural tasks. Zhang et al. (2021) proposed a method using semantic segmentation 
to solve the tree trunks and branch identification for automated mass mechanical 
apple harvesting. Four different classes of pixels were defined as apples, branches, 
trunks, and leaves. Compared to multi-class object detection, segmentation offers 
more background information (e.g., leaves) and, more importantly, gives the bound-
aries of each object. This is particularly useful when the target object has irregular 
shapes so that a specific path planning should be considered by an agricultural robot 
to avoid any potential collisions.

2.3.2.2  Improvements in Deep Learning

It was reported that deep learning-based methods overall outperformed conven-
tional image processing methods by tackling agricultural tasks with approximately 
41% higher accuracy (Kamilaris et al., 2018). As a result, this method has already 
become a common practice in handling images with a complex background and 
lighting conditions, which is highly suitable for agricultural situations as most of the 
operations are conducted in a field environment. At the same time, researchers are 
also trying to improve the methodologies using deep neural networks to address the 
inherent challenges. As we know, introducing imbalanced data into a network can 
negatively impact the results (Van Hulse et  al., 2007). However, this situation is 
commonly seen in the agricultural field. If the target objects have considerably 
fewer pixel numbers in an image compared to other objects, such as fruit stems, it 
would be challenging to train the networks to detect them as most of the pixels 
belong to the noisy background. One potential way to resolve the problem is to 
design a regression CNN or RegCNN (Kalampokas et al., 2021). Instead of only 
assigning each pixel a specific class (i.e., grape stem or non-stem), the distances of 
other pixels (i.e., non-stem) to the target pixels (i.e., grape stem) were calculated 
simultaneously. By utilizing regression models in CNNs, continuous values can be 
predicted to better estimate the stem location. In addition, high-resolution images 
are normally required in agricultural studies, but many of them suffer from this 
when feeding those high-resolution images into deep learning networks. Zabawa 
et al. (2019) presented a reasonable way of splitting large images into small patches 
and then feeding them into the networks. All small patches were again stitched 
together afterward. The computational speed can be greatly improved using such a 
method while preserving the good quality of the fed images. Lastly, it was also 
noted that most of the deep learning applications in agriculture had involved a data-
set augmentation process (Kamilaris et al., 2018), which physically increased the 
diversity of the imagery dataset, such as image flipping and rotating, and brightness 
gain multiplier.

Because of the complexity and uncertainty of the uncontrolled agricultural envi-
ronment, such as field conditions and various lighting conditions, deep learning has 
been proven highly useful and suitable in this research area. However, unlike some 
other applications such as autonomous driving which normally have a considerable 
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number of available datasets from many different resources, agricultural research 
has always suffered from limited datasets. Additionally, agricultural datasets are 
challenging to be aggregated due to different sensors and methods used for various 
research purposes at different precision levels. Therefore, every research team has 
to annotate tons of the ground-truth labels, which would normally be the most time-
consuming step. More importantly, those annotated labels are often used only once 
and are hard to reuse by other teams. Table 2.4 illustrates several major advantages 
and limitations of using deep learning applications.

Although there has been a growing community of using 3D scene reconstruction 
techniques in agriculture over the last few years, the nature of 3D image data com-
pared to 2D image data has certainly brought some constraints, such as the very 
dense point cloud from LiDAR and long and complex data processing and saving. 
The superiority of 3D point cloud data is still to be discovered due to the limited 
availability of resources and tools. Recently, Google Artificial Intelligence (AI) 
group has released TensorFlow 3D along with the available code library on 3D point 
cloud data processing (Huang et al., 2020; Najibi et al., 2020), trying to bring state- 
of- the-art deep learning capabilities to address 3D object detection and 3D seman-
tic/instance segmentation. With such type of efficient tool released, the barriers to 
deploying a real-time inference system tackling the 3D scene will be reduced for the 
entire research community.

2.4  Robotic Branch Pruning for Modern Apple Trees 
(Case Study)

2.4.1  Introduction

Pruning of apple trees is one of the most labor-intensive operations, requiring about 
80–120 labor hours per hectare (Mika et al., 2016), accounting for 20% of the total 
labor costs (Crassweller et al., 2020). Robotic pruning of apple trees is challenging 
due to the complex tree canopy. The random orientation of the branches makes it 

Table 2.4 Advantages and limitations of using deep learning algorithms in canopy object detection 
and segmentation

Advantages
   Higher accuracy than conventional methods
   Suitable for complex agricultural conditions
   Possible of being applied in real time
   Performances can be further improved with the fast development of AI-driven industrials
Limitations
   Limited dataset and ground-truth annotations
   No comprehensive public dataset repository for overall improvement
   Time-consuming during the annotation stage
   Development depends on the executive platform
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difficult for the cutter to reach the desired orientation. Thus, the pruning robot 
should be designed considering the complex apple tree environment. Many studies 
have been reported on camera vision systems for 3D canopy reconstruction of apple 
trees (Karkee et al., 2014; Tabb & Medeiros, 2017). However, no considerable con-
tribution has been reported on the development of a mechanical system, including 
the manipulator and end-effector for pruning apple trees (He & Schupp, 2018).

The joint configuration of the manipulators should be selected considering the 
work environment to avoid poor performance. As the joint configurations can 
change the posture of the robot for a specific task, the configuration of the manipula-
tor should be selected carefully. The end-effector is an integral component of a 
robotic pruning system, consisting of a tool to perform the pruning cut. Only a few 
studies have been reported for pruning end-effectors with different cutting mecha-
nisms, such as disk saws and shear blades (Botterill et al., 2017; Zahid et al., 2020a). 
Considering the complexity of tree canopies, compact robotic cutters are essential 
for successful operation, and they require appropriate component sizing.

Manipulation in the tree canopy can result in a collision with branches, which 
reduces the quality of pruning operation (Gongal et al., 2016). Collision-free path 
planning schemes are widely used for the motion planning of numerous systems 
such as autonomous vehicles and industrial robotics (Noreen et al., 2016). LaValle 
(1998) proposed a rapidly exploring random tree (RRT) algorithm for path plan-
ning, and it shows high efficiency compared to other available path planning 
schemes. However, the path solutions of the RRT algorithm are not always smooth 
and optimal, which results in more computational time and low convergence speed.

Considering the knowledge gap, the primary goal of this study was to develop a 
robotic manipulation system, including the manipulator and the end-effector for 
pruning apple trees. Alongside, different collision-free path planning algorithms 
were developed for the robotic pruning of apple trees. Finally, a series of field tests 
were conducted on the Fuji apple trees to validate the system performance.

2.4.2  Design of the Robotic Pruning Manipulator System

2.4.2.1  Pruning End-Effector Design

The primary criteria for the end-effector design include the minimum spatial 
requirement during maneuvering to position the cutter at a specific orientation. The 
end-effector should reach the target with a specific pose to place the branches within 
the shear blade opening (Zahid et al., 2020a). Thus, the end-effector should also 
have high kinematic dexterity to attain multiple poses of the cutter at each point in 
the workspace. A compact pruning end-effector was designed with the intrinsic 
three-revolute (3R) degrees of freedom (DoF) configuration (Fig. 2.5). A computer- 
aided design (CAD) software, SolidWorks (v. 2020, Dassault Systèmes, Vélizy- 
Villacoublay, France), was used. The design consists of three motors, each offering 
one revolute DoF to the end-effector. The widely accepted rotation convention, yaw, 
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Fig. 2.5 Concept design of the end-effector. (Components: (1) motor for yaw rotation, (2) motor 
for pitch rotation, (3) motor for roll rotation, (4) self-locking worm gearbox, (5) shear cutter, (6) 
cutter). (Zahid et al., 2020b)

pitch, and roll (θ1, θ2, and θ3), was used to configure the DoFs of the end-effector. 
The selection of the cutting mechanism was critical to ensure a successful pruning 
operation. As efficient pruning requires smooth and split-free cuts, a shear blade 
was integrated with the end-effector as a cutter tool, attached directly. The maxi-
mum rotations for θ1, θ2, and θ3 were 240°, 360°, and 360°, respectively.

2.4.2.2  Integrated Pruning Manipulator Design

The design of the pruning manipulator was a critical task due to the dense apple tree 
canopy. The key consideration for developing a pruning manipulator was the spatial 
requirements of the system. During manipulation, the manipulator utilizes a portion 
of the 3D workspace to change its pose to attain a specific position and orientation 
of the end-effector cutter. The magnitude of the pose change depends on the DoFs 
of the manipulator. Thus, it was essential to select the DoFs that offer a minimum 
pose change. A three-prismatic (3P) DoF system was selected to position the inte-
grated 3R DoF end-effector cutter at target branches due to the low pose change 
attributes of the Cartesian/linear system. The integrated six (3R3P) DoF robotic 
pruning system, including a 3P DoF manipulator and 3R DoF end-effector, is shown 
in Fig. 2.6. The 3P DoF manipulator system was equipped with prismatic joints to 
move along the x-, y-, and z-axis, respectively. To avoid the dynamic instability and 
vibration due to the end-effector payload, the system consists of a squared base 
platform for motion in the x- and y-axes. The pruning end-effector was attached to 
a linear arm on the z-axis.
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Fig. 2.6 SolidWorks model of the end-effector attached to a Cartesian manipulator; the compo-
nents include (1) x-axis rails, (2) y-axis rail, (3) z-axis linear actuator, (4) axis limit switches, (5) 
linear arm, and (6) pruning end-effector. (Zahid et al., 2020b)

Fig. 2.7 Reachable workspace for the integrated end-effector with (a) reachable points, (b) cutter 
plane, and (c) cutter frame. (Zahid et al., 2020b)

2.4.2.3  Performance Indices of Robotic Pruner

The kinematic model of the robot was developed by calculating the Denavit- 
Hartenberg (DH) parameters to simulate the robot performance indices. Details on 
the robot kinematic model and DH parameters’ calculation can be found in the 
original research article (Zahid et al., 2020b). The forward kinematics of the inte-
grated manipulator was used to calculate different performance indices, including 
reachable workspace, cutter frame orientations, manipulability, and velocity ellip-
soids. The simulations were performed using Matlab (2019a, MathWorks, MA, 
USA) software to test different performance indices of the robotic pruner.

The simulation results for reachable workspace and cutter frame orientations of 
the end-effector are shown in Fig. 2.7a–c. The green, blue, and red lines show the 
3D cutter frame of the end-effector. The robot workspace analysis indicated that the 
designed robotic pouring system has a spherical workspace of diameter 240 mm, 
with a void due to joint limitation. The void space may not affect the robot’s 
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Fig. 2.8 Manipulability index of the integrated pruning end-effector. (Zahid et al., 2020b)

Fig. 2.9 Manipulability ellipsoids with rotation of theta 2 at different coordinate planes. (Zahid 
et al., 2020b)

performance as it is very unlikely to prune the branches by rotating the cutter back-
ward. Even with this situation, the Cartesian system can move the end-effector 
backward using the Cartesian positioning system, which will result in positioning 
the branches on the front side of the cutter. The simulation also indicated that the 
end-effector could attain a wide orientation of the cutter tool and could reach to cut 
almost every branch available within the workspace of the robot. The manipulabil-
ity index was determined to be independent of the rotation of the first and last joint 
of the end-effector (Fig. 2.8). The result also suggested that the system has only two 
undesirable configurations of singularity. Based on the velocity ellipsoid simula-
tions (Fig. 2.9), it was found that these singularity configurations could occur when 
the cutter is pointing vertically up or down (red lines), a very unlikely scenario to 
cut the branches.

2.4.3  Collision-Free Path Planning for Robotic Pruning

2.4.3.1  Reconstruction of Apple Trees

The 3D model of an apple tree was required to create collision-free paths. The data 
collection system consisted of a 3D laser scanner (VLP-16, Velodyne LiDAR, San 
Jose, CA, USA) and a laptop computer (Dell, Round Rock, TX, USA). The 3D 
point cloud data were preprocessed using Matlab software. Through the 
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Fig. 2.10 (a) Point cloud data from the LiDAR sensor. (b) Segmented tree trunk and primary 
branches. (c) A view of a 3D reconstructed apple tree

preprocessing, the point cloud image of the apple tree was established (Fig. 2.10a). 
A point cloud algorithm was used for the segmentation of branches and tree trunks 
(Fig. 2.10b). A few small branches were missed in the LiDAR scanner due to the 
limitation of sensor resolution. However, those small branches were not considered 
potential obstacles and were ignored for the 3D reconstruction. For connecting the 
point clouds of the trunk and branches, the Spline() function was used (Fig. 2.10c).

2.4.3.2  Path Planning Algorithms and Simulation

An obstacle avoidance algorithm using a rapidly exploring random tree (RRT) 
search was implemented for a collision-free path to reach the target pruning points. 
The RRT algorithm performs two checks: manipulator collision and end-effector 
path collision. The target branch and pruning cut point coordinates were added to 
the algorithm to start the pathfinding. If the RRT search nodes exist in collision-free 
space, the specific path nodes are added to the final solution, and the process contin-
ues until the connected nodes reach the target location. Furthermore, RRT path 
smoothing and optimization algorithms were also developed to improve path plan-
ning. The RRT smoothing aimed to reduce the path length by removing unnecessary 
path nodes. For path optimization, a nonlinear optimization algorithm was imple-
mented with initial and boundary conditions. The minimum avoidance distance 
from the obstacles was set to 60 mm.

The path planning was performed in a simulation environment to reach different 
target pruning points (Fig. 2.11). The coordinates of target pruning points on each 
branch were marked 20 mm away from the tree trunk. The path planning algorithms 
were successfully implemented to reach target branches at different orientations’ 
cutter as defined in the algorithms. The RRT algorithm was successful in finding a 
collision-free path (red line path) for defined pruning points within the virtual tree 
environment (Fig.  2.11). The smoothing and optimizing methods successfully 
reduced the RRT path lengths (green line path) for all target branches by removing 
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Fig. 2.11 Collision-free path planning using a 3R3P DoF robotic pruning manipulator

the redundant nodes in the original path. The mean computational time was 14 s per 
branch. The path planning time depends on the number of collision checks required 
to establish a collision-free path. As the Cartesian motion (3P) occurred outside the 
tree canopy, the collision check was performed only for the rotational part of the 
robotic pruner (3R DoF end-effector) and the linear arm (position the end-effector 
inside the canopy), thus reducing the overall computational time for creating the path.

2.4.4  Prototype Development and Field Tests

The prototype of the integrated robotic pruner was developed at Penn State’s Fruit 
Research and Extension Center, Biglerville, Pennsylvania (Fig. 2.12). A set of three 
DC geared motors was used for the 3R end-effector. A modified DC motor-powered 
shear pruner, coupled with a gearbox, was attached as an end-effector cutting tool. 
Two NEMA-17 stepper motors were used for establishing the Cartesian motion 
along the x- and y-axes. To covert the rotational to linear motion, the belt and pulley 
mechanisms were attached to the motor shafts. As the z-axis has to carry the linear 
arm and the end-effector payload, a NEMA-34-driven lead-screw actuator was 
used. For field tests, an Arduino-based control system was developed to control the 
movement of the integrated robotic pruning system.

The field tests were conducted on Fuji apple trees trained to fruiting wall archi-
tecture. In total, 100 cuts were applied on branches at a wide array of orientation 
ranges. The cuts were applied at 20 mm from the tree trunk to evaluate the end- 
effector cutter’s capability to prune the branches close to the trunk. For each 
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Fig. 2.12 Experimental setup of the integrated pruning system in a Fuji apple orchard. (Zahid 
et al., 2020b)

successful cut, the branch diameter and the robot’s joint angles were recorded. The 
field tests validated the design parameters of the integrated pruning system. The 
field tests validated the design parameters and all simulation results. During the test, 
it was observed that the cutter could collide with the trunk when the target point was 
close to the trunk, and only the perpendicular cutting posture was considered. The 
chance of missing the target branch increased when the cutter plane and branch axis 
were not perpendicular, as the effective cutter opening for the branch entrance was 
reduced. The developed cutter was able to reach all targeted branches and cut up to 
25-mm-diameter branches. With this cutting capability, the developed robotic sys-
tem is suitable to use in the modern apple tree architecture.

2.5  Conclusion and Future Directions

As we discussed earlier, tree structures in the modern orchard are getting much 
simpler by adopting the intensive planar training system. The simpler canopies pro-
vide opportunities for implementing mechanical and robotic solutions for the in- 
field tasks of tree fruit production. An accurate, robust, fast, or inexpensive system 
would be considered a successful robotic system. However, even with modern trees, 
these in-field tasks can still be challenging due to the nature of the biological sys-
tem, especially the interaction between the tree canopy and the robotic systems. For 
example, with robotic pruning, the cuts on branches require high precision with a 
cutting end-effector, applied at the right locations and perpendicular to branch ori-
entation. This chapter reviewed and analyzed the core technologies for the robotic 
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solutions for modern tree orchards, including robot-canopy interaction, in-field 
sensing, collision-free path calculation, and manipulation control.

Regarding in-field sensing, although canopy reconstruction may provide more 
in-depth 3D information for any in-field mechanized operations, the speed and com-
putation constraints have limited its current usage. During the last few years, proxi-
mal in-field sensing technologies and processing techniques have been greatly 
advanced with the prosperously developed AI-driven disciplinaries. Deep learning- 
based techniques have gradually become the common practice for image processing 
(LeCun et  al., 2015), which is the critical first step for orchard automation and 
mechanization. As a continuously growing community becomes more interested in 
utilizing AI-enabled deep learning techniques in agricultural research, the future 
directions include (1) further improvement of deep learning networks’ architec-
tures, such as adding attention mechanism module (Fu et al., 2019), using regional 
dropout method (DeVries & Taylor, 2017), and adding gradient noises (Neelakantan 
et  al., 2015); (2) utilizing generative adversarial networks (GANs; Goodfellow 
et al., 2014) to address the main issue of the limited number of agricultural images 
and annotations; and (3) further developing semi−/self-supervised deep learning 
techniques (Ji et al., 2019; Wu & Prasad, 2017) that require much less or no manual 
annotations. Although this is a highly promising research direction, some major 
concerns were also presented. For example, most of the researchers are still paying 
too much attention to sensing technologies themselves only, rather than implement-
ing the technologies into actual mechanized orchard operations or canopy manage-
ment. In addition, onboard computing with embedded systems (e.g., NVIDIA 
Jetson TX2 module) will be highly necessary for utilizing such deep learning-driven 
techniques in real orchard scenarios.

The accessibility of the robotic manipulator and end-effector is challenging due 
to the complexity and variability of the agricultural environment, as well as the 
required speed of operation. The previously developed pruning robots were typi-
cally using serial robotic arms, while this level of specificity in the spatial placement 
of the end-effector results in a complex set of maneuvers and slows the pruning 
process. Meanwhile, a serial robot arm with an end-effector requires a large space 
for the cutter to engage with the branches. Although it is not for pruning directly, the 
effort has been made to simplify the maneuvers and improve the efficiency of 
robotic operations in harvesting. Two robotic fruit-picking robots have been devel-
oped and tested; as mentioned earlier, one is from FFRobotics (Gesher HaEts 12, 
Bnei Dror, Israel), and the other one is from Abundant Robotics (Abundant Robotics, 
California, CA, USA). Similar robotic arms could be considered for developing 
pruning systems. However, these arms did not need to achieve specific orientations 
to pick fruits. For robotic pruning, the end-effector (cutter) needs not only to reach 
the right location but also to be placed perpendicularly to the branch. To be always 
perpendicular to the branch as well as using the parallel type of robotic arm, the 
end-effector should be with adjustable orientation. With this kind of end-effector, 
the cutter itself could be rotated with very small spatial effort. Moreover, the cutter 
could be made of a saw blade with no specific orientation constraints.
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Finally, the economics of the robotic pruning system also needs to be considered. 
Typically, the cost of a robotic system is high. The use of off-the-shelf robotic arms 
(such as Robolink, Igus) and low-cost sensing system (such as Kinect v2, Microsoft) 
could decrease the overall cost of robotic systems. Therefore, with the consideration 
of the labor shortage issue as well as putting effort into building low-cost robotic 
pruning systems with off-the-shelf components, the benefit of developing a robotic 
pruning system would be obvious. Meanwhile, multiple robots could be employed 
to improve working efficiency. The cost/benefit ratio of a robotic system will have 
to be analyzed after the machine is built.
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Chapter 3
Orchard Water Management

Isaya Kisekka

Abstract Many world regions with large commercial fruit or nut production are 
experiencing constrained water supplies due to increased competition from other 
beneficial uses, government policies, and climate change. There is an urgent need to 
develop smart irrigation solutions to help growers remain profitable and environ-
mentally sustainable. We reviewed the latest advances in orchard irrigation systems, 
including zone irrigation management, variable rate irrigation, and scheduling tech-
nologies. Smart irrigation scheduling in orchards applies the right amount of water 
at the right time and in the right place. The ideal orchard water management strategy 
should combine ETa-based monitoring with stem water potential and soil water 
monitoring. One of the significant advances in technology has been automated stem 
water potential monitoring. To reduce orchard water use without negatively impact-
ing economic returns, growers need well-designed, well-operated, and well- 
maintained irrigation systems that achieve high distribution uniformity and 
application efficiencies. In addition, growers will need to implement deficit irriga-
tion strategies informed by knowledge of the sensitivity of the different growth 
stages to water stress. Soil health practices such as residue management can also 
reduce soil evaporation and improve soil water holding capacity. The concepts and 
management practices discussed in this chapter, while focused on almonds, apply to 
other types of orchards, e.g., pistachios, walnuts, or fruit orchards.

3.1  Introduction

Product quality is not trivial when optimizing orchard water management to mini-
mize spatial variability in canopy development and yield to maximize water use 
efficiency (WUE). Many arid regions (e.g., California, Israel, Chile, and Australia) 
with sizeable commercial fruit or nut production are experiencing constrained water 
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supplies due to increased competition from other beneficial uses, government poli-
cies, and climate change. There is an urgent need to develop smart irrigation solu-
tions to help growers remain profitable and environmentally sustainable. Smart 
irrigation management involves combining flexible, well-designed, and well- 
maintained irrigation systems with integrated sensing of water status in the soil- 
plant- atmosphere system to refine irrigation scheduling decisions to meet production 
goals. Smart irrigation, also known as site-specific irrigation, aims to guide deci-
sions about when to initiate irrigation, how much water to apply, and where. While 
the concepts discussed in this chapter can apply to other woody perennial orchards, 
we will use almond orchards as an example to discuss recent advances in orchard 
irrigation systems and water management.

3.2  Advances in Almond Orchard Irrigation Systems

3.2.1  Zone Irrigation Management (ZIM) and Variable Rate 
Irrigation (VRI)

Under zone irrigation management (ZIM), the farm is divided into manageable 
zones based on soils with similar infiltration rates, water holding capacity, and soil 
fertility and salinity characteristics. In the case of existing irrigation systems, they 
are retrofitted with automated or manual control valves and used to irrigate zones 
with similar soils together. This is a more simplistic attempt to manage spatial vari-
ability than variable rate irrigation (VRI). This improves the grower’s adoption 
potential by avoiding the cost of re-investing in a completely new irrigation system. 
While ZIM might not be the solution to manage spatial variability for all growers, it 
provides a low-cost option for increasing flexibility in irrigation scheduling. 
Figure  3.1 shows a farm in the Sacramento Valley of California that has imple-
mented ZIM to manage differences in soil infiltration and soil water holding capac-
ity between heavy clay, loam, and gravel loam soil zones.

VRI in almond orchards begins with a delineation of irrigation management 
zones. This process involves mapping the soil to understand underlying heterogene-
ity. Fulton et al. (2011) describe the use of proximal digital soil mapping to deter-
mine VRI zones in almond orchards. In the case of established orchards, spatial 
variability in light interception can also be used in the delineation of VRI zones. 
Unlike ZIM, VRI zones are usually irregular in shape, following the major factor 
driving the variability pattern. VRI tends to cost more to implement than ZIM 
because more materials are needed. For example, a variable frequency drive (VFD) 
is required to manage flow and pressure to zones of different sizes. Kizer et  al. 
(2018) reported that VRI in almonds improved nut yields. It is worth noting that 
without automation, ZIM and VRI irrigation scheduling can get very complicated 
and can result in unintended errors in irrigation scheduling as it becomes too com-
plicated to keep track of which zone has been irrigated and which ones haven’t. 
Automation is recommended to realize positive results from ZIM and VRI.
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Fig. 3.1 Irrigation zones at the Esteve Ranch near Corning, California. Zones with the same color 
are irrigated in the same irrigation set to manage differences in soil physical and hydraulic proper-
ties. Blue corresponds to heavy clay soil zones, green to layered soil zones, and red to gravely loam 
soil zones

3.2.2  Automation of Orchard Smart Irrigation Systems

Almond growers can improve profitability and enhance WUE by adopting smart 
irrigation technologies. Smart irrigation can be autonomous or manual, depending 
on water supply and irrigation system design. Autonomous smart irrigation can 
reduce labor costs and minimize human error in the implementation of irrigation 
schedules. Recent advances in remote automated valve actuation (i.e., remotely 
controlled opening and closing of valves) are critical to the successful implementa-
tion of irrigation scheduling. Examples of commercially available remote valve 
control solutions for orchards include Vinduino wireless valve controller (https://
vinduino.com/) and Bermad Smart Irrigation Solenoid Controller (https://www.ber-
mad.com/product/greenapp- 2/) among others. In addition, some of the remote valve 
control systems allow growers to remotely monitor water flow meters or system 
pressure in the irrigation lines. The ability to monitor flow and pressure in each 
irrigation zone provides a powerful tool for evaluating the system’s hydraulic per-
formance. For example, if the system is operating at a flow rate higher than the 
design flow rate, there is probably a leak in the system that requires inspection. On 
the other hand, if the system is operating at a much higher pressure than the design 
pressure, the emitters are probably clogged, and the system needs to be flushed. 
Also, technology exists to automate various components of the head control, includ-
ing backflushing for the filtration system, fertigation, and VFDs to optimize pump 
performance. There is a need to integrate these systems into a unified framework 
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capable of seamlessly functioning in an autonomous or semi-autonomous fashion to 
fully realize the benefits of automation irrigation in terms of optimized production, 
lower labor costs, and better environmental outcomes.

3.2.3  New Approaches to Assessing Orchard Irrigation 
System Performance

For example, irrigation system performance is typically evaluated using distribution 
uniformity (DU) in almond orchards. DU refers to how uniformly water is applied 
in a given irrigation zone or block and is mathematically expressed as the ratio of 
the average flow of the lowest 25% emitters measured divided by the average flow 
of all emitters measured. Growers can conduct a DU test on their own or hire a pro-
fessional irrigation technician to conduct the test. In California, DU tests are con-
ducted by resource conservation districts (the extension arm of the California 
Department of Conservation), private consultants, or universities. However, this 
traditional approach to the evaluation of irrigation systems is laborious and time- 
consuming; therefore, most growers do not conduct this important part of good 
irrigation management, especially on large farms. However, new remote sensing- 
based approaches are being developed to provide proxy feedback on irrigation sys-
tem performance, e.g., the transpiration uniformity (TU) shown in Fig. 3.2. The TU 
is an expression of cumulative thermal stress anomalies over several aerial flights 

Fig. 3.2 Transpiration uniformity (TU) in almond and walnut orchards estimated from aerial 
remote sensing thermal imagery (Ceres Imaging Inc., Oakland, California) representing cumula-
tive temperature anomalies on a 64 m pixel grid. The dark purple pixels represent low stress (~0), 
and the bright yellow pixels show high stress. On top, traditional distribution uniformity (DU) was 
estimated from emitter flow rates measured in catch cans in an almond orchard block at the Esteve 
Ranch near Corning, California
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(i.e., the difference in the radiometric temperature between the coolest pixel in the 
image and the rest of the pixels). Field evaluation of DU and TU showed good 
agreement. It is worth noting that DU and TU measure different properties; the for-
mer measures water application uniformity, while the latter measures water use. TU 
has the advantage that it can be scaled over large areas and is cheaper to conduct 
frequently.

3.3  Orchard Crop Water Use

Orchard crop water use is influenced by the type of crop being grown. For example, 
irrigation water requirements in almond orchards are influenced by two main fac-
tors, i.e., the orchard evapotranspiration (ETa) and the irrigation system efficiency 
(IE). IE is the ratio of beneficial uses (e.g., ETa, frost protection, leaching for salin-
ity management, etc.) to non-beneficial uses (e.g., weed ET, wind drift from sprin-
klers, evaporation from soil and canals, deep percolation, and runoff) of applied 
water (Steduto et al., 2012). However, depending on the purpose and scale of assess-
ment, some of the non-beneficial uses could be considered beneficial, e.g., deep 
percolation that ends up as groundwater recharge. IE can be expressed as applica-
tion efficiency (AE) or the proportion of the applied water available for crop use. 
For example, in California, where more than 80% of the almond growers have 
shifted from flood to micro-irrigation, application efficiencies have significantly 
improved, resulting in more than 30% reduction in applied water over the last three 
decades, as reported in the Almond Board of California CASP grower surveys. 
However, DU remains a major factor affecting orchard irrigation efficiency and is 
significantly influenced by irrigation system design, operation, and maintenance. 
Even the best micro-irrigation system, if poorly maintained, can develop low DU 
that affects orchard canopy growth and uniformity.

In an orchard with well-operated and well-maintained micro-irrigation systems, 
almond ETa is the main factor driving orchard irrigation water requirements. In 
California, seasonal almond ETa ranges from 1041–1117 mm in the Sacramento 
Valley to 1270–1372 mm in the southern San Joaquin Valley (Fulton et al., 2001). 
There is a need to determine almond ET at different growth stages (i.e., young ver-
sus mature orchards), cultural practices (e.g., cover crop versus no cover crops), and 
environmental factors (e.g., salinity and sodic conditions). A significant amount of 
research has been done in California to estimate almond ET under these various 
conditions (Goldhamer et  al., 2006; Sanden et  al., 2012; Spinelli et  al., 2016; 
Bellvert et al., 2018; Xue et al., 2020; Peddinti & Kisekka, 2021; Drechsler et al., 
2021). Most of the earlier work focused on developing crop coefficients that could 
be used with reference ET (ETo) to determine orchard crop water use. In contrast, 
recent work focuses on estimating site-specific almond ETa from remote sensing. 
After the net irrigation requirement is determined, the next step is to develop an 
optimum smart irrigation schedule.
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3.4  Smart Irrigation Scheduling

Smart irrigation scheduling involves developing a procedure for supplying the trees 
with the right amount of water at the right time and in the right place. Traditional 
irrigation prioritized determining the right amount and timing, but smart irrigation 
introduces the spatial aspect. Irrigation scheduling aims to maximize net economic 
returns for a given orchard while enhancing water stewardship. Many almond grow-
ers still irrigate based on their practical experience, irrigation system limitations, 
and water supply constraints, e.g., irrigation district water deliveries or diminished 
well capacities. An Almond Board of California CASP survey (Table 3.1) shows the 
criteria on which growers base their irrigation scheduling decisions. Scientific 
research over the last several decades has developed three primary methods of irri-
gation scheduling in orchards: (1) soil water monitoring, (2) plant water status mon-
itoring, and (3) ET-based soil water budgets. However, as shown in Table 3.1, most 
growers still use the traditional hand feel method to schedule irrigation. New tech-
nologies that are easier to use might improve adoption levels of scientifically based 
irrigation scheduling.

3.4.1  Soil Water Monitoring

Smart irrigation scheduling based on soil water sensing involves monitoring soil 
water content in the root zone at two or more locations until a threshold set a priori 
is reached and irrigation water is replenished. When soil probes (capable of moni-
toring soil water at multiple depths) are used, the sensor can be used to determine 
the direction of soil water movement instead of setting a soil water threshold or 
trigger. This information is used to determine when to end an irrigation set. Soil 
water sensors can also track root water uptake dynamics characterized by sharp 
declines in water content during the day and negligible changes in soil water at night 
(Fig.  3.3). Examples of commercially available soil water sensors include water 
potential sensors, resistivity-based sensors (e.g., gypsum block), time-domain 
reflectometry sensors (TDR), and frequency-domain reflectometry sensors (FDR). 

Table 3.1 Irrigation scheduling methods used by almond growers in California. Data is collected 
as part of the California Almond Sustainability Program (CASP) survey conducted by the Almond 
Board of California

Irrigation scheduling method Percentage of adoption (%)

Hand feel method used to determine moisture 89
ETc-based scheduling 75
Soil moisture sensors 61
Use of flow meters 43
Stem water potential using pressure chamber 31
Water district-influenced schedule 23
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Fig. 3.3 Root zone soil water dynamics during the post-harvest period at three depths in an 
almond orchard near Arbuckle, California. The effect of root zone water uptake is clearly shown 
by the jagged pattern in the graphs at different depths. The spikes represent irrigation events

Neutron probes and heat dissipation sensors are primarily used in research. The 
reader is referred to a detailed description of how these different sensors operate 
(Evett, 2008). While the science behind how these different sensors operate has not 
changed for decades, there has been a significant improvement in the electronics 
and data communication protocols, resulting in lower costs and seamless real-time 
monitoring. It is worth noting that no soil water sensor currently exists that can 
measure soil water directly; they all measure a surrogate property, e.g., the dielectric 
constant that is correlated to soil water content. If accurate soil water content mea-
surements are required, site-specific calibration for each sensor has to be done. 
Another disadvantage of most commercially available sensors is that they sense a 
very small soil volume, which results in variability between sensor replicates mak-
ing interpretation very difficult for the growers. Most growers use the soil water 
sensor data to qualitatively assess trends in soil water dynamics but not to determine 
actual soil water content. As shown in Table 3.1, many almond growers have adopted 
soil moisture sensors. However, there is still a challenge associated with deciding 
where to install the sensors and how many you need to characterize soil water con-
tent in an orchard.

New advanced soil water monitoring using cosmic-ray neutron probe (CRNP) 
appears promising for soil water monitoring at orchard scales. CRNP detects fast 
moving neutrons in the soil and in the air just above the soil. The neutron intensity 
is then correlated to soil water (Benzinger & Jawerth, 2018). Research comparing 
the CRNP to an in situ neutron probe in an almond orchard has shown very good 
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Fig. 3.4 Time series of aerial averaged soil water content measured using cosmic-ray neutron 
probe compared to in situ neutron probe at 45 cm. NP refers to neutron probe and SWC refers to 
soil water content

agreement between the CRNP and the in situ soil water sensors at 45  cm depth 
(Fig. 3.4). However, CRNP sensors are currently expensive and are mostly used in 
research.

3.4.2  Tree Water Status Monitoring

In orchard water management, measuring the tree water status is the best water 
stress indicator. For example, in almonds, midday stem water potential (SWP) has 
been proven the best indicator of tree water status because it integrates soil factors 
for the entire root zone and environmental conditions (Fulton et al., 2014). SWP is 
dynamic and is not only affected by soil water content but also environmental con-
ditions. SWP changes diurnally and seasonally, and it is more difficult to develop 
absolute general thresholds for triggering irrigation than when monitoring soil 
water content. For this reason, SWP measurements have to be benchmarked against 
a reference or baseline SWP for non-water-stressed trees in the same environment. 
Measurements of midday SWP are usually taken around solar noon or between 1:00 
and 3:00 p.m. when SWP is minimum (i.e., most negative). The procedure for mea-
suring SWP involves placing a mature lower canopy shaded leaf into an aluminum 
foil bag for about 15 min, followed by removing the leaf and immediately placing it 
in a pressure chamber, pressuring the chamber until water begins to come out of the 
cut end; the pressure reading represents the SWP. In orchard irrigation scheduling, 
SWP is preferred to leaf water potential (the leaf is not placed in an aluminum bag 
before placing it in the pressure chamber) because it is less sensitive to atmospheric 
demand and is more representative of the water status of the entire tree. Measurement 
of midday SWP is labor-intensive, contributing to its lack of widespread adoption 
outside of research, as shown in Table 3.1.

Recently, new sensors have been developed that continuously measure 
SWP. These sensors can be broadly categorized into two types: osmometers and 
micro-tensiometers. The osmometer sensors measure pressure changes caused due 
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Fig. 3.5 Comparing stem water potential from a FloraPulse micro-tensiometer to a pressure 
chamber in nonpareil almond trees near Corning, California. nRMSE refers to the normalized root 
mean square error

to changes in osmosis of the chamber fluid. The sensor has a semipermeable mem-
brane that allows water movement between the tree xylem and the sensor fluid 
chamber (Meron et al., 2015). The change in pressure measured by the sensor can 
be interpreted in terms of stem water potential. Other types of SWP sensors act as 
micro-tensiometers. Micro-tensiometers are based on tensiometry, a technique for 
measuring the chemical potential of stretched liquid water based on a thermody-
namic equilibrium between the stretched water and its vapor (Pagay, 2014; Pagay 
et al., 2014). Figure 3.5 compares FloraPulse stem water potential to pressure cham-
ber measurements in nonpareil almond trees near Arbuckle, California. Overall, 
there is a good agreement between SWP sensors and the pressure chamber.

Besides SWP sensors, another type of sensor used to measure tree water stress is 
the dendrometer. Dendrometers measure the mean daily shrinkage (MDS). MDS 
refers to the difference between daily maximum and minimum trunk diameter. Soil 
water depletion or more demand from weather causes the trunk to shrink more each 
day. Preliminary research has shown a good correlation between MDS and SWP; 
commercially available dendrometer services include Phytech (https://www.phy-
tech.com/). Other proximal sensors, such as the leaf monitor that monitors the leaf 
temperature of a single leaf in combination with crop water stress index (CWSI), 
have been developed and evaluated in almond orchards but still need more develop-
ment and testing to be ready for adoption by growers (Dhillon et al., 2014; Meyers 
et al., 2019; Drechsler et al., 2019).

3.4.3  Remote Sensing of Evapotranspiration

Compared to the traditional approaches of using reference evapotranspiration and a 
single crop coefficient, remote sensing of evapotranspiration based on aerial or sat-
ellite platforms allows for estimation of ETa at a high spatiotemporal resolution, 
making it suitable for smart irrigation management. Various models are used for 
estimating ETa using remote sensing, and they vary widely in complexity. They can 
be broadly categorized into two groups: (1) semi-empirical models or those that use 
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vegetation indices from surface reflectance data to estimate crop coefficients (Kc) 
and then calculate ETa as the product of the remotely estimated Kc and ETo and (2) 
those based on biophysical processes such as the surface energy balance. Based on 
these two approaches, examples of commercially available products are IrriSat 
(https://irrisat- cloud.appspot.com/) and IrriWatch (https://www.irriwatch.com/en/), 
respectively.

A major limitation of the semi-empirical remote sensing-based ETa models is the 
requirement to know the relationship between Kc and vegetative indices for a given 
crop, limiting its wide-scale adoption because these relationships have not been 
locally developed for most crops. Remote sensing-based ETa models based on the 
surface energy balance can be subdivided into one-source and two-source models 
(Xue et al., 2020).

One-source remote sensing-based ETa models consider soil and vegetation as a 
single source with regard to land surface temperature and land surface energy 
exchange (Bastiaanssen et al., 1998). On the other hand, two-source remote sensing- 
based models consider land surface temperature from soil and plant canopy as two 
separate sources, and the corresponding energy fluxes for evaporation and transpira-
tion are estimated separately (Norman et  al., 1995). A major limitation of two 
source-based models is that they require high-resolution images of land surface 
temperature that can be obtained using thermal cameras mounted on UAVs or air-
planes; nevertheless, such images are not readily available, especially at a large scale.

Single-source models based on satellite imagery are the most common in com-
mercial almond production. The most common remote sensing-based single-source 
ETa models include the Surface Energy Balance Algorithm for Land (SEBAL) 
(Bastiaanssen et  al., 1998), the Mapping Evapotranspiration at High Resolution 
with Internalized Calibration (METRIC) (Allen et al., 2007), the Simplified Surface 
Energy Balance (SSEB) (Se-nay et  al., 2007), and the Surface Energy Balance 
System (SEBS) (Su, 2002). Validation of some of these models in commercial 
almond orchards is an ongoing activity as algorithms get refined, and the resolution 
of remote sensing imagery improves. While these models have been around for 
more than a decade, they have been limited to research. However, recent advances 
in cloud computing and improvements in algorithms have allowed private service 
providers to develop pipelines that allow them to serve remotely based ETa data on 
an orchard-by-orchard basis through the web or mobile apps (e.g., IrriWatch, and 
Agralogics/Jain). For example, Fig. 3.6 compares remotely estimated ET using the 
SEBAL model embedded in IrriWatch to ETa from an eddy covariance station in an 
almond orchard. The results show that remotely sensed ETa is acceptable for irriga-
tion management with an RMSE of less than 1.0 mm/day. Open-source efforts by 
various patterners, e.g., NASA and Google Earth Engine, are ongoing to deliver 
satellite-based remotely sensed ETa to growers, e.g., OpenET (https://openet-
data.org/).

UAVs and airplane platforms provide opportunities to obtain high-resolution 
thermal and multispectral imagery that can be used to estimate ETa at an individual 
tree scale. However, the high spatial resolution imagery is used with energy balance 
algorithms developed for satellite platforms. Therefore, there is a need to validate 
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Fig. 3.6 Validation of a commercially available remotely sensed actual evapotranspiration (ETa) 
service to observed ETa from an eddy covariance flux tower in an almond orchard at the Esteve 
Ranch located near Corning, California

how well the surface balance models developed for satellite platforms work with 
high spatial resolution imagery (e.g., Niu et al., 2020; Peddinti & Kisekka, 2021).

The ETa estimated from remote sensing is typically used to evaluate the water 
balance. In orchard water management, where micro-irrigation is the dominant irri-
gation method, the ETa is summed since the last irrigation to determine the amount 
of water to apply for the next irrigation. Under micro-irrigation, the goal should be 
to irrigate as frequently as practical, subject to soil infiltration characteristics, water, 
labor availability, and growth stage. In almond orchards, our observations have indi-
cated that the effective root zone is approximately 1.2 m.

