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This volume of the Handbook of Experimental Pharmacology, which celebrated its
100th anniversary in 2019, addresses the rapidly growing and evolving field of
metabolomics. It has been compiled and designed to broaden and enrich your
understanding as well as simplify a complicated picture of the diverse field of
metabolomics. This is accomplished by chapters from experts in the field on basic
principles as well as reviews and updates of analytical techniques. The variety and
different perspectives of the nuclear magnetic resonance approaches are described in
the chapters authored by David S. Wishart and co-authors, G. A. Nagana Gowda and
Daniel Raftery, and Ryan T. McKay. Advances in mass spectrometry are covered by
Charles R. Evans and co-authors and Stefan Kempa and co-authors. This book also
reflects the state of the art in the application of metabolomics to cell biology (Ulrich
L. Giinther and co-authors) and chapters that share insights into the application of
metabolomics. These include the assessment of treatment response (Paola Turano
and co-authors) and the phenotyping of various diseases (Rachel S. Kelly and co-
authors, Paige Lacy and co-authors, and Angela J. Rogers and co-author).
Relationships of metabolomics and drugs are highlighted by Robert Verpoorte and
co-authors, Oscar Millet and co-authors, and Daniel L. Hertz and co-author. Given
the diverse topics addressed, we believe this book has interdisciplinary appeal and
scholars with an interest in the role of metabolomics in achieving precision medicine
will find it of particular or special interest.

We want to thank the authors for their contributions as this Handbook would not
be possible without them. We also express our appreciation to the many
investigators who work in the field of metabolomics and strive to advance the
science. Its analytical advancement as well as its translation to the clinic is of vital
importance to the field. It is our belief that metabolomics will continue to provide
new and novel insights into complex illnesses and enable more accurate and precise
therapies in the future. We would also like to express our sincere appreciation to
Susanne Dathe, Springer Editor for Neurosciences/Pharmaceutical Sciences/
Protocols, whose commitment and competence have helped to continue the tradition
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of this remarkable series, and to the past and current editorial board members who
have dedicated time and effort into establishing this series as one of the most
recognized publications in pharmacology.

Florence, Italy Veronica Ghini
Ann Arbor, MI, USA Kathleen A. Stringer
Florence, Italy Claudio Luchinat
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Abstract

While NMR-based metabolomics is only about 20 years old, NMR has been a key
part of metabolic and metabolism studies for >40 years. Historically, metabolic
researchers used NMR because of its high level of reproducibility, superb instru-
ment stability, facile sample preparation protocols, inherently quantitative char-
acter, non-destructive nature, and amenability to automation. In this chapter, we
provide a short history of NMR-based metabolomics. We then provide a detailed
description of some of the practical aspects of performing NMR-based
metabolomics studies including sample preparation, pulse sequence selection,
and spectral acquisition and processing. The two different approaches to
metabolomics data analysis, targeted vs. untargeted, are briefly outlined. We
also describe several software packages to help users process NMR spectra
obtained via these two different approaches. We then give several examples of
useful or interesting applications of NMR-based metabolomics, ranging from
applications to drug toxicology, to identifying inborn errors of metabolism to
analyzing the contents of biofluids from dairy cattle. Throughout this chapter, we
will highlight the strengths and limitations of NMR-based metabolomics. Addi-
tionally, we will conclude with descriptions of recent advances in NMR hard-
ware, methodology, and software and speculate about where NMR-based
metabolomics is going in the next 5-10 years.

Keywords

Applications - Experimental methods - NMR spectroscopy - Targeted
metabolomics - Untargeted metabolomics

1 Introduction

Metabolomics is a branch of analytical chemistry that comprehensively characterizes
the molecules in various biofluids and tissues. Metabolites are the chemical
constituents of the metabolome. The metabolome, therefore, can be defined as the
complete collection of all chemicals or metabolites found within cells, biofluids,
organs, or organisms (Oliver et al. 1998; Wishart 2005). These chemicals (most of
which have a molecular weight <1,500 Da) include endogenously derived
compounds (amino acids, nucleic acids, organic acids, carbohydrates, lipids, and
minerals) and exogenously acquired compounds (vitamins, food additives, plant
phytochemicals, drugs, cosmetic chemicals, dyes, detergents) or just about any
other chemical that an organism can consume or to which it can be exposed.
Metabolites are essential building blocks for all life processes. They serve as the
bricks and mortar for cells, being the small molecule constituents (proteins, RNA,
DNA) for all basic cellular functions. Furthermore, metabolites are the fuel for
cellular processes, the barriers to maintain cellular integrity, and messengers for
signaling processes. Metabolites are the end-products of complex processes which
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are encoded for and controlled by genes. Therefore, metabolites are exquisitely
sensitive indicators of problems in the genome. Indeed, a single base change in a
gene can lead to a 10,000-fold change in the concentrations of certain metabolites
(Wishart et al. 2007). This remarkable sensitivity of metabolite levels to genetic
variations led to one of the most common and widespread medical testing
initiatives — newborn screening. For more than 100 years, metabolite testing has
been used to identify and detect genetic diseases and inborn errors of metabolism or
IEMs, such as phenylketonuria or alkaptonuria (Levy 2010). Metabolites are not
only sensitive to genome-related processes, but also to what happens in the environ-
ment. In particular, metabolite concentrations are influenced by nutrition, exposure
to workplace or household chemicals, physical activity, the time of day, or even the
outside temperature (Bassini and Cameron 2014; Brown 2016).

Because metabolites are affected by what happens intra-cellularly (via the
genome) and extra-cellularly (via the environment), metabolomics provides a
detailed view of the gene—environment interactions. Metabolomics is therefore an
ideal route for scientists to access and measure an organism’s “chemical phenotype”
(Fiehn 2002). This represents an important advantage of metabolomics over geno-
mics analyses. While the genome can suggest what might happen, the metabolome
actually indicates what is happening.

Continued advances in analytical chemistry and computational data analysis have
made the study of metabolomics more accessible to a wider range of scientific
disciplines. These advances have led to metabolomics being routinely used in
disease screening, drug discovery, food and nutritional analysis, veterinary studies,
crop assessment, biomaterial production, and environmental monitoring (Holmes
et al. 2008; Viant 2008; Wishart 2008a, 2016; Kim et al. 2016). Indeed,
metabolomics research has grown exponentially since 1999 which reported just
two metabolomics papers to nearly 9,000 papers published in 2020.

Metabolomics experiments are relatively simple to perform. The general
workflow to collect metabolomics data is shown in Fig. 1. The experiments begin
with a biological sample which can be a biofluid or a tissue. For tissues, the
metabolites must first be extracted or homogenized to produce a fluid. Once an
appropriate metabolite extract or biofluid has been obtained, the liquid sample must
be analyzed by one or more analytical chemistry platforms. The most popular
platforms are liquid chromatography mass spectrometry (LC-MS) and nuclear
magnetic resonance (NMR) spectroscopy. These analytical platforms are ultimately
responsible for helping to identify and/or quantify the chemicals in the different
biological mixtures. With the help of specialized software and carefully developed
databases of compounds, the data generated from these platforms can be used to
identify hundreds of compounds in the biological samples.

While LC-MS methods account for >70% of published metabolomics studies to
date, NMR-based methods still garner considerable interest among metabolomics
researchers. For instance, more than 1,200 NMR-based metabolomics papers were
published in 2020, the most ever published in any given year. This suggests that
NMR-based metabolomics is growing, and it still has plenty to offer to the
metabolomics community. NMR has some unique advantages compared to other
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Fig. 1 A simplified workflow for metabolomics. Tissue samples may be obtained and
homogenized, or biofluids such as urine or blood may be collected. Spectra of the liquid portion
of the samples can be acquired using NMR or mass spectrometry, and the resulting data used for
analysis

platforms such as LC-MS or gas chromatography mass spectrometry (GC-MS). The
most obvious advantage is its non-destructive nature. Moreover, NMR is
non-biased, supports accurate metabolite quantification, requires little or no com-
pound separation, allows the identification of novel compounds, and does not require
chemical derivatization. Furthermore, NMR is highly automatable and is exception-
ally reproducible, making automated, high-throughput metabolomics studies with
NMR spectroscopy much more feasible than with LC-MS or GC-MS. Moreover,
NMR can detect and characterize compounds that are difficult for LC-MS, such as
sugars, organic acids, alcohols, polyols, and other highly polar or low molecular
weight compounds.

In this chapter, we will provide an overview of NMR-based metabolomics with
an emphasis on the practical aspects of NMR-based applications. First, we will
discuss a brief history of NMR-based metabolomics followed by a short discussion
of the two different approaches to metabolomics, targeted vs. untargeted. Next, a
discussion of the practical aspects of NMR sample preparation, as well as NMR
spectral recording and acquisition will be provided. Then, we will explain how to
interpret NMR spectra collected from biological samples using targeted or
untargeted data analyses and provide references to several software packages to
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help users process NMR spectra obtained via these two different approaches. We
also illustrate several examples of where and how NMR-based metabolomics has
been successfully implemented. Finally, we speculate on the future of NMR-based
metabolomics and the potential areas of growth for this field.

2 A Short History of NMR-Based Metabolomics

For the past 40 years, NMR has played a central role in the understanding of
metabolism and metabolomic processes. The first example demonstrating how
NMR could be used in metabolic studies was published in 1974 when a '*C
isotope-tracer analysis was combined with NMR studies to decipher specific details
of ethanol metabolism (Wilson and Burlingame 1974). Since then, steady
improvements in NMR technology, NMR field strength, and other advancements
have increased the popularity of NMR for many applications in biochemistry and
metabolism. Indeed, NMR quickly became the tool of choice for many metabolism
research areas, particularly those studying drug metabolism. During the 1970s and
1980s, NMR spectroscopy was used in studies to explore drug kinetics, drug
metabolism, and the identification of drug metabolites (Midgley and Hawkins
1978; Williams et al. 1979). These studies were complemented by more traditional
metabolic studies, focusing on cellular, microbial, plant, and animal metabolism
using in vivo or in vitro IH, 13C, and >'P NMR techniques (Cohen et al. 1979;
Weiner et al. 1989; Rothman et al. 2003). The widespread use of NMR for “classi-
cal” metabolic studies combined with its exceptional capacity to handle complex
metabolomic mixtures made NMR the preferred analytical chemistry platform for
launching the new field of metabolomics. Indeed, the very first metabolomics
(or metabonomics) studies were conducted using NMR (Bock 1982; Yoshikawa
et al. 1982; Bales et al. 1984a, b). By the late 1980s, NMR-based metabolomics
studies of human plasma led to the identification of several putative biomarkers for
cancer and coronary artery diseases (Fossel et al. 1986; Otvos et al. 1991). These
studies were complemented by pioneering studies by Nicholson and colleagues who
used NMR spectra from urine to characterize inborn errors of metabolism (IEM) and
drug toxicity. These early studies proved that urine, a very complex biofluid, can be
successfully analyzed by NMR (Bales et al. 1984a, b; Nicholson et al. 1984a, b).
The greatest challenge facing these early metabolomics researchers was the sheer
complexity of the NMR spectra they were collecting from biofluids and tissue
extracts. A metabolically rich biofluid such as urine can contain up to 5,000
detectable proton resonances in countless variations depending on the pH or
concentrations of salts in the sample (Nicholson and Wilson 2003). This complexity
of the spectral output led researchers to develop two different approaches for
collecting, processing, analyzing, and interpreting metabolomics NMR data. One
approach called “targeted metabolomics” uses spectral deconvolution software to
identify and quantify fluid-specific or known metabolites in individual NMR spectra.
The second approach called “untargeted metabolomics,” or statistical spectroscopy,
uses spectral alignment, spectral binning, and multivariate statistical analysis to
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identify spectral features of interest. Once the key features are identified, the
corresponding compounds and metabolites may or may not be identified. Both
targeted and untargeted approaches have their advantages and disadvantages.
While targeted metabolomics is more precise, highly quantitative, and much more
reproducible, it is more time-consuming, more limited in scope and it does not allow
one to identify novel chemicals. Untargeted metabolomics is faster, relatively open
ended, and more useful for identification of novel compounds but it is not quantita-
tive nor is it particularly reproducible. Given the importance of targeted and
untargeted approaches in NMR-based metabolomics and given their requirements
for different types of data analysis techniques, we will discuss them in more detail in
Sect. 4.

3 Practical Aspects of NMR-Based Metabolomics

This section will provide an overview of the practical aspects and consensus
recommendations for conducting liquid-state NMR metabolomics studies with a
primary focus on '"H NMR of biofluids or fluidized tissue extracts (McKay,
“Metabolomics using NMR — avoiding the black box”; Raftery, “Quantitative
NMR methods in metabolomics”). Readers interested in obtaining precise protocols
or information about solid-state NMR or magic angle sample spinning (MAS) NMR
should refer to other excellent reviews and book chapters (Weber et al. 2012; Wolak
et al. 2012; Nagana Gowda and Raftery 2014; Nagana Gowda et al. 2015; Zhang
et al. 2016; Mazzei and Piccolo 2017; Tilgner et al. 2019).

3.1 Sample Preparation

Every metabolomics experiment starts with a biological sample. Regardless of
whether the sample is a tissue or a biofluid, it is important to remember that the
sample is “alive.” Unless the sample is frozen, dried, sterilized, or otherwise devoid
of cells or enzymes, the sample is metabolically active. If not handled properly, this
underlying metabolic activity can lead to deceptive results with large variations in
metabolite composition and concentrations. Therefore, all metabolomics studies
must include a metabolic quenching step. Metabolomic quenching uses either
physical or chemical means to arrest all metabolic activities (Teng et al. 2009).
The easiest method to quench a tissue sample is rapid freezing (using liquid
nitrogen). For blood, the red and white blood cells should be first removed before
freezing to prevent cell lysis upon thawing. For most other biofluids, moderate to
rapid freezing is generally sufficient. In the frozen state, the biological sample may
be stored for months or even years at —80°C (Sellick et al. 2009; Vuckovic 2012).

Prior to analysis, the sample must be thawed carefully and further extracted or
purified before NMR analysis. Typically, different extraction methods or purifica-
tion protocols are required for different samples. Tissue samples are often ground
into a powder in a still-frozen state using a pestle and mortar and then the metabolites
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are extracted with cold methanol or cold methanol/water or with chloroform (Wolak
et al. 2012; Nagana Gowda and Raftery 2014). The use of an organic solvent, in
addition to extracting the metabolites of interest, quenches unwanted metabolism by
denaturing and precipitating almost all proteins/enzymes within the sample. The
organic solvent extract is then centrifuged to separate the precipitated proteins from
the sample. The sample then must be dried (by freeze-drying/lyophilization) and
then re-dissolved in water or appropriate NMR solvents prior to NMR analysis.
For biofluids, the extraction protocols are much simpler. Cell-free biofluids such
as serum, plasma, saliva, growth media, cell extracts, plant sap, or fecal water
typically require ultrafiltration through a 3-5 kDa molecular weight cut-off filter
that removes higher molecular weight proteins and enzymes (Psychogios et al. 2011;
Nagana Gowda and Raftery 2014). Since no organic solvent is used, no lyophiliza-
tion or evaporation is required, and volatile metabolites, such as formate, acetate,
methanol and ethanol, can be easily detected by NMR. However, ultrafiltration can
cause chemical contamination as the filters contain glycerol or other humectants as
preservatives. These filters must be washed multiple times to remove any traces of
these agents. Ultrafiltration may also artificially lower the concentrations of some
metabolites, such as benzoic acid or tryptophan, which appear to bind to the filter or
are bound to proteins that are removed by the filter (Psychogios et al. 2011; Nagana
Gowda and Raftery 2014). Urine and cerebrospinal fluid samples (as well as other
fluids, such as juice, wine, or beer, that are largely sterile and protein-free) are often
simply filter-sterilized by passing the fluid through a 0.22 pm filter to remove any
cells or organic debris. Often researchers also add a small amount of sodium azide
(an NMR-invisible salt) to the sample to destroy any residual microbial activity.
An alternative method to ultrafiltration or filter-sterilization is organic solvent
extraction. In general, methanol or acetonitrile (for hydrophilic compounds) and
chloroform or methyl-tert-butyl ether (for hydrophobic compounds) can be added to
a sample and used to simultaneously extract metabolites, sterilize the sample, and
precipitate proteins. This method may be applied to serum, plasma, or urine
(Beckonert et al. 2007; Nagana Gowda and Raftery 2014). Solvent extraction may
also enrich for a particular class of chemical compounds (hydrophobic or hydro-
philic compounds) depending on the choice of solvent and/or extraction protocol. As
a general rule, methanol extraction works best for most NMR samples (Lin et al.
2007). However, as organic solvent extraction involves an evaporation step to
remove the organic solvent (which is time consuming), volatile metabolites such
as formic acid, ethanol, or acetic acid may be volatilized and no longer detectable.
Another method to enrich or concentrate particular classes of metabolites uses
stable isotope chemical derivatization. Although more commonly used in MS-based
metabolomics (Gowda et al. 2010), this technique is less widely utilized in
NMR-based metabolomics. Stable isotope labeling can enhance the sensitivity and
resolution by enabling heteronuclear NMR spectroscopy. It can also help to enrich
certain classes of metabolites that contain a specific reactive chemical group (i.e.,
amines or carboxylate groups). Two isotopic tags have gained some popularity in the
NMR community, I5N-ethanolamine and '’N-cholamine (see Fig. 2). Both react
selectively with carboxyl groups (Ye et al. 2009; Tayyari et al. 2013). These isotope
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Fig.2 The chemical structures of I5N-labeled ethanolamine and cholamine (top). The amine group
can react with carboxylic acid groups on metabolites, using DMT-MM (4-(4,6-dimethoxy[1,3,5]
triazin-2-yl)-4-methylmorpholinium-chloride) as a catalyst (bottom). 2D 'N-'"H HSQC spectra can
then be acquired to detect the tagged metabolites

tags can be used to enhance the detection of organic acids and amino acids and can
also be used in MS-based metabolomics studies.

After the extraction and/or enrichment step is complete, it is critical to use the
right buffer system to adjust the salt concentrations and pH of the sample. For
untargeted approaches, sample uniformity is absolutely required. Ideally all samples
should have identical pH values and identical salt concentrations to ensure uniform
chemical shifts among all metabolites. This uniformity greatly enhances the spectral
alignment. For targeted metabolomics studies, pH and salt concentrations are not as
critical. Nonetheless, buffering the sample with a 50-150 mM potassium phosphate
buffer, maintaining the sample temperature at a constant value (say 25°C), adding a
small amount of D,0O as a lock solvent, and ensuring the pH is near 7.0 are all
recommended for targeted profiling with software tools such as Bayesil or Chenomx
(to be discussed later) which have well-defined sample collection conditions
(Mercier et al. 2011; Ravanbakhsh et al. 2015).

Sample preparation for NMR analysis always requires the addition of a chemical
shift reference compound. The International Union of Pure and Applied Chemistry
(IUPAC) and the International Union of Biochemistry and Molecular Biology
(IUBMB) recommend the use of 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS)
as an internal chemical shift standard for aqueous samples (Wishart et al. 1995;
Harris et al. 2002). Usually DSS is used in its deuterated form DSS-dg. As the DSS
peak at 0.00 ppm is usually well resolved and easily detected, it may also be used as
an internal quantification reference. Trimethylsilylpropanoic acid (TSP) is also
commonly used as a chemical shift standard but is not recommended for
NMR-based metabolomics applications as the chemical shift varies substantially
with pH. Both DSS and TSP can bind to macromolecules such as lipids or proteins
(found in unfiltered serum or plasma), resulting in a broadened signal if these
molecules are present in large quantities. If this occurs, the signal cannot be used
for quantification. An alternative to the internal standard is an electronic reference
signal, often called ERETIC (Electronic REference To access In vivo
Concentrations) (Akoka et al. 1999). The ERETIC method is particularly appealing
since the signal is electronically generated and can be placed in any position in the
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spectrum. It can also be used to determine absolute concentrations (Watanabe et al.
2016).

After the sample preparation step is complete, the sample must be transferred to
an NMR sample tube. Commonly, 5 mm borosilicate glass tubes (requiring volumes
of 500 to 600 pL) are used for NMR experiments. More recently, many labs have
converted to using 3 mm tubes as less volume (150 to 200 pL) is required while
yielding almost the same signal-to-noise (S/N) ratio as 5 mm tubes. These narrower
tubes also reduce the dielectric loss due to high salt concentrations, making them
more amenable for use with cryo-probes. Shigemi tubes with susceptibility matching
glass plugs can also be used to reduce the sample volume (~250 pL) while retaining
the 5 mm tube diameter that is optimal for 5 mm NMR probes and 5 mm spinners.
Microprobes are also available for volume-limited samples. These microprobes are
optimized for use with 1.0 or 1.7 mm NMR tubes. However, 1.0 and 1.7 mm tubes
are very delicate and difficult to clean (the 1.0 mm tubes are actually disposable since
they are essentially impossible to clean). Nevertheless, with these tubes it is possible
to work with volumes as low as 10 pL for a 1.0 mm tube and 35 pL when using a
1.7 mm tube.

Given the variety of ways biological samples can be collected, prepared, and
processed prior to NMR-based metabolomics analysis, it has long been recognized
that standardized protocols are needed to facilitate proper comparison of data
between samples and between studies (Beckonert et al. 2007; Bernini et al. 2011;
Emwas et al. 2015). As outlined in these papers, there are a relatively small number
of preferred or optimal methods for sample collection, storage, and preparation.
Some of these methods are quite specific to certain biosamples or biofluids, while
others are nearly universal. Regardless of the methods used, it is vital that detailed,
complete, and appropriate information about study design, sample types, sample
collection methods, sample handling, sample processing, and sample storage be
provided. Without this information, it can be very difficult for others to reproduce or
interpret reported results. These factors are especially important if studies involve
multiple locations and multiple laboratories. Toward this end, a number of initiatives
have been launched to improve and standardize sample collection, analysis, and
reporting. These include the Metabolomics Standards Initiative (Fiehn et al. 2007)
along with recent updates (Spicer et al. 2017), COSMOS (Salek et al. 2015), and
more recently SPIDIA and SPIDIA4P (Ghini et al. 2019). Such initiatives should
help guide and encourage members of the metabolomics community to employ
standard protocols and fully report standard procedures to acquire, store, prepare,
process, and report metabolomics data. This kind of standardization helps ensure that
NMR-based metabolomics experiments can be repeated, the collected data can be
re-analyzed, and comparisons can be consistently made between samples, studies,
and laboratories.



10 D. S. Wishart et al.

3.2 Choosing the Right Pulse Sequence

Once the sample is loaded into the NMR spectrometer, the NMR spectrum
(or spectra) can be acquired. Most NMR-based metabolomics studies use 1D 'H
NMR because of its speed and simplicity with which spectra can be acquired,
processed, and interpreted. Two types of pulse sequences or experiments are used
for 1D NMR-based metabolomics: the metnoesy or 1D NOESY (Nuclear
Overhauser Effect Spectroscopy) experiment and the Carr-Purcell-Meiboom-Gill
(CPMG) experiment. The metnoesy experiment is a simple 1D NOESY pulse
sequence that provides solvent suppression before the experiment and during the
mixing time without the use of gradients (see Fig. 3). This simple pulse sequence can
be used with almost any NMR probe (Mckay 2011). The metnoesy pulse sequence
can be modified with more advanced water suppression techniques that use gradients
(i.e., watergate, excitation sculpting) for more robust and effective solvent removal.
With such modifications, more dilute samples can be recorded in less time (McKay
2009). Another advantage of the metnoesy sequence is that shaped pulses can be
used to suppress not only water but additional other strong signals such as ethanol in
wine and beer samples or organic solvents used in the extraction process. As most
databases and deconvolution programs for NMR-based metabolomics were built
using this simplistic metnoesy pulse sequence, this pulse sequence predominates
most metabolomics studies with 1D "H-NMR.

The second most commonly used 1D NMR pulse sequence is the CPMG experi-
ment (Fig. 4). This pulse sequence can spectroscopically remove signals of large
molecules, such as proteins or lipoproteins, from the spectrum without the need for
ultrafiltration or solvent extraction (Beckonert et al. 2007). The CPMG experiment
takes advantage of the fact that small molecule metabolites and macromolecules
(such as proteins) have different T, relaxation times. The T, relaxation time of
macromolecules is very short (milliseconds) while the T, of metabolites is longer
(seconds). With the CPMG sequence, all molecules with a short T, are suppressed,
whereas those with a large T, are unaffected. Under ideal conditions, the CPMG
pulse sequence would eliminate the need for solvent extraction and ultrafiltration,
reducing time and resources required for sample preparation. However, the CPMG

D1

Fig. 3 The pulse sequence for the metnoesy or 1D NOESY experiment. This pulse sequence has a
delay (D1) with a low power presaturation pulse, followed by two successive 90° pulses followed
by a defined mixing time. The pulse sequence concludes with a final 90° pulse followed by the
acquisition period
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Fig. 4 The pulse sequence for the Carr-Purcell-Meiboom-Gill (CPMG) experiment. This experi-
ment uses repeated pulses of 180° to select signals with long T, relaxation times and remove signals
with short T, times

experiment is not perfect and all protein signals are not suppressed, increasing the
time required to properly phase, process, and compare multiple CPMG spectra. As
very few CPMG reference spectra are available in the NMR databases, it makes the
CMPG pulse sequence very difficult to use for spectral deconvolution in targeted
NMR-based metabolomics studies.

More recent developments in NMR-based metabolomics use “pure-shift” pulse
sequences (Moutzouri et al. 2017; Lopez et al. 2019) to simplify overcrowded 1D
"H-NMR spectra. Pure-shift NMR aims to convert all signals into singlets by
refocusing homonuclear couplings and collapsing multiplet peaks into singlets,
thereby reducing the overlap between compound peaks. However, this class of
experiments are much less sensitive than standard 'H experiments due to the use
of spatial or frequency selective techniques. They also contain artifacts that result
from the pseudo-2D method of data acquisition. The reduced sensitivity, the
increased complexity, and the greater hardware requirements over more conven-
tional 1D NMR experiments have likely prevented their widespread use in
metabolomics. Despite these drawbacks, the improved resolution provided by
these methods has seen their successful application in metabolite profiling (Lopez
et al. 2019).

1D NMR pulse sequences are not the only experiments available to metabolomics
researchers. With 2D NMR, multidimensional data can be recorded from the same
type of nuclei (homonuclear) or different nuclei (heteronuclear). For metabolically
complex samples such as urine with hundreds of different and variable metabolites,
it can be advantageous to use 2D NMR experiments. Indeed homonuclear 2D
experiments, such as 2D "H COSY (COrrelated SpectroscopY), 2D 'H INADE-
QUATE (Incredible Natural Abundance DoublE QUAntum Transfer Experiment),
or 2D J-resolved experiments have been widely used in NMR-based metabolomics
studies (Martineau et al. 2011; Bingol and Briischweiler 2014). 2D NMR spectra
allow researchers to more easily identify unknown compounds, characterize novel
compounds, and deconvolute overlapping peaks, which could be problematic for 1D
spectral deconvolution programs. Several tools and databases are available to inter-
pret 2D homonuclear metabolomics data (Bingol et al. 2014, 2016). For complex
mixtures such as those found in metabolomics studies, the 2D J-resolved (JRES)
experiment is particularly attractive due to its simplicity and relatively short
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acquisition time relative to other 2D experiments (Ludwig and Viant 2010). The
JRES experiment results in singlets in the "H dimension of the spectrum, effectively
providing a robust, broadband decoupled 'H spectrum, similar to the “pure-shift”
experiments mentioned above. This provides a way to resolve the complex
overlapping signals from a 1D 'H spectrum. The multiplet patterns, however, are
retained in the second dimension of the JRES spectrum, which can further aid in the
identification of the metabolites. The JRES experiment can also be used for metabo-
lite quantification. Further enhancement of metabolite identification can be achieved
using heteronuclear 2D experiments, such as 2D '"H-'""N HSQC (Heteronuclear
Single Quantum Coherence Spectroscopy) and 'H-">C HSQC experiments. These
experiments provide additional chemical shift information in the second dimension
(15 N/ 13C) and offer important structural detail and connectivity information (Lewis
et al. 2007; Ye et al. 2009). Similar to the homonuclear 2D metabolomics data,
spectral databases and programs are also available to facilitate the interpretation of
2D heteronuclear metabolomics data (Bingol et al. 2015, 2016).

While 2D NMR experiments offer tremendous advantages, there are at least three
major disadvantages to using 2D or multidimensional NMR for metabolomics. The
first disadvantage is the time required to collect, process, and interpret the data
(hours compared to minutes for the 1D experiments). Second, 2D NMR experiments
are less sensitive, with a lower limit of metabolite detection that is 5-10X higher than
1D NMR (often >50 pM compared to 10 pM). And lastly, obtaining robust absolute
quantification of metabolites from 2D spectra is particularly challenging — although
improvements are being made (Martineau and Giraudeau 2019; Martineau et al.
2020; Hansen et al. 2021).

Since the informational density in 2D NMR experiments is higher than 1D
experiments, there is a considerable interest in developing techniques to reduce the
time required to acquire 2D spectra. A number of different approaches are being
investigated to reduce 2D spectral scanning time (Le Guennec et al. 2014). The first
approach utilizes spectral folding or aliasing to reduce the spectral width. With this
technique, peaks can be folded in empty spaces of the 2D spectrum. The reduction of
the spectral width means less data points are required, shortening the overall
acquisition time. However, additional NMR experiments have to be performed to
determine the true chemical shift of folded peaks (Foroozandeh and Jeannerat 2010).
If the sample pool is the same (such as urine), this only needs to be performed once
with a single representative sample.

A second approach shortens the acquisition time by reducing the delay between
scans or shortening the relaxation time. These experiments are known as band-
selective optimized flip angle short transient (SOFAST) and band-selective excita-
tion short transient (BEST) methods. However, as these experiments rely on spin
diffusion as an effective relaxation mechanism (which is only true for
macromolecules or small molecules in viscous solvents), SOFAST and BEST
experiments can only be used in studies involving living cells, which have a viscous
cytoplasm (Motta et al. 2010).

A third approach is available that dramatically shortens 2D NMR data acquisition
time by combining multiple pulse sequences (such as COSY, NOESY, HSQC) into
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one supersequence (Kupce and Claridge 2017; Hansen et al. 2021). An example of
such a supersequence is called NOAH (NMR by Ordered Acquisition using 'H
detection). This pulse sequence has enabled 2D data collection in a single measure-
ment and has been used to comprehensively characterize multiple metabolites within
metabolically complex biofluids such as mouse urine.

A fourth method to shorten the experimental time of 2D NMR experiments uses
non-uniform sampling (NUS). With this method, all data points in the indirect
dimension are not recorded. Instead, the recorded data points are randomized and
differentially weighted across the indirect dimension(s). The missing data points are
reconstructed after the data is collected. With the NUS technique, the acquisition
time of 2D and 3D experiments can be reduced by up to 75% while still retaining the
same spectral resolution as a full-time multidimensional experiment. The quality of
the spectrum mainly depends on the algorithm used to reconstruct it (Kazimierczuk
et al. 2010).

The last technique is the ultrafast (UF) 2D NMR. This technique utilizes the
sample height (or length) and generates slices which correlate with different time
points in the second dimension (called spatial encoding). With the UF-NMR tech-
nique, a 2D spectrum can be acquired in a single scan, making it the fastest 2D NMR
technique available. However, using this experiment, a compromise between spec-
tral widths, resolution, and sensitivity is often necessary. Fortunately, the spectral
width limitations of UF-NMR can be addressed by the folding/aliasing method
(mentioned above) and the sensitivity can be improved by increasing the number
of scans (Shrot and Frydman 2009; Tal and Frydman 2010; Pathan et al. 2011).

Compared to 1D NMR, 2D NMR techniques have a number of limitations with
respect to metabolite quantification. Because 2D NMR techniques use more pulses,
they are more sensitive to pulse imperfections. This may result in inconsistencies in
peak intensity and peak volume, limiting the reliability of quantification. Further-
more, for heteronuclear NMR, the 'C or >N nuclei for most metabolites have a very
broad chemical shift range. An equal excitation of the *C or '*N complete spectral
region is difficult for higher field (>500 MHz) spectrometers. To achieve equal
excitation, one could use complex pulses or pulse sequences, such as adiabatic
pulses or shaped pulses. However, the use of these pulses leads to inconsistencies
in spectral peak intensities and volumes, which makes quantification challenging. In
addition, highly variable coupling and relaxation times also alter the peak volume in
hard-to-predict ways, thereby limiting the use of 2D techniques for quantitative
analysis. To overcome these limitations, large numbers of 2D spectral calibration
curves must be collected for each type of 2D NMR experiment in order to use them
for accurate metabolite quantification. However, gathering this kind of data is
tedious, time-consuming, and difficult due to the long experimental acquisition
times (Lewis et al. 2007).

In recent years, it has been shown that '*C-HSQC data can be recorded in a way
that is inherently quantitative. This can be done by extrapolation of the signal back to
the initial excitation (time point zero), known as the HSQC, experiment (which
requires three separate HSQC experiments) or with a quantitative sequence or the
Q-HSQC experiment (which requires four times more scans to achieve the same
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sensitivity as normal HSQC) or the quicker variant of the Q-HSQC experiment
called the QQ-HSQC experiment (Peterson and Loening 2007; Hu et al. 2011;
Martineau et al. 2013; Sette et al. 2013). These developments are encouraging and
given the rapid progress in recent years, 2D homonuclear and heteronuclear NMR
may become more appealing and more widely used in the near future.

33 Spectral Acquisition and Processing

As described above, the selection of the appropriate NMR experiment is obviously
very important for obtaining high-quality NMR data. However, other aspects of
spectral acquisition and data processing also have a significant impact on spectral
quality. These aspects include the ability to obtain sharp, well-shimmed peaks; the
level of digital resolution; the S/N ratio or signal quality; the presence of well-phased
signals; and the ability to obtain flat baselines.

To obtain good quality NMR data, both the instrument and the sample must be
appropriately locked, tuned, matched, and carefully shimmed. Most instruments are
tuned for salt-free solvents (such as deuterochloroform or pure D,0), but
metabolomic samples usually contain relatively high salt concentrations
(50-200 mM NaCl). If the spectrometer probe is improperly tuned or matched,
these high salts could lead to poor performance, noticeable by a low (S/N) ratio, long
excitation pulses, poor solvent suppression, etc. These effects become more signifi-
cant with cryogenically cooled probes compared to room-temperature probes. Thus,
with each NMR experiment, due care and effort must be applied to ensure that the
sample is well locked, and optimal tuning and matching have been achieved. Often
tuning and matching are performed manually. However, newer instruments support
rapid automatic tuning and matching. This improved auto-tune/auto-match makes it
possible to run multiple sample types with different solvents or salt concentrations in
the same run.

Another prerequisite for obtaining good quality NMR spectra is good shimming.
During the shimming process, small electromagnets (so-called shims) are adjusted to
compensate for magnetic inhomogeneity in the superconducting magnet field.
Inhomogeneities in the magnetic field can lead to distorted peaks in the spectrum
(see Fig. 5). Most modern NMR spectrometers support automated shimming and can
reliably adjust the magnet shims to achieve excellent line shapes. For both manual
and automated shimming, the signal of the internal chemical shift standard (such as
DSS and/or the solvent signal) is used to optimize the shims. After the shimming
procedure, the line width of the reference standard (DSS) should be well below 1 Hz
(0.5 Hz is typical). Adjustment of the field and the lock position during the shimming
process can also improve peak shapes and the overall quality of the spectrum.

To obtain high-quality NMR spectra, good digital resolution and a large number
of data points are required. Modern NMR spectrometers are equipped with high-
speed, high memory computers that support rapid and high bandwidth analog to
digital conversion (ADC). With digital oversampling techniques, 64,000 data points
or even 128,000 data points (np) can be collected on modern high field NMR
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Fig. 5 A simple illustration of the effects of shimming on an NMR signal on the DSS reference
peak. Poor shimming can cause peaks to appear unsymmetric or even appear like multiple peaks

spectrometers. This ensures that the digital resolution will typically be less than
0.25 Hz in the 'H dimension on most high-resolution instruments (see Eq. 1; sweep
widths (sw) range from 6,000 to 10,000 Hz):

Resolution =2 x W
np

(1)

Good digital resolution ensures sharp resonances, but good S/N ensures good
sensitivity. NMR is not known to be a particular sensitive technique. Thus,
metabolomics researchers are always looking for ways to improve NMR sensitivity
to extend the lowest detectable metabolite concentration. Increased sensitivity can be
achieved by increasing the magnetic field strength (the higher the better), using
cryogenically cooled probes (which have 2—4 times better S/N compared to room-
temperature probes via the reduction of electronic noise), concentrating the sample,
increasing sample volume, or optimizing the excitation flip angle. However, one of
the simplest approaches to increasing the S/N and lowering the limit of detection is
increasing the number of scans (ns) (as shown in Eq. 2):

S
S ym @)

Using Eq. 2, one can see that increasing the scans does not increase the S/N
linearly. With four scans, the sensitivity (S/N) increases just twofold. With
100 scans, the sensitivity increases only 10-fold. The number of scans collected in
a given NMR experiment must be tempered by the time it takes to collect each of
those scans. That time is determined by the repetition period between scans, also
known as relaxation delay. This delay is defined as the sum of the acquisition time
and acquisition delay prior to the next scan. The relaxation delay should be five times
longer than the longitudinal relaxation time (also known as T;). For metabolites, T,
is typically 2-3 s (Bloembergen et al. 1948). Therefore, a relaxation delay of about
15 s is usually enough time for a complete relaxation of all resonances (and
consequently full recovery of signal intensity) between scans. However, employing
such long delays would make data collection incredibly inefficient and severely limit
the number of scans that could be collected. Therefore, shorter repetition times of
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2-4 s are often used for the majority of NMR-based metabolomics studies
(Beckonert et al. 2007). These shorter relaxation delays represent a reasonable
compromise between trying to maximize signal recovery and maximizing the
number of scans. However, this compromise means that spectral deconvolution
algorithms used in targeted metabolomics cannot use “idealized” or theoretical
reference NMR spectra but must, instead, use reference spectra that have been
experimentally recorded using exactly the same type of acquisition parameters and
short relaxation delays as used in the actual metabolomics experiment (Mercier et al.
2011; Worley and Powers 2014; Ravanbakhsh et al. 2015).

After an NMR spectrum has been collected, it must be properly phased. Phasing
is an NMR spectral adjustment process that is designed to maximize the absorptive
character of NMR peaks over all regions of an NMR spectrum. There are two types
of phasing: zero-order phase correction (frequency-independent) and first-order
(frequency-dependent) phase correction. While zero-order phase correction is inde-
pendent of the position of the peaks, first-order phasing increases linearly with the
offset from the carrier frequency. Both types of phase correction are usually needed
to obtain symmetric, purely absorptive peaks. Accurate phase correction is an
important step in spectral processing of metabolomics data as even small phase
errors can lead to a cascade of problems in downstream spectral processing and post-
spectral analysis affecting targeted or untargeted metabolomics techniques (Emwas
et al. 2018). Several algorithms have been published for automated phasing of NMR
spectra (Chen et al. 2002; de Brouwer 2009; Binczyk et al. 2015; Zorin et al. 2017;
Steimers et al. 2020). Some of these routines have already been implemented in the
operating systems of many modern NMR spectrometers. However, additional man-
ual phasing is often required in NMR-based metabolomics studies since auto-
phasing routines may have difficulty with more spectrally crowded metabolite
spectra. Furthermore, auto-phasing programs can sometimes end up distorting the
entire NMR spectrum while attempting to correct for the residual water signal.
Despite these caveats, auto-phasing is still widely used in the NMR metabolomics
community because it is fast, reasonably reliable and it avoids operator bias.

Baseline correction is another important step in NMR spectral data processing.
Baseline correction yields a more pleasant looking NMR spectrum where signal-free
regions appear as completely flat lines with zero intensity. While baseline correction
is relatively easy for simpler NMR spectra with just a few peaks, it is much more
difficult for NMR spectra containing thousands of peaks with large differences in
peak intensities and peak widths. High-quality baseline correction is critical for
proper spectral alignment (in untargeted metabolomics) and proper quantification
or peak integration (in targeted metabolomics). Like phase correction, small errors in
the baseline correction can lead to significant errors in the quantification of low
abundance metabolites.

There are two general approaches to baseline correction: one involves correction
in the time domain and the other involves correction in the frequency domain.
Baseline correction through the time domain removes corrupted data in the free
induction decay (FID) to decrease the effect of low frequencies. This can be done by
discarding some of the initial data points and recreating them by a technique called
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Fig. 6 An example of how good shimming, water suppression, phasing, baseline correction, and
chemical shift referencing can make a significant difference to the quality and usability of a 1D
NMR spectrum of a biofluid. The same sample and experimental parameters were used for both
spectra, except shimming and water suppression were adjusted away from optimal for the left
spectrum. The receiver gain was adjusted automatically

back-prediction (Heuer and Haeberlen 1989; Halamek et al. 1994). Baseline correc-
tion in the frequency domain involves selecting the valley or signal-absent regions of
the spectra (either automatically or manually) and fitting these regions with a
polynomial spline function. The corresponding baseline offset values based on this
spline function are then subtracted from the spectrum to yield a corrected baseline
(Golotvin and Williams 2000; Xi and Rocke 2008). Combining both frequency and
time domain methods further improves the quality of the baseline. Baseline correc-
tion routines are available in the operating systems of most modern NMR
instruments, although often the best baseline correction routines for complex spectra
are found in spectral deconvolution tools designed specifically for NMR-based
metabolomics (Weljie et al. 2006; Mercier et al. 2011; Worley and Powers 2014;
Ravanbakhsh et al. 2015).

The final step of NMR data processing is spectra alignment. In this step, the ppm
scale of all the experiments is calibrated by adjusting the position of the internal
standard (DSS) to O ppm. Then, the intensities of all the peaks are normalized using
the height of the internal standard peak. An example of a ID NMR spectrum before
and after proper chemical shift referencing, shimming, phasing, solvent removal, and
baseline correction is shown in Fig. 6.
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4 Data Analysis

After collecting a set of NMR spectra for a metabolomics study, the next step is data
analysis. The type of data analysis one undertakes depends on the experimental
design, the choice of the metabolomics experiment (targeted vs. untargeted), and the
type of multivariate statistical techniques or software available to the researcher.

Many excellent reviews have been written on experimental design and multivari-
ate statistics for metabolomics and readers who are interested in these topics should
refer to these publications (Madsen et al. 2010; Smolinska et al. 2012; Saccenti et al.
2014; Ebbels et al. 2019; Percival et al. 2020). We would encourage new users or
readers to explore a software tool called MetaboAnalyst to better understand and
visualize multivariate statistics as used in metabolomics (Xia et al. 2009).
MetaboAnalyst is an easy-to-use, web-based tool that is routinely used by approxi-
mately half of the global metabolomics community. It supports a wide range of
downstream data analysis applications with extensive graphics support including
principal component analysis (PCA), analysis of variance (ANOVA), partial least-
squares discriminant analysis (PLS-DA), heat mapping and clustering, biomarker
identification, pathway analysis, power analysis, and time series analysis (Verpoorte,
“Natural products drug discovery: on silica or in-silico?”; Millet, “Prospective
metabolomic studies in precision medicine. The AKRIBEA project”). A screenshot
of the MetaboAnalyst package is shown in Fig. 7. MetaboAnalyst is configured to
work with both targeted and untargeted metabolomics data, as well as with NMR and
MS data. It is also quite unique in that it has a number of freely available NMR
metabolomic data sets that users can test or explore.

4.1 Data Analysis for Targeted Metabolomics

For targeted metabolomics studies, the NMR spectra need to be analyzed using
specialized peak fitting software. This software fits a reference set of NMR spectra
obtained from pure compounds to the NMR spectra of the mixture of compounds
found in the biofluid or extract. By matching the positions and intensities (or area) of
peak clusters, the software identifies each reference spectrum and accurately
determines their concentrations in the biofluid. This approach is often called spectral
deconvolution. An illustration of how spectral deconvolution works is shown in
Fig. 8. Once the compounds are identified and their concentrations have been
precisely quantified, this information can then be compared against known or normal
concentrations for that biofluid or further analyzed to detect significant differences
between one sample (or group of samples) and the next.

The concepts underlying targeted NMR metabolomics emerged independently on
three separate occasions — for three different applications. Targeted metabolomics
was first described in 1991, as a novel approach to perform serum lipid and
lipoprotein particle profiling (Otvos et al. 1991). The protocol uses a reference
spectral library of different lipoprotein subclasses, to identify and quantify 15 differ-
ent subcategories of VLDL (very low density lipoprotein), LDL (low density
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Fig.7 A screenshot montage of the MetaboAnalyst website. More than a dozen statistical modules
are available for analyzing metabolomics data

lipoprotein), and HDL (high density lipoprotein) particles (Jeyarajah et al. 2006).
Several variations of the method have been described in the literature, with some
methods using only 11 lipoprotein categories or others using more sophisticated
wavelet deconvolution algorithms (Serrai et al. 1998; Ala-Korpela et al. 2007).
Nevertheless, the method has proven to be particularly simple, fast, and robust
compared to traditional methods of lipoprotein profiling which are less accurate,
provide less information, and require time-consuming, manually intensive, multi-
step separations (McNamara et al. 2006).

Targeted NMR metabolomics emerged for a second time in 1993, when it was
used to identify brain metabolites from localized in vivo NMR spectroscopy
(Provencher 1993). However it was not until 2001 that the method, known as
LCModel, was made generally available (Provencher 2001). The central concept
behind the LCModel approach for metabolite identification is to fit the broad peaks
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Fig. 8 A schematic illustration of the principles behind spectral deconvolution. The biofluid
spectrum at the top contains a combination of the three individual reference spectra below it. The
challenge in spectral deconvolution is to determine which combination of reference spectra, their
scaling, and positioning, best produces the observed spectrum

obtained from in vivo NMR data to spectral libraries of pure metabolites (called
in vitro basis sets) in which the spectra are artificially broadened and otherwise
mathematically modified to look like those seen for in vivo NMR spectra. LCModel
uses a constrained regularization method to handle differences in phase, baseline,
and line shapes between the in vitro and in vivo spectra. It is able to identify between
10 and 15 metabolites and can accurately estimate the metabolite concentrations and
their uncertainties (Simister et al. 2003; Marliani et al. 2007).

The third occasion in which targeted metabolomics emerged was in 2001, when it
was specifically implemented for small molecule identification and quantification in
biofluids and tissue extracts (i.e., traditional metabolomics) (Wishart et al. 2001).
While similar in principle to the LCModel and lipoprotein characterization software
mentioned above, the actual implementation is somewhat different. This is because
spectral deconvolution of high-resolution NMR spectra consisting of dozens of
small molecules requires the fitting of not just 15-20 broad peaks, but the fitting
of hundreds to thousands of very sharp peaks. Small variations in position, line
width, shape, or intensity due to pH or matrix effects can make the spectral fitting
problem particularly challenging and “ill-conditioned.” Likewise, because of spin-
coupling effects, the NMR spectrum of a small molecule collected at 500 MHz often
differs substantially from one collected at 800 MHz. To address these problems,
thousands of reference NMR spectra must be collected for hundreds of reference
compounds at different pH values and at different NMR spectrometer frequencies.
Additionally, very sophisticated curve fitting programs that robustly handle sparse
matrices and potential singularities must be employed.

Fortunately, a variety of software tools for small molecule NMR spectral
deconvolution have been developed over the past 10 years that make this spectral
fitting process relatively painless. These include commercial tools, such as the
Chenomx NMR Suite (Mercier et al. 2011), Bruker’s JuiceScreener (Monakhova
et al. 2014), WineScreener (Spraul et al. 2015), FoodScreener (https://www.bruker.
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com/en/products-and-solutions/mr/nmr-food-solutions/food-screener.html), and
in vitro diagnostic research system (IVDr). Bruker’s IVDr system expands the utility
of automated metabolite quantification to several biofluids (urine, cerebrospinal
fluid, plasma, and serum) by standardizing sample analyses through the
incorporation of standard hardware, standard operating procedures, and automated
sample handling and analysis (Bruker Corporation-Bruker 2013). The Bruker “X”-
-Screener and IVDr systems are normally bundled with specific NMR instruments or
licensed on a per-sample basis, making them relatively expensive. A cheaper
alternative to the commercial deconvolution and automated quantification tools are
a number of freely available, non-commercial tools, such as Batman (Hao et al.
2014), Bayesil (Ravanbakhsh et al. 2015), an automated quantification algorithm
(AQuA) (Rohnisch et al. 2018), an automatic method for identification and quantifi-
cation of metabolites (ASICS) (Tardivel et al. 2017) and rDolphin (Caifiueto et al.
2018). A screenshot of the Bayesil web server and its standard output is shown in
Fig. 9. As can be seen in this figure, most deconvolution programs provide lists of
compound identities and estimated concentrations along with an interactive display
showing the fit between the observed NMR spectrum and the reference library NMR
spectra. Some of these deconvolution tools are almost fully automated (such as
Bayesil, Chenomx, and the Bruker products) while others require a fair bit of manual
manipulation.

In addition to tools such as Bayesil, Chenomx, and the Bruker “X”-Screener and
IVDr products, which identify and quantify organic compounds, there are now
NMR-based tools for identifying and quantifying inorganic compounds. In many
fields of metabolomics, metal ions are considered to be important metabolites and
this subdiscipline of studying metal ions is called “metallomics.” Normally metal
ions are measured via inductively coupled plasma mass spectrometry (ICP-MS).
However, it is also possible to identify and quantify metal ions and other inorganic
jons from 'H-NMR spectra. This can be done by taking advantage of the effect of
dissolved inorganic ions (invisible by NMR) on organic compound chemical shifts
(visible by NMR). This approach was described in detail by Takis et al. (2017). The
technique required the measurement of 4,000 variable synthetic urine mixtures
containing differing amounts of the most common organic compounds (> 90%
occurrence) and differing amounts of the most abundant inorganic ions in urine
and acquiring "H-NMR spectra of each of these mixtures. From these spectra, Takis
et al. created an algorithm, called the Urine Shift Predictor, which is able to predict
the concentration-dependent, inorganic ion-induced chemical shifts on different
organic compounds. By measuring these chemical shift changes it is possible to
estimate inorganic ion and metal ion concentrations from 'H urine spectra.

Regardless of whether one measures organic or inorganic metabolite data
(or both), once the list of metabolites and their concentrations has been obtained
from a targeted metabolomics study, it is relatively easy to apply standard multivari-
ate statistics such as PCA or PLS-DA (and other tools found in packages such as
MetaboAnalyst) to identify significantly changed metabolites or to detect specific
sets of metabolites as biomarkers.
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Fig. 9 A series of screenshots taken from the Bayesil NMR server. Bayesil is a freely available
spectral deconvolution package that can take high-resolution NMR spectra of biofluids, such as
serum, and automatically identify and quantify the compounds in that biofluid. The top image (a)
shows the Bayesil home page. The middle image (b) shows the interactive spectral viewer. The
bottom image (c¢) shows a selection of the compounds identified from the spectrum

4.2 Data Analysis for Untargeted Metabolomics

Untargeted NMR metabolomics first emerged in the early 1990s when the complex-
ity of high-resolution NMR spectra collected on biofluids seemed to be too daunting
to allow routine compound identification (Gartland et al. 1990). Rather than
attempting to identify compounds via spectral deconvolution as is done with targeted
metabolomics, untargeted metabolomics exploits a field of science known as
chemometrics to simplify, classify, and interpret groups of NMR spectra. More
specifically, chemometrics is a branch of information science that uses mathematical
and statistical methods to identify patterns and extract information from large data
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'H ppm

Fig. 10 An example of how spectral alignment of NMR spectra can be performed. Typically,
multiple NMR spectra are collected, compared, and then aligned. The top figure shows multiple
superimposed 1D 1H NMR spectra of human serum. The glutamine peak at 2.427 ppm shows a
larger sensitivity to sample conditions between spectra compared to other nearby peaks. The bottom
figure shows the same spectra aligned using a spectral alignment algorithm (Savorani et al. 2010).
The glutamine peak is now better aligned between the spectra

sets collected on analytical instruments, such as UV, IR, and NMR spectrometers.
When chemometrics is applied to NMR data, it is essential to have many NMR
spectra already collected (generally dozens to hundreds of spectra, including both
cases and controls). These spectra must then be aligned and binned using specially
developed statistical approaches. A simple illustration of how spectral alignment is
done is shown in Fig. 10. After the alignment step has been completed, the spectra
must be scaled or normalized so that they can be easily compared. Once the scaling
and normalization are complete, multivariate statistical techniques such as PCA and
PLS-DA can be used to identify interesting spectral regions or clusters of peaks that
differentiate one group of spectra from another (Beckonert et al. 2007; Lindon et al.
2007; Barton et al. 2008).

A method called statistical total correlation spectroscopy or STOCSY has also
been developed which generates a pseudo-2D NMR spectrum representing the
correlation among the peaks in a set of NMR spectra (Cloarec et al. 2005). STOCSY
allows for the identification of peaks from the same compound or sets of compounds
that co-vary among the spectra. In an untargeted analysis, sometimes only a set of
statistically important spectral peaks or features is presented as the final result,
without compound identification. In other cases, compound identification occurs
only on the peaks which show the most significant changes in a particular study. The
final peak identification step may use spectral deconvolution, compound spike-in
methods, or peak look-up tables (Martinez-Arranz et al. 2015). A variety of software
packages for NMR statistical spectroscopy have been developed over the past
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10-15 years to make this kind of analysis more routine. These include MV APack
(Worley and Powers 2014), Automics (Wang et al. 2009), and KIMBLE (Verhoeven
et al. 2018).

4.3 Targeted or Untargeted?

For relatively simple biofluids with fewer than 60—70 NMR-detectable compounds
(such as serum, plasma, cerebrospinal fluid, fecal water, juice, or other fruit extracts)
targeted NMR metabolomics techniques that use spectral deconvolution appear to
work very well (Ravanbakhsh et al. 2015). Most of these methods focus on
analyzing 1D '"H NMR spectra, although methods have also been developed to
analyze 2D 'H NMR spectra and 2D heteronuclear spectra (Lewis et al. 2009; Bingol
et al. 2014, 2015). Extensive spectral libraries now exist for essentially all the
NMR-detectable compounds found in these biofluids and a number of the
deconvolution software tools are becoming almost fully automated. Indeed, some
software packages can be extremely fast and robust with >95% of the known
compounds in a given biofluid being identified and accurately quantified within a
few minutes (Mercier et al. 2011; Zheng et al. 2011; Hao et al. 2014; Ravanbakhsh
et al. 2015).

On the other hand, for very complex biofluids, such as cell growth media, cell
lysates, and urine, the corresponding NMR spectra are often too complex for any
existing spectral deconvolution packages. These biofluids can contain between
70-150 NMR-detectable compounds and often less than 50% of the known
compounds can be confidently identified or quantified using spectral deconvolution.
Furthermore, the quality of the annotation is often highly dependent on the skill or
experience of the operator (Sokolenko et al. 2013). Therefore, for complex biofluids,
such as urine, statistical spectroscopy techniques or untargeted NMR approaches
appear to offer the best option for spectral interpretation. These approaches allow
useful results to be obtained with relatively little manual effort.

5 Biological Interpretation

The ultimate goal of acquiring and analyzing NMR metabolomics data is to use the
results to reveal something about the biology of the system under study. This may
involve the identification of biomarkers or biomarker panels, the tabulation of
reference metabolite concentrations for specific samples or sample types, the char-
acterization of activated or deactivated biological pathways, or the acquisition of
insights into the underlying molecular metabolic or biochemical mechanisms
associated with a particular biological condition. Rather than describing the software
or methods used to perform biological interpretation, here we will focus on some of
the more successful applications of NMR-based metabolomics toward biological
interpretation.
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One of the earliest applications of NMR in the field of metabolomics focused on
drug toxicology (Midgley and Hawkins 1978; Cohen et al. 1979; Williams et al.
1979; Bock 1982; Nicholson et al. 1984a, b, 2002; Weiner et al. 1989; Rothman
et al. 2003). This work led to the formation of the COnsoritum for MEtabonomic
Toxicology (COMET) (Lindon et al. 2005) and became one of the main drivers for
the development and growth of metabolomics (and especially NMR-based
metabolomics) as a field. COMET helped establish baseline concentrations of
metabolites in urine and blood in both human and lab animals and it helped to
develop techniques and biomarker panels for high-throughput NMR-based toxicol-
ogy screening. These pioneering studies demonstrated the potential of NMR and
NMR-derived biomarkers to non-invasively identify and diagnose liver, brain, and
kidney toxicity arising from specific drugs or drug metabolites.

NMR-based metabolomics has long been used to aid in the diagnosis, interpreta-
tion, and monitoring of inborn errors of metabolism (IEMs) (Iles et al. 1984;
Yamaguchi et al. 1984; Griffiths and Edwards 1987; Lutz et al. 2013; Kostidis and
Mikros 2015; Embade et al. 2019). IEMs are rare genetic disorders characterized by
significant changes (several-fold increases or decreases) in the concentration of
specific metabolites that arise from genetic disturbances in normal metabolism.
According to the Human Metabolome Database (Wishart et al. 2007, 2018), there
are more than 400 different metabolites associated with IEMs, of which at least
90 are detectable by NMR (Kostidis and Mikros 2015). While individually rare, as a
group, IEMs have been estimated to occur at a rate of up to 1 in 800 births (Mak et al.
2013). Early detection and identification of IEM disorders is critical, as is the need to
understand which metabolic pathways are affected. So too is the need to iteratively
monitor and adjust treatments throughout a patient’s life. Because NMR is so
quantitative and reproducible, NMR-based metabolomics has been particularly
useful for IEM detection, IEM pathway analysis, and disease monitoring.

More recently, NMR, in combination with mass spectrometry, has been used to
determine the baseline concentrations of dozens to hundreds of metabolites in human
biofluids including cerebrospinal fluid (Wishart et al. 2008), serum (Psychogios et al.
2011), urine (Bouatra et al. 2013), saliva (Dame et al. 2015), and feces (Karu et al.
2018). NMR has also been used to characterize the blood, urine, milk, and ruminal
fluid of dairy cattle as part of a long-term project to characterize the metabolomes of
cows (Saleem et al. 2013; Sundekilde et al. 2014; Foroutan et al. 2019, 2020) and
other livestock (Chapinal et al. 2012; Hailemariam et al. 2014; Goldansaz et al.
2017). These referential values for each of the major metabolomes are being used by
researchers around the world to help interpret metabolite measurements and to
identify important biomarkers of diet, health, and disease.

One notable success story for NMR-based metabolomics has been in the area of
medical diagnostics. Perhaps the first NMR-based metabolomics-related medical
diagnostic test was the NMR LipoProfile test developed by LipoMed (now owned by
LabCorp) in the 1990s. The LipoProfile test uses 1D '"H NMR to measure the
concentrations of lipoprotein particles in blood plasma samples (Otvos et al.
1991). Each lipoprotein class has a specific chemical shift and line shape, which
can be used in a least-squares fit of the plasma samples to calculate the
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concentrations of each lipoprotein class. Because of the success of the LipoProfile
test, a number of other NMR-based lipid-profiling companies have emerged. These
include Biosfer Teslab (https://biosferteslab.com/), Nightingale Health (https://
nightingalehealth.com), and numares Health (https://www.numares.com/). Biosfer
Teslab uses 2D diffusion ordered spectroscopy (DOSY) NMR to quantify lipopro-
tein concentrations. In a similar manner, numares Health combines NMR with
machine learning to perform lipid-profiling as well as additional NMR-based
renal, oncological, and neurological biomarker tests. Nightingale Health is the
largest and most successful of these NMR-based metabolomics/diagnostic
companies. It offers low-cost, high-throughput NMR-based metabolomics analysis
of blood samples directly to customers or to healthcare service providers. Nightin-
gale currently identifies and quantifies over 200 blood biomarkers including small
molecule metabolites as well as lipids and lipoprotein particles (Soininen et al. 2015;
Wiirtz et al. 2017). These biomarkers are further combined into “health indicators”
that provide an individual with a quick summary of their overall health and their
risks for particular diseases such as diabetes, hypertension, obesity, and
atherosclerosis.

Another important application of NMR-based metabolomics is the tracking of
small molecules as they travel through various metabolic pathways. The ability of
NMR to detect isotopically labeled molecules, and to determine the position of these
labels at atomic-resolution, makes NMR a particularly valuable tool in the study of
metabolic pathways, their regulation, and the effects of disease on their integrity
(Lane et al. 2011; Fan and Lane 2011a, b, 2016; Saborano et al. 2019). Isotopic
labeling and the quantitative nature of NMR have also led to the development of
NMR-based “fluxomics” which focused on determining the rates of metabolic
reactions within a biological system. The unique needs of fluxomics have also
spurred the development of rapid and quantitative 2D NMR experiments (Massou
et al. 2007).

NMR-based metabolomics has been widely used in the study of both cancer and
neurological diseases. Cancer is now widely regarded as a metabolic disease
(Warburg 1956; Hanahan and Weinberg 2000; Seyfried and Shelton 2010; Wishart
2015). As a result, NMR-based metabolomics has become the technique of choice in
many cancer studies (Bathe et al. 2011; Carrola et al. 2011; Namer et al. 2011;
Teahan et al. 2011; Weljie et al. 2011; Cao et al. 2012; Farshidfar et al. 2012; Eisner
et al. 2013; Wishart 2015; Kim et al. 2019). Other NMR-based studies have been
used to classify tumors or to follow the efficacy of radiation or chemotherapy
treatment (Blankenberg et al. 1997; Chan et al. 2009; Fong et al. 2011; Palmnas
and Vogel 2013). NMR has also been used to identify potential biomarkers for early
stages of Alzheimer’s disease (Kork et al. 2012; Karamanos et al. 2015),
amyotrophic lateral sclerosis (Blasco et al. 2010), or Parkinson’s disease
(Wu et al. 2016), or for early detection of schizophrenia (Kaddurah-Daouk 2006;
Tasic et al. 2017). Non-invasive techniques such as NMR offer the promise of
detecting and halting the progression of these diseases at an early stage.

NMR-based metabolomics is not limited to biomedical studies or biomedical
applications. It has been widely applied to food safety and food origin studies
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(Capitani et al. 2017; Sobolev et al. 2019), and to the composition and quality of
foods, such as wine, beer, oil, juice, milk, honey, and fruit (Wishart 2008b; Melzer
et al. 2013; Kim et al. 2016). NMR-based methods have also been applied to
environmental metabolomics. In particular, NMR-based metabolomics has been
used to explore how organisms respond to environmental changes, pollution, and
climate change (Williams et al. 2009; Simpson and Bearden 2013; Sumner et al.
2015).

6 Conclusion and Future Prospects

The field of metabolomics has been around for 20 years. However, NMR has been a
key part of metabolic studies for more than 40 years. The popularity of NMR as a
metabolomics platform is largely due to its high instrument stability, reproducibility,
simple non-destructive sample preparation, ease of quantification, and its amenabil-
ity to automation. However, NMR is not without its limitations. Compared to MS,
NMR has relatively poor sensitivity, a large instrument footprint, and high up-front
and maintenance costs. NMR also lags behind MS in terms of available
metabolomics libraries, easy-to-use data processing and analysis tools, and easy-
to-use sample preparation Kkits.

However, progress is being made on almost all the fronts where NMR lags behind
MS. To address the cost and space issues of NMR instrumentation,
non-superconducting, bench-top NMR instruments with field strengths of up to
60 MHz are coming into routine use (Percival et al. 2019; Izquierdo-Garcia et al.
2020) and ones approaching or exceeding 200 MHz (Bliimich and Singh 2018) are
being developed. However, these lower field instruments have lower sensitivity and
less spectral resolution than higher field instruments. These disadvantages could be
compensated by adopting 2D UF-NMR techniques (Giraudeau and Frydman 2014)
on bench-top instruments.

At the other extreme, the recent introduction of 1.2 GHz NMR spectrometers
promises to greatly improve the sensitivity and resolution of many NMR-based
metabolomics studies (Schwalbe 2017; Luchinat et al. 2021). These super-high field
instruments will lower the limits of metabolite detection to the high nanomolar range
(compared to 5 pM with lower field NMR instruments) and will likely double the
number of metabolites detectable in biofluids such as serum and urine.
Developments in NMR probe technology are also leading to some exciting
improvements in sensitivity and compound structural elucidation. For instance, the
recently developed '*C-optimized 1.5-mm cryoprobe and a 'H-'C dual-optimized
NMR probe permit 2D "H-">C HSQC experiments to be collected at natural abun-
dance (Ramaswamy et al. 2013, 2016; Clendinen et al. 2014, 2015).

Another route to improving the sensitivity of NMR is hyperpolarization where
sensitivity enhancements of several thousand-fold (allowing detection of metabolites
in the nM range) are technically possible. While hyperpolarization has been used for
13C-labeled metabolites (Ardenkjaer-Larsen et al. 2003; Keshari et al. 2010; Lumata
et al. 2015; Dey et al. 2020), the need for specialized equipment and sample
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preparation have limited its uptake. Another hyperpolarization method called
SABRE-SHEATH (Signal Amplification by Reversible Exchange in SHield Enables
Alignment Transfer to Heteronuclei) hyperpolarizes >N spins at room temperature
(Truong et al. 2015; Theis et al. 2016). SABRE-SHEATH could revolutionize
metabolomics studies if it could be adapted to NMR-based metabolomics.

Advances in NMR software and NMR data libraries are also helping to move
NMR-based metabolomics forward. The recent development of nmrML (Schober
et al. 2018) as a universal standard for the exchange of NMR spectra could help to
address the issue of limited or incompatible NMR data libraries and modest numbers
of reference NMR spectra by providing a common, easily readable, and shareable
file format. The release of a file format for mass spectrometry in 2011 (Martens et al.
2011) led to an explosion in the number of publicly available MS spectra. The
release and adoption of nmrML by the NMR metabolomics community could
potentially lead to the same result. Surprisingly, NMR has not had a modern data
exchange standard for more than 30 years. Continued development of open-source
or open-access software tools for spectral processing and automated or semi-
automated NMR spectral convolution such as Bayesil (Ravanbakhsh et al. 2015),
BATMAN (Hao et al. 2014), AquA (Rohnisch et al. 2018) and rDolphin (Cafiueto
et al. 2018) should also make NMR-based metabolomics more efficient, more user-
friendly, and more appealing to non-NMR specialists.

Another area where software development is expected to have an impact on
NMR-based metabolomics is in the application of machine learning techniques to
analyzing and processing NMR spectra. With the availability of more NMR data and
greater computing power, there has been significant growth in the applications of
machine learning techniques to NMR. Deep-learning techniques, in particular, could
greatly increase the sensitivity and accelerate the analysis of NMR-based
metabolomics workflows. For example, deep neural networks have been used to
denoise NMR spectra using a program called DN-Unet (Wu et al. 2021) and to
efficiently reconstruct NUS NMR spectra (Hansen 2019). This has allowed the
acquisition of very high S/N spectra in a fraction of the time. Bruker has developed
a deep-learning algorithm called sigreg that enables signal recognition detection in
"H-NMR spectra across multiple complex data sets (Paruzzo et al. 2020). Different
deep-learning approaches have also been used for chemical shift prediction and
molecular structure elucidation of small molecules and related metabolites (Cobas
2020). These deep-learning applications typically require massive training data sets
to yield useful results. Given the current paucity of large NMR data sets, much work
still needs to be done to maximize the benefits offered by machine learning to
NMR-based metabolomics research.

One continuing challenge in NMR-based metabolomics lies in the identification
of unknown compounds. As a rule, unknown identification for NMR-based
metabolomics is not as difficult as it is for MS-based metabolomics. This is because
most of the unknowns detected by NMR must have relatively high concentrations
(>5 mM) and consequently are more likely to be “known unknowns” rather than
“unknown unknowns.” The term “known unknowns” refers to compounds that have
been previously characterized or which already exist in chemical databases, but for
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which no reference NMR (or MS) spectra exist. On the other hand, “unknown
unknowns”” are compounds that are completely novel and have never been described
before. To identify “known unknowns,” a targeted NMR approach is often possible.
For instance, one can use standard 2D NMR approaches to determine the unknown’s
molecular constituents or atomic connectivities which might lead to a possible match
to an existing/known structure. Alternately, one can use a “suspect screening”
approach where intelligent guesses (guided by chemical shift similarities) and the
spiking in of pure standard of the suspected compound into the sample can help
confirm its identity.

Obviously, the most appropriate solution to identifying “known unknowns” is
adding more high-quality, experimentally collected, fully assigned reference NMR
data for many more metabolites to NMR databases such as the HMDB, BMRB, or
nmrshiftdb (McAlpine et al. 2019). Unfortunately, the pace at which reference
experimental NMR spectra are being added to these databases has slowed consider-
ably. In the absence of reference experimental NMR data, the use of predicted NMR
spectra to identify “known unknowns” may be possible. Certainly, continued
advancements in computing power along with improvements to the accuracy of
quantum mechanical and machine learning based predictions of NMR chemical
shifts and NMR coupling constants suggest that computational approaches could
be an appealing new route (Borges et al. 2021).

To identify truly novel compounds (i.e., “unknown unknowns”), de novo struc-
ture determination would be required. De novo structure determination often
requires partial or complete purification of the compound of interest, followed by a
combination of mass spectrometry and 2D NMR analysis of the purified compound
(Garcia-Perez et al. 2020). The process of characterizing novel compounds, how-
ever, can be particularly time consuming and also often limited by the low
concentrations of many unknown compounds. Computational approaches for the
analysis of spectral data and the proposal of candidate structures (through techniques
such as computer-aided structure elucidation — also known as CASE) can accelerate
the de novo structure determination process (Boiteau et al. 2018; Leggett et al.
2019).

The computational and experimental innovations being applied to the identifica-
tion of unknowns by NMR is typical of the remarkable inventiveness and impressive
creativity often seen in the NMR community. No doubt many other innovations in
NMR instrumentation, in NMR spectral collection, or in NMR data analysis that will
benefit NMR-based metabolomics are on the horizon. Certainly, for anyone who has
been in the NMR field for more than a few years, one quickly learns to never
underestimate the potential of NMR spectroscopists to come up with some remark-
able, paradigm-changing innovations. It is probably fair to expect that the next
20 years of NMR-based metabolomics will be as interesting and fruitful as the
past 20 years.

Acknowledgments The authors wish to thank Genome Alberta (a division of Genome Canada),
The Canadian Institutes of Health Research (CIHR), Western Economic Diversification (WED),
and Alberta Innovates Health Solutions (AIHS) for financial support.



30

Glossary

Baseline correction

BEST
Chemometrics

CPMG
CPMG experiment

COSY
DSS
ERETIC

HSQC
IEM

INADEQUATE

IUPAC
IUBMB
Metabolomics

Metabolites
Metabolome

Metnoesy experiment

NOESY
Phasing

Relaxation delay
SABRE-SHEATH

SOFAST

STOCSY

T,

T,

Targeted metabolomics
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A spectral processing technique that yields a more pleasant looking
NMR spectrum where signal-free regions appear as completely flat
lines with zero intensity

Band-Selective Excitation Transient

A branch of information science that uses mathematical and statistical
methods to identify patterns and extract information from large data
sets collected on analytical instruments, such as UV, IR, and NMR
spectrometers

Carr-Purcell-Meiboom-Gill

A pulse that can filter out the signals arising from large molecules,
such as proteins or lipoproteins, from the spectrum (without the need
for ultrafiltration or solvent extraction)

COrrelated SpectroscopY

4,4-dimethyl-4-silapentane- 1-sulfonic acid, a chemical shift reference
compound

Electronic REference To access In vivo Concentrations, an electronic
reference signal

Heteronuclear Single Quantum Coherence Spectroscopy

Inborn error of metabolism. They are rare genetic disorders
characterized by significant changes (several-fold increase or absence)
in the concentration of specific metabolites that result from
disturbances in normal metabolism

Incredible Natural Abundance DoublE QUAntum Transfer
Experiment

The International Union of Pure and Applied Chemistry

The International Union of Biochemistry and Molecular Biology

A branch of analytical chemistry that comprehensively characterizes
the molecules in various biofluids and tissues

The chemical constituents of the metabolome

The complete collection of all chemicals or metabolites found within
cells, biofluids, organs, or organisms

A simple 1D NOESY pulse sequence that provides solvent suppres-
sion before the experiment and during the mixing time without the use
of gradients

Nuclear Overhauser Effect Spectroscopy

An NMR spectral adjustment process that is designed to maximize the
absorptive character of NMR peaks over all regions of an NMR
spectrum

The sum of the acquisition time and acquisition delay prior to the
next scan

Signal Amplification by Reversible Exchange in SHield Enables
Alignment Transfer to Heteronuclei

Band-Selective Optimized Flip Angle Short Transient

Statistical total correlation spectroscopy

Longitudinal relaxation time

Transverse relaxation time

A metabolomics technique that uses spectral deconvolution software
to identify and quantify fluid-specific or targeted metabolites in indi-
vidual spectra
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TSP Trimethylsilylpropanoic acid, a chemical shift reference compound

Untargeted metabolomics A metabolomics technique that uses spectral alignment, spectral bin-
ning, and multivariate statistical analysis to identify spectral features
of interest
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Abstract

The metabolome is composed of a vast array of molecules, including endogenous
metabolites and lipids, diet- and microbiome-derived substances,
pharmaceuticals and supplements, and exposome chemicals. Correct identifica-
tion of compounds from this diversity of classes is essential to derive biologically
relevant insights from metabolomics data. In this chapter, we aim to provide a
practical overview of compound identification strategies for mass spectrometry-
based metabolomics, with a particular eye toward pharmacologically-relevant
studies. First, we describe routine compound identification strategies applicable
to targeted metabolomics. Next, we discuss both experimental (data
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acquisition-focused) and computational (software-focused) strategies used to
identify unknown compounds in untargeted metabolomics data. We then discuss
the importance of, and methods for, assessing and reporting the level of confi-
dence of compound identifications. Throughout the chapter, we discuss how these
steps can be implemented using today’s technology, but also highlight research
underway to further improve accuracy and certainty of compound identification.
For readers interested in interpreting metabolomics data already collected, this
chapter will supply important context regarding the origin of the metabolite
names assigned to features in the data and help them assess the certainty of the
identifications. For those planning new data acquisition, the chapter supplies
guidance for designing experiments and selecting analysis methods to enable
accurate compound identification, and it will point the reader toward best-practice
data analysis and reporting strategies to allow sound biological and pharmaco-
logical interpretation.