The ideal orchard water management strategy should combine ETa-based moni-
toring with SWP and soil water monitoring. However, if cost is a limitation, a com-
bination of these irrigation scheduling methods should be used.

3.5  Strategies for Reducing Water Use in Orchards

In many regions of the world with Mediterranean climates where nuts and certain 
fruits are produced, water supplies are constrained by climate change and increased 
demand from other beneficial uses. In such situations, available water is insufficient 
to meet full crop evapotranspiration. Examples of strategies that can be employed to 
cope with drought or reduce consumptive water use in crops such as almonds are 
discussed below.
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3.5.1  Irrigation Systems Related Strategies

Improving distribution uniformity (DU) and irrigation application efficiency (AE) 
is critical to reducing water use in almonds without negative impacts on the grow-
er’s economic returns. Low DU can result in parts of the orchard being overwatered 
while other parts receive very low irrigation water, and severe stress is triggered. 
With micro-irrigation, almond growers typically aim to achieve a DU of 90% or 
higher to ensure that all trees have equal opportunity to the applied irrigation water. 
High AE aims to reduce nonproductive water loss, e.g., runoff and deep percolation. 
High AE ensures that most of the applied water is used for evapotranspiration. High 
DU and AE start with a good irrigation system design, smart irrigation scheduling, 
and an optimal plan for operation and maintenance. Monitoring flow and pressure 
at critical points within the irrigation network is recommended to ensure the system 
is operating as designed. New remote sensing technologies, e.g., transpiration uni-
formity discussed earlier, provide feedback that can complement periodic measure-
ments of DU in the orchard. New irrigation design paradigms such as ZIM or VRI 
can help growers achieve high DU and AE in orchards underlined by varying soils. 
Fereres et  al. (2012) recommend that under situations of limited water, growers 
should mine the stored soil water in the root zone as much as possible such that the 
season ends with a dry profile that can be refilled by winter rainfall. However, this 
strategy will only work in situations where the drought is temporary.

3.5.1.1  Deficit Irrigation as a Strategy to Reduce Orchard Water Use

Deficit irrigation (DI) refers to irrigation management in which the applied water is 
less than the orchard ETa requirements (Fereres et al., 2012). Deficit irrigation can 
be broadly categorized into sustained deficit irrigation (SDI) and regulated deficit 
irrigation (RDI). Under SDI, a constant percentage of ETa or full irrigation is 
applied throughout the season. In contrast, in RDI, deficits are implemented based 
on the growth stage to reduce water use or improve nut quality. Any DI strategy 
aims to have minimum impact on economic returns while reducing water use. 
Several studies have been conducted in California to study almond response to defi-
cit irrigation (Shackel, 2004; Goldhamer et al., 2006; McCullough-Sanden et al., 
2020; Drechsler & Kisekka, 2021).

Successful implementation of deficit irrigation under moderate water deficits in 
almonds requires understanding the sensitivity of different growth stages to water 
stress. Water stress affects trees earlier in the season, from leaf out through shoot 
growth and development of terminal and lateral buds (Fulton et al., 2001). During 
this period, rapid vegetative growth is necessary for canopy development, and fruit 
positioning and stress should be avoided or minimized to avoid yield reductions in 
current and future years. Goldhamer et al. (2006) reported achieving reductions in 
15–30% water use with SDI without significant reductions in kernel yield. Almond 
trees can tolerate water stress during the fruit growth and development stage. The 
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2 months before harvest provides the time to achieve water reductions via deficit 
irrigation (Shackel, 2004). Reductions in kernel weight and poor hull split caused 
by water stress have been reported, and to mitigate this effect, at least 25 mm of 
irrigation should be applied 2 weeks before hull split. Using various levels of RDI, 
McCullough-Sanden et  al. (2020), in a 5-year study in Kern County, California, 
reported a 15.4% reduction in yield from a 30% reduction of full irrigation. In a 
3-year RDI by variety study near Arbuckle, California, Drechsler and Kisekka 
(2022) reported no significant differences in kernel yield between 100% ET and 
50% and 75% ET treatments in mature nonpareil, butte, and Aldrich varieties with 
reduction implemented after 1% hull split. During the post-harvest growth stage, 
bud differentiation continues through September, and moderate water deficits do not 
affect subsequent year’s nut numbers (Goldhamer et  al., 2006). However, severe 
stress during the post-harvest period has been reported to reduce fruit set for the 
following year. Severe water stress during this period should be avoided, but the 
potential for water-saving will depend on the atmospheric evaporative demand and 
the length of the post-harvest period.

Under extreme drought, deficit irrigation can be used to cope with a reduced 
water supply, enhancing tree survival. Irrigation should be withheld during the early 
growth stage until stem water potential reaches −12 to −14 bars. Irrigation should 
be withheld during the fruiting and development growth stages until stem water 
potential reaches −20 to −22 bars (Fulton et al., 2001). Field observations during 
the 2021 drought noted that stem water potential reached −27 to −30 bars without 
significant leaf drop. It is worth noting that this severe DI strategy will reduce fruit 
weight in the year it is implemented and will reduce the fruit number in subsequent 
years. However, this might be the only option under multi-year droughts and regu-
lated groundwater pumping.

3.5.1.2  Reducing Soil Evaporation

Light irrigations should be avoided because they are associated with a high propor-
tion of nonproductive soil evaporation losses. Soil amendments such as nut hulls 
and shells can be applied as residue cover to reduce soil evaporation and improve 
soil health. The success of this management strategy is tied to ongoing develop-
ments in off-ground harvesting in the case of almonds. This research is still new, and 
no generalized recommendations have been developed.

3.6  Conclusions

Orchard water management under changing climate and increased demand from 
other beneficial uses requires the adoption of smart irrigation. We reviewed the lat-
est advances in irrigation systems, including zone irrigation management and vari-
able rate irrigation. For the benefits of ZIM and VRI to be fully realized, growers 
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need to couple these advanced systems with smart irrigation scheduling that applies 
the right amount of water at the right time and in the right place. Based on literature 
and field experience, irrigation scheduling strategies should involve the monitoring 
of soil water status using a wide range of sensors to manage the soil water reservoir 
in the root zone; monitoring of stem water potential using micro-tensiometers, 
osmometers, or pressure chambers to determine when irrigation should be trig-
gered; and monitoring of ETa using remote sensing techniques to determine how 
much water to apply in different parts of the orchard. For example, in California, the 
Almond Board of California has pledged to reduce the amount of water required to 
grow a pound of almonds by 20% by 2025. To achieve this sustainability goal and 
cope with droughts, almond growers need to reduce the amount of water applied.

To reduce orchard water use without negatively impacting economic returns, 
growers need well-designed, well-operated, and well-maintained irrigation systems 
that achieve high distribution uniformity and application efficiencies. Finally, opti-
mum reduction of orchard water use requires implementing deficit irrigation strate-
gies informed by knowledge of the sensitivity of different almond growth stages to 
water stress. Reductions by 15 to 30% of full irrigation have been reported without 
significant reductions in kernel yield. Although the concepts covered in this book 
chapter focus on almonds, some may apply to other crop orchards, e.g., pistachios, 
walnuts, and fruit orchards.
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Chapter 4
Vineyard Water Management

María Paz Diago

Abstract Although grapevine is a drought-tolerant species, it has elevated water 
requirements to complete its growth cycle, which, in the end, coincides with the 
driest months of the year. As a result, irrigation is increasingly being applied to 
vineyards worldwide. Moreover, a period of strong variability and uncertainty in 
water availability is forecast due to climate change; therefore, improving viticul-
ture’s irrigation scheduling is critical for achieving a sustainable and productive 
grape and wine industry. Effective implementation of sustainable water manage-
ment can only be based on objective and representative monitoring of the crop water 
status. Since many of these classical procedures are either destructive, tedious, or 
difficult to automate, noninvasive technologies have been developed in the last 
decade to assess vineyard water status spatial variability. Likewise, novel approaches 
based on soil electrical conductivity, thermography, NIR spectroscopy, and multi-
spectral and hyperspectral imagery—remote (from aircraft or drones) or proximal 
(from handheld devices or ground-moving vehicles)—are discussed. Also, use cases 
that utilize these techniques to implement more precise, smart irrigation manage-
ment are described. Finally, alternative practices to reduce water consumption in 
viticulture are also provided.

4.1  Introduction

Even though the grapevine is a drought-tolerant species, it has elevated water 
requirements to successfully complete its growth cycle (Costa et al., 2016), which, 
in the end, coincides with the driest months of the year. The adoption of vineyard 
irrigation, which was banned or subjected to very strict regulations until not so long 
ago in many wine regions across Europe, is rising steadily worldwide.
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Improving viticulture’s water management is therefore critical to achieving a 
sustainable and productive grape and wine industry. Nowadays, the effective imple-
mentation of sustainable water management and irrigation in viticulture calls for 
objective and representative monitoring of the crop water status. Hence, there is a 
need to provide support and applicable tools to grape growers to move from their 
traditional water status monitoring (if any) and irrigation practices to modern, more 
precise, reduced demand systems and technologies (Chartzoulakis & Bertaki, 2015).

4.2  Current Methods for Vineyard Water Status Monitoring

As in fruit orchards, the timing and extent of irrigation can be defined using several 
indirect methods, including soil measurements, water budget estimates, and envi-
ronmental modeling, or direct, plant-based approaches (Rienth & Scholasch, 2019).

Soil-based methods focus on measuring soil moisture. Although they enable 
continuous, remotely accessed data (also during wintertime, to assess the soil refill-
ing capacity), they have to be placed in representative locations within the vineyard 
to account for the inherent spatial variability of soil, which may require a high num-
ber of units. Machinery intervention and tillage may also pose a risk of sensor dam-
age, and in some vineyards of gravelly and stony soils, installing these sensors is not 
feasible. Moreover, once the soil sensor is buried and placed, its measurement spans 
along a limited horizontal and vertical soil volume, which is a shortcoming, as 
grapevine roots may explore beyond the targeted soil volume, and the reading will 
not bring accurate water availability to the plant (Rienth & Scholasch, 2019). Some 
commercial portable probes are available to get information about vertical soil 
moisture distribution. These can be inserted in previously installed access tubes (of 
different depths between 0.7 and 1.6 m) across different representative locations 
within the vineyard to assess the water soil profile at given intervals of 10 cm. While 
these probes provide useful information about the differential soil moisture at dif-
ferent depths and, in some cases, information about the soil’s salinity, their costs 
may limit their deployment and are difficult to be automated.

Vineyard water usage can also be appraised by determining the total evapotrans-
piration (ETa) using atmospheric measurements, soil water balance, and remote 
imagery (Xia et al., 2016). However, plant-based methods have been described as 
the most adequate for assessing grapevine water status, as the plant integrates both 
soil and atmospheric demand conditions (Jones, 2004). Since its first introduction in 
the mid-1960s (Schölander et al., 1965), pressure chamber remains an important 
irrigation management tool in commercial vineyards today (Williams, 2017). It is 
used to assess the vine water potential (Ѱ), either pre-dawn (ΨPD), leaf (Ψl), or stem 
water potential (Ψs), whose advantages and disadvantages have been recently 
reviewed (Santesteban et  al., 2019). Thresholds of water potential values for 
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Table 4.1 Threshold values of pre-dawn water potential (ΨPD), leaf water potential (Ψl), and stem 
water potential (Ψs), expressed in MPa for different levels of grapevine water stress

Water stress level ΨPD Ψl Ψs

No stress > −0.2 > −0.9 > −0.8
Low −0.2 to −0.3 −0.9 to −1.1 −0.8 to −1.0
Medium −0.3 to −0.8 −1.1 to −1.6 −1.0 to −1.4
High < −0.8 < −1.6 < −1.4

Adapted from van Leeuwen et al. (2009) and Mirás-Avalos and Araujo (2021)

different plant water status situations are reported in Table 4.1. Both ΨPD and Ψs are 
probably the most used vine water potential indicators to drive irrigation scheduling 
in commercial vineyards.

Another relevant plant-based method builds on the preference of the enzymes 
responsible for plant photosynthesis for the 12C isotope (which is predominant in the 
atmosphere (Craig, 1953)) versus the 13C isotope (Farquhar et al., 1980). This phe-
nomenon is called carbon isotope discrimination. This prevalence is less marked 
under water stress conditions, and sugars produced by the plants contain more 13C 
than those produced when no water limitation exists. The ratio between the quanti-
ties of the two isotopes (13C/12C) in the sugars of the berries is denoted as δ13C and 
is considered an integrative indicator of the water deficit suffered by the grapevine 
during the ripening process. δ13C ranges from −27/1000 (absence of water stress) to 
−20/1000 (severe water stress) and has proved to be well correlated with plant water 
potential (Gaudillère et al., 2002). Since this method can only be applied at the end 
of the growing season, its utility in driving day-to-day irrigation decisions is lim-
ited. Nevertheless, it may provide valuable information to evaluate past agronomic 
and water management practices and define future irrigation approaches based on 
lessons learned (van Leeuwen et al., 2009).

Among other plant-based methods, gas exchange sensors, sap flow meters, and 
dendrometers can be listed. Their physiological fundamentals are sound; however, 
either the cost and complexity of the instrumentation required or the interpretation 
of the results they generate renders them of limited utility for commercial vineyard 
management and sets them aside mostly for research purposes.

Although very reliable and informative, these conventional plant-based methods 
are either destructive, complex, or time- and labor-demanding (Fernández, 2014), 
hindering their utilization in commercial vineyards. Furthermore, many of these 
tools measure only a limited (usually small) number of vines, making them unsuit-
able for detecting spatial variation in water status within a vineyard plot (Acevedo- 
Opazo et  al., 2008). Therefore, the paragon method to assess plant water status 
should be reliable, non-destructive, sensitive to water fluctuations, capable of 
responding fast, inexpensive, and easy to operate and interpret (Fernández, 2014). 
Besides, should the spatial variability of the vine water status within a vineyard 
need to be assessed, this ideal method must be automated.
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4.3  Vineyard Spatial Variability

The spatial variability of grapevine water status within a vineyard is mostly 
explained because land and soil are variable. This involves that water and nutrient 
availability inter- and intra-plots may be changing, which has a strong influence on 
both plant development and physiology and crop production and composition 
(Bramley & Hamilton, 2004; Bramley, 2005). In this context, the usefulness of high 
spatial resolution information regarding plant water status zones within plots has 
been advised (Acevedo-Opazo et al., 2010; Cohen et al., 2017) to provide grape-
vines under different water requirements with different irrigation doses, that is, 
smart irrigation.

4.4  Noninvasive Technologies for Vineyard Water 
Status Monitoring

To overcome most of the pitfalls of classical plant-based methods, alternative auto-
mated solutions based on non-destructive technologies are being developed to assist 
in assessing vineyard water status spatial variability (Tardaguila et al., 2021). While 
some are already commercially available to some extent, others are still under 
development and constitute the state-of-the-art methods to determine the necessary 
water input for smart irrigation strategies.

An important group of technologies is those linked to remote (far from the ground) 
and proximal (close to the ground) sensing, which gather information about plants 
and soil. Most of these are based on the interaction between electromagnetic radia-
tion (at different wavelength ranges) and a given organ or plant tissue. Radiation 
emitted by the sun or any internal light source reaches the target of interest and then 
travels back to a receiving or recording device detected by passive or active sensors, 
respectively. While active sensors provide their energy source or illumination, pas-
sive sensors can only be used when external, natural energy (e.g., sun radiation) is 
available.

To assess grapevine water status and corresponding vineyard spatial variability 
of this variable, methodologies based on two main non-destructive technologies, 
thermography and VIS-NIR spectroscopy-related methods, are under development. 
In both cases, information and data gathered with the sensors are then validated 
against a plant-based water status reference method, typically Ψ whose threshold 
values (Table 4.1) are more comprehensive to drive irrigation scheduling.

4.4.1  Thermography and Infrared Radiometry

Infrared thermography is the science of detecting infrared energy emitted from an 
object, transforming it into apparent temperature, and then representing the result as 
an infrared image. Therefore, thermography allows the visualization of differences 
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in surface temperature from emitted infrared radiation within the wavelength range 
1.3–15 μm.

4.4.1.1  Thermal Stress Indices

In agriculture, thermography has been mainly used to assess plant water status 
based on the relationship between the leaf stomatal aperture and surface tempera-
ture (Jones et al., 2002). Water loss through the stomata occurs when leaves tran-
spire and leaf temperature decreases. However, isohydric plants respond to water 
deficit conditions by closing their stomata. As a result, transpiration stops, stomatal 
conductance is limited, and leaf temperature increases. Leaf temperature is then 
related to stomatal conductance when environmental conditions are constant (Jones, 
1999), but leaf temperature can be affected by fluctuations in the environmental 
conditions (e.g., cloudiness, wind). Thermal stress indices such as the Crop Water 
Stress Index (CWSI) (Eq. 4.1) (Idso et al., 1981) and the Stomatal Conductance 
Index (Ig) (Eq.  4.2) (Jones et  al., 2002) have been developed to mitigate such 
fluctuations.
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Compounding these indices requires the definition of two reference temperature 
values, denoted as Tdry and Twet, which are used to normalize the leaf temperature 
(Tl). While Tdry represents the highest possible leaf temperature under those specific 
environmental conditions (i.e., a non-transpiring leaf in which all stomata are 
closed), Twet is a proxy of the lowest potential leaf temperature in that same environ-
ment (i.e., a fully transpiring leaf with all stomata open). Leaf temperature should 
lie within the temperature range anchored by Tdry and Twet. Different approaches 
have been used to compute these two reference values (Zhou et al., 2021). Although 
recent studies have avoided the use of reference temperatures in the assessment of 
grapevine Ψs with satisfactory results (Gutiérrez et al., 2018), proper comparison of 
plant water status as assessed by thermography among plots or several dates and 
seasons for a given vineyard can only be conducted using thermal indices, which 
require the use of Tdry and Twet values. So far, this is certainly one of the main obsta-
cles that have hindered the automation and further implementation of this technol-
ogy in productive vineyards.
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4.4.1.2  Remote and Proximal Thermal Imaging

Over the last decades, technological advances in thermal imaging have enabled new 
opportunities to acquire plant thermal responses to water status changes (Baluja 
et al., 2012). Likewise, thermal cameras can be used as portable devices (Pou et al., 
2014) or even in combination with smartphones (Petrie et  al., 2019) to estimate 
plant water status and assist in the setup of irrigation schedules. However, time and 
labor demand, together with the limited number of manual measurements, remain 
pitfalls. Aerial thermography has partially solved the latter, which can cover large 
field extensions (Zhou et al., 2021).

At the regional level, Pagay and Kidman (2019) surveyed 11 experimental sites 
(100  ha of vineyards of Shiraz and Cabernet Sauvignon cultivars) across the 
Coonawarra wine region (South Australia), using airborne (a manned fixed-wing 
aircraft was used) thermal imagery over two consecutive seasons. High-resolution 
airborne thermal imagery enabled the assessment of vine water status across a 
whole viticultural region. Remotely sensed thermal indices were mostly in agree-
ment with ground-based measurements of vine water status, particularly under envi-
ronmental conditions favoring maximum leaf transpiration. From a technological 
standpoint, the high spatial resolution of the thermal camera (640  ×  512 pixels, 
yielding an angular field of view of 25°) enabled the precise separation of inter-row 
and vine signals. Similar findings were reported by Bellvert et  al., (2016). They 
demonstrated that thermal imagery from piloted aircraft enabled the development of 
regulated deficit irrigation (RDI) strategies in Chardonnay vines without any nega-
tive effect on yield and wine composition. Additionally, aerial thermal imagery can 
successfully identify irrigation inefficiencies that may not be evident at ground level 
(Pagay & Kidman, 2019).

In case a limited number of vineyard plots have to be monitored, or even a single 
vineyard has to be surveyed using aerial thermal imagery, UAVs are recommended 
(Baluja et al., 2012; Sepúlveda-Reyes et al., 2016). In some crops, such as grape-
vines, the spatial resolution associated with data from aerial surveys may be insuf-
ficient, and several meters of canopy may be shrunk into a reduced number of pixels, 
therefore losing information. That is the case in many vertical shoot positioning 
(VSP) vineyards, where vegetation is well placed between catch wires. For these, 
canopies will only have 30–50 cm width of vegetation from a zenithal point of view, 
compared to orchard trees (González-Dugo et al., 2013), where higher canopy pro-
jected areas can be observed (Fig. 4.1c, d). Besides, remote (either from manned or 
unmanned aerial vehicles) thermal imagery-derived pixels often mix canopy and 
soil information (if the camera resolution is not high), which complicates further 
analyses as they need to be effectively separated.

This opens up possibilities for the development of proximal, on-the-go thermo-
graphic solutions capable of gathering detailed canopy information from a close 
lateral (Fig. 4.1a, b) point of view (Costa et al., 2019) and of covering large areas to 
enable the monitoring of the vineyard water status variability (Gutiérrez et al., 2018).

Likewise, ground lateral thermography of tempranillo (Vitis vinifera L.) grape-
vines has been successfully tested using thermal cameras on the go from a moving 
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Fig. 4.1 Lateral (a, b) and zenithal (c, d) visualization of the canopy using aerial and proximal 
thermography, respectively. Two artificial leaves (Evaposensor, Skye Instruments Ltd., UK) used 
to compute reference Tdry and Twet are shown in all subplots

vehicle (5  km/h), operating at 1.20  m from the canopy (Gutiérrez et  al., 2018; 
Gutiérrez et al., 2021). Good relationships (R2 ~ 0.60–0.80; root mean square error 
of prediction (RMSEP) ~0.123–0.190 MPa) between the predicted and observed Ψs 
were obtained. Two artificial leaves (Evaposensor, Skye Instruments Ltd., UK) were 
used to estimate Twet and Tdry reference values (Fig. 4.1).

4.4.1.3  Infrared Radiometers

Regardless of whether thermal imagery is acquired remotely or proximally, its pro-
cessing to extract the relevant canopy information is not simple and requires time 
and specific knowledge. Infrared radiometers can be considered a simpler version of 
thermal cameras. While thermal cameras acquire 2D images in which a temperature 
value is associated with each pixel, an infrared radiometer provides an averaged 
value of the target’s surface temperature of the measuring spot. In a comprehensive 
review on the use of ground-based thermography to assess plant water status in 
agriculture, the advantages of infrared radiometers vs. thermal cameras were sum-
marized (Maes & Steppe, 2012). Though these types of sensors (e.g., IR SI-421, 
Apogee Instruments, Inc., Utah, USA) are often designed to be installed on static 
poles (they are ruggedized to properly function outdoors for a long time), attempts 
to install and operate them from ground-moving vehicles have been recently 
reported (Fernández-Novales et al., 2021) (Fig. 4.2).
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Fig. 4.2 (a) Prototype of the unmanned ground vehicle developed under the VineScout (www.
vinescout.eu) project to automatically assess vineyard water status. (b) Close-up of the infrared 
radiometer, multispectral camera, and suite of environmental sensors used to model leaf water 
potential (Ψl)

In this work, a novel approach was tested that combined infrared radiometry, 
multispectral imaging (NDVI), and a set of environmental sensors (Tair, HR%, Patm) 
to avoid the use of reference temperatures. The sensors were mounted on an autono-
mous ground vehicle (Fig. 4.2) to assess the plant water status variability within a 
commercial vineyard (Vitis vinifera L. cultivar Touriga Nacional).

One important thing to consider when using an infrared radiometer is the size of 
its measuring window. Depending on the design of the radiometer, its field of view, 
and the distance to the target, its measuring spot size may change. This is relevant 
because a large measuring spot size may include a substantial quantity of pixels 
corresponding to canopy elements (e.g., berry, wood, gap, wire) other than leaf, 
which may add noise to the average temperature record.

4.4.1.4  Additional Physiological and Practical Considerations 
Regarding Thermography

The interpretation of canopy thermal data may not be simple, as leaves in the can-
opy may undergo distinct environmental conditions and leaf orientations, both fac-
tors potentially affecting the recorded temperature (Poirier-Pocovi & Bailey, 2020). 
Substantial variation in computed CWSI can be found in different canopy parts, 
although the diurnal trends are similar (Prueger et  al., 2019). Furthermore, the 
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highest CWSI values are usually measured in the morning, while the lowest are 
computed in the late afternoon (Prueger et al., 2019).

When validating leaf thermal data (which is closely related to gs and stomata 
regulation) with water potential, it has to be understood that different responses to 
water deficit between stomata regulation and plant hydraulics (isohidricity level) 
would potentially cause divergences in the behavior of plant temperature versus 
plant water potential.

The use of CWSI for assessing vineyard water status requires calibration to 
account for the effects, primarily of the phenological stage and of variety. Once cali-
brated, this can be successfully applied to other vineyards and seasons (Bellvert 
et al., 2015).

4.4.2  NIR Spectroscopy, Multispectral Imagery (MSI), 
and Hyperspectral Imaging (HSI)

The NIR region is the part of the electromagnetic spectrum between 750 and 
2500 nm. It is related to the absorption of energy from molecules or chemical con-
stituents related to the overtones and combinations of fundamental vibrations caused 
by the stretching and bending of N–H, O–H, and C–H bonds. The water molecule, 
a predominant component of leaves, can partially or fully absorb the light at given 
wavelengths of 760, 971, or 1450 nm (O–H overtones) and a combination band of 
1940 nm (Nicolai et al., 2007).

4.4.2.1  Working with the Whole Spectrum

In the last decade, a few studies have investigated the potential of near-infrared 
(NIR) spectroscopy to enable rapid monitoring of plant water status at the leaf level 
in grapevines (De Bei et al., 2011; Tardaguila et al., 2017) using portable devices 
(Fig. 4.3).

The simplicity of portable devices (in which calibration curves against the vari-
ables of interest can be built, therefore enabling an instantaneous reading) is coun-
terbalanced by the impossibility of automation, hence providing many measurements 
required to assess vineyard spatial variability. To overcome this lack of automation, 
the capability of contactless NIR spectroscopy (1200–2100 nm) mounted on an all- 
terrain vehicle (Fig.  4.4) for the on-the-go estimation of grapevine Ψs has been 
tested (Diago et al., 2018). Similarly, Fernández-Novales et al. (2018) successfully 
discriminated the vines within a vineyard among three different water statuses (low, 
medium, and high), with a percentage of correct classification superior to 72%.

Although successful, several issues prevent this NIR spectral methodology from 
being easily transferred and commercially available to the wine industry. In first 
place, the high cost and dimensions of the current spectrometers used for on-the-go 
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Fig. 4.3 Spectral measurement on the adaxial side of leaves using a handheld NIR (1600–2500 nm) 
spectrophotometer. (microPHAZIR, Thermo Fisher Scientific)

Fig. 4.4 Setup to assess grapevine water status using proximal, on-the-go thermography and NIR 
spectroscopy

contactless monitoring, although some trials involving miniaturized, lower-cost 
spectrophotometers (e.g., NIR 1.7, INSION GmbH, Obersulm, Germany) are pro-
viding satisfactory results (Fig. 4.5). Secondly, the requirement of processing the 
whole spectrum, potentially containing redundant information, which accounts for 
large computational time and capacity, which may hamper the real-time estimation 
of plant water status.
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Fig. 4.5 Experimental setup (a) to assess grapevine water status using a (b) miniaturized NIR 
spectrophotometer from a ground-moving vehicle

4.4.2.2  Spectral Indices

Simplified spectral information can be gathered from spectral indices, defined as a 
spectral transformation (e.g., ratio, normalization) of two or more bands designed to 
enhance the contribution of vegetation properties. In agriculture, spectral indices 
computed either from spectroscopy data or from multispectral (MSI) or hyperspec-
tral imagery (HSI) typically relate to a plant’s vigor and photosynthetically active 
biomass (e.g., NDVI, PCD). However, some have correlated well with plant water 
status indicators, like the Photochemical Reflectance Index (PRI), which measures 
the light-use efficiency of foliage and is primarily used as an indicator of water 
stress (Peñuelas et al., 1995).

Toward assessing grapevine water status, Poças et al. (2020) and Romero et al. 
(2018) combined spectral data with several machine learning algorithms to develop 
predictive models of ΨPD and Ψs, respectively. Spectral indices such as the 
NRI554,561 (Poças et al., 2017), the WI900,970 (Peñuelas et al., 1997), and the 
Optimized Soil Adjusted Vegetation Index (OSAVI) were included in the models. 
These showed good performance in predicting plant water status and became the 
basis for potential applications of improved irrigation scheduling based on MSI or 
HSI gathered from aerial or satellite platforms.
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4.5  Strategies for Reducing Water Use in Vineyards

In many wine-growing regions, particularly in Europe, vines are still rainfed with-
out any additional watering apart from rainfall. While this strategy can be consid-
ered as the one producing the lowest possible blue water footprint (Rienth & 
Scholasch, 2019), additional agronomical approaches can be put in place to maxi-
mize water use efficiency in the vineyards. Most of these strategies have been 
recently reviewed by Romero et al. (2022). They include: (i) an adequate choice of 
genetic material, both rootstocks and cultivars, better adapted to water scarcity; (ii) 
improvement of soil health, including the use of mulching and cover crops among 
other practices; and (iii) canopy management practices and choice of trellis, row 
orientation, and planting density.

Recently, the use of particle film technology (engineered kaolin) led to improved 
WUEi by 18% compared to untreated vines at the same time that anthocyanins 
increased a 35% and wine quality perception (Brillante et al., 2016). Of all potential 
solutions to maximize water use efficiency in grapevines, optimized irrigation 
emerges as the most efficient tool for vineyard sustainability in relation to water 
consumption.

The three most-studied irrigation approaches in terms of sustainability are sus-
tained deficit irrigation (SDI), regulated deficit irrigation (RDI), and partial root- 
zone drying (PRD). In viticulture, DI is a common and advisable cultural practice 
that induces some water stress in the vines, beneficial for yield regulation and grape 
and wine quality (Roby et al., 2004; Edwards & Clingeleffer, 2013). An equal pro-
portion of ETc is applied in SDI during the whole phenological cycle. This results 
in a constant enhancement of water stress during the growing season. In contrast, in 
RDI, the proportion of ETc returned to vines during the growing season is variable, 
leading to more severe drought stress at a specific phenological stage (Romero 
et  al., 2022). PRD involves drying part of the root system while simultaneously 
maintaining the remaining roots in a well-watered condition. Since the effect is 
temporary, it is, in fact, necessary to maintain part of the root system dry and to 
apply water to the other side of the vine for a particular duration and then inter-
change the other side for periods of 7–14 days (Romero et al., 2016). A comprehen-
sive review of the application of SDI, RDI, and PRD in vineyards can be found in 
Romero et al. (2022).

4.6  Smart Irrigation Scheduling

Smart irrigation scheduling in vineyards typically requires delineating homoge-
neous zones within the plots. In addition to the noninvasive technologies already 
discussed for vineyard monitoring, multispectral imagery for vine vigor assessment 
(e.g., based on NDVI or other vegetation spectral indices) or soil electrical resistiv-
ity is often used to define homogeneous zones.
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During the last two decades, spectral vegetation indices such as Plant Cell 
Density (PCD) and Normalized Difference Vegetation Index (NDVI), computed 
from multispectral imagery acquired either from aerial platforms like satellites 
(Landsat-8, Sentinel-2), manned and unmanned aerial vehicles (Rey-Caramés et al., 
2015), or ground-based sensors (Bourgeon et al., 2017), have been widely employed 
to evaluate canopy growth and vigor in commercial vineyards. According to the 
values of these spectral indices, segmentation of vineyard plots into different vigor 
zones has driven differential management procedures and selective harvesting.

Soil electrical resistivity (ER) measures the soil’s property to oppose the flow of 
electrical current and is therefore related to soil water and ionic contents. ER (or its 
inverse, electrical conductivity, EC) is now being used in vineyards as a proxy for 
soil physical and chemical properties (Samouëlian et al., 2005), among them soil 
moisture and water holding capacity. Continuous resistivity/conductivity sensors 
currently available on the market can be grouped into the noninvasive electromag-
netic induction systems (EMI sensors) and the invasive electrode-based direct cur-
rent (DC) resistivity sensors. Both types have advantages and drawbacks that have 
to be considered (Sudduth et al., 2003).

A complete review of the capabilities of EC to understand soil-plant-water rela-
tionships and to define homogeneous water zones in vineyards can be found in Yu 
and Kurtural (2020).

Unlike fruit tree orchards, smart irrigation approaches, such as zone irrigation 
management (ZIM) or variable rate irrigation (VRI), are not yet extensively applied 
in vineyards. Still, some examples of their benefits toward increasing sustainability 
in grape growing can be found.

Use case no. 1: Balafoutis et al. (2017) evaluated the impact of the application of 
precision viticulture practices (during three consecutive seasons), namely, variable 
rate fertilization and ZIM, using the life cycle assessment (LCA) approach in two 
Vitis vinifera L. (cv. Syrah and Sauvignon blanc) vineyards sited in Greece. To 
establish the different zones within the two plots, soil electrical conductivity (EC) 
mapping (EC measurements were taken using EM-38 probe), assisted by elevation 
mapping using RTK-GPS, was used. In each plot, two homogeneous zones were 
delineated, and for each zone, irrigation volumes per zone were estimated as a frac-
tion of actual evapotranspiration (ETa). ETa was calculated from ET estimated 
using a water balance model, which employed meteorological data acquired with an 
automatic weather station installed inside the vineyards and vigor measurements 
(Normalized Difference Vegetation Index (NDVI)) obtained from satellite imagery. 
In comparison to conventional management, the same Sauvignon blanc vineyard 
utilized ~17% less amount of water as a result of ZIM, and this reduction in the 
number of irrigation events and quantities contributed to a reduction of greenhouse 
gas (GHG) emissions from 212.9 Kg CO2 eq/t grapes to 173.4 Kg CO2 eq/t grapes, 
which reduces 18.5%.

Use case no. 2: Bellvert et al. (2021) evaluated the performance of an integrated 
methodology—based on a vine water consumption model and free-of-charge satel-
lite imagery data—to optimize the precision irrigation (PI) of a 100 ha commercial 
vineyard during two consecutive seasons. Using an NDVI-generated map, a 
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vineyard with 52 irrigation sectors and 3 Vitis vinifera L. cultivars (Tempranillo, 
Cabernet Sauvignon, and Syrah) was grouped into 3 vigor levels (low, medium, and 
high), and different, precise regulated deficit irrigation (RDI) strategies were 
adopted by growers. The adoption of precision irrigation led to a reduction of water 
volumes which ranged from 14% to 38% depending on the year and energy and 
water cost savings as high as 35% and 53%, respectively, as compared to a conven-
tional irrigation strategy.

As future implementations toward smart, more sustainable vineyard irrigation, 
advancements in big data, artificial intelligence, and data analytics, as well as their 
combination with Internet of Things (IoT) solutions, are proposed (Abioye et al., 
2020). Moreover, the integration of evolutional algorithms for the parameter adjust-
ment of adaptive irrigation controllers and the development of innovative digital 
irrigation technologies are also meant to foster the wide adoption of smart irrigation 
strategies.

4.7  Conclusions

Humans have been growing grapes for millennia. The grapevine is a drought- 
tolerant species, but its water requirements are very high. Irrigated vineyards are 
increasing on the surface worldwide, and water availability is decreasing, particu-
larly aggravated by climate change. Therefore, viticulture sustainability will depend 
on precise, smart water management. A wide range of manual or automated sensors 
and technologies are currently available or under development to provide reliable 
and frequent information about water status variability in vineyards that can be 
adopted by viticulturists to drive better and more informed decisions about irriga-
tion scheduling. This chapter aims to provide a comprehensive review of current 
and prospective tools to the relevant stakeholders that steer water usage in the grape 
and wine industry to minimize the existing breach between technological solutions 
and models and grape growers.
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Chapter 5
Pest and Disease Management

Won Suk Lee and Javier Tardaguila

Abstract This chapter describes the current sensing and actuation technologies for 
pests and plant diseases in orchards and vineyards. The technologies for pests 
include machine vision and imaging, trapping, data mining, nuclear magnetic reso-
nance (NMR), DNA analysis, landscape and soil management, vibrational signals, 
precision spraying, and bird control. Some new technologies for pests were devel-
oped, such as predicting future infestation using artificial intelligence and pest iden-
tification using smartphone apps; however, more efforts will still be needed. The 
technologies utilized in plant disease detection and management include computer 
vision, thermography, spectroscopy, chlorophyll fluorescence, multi- and hyper-
spectral imaging, plant volatile organic compounds, biosensors, sensing platforms 
and robots, and artificial intelligence. Overall, new, reliable, easy-to-use, and objec-
tive methods will still be needed, along with continued support and interest from 
growers and industries.

5.1  Orchard and Vineyard Management for Pests 
and Diseases

Modern and sustainable agriculture requires objective and continuous monitoring of 
the crop. New technologies, sensors, artificial intelligence, and automation will play 
a more significant role in the agriculture of the future. Today, there is a wide range 
of new technologies whose use in monitoring crops has provided us with objective, 
robust, and reliable results. Subsequently, after an objective and reliable diagnosis 
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of the vineyards and tree fruit orchards, we need to take action to optimize the man-
agement of pests and diseases. Efficient management of agricultural diseases and 
pests is crucial for eventually increasing crop yield and profit.

Agricultural pests are defined as “organisms that diminish the value of resources 
in which man is interested. They interfere with the production and utilization of 
crops and livestock used for food and fiber” (USDA ERS, 1999). They include “all 
noxious and damaging organisms: insects, mites, nematodes, plant pathogens, 
weeds, and vertebrates.” This chapter is focused on insects, mites, nematodes, and 
vertebrates.

Common insect pests in orchards are apple maggot, brown marmorated stink 
bug, codling moth, leafrollers, spider mites, spotted wing drosophila, and woolly 
apple aphid (Beers et al., 1993). The major arthropod pests in vineyards are phy-
tophagous mites, phylloxera, leafhoppers, mealybugs, and grape berry moths 
(Bostanian et  al., 2012). For citrus production, common insects are Asian citrus 
psyllid, citrus leaf miner, citrus root weevils, citrus rust mites, spider mites, 
Caribbean fruit fly, and thrips (Diepenbrock et al., 2019a, b; Duncan & Mannion, 
2019; Qureshi et al., 2019).

Most insect pests are controlled by cultural, biological, physical, semiochemical, 
and chemical controls (Bostanian et  al., 2012). They emphasized that “the main 
challenge for integrated pest management remains the development and coordina-
tion of all information and technologies into an optimally relevant package to grow-
ers in a given area.” Some new technologies were reported for site-specific viticulture 
(Tisseyre et  al., 2007). The technologies included georeferencing information, 
equipment, and people and yield monitoring, in-vineyard quality monitoring, can-
opy and vigor monitoring, soil monitoring, water stress monitoring, and variable 
rate technology. They provided some example management practices for spatial and 
temporal variabilities. For non-pesticide management, Wilson and Daane (2017) 
reviewed ecological approaches for pest management in California vineyards. The 
methods included mating interruption, ant control for mealybugs, habitat manage-
ment, natural enemy augmentation, animal integration, and biodynamic prepara-
tions. They emphasized that these practices should be “reliable and affordable” to 
growers for wide adoption.

Fungi, bacteria, mycoplasmas, and viruses can cause important diseases in crops. 
Infected plants usually show different visual and typical symptoms in different 
organs such as stems, leaves, and fruits; however, some plant infections can be 
symptomless, mainly in the early infection stages of the infection (Fig. 5.1).

Diseases can negatively affect the yield and quality of the fruit trees and can even 
induce the death of the plant. Crop diseases cause significant economic losses in 
agricultural production over the world. The environmental and economic impacts of 
crop protection are significant (Pimentel et  al., 2005). A major impact is caused 
when the plant develops when the infection occurs. Plant pathogen detection is 
important as the first step in crop protection in agriculture. An early pathogen detec-
tion system can decrease such losses caused by plant diseases and reduce the spread 
of diseases (Mahlein, 2016; Mahlein et al., 2018, 2019; Thomas et al., 2018).
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Fig. 5.1 Commercial vineyard infected by grapevine trunk diseases (GTD). Visual symptoms in 
leaves, shoots, and clusters are shown. Asymptomatic leaves were observed. (Photo: Javier 
Tardaguila)

This chapter presents principles, methods, and hardware and software technolo-
gies to detect, classify, and quantify pests and diseases. It also discusses state-of- 
the-art and emerging actuation technologies for targeted control of pests and 
diseases using ground and aerial platforms.

5.2  Sensing and Actuation Technologies for Pests

5.2.1  State-of-the-Art Sensing and Actuation Technologies 
for Pests

Pests are one of the main problems in crop production. Efficient and effective pest 
management is crucial for increasing yield and profit. Many different technologies 
have been used for pest infestation and crop damage to achieve this goal.

5.2.1.1  Machine Vision and Imaging Technologies

One of the most common methods for pest detection is machine vision, including 
multispectral and hyperspectral imaging. Image-based insect detection methods 
were developed to identify eight insect species. A correct classification rate of 87% 
was reported (Wen & Guyer, 2012), using various features such as geometry, 
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contour, texture, and color. Another study (Hassan et al., 2014) also utilized color 
and shape features and a support vector machine (SVM) classifier to develop an 
automatic insect classification method for grasshoppers and butterflies as examples. 
They reported 92% detection accuracy. Machine vision algorithms could be used 
for autonomous selective pesticide spraying in vineyards (Berenstein et al., 2010), 
which reported a 30% reduction of applied pesticide agents.