Keywords

Compound identification - Identification confidence - LC-MS - Metabolomics -
Molecular formula assignment - MS/MS search

1 Introduction

Metabolomics is a technique designed to provide a window into the small-molecule
composition of a biological sample. In the context of pharmacological research,
metabolomics can give insight into the uptake, metabolism, and clearance of a drug,
delineate its impact on endogenous metabolism, or be used to discover biomarkers
that predict which individuals will have a favorable response when it is administered.
In all cases, metabolomics data is most meaningful when compounds in the sample
can be accurately quantitated, confidently identified to the level of a unique chemical
structure, and mapped to a biochemical or pharmacological pathway. Mass
spectrometry-based metabolomics can be used to detect anywhere from a single
compound of interest using a targeted method to tens of thousands of features using
an untargeted workflow (Verpoorte, “Natural products drug discovery: on silica or
in-silico?””; Giinther, ‘“Metabolomics in cell biology”). However, in a typical
untargeted metabolomics study, a substantial portion of the features detected are
artifacts and only a fraction of the presumed unique features can be readily identified
(Mahieu and Patti 2017). For those features that can be identified, the degree of
confidence with which chemical structures can be assigned varies and is determined
by multiple factors. Therefore, selection of proper study design, data acquisition, and
data analysis methods is essential to achieve the desired compound identification
goals, and should be considered in the context of all the steps of a metabolomics
study.
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Most studies that use pharmacometabolomics rely on accurate compound identi-
fication, but many manuscripts provide limited detail about how compound
identifications are made or the confidence with which they were assigned. It is
therefore important for researchers in the field of pharmacology seeking to generate
or interpret metabolomics data to be aware of strategies for compound identification
and limitations of the methods. Numerous excellent reviews have already been
published about compound identification strategies for metabolomics (Wishart
2009; Watson 2013; BlaZenovic et al. 2018; Chaleckis et al. 2019). In this chapter,
we will summarize both basic strategies and innovative techniques that can be used
to facilitate reliable compound identification when using metabolomics. We also
include some discussion of compound identification strategies relevant to mass
spectrometry-based lipidomics, which focuses on study of non-polar lipid and
lipid-like molecules as opposed to polar metabolites. Whenever possible, we will
note examples of studies that demonstrate varied compound identification strategies
in the context of pharmacology and pharmacometabolomics. However, even though
most of the literature focused on small molecule compound identification techniques
does not specifically describe application to pharmacological research, the
techniques apply to all classes of small molecules, whether endogenous, drug-
derived, or of other origin.

This chapter is sub-divided into “steps” structured around a typical metabolomics
(or pharmacometabolomics) study, focusing on how compound identification is
relevant to or implemented at every stage in the workflow. In “Step 1,” we begin
by discussing how to select a workflow to achieve the investigator’s compound
identification-related goals, contrasting compound identification in targeted and
untargeted metabolomics. “Step 2” focuses on experimental data collection
strategies, describing the preparations needed to attempt to identify unknown
features in untargeted metabolomics data. “Step 3" and “Step 4” turn our attention
to data analysis, describing computational strategies developed to aid in identifying
unknown features. The inter-connectedness and inter-dependency of computational
and experimental methods will be highlighted. “Step 5 discusses strategies to assess
confidence in the accuracy of compound identifications and best practices for
reporting compound identifications in publications. The chapter concludes by
summarizing considerations relating to compound identification of particular rele-
vance to pharmacology. Throughout the chapter, we describe some of the major
challenges that prevent universal and complete identification of all features that can
be detected in metabolomics data, and we highlight current research and potential
future developments that may bring this goal closer to fruition.

2 Step 1: Study Design: Define Compound
Identification Goals

The first step of any metabolomics experiment is to define its goals; this also applies
to compound identification. Is the project intended to perform routine identification
and quantitation of a moderate number of well-known metabolic intermediates or a
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drug and its known metabolites in human urine? Or, is it to detect and identify
biomarkers of a disease in human plasma, including unknown compounds? Or, to
determine if a particular metabolite profile predicts responsiveness to a treatment?
All these scenarios, and many other uses of metabolomics, rely on robust compound
identification. However, the way compound identification is best achieved is likely
to differ depending on study design. One of the first choices that must be made is
whether the metabolomics workflow to be used should be targeted, untargeted, or
use a combination of both approaches. The distinctions between targeted and
untargeted metabolomics are described in other chapters of this book and have
been reviewed extensively (Patti et al. 2012; Cajka and Fiehn 2016; Fiehn 2016a;
Schrimpe-Rutledge et al. 2016); Saigusa et al. describe advantages and
disadvantages of targeted and untargeted methods in the context of
pharmacometabolomics and drug discovery (Saigusa et al. 2021). Here, we briefly
consider commonalities and distinctions of compound identification in targeted and
untargeted metabolomics.

Compound Identification in Targeted Metabolomics In targeted metabolomics
studies, most of the effort for compound identification is carried out up-front, before
data from biological samples are collected. Methods are set up using authentic
standards that allow detection of a pre-defined set of compounds, based on their
mass, retention time, and in the case of MS/MS-based methods, specific fragment
ions. Once targeted metabolomics methods are created, in principle no additional
steps beyond routine instrumental and data analysis are needed to identify
compounds. The tradeoff for the simplicity of compound identification in targeted
metabolomics is the fact that the number of compounds that can be identified in a
typical targeted analysis is limited. Most targeted assays are used to quantitate from
one to a few hundred compounds, though recent targeted lipidomics methods have
been reported to have the capability to detect and quantitate over 1,000 species using
three separate LC—MS runs per sample (Contrepois et al. 2018). It is also important
to note that identifications in targeted methods are not always free from interference
or error. Structural isomers share the same molecular mass, are often indistinguish-
able by MS/MS fragmentation pattern, and may be difficult to resolve by chroma-
tography. These factors may prevent unambiguous identification in targeted and
untargeted methods alike.

Several guides and reviews have been written that describe how to develop
targeted metabolomics methods (Griffiths et al. 2010; Parker et al. 2014; Zhou and
Yin 2016; Roberts et al. 2012); but a few notes with relevance to compound
identification merit mention. First, it is wise to investigate possible structural isomers
of compounds of interest by using metabolite databases, described in “Step 3” in this
chapter. In some cases, it may be prudent to purchase standards for potential
interfering compounds and confirm they are chromatographically or spectrally
resolved from targeted analytes. Secondly, if a method is to be adopted from the
literature, it is not always safe to assume that provided parameters will produce
results free from interference from isobaric (same nominal mass) species. Authentic
standards should be used to validate methods, preferably by spiking a biological
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sample with the expected compound at an appropriate concentration to observe an
expected increase in peak area, with no evidence of alteration in peak shape or
retention time that could indicate presence of an interferent. Finally, in the case of
selected reaction monitoring or multiple reaction monitoring methods, it is beneficial
to use both a primary product ion for quantification and secondary ion as a qualifier,
and to monitor the abundance ratio between the two to ensure no deviation from that
observed with an authentic standard.

Targeted metabolomics, or more broadly, targeted mass spectrometry-based
small molecule assays, are widely used for pharmacological applications. Such
applications include quantitation of drug molecules themselves or their direct
metabolites within biological samples. Targeted approaches find use in pharmacoki-
netics studies (Kantae et al. 2017), forensic and clinical toxicology (Maurer 1998),
assays for drugs of abuse (Zaitsu et al. 2016), along with many other applications.
Prakash et al. reviewed strategies for identification of drug metabolites using mass
spectrometry as the primary approach while defining the utility of complementary
methods such as NMR and chemical derivatization (Prakash et al. 2007). Targeted
metabolomics in pharmacological studies also frequently focuses on the study of
endogenous metabolites, which can be used to assess the effect of a drug on specific
endogenous metabolites or metabolic pathways of interest (Kantae et al. 2017;
McCann et al. 2021).

Compound Identification in Untargeted Metabolomics and Lipidomics In con-
trast to targeted metabolomics, which focuses on analysis of specific pre-selected
compounds, untargeted methods aim to quantitate as broad a swath of the
metabolome or lipidome as possible using unbiased data acquisition methods.
Thus, untargeted metabolomics is designed to detect all features in raw LC-MS or
GC-MS data that may originate from a molecule in the sample. Initially, these
features have no assigned chemical identity; they are represented by their measured
physical or chemical properties such as their mass/charge ratio (m/z), retention time
(RT), fragmentation pattern, and/or other measured data. Some features in
untargeted metabolomics data may be identified by matching their m/z and RT,
and when available their MS/MS spectrum or measured ion mobility drift time, to
standards analyzed under identical conditions (preferably in the same lab, on the
same instrument using the same chromatographic and mass spectrometric method).
However, a substantial proportion of features detected in untargeted metabolomics
data typically cannot be identified using this “targeted” strategy, even when many
standards have been catalogued. Some portion of these unidentified features repre-
sent contaminants or degenerate signals; removal of as many of these artifacts as
possible from the data is an important preliminary computational step in compound
identification efforts and is described “Step 3” in this chapter.

After artifact removal, at least a portion of the unknown features may represent
biologically or pharmacologically relevant compounds. Identification of these
features is central to the discovery-driven nature of untargeted metabolomics, and
is a primary goal of many pharmacometabolomics studies (Steuer et al. 2019).
Strategies for unknown feature identification are the focus of the remainder of this
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Fig. 1 Generalized workflow for compound identification in untargeted metabolomics illustrating
both experimental and computational approaches

chapter. A generalized workflow for compound identification in untargeted
metabolomics is illustrated in Fig. 1. It contains both experimental and computa-
tional components, which will be described in detail in “Steps 2—4” of this chapter.

3 Step 2: Acquire Data — Experimental Strategies to Identify
Compounds in Metabolomics Data

Once a study design has been selected and goals for compound identification have
been established, the next step is to perform experimental analysis. Here, we
describe major steps of a metabolomics experiment relevant to compound identifi-
cation, pointing out specific strategies that can be employed to improve the number
and quality of identifications that can be obtained from the data.

Sample Preparation Sample preparation for metabolomics plays a substantial role
in determining metabolite recovery, and by extension which metabolites can be
detected and identified (Lu et al. 2008). Solvent extraction is a near-universal
component of metabolomics sample preparation protocols and has been studied
extensively in the context of recovery and quantitation of metabolites (Bruce et al.
2009; Lorenz et al. 2011), though some studies have also investigated how sample
preparation methods modulate the number and chemical class of features that can be
identified (Anderson et al. 2021; Lenz et al. 2007; Koek et al. 2008). One key choice
that can impact compound identification is selecting between a single-phase or
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biphasic extraction method. While single-phase extracts are simpler to prepare,
multi-phase extracts separate polar and non-polar metabolites into separate
solutions, allowing MS data acquisition parameters and database selection to be
tailored to the polarity of each phase, potentially yielding more and more accurate
identifications (Blazenovi¢ et al. 2018; Matyash et al. 2008). Other sample prepara-
tion methods such as solid phase extraction can be used to concentrate
low-abundance compounds and potentially improve identification performance,
though these methods’ impact on compound identification has been less thoroughly
studied (Wu et al. 2019). The simpler strategy of increasing column loading can also
be used to enhance detection and identification of low-abundance compounds.
Anderson et al. demonstrated that increasing sample concentration and injection
volume to achieve column loading over 10-fold higher than typical loading for a
reversed-phase LC-MS metabolomics experiment yielded more and higher-quality
compound identifications, at the expense of a modest loss of chromatographic
resolution (Anderson et al. 2021).

Chemical Derivatization The primary goal of chemical derivatization, a step used
in some but not all metabolomics workflows, is usually to make compounds more
amenable to detection and quantitation by GC-MS or LC-MS. However, it can also
play a role in compound identification. GC—MS-based metabolomics relies on
derivatization to convert non-volatile compounds to species that can be vaporized
and chromatographed in the gas phase. The most widely used approach employs
methoximation followed by addition of trimethylsilyl (TMS) or tert-
butyldimethylsilyl (TBDMS) groups to derivatize ketones, alcohols, amines, and
amides (Lisec et al. 2006; Lee et al. 2005). Fragmentation of TMS- or TBDMS-
derivatized metabolites follow consistent patterns that can be interpreted to help
identify unknown features. Lai et al. reviewed decades of publications describing
GC-MS analysis of TMS-derivatized small molecules and compiled a series of rules
and fragmentation trees useful for assigning substructures and facilitating unknown
identification (Lai and Fiehn 2018). Silylated derivatives are also amenable to
spectral library search, described in “Step 4” below; many GC-MS libraries contain
spectra of an extensive catalog of silylated metabolite derivatives (Kind and Fiehn
2010; Halket et al. 2005). Silylated metabolites, like all compounds amenable to
GC-MS analysis, can also be characterized by their retention index relative to a
series of standards such as n-alkanes or fatty acid methyl esters (Kind et al. 2009;
Strehmel et al. 2008). This allows chromatographic retention information to be
included in GC-MS databases like FiehnLib and the NIST EI-MS library, both
described in more detail below, adding orthogonal information for confirmation of
compound identification (Kind and Fiehn 2010).

Chemical derivatization also has potential application to compound identification
in LC-MS-based metabolomics (Zhao and Li 2020; Han et al. 2015). Multiple
reagents with different selectivity are available. Phenylisothiocyanate (PITC) is a
classic derivatization reagent commonly used for amino acid analysis by LC with
ultraviolet absorbance or fluorescence detection, but has also been used for LC-MS
analysis of species such as catecholamines (Zheng et al. 2018). Similarly, dansyl
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chloride and benzoyl chloride react quantitatively with amines, improving ionization
efficiency, chromatographic retention, and MS/MS fragmentation (Guo and Li 2009;
Wong et al. 2016). The compound 3-nitrophenylhydrazine can be used to derivatize
fatty acids, other carboxylic acids, and phosphoryl metabolites (Meng et al. 2021).
Using a combination of derivatization techniques has been proposed as a strategy to
facilitate characterization of the chemical composition of unknowns by revealing the
presence of key functional groups and allowing focused analysis of these subsets of
the metabolome (Zhao and Li 2020). Derivatization also has potential disadvantages:
(1) derivatization of unknowns may not necessarily result in easier characterization
of their structure, and (2) derivatization reactions may not always proceed to
completion, resulting in a mixture of partially derivatized molecules and hence a
more complex sample to analyze, and (3) some metabolites may not derivatize at all.

Stable Isotopes Compounds enriched with one or more stable isotopes of common
elements (e.g., 2H,3¢, PN, or 18O) can be easily distinguished from their unlabeled
counterparts by mass spectrometry, while their chemical properties remain essen-
tially identical to the unlabeled compound. In addition to their applications as
internal standards and as tracers to help quantitate metabolite flux, stable isotopes
can also be used to aid compound identification in metabolomics. One approach
using stable isotopes is termed isotope ratio outlier analysis (IROA), which uses
paired samples isotopically labeled with either 5% or 95% '*C and uses characteris-
tic isotope patterns to help differentiate biological signals from artifacts and con-
strain potential molecular formulas assigned to unknowns (Clendinen et al. 2015).
Another application of stable isotopes is to investigate the metabolic fate of individ-
ual metabolites or drugs (Kempa, “Advancements in pulsed stable isotope re-solved.

Metabolomics”; Giinther, “Metabolomics in cell biology”). In one example, Chen
et al. injected mice with 400 mg/kg of [acetyl-*Hs]- or [2,3,5,6-*H4]-acetaminophen
and used untargeted feature detection, followed by MS/MS-based structural elucida-
tion, to identify three novel urinary acetaminophen metabolites potentially
associated with its toxicity in overdose (Beyoglu et al. 2018). Another potential
use of stable isotopes is the use of hydrogen-deuterium exchange to help determine
the chemical structure of unknown compounds (Majuta et al. 2019).

Chromatography Chromatographic methods for metabolomics are often
optimized for quantitation and speed but can also be tailored to improve compound
identification. One important choice is whether to use GC, LC, or both methods to
characterize a sample (Gowda and Djukovic 2014). GC offers fast and reproducible
chromatography and can be coupled to both electron impact (EI) and chemical
ionization (CI) methods to obtain complementary fragmentation and molecular ion
data, both of which contribute to compound identification (Misra and Olivier 2020),
but samples typically require derivatization as described above. LC with electrospray
ionization is more versatile for larger molecules or non-derivatizable species, and
high-resolution accurate mass LC-MS/MS systems are more common than GC-MS
systems with similar capabilities (Shackleton et al. 2018; Theodoridis et al. 2012). In
both GC-MS and LC-MS methods, chromatographic conditions should be
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evaluated in terms of their potential impact on compound identification, in addition
to considerations regarding quantitation and throughput (Rainville et al. 2017).
Combined optimization of gradient length, sample loading, and use of iterative
precursor ion exclusion for LC-MS/MS analysis of the human plasma metabolome
was determined to generate over a 10-fold improvement of probable unique com-
pound identifications, including numerous trace-level drug compounds, compared to
typical high-throughput methods (Anderson et al. 2021). Multi-hour gradients
(Wang et al. 2015) and extreme column loading are not practical for quantitative
analysis of large numbers of samples; however, features identified using such high-
resolution methods can be aligned with features detected but not identified using
faster run conditions (Habra et al. 2021).

Authentic Standard Libraries and Retention Time Databases As in targeted
metabolomics, authentic standards can be used to help unambiguously identify
features detected in untargeted metabolomics data by matching m/z, RT, and
MS/MS spectrum to features detected in biological samples. Effective use of authen-
tic standard libraries reduces the burden of unknown identification for the remainder
of the features. An authentic standard library can be assembled by purchasing
individual chemical standards from vendors or by purchasing pre-assembled kits
or libraries. Of relevance to pharmacological research, several libraries containing
hundreds to tens of thousands of known bioactive, drug-like, or drug candidate
molecules can be obtained through commercial suppliers and/or government-
supported repositories (Health in Northern Ireland 2022). Disadvantages of authentic
standard libraries include the initial expense of purchasing, solvating, and/or
analyzing the chemical standards, as well as the fact that a library may not be
representative of a biological sample’s constituents (Mahieu and Patti 2017). An
alternative to in-house standard libraries are digital databases containing retention
time or retention index information compiled on a specific analytical method. These
provide some of the benefits of standard libraries without the need to purchase and
analyze all the standards experimentally. One example is the FiehnLib GC-MS
method, which uses retention indices to aid in compound identification (Kind and
Fiehn 2010). Some online metabolite databases also contain RT information for LC
methods, but inter-laboratory use of these data is less frequent as retention time
alignment or indexing across labs is viewed as more challenging than for GC-MS.
Spectral databases are described in more detail in “Step 3” of this chapter.

Mass Spectrometry: High Resolution, Accurate Mass Measurement While
targeted metabolomics is dominated by single-quadrupole GC-MS and tandem-
quadrupole LC-MS, untargeted analysis is more optimally performed using high-
resolution accurate mass (HRAM) analyzers, including quadrupole-time of flight
(QToF), Orbital Ion Trap (Orbitrap), and Fourier-Transform Ion Cyclotron Reso-
nance (FT-ICR) instruments. Measurements performed on a well-calibrated QToF
typically have a mass accuracy in the range of 3—5 ppm when internal calibration is
used; Orbitrap instruments may achieve 0.5—1 ppm mass accuracy, whereas FT-ICR
analyzers may achieve between 0.1 and 1 ppm (Balogh 2004; Fiehn 2016b). A
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principal advantage of higher mass accuracy is that it reduces the number of possible
molecular formulas that can be assigned to a feature; although, as demonstrated by
Fiehn et al. even 0.1 ppm mass accuracy is not sufficient to unambiguously assign a
molecular formula for species <500 Da, much less for larger compounds (Kind and
Fiehn 2007). Spectral resolution does not directly determine the accuracy of molec-
ular formula determination. Instead, higher resolution reduces the possibility of
interference from co-eluting nearly isobaric species. The isotope distribution of an
unknown is another feature of MS data that aids compound identification; if
measured accurately, it is very effective in constraining molecular formula assign-
ment (Bocker et al. 2009).

Mass Spectrometry: In-Source Fragmentation In GC-MS studies, electron
impact ionization is performed at a standardized energy of 70 eV, which causes
extensive in-source fragmentation in a manner that is reproducible from instrument
to instrument (Taylor 2015). The fragmentation pattern reveals structural informa-
tion about the compound and allows library searching to facilitate identification
(as described in “Step 4” of this chapter). Co-eluting compounds may complicate
interpretation by generating mass spectra that contain fragment ions from two or
more compounds; one strategy to compensate for this is spectral deconvolution as
implemented in NIST AMDIS software (Davies 1998) or GC-MS/MS analysis
(Kvitvang et al. 2011). In-source fragmentation also occurs to a lesser extent in
LC-ESI-MS but is usually considered undesirable and source settings are chosen to
minimize it, although it is occasionally used to perform pseudo-MS/MS or pseudo-
MS? for instruments lacking those capabilities. (Xue et al. 2020; Abdelhameed et al.
2014)

Mass Spectrometry: MS/MS and MS" In LC-ESI-MS, tandem mass spectrome-
try (MS/MS or MS") is an important aspect of data collection in untargeted
metabolomics studies, especially in the context of compound identification.
MS/MS has also seen increasing use in GC-MS, though mainly for targeted analy-
sis. Tandem MS involves selection and fragmentation of specific ions within the
mass spectrometer; fragment ion spectra can be interpreted to discern information
regarding the precursor ion’s structure or used as a “fingerprint” for database
searching. Multiple methods of fragmentation are available, depending on instru-
ment capabilities. These include collision-induced dissociation (CID), higher-energy
collisional dissociation (HCD), electron transfer dissociation (ETD) and infrared
multi-photon dissociation (IRMPD) (Ichou et al. 2014; Alley et al. 2009; Yoo et al.
2007). Recently, a strategy to obtain more extensive fragmentation of ESI-generated
ions that uses an electron impact-type mechanism has been devised; one mode of
operation has been termed electron impact excitation of ions from organics (EIEIO)
(Baba et al. 2018; Ducati et al. 2021). There are two main methods that can be used
to perform tandem MS data acquisition: data-dependent analysis (DDA), in which
MS/MS is automatically triggered for the most abundant or otherwise selected
features detected in the preceding MS1 scan, and data-independent analysis (DIA),
in which MS/MS acquisition is performed according to pre-defined criteria not
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influenced by the MS1 data. Details regarding these approaches and their advantages
and disadvantages have been described in detail elsewhere (Guo and Huan
2020a, b).

It is good practice to acquire MS/MS data during any substantial untargeted
metabolomics project. This allows both automated database searching and follow-
up analysis to attempt identification or classification of features of interest, without
returning to the instrument to acquire new data. In many cases, MS/MS data need not
be acquired for each individual sample, but can be generated using representative
pooled samples from the study. To acquire high-quality MS/MS spectra of as many
features as possible, recent data acquisition software packages enable automatic
generation of precursor ion exclusion lists that prevent serial LC-MS/MS runs of
the same sample from acquiring MS/MS data on ions already fragmented in previous
runs. This method, sometimes termed iterative DDA, is a powerful strategy to obtain
deeper MS/MS coverage of detected features than is possible in a standard DDA
workflow (Anderson et al. 2021; Koelmel et al. 2017).

Certain mass analyzers are capable of multiple stages of fragmentation, in which
fragment ions are further fragmented. This is termed MS" analysis; it enables
construction of fragmentation trees for unknown compounds (Vaniya and Fiehn
2015). MS" data are less well cataloged and interpretation of MS" data is less widely
supported by databases and software tools compared to MS/MS data. Nevertheless,
under many circumstances MS" data provide useful information to characterize and
annotate unknown compounds (Vinaixa et al. 2016; Ridder et al. 2012).

Ion Mobility Spectrometry and Collisional Cross-Section Measurement Ion
mobility spectrometry (IMS) separates gas phase ions based on differential mobility
through low-pressure buffer gas (Kanu et al. 2008). Ions with a larger cross-sectional
area experience more resistance and move more slowly than smaller, more compact
ions. In the context of metabolomics, ion mobility is performed inside a mass
spectrometer directly preceding the standard mass analyzer(s). It offers a semi-
orthogonal separation to MS and resolves some isobaric species that are not separa-
ble by LC-MS, allowing generation of MS/MS spectra from a single precursor ion
rather than from multiple co-eluting isobars (Rainville et al. 2017). With appropriate
calibration, IMS data can also be used to compute collisional cross-section values
(CCS), which are considered an intrinsic property of an ion and can be used to
facilitate compound identification (Zhou et al. 2020). Various manufacturers have
produced instruments with ion mobility spectrometry capabilities, and collisional
cross-section values are beginning to be included with metabolite databases (Wishart
et al. 2022). CCS measurements have been evaluated as a means of characterizing
drug compound structure (Hines et al. 2017) and to predict their ability to cross the
blood-brain barrier (Guntner et al. 2019), demonstrating the potential pharmacolog-
ical relevance of this rapidly developing technology.

Nuclear Magnetic Resonance Spectroscopy for Metabolite
Identification Although this chapter focuses on mass spectrometry-based methods,
it is important to acknowledge the utility of nuclear magnetic resonance
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spectroscopy (NMR)-based methods in identifying unknown compounds. NMR is
an important and widely used technique for metabolomics and
pharmacometabolomics in its own right; its strengths, limitations, and applications
are thoroughly described in the literature (Emwas et al. 2019) and in other chapters
of this book. In the context of compound identification, NMR is a touchstone method
for the fields of synthetic chemistry, natural products chemistry, and drug develop-
ment. For a pure sample of a small molecule compound analyzed in a modern high-
field instrument using 'H and '>C NMR, it is typically possible to assign a definitive
structure via computational modeling and/or manual interpretation (Willoughby
et al. 2014). The primary challenge associated with applying the NMR to compound
identification in metabolomics is its sensitivity. For higher-concentration
compounds, NMR is effective at both quantification and identification, and detailed
guides describing compound identification strategies in NMR metabolomics have
been written (Dona et al. 2016). However, compounds present at lower
concentrations (mid-low micromolar and below) are not amenable to identification
without purification and concentration. Techniques to purify unknowns using chro-
matographic fractionation have been devised (van der Laan et al. 2021; Whiley et al.
2019) but are still not practical for lower-abundance features. While scale-up to
semi-preparative or preparative chromatography or other refinements are possible, it
remains challenging to obtain high-quality NMR spectra of a substantial portion of
features detectable by mass spectrometry.

4 Step 3: Computational Strategies for Data Cleaning and
Feature Annotation

Acquisition of high-quality data is not sufficient to identify unknown metabolites.
Datasets are far too large to manually review, much less interpret, every spectrum
collected in an experiment. Fortunately, numerous computational strategies can be
employed to aid in identifying or annotating unknowns; when necessary, they can
also help guide acquisition of additional data. Here, we present an overview of major
computational strategies to aid the reader in finding and understanding available
tools. Readers interested in a more detailed discussion of computational compound
identification strategies are directed to one of several excellent reviews that have
been published on the topic (Wishart 2009; Watson 2013; BlaZenovic et al. 2018) or
to primary sources cited below.

Degeneracy Removal In the simplest scenario, each compound present in a sample
would be represented by one feature in experimentally acquired untargeted
metabolomics data. However, this is seldom the case. In GC-EI-MS, extensive
in-source fragmentation is expected for each compound, but when peaks co-elute,
it can be difficult to determine which fragment ions originate from which parent ion.
In LC-ESI-MS, using positive ion mode as an example, singly-protonated [M + H]*
ions are usually the most common form of ion, but other adducts such as [M + Na]™,
[M + NH4]", etc. or in-source fragment ions such as [M-H20 + H]™ are often formed
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and detected. More complex ion formation processes are frequently observed,
including multiply charged ions, ions with multiple charge carriers, solvent adducts,
adducted fragment ions, and dimers, multimers and heterodimers. (Mahieu and Patti
2017; Mabhieu et al. 2016; Kachman et al. 2019; Nelson et al. 2022) Collectively,
such features can be termed “degenerate” signals.

To avoid investing effort to identify features that are degenerate signals produced
by other already-identified compounds, data clean-up steps including adduct and
fragment annotation and/or removal are necessary. For GC-EI-MS, spectral
deconvolution software such as AMDIS (Davies 1998) or MS-DIAL (Tsugawa
et al. 2015) can help separate spectra of features that are only partially resolved by
chromatography. For LC-MS, the process of adduct annotation can be at least
partially automated by either instrument vendor or open-source data analysis soft-
ware such as CAMERA, MZmine, or MS-DIAL (Tsugawa et al. 2015; Kuhl et al.
2012; Pluskal et al. 2010). The most rigorous approaches for degeneracy annotation
also consider correlation of intensity for co-eluting features; those with high correla-
tion are more likely to represent degenerate features (Kachman et al. 2019;
Broeckling et al. 2014). Application of these clean-up steps reduces compound
identification workload by decreasing the number of features that must be subjected
to additional computational analysis and/or manual review.

Molecular Formula Assignment A fundamental step in identifying a compound,
whenever possible, is to determine its molecular formula. The approach for this
process differs depending on whether data are acquired on a low-resolution instru-
ment, such as a GC-MS with a quadrupole mass analyzer, or a high-resolution
accurate mass instrument, such as a QToF, orbital ion trap, or ion cyclotron
resonance instrument. In the former case, molecular formula assignment is
performed using a probability-based strategy (Scott 1992) such as that implemented
in NIST MS Search software (Stein 1999). In the latter case, an effective strategy for
molecular formula assignment from accurate mass data was developed by Kind et al.
(Kind and Fiehn 2007) It uses “seven golden rules” developed to constrain potential
chemical formulas based on characteristics shared by almost all common biological
molecules containing some or all of the elements C, H, O, N, P, and S. In addition to
the accurate m/z value measured for a compound, the natural isotope distribution of
the compound is required to sufficiently constrain candidate formulas for all but the
smallest metabolites. Fortunately, software tools to assign molecular formulas auto-
matically using metabolomics data have been devised (Toli¢ et al. 2017; Ludwig
et al. 2019; Diihrkop et al. 2019) and are implemented in various instrument vendor
software packages. These molecular formula assignment methods have also proven
highly applicable to pharmaceuticals, returning a correct molecular formula as the
top candidate with 88—99% probability for thousands of database spectra of drug
molecules (Kind and Fiehn 2007). While these algorithms have become increasingly
reliable, de-novo assignment of formula for larger compounds (MW >500) remains
challenging and are best supplemented by support from compound database and
spectral search.
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Table 1 Selected small molecule compound databases. Table adapted from BlaZenovié et al.

(2018)
Free web
Additional compound ID-relevant access/free

Database Contents features download?
PubChem (Bolton | All small Structure similarity search tool Y/Y
et al. 2008) molecules
ChemSpider All small Y/N
(Pence and molecules
Williams 2010)
ChEBI (Hastings Small Focus on compounds of biological Y'Y
et al. 2016) molecules interest
KEGG (Kanehisa Metabolites Curated pathway maps Y/N
et al. 2006)
MetaCyc (Caspi Metabolites Curated pathway maps Y/
et al. 2008) noncommercial
HMDB (Wishart Human Physiological concentration data, Y/Y
et al. 2022) metabolites/ MS/MS spectra, text-mined literature

exposome context
Metlin (Guijas Metabolites Y (MS1 only)/
et al. 2018) N
RefMet (Fahy and | Metabolites Name conversion tool Y/Y
Subramaniam
2020)
ChEMBL (Davies | Bioactive Y'Y
et al. 2015) drug-like

molecules
DrugBank Known drugs Y/
(Wishart et al. noncommercial
2006)

Compound Databases Once degeneracy removal has been performed, and prefer-
ably after a molecular formula has been assigned, a feature’s m/z or neutral mass can
be searched against a compound database. Although m/z alone is by no means
sufficient to identify an unknown metabolite, databases help provide a list of
candidate compounds that can be evaluated using other means. Small molecule
compound databases vary in their scope and application; major examples are listed
in Table 1.

Databases range from those which focus on known endogenous metabolites to
those which attempt to cover all known and plausible small molecule chemical
structures. It is desirable to begin by querying the most specific applicable database
first. Small molecule databases focused on pharmaceutical compounds, such as
DrugBank (Wishart et al. 2018) and ChEMBL (Papadatos and Overington 2014;
Mendez et al. 2019), are of particular use for putative annotation of drugs and their
metabolites in pharmacometabolomics data. Likewise, using organism-specific
databases or constraining taxonomy to the sample type being analyzed will generate
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a narrower list of candidate compounds than an open-ended search against
PubChem. Annotation of unusual or novel compounds may require use of broader
databases.

Regardless of the database used, database hits against unknowns should not be
treated or reported as confident identifications, even if the hit list contains only a
single compound. Additional confirmation from other data sources is required, as
described in “Steps 4 and 5” in this chapter.

Retention Time Prediction As already noted, some compound databases contain
retention time information for specific compounds collected using defined chro-
matographic methods. However, in the frequent event that no experimentally deter-
mined RT information is available for these compounds, retention time prediction
strategies and software tools can help fill the gap (Bonini et al. 2020; Stanstrup et al.
2015). These approaches require training a computational model using predicted
chemical properties by inputting retention times and structures of known
compounds. Once the model is complete, retention times can be predicted for
candidate spectral matches and used to help confirm or refute compound
assignments made by MS/MS or other data. No retention time prediction software
yields precision comparable to experimental data; often, predicted retention times
deviate 10% or more from the experimental value. Nevertheless, in many cases, this
level of precision is enough to rule out a substantial portion of incorrect
identifications.

Collisional Cross-Section Prediction Analogous to RT prediction, collisional
cross-section values can be predicted based on compound structure and machine
learning (Plante et al. 2019) or quantum chemistry-based (Colby et al. 2019) models.
These values can then be compared against values experimentally determined for
unknown features, which are beginning to appear in major databases like HMDB
and Metlin. The desired result is either confirmation or refutation of the assigned
compound identity. Computational collisional cross-section prediction is in the early
phases of development but promises to impact compound identification as adoption
of ion mobility spectrometry increases.

5 Step 4: MS/MS Libraries and Compound Identification
Using Library Search

To move beyond candidate screening to true compound identification, the first-line
strategy is to search the MS and/or MS/MS spectrum of the unknown against a
spectral library. Mass spectral libraries contain experimentally collected or compu-
tationally predicted spectra of a database of small molecule compounds. For GC-
MS, the most extensive libraries consist of EI-MS spectra acquired at a standard
70 eV ionization energy. For LC-ESI, databases often consist of MS/MS spectra that
have been acquired for authentic standards on several different instrument types at a
range of collision energy values. Certain libraries may focus on a particular class of
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Table 2 Widely used spectral libraries. Table adapted from BlaZenovic et al. (2018)

Free web

Additional compound access/free
Library Data type Type ID-relevant features download?
NIST EI-MS, Experimental Highly curated, includes N/N
(Stein CID-MS/ search software, available from
1999) MS multiple vendors
Wiley EI-MS, Experimental Largest collection of EI-MS N/N
(Solutions CID-MS/ data, available from multiple
2022) MS vendors
METLIN CID-MS/ Experimental Developed for Q-ToF N/N
(Guijas MS instruments, licensed annually
et al. 2018)
MoNA EI, Experimental, Community database, Y/Y
(Fiehn MS/MS, user- automated curation
2016b) MSs" contributed
MassBank Metabolites | Experimental, | Community database Y/Y
(Horai et al. user-
2010) contributed
mzCloud MS/MS, Experimental Most complete MS" database Y/N
(LLC,H MS"
2022)
GNPS MS/MS Experimental, Integrated with molecular Y/Y
(Wang user- networking tools
et al. 2016) contributed
LipidBlast Bioactive Computational | Fully computational Y/Y
(Kind et al. | drug-like lipidomics database
2013) molecules

molecule, be acquired on a specific instrument, or contain MS" spectra (where
n > 2). Several major spectral libraries exist (Table 2). The National Institutes of
Standards and Testing (NIST) EI-MS and ESI-MS/MS databases contain carefully
curated, periodically updated libraries of spectra of authentic standards; this and
several other libraries are available from commercial distributors. Other libraries are
public; some of these are derived from “crowdsourced” compilations of spectra and
their assigned chemical structures, which typically receive community review to
assess quality. Still other spectral libraries are generated by computationally
predicting fragmentation of a list of chemical structures from a database, yielding
an “in silico” spectral library.

To perform a library search, the mass spectrum of an unknown feature is
computationally compared to entries in the spectral library. After an initial candidate
screening step, each potential spectral match is ranked by a scoring function that
generates a match score reflecting the similarity between the spectrum of
the unknown compound and the library spectrum. Score ranges differ depending
on the function that is used, but in general a higher score corresponds to a closer
spectral match. The chemical structure of the compound associated with the highest-
scoring hit is assigned as the most probable identification; additional lower-scoring
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hits may be retained for user review. Many different scoring functions exist; among
these, probability-based matching (PBM) was one of the first introduced scoring
functions for EI-MS spectra (Stauffer et al. 1985), and the classic “dot-product” and
“reverse dot-product” scoring algorithms have been widely used for MS/MS
searching (Stein and Scott 1994). Many other scoring functions have also been
evaluated, including a recent spectral entropy-based algorithm that demonstrated
superior performance to dot-product scores (Li et al. 2021). Additional constraints,
such as a narrow mass window for precursor ion match and a precursor ion isotope
pattern match, can serve to further shorten a list of candidates or even select a single
probable compound identity.

Many software tools exist to automate spectral library search. Most instrument
manufacturers incorporate library search tools into their data analysis software; some
also provide access to proprietary libraries searchable only using these tools. Among
cross-platform tools, NIST MS Search is one of the best known (Stein 1999); it
allows searching individual spectra against the NIST library and other user-loaded
libraries with visualization of spectral matches using head-to-tail or difference plots.
To enable much more rapid search of many spectra, a useful alternative is
MSPepSearch (Zhang et al. 2018). Originally designed for peptide spectra, it has
been adopted and extensively used for small molecule analysis; it uses a similar
scoring algorithm but generates output in tabular form. Progenesis QI is a commer-
cial data analysis tool that enables cross-vendor MS/MS search in addition to general
data analysis. MS-DIAL is a free, open-source alternative that integrates feature
finding, alignment, and spectral search in a unified workflow (Tsugawa et al. 2015).
Other widely used untargeted metabolomics data analysis tools, including XCMS
(Smith et al. 2006) and MZmine (Pluskal et al. 2010), also have some MS/MS search
capabilities, though they are implemented in a less visual manner than in MS-DIAL.
SIRIUS (Bocker et al. 2009; Diihrkop et al. 2019) and GNPS (Wang et al. 2016),
described later in this chapter, also use spectral search heavily in their workflow but
due to other features are classified separately from typical library search tools.

It is important to note that while spectral searching provides a fast and often
accurate means of assigning chemical structures to features in metabolomics data, it
does not provide an objective means to assess the probability that these
identifications are correct. Manual review of spectra, including matches beyond
the top hit, can sometimes help clarify ambiguous assignments and determine
appropriate score thresholds for identification. Well-defined strategies for assessing
and reporting identification confidence are important to data analysis and are
described in “Step 5 of our workflow.

Spectral Similarity Searching Searching an unknown feature against a library for
a precise match is not likely to produce informative results when the compound in
question is not in the library. As an alternative, it is possible to search for spectra that
are not a direct match to the unknown but share some of its features. This approach is
termed similarity searching and can be performed using several software tools. One
of the most robust is “hybrid search,” implemented in NIST MS Search and
MSPepSearch (Cooper et al. 2019). This search method allows both direct peak
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matching (as in identity searching) as well as matching of masses shifted by a neutral
loss within a single spectrum. This accounts for cases in which the m/z of some
fragments of an unknown are identical to those of a library compound, while others
are shifted by a structural difference typically confined to a single region of the
molecule. A second similarity search strategy is implemented in the software tool
DeepMASS (Tiwary et al. 2019), which uses a machine deep-learning approach to
perform structural similarity scoring. All similarity searches aim to generate matches
that are likely to be structurally related to the unknown compound. The resulting
matches can be used for compound class assignment as well as to help elucidate the
structure of the unknown, with the aid of other techniques described below.

In Silico Libraries and In Silico Fragmentation Software To generate more
extensive spectral libraries than is possible using authentic standards, several
methods have been used to generate in silico spectra libraries. These predict how
compounds will fragment, using techniques ranging from quantum-chemistry-based
calculations (Wang et al. 2020) to rule-based methods (Tsugawa et al. 2016), and
generate a theoretical fragmentation spectrum for each compound. Each strategy has
advantages and limitations; these have been described and reviewed in detail
elsewhere (Borges et al. 2021). In silico libraries are most widely used in lipidomics.
The LipidBlast MS/MS spectral library enables identification of thousands of lipid
species, and stands out in its accuracy and widespread use, because MS/MS frag-
mentation patterns are typically reproducible for all lipids within a lipid class (Kind
et al. 2013). In silico spectral libraries of other small molecule classes are also
available, but due to limited fragmentation, the high diversity of chemical structures,
and the difficulty of predicting relative abundance of fragment ions, most non-lipid
in silico spectral databases are of limited utility for automated spectral search.

An alternative strategy is to use the technique of in silico fragmentation to help
interpret spectra of unknown compounds. Many software packages exist to help
perform this task; among the most prominent are MetFrag (Ruttkies et al. 2016)
and CSI:FingerID (Diihrkop et al. 2015), which is now implemented in the SIRIUS
data analysis package (Diihrkop et al. 2019). To interpret an unknown spectrum, a
user inputs information into the software regarding the unknown compound, includ-
ing the observed precursor ion, adduct type or molecular formula if known, the
obtained MS/MS spectrum of the unknown, and in some cases, additional data such
as the isotope distribution of the precursor ion and the taxonomy of the organism
from which the sample that generated the spectrum was obtained. The software then
selects candidate compounds from a large compound database (PubChem or similar)
that matches the precursor ion mass and any other metadata and then predicts
fragments that would be formed from these precursors using rule-based, machine-
learning, fragmentation tree generation, or other strategies. The predicted fragments
are matched against the unknown spectrum, and the data are used to predict the
structure, or at least key structural elements, of the unknown. In silico fragmentation
and structure prediction does not always yield a definite compound identification for
an unknown but nevertheless is one of the simplest strategies to help predict structure
based on spectral data.
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Spectral Networking Analysis Another technique that has gained prominence as a
means of interpreting MS/MS spectra in untargeted metabolomics data is spectral
networking analysis. The most widely used software tool in this area is the Global
Natural Products Database (Wang et al. 2016). The MS/MS spectra of identified and
unknown features in a dataset are searched against each other, in addition to against
library spectra. The most similar spectra are grouped, and clustering methods are
used to generate spectral networks that can be examined visually. Since the most
strongly associated spectra are grouped together, neighboring features on the net-
work may represent similar molecules with small structural differences. By calculat-
ing the precise mass shift difference between precursor ions, a molecular formula
“difference” can often be assigned, which can help highlight functional groups that
differentiate the compounds. If one of the two features is identified with high
confidence, it is sometimes possible to predict the structure of the unknown feature
from these data. Even when this is not possible, the networking analysis can reveal
useful information about the structure of the unknowns.

6 Step 5: Assess and Report Identification Confidence

As evidenced by the range of techniques described in this chapter, compound
identification in metabolomics ranges from routine to extremely challenging. Like-
wise, the evidence supporting an identification can range from unequivocal to
uncertain. In the interest of scientific transparency, it is important that researchers
report not only the assigned identity of a compound but also the method and data
used to make identifications and an estimate of their confidence that the identifica-
tion is correct at any level of information (structure, formula, compound class). As
illustrated in Fig. 2, currently recommended methods for reporting compound
identifications involve semi-subjective classification by the analyst, while methods
under development have potential to improve accuracy, speed, and transparency of
the compound identification and reporting process.

Reporting Identification Rigor Using Identification Levels The importance of
data-reporting standards has long been clear to the metabolomics community. In
2007 an international consortium termed the Metabolomics Standards Initiative
(MS]) published a set of recommended minimum data-reporting standards, which
included four “identification levels.” (Sumner et al. 2007) Level 1 represents the
highest degree of rigor for compound identification, in which compound identity is
established at the chemical structure level by matching at least two orthogonal forms
of experimental data to reference data collected in the researcher’s own laboratory
using an authentic standard. These could include, for instance, accurate mass and
retention time, or retention time and MS/MS spectrum. Level 2 is a putative
annotation at the structure level based on data collected outside the researcher’s
laboratory, such as an MS/MS spectral match with a library, or a literature-based
retention time or retention index. Level 3 signifies a putative compound class
assignment based on spectral similarity searching and/or physiochemical property
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Fig. 2 Current typical current metabolite identification and reporting strategy compared to a
hypothetical multi-input method for improving identification accuracy and assessing and reporting
identification confidence

assessment. Level 4 represents unknown compounds. Further refinements to com-
pound identification levels have been proposed and adopted by various groups or for
particular applications (Schymanski et al. 2014). When applied, the MSI compound
identification levels have served the community by allowing scientists to communi-
cate about identifications using consistent terminology. One challenge is that MSI
levels (or their equivalent) have not been universally adopted in the literature; many
publications report metabolite identifications with minimal information about how
they were made. Another key limitation is that acceptance or rejection of an
identification at any identification level is, in large part, at the discretion of the
analyst. For instance, no minimum spectral library search score is given for accep-
tance of a level 2 identification, nor is it easily possible to establish one since an
appropriate score threshold may vary from one study or spectral library to the next.
Manual review of compound identifications can help confirm correct and refute
incorrect identifications, but this approach is too time consuming for experiments
with tens of thousands of compounds detected.

False Discovery Estimation Using Decoy Metabolite Libraries An objective and
automatable approach to assess and report compound identification confidence in the
form of an estimated false discovery rate (FDR) would be useful to improve
consistency and inter-lab comparability of metabolomics data (Scheubert et al.
2017). In proteomics, FDR estimation is performed by searching peptide MS/MS
spectra against both normal and “decoy” in silico spectral libraries, the latter of
which is generated by scrambling the amino acid sequence of all proteins in the
library (Elias and Gygi 2010). By comparing the number of hits to the decoy library
relative to the true library, an FDR can be estimated and reported with the data.
Although no direct equivalent to amino acid sequence scrambling exists in
metabolomics, several approaches for generation of decoy libraries have been
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proposed and tested for small molecules, ranging from randomizing all peaks found
in a typical library to approaches based on rearrangement of fragmentation trees
(Scheubert et al. 2017; Wang et al. 2018; Alka et al. 2022). Decoy libraries have
been used to help select spectral search score thresholds and other criteria to achieve
a desired FDR. However, these attempts have demonstrated that decoy libraries are
not very helpful to assess FDR for some classes of metabolites, particularly for
compounds that produce very few fragment ions and those that have multiple
structural isomers that produce similar fragmentation spectra. Thus, FDR estimation
strategies for metabolomics need further refinement and will certainly require sup-
plementation with strategies beyond decoy library searching before compound
identification in metabolomics can achieve the level of automation and accuracy
enjoyed by other omics sciences.

Integrating Multiple Strategies for Confident Compound Identification In this
chapter, we have described a variety of experimental and computational strategies to
help annotate and identify features in metabolomics data. Using present
technologies, it is sometimes possible to arrive at a single correct structure-level
identification for features of interest in the data, while in other cases, more limited
annotation is all that is possible. Currently, integrating available information from
the methods and tools we have described is the task of the analyst, who uses their
judgment to set thresholds, finalize identifications and report methods used. Moving
forward, a priority for the metabolomics community is to develop a strategy to
integrate all available information in a consistent and automated manner to make
compound identification assignments, with support from objective data that estimate
identification confidence. A compound identification “meta-analysis” approach may
prove useful (Fig. 2), but no comprehensive strategy has yet been devised. For the
time being, compound identification in metabolomics is an exercise in defining aims
appropriately, selecting methods and collecting sufficient relevant data, and applying
available tools to help with interpretation. As the metabolomics research community
repeats and refines this process, it continues to work toward more unifying methods
for compound identification.

7 Conclusion: Pharmacology-Focused
Compound Identification

As described throughout the chapter, considerations relevant to identification of
small molecules in metabolomics data are, in general, fully applicable to
pharmacology-focused metabolomics studies. A key reminder is to tailor strategies
to study design. When only specific drug-derived or endogenous metabolites are of
interest, a suitable targeted metabolomics workflow reduces the burden of assigning
compound identities to the large number of features that would be detected in an
untargeted study design. When untargeted analysis is desired, selection of a com-
pound database or library to focus on the organism being studied or a drug class of
interest can yield more meaningful results than when a broad, nonspecific database is
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used. Researchers should also consider biological factors that may affect both
compound identification and quantitation, such as sex-specific responses to drug
metabolism (Soldin et al. 2011; Chary et al. 2022). Finally, the application of
metabolomics to pharmacological studies is still a developing area of study. While
at present most of the data relevant to compound identification in metabolomics is
found in the analytical chemistry and bioinformatics literature, resources specific to
the challenges of pharmacology can be expected to develop and strengthen over
future years.
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Abstract

The purpose of this manuscript will be to convince the reader to dive deeper into
NMR spectroscopy and prevent the technique from being just another “black-
box” in the lab. We will try to concisely highlight interesting topics and supply
additional references for further exploration at each stage. The advantages of
delving into the technique will be shown. The secondary objective, i.e., avoiding
common problems before starting, will hopefully then become clear. Lastly, we
will emphasize the spectrometer information needed for manuscript reporting to
allow reproduction of results and confirm findings.

Keywords
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Nuclear magnetic resonance - Quantitation - Small molecule - Solvent
suppression - Spectrometry

1 Objectives

The purpose of this manuscript will be to convince the reader to dive deeper into
NMR spectroscopy and prevent the technique from being just another “black-box”
in the lab. We will try to concisely highlight interesting topics and supply additional
references for further exploration at each stage. The advantages of delving into the
technique will be shown. The secondary objective, i.e., avoiding common problems
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before starting, will hopefully then become clear. Lastly, we will emphasize the
spectrometer information needed for manuscript reporting to allow reproduction of
results and confirm findings.

2 Brief History

Metabolomics involves a few key steps: hypothesis of perturbation observation by
metabolomic measurement (e.g., identifying a disease), sample selection and
handling, instrumentation setup/management, and finally processing and analysis.
In any living system any number of molecules regularly and/or responsively change
their prevalence and activity, and thus cellular function requires constant feedback/
control of metabolites through kinetic and energetics. Therefore, at any stage,
metabolites certainly change their presence and/or abundance, but can we
detect them?

Seeking to elucidate, understand, and be able to apply our knowledge about these
changes is the foundation of metabolomics, and there has been an astounding
amount of development regarding metabolomics (Lindon et al. 1999; Wang and Li
2020; Tenori et al. 2020; Giraudeau 2020) spanning the last 20 years. Nuclear
magnetic resonance (NMR) spectroscopy has been one of two primary tools from
the start, with the second being mass spectrometry (MS), and while there are
certainly other techniques, NMR and MS are arguably the most widely applied.
Both NMR and MS are certainly powerful analytical techniques, each with
advantages and disadvantages when compared directly or to other instrumental
methods. This will be detailed later (e.g., see section NMR and MS Competition
and Complementation).

Dramatic NMR spectrometer improvements including common access to higher
magnetic fields, cryogenically cooled probes, new robotic sample handling with
temperature control, automated software calibration/optimization/acquisition/
processing and analysis have made the instrument “black-box” mode ever more
seductive. There are many of these aspects that (with some interesting background
and a little emphasis) can be efficiently optimized. Specifically understanding the
fundamentals of sample management, instrument preparation, and analysis
expectations can make project planning and setup easier with a concomitantly higher
probability of success with a more reliable, comparable, and efficient study before
even starting. Please note that by comparable, we mean the ability to validate and
take data from other studies, instruments, and/or facilities for inclusion into your data
analysis (or vice versa), not just the data collected in one location and/or one
dedicated instrument (see (Lacy et al. 2014; Sokolenko et al. 2013) and references
therein). It is often assumed that collecting data on one dedicated instrument
removes multi-facility/multi-instrument complications. However while using a sin-
gle dedicated instrument should achieve consistent precision, there is no guarantee
of accuracy (all samples may be equally inaccurate) nor does this assumption
consider unavoidable changes in instrumentation over time, e.g. repairs,
replacements, updates, etc. (see Sect. 5.4 and other sections below).
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2.1 Potential

Metabolomics has been utilized now for several decades (see (Emwas et al. 2020;
Finco et al. 2016; Heather et al. 2013; Kenny et al. 2010; Li et al. 2012; Psychogios
et al. 2011; Rasmussen et al. 2012) and references therein) but has not reached the
promised potential for applicable personalized/precision medicine. While there are
certainly specifically applied findings, there has not been the explosion of the
predicted novel medical treatments. Very recently mRNA vaccine developments
have introduced new concerns regarding the possible over-production of proteins/
metabolites (see review (Pardi et al. 2018)) and highlighted the application of
metabolomics for monitoring.

2.1.1 A Warning

It is important to remind the reader that the promise of marketability drove much of
the initial science. Metabolomics starting in the early 2000s, was envisioned as a
novel tool with exceedingly high profitability that would be: rapid, reliable, repro-
ducible, using easily acquired samples (e.g., urine) without extensive sample manip-
ulation (Bingol et al. 2016; Tayyari et al. 2013), and contain directly interpretable,
widely applicable, and useful results. Companies quickly jockeyed to be the first to
sell and inhabiting their NMR spectrometers (and now perhaps benchtop units
(Izquierdo-Garcia et al. 2020)) throughout clinical testing facilities across the
globe. For any new marketable technique to survive it must either be unique and
advantageous (i.e., provide a novel result) or be extremely competitively priced
when compared to existing technology (i.e., faster, cheaper, etc.). The corporate
emphasis was on finding unique biomarkers for dramatic high-profile diseases (e.g.,
cardiovascular disease, cancers, etc.) as quickly as possible and thus establish
lucrative patents and contracts. This did not encourage systematic, calm evaluation,
nor retesting, and that rush may have inadvertently hurt the entire field. Subsequent
validation studies (Emwas et al. 2020; Lacy et al. 2014; Sokolenko et al. 2013;
Markley et al. 2017) have begun to fill in the gaps, however questions regarding the
cross-validation of NMR data persists, e.g., site to site and/or study to study along
with assessment (Rocca-Serra et al. 2016; Cassi¢de et al. 2017).

2.2 Definitions

There has been ambiguity in the literature regarding key definitions and to avoid
confusion we will quickly define our working interpretation below.

2.2.1 Metabolome

The metabolome is commonly defined as all small molecules in the mass range of
50 to 1,500 Da (not a hard limit as certainly lipids can quickly exceed), associated
with a particular organism (Dunn et al. 2011; Psychogios et al. 2011; Wolfender
et al. 2013; Zulyniak and Mutch 2011). This includes all the various complexes,
sizes, and repetitive units of amino acids, lipids, carbohydrates, and other organic
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molecules collectively termed “metabolites” and are involved in all stages of metab-
olism both from naturally internal (endogenous) starting points, and those
originating from external (exogenous) sources. External include ingested foods or
pharmaceuticals, and the gastrointestinal metagenome along with subsequent
by-products, more colloquially referred to as the “gut flora and fauna” with these
microbes apparently playing a diverse role as our understanding expands.

2,22 Metabo -Nomics or -Lomics

Here are two important terms that, depending on which manuscript you reference,
can have subtle but important differences. Metabonomics was generally given a
wider definition of studying all relevant interactions over an enter species (i.e., the
subject’s metabonome). Metabolomics was mostly considered to be a more focused
subset in a defined case. Also NMR and MS manuscripts tended to use one of the
terms, but not the other. Metabolomics has become the most common and to avoid
confusion we will use only metabolomics, defining it as studying the metabolites in a
defined situation (e.g., human urine metabolites detectable by NMR). Readers
interested in the distinctions are directed to excellent reviews such as (Bouatra
et al. 2013; Psychogios et al. 2011; Macel et al. 2010; Gibney et al. 2005) and
papers therein.

More “-Omics”?

For a review, one cannot simply ignore the “-omics” flood as it now also includes
subtopics of metabolomics. Logically we start with the genome, then onto the
regulation of transcription with subsequent modifications. Then we consider effec-
tive production/regulation/degradation (e.g., protein turn-over), and finally the basic
building block level resulting in functional metabolism. These levels have an
expanding and/or encompassing “-omics” (Ragguett and McIntyre 2020) associated
with their study (i.e., genomics, transcriptomics, proteomics, metabolomics), and
even more recent approaches such as pharmacogenomics or pharmacometabolomics
(Van Der Wouden et al. 2020; Emwas et al. 2021; Lasky-Su et al. 2021; Vignoli
et al. 2019; Sherlock and Mok 2019).

There are many new subgroupings of of “omics” including Lipidomics (see a
recent full Nature reviewl), Foodomics (Balkir et al. 2021; Picone et al. 2022; Valdés
etal. 2021), and Elemental Metabolomics (Andersson et al. 2021; Edison et al. 2020;
Niziol et al. 2021; Zhang et al. 2018). In case readers have not had enough “-omics,”
there is a relatively new though well established and pertinent sub-group focusing on
the changes of metabolites over time called Fluxomics, see the comprehensive
review by Giraudeau (2020) and also (Emwas et al. 2020) for additional references.
Of key interest is the use of specific NMR labelling (Xu et al. 1999) in metabolites.

"https://www.nature.com/subjects/lipidomics.
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2.2.3 Metabolites
To properly address the term metabolites, we will use the excellent definition
provided by Tenori et al. in their concise review (Tenori et al. 2020).

Metabolites are the small molecules produced by, or taking part in, the chemical reactions
due to biochemical activities (i.e., the metabolism) in living organisms, and their levels can
change according to pathophysiological or environmental factors.

3 Expectations

As metabolites encompass the end stage of cellular chemical regulation/function, it
is postulated that this should be the easiest way to detect and ascertain the cause of
fundamental upstream cellular changes. Essentially, we are hoping to observe an
amplification of small changes from further up the “-omic” ladder therefore making
disease detection and analysis faster and easier.

3.1  Reality

While DNA is a single chemical class comprising only four nucleotides, immense
molecular stability, and a second strand as an immediately available backup copy for
error correction, moving downstream to the metabolites suddenly expands to
thousands if not tens of thousands of arguably critical molecules. These downstream
molecules can be quickly and substantially impacted by even small changes at the
DNA or transcription level. Metabolite concentrations can normally and
dynamically range by several orders of magnitude (Bouatra et al. 2013). Immedi-
ately the reader can see that while there may indeed be amplification, i.e., a
downstream effect any single “snap-shot” acquisition of metabolites (regardless of
how detailed and accurate) may have limited practical applicability to any disease
detection. This gets even more complicated regarding any practical translation to
personalized-medicine (“bedside”) treatment. Also metabolites have an immense
range of molecular variability in terms of primary/secondary structure, function,
modification, and lifespan.

3.1.1 Key Considerations for NMR

For NMR, concentration is perhaps the most crucial aspect due to inherent detection
limitations. Any low concentration biomarkers exist in a literal sea of much higher
concentration compounds, complexes, and aggregates. Essentially the detected
signal’s “dynamic range” (stealing an electrical engineer and audiophile term) is
incredibly large spanning many orders of magnitude regardless of the technique
selected. This is also directly relevant to the source/type of tissue involved that can
result in vastly different concentrations of metabolites. Then there are complications
regarding simple collection, e.g., considering human-based samples: the time of day,
method of isolation/collection, fasting level of donor, female or male, age, activity,
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genetic background, environmental influences, etc. We may also need to consider
not a single biomarker, but instead a group or family of inter-related metabolites
responding directly or indirectly to other metabolites. On top of all those
considerations, when then have the metabolomic influence of the “gut metabolome.”
Specifically the natural beneficial and negative opportunistic organisms existing in
our bodies consuming and producing metabolites as part of their normal functions
(Visconti et al. 2019).

The key point is substantial planning, and experimental preparation will likely be
required to minimize all these complications. We will either address these directly
and/or provide references to assist the reader.

4 NMR and MS
4.1 Complementation: Can We Just Skip to the End?

Metabolomics by any method seeks a statistically relevant and consistent change
(s) in a single or multiple observed variables. Ideally, we would like to see the novel
presence or absence of a recognizable and preferably unique signal associated to a
specific molecule which can be related to a disease, i.e., literally the lightbulb on/off.
A disease “marker” that could be regularly, rapidly, and easily followed.”

There is far more likely a dynamic and complex series of cascading and/or
interlocking molecular pathways responding to change(s) with dependency on the
complexity of the organism being monitored. Feedback loops, changes of enzymatic
expression levels, regulation of genetic expression, alterations of metabolism rates,
changes in diet and/or activity due to the subject’s phenotypic expression (e.g., how
bad they may feel), self-medicating, the body actively trying to re-establish equilib-
rium; all should contribute to an interdependence if not system wide response.

So is there any single technique that can identify all possible metabolites in all
samples regardless of origin? No, but there are several techniques offering different
strengths and weaknesses, and there is always the added potential of linking together
different techniques. The so-called “hyphenated” methods where one runs the
sample consecutively through multiple instruments and gathers the acquired data
to make a far more powerful determination.

The problems with “hyphenation,” i.e., the myth of interconnected instruments
with streamlined throughput, such as mass spectroscopy (MS), high-performance
liquid chromatography (HPLC), fast protein liquid chromatography (FPLC), gas
chromatography (GC), circular dichroism (CD) is that they may not always work
well together, or the sequence is important to the result, or one needs multiple
identical samples. An example is obtaining NMR data first, which then MS
contaminates the sample with deuterium (for NMR “lock™ see below), or capillary
electrophoresis (CE) then MS (Qiu et al. 2020). There are always the concerns about

>This overly simplified one-molecule/one-marker situation is highly unlikely.
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sample cross-contamination, how to adequately resolve signals in mixtures, incor-
rect assignment, or obscured/missing assignment. Then there is the practical problem
of maintaining and constantly checking that the inter-related instruments are work-
ing consistently. Striving for any technique that provides fully automated sample
preparation, instrument optimization, sample handling, data acquisition, sample
storage, data processing and finally analysis is presently impossibly ambitious, but
a semi-automated approach might be easier, faster, and more reliable. Like NMR
structure-function protein backbone assignments — semi-automated, i.e., get the
computer to do the routine work and then present the challenges to the experienced
instrument operator who can use visual pattern recognition and experience to make
the more difficult decisions seems to be the most efficient and reliable. As the title of
this review implies, “black-boxing” the problem leads to (at best) consistent errors
and more likely unusable data. At worst, false information makes it into the peer-
reviewed literature taking a huge amount of work to recognize and correct later.
Unfortunately, we cannot skip to the end and we will need to discuss and understand
the instrumentation.

4.2 Metabolomics via Mass Spectrometry

The author approaches mass spectrometry (MS) with admittedly little practical
experience surrendering any in-depth evaluation of MS to the experts, e.g., see
highly recommended reviews (Wang and Li 2020; Alseekh et al. 2021)and
references therein. While mass spectrometry has undeniably superior solute sensi-
tivity (e.g., microlitre or sub-microlitre volumes with relatively low concentrations
(Li et al. 2020) per unit instrument time, it does come with a literal financial cost and
a cost in terms of total experimental length, monitoring/compensation for separation
technique(s), necessity of quality/control sampling, and finally the destruction of the
sample. It is important to note that MS instrumentation has a substantially smaller
initial instrument cost, along with smaller maintenance costs (e.g., cryogens). A
critical distinction is that MS usually requires some form of sample separation
(Petrovié et al. 2005; Korfmacher 2005; Alseekh et al. 2021): chromatographic
(liquid or gas), electrophoretic, or based on ion mobility that can perturb the types
and quantities of measured metabolites. The separation efficacy changes over time
requiring continuous monitoring, evaluation, and correction during analysis, e.g.,
separatory columns degrade nonuniformly over time requiring a calibration of
resulting metabolites. Sample separation and detection limitations (Wang and Li
2020) can also be linked to the particular detector such as®: Fourier transform ion
cyclotron resonance (Marshall et al. 1998, 2007; Nikolaev et al. 2016), ion trap
(Todd and March 1999), Orbitrap and linear ion (Perry et al. 2008), time-of-flight
(Boesl 2017), and quadrupole (Linge and Jarvis 2009) to name some of the most
common. Evaluation of the potential and realized application has been extensively

3Detector order is alphabetical only, not intended to imply frequency nor capabilities.
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covered and readers are directed to representative articles (Trifonova et al. 2021;
Alseekh et al. 2021; Lasky-Su et al. 2021; Wang and Li 2020). In the end MS has
become an extremely successful method accurately detecting thousands of
molecules and at much lower concentrations that can be practicably detected
by NMR.

4.3 Metabolomics by NMR

Metabolomics by NMR has been vastly reviewed (Tenori et al. 2020; Giraudeau
2020; Giraudeau et al. 2014, 2015; Tavares et al. 2015; Halabalaki et al. 2014;
Bingol and Briischweiler 2014; Bouatra et al. 2013; Wolfender et al. 2013; Lubbe
et al. 2013; Ellinger et al. 2013; Heather et al. 2013; Smolinska et al. 2012; Dunn
et al. 2011; Macel et al. 2010; Lindon et al. 2007; Beckonert et al. 2007; Emwas et al.
2018, 2019; Stringer et al. 2016). There is also a highly recommended NMR book
with an entire chapter dedicated to the practical aspects of metabolomics and NMR
sample handling/data/processing (Teng 2012).

Metabolomics by NMR contains all the common instrumental concerns (e.g.,
consistency, detection, assignment of signals, etc.), but a unique aspect of NMR is
that each atom, even in the same molecule, can have a specific resonance. This is
both the strength, i.e., the ability to resolve an atom based on its magnetic environ-
ment, and weakness. Every atom resonating by itself provides little cumulative
signal. Each relevant atomic signal must be detected, assigned, and then analyzed.
All of this with the massive assumption that no unexpected external change(s), other
than the central hypothesis of the study will perturb the measurement.

We will address that perturbation assumption and more below.

5 Nuclear Magnetic Resonance Spectroscopy

We will highlight key points in the subsections below to detail important information
from our experience to hopefully improve the reader’s future research studies. The
points will use a special format indicated by Note.

5.1 NMR Experiment for Metabolomics

To start, a metabolomics NMR experiment (i.e., the “pulse sequence” itself) ideally
must be easy to acquire, i.e., any required hardware is commonplace, minimal setup,
robust, reliable, and reproducible. The instrument is assumed to be constantly
maintained, tested, and repaired be experienced operators to ensure predictable
performance. Next there are literally hundreds of NMR experiments (Berger and
Braun 2004; Braun et al. 1998), and the number of individual and inter-related NMR
parameters for each experiment is often overwhelming. The initial selection, testing,
and maintenance can be a full-time occupation for facilities (Reynolds and Enriquez
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2002). The person contemplating a metabolomics NMR project must either acquire
equipment and become this, or already have the equipment and technical personnel
available.

5.1.1 First Impressions

Users commonly first experience NMR through introductory organic chemistry
courses (Derome 2013). This exposure can expand into some inorganic chemistry
and certainly into biomolecular NMR (Ban et al. 2017; Gobl et al. 2014; Gardner and
Kay 1998; Ziarek et al. 2018), but very rarely into the hardware itself. NMR is also
commonly involved in natural products identification, analytical food
ID/confirmation (e.g., wine, beer, scotch, juice, honey) (Spraul et al. 2015; Esslinger
etal. 2015; Link et al. 2014; Kew et al. 2017; Link et al. 2014; Sandusky and Raftery
2005) and legal evaluation (i.e., spiking) (Lesar et al. 2011). Other experiences with
NMR could perhaps involve academic spin-off pharmaceutical/commercial
applications (Lindon et al. 2007; Duarte et al. 2014; Lepre 2011; Shuker et al.
1996). This type of experience lends itself well to metabolomics as most metabolites
are small and will yield NMR spectra similar to what users have experienced.
However, the sheer number of compounds in a common biological sample will
certainly not be typical of an organic chemistry problem, nor does this address how
the instrument operates.

NMR originally started as an interesting physics phenomena and expensive pH
meter (Bull et al. 1964). The field has certainly grown since the 1950s and 1960s in
terms of distribution/application of instruments, stable/achievable magnetic field
strength, versatility, sensitivity, consistency of equipment performance, and reduced
cost of operation. Instrument consoles have gotten smaller while magnets have
become increasingly powerful and shielded thus reducing the laboratory footprints
for installation and/or the number of instruments required.

Note

While the accepted “NMR standard” is 0.1% ethylbenzene with 0.01% TMS
in deuterated chloroform, Benchtop NMR manufacturers have created their
own standard using 1% ethylbenzene instead. Therefore, the reported bench-
top 'H NMR signal-to-noise ratios must be either divided by a factor of 10 to
compare to previously published standards and/or the user must recognize a
factor of 100 for required experiment time to achieve comparable results.

5.2 Liquids NMR

While it is fun to teach and delve into the world of NMR theory (e.g., providing
useful analogies describing each atomic nuclei as a little bar magnet spinning at its
own frequency depending on the magnetic field strength etc.), we simply do not have
the space in this review; especially considering the wealth of previously published
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information by extremely articulate lectures/authors/presenters on the subject. The
interested reader is first guided to very well-established books* on the subject, for
example, Hore 2015; Hore et al. 2015; Vogeli 2014; Silverstein et al. 2014; Derome
2013; Keeler 2010; Bakhmutov 2005; Harris 1986; Freeman 1997; Brown 2016;
Cavanagh et al. 2006; Levitt 2001; Zerbe and Jurt 2013; Wiithrich 1986 aimed at
audiences ranging from the interested to the specialist/expert. These resources will
then escort the reader into the vast fount of peer-reviewed manuscripts and reviews.
It is worth mentioning that NMR can directly cover/monitor processes time scales
covering many orders of magnitude (Ziarek et al. 2018). From the medical/biochem-
istry aspect protein structure function is one of the most recognized applications of
NMR, but protein bioNMR is usually most effective with a solitary type of molecule
and at relatively high concentrations (e.g.,>1 mM) and there is also the need
(Amoureux et al. 2008) for isotopic enrichment, i.e., 13 C, 5N ,and even H (Gardner
and Kay 1998; Hiroaki 2013) or selectively enriched at key positions. For reviews
see (Kay and Frydman 2014; Kay 2016).

Note

It is important to note that much of the background NMR material does not
address complex or “strong” 'H-'H coupling regarding metabolomics
assignments (see sections below).

Once the reader goes beyond the simple spin-1/2-coupling “tree” diagrams into
the higher order (also called second order, complex, or strong coupling depending on
the terminology used), we discover spectrometer/magnetic field-dependent patterns
(Foroozandeh et al. 2014; Bain et al. 1994). This is important for software selection,
analysis, and anyone aiming to assign biomarkers (Mercier et al. 2011; Tredwell
etal. 2011; Weljie et al. 2006). Using a reference database that does not take this into
account and/or have information for the magnetic field used will be more difficult to
use and require operators to be more experienced (Lacy et al. 2014; Mercier et al.
2011; Tredwell et al. 2011; Weljie et al. 2006).

5.2.1 Progression to Metabolomics

Metabolomics evolved in earnest in the early 2000s (Lindon et al. 2007; Lauridsen
et al. 2007; Wang et al. 2010; McGrath et al. 2007; Weljie et al. 2006; Saude et al.
2006; Tilgner et al. 2019). There were earlier endeavors seeking insight into what
was then referred to as “in-born errors,” but the technology needed time to catch up
to the intellectual concepts (Lehnert and Hunkler 1986). The field® is now well
established with typical superconducting magnets now allowing observation of

*No implied order, and naming a few of the author’s personal favourites. There are many others
certainly worth the reader’s attention and the provided list is not exhaustive.

SPlease forgive the puns.
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hydrogen from 400 to 800 MHz (i.e, 9.39 to 18.8 Tesla static magnetic field
strength) and offered from a range of vendors.°

While concerns about data processing and analysis are equally important, there
are many publications and reviews focusing on issues involving time domain to
frequency signals such as signal enhancement (apodization), deconvolution, integra-
tion, and then reliably identifying and assigning signals or signal components
(Schonberger et al. 2015) to particular metabolite resonances. Readers seeking
even more information are directed to a representative set of papers and references
therein (Bartel et al. 2013; Beckonert et al. 2007; Bingol et al. 2016; Dudzik et al.
2018; Dunn et al. 2011; Eghbalnia et al. 2017; Ellinger et al. 2013; Emwas et al.
2016, 2018, 2019; Wang and Li 2020; Kohl et al. 2012; Krishnamurthy 2013; Lacy
et al. 2014; Parsons et al. 2009). We will now focus on the practical aspects of
sample and NMR instrumentation, e.g., see Chap. 3 of reference (Cavanagh et al.
2006) and Chap. 2 of reference (Zerbe and Jurt 2013).

Minimizing Problems

The detection and elimination of “confounders,” i.e., signals or influences on signals
that are not dependent on the hypothesized change (e.g., disease vs. healthy) but
instead are artifacts and/or errors in sample preparation and/or instrumentation, must
be a major focus for everyone involved in metabolomics. We wish to remove (or at
least minimize) as many variables as possible prior to the acquisition of NMR data
(Athersuch et al. 2013; Gibney et al. 2005; Meissner et al. 2014; Staab et al. 2010;
Zulyniak and Mutch 2011). This requires prior awareness, continued attention,
precise planning throughout, and finally careful preparation, and this leads us
directly to the sections below regarding sample and instrumentation details and
recommendations.

53 Samples

5.3.1 Preparation

Sample selection, preparation, consideration for repetitive sampling, and handling
consistency are all incredibly important. This is only the first step, but the easiest to
get wrong, and sometimes without being determinable until very late in the study.

Note

The Brian Sykes’ First rule of NMR applies here, i.e., “Garbage” in equals
“Garbage” out. Essentially no matter how good the operator nor expensive the
instrumentation, if your sample is poor, your results are poor.

SUnfortunately in 2014, Agilent (who had purchased Varian Inc. in 2010) exited the NMR market.
This has added a level of uncertainty for those still needing repair/support/parts for their massive
equipment investments, especially in the ever-expanding austerity environments facing publicly
funded academic institutions.


https://doi.org/10.1007/164_2022_3
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Any complication such as contamination in the sample solution, contamination
on the outside of the tube,” material not dissolved and floating, i.e., hair, glass wool,
debris etc., precipitated solute, a scratched NMR tube (see Sects. 3.2.3-3.2.5 in
(Derome 2013)), and even just improperly positioned in the NMR spinner, can all
have dramatic impacts on the overall quality and therefore the consistency of the
recorded data. Without everyone involved in the study agreeing and following
precise protocols (i.e., user/handling confounders), the study is doomed to problems.

Note

The key point here is absolute consistency, from everyone. Despite careful
planning all the group members that will be handling samples must understand
the stringent necessity of consistent sample treatment.

5.3.2 NMR Tubes, Spinners, and Side-Bands

Traditionally NMR tubes are placed in carriers called “spinners.” The spinners allow
the insertion/removal of a sample via compressed air shuttling the sample up to
the top and down into the magnet core for observation. The spinner can also suspend
the tube while inside the magnet on a slight cushion of air to facilitate rotation of the
sample (i.e., parallel axis to the NMR magnet bore tube)(Harris 1986). The rotation
of ~15-20 Hz was used to average or “spin-out” inhomogeneities in the magnetic
field which were difficult to compensate using early NMR systems. Poorly
manufactured tubes would cost less but have lower tolerances in concentricity
(i.e., centering of inner bore of the tube properly in the glass) and/or camber (i.e.,
straightness of the tube). These imperfections during spinning would result in NMR
spectral artifacts called spinning side-bands due to vibrations and imperfections in
the magnetic field. High-quality NMR tubes can be purchased albeit with much
higher prices.® For further information on shims (i.e., the small electro-magnets)
used to optimize the magnetic field, please see references Liu et al. 2014; Maudsley
etal. 1984; Van Zijl et al. 1994; van Zijl 1987. The basic results were narrower/taller
peaks above the baseline noise with better resolution (less overlap). One would then
logically wonder why we do not routinely “spin” metabolomics samples (or all NMR
samples)? First the cost of the high precision tubes is a major barrier to large-scale
studies, and even the best tubes would still experience some spinning-induced “side-
bands” (i.e., individual or sets of symmetric artifactual peaks at specific distances
from the real signal). These artifacts cannot be completely removed, resulting in
additional peaks in the spectra. This causes confusion during interpretation, espe-
cially in heavily overlapped regions.