Some study was conducted to identify spectral characteristics of insect pest 
infestation. Using reflectance measurement of infested leaves, Blanchfield et  al. 
(2006) investigated an indirect method for detecting phylloxera infestation through 
leaf pigment composition. They reported a reduction of leaf chlorophyll and an 
increase in photoprotective pigment concentrations due to phylloxera infestation. 
Spectral measurement was also used for detecting damages by nematodes, even 
though the study was conducted for cotton (Lawrence et al., 2007) or sugar beet 
(Hillnhütter et al., 2011).

For machine vision applications, multispectral and hyperspectral imaging is 
commonly used. One such study was conducted by Benheim et al. (2012). They 
implemented multispectral and hyperspectral imaging to detect phylloxera infesta-
tion in vineyards. They reported that these imaging methods had some potential. 
However, they might not be able to detect the infestation since many other factors 
were showing similar spectral signatures, such as water stress or nitrogen deficiency. 
They pointed out that soil temperature, moisture content, salinity, and apparent elec-
trical conductivity were highly correlated with the establishment and distribution of 
phylloxera.

UAV is also commonly used for orchard and vineyard pest management. Vanegas 
et al. (2018) utilized various cameras installed on a UAV to detect different levels of 
grape phylloxera infestation. Airborne color, multispectral, and hyperspectral 
images were acquired from two phylloxera-infested vineyards in Victoria, Australia. 
Color images and various vegetation indices were used to determine infesta-
tion levels.

Even though for other crops such as strawberries or soybean, a color image pro-
cessing algorithm was implemented to detect thrips (Thysanoptera) for greenhouse 
strawberries (Ebrahimi et  al., 2017). Combined with a support vector machine 
(SVM) classifier, they could correctly detect thrips with a mean detection error of 
2.3% using 20 testing images. Hyperspectral transmittance images were used to 
detect insect-damaged vegetable soybean (Huang et  al., 2013). These methods 
could be applied to crops in orchards and vineyards.

Electrical conductivity (EC) was used along with imaging (Bruce et al., 2009). 
Early detection of grapevine phylloxera was investigated using traps, soil samples, 
electromagnetic surveys, aerial multispectral images, and a reflectance sensor 
(GreenSeeker). They found that soil EC and chemical analysis indicated a potential 
for early detection and reported more infestation in higher soil EC areas and high 
magnesium contents. They described that remote sensing techniques should be able 
to distinguish symptoms from other stress factors, contrary to Benheim et al. (2012).
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Fig. 5.2 Camera-supported trapping probe for detecting soil microarthropods with protecting tube 
(left) and without it (right). (Adapted from Florian et al. 2020)

Multispectral imaging also was used for nematode detection. Even for another 
crop (soybean), Kulkarni et al. (2008) utilized aerial four-band multispectral imag-
ing to identify nematode population density. There was a potential for remote sens-
ing and some difficulties due to the complicated relationship between soil nematode 
population and crop damage.

5.2.1.2  Trapping

Trapping is another method to detect insect pests. Hillier and Lefebvre (2012) used 
pheromone trapping to detect insect pests in vineyards. Renkema et  al. (2014) 
developed a plastic jar trap for Drosophila suzukii and compared it with commercial 
traps for trapping performance. They reported some results related to trapping entry 
size, colors, the existence of holes, attractant volumes, headspace volume, replace-
ment frequency, etc. More recently, Florian et al. (2020) developed a trap with an 
optoelectronic ring and camera for detecting soil microarthropods such as spring-
tails (Collembola), mites (Acari), coleopterans (Coleoptera), dipteran larvae 
(Diptera), isopods (Isopoda), and diplopods (Diplopoda). The proposed trapping 
probe is shown in Fig. 5.2. Their success rate was 60–70%.

5.2.1.3  Data Mining

Tripathy et al. (2011) implemented a wireless sensor network and data mining tech-
niques to identify relationships between pest insect (thrips) infestation and weather 
conditions. Using the naïve Bayes algorithm and rapid association rule mining, they 
identified a correlation between weather data and pest infestation and developed a 
multivariate regression model which can predict insect establishment and degree of 
infestation.
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5.2.1.4  Nuclear Magnetic Resonance (NMR)

Tucker et al. (2007) used nuclear magnetic resonance (NMR) spectroscopy to detect 
phylloxera in grapevine leaves. Infested leaves showed metabolic changes, and their 
extracts, such as unsaturated fatty acids, exhibited infestation markers, even though 
very similar to nitrogen stress.

5.2.1.5  DNA Analysis

DNA analysis was also used. Bruce et  al. (2011) integrated phylloxera-specific 
DNA analysis from grid soil samples with their previous study. They reported that 
soil-based DNA assays have the potential to detect phylloxera; however, more eval-
uation would be needed.

5.2.1.6  Landscape Elements and Soil Management

Landscape elements were used for insect pest management. Judt et al. (2019) inves-
tigated the effect of landscape elements and inter-row management on the arthropod 
populations using 15 commercial vineyards in Andalusia, Spain. The landscape ele-
ments included semi-natural vegetation, olive orchards, vineyards, and other agri-
cultural areas. The inter-row management included vegetation cover and bare soil. 
The number of arthropods decreased when there were other surrounding vineyards. 
Also, they reported that semi-natural and olive orchards didn’t affect the arthro-
pods’ population but found more arthropods from inter-row vegetation and more 
spiders from bare soil. These findings suggested integration of local landscape 
structure and inter-row management should be considered for more effective pest 
management.

Soil management affects insect pest infestation. Sáenz-Romo et al. (2019) stud-
ied the effects of soil management techniques (tillage, spontaneous cover, and 
flower-driven cover) on insect predators and pests in Mediterranean vineyards. 
Relative abundance (%), defined as the “proportion of collected insects from each 
study’s taxa of the total number,” was used to compare the effect by ANOVA. They 
found that the cover crop vegetation increased beneficial insects such as carabids 
and forficulids. The spontaneous cover vegetation increased the abundance of 
ground beetles and the carnivorous genus Nebria, indicating management of spon-
taneous cover vegetation is the most important for conservation biological control.

5.2.1.7  Vibrational Signals

Korinsek et al. (2016) proposed one unique approach for pest control, which used 
species- and sex-specific substrate-borne vibrational signals. They analyzed the 
male and female leafhopper mating calls and proved the concept of using the audio 
signal for developing an insect trap.
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5.2.1.8  Precision Spraying

Many studies were conducted for precision chemical spraying for efficient insect 
pest control. Kang et al. (2011) developed a laser-based trunk size detection system 
to precisely spray barriers for cutworms in vineyards. A 40 Hz laser sensor was 
installed on both sides of a small trailer with three different nozzles to achieve vari-
able rates depending on the trunk size. In a field trial, they reported about 5 mm 
error in trunk radius estimation at five different travel speeds and average targeted 
spray efficiencies of 65–71% with 90–91% cost savings compared to typical 
application.

Escola et al. (2013) developed a variable rate sprayer using a LiDAR sensor for 
canopy volume measurement, a controller for determining spray rates, and electro-
magnetic variable valves as actuators for tree fruit orchards. They compared the 
algorithm determined and actual spray rates and found a strong relationship with a 
coefficient of determination of 0.94.

Gil et al. (2013) developed a similar variable rate sprayer using ultrasonic sen-
sors, variable rate electro valves, and a controller for vineyards. They tested the 
sprayer at Merlot and Cabernet Sauvignon vineyards and reported a good relation-
ship between the algorithm determined and actual spray rates and 22% savings 
compared to a conventional application.

Adamides et al. (2014) investigated different interaction interfaces for a teleoper-
ated vineyard sprayer tested by 30 different human operators. They tested a single 
camera and multiple camera systems and found that the multiple view system was 
more efficient in spraying and yielded fewer collisions with various obstacles but 
took more time to complete tasks than a single camera system. Further, Adamides 
et al. (2017) developed a semi-autonomous vineyard sprayer and investigated the 
human interface with a robotic system.

Using plant cell density (PCD, a ratio of near-infrared band over a red band), 
Roman et  al. (2020) compared variable pesticide application rates in vineyards. 
They calculated the PCD from airborne multispectral images, used to estimate plant 
vigor and application rates. They reported pesticide savings of more than 25% com-
pared to standard treatment.

Li et  al. (2009) constructed an automatic sprayer for insects using binocular 
stereo- vision constructed from a single camera for other crops. In a laboratory envi-
ronment, the system scanned sample plants from bottom to top to identify the loca-
tion of artificial insects using depth information and sprayed them. However, no test 
results regarding spraying performance were reported in the study. Further, Li et al. 
(2015) utilized multifractals, defined as “an extension of fractals with multiple 
scales,” to identify small-sized insects like whiteflies in greenhouses. From their 
testing with paprika plants in a greenhouse, their proposed method yielded 87% of 
correct detection.

5.2.1.9  Bird Control

Bird control is another important aspect of pest control for orchards and vineyards.
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Ampatzidis et  al. (2015) developed an autonomous bird control system using 
UAVs, a wireless ground sensor network, wearable devices, and a cloud-based deci-
sion system. The system posed visual (with large size drone), audio (unique sound), 
and chemical (target spraying of methyl anthranilate, a bird irritant) threats to pest 
birds. Even though they simulated bird detection events, the developed system suc-
cessfully created UAV flight paths to bird location, spot-sprayed chemicals, and 
turned on speakers autonomously. They pointed out that short flight time, insuffi-
cient sprayer size, chemical efficiency, and bird detection accuracy could be poten-
tial problems.

A multilayer artificial neural network was utilized to detect pest birds in vine-
yards (Dolezel et al., 2016). Their study focused on a few representative species to 
be more effective. Previously recorded sound of birds was used to identify the pres-
ence of a target bird using labeled features by the linear prediction coding (LPC) as 
input vectors of the neural network. They reported 89% detection accuracy for the 
European starling (Sturnus vulgaris) and emphasized that the network would be 
suitable for field implementation since it does not require high computing power.

Another study was conducted for pest bird control. Bhusal et al. (2017) devel-
oped a bird detection system for wine grapes using outdoor cameras installed at four 
corners of a field and a Gaussian mixture-based segmentation algorithm. The most 
common problem birds in wine grapes were starlings, robins, and finches. Bird 
tracking was implemented using the Kalman filter. They reported an 85% precision 
in detecting and counting birds in a 30 m × 30 m testing plot by comparing manual 
and algorithm counts. They reported that shape features were not very useful due to 
distortion by motion blurriness. They counted 89 incoming and 46 outgoing birds 
during 2 h in the morning in 6 days.

Then, Bhusal et al. (2018) implemented unmanned aerial vehicles (UAVs) in a 
15,000 m2 (about 3.8 acres) commercial vineyard to keep away birds (starlings and 
robins). They tested the system over 14 days with a 5-hour flight each day. Two 
UAVs (Matrice M600 Pro and Phantom 4, DJI Inc., China) were flown 3–6 m above 
the canopies. Using ANOVA, they compared the effectiveness of flying UAVs rela-
tive to when no drones were used and found a significant difference in the number 
of birds when UAVs were used (about 50% less number of birds). Their future study 
included detecting incoming birds and redirecting them away from the vineyards.

Further, Bhusal et al. (2019) adopted the convolutional neural network (CNN) 
using very high 4 K resolution images (3840 × 2160 pixels) to enhance bird detec-
tion. They observed that classification accuracy increased from 70% to 92% using 
super-resolution images, but a more reliable model would be needed.

5.2.1.10  Summary

In summary, various methods were used to detect and control pests in orchards and 
vineyards. Most of the methods focused on detecting and managing insect pests. 
More efforts will be needed to develop sensing technologies for other pests such as 
mites, nematodes, and vertebrates. More research and field experiments will be 
needed for actual field implementation by growers.
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5.2.2  Emerging Technologies for Pests

Based on the National Grape Research Alliance (https://graperesearch.org/), some 
of their top research priorities are building improved mechanization and automation 
systems to enhance labor efficiency and improve pest and disease detection, model-
ing, and control systems. However, as Rieger (2019) reported, most vineyard sens-
ing technologies are currently focused on meteorological and soil conditions and 
water status for irrigation. He also reported that machine learning and artificial 
intelligence (AI) are heavily used to assess data and develop decision support models.

Some studies for insect pest detection use traditional artificial neural networks 
(Fedor et al., 2009); however, the current explosion of AI applications started with 
AlexNet, developed by Krizhevsky et al. (2012). AI has been used to detect insect 
pests (Ding & Graham, 2016; Shen et al., 2018; Xia et al., 2018) and can be used to 
predict future infestation. Among many studies, Nam and Hung (2018) compared 
the performance of VGG16 and SSD (single-shot multibox detector) for detecting 
insects on sticky traps and found that SSD was better for identifying insects.

More recently, instead of manual crop scouting in citrus production, an auto-
mated insect detection system was developed using machine vision and AI for the 
Asian citrus psyllid (ACP), which is the vector of the devastating Huanglongbing 
(or citrus greening) disease for citrus (Partel et al., 2019). By implementing pneu-
matic tapping rods, as shown in Fig. 5.3, images of insects collected on a viewing 
board were acquired and were analyzed by two consecutive convolutional neural 
networks (YOLO v3 and then YOLO v1) to increase detection accuracy. After test-
ing on 90 citrus trees, precision (accuracy) and recall (sensitiveness) were reported 
to be 80% and 95%, respectively.

Along with the development of mobile AI, smartphone apps will be available in 
the near future. Schumann et al. (2020) reported an accuracy of 89% for identifying 
pests, disease, and nutrient deficiencies using a smartphone app trained by a deep 
neural network. However, they noted that it would not replace traditional diagnostic 
lab methods soon. A startup company, Bloomfield Robotics (https://bloomfield.ai/), 
is developing a mobile sensor platform and implementing AI and robotics in vine-
yard management for monitoring vine growth and berry yield. Another company 
(Vayyar Ltd., Israel) seems to be of interest to us, which developed a sensor that can 
create high-resolution 3D images by measuring the radiofrequency reflectance of 
objects. Niu et al. (2020) utilized the sensor to detect nematodes in walnut leaves 
and reported a 72% accuracy for classifying nematode infestation levels.

An attempt has been made to replace high spatial resolution UAV images with 
satellite images for managing a vineyard. In a recent study by Sozzi et al. (2020), 
NDVI from two different imaging platforms, i.e., Sentinel-2 satellite and UAV, were 
compared for precision vineyard management. Images were acquired from 30 vine-
yards in France, and the spatial resolution was the same as 10 m for both Sentinel-2 
and UAV (upscaled from its original 0.08 m). Sentinel-2 images detected the same 
degree of variability when no individual vine management is needed, and no inter- 
row grass is used in NDVI calculation.
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Fig. 5.3 Automated insect (Asian citrus psyllid) detection system. (Adapted from Partel et al., 
2019)

A new integrated pest management (IPM) model (Fig. 5.4) was proposed by Dara 
(2019), which includes management, business, and sustainability aspects. The man-
agement aspect includes pest management, knowledge, resources for pest and tech-
nology, planning and data organization, communication among growers and the 
public, and research and outreach. In the business aspect, public education was 
emphasized for efficient IPM and traditional training for growers. In the sustainabil-
ity aspect, conventional farming can be safer and more sustainable as long as IPM 
principles are emphasized, rather than organic farming, which is traditionally con-
sidered safe but can cause some “social inequality and a false sense of well-being.”

A more precise spraying system was developed using a laser. Chen et al. (2019) 
tested a laser-guided intelligent sprayer in tree crop nurseries to investigate the effi-
ciency of controlling insects and diseases. They found 52–56% of pesticide reduc-
tion and equal or a smaller number of insects (leafhoppers and aphids). A commercial 
sprayer is already available using this technology.

In predicting pest infestation, spatial interpolation using GIS and machine learn-
ing can be useful tools. While describing the IPM of mites, Liburd et al. (2019) 
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Fig. 5.4 A new model for integrated pest management. (Adapted from Dara, 2019)

suggested spatial interpolation of pest density using GIS to predict pests at unsam-
pled locations in a field. This information can be used for site-specific spot spraying 
of insecticides. They expected that machine learning could be useful for identifying 
the distribution and infestation of pests and predatory insect species.

Overall, some new technologies have been developed and are currently being 
investigated for fruit orchards and vineyards. With more interest and support from 
growers, industries, and state and federal agencies, more effort will still be needed 
for pest detection and management.

5.3  Sensing and Actuation Technologies for Plant Diseases

Advanced technologies can also be applied for detecting plant diseases in agricul-
ture with several advantages versus conventional methods. Emerging technologies 
can be used for quantitative and qualitative evaluation of plant diseases (Ali et al., 
2019; Mahlein et al., 2018, 2019; Ray et al., 2017; Sankaran et al., 2010).

Visual symptoms of infected plants can be evaluated by optical sensors directly 
in the field using computer vision sensors mounted on the ground and aerial plat-
forms. However, visual symptoms assessment is a conventional first step for plant 
disease diagnosis. Still, it fails to detect a pathogen in early infection stages when 
plant infections are asymptomatic. Early detection of plant pathogens can be very 
important for crop health monitoring. It allows for optimized crop protection in the 
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field during different stages and minimizes the risk of the spread of disease infec-
tions and reduces spray treatments. Indeed, early detection of plant disease is needed 
in agriculture to reduce the economic and environmental impact. Hyperspectral sen-
sors are shown as one of the most powerful technologies for early disease detection 
in agriculture (Mahlein et al., 2018, 2019; Thomas et al., 2018). Moreover, machine 
learning and recently deep learning have been successfully developed and applied 
in phytopathology to make a prediction from data and to improve the decision- 
making process in crop protection (Zhu et al., 2017; Mahlein et al., 2019; Polder 
et al., 2019; Sladojevic et al., 2016) in the context of precision farming.

5.3.1  State-of-the-Art Sensing and Actuation Technologies 
for Plant Diseases

In agriculture, diseases in plants are typically verified using several conventional 
methods. Traditionally, plant disease incidence is assessed by the interpretation of 
visual symptoms. Visual assessment and culturing are subjective methods and 
require trained personnel and considerable time to complete a diagnosis. Other cur-
rent and conventional methods were based on the laboratory analysis of samples 
collected in the field, manually at a single plant. Enzyme-linked immunosorbent 
assays (ELISA), immunology-based methods, polymerase chain reaction (PCR), 
and real-time PCR (RT-PCR) can be used for plant disease detection (Fang & 
Ramasamy, 2015; Ray et al., 2017). These methods are time-consuming and require 
complex and expensive instruments, which are not appropriate for infield operation. 
A summary of the advantages and limitations of these methods is shown in Table 5.1. 
All these lab methods were precise with high accuracy for plant pathology diagnosis; 
however, they required collecting plant samples before wet chemistry analysis, 
limiting their infield applications. Consequently, there is strong interest in develop-
ing new and reliable technologies for plant disease detection under field conditions.

Table 5.1 Current and conventional methods in plant disease detection

Method Advantages Limitations

Visual assessment Easy to operate Subjective
Time-consuming
Trained personnel

Culturing methods Cheap and simple Non-rapid
Subjective
Trained personnel

Isoenzyme analysis Precise and rapid Low level of polymorphism in 
fungi
Not suitable for infield operation

Immunology-based methods Accurate Low sensitivity
Not suitable for infield operation

Polymerase chain reaction 
(PCR)

High accuracy and 
sensitivity

Expensive
Not suitable for infield operation
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The above methods for plant disease detection have been mainly applied in 
research, breeding, and phenotyping; however, they are not suitable for infield oper-
ation. The applications of these lab methods in commercial agriculture have been 
limited. Currently, new techniques for rapidly and cost-effectively assessing dis-
eases in vineyards and fruit orchards are needed.

5.3.2  Emerging Technologies for Plant Diseases

New sensors and technologies can be used to evaluate crop status quickly and inex-
pensively. New technologies can assess plant diseases with reliability, precision, 
and accuracy (Mahlein, 2016; Mahlein et al., 2018, 2019; Ray et al., 2017; Sankaran 
et al., 2010). It is important to emphasize that the non-destructive nature of many of 
these technologies implies the absence of damage or any modification of the plant 
material under analysis. Some of the main non-invasive detection technologies used 
for crop monitoring include computer vision, thermography, spectroscopy, chloro-
phyll fluorescence, and multi- and hyperspectral imaging.

These sensing technologies can be implemented in portable sensors. However, 
they can also be mounted on vehicles such as quads, tractors, or robots and even 
aerial platforms such as drones, aircraft, or satellites. Proximal and remote sensing 
technologies are playing an increasingly prominent role in modern agriculture, 
making it easier to gather data quickly and affordably. Furthermore, the new and 
powerful non-invasive sensors can obtain georeferenced information in most cases. 
It is possible to generate maps of the different parameters and establish zones that 
require different management practices within precision agriculture.

5.3.2.1  Plant Volatile Organic Compounds

Recently, it was suggested that plant volatile organic compounds could be used in 
agriculture to improve crop defense strategies (Brilli et al., 2019). The pathogen- 
plant interaction could result in the release of specific volatile organic compounds 
that highly indicate the plant disease (Fang et al., 2014; Fang & Ramasamy, 2015; 
Ray et al., 2017). Gas chromatography combined with mass spectroscopy has been 
used for analyzing volatile organic compounds emitted by diseased plants (Fang & 
Ramasamy, 2015). However, before analyzing the volatile compounds by gas chro-
matography, several complex strategies and procedures for obtaining these volatile 
compounds from a single plant should be defined and performed (Tholl et al., 2006). 
This technique has been used for detecting fungal diseases in various plants (Fang 
et al., 2014; Vikram et al., 2006).

Nowadays, plant volatile compound analysis is time-consuming and requires a 
pre-sampling manually in the field, so infield application was very limited. Several 
recent reviews have discussed the different strategies for monitoring volatile com-
pounds for plant disease detection (Sankaran et al., 2010; Fang & Ramasamy, 2015; 
Martinelli et al., 2015).
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5.3.2.2  Biosensors

Biosensors are a novel diagnostic tool for detecting plant diseases. On-site detection 
of plant pathogens can be performed using biosensors. Integration of different tech-
niques in portable devices led to the development of biosensors. Table 5.2 summa-
rizes the main biosensors used to detect numerous fungal pathogens. Biosensors 
used in plant disease detection have been recently reviewed by Ray et al. (2017). 
Biosensors are gaining much interest for detecting fungal plant diseases and can be 
a promising alternative tool in crop protection. Some recent reviews have described 
the strategies of the different biosensors for detecting plant diseases (Ray et  al., 
2017; Khater et  al., 2017). Several biosensors based on different techniques are 
commercially available to detect several plant pathogens such as Phytophthora, 
Pythium, Oidium, and Botrytis cinerea (Ray et  al., 2017; Khater et  al., 2017). 
Commercial biosensors are portable small/pocket devices for detecting diseases at 
the leaf or plant level, and they can be used under lab or field conditions (Khater 
et al. 2017).

Table 5.2 Main biosensors used in plant fungal pathogen detection

Type of method Biosensor Pathogen

Optical biosensors Fluorescence-based biosensors Phytophthora palmivora

Chemiluminescence-based biosensors Saccharomyces cerevisiae
Hansenula anomala

Surface plasmon resonance (SPR)-
based biosensors

Phytophthora infestans

Volatile biosensors Electronic nose system Botrytis sp.
Penicillium sp.

Field asymmetric ion mobility 
spectrometry (FAIMS)

Oidium neolycopersici

Electrochemical 
biosensors

Amperometric platform Saccharomyces cerevisiae
Cerrena unicolor

Potentiometric platform Lentinus sajor-caju

Impedimetric platform Phakopsora pachyrhizi
Penicillium sclerotigenum

Conductometric platform Candida albicans, 
Aspergillus niger

Mass-sensitive 
biosensors

Quartz crystal microbalance (QCM) 
biosensors

Candida albicans
Candida glabrata

Cantilever-based biosensors Aspergillus niger
Saccharomyces cerevisiae

Point-of-care (POC) 
tests

Lateral flow assays (LFAs) Phytophthora species
Microfluidic paper-based analytical 
devices (μPADs)

Botrytis cinerea
Peronospora destructor

Nanomaterial-based 
biosensors

Aspergillus niger
Metarhizium anisopliae

Adapted from Ray et al. (2017)
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5.3.2.3  Non-destructive/Non-invasive Sensing Technologies

Non-destructive/non-invasive sensing technologies are gaining much interest for 
detecting plant diseases and can be a promising alternative tool in crop protection. 
Non-destructive/non-invasive (both terms are interchanged, generally) techniques 
are defined as methods that do not alter the physical state of an object. These tech-
nologies have been successfully implemented to measure some important physio-
logical parameters in non-invasive ways. Non-invasive sensing technologies are 
associated with remote and proximal sensing, which acquire information from the 
plant-pathogen interaction. Most of these technologies are based on the interaction 
between electromagnetic radiation and the plant. The electromagnetic spectrum 
provides information about plant physiological status, and consequently, an infected 
plant generally displays a different spectral signature to that of a healthy plant (Ali 
et al., 2019; Delalieux et al., 2007; Sankaran et al., 2010).

Non-destructive technologies used for detecting plant diseases were reviewed by 
several authors (Ali et  al., 2019; Mahlein et  al., 2018, 2019; Ray et  al., 2017; 
Sankaran et  al., 2010; Thomas et  al., 2018). Table  5.3 summarizes non-invasive 
sensing technologies employed for detecting diseases in vineyards and tree fruit 
orchards. Non-invasive technologies include fluorescence, thermography, X-ray, 
spectroscopy, computer vision, multispectral imaging, and hyperspectral imaging. 
They were applied in grapevine, citrus, apple, pear, avocado, kiwifruit, raspberry, 
etc. Numerous important crop pathogens and diseases such as citrus greening dis-
ease (Huanglongbing), citrus canker (Xanthomonas citri), apple scab (Venturia 
inaequalis), phytophthora root rot disease, downy mildew (Plasmopara viticola), 
powdery mildew (Erysiphe necator), Botrytis cinerea, Flavescence dorée, grape-
vine leafroll disease, and grapevine trunk diseases (GTD) were detected using non- 
invasive technologies.

Non-invasive sensing technologies can be integrated into portable devices and 
ground and aerial platforms, as discussed in the next section. Some technologies are 
commercially available for disease detection in grapevine and fruit trees, while oth-
ers are being developed.

5.3.2.4  Hyperspectral Imaging

Hyperspectral imaging (HSI) is one of the most powerful non-invasive technolo-
gies. Hyperspectral imaging has been applied in agriculture, forestry, environment, 
defense, medicine, water, food quality, and safety control. Spectral resolution (nar-
rower wavelengths) and the band number are the key features that characterize 
HSI. Hyperspectral imaging provides one full spectrum for each pixel of the col-
lected image. Hyperspectral sensor and imaging techniques have shown a great 
potential for detecting plant diseases. Several authors have recently reviewed HSI 
applications in phytopathology (Mahlein et al., 2018, 2019; Thomas et al., 2018). 
Specific spectral indices can be developed for disease detection and monitoring in 
precision agriculture (Mahlein et al., 2013).
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Table 5.3 Non-invasive sensing technologies for detecting diseases in apple trees, citrus, 
grapevine, and tree fruit plants

Technology Plant Disease/pathogen References

Fluorescence Citrus Citrus canker (Xanthomonas citri) Belasque et al. (2008)
and Lins et al. (2009)

Grapevine Powdery mildew (Erysiphe necator)
Downy mildew  
(Plasmopara viticola)
Downy mildew  
(Plasmopara viticola)

Bélanger et al. (2008), 
Cséfalvay et al. (2009) and 
Latouche et al. (2015)

Thermography Apple Apple scab (Venturia inaequalis) Oerke et al. (2011)
Kiwifruit Pseudomonas syringae pv. actinidiae 

(Psa)
Maes et al. (2014)

Grapevine Downy mildew  
(Plasmopara viticola)

Stoll et al. (2008)

Olive tree Verticillium Calderón et al. (2013)
X-ray Raspberry Botrytis cinerea Goodman et al. (1992)

Grapevine Grapevine trunk disease (GTD) Vaz et al. (2012)
Spectroscopy Apple Apple scab (Venturia inaequalis) Delalieux et al. (2007)

Citrus Anthracnose Blasco et al. (2007)
Grapevine Grapevine leafroll disease

Grapevine trunk disease (GTD)
Naidu et al. (2015)
and Levasseur-Garcia et al. 
(2016)

Computer vision Apple Apple scab (Venturia inaequalis) Wijekoon et al. (2008)
Citrus Anthracnose Blasco et al. (2007)
Grapefruit Greasy spot (Mycosphaerella citri), 

melanose (Diaporthe citri), and scab 
(Elsinoe fawcettii)

Pydipati et al. (2006)

Avocado Phytophthora root rot disease Salgadoe et al. (2018)
Grapevine Powdery mildew (Erysiphe necator) Oberti et al. (2014)

Multispectral 
imaging

Citrus Citrus greening disease 
(Huanglongbing)

Kumar et al. (2012)

Grapevine Grapevine leafroll disease (GLD)
Flavescence dorée
Armillaria

Hou et al. (2016)
and Albetis et al. (2017)
Candiago et al. (2015)

Olive tree Verticillium Calderón et al. (2013)
Hyperspectral 
imaging

Apple Apple rottenness (Penicillium) Zhang et al. (2015)
Pear Pear black spot disease (Alternaria 

alternata)
Pan et al. (2019)

Citrus Citrus canker (Xanthomonas citri)
Citrus greening disease 
(Huanglongbing)
Citrus greening disease 
(Huanglongbing)

Qin et al. (2008), Lee et al. 
(2008) and Moriya et al. 
(2019)

Grapevine Downy mildew  
(Plasmopara viticola)
Powdery mildew (Erysiphe necator)

Oerke et al. (2016)
and Pérez-Roncal et al. 
(2020)
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Table 5.4 Hyperspectral imaging (HSI) applications in grapevine and fruit tree orchards

Plant
Imaging 
conditions Disease/pathogen References

Citrus Field Citrus greening disease 
(Huanglongbing)

Moriya et al. (2019)

Pear Laboratory Pear black spot disease  
(Alternaria alternata)

Pan et al. (2019)

Apple Laboratory Apple rottenness (Penicillium) Zhang et al. (2015)
Olive Field Xylella fastidiosa Zarco-Tejada et al. (2018)
Grapevine Laboratory Downy mildew  

(Plasmopara viticola)
Oerke et al. (2016)

Grapevine Laboratory/field Downy mildew  
(Plasmopara viticola)

Poblete-Echeverría & 
Tardaguila, (2023) 

Grapevine Laboratory Powdery mildew (Erysiphe necator) Pérez-Roncal et al. (2020)

Table 5.4 summarizes HSI applications in grapevine and fruit tree orchards. HSI 
was employed in citrus, pear, apple, grapevine, etc. Several important plant patho-
gen diseases such as citrus greening disease (Huanglongbing), pear black spot dis-
ease (Alternaria alternate), apple rottenness (Penicillium), downy mildew 
(Plasmopara viticola), and powdery mildew (Erysiphe necator) were detected 
under laboratory and field conditions.

Hyperspectral imaging is a powerful technology, but it has been typically used 
under laboratory conditions. Very few attempts at infield hyperspectral imaging 
have been reported in the literature, due to the difficulties, such as natural and irreg-
ular illumination or unknown a priori sample positioning in the recorded scene, that 
are necessary to face.

Gutiérrez et al. (2018) have used HSI as a ground platform for grapevine pheno-
typing on the go. This study acquired hyperspectral images under natural illumina-
tion with a VIS-NIR hyperspectral camera (400–1000 nm) mounted on an all-terrain 
vehicle moving at 5 km/h in a commercial Tempranillo vineyard in Spain (Fig. 5.5). 
The same mobile hyperspectral sensing ground platform could be used for disease 
detection in commercial vineyards (Tardaguila et al. unpublished data). HSI sensor 
was also mounted into aircraft for detecting citrus greening disease (Huanglongbing) 
in Brazil (Moriya et al., 2019). Xylella fastidiosa, one of the most dangerous plant 
pathogens, was detected at the previsual stage in the olive orchard by hyperspectral 
and thermal sensors mounted in an airborne (Zarco-Tejada et al., 2018).

5.3.2.5  Sensing Platforms and Robots

Plant disease detection could be performed by integrating non-invasive sensing 
technologies into different platforms: portable devices (apps, smartphones, etc.), 
ground platforms (quads, tractors, robots, etc.), and aerial platforms (drones, air-
craft, etc.) and satellites. Emerging technologies can be used for quantitative and 
qualitative evaluation of plant diseases (Ali et al., 2019; Mahlein et al., 2019; Ray 
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Table 5.5 Sensing platforms for detecting diseases in vineyards and tree fruit orchards under field 
conditions

Platform Plant Disease/pathogen References

Portable Avocado 
tree

Phytophthora root rot Salgadoe et al. (2018)

Ground 
platforms

Grapevine Downy mildew
Grapevine trunk diseases (GTD)

Tardaguila et al. 
(unpublished data)

Drone/UAV Grapevine
Grapevine
Grapevine
Citrus

Flavescence dorée
Grapevine trunk diseases (GTD)
Armillaria
Citrus greening disease 
(Huanglongbing)

Albetis et al. (2017)
Albetis et al. (2019)
Candiago et al. (2015)
and Garcia-Ruiz et al. (2013)

Aircrafts Olive
Citrus
Citrus

Xylella fastidiosa
Citrus greening disease 
(Huanglongbing)
Citrus greening disease 
(Huanglongbing)

Zarco-Tejada et al. (2018)
Garcia-Ruiz et al. (2013)
and Moriya et al. (2019)

Satellites Citrus Citrus greening disease 
(Huanglongbing)

Li et al. (2015)

Fig. 5.5 Hyperspectral imaging camera mounted on an all-terrain vehicle moving at 5 km/h used 
for monitoring a commercial vineyard in Spain. (Photo: Javier Tardaguila)

et  al., 2017; Sankaran et  al., 2010). The potential of aerial platforms to evaluate 
biotic and abiotic stress factors in precision agriculture has been recently reviewed 
(Sankaran et al., 2015). Table 5.5 summarizes sensing platforms that have been used 
for disease detection in vineyards and tree fruit orchards.

Phytophthora root rot incidence was assessed in an avocado orchard using RGB 
images taken by a smartphone camera. Visual symptoms of downy mildew and 
grapevine trunk diseases (GTD) in commercial vineyards were evaluated and 
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mapped using an RGB sensor mounted on a mobile sensing platform at 5 km/h 
(Tardaguila et al. unpublished data).

Several diseases were detected in vineyards and citrus orchards using different 
remote sensing technologies integrated on aerial platforms such as drones or UAVs 
(Albetis et al., 2017; Albetis et al., 2019; Candiago et al., 2015; Garcia-Ruiz et al. 
2013) and aircraft (Garcia-Ruiz et  al., 2013; Moriya et  al., 2019; Zarco-Tejada 
et al., 2018). Additionally, citrus greening disease (Huanglongbing) was detected 
using multispectral satellite information (Li et al., 2015).

The development and use of robotics can greatly facilitate the application of 
precision crop protection in the future, as it makes autonomous and continuous 
surveillance of the vineyards and orchards possible and optimizes any subsequent 
automated intervention based on the information obtained.

Sensing platforms offer the potential to map disease incidence in the plot. It can 
allow differential fungicide application using variable-rate technology. These new 
technologies will improve sprays’ timing and volume, reducing agronomical dam-
age, economic losses, and environmental impact.

5.3.2.6  Artificial Intelligence for Crop Protection

New technologies, sensor systems, artificial intelligence, and automation will be the 
key to the agriculture of the future. Artificial intelligence is a revolution at different 
work and industrial levels to deal with data. Machine learning has evolved greatly 
within artificial intelligence during the last decades, providing tools to make com-
puters learn. These algorithms are used in many fields due to their high versatility 
for any data-related tasks, generating knowledge and information, and improving 
the decision-making process (Gutiérrez, 2019).

Advances in non-invasive sensing technologies allow the acquisition of high 
amounts of data from the vineyard. Still, these data alone are not enough to be used 
when decisions need to be made, and they need to be transformed into actionable 
information. Therefore, the combination of non-invasive sensors and artificial intel-
ligence needs to be applied to meet the requirements needed to apply digital agricul-
ture and data-driven agriculture.

Data are the key to disease diagnosis and decision-making in vineyards and fruit 
orchards (Mahlein, 2016; Mahlein et  al., 2019). Artificial intelligence, machine 
learning, and big data will help the growers of the future to make decisions and 
optimize the crop protection management of their vineyards to meet their estab-
lished objectives, providing useful information both in the vineyard and fruit 
orchards (Mahlein et  al., 2019; Gutiérrez et  al., 2018). The combination of data 
from different sources of soil-plant-environment could be important to obtain infor-
mation and make forecasts to optimize crop protection management, leading to sus-
tainable agriculture.
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5.4  Conclusions

Many new technologies have been developed and are currently being investigated 
for fruit orchards and vineyards for managing pests and diseases. New technologies 
can be applied to crop protection. New reliable, objective, rapid, and field- deployable 
crop disease and pest detection methods are needed. Artificial intelligence and new 
non-invasive technologies will help growers in the future to make decisions and 
optimize fruit orchards and vineyard management in line with set targets. Combining 
data on both the plant and environmental factors will be important in obtaining use-
ful information and making predictions that can optimize pest and disease manage-
ment and hence sustainable vineyards and tree fruit orchards. Even though many 
new technologies have been developed and applied to crop production, more effort 
will still be needed, especially for disease and pest management, with more interest 
and support from growers, industries, and state and federal agencies.
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Chapter 6
Advanced Technologies for Crop-Load 
Management

Manoj Karkee, Yaqoob Majeed, and Qin Zhang

Abstract This chapter will discuss the opportunities and challenges of robotic 
solutions for tree fruit production with modern planar tree canopy management, 
including the importance of modern tree canopy system, robot-canopy interaction, 
robotic system control, in-field sensing for object detection, and three-dimensional 
(3D) reconstruction, and a case study on the robotic branch pruning for apples with 
modern tree canopies. In the end, the conclusion and future directions were 
investigated.

6.1  Introduction

Crop-load management is one of the most important tree fruit crop production oper-
ations. Fruit trees generally bloom more flowers and set more fruit than they could 
support to grow the desired yield of high-quality fruit (e.g., size, color, and internal 
characteristics such as sugar content and acidity). Precise crop-load management 
practices aim at optimizing the yield and these quality parameters by adequately 
reducing the number of fruit set and grown in a given tree. Overall crop-load man-
agement of fruit crops is commonly achieved through a strategic combination of 
training, pruning, thinning (flower and fruit), and/or pollination to control the num-
ber of fruit grown in individual trees.
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6.1.1  Tree Training

Tree training is an operation that creates desired tree canopy architectures with dif-
ferent heights, shapes, and structures. In modern orchards, trees are generally 
trained to a trellis system (consisting of trellis posts and trellis wires) right after 
planting so that the trunk of the trees grows to a specific shape and direction. Once 
the trunks are securely trained to a specific shape and grow to a certain height, 
newly growing branches are also trained to form canopy shapes. Modern training 
systems are designed to create narrow canopies in vertical or angled structures, 
often called SNAP (simple, narrow, accessible, productive) orchards. Figure  6.1 
shows an upright fruiting off-shoot (UFO) cherry architecture where the main trunks 
are trained to create a permanent horizontal structure and branches are grown and 
trained vertically above the base.

Two other commonly used training systems in modern orchards are presented in 
Fig. 6.2. Figure 6.2b depicts a formally trained apple orchard in a V-trellis system 
where tree trunks are trained upright at a certain angle and branches are trained hori-
zontally along the trellis wires creating canopies with layers of fruiting zones.

These training systems are designed to improve air movement and light distribu-
tion and make fruits and branches more visible. The trees are friendlier to both 
manual and automated field operations. Consequently, modern, narrow canopy 
architectures help maximize both the yield and quality of fruit crops compared to 
conventional three-dimensional trees (Fig. 6.3). More details on tree pruning con-
cepts and their roles in fruit crop production were presented in Chap. 2.

6.1.2  Tree Pruning

Tree pruning is an operation to help grow trees into a desired shape and size, which 
is essential to improve the penetration of both sunlight and spray materials to all 
canopy parts, supporting more effective orchard operations. Pruning is also used to 

Fig. 6.1 Illustration of UFO cherry tree training and pruning. (Diagram courtesy of Dr. Mathew 
Whiting, Washington State University)
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Fig. 6.2 A well-pruned vertical trellis (a) and V-trellis (b) system commercial apple orchard in the 
state of Washington which produces a high yield of good size and high-quality apples. (Photo by 
Qin Zhang)

Fig. 6.3 Traditional low-density sweet cherry orchard. (Pictures from Zhang 2017)

remove old and diseased branches. Otherwise, unproductive branches initiate new 
growth and improve flower bud development (Durner, 2013) so that the overall tree 
health and productivity remain at an optimal level. In modern orchards, pruning 
operation can also regulate fruit-bearing sites so that light interception to fruit can 
be enhanced and uniformity of fruit distribution over the canopy surfaces is 
improved, which leads to improved yield and quality of fruit crops. Pruning is typi-
cally done annually by selectively cutting and removing parts/branches of trees fol-
lowing certain guidelines developed by horticultural research and farmers’ long 
experience. Therefore, achieving desired pruning results requires experienced 
workers with adequate knowledge and skills in pruning strategies. Figure 6.4 shows 
a well-pruned apple orchard in the state of Washington.

Fruit tree pruning could be conducted in the winter (dormant season) and the 
summer. Dormant pruning is performed from late fall to winter when the trees are 
not actively growing. This is the annual pruning process’s major part of maintaining 
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Fig. 6.5 A graphical illustration of a few commonly used hand pruning tool samples – (a) a hand 
pruner, (b) a long-handled lopping shear, and (c) a pruning saw – and powered pruning tool sam-
ples: (d) an electric-powered pruner, (e) a pneumatic-powered pruner, and (f) a hydraulic- 
powered pruner

Fig. 6.4 A well-pruned commercial apple orchard in the state of Washington which produces a 
high yield of good size and high-quality apples. (Photo by Qin Zhang)

the desired canopy shape and size. Some farming operations also perform summer 
pruning, focusing primarily on removing excessively growing shoots or branches to 
optimize fruit exposure to sunlight. Fruit tree pruning is mainly done manually by 
skilled field workers using hand tools, such as hand pruners, long-handled lopping 
shears, or pruning saws (Fig. 6.5a–c). As hand pruning is highly labor-intensive (the 
second-highest labor-intensive job after harvesting) and accounts for ~20% of the 
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total production cost (He & Schupp, 2018), some power-pruning tools, such as elec-
tric-, pneumatic-, or even hydraulic-power pruners (Fig. 6.5d–f), are increasingly 
being used for reducing the force required to cut branches and thus to reduce the 
workers’ fatigue and improve their productivity. Personal communication of authors 
with growers in Washington has suggested that it could achieve about a 50% labor- 
saving in orchard pruning by simply switching from using hand tools to the use of 
power-pruning tools.

6.1.3  Blossom and Fruit Thinning

In general, even after strategic pruning, most fruit trees bloom many more flowers 
than needed for an optimal fruit set. If all flowers are left for pollination, it could 
result in too many fruits being set, leading to harvested fruits with small/suboptimal 
size and often with poor quality. Experts estimated that for some varieties of tree 
fruit crops such as apples if just 5% of all those spring flowers set fruit, it could be 
enough to provide the desired crop yield. Thus, many fruit growers have adopted 
flower and/or fruit thinning as a good farming practice to remove either a portion of 
the blooms or young fruits (or both) on the trees for growing fruit with good size 
and high quality.

Blossom thinning can be performed using either chemical approaches to reduce 
the number of flowers capable of setting fruits or physical means to remove a por-
tion of flowers from the trees during and shortly after the bloom period. An addi-
tional green fruit thinning could also be performed later in the season (anywhere 
from a couple of weeks to a few months after fruit set) to remove excess and poor- 
quality fruit and/or those growing in suboptimal canopy areas and growing too close 
together, to ensure good size and quality of fruits at harvest. Chemical thinning is a 
less labor- and skill-intensive operation than pruning, but physical/manual thinning 
could be very tedious and time-consuming, which thus could be as or even more 
expensive field operation compared to pruning.

Chemical thinning is mechanically performed by spraying some plant growth- 
regulating chemicals on the trees shortly after bloom; this is a highly productive 
operation. However, despite many years of study and practice, chemical thinning 
remains unpredictable in efficacy. Its results could vary significantly from orchard to 
orchard or year to year due to a wide variation of field and/or weather conditions. 
Thus, it is still more an empirical method requiring growers to weigh many factors in 
planning a thinning operation to obtain a desirable response from chemical thinning.

Physical blossom thinning can be done mechanically using machines or manu-
ally using tools or even hands (from left to right in Fig. 6.6). In general, hand thin-
ning is the most labor-intensive and laborious approach with very high labor costs, 
even though it could achieve the most precise control over the thinning efficacy. 
Using some kinds of hand tools could help solve the low productivity and high labor 
cost challenge, with a price of less controllability in thinning precision. Mechanical 
thinning is highly productive but has the least controllability in thinning precision.
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Fig. 6.6 Examples of blossom thinning using a machine (left), a hand tool (middle), or hands 
(right) in commercial cherry orchards in the state of Washington. (Photos by Qin Zhang)

6.1.4  Crop Pollination

As fruits can be set only after the flowers are pollinated and fertilized, pollination 
plays a critical role in transferring pollen from male to female parts of flowers to set 
the fruit. Thus, crop pollination and its efficient control become one of the most 
important field operations for achieving desired crop load in fruit trees. In general, 
there are two types of pollination approaches in fruit trees: self-fruiting/self- 
pollinating crops and externally pollinating crops (cross-pollination). Pollination in 
self-pollinating crops occurs by transferring pollen from the anther to the stigma in 
the same flower and between different flowers in the same tree or between flowers 
in different trees of the same cultivar. Because pollination in self-pollinating crops 
can occur within the same flower, it is difficult to realize crop-load management by 
controlling the amount of pollination.

There are other fruit crop cultivars where self-pollination (setting fruit using the 
pollen from the same flower or tree) is not possible. In such crops, cross-pollination 
between different fruit cultivars is required for the fruit set. Cross-pollination in 
commercial orchards is achieved by planting pollinating trees at a certain density so 
that pollens from the pollinating trees are transferred to the flowers in the crop trees. 
Transferring of pollens from pollinator trees to crop trees is achieved by some pol-
linating agents, such as bees, insects, birds, water, and/or wind. Such a pollination 
process requiring external agents for pollen transfer offers a possibility of managing 
crop load using a controlled amount of pollination.

Conventionally, tree fruit growers worldwide have relied on natural means, such 
as insect pollinators or wind, to complete the pollination process. Due to some eco-
logical and disease control reasons, such as a persistent decline in bee populations 
(e.g., colony collapse disorder), insects’ sensitivity to environmental conditions, 
and the potential for viral disease distribution, tree fruit growers are looking for 
alternatives to the natural pollination process. More discussion on mechanical and 
robotic pollination is presented in Sect. 6.4.
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6.2  Advancement in Training and Pruning Technologies

6.2.1  Introduction

Using manual labor, fruit trees are trained and pruned to the desired shape and size. 
These are highly labor-intensive operations requiring a large semi-skilled labor 
force on a seasonable basis. With decreasing availability and increasing labor costs, 
it has been increasingly challenging for tree fruit growers to complete these annual 
operations to the desired level. To improve the sustainability of the fruit crop indus-
try, it is essential to develop automated or robotic solutions for these labor-intensive 
field operations (Hertz & Zahniser, 2013). 

As discussed before, fruit trees are pruned to improve the fruit quality and yield 
by removing unproductive branches and branches in undesirable locations. Pruning 
helps create the desired size and shape of the trees and set the desired structure for 
optimal crop load. Manual pruning involves the selective removal of branches by 
skilled labor. Mechanically or with automated machines, pruning can be carried out 
in non-selective (hedging/mass removal) or selective fashion. Moore (1958), Gautz 
et al. (2002), and Forshey (2014) worked on mass pruning systems in which a cut-
ting tool was run over tree canopies to keep a predetermined distance from the 
center of tree canopies.

Similarly, Morris (2007) developed a mechanical solution for the non-selective 
removal of shoots at a certain height above the cordons (permanent horizontal vine) 
in vineyards. These machines achieved a good performance in cutting branches in 
mass at a certain canopy depth and hedging at a certain height (Forshey, 2018). 
However, manual cleaning after a mass pruning operation is essential to achieve the 
desired pruning outcomes in terms of uniform distribution of fruiting sites, renewal 
of unproductive branches, and better exposure of fruit to sunlight.

While these machines are easy to operate, this process does not allow for selec-
tive pruning or renewal of tree branches, which is essential to achieve canopy shapes 
that maximize yields of premium quality fruit. Therefore, a robotic solution would 
be essential to selectively remove tree branches using a manipulator and end- 
effector system to achieve the best pruning results. The latest research and develop-
ment in selective pruning of fruit trees and grapevines will be discussed in the 
following subsection.

6.2.2  Machine Vision for Selective/Robotic Pruning

Robotic pruning of trees consists of four main steps: (i) perceiving the visual infor-
mation and creating the 3D structure of target fruit trees using a vision system; (ii) 
determining the branches to be pruned (pruning decision) using various pruning 
strategies and 3D structure of the trees; (iii) path planning and navigation of the 
manipulator to target branches; and (iv) selectively removing branches using an 
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end-effector. Accurate estimation of 3D tree structures and precise execution of all 
these steps of the robotic pruning process are vital to achieving the desired pruning 
results in an orchard environment.

In the first step, machine vision techniques are applied to obtain images, remove 
background, detect various canopy parts (e.g., trunk and branches), and reconstruct 
the tree structure. In this process, various object features, including color, shape, 
texture, and location (e.g., distance to a branch from the sensor), are extracted 
explicitly or implicitly (e.g., in a deep learning model) and used to accomplish 
object detection and classification as needed. At this stage, errors and/or inaccura-
cies affect all downstream operations and, therefore, the performance of the overall 
robotic pruning system.

As a sensing/vision system is the fundamental component of a robotic pruning 
system, many researchers worldwide focus on developing an accurate and robust 
vision system for robotic pruning. Naugle et  al. (1989) investigated the use of 
machine vision to guide an automated pruning device. RGB cameras were used by 
McFarlane et  al. (1997) and Gao and Lu (2006) to capture images of grapevine 
canopies in vineyards. Then, simple image processing techniques (i.e., color thresh-
olding and Hough transform) were applied to segment the grapevines in the images.

Similarly, two RGB cameras mounted on a robotic manipulator were used to 
acquire images of dormant apple trees by Tabb and Medeiros (2017). They used a 
silhouette-based algorithm for extracting the skeleton of apple trees. They then esti-
mated different geometric and topological characteristics of trees, including diam-
eter, length, and angle of branches, that could help determine pruning points for the 
robotic pruning systems. You et  al. (2021) produced labeled skeleton of upright 
fruiting off-shoot (UFO) cherry trees in color images using the topological and geo-
metric priors associated with these labels. A median accuracy of 70% regarding a 
human-evaluated gold standard was achieved by creating a skeleton of cherry trees 
using this algorithm.

Color and 3D or just 3D sensing systems have also been widely investigated to 
reconstruct fruit trees and estimate desired geometric color and topological param-
eters desired to make pruning decisions. Livny et  al. (2010) proposed a branch 
structure graph (BSG) to create and represent skeletons of trees in the dormant 
season. Tabb (2013) developed 3D models of apple trees using the principle of 
shape from Silhouette. Chuang et al. (2000) used shape information called potential 
field to extract the skeleton of 3D objects. Palagyi et al. (2006) proposed an end-
point rechecking method to avoid spurious side branches generating the skeletons. 
These algorithms have shown good accuracy in indoor applications. Elfiky et al. 
(2015) proposed a new 3D reconstruction method for apple trees trained in a tall 
spindle architecture. They used the Microsoft Kinect 2 sensor, which showed the 
potential for a low-cost sensor for orchard machine vision applications. Akbar et al. 
(2016) and Chattopadhyay et al. (2016) developed and evaluated a method to model 
tree trunks and branches using semicircles in a 3D space represented by a single 
depth image. A stereo vision camera was used to acquire 3D point cloud data of 
sweet cherry trees by You et  al. (2021) for the robotic pruning. Then, a 
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Fig. 6.7 Apple tree captured by a 3D camera (left) and identified pruning points in the tree skel-
eton (right)

population-based search algorithm was applied to skeletonize the cherry tree, and a 
CNN (convolutional neural network) was used to validate the correct edges of the 
skeleton.

In addition to consumer 3D cameras, a laser scanner was employed by Medeiros 
et al. (2017) from various perspectives to collect 3D information on dormant apple 
trees. A split-and-merge algorithm was applied to separate the trunk, branch, and 
joint segments. Once the trunk and branches were delineated, diameters of the trunk 
and branches were estimated, which is considered an important parameter to deter-
mine the target branches for pruning. The technique was tested in tall spindle apples 
and other relatively older tree architectures. A 3D camera (mounted on a pan-and- 
tilt system) based on the time-of-flight of light principle was used by Karkee et al. 
(2014) to capture image frames of apple trees for dormant robotic pruning. The 
skeletons of apple trees were reconstructed by adopting the medial-axis-thinning 
algorithm. Skeletonized trees were used to identify pruning branches following two 
simple rules, i.e., maintaining a specific distance between branches and maintaining 
a specific branch length (Fig. 6.7).

In recent years, low-cost, consumer RGB-D sensors have also been investigated 
widely to create the 3D structure of fruit trees. Wang and Zhang (2013) used Kinect 
sensors mounted orthogonally to the canopies for collecting 3D information and 
used a simple transformation matrix to reconstruct the skeleton of cherry trees from 
3D point cloud data. Elfiky et al. (2015) employed a Kinect sensor to acquire a 3D 
point cloud of dormant apple trees from the front and backside. Then, they used a 
skeleton-based geometric-feature algorithm for the 3D reconstruction of the trees. 
The study also proposed a circle-based layer-aware algorithm to locate the pruning 
points on target branches of apple trees.

Similarly, Akbar et al. (2016) acquired the depth images of dormant apple trees 
using a Kinect sensor. A 3D reconstruction of the apple tree was carried out using 
the semicircle fitting scheme. The study then proposed empirical models to estimate 
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the diameter of primary branches, which could help identify branches for robotic 
pruning.

In summary, the 3D reconstruction approaches discussed above primarily used 
the following steps leading to a tree skeleton that can be used for implementing 
pruning strategies: (i) 3D scan the tree using LiDAR (3D point cloud) or images (3D 
point cloud reconstructed from stereo images, structure-from-motion or optical 
flow); (ii) separate the 3D points into tree branches, ground, and leaves based on 
imaging properties and/or user intervention; (iii) reconstruct the main tree branches 
using a mix of a priori knowledge (branches/trunk that are essentially cylinders that 
get smaller and branching points) and user input (marking branching points or 
sketching branches); and (iv) “fill in” missing parts of the scan (particularly smaller 
branches and missing geometry) using the estimated density of the leaves and 
expected shape of the branches.

Similar to many other areas of image processing, deep learning-based techniques 
have also been introduced in processing tree canopy images to detect objects and 
classify image regions. For example, semantic segmentation and deep-learning 
based techniques, in general, have shown increased accuracy and robustness in ana-
lyzing orchard images and have helped reduce the impact of uncertain and variable 
lighting and environmental conditions.

6.2.3  Pruning Strategies and Rules

After image segmentation and 3D reconstruction/skeletonization of fruit trees, the 
next important step is to use experts’ (e.g., horticulturists and experienced growers) 
knowledge and their pruning strategies to create rules to algorithmically identify 
and locate target branches for pruning. Some of the major goals of pruning include 
distributing fruiting sites as uniformly as possible, renewing fruiting branches, and 
removing unproductive branches.

In general, growers prune tree branches in the dormant season using “renewal 
cuts,” “pruning cuts,” and “trimming” cuts (Table 6.1). Renewal cuts are for those 
branches that are too big or unproductive, which are cut at the base (e.g., right next 

Table 6.1 Sample pruning/hedging rules

R1 If a neighbor branch is closer than X, then it is a “close” branch
R2 If a branch is longer than Y, then it is a “long” branch
R3 If a branch has long section w/o buds, then it is a “blind” branch

R4 If a branch is dead, then it is a “non-productive” branch
R5 If a branch diameter is larger than Z, then it is a “large” branch

R6 If a branch is “close,” then it is a “pruning” branch
R7 If a branch is “long,” and not “close,” then it is a “pruning” branch

R8 If a branch is “large,” and not “close,” then it is a “renewal” branch
R9 If a branch is “long,” not “large,” and not “close,” then it is a “hedging” branch
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to the trunk). Long branches are cut back to a certain length for trimming cuts based 
on the tree canopy design. Pruning cuts are used to keep variable branch lengths to 
optimize fruiting sites or uniformity and improve fruit quality. Though the goals are 
common, almost every grower has a strategy to identify pruning branches in a tree, 
which often involves substantial subjective judgment. A set of relatively complex 
rules will be necessary to represent such subjectivity and achieve desired pruning 
outcomes. To convert such human expert knowledge precisely and consistently to 
rules that can be implemented by the machine, a “soft-words” computation model 
such as the one proposed by Zadeh (1999) can be used. For example, basic rules 
(e.g., R1 in Table 6.1) will be used to deduce more complex rules (e.g., R9) neces-
sary to achieve various pruning goals.

Manual pruning is performed by skilled laborers trained to follow specific strate-
gies provided by farmers or managers. The desired number of fruiting sites can be 
maintained in each tree. However, as mentioned before, pruning guidelines vary 
substantially between tree architectures, fruit cultivars, and even individual growers 
and operations. Therefore, any developed solution for robotic pruning must con-
sider canopy architectures and crop cultivars. To some extent, current manual prun-
ing practices are also based on individual experiences and art in addition to 
research-driven strategies. Therefore, they lead to substantial variability and incon-
sistency between different workers pruning the same tree and the same worker prun-
ing different trees. Putting these human judgment-based strategies and practices 
into objective rules for the robotic system to implement (similar to Table 6.1) is 
challenging. There are certain quantitative guidelines that farmers would like to fol-
low, including measurement of branch diameter and pruning side branches such that 
the right amount of fruiting sites could be left for each branch based on its fruit-
bearing capacity. However, in practice, such quantitative guidelines are rarely prac-
ticed, reducing workers’ productivity substantially. Even in such a situation where 
it is easier and faster for a vision system to estimate branch diameters, it is challeng-
ing to implement such a strategy by machines because we lack sensing systems that 
can accurately and reliably estimate the number of fruiting sites (vegetative buds 
and flowering buds look similar to even untrained human eyes) and identify dis-
eased branches during the dormant season.

Only a few studies have placed some effort in creating simplified objective rules 
that machines can implement for the robotic pruning of fruit trees. Further studies 
on developing effective and reliable sensing systems for flower bud detection and 
diseased and dead branch identification, as well as developing objective pruning 
strategies for consistent and robust robotic pruning, would be essential.

As discussed earlier, Karkee et al. (2014) conducted interviews with expert hor-
ticulturists to understand their decision-making process for pruning apple trees in 
large commercial orchards in Washington State. This study found that there are four 
basic rules for pruning in SNAP or fruiting wall architectures; these are to remove 
(i) diseased branches, (ii) long branches, (iii) large branches, and (iv) closely spaced 
branches. Although these rules appear simple, this study also revealed various chal-
lenges, including (1) difficulty detecting the required targets, such as dead branches, 
and (2) identifying pruning points and steps in complicated canopies that often 
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require judgment and potentially complex pruning rules. Therefore, in their study, 
they used two simple rules that machines could implement: (i) remove long branches 
(when length  >  user-defined threshold) and (ii) remove one of the two closely 
spaced branches (when spacing < user-defined threshold). Based on the analysis of 
20 reconstructed tree models, the algorithm achieved 77% accuracy in identifying 
tree branches. On average, the algorithm suggested the removal of 19.5% of 
branches, whereas, in the same situation, human workers suggested 22% removal.

Similarly, Dr. James Schupp (Penn State University) worked with engineers to 
identify rules for automated pruning of tall spindle apple trees (Lehnert et al., 2015). 
He proposed eight pruning rules for fruiting wall apple orchards, including 
“Maintain a narrow cone shape by thinning outshoots that are more than 30 inches 
long in the top,” “Remove any secondary limb when its diameter becomes more 
than half the diameter of the leader,” and “Remove all damaged or diseased limbs.” 
Four of these rules were the same as Karkee et al. (2014) proposed. On the other 
hand, Liu et al. (2019) attempted to develop the back propagation (BP)-based neural 
model to make pruning decisions for the robotic pruning of apple trees. Similarly, 
Saxton et al. (2014) and Corbett-Davies et al. (2012) presented preliminary work on 
developing an expert system for understanding the pruning process from human 
experts and used the system to establish the best practice for robotic pruning in 
vineyards.

6.2.4  Integrated Pruning Systems

The vision and pruning decision systems need to be integrated with a robotic manip-
ulator and an appropriate end-effector (hand) to perform robotic pruning in fruit 
trees. Even though modern SNAP fruit canopies offer simpler tree structures than 
traditional fruit trees, fruit trees still include a lot of branches growing randomly in 
all possible directions and often crossing each other in different parts of the cano-
pies. In addition, tree canopies include trunks, trellis posts, and trellis wires. Such a 
canopy environment presents many obstacles to robotic manipulators and end- 
effectors. As the system approaches target branches for selective pruning, obstacles 
can cause collisions with the robot, which severely affects the performance of the 
robotic pruning system and can cause damage to the manipulator and end-effector. 
Therefore, there is a critical need for efficient and effective path planning and navi-
gation to find the optimized path to reach the target branches avoiding collision with 
branches and/or other obstacles.

As described earlier, most of the work related to robotic pruning was carried out 
by focusing on its components, particularly the vision system. Only a few studies-
focused on the overall system integration and path planning in fruit crops. However, 
there are a few more studies conducted in grapevines as well. You et al. (2020) and 
ongoing work at author Karkee’s lab have developed an integrated robotic system 
using a UR5 (a six-DoF manipulator by Universal Robots, Odense, Denmark) 
manipulator and a scissor cutter-type end-effector (Fig.  6.8). The system uses 
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Fig. 6.8 Integrated robotic system for selective pruning of apple and cherry trees developed by 
researchers at Washington State University and Oregon State University. (Photo by Manoj Karkee)

consumer RGB-D cameras (e.g., Zed 2, Stereolabs Inc.) to collect color and depth 
information and create the 3D structure of trees. They presented an algorithmic 
framework for this robot’s path planning. The system first moves the end-effector to 
the approach pose and then follows the linear approach to reach the targeted posi-
tion. Motion planning was implemented using Fast-Reliable-and-Efficient-
Database- Search-Motion-Planner (FREDS-MP) framework, which computes the 
optimistic trajectories (Sukkar, 2017). A robotic system, including the path planning 
method, has been evaluated in the lab environment, and further development and 
field evaluations are continuing.

Zahid et  al. (2020) also used the UR5 manipulator for the collision-free path 
planning to prune apple trees. They employed the Rapidly-exploring-Random-Tree 
(RRT) algorithm to find the collision-free path. A nonlinear optimization technique 
was used to find the optimized path among the various alternatives to reach the tar-
get position. Magalhães et  al. (2019) benchmarked different path planning algo-
rithms from Open Motion Planning Library (OMPL) using a 6-DoF manipulator for 
grapevine pruning.

Lee et al. (1994) reported work in the electro-hydraulic control of a vine pruning 
robot. Kondo et al. (1993, 1994) developed a manipulator and vision system for a 
multipurpose vineyard robot. Similarly, Botterill et al. (2017) developed a complete 
pruning robot for pruning grapevine canopies and tested it in a commercial vine-
yard. This system consists of an enclosed mobile platform (Fig. 6.9), which can 
completely cover the grapevine canopies (to block the sunlight and background 
canopies) and houses high-intensity LEDs (light-emitting diodes), a trinocular ste-
reo camera system, a robotic arm (6-DoF UR5) mounted with a drill bit (to prune 
canes), a generator, and a desktop PC. A trinocular stereo camera system was used 
to capture the images of grapevine canopies under constant lighting conditions 
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Fig. 6.9 A mobile platform for pruning grapevines that houses the high-intensity LEDs (light- 
emitting diodes), a trinocular stereo camera system, a robotic arm mounted with a drill bit (to 
prune canes), a generator, and a desktop PC. (Pictures from Botterill et al. 2017)

using LEDs. Then, a triangular-feature-matching algorithm was used for the 3D 
reconstruction of grapevine canopies. An AI-based algorithm was then developed to 
make pruning decisions. An RRT-based path planner was used for path planning and 
navigation with collision-free trajectories. They state that the main bottleneck in 
their work was the time required for online planning and motion execution. This 
robot system can estimate the trajectories at the rate of 0.25 m s−1 and takes about 
1.5 s for each vine to calculate the collision-free trajectory for the manipulator. The 
robot took ~2 min to prune each grapevine canopy.

These studies showed that end-effector design selections strongly influence 
pruning performance. For example, reducing the bounding volume of the design 
increases the likelihood of finding a collision-free goal configuration and path. For 
pruning grapevine canes, Botterill et al. (2017) developed a manipulation method 
whereby the robot swept through the pruning zone using a rotating end mill cutter. 
One issue they reported was the tendency for the cutter to push the cane away from 
the pruning zone, leading to pruning failures. Zahid et al. (2019) developed a proto-
type end-effector that used scissors/shears to cut small-diameter apple tree branches.

A similar robotic pruner was developed by Katyara et al. (2020) and was tested 
in laboratory conditions. This robotic system consisted of a 7-DoF manipulator 
(Franka Emika, München, Germany), two Intel RealSense cameras (D435i, Santa 
Clara, California, USA), and a shear pruner attached at the end-effector of the 
manipulator. Intel RealSense camera was used to capture the images of grapevines. 
Then a Faster R-CNN (faster region-based convolutional neural network) (Ren 
et  al., 2015)-based model was used to detect spurs/shoots. Once the spurs were 
detected, a statistical-pattern-recognition algorithm was used to determine the prun-
ing points. This pruning robot dealt with only a single cordon (one side) of grape-
vine canopy at a time and took ~49 s to prune 5 shoots compared to ~8.4 shoots on 
average (due to focus on the complete vine) per vine in Botterill et al. (2017) tak-
ing ~2 min.

Although there have been several studies on developing robotic pruning systems 
for tree fruit crops and vineyards around the world, there has been no commercial 
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success so far in adopting those technologies. Lack of commercial success is pri-
marily caused by (i) limitation of perception techniques in representing the 3D 
structure of trees in the presence of variable and uncertain outdoor environments 
and self-occlusion of branches accurately; (ii) challenges in representing the prun-
ing process with objective pruning rules that a machine can implement; and (iii) 
high cost and slow speed of the overall robotic system. Recent studies, such as the 
projects currently carried out by WSU and Oregon State University team (You et al., 
2020, 2021), focus on some of these challenges, including learning from human 
knowledge and creating objective pruning rules. It is anticipated that future work is 
necessary and will be focused on developing simpler and faster 3D reconstruction 
methods for fruit trees in modern fruiting wall architectures such as formal apples 
and upright fruiting offshoot (UFO) cherries (Fig. 6.1), which are the most suitable 
architectures for robotic operations like pruning. In addition, new sensing studies on 
floral bud detection and detection of diseased and dead branches would be essential 
in the future. Further studies in developing objective pruning strategies for consis-
tent and robust robotic pruning would also be critical. More discussion on general 
challenges and future opportunities will be discussed in Sect. 6.5.

6.3  Precision Thinning

6.3.1  Introduction

As discussed in Sect. 6.1, the production of high-value trees and fruit crops such as 
apples and cherries requires a large, semi-skilled workforce for short, intensive peri-
ods during the year. One of the most labor-intensive orchard activities is bloom and 
green fruit thinning. Bloom thinning involves selectively removing closely spaced 
flower clusters and/or several individual flowers from within a cluster. Only a 
desired number of flowers are left for pollination (typically only one). Green fruit or 
fruitlet thinning is similar to removing closely spaced and clustered fruit so that 
only a desired number of fruits are left to grow. Flower and green fruit thinning are 
two critical perennial operations necessary to balance fruit quantity and quality to 
achieve the target yield and returns for premium fruit.

Growers can deploy chemical bloom thinners or tractor-driven mechanical string 
thinners as an alternative to manual flower thinning. Nearly a century of research 
has yielded chemical thinning programs that are marginally effective and inconsis-
tent. Washington’s tree fruit research commission has investigated chemical bloom 
thinning programs for decades and found that the best program was effectively less 
than half the time (T. Schmidt, personal communication, 2021). In addition, there 
are handheld and tractor-mounted mechanical flower thinning machines available 
commercially.

A handheld mechanical device was also tested on the cherry trees for blossom 
thinning based on the same string thinner concept (Wang et al., 2013). Rosa et al. 
(2008) presented an electro-mechanical device that shakes the limbs for the fruit 
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thinning of different fruit trees, i.e., nectarine, peach, prune, etc. Though these 
mechanical solutions helped reduce labor usage, they still lack precision because of 
their non-selective nature and high variability in their efficiencies. However, these 
“mass” thinning systems do not allow for selective removal of flowers/flower clus-
ters and lack desired precision. There is no practical alternative currently available 
to manual thinning when it comes to green fruit thinning. In recent years, recogniz-
ing these challenges, researchers worldwide have been working on developing auto-
mated flower and green fruit thinning solutions.

6.3.2  Flower and Green Fruit (Fruitlet) Thinning

An automated/robotic flower or green fruit thinning system consists of a vision 
system to detect and precisely locate flowers and flower clusters in tree canopies, a 
manipulator to approach the target locations, and an end-effector to effectively 
remove the desired proportion of flowers or green fruit from target locations. 
Contrary to the dormant pruning of fruit trees discussed in Sect. 6.2, thinning is car-
ried out in the growing season when canopies include shoots, leaves, flowers, and/
or fruits in addition to trunks, branches, and trellis wires (Fig. 6.10). Such complex 
canopies pose greater challenges for a robotic/automated system to accurately 
detect and position the target objects (because of a heavy occlusion of target objects 
by other canopy parts) and access them for precision thinning. It is also essential 
that flower detection models have a high computational speed for real-time, in-field 
operation.

Fig. 6.10 Trellised canopies
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Researchers have developed conventional and deep learning-based models to 
detect flower clusters in apple and cherry orchards (e.g., Aggelopoulou et al., 2011; 
Dias et al., 2018a, b; Farjon et al., 2020) that can provide a foundation for flower 
thinning as well as robotic pollination (Sect. 6.4). These efforts mostly relied on 
color (RGB) images captured from close distances (0.5–1.5 m) with varying pixel 
resolutions. Aggelopoulou et al. (2011) used the RGB cameras to collect the images 
and map the flower distribution of blossomed apple trees to adjust chemical thin-
ning rates for precision application. Similarly, Hočevar et al. (2014) also used an 
RGB camera to capture the images of apple trees during bloom to estimate the 
number of flowers, which could assist in precision blossom thinning. Dias et  al. 
(2018a) used the commercially available RGB camera to collect the images of apple 
trees for the blossom thinning task. Then, the CNN (convolutional neural network) 
and SVM (support vector machine) algorithms were used to detect the flowers from 
RGB images. In another study by Dias et al. (2018b), semantic segmentation was 
carried out for detecting flowers in apple, peach, and pear trees using a residual 
CNN-based technique. Tian et al. (2020) proposed an improvement over the Mask 
R-CNN model for segmenting out apple flowers using RGB images of apple trees 
collected during different bloom stages. Once flowers are detected, their 3D loca-
tion would be essential for robotic thinning and pollination (Sect. 6.4).

Various types of 3D imaging techniques, such as laser scanners, stereo cameras, 
time-of-flight 3D cameras, and recently developed consumer RGB-D cameras (e.g., 
Zed 2, Stereolabs Inc.), can improve the detection and localization of flowers. A 3D 
imaging system consisting of a video camera and plane laser scanner was used by 
Emery et al. (2010) to detect and locate blossoms in peach trees for precision blos-
som thinning. Nielsen et al. (2011) used a stereo-vision camera system to map blos-
soms in peach trees for precision blossom thinning. Similarly, Underwood et  al. 
(2016) used a color camera and 2D LiDAR sensor mounted on a ground robot to 
scan almond trees during different fruit-bearing stages (peak bloom, fruit set, and 
just before harvest) to estimate yield, which could assist in precision blossom thin-
ning. Bhattarai et al. (2020) collected RGB-D information in apple orchards using a 
Kinect sensor to develop a machine vision system for robotic blossom thinning 
(Fig. 6.11). Segmentation of apple flower clusters was carried out using a Mask 
R-CNN-based model.

The earliest indication of potential crop load in a given tree would be the number 
of flowering buds. Good estimation and localization of buds would help make 
desired pruning and flower thinning decisions. Only highly trained human eyes can 
differentiate if a given bud will be a vegetative bud or a flowering bud in the crops 
like apples and cherries. The authors’ experience in the field has shown that it is 
challenging to develop a machine vision model that can differentiate vegetative and 
floral buds using only color and shape features. However, there have been some 
efforts to develop spectral sensors that go beyond the color and shape information 
so that a reliable, automated floral bud counting system could be developed. For 
example, Wouters et al. (2015) mounted a multispectral sensor on the ground-based 
mobile platform to detect pear tree floral buds.
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Fig. 6.11 Blossom detection with deep learning; blue and red polygons indicate ground-truth and 
detection results, respectively

6.3.3  Integrated Thinning Systems

In addition to machine vision systems, there have been efforts to develop integrated 
automated or robotic systems for flower thinning. For example, Aasted et al. (2011) 
mounted a LiDAR scanner on a tractor and string thinner, which sensed the flower 
density in apple tree canopies and automatically controlled the position and orienta-
tion of thinning heads for precision blossom thinning. Lyons et al. (2015) developed 
an automated precision blossom thinning system for peach trees. This system con-
sisted of a six-DoF robotic arm and rotating brushes mounted at the robot’s end. A 
stereo-vision-based system developed by Nielsen et al. (2011) was used to detect 
thinning targets. A heuristic algorithm was used to mimic the ways growers make 
thinning decisions. This precision blossom thinner achieved a ± 10.33% margin of 
error to place the thinning end-effector at the target position.

Similarly, Ou Yang (2012) developed an integrated robotic platform targeting the 
robotic blossom thinning of peach and tested it on the model tree. This system con-
sists of a custom-build six-DoF manipulator and clamp-type end-effector. An 
inverse kinematic-based task planning algorithm was used to reach the targeted 
locations. This system takes around 7.7 s to find the path toward the target.

Currently, green fruit thinning is largely manual, and there have been only a 
limited number of efforts in developing machine vision and integrated systems for 
robotic thinning. Xiong et  al. (2020) completed one tangentially relevant study 
using an unmanned aerial system (UAS) to collect RGB images of mango trees. 
Then, the YOLOv2-based deep learning model was used to detect green mangoes to 
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estimate yield. Similarly, as discussed before, Underwood et  al. (2016) used a 
ground robot to scan almond trees during the green fruit stage to estimate crop yield. 
These studies could provide some basis for developing robotic fruit thinning sys-
tems in the future.

As with robotic pruning, robotic thinning has not been commercially adopted 
yet. Robotic thinning faces the same challenges, such as lack of desired speed and 
high cost. In addition, a few specific factors make robotic thinning uniquely chal-
lenging to reach its full potential in in-field operation. First, there has been a wide 
range of studies on detecting flowers in fruit trees, as discussed before. However, 
these studies have only successfully segmented flower regions. Detecting individual 
flowers within a given cluster and estimating their orientation remain a great chal-
lenge for precision robotic thinning and robotic pollination (Zhang, 2017). Second, 
the robotic thinning of individual flowers of fruit crops such as apples and cherries is 
challenged by their small size, their growth in tight clusters, and high level of self- 
occlusion, making it almost impossible to approach and selectively remove individual 
flowers. Under these constraints, current efforts in robotic thinning have been to delin-
eate individual clusters of flowers and use an end-effector that can remove a propor-
tion of flowers within the cluster without regard to type, location, and developmental 
stage of flowers. In these efforts, multiple off-the-shelf end-effectors operated via dif-
ferent actuation mechanisms were investigated and evaluated for their performance in 
blossom thinning, including pneumatic hose, waterjet, and electrically actuated wire 
brush system. Additionally, the effectiveness of commercially available handheld 
blossom thinner, Bloom Buster/Bandit, from Automated Ag was tested. The miniature 
design of a similar concept to Bloom Bandit showed better efficiency for precision 
thinning (Fig. 6.12).

Fig. 6.12 Miniature design of a Bloom Bandit for precision thinning. (Picture from https://www.
automatedag.com/bloom- buster- gallery)
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In the future, it is important to put more effort into developing decision support 
tools for the integrated systems to achieve the desired level of flower and green fruit 
thinning. Moreover, continual improvement of the manipulation and end-effector 
technologies for precision thinning would be essential to improve the accuracy and 
speed while reducing the overall cost.

6.3.4  Green Shoot Thinning in Vineyards

Like flower and green fruit thinning in tree fruit orchards, green shoot thinning is 
performed in grapes every year. Green shoot thinning is a task to remove a propor-
tion of shoots growing on horizontal cordons and all the shoots growing on trunks, 
which is one of the important field operations in the annual life cycle of a vineyard. 
This operation improves the spacing and direction of shoot growth, which is essen-
tial to creating and maintaining healthy and productive crop canopies by improving 
light penetration and air movement. An appropriate level of shoot thinning will 
adjust the leaf-area-to-crop ratio and crop load and therefore is one of the greatest 
determinants of potential yield and quality. When done properly, it also sets the 
stage for the next year’s pruning and training decisions.

When green shoots of grapevines are growing, they heavily occlude each other 
and cordons, making it extremely difficult to accurately analyze the density of 
shoots on cordons for the precise removal of green shoots. For green shoot thinning, 
mechanical thinning machines are being used by the grapevine growers in different 
states of the USA. Mostly, these machines are mounted on the tractor, and their end- 
effector consists of a thinning roller on which flappers are attached. When the thin-
ning roller rotates, flappers hit the cordons and remove the shoots from the cordons. 
The thinning level is controlled by adjusting the height of thinning end-effector to 
the varying shape of cordons and thinning roller speed by the operator while driving 
a tractor. However, shoot removal efficiency varies widely (between 10% and 85%) 
because varying shapes and locations of cordons cause difficulty in precisely con-
trolling the thinning end-effectors against them (Dokoozlian, 2013).

Moreover, various string thinners have been developed and tested to remove the 
flower clusters for peach trees (Baugher et al., 2010). In these string thinners, plastic 
strings are attached to the rotating spindle. The thinning efficiency of flower thin-
ning is controlled by adjusting the angular position of string thinner and rotational 
speed of the spindle.

At the green shoot thinning stage for grapevines, a shoot density of 15–25 
shoots/m of cordons is desired to achieve the optimum yield and quality of grapes 
(Reynolds et al., 1994). If the density is above the desired level, the extra shoots are 
removed. Moreover, depending on the accuracy of the shoot thinning in vineyards, 
if needed, later fruit cluster thinning is also adopted for the fine-tuning of crop load. 
Additionally, not necessarily all three stages of thinning are adopted for each fruit 
species. For example, for grapevines, more emphasis is given to shoot thinning and 
fruit cluster thinning, and for apples, blossom/flower and fruit thinning are preferred.
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Green shoot thinning, a highly labor-intensive operation, costs growers more 
than $650 per hectare ($265/acre on average), as reported by Dean (2016). If a 
mechanical shoot thinner is used successfully, the cost could be reduced to about 
$25 per hectare (~$10 per acre). In addition, 1 machine can replace up to 25 workers 
(productivity 25 h/ha vs. 1 h/ha; Dean, 2016). Therefore, mechanical shoot thinning 
is essential for the profitability and sustainability of wine grape production. 
However, currently available machines do not generally offer sufficient precision 
and speed. Some only focus on removing suckers from the trunk (e.g., Clemens 
Vineyard Equipment Inc., Rotary Brush).

In contrast, others remove green shoots with an unacceptable level of variability 
(10–85% shoot removal, Dokoozlian, 2013). The large variation of shoot removal is 
caused by (i) non-selective removal of shoots by the machine (many non-fruiting 
shoots arising from latent buds could be retained, while primary shoots bearing 
clusters are removed) and (ii) the need for manual adjustment of the height of the 
thinner (thinning heads) to keep it just below the cordon so that most of the shoots 
growing from the underside are removed. Because of the difficult viewing position, 
uneven ground surface, and irregular cordon position and orientation, it is highly 
challenging (sometimes even impossible) to maintain the desired height and orien-
tation of the thinning heads.

Automated thinning using a machine vision system to locate and estimate the 
orientation of the cordon trajectory would offer a more efficient and effective alter-
native to mechanical thinning. Majeed et  al. (2021) developed a machine vision 
system and integrated prototype (Fig. 6.13) for vineyards’ automated green shoot 
thinning. First, a machine vision system was developed using deep learning algo-
rithms to estimate cordon trajectories from different growth stages of green shoots 
(even when cordons are highly occluded with green shoots; Majeed et al., 2020a, b). 
A Kinect sensor was used to acquire the R-GBD information of grapevine canopies. 
Then, an integrated prototype was developed that can automatically position the 
thinning end-effector against the cordon trajectories. The field evaluation results 
showed that the integrated prototype could precisely position the thinning end- 
effector within ±1.5 cm of the cordon center. Further improvement in the vision, 
actuation, and control systems are currently going on to achieve the capability to 
replace the human operator.

6.4  Artificial Pollination

6.4.1  Introduction

As discussed in Sect. 6.1, profitability for fruit crop producers depends heavily on 
product quantity and quality – two components determined by the rate of pollination 
during the brief (but crucial) flowering stage. Currently, growers generally rely on a 
pollination system that includes renting hives of honeybees (i.e., pollinators) and 
planting extra trees to provide compatible pollen (i.e., pollenizers). Even after those 
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Fig. 6.13 An integrated prototype for automated green shoot thinning in vineyards consisted of a 
Kinect sensor, platform bed, and thinning manipulator

arrangements, environmental and weather conditions need to be favorable to achieve 
the desired level of pollination. This traditional approach to pollination is limited by 
variability and threatened by the changing climate and perennial challenges to the 
pollenizer-pollinator model. Tree fruit production could not exist as it does today 
without managed pollinators (i.e., Apis mellifera). Yet, in the past several decades, 
bee colonies have declined by over 40% nationwide.

Furthermore, variability in spring weather conditions affects pollinator activity 
and can result in smaller fruit set. These emerging issues are complicated by a host 
of perennial hurdles related to both pollinators (e.g., poor bee activity, uncertainty 
about how many hives are necessary and where to place them, increasing costs for 
hive rental, distribution of pollen-borne viruses by bees) and pollenizers (e.g., poor 
bloom overlap, uncertainty over pollenizer density and distribution, pollenizer trees 
as disease sources). The result is a multi-billion-dollar industry riddled with uncer-
tainty about the quantity and overall quality of its annual product.

There have been recent efforts to investigate the use of alternative pollenizers 
and/or insect pollinators. However, this effort is unlikely to yield sustainable 
improvements in the long term, as more crops are needed to feed a growing world 
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population. Alternatively, mechanical and robotic approaches (e.g., ground spray-
ers, UAS-based pollen spraying, robot bees, robotic precision pollinators) are cur-
rently being developed and evaluated in orchards that are expected to yield solutions 
that minimize the biological variability of the current pollinator + pollenizer model.