"https://blogs.umass.edu/weiguoh/?cat=81121.

8X and Y based shims (termed the non-spin shims) could be optimized more easily and the overall
spectral line shape was normally much improved.
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Modern instruments are now usually housed in excellent laboratory environments
with exceptionally homogeneous magnetic fields due to refined manufacturing and
extended shim sets, therefore spinning is no longer necessary. This has been
published by Zerbe and Jurt (2013) and we confirm from our personal experiences.
Lastly, many NMR experiments using pulse field gradients for coherence selection
suffer dramatically from sample spinning.

Note

In our experience, the performance gains from spinning samples do not make
up for the variability and problems associated with spinning side-bands. We
do not use spinning nor recommend for metabolomics.

Additionally

The NMR tube manufacturing common practice of putting a magnetic field
strength recommendation (e.g., eco tube for 400 MHz or below, or precision
NMR tube for 600800 MHz) assumes spinning of samples and is not
necessary for non-spun and high throughput studies. In our experience, basic
economical NMR tubes are sufficient in nearly all sample applications.

5.3.3 Gathering and Handling

Long before we can begin acquiring NMR data, we have to trust that all samples
were handled uniformly prior to their arrival at the NMR preparation stage (Barton
et al. 2008; Bernini et al. 2011; Dumas et al. 2006; Lauridsen et al. 2007; Pinto et al.
2014; Rist et al. 2013; van der Sar et al. 2015). Unfortunately, this is more difficult
that may be initially considered, and we will present examples from our first human
urine study.

Volunteers

First, can enough volunteers be found? How does one know how many or even how
to appropriately attract volunteers for a study? While seemingly a trivial point it is no
easy task with modern privacy laws, e.g., how do you legally even approach people
without prior permission? A definite catch-22 situation. Our experience was this
severely slowed down our study almost to the point of cancellation regardless of
successful funding.
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Note

How to get study volunteers? This is under jurisdictional control so carefully
check your local requirements. We had to have research assistants set up tables
on campus with signs and wait for individuals to approach. Privacy rules
prevented pretty much every other idea we came up with (e.g., emails, offering
prizes/incentives, telephone, etc.).

Another example of complication, volunteers needed to be pre-selected based on
a predefined and often limited range of age, sex, weight, health, diet, medical history,
fasting prior to sampling, a sufficient number of volunteers had to be selected for
statistically relevance, and lastly enough extra volunteers needed to be found so that
a sufficient number will successfully complete the study (there are always
complications/withdrawing - see references above). All of these are no small feat.
In our case physical activity was involved in the hypothesis, therefore volunteers
needed to be selected for fitness/risk with full disclosure, etc. The question of
number of samples per volunteer needs to be statistically addressed starting with
power and sample size calculations (Jones et al. 2003) and we recommend a
collaboration with someone specializing in this area along with analysis/interpreta-
tion of principle component data.

Long-Term Studies and Storage

For longer term studies, sufficient” samples must be acquired from each volunteer
over the course of the study to properly address the hypothesis(es), e.g., establish
baselines, and see statistically significant results. Additionally, appropriately con-
firmed preservatives and/or spiking using internal standards may be necessary for
determination of time-dependent degradation. In our case, we needed to acquire
samples to establish a minimal baseline prior to a physical stress-test, acquire
samples during the test, and then re-establish return to equilibrium. This amplified
the number of samples dramatically. Larger numbers of samples will require more
long-term storage space, with suitable and stable temperature (i.e., —80°C), and
complications on uniform handling/preparation thereafter. So many issues and we
have not even gotten started yet with the NMR data.

If these storage requirements can be met, archived samples will still need absolute
consistency in transport (time/conditions), preparation handling conditions, thawing
temperature/time/exposure, addition of NMR referencing/internal concentration ref-
erence, pH balancing, addition of deuterated lock solvent, and then finally waiting
time to acquire at the instrument. Extensive planning must be established prior to all
stages. A full-time person handling all these aspects is ideal, but we know not always
possible. Part-time or time-shared individuals must be even better organized in-order
to coordinate their combined work. Sample preparation planning needs to include

This is a loaded word, i.e., depending on study type, number of participants, metabolic reaction
time, etc. just to name a few likely variables.
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very precise details, e.g., how long does it take (and what temperature do samples
reach?) for samples to transfer from long-term storage to “in the instrument.” Prior
agreement between individuals is key for consistency.

Note

While the final data acquisition and analysis (Schonberger et al. 2015) is often
strongly emphasized in publications, we recommend focusing more on the
initial preparation, handling, and organization as this will facilitate analysis.

Examples from practical experience; does one take all samples out of —80°C
storage at the same time? We did choose to remove all samples at once, but
immediately stored them in a normal +5°C refrigerator to thaw slowly and consis-
tently (i.e., samples on the outside of the group did not thaw first etc.). We also had to
address the preparation time difference between the first and last handled sample.
Specifically, how long does the last sample sit in the spectrometer robot sample
handling system waiting while all the previous samples are acquired, e.g., 7-8 min
per sample with 100 submitted samples therefore the last sample sits ~800 min
longer at room temperature than the first sample. Assuming bacterial inhibitors
(Bernini et al. 2011; Lauridsen et al. 2007) are used, any chemical reaction and/or
oxidation within the sample will undoubtedly be temperature and time sensitivity.

So there are really three key areas to consider. The first, what is the long-term
storage available? Second, conditions (time, temp, etc.) from thawing to analysis.
The last, how many times can the sample be frozen/re-frozen either for re-analysis or
due to unforeseen delays (Pinto et al. 2014; Saude et al. 2006; Saude and Sykes
2007; Rist et al. 2013). The first concern is usually dealt with by storing at a
consistent —80°C, and this has become the standard.

Note

Do not forget —80°C ultra-low temperature freezers are expensive, can have
additional electrical requirements, produce a lot of residual room heating, and
do fail. This means extensive infrastructure pre-planning and monitoring.

The second issue has a relatively simple solution, i.e., prep samples just prior to
acquiring data and use lower ambient temperatures during prep. Specifically we
recommend keeping samples at 5°C until just before instrument acquisition (and
depending on your latitude/location you may also need to include humidity control).
This includes appropriately selected robotic sample controls, and a consideration of
total time waiting for acquisition (Saude and Sykes 2007) such as limiting the size
and using a batch method for sample preparation. Preparing 40 samples at a time
instead of 400 reduces the time differences, however this substantially increases the
labor involved as more frequent/smaller batches must be prepared reducing lab
efficiency and increasing costs. It was our experience that 20-30 samples per
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batch, with two batches a day worked well allowing a single spectrometer to be
utilized efficiently. This was especially important as we were restricted to weekend
access and therefore had to maximize usage.

Note

While lowered temperature control while waiting on the instrument itself is
beneficial, it adds complications for the NMR instrumentation. Thermal equi-
librium (usually at room temperature) must be reached for the entire NMR
sample prior to data acquisition in the spectrometer receiver coil.

Thermal equilibrium can take seconds to minutes depending on the instrument
variable temperature controls. Pre-warming of samples may be necessary prior to
insertion into the spectrometer to optimize instrument time (see Sect. 5.4.7 below).

5.3.4 In the Tube

Assuming the samples have been uniformly: selected, acquired, stored, and handled;
the next step is preparation for NMR data acquisition. Liquid NMR samples are
usually in 5 mm diameter NMR tubes, between 500 and 600 pL in volume, and have
a concentration of somewhere in the 10’s mM to pM range. Concentrations are
approximate providing enough material to conclude "H NMR experiments in con-
veniently short periods (minutes to seconds, respectively). For a detailed review of
relative and absolute NMR sensitivity see (Sanders and Hunter 1988). As we can add
scans of the same sample together building up the signal-to-noise (Hoult and
Richards 1976) ratio over time NMR therefore has no theoretical detection limit.
However, the S/N is proportional to the square of the number of scans taken (i.e., to
double the S/N requires 2* times the number of scans). We cannot realistically expect
anything resembling high throughput for samples if each requires multiple hours for
a 1D experiment. NMR detection becomes even more limiting when considering
multi-nuclear and/or multi-dimensional spectroscopy. Interested readers are referred
to Bingol and Briischweiler (2014), Dumez (2018), Gardner and Kay (1998),
Hyberts et al. (2007), Silverstein et al. (2014), Zerbe and Jurt (2013), Ziessow
(1990) and references therein.

Regarding the standard 5 mm NMR tube, various investigators have tried smaller
tube diameters to reduce the sample volume. For example, Bruker Inc. has
introduced a 1.7 mm NMR tube diameter probe (see NMR Probes section below)
designed to maximize NMR signal detection from low volume samples. One of the
purposes is to reduce sample storage/volume/preparation costs and increase “mass
sensitivity.” Other studies have adopted shorter and thinner 3 mm NMR tubes to
reduce glass costs while optimizing throughput. Mass sensitivity is a bit of a tricky
definition and assumes that the solute’s solubility is not a limiting factor, not always
the case.

For some samples, solubility is the key limiting factor, i.e., one cannot concen-
trate the solute further without precipitation and/or molecular changes occurring.
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Here one does not gain “mass sensitivity” through concentrating into smaller
diameter tubes. In these cases, a wider diameter sample tube physically allows
more atoms (albeit at a lower “concentration” via a greater number of overall
molecules) to be placed inside the observing receiver coils, and results in an
improved signal. Conversely if solubility is not a limiting factor and the same
molar mass of material can be concentrated into a smaller volume and smaller
NMR tube, e.g., a 1.7 mm diameter NMR tube versus the larger 5 mm tube, then
the atoms are physically closer to the receiver NMR coils and produce a larger
relative signal. Smaller tubes also become advantageous with high salt samples and
cryogenically cooled (i.e., cold) NMR probes. The S/N improvements of cold-
probes are quickly lost (Kelly et al. 2002; Nausner et al. 2010; Xiao et al. 2009) as
the ionic concentrations rise, but this phenomenon can be compensated for with
narrower or specially shaped tubes.

Note

One substantial advantage for 5 mm NMR tubes is the increased ease of
removing/recovering samples for further study and/or storage also the
increased ability to wash and re-use the NMR tubes.

Groups may opt to dispose of 3 mm or thinner NMR tubes after each use due to
cleaning/recovery difficulties and therefore the costs must be taken into consider-
ation for large-scale samples studies.

5.4 NMR Spectrometer

5.4.1 Probe

The NMR probe is critical. The probe inductively delivers relatively high-power
electromagnetic energy to the sample and influences the sample’s atomic state(s),
therefore performing the NMR experiment (called a “pulse sequence”). The probe is
also responsible for detecting the sample’s subsequent response(s), i.e., very low
power inductive signals from the precessing atoms in the sample, due to the presence
of a strong static external magnetic field (i.e., the NMR magnet).

One can easily imagine that the probe experiences a light impact from each
sample and spinner as the air pressure is decreased and sample raised/lowered.
Also contamination from any materials passed from the operator’s hands to the
NMR sample, material (e.g., dust) from the air as the sample lowers, NMR tube
breakage (e.g., multiple samples inserted without removal of the previous'’) and
wear due to high-power electromagnetic induction during pulse sequences to name
but a few challenges. There are also physical moving electronic components (see

!OFor high throughout facilities under manual (i.e., non-robotic) sample handling, this problem
occurs more often than you might think.
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Sect. 5.4.8 below) (Halliday et al. 2013; Derome 2013) with the temperature, ionic
strength, and dielectric constant of the solvent all coming into play. These aspects are
important and cannot simply be considered “constant.” Even if the instrument is
solely dedicated to the metabolomics user and not a multi-user facility (more
common), the NMR instrumentation experiences wear-and-tear over time.

An improperly setup probe will not yield the expected signal amplitudes and may
even rapidly devolve into relaxation and off-resonance effects, and far more compli-
cated spectra outcomes.'"' On the receiver side, the resulting signal intensity will also
suffer at best decreasing certainty of measurement, or worse preventing observation
of the signal. Early metabolomics studies may not have had access to robotic sample
handling that included automated tune/match (nor even regulated temperatures for
samples awaiting data acquisition). Early studies assumed that the tune and match
could be optimized for the first sample and would not deviate perceptively from
sample to sample. In our experience, this assumption is not correct especially with
human urine samples where the salt concentrations and therefore the dielectric
matching conditions can change substantially with every sample.

Note

The practical result of improper tune/match (incorrect sample impedance
matching) is inconsistent and inefficient energy transfer/excitation to the
sample. Remember that metabolomics is all about consistency. It is our
recommendation that any study include infrastructure capable of optimizing
the tune/match for every entering NMR data acquisition.

Cryogenically Cooled Probes
Among some of the many recent NMR developments (Kovacs et al. 2005; Kupce
2007; Matsuki et al. 2015; Rovnyak et al. 2004; Webb 2006), one that has been
particularly applicable to metabolomics is cryogenically cooled NMR probes. The
cooling of the electronics has dramatically decreased the noise, and thereby
improved the signal-to-noise ratio. Interestingly the same cooling technology
utilized for the cryogenically cooled probes has also been leveraged into “cryogen-
free” magnets, i.e., self-helium re-liquifying included inside the magnet, but unfor-
tunately the electrical and annual maintenance costs of the cooling technologies
(depending on size, manufacturer, and type of system) can make them financially
impractical. The systems are variations on a compressor and/or gas expansion, each
having advantages/disadvantages including vibration introduction into the spectrom-
eter, and these vibrations can often be detrimental to the spectrometer performance.
For metabolomics the use of helium cryogenically cooled NMR probes (Webb
2006) and the associated increase in signal-to-noise (Schonberger et al. 2014) is
often worth the complexity (Shishmarev and Otting 2011) and additional costly

"'For those wishing a more detailed and mathematical description, see Chap. 23 especially Sect.
5 in (Brown 2016).
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upkeep as the signal-to-noise ratio increases threefold—fourfold with a concomitant
reduction in experimental time of 9-16 times. This is a substantial time savings and
has been a major advance (Kovacs et al. 2005).

Note

Cryogenically cooled probes are often a logical and cost-effective upgrade to
existing systems. However, probes and the application to magnets along with
annual maintenance costs and supporting infrastructure requirements are not
trivial so beware.

5.4.2 Console

The NMR console is the heart of the NMR spectrometer containing frequency
generation, timing control, power supply, input/output controls, amplifiers, band
selective equipment, relays, pneumatic controllers, thermal regulation, pulse field
gradient generation, shim controls, etc. all the components necessary to perform the
desired NMR experiments. The console, just like the NMR probe, requires constant
monitoring, calibration, and inevitably some repair and/or replacement of parts.
These must be done with full understanding of all consequences regarding instru-
ment performance for metabolomics studies.

Note

We strongly recommend a professional staff person be utilized to initially
calibrate and monitor the equipment at regular intervals to ensure consistency
in the console performance.

5.4.3 Host Computer

The last supporting piece of equipment is the computer used by the operator to
control and interact with the spectrometer. We will consider the communication
hardware between the computer, console, and probe/magnet/supporting-
infrastructure to be included. Like the previously mentioned equipment, the com-
puter and software running the operating system and console are not always static.
Anything from software updates incorporated for security and/or feature inclusion to
spectrometer controlling software/firmware can go through changes. Any of these
changes must also be taken into consideration by the metabolomics user as the
spectrometer performance and/or saved NMR data may not be consistent and
therefore introduce problems during processing and analysis.
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5.4.4 Experiment Pulse Sequence

The order, number, repetition, carrier position, duration, magnitude (i.e., power),
dynamics, and phase of any induced electromagnetic fields (called pulses), and any
incorporated delays before/between/after these pulses along with the final read
period to collect the observable data is collectively called the “pulse sequence” or
“pulse program” (see example in Appendix A). This is complex and incredibly
important regarding the consistency of the experiment used for data acquisition.
Interested readers should see reference (Hore et al. 2015) and Chap. 13 of reference
(Zerbe and Jurt 2013) for an excellent starting description. Then additionally
references (Freeman 1997; Cavanagh et al. 2006) for further details. It is important
to note that any change of the aforementioned settings, termed parameters (see this
excellent review (Reynolds and Enriquez 2002) and our section below), can dramat-
ically alter the experimental performance of the instrument (McKay 2011; Potts et al.
2001). This was also addressed by Saude et al. (2006) in 2006 when they carefully
examined which pulse sequence to use for metabolomics. Types of pulse sequences
for metabolomics were also included in the review by Beckonert et al. (2007) and
more directly by others as interest in multi-dimensional and multi-nuclear
experiments were explored (Van et al. 2003; Potts et al. 2001).

Pulse sequences can go through versions, and this can be a problem when
software is updated as small changes can go unnoticed. Especially while the study
data is being collected. It can be necessary to freeze a system in place and prevent
software updates to ensure data collection integrity. For example, the most common
metabolomics 1D-'"H NMR pulse sequence is the first increment of a
2D-'H,'H-NOESY (Bain et al. 1994; Blake and Summers 1990; Kumar et al.
1980), i.e., a one-dimensional data collection with no indirectly detected dimension.
During one of our studies, the pulse sequence phase cycle (McClung 1999; Kingsley
1995; Kay 1995) (see also Sect. 5.4.6 below) was slightly altered, which dramati-
cally changed the water solvent suppression (McKay 2009) and resulted in analog-
to-digital overload errors, but only after the collection of the 16th free induction
decay. Nowhere else in the data collection experienced a problem, and if one
collected fewer than 16 scans (1/2 the phase cycle), there was no error and the
data looked normal. This took quite a bit of time to discover and test the source of the
issue. Eventually we had to retrieve an older pulse sequence version and rename it to
prevent modification. This older sequence is now commonly known as the Chenomx
“metabolomics-1D” (Lacy et al. 2014).

Note

Cursory comparisons of pulse sequence basics between versions or vendors
will often miss internal phase cycle details. Even experienced NMR users can
be caught unaware of the complexities involved.
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5.4.5 Parameters

There are dozens to hundreds of parameters involved various pulse sequences. For
example, even the simplest 1D “Pulse-Read” experiment (see Appendix A) requires
the carrier position, power level, and pulse duration to be properly set. In addition,
the length of the acquisition period and dwell time (i.e., time between sample-
induced voltage readings in the receiver coil) will need to be properly selected so
that required information is properly represented. Even this is a huge oversimplifi-
cation. The more complex the manipulation of spins during the sequence the more
parameters are involved, and the incorporation of multiple nuclei and/or multiple
dimensions of indirectly detected dimensions will amplify the number of parameters
exponentially.

We will focus on the most concise list of NMR parameters that need to be
addressed for each sample involved in metabolomics NMR experiments. These
are also necessary for testing and reproduction and should be included for publica-
tion of manuscript data.

We will first briefly address the practical outcome of parameters.

Error Bars and Statistical Relevance

One of the first metabolomics questions asked about NMR data is regarding error
bars. This leads to a second question; how can a single NMR experiment be
considered statistically relevant? For instrument error, we direct interested readers
to reference (Sokolenko et al. 2013), where we attempted to address this question. In
summary, the instrumental error is many orders of magnitude smaller than the error
introduced during the assignment/integration/analysis phase depending on the oper-
ator experience and interest.

The second question is far more difficult. A single NMR experiment consists of
tens or hundreds of thousands (or millions, e.g., solids NMR) of individual voltage
measurements over several milliseconds or seconds of acquisition called the free
induction decay or FID. These individual voltage observations are then repeated for
each subsequent scan of the sample and added together. Example, a 500 MHz
spectrometer with a 6,000 Hz sweep width, 4 s acquisition time, and 1 s recovery
delay with presaturation of the solvent peak will typically have something on the
order of 24 k complex acquire points (i.e., 24 k “real” and simultaneously 24 k
“imaginary” collected at 90° offset from the first set making it even more complex)
for quadrature detection. We will ignore the digital oversampling architecture of
modern NMR consoles. Couple this with recording the experiment over-and-over on
the same sample (~128 times) and then adding all those individual measurements
together makes a statistical analysis surprisingly difficult. This does not even begin
to touch on the self-artifact cancelling nature of phase cycling (see below) involved
in the repetitive acquisition and how it relates to metabolomics (McKay 2009, 2011).
Suffice to say that even a single NMR acquisition is statistically relevant and
experimental error is extremely low (Sokolenko et al. 2013).
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5.4.6 Phase Cycle

Though we have mentioned phase cycling before, it is important enough to further
detail. While overall two NMR pulse sequences may look identical, the applied
orientation (i.e., angle for each of the induced pulse or pulses and the receiver) can be
individually controlled. This orientation of each component is termed the
“phase”’(Odedra and Wimperis 2012; McClung 1999; Kingsley 1995; Kay 1995;
Cavanagh et al. 2006), and the total list of changes to any angle that each pulse/
receiver is used for each FID over the course of the entire experiments is called the
“phase cycle.” This can also change with each repetition of the same experiment.
Phase cycles are easily displayed in a table for each pulse/receiver on one axis with
the scan number on the other axis. The phase cycle can be quite complex, e.g.,
32 step phase cycle meaning that the experiment must be repeated 32 times to
complete all phase changes. Experiments can usually be performed with far fewer
(e.g., 4 acquired transients or scans) repeats of the data acquisition than the entire
cycle requires, however there will be compromises and may result in instability in
the resulting data. The larger phase cycle usually has more complicated and effective
artifact suppression, e.g., collecting four scans of the sample and trying to compare
to 32 scans of another sample with immediately have obvious S/N differences. There
may also be differences due to partial phase cycle completion (McKay 2011).

Note

The phase cycle is used to cancel any general imperfections in the spectrome-
ter receiver path, i.e., cyclops basic phase cycle. The higher orders of the phase
cycle will usually attempt to remove smaller and smaller artifacts so one can
usually use a subset or portion of the entire cycle. Consistency is again key,
and one must determine the best selection prior to study start.

5.4.7 Temperature Calibration

Users often assume that the spectrometer displayed temperature is both accurate and
precise for the sample once set via the spectrometer software. However, it has been
our experience that this is almost never the case. Some instruments are certainly
close, but there is always a benefit and often a substantial need for calibration (for
examples, see Bernard et al. 2017; Raiford et al. 1979 and references therein). In our
experience over the decades of instruments tested, once calibrated we see deviation
of the set point to the actual temperature ranging from 1.6 to a few tenths of a degree
Celsius in regulated temperature. This comparison is between what is measured via a
calibrated sample and the software display. As metabolomics requires absolute
consistency to identify small changes in sample composition and then equate those
changes back to usable phenotypes, any variation in temperature will immediately
create a problem.
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Note

We are concerned with comparing data from instrument to instrument, but
even if a single unchanging/dedicated instrument is used for the entire study,
one would only have precision (i.e., consistent error). This may not be
reproducible later even with the same spectrometer so relying on precision
may not be sufficient. We highly recommend directly calibrating each instru-
ment prior to study start, and after any hardware changes using referenced
techniques (Holz et al. 2000; Karschin et al. 2022; Raiford et al. 1979).

Regarding sample temperature, Saude et al. (2006, 2007; Saude and Sykes 2007)
published detailed tests of human urine stability versus storage time and temperature
and we highly recommend interested readers consider this type of preparation for
their samples to establish utmost consistency.

Note

To speed up data acquisition, we used a two-stage sample cooler. The first
stage was long-term storage at ~5°C. The second stage was (using a golf
analogy) termed “on-deck” and was a slightly higher temperature than the
equilibrium temperature. See below for details.

Robotic Sample Handling

As the robot acquired the first sample, the otherwise idle robot would move the
second sample from cold storage (e.g., 5°C) to the warmer on-deck region. The
on-deck sample was set to slightly warmer than the NMR spectrometer (e.g., 30.4°C
if samples were to be run at 30°C) so that as the sample was moved from the waiting
on-deck position to the spectrometer, the slight cooling caused by transporting
through the room air would be offset. The sample would arrive in the spectrometer
receiver coil at the perfect temperature ready for equilibrium saving several minutes
per sample. This could save hours of spectrometer data time per batch. The slightly
warmer on-deck temperature was empirically calibrated based on average travel
times and current room temperature so that the arriving sample temperature inside
the spectrometer would be as close to ideal as possible. The on-deck temperature
would vary throughout the year/seasons as the room temperature also changed.

5.4.8 Tune/Match
Frequency “tuning” and impedance “matching” of the sample and the spectrometer
transmit/receive electronic circuit is critical for optimization. This ensures that the
inductive moment or energy transfer going to, and the subsequent signal coming
from the sample is as efficient as possible.

The concepts involved in impedance involve the resistors, frequencies, inductors,
capacitance, mutual or self-inductance, etc. and goes far beyond this chapter (e.g.,
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see Chaps. 32 and 33 dealing with these topics (Halliday et al. 2013)) and the authors
capabilities. However in terms of practical NMR tuning and matching are still vitally
important, and it is usually sufficient to use the common analogy that impedance
matching involves adjusting the spectrometer circuitry to “match” that of the sample
and the sample’s dielectric constant of the solvent. Each solvent/sample can have
different impendence characteristics (depending on temperature, salts, solvent(s),
type of glass, ions in solution, etc.), so the probe must have an electronic range of
capabilities for the nuclei to be observed and appropriate for the sample itself. Probes
are usually designed with either manually manipulated, or automated movement of
physical rods connecting deep inside the probe head. These rods move specific
electronic components changing the transmitter and receiver’s electronic circuit
configuration.'> A maximum transfer of power occurs when the two circuits (i.e.,
probe and sample) are identical in resistance, or in this case, due to alternating
current, their impedance (Wilson 2007).

Note

With a poor “matching” condition, there can be substantial energy produced
by the NMR console that does not enter the sample, but instead reflects,
returning up the pathway and potentially damaging equipment.

This situation is commonly recognized by observing abnormally long NMR pulse
widths that are inefficient along with poor S/N.

Interested readers are directed to excellent article from 1978 by Prof. David Hoult
(1978) covering many aspects including the electronics of the probe and console
design/function.’® Other articles focus more on the practical implications and
applications of matching (Bendet-Taicher et al. 2014; Nausner et al. 2010; Torchia
2009). An electronic-based description of impedance matching can be found in the
ARRL handbook, e.g., Wilson 2007 or physics textbooks (Halliday et al. 2013;
Feynman et al. 1965).

5.4.9 Excitation Pulse

Readers looking for further background are reminded of the previously reference
books (Hoult and Richards 1976; Hore 2015; Silverstein et al. 2014; Keeler 2010;
Levitt 2001; Freeman 1997; Harris 1986) and articles describing NMR and NMR
theory. We will assume bulk coherence and transverse magnetization are
understood.

12 Capacitors and inductors (trying not to get confused with inductance nor impedance) of different
sizes, types, and changeable physical positions are used to control analog frequency band widths
and the subsequent matching of the circuitry.

131 had the pleasure of attending one of Dr. Hoult’s talks as he was an invited speaker for the Alberta
Cancer Foundation at the University of Alberta in 2015. His talk was amazing and the first time I
really started to understand the difference between true NMR magnetic inductance of signal
transmission versus the standard NMR analogy of radio signals and antennas.
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For the simplest 1D-"H direct detection NMR pulse sequence experiment (aka
pulse-read) formed from a recovery delay, excitation pulse, and observation/data
acquisition period, the only pulse power/duration consideration is the excitation
pulse. As the reader may be aware, especially from the referenced literature, most
spectroscopists use the maximum power (or close to it) that the probe can withstand.
Therefore only the duration of the pulse application can be altered safely by the user.
Consistent determination and application of the optimal excitation (i.e., movement
of the bulk magnetization vector fully into the XY plane for detection by the receiver
NMR coil in the probe) are critical for multi-pulse experiments, but the story can be
more complex for the simplest pulse-read experiment. Examples of optimization are
provided in these references (Bodenhausen et al. 1984; Breton and Reynolds 2013;
Burrow et al. 2014; Reynolds and Enriquez 2002; Reynolds and Burns 2012). While
some articles (Schonberger et al. 2014) recommend using only a 90° excitation
pulse, there are complications due to relaxation. The “Ernst Angle”’(Cavanagh et al.
2006; Freeman 1997; Keeler 2010; Levitt 2001) can be applied for simple
experiments or more complex ones (Ogg et al. 1994; Zhang et al. 2000). The Ernst
angle was originally developed to achieve the greatest S/N per unit time available. In
our facility, the primary purpose of using less than a 90° pulse is to improve the
accuracy of integration over all regions of the molecule. Different regions/atoms/
functional-groups may have different relaxation rates, and therefore additional scans
(to improve the S/N) will result in different signal intensities/integrations based not
just on the number of nuclei, but also their relative atomic and molecular mobility.
Using a smaller pulse angle (e.g., 45°) reduces the time needed to fully relax, thus
restoring the integrity of integration but with an S/N cost. For multi-pulse, e.g.,
multi-dimensional/multi-nuclear experiments involving subsequent magnetization
precession and evolution with time, the optimal full 90° pulse is critical. Otherwise,
there is a cumulative and compounding loss for each “imperfect” pulse.

Note

For metabolomics using the first increment of the 2D-'H,'H-NOESY experi-
ment (aka metnoesy (McKay 2011)) which is standard for the Chenomx
metabolomics software and database, it is essential that the calibrated 90°
pulse is used consistently for all samples. Unless the solvent is highly consis-
tent, unlikely with human urine/metabolomics samples, the 90° pulse needs to
be determined for each sample prior to data acquisition.

5.4.10 Gain

Gain is essentially the volume control on the signal receiver. While we do not have
time for the fundamental radio/receiver electronic aspects, suffice to say that too low
a gain negatively impacts the experiment with poor S/N, while setting the gain too
high risks overloading the receiver coil and damaging the FID data. Damaged data is
not something that can be corrected later, and the experiment is forfeited. Overloads
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occur when the voltage reading from the transverse recorded magnetization exceeds
the electronic capability, and this is most often caused by a disproportionately strong
solvent signal (e.g., water) or sample component (e.g., urea). Careful and consistent
setting must be used to insure proper acquisition over a long-term metabolomics
study.

Note

While it is not relevant to report the instrumental value of gain in the manu-
script, it is important to note for the manuscript reviewer and readers how an
appropriate gain was determined and if consistently used for all samples
ensuring that receiver and/or analog-to-digital converter (ADC) errors were
avoided.

5.4.11 Pulse Field Gradients

Pulse field gradients (PFGs) are an extraordinarily useful tool in NMR spectroscopy
(Sakhaii et al. 2013; van Zijl and Hurd 2011; Zangger et al. 2001; Kay 1995; Keeler
et al. 1994). The easiest analogy for PFGs is that we are slicing the length of the
sample horizontally (think about slicing a sausage into thin circular cross-sections).
Each cross-section experiences a unique magnetic field depending on the vertical
position (i.e., isocromats). This allows spectroscopists to manipulate spins based on
their relaxation, diffusion, or chemical shifts independently depending on where
they started in the vertical sample.

While incredibly useful and often considered for solvent suppression in
metabolomics, a common error occurs when excitation pulses and/or pulsed field
gradient “eddy currents” have not subsided prior to data acquisition. If the “ringing”
from the last pulse or gradient remains, the recording of the early data points will be
distorted essentially by extra signal that does not originate from the sample, but
instead the hardware. This is seen as baseline distortion and overall noise in the
spectrum depending on how much hardware distortion leaks into the real data.'*

We have found that PFGs disrupt the deuterium resonance peak used for the
spectrometer deuterium “lock” (i.e., the automatic magnetic field compensation/
stabilization). The instrument attempts to try and follow the deuterium signal during
the initial application for PFGs, and then afterwards to re-gain the lock resonance
causing field distortions. For many peaks, these distortions are small enough to
ignore, but for the strongest/sharpest of the NMR peaks, the distortion appears as a
dispersive NMR component. Unfortunately for DSS (Sheedy et al. 2010; Harris et al.
2008; Markley et al. 1998) commonly used as an internal reference standard and a
peak shape normalization factor for the Chenomx software (Weljie et al. 2000), it

14 A possible solution is to apply backwards linear prediction to the first few points, thus replacing
the damaged data with realistic predictions based on the later non-distorted information. Not ideal
but sometimes useful.
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sees a large distortion on peak shape. Chenomx software uses the shape of the DSS
methyl group to back-calculate corrections for any small shim imperfections. A
distortion of the DSS methyl reference peak, however, can dramatically affect
resonance integrations and the subsequent metabolite identification stage. There is
no way to correct for PFG dispersive changes in the reference signal once collected
(i.e., you cannot phase the distortion out without negatively impacting other
resonances).

Note

For metabolomics, it is our experience that PFGs cause far more problems than
they solve, and we highly recommend not utilizing pulse sequences
with PFGs.

The easiest and therefore most common method is to remove all PFGs from the
metabolomics NMR pulse sequence. This has been the case for nearly two decades
now. While the use of alternating directional gradients can be used to reduce the
artifacts (Nguyen et al. 2007; Sokolenko et al. 2013), validation of NMR
metabolomics databases has not been done with any of the proposed pulse sequence
changes.

5.5 Manuscript Reporting Parameters

To our knowledge, there is no standardized (e.g., IUPAC) recommendation for
appropriately reporting NMR experimental parameters. Far too often when
reviewing manuscripts, we find limited or nonexistent NMR experiment parameters
(see Appendix B). An analogy would be stating you went on a trip in a “truck” and
only specified the destination thus lacking all crucial information, e.g., what route
was taken, how long were you gone, what type of truck, did you stop for fuel, if so
how often, what speed, etc. to reproduce and confirm the journey. Stating in an
experimental section, “Data was collected on a 500 MHz NMR spectrometer from
manufacturer X” provides almost no usable information.

The pulse sequence/program used is essential and type/manufacturer of probe/
spectrometer is essential for the experimental section. Temperature, sweep/dwell
time, etc. are all needed. The reporting should be considered as if a new group
member would reproduce the exact experiment after reviewing the experimental
write up. We detail certain key aspects below.

5.5.1 Pulse Width

In terms of reporting, it is easy to report the 90° pulse duration (usually in
microseconds) however depending on the application (e.g., shaped pulses (Freeman
1998; Kupce and Freeman 1995; Morris and Freeman 1978; Prost et al. 2002))
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Note

Without the 90° excitation pulse duration (often termed pulse width) or that a
90° pulse was used and stating the induced field strength(s) for the various
pulses, we cannot reproduce the experiment. No reviewer should allow a paper
into publication that does not have at least that minimum information.

5.5.2 Delays: Relaxation, Equilibrium

Relaxation, i.e., the return of signal to equilibrium between scans effects
integrations. This makes molecule identification difficult and quantitation inaccu-
rate. For metabolomics it will result in misassignment of molecules and/or missing
the biomarker entirely.

Metabolomics relaxation has been studied, e.g., see Saude et al. 2006,
Bakhmutov 2005 and references therein. Different pulse sequences will likely
have different total relaxation times between scans. It is also important to understand
that under these circumstances a single acquisition (i.e., 1 scan) will not necessarily
give the same result when compared to the entire experiment (e.g., 32 scans) in terms
of integration. The first point cannot be solely trusted to represent the final data that
will be collected as the first scan usually has many seconds or minutes to establish
spin equilibrium in the magnetic field.

Note

The key point here is consistency of relaxation times within the study. The
number of scans, and other experimental parameters must be maintained for all
the samples in the study.

The pulse sequence cannot be swapped out nor altered halfway through the study
(e.g., choice of water suppression), as any change will affect the relaxation, water
suppression, degree of excitation, etc. which will certainly be detected later in the
processing/analysis phase.

Of equal importance is that one must conform to the pulse sequence delays
required by the database(s) being used to determine sample content (see Sect.
5.4.6). For example, Chenomx Inc. (Mercier et al. 2011; Tredwell et al. 2011;
Weljie et al. 2006) relies on the user running a 10 ms recovery time, with 990 ms
solvent saturation at a controlled level (i.e., ~80 Hz gammaB effective induced field
strength see previous Sect. 5.4.9) precisely on resonance, followed by the excitation
pulses, a 100 ms “mix” where saturation is turned back on, and finally the last 90°
pulse and 4 s of acquisition. Total experiment time for a single scan is 5 s. Deviation
from this will move the user away from accurate/useful integrations when comparing
to the Chenomx database (Lacy et al. 2014; Mercier et al. 2011; Tredwell et al. 2011;
Weljie et al. 2006).
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5.5.3 Post-Acquisition: Weighting Function

The specific weighting function used should not be an issue, with the caveat that it is
uniformly applied to all acquired data sets. We will recommend the selection of a
weighting function matched to the observed decay of the acquired signal, and in our
experience, a 0.5 Hz line broadening function works reasonably well, especially with
the typical ID-NOESY (metnoesy) NMR pulse sequence between 400 and 800 MHz
(‘H). However, the selection of an appropriate apodization function will be left to the
experts and undoubtedly some users will have strong reason for their selection.

Note

We have found that a great deal of problems can be avoided by using line
broadening, e.g., 0.25-0.5 Hz.

Small shimming errors can be easily averaged or approximated out by the slight
change. This must be included in the reported parameters for comparison and
evaluation.