6.4.2  Mechanical and Robotic Pollination Techniques

Researchers worldwide are developing different types of artificial (or mechanical) 
pollination techniques for various types of crops. Both aerial platforms and ground 
platforms have been used in developing these techniques. UAS-based systems gen-
erally use small platforms and apply a bombing technology to spray pollens on 
canopy surfaces from the top. Alternative to these UAS platforms is bee-line flying 
robots developed and tested by Berman et al. (2011) and Abutalipov et al. (2016). 
These tiny platforms mimic bee behavior and have shown potential for pollinating 
fruit crops in orchards using a swarm robotics concept.

Artificial pollination using ground vehicles generally uses similar systems to 
agrochemical application systems. The machines are often designed to spray pollen 
suspended in a liquid or dust medium to target canopy areas. Electrostatic spraying 
and other spraying technologies have been tested to optimize the type and size of 
nozzles, operating pressure, flow rate, carrier medium, and distance to bloom so that 
the level of pollination and fruit set could be achieved. One such study was carried 
out recently at Washington State University by Whiting (2017) (Fig.  6.14). An 

Fig. 6.14 An electrostatic sprayer retrofitted by Dr. Mathew Whiting and his team at Washington 
State University to apply pollens, being evaluated in a cherry orchard in Prosser, WA. (Picture by 
TJ Mullinax/Good Fruit Grower)
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electrostatic sprayer was tested to broadcast pollens onto cherry canopy surfaces, 
which showed increased effectiveness in depositing pollens on flower stigma than 
natural pollination with bees.

Similarly, Gan-Mor et al. (2003) and Gan-Mor et al. (2009) developed and tested 
electrostatic pollen sprayers to artificially pollinate almond, date, kiwifruit, and pis-
tachio. Such mechanical pollination technologies have been demonstrated to be 
effective and useful in various production needs and show potential to be an alterna-
tive to the natural pollination process. In addition to an evaluation in research pro-
grams, there have been some commercialization efforts to bring this technology to 
commercial orchards (e.g., a mechanical blower system commercialized by 
PollenPlusTM, New Zealand).

The mass artificial pollination techniques discussed above are simpler and easy to 
operate. Still, they are inefficient as they broadcast pollens to wide canopy regions 
without regard to where the target flowers are. To address this challenge, researchers 
are developing machine vision and robotic systems (with manipulators and end- 
effectors) for targeted pollination of desired flowers (e.g., Fig. 6.15). Various studies 
on detecting/segmenting flowers and flower clusters in fruit trees have been discussed 
earlier in the “Precision Thinning” section (see Sect. 6.3.2 for more details). In addi-
tion, there have been a few specific efforts to develop robotic pollination systems for 
fruit crops. One such study was conducted by Duke et al. (2017) and Barnett et al. 
(2017). Their robot was evaluated in kiwifruit using an autonomous platform and a 
spray manipulator. The vision system included an RGB camera and a CNN-based 
image processing technique for flower detection. Field evaluation results showed that 

Fig. 6.15 A schematic of the robotic precision pollinator system currently under development at 
Washington State University. (The project also includes researchers from Pennsylvania State 
University)
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the flower detection accuracy was >70%, and more than 80% of the detected flowers 
were pollinated with the robotic system. Similarly, Yuan et al. (2016) presented a 
robotic solution for pollinating tomato flowers in a greenhouse. This robotic system 
was mounted on a mobile platform and consisted of four-DoF manipulators and a 
spray nozzle as its end-effector. The system used a binocular camera to capture flower 
clusters’ images, and color and size features were used to segment the clusters out. 
The robotic system can recognize 80% of the flower clusters with at least two flowers 
and pollinate (spray the pollen) with a 69.6% success rate.

When successfully adopted in commercial operations, the targeted application of 
pollens with robotic machines – rather than spraying trees en masse – will play a 
critical role in the efficient use of pollen and may increase deposition, improve crop- 
load control, and minimize off-target drift (Patel et al., 2016; Sparks, 2014; Dung 
et al., 2013; Bechar et al., 2008). These innovative technologies also can alleviate 
growers of considerable risk associated with insufficient pollination as it relies cur-
rently on natural processes that are in decline, sensitive to environmental conditions, 
and amenable to distributing viral diseases. The success of the robotic pollination 
will also avoid complexity in the cropping system (for planting pollenizer trees and 
hiring beehives) and increases the planting area for target crops (e.g., apples).

The development of practical robotic systems for thinning faces various chal-
lenges, like the robotic thinning systems discussed in Sect. 6.3.2. One of those chal-
lenges is the capability of the vision system to identify the king flower to perform 
pollination at the right window when only the king flower is open in most of the 
floral buds. The challenge originates from the fact that the blossom in fruit trees 
opens over a few days to a couple of weeks. In comparison to the continual presence 
of natural pollinators like bees over the flowering window, artificial pollination is 
generally a one-time operation, thus limiting the opportunity to pollinate sufficient 
flowers. However, suppose there is a possibility of choosing the window smartly. In 
that case, it could provide an excellent opportunity to implement an effective crop- 
load management via artificial pollination using mechanical or robotic means. More 
studies on this aspect would be essential in the future.

6.5  Challenges and Future Directions

As discussed in the earlier sections, there has been a wide range of research and 
development activities worldwide to develop automated and robotic solutions for 
precision and selective crop-load management operations. Some private companies 
such as Vision Robotics (San Diego, CA) and ATRIA Innovation (Nave, Spain) 
have also been developing robotic pruning, thinning, and/or pollination solutions. 
However, no commercial success has yet been achieved in crop-load management 
operations. In general, robotic operations in the agricultural fields are challenged by 
three factors: (i) uncertain, variable, and complex canopy, lighting, and environmen-
tal conditions; (ii) plant and produce damage; and (iii) slower speed, high cost, and 
lack of adoption (Karkee & Zhang, 2021). For example, flowers grow in uncertain 
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canopy locations in tight clusters, whereas tree branches vary widely in shape, size, 
and location over space and time.

Many studies have been conducted in the area of perception of fruit tree canopies 
for various crop-load management operations (e.g., pruning and thinning) using dif-
ferent kinds of sensors/cameras and image processing techniques. However, many 
of these past studies utilized some environment control mechanisms to improve 
uniformity and minimize the uncertainty in the canopy lighting conditions. For 
example, some of these studies used canopy covers (Botterill et al., 2017). Other 
studies were carried out in laboratory conditions to avoid direct sunlight, provide 
uniform illumination using artificial lighting, and remove complex backgrounds 
from the desired tree canopies. Though such amendments helped improve the per-
formance of the vision system in the orchard environment, they added complexity 
to the overall system. They reduced the practical feasibility of commercial adoption 
of robotic crop-load management techniques in field conditions. Advancement in AI 
tools such as deep learning has, to some extent, addressed this problem and has 
improved the accuracy and robustness of machine vision systems both in indoor and 
outdoor conditions. Further development and adoption of deep learning-based and 
other robust, efficient, and reliable machine vision systems remain critical for devel-
oping practically applicable and commercially viable robotic/automated systems 
for crop-load management.

It is also noted that commercial viability can further be improved by developing 
multipurpose robotic machines. There has been a great advancement in robotic 
picking machines by researchers like the authors of this chapter (Silwal, 2016; 
Silwal et  al., 2017) and private companies, such as FFRobotics (Haifa, Israel). 
However, those complex and expensive machines would be operating in the field 
only about 3 months over the year. If such a machine could be designed to perform 
multiple field operations ranging from canopy management (e.g., tree training), 
crop-load management (e.g., flower thinning), and pest control (e.g., targeted appli-
cation of pesticide) to crop harvesting by only replacing the end-effectors of the 
machine in a modular fashion, the high cost of such machines could be more justifi-
able, and commercial adoption could be accelerated.

The structure of the fruit tree is complex due to its biological nature. Fruit tree 
growers in recent decades moved toward the trellis trained structure because of the 
possibility of achieving a high density of fruit trees, high yield, and quality of fruit, 
which also opened up the opportunities for the mechanical and robotic operation for 
various field operations (Majeed et al., 2020c). Simplified training systems make 
pruning, thinning, and other crop-load management operations viable. For example, 
UFO cherries offer a system where pruning can be, theoretically, a mass removal of 
all the secondary branches growing laterally from the vertical offshoots. In such a 
case, a pruning system could now be simplified to include a round cutter that can 
follow the trajectory of the offshoot from bottom to top so that everything growing 
laterally would be removed without regard to their location and size.

Similarly, all the secondary branches growing vertically above the horizontally 
trained branches could be removed using a chainsaw end-effector in the formal 
apple orchards. These opportunities indicate that further simplification of canopies, 
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particularly to keep them narrow and have a simpler canopy skeleton, would allow 
for simpler, objective crop-load management strategies (e.g., objective pruning 
rules) and relatively simpler robotic manipulation (e.g., linear access to thin flow-
ers). These opportunities can lead to more effective and commercially viable robotic 
solutions for various crop-load management operations.

Studies found that various tasks, including perception, decision-making, and 
field implementation of the robotic operation, have unique challenges in the orchard 
environment. For example, Karkee et al. (2014) found that implementing various 
pruning strategies, such as removing diseased branches, was not easy for a robotic 
system due to the lack of a desired sensing system. This finding indicates that preci-
sion crop-load operations such as pruning, thinning, and pollination of fruit trees 
may best be achieved through human-robot collaboration, where human performs 
tasks requiring strong sensing capabilities, human judgments, and complex manipu-
lation. In contrast, robotic systems perform tasks that can be performed with effi-
cient machine vision systems, objective rule-based decisions, and simpler (e.g., 
linear) manipulation. Bechar and Edan (2003) found that a proper level of human- 
robot collaboration could substantially increase fruit detectability in orchards, 
applying to flower and branch detection and localization. One essential requirement 
for such technology is to have a proper training method for robots to acquire human 
knowledge in in-scenario data.

For real-time field operation with desired precision, robotic solutions for orchard 
operations require high-resolution imaging and image analysis, fast sensing sys-
tems, effective end-effector techniques, and fast and low-cost manipulation. Newer, 
low-cost sensors, AI tools such as deep learning, modular robotic technologies, and 
increased capability and decreasing cost of computation (e.g., graphics processing 
units) are providing new opportunities to develop faster, reliable, and robust robotic 
solutions that could soon lead to commercially viable systems for selective pruning 
for fruit trees.
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Chapter 7
Mechanical Harvesting

Daniel Guyer

Abstract Mechanical harvest of tree fruit and grapes involves a number of nearly 
endless, as well as highly variable, factors and challenges, much in part due to the 
fact that biological systems are not “ideal” systems under which mechanization and 
automation have traditionally been successfully developed. This chapter is a general 
overview of many of the fundamental factors and challenges that surround mechani-
cal harvesting and the development of mechanical harvesting systems and provides 
some examples of various current and possible future concepts.

7.1  History, Perspective, and Evolution

The push and need for mechanical harvest in fruit production can basically be bro-
ken down into two purposes – the first being to improve production efficiency and 
profitability and the second being concerns and challenges surrounding labor avail-
ability – with there certainly being some overlap. The latter purpose has been par-
tially cyclical, at least in the USA, and has at times been politically based. For 
instance, the Cesar Chavez movement around the 1970s and then diminishing labor 
availability due to changing worldwide economic situations and immigration fac-
tors rising to a much higher issue level beginning around 2000 are examples that 
have led to heightened attention and funding push to develop mechanized fruit har-
vest technology and systems. Harvest mechanization not only helps to reduce the 
need to perform physically demanding labor tasks but also assists growers, espe-
cially those of larger scale, to complete harvest operations during the optimal har-
vest window for maximizing quality and yield and thus profitability.

Historically, most hand harvest has been very effective for multiple reasons. 
High capital investments for machinery development, as well as for the grower to 
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purchase, have led to lobbying for easier access and inexpensive labor (Sarig, 2012). 
It appears, however, that the crossover point has been reached for more and more 
commodities due to technological advancements, economies of scale, and the 
changes in the labor environment. A general qualitative example is shown in 
Fig. 7.1, and such lines and crossover points will vary by operation size.

The dividing line between the definition of manual and mechanical harvest varies 
as systems exist that are “harvest-assist,” whereas a portion of the duty required of 
a traditional fully manual/human system is mechanized. At the commercially avail-
able level, these include harvest-assist systems or components which do the mun-
dane tasks not requiring sophisticated manipulation or intelligence, such as 
platforms that move and position manual pickers within the orchard and/or systems 
that convey the fruit between the picker and the collection bin, thus allowing the 
time spent for highly intelligent and articulate aspects of selecting, locating, and 
removing the fruit, all of which the human is so effective and manipulative in doing, 
to be maximized. These systems, as they are and as “tools,” have proven highly 
effective as well as being potential important steps or components toward possible 
full automation. The focus of this chapter is directed on mechanical harvest systems 
that remove the fruit without physical contact between the fruit and a human.

Successful transition from manual labor to mechanized systems involves a broad 
“systems approach” integrating (1) tree/plant adaptation, (2) machine capabilities, 
and (3) postharvest (in field or after) sorting and handling. Such systems must also 
look beyond just the integration of factors directly related to the harvest aspects, to 
the broader scope of overall production and final product factors and economics. 
This would include how might changing the plant system to better align with the 
mechanical and electronic systems affect total fruit production/yield and quality, 
tree longevity, and subsequent year(s) fruiting or other production operations such 
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as disease and pest spread and control. The solutions, to be successful, must address 
the production bottom line with a broad perspective over the life of an orchard. 
Developments of mechanical harvest systems to date have come from commercial 
companies where several systems exist for processing-destined fruits; academic- 
based research and development which is significantly focused on fresh market 
automation/mechanization systems; and growers who are amazing innovators in 
their own right and quite often in combination or joint venture with one or more 
entities.

Postharvest sorting systems are likely an important and critical tangential tech-
nology with the implementation of, or transition into, mechanical harvest as quality 
issues/damage and variability of maturity are likely to be much greater in mechani-
cally harvested product. Thus, parallel implementation of postharvest technology is 
needed to support mechanical harvesting. Fortunately, postharvest sorting is well 
advanced with the exception of some internal detection, and mechanical harvest 
issues would mostly be external or at the surface of the commodity (bruising/cuts/
tears/color). Sorting and leaving culls in the field is potentially an option as part of 
mechanical harvest; however, everything must be taken into consideration as an 
overall system, as leaving culled fruit in the orchard/vineyard could lead to pest or 
disease issues.

Fresh market mechanical harvest will only occur successfully when plant char-
acteristics and machine designs are integrated into compatible systems (Peterson, 
2005), which minimize impact instances of fruit to fruit and fruit to limb while 
detaching and while falling and fruit upon fruit and fruit to catching surface at the 
point of contact with catching system.

7.2  General Considerations, Goals, and Challenges 
Associated with Harvest Method Selection

Several factors need to be considered in mechanical harvesting, which will help 
determine the goals and tolerances and dictate the design.

 A. End use: Is the fruit destined for fresh or processing use? This will usually dic-
tate the level of fruit quality that must be maintained. While damage to 
processing- destined fruit can generally be tolerated to certain levels, there are 
limits such that the yield of the processed product is not adversely affected. An 
example is with tart cherries, where the fruit must not be damaged to a level such 
that juice and pulp are lost, and equally important, the fruit must maintain its 
shape integrity such that it seats itself properly in the pitting machines, so pits 
do not end up in the final product. Grapes for processing can tolerate significant 
damage as long as desirable juices are not lost, as the grapes are destined to be 
crushed anyway.

 B. Single- or multiple-pass requirements: Does the fruit on a given tree/vine ripen 
with a high level of uniformity such that a single pass of harvest is sufficient, or 
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must the harvest process take into consideration the ability for multiple harvests 
of the same plant over the harvest season and thus not jeopardize immature fruit?

 C. Economic feasibility and breakeven points: What rates and at what cost per unit 
must the mechanical harvesting system achieve? The cost per area (acre/hect-
are), or per weight unit, of different harvest approaches is highly variable, and 
the breakeven point of incorporating manual or mechanized systems (or some-
thing in between) will vary along with the parameters used to conduct or base 
the analysis. For example, harvest system yield loss (to ground or left on plant 
which has been studied to show ranges from approx. 5–10% in grapes) will 
generally cause the breakeven point for mechanical harvest to rise with an 
increase in price of the commodity as will increases on fixed and variable 
machine costs. Studies exist, for example, Jobbagy and Kristof (2018), to show 
some of these relationships and the range of cost and reasons for such. It suffices 
to say studies show the breakeven points will vary by size of operation, cost of 
labor, fixed and variable machine costs, and cultivar (foliage density, height, 
location of clusters, maturity uniformity) and even from year to year within a 
given operation due to growing conditions or maturity of fruit. In general, break-
even curves, such as shown here in Fig. 7.2, can be quantitatively developed for 
each cost parameter, but the overall decision is much more highly dimensional.

 D. Food safety: Is a goal of the harvesting system to reduce human contact, and/or 
are there other food safety considerations that must be worked with? Are the 
concerns over food safety higher or lower for mechanical harvest vs. manual 
harvest for a given commodity?

 E. Residuals in harvested fruit: How much non-fruit material can be tolerated so as 
not to impact the final product? The impact of residuals such as leaves, stems, 
and any other material other than the fruit (commonly referred to as MOG in 
grapes) and poor quality or infected fruit on final product quality such as wine 
has been studied with mixed results. Generally, minimizing such material is 
desirable; and whether manual or mechanical harvest results in higher percent-
ages of such is also shown with mixed findings in studies.
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 F. Optimal harvest window/timing: Can product quality, and therefore net returns, 
be increased by the ability of mechanical harvest to narrow the harvest window 
and harvest fruit at the optimal point of maturity? This is a quite universally 
acknowledged benefit in most fruit industries.

 G. Plant tolerance: How much damage from mechanical systems can the tree/vine 
tolerate to avoid insect and disease and other acceleration of tree mortality or 
damage to future fruiting?

 H. Night operation: Can mechanical harvest lead to night operation and extend 
working hours for harvest and/or help maximize quality and reduce field heat 
removal costs through harvest during cooler nighttime temperatures? This also 
relates to optimal harvest timing, as noted in F above.

7.3  Factors and Variables That Influence or Are Associated 
with Fruit Detachment, Mechanical Harvest, and System 
Development Potential

7.3.1  Plant Physiology

Multiple factors exist related to plant physiology and its relationship with mechani-
cal harvesting; the most obvious is, of course, the separation of the fruit from the 
tree or vine. This occurs naturally/physiologically over a period of time due to 
abscission of the fruit from its stem and/or the stem from the plant. There is consid-
erable research and understanding of this process historically, both from the biologi-
cal and mechanical aspects, as well as how this natural process can be influenced by 
chemical (often hormonal-based) application intervention. Such intervention, 
whether chemical or through plant management (pruning, support structure, etc.), 
supports two things:

 (a) Narrowing the window in which the fruit are physiologically ready/able to 
detach and thus supporting single-pass harvesting. This window can also be 
influenced by tree/plant “design” and crop management techniques. If all fruit 
are subjected to the same “micro-environment” within a given plant, this will 
reduce maturity variability on the tree and within the orchard/vineyard and 
increase uniformity in harvested product fruit maturity.

 (b) Reducing the force/energy required to separate the fruit from the stem, thus 
leading to less energy input which subsequently leads to less potential plant 
damage and less kinetic energy (motion) of the fruit. Kinetic energy tends to 
cause damage from higher energy impacts, during and following any mecha-
nized induced fruit detachment process.
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7.3.2  Coupled Physiological and Physical

The following are parameters related to the fruit/plant which cause variances in fruit 
motion with the same induced mechanical excitation/vibration:

• Size of fruit.
• Stem length.
• Stem stiffness.
• Fruit location on plant in relationship to harvest energy impact location.
• Plant structure and age, including limb size and stiffness, and pruning.
• Fruit crop load (yield) on plant.
• Foliage density and limb structuring (willowy or stiff or between).
• Fruit growing system, for example, trellis and posts, and the effects it has on 

potential damage to harvester or trellis system on top of vibration/oscillation 
characteristic influence.

• Cultivar variability (maturity, firm fruit, limb length, and stiffness).

7.3.3  Mechanically Induced

The following are parameters related to the applied mechanical force to induce 
detachment:

• Amplitude of impact/vibration.
• Frequency of impact/vibration.
• Direction/pattern of excitation.

7.3.4  Others

• Orchard/vineyard topography which will impact fruit motion/flow on catching 
components and conveyors.

• Stem or stemless final product.
• Integrity/quality of final harvested fruit.
• Minimizing damage to tree/vine in general and especially future fruiting sites.
• Uniformity of fruit maturity and single or multiple harvest passes (as it relates to 

how vigorously to remove fruit).
• Fruit removal efficiency necessary.

Each of these influences the detachment of fruit, or the design approach toward 
such, as part of a mechanical harvesting system for a given fruit commodity, and 
compromises are the norm and will vary by user and commodity and the specific 
economics for a particular operation.
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7.4  Engineering Concepts, Theory, and Biological Variability 
Behind Fruit Removal

Whether hand/human, mass, semi-mass, or automatic/robotic-based harvest, 
detachment forces come into play unless the stem is cut, whereupon locating and 
cutting the stem is a different venture/process. Numerous structured laboratory as 
well as field-instrumented/field-measured studies (e.g., Cooke & Rand, 1969; 
Garmen et al., 1972; Du et al., 2012; Torregrosa et al., 2014; Zhou et al., 2016) have 
been conducted and models and theories proposed, related to quantifying the 
dynamics and specific forces required, and optimal, for fruit detachment related to 
mechanical harvesting. Examples of such approaches and dynamics include:

 1. Minimal fruit movement with rapid tensile force along the stem.
 2. Unstable/radical movement causing stem bending, etc.
 3. Subjecting the plant to a series of chaotic motions/conditions to cover the range 

of bio-variability and ultimately a gamut of optimal detachment dynamics even 
within a given single plant.

7.4.1  Theoretical Types of Dynamic Motions and Subsequent 
Static and Dynamic Forces Occurring during Vibration/
Shaking or Other Forces Applied to the Tree/Vine 
During Mechanical Harvest

 A. Tensile: A tensile force in this context is considered a force applied along the 
direction of the stem, i.e., pulling the fruit “straight” off. In this situation, all 
biological attachment mechanisms remaining at the abscission zone/point and 
holding the fruit to the stem, or the stem to the plant, are acting together in paral-
lel, and thus a higher force threshold is required to detach the fruit. However, 
with a dynamic motion applied along the direction of the stem, the fruit weight 
can be used to help create the force to overcome the force required to detach. 
Additionally, for some fruit, such a force can reduce other movements of the 
fruit and thus minimize the potential for additional energy of motion, which can 
result in higher or multiple quality-reducing impacts during or after the 
detachment.

 B. Pendulum/centrifugal: Similar force along the stem as tensile but caused by 
centrifugal force during swinging. Additionally, some degree of “whip” can 
occur at the end of the swing, creating some amount of bending at the abscission 
zone. Stem length and stiffness are two of the factors that play a role in this 
motion and the forces generated during excitation.

 C. Torsional: In this situation, the fruit is turned or pivoted about the stem axis, and 
“shear forces” are created at the abscission zone to which the tissue may be less 
resistive, thus allowing easier removal. The plant is not evolved to strongly resist 
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this unnaturally occurring force. However, generating a solely torsional force is 
challenging other than by manual hand harvesting or possibly robotic harvest-
ing. The resulting lower force required to remove the fruit with torsional motion 
can lead to less fruit or plant (such as fruiting spur) damage.

 D. Bending/tilting: This motion or situation, in theory, involves more of a “progres-
sive breaking” of the natural attachment strength of the fruit at the abscission 
zone. The tilting or bending subjects one side of the abscission zone to a greater 
force, thus resulting in the yielding of attachment. This progresses across the 
abscission zone resulting in lower maximum force required to remove the fruit 
and potentially less damage to the fruit and/or plant. This is a common hand- 
picking motion and is a motion that is either directly or indirectly created at 
some point in most currently successful mechanized harvest systems.

Each of these motions/forces (Fig. 7.3) can be theorized, studied, and tested. But, 
in the end, there are multiple actions happening simultaneously when dealing with 
field applications. Additionally, this is all occurring in a biological system in which 
there is minimal consistency or repeatability to speak of; thus, theory and controlled 
tests are only partially applicable. However, modeling can help be a predictor 
for design.

Fruit motion and detachment have been modeled extensively, but there are bio-
logical variability and many more degrees of freedom that take over and prevent the 
situation from being an “ideal” system during the actual field harvest. Often an 
experienced trunk shaker operator will make optimal adjustments on the fly. Short 
bursts tend to create a range of dynamics in the tree and to the fruit, and thus effec-
tive detachment is more likely to be achieved because somewhere within that range, 
an optimal removal force/motion, or a combination thereof, will present itself. 
Additionally, it can be theorized that, in practicality, multiple smaller movements 
and/or forces can potentially loosen and ultimately detach the fruit due to repetitive 
fatigue, much in part similar to yield (breaking) in metals after bending back and 
forth with repeated cycles. Supportive of this theory is fruit detaching from the plant 
during a wind event where both physical and physiological loosening at the abscis-
sion zone occur.

Fig. 7.3 Theoretical detachment modes. (Figure by Virginia Rinkel)
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It should also be noted that the optimal detachment motion might not be best to 
maintain high fruit quality. Therefore, compromise may be required, and this is 
again an example of the need to consider the development of a mechanical harvester 
within the context of the overall “system.” If not considered as a systems approach, 
there may be initial unit operation success but long-term failure.

7.4.2  Fundamental Concepts of Mechanical Harvest

The initial categorization of mechanical harvesting relates to whether the system is 
based on direct or indirect energy transfer to fruit, i.e., does a physical member of 
the harvester directly impact/touch the fruit or is energy from impact or vibration 
transferred through the tree or vine and to the fruit and stem?

An overview of basic mechanical harvest systems is as follows:

7.4.2.1  Trunk Shaking: Indirect Detachment

Trunk-based shaking systems are based on a single clamping event to the main 
trunk of the tree, and the entire tree is given a shaking motion in a single plane. The 
“clamp” is generally a heavy floating head that is suspended from the harvester 
(often under a catching frame; see later section) that squeezes two large pads against 
opposing sides of the tree. The shaking motion/energy is induced by a hydraulically 
driven spinning offset weight, also within the suspended head. Energy/vibration/
motion is transferred from the trunk up through the primary and secondary branch-
ing, thus inducing physical motion of the fruit and/or relative motion and forces 
between the fruit and the tree/bush. The “pads” will vary in style but have been 
cylindrical hollow rubber horizontal “pillows” filled with ground walnut shells so as 
to be able to form to the tree shape and fit with good surface contact, and the shell 
material will not easily break down due to its hardness. Newer pads of hollow, 
thicker walled rubber cylinders are now seen on machines (see Fig. 7.4). These pads 
are usually draped with two layers of conveyor belting with grease between the lay-
ers to provide slippage between the belts instead of at the tree surface and thus mini-
mize damage to the tree bark and cambium. Much study and evolution have occurred 
on trunk shaking clamp styles, clamping pressure, and motion to minimize tree 
damage and optimize fruit removal. A skilled operator remains important! The 
duration, frequency, and amplitude of the shaking can be controlled and adjusted 
during the harvest to minimize tree and fruit damage and maximize removal. 
Hormone-based sprays are commonly carefully timed ahead of harvest date to 
induce loosening of the fruit attachment/abscission zone, so minimal force is 
required to detach the fruit. Trunk shaking has become “semi-continuous,” with 
intermittent stops at each tree.
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Fig. 7.4 Trunk tree shaking head

7.4.2.2  Limb Shaking: Indirect Detachment

This concept, like trunk shaking, transfers energy and motion to the tree but on a 
limb scale rather than a whole tree, and thus, since it deals with less tree mass, the 
systems require less size and energy. The positive aspects of limb shaking are the 
lower capital cost of the shaking system and the ability to potentially move the 
catching aspect of the mechanical harvest closer to the fruit, such as directly under 
the limbs, so as to reduce drop damage. Additionally, because only limbs are being 
shaken, the opportunity exists to induce the vibration/movement in a vertical motion 
or a horizontal motion or at another controlled angle to optimize fruit removal from 
a given limb. With limb shaking, the potential to cause trunk damage is eliminated 
(although limb damage could occur), and the energy is induced closer to the target 
(fruit) and not lost through travel through trunk and branching, thus giving a bit 
more control over the actual motion and forces at the fruit location on the limb. The 
negative aspect of limb shaking is the need to move around the tree and position so 
as to be able to shake every limb. Some limb shakers are handheld by humans, and 
others are attached to the machine. Limb shakers are rarely used and have become 
obsolete with successful newer alternative systems and large-scale orchards.

7.4.2.3  Canopy Shaking: Combination (Hybrid) of Indirect 
and Direct Detachment

Canopy shaking presents itself in several approaches or forms. One form is vertical 
shafts/spindles with long, firm tines, often fiberglass and numbering in the hundreds, 
protruding radially outward. The spindles, usually one on each side in an over-the-
row side enclosed machine, are passive in rotation and feed the tines into the tree/
plant canopy as the harvester travels over the row (see Fig. 7.5). A vibrational inducing 
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system consisting of rotating off-center weights is mounted at the top of each of the 
vertical shafts causing the spindles to vibrate back and forth while engaged within 
the canopy, resulting in lower energy per contact point than a trunk or limb shaker, 
but many, many more contact points. The amplitude and frequency of vibration can 
be controlled with the offset and speed of rotation of the weights. The density of 
tines on each spindle is a variable and can be altered to optimize for the commodity 
and/or growing system. These spindle shakers are found in bush- type plant systems 
such as bramble harvesters and blueberry and are being evaluated or are available 
for some tree fruits such as cherries and oranges. They are a combination of indirect 
and direct energy inducing as the tines make hundreds of contacts with limbs and 
cause shaking of the limb; but also, with the high number of tines, it is common that 
a tine will directly contact the fruit and dislodge it. In tree systems where more 
“woody” plant material exists, the tines can cause plant tissue damage, which may 
or may not be a concern depending on plant type.

A second canopy shaking form is less engaging and more an entire moving or 
swaying of the plant/bush back and forth, sometimes termed pivotal (see Fig. 7.6). 
The concept of removal here is twofold. First, there are inertial forces transferred to 
the fruit as the entire plant is swayed/pivoted back and forth in a rapid reversal of 
direction, and second, there is considerable “abrasion” that can occur as leaves and 
small branches move about during the plant swaying, and thus the fruit can be 
directly contacted and dislodged. The plant movement is induced by drawing the 
plant through a narrow opening between several sets of horizontal bars or bow rods 
that synchronously thrust the plant back and forth perpendicular to the row and 
travel. The aggressiveness of the system can be tuned through the spacing between 
rods, stroke length, frequency of stroke, etc. This system is effective and common 
in grapes and blueberries. A significant overall “systems” concern with canopy 
shaking is the possible enhanced spreading of disease throughout the orchard as 
spores can carry on the machine from one tree or area to the next.

Fig. 7.5 Vertical spindle canopy shaking harvest concepts: (a) commercial blueberry harvester 
tested on small tart cherry and (b) spindle harvester developed for small trees specifically. (Photos 
by Daniel Guyer)
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Fig. 7.6 Internal chute of pivot or sway canopy mechanical harvester. (Photo by Daniel Guyer)

7.4.2.4  Air Blast: Combination (Hybrid) of Indirect 
and Direct Detachment

This approach uses high-velocity air, which is usually pulsed in some fashion within 
a semi-enclosed over-the-row chassis, to cause the fruit itself, or the plant as a 
whole, to move and shake and create fruit detachment motion and forces (see 
Fig. 7.7). This system covers a range of basic concepts in that the mechanism induc-
ing the movement, albeit air, can come in direct contact with fruit and cause it to 
detach, but also the air is causing the entire plant to sway or move in erratic motion 
causing plant tissue to interact and detach fruit through direct physical contact as 
well as cause movement of the limbs which subsequently moves the fruit and cre-
ates dynamic removal forces. This system initially seems to idealistically be an 
approach of high potential success, including potentially less fruit and/or plant dam-
age. Systems have been developed but have not been adopted as optimal forces for 
removal do not seem to be able to be developed in the process. While the plant 
movement may appear rather “violent,” the movement is ultimately gentler, and the 
slight “jerking” or “snapping” motion needed and created in rapid directional 
changes does not seem to be generated in air blast systems. The fruit that is removed 
is done so via abrasion/contact between plant parts. Additionally, much of the 
energy put into moving the air is not efficiently utilized, and the leaves absorb and/
or block a lot of the energy, thus resulting in rather poor energy efficiency.
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Fig. 7.7 Internal chute of pulsed air blast canopy shaking trial concept. (Photo by Daniel Guyer)

Each of these four basic concepts has advantages and disadvantages, as noted. 
One thing common to each is that fruit quality and, in part, a level of selective har-
vest can be addressed via the amount of energy applied to the tree/vine/plant. If the 
economics, logistics, and plant are such that a single-pass harvest is desired or 
required, then higher energy and aggressiveness can be implemented, whereas it is 
also possible to more gently introduce energy such that only the ripest fruit is 
detached each pass over time and the remaining fruit are minimally damaged. With 
proper “tuning” of the system and careful operation, there is potential, especially 
with canopy spindle harvesters, to harvest fresh market-destined fruit. Additionally, 
canopy shaking and air blast spraying allow for continuous flow harvest, which is an 
easier concept for the operators.

7.4.2.5  Catching Systems

In general, “catching” the fruit after detachment is as important of a challenge as 
separating the fruit from the plant. Catching systems must attempt to minimize fruit 
damage and minimize loss of harvested fruit to the ground. Catching concepts vary 
with the type of detachment system. For trunk shakers, the catching system must 
encompass the entire surface area under the tree plus an even greater area as some 
fruit tends to be tossed a bit beyond the area under the tree when subjected to shak-
ing. Dual roll-out tarps, one on each side of the trunk, that extend under the tree 
from one side of the tree to the other and then are mechanically drawn in toward a 
collection conveyor after shaking, with workers holding the distant side, is one 
lower capital cost concept, but one which has become rather obsolete due to speed 
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of operation and need for several additional workers (see Fig. 7.8). There can also 
be fruit damage issues as the shaking machine is separate and must drive onto the 
tarp each time and will roll over fruit when it retreats. There is also some tendency 
for some fruit to be squeezed in the tarp retraction process.

The “one-man” machine concept combines the shaking head and the catching 
tarp in one machine and is operated by a single individual (see Fig. 7.9). The har-
vester has an extended front end that the operator drives under the tree and positions 
the shaking head around the tree trunk, after which a catching tarp unfolds as two 
half circles and encompasses the entire underside of the tree, looking much like an 
inverted umbrella. The shaken fruit falls into the tarp and funnels to the center under 
the tree, where the harvester has conveyors to move the fruit to the back of the 
machine and into holding tanks. The machine then draws the umbrella tarp back 
into folded position, releases the shaker from the tree, pulls back into the row 
between the trees, and advances to the next tree. This harvester works well with the 
positive aspect being that only one operator is required; however, the negative aspect 
is that significant time is required in reversing and unfolding and refolding, etc., 
between each tree. Such an approach could be considered a semi-batch process that 
harvests at a rate in the range of one tree per minute, but something that has been an 
appropriate harvester for smaller acreage growers.

Double-incline harvest systems are most popular and efficient if the grower is of 
acreage size, as most are, for the economics of scale to allow for this system. This 
system requires two separate machines, and each has large tarps sloped in basically 
a single plane, from beyond the edge of the tree down to the trunk where the shaker 
is engaged and is long enough to cover the width of the tree (see Fig. 7.10). The 
tarps are permanently drawn/suspended over metal framing and covering one-half 
of the area under the tree, and the framing can be partially retracted from the tree 
trunk for travel to the next tree. One of the two machines travels down the row on 
one side of the tree and has a conveyor the length of the tarp at the bottom under the 

Fig. 7.8 Roll-out tarp catching concept. (Photo by Bill Klein)
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Fig. 7.9 “One-man” harvester: (a) folded moving from tree to tree and (b) in unfolded position 
during trunk shaking. (Photos by Daniel Guyer).

Fig. 7.10 Double-incline trunk shaking system: (a) closer view with shaking mechanism visible 
and (b) more distant view showing overall size. (Photos by Daniel Guyer)

tree into which the fruit from both machines is collected. The second machine has 
an inclined surface as well on the opposing side and also carries the shaker head 
under the tarp, which extends a short distance to the trunk and back for each tree 
cycle. Detached fruit falls from the tree and rolls down the tarp surfaces and into the 
conveyor, where it is then conveyed into the collection tank. These tarps are quite 
taut but have some “give” to help reduce fruit damage. The tension on the tarps can 
change with temperature and cause issues. This is a system common in tart cherries 
destined for processing and is effective because it is semi-continuous, and trees can 
be harvested at a rate of around four trees per minute depending on conditions and 
crop load. The positive aspects are the rate at which experienced operators can har-
vest, while the biggest drawback of double inclines is the initial cost and mainte-
nance of two machines.

Canopy shaking requires catching systems that can function continuously. This 
is most commonly accomplished with a tree/plant seal near the base of the plant and 
is constructed of many overlapping flower petal or fish scale-like Lexon or nylon 
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plates that extend in the center about 1/4 of the harvester’s internal width from each 
side. These plates are spring-loaded and sloped from the center toward the side, 
continuously forming around a tree trunk or vine, or plant stem as the harvester 
passes (see Fig. 7.11). When not engaged with the plant, the plates/scales from each 
side meet in the center to divert all falling fruit to the conveyance system under the 
tree along the outermost edge of the chute of the machine. With the continuous 
overlapping of the plates, regardless of their default or pushed back position, the 
catching surface/zone remains nearly fully sealed/covered. It is a very effective sys-
tem as long as there are no weeds or “outlier” plant stems, causing the plates to open 
further than necessary. The advantage is the excellent seal that occurs and captures 
fruit and the ability to operate continuously. The challenge with this catching sys-
tem is it is unidirectional and you cannot reverse direction and must continue to the 
end of the row or an opening in the row to be able to leave the row for any reason. 
Additionally, because the angle of the plates is fixed to slope toward the conveyors 
on flat ground when on sloping terrain, the plates on one side become flat, and fruit 
will not roll and can build up and be damaged or find its way to the ground during 
opening and closing of the plates around the plant. Self-leveling machines reduce 
this issue, and some newer catching systems are minimizing the size of the plates 
and incorporating short-distance conveyors to carry the fruit from the plates toward 
the primary lift conveyors, which is a more active rather than passive approach. It 
solves a problem but adds cost and maintenance. Fruit in a canopy type of system 
generally fall rather short distances at any one drop to the catching surface as it is 
dislodged from the plant and has to fall through several small distances down 
through the plant before making the final drop to the catching surface.

A researched future concept has been attempted, with the thought to develop 
some form of terracing within the tree or plant and incorporate catching surfaces 

Fig. 7.11 Tree seal “fish scale” fruit catching surface for canopy shakers: (a) showing full shoot 
and conveyors and (b) close-up of scale engagement with tree. (Photos by Daniel Guyer)
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under each “terrace” to bring the catching surface/mechanism closer to the fruit and 
therefore minimize drop distance.

7.5  Effectiveness: Examples of Current, Obsolete, 
and Unsuccessful Systems

7.5.1  Cherries

While some research and development efforts have addressed the potential for 
mechanical harvest for fresh market sweet cherry, most mechanical harvest for 
cherry is done with one-man (Fig. 7.9) or double-incline trunk shaking harvesters 
(Fig. 7.10) on tart/sour cherry (for processing) systems. The cherries are collected 
into tanks containing cold water for both cushioning the cherries when dropping 
into the tanks and to begin field heat removal. These large trunk shakers are also 
used for harvesting processing-destined sweet cherries. These systems have evolved 
to be gentler on the tree and the fruit and with trained operators can harvest cherries 
at a rate in the range of four trees per minute, which can equate to nearly 500 lbs. 
per minute if conditions are optimal. There is some promising investigation into 
using canopy shaking for tart cherries and using such for trees in their first 5 years 
after planting as they are at that time too tender and young for trunk shaking yet are 
small enough on which to operate over-the-row machinery. This can result in bring-
ing some positive cash flow from the harvest of very young trees, whereas, in the 
past, it has not existed. Canopy shaking coupled with modifying the growing system 
of the trees to be more dwarfing or bush-like could lead to canopy shaking through-
out the life of the orchard. This latter is an example of developing the machinery in 
concert with changes in the growing system to arrive at a new and hopefully 
improved approach that is more sustainable.

7.5.2  Oranges

Canopy shaking has been utilized in oranges for processing harvest with large 
spindle- tine systems. Depending on the size of trees, the system for larger trees may 
utilize two machines, having very long and stiff tines, in which each works from one 
side of the tree and each carries a collection surface and conveyor extending under 
the tree (see Fig. 7.12). A single over-the-row spindle-tine machine has been used 
on smaller trees. Like some apple shaking systems, fruit is sometimes shaken to the 
ground and subsequently retrieved with a sweeping and pickup machine.
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Fig. 7.12 Spindle-based canopy shaking concept of orange harvest system. (Photo by 
Daniel Guyer)

7.5.3  Grapes

With grape production involving long and relatively narrow trellised rows of vines 
containing fruit, canopy shaking with over-the-row bow-rod or sway-bar harvesters 
is effective and common (see Fig. 7.6). In grapes, the fruit is destined for processing 
and will be squeezed/damaged anyways, so aggressive shaking of the bush plus 
direct contact of the sway bars and rods on fruit clusters works well to remove the 
fruit with a combination of inertial forces via shaking of the vine plus direct hitting 
of the clusters by the shaking mechanism and via “abrasion” between plant parts. 
Because it is set to be quite aggressive, it is non-selective, and a considerable amount 
of material other than grapes, termed MOG, is collected and must be separated out, 
which supports that postharvest systems must often be developed in parallel with 
mechanical harvest/detachment systems. In some vineyards, the vines are tall and 
quite substantial and have a rather significant woody trunk, and thus some harvest-
ers utilize a form of trunk shaking that can operate continuously as it involves two 
parallel bars into which the trunks feed and the bars are shaken back and forth paral-
lel to the ground causing the grapes and vines above the stem/trunk to shake back 
and forth with high frequency and subsequently detaching the fruit. In this system, 
there is no direct physical contact of the shaking mechanism with the fruit and 
smaller vines of the plant.

Some advantages of mechanical harvesting in grapes are that studies show a 
human can harvest about 1–2 tons/day, whereas a machine can harvest 80–200 tons/
day. Related, the studies found a harvest cost of $230/ton for hand-harvest grapes 
and $115/ton for machine harvest. Additionally, a faster harvest (from picking to 
processing) is more desirable for many end products. Manual harvest logistics are 
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such that it requires more time to get an orchard/vineyard completed, and therefore 
not all the fruit can be harvested at the optimal time, some too early and some too 
late. Machine harvest also has the advantage of being able to harvest at night, which 
can extend the harvesting hours, and/or harvest can take place during cooler periods 
of the day.

Some disadvantages of mechanized grape harvest are humans can be more selec-
tive, but it requires training and financial motivation. Excessive leaves and twigs and 
insects are more likely with mechanical harvest, as is damage to the vine, with the 
latter providing disease and insect introduction sites. Some grape vineyard topogra-
phy is such that operating mechanical systems, even self-leveling machines, is not 
feasible or possible.

7.5.4  Apples

Trunk shaking combined with either a catching frame underneath or shaking to the 
ground and subsequently using a separate machine for sweep and pickup are two 
systems that exist but are uncommon for mechanical harvest of processing apples. 
The apples are shaken to the ground and swept up with brushes and conveying sys-
tems. For most applications, the food safety acts prohibit the use of fruit picked up 
off the ground due to potential fecal and other contamination. With apples being 
highly sensitive to bruising, apparent opportunities for mass or semi-mass harvest-
ing seem a large challenge for the fresh market. Most mechanical harvest focus for 
fresh market apples is on robotic or partial robotic systems that address fruit harvest 
on fruit-by-fruit basis (see below robotics section). Some study is being conducted 
on shake-and-catch systems that implement localized shaking and catching where 
the shaking of individual limbs occurs, and the growing structure is such that the 
catching surface can be brought into very close proximity under the branch, and the 
fruit falls only a short distance onto cushioned surfaces. Several mechanized 
“harvest- assist” systems are being developed to effectively support human pickers. 
However, such systems are not discussed here as they do not meet the definition of 
mechanical-induced detachment.

7.6  Robotics: The Future?

For a system to be considered robotic can have various interpretations. Here the 
discussion definition will be on systems that do all of detecting/locating, selectively 
harvesting, and bringing the fruit to a position ready for it to be further handled, 
essentially mimicking the human picker, although possibly doing so in a unique 
way. However, the goal to keep in mind is to harvest at a higher rate than a human 
(presuming hand labor is available), and as an example, for apples, one worker on 
an orchard platform can maintain a picking speed of approximately one apple every 
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1.5 s while actually picking, with an efficiency greater than 95%. Thus, replacing 
ten pickers with one machine would require building a robotic harvester that is ten 
times faster and picks gently enough to harvest 95% of the fruit successfully with-
out damage and do so at a cost less than the wage of ten human pickers 
(Vougioukas, 2019).

The breakdown of all the intelligent and skilled tasks a human picker conducts in 
the process of harvesting an individual fruit is quite amazing. These include identi-
fication, maturity/readiness determination, location, positioning, traversing through 
obstacles, grasping and applying proper harvest motion and force(s), carefully col-
lecting, and transporting to a collection point. Components/concepts are mostly 
separately being studied with some success to electronically/mechanically complete 
such tasks. However, putting it all together into one system adds significant com-
plexity. Often developments of such individual operations are trying to duplicate the 
human action, whereas it is also important to “think outside the box” and potentially 
complete the tasks in a completely unique way; and again, this is likely to mean a 
systems approach that involves unique electronic/mechanical tooling and systems 
along with an adaptation of the growing system.

Robotics or “automatic” harvesting must try and mimic all of these very articu-
late and advanced human sensing, decision, and physical operations OR the overall 
system must be changed to remove or simplify the need for a given subtask. One 
advancement that appears to no longer be a limiting factor is the computing power/
capacity/ability to process, in real time, the massive amount of data gathered and 
needed in making automated intelligent decisions.

7.6.1  Robotic Subtasks

Based on the chapter definition of a robotic system above, for discussion presenta-
tion purposes, a robotic system can be broken down into three “macro” aspects/
tasks: (1) identification of fruit and its location, (2) movement to the individual fruit 
location and detachment, and (3) controlling the detached fruit and moving it to the 
subsequent handling system.

7.6.1.1  Identification of Fruit and Its Location

It is reported (Bachche, 2015) that the visibility of fruit in conventional plantings is 
on the order of 40–50%, whereas the fruit visibility in more dwarfing/hedge/fruiting 
wall systems can be 75–80%; and this is increasing with highly managed fruiting 
walls on trellises. This combination of simplification of the environment and 
advances in optical components/hardware and high-power computing has helped 
advance the automated identification needed for robotic harvesting. Identification 
systems generally involve a high-resolution digital camera and image processing 
and pattern recognition algorithms that can detect the target (fruit) using either color 
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or shape recognition and usually a combination of these. Many studies exist to 
detect fruit on trees, with occlusion and clustering being two large challenges for 
identification for mechanical harvest. These are challenges that can be reduced with 
certain growing systems. The two automated visual approaches are to use continu-
ous imaging located on the end of the robotic positioning arm/device and continu-
ally updating and guiding as the robot moves toward the fruit (sometimes termed 
closed-loop) and to use cameras onboard the base unit that image the scene, and 
subsequently, the location of the fruit is determined via the geometry of the camera 
positions, often termed binocular vision. This is also termed open-loop. Another 
possible approach is 2-D imaging coupled with some other sensing such as laser 
range finding. Any degree of freedom which can be eliminated in getting to the fruit 
position greatly improves the success and practicality of mechanical harvest. 
Electronic/automated fruit identification on the tree and subsequent motion articula-
tion, while a component of robotic mechanical harvest, significantly overlap with 
fruit detection and other electronic tree assessments discussed to more extent in 
Chaps. 2 and 6.

7.6.1.2  Movement to Fruit Location and Detachment

Many exciting research efforts have been, and are being, undertaken in this interest-
ing sub-domain of mechanical harvesting. It is widely recognized that purely simu-
lating human intelligent and articulate movements within conventional growing 
systems is not a feasible approach; however, there have been attempts. More prom-
ising robotic approaches are associated with growing systems that reduce variables 
and simplify the scene and task. Prototype robotic systems have included hydraulic, 
pneumatic, and electrical-based operation for the movement to the fruit location and 
for operation of the end-effector in grasping and/or detaching the fruit. Some of the 
basic concepts attempted have been encompassing or grasping an individual fruit, 
or coming up under it with a small individual catching system, and including a con-
cept/means of knifing or scissoring of the stem as part of the overall end-effector. A 
second basic concept is to implement actual actuated grasping fingers, and most 
recently looking at the potential of soft robotics, and then conduct a picking motion 
similar to the tilt or twist motion of a human picker to detach the fruit. Navas et al. 
(2021) review some soft robotic efforts in the agricultural domain. Another concept 
is to implement linearly actuated arms that can move to the fruit, and the end- 
effector uses suction to grasp the fruit, and then either the end-effector or the entire 
arm twists and retracts to perform a detachment function. The work by Zhang et al. 
(2021) is an example of such. This latter system has the advantage of possibly being 
gentler on the fruit and only needing to see and address one side of the fruit without 
needing precision 3-D positioning information. The challenges for all of these sys-
tems are they must be rugged yet gentle, have high speed, and have the ability to 
adapt to varying shapes and, in many cases, adapt to interferences from branches 
and/or other fruit. Kootstra et al. (2021) and Zhou et al. (2021) present some recent 
reviews and synthesis of specialty crop robotic harvest systems and concepts and 
challenges.
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7.6.1.3  Controlling the Detached Fruit and Moving It to the Subsequent 
Handling System

For a robotic-type concept to be fully successful, the fruit needs to be transported 
from its position on the plant to the collection bin and do so rapidly or without over-
all harvesting delay as well as without damaging the fruit. This can be as challeng-
ing as the above location and detachment steps. One concept involves the obvious 
retraction of the picking “arm” back to a collection point with each fruit harvested 
and the release of the fruit into a bin or conveyor, which requires significant travel 
time in which the robot is not in the action of “harvesting.” Another concept is the 
use of vacuum through large-diameter padding-lined tubing, which is similarly used 
in human picking harvesting aid platforms, such as the DBR system (see Fig. 7.13) 
to allow the human picker to be more efficient and focused on the highly skilled 
task(s). In these concepts, the challenge is minimizing any bruising damage.

Examples of “robotic” systems are the robot by Abundant Robotics, which is 
shown in Fig. 7.14, and the FFRobotics system shown in Fig. 7.15. These systems 
are fully robotic and use vacuum for the detachment and, in one case, also for con-
veyance but require a rather highly structured nearly 2-D planer fruiting wall grow-
ing system. It is of note that such growing concepts are demonstrating positive 
horticultural results regardless of importance to mechanical harvest. These emerg-
ing systems are reporting a harvester replacing 20–25 human pickers per day, and 1 
harvester could cover approximately 125 acres in a season.

Significant study can be found historically and presently for each of these sub-
tasks, with putting them all together into a functioning system being less prevalent. 
However, those which are based on the least complex concepts are seeing emer-
gence at the potential commercial application level.

Fig. 7.13 Vacuum conveyance by DBR conveyance concepts. (Photo by Daniel Guyer)
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Fig. 7.14 Robotic harvest development by Abundant Robotics

Fig. 7.15 Robotic harvest development by FFRobotics

7.7  Summary

The challenge in mass or semi-mass mechanical harvest is generating the optimal 
force(s) to detach the fruit and, in doing so, limit damage to the tree/vine and care-
fully catching the commodity. While challenging, this is achievable in controlled 
and consistent growing systems but is exponentially difficult in highly variable bio-
logical environments. Robotic systems are emerging with the coupling of the sim-
plest mechanical concepts with plant systems which reduce variability and 
challenges showing the most promise over those attempting to mimic human pick-
ers in conventional fruit plant systems.
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As noted throughout this chapter, many of the concepts are possible and have 
been demonstrated in lab conditions and/or ideal field conditions. However, the 
added challenge of biological variability has prevented a no-fail solution and, sub-
sequently, full-scale commercialization. Nevertheless, the sense is we are at or very 
near the “breakeven” or “crossover” point for mechanical harvest in many more 
commodities and sizes of producers based on advancements in technology and 
computing and the costs associated with such vs. labor availability and cost. 
Merging, compromising, and compatibility of tree/plant design and machine design 
concepts is critical and essential.
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Chapter 8
Autonomous Platforms

Jeremy J. H. Karouta and Angela Ribeiro

Abstract In this chapter, we discuss how robotics is used in precision agriculture 
for orchards and vineyards to automate and simplify tasks. We focus on the aspects 
required for a system to function autonomously and less on the actual task. Topics 
include ways in which platforms track their positions, such as GPS; what types of 
sensors are generally used on top of location; and how this data is used for decision- 
making and human safety within the navigation and mobility concept. We also dis-
cuss other high-level topics, such as path planning and optimization and fleet 
management, to explain the necessary aspects that play behind the scenes. Lastly, 
we present an overview of existing commercial and emerging technologies for 
applications in orchards and vineyards.

8.1  Introduction

As more and more sensing, perception, and actuation applications emerge in the 
fields discussed in previous chapters, it is becoming more difficult to consider every 
aspect manually. The increasing workload is intensified by the labor shortage within 
several sectors (Taylor et al., 2012; Rye & Scott, 2017), as well as the increasing 
demand to feed the growing population. To implement new technologies, farmers, 
therefore, need to rely on autonomous platforms to carry out the tasks. We define an 
autonomous platform in an agricultural setting as a robot that carries out operations 
without manual intervention, often used to automate repetitive, hazardous, and/or 
easy operations to make the agricultural task more convenient for the human being. 
Carrying out operations without manual intervention requires the system to meet 
two basic autonomy principles: autonomous navigation and autonomous manipula-
tion. This chapter will discuss the aspects of the first in more detail, as the latter 
requires this platform when striving for full autonomy.
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For autonomous navigation to be possible, the system needs to be aware of its sur-
roundings in several ways. Firstly, knowledge of the platform’s location is crucial for 
the overall task, such that the platform can make decisions based on its position. 
Secondly, being able to perceive the local environment is also of great importance to 
avoid obstacles such as trees or vines, other obstacles, and people. Additionally, the 
system will need to be able to make decisions based on the perceived environment, 
such as reducing or eliminating the need for manual intervention.

In short, although it is possible to know and document the exact planting location 
of the trees and vines with high precision and low uncertainty, plants grow naturally. 
An autonomous system will therefore need to base its actions on the actual state of 
its surroundings to avoid obstacles such as branches and reduce the potential dam-
age to plants, crops, and the robot itself.

This chapter starts with a section on sensing, which explains the systems needed 
for positioning purposes and other sensing capabilities found in agricultural robots. 
Section 8.3 discusses the decision-making algorithms and how data processing is 
carried out. Section 8.4 is dedicated to planning and optimization architectures, 
which guide robotic platforms on a higher level. A brief discussion of the imple-
mentation actuators and their control systems is presented in Sect. 8.5, followed by 
an overview of necessities for fleet operation in Sect. 8.6. Section 8.7 presents some 
other solutions as well as examples of existing commercial and emerging technolo-
gies. Finally, concluding remarks are covered in Sect. 8.8.

8.2  Sensing

Agricultural autonomous platforms are designed to move themselves and the 
attached equipment to certain positions to carry out tasks. This means these systems 
will need to know their exact position and understand their environment before 
being able to make decisions. This section discusses the different sensing tech-
niques used within autonomous platforms and is structured to discuss course sens-
ing first and precision sensing last.

8.2.1  Absolute Positioning

To position themselves, autonomous platforms generally comprise a geospatial 
positioning system, often consisting of a global navigation satellite system (GNSS) 
receiver to make sense of GPS, Galileo, or other satellite positioning data. GNSS 
work by triangulating the distances measured from multiple satellite sources. 
Unfortunately, regular GNSS data only allows for positioning accuracy of about 
2–4 m, which can be sufficient for (autonomous) cars on a fixed road network. Still, 
depending on the required application, it often is too large for precision actuation on 
crops. Distances between vineyard rows can be as small as 50 cm, which requires a 
higher accuracy to navigate than in orchards with larger spaces between the trees. 
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To overcome this shortcoming, some studies increase accuracy using object detec-
tion and local sensing methods (García-Pérez et al., 2008). These methods are dis-
cussed in Sects. 8.2.2 and 8.2.3.

A more generalized approach to improve accuracy is to use GNSS augmentation. 
Satellite-Based Augmentation Systems (SBAS), like Europe’s EGNOS technology, 
or Ground-Based Augmentation Systems (GBAS), like Differential GPS (DGPS), 
can typically increase positioning accuracies to errors smaller than 1 m and in favor-
able conditions up to 2–5  cm. An example of such a technology is Real-Time 
Kinematic (RTK) positioning, widely applied in many commercial applications. 
This method falls under Observation Space Representation (OSR) technologies and 
relies on the user to send its approximate location to a processing station, which 
compares the measurement with those from base stations with known positions and 
sends a corrected position back to the user. Studies like Garrido et al. (2015, 2019) 
and Bengochea-Guevara et al. (2018) rely on this technology to accurately measure 
positioning. Nevertheless, this approach needs to be close to a base station (typi-
cally within 30–40  km) to assure high accuracy and needs two-way 
communication.

Specific approaches aim to lower the necessity for two-way communication and 
proximity to base stations by using State Space Representation (SSR) methods 
(Wabbena et al., 2005; Wang et al., 2018). SSR also uses base stations but uses their 
measurements to model the disturbances over an entire area and sends this correc-
tion model to the user.

Another way to improve accuracy is dead reckoning. This approach aims to com-
pute a current location using a previously known location (and orientation) and 
increment it with known or estimated speeds over the elapsed time. The term odom-
etry is also often used, which describes using motion sensors to estimate a change 
of position over time. A widely applied sensor is the inertial measurement unit 
(IMU), a composite sensor that comprises accelerometers, gyroscopes, and some-
times magnetometers (or compasses). Moreover, typically, an IMU has one of each 
sensor per axis of the vehicle to measure changes in any direction. Other solutions 
use encoder data obtained from the wheels or separate accelerometers, gyroscopes, 
and compasses. Studies such as Lan et al. (2019) aim to use the data from these sen-
sors to improve accuracy or reduce the required amount of GNSS data necessary. 
Note that when using dead reckoning, errors increase over time, and hence, regular 
inputs of reliable positioning data are necessary to maintain an accurate position 
over time. Nevertheless, also, in this case, other local sensing methods could be 
introduced to keep the errors low and reliable (Yang et al., 2020).

8.2.2  Relative Positioning

Another common issue with GNSS signals is that the canopy of the orchard or vine-
yard and other surfaces (e.g., agricultural vehicles themselves) reflect them and 
thereby induce extra uncertainty to the measurements (Valbuena et al. 2010). Even 
though odometry/dead reckoning is one available solution to overcome this by 
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augmenting the available signals, another way is to position oneself relatively to the 
plants. Relative positioning is defined as the placement of the vehicle with respect 
to other objects. In the case of agriculture, objects may refer to crops, plants, or the 
produce but also the ground and human beacons placed for local positioning pur-
poses such as (colored) poles or tags. Studies like Aqel et al. (2016) and Zaman 
et al. (2019) discuss visual odometry, which mainly focuses on tracking the robot’s 
motion by using camera images. Other studies focus on object detection to deduce 
location directly (Azevedo et al., 2019).

Furthermore, relative positioning is also used for a broader application, namely, 
object detection and avoidance (García-Pérez et al., 2005; Vasconez et al., 2019), 
but also that of object recognition for precision application purposes (Burgos- 
Artizzu et al., 2011; Gonzalez-de-Santos et al., 2017). The first has a goal to assess 
risks and take actions to minimize them, not only for the autonomous platform itself 
but also for the human operators and the crops. The goal of the latter use would be 
to perform the necessary action in a precise location, for example, fruit picking, 
which requires the robot to see where the fruit is with respect to its equipment, or a 
weeding robot that only applies herbicide on the weeds. The sensors used for these 
applications are discussed in Sect. 8.2.3, whereas the processing thereof and 
decision- making are discussed in Sect. 8.3.

8.2.3  Onboard Sensors

As explained in the previous section, autonomous platforms need different types of 
information to make good decisions. There are many types of sensors available and 
built into commercial equipment. We will mainly discuss noninvasive sensing tech-
niques, as many invasive ones (like soil and crop sampling) require relatively long 
processing times and are therefore not suitable for making real-time decisions. The 
first sensor we will discuss is perhaps the easiest to imagine; however, it is not as 
easy to implement.

8.2.3.1  Cameras

Briefly summarized, a camera is a device that captures (in our case, visible) light 
through a lens set and projects it on a photosensitive sensor that captures the inten-
sity values of certain wavelengths. The most common camera is the RGB (red, 
green, blue) camera, which can be found in most smartphones, but also the larger 
reflex cameras belong to this type. They are a good way to feed a system with the 
information that we humans are used to obtaining with our eyes. However, until 
recently, it was computationally very expensive to process this data into useful 
information. Current machine and deep learning techniques give us a digital way of 
mimicking brain-learning functions, thus making it possible to make images under-
standable to robots.
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Fig. 8.1 3D reconstruction of a vineyard (left) and adapted view of the data (right). (From Comba 
et al., 2018)

Studies such as the ones by Gottschalk et al. (2008) and Burgos-Artizzu et al. 
(2011) propose real-time image processing techniques, and others (e.g., Howarth 
et al., 2010; Morellos et al., 2016) propose machine learning techniques to identify 
mature crops and soil composition, respectively.

An interesting possibility is that of 3D reconstruction using photogrammetry. 
When taking multiple pictures from different perspectives, depth information can 
be extracted and used to the advantage of our system. Using the changing perspec-
tive of a system in motion can provide the necessary depth of information. Studies 
such as Westoby et al. (2012) and Comba et al. (2018) propose exactly this type of 
technology (see Fig. 8.1).

8.2.3.2  LiDAR and Other 3D Imaging Techniques

LiDAR, or Light Detection and Ranging sensors, function similarly to radar and 
measure the distance to any object within the range of its light source. Instead of 
radio waves, LiDAR functions by emitting a light of a certain wavelength in a spe-
cific direction and measuring the time of the signal to come back. By doing so in 
many directions sequentially, it maps its environment by creating a so-called point 
cloud that can then be converted to 3D reconstructions of the environment of the 
autonomous platform. This type of sensing is more robust for outdoor uses because 
it carries its light source but can be more costly to operate.

LiDAR data (as depicted in Fig. 8.2) can be useful for a variety of applications, 
from phenotyping (French et al., 2016) to regular 3D reconstruction of the plants 
(Garrido et al., 2015) or combinations thereof (Sankey et al., 2017).

While LiDAR remains one of the most widely used sensing technologies for 3D 
imaging, there are other options, as explained in Vázquez-Arellano et al. (2016). 
One interesting sensor is the Microsoft Kinect v2 sensor, used extensively in scien-
tific research such as Bengochea-Guevara et al. (2018) to reconstruct vineyard rows 
or Rosell-Polo et al. (2017) for a more generalized approach. The Kinect v2 sensor 
is the second-generation sensor initially designed for the Microsoft Xbox gaming 
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Fig. 8.2 Example of LiDAR point clouds. (From Sankey et al., 2017)

Fig. 8.3 Example of 3D reconstruction of vineyard row using data from Kinect v2 sensor. Left, 
RGB image; middle, depth information; right, 3D reconstruction. (From Bengochea-Guevara 
et al., 2018)

system, which uses an infrared laser projector to project a pseudo-random pattern of 
dots. An infrared camera is placed near the projector. The sensor uses triangulation 
for each dot between the expected position and the perceived position to infer the 
distances of the objects in the projected field of view. This typically results in ren-
derings like the one depicted in Fig. 8.3.

8.2.3.3  Hyperspectral and Infrared Imaging

Hyperspectral sensing may refer to collecting information within the electromag-
netic spectrum but outside the visible light range. In general, they can be seen as 
specialized cameras containing a sensor that is sensitive to wavelengths outside the 
visible spectrum. As discussed in Hartel et al. (2015), current applications range 
from quality and safety inspections for foods and produce to plant quality evalua-
tions, such as phenotyping (Sankey et al., 2017) or nitrogen mapping within the 
plants (Yu et al., 2014). The latter application might greatly influence the choices a 
system makes as to where in a field it will need to go next.
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Infrared sensing, effectively a subcategory of hyperspectral sensing, has impor-
tant usage within agriculture on its own, as it can be used to detect live vegetation 
using the Normalized Difference Vegetation Index (NDVI). This brings possibilities 
to distinguish the plant from the soil faster and easier, which can be used to avoid 
obstacles, as explained by Hamuda et al. (2016). Future applications might be able 
to use the infrared spectrum to detect humans and improve safety measures, as 
shown in Aspiras et al. (2018).

8.2.3.4  Other Sensing Techniques

Other sensing techniques exist, but many of them are not as popular or have less 
potential than those discussed before. This section discusses these technologies and 
applications, which are less common but interesting.

IMU
Although an inertial measurement unit (IMU) is a sensor most generally used for 
odometry and dead reckoning purposes (as explained in Sect. 8.2.1), this section 
briefly discusses other potential uses for IMUs. An IMU consists of accelerometers, 
gyroscopes, and, optionally, magnetometers to measure orientation changes. It can 
be used to reduce the uncertainty of the current position by using linear acceleration 
and rotational rate measurements to estimate the change in position since the last 
known location.

Besides its primary use, an IMU may also be used to detect obstacles, as it will 
detect a crash or slipping of the wheels if the vehicle is stuck somewhere (Cismas 
et al., 2017; Xiong et al., 2019). It could also indicate rough terrain and, therefore, 
can be used to inspect certain areas that might have changed due to animal activity.

Ultrasound
Ultrasound is sound with a higher frequency than the upper audible limit of human 
hearing. Although ultrasound is a powerful tool within agriculture in the battle 
against bacteria and other microorganisms (Gordon, 1963), ultrasonic proximity 
sensors have been employed in many robotic applications. They are finding their 
way into agricultural platforms (Tang et al., 2011). This process is called echoloca-
tion and uses the same concept as radars and LiDARs to infer the position of objects 
by using the time difference between the sent signal and the perception of its echo.

Physical Sensors
Although most studies aim for noninvasive sensing techniques, physical switches 
and buttons are often implemented as failsafe. Such sensors are often used as prox-
imity sensors to make sure undetected obstacles are detected, albeit later than regu-
lar operation would require, or as safety switches intended to guarantee the safety of 
the operators.
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8.3  Decision-Making and Data Processing

After collecting a multitude of different sensor measurements, an autonomous plat-
form will need to make decisions based on this information. This section highlights 
the two main decision categories an autonomous platform must take, namely, deci-
sions relating to safety and task planning. This is followed by a section on how data 
may be processed to be able to make these decisions.

8.3.1  Decision-Making

8.3.1.1  Safety

Safety-related decisions are those decisions made whenever risks for damage are 
mitigated. Possible danger to humans and the robot itself and/or the crops fall in this 
category. When a robot crosses path with a human, an example would be to halt 
dangerous movements or slow down or interrupt other movements.

As Vasconez et  al. (2019) stated, most human-robot accidents are caused by 
human errors. Therefore, a big factor in reducing the number and severity of acci-
dents is eliminating and mitigating the risks involved in human-robot interactions 
(HRIs). For safety, it is important that safety signals and the decisions derived from 
them can overrule the task planning decisions. Studies such as García-Pérez et al. 
(2005), Cherubini et al. (2016), and Pereira and Althoff (2018) propose predicting 
and adapting to potential risks to mitigate possibly dangerous situations.

8.3.1.2  Task Planning

Task planning decisions are made when considering the best approach to carry out 
a specific task. Decisions on how to avoid fixed obstacles and path planning algo-
rithms fall into this category. Also, approaches combining multiple sensor inputs to 
reduce errors, as done in García-Pérez et al. (2008), belong here.

Task planning decision-making is important such that the use of energy and 
resources can be optimized. For example, a weed detecting algorithm with many 
false positives will be carrying out the weeding on places that do not require treat-
ment, and route planning moving around a small stone might use more energy than 
driving over it. These parameters need rigorous tuning for robotics to be feasible 
within agriculture.

Task planning can be divided into multiple categories, where overall planning 
is discussed in more detail in Sect. 8.4, whereas fleet coordination and planning 
are explained in Sect. 8.6. The remaining planning tasks can be carried out locally 
and consist of the movement of the autonomous platform to place the application 
device in the right spot for treatment. Those can range from end-effector or grip-
per placement, an important task for applications that require flexibility, such as 
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trimming (Kaljaca et al., 2019) or harvesting (Bac et al., 2014), to vehicle motion 
for applications such as spraying (Conesa-Muñoz et  al., 2016c) or monitoring 
(GRAPE, 2020).

8.3.2  Data Processing

To make good decisions, the data needs to be interpreted. This also means that irrel-
evant data is discarded and the relevant information understood. A good example is 
the data from depth sensors such as LiDARs.

Depending on the application, it is not necessary to know the exact shape of the 
objects in the direct vicinity of the platform. Still, an approximate shape and a loca-
tion would be enough. This type of data refinement typically results in lower data 
density but a higher information value.

An example of data refinement is carried out in Digumarti et al. (2018), in which 
a model is proposed to segment the data into branches and leaves. This can then be 
used for decision-making, plant monitoring, and/or obstacle avoidance.

In many cases, the information derived from the sensors is stored in databases for 
future reference. Saving this information with respect to the location in the field and 
subsequently superposing it on a map of the field is an intuitive way of visualizing 
it. Studies such as Comba et al. (2018) and Jiang et al. (2019) produce maps similar 
to those shown in Fig. 8.1. Besides being intuitive for the user to understand and see 
the field’s current status, having this information available per location makes it 
possible to make local decisions. An autonomous vehicle can potentially base its 
decision not only on what is perceived currently but also on the history of sensor and 
actuation information. An example would be sensing a plant needs fertilizer but 
refraining from giving it because it got a dose the previous time.

8.4  Control Systems

Control systems are the techniques used to manage and regulate the behavior of a 
device. In essence, robotics is applied control systems. Widely used control setups 
are closed-loop systems. These systems use inputs from sensors; compare the val-
ues against some reference or planned signal, which results in a current error; and 
aim to reduce said error by the design of the controller.

Many platforms already consist of some low-level control interfaces for some 
electrical components, such as engine, powertrain, or brake control modules. 
Therefore, most autonomous vehicles consist of a central computing unit, which 
makes high-level decisions and gives a more abstract command to the interface of 
the specific components. Instead of measuring deceleration and using feedback con-
trol to adapt the force on each of the vehicle’s brakes, the system can just decide to 
break, and the brake control module will take care of the rest. This does not mean 
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that we do not need any feedback control. On the contrary, most central processing 
units will be full of it.

Another commonly used approach for the control of autonomous systems is 
fuzzy control. This field of study is widely used in systems that mimic human 
behavior, which often cannot be described in a purely binary form. For example, a 
vehicle’s steering, braking, and accelerating are typically not performed in a binary 
or discrete way (either not braking or fully braking) but in a more analog way 
(breaking a little or breaking more). The concepts of fuzzy logic make it possible to 
control vehicles in such a way and make the programming logic more understand-
able for humans. Applications vary from generic autonomous navigation 
(Mohammadzadeh & Taghavifar, 2020) to specific agricultural tasks (Bengochea- 
Guevara et al., 2016). Other studies aim to reduce the error of the navigation control 
systems by using extra information ranging from low-cost IMUs (Si et al., 2019) to 
the use of visual odometry (Zaman et al., 2019).

8.5  Path Planning and Optimization Systems

Although many aspects can and should be computed in real time to allow for the 
proper functioning of the robotic systems, others cannot. These encompass planning 
and optimization systems, as these typically include (NP-Hard) problems that can-
not be solved in relatively short times.

Although it might look easy at first, route planning becomes more difficult once 
more variables are considered. Examples of extra variables are the number of vehi-
cles, the size of each vehicle’s fuel tank or battery, the location of the refueling or 
charging point, and the turning radius of each vehicle. All of those affect the result 
of an optimal path. Research such as Conesa-Muñoz et  al. (2016b) and Conesa- 
Muñoz et al. (2016a) propose ways to improve current algorithms and take these 
variables into account (Fig. 8.4).

In some orchards, when there is enough space and no irrigation infrastructure 
between trees in a row, optimization could be taken a step further because it is 

Fig. 8.4 Example of results of two path planning optimization algorithms, with total distances of 
7902 m (a) and 7661.6 m (b). (From Conesa-Muñoz et al., 2016a)
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possible to change the paths vehicles take within the field, as they can maneuver 
between the trees. In contrast, in typical vineyards, this is impossible, as they are 
arranged in fixed lines. This can especially be interesting if treatment is not neces-
sary in all regions, which can be the case when treating weeds.

Another emerging optimization field is water use optimization, as carried out by 
Zhang and Guo (2016), aiming to reduce total water use.

8.6  Fleets

As briefly mentioned before within the path optimization section, systems compris-
ing multiple platforms exist and are becoming more prominent in several studies (e.g., 
Conesa-Muñoz et al., 2016a, b, c; Gonzalez-de-Santos et al., 2017). Fleets of robotic 
systems are beneficial as they can induce a reduction in vehicle size but also an increase 
in efficiency and redundancy. As such, they can reduce soil compression and down-
times. Fleet management strategies can be divided into two main categories, namely, 
centralized and decentralized decision-making, both of which have pros and cons, as 
discussed in De Ryck et al. (2020). Both will be explained in more detail below.

8.6.1  Centralized Fleet Management

Centralized fleet management refers to a fleet of multiple robots managed from one 
(external) location, which we will call “the manager.” The platforms will need 
(semi-)continuous communication with the manager to share the collected knowl-
edge and obtain new tasks. The manager, in this case, has an overview of the entire 
operation and can make decisions accordingly. For example, when one vehicle 
encounters an area needing a certain treatment, the correct vehicle can be sent there 
using an optimal route and making sure none of the vehicles collide in the act.

The advantages of these systems are that one entity has all the information, 
which makes it easy to document and log the carried-out tasks. The overview is kept 
in one place, and it is easier to test and check as everything is in one place. Another 
advantage of such a system is that it can consider every vehicle to optimize the tasks 
throughout the entire fleet. As a result of the above, it is easy for the farmer to track 
the overall progress and have a forecast for the remaining time.

This strategy, however, also has some disadvantages. These mainly lie in the 
scalability of the system. Increasing the number of vehicles in the fleet will greatly 
impact the optimization software that generally takes exponentially more time to 
find an optimal solution with respect to the number of vehicles. Often such strate-
gies will favor optimization algorithms that generate known good solutions instead 
of optimal ones as a trade-off for the time needed to compute optimal solutions. 
Another slight disadvantage is that the entire system must be computed again with 
any unexpected change.
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Examples of studies using centralized control are Doering et  al. (2014) and 
Barrientos et al. (2011), in which fleets of aerial vehicles are controlled from a sin-
gle location and where global optimization is carried out.

8.6.2  Decentralized Fleet Management

Decentralized fleet management refers to the robots within the fleet making deci-
sions on their own based on their perceived environment and the communication 
with nearby vehicles. These vehicles will, in general, compute and follow subopti-
mal routes; any loss in efficiency could be compensated by adding more vehicles. In 
general, it cannot be guaranteed that the paths chosen will not cause longer non- 
productive paths. The computed solutions will also be more myopic than those com-
puted by centralized management because the future states of the entire system are 
not yet known. A major advantage of decentralized systems is that they are easily 
scalable, as none of the nodes of the system requires a high computational load. 
Also, due to the myopic choices, errors and unexpected changes are mitigated easily 
and do not affect the system as much. Disadvantages include the lack of central 
knowledge and, therefore, easy forecasting and tracking methods. However, this can 
be improved by communicating with a central dispatcher, which enables document-
ing, logging the carried-out tasks, and generating the desired overview. Examples of 
studies in decentralized control mainly focus on the flexibility of the controller’s 
scalability (Ju & Son, 2018) and the flexibility of the vehicle behavior (Franchi 
et al., 2011).

8.7  Examples of Existing Technologies

As part of the SPARKLE Project, co-funded by the Erasmus+ program of the 
European Union, an analysis has been carried out of the state-of-the-art robotics 
within the field of precision agriculture. Part of this analysis showcases existing 
commercial and emerging technologies, of which the most relevant ones within 
orchard and vineyard treatment are outlined in this section, which is expanded with 
other research projects and prototypes.

VITIROVER
As a part of weeds management, Vitirover Solutions (2020) proposes to use fleets of 
robotic lawnmowers to prevent weeds from growing in the first place. Their small, 
lightweight robot is meant to mow the grass in between the rows of trees or plants, 
thus reducing the use of herbicides and glyphosate in particular. As shown in 
Fig. 8.5, it is equipped with a solar panel to extend its working range. It is also 
equipped with GPS to navigate predefined areas and is monitored remotely by a 
technician. This robot is highly independent, as it does not require any human 
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Fig. 8.5 VITIROVER robotic mower fleets can be used to manage grass. This is used to reduce 
weeds in both orchards (left) and a vineyard (right)

interactions. The important decisions are made remotely by a human operator, 
which indicates the use of a centralized control strategy.

Autonomous Orchard Sprayer
The automatic orchard sprayer GUSS (GUSSAG, 2019), shown in Fig. 8.6, is spe-
cifically designed to reduce health threats to operators who would otherwise carry 
out the driving. Furthermore, it allows for fleet operation from a single control loca-
tion. This type of robot uses a wide variety of sensors to guide it along a precise 
route while being safe for its environment.

Naïo TED
An interesting example of mechanical weeding is TED (Naïo Technologies, 2020). 
This robot, shown in Fig. 8.7, and clearly designed for vineyards, can carry various 
tools for different applications. The main task this robot was designed for is weed-
ing, but prototype tools exist for various other tasks such as blossom thinning, trim-
ming, and spraying.

This tool is still experimental to some extent but has a lot of potential due to the 
possibility of testing new applications while already being of use to farmers. It navi-
gates using RTK GPS and follows a map created using drones beforehand. Although 
this does not directly count as a fleet, it has the potential to augment and share data 
from multiple sources, and future heterogeneous fleet implementation is foreseeable.

Vision Robotics Grapevine Pruner
This pruning solution from Botterill et al. (2017) and Vision Robotics Corporation 
(2019) is currently only a prototype and is awaiting financing to be fully developed. 
Although the technology mainly focuses on actuation instead of navigation, the 
finished platform aims to be fully autonomous.

The interesting part of this system is the implementation of artificial perception, 
as shown in Fig. 8.8, to understand the system’s environment as a regular human 
would. A finished system could incorporate many other visual cues to understand 
other aspects, possibly contributing to the vehicle’s autonomy.
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Fig. 8.6 GUSS autonomous orchard mist sprayer

Fig. 8.7 Naïo TED, a mechanical vineyard weeder

Fig. 8.8 Vision Robotics Grapevine Pruning system towed behind an autonomous tractor (left) 
and the artificial perception of branches (right)
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Fig. 8.9 VINBOT vineyard monitoring platform (left) and its 3D interpretation of its environ-
ment (right)

VINBOT
The following system is not a commercial product either and has been developed by 
a consortium within the European Union and is especially interesting for its auton-
omy. VINBOT (2019) is designed as a monitoring vehicle to map and measure criti-
cal aspects of the vines.

As shown in Fig. 8.9, the mapping capabilities seem promising, and the specified 
capabilities include monitoring of water and heat stress, canopy density and color, 
diseases and nutrient deficiencies, and yield estimations (Lopes et al., 2016).

VineScout
Similar to the previous system (Saiz-Rubio et al., 2018; VineScout, 2020), VineScout 
was developed within a project of the European Union (H2020) to monitor and 
improve yields within vineyards. Figure 8.10 shows the autonomous ground robot, 
which has been designed, built, and demonstrated in commercial vineyards. The 
VineScout goal is to provide massive data such that artificial intelligence techniques 
based on big data may be applied to build solid models. These models are expected 
to assist farmers in decision-making about irrigation and harvesting logistics.

Other interesting solutions funded by the European Union are:

 1. Swarm Robotics SAGA (SAGA, 2020), part of the European ECHORD++ pro-
gram that aims to develop fleets of aerial vehicles to monitor and map the envi-
ronment using a decentralized control strategy.

 2. TrimBot, supported by the Horizon 2020 program  (Hemming et  al., 2018), 
(TrimBot, 2020), focuses on producing a flexible plant trimming and cutting 
robot. It consists of a small autonomous platform and a robotic arm, which holds 
a cutting tool at the end. Because of the robotic arm configuration, the system is 
not tied to fixed cutting and trimming patterns but instead can base the decisions 
on each plant.

 3. GRAPE (GRAPE, 2020), another European ECHORD++ project, aims to make 
a small autonomous robot for vineyard monitoring and protection and a small 
robotic platform with a robotic arm to perform specific tasks in certain locations.

8 Autonomous Platforms
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Fig. 8.10 VineScout vineyard monitoring platform

 4. RHEA (Gonzalez-de-Santos et al., 2017), supported by the 7th Framework pro-
gram, is a fleet of small, heterogeneous robots – ground and aerial – equipped 
with advanced sensors, enhanced end-effectors, and improved decision control 
algorithms, which aims at diminishing the use of agricultural chemical inputs, 
improving crop quality and health and safety for humans, and reducing produc-
tion costs. RHEA can be considered a cooperative robotic system.

8.8  Concluding Remarks

While current autonomous platforms are in constant development, many agricul-
tural tasks are starting to reap the benefits from implementing them in practice. 
Even though most of these platforms are not yet fully industrialized, prototypes and 
rudimentary versions are being tested and show promising results. Autonomous 
platforms are especially useful to tackle the problems arising with the decreasing 
number of both skilled and unskilled workers while at the same time allowing the 
vehicle to stay small to combat soil compaction issues.

Expectations are high when considering the possibilities to combat current eco-
logical challenges such as global warming and the biodiversity issues in agricultural 
regions. Autonomous platforms will become increasingly important as trust and 
knowledge increase, and a couple of specific areas are expected to reap the benefits 
autonomy brings.

Firstly, even though autonomous tractors are being developed, autonomy can 
have a larger impact on other areas of agriculture. One important area is the use of 
fleets, where autonomy serves as a catalyst. Without it, herds of smaller vehicles 
would not be sustainable nor economically sensible. It is expected that the market 
for fleets will make its debut in the coming decade and will grow further in the next.

Another area in which autonomy can be of great importance is within the imple-
ments. While navigational autonomy is not yet fully functional, implements can 
already reap its benefits. Smart implements would only rely on a driver and will be 
able to carry out the tasks without further human intervention. This intermediate 
step can greatly increase acceptance as well as the adoption rate.
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Lastly, drones, or unmanned aerial vehicles, are expected to increase autonomy 
and open an important new market opportunity, namely, data analytics. This field is 
expected to be of huge importance for developing new technologies, as choices 
farmers typically make using experience can be understood and aided from a data- 
driven perspective.
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Chapter 9
Management Information Systems 
and Emerging Technologies

Aikaterini Kasimati, Vasilis Psiroukis, Hercules Panoutsopoulos, 
Sofia Mouseti, Nikolaos Mylonas, and Spyros Fountas

Abstract The following chapter addresses the principles of farm management 
information systems, i.e., computational, communication, and algorithmic subsys-
tems, that integrate sensing, actuation, data management and analysis, knowledge 
of horticultural practices, and decision-making to automate the operation and man-
agement of modern orchards and vineyards. Topics include types of data and infor-
mation, infrastructures, architectures, standardization, data ownership and sharing, 
and decision support system technologies.