5.5.4 Corrections: Linear Prediction, Baseline, Phasing

We have found linear prediction to be of little value in 1D spectra, unless under
specific hardware issues/circumstances usually outside metabolomics (e.g., long ring
down times on cold-probes, etc.). We do not recommend, however, if used it must be
explicitly stated in the manuscript.

Baseline correction can again be useful however as always in metabolomics,
consistency is the key. We have found a general drift correction on a well-phased
spectra to be relatively harmless. We typically avoid other corrections or try to
correct the source problem either in the pulse sequence or spectrometer setup. For
example, the pre-acquisition delays between the last excitation pulse and the opening
of the receiver gate electronics.'> Again any method must be included in the
manuscript.

Phase correction (i.e., phasing) is commonly required, especially in 1D-NMR.
There is a temptation to use automated phase corrections, but auto-phasing can be
unreliable. It can also over emphasize the largest peak in the spectra which is most
likely the solvent, and certainly not the most interesting and important resonance.
Manual correction is more accurate, but introduces user error (precision), especially
for inexperienced users.

Se.g. alfa and rof2 on older Varian/Agilent spectrometers with ddrtc coming into play on newer.
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Note

Utmost effort should be taken to optimize NMR pulse sequence delays prior to
the start of NMR acquisition. This care along with knowledgeable lock
settings/setup should minimize the necessity of phasing and the introduction
of possible user error.

5.5.5 Referencing
Referencing the zero point on the spectra is incredibly important for metabolomics.
The databases typically use the chemical shift position of a peak to begin all auto-
assignments. Even peak pattern recognition usually starts with the chemical shift of a
unique resonance and tries to build out from there the possible coupling profiles. If
the sample is referenced incorrectly the software will have infinitely more difficulty
assigning peaks, let alone correctly.

As mentioned, the Chenomx software has several internal reference standards
available checking the reference peak line shape for application of corrections to the
rest of the spectra.

Note
The known amount of reference intensity also provides quantitative informa-
tion for the integrations.

6 Future Ideas

6.1 Solids NMR Metabolomics

While metabolomics has been predominantly only liquids likely due to a focus on
easily acquired samples (e.g., blood, urine, sputum, etc.), there is a growing amount
of research into solids NMR utilizing high-resolution magic angle spinning
(HRMAS) for metabolomics (Cheng 2007) and specifically Chap. 4 (Tilgner et al.
2019). We direct interested readers to the many excellent reviews of solid-state
NMR (Laws et al. 2002; Ashbrook and Sneddon 2014; Reif et al. 2021) and
references therein, solid-state cold-probes (Matsuki et al. 2015), and the relatively
new field of dynamic nuclear polarization (DNP) enhancement (Albert et al. 2017;
van Bentum et al. 2016; Matsuki et al. 2015). This is an exciting new area, and we
look forward to developments.
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6.2 Working with Raw FID

Dr. Krishnamurthy'® has suggested a different route with Complete Reduction to
Amplitude Frequency Table (CRAFT) NMR (Krishnamurthy 2013). As the author
details, complexes and/or mixtures are very common and pose a difficulty for
traditional NMR analysis. An example would be tailings “ponds” water used to
deposit the remaining materials after oil extraction. We have seen spectra contain
tens of thousands of compounds and those are only the ones in the lower molecular
weight categories distinguishing themselves as sharp resonances.

Having a method that could identify and quantitate even complex mixtures would
be amazingly beneficial and that is what Dr. Krishnamurthy has proposed in a 2013
publication. While risking oversimplifying, CRAFT does not use Fourier transfor-
mation to convert the time domain data into the commonly recognized NMR spectra.
Instead it identifies the frequencies and amplitude of each of the raw components and
reports them in a simple table ready for statistical analysis. Specifically they examine
a fermentation broth for quantitative analysis and a spiked human blood plasma. The
benefits of removing FT and operator error are certainly enticing. The method has
yet to become prevalent with the majority of metabolomics analysis, likely due to
users not being familiar with the technique nor confirmed when compared to
traditional approaches.

6.3  PureShift 'H-'H J-Coupling Removal

One of the biggest potential new developments involves the PureShift style/family of
NMR pulse sequences (Kiraly et al. 2018, 2021; Dumez 2018; Foroozandeh et al.
2018; Moutzouri et al. 2017; Castafiar 2017; Mishra and Suryaprakash 2017; Kew
et al. 2017; Zangger 2015; Aguilar et al. 2015; Foroozandeh et al. 2014, 2015;
Maubhart et al. 2015; Reinsperger and Luy 2014; Kaltschnee et al. 2014; Paudel et al.
2013; Meyer and Zangger 2013; Aguilar et al. 2012; Aguilar et al. 2010; Zangger
et al. 2001). There are many variations, iterations, and subsequent improvements,
but all focus on removing the dipolar “coupling” or crosstalk between neighboring
hydrogen atoms (as previously mentioned). PureShift sequences attempt to remove
(or at least minimize) the couplings and complexity of the spectra. The variations
attempt to compensate for the inherent weaknesses of the pulse sequence, i.e., signal-
to-noise, and distortions in tightly coupled systems.

While these couplings are often crucial for organic chemistry and basic molecular
identification in traditional NMR usage, for metabolomics they create greater spec-
tral complexity with a multitude of overlapping congested spectral information.
Chenomx software checks each peak position, relative integration, and coupling
pattern when it attempts identification, and these have been validated for each

16«Krish” to friends and colleagues is an amazing resource for the NMR community and we
gratefully acknowledge years of benefiting from this person’s contributions.
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molecule in question, in isolation, for each common spectrometer frequency.
PureShift sequences could dramatically reduce the complexity and therefore the
overlap of the NMR spectra. However, to use the Chenomx software with PureShift
NMR, the molecule database would have to be entirely re-acquired. This would take
a great deal of invested money and time.

The pulse sequences also require PFGs making the implementation more difficult
for inexperienced users. Potentially more variability as well as upkeep and mainte-
nance would be increased (see previous Sect. 5.4.11).

Lastly there is a large S/N reduction reducing the confidence in the data gathered
and potentially missing weak signals. It is possible to compensate, but studies would
be forced to substantially increase the number of scans (time) acquired for each
sample. This would also re-introduce problems with sample storage/handling men-
tioned earlier as each sample would take more time on the instrument and robotic
sample handling system.

7 Conclusion

The most important point we can make is that there are many aspects requiring
attention prior to initiating a metabolomics study via NMR. The information and
experiences detailed above will hopefully help the reader avoid some of the common
pitfalls that we encountered. We also hope that we have convinced new users that
every single metabolomics study can benefit from having experienced knowledge-
able spectroscopists involved, especially in the earliest planning stages. The chances
of acquiring reliable/reproducible data increase exponentially when including the
NMR operators. Unfortunately, these problems are often unrealized until the statis-
tical analysis stage, when the errors due to confounders can exceed the actual data.
The entire study may thus be ruined.

Consistency in every aspect is paramount. From sample acquisition, storage,
preparation, handling, data acquisition, storage and/or retesting, to processing and
analysis. There are many steps that can go astray, making the data more difficult to
assess. However, organized from the start, carefully monitored throughout, and
diligently systematically checking while acquiring the data will give the research
group their best chance of having a useful data set at the end. Spectrometer
consistency is paramount and mentioned above extensively, therefore users may
want to explore the possibility of establishing quality control checks are regular
intervals in their study.

Finally, we hope that the excellent referenced publications and books referenced
will be as useful to your study as they have been to our education, though we are sure
there are many others we have not yet discovered. Best of luck.

Acknowledgments The author would like to thank Professor Vladimir Michaelis (Department of
Chemistry, Univ. of Alberta) for critical reading and suggestions on the writing of this document.
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Appendix A: Example Pulse Sequence: Metabolomics 1D-'H
“Metnoesy”

12.5us 12.5us
12.5us 100.0ms

3.999sec

990. 0ms

ne 10.0ns 0

i1 dl satdly pw pw hst mix-hst
pw

Appendix B: Example Experimental Section
Experimental Section

NMR Samples

NMR samples were dissolved in 90% D,0O (~600 pL in volume) and sample data
acquired in 5 mm XXXmodel NMR tubes purchased from XXXmanufacturer. All
NMR solvents were purchased from XXX. NMR tubes were washed using three
rinses of 95% ethanol with a single final D,O rinse, and then inverted to air dry
overnight.

NMR Spectroscopy
NMR experiments were collected on either a 14.1T (600 MHz) Varian/Agilent
VNMRS with an Agilent 7,620 automatic sample handling system, or a 9.39T
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(400 MHz) Varian Inova NMR spectrometer, both at 27°C (calibrated using metha-
nol'”). On the 600 MHz spectrometer, an HCN BioNMR probe (i.e., direct detect '"H
inner coil) was used, while on the 400 MHz instrument an AutoDB broadband (i.e.,
broadband inner coil) 5 mm probe was available. All spectra were run “locked” on
the *H resonance signal and chemical shifts were referenced using the residual
proton "HOD signal position'® (i.e., 4.7 ppm) prior to saturation. One dimensional
"H data was acquired using either presaturation'® followed by a single excitation
pulse/acquire spectrometer sequence, or the first dimension of a -2D-'H,"H-NOESY
(metnoesy). The metnoesy (see Appendix A) uses a recovery delay of 10 ms, then
990 ms of presaturation followed by two 90° pulses, a mixing time of 100 ms with
saturation, a final 90° pulse and lastly a 4 s acquisition period. The saturation pulse
and carrier position were manually optimized and placed on the water resonance.
Saturation was applied with a gammaB; induced field strength of 100 Hz (600) or
30 Hz (400) depending on water suppression efficacy and to avoid receiver
overloads. For the simple 1D-'H experiments, the duration of the saturation pulse
was 2 s on both instruments. Parameter settings for all experiments were: sweep
width of 7,183 Hz, acquisition time 2 s, with 28,736 real plus imaginary acquired
(600), or a sweep width of 4,801 Hz. For the 1D-1H, an acquisition time of 3 s with
28,812 real and imaginary points for the 400 MHz NMR was utilized, and an ~30°
(i.e., 3.4 ps) excitation pulse angle (applied at ~24 kHz gammaB;) was used
following the concept of the improved integration and reduced relaxation times
(commonly known as the “Ernst Angle”),”” however on some of the initial highly
concentrated samples an extremely short pulse length was needed to avoid receiver
overflows (e.g., lus excitation pulse).

For processing of all NMR data, the acquired points were zero-filled to twice the
number of acquired points, and a line-broadening apodization function of 0.5 Hz was

D. S. Raiford, C. L. Fisk, E. D. Becker, Anal. Chem. 51, 2050 (2002).
18Wishart, D., Bigam, C., Yao, J., Abildgaard, F., Dyson, H. J., Oldfield, E., Markley, J., and Sykes,
B. (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR, J Biomol NMR 6,
135-140.

Trainor, K., Palumbo, J. A., MacKenzie, D. W. S., and Meiering, E. M. (2020) Temperature
dependence of NMR chemical shifts: Tracking and statistical analysis, Protein Science 29,
306-314.

“Hoult, D. 1. (1976). Solvent Peak Saturation with SIngle Phase and Quadrature Fourier Transfor-
mation. Journal of Magnetic Resonance, 21, 337-347.

Campbell, I. D., Dobson, C. M., Jeminet, G., & Williams, R. J. P. (1974). Pulsed NMR methods
for the observation and assignment of exchangeable hydrogens: Application to bacitracin. FEBS
Letters, 49(1), 115-119.
2L auridsen, M., Maher, A. D., Keun, H., Lindon, J. C., Nicholson, J. K., Nyberg, N. T. et al.
(2008). Application of the FLIPSY pulse sequence for increased sensitivity in 1H NMR-based
metabolic profiling studies. Anal Chem, 80(9), 3365-3371.

Waugh, J. S. (1970). Sensitivity in Fourier transform NMR spectroscopy of slowly relaxing
systems. Journal of Molecular Spectroscopy, 35(2), 298-305.

Emst, R. R., & Anderson, W. A. (1966). Application of Fourier Transform Spectroscopy to
Magnetic Resonance. Review of Scientific Instruments, 37(1), 93—102.
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then applied. Manual phasing and referencing to the solvent peak were used to
confirm referencing based on the lock solvent (when available) and previously
determined carrier position. Spectra were analyzed using VNMRIJ 4.2 patch110
software.
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Abstract

Natural products have been the most important source for drug development
throughout the human history. Over time, the formulation of drugs has evolved
from crude drugs to refined chemicals. In modern drug discovery, conventional
natural products lead-finding usually uses a top-down approach, namely
bio-guided fractionation. In this approach, the crude extracts are separated by
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chromatography and resulting fractions are tested for activity. Subsequently,
active fractions are further refined until a single active compound is obtained.
However, this is a painstakingly slow and expensive process. Among the
alternatives that have been developed to improve this situation, metabolomics
has proved to yield interesting results having been applied successfully to drug
discovery in the last two decades. The metabolomics-based approach in lead-
finding comprises two steps: (1) in-depth chemical profiling of target samples,
e.g. plant extracts, and bioactivity assessment, (2) correlation of the chemical and
biological data by chemometrics. In the first step of this approach, the target
samples are chemically profiled in an untargeted manner to detect as many
compounds as possible. So far, NMR spectroscopy, LC-MS, GC-MS, and
MS/MS spectrometry are the most common profiling tools. The profile data are
correlated with the biological activity with the help of various chemometric
methods such as multivariate data analysis. This in-silico analysis has a high
potential to replace or complement conventional on-silica bioassay-guided frac-
tionation as it will greatly reduce the number of bioassays, and thus time and
costs. Moreover, it may reveal synergistic mechanisms, when present, something
for which the classical top-down approach is clearly not suited. This chapter aims
to give an overview of successful approaches based on the application of chemi-
cal profiling with chemometrics in natural products drug discovery.

Keywords

Antibiotics - anticancer - anti-inflammatory - Chemometrics - Correlation
analysis - Discriminant analysis - In-silico - Metabolomics

1 Introduction

Since ancient times mankind has searched for medicinal plants in nature, in early
times very likely by simple trial and error which eventually evolved into complex
systems that included the documentation of the accrued knowledge which allowed
its organized transmission from generation to generation. This is known as tradi-
tional medicine, some outstanding examples of which are the traditional Chinese
Medicine (TCM) and Ayurveda in India. The traditional medicine of the Mediterra-
nean region became the basis of Western medicine (Leonti and Verpoorte 2017).
Thanks to the technological advances in processing and the accumulation of clinical
information, the application of natural products developed from the direct use of a
medicinal plant to the use of extracts, and then to pure compounds. Processing steps
including grinding, drying, fermentation, extraction, heating, and the addition of
other plants or materials (e.g., milk, butter, honey, sugar) have been, and still are,
worldwide common practices in traditional medicine. This information is important
for the transformation of the transmitted traditional knowledge into novel leads for
medicines.
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In Medieval times alchemists started to experiment with chemistry, looking for
the essence of medicines, but it was not until the beginning of the nineteenth century
that the first pure active compounds such as morphine, strychnine, quinine, caffeine,
nicotine, atropine, and cocaine were isolated (Samuelsson and Bohlin 2009). How-
ever, the elucidation of the structures of these alkaloids took almost 150 years. At the
end of the nineteenth century, the first synthetic medicines were produced, mostly
based on models from nature, acetylsalicylate being the best known example.
Thanks to the rapid advancement of technology in the twentieth century, many
biologically active natural products have been isolated, some of which became
important therapeutic aids per se, while many others served as a scaffold for the
design of (semi)synthetic drugs.

No matter how we exploit nature for medicinal drugs, testing biological activity
in various stages is an inevitable step for drug development, both for mixtures and
isolated active components. In the twentieth century, pharmacologists developed
various screening tools aimed at the detection of certain biological effects. Among
these, the Hippocratic screening (Malone and Robichaud 1962) is still applied to
screen plant extracts and pure compounds for a wide range of ailments in a systemic
way directly on mice or rats. At some stage, the alleged pharmacological activity
must be proven on animals and human beings. In the past 50 years, simple and fast
in-vitro cell-, enzyme-, or receptor-based assays that can follow the activity during
isolation or synthesis of novel active compounds have been developed. In the later
stages of the evaluation of leads for drug development, detailed pharmacological
studies of the mode of action are needed. This also includes in-silico docking of
compounds in models for various receptors or enzymes.

The importance of bioactivity screening lies in the rapid activity mapping of large
numbers of extracts or fractions that are highly complex mixtures of compounds.
This can be done using bioassay-guided fractionation as an experimental design. The
immanent paradigm of screening tests is a single target-single compound approach,
e.g., measuring the degree of binding of a drug to a receptor or an enzyme. This
approach was particularly successful in novel anticancer drug screening (Cragg and
Newman 2005; Newman and Cragg 2007, 2020). This classical bioprospecting
approach was one of the themes of the Nobel Prize in Medicine and Physiology in
2015, related to the random screening of soil bacteria and the resulting discovery of
avermectin. This antibiotic in turn was the basis for a novel medication for river
blindness. The other part of this Prize went to Chinese research that led to the
identification of artemisinin, a novel antimalarial drug extracted from a millennial
antimalarial traditional Chinese medicinal plant.

These conventional biological screening tests usually follow a top-down
approach, starting from a mixture and narrowing down to a single compound
which is eventually responsible for the alleged activity. However, a multitude of
limitations persist. Among others, the long time it takes to find an active compound
due to the number of steps involved in the identification of the features associated to
activities. Moreover, in many cases the isolated active compound turns out to be an
already-known compound. Furthermore, the long procedure required by conven-
tional screening methods often leads to the loss of activity caused by chemical
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degradation. But the greatest limitation of this method is its intrinsic ignorance of
synergistic effects and prodrugs. The single target-single compound paradigm
appears to contradict the base of traditional medicines that often relies on complex
mixtures of plants in which every plant has a different function. That means that the
multitarget-multicomponent approach is the key difference between traditional and
modern drug development. It is obvious that such a systemic approach to drug
discovery demands different tools. In the case of therapeutic activity it means a
multitarget-testing system, i.e. the use of living organisms. For the identification of
active compounds, a holistic approach such as metabolomics can provide the type of
information required to identify correlations between activities and metabolites,
thanks to the application of chemometric tools (see below).

Metabolomics aims at profiling all the metabolites in an organism. To these ends,
it provides an overview of the metabolic profiles of the subject of interest in an
untargeted manner, that is, ultimately, a systems biology approach (Wang et al.
2005). This systems biology approach using omics tools gained importance in the
quest for biomarkers for diseases and other situations that require the identification
of distinctive markers, e.g. quality standards. The experimental design for this
approach includes processing a large number of representative samples (e.g., plant
extracts or fractions) to obtain both metabolomics and activity data of each one.
Numerous chemometric methods such as multivariate data analysis have been
developed to identify potential correlations between all observations and identify
indicators (e.g., NMR signals, LC-MS or GC-MS peaks) that correlate with a given
activity. In this approach, any variable that has been measured can be used to test for
possible correlations. Metabolomics, eventually in combination with proteomics,
transcriptomics, and/or genomics, can also be used to identify potential targets in the
tested organisms used in bioassays, e.g. cell lines or test organisms such as mice
(Parng et al. 2002), zebra fish (Danio rerio) (Mushtaq et al. 2013; Akhtar et al.
2016), Caenorhabditis elegans (Salzer and Witting 2021), and brine shrimp
(Artemia salina) (Ntungwe et al. 2020), it is possible to gain better insight into the
possible mode(s) of action of an extract or a pure compound. This would be a
molecular follow-up of the classic Hippocratic screening. The method must be
validated by measuring the effect of various classes of drugs on the metabolome
and a database of the changes in the metabolome can then be used to compare with
the effects of extracts or novel compounds.

Finally, there is also the possibility of coupling a bioassay with the separation of
extracts. For example, inhibition of acetylcholine esterase activity can be coupled
with HPLC (Ingkaninan et al. 2000) or TLC (Rhee et al. 2003). Particularly in the
case of TLC, its coupling with various bioactivity screening methods has shown to
be a powerful tool for nano-scale identification of biologically active compounds
(Klingelhofer et al. 2021; Morlock 2021; Morlock et al. 2021; Schreiner and
Morlock 2021). In this case, though, the use of a single compound, single target
approach, makes it somewhat less attractive for the study of complex traditional
medicines, where synergy most likely plays a predominant role (Verpoorte et al.
2018). As seen in the study of Artemisia annua, the antimalarial activity observed in
tea extract cannot be explained only by the already-known active compound
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Fig. 1 Different steps in drug discovery and examples of metabolomics applied in this process.
Adapted from Cuperlovic-Culf and Culf (2016)

artemisinin, as its concentration is too low in the tea extract to be responsible for the
activity. The possible explanation is the presence of other active compounds such as
flavonoids or saponins which could have a synergistic effect with artemisinin
(De Donno et al. 2012). The limitation of this fully “on-silica” approach is that it
is based on the single target-single compound approach, so any activity involving
synergy and other interactions between molecules will not be detected, whereas the
“in-silico” approach can reveal synergistic effects on other types of interaction-based
mechanisms. The “in-silico” tools require the building of databases for fast identifi-
cation of known compounds in extracts, and metabolomics databases of the changes
caused by a standard set of major drugs in the in-vivo test systems. Network
pharmacology would be useful to support such databases. Network pharmacology
brings together all information on the effect of known drugs on the network of
metabolism, signaling and diseases, on the level of genome, transcriptome, prote-
ome, and metabolome. It can be used to obtain an insight into the mode of action of
medicines and evaluate the differences and similarities of new drugs with existing
ones (Boezio et al. 2017; Hopkins 2007, 2008; Jiang et al. 2021; Li and Zhang 2013;
Ye et al. 2016). In Fig. 1 the various aspects of drug development are summarized,
and the applications of metabolomics in these fields are highlighted. There are,
basically, two types of applications. One applies metabolomics to various test
organisms and patients aiming to identify markers for diseases and for the effects
of (novel) medicines on their evolution. In the other case, metabolomics is used to
identify active compounds in complex mixtures, e.g. traditional medicines. The
systems biology approach opens new windows into the interactions between
mixtures of active molecules and the test organisms providing even new insights
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in the diseases themselves. This chapter describes the important features of
metabolomics-based bioactivity screening using diverse activity models including
antimicrobial, anticancer, and anti-inflammatory activities. The analysis of the
chosen examples allows a discussion of the potential and the unresolved limitations
of the method. Apart from the systemic approach chosen for the experimental
design, we will also refer to new ideas for the fast dereplication of active compounds.

2 Chemical Profiling Techniques in Metabolomics

Chromatography became a major game changer in life sciences in the 1960s (TLC
and GC) and 1970s (HPLC). An example of metabolomics avant-la-lettre is a paper
by Baerheim Svendsen and Karlsen (1967) on the GC analysis of the essential oils of
three different plants. However, in the 1980s this was considered to be like
“collecting stamps.” Fifteen years later, this sort of analysis was called metabolomics
and included under the umbrella of “omics” technologies, in which the understand-
ing of the function of genes was studied by the integration of genomics (DNA),
transcriptomics (RNA), proteomics (proteins), and metabolomics data. The DNA
and RNA molecules share similar physicochemical properties, enabling highly
reproducible analyses based on strict robust extraction protocols. This is not the
case of proteins that have a wide range of properties. In proteomics analysis, proteins
are divided into two major classes, according to their solubility in water in hydro-
philic and hydrophobic proteins and have thus different extraction protocols. In
metabolomics, the situation is even more complex due to the great difference in
physicochemical properties of metabolites in general. These can stem from their
molecular size (e.g., polysaccharides, lignin) or even hydro/lipophilicity in the case
of the small molecules. Among the “small” molecules there are primary metabolites,
ubiquitous compounds that are found in all living cells but there are also specialized
metabolites that are generally species-specific and related to the survival of an
organism in its ecosystem. Altogether some 350,000 natural products are known
from various sources (e.g., plants, microbes, insects) (Banerjee et al. 2015).
Estimations of the number of specialized metabolites are mere speculations, but
knowing that the number of species of living organisms in the world is somewhere
between 10 and 100 million (Pimm et al. 1995) and assuming that every species
produces one unique compound, there should be between 10 and100 million
metabolites in the metabolome of the Earth. The total chemical space of natural
products is thus very much larger than that covered by our present knowledge. There
is still so much to be discovered!

This brings us to the problem of how to define a metabolome. We have just
referred to the metabolome of the planet earth, i.e., the sum of all the metabolomes of
all the organisms (dead or alive) and their environment. Each plant species has its
own metabolome, which is the sum of the metabolomes of all its organs, i.e., roots,
stem, and leaves, etc. These metabolomes correspond to that of the many different
cells in the plant. Even within the cell the different organelles have different
metabolomes. The metabolome of a species might be best defined as the measurable
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set of metabolites that an organism is able to produce, i.e. some compounds might
not always be present in certain plant parts, but their presence depends on the
existence of certain circumstances. The metabolome of a species depends on the
species’ genome. Obviously the single cell analysis at all omics levels is the holy
grail of the omics.

Clearly, any reference to metabolomics requires a clear documentation of the
source of the “metabolome.” The ultimate goal of metabolomics is to describe the
changes in the metabolome under well-defined conditions. Eventually the fluxes in
the organism through the various metabolic pathways should be analyzed
(fluxomics), as changes in the homeostasis of an organism are connected with
changes in fluxes.

To attain the goal of metabolomics, all applications have the same requirements,
i.e. both qualitative and quantitative information about all metabolites in the
biological sample must be generated. However, as per the discussion above it is
clear that the requirements vary according to the application and so will the method
needed to obtain the information. Firstly, when searching for biomarkers of diseases
or bioactivities, it is essential to be able to count on a large database with
metabolomic data of the test organisms to be used or material that has the desired
activity, e.g. extracts from a specific plant species with an interesting activity. This
database should ideally provide information on the effect of all biological variables
on the studied material, for example, the diurnal variation of the metabolome.
Existing databases with all kinds of information from previous experiments that
provide abundant background information can help in the identification of
compounds from their spectra and/or chromatographic data. However,
bioprospecting requires the screening of large numbers of plants that are
characterized by a highly variable and species-specific metabolome, particularly in
the case of specialized metabolism, a situation that is clearly different from the case
of mammalian cells, for example, in which most compounds are well-known
primary metabolites.

It is now generally accepted that no single analytical tool can reveal the real
metabolome (Wishart 2008; Emwas et al. 2019). At present, analytical chemists are
moving in two possible directions to circumvent this limitation, i.e., improving the
quality of individual techniques and/or integrating data from multiple methods.

In the case of NMR, the main limiting issues are its low sensitivity (pmol for
detection limit) and complexity of signals. Sensitivity has been increased using cryo
(cold)-probes and reducing the diameter of NMR tubes (capillary-, micro-, or nano-
tubes). Nevertheless, the sensitivity is still far below that of MS-based methods
(up to 10 times for conventional NMR probe). Generally speaking, NMR is consid-
ered to be the most powerful analytical tool for structure elucidation of pure
compounds but not necessarily in the case of mixture analysis. The most attractive
advantage of NMR as a metabolomics tool is its ease of quantitation. The height or
area of '"H NMR signals is directly proportional to the molar concentration of
analytes, i.e. with a single internal standard all signals can be easily integrated and
quantified. It is in this aspect that NMR has a clear edge over all other analytical
techniques.
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It should also be noted that NMR is currently the only metabolomics method that
does not include a separation step.

In MS-MS, the separation is in the first MS dimension, based on molecular mass,
after which the individual signals are subject to a second MS step in which the
molecules are subject to fragmentation. In hyphenated chromatography-MS
techniques, the retention time, molecular mass, and the fragmentation pattern can
be used to search databases for already-known compounds. For example, it is
possible to identify unknown peaks with high-resolution mass measurements in
combination with the “seven golden rules” or other “dereplication” approaches.
Though (stereo) isomers will be difficult to identify with 100% certainty, unfortu-
nately too often the identity of a compound is accepted ignoring the inherent level of
uncertainty of the used method. For a full identification of new or rare compounds,
their UV, MS, 'H NMR, '*C NMR, and various multidimensional NMR spectral
information must be analyzed. The 1D-NMR data alone are insufficient. Most cases
require multidimensional NMR methods such as COSY, TOCSY, HSQC, and
HMBC spectroscopy to determine distances and interactions between protons,
e.g. to confirm stereochemistry. Known compounds can be identified with a reason-
able certainty if isolated, but the full structural elucidation of new specialized
metabolites from natural products mixtures is still enormously challenging. The
technical limitations of the instrumental NMR analysis were partially solved by a
statistical signal correlation of '"H NMR resonances, the so-called statistical total
correlation spectroscopy (STOCSY) that has been used to identify novel metabolites
in urine, enabling the selection of signals characteristic of one molecule; there are, as
well, a multitude of deconvolution methods for NMR data (Cloarec et al. 2005). As
mentioned before, most of the chemical diversity of metabolites includes specialized
metabolites of which there are no reliable comprehensive NMR databases. However,
there are a number of available NMR spectra databases of primary metabolites
(Human Metabolome Database (HMDB, http://www.hmdb.ca), Biological Mag-
netic Resonance Bank (BMRB, http:/www.bmrb.wisc.edu/metabolomics/),
NMRshiftDB (http://nmrshiftdb.ice.mpg.de/).

Mass spectrometry (MS) is a highly sensitive method (pmol level) and is also
selective due to the high resolution and level of accuracy of the determined molecu-
lar mass and the different fragmentation patterns of the metabolites. The number of
detected signals in MS-based platforms is 10—100-fold that of NMR. In terms of
identification, however, it has inherent limitations. The mass spectrometer only
detects ions formed in the ion source, but there can be a large variation in the
sensitivity for the formation of ions. That means that absolute quantitation is only
possible by running calibration curves for every single compound within certain
ranges of concentrations. Identification is possible by comparison of the exact
molecular mass of the compounds with databases and comparison of fragmentation
patterns with possible candidates and closely related compounds. The MS data is
insufficient for the structural elucidation of new compounds. For low molecular
mass values there are scores of isomers, thus for the elucidation of the full structure
of a molecule, including its stereochemistry, further spectral data are needed (see
above).
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Recent improvements of MS in metabolomics have risen from signal
deconvolution of MS data rather than sensitivity or accuracy which is already
remarkably high. This means that the focus has moved to the identification of
compounds by increasing resolution and developing algorithms that can deduce
molecular formulae from adduct ions based on a classification of molecules. Increas-
ing resolution is mostly associated with improved mass analyzers, such as a quadru-
pole, TOF, Orbitrap, or iontrap. In the early times, the key issue was to improve
accuracy of ion mass by suppressing fragmented ions. But the trend is changing. The
goal is now to keep fragment signals together with molecular ones to use them for
fingerprinting. This additionally offers the possibility of comparing the spectra to
reveal the shared fragments of compounds which may point to a basic structure that
is similar to all. Recently, many manufacturers offer improved ion trap analyzers to
produce robust MS/MS signals that are the key for the identification with matching
techniques. Unlike NMR signals, MS data do not provide any indication of similar-
ity between signals. Jeffryes et al. (2015) have suggested the use of Metabolic
In-silico Network Expansions (MINEs) as a new tool for identifying metabolites
from an LC-MS dataset. MINEs used generalized biochemical transformations to
propose structures, leading thus to the suggestion of putative metabolite structures.

Another dereplication approach is the use of molecular networking (MN) (Yang
et al. 2013). This statistical correlation of MS/MS data is based on a generated
MS/MS database of metabolites which can be searched for fragments of known
metabolites in the biosynthetic network. The construction of a molecular network is
based on the analysis of MS/MS spectra of compounds, presuming that molecules
with similar structures should display similar fragmentation patterns. Allard et al.
(2016) demonstrated the use of MN combined with other in-silico MS/MS fragmen-
tation database as a dereplication strategy of the metabolites from natural sources.

The comparison of different profiling tools is summarized in Table 1.

3 Statistical Methods to Correlate Between Chemical Profiles
and Bioactivity

The key step of OMICS-based chemical profiling is data mining using statistical
analysis. The metabolomics datasets generated by NMR or MS are vast, requiring
chemometrics to extract any useful information from the data. The chemometrics
methods usually include a statistics-focused approach and/or a computer-dominant
approach such as machine learning (Wishart 2008). Paul and de Boves Harrington
(2021) summarized the basic concepts and applications of those methods very
clearly.

In this section, we will focus on the statistical approach which is generally used to
detect the active compounds in natural products extracts. This approach uses two
different methods to link signals of compounds with activity: discriminant analysis
or correlation analysis.
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Table 1 Comparison of different technologies used in metabolomics

Technology

NMR
spectroscopy

GC-mass
spectroscopy

LC-mass
spectroscopy

MS and
MS/MS

Advantages

* Non-destructive
» Rapid (ca. 5 min per
sample)
* Simple sample
preparation
- Requires no
derivatization
- Requires no
extraction in case of biologic
fluids
* Detects broad range of
compounds
* Quantitative
* Strong structural
elucidation and identification
power
* Robust and reproducible
* Compatible with liquids
and solids

* Robust
* High resolution and
sensitivity

* Requires modest sample
size

* Detects most organic and
some inorganic molecules

» Excellent database for
identification

* High sensitivity

* Requires minimal sample
size

» Relatively easy sample
preparation

* Deconvolution
overlapping features

* High resolution &
reproducibility

» Relative quantitation

» Large databases for
metabolite identification

* Can be used in metabolite
imaging single cells (MALDI)

Disadvantages

* Low sensitive

* Requires large sample size

« Cannot detect inorganic ions and
non-protonated compounds

« Expensive equipment

* Destructive (Sample not recoverable)

* Requires sample derivatization

* Requires individual calibration curve
for absolute quantitation

* Takes longer time (ca 30 min per
sample)

« Limitation on the novel compound
identification

¢ Destructive

* Requires individual calibration curve
for absolute quantitation

¢ Takes longer time (ca 30 min per
sample)

« Limitation on the novel compound
identification

» Limited software available and
databases for (secondary) metabolite
identification

* Destructive

* Requires individual calibration curve
for absolute quantitation

» Limited software available and
databases for (secondary) metabolite
identification

NMR nuclear magnetic resonance, GC gas chromatography, LC liquid chromatography, MALDI
matrix-assisted laser desorption/ionization
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3.1 Correlation with a Simplified Dataset: Discriminant Analysis

Discriminant analysis is nowadays the most popular approach for the identification
of active compounds in complex mixtures. Partial least squares discriminant analysis
(PLS-DA) is frequently applied to detect differences by making qualitative
classifications, such as active and non-active samples; it is based on the definition
of preferably two classes, and any type of classes can be formulated. PLS-DA, a
supervised method, models the variance within the dataset by statistically discrimi-
nating groups of observations. Orthogonal PLS (OPLS) was developed to improve
the correlation power of PLS by orthogonalizing non-related variables through
orthogonal signal correction (OSC filtering). This facilitates the interpretation of
the model because the variables (metabolome) are related to the targeted property
(e.g., high or low bioactivity).

A good example of this application, published by Cardoso-Taketa et al. (2008), is
the correlation of the sedative effect of Galphimia glauca Cav. and galphimine, a
triterpenoid already known to occur in this plant. Working on six different
collections of G. glauca they found two collections that were highly active, while
the rest did not show much activity. Applying PLS-DA to the NMR metabolomic
data and the sedative effects found in the animal model, they were able to correlate
the biological activity with galphimine.

A similar approach was applied to identify biologically active metabolites
obtained with different extraction methods and solvents from Ocotea odorifera
using MS-based metabolomics. Alcantara et al. (2021) investigated the anti-
inflammatory activity of a decoction of Ocotea odorifera and different fractions
from its ethanolic extracts using dual inhibition of edema and neurophil recruitment.
The chemical profiling data obtained by UPLC-HRMS or GC-MS were correlated
with the anti-inflammatory activity by PLS-DA, resulting in the identification of
S-(+)-reticuline as an active principle. Its activity was confirmed by testing the pure
compound after isolation.

Other examples of the successful application of this approach are the studies of
the antimicrobial activity of essential oils (Maree et al. 2014) and the identification of
an antitussive active compound from Tussilago farfara L. (Lia et al. 2013).

The work of Maree et al. (2014) showcases the strength of the chemometrics and
in particular of the OPLS-DA method. Based on the data obtained from the analysis
of 158 different essential oils by GC-MS and their antimicrobial activities on several
different strains of microorganisms, two classes were defined: active (MIC <2 mg/
ml) and non-active (MIC >2 mg/ml). This allowed the detection of eugenol as a
putative marker for activity, and an apparent synergistic effect with geraniol.
a-Pinene, limonene, and sabinene, other components of the essential oils correlated
with no activity. The study also revealed both antagonistic and synergistic antimi-
crobial effects between monoterpenes and eugenol on some microbes.

The correlation approach is clearly more efficient than conventional bioactivity-
guided fractionation, to identify active compounds in the initial stage of drug
development. The limitation of this application, however, lies in a tendency to
overfit if the number of variables considerably exceeds the number of samples
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(Gromski et al. 2015). In other words, in many cases there is a risk of a
model showing a significant separation mainly by chance. This problem can be
partially solved by increasing the number of samples which in turn increases the
demand on the robustness of the analytical methods to, i.e. their ability to provide
highly reproducible results.

The possibility of overfitting in PLS- and OPLSD-DA can be tested by proper
validation methods. Commonly used validation tests are the permutation test or the
CV-ANOVA test (Szymanska et al. 2012). Once the model is validated,
corresponding discriminating components can be further investigated to consider
the responsible metabolites for the activity, preferably at single compound level. The
validation methods for the correlation tests have been well reviewed by Westerhuis
et al. (2008) providing details of their advantages and limitations.