9.1  Introduction

9.1.1  Farm Management Information Systems 
for Crop Production

During the last few years, rapid technological developments have introduced radical 
changes in the working environment in the agricultural sector. The level of com-
plexity for farming enterprises has gradually increased in recent decades. Agriculture 
has entered a new data-driven era, in which access to accurate and timely informa-
tion is of vital importance. Simple production units have evolved into agricultural 
businesses with multifunctional service sectors (Fountas et al., 2015a). Thus, mod-
ern farms can survive financially and be sustainable only when well managed 
(Husemann & Novkovic, 2014). However, farm management is a challenging and 
time-consuming task (Paraforos et al., 2017), with farm operations and activities 
often not being properly logged systematically and analytically (Fountas 
et al., 2015a).
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Farmers need an effective way to manage large volumes of information and tech-
nological tools to help them make optimal and sustainable decisions year-round 
(Paraforos et al., 2016). Farm management information systems (FMISs) are sys-
tems that support the collection, processing, and storage of data in a form that allows 
for the accurate scheduling and execution of farming operations (Fountas et  al., 
2015a; Sørensen et al., 2010) or provide farmers with valuable information to sup-
port decision-making. Figure 9.1 shows a commercial FMIS application for crop 
production, extensively used in vineyards, called SITI4farmer. ABACO’s precision 

Fig. 9.1 Weather stations’ latest readings and historical weather data are stored in the SITI4farmer, 
ABACO’s precision farming tool. SITI4farmer is an example of a crop management platform and 
a decision support system, widely used in viticulture
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farming tool collects sensor-based data, such as weather and soil, satellite data, and 
other historical data. It provides the user with easy-to-understand visualizations of 
this information.

Several FMIS structures and software architectures have been presented, while a 
constantly increasing number of commercial solutions are available on the market, 
such as 365FarmNet, AgriWebb, Agworld, FarmLogs, and FarmWorks (Ampatzidis 
et al., 2016; Nikkilä et al., 2010; Paraforos et al., 2017).

9.1.1.1  Historical Overview

The first agricultural FMISs were developed in the 1970s and focused on record- 
keeping and operations planning. In contrast, more complex record-keeping plat-
forms with integrated decision support tools covering irrigation, pest management, 
and fertilizer applications appeared during the next decade. It was not until the late 
2000s that precision agriculture (PA) as a concept emerged and introduced the con-
sideration of agricultural fields as heterogeneous entities that required selective 
treatment instead of homogenous entities that are treated equally (Aubert et  al., 
2012). For this reason, new information systems focused on accurate farming opera-
tions were required (Cardín-Pedrosa & Alvarez-López, 2012). For the first time, 
farmers obtained the ability to generate large amounts of data using sensors and 
satellite systems (Tozer, 2009). As a result, efficient data management became a top 
priority, and sophisticated information systems using the newly introduced concept 
of “field variability” became necessary.

9.1.1.2  FMIS for Precision Agriculture

PA refers to information technologies and electronic communications and the 
implementation of more accurate Global Positioning Systems (GPS) that enable 
farmers to collect large amounts of data to use effectively for site-specific crop man-
agement (Aubert et al., 2012). Sensor arrays provide constant streams of data on soil 
properties such as moisture, temperature, humidity, and crop growth parameters 
information derived mainly from crop spectral reflectance. These data can help 
understand field variability and allow appropriate management practices to be 
implemented accordingly (Matese et al., 2009). This has created the need to design 
and develop dedicated FMISs to cope with the increased amount of data generated 
by applying PA in field production (Fountas et al., 2015b). Similarly, digital agricul-
ture is a broader term that refers to digital sensor-derived data to support farm man-
agement decisions (Keogh & Henry, 2016).
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9.1.1.3  FMIS Adoption and Profitability

FMIS development and adoption are strongly related to system profitability, with 
benefits extending to the value of improved decision-making. However, this is often 
difficult to quantify, as the benefits of using an FMIS could depend on the user’s 
level of satisfaction. Younger farmers without farming experience can benefit from 
using an FMIS, which automatically generates documentation data and reduces the 
required task time while providing better management.

Agricultural management software mainly includes production planning, pro-
cess integration, performance management, quality and environmental resource 
management, and sales order and contract management. Moreover, field operations 
management, best practices and predictions, finance, machinery management, 
traceability, and quality assurance are additional functions or services that many 
commercial FMISs offer to farm managers. An analysis of commercial software 
solutions revealed that current FMISs mostly target everyday farm office tasks 
related to financial management and reporting, particularly those related to sales, 
inventory, and field operations management (Fountas et al., 2015a).

9.1.2  Applications for Tree Fruit Orchards and Vineyards

Tree fruit orchard and vineyard products are considered specialty crops of high 
value since they require a significant amount of labor at various stages. Despite 
being characterized by high production costs, they have emerged as a fast-growing 
agribusiness segment. Increasing importance is directed toward detailed traceability 
systems for the product’s origin and especially for the treatments used in production 
(Tsiropoulos & Fountas, 2015).

Fruit production is a demanding sector where trees have high fertilizer and irriga-
tion needs, which should be carefully planned and applied. Optimal pest manage-
ment, irrigation scheduling, and harvest timing are strongly related to the final 
quality of the yield (Tamirat & Pedersen, 2019). Furthermore, the timing of harvest 
is critical to the quality of the yield. For this reason, selective harvesting based on 
the ripeness level of the fruit in different zones of the orchard is often used. Finally, 
during critical periods when farming tasks should be planned and executed with 
utmost accuracy, farm machinery should constantly operate at optimal rates 
(Tsiropoulos & Fountas, 2015).

9.1.2.1  Pest Control Information Systems

Pest control and applying plant protection products (PPPs) are one of the most criti-
cal factors in crop production due to the severe consequences for human health and 
the environment from irresponsible practices. Agrochemicals directly impact the 
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quality of yields and the market-selling price of the products. Excessive PPP use 
financially burdens the farmers and results in high residues of hazardous chemicals 
on the products that subsequently enter the food chain. FMIS can determine periods 
when disease outbreaks are more likely to occur and help growers apply the exact 
amount of PPP needed, avoiding overapplication. These systems can comply with 
legal regulations and agricultural production standards to ensure food safety and 
environmental protection (Fountas et al., 2015b). Modern spraying machinery for 
orchards stores spray data for each spray application to automatically produce the 
farm calendar that records all plant protection product treatments and provides full 
product traceability (Berger & Laurent, 2019).

9.1.2.2  Irrigation Management Information Systems

Irrigation is a crucial factor in crop growth and product quality. Despite how simple 
it may appear, irrigation planning and management is an extremely complicated 
procedure that requires enormous amounts of real-time data and utmost accuracy 
and timeliness to achieve optimal results. Soil water content and water availability 
for the plants depend on several parameters, including soil, climate, and topography. 
When rainfall is insufficient to meet crop water needs at critical growth stages, 
water stress can cause major losses in fruit orchards. Several projects, such as 
USERPA (USability of Environmentally sound and Reliable technologies in 
Precision Agriculture), propose holistic precision agriculture solutions for tree 
orchards and vineyards, with the focus being directed on irrigation and harvest man-
agement to increase the quality characteristics of fruits by optimizing input use 
while preserving environmental sustainability.

9.1.2.3  Harvest Management Information Systems

Harvesting is an extremely challenging procedure due to the short time window in 
which fruit is at optimum ripeness for picking. Fruit harvested prematurely or 
beyond optimal time can potentially affect how desirable the product is to consum-
ers (Chauvin et al., 2009). Accurate and timely collection of data is driving harvest- 
related decisions on the farm. A harvest management information system that allows 
access to real-time harvest data was developed in California, USA, in 2016. This 
integrated system could automatically generate yield maps that provide farmers 
with data on the productivity of their farms and allow them to investigate factors 
related to potential spatial yield variability (Ampatzidis et al., 2016).
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9.2  Big Data in the Emerging Technologies

Big Data is a hot research topic that has attracted much attention from the scientific 
community. Although there is extensive literature on the benefits that can be reaped 
from the exploitation of Big Data, no consensus exists about what a typical defini-
tion of the term is. As for existing definition attempts are concerned, it can be 
observed that these have focused on a wide spectrum of issues and aspects, ranging 
from Big Data sources, characteristics, and types to technical requirements and the 
potential impact of Big Data analysis on the socioeconomic level.

Big Data is generated, intentionally or unintentionally, by interactions and trans-
actions digitally performed in our everyday personal and professional lives and 
ubiquitous sensor-based devices (George et  al., 2014). Continuously increasing 
capacities of tools and infrastructures for collecting, logging, and transmitting data 
are the main reasons for data abundance, yet big volumes of produced data along 
with divergence in data types (i.e., structured, semi-structured, and unstructured 
data) and the increasing rates of data generation keep pushing demands for storage 
and process-related affordances (De Mauro et al., 2016; George et al., 2014).

To make sense of this overwhelming amount of data, it is often broken down and 
characterized into the following dimensions, often referred to as “Vs.” The “Vs” of 
Big Data constitute concise and comprehensive summarizations of distinctive char-
acteristics of Big Data and, by focusing upon its key properties, serve excellently as 
a basis for a Big Data management discussion. Starting with Volume, Velocity, and 
Variety, the Big Data property list has been extended to further include Veracity and 
Value, Volatility and Validity (Khan et al., 2014), and Vulnerability, Variability, and 
Visualization (Firican, 2017). It is the big volume and high rates at which Big Data 
is made available, the wide range of available types and formats, trustworthiness of 
the sources of Big Data, potential inconsistencies in the data, and its lifespan along 
with security and privacy issues that pose challenges for Big Data management at 
various levels.

The digital revolution is transforming agriculture, and the advent of new tech-
nologies increases the amount of data collected. The term agricultural Big Data 
refers to the variety and volume of data collected either directly in the field or from 
other sources. Chi et al. (2016) support the “Vs” approach by defining data in terms 
of volume, velocity, variety, and veracity:

• Volume: refers to the size of data collected for analysis.
• Velocity: measuring the flow of data and the time frame when it is useful and 

relevant.
• Variety: reflecting the frequent lack of structure or design to the data.
• Veracity: reflecting the quality, reliability, accuracy, and credibility of the data 

(Chi et al., 2016).

Although the “Vs” can describe big agricultural data, their analysis does not have 
to satisfy all dimensions (Rodriguez et al., 2017). Terms of big agricultural data are 
more about the combination of technology and advanced analytics than just the 
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volume of data that creates a new way of processing information in a more useful 
and timely manner (Coble et al., 2018).

The following sections present information on capturing agricultural data and 
tools to perform data management and data analytics, including machine learning 
techniques. However, since the data revolution hasn’t reached every agricultural 
sector yet and Big Data and AI are not yet specific to orchards and vineyards, the 
following description is general to all horticultural systems, including orchards and 
vineyards.

9.2.1  Sensing and Monitoring

The digital revolution transforms agriculture by using modern machinery, comput-
erized tools, and emerging information and communication technologies (ICTs) to 
improve decision-making and productivity. The evolution and revolution in agricul-
tural Big Data come from the expansion of small agricultural data. Growers can 
collect data about their operations by spreading several cutting-edge techniques and 
technologies. Vast amounts of agricultural data and many datasets are collected 
from GPS and remote sensing to artificial intelligence and machine learning, robot-
ics, and the Internet of Things (IoT). Agricultural data originate from various 
sources, including:

• Farmers’ fields utilize ground sensors, such as weather stations and soil sensors.
• Handheld crop sensors or tractor-mounted sensors.
• Data from aerial sensors, namely, unmanned aerial vehicles, airplanes, and 

satellites.
• Governmental and third-party organizations gather spatial and temporal histori-

cal data or distribute it via online repositories and web services.
• Real-time farm data via online web services and crowdsourcing-based tech-

niques from mobile phones.

Challenges Related to Big Data in Horticulture
The basis for enhanced and effective decision-making is the availability of timely, 
high-quality data. The demand for large volumes of data and the lack of significance 
of limited amounts of data create challenges in developing Big Data applications in 
the agriculture sector, especially in orchards and vineyards. In addition, the sources 
mentioned above are mostly heterogeneous. The data are represented in different 
types and formats and differ in volume and velocity and in the way they are updated 
and governed (Kamilaris et al., 2017).

Most agricultural data sources are fragmented, difficult, and time-consuming to 
use. At the individual farm level, many digital agriculture applications are not true 
Big Data applications. Therefore, data errors may be a critical limiting factor in the 
utility of farm management information systems. Data errors can arise from multi-
ple sources, including low-quality data and errors associated with poor data analyt-
ics and processing. This suggests that the full potential of such data and information 
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is not being completely utilized. Integrating a variety of data into a coherent man-
agement information system is expected to remedy this situation (Fountas 
et al., 2015a).

A range of indicators suggests that the availability of farm-level sensors and 
other precision agriculture technologies, such as mapping and tracking technolo-
gies, have already changed the management of many farming systems. Effective 
collection, storage, sharing, and use of data can support farming decisions toward 
increased yield and quality of agricultural products and decreased use of inputs, 
thus increasing profitability and sustainability of farming. However, technical and 
governance barriers to collecting, storing, and transferring data hinder farmers’ 
transition to digital agriculture. Various management systems, database network 
structures, and software architectures have already been proposed to improve 
functionality.

9.2.2  Data Management

Data utilization and decision-making about the application of targeted crop man-
agement and harvesting methods are at the core of precision agriculture, which is 
defined as “a holistic and environmentally friendly farming strategy in which prac-
titioners can vary cultivation and input methods to match varying soil types and 
cross conditions in a field” (Srinivasan, 2006) to increase “the number of (correct) 
decisions per unit area of land per unit time with associated net benefits” (McBratney 
et al., 2005). However, the continuous evolution of digital devices’ and infrastruc-
tures’ capacities to capture and stream data of various formats and types at ever- 
increasing rates has led to a shift from precision agriculture to smart farming, a 
novel paradigm of data-driven holistic farm management (Pivoto et  al., 2018; 
Vermesan & Friess, 2016). Smart farming does not rely exclusively on data col-
lected in the field but rather views farm management decisions and operations from 
a broader perspective of context- and situation-awareness (Wolfert et  al., 2017), 
which can be developed through systematic processes of sourcing, integrating, pro-
cessing, and analyzing agricultural Big Data.

Nowadays, FMIS has increased in sophistication through the development and 
integration of new technologies and advances in hardware and software capabilities 
of mobile phones. Web- and app-based applications enable real-time data recording 
and automated data transfer (Fountas et al., 2015a; Nikkilä et al., 2010; Peets et al., 
2012). Cloud-based FMIS improves operational planning and optimizes the work 
performed in the fields (Ampatzidis et  al., 2016; Kaloxylos et  al., 2014). Cloud 
platforms and cloud computing improve flexibility and accessibility, reduce infra-
structure, and streamline processes while offering possibilities for large-scale stor-
ing, preprocessing, analysis, and data visualization (Barrett et  al., 2014; Nativi 
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et al., 2015). In many cases, computational capacity, both in terms of speed and 
volume, allows to conduct novel analysis on large volumes of data and use it for 
actionable decision-making previously not possible (Coble et al., 2018).

Various technologies directly linked to smart farming can be used for data collec-
tion and transmission to processing and storage. However, technology requirements 
for (agricultural) Big Data exploitation and management go far beyond the capaci-
ties of a single machine. Therefore, to take full advantage of agricultural Big Data 
and smart farming necessitates the deployment of systems and services on top of 
technologies that can handle the complexities of Big Data. One such technology is 
Apache Hadoop (https://hadoop.apache.org/), a state-of-the-art distributed frame-
work consisting, among others, of three core components, including (i) HDFS (i.e., 
Hadoop Distributed File System) for handling data storage, (ii) YARN for resource 
management and optimization, and (iii) MapReduce for workload distribution 
across multiple nodes of commodity hardware.

Another typical example of cutting-edge Big Data technology is Apache Spark 
(https://spark.apache. org/), a “fast and general-purpose cluster computing plat-
form” designed mainly for the execution of computations in memory. Apache Spark 
can also run applications on disk more efficiently than MapReduce and accommo-
date real-time processing of large sets of streamed data. It can easily be integrated 
with other tools in the Hadoop ecosystem and thus exploited in various architectures 
while accessing via custom APIs in widely adopted programming languages, such 
as Java, Python, Ruby, and SQL.

Other storage solutions for Big Data, tailored to different data structures, are 
provided by NoSQL databases which have gained momentum against traditional 
relational database management systems (RDBMSs) in recent years. According to 
Tiwari (2011), “NoSQL is used today as an umbrella term for all databases and data 
stores that don’t follow the popular and well-established RDBMS principles and 
often refer to large datasets accessed and manipulated at web-scale” (Tiwari, 2011). 
There are several different NoSQL data store types, each of which adopts a specific 
data model (e.g., key-value pairs, column-based, document-based, and graph data 
models) to best accommodate the particularities of the data structures they have 
been designed for. Scalability, efficiency, flexibility, high access rates to data, and 
availability of a range of data models targeting different storage needs are some of 
the NoSQL data store system advantages over traditional RDBMSs (Nayak 
et al., 2013).

Another concept that is highly relevant to the need for efficient Big Data storage 
infrastructures is that of data lakes. Data lakes can be conceptualized as repositories 
containing large collections of loosely annotated data ingested from various sources 
(Hai et al., 2016). The key idea behind data lakes is to create collections of various 
types of data available to be integrated on-demand and utilized to create actionable 
insights and value. Apart from data extraction and ingestion, it is also necessary to 
extract metadata from data sources to efficiently support data reasoning, query pro-
cessing, and data quality management (Hai et al., 2016).

Increased demands for Big Data storage and processing coupled with the high 
costs for in-premise hosting/maintenance of hardware and difficulties in setting up 
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and configuring Big Data tools have led to a market for cloud-based processing 
and storage services. Cloud computing platform providers, such as Amazon AWS, 
Cloudera, and MapR, offer on-demand access to storage and integrated suites of 
analytics tools under Platform-as-a-Service (PaaS) and/or Infrastructure-as-a- 
Service (IaaS) schemes, tailored to a range of individual and corporate needs. 
With access to easily configurable solutions, users can design and execute 
resource- intensive tasks without worrying about parameterization and workload 
optimization.

9.2.3  Big Data Analytics

Big Data analytics is the complex process of examining large and diverse amounts 
of data to uncover information such as hidden patterns, correlations, market trends, 
and various other insights that can help organizations make informed decisions. 
Data analysis is categorized into five different stages:

 1. Identification of required data types: Find what you want to analyze and 
determine the questions you want to ask. Having the solution to a problem in 
mind, Big Data analytics is a means to an end. Therefore, the solution process 
needs to commence by identifying what data needs to be collected to gain data- 
driven insights. The discussion about required data is not confined to formats 
and types but involves data sources that should be accounted for.

 2. Data acquisition/collection: Collect data and determine which is best to use. 
Having answered the question about the data that should be collected, the fol-
lowing step is to proceed to the actual data collection. Many issues should be 
considered as part of this step. For example, data may have to be extracted from 
multiple databases and stored in a central repository. In this case, setting up ETL 
(i.e., extract-transform-load) processes is necessary. Other scenarios may involve 
real-time or near real-time processing. Streaming technologies or systems for 
temporary data storage are, in such cases, issues to be considered. When it comes 
to large raw data streams, we may also have to encounter data relevance issues. 
This means that not all data is important. Thus, filtering out irrelevant data is 
critical for optimal resource utilization. Yet, filters need to be carefully selected 
to avoid discarding useful information.

 3. Data preprocessing: Identify anomalies and correct duplicates, missing entries, 
or inconsistent data. Put in place standards to ensure data entry is consistent, 
but also expect that you will need to do regular maintenance over time. Data 
cannot be provided as input to analytics algorithms in its raw form because we 
need to integrate and aggregate data available in different formats. Apart from 
that, there may also be errors and inconsistencies. Format conversion and data 
cleaning are core to this step. Data anonymization is also an issue to consider 
when the data includes sensitive personal details.
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 4. Analyze: Several data analysis methods can be considered depending on the 
problem. In this context, a discussion of different kinds of Big Data analytics is 
applicable. An outline of the different types of data analytics is provided below:

 – Descriptive analytics focus on answering questions about who, where, what, 
when, and how many.

 – Diagnostic analytics is concerned with responding to queries about why 
something happened.

 – Predictive analytics investigates and identifies trends in relationships between 
variables, determines the degree of relationships’ correlation, and hypothe-
sizes causality.

 – Prescriptive analytics focuses on investigating future scenarios and attempts 
to give answers to what-if questions and subsequently propose courses of 
relevant actions. Machine learning models based on Big Data play a signifi-
cant role in this endeavor as they allow the prediction of outcomes consider-
ing a range of variables.

 5. Interpretation of data analysis results: Once you have the data and understand 
it, what can you do with it? The final step is about making decisions and taking 
action regarding problem-solving. To successively do so, developing an under-
standing of analysis outcomes is necessary. Results’ reports and visualizations 
have the potential to facilitate data-driven insights and, thus, inform problem- 
solving actions.

The scientific discourse on Big Data goes hand in hand with the extraction of value. 
As Gandomi and Haider (2015) characteristically point out, “the potential value of 
Big Data is only unlocked when leveraged to drive decision making.” Yet, to “enable 
evidence-based decision making, there is a need for efficient processes to turn high 
volumes of fast-moving and diverse data into meaningful insights” (Gandomi & 
Haider, 2015). This is the exact point at which Big Data analytics comes into play. 
Exactly like in the case of Big Data, there are several definitions of Big Data analyt-
ics found in the literature. A brief review of this reveals that the term focuses on 
applying fit-for-purpose analysis methods and tools tailored to the particular char-
acteristics and properties of Big Data. Starting from the need to solve a problem, the 
intention is to acquire actionable insights and knowledge to support decision- 
making and arrive at a problem solution. However, the extraction of knowledge 
from Big Data is not a one-step process. It involves multiple interconnected steps 
needed to be executed, most of the time, in an iterative fashion until outcomes are 
reached. This chain of Big Data analysis-related tasks is illustrated in a straightfor-
ward manner in a definition, according to which (Big) data analytics is “the process 
of extracting, transforming, loading, modeling, and drawing conclusions from data 
for decision-making.”

It is important to investigate how existing Big Data analytics methods fit with 
agricultural Big Data and the knowledge needs they are collected for. According to 
Coble et al. (2018), machine learning, artificial neural networks (ANNs), decision 
trees, and clustering are some methods and tools that can be exploited for 
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agricultural Big Data analysis purposes. For example, by utilizing available weather 
data, machine learning can be exploited for building weather forecasting models 
aiming to support decision-making by farmers. Other machine learning applications 
are linked to crop disease protection and crop yield prediction and selection. 
Clustering methods (e.g., K-nearest neighbors), decision trees, and ANN models 
can also facilitate crop yield prediction and selection. Irrigation-related models 
(built upon rainfall and water level predictions) and price prediction models (based 
on crop production outputs, input cost changes, market demand and supply, market 
price trends, wages, and costs of cultivation, transportation, and marketing) can also 
be built with the help of ANNs. Kamilaris et al. (2017) contribute to the discussion 
on the potential use of Big Data analytics in agriculture by linking specific sectors 
to agricultural Big Data sources and Big Data analytics (Kamilaris et al., 2017). 
Machine learning methods and tools, such as clustering, decision trees, support vec-
tor machines, logistic regression, and artificial neural networks, are prominent with 
applications in weather and climate change, land use, weed control, animal research, 
crops and soils, and food security and availability. Analytics tailored to geospatial 
data is core to the sectors of remote sensing, food security and availability, and 
weather and climate change. In addition to the above, interesting use cases for 
advanced image recognition and processing concerning weed control, remote sens-
ing, and land use-related applications can be found.

9.2.4  Machine Learning

Machine learning (ML) is a branch of computer science, an application of artificial 
intelligence, which gives computers the ability to learn without being explicitly 
programmed. It can be used to construct various mathematical algorithms to exploit 
the potential value of Big Data, which makes learning possible.

Machine learning is comprised of a two-step process. The first process involves 
the machine “learning” the input data, and in the second process, the machine trans-
lates and analyzes both the input and output data. This leads to the creation of 
machine algorithms that then construct a system model to predict future values.

9.2.4.1  Types of Machine Learning Algorithms

There are three types of machine learning algorithms:

 1. Supervised learning (SL): When input and output variables are provided, learn-
ing becomes supervised. In this type of ML, the algorithm uses various training 
examples, and the machine analyzes the inputs and corresponding outputs. More 
widely used SL algorithms include artificial neural networks, decision trees, 
K-means clustering, support vector machines, and Bayesian networks. SL is fur-
ther divided into two subparts, regression and classification, as explained below.
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Regression: The output data can be continuous (i.e., in the range of 0–5000) or 
percentage-wise. Let’s take the example of predicting downy mildew disease in 
vineyards and approaching this as a simple regression problem. Based on the 
agronomic knowledge, humidity is a parameter that escalates the downy mildew 
presence and expansion. Thus, using regression analysis, we can correlate the 
severity of disease presence to the air humidity measurements. Data from previ-
ous years will provide humidity measurements (x) and disease presence (y). So, 
a function y = f(x) will be established considering a specific regression order that 
shows how accurately we fit the regression to our reference data x, y. Based on 
the relevance of the new input humidity measurements (xi) and the regression 
order, we can predict the severity of the disease (yi).
Classification: The output data is in discrete form, i.e., 0, 1, 2, but it should not 
be a fraction. Using the example of apple scab disease, we assign images of 
healthy leaves to class 0 and images of infested leaves to class 1, when using 
cameras to detect the problematic areas (Fig. 9.2). The classifier in this example 
is the k-nearest neighbor (k-NN). Each image is accompanied by a set of fea-
tures, in most cases (i) color features, (ii) shape features, and (iii) texture fea-
tures. Considering that apple scab appears as visible color anomalies on leaves, 
we expect major differences in color features during the classification process.
Consequently, in the training phase, we defined a set of features associated with 
healthy apple leaves (class 0) and apple scab leaves (class 1). So, in every new 
apple image of an unknown class, the features are calculated, and this observa-
tion will be placed on the feature map. We consider a 2D feature plane with a 
y-axis for color features and an x-axis for shape features. Depending on the 
k-nearest features (k = 1 in the example), the new observation is assigned either 
in class 0 or 1, based on its proximity to the already known classes (dmin).

 2. Unsupervised learning (UL): Here, we provide data whose input is known but 
whose output is unknown. Techniques such as clustering, which groups data into 

Fig. 9.2 k-nearest neighbor classification example
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separate classes, are popular in this analysis. More widely used UL algorithms 
are self-organizing map (SOM), partial-based, hierarchical, K-means, COBWEB, 
and density-based spatial clustering. Applications using UL detect anomalies 
that do not fit any group or segmented datasets by some shared attributes. For 
example, DBSCAN is a clustering method that employs density and topology 
information to segment vegetation pixels from bare soil pixels in many agricul-
ture vision applications.

 3. Reinforcement learning (RL): This is a special type of machine learning that 
focuses on learning through penalties and rewards. It is mostly implemented in 
video games and robotics. The learning process for RL is based on the principle 
of feedback. The idea is that every action impacts the system, which is then 
reported back to the algorithm, modifying its behavior. Exposing the fundamen-
tal concept of this method used in orchard and vineyard farming, many agricul-
ture robots learn from mistakes such as colliding with obstacles or failing to pick 
fruit through penalty scores. At the same time, they figure out the shortest path 
to bypass obstacles or grab a fruit with the minimum number of motions through 
rewarding optimum practices.

All the methods mentioned above constitute different approaches to increasing 
the intelligence of a computing system. Another term often used in the artificial 
intelligence world is deep learning (DL). DL is a subset of machine learning and 
refers to the computer software technique that mimics the network of neurons in a 
brain. Deep learning co-exists with the learning methods listed above but offers 
great advantages in feature extraction and prediction accuracy.

9.2.4.2  Application Domains

ML provides a powerful and flexible framework for data-driven decision-making 
and the incorporation of expert knowledge into the system. These are some of the 
key characteristics of the ML techniques that make them widely used in many 
domains and highly applicable to precision agriculture (Chlingaryan et al., 2018).

Covering a large portion of ML applications in agriculture, a recent study indi-
cated (i) crop management, including applications for yield prediction, disease and 
weed detection, crop quality, and species recognition; (ii) water management; and 
(iii) soil management as the most important categories in the farm management 
cycle (Liakos et al., 2018). The following section will showcase ML applications 
covering the categories that play a crucial role in the orchard and vineyard produc-
tion cycle.

For yield prediction purposes, a study on coffee trees employed 42 color features 
in digital images and supervised learning methods to count the fruits on the branches 
and provide information on the maturity stage and weight in each measurement 
(Ramos et al., 2017). Another approach focusing on yield prediction in apples with 
unsupervised learning offered promising results by considering the driving factors 
affecting yields, such as soil texture (clay and sand content), soil electrical conduc-
tivity (EC), and potassium (K), phosphorus (P), organic matter (OM), calcium (Ca), 
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and zinc (Zn) content (Papageorgiou et  al., 2013). In grapevines, a 3D imaging 
technique combined with ML managed to estimate the yield accurately before rip-
ening with 98% accuracy and 96% during ripening (Dey et al., 2012).

As far as disease detection is concerned, ML has found fertile ground in many 
applications related to detecting diseased leaves and fruits accurately. Color cam-
eras provide useful color, shape, and textural information that allow the ML classi-
fiers to decide if the content of an image belongs to the healthy or diseased class. 
But what happens when the visible spectrum cannot reveal evidence of disease? 
Multispectral, hyperspectral, and thermal cameras provide more sophisticated 
information on the crop reflectance, allowing the effective detection of diseases 
even at the presymptomatic stage when disease stress is not visible to the naked eye. 
Such research concepts are tested in diseased crops, including citrus (Sankaran & 
Ehsani, 2013), banana, lemon, and mango (Arivazhagan et al., 2013), and downy 
mildew and black rot diseases in grapevines (Waghmare et al., 2016). However, the 
unstructured field environment challenges the field deployment of such computer 
vision techniques. Fruit occlusion and poor lighting conditions are the major prob-
lems that vision-based systems are suffering.

Crop quality is another application domain of ML that facilitates the accurate 
crop status assessment. For example, unsupervised learning techniques utilized soil 
data (e.g., electric conductivity) and NDVI measurements to estimate grape quality 
and effectively delineate into separate farm management zones (Tagarakis et  al., 
2013). In pear orchards, hyperspectral imaging and supervised learning techniques 
were used to discriminate deciduous-calyx pears (high quality) from persistent- 
calyx pears (low quality) (Hu et al., 2017).

Regarding water management in orchards and vineyards, several studies have 
been conducted to estimate daily, weekly, and monthly evapotranspiration. This is a 
complex process that requires sufficient water resource management and the effec-
tive design of irrigation systems. ML techniques are ideal tools for understanding 
patterns and sequences of meteorological data; thus, two studies used temperature 
records from 1961 to 2014 (Feng et al., 2017) and 1951 to 2010 (Mehdizadeh et al., 
2017) to estimate evapotranspiration. Finally daily dew point temperature is an 
important element for identifying expected weather phenomena, so a relevant study 
employed ML techniques to estimate daily dew temperature, having two local 
weather stations as a source of input data (Mohammadi et al., 2015).

Finally, soil properties such as soil drying, condition, temperature, and moisture 
content are pivotal elements of the production cycle, while the mechanisms and 
processes are difficult to be determined. ML has proven to be a promising tool in 
identifying the soil status since soil measurements are generally time-consuming 
and expensive for mapping the soil properties in large-scale vineyards and orchards. 
One notable study managed to estimate the daily soil temperature at six different 
soil depths of 5, 10, 20, 30, 50, and 100 cm (Nahvi et  al., 2016), while another 
research used ML techniques to predict soil moisture only from the force data 
derived from tillage machines and the working speed (Johann et al., 2016).
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9.3  Decision-Making and Intervention

In data-driven agriculture, high-quality data is the most valuable currency in the 
sector. Producers need an enormous amount of information to enable efficient plan-
ning and decision-making throughout the entire growing season. Nutrient deficien-
cies, water stress, and disease occurrence can be effectively managed during the 
growing season (Usha & Singh, 2013). These problems can be solved with constant 
data sources that provide valuable information on crop health and stress, nutrient 
requirements, and infestation threat levels. However, the challenging aspect of the 
agricultural sector is that data loses value the later it becomes available. Decisions 
such as disease control or inputs application require utmost accuracy in their timing, 
with a miss of a few days resulting in major losses in the final yield. Therefore, 
agricultural decision-makers at all levels need an increasing amount of information 
to better understand the possible outcomes of their decisions and to assist them in 
developing plans and policies that meet their goals.

Many decision support systems (DSS) have been developed, and farmers have 
shown great interest in limiting uncertainty in decision-making (Stone & Hochman, 
2004). However, DSS-related “problem of implementation” remains in many cases 
because of the “lack of sustained use in a way that influences practice” (McCown, 
2012). Factors that may influence the implementation of a DSS in agriculture 
include profitability, user-friendly design, the time requirement for DSS usage, 
credibility, adaptation of the DSS to the farm situation, information update, and 
level of knowledge of the user (Kerr, 2004).

Even though most of the technical problems related to DSS (farmer’s access and 
connectivity issues) have been solved during the past few years (Rossi et al., 2014), 
the following restrictions remain and could be the next challenge for the future 
developers of agricultural DSS: (a) they often fail to see crop production holisti-
cally, and most DSS is problem-specific; (b) they have poor quality because of 
insufficient validation; (c) they could be more user-friendly; (d) they are time- 
consuming, because of delays in data processing or complex input requirements; (e) 
information is sometimes delivered to users asynchronously related to decision- 
making timing and the need for action; (f) there is a need for constant maintenance 
and updates; (g) they have low capacity of modification and customization; and (h) 
they often describe a result as the optimal solution which is discouraging to the 
farmer who usually wants to take part in the decision-making process.

9.3.1  Agricultural Decision Support Systems (DSS)

Agri-information systems can be defined as a system for collecting, processing, 
storing, and disseminating data in the form needed to carry out a farm’s operations 
and functions or providing farmers with valuable information to support decision- 
making and farm management. Agricultural decision support systems (DSS) are 
computing systems that help decision-makers leverage field data and agronomical 
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models to solve problems and develop carefully planned strategies to meet their 
production targets. Sophisticated DSS aims to improve the performance of agricul-
tural production units by analyzing enormous volumes of information and translat-
ing it into complex decisions that often cannot be made by human means.

Spatial DSS (SDSS) are computer-based systems designed to solve complex 
problems related to multiple parameters that demonstrate spatial variability. 
Typically, an SDSS consists of a geo-informatic system (GIS) and a DSS. Geospatial 
cyber-infrastructure (GCI) is the most current version of a DSS, using data resources, 
network protocols, computing platforms, and computational services. They support 
functionalities such as data acquisition, storage, management, and integration of 
both static (e.g., pedology, geology) and dynamic data (e.g., daily climate), data 
visualization, and on-the-fly computer applications (such as those enabling simula-
tion modeling for the determination of water stress), all potentially accessible via 
the web (Terribile et al., 2017).

In general terms, most DSS used in agriculture have similar basic architecture:

• Collection, organization, and integration of several types of information required 
for producing a crop or describing complex multifactorial processes in agricul-
tural units. Data is entered either from the farmer, via the web, which provides 
site-specific information, for each field decision unit, or obtained automatically 
(often in real time) by sensors positioned on the farm. In general, these data may 
include cropping and plant parameters (dimensions, growth stage, reflection of 
light in certain frequencies), field data (altitude, sun exposure), soil data (dynam-
ics, temperature, water, nitrogen, salinity, carbon balance), climate data (tem-
perature, humidity, rainfall, direction and strength of wind), and farm management 
practices (irrigation, fertilization, pest control).

• All this information is then analyzed and processed, usually by a server, as part 
of a web infrastructure in most cases that provides output to the farmer to support 
his field management. The processing and interpretation of the data are facili-
tated through crop models, classified as either empirical/statistical or dynamic. 
Empirical models usually exploit the statistical relationship between all param-
eters mentioned above; they are computationally demanding (e.g., regressions) 
and are widely accepted (Terribile et  al., 2017). However, they have various 
weak points, such as the high level of calibration required (when applied to a new 
environment). Most importantly, they do not address the nonlinear relationships 
between plant and environmental factors. On the other hand, dynamic models 
attempt to solve the nonlinear relationships and allow for greater generalization 
of crop growth processes and, consequently, a better adaptation to new environ-
ments and an overall much better performance. Generally, dynamic models sim-
ulate plant growth development daily and consider site features at specific 
locations (Terribile et al., 2017).

• After processing and interpretation, depending on the type of the DSS, it may 
recommend the most appropriate action or action choices. Depending on the type 
and specificity of the DSS, these suggestions could concern (a) planting dates 
based on soil and weather conditions; (b) harvest dates based on maturity, along 
with soil and weather conditions; (c) daily irrigation based on daily values or soil 
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water depletion; (d) fertilizer additions, based on read-in values or automatic 
conditions; (e) application of residues and other organic materials (plant, ani-
mal); (f) prevention steps if disease risk is detected; and (g) both daily opera-
tional and long-range farm-related strategic decisions.

9.3.2  Types of Agricultural DSS

9.3.2.1  Irrigation DSS

Regulated deficit irrigation (RDI) is a strategy in which water is saved by reducing 
or completely restricting irrigation at certain crop growth stages to control the 
growth of shoots. This technique has been widely used for many decades to increase 
the quality of fruit yields; however, its application in drought-sensitive orchards car-
ries the risk of imposing too much water stress. For this reason, DSS is often used 
when such practices are adopted to ensure that no critical mistakes occur when 
accuracy matters the most. Marsal and Stöckle (2012) carried out an experimental 
pilot to test the efficiency of CropSyst in a pear orchard where an RDI program was 
applied. The model performed exceptionally well, especially for the period after 
applying deficit irrigation (Marsal & Stöckle, 2012). In 2012, Peets et al. described 
the development and validation process of a GIS-based SDSS for precision irriga-
tion management of tree crops. Their system combined crop growth data generated 
by various field sensors under environmental conditions and irrigation regimes in 
orchards with abiotic soil, elevation, and climatic data to construct a site-specific 
orchard irrigation DSS.

9.3.2.2  Fertilization DSS

Excessive use of fertilizers has both environmental and economic impacts. The 
farmer spends money without improving his yield, and increased concentrations of 
nutrients in the soil often cause phytotoxicity, which leads to yield decrease and 
quality degradation. On the other end, the under-application of fertilizers does not 
allow the crops to reach their maximum productivity since available nutrients are 
not sufficient for their needs. Both cases result in low nitrogen use efficiency.

Fertilization DSS is based on agricultural models after vigorous tests on a large 
number of fertilization experiments for each crop type. Therefore, the ability to 
estimate the optimal application rates and dosages for each fertilizer application is 
essential for efficient farm management (Papadopoulos et  al., 2011). Figure  9.3 
shows a commercial application of a crop management platform and a decision sup-
port system with the proposed variable rate fertilization that can be visualized.
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Fig. 9.3 A pH soil map of a vineyard (top image) and a “Precision Farming Project” suggesting 
variable rate fertilization of the field (bottom image), as suggested by ABACO’s SITI4farmer DSS

9.3.2.3  Pest Management DSS

The pest control methods and timing require deep knowledge of pests and the mech-
anisms that affect their spreading, setting pest DSS as an essential part of pest man-
agement programs. Advanced integrated pest management (IPM) programs require 
complex tactical decisions for planning and execution. Agrochemicals are often 
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applied when there is no actual infestation and when the farmer decides when to 
spray. Therefore, knowledge derived from field data is needed to enable accurate 
decisions on pest management.

9.3.3  Examples of DSS in Agriculture

Many new technologies have been developed for or adapted to agricultural use in 
the last 30 years. The most recent information systems that support agriculture deci-
sions allow the segregation of minor differences, both objective and statistically 
significant. Existing tools are even now designed to better manage crop adaptation 
between different parcels, focusing on the variability within the parcel. Many of 
these processing systems have been initialized in the framework of research proj-
ects, but they are often transformed into commercial services offered to single farms.

DSSAT (Decision Support System for Agrotechnology Transfer) is a software 
application program for simulating crop models which incorporates models for 42 
different crops, in constant development, since its beginning as a research program. 
It has a modular structure with multiple components, including soil, crop, water, 
weather, soil-plant-atmosphere competition, management, pest control module, etc.