Other limitations are associated with the quality of biological data. Ideally, the
number of data processing steps should be reduced as it has been shown that there is
an inverse relationship between the number of steps and closeness to an intact
correlation. However, it is not always possible to have two clearly activity-
distinguished groups since most biological data have a much lower degree of
resolution than chemical data. Thus, original data are often grouped into simple
classes, for example, active and non-active groups that severely misrepresent reality.
For example, Maree et al. (2014) considered the samples with MIC values below
2 mg/ml as active and non-active above this value. It is challenging to set up the
proper criteria, in fact, in most cases it is based on trial and error. Although the
simplified variables can reduce the ambiguity in the correlation between two
datasets, there is clearly some degree of overfitting. Instead of dividing groups by
different criteria, it could be better to work with the quantitative data obtained from
the biological activity tests and correlate the activity directly without the input of
supervised group information.

3.2 Correlation Analysis with Non-Discriminant Variables

In a correlation analysis, the relationship between two different datasets,
e.g. metabolome data (mostly X-variables) and biological data (Y-variables, quanti-
tative), is determined without simplifying original variables. Among the available
methods, partial least squares to latent structures (PLS) modeling is the most
popular. In this method, biological data are the quantitative and continuous
variables, if necessary with some post-processing, e.g. logarithmic transformation
of the biological data. Many studies have been done using this approach to identify
active metabolites.

One example is the study published by Yuliana et al. (2011) who identified two
flavonoids as responsible for the adenosine Al receptor binding activity of
Orthosiphon aristatus (Blume) Miq. (synonym Orthosiphon stamineus) based on
the correlation of its NMR-based metabolome and the tested activity. In their study, a
novel gradient extraction method was applied. In this method, instead of a single
solvent, a stepwise polarity gradient from, e.g., ethyl acetate via methanol to water
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was pumped through the ground dry plant material mixed with kieselguhr (7:1),
yielding between 20 and 30 fractions. Each fraction was profiled by "H NMR and its
potential anti-obesity activity was assessed based on an adenosine Al receptor
binding assay. Examination of the loading plots of the PLS and OPLS models led
to the identification of two active methoxyflavonoids, 4’,5,6,7-tetramethoxyflavone
(tetramethyl scutellarein) and 3’,4’,5,6,7- pentamethoxyflavone (sinensetin).

Another example is the work of Ali et al. (2013), who applied PLS and OPLS
analyses to correlate the metabolome of sponges obtained using NMR spectroscopy
with their effect in the adenosine Al receptor binding activity assay. The
metabolome of over 200 sponge samples was obtained using '"H NMR, and their
adenosine Al receptor binding activity was measured. OPLS analysis was
performed with two datasets. From the loading plots several signals were selected
as activity-associated. Most signals were unknown or difficult to identify only by
"H-NMR, requiring the isolation of compounds. Having isolated several compounds
which matched well with activity-associated signals, these active metabolites were
then identified as the sesterterpenes, halisulfate -1, -3, -4, -5, and suvanine.

De Melo et al. (2020) studied the spasmolytic activity of Cissampelos
sympodialis Eichler leaf extract in a trachea preparation. While warifteine, a
bisbenzylisoquilonine alkaloid, is allegedly the main bioactive substance in this
species, its low solubility in polar solvents suggested the presence of another
bioactive compound in the aqueous extracts. To investigate this alternative, PLS
modeling was used to study the correlation of the metabolome obtained by NMR of
diverse polar extracts with spasmolytic activity. The PLS model showed that the
signals from flavonoids were positively correlated with the activity. Therefore, they
concluded that identified flavonoids such as kaempferol and quercetin might be the
important contributors to the activity.

Many studies have applied successfully the combination of metabolomics and
bioassays with chemometrics in the identification of biologically active compounds
in complex mixtures. Researchers can identify active metabolites from the crude
extracts without isolation of single compound with this approach. However, from a
practical point of view, the metabolomics approach itself is not enough to identify
active molecules. Ultimately, the bioactivity of a compound must be confirmed with
tests on the pure compound. In any case, and particularly in case of novel
compounds, proper identification requires the determination of the full set of physi-
cochemical properties and spectral data. Nonetheless, the advantages of the
metabolomics approach are clear. To begin with, it allows the fast dereplication in
case of already-known active compounds. Secondly, there is no need for large-scale
isolation of the active compounds, nor bioassays and, if necessary, fractionation can
be guided by the NMR or (LC- or GC-) MS spectra of the fractions. Particularly in
the case of in-vivo bioassays (including clinical trials) only one first round of
bioassays is needed, after which chemistry-guided fractionation is sufficient to
isolate the active compound. In many cases this may have the additional advantage
of reducing the number of animal experiments.
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4 Application of Metabolomics-Based Bioactivity to Various
Disease Models

4.1 Antimicrobial Activity

Most infectious diseases are easy to diagnose and humans have been tirelessly
searching for medicines in nature to treat infections since ancient times. With the
discovery of penicillin in 1928 by Fleming, microorganisms have been targeted for
the discovery of other novel antibiotics. After a period of reduced interest, in recent
years there is a revival in antibiotic bioprospecting, mainly because of the rapid
spread of antibiotic-resistant pathogenic microorganisms and the failure to develop
active derivatives of the existing ones. The conventional lead-finding of antimicro-
bial drugs is bioactivity-guided fractionation much like for other disease models.
Aided by chemometrics, diverse in-silico methods have been recently introduced
into this field, most of which are applied in the post lead-finding steps such as hit
characterization and hit optimization (Xu et al. 2009). The application of
metabolomics in the process of lead-finding involves:

1. metabolic profiling of crude extracts of selected organisms with antimicrobial
activity, identification of active compounds

2. metabolomics-guided fractionation to isolate an active compound(s)

3. metabolic profiling of pathogenic microorganisms after treatment with potentially
antimicrobial extracts or leads to identify their potential mode of action.

Tang et al. (2015) identified 10 antimicrobial compounds from burdock (Arctium
lappa L.) leaves. The chemical composition of the leaf extracts was analyzed by
UPLC-MS. For the activity, the inhibition of biofilm formation was measured.
Biofilms are communities of microorganisms that are attached to a surface and are
considered to be a survival mechanism of bacteria (Donlan and Costerton 2002).
Anti-biofilm compounds can be used as antimicrobials. The obtained chemical and
biological data were correlated by PLS-DA and resulted in the identification of
10 activity-correlated metabolites: chlorogenic acid, caffeic acid, p-coumaric acid,
quercetin, ursolic acid, rutin, luteolin, crocin, benzoic acid, and tenacissoside. After
evaluating the activity of pure samples of these compounds, chlorogenic acid and
quercetin were determined to be the main anti-biofilm active compounds isolated
from burdock leaf.

Dos Santos et al. (2018) used a similar approach to examine the antimicrobial
activities of the volatile oils of several plant species. Eight volatile oils representing
different levels of antimicrobial activity (from inactive to very active) were selected
and profiled using GC-MS for their metabolomic analysis. The subsequent OPLS-
DA revealed a high correlation of several metabolites 7,8-epoxy-1-octene,
cis-a-bergamotene, methyl linolelaidate, alloaromadendrene, and veridiflorol with
a significant antimicrobial activity. Interestingly, evidence of a specific chemical
interaction between bornyl acetate and 4-terpineol was also observed, since they
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were negatively correlated with each other in terms of activity, suggesting antago-
nism of those compounds.

Streptomyces species are the most studied Actinomycetes for the production of
antibiotics. Wu et al. (2015a) applied NMR-based metabolomics to Actinomycetes
and rapidly discovered novel antibiotics. The metabolomic comparison of wild-type
and streptomycin-resistant actinomycetes strains revealed a stronger antimicrobial
activity of the latter. Using PLS analysis, 7-prenylisatin was identified as the
bioactive compound. The antimicrobial activity was confirmed by studies with the
pure isolated compound (Fig. 2).

Because of bacterial resistance to current antibiotics, it is extremely important to
find active compounds with a different mode of action to that of the current
antibiotics. Thus, the mode of action should be identified in an early stage of lead-
finding. A metabolomics approach in which the effect on the pathogenic
microorganisms of known antibiotics and novel candidates is compared could
provide an insight into the mode of action (Hoerr et al. 2016). Clearly, metabolomics
is an important tool that should speed up the process of finding novel antibiotics.

While not directly connected to the correlation between chemical ingredients and
antibiotic activity, the possibility of the induction of new antibiotics in a co-culture
system (Streptomyces and Aspergillus) was probed using an analogous approach.
Though well-known as a source of antibiotics, the Streptomyces metabolome is very
sensitive to a number of external conditions. By co-culturing two different species,
the interactions between the organisms may induce the production of novel
compounds in either species. Moreover, catabolism of the compounds formed may
add even further chemodiversity. Wu et al. (2015b) showed that the co-culture of
Streptomyces with Aspergillus produced significant modifications in their individual
biosynthetic processes yielding many new metabolites which could not be detected
in the individual organisms.

4.2 Anticancer Activity

Natural products and their derivatives have a tremendous potential for the develop-
ment of anticancer drugs. More than 50% of all anticancer drugs approved for
therapeutic use in the past 70 years are either natural product or semi-synthetic
analogs (Butler et al. 2014). Metabolomics has been used not only for drug devel-
opment, but also in many fields related to cancer research including cancer progno-
sis, diagnosis, and treatment efficacy. The in-silico approach described above has
been applied to the search of new lead compounds in many natural resources. An
interesting example of its application in cancer research is reported by Graziani et al.
(2018). Extracts of 14 legumes were screened against an array of human colorectal
cancer cell lines in the search for bioactive natural products. Two plant extracts were
selected for their strong antiproliferative activity using PCA and Hierarchical Cluster
Analysis (HCA) (Fig. 3). The 2D NMR analysis of these plant extracts allowed the
identification of two putative active compounds: a cycloartane glycoside and a
protodioscin derivative. To confirm their bioactivity, these two compounds were
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Fig. 2 Example of multivariate data analysis. PLS score plot (a) shows a good separation between
wild-type Streptomyces sp. (blue) and its two mutant derivatives (MBT28-30: light blue and
MBT28-91: red). The corresponding loading plot (b) presents the NMR signals (dashed circles)
which contribute mostly to the separation of the samples and their bioactivity. The arrow refers to
the characteristic proton signal at § 7.03 (¢, J/ = 7.2 Hz). X, primary variable of the chemical shift; Y,
bioactivity. (Adopted from Wu et al. 2015a)
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Fig. 3 Data of cell growth percentage were analyzed by HCA dendrogram (a) and PCA (b).
Control and colon cancer cell lines which were treated with the plant extracts were distinguished.
These analyses enabled classification of the species into 3 subsets; Groups I — the active species
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isolated and tested positively for antiproliferative activity against colon cancer cells.
These results are clear evidence of the efficiency of metabolomics as a tool to speed
up the lead-finding process, since the active compounds are already identified in the
crude extracts avoiding the time-consuming on-silica isolation procedure.

Using a similar approach, Bao et al. (2018) applied UPLC-MS-based
metabolomics to identify anticancer compounds in Forsythiae fructus (from For-
sythia suspensa Vahl). Crude extracts obtained with diverse solvents were profiled
and the results were correlated with their anticancer activity against murine mela-
noma B16-F10 cell lines. OPLS-DA was applied to maximize the discrimination of
extracts with different degrees of anticancer activity resulting in the selection of
betulinic acid as a potential anticancer compound in Forsythiae fructus.

Gao et al. (2010) performed antiproliferative activity tests against human lung
cell line SK-MES-1 on Scutellaria baicalensis Georgi root extracts. The data
provided by the HPLC-UV and "H NMR analysis of the extracts were combined
with PCA and PLS analysis for more complete metabolomics data, allowing the
identification of baicalin, baicalein, and wogonin as the compounds responsible for
the cell growth inhibition activity of the extracts.

Tawfike et al. (2019) adopted a different approach to study anticancer activity of
the endophytic fungus Aspergillus flocculus, isolated from the stem of the medicinal
plant Markhamia lutea (Benth.) K.Schum. (Markhamia platycalyx is a synonym). Its
in-vitro culture was found to yield high levels of anticancer compounds active
against the chronic myelogenous leukemia cell line K562. Several fractions of the
fungal culture were analyzed by LC-MS. A combination of a molecular interaction
network and OPLS-DA of the chemical data resulted in the identification of five
active metabolites, namely, cis-4-hydroxymellein, 5-hydroxymellein, diorcinol,
botryoisocoumarin A, and mullein. This study clearly shows the advantage of
combining different forms of in-silico analysis prior to any purification attempts.

Another successful study using this approach was recently published by Ory et al.
(2019) involving an anti-breast cancer compound (tested on MCF-7 cells) from a
marine-derived Penicillium chrysogenum extract. Using different correlation and
discriminant analysis including PLS-DA and PLS modeling, ergosterol was found to
have anticancer activity with an antiproliferative activity on MCF-7 cells with an
IC50 at 0.10 mM concentration. An interesting aspect of this report is the description
of a workflow that allows the combination of both the chemical and biological data, a
key step in this sort of application. Sometimes, a metabolomics approach alone is not
sufficient to identify active metabolites in the crude extracts due not only to the
complexity of the mixture but also to the low concentration levels of potentially
interesting metabolites. In that case, conventional bio-guided fractionation can be
useful as a supplementary tool. The work of Graziani et al. (2021) is a good example
of this. They evaluated the anticancer activity of two plant species, Ononis diffusa

Fig. 3 (continued) (black), group II — active only at the highest tested doses (gray), and group III —
no significant effect (white). Adapted from Graziani et al. (2018)
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Ten. and O. variegata L. using colorectal cancer cell lines. When the NMR-based
metabolomics data were correlated with the anticancer activity, most of the poten-
tially interesting activity related signals were concentrated in the aliphatic region of
the NMR spectra, a region which is difficult to annotate. The partial purification of
the extracts using column chromatography and the application of different 2D NMR
techniques led to the identification of a mixture of oxylipins as putative bioactive
compounds. However, the report provides no information on activity confirmation of
pure isolated compounds.

Gao et al. (2010) reported the application of metabolomics to study the mode of
action of (—)-5-hydroxyequol, an isoflavone metabolite obtained by microbial
biotransformation known to affect lung cancer cells through an unknown mechanism
of action. Applying "H NMR-based metabolomics it was possible to observe rapid
changes in the metabolism in human lung cancer cells, especially in the
glycometabolism.

4.3 Anti-inflammatory Activity

Inflammation is involved in complex diseases such as autoimmune diseases, meta-
bolic syndrome, neurodegenerative diseases, cancers, and cardiovascular diseases
(Chen et al. 2017). The development of new inflammatory modulators to treat such
diseases is therefore of great interest in the pharmaceutical industry. However, their
development has been hampered by several issues regarding their potency, efficacy,
and adverse effects. Since the introduction of acetylsalicylic acid in the nineteenth
century, based on the use of salicylic acid-containing medicinal plants, nature has
been regarded as an important resource to screen in the search for anti-inflammatory
drugs resulting in multiple reports of natural products with alleged anti-inflammatory
effects both in vitro and in vivo. Unsurprisingly, metabolomics has also been applied
frequently in recent times to detect novel lead compounds from nature. A good
example was recently reported for the methanolic extracts of Cyrtanthus contractus
N.E.Br. (Amaryllidaceae) bulbs by Rafova et al. (2019). These bulb extracts showed
a significant anti-inflammatory activity decreasing the level of E-selectin, a key
player in the initiation of inflammation in a dose-dependent manner. Fractions
from the extracts were profiled using LC-MS and evaluated for their biological
activity. Subsequently, the correlation between biological activity and metabolite
levels was calculated, resulting in the identification of narciclasine as a putative
active compound. The bioactivity of pure narciclasine confirmed the findings.
Alcantara et al. (2021) reported a similar approach to study the leaves of Ocotea
odorifera (Vell.) Rohwer. This plant has been used traditionally for the treatment of
rheumatism. Chemical profiles of leaf extracts and their fractions were obtained
using LC-HRMS and their in vivo anti-inflammatory activity was tested. PLS-DA of
the chemical data suggested that the activity is correlated with S-(+)-reticuline, a
known alkaloid from this plant. Yet another unknown compound, which was not
identified in this study was also found to be active. The researchers proved their aim,
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which was to show the competitiveness of metabolomics as a rapid tool for
dereplication.

Domingos et al. (2019) demonstrated the successful identification of a new anti-
inflammatory compound using this approach. The extracts from Poincianella
pluviosa var. peltophoroides (Benth.) L.P.Queiroz (unresolved name) showed sig-
nificant in vivo anti-inflammatory activity. The UHPLC-HRMS profiling of the
extracts allowed the isolation of four compounds using a metabolomics-guided
chromatographic process. Of these, two were previously unknown compounds and
were identified as 4’//-methoxycaesalpinioflavone and 7-methoxycaesalpinioflavone
while the other two were the known compounds, rhuschalcone VI and
caesalpinioflavone. The activity of all four was confirmed using pure compounds.

The combination of metabolomics and bio-guided fractionation has thus proved
to be very efficient for the identification of active metabolites. A further example of
its successful application is the LC-MS-based metabolomics of Actinidia arguta
(Siebold & Zucc.) Planch. ex Miq. leaves which combined with bio-guided fraction-
ation resulted in the identification of the active compounds caffeoylthreonic acid and
danshensu (Kim et al. 2019). The identification of known compounds is thus
possible by using spectral data obtained from NMR and/or MS spectroscopy.
Thanks to the development of analytical techniques and technological improvements
in existing instrumentation, it is now much easier to analyze mixtures and identify
the biologically active components within them.

5 Conclusions and Perspective

We have selected representative examples among the hundreds of published reports
that describe the role of metabolomics in natural products lead-finding. Nature has
been and will most likely continue to be a relevant, if not the most relevant, source
for novel drugs as reflected in, among others, the review by Newman and Cragg
(2007). Biodiversity is essential for chemodiversity. This was naturally appreciated
by our ancestors, who understood its power and were able to take advantage of
it. Medicinal plants such as Atropa belladonna L. and Papaver somniferum L. are
just two among the many examples of plants that have provided humanity with a
number of important therapeutic solutions that are part of the core of western
medicine.

Analyzing natural products research for novel drugs, it is clear that there have
been two ways to go about it. One consists in the at-random screening of plants and
other organisms for a certain activity. The other is to use the accrued traditional
knowledge on medicinal plants as a starting point. Whichever the approach chosen,
researchers will have to deal with complex mixtures of compounds among which a
few active ones will need to be identified. Active compounds might be present in
very low concentrations, might be very labile, or present in an inactive form that may
require some kind of transformation to acquire activity. Furthermore, experience has
shown that in many cases, the alleged activity of a traditional medicine is due to a
particular combination of compounds that act through synergistic and/or
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antagonistic interactions. Bioprospecting throughout the past decades used the
classical approach of at-random screening for a certain activity followed by
bioassay-guided fractionation. The present industrial approach is at-random high-
throughput screening using fast molecular level bioassays. However, this approach
is an elaborate, time- and energy-consuming process with results that do not often
enough match with the invested resources. This experimental design is based on the
single target-single compound paradigm and having been undoubtedly successful in
some cases was used for many years and continues to be used. An example of this
approach was the NCI program for antitumor drugs which yielded some very active
molecules and leads. However, the present day perspective of big pharmaceutical
companies regarding novel drugs development is one of caution, considering the
level of risk of the investment required, leaving the lead-finding process in hands of
small start-up companies, universities, or public research institutions. The biodiver-
sity treaty (Nagoya protocol on Access and Benefit-sharing, https://www.cbd.int/
abs/about/) did not really encourage the pharmaceutical industry to invest in
bioprospecting, whereas on national level investment in such research is limited.
The studies on local traditional medicines have often higher priority. It is clear that to
increase the chances of success, the whole process has to be speeded up, and
particularly in connection with traditional medicine sources, more in-vivo assays
should be performed to validate their use, using a systems biology-based approach.
Whichever the chosen approach, metabolomics can be used to shorten the time to
identify the active compounds. Metabolomics of different extracts from a plant in
combination with the bioassay data can in both designs be used to identify the
signals from the metabolomics data that correlate with activity. Based on the
information obtained from the set of analytical data (e.g., NMR signals, Mass
spectra, retention time), a preliminary identification is possible by comparing the
data with already available data from a metabolomics database. This information
allows an informed decision on whether it is worthwhile to isolate the presumably
active compound(s) for further studies. If the compound is deemed of interest, the
isolation procedure must be scaled up to obtain sufficient amounts of the pure
compound(s) to submit it to full spectral data analysis and the relevant bioassay(s).
For this metabolomics-guided fractionation should be preferred over the bioassay-
guided fractionation process since it is faster and may reduce the use of animal
experiments.

In conclusion, the “on-silica” approach remains an excellent tool to fractionate
extracts on a small scale for metabolomics analysis and on a larger scale for the
isolation of sufficient amounts of pure active compounds for full spectral analysis for
identification or for structure elucidation of novel compounds.

The “in-silico” approach, based on the systems biology paradigm of holistic
observations, accelerates the dereplication of known active compounds, among
others, by reducing the required number of bioassays and animal experiments.
Moreover the “in-silico” approach will allow deeper insight into the mode of action
by measuring the metabolic changes observed in living cells and organisms when
treated with drugs. A further not inconsiderate advantage of the application of “in-
silico” tools is the reduction of the time needed to identify an active compound, but
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most importantly in reduction of the amount of toxic, contaminating solvents and
consumables required by early stage dereplication of known active compounds. In
other words, the “in-silico” approach is not only faster but also a greener procedure
for finding novel leads.

References

Akhtar MHT, Mushtaq MY, Verpoorte R et al (2016) Zebrafish as a model for systems medicine
R&D: rethinking the metabolic effects of carrier solvents and culture buffers determined by "H
NMR metabolomics. OMICS 20:42-52. https://doi.org/10.1089/0mi.2015.0119

Alcantara BGYV, Oliveira FP, Katchborian-Neto A et al (2021) Confirmation of
ethnopharmacological anti-inflammatory properties of Ocotea odorifera and determination of
its main active compounds. J Ethnopharmacol 264:113378. https://doi.org/10.1016/j.jep.2020.
113378

Ali K, Igbal M, Yuliana ND et al (2013) Identification of bioactive metabolites against adenosine
A1l receptor using NMR-based metabolomics. Metabolomics 9:778-785. https://doi.org/10.
1007/s11306-013-0498-9

Allard PM, Pefesse T, Bisson J et al (2016) Integration of molecular networking and in-silico
MS/MS fragmentation for natural products dereplication. Anal Chem 88:3317-3323. https://
doi.org/10.1021/acs.analchem.5b04804

Baerheim Svendsen A, Karlsen J (1967) Gaschromatographie von Monoterpenkohlenwasserstoffen
aus Aectherischen Oelen an gepackten Trennsaulen mit niedrigem Gehalt an fluessiger
stationaere Phase. Planta Med 15:1-5. https://doi.org/10.1055/s-0028-1099949

Banerjee P, Erehman J, Gohlke BO et al (2015) Super natural II — a database of natural products.
Nucleic Acids Res 43:D935-D939. https://doi.org/10.1093/nar/gku886

Bao JL, Ding RB, Jia XJ et al (2018) Fast identification of anticancer constituents in Forsythiae
Fructus based on metabolomics approaches. J Pharm Biomed Anal 154:312-320. https://doi.
org/10.1016/j.jpba.2018.03.020

Boezio B, Audouze K, Ducrot P et al (2017) Network-based approaches in pharmacology. Mol
Informatics 36:1700048. https://doi.org/10.1002/minf.201700048

Butler MS, Robertson AAB, Cooper MA (2014) Natural product and natural product derived drugs
in clinical trials. Nat Prod Rep 31:1612-1661. https://doi.org/10.1039/c4np00064a

Cardoso-Taketa AT, Pereda-Miranda R, Choi YH et al (2008) Metabolic profiling of the Mexican
anxiolytic and sedative plant Galphimia glauca using nuclear magnetic resonance spectroscopy
and multivariate data analysis. Planta Med 74:1295-1301. https://doi.org/10.1055/s-
2008-1074583

Chen L, Deng H, Cui H et al (2017) Inflammatory responses and inflammation-associated diseases
in organs. Oncotarget 9:7204—7218. https://doi.org/10.18632/oncotarget.23208

Cloarec O, Dumas ME, Craig A et al (2005) Statistical total correlation spectroscopy: an explor-
atory approach for latent biomarker identification from metabolic 'H NMR data sets. Anal Chem
77:1282-1289. https://doi.org/10.1021/ac048630x

Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100:72—
79. https://doi.org/10.1016/j.jep.2005.05.011

Cuperlovic-Culf M, Culf AS (2016) Applied metabolomics in drug discovery. Expert Opin Drug
Discovery 11(8):759-770. https://doi.org/10.1080/17460441.2016.1195365

De Donno A, Grassi T, Idolo A et al (2012) First-time comparison of the in vitro antimalarial
activity of Artemisia annua herbal tea and artemisinin. Trans R Soc Trop Med Hyg 106:696—
700. https://doi.org/10.1016/j.trstmh.2012.07.008

de Melo ICAR, de Souza ILL, Vasconcelos LHC et al (2020) Metabolomic fingerprinting of
Cissampelos sympodialis Eichler leaf extract and correlation with its spasmolytic activity. J
Ethnopharmacol 253:112678. https://doi.org/10.1016/].jep.2020.112678


https://doi.org/10.1089/omi.2015.0119
https://doi.org/10.1016/j.jep.2020.113378
https://doi.org/10.1016/j.jep.2020.113378
https://doi.org/10.1007/s11306-013-0498-9
https://doi.org/10.1007/s11306-013-0498-9
https://doi.org/10.1021/acs.analchem.5b04804
https://doi.org/10.1021/acs.analchem.5b04804
https://doi.org/10.1055/s-0028-1099949
https://doi.org/10.1093/nar/gku886
https://doi.org/10.1016/j.jpba.2018.03.020
https://doi.org/10.1016/j.jpba.2018.03.020
https://doi.org/10.1002/minf.201700048
https://doi.org/10.1039/c4np00064a
https://doi.org/10.1055/s-2008-1074583
https://doi.org/10.1055/s-2008-1074583
https://doi.org/10.18632/oncotarget.23208
https://doi.org/10.1021/ac048630x
https://doi.org/10.1016/j.jep.2005.05.011
https://doi.org/10.1080/17460441.2016.1195365
https://doi.org/10.1016/j.trstmh.2012.07.008
https://doi.org/10.1016/j.jep.2020.112678

Natural Products Drug Discovery: On Silica or In-Silico? 139

Domingos OD, Alcantara BGV, Santos MFC et al (2019) Anti-inflammatory derivatives with dual
mechanism of action from the metabolomic screening of Poincianella pluviosa. Molecules
24:4375. https://doi.org/10.3390/molecules24234375

Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant
microorganisms. Clin Microb Rev 15:167-193. https://doi.org/10.1128/CMR.15.2.167-193.
2002

dos Santos FA, Sousa IP, Furtado NAJC et al (2018) Combined OPLS-DA and decision tree as a
strategy to identify antimicrobial biomarkers of volatile oils analyzed by gas chromatography—
mass spectrometry. Rev Bras Farm 28:647-653. https://doi.org/10.1016/j.bjp.2018.08.006

Emwas AH, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GAN, Raftery D, Alahmari F,
Jaremko L, Jaremko M, Wishart DS (2019) NMR spectroscopy for metabolomics research.
Metabolites 9(7):123. https://doi.org/10.3390/metabo9070123

Gao JY, Zhao HY, Hylands PJ et al (2010) Secondary metabolite mapping identifies Scutellaria
inhibitors of human lung cancer cells. J Pharm Biomed Anal 53:723-728. https://doi.org/10.
1016/j.jpba.2010.04.019

Graziani V, Scognamiglio M, Belli V et al (2018) Metabolomic approach for a rapid identification
of natural products with cytotoxic activity against human colorectal cancer cells. Sci Rep 8:
5309. https://doi.org/10.1038/541598-018-23704-9

Graziani V, Potenza N, D’Abrosca B et al (2021) NMR profiling of Ononis diffusa identifies
cytotoxic compounds against cetuximab-resistant colon cancer cell lines. Molecules 26:3266.
https://doi.org/10.3390/molecules26113266

Gromski PS, Muhamadali H, Di E et al (2015) A tutorial review: metabolomics and partial least
squares-discriminant analysis — a marriage of convenience or a shotgun wedding. Anal Chim
Acta 879:10-23. https://doi.org/10.1016/j.aca.2015.02.012

Hoerr V, Duggan GE, Zbytnuik L et al (2016) Characterization and prediction of the mechanism of
action of antibiotics through NMR metabolomics. BMC Microbiol 16:82. https://doi.org/10.
1186/512866-016-0696-5

Hopkins AL (2007) Network pharmacology: network biology illuminates our understanding of
drug action. Nat Biotechnol 25:1110-1111. https://doi.org/10.1038/nbt1007-1110

Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol
4:682-690. https://doi.org/10.1038/nchembio.118

Ingkaninan K, de Best CM, van der Heijden R et al (2000) HPLC with on-line coupled UV, mass
spectrometric and biochemical detection for identification of acetylcholinesterase inhibitors
from natural products. J Chromatogr A 872:61-73. https://doi.org/10.1016/s0021-9673(99)
01292-3

Jeffryes JG, Colastani RL, Elbadawi-Sidhu M et al (2015) MINEs: open access databases of
computationally predicted enzyme promiscuity products for untargeted metabolomics. J
Chem Inform 7:44. https://doi.org/10.1186/s13321-015-0087-1

Jiang H, Hu C, Chen M (2021) The advantages of connectivity map applied in traditional Chinese
medicine. Front Pharmacol 12:474267. https://doi.org/10.3389/fphar.2021.474267

Kim GD, Lee JY, Auh JH (2019) Metabolomic screening of anti-inflammatory compounds from the
leaves of Actinidia arguta (Siebold & Zucc.) Planch. ex Miq. (Hardy Kiwi). Foods 8:47. https://
doi.org/10.3390/foods8020047

Klingelhofer I, Ngoc LP, van der Burg B et al (2021) A bioimaging system combining human
cultured reporter cells and planar chromatography to identify novel bioactive molecules. Anal
Chim Acta 1183:338956. https://doi.org/10.1016/j.aca.2021.338956

Leonti M, Verpoorte R (2017) Traditional mediterranean and European herbal medicines. J
Ethnopharmacol 199:161-167. https://doi.org/10.1016/j.jep.2017.01.052

Li S, Zhang B (2013) Traditional Chinese medicine network pharmacology: theory, methodology
and application. Chin J Nat Med 11:0110-0120. https://doi.org/10.1016/S1875-5364(13)
60037-0


https://doi.org/10.3390/molecules24234375
https://doi.org/10.1128/CMR.15.2.167-193.2002
https://doi.org/10.1128/CMR.15.2.167-193.2002
https://doi.org/10.1016/j.bjp.2018.08.006
https://doi.org/10.3390/metabo9070123
https://doi.org/10.1016/j.jpba.2010.04.019
https://doi.org/10.1016/j.jpba.2010.04.019
https://doi.org/10.1038/s41598-018-23704-9
https://doi.org/10.3390/molecules26113266
https://doi.org/10.1016/j.aca.2015.02.012
https://doi.org/10.1186/s12866-016-0696-5
https://doi.org/10.1186/s12866-016-0696-5
https://doi.org/10.1038/nbt1007-1110
https://doi.org/10.1038/nchembio.118
https://doi.org/10.1016/s0021-9673(99)01292-3
https://doi.org/10.1016/s0021-9673(99)01292-3
https://doi.org/10.1186/s13321-015-0087-1
https://doi.org/10.3389/fphar.2021.474267
https://doi.org/10.3390/foods8020047
https://doi.org/10.3390/foods8020047
https://doi.org/10.1016/j.aca.2021.338956
https://doi.org/10.1016/j.jep.2017.01.052
https://doi.org/10.1016/S1875-5364(13)60037-0
https://doi.org/10.1016/S1875-5364(13)60037-0

140 H. K. Kim et al.

Lia ZY, Zhi HJ, Zhang FS et al (2013) Metabolomic profiling of the antitussive and expectorant
plant Tussilago farfara L. by nuclear magnetic resonance spectroscopy and multivariate data
analysis. J Pharm Biomed Anal 75:158-164. https://doi.org/10.1016/j.jpba.2012.11.023

Malone MH, Robichaud RC (1962) A Hippocratic screen for pure or crude drug materials. Lloydia
25:320-332

Maree J, Kamatou G, Gibbons S et al (2014) The application of GC-MS combined with
chemometrics for the identification of antimicrobial compounds from selected commercial
essential oils. Chemom Intel Lab Syst 130:172—-181. https://doi.org/10.1016/j.chemolab.2013.
11.004

Morlock GE (2021) High-performance thin-layer chromatography combined with effect directed
assays and high-resolution mass spectrometry as an emerging hyphenated technology: a tutorial
review. Anal Chim Acta 1180:338644. https://doi.org/10.1016/j.aca.2021.338644

Morlock GE, Drotleff L, Brinkmann S (2021) Miniaturized all-in-one nanoGIT(+active) system for
on-surface metabolization, separation and effect imaging. Anal Chim Acta 1154:33830. https://
doi.org/10.1016/j.aca.2021.338307

Mushtaq MY, Verpoorte R, Kim HK (2013) Zebrafish as a model for systems biology. Biotechnol
Gen Engin Rev 29:187-205. https://doi.org/10.1080/02648725.2013.801238

Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J
Nat Prod 70:461-477. https://doi.org/10.1021/np068054v

Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four
decades from 01/1981 to 09/2019. J Nat Prod 83:770-803. https://doi.org/10.1021/acs.jnatprod.
9b01285

Ntungwe NE, Dominguez-Martin EM, Roberto A et al (2020) Artemia species: an important tool to
screen general toxicity samples. Curr Pharm Design 26:2892-2908. https://doi.org/10.2174/
1381612826666200406083035

Ory L, Nazih EH, Daoud S et al (2019) Targeting bioactive compounds in natural extracts —
development of a comprehensive workflow combining chemical and biological data. Anal Chim
Acta 1070:29-42. https://doi.org/10.1016/j.aca.2019.04.038

Parng C, Seng WL, Semino C et al (2002) Zebrafish: a preclinical model for drug screening. Assay
Drug Dev Technol 1:41-48. https://doi.org/10.1089/154065802761001293

Paul A, de Boves Harrington P (2021) Chemometric applications in metabolomic studies using
chromatography-mass spectrometry. Trends Anal Chem 135:116165. https://doi.org/10.1016/j.
trac.2020.116165

Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science
269:347-350. https://doi.org/10.1126/science.269.5222.347

Rafova L, Ncube B, Van Staden J et al (2019) Identification of narciclasine as an in vitro anti-
inflammatory component of Cyrtanthus contractus by correlation-based metabolomics. J Nat
Prod 82:1372-1376. https://doi.org/10.1021/acs.jnatprod.8b00973

Rhee IK, van Rijn RM, Verpoorte R (2003) Qualitative determination of false-positive effects in the
acetylcholinesterase assays using thin layer chromatography. Phytochem Anal 14:127-131.
https://doi.org/10.1002/pca.675

Salzer L, Witting M (2021) Quo Vadis Caenorhabditis elegans metabolomics-a review of current
methods and applications to explore metabolism in the nematode. Metabolites 11:284. https:/
doi.org/10.3390/metabo 11050284

Samuelsson G, Bohlin L (eds) (2009) Drugs of natural origin: a treatise of pharmacognosy. Swedish
Academy of Pharmaceutical Sciences, Stockholm

Schreiner T, Morlock GE (2021) Non-target bioanalytical eight-dimensional hyphenation including
bioassay, heart-cut trapping, online desalting, orthogonal separations and mass spectrometry. J
Chromatogr 1647:462154. https://doi.org/10.1016/j.chroma.2021.462154

Szymanska E, Saccenti E, Smilde AK et al (2012) Double-check: validation of diagnostic statistics
for PLS-DA models in metabolomics studies. Metabolomics 8:3—16. https://doi.org/10.1007/
s11306-011-0330-3


https://doi.org/10.1016/j.jpba.2012.11.023
https://doi.org/10.1016/j.chemolab.2013.11.004
https://doi.org/10.1016/j.chemolab.2013.11.004
https://doi.org/10.1016/j.aca.2021.338644
https://doi.org/10.1016/j.aca.2021.338307
https://doi.org/10.1016/j.aca.2021.338307
https://doi.org/10.1080/02648725.2013.801238
https://doi.org/10.1021/np068054v
https://doi.org/10.1021/acs.jnatprod.9b01285
https://doi.org/10.1021/acs.jnatprod.9b01285
https://doi.org/10.2174/1381612826666200406083035
https://doi.org/10.2174/1381612826666200406083035
https://doi.org/10.1016/j.aca.2019.04.038
https://doi.org/10.1089/154065802761001293
https://doi.org/10.1016/j.trac.2020.116165
https://doi.org/10.1016/j.trac.2020.116165
https://doi.org/10.1126/science.269.5222.347
https://doi.org/10.1021/acs.jnatprod.8b00973
https://doi.org/10.1002/pca.675
https://doi.org/10.3390/metabo11050284
https://doi.org/10.3390/metabo11050284
https://doi.org/10.1016/j.chroma.2021.462154
https://doi.org/10.1007/s11306-011-0330-3
https://doi.org/10.1007/s11306-011-0330-3

Natural Products Drug Discovery: On Silica or In-Silico? 141

Tang Y, Lou Z, Yang L et al (2015) Screening of antimicrobial compounds against Salmonellaty
phimurium from burdock (Arctium lappa) leaf based on metabolomics. Eur Food Res Technol
240:1203-1209. https://doi.org/10.1007/s00217-015-2423-0

Tawfike TAF, Romli M, Clements C et al (2019) Isolation of anticancer and anti-trypanosome
secondary metabolites from the endophytic fungus Aspergillus flocculus via bioactivity guided
isolation and MS based metabolomics. J Chromatogr B 1106—1107:71-83. https://doi.org/10.
1016/j.jchromb.2018.12.032

Verpoorte R, Kim HK, Choi YH (2018) Synergy: easier to say than to prove. Synergy 7:34-35.
https://doi.org/10.1016/j.synres.2018.10.004

Wang M, Lamers RJAN, Korthout HAAJ et al (2005) Metabolomics in the context of systems
biology: bridging traditional Chinese medicine and molecular pharmacology. Phytother Res 19:
173-182. https://doi.org/10.1002/ptr.1624

Westerhuis JA, Hoefsloot HCJ, Smit S et al (2008) Assessment of PLSDA cross validation.
Metabolomics 4:81-89. https://doi.org/10.1007/s11306-007-0099-6

Wishart DS (2008) Applications of metabolomics in drug discovery and development. Drugs R D
9:307-322. https://doi.org/10.2165/00126839-200809050-00002

Wu C, Du C, Gubbens J et al (2015a) Metabolomics-driven discovery of a prenylated isatin
antibiotic produced by Streptomyces species MBT28. J Nat Prod 78:2355-2363. https://doi.
org/10.1021/acs.jnatprod.5b00276

Wu C, Zacchetti B, Ram AFJ et al (2015b) Expanding the chemical space for natural products by
Aspergillus niger and Streptomyces coelicolor co-cultivation and biotransformation. Nat Sci
Rep 4:10868. https://doi.org/10.1038/srep/10868

Xu EY, Schaefer WH, Xu Q (2009) Metabolomics in pharmaceutical research and development:
metabolites, mechanisms and pathways. Curr Opin Drug Disc 12:40-52. https://doi.org/10.
1016/j.copbio.2015.04.004

Yang JY, Sanchez LM, Rath CM et al (2013) Molecular networking as a dereplication strategy. J
Nat Prod 76:1686—1699. https://doi.org/10.1021/np400413s

Ye H, Wei J, Tang KL et al (2016) Drug repositioning Ttrough network pharmacology. Curr Top
Med Chem 16:3646-3656. https://doi.org/10.2174/1568026616666160530181328

Yuliana ND, Khatib A, Choi YH et al (2011) Comprehensive extraction integrated with NMR
metabolomics: a new way of bioactivity screening methods for plants, adenosine Al receptor
binding compounds in Orthosiphon stamineus Benth. Anal Chem 83:6902—-6906. https://doi.
org/10.1021/ac201458n


https://doi.org/10.1007/s00217-015-2423-0
https://doi.org/10.1016/j.jchromb.2018.12.032
https://doi.org/10.1016/j.jchromb.2018.12.032
https://doi.org/10.1016/j.synres.2018.10.004
https://doi.org/10.1002/ptr.1624
https://doi.org/10.1007/s11306-007-0099-6
https://doi.org/10.2165/00126839-200809050-00002
https://doi.org/10.1021/acs.jnatprod.5b00276
https://doi.org/10.1021/acs.jnatprod.5b00276
https://doi.org/10.1038/srep/10868
https://doi.org/10.1016/j.copbio.2015.04.004
https://doi.org/10.1016/j.copbio.2015.04.004
https://doi.org/10.1021/np400413s
https://doi.org/10.2174/1568026616666160530181328
https://doi.org/10.1021/ac201458n
https://doi.org/10.1021/ac201458n

Check for
updates

Quantitative NMR Methods
in Metabolomics

G. A. Nagana Gowda and Daniel Raftery

Contents

—_

INtrodUCtiON ...
2 Quantitation Approaches Using NMR ...,
2.1 Internal Reference Standards for Absolute Quantitation ...................cooeennn...
2.2 Alternative Reference Standards for Absolute Quantitation .........................
2.3 Quantitation of Metabolites Using Intact Samples ...................ooviiiiiiia..
2.3.1 Intact Serum and Plasma Analysis ............cooeviiiiiiiiiiiiiiiiiinnn. ..