Many DSS have been developed especially for vineyard management, research, 
and commercial purposes. Vite.net is a research project in Italy developed for the 
sustainable management of vineyards and is intended for the vineyard manager 
(Rossi et al., 2014). The DSS consists of two main parts: (i) an integrated system for 
real-time monitoring of vineyard components (air, soil, plants, pests, and diseases) 
and (ii) a web-based tool that analyzes these data by using advanced modeling tech-
niques and then provides up-to-date information for managing the vineyard in the 
form of alerts and decision supports. GeoVit (Terribile et al., 2017), developed as a 
GCI, may provide an important web-based operational tool for high-quality viticul-
ture as it better connects the farm and landscape levels. It supports the acquisition, 
management, and processing of static and dynamic data, data visualization, and 
computer applications to perform simulation modeling, all potentially accessible 
via the web. The NAV (Network Avanzato per il Vigneto  – Advanced Vineyard 
Network) system is a wireless sensor network (WSN) designed and developed for 
remote real-time monitoring and collecting micro-meteorological parameters in a 
vineyard. VineSens is a hardware and software platform for supporting pest man-
agement decision-making. Using a WSN and epidemiological models can predict 
and prevent diseases, most usually faced by vine growers, such as downy mildew. In 
commercial services, several companies offer solutions for monitoring and manag-
ing vineyards, combining hardware and software with most of them provided and 
supported through web-based platforms, such as VintiOS, a precision viticulture 
software, supporting vine growers and oenologists on the grapevine production and 
quality.
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9.4  Discussion and Conclusions

This chapter presented an overview of farm management information system 
(FMIS) principles that integrate sensing, data management and analysis, and 
decision- making to automate the operation and management of modern orchards 
and vineyards. It investigated how existing emerging technologies, such as Big Data 
analytics methods and machine learning, fit with agricultural Big Data for tree fruit 
orchards and vineyards and the knowledge needs for which they are collected.

Farmers need an effective way to manage large volumes of information and tech-
nological tools to assist them in making year-round optimal and sustainable deci-
sions. The integration of a variety of data into a coherent management information 
system is the solution. Farm management information systems support the collec-
tion, processing, and storage of data in a form that enables accurate scheduling and 
execution of farming operations or provides farmers with valuable information to 
support decision-making. The availability of farm-level sensors and other precision 
agriculture technologies has changed the management of many farming systems. 
Nowadays, FMIS has increased in sophistication through the development and inte-
gration of new technologies and advances in hardware and software capabilities of 
mobile phones. Web- and app-based applications enable real-time data recording 
and automated data transfer. Several technologies directly linked to smart farming 
can also be used for data transmission, processing, and storage.
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Chapter 10
Economic and Societal Aspects

Zachariah Rutledge and J. Edward Taylor

Abstract This chapter discusses economic and societal aspects of automation in 
tree fruit orchards and vineyards. We start by explaining economists’ views on the 
drivers of technology development and move to a discussion about the social wel-
fare implications of automation under scenarios of farm labor abundance and scar-
city. We also discuss the relationship between economic development and the 
societal transition out of farm work, how farm labor scarcity influences farming 
decisions, and how economists model the decision to adopt labor-saving technolo-
gies. We conclude with some thoughts about the possibility of a future with advanced 
robotic harvesting systems operated by highly skilled personnel.

10.1  Introduction

In 1984, a group of small farmers and community activists, together with 19 farm 
workers, sued the University of California (UC) for developing a new harvesting 
technology that revolutionized the production of processing tomatoes. The plaintiffs 
argued that the University’s agricultural research program “displaces farm workers, 
eliminates small farmers, hurts consumers, impairs the quality of rural life, and 
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impedes collective bargaining.”1 The case eventually settled, but it cost the University 
of California dearly and put a damper on labor-saving agricultural research and 
development for more than two decades. The US Secretary of Agriculture Robert 
Bergland famously stated: “I will not put federal money into any project that reduces 
the need for farm labor” (Sarig et al., 2000).

The UC tomato harvester case was the product of an era in which farm labor 
was abundant and wages for farm workers were stagnant or decreasing. Today, US 
farmers face a different world in which the number of people willing to work in 
orchards and fields is diminishing and real farm wages are on the rise. Nevertheless, 
the case highlighted the potentially far-reaching social implications of labor-saving 
technological change, and it left behind a legacy of suspicion that mechanization 
might be antithetical to the welfare of workers, consumers, and the communities in 
which they live.

This chapter explores economic and social aspects of advanced automation in 
tree fruit orchards and vineyards. It begins by explaining economists’ views on the 
social welfare effects of automation under different labor market scenarios, in par-
ticular, when agricultural workers are abundant and when they are scarce. Next, it 
traces the evolution of a farm labor market going through the transition from labor 
abundance to labor scarcity by examining the case of California and sharing new 
research findings on how farmers are adapting to a diminishing farm labor supply. 
When agricultural labor is abundant, automation may be detrimental to agricultural 
workers and small farmers who cannot afford to invest in new technologies, even if 
the total benefits to society are positive. On the other hand, in the current era of labor 
scarcity, labor-saving automation is more likely to create benefits for workers and 
consumers as well as for agricultural producers and society as a whole. We conclude 
by imagining a future with robots in the fields and what this is likely to portend for 
workers, consumers, and rural communities.

10.2  Economic Views on Automation and Social Welfare

Broadly speaking, the widely held view among economists is that producers adopt 
new technologies when the expected cost savings from doing so exceed the invest-
ment cost. Adoption is only one part of technology change, however, because new 
technologies need to be developed before adoption can take place.

There is some disagreement about the determinants of technology development. 
The induced innovation hypothesis posits that changes in relative factor (input) 
prices determine technology development. This hypothesis was first advanced by 
economist John Hicks in his classic work The Theory of Wages (1932). Hicks wrote:

1 See California Agrarian Action Project, Inc. v. Regents of the University of California (1989).
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A change in the relative prices of the factors of production is itself a spur to invention, and 
to invention of a particular kind—directed to economizing the use of a factor which has 
become relatively expensive.

For example, in a labor-abundant environment, wages are low relative to capital 
and land rents, so there is little incentive for public and private entities to invest their 
resources in developing labor-saving technologies. In a labor-scarce environment, 
rising wages relative to rents create incentives to develop labor-saving technologies 
as well as for farmers to adopt those technologies once they are “on the shelf.”

Advocates of induced innovation point to the so-called “Green Revolution” high- 
yielding grain varieties that gained wide acceptance in Japan, where land was rela-
tively scarce. Growth in agricultural output in continental Europe, which increased 
at twice the rate of the USA, was also driven by rising grain yields (Binswanger, 
1986). Early improvements in wheat and rice varieties were developed by the 
International Maize and Wheat Improvement Center (CIMMYT) in Mexico and the 
International Rice Research Institute (IRRI) in the Philippines, which eventually led 
to the inception of the Consultative Group on International Agricultural Research 
(CGIAR) (Pingali, 2012). Rising world food demand, fed by population and income 
growth, induced institutions like the CGIAR and the Rockefeller Foundation to 
invest in R&D to increase yields per acre of land. In contrast, mechanical innova-
tions were central to the history of grain production in the USA, where land was 
relatively abundant and the cost of capital was low.

An opposing view is that research and development is largely an exogenous, self- 
perpetuating process, as new breakthroughs lead to others that, in turn, lower the 
costs of developing new technologies over time. UC researchers developed the 
tomato harvester in an environment of labor abundance and low agricultural wages, 
exploiting new developments in mechanical and agronomic engineering. It is diffi-
cult to argue that relative prices of labor and capital led to Jobs’ and Wozniak’s 
invention of the personal computer or the iPhone, which would not have been pos-
sible without prior advances in transistor and wireless technology. Once they 
became available, though, adoption was explosive.

Some economists have attempted to test whether relative factor prices explain 
the development of new technologies, consistent with induced innovation, with 
mixed results. Figure 10.1 depicts the factor prices for labor and capital inputs (real 
wages and interest rates), revealing a pattern (i.e., a rising wage to interest rate 
ratio) that is consistent with the induced innovation of labor-saving technologies. 
Examples of studies that find support of the induced innovation hypothesis include 
Thirtle et al. (1995) in South Africa, Bidabadi and Hashemitabar (2009) in Iran, 
and Hyami and Ruttan (1971) in the USA. However, examining data at a more 
granular geographical level in the USA, Olmstead and Rhode (1993) only found 
evidence of induced innovation in certain regions of the USA but not in others. 
This led them to argue that the induced innovation hypothesis was insufficient to 
fully explain the development of American agriculture and that other factors must 
have also played a role. Others argue fervently that technological determinism is 
the main driver of R&D and that it is becoming more important over time (e.g., 
Arrow, 1962; Levin, 1988).
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Fig. 10.1 Real US farm worker wages vs. federal fund interest rate (1976–2017)
Note: Wage data were obtained from the Current Population Survey (https://ipums.org/). Interest 
rate data were obtained from the St. Louis Federal Reserve Economic Research Database (https://
fred.stlouisfed.org/)

It is likely – to the point of being almost tautological – that a mixture of these two 
theories is needed to explain the development and adoption of advanced automation 
in tree fruit orchards and vineyards. Creating labor-saving solutions for delicate, 
difficult-to-pick fruits is complex and would not be possible without recent advance-
ments in mechanical engineering, machine learning, artificial intelligence, wireless 
technology, agronomics, and other fields. Additionally, farmers will not adopt new 
labor-saving technologies unless it is economically feasible and optimal to do so. 
The economic cost-benefit analysis for adopting new labor-saving technologies 
obviously depends upon factor prices, including wages. Even if a robot can pick a 
fresh peach crop as well as a human farm worker, farmers will be unlikely to pur-
chase the robot unless wages are high (and expected to keep on rising) and capital 
costs (i.e., interest rates on loans to invest in robots) are low.

Asking whether induced innovation or technological determinism drives the cre-
ation and adoption of new technologies might seem like an academic exercise, but 
the answer has potentially far-reaching social ramifications. For example, consider 
the UC tomato harvester, which was launched into an environment of abundant farm 
labor and low farm wages. Even though the end of the US-Mexico Bracero program 
(1942–1964) created some expectations of labor shortages, for the most part, they 
did not materialize (Martin, 2006a). It would seem that an induced innovation model 
is ill-suited to explain why the UC tomato harvester appeared when it did. It is dif-
ficult to argue that rising relative wages led UC researchers to develop the tomato 
harvester, as induced innovation theory would posit.
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Nevertheless, a stunning drop in labor requirements to harvest processing toma-
toes resulted in the almost complete adoption of the tomato harvester in a very short 
period of time: within 5 years, nearly 100 percent of processing tomato farmers had 
adopted (Taylor & Charlton, 2019). Despite the high cost of adopting the new tech-
nology, the dramatic decrease in labor costs made the tomato harvester a feasible 
investment for farmers who could afford it. There is no question that the technology 
displaced large numbers of field workers in this low-wage, labor-abundant environ-
ment. The displacement of workers caused a backlash against the UC tomato har-
vester, which was led by farm worker advocates and small farmers who could not 
afford to invest in the new technology. There is mixed evidence about whether the 
adoption of agricultural technologies generates harmful impacts for agricultural 
workers in developing countries, where a large proportion of the workforce is still 
engaged in agricultural work. The impacts differ by region and depend on factors 
such as land availability for farmland expansion and how well markets are inte-
grated. For example, in Bangladesh, mechanization has been linked to higher wages 
in both the short and long run and does not appear to reduce employment (Hassan 
& Kornher, 2019). This has been attributed to scale effects, which have led to an 
increase in the demand for labor. However, in other regions, such as in Ethiopia, 
Senegal, and Kenya, the adoption of tractor-powered machines has been shown to 
displace labor (Kirui, 2019).

Technological determinism can result in the development and introduction of 
labor-saving automation in a labor-abundant environment. Induced innovation, on 
the other hand, posits that new labor-saving technologies will not be developed 
unless labor becomes scarce (and expensive) relative to the cost of other factors. It 
would seem, then, that social disruptions from new technologies are less likely in a 
world where induced innovation guides technology change compared to the situa-
tion where “innovation accidents” lead to the sudden and unexpected appearance of 
automation, like tomato harvesters and peach-picking robots.

10.3  California Agriculture: From Worker Abundance 
to Labor Scarcity

Concerned about farm labor shortages during World War II, President Roosevelt 
signed an executive order that launched the Bracero program, authorizing Mexican 
laborers (Braceros) to enter the USA to perform contract work on farms (Bracero 
History Archive, 2019). Over the 22-year duration of the program, roughly 1.5 mil-
lion Braceros came to work on US farms, many of them returning year after year 
from poor villages in rural Mexico under different contracts (Martin, 2006b). In 
addition to this large influx of Braceros, over five million unauthorized Mexicans 
were apprehended over the same period, suggesting that a significant number of 
unauthorized workers had also entered the farm labor force (Martin, 2001). This 
massive inflow of immigrants depressed the wages of native-born workers, which 
helped opponents of the Bracero program (including President Kennedy) 
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successfully argue for its termination. After the Bracero program was ended by 
Congress in 1964, Mexicans continued to make the trek north into the USA. The 
relatively high wages in the USA, coupled with lax immigration enforcement across 
the southern border and laws that allowed US employers to hire unauthorized work-
ers, enabled undocumented Mexicans to flood the US farm labor market, which led 
to decades of reliance upon low-wage Mexican workers for tree fruit production and 
vineyard work.

Attempting to end the massive inflow of undocumented immigrants from Mexico, 
the US government passed the Immigration Reform and Control Act (IRCA) in 
1986, which legalized 1.3 million unauthorized farm workers, established the cur-
rent H-2A agricultural guestworker visa program, and imposed legal punishments 
(e.g., fines and jail time) for farmers who knowingly hire undocumented workers. 
The H-2A visa program allows US farm employers to employ temporary foreign 
workers when a sufficient number of domestic workers are unavailable. Although its 
use has increased substantially over the past 10 years, historically it had not been 
widely used due to the higher cost of employing workers through the program, as 
well as the complicated nature of the approval process. Nevertheless, the passage of 
IRCA caused farmers and policymakers to become concerned about the potential 
for farm labor shortages, prompting the emergence of a body of academic literature. 
However, farm labor shortages did not materialize after the passage of IRCA, and 
researchers found that it may have even led to a temporary boost in the farm labor 
supply, resulting from family reunification policies that granted visas to the family 
members of unauthorized farm workers who had been recently legalized (Boucher 
et al., 2007). Despite these previous “false alarms,” recent research reveals that the 
era of farm labor abundance is coming to an end.

For at least 10 years, media outlets have provided anecdotal evidence of farm 
labor shortages in California (and throughout the USA), with some farmers claim-
ing lost income due to an inability to find enough workers during harvest time (e.g., 
Plummer, 2013; Glaister, 2006; Good, 2017; della Cava & Lopez, 2019; Oatman, 
2018). Subsequently, a new body of research has taken root exploring whether the 
anecdotal evidence can be corroborated with data or if these reports are being blown 
out of proportion by politically motivated actors. Skeptics argue that farm labor 
shortages wouldn’t occur if farmers simply raised wages. However, some econo-
mists argue that local farm labor shortages may occur even when wages rise because 
agricultural labor markets are local, farm labor is not always mobile, and factors 
such as weather can affect the timing of regional labor demand shocks when a suf-
ficient number of properly skilled workers are simply not available in the local labor 
market (Fisher & Knutson, 2012).

In a recent issue of the American Journal of Agricultural Economics, Richards 
(2018) used structural and econometric modeling to study whether there is evidence 
of farm labor shortages among different classes of farm employees in California, the 
state with the highest demand for agricultural labor. He found evidence consistent 
with persistent shortages among harvest workers in recent decades. Hertz and 
Zahniser (2012) provide evidence of labor shortages by identifying US counties that 
have experienced extraordinary growth in farm worker earnings yet have had lower 
employment levels, consistent with a declining farm labor supply. Others have 

Z. Rutledge and J. E. Taylor



225

found that the farm workforce is aging and is not being replenished by young immi-
grant workers (Martin, 2019), immigrant farm workers are settling down in the USA 
and are less likely to travel to work on farms (Fan et al., 2015; Reyes, 2004), and as 
the Mexican economy continues to expand, workers are being drawn out of the farm 
labor pool into other sectors of the economy (Taylor et al., 2012; Charlton & Taylor, 
2016; Rutledge & Taylor, 2019b). Moreover, Richards and Patterson (1998) provide 
an economic rationale that explains why workers leave the agricultural sector and 
do not return to the sector. Their analysis suggests that farm workers who gain 
employment in other sectors of the economy must make irreversible investments in 
human capital or location; thus, compensation in the agricultural sector must rise to 
a level that offsets those investment costs or workers are unlikely to return.

Immigration policies are also playing a role. Increased security at the southern 
border has led to higher “coyote” (smuggler) fees, which can cost thousands of dol-
lars and has reduced the number of Mexicans who can afford to cross the border 
(Orrenius, 2004; Dickerson & Medina, 2017). And those who pay the increased fees 
often have to take out loans from family members in the USA and end up seeking 
work in higher-paying non-farm occupations (such as construction) to pay them off. 
In some parts of the USA, local immigration enforcement policies have driven farm 
workers out of the local labor market suggesting that, in general, the threat of depor-
tation may also lead to a smaller farm labor supply (Ifft & Jodlowski, 2016; 
Kostandini et al., 2013). And opposition to immigration by US government officials 
has been felt by farmers who claim that it has impacted the number of workers who 
are available (Frank, 2017). These factors have induced farmers to raise wages, 
reducing the already tight profit margins that they operate on (Rutledge & Taylor, 
2019a; Charlton et al., 2019a, b; Hertz & Zahniser, 2012). Even if farmers gave up 
all of the surplus (profit) they generate through employing farm workers, recent 
research has found that they would still not be able to raise wages high enough to 
put an end to the shortages because the increase in wages that would be necessary 
to attract enough workers exceeds the profits that farmers have to spare (Richards, 
2018). In addition, global and national market pressures make it difficult for local 
farmers to pass increased labor costs onto the wholesalers and retailers who pur-
chase their fruits because commodity prices are not determined locally and farmers 
generally do not dictate the price they receive for their crops.

Other frictions in the farm labor market arise from the fact that domestic workers 
are unwilling to perform farm work because of the non-pecuniary costs (Taylor 
et al., 2012). To highlight this fact, during the recent recession when unemployment 
rates were close to 10%, the United Farm Workers of America (a farm labor union 
based in California) launched the “Take Our Jobs” campaign, which offered farm 
employment to any American who wanted a job. However, even though unemploy-
ment rates were the highest they had been in decades, only a few dozen Americans 
took them up on their offer after realizing that the work entailed “back-breaking 
jobs in triple-digit temperatures that pay minimum wage, usually without benefits” 
(quoted from Smith, 2010). This means that the existing pool of workers who are 
willing to perform farm work is comprised of poor (mainly undocumented) Mexican 
immigrants who do not have better employment opportunities, of which there is a 
limited (and decreasing) supply.
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The fact that few US-born workers are willing to do farm work underscores this 
country’s relatively advanced position in the economic development process. In 
fact, the transition out of farm work is common among most countries that have 
gone through the development process. The response to labor shortages tends to 
involve importing farm labor from poorer nations.

Figure 10.2a shows a scatterplot of the proportion of each country’s labor force 
in agriculture against the per capita gross domestic product (a commonly used mea-
sure of economic development). The beginning of each arrow marks the position 
that each country was at in 1991, while the arrowheads show the position of each 
country in 2017. Nearly all of the arrows point to the southeast, indicating that as 
countries develop and become richer, their workforce tends to transition out of farm 
work. Figure  10.2b shows the same graph (rescaled) isolating Mexico and the 
USA.  Clearly the USA is further along in the development process. However, 
Mexico is clearly transitioning out of farm work, too, and it is beginning to import 
farm workers from Central America (Martin & Taylor, 2013; Taylor & 
Charlton, 2019).

Fig. 10.2 Percentage of individual countries’ workforce in agriculture vs. GDP per capita. (a) 
Worldwide. (b) Mexico and the U.S.
Note: Constructed by authors using data obtained from the World Bank at https://data.
worldbank.org
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This process has been examined by two studies that explore the trend in farm 
work among rural Mexicans (the primary source of labor to US farms). Using panel 
data from the Mexico National Rural Household Survey (Spanish acronym 
ENHRUM), Taylor et al. (2012) found evidence that a negative trend in the supply 
of rural Mexican labor to US farms has been underway for years. In a follow-up 
study using a more recent version of the ENHRUM data, Charlton and Taylor (2016) 
quantify the negative trend in the farm labor supply from Mexico and conclude that 
lower fertility rates, increased educational attainment, and an expanding non-farm 
economy in Mexico have contributed to a decline in the pool of workers willing to 
work on US farms.

There is also evidence from the US side of the border suggesting that farm work-
ers are leaving farm work for other sectors of the economy. A 2009 congressional 
report explains that some farm workers want more stable employment than what is 
offered by farmers, leading to a search for non-farm jobs (Levine, 2009). A Pew 
Research Center report finds that there were only two occupations where unauthor-
ized immigrant workers outnumbered lawful immigrant workers (farm work and 
construction), indicating that the construction sector may serve as viable employ-
ment option for farm workers who want to get out of farm work (Pew Research 
Center, 2016).

Fig. 10.2 (continued)
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Card and Lewis (2007) find that there has been a shift in Latin American employ-
ment away from farm work into construction and retail. And data from the National 
Agricultural Workers Survey (Department of Labor, 2018) reveal that there has been 
an upward trend in the share of California farm workers who have recently engaged 
in non-farm work in the USA (Rutledge & Taylor, 2019b).2 Taken together, this 
body of evidence points to a US farm labor supply that is shifting inward, where 
fewer and fewer workers are going into the farm labor force and more and more 
workers are leaving it. This trend could be problematic for tree fruit farmers and 
vineyard owners if they are unable to adapt to the new reality that fewer and fewer 
Mexican farm workers are going to be available in the future.

10.4  Farmer Responses to a Diminishing Farm 
Labor Supply

Economic theory provides a framework from which we can gain understanding 
about how decreases in the farm labor supply affect employment and wages in the 
farm labor market. The theory of supply and demand suggests that a decreasing 
farm labor supply should lead to fewer workers employed and higher wages. This 
scenario best describes the US farm labor market over the past two or three decades. 
Other countries that have experienced a sharp drop in the number of agricultural 
workers in recent decades include Japan, France, Spain, South Korea, and the UK 
(Roser, 2020). Figure 10.3 shows the inverse relationship between the number of 
hired US farm workers and real (i.e., inflation-adjusted) farm worker wages since 
1976, revealing a pattern that is consistent with what economists would expect.

In addition to putting upward pressure on wages, farm worker scarcity has caused 
farmers to make adjustments to their labor management and production practices. 
Farmers growing labor-intensive crops are most vulnerable to changes in agricul-
tural wages and labor availability. In some cases, farmers have switched from pro-
ducing crops that must be harvested by hand to others that can be mechanically 
harvested in order to reduce the cost of labor and remove the risk of not being able 
to find enough workers during harvest time.

Others have turned to farm labor contractors and the H-2A agricultural guest-
worker visa program to ensure that they have access to the workers they need when 
they need them. Nationwide, the number of H-2A visa workers employed in the 
USA has more than tripled over the past decade, comprising roughly 10 percent of 
average annual employment in the agricultural sector (see Fig.  10.4; Martin & 
Rutledge, 2022). However, H-2A visa employment has lagged behind in California, 
in part because farmers who hire foreign workers through the H-2A program must 
provide housing, and housing costs in California have skyrocketed in recent years 
making the program less feasible from a cost-benefit standpoint.

2 The National Agricultural Workers Survey (NAWS) is a nationally representative annual survey 
of crop farm workers that is administered by the US Department of Labor.
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Fig. 10.3 Hired US farm worker employment and real farm worker wages (1976–2010)
Note: Hired farm worker data were obtained from the National Agricultural Statistics Service 
(https://quickstats.nass.usda.gov/) and include farm workers directly hired by farmers and farm 
workers hired through agricultural service contractors. Farm worker wage data were obtained from 
the Community Population Survey (https://ipums.org/) and are in real (i.e., inflation-adjusted) $2017

Fig. 10.4 Number of H-2A visas issued (2000–2018)
Note: Visa data were obtained from US Department of State – Bureau of Consular Affairs – and 
can be found at https://travel.state.gov/content/travel/en/legal/visa- law0/visa- statistics.html

After the passage of IRCA in 1986, researchers uncovered an upward trend in the 
share of the farm labor force employed through farm labor contractors (FLCs).3 
This trend emerged, in part, because of new laws that made it illegal for farmers to 

3 Farm labor contractors are employers who enter into contracts with farmers to provide certain 
services, such as pruning, weeding, and harvesting.
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knowingly hire undocumented workers (Thilmany & Martin, 1995; Thilmany, 
1996). When a farmer hires an FLC to bring workers to her farm, the FLC becomes 
the official employer of record, which from the farmer’s standpoint reduces the risk 
of legal repercussions from the presence of undocumented workers on the farm. 
However, recent research reveals that farmers are becoming increasingly reliant 
upon FLCs to ensure they have enough workers, demonstrating that the motive for 
employing FLCs has shifted toward finding workers in recent years (Rutledge & 
Taylor, 2019a).

In response to rising wages and labor availability problems, farmers also report 
having to make changes to their usual cultivation practices. According to a 2019 
survey of over 1000 California farmers conducted by the University of California, 
Davis and the California Farm Bureau Federation, an increasing share of farmers 
have had to reduce or delay pruning and weeding, and a nontrivial proportion 
reported an inability to harvest all of the fruit that was available in their orchards and 
vineyards (Rutledge et al., 2019; Rutledge & Taylor, 2019a).4 These changes have 
been accompanied by increased adoption of labor-saving technologies, such as 
mechanical harvesters, specialized tractor attachments, automated weeding and irri-
gation technologies, and handheld power tools. When asked the reason for using a 
labor-saving technology, the vast majority of survey respondents reported using it, 
in part, because of rising labor costs. Most of them also cited labor availability as a 
factor (see Fig. 10.5).

4 The survey collected information on farmers spanning a period of 5 years between January 1, 
2014, and December 31, 2018.

Fig. 10.5 Reasons for labor-saving technology adoption
Note: Results are from authors’ calculation of the UC Davis-California Farm Bureau Federation 
“Adapting to Farm Labor Scarcity Survey” data. Percentages add up to more than 100% because 
farmers were allowed to select more than one reason
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The decision to adopt a labor-saving technology in response to a shrinking labor 
force can be modeled as a cost minimization problem. It is common to model tech-
nology adoption in a two-dimensional framework such as the one portrayed in 
Fig. 10.6. For simplicity, we only consider two inputs in the production process: 
capital and labor. Capital inputs include land, buildings, and machinery, and for the 
sake of parsimony, we assume that the farmer owns a fixed amount of land and 
buildings so that the only production decision she makes is with regard to how much 
machinery and labor she will use to produce a certain amount of an agricultural 
commodity per acre while minimizing her production costs. Figure 10.6a depicts 
the optimal input mix for a farmer who uses a labor-intensive production process in 
a labor-abundant environment. The curve denoted Q0 is called an isoquant and rep-
resents all the combinations of capital machinery (denoted by K) and labor (denoted 
by L) that can be used to produce a given amount of the commodity per acre (say 10 
tons of Cabernet Sauvignon wine grapes). The downward-sloping straight lines in 
the graph are called isocost lines, and they represent all the combinations of capital 
and labor that generate the same amount of cost at a market clearing wage (w) and 
cost of using capital (r). The equation of this isocost line is:

 C rK wL� � ,  (10.1)

Fig. 10.6 An economic model of labor-saving technology adoption. (a) Change in optimal input 
use due to a change from labor abundance to labor scarcity while using a labor-intensive technol-
ogy. (b) Change in optimal input use due to a switch from labor-intensive technology to labor- 
saving technology in a labor-scarce environment
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where C denotes the total cost per acre to use K units of capital and L units of labor. 
Rearranging this isocost equation into its point-slope form reveals the following 
equation:

 K C r w r L� � � ��/ / .  
(10.2)

Therefore, the slope of the isocost line when labor is abundant (i.e., when the 
wage w  = w0) in Fig.  10.6a is –w0/r. If the farmer wants to produce 10 tons of 
Cabernet Sauvignon wine grapes per acre in the labor-abundant environment, she 
will minimize her production costs by using the combination of capital and labor 
that corresponds to point A on the graph. At point A, the isocost line is just tangent 
to the isoquant curve Q0. Thus, her cost-minimizing input mix includes the use of K0 
units of capital and L0 units of labor per acre of land.

In a labor-scarce environment, the market clearing wage (i.e., when w = w1) is 
likely to be higher than it is when labor is abundant (i.e., w1 > w0), and the resulting 
isocost line will be steeper with a slope of −w1/r such as the one depicted in 
Fig. 10.6a. In this labor-scarce environment, if the farmer continues to use a labor- 
intensive production technology, the cost-minimizing input mix will occur at point 
B. Because labor is relatively more expensive in a labor-scarce environment, the 
cost-minimizing solution requires more capital (K1) and less labor (L1) than it did in 
a labor-abundant environment.

Fig. 10.6 (continued)
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The farmer may want to consider automating all or part of the production process 
(e.g., by purchasing and using a pre-pruner or mechanical harvester), which would 
substantially reduce the amount of labor required. If the farmer chooses to automate 
part of her production process, her production technology will change, so it can be 
represented by an entirely new isoquant such as the one denoted by Q1 in Fig. 10.6b. 
The cost-minimizing input mix used to produce 10 tons of Cabernet Sauvignon 
wine grapes per acre in a labor-scarce environment using a labor-saving technology 
occurs at point C, where the farmer uses K2 units of capital and L2 units of labor. 
Note that the new isocost line associated with w1 in Fig. 10.6b has the same slope as 
the one shown in Fig. 10.6a, but it is closer to the origin of the graph, indicating that 
the total cost of employing capital and labor is lower than it was when using the 
labor- intensive production technology. The lower total costs here result from a 
large reduction in labor costs in a relatively high wage environment. However, the 
farmer must also factor in the per-period (annual) cost of the loan associated with 
purchasing the automated technology, so she will only adopt it if the annual cost of 
capital and labor plus the amount of the loan payment is less than the cost of produc-
ing under the labor-intensive technology. As a result, the decision to adopt the auto-
mated technology becomes a cost-benefit problem from the perspective of the farmer.

10.5  Agricultural Technology as a Service

One factor that plays a crucial role in the decision to adopt labor-saving technolo-
gies is farm size. As the farm size increases, so does the incentive to adopt new 
technologies because the loan payment required to purchase the new technology 
can be spread out over a larger number of acres. This means that the per-acre cost of 
purchasing the new technology is lower on larger farms, which increases the prob-
ability that new technologies will be cost-effective. A corollary to this is that smaller 
farms may not be able to automate even if they would like to, so they may have to 
continue operating with labor-intensive production practices despite rising wages 
(or they may go out of business).

A popular model, particularly among agricultural technology startups, is to sell 
automation as a service (ATaaS). Besides keeping the technology under the control 
of the startup rather than selling it to the farmer, this business model helps address 
the challenge of adopting labor-saving techniques on farms too small to justify a 
large sunk cost of adoption. In theory, it could induce smaller farms (and perhaps 
larger ones, as well) to adopt automated production processes, enabling them to 
operate at a lower cost per acre. It could potentially help smaller farmers stay com-
petitive and profitable in a world where larger farms tend to dominate the landscape. 
Nations around the world have realized the importance of agricultural technology 
adoption, and automation services could help fill an important void. In a declaration 
aimed at getting EU member states to support agricultural technology adoption, the 
European Agricultural Machinery Association (2019) stated that “Digital technolo-
gies [for agricultural production] should be available to farmers and farms of all 
sizes and may help attract younger generations, which remains one of the main 
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social concerns affecting this sector today.” According to a recent research report, 
the ATaaS market is expected to increase to $2.5 billion globally by the year 2024 
(BIS Research, 2019).

According to BIS Research (2019), the most common ATaaS models are the pay-
per-use and subscription models. Because the service providers own the equipment, 
this also alleviates any risk associated with having to repair or replace expensive 
electric or mechanical components when the machines break down. The key players 
in this market space include Trimble Inc., Deere & Company, AGCO Corporation, 
CNH Industrial N.V., Accenture PLC, and several others. Within the ATaaS market, 
there are two main branches: (i) Software-as-a-Service (SaaS) and (ii) Equipment-
as-a-Service (EaaS). The most common services currently offered include data ana-
lytics, navigation and positioning, yield monitoring, and soil and crop health 
management. Some companies, such as Blue River Technologies (which was 
recently acquired by Deere & Company for over $300 million), are in the process of 
developing automated weeding and fertilization technologies and hope to provide 
services to the public in the near future.

Automated service markets have also emerged in less developed countries where 
smallholder farming is the norm. For example, laser land leveling and mechanical 
transplanting services have proven to be valuable for small rice farmers in India 
(Lybbert et al., 2017; Gulati et al., 2019). In China, labor-intensive tasks, such as 
land preparation and harvesting, are increasingly being conducted by service pro-
viders (Yang et al., 2013). And service markets have started to develop in Africa, 
although their development has lagged behind due to poorly integrated markets 
(Diao et al., 2019). ATaaS markets could be the key to helping less developed coun-
tries boost agricultural productivity growth, which has been sluggish compared to 
developed countries. A recent study of 11 African countries found that only 18% of 
agricultural households had access to tractor-powered machinery (Kirui, 2019), and 
it has been suggested that facilitating the development of rental markets for tractor 
services could help address this problem (Savastano, 2019).

10.6  Industry and University Responses to a Diminishing 
Farm Labor Supply

Driven by a perceived demand for labor-saving automation and exploiting major 
advances in mechanical, computer, and agronomic engineering, the public and pri-
vate sector are investing heavily in developing labor-saving solutions for difficult- 
to- automate crops and tasks.

Blue River Technologies is developing machines that use cameras, computers, 
and artificial intelligence with deep learning algorithms similar to what is used in 
facial recognition systems to allow farmers to see every plant in the field. These 
systems can tell farmers what types of weeds are in their fields, as well as where and 
how many there are while permitting variable herbicide or fertilizer spraying 
regimes to be applied to each plant. These systems can dramatically reduce the need 
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for workers and are designed to substitute machines and computers for manual 
labor. They also have the potential to help increase crop yields and cut down on non- 
labor input costs by minimizing the amount of chemicals used in the production 
process while applying them with a high degree of precision.

The University of California has also been developing technologies that capture 
data, which can be used to help inform farmers to produce crops more efficiently. 
One such project, the Virtual Orchard (or VO), is a technology that generates a 
three-dimensional model of an orchard using a series of aerial images that can mea-
sure the volume, height, size, and spacing of trees in an orchard. This system can be 
outfitted with near-infrared cameras, and the data collected can be used to direct 
farmers to areas of their orchard that are water or nutrient deficient, which can help 
farmers reduce the amount of labor needed to properly inspect orchards during the 
growing season and can help minimize losses and increase yields (Pourreza, 2018).

In addition to the development of smart technologies, the UC system has also 
invested resources through its Cooperative Extension Program to gain a better 
understanding of who is using automated systems and whether they are reliable and 
cost-effective. One such study has found that labor constraints are a “very impor-
tant” factor in the decision to use currently available automated technologies (Tourte 
& Siemens, 2018). However, this study also found that there has been a substantial 
amount of dissatisfaction with the technologies that are currently available and that 
farmers are generally not confident that they are reliable enough to adopt at this 
stage. Nevertheless, as resources such as labor continue to become scarce, the role 
of research and development to make agricultural production more efficient and 
sustainable will become increasingly important as farmers have to produce more 
food to feed a growing population.

The development of agricultural technologies has been evolving into a multi- 
national collaborative effort. For instance, the Israeli company Welaunch has started 
to set up shop in the USA by placing representatives in US states to collaborate with 
farmers to address their problems. They take the information they gather in the USA 
back to Israel to develop and test new technologies on Israeli farms before bringing 
them to market in the USA (Bedford, 2019). In Europe, digital innovation hubs sup-
port the development and commercialization of “agri-food robotics” to achieve 
environment-friendly and labor-saving technologies (SPARC, 2018). It is likely that 
developments in automation, and their subsequent adoption, will continue to diffuse 
globally. As software, mechatronics, and artificial intelligence algorithms become 
more advanced and capable of adapting to a myriad of new situations, these tech-
nologies will eventually be designed to target different regions and settings through-
out the world.5

5 A number of media reports and technologies are featured on the farmlabor.ucdavis.edu website.
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10.7  Economic Welfare and Automation

When agricultural labor is abundant, automation may be detrimental to agricultural 
workers and small farmers who cannot afford to invest in new technologies, even if 
the total benefits to society (e.g., through higher farm profits and lower food prices) 
are positive. In a labor-rich environment, where the majority of farm workers are not 
well-educated or technologically skilled, the adoption of automated technology has 
the potential to displace a large number of workers, many of whom may not have 
other employment options. Although automation leads to an increase in the demand 
for labor in the technologically skilled farm labor market, it is not likely to offset the 
overall decrease in welfare experienced by the large number of farm workers who 
are displaced from employment in the low-skilled farm labor market. Adoption of 
the tomato harvester created a large increase in the supply of processing tomatoes, 
which in turn stimulated the creation of new jobs in downstream food processing 
plants. The extent to which those non-farm jobs compensated for the loss of employ-
ment in the field is unclear.

On the other hand, in the current era of labor scarcity, labor-saving automation is 
more likely to create benefits for workers and consumers, as well as for agricultural 
producers and society as a whole. As the labor force transitions into a technologi-
cally skilled one, wage gains in a labor-scarce environment have the potential to be 
much larger for those who can acquire the skills necessary to remain in the work-
force. Take for example Fig. 10.7, which portrays the labor market for technologi-
cally skilled farm workers with fixed labor demand under labor-abundant (panel A) 

Fig. 10.7 Technologically skilled farm labor market under labor-abundant and labor-scarce envi-
ronments. (a) Labor-abundant environment. (b) Labor-scarce environment
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and labor-scarce (panel B) environments. This scenario depicts a situation where the 
automated technology only requires a fixed number of personnel to operate it.

Both of the scenarios depict the same initial wage (w0) and amount of labor sup-
plied at the initial equilibrium. The crucial difference between the two panels is 
represented by the slope in the labor supply curves (labeled LSA and LSB). The 
increase in labor demand for technologically skilled farm workers is represented by 
the same shift from LD0 to LD1 in both panels. However, the increase in demand for 
labor in this market leads to dramatically different outcomes under the two scenar-
ios. The market-clearing wage in the labor-scarce environment after the increase in 
labor demand is much higher than it is in the labor-abundant one, and the gain in 
farm worker welfare (represented by the area C + D) in panel B is much larger than 
the gain in welfare in panel A (represented by the area A + B). In both labor- abundant 
and labor-scarce environments, the appearance and adoption of new agricultural 
technologies can lead to a concentration of production on fewer farms. It may not 
be cost-effective for small farmers to adopt an expensive automated technology 
because the fixed cost of adoption per unit of output (or land) can be much higher 
for them than it is for large farmers. If automation leads to increased production or 
efficiency, prices will decrease, which leads to increased consumption. These 
changes increase the overall welfare of consumers and the society as a whole, but 
they can also create winners and losers. Lower commodity prices can drive small 
farmers out of business, particularly if small farmers lack the scale to benefit from 
the new technologies.

Fig. 10.7 (continued)
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10.8  Conclusion

A 2018 Investor’s Business Daily article warned that “Farming robots are about to 
take over our farms.” Extrapolating from current trends in technological develop-
ment and a diminishing farm labor supply, it is not difficult to imagine a future in 
which automation in tree fruit orchards and vineyards expands and deepens to 
encompass more tasks on more farms. Early automation favors tasks for which 
labor-saving solutions are easiest to develop, as well as commodities for which the 
delicacy of human hands matters least at harvest time (e.g., fruits to be processed, 
like wine grapes, versus fruits sold fresh to consumers, like table grapes). However, 
over time, advances in mechanical engineering and information technology (IT) put 
automation solutions within the reach of more tasks and commodities. “Robots in 
the fields” refers to labor-saving solutions that integrate IT with mechanical engi-
neering and other fields, exploiting advances in machine learning and artificial intel-
ligence that enable machines to do things once limited to the domain of humans.

What does a future with robots in the fields portend for farmers, consumers, farm 
workers, and rural communities?

For farmers, the impact will depend on how new and accessible technological 
developments keep pace with a declining farm labor supply. If technological devel-
opment lags, crop production will be more vulnerable to rising wages and declining 
farm worker availability. Confronted by rising wages and less access to workers, 
there may be incentives to shift to less labor-intensive crops. If large farms are better 
able to experiment and become early adopters of new labor-saving technologies, a 
lag in the development of affordable labor-saving technologies could create chal-
lenges for small farmers and accelerate a concentration of crop production on 
fewer farms.

For consumers, access to fresh fruits and vegetables at an affordable price 
depends critically on how farmers adapt to a declining farm labor supply. If farmers 
have access to new labor-saving technologies, they may be able to increase the sup-
ply of food to consumers despite rising wages, minimizing food price increases. On 
the other hand, if these technologies are not available, labor shortages will put 
upward pressure on food prices for consumers, unless consumers are willing to shift 
to lower-cost foods, including imports of fresh fruits from countries that find them-
selves at an earlier stage of the agricultural transformation.

As some farms and crops shift to more sophisticated automation solutions, their 
labor demands will shift from less-skilled workers to workers who have the skills to 
work with new technologies. That is, employment will decrease, but human capital 
demands will rise. Workers who are able to acquire the skills to work with new 
technologies can benefit from higher wages. Those who are unable to acquire these 
skills will have to shift to new crops, tasks, or farms that have not yet adopted the 
new technologies. Societies that succeed in training a new generation of technologi-
cally skilled agricultural workers will have an advantage over those that do not. 
Against a backdrop of declining farm labor supply, it is possible to have rising farm 
wages (for both skilled and less-skilled workers) and increasing automation. For 
this scenario to occur, technological change will have to keep pace with, but not 
outstrip, the negative trend in farm labor supply over time.
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In the era of farm labor abundance, the expansion of labor-intensive agriculture 
created serious economic and social challenges for rural communities in California 
and elsewhere, as new seasonal farm jobs increased poverty and welfare demands 
(Martin & Taylor, 2003). Rising farm wages and a shift toward more skilled farm 
jobs and non-farm employment do the opposite. The impacts of a declining farm 
labor supply on rural communities, like the impacts on farmers, consumers, and 
workers, will depend on whether technological solutions keep pace with rising farm 
wages over time.
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