2.3.2 Intact Urine ANaLSiS .. ..oovrnnntieite et

2.3.3  Intact TisSUE ANALYSIS .. ...ttt

2.4 Metabolite Quantitation Using Processed Samples ................cccviiiiia..
2.4.1 Analysis of Aqueous Metabolites .............ooouviiiiiiiiiiiiiiiiii. ..

2.4.2 Analysis of Coenzymes and Antioxidants ..............ccooviiiiiiiiieeean.

2.4.3  Analysis of Lipids ........oooiiii

2.5 Quantitation Methods Using Stable Isotope Labeling ..................ooooiian.
2.5.1 Isotope Labeling Focused on Metabolic Fluxes and Pathways ..............

2.5.2 Isotope Labeling Focused on Metabolite Analysis ................ccoooonnn.

T 103 1 Ted L 1] 103 1
REFETENCES . ... et e

G. A. Nagana Gowda ()
Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA

Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of
Washington, Seattle, WA, USA
e-mail: ngowda@uw.edu

D. Raftery (&)
Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA

Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of
Washington, Seattle, WA, USA

Fred Hutchinson Cancer Research Center, Seattle, WA, USA
e-mail: draftery @uw.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Ghini et al. (eds.), Metabolomics and Its Impact on Health and Diseases,
Handbook of Experimental Pharmacology 277, https://doi.org/10.1007/164_2022_612

143


http://crossmark.crossref.org/dialog/?doi=10.1007/164_2022_612&domain=pdf
mailto:ngowda@uw.edu
mailto:draftery@uw.edu
https://doi.org/10.1007/164_2022_612#DOI

144 G. A. Nagana Gowda and D. Raftery

Abstract

Nuclear Magnetic Resonance (NMR) spectroscopy is one of the two major
analytical platforms in the field of metabolomics, the other being mass spectrom-
etry (MS). NMR is less sensitive than MS and hence it detects a relatively small
number of metabolites. However, NMR exhibits numerous unique characteristics
including its high reproducibility and non-destructive nature, its ability to identify
unknown metabolites definitively, and its capabilities to obtain absolute
concentrations of all detected metabolites, sometimes even without an internal
standard. These characteristics outweigh the relatively low sensitivity and resolu-
tion of NMR in metabolomics applications. Since biological mixtures are highly
complex, increased demand for new methods to improve detection, better identify
unknown metabolites, and provide more accurate quantitation continues
unabated. Technological and methodological advances to date have helped to
improve the resolution and sensitivity and detection of a larger number of
metabolite signals. Efforts focused on measuring unknown metabolite signals
have resulted in the identification and quantitation of an expanded pool of
metabolites including labile metabolites such as cellular redox coenzymes,
energy coenzymes, and antioxidants. This chapter describes quantitative NMR
methods in metabolomics with an emphasis on recent methodological
developments, while highlighting the benefits and challenges of NMR-based
metabolomics.

Keywords

Fast NMR methods - Isotope tagging - Metabolomics - Nuclear magnetic
resonance (NMR) - Quantitation

1 Introduction

The field of metabolomics represents the parallel analysis of large numbers of
metabolites in biological systems. Metabolites provide information on the instanta-
neous biological state of an organism or system along with the functions of upstream
cellular molecular species such as genes, transcripts, and proteins in health and
pathological conditions. Using a variety of advanced methodologies, comprehensive
analysis of metabolite data enables understanding biological phenotypes,
deciphering mechanisms, and identifying disease biomarkers or drug targets
(Raftery 2014; Nagana Gowda and Raftery 2019). Metabolomics applications span
a wide range of disciplines including human health and diseases, pharmacology,
drug development, toxicology, environment, plants, food, and nutrition. However, a
majority of the studies to date are focused on improving the mechanistic understand-
ing, prevention, early diagnosis, and management of human diseases (Kodama et al.
2020; Goldman et al. 2019; Johnson et al. 2016; Wishart 2016).
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Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry
(MS) are the two most widely used methods in the metabolomics field. MS typically
provides two to three orders of magnitude higher sensitivity than NMR and thereby
enables analysis of several hundreds to thousands of metabolites from a single
measurement. Generally, in MS analysis, metabolites from biological mixtures are
subjected to separation using methods such as liquid chromatography, gas chroma-
tography, or electrophoresis prior to detection. Separation using liquid chromatog-
raphy, however, is the most popular and nearly 80% of the metabolomics methods
use liquid chromatography resolved MS method (Edison et al. 2021). Absolute
quantitation of metabolites in MS involves using internal or external standards,
ideally, for each metabolite. However, finding isotopically labeled internal standards
for each metabolite is challenging and hence, one standard that represents a class of
metabolites is often used (Djukovic et al. 2020). This approach, however, can result
in a loss of accuracy. In contrast, and as will be described below, NMR provides
several approaches for accurate quantitation.

Although NMR spectroscopy is less sensitive than MS, it exhibits numerous
unique and favorable characteristics that are beneficial to the field of metabolomics
(Edison et al. 2021; Wishart 2019; Nagana Gowda and Raftery 2014a, 2015, 2017a,
2019). Notably: (1) NMR is highly reproducible and has excellent linearity (Mo and
Raftery 2008); (2) NMR provides absolute quantitation of all metabolites in the
spectrum using a single internal standard or even without the need for an internal
standard; (3) it provides the gold standard approach in establishing the identity of
unknown metabolites; (4) it enables the analysis of intact biofluid and tissue samples
with little to no need for sample preprocessing; (5) it is non-destructive, which means
the sample remains intact after the analysis and can be reused for analysis using
NMR or using other methods such as MS; (6) it enables tracing of metabolic
pathways and measuring metabolic fluxes utilizing stable isotope-labeled precursors;
(7) using NMR, the same metabolites can be detected through one or more types of
atomic nuclei such as 1H, 13C, 31P, or 15N, which provides flexibility to measure
metabolite levels; (8) NMR’s ability to detect essentially all molecular species with a
given nucleus makes it extremely useful for following methods development; and
(9) NMR offers new avenues to measure unstable metabolites that are fundamental
to cellular functions. Such characteristics far outweigh the poor sensitivity and
resolution of NMR and have been exploited extensively in the metabolomics field.

Human blood serum/plasma, urine, and tissue continue to be the most widely
used biological specimens in the metabolomics field. However, other biological
specimens including saliva (Lohavanichbutr et al. 2018), cerebrospinal fluid
(Albrecht et al. 2020), gut aspirate (Bala et al. 2006), bile (Nagana Gowda 2011),
amniotic fluid (Orczyk-Pawilowicz et al. 2016), synovial fluid (Anderson et al.
2020), fecal samples (Zierer et al. 2018), exhaled breath condensate (Maniscalco
et al. 2020), tear (Yazdani et al. 2019), and sperm-seminal fluid (Engel et al. 2019)
have also been analyzed. In addition, specimens from animal models, cell lines,
yeast (Airoldi et al. 2015), bacteria (Lussu et al. 2017), tumor cells (Lane et al. 2017),
tumor spheroids (Kalfe et al. 2015), exosomes (Zebrowska et al. 2019), and isolated
mitochondria (Xu et al. 2018) have been used.
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The key steps involved in almost all metabolomics investigations include metab-
olite detection, unknown peak identification, and quantification. Relative or absolute
concentrations of metabolites thus obtained are then subjected to statistical and/or
metabolic pathway analysis focused on a wide variety of applications in the areas of
basic and medical sciences. Typically, metabolite data are analyzed using univariate
and multivariate statistical analysis focused on the discovery and validation of
putative metabolite biomarkers. Alternatively, metabolite levels or isotope labeled
metabolites are used for identifying the perturbed metabolic pathways, which pro-
vide mechanistic understanding of cellular functions including information on drug
targets for therapeutic development.

2 Quantitation Approaches Using NMR

The quantitative ability of NMR makes it an important platform complementary to
MS in metabolomics. NMR can be used for quantitative analysis of metabolites in
intact samples, extracted samples, live organisms, cells, or subcellular organelles
such as mitochondria. In NMR, generally, metabolite peaks are identified prior to
their relative or absolute quantitation. The identities of metabolites are established
using databases of standard compounds, the comprehensive analysis of 1D and 2D
NMR spectra, and/or spiking with authentic compounds.

Quantitation generally involves either (a) relative quantitation, in which metabo-
lite levels are measured relative to one another; or (b) absolute quantitation, in which
molar concentrations of metabolites are determined using an internal or external
standard. Currently, relative quantitation is the most widely used approach owing to
its ease of use combined with challenges associated with absolute quantitation,
especially for some sample types, such as cells, tissue, fecal samples, etc. However,
absolute quantitation promises a number of benefits. Importantly, it provides a basic
platform of metabolite levels for a specific type of biological specimen. This is
important for assessment of data quality, such as to compare samples across different
geographical regions, different batches or analysis times, or perhaps most impor-
tantly to compare to known values, such as clinical ranges for blood or urine
metabolites. Considering the increased interest for absolute quantitation, there
have been numerous efforts in recent years focused on establishing reference
standards for absolute quantitation using NMR as described in the following section.

2.1 Internal Reference Standards for Absolute Quantitation

Many compounds (>25) have been evaluated as potential internal standards for
applications in numerous areas including organic chemistry, natural product chem-
istry, agriculture, drug discovery, and pharmaceuticals (Maniara et al. 1998;
Holzgrabe 2010; Pauli et al. 2012; Rundlof et al. 2010; Salem and Mossa 2012).
These compounds exhibit favorable physical characteristics, such as unique chemi-
cal shift, purity, stability, solubility, and suitability for accurate gravimetry.
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However, most of these are not suitable for metabolomics due to aqueous solubility
concerns or chemical shift overlap. Chemical shift reference compounds such as TSP
(trimethylsilylpropionic acid) and DSS (trimethylsilylpropanesulfonic acid) have
been used as internal standards for absolute quantitation of metabolites. It was
realized some years ago, however, that these compounds are unsuitable for quantita-
tion owing to their peak suppression arising from the interaction with proteins. One
alternative, formic acid, was evaluated as an alternative to TSP for quantitation of
metabolites in intact serum many years ago (Kriat et al. 1992). However, formic acid
is unsuitable as a reference since it is an endogenous metabolite; the endogenous
concentration in serum varies significantly from person to person (~40 to 350 pM)
and hence, it interferes with externally added formic acid (Kuban and Bocek 2013;
d'Alessandro et al. 1994; Kapur et al. 2007). In another study, DSA (4,4-dimethyl-4-
silapentane-1-ammonium trifluoroacetate), which is a derivative of DSS, was
evaluated as a potential internal standard using intact rat plasma (Alum et al.
2008). However, it is also unsuitable as a reliable internal standard since several
factors including the increased line broadening by a factor of >2 at pH 7.4 relative to
pH 3.0 indicate that DSA interacts with sample matrix. One remedy for analysis of
metabolites in samples such as blood serum/plasma that contain copious
macromolecules is to remove the macromolecules effectively by ultrafiltration; in
such a case, TSP or DSS can still be used as standards for absolute quantitation
(Psychogios et al. 2011; Barding et al. 2012; Simén-Manso et al. 2013). The
challenge with ultrafiltration, however, is that it attenuates many metabolite peaks
(Nagana Gowda and Raftery 2014b), requires larger sample volumes, and is cum-
bersome for large-scale studies. In addition, ultrafiltration cannot be used for analysis
of samples such as tissue and whole blood. Ultrafiltration is also incompatible with
MS analysis, the other major analytical platform used in metabolomics, since MS
analysis invariably employs protein precipitation to remove macromolecules, prior
to analysis (Nagana Gowda et al. 2018).

Protein precipitation that removes macromolecules from samples provides an
alternative approach to quantitate metabolites and is well suited for large-scale
studies. However, even in such samples, peaks from the traditional internal
standards, TSP and DSS, are attenuated by up to 35% and hence they are unsuitable
as internal standards. More recently, two compounds, maleic acid and fumaric acid,
were evaluated for their utility as potential internal standards for quantitation of
metabolites since both provide a single peak in NMR spectrum and their peaks do
not overlap with peaks from bio-specimen spectra (Nagana Gowda et al. 2021)
(Fig. 1). It was shown that fumaric acid is a robust standard for protein precipitated
serum, plasma, and whole blood; and maleic acid is suitable for plasma and serum,
but it overlaps with coenzyme peaks in whole blood samples. These findings provide
new opportunities for improved and accurate quantitation of metabolites in human
plasma, serum, and whole blood using NMR spectroscopy. The potential utility of
maleic acid and fumaric acid as internal standards may be extended to other
biological specimens, as long as they do not overlap with bio-specimen peaks.
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Fig. 1 Typical 800 MHz '"H NMR spectra of a protein precipitated sample of human (a) whole
blood, (b) plasma, and (¢) serum, solubilized in D,O buffer containing a mixture of three internal
standards (TSP, 238 uM; maleic acid, 350 pM; fumaric acid, 293 pM). Each spectrum is overlaid
with a spectrum from the blank buffer consisting of the same three standards (spectrum shown in
red) to enable the visualization of peak heights for the three internal standards; the spectra of the
bio-specimens are slightly right shifted relative to the blank spectrum for clarity. Peaks from the
blank are marked with asterisks. Heights for the fumaric acid peaks from the bio-specimen
and blank are approximately matched; however, a significant attenuation of the TSP peak in all
three bio-specimens spectra is noticeable. TSP: Trimethylsilylpropionic acid-d,. (reproduced with

permission from Nagana Gowda et al. 2021)
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2.2 Alternative Reference Standards for Absolute Quantitation

An altogether different approach is to determine metabolite concentrations without
the need for an internal standard. One such method is ERETIC (electronic reference
to access in vivo concentrations) (Akoka et al. 1999). In the ERETIC method, a
synthetic signal is generated in NMR spectra with the desired peak intensity, line
width, and chemical shift. This peak is then calibrated and used as a reference for
quantitation. A drawback of this method is that the quantitation error can be large
when NMR peaks are attenuated due to altered pulse widths arising, for example,
from lossy biological solutions. More recently, a method known as PULCON (pulse
length based concentration determination) alleviates the limitation of ERETIC and
provides a more robust approach to quantitation without the need for an internal
standard (Wider and Dreier 2006). PULCON, also known as ERETIC 2, works
based on the principle of reciprocity (Hoult and Richards 1976; Hoult 2000; Van der
Klink 2001) and allows the correlation of signal strength from a reference spectrum
with the spectrum of interest. This method shows immense promise for
metabolomics applications (Jiménez et al. 2018; Goldoni et al. 2016). The method,
however, requires that reference and test spectra are obtained using the same probe,
probe tuning and matching for the test samples should be identical to the reference
sample, and the same RF power needs to be delivered to the coil for each NMR
spectrum. Poor probe matching for salty test samples, for example, will lead to
inaccurate quantitation of metabolites. Despite this limitation, however, by using
standardized operating procedures quantitative data can be obtained that can poten-
tially enable sharing of inter-laboratory results.

Another approach for quantitation is to use the solvent signal as a concentration
reference (Mo and Raftery 2008). Most solvents can be observed by NMR and
solvent concentrations can be readily determined independently. In particular, a
widely used solvent such as water can serve as a primary concentration standard
for metabolite quantitation. The potential problems of radiation damping associated
with a strong NMR signal can be alleviated by small pulse angle excitation. The fact
that the solvent signal can be detected by the NMR receiver with the same efficiency
as analytes enables their accurate quantitation. It is shown by this approach that
analyte concentration can be accurately determined from 4 pM to more than 100 M.

2.3 Quantitation of Metabolites Using Intact Samples

The ability to analyze intact samples with no need for sample preparation or
separation using NMR is an important characteristic that continues to drive
NMR-based metabolomics. Initially, widely used bio-specimens including blood
serum and plasma were used only in their intact forms and this approach continues to
be widely used. In the following sections, analyses of intact bio-specimens that are
most widely used such as serum/plasma, urine, and tissue are described. The
methods presented here are also applicable for other specimen types.
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2.3.1 Intact Serum and Plasma Analysis

Analysis of intact serum or plasma enables quantitation of aqueous metabolites as
well as lipids and various classes of lipoproteins in serum and plasma (Wiirtz et al.
2017). Two widely used, one-dimensional (1D) NMR pulse techniques are 1D
NOESY (nuclear Overhauser enhancement spectroscopy) and CPMG (Carr-
Purcell-Meiboom-Gill) with water signal suppression (often using presaturation)
(Nicholson et al. 1995). The 1D NOESY detects both small molecules such as
metabolites and macromolecules such as lipids and lipoproteins. On the other
hand, the CPMG experiment detects only small molecules; the macromolecule
signals from proteins and lipoproteins are suppressed based on a T, (transverse
relaxation) filter (Beckonert et al. 2007); metabolites exhibit longer T, relaxation
times compared to macromolecules and hence they are selectively retained in the
CPMG spectra. Numerous large-scale epidemiological studies have demonstrated
quantitation of 50—70 metabolite peaks and over 200 metabolic measures (which
include ratios of metabolite peaks) on a routine basis (Soininen et al. 2015; Wiirtz
et al. 2017). As described above, recent advances in NMR enable absolute quantita-
tion using an external reference, with no need for an internal standard (Wider and
Dreier 2006). This is remarkable considering that internal standards largely cannot
be used for absolute quantitation since they interact with copious proteins present in
the samples. However, a challenge for reliable analysis of metabolites in intact
samples is that metabolite binding to proteins causes signal attenuation (Nicholson
and Gartland 1989; Chatham and Forder 1999; Bell et al. 1988; Nagana Gowda and
Raftery 2014b). Moreover, exchange of metabolites between free and protein bound
forms results in broader NMR peaks. Further, residual macromolecule signals cause
distorted spectral baseline in CPMG spectra, which together adversely affect metab-
olite quantitation.

2.3.2 Intact Urine Analysis

Urine provides a rich source of information as it contains a significantly higher
number of detectable metabolites, compared to serum/plasma, and with a vast
concentration range (~10°). In addition, urine has a relatively low concentration of
proteins and hence macromolecular interference is minimal for metabolite analysis.
A step-by-step procedure for NMR analysis of urine is provided as a guide for
routine applications (Beckonert et al. 2007; Emwas et al. 2016). The pH of normal
human urine varies widely, from approximately 5 to 8 (Hernandez et al. 2001;
Rylander et al. 2006; Welch et al. 2008) and the salt concentration also varies
significantly from sample to sample. Such pH and salt concentration variations
alter chemical shifts of many peaks in the urine NMR spectra. Such peak shifts are
significant for metabolites with functional groups with pKa’s near the physiological
pH. This causes a challenge for peak identification, comparison of different spectra,
and quantitation of metabolites. Therefore, urine samples are generally mixed with
buffer solution typically in a 1:1 (v/v) ratio (at pH = 7.4). Using Chenomx software
and authentic compound spiking, >200 metabolites in urine have been identified
(Bouatra et al. 2013). However, considering the high complexity of the urine NMR
spectrum and the sensitivity of chemical shifts to factors such as pH and salt
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concentration, the number of metabolites that can be analyzed on a routine basis is
restricted to ~60 to 70. Factors such as diet, medications, physical activity, smoking,
gender, age, gut microbe diversity greatly affect the metabolome and they should be
carefully accounted for disease biomarker identification (Emwas et al. 2015, 2016).
Large-scale (>1,000 samples) high-throughput studies now enable quantitative
analysis of urinary metabolites using automated or semi-automated regression-
based spectral analysis (Tynkkynen et al. 2019). In a large and impressive study, it
was shown that prediction of metabolite concentrations, including many invisible
inorganic ions, could be made based on the interrelationships between chemical
shifts and concentrations, for automated urine analysis (Takis et al. 2017). Such
advances promise new applications to areas including clinical, epidemiological, and
pharmaceutical research.

2.3.3 Intact Tissue Analysis

NMR spectra of intact tissue are obtained using high-resolution magic angle
spinning (HR-MAS) techniques (Tilgner et al. 2019). HR-MAS provides highly
resolved spectra, which are comparable to those of bio-fluids. Tissue specimens
typically collected from a surgical procedure or biopsy are often snap-frozen and
stored for later analyses. The use of fresh samples for direct analysis, however, is
advantageous for sensitive and structurally delicate biopsy samples. Resected or
biopsied tissue is washed by quickly rinsing, typically with D,O, to remove any
blood contamination prior to freezing or direct analysis. The use of fresh samples
avoids any deleterious effects caused by the freeze/thaw process and protects tissue
integrity. Care should, however, be exercised to ensure fresh samples specifically
from biopsy are kept under cold and humid conditions until the analyses are
performed to retain the integrity of the metabolite profiles and reduce the possibility
of metabolic changes. The ability to recover tissue after NMR analysis provides an
opportunity to use the same specimens for other studies such as proteomic and
genomic analysis or even histology. Advances in probe technologies with a *H field-
frequency lock channel and a magnetic field gradient coil offer spectral stability and
resolution sufficient for routine metabolomics studies of tissue samples as small as a
few ng (Wong et al. 2012). Such capabilities, combined with minimal sample
preparation and fast data acquisition, promise to extend the application of metabolic
profiling of biopsied tissue to clinical applications. As examples, studies have shown
that HR-MAS NMR of core needle biopsy tissue can predict breast tumor
aggressiveness prior to surgery (Choi et al. 2012). Tissue metabolite profiles offer
numerous benefits owing to the close association of tissue with disease pathologies.
For example, alteration in tissue metabolite profiles has been shown to differentiate
breast cancer tumors from normal tissue (Paul et al. 2018; Sitter et al. 2010).
Importantly, HR-MAS NMR potentially enables diagnosis, prognosis, and staging
of cancers (Dinges et al. 2019; Chen et al. 2017).
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24 Metabolite Quantitation Using Processed Samples

Sample processing involves separation of metabolites from the macromolecular
matrix. Such an approach enables detection of a significantly expanded pool of
metabolites. A number of sample processing methods exist, to date, focused on
analysis of aqueous metabolites or lipids or both. Further, new methods are being
continuously developed that focus on improving the extraction efficiency, preserv-
ing metabolite integrity and simplifying the extraction process.

2.4.1 Analysis of Aqueous Metabolites

Methods such as ultrafiltration, solid phase extraction, and protein precipitation
using organic solvents such as methanol, acetonitrile, acetone, perchloric acid, or
trichloroacetic acid have been explored for many years to extract metabolites
(Wevers et al. 1994; Daykin et al. 2002; Tiziani et al. 2008; Fan 2012). Among
them, ultrafiltration using low molecular weight (~3 kDa) cut-off filter removes
proteins most effectively. Using this method, nearly 50 aqueous metabolites could
be identified and quantified (Psychogios et al. 2011). However, ultrafiltration
attenuates many metabolite peaks (Nagana Gowda and Raftery 2014b), requires
larger sample volumes, and is particularly cumbersome for large-scale studies.
Nearly half of the detected metabolites in ultrafiltered serum exhibited lower
concentrations ranging from nearly 10 to 75% (Nagana Gowda and Raftery
2014b). Further, ultrafiltration is incompatible with analysis of samples such as
whole blood and tissue as well as with analysis using MS, which generally employs
protein precipitation using organic solvents (Nagana Gowda et al. 2018).

Detailed studies have focused on increasing the number of detected metabolites,
identifying unknown metabolites and optimizing their quantitation in blood serum
and plasma (Nagana Gowda and Raftery 2014b; Nagana Gowda et al. 2015). These
studies have shown that protein precipitation using methanol in a 2:1 ratio (v/v) with
the sample offers an optimal approach for analysis of aqueous metabolites in blood
serum/plasma. The use of acetonitrile for protein precipitation, on the other hand,
revealed a surprisingly poor performance; one-third of the detected metabolites were
attenuated by up to 70% compared to methanol precipitation at the same solvent to
serum ratio of 2:1 (v/v) (Fig. 2). A further attenuation of nearly two-third of the
metabolites was observed for an acetonitrile to serum ratio of 4:1 (v/v). As the
analysis of metabolites using MS invariably employs protein precipitation prior to
analysis, methods developed for NMR analysis also help analysis using MS. The
performance of sample processing for MS analysis is typically evaluated using the
total number of ions detected, which is problematic (Ivanisevic et al. 2013) and is an
inaccurate approach as far as quantitation is concerned.

Protein precipitation, however, does not remove macromolecules completely and
the residual macromolecules (~2%) are water-soluble, which cause broad baselines
in NMR spectra when obtained using the one-pulse or 1D NOESY pulse sequence
(Nagana Gowda et al. 2015, 2021). The use of the CPMG sequence helps to suppress
signals from these residual proteins (~2%) and provides a flat baseline. The CPMG
sequence, however, causes a small attenuation for many signals due to differential 7>
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relaxation rates; for example, an evaluation of 20 metabolite peaks revealed an
average of ~6% attenuation for plasma and serum when a 32 ms CPMG 180° echo
pulse train was used. The peak attenuation increased with increasing duration of the
echo pulse train and it exceeded 10% for a 256 ms echo pulse train. Hence, for
accurate quantitation, signal attenuation due to T, relaxation in the CPMG spectra
should be carefully accounted. Potential alternatives to the CPMG sequence, includ-
ing the use of stimulated echo (STE) pulse sequence (Lucas et al. 2005) have proved
unsuitable for metabolomics applications.

2.4.2 Analysis of Coenzymes and Antioxidants

Coenzymes, including coenzyme A (CoA), acetyl coenzyme A (acetyl-CoA),
coenzymes of redox reactions and energy, and antioxidants mediate biochemical
reactions fundamental to the functioning of all living cells. The most common redox
coenzymes include NAD" (oxidized nicotinamide adenine dinucleotide), NADH
(reduced nicotinamide adenine dinucleotide), NADP* (oxidized nicotinamide ade-
nine dinucleotide phosphate), and NADPH (reduced nicotinamide adenine dinucle-
otide phosphate). The coenzymes of energy include ATP (adenosine triphosphate),
ADP (adenosine diphosphate), and AMP (adenosine monophosphate). Major
antioxidants include GSSG (oxidized glutathione) and GSH (reduced glutathione).
Conventional enzymatic assays are suboptimal, as separate protocols are needed for
analysis of each coenzyme or their ratios. The interference from sample matrix and
the finite linear range of these assays further add to the challenges. Although MS is
extensively used, ion suppression, interference due to the unit mass difference in
targeted analysis, and in-source fragmentation pose challenges for reliable coenzyme
analysis (Evans et al. 2010; Trammell and Brennera 2013). Hence, the ability to
analyze these coenzymes in one-step using NMR represents an important advance-
ment in the metabolomics field. A major challenge unconnected with any analytical
method, however, is the notoriously unstable nature of these compounds. Enzyme
activity and oxidation affect their levels, deleteriously. Somewhat recently, sample
harvesting, processing, and analysis conditions were optimized for heart tissue from
mouse models and showed that a simple NMR experiment can simultaneously
measure NAD*, NADH, NADP*, NADPH, ATP, ADP, and AMP in one step
apart from other metabolites (Nagana Gowda et al. 2016, 2018). Later, the scope
of NMR was extended to the analysis of CoA, acetyl-CoA, and antioxidants (GSH,
GSSG) along with a large pool of other metabolites and coenzymes, in one step
(Nagana Gowda et al. 2019) (Fig. 3). Further, as an important alternative to serum/
plasma metabolomics, it was shown that using whole blood, the coenzymes and
antioxidants can be measured simultaneously in addition to the nearly 70 metabolites
that can be quantitated in serum/plasma with essentially no additional effort (Nagana
Gowda and Raftery 2017b). The analysis protocols and the annotated characteristic
fingerprints for these newly identified coenzymes and other metabolites are provided
for easy identification and absolute quantification using a single internal reference.
The ability to measure the unstable but ubiquitous coenzymes fundamental to
cellular functions, simultaneously and reliably, offers a new avenue to investigate
the mechanistic details of cellular function in health and diseases.
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Fig. 3 (a) Typical 800 MHz "H NMR spectrum of a mouse heart tissue extract with labeling of
some of the metabolites: BCCA: branched chain amino acids; TSP: reference peak; (b—e) expanded
spectral regions highlighting characteristic peaks for (b) coenzyme A (CoA), acetyl coenzyme A
(acetyl-CoA), and coenzyme A glutathione disulfide (CoA-S-S-G); (c) CoA, acetyl-CoA, oxidized
nicotinamide adenine dinucleotide (NAD"), oxidized nicotinamide adenine dinucleotide phosphate
(NADP"), reduced nicotinamide adenine dinucleotide (NADH), reduced nicotinamide adenine
dinucleotide phosphate (NADPH), adenosine triphosphate (ATP), adenosine diphosphate (ADP),
and adenosine monophosphate (AMP); (d) reduced glutathione (GSH) and oxidized glutathione
(GSSG); and (e) creatine (Cr) and phosphocreatine (PCr) (reproduced with permission from Nagana
Gowda et al. 2019)
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2.4.3 Analysis of Lipids

NMR spectroscopy is widely used for analysis of lipids and lipoprotein particles in
serum and plasma (Mallol et al. 2013). Identification and quantitation of lipoprotein
particles by NMR exploits the characteristic chemical shifts of the methyl resonances
of fatty acid chains of lipids from different particle sizes, with peaks from smaller
particles appearing at lower frequencies. Methodologies used to characterize lipo-
protein particles based on methyl resonances utilize either deconvolution (Jeyarajah
et al. 2006, Kaess et al. 2008) or statistical (Soininen et al. 2009) methods. These
methods have enabled determination of particle size and number for lipoprotein
classes such as VLDL (very low-density lipoprotein), LDL (low-density lipopro-
tein), and HDL (high-density lipoprotein) and up to 14 (or more) lipoprotein
subclasses. The ability to quantitate a variety of lipoprotein particles using NMR
has opened avenues for clinical assessment and management of cardiovascular
disease risk. In view of the fact that such lipoprotein classification and
sub-classification using NMR is superior to the conventional methods, the method
has been commercialized to manage the risk of heart diseases. Somewhat recently, a
diffusion-based method was proposed to characterizing lipoprotein particles (Mallol
et al. 2015). Here, two-dimensional diffusion-ordered '"H NMR spectroscopy
(DOSY) was used to measure diffusion coefficients, which provide information on
the particle sizes of lipoproteins (Johnson 1999). The lipoprotein particle numbers
are then calculated by dividing the peak volume by the size of lipoprotein particles.
The ability to directly calculate lipoprotein sizes using the DOSY method was
purported (Mallol et al. 2015) to provide a more accurate results for the particle
numbers than the commercialized methods, which are based on 1D NMR.

After extraction, typically using a mixture of organic solvents, the analysis of
tissue or blood samples provides quantitative information on individual lipids or
lipid classes. The Folch extraction, consisting of chloroform/methanol/water in a
volumetric ratio of 8:4:3 (v/v/v) is one of the earliest and most popular methods
(Folch et al. 1957). Since then, numerous different lipid extraction protocols with
modification to Folch et al. (1957) or Bligh and Dyer method (Bligh and Dyer 1959)
have been proposed for biological specimens such as blood, tissue, and cells. A more
recent method, involving butanol-methanol (BUME), eliminates the need for chlo-
roform, which is an hazardous solvent (Lofgren et al. 2012; Cruz et al. 2016). More
recently, the BUME method was modified to suit the analysis of lipids using NMR
spectroscopy (Barrilero et al. 2018). This method replaces heptane with diisopropyl
ether as the organic solvent, since peaks from the residual heptane overlap with lipid
signals. Notably, this method has enabled identification and quantitation of 15 differ-
ent lipid classes including fatty acids, triglycerides, phospholipids, and cholesterols
in serum. A semiautomatic software, LipSpin, converts raw NMR data based on
mathematical and reference spectral models and provides quantitative information
on lipids (Barrilero et al. 2018). Detailed protocols for extraction and quantitative
analysis of lipids in biological specimens such as serum, tissue, and cells are
provided, which serve as a practical guide for beginners in the field (Gil et al. 2019).



Quantitative NMR Methods in Metabolomics 157

25 Quantitation Methods Using Stable Isotope Labeling

Stable isotope incorporation in vivo or ex vivo offers opportunities to quantitate
metabolites using NMR with improved resolution and sensitivity. In vivo analysis of
metabolites in live systems enables monitoring of dynamic changes, measuring
fluxes and monitoring metabolism in real time. The use of heteronuclear 2D
(two-dimensional) NMR pulse techniques involving stable isotopes offers a combi-
nation of selectivity, sensitivity, and resolution and alleviates major challenges in
NMR experiments involving nuclei with low natural abundance. To date, stable
isotopes including '*C, N, ?H, and/or *'P have been employed for analysis of
metabolites in biological mixtures and investigation of metabolic pathways.

2.5.1 Isotope Labeling Focused on Metabolic Fluxes and Pathways
Isotope labeling in vivo enables measurement of fluxes and tracing of metabolic
pathways. Using this approach, the same metabolite that flows through multiple
pathways can be distinguished. A growing number of pathways, including glycoly-
sis, pentose phosphate pathway, glutaminolysis, fatty acid oxidation, and TCA cycle
can be investigated using the combination of NMR and selective or uniformly
isotope labeled substrates such as '*C-glucose and '*C/'°N-glutamine (Lin et al.
2019). Quantitative analysis of in vitro or in vivo isotope labeled metabolites can be
measured either ex vivo, after extraction of metabolites, or in live systems in vitro or
in vivo. While analysis after extraction provides a snapshot of metabolite levels at a
particular time point, in situ analysis using live systems enables the measurement of
the dynamic changes in metabolite levels and monitoring of metabolism in real time.
Analysis after extraction of metabolites has been widely used in the metabolomics
field. However, the growing technological and methodological advances in NMR are
witnessing an increasing number of in vitro or in vivo investigations using live
systems such as C. elegans, cells, and isolated mitochondria (Nguyen et al. 2020;
Wen et al. 2015; Xu et al. 2018). Isotope labeled studies using cells and subcellular
organelles enable understanding of metabolic pathways under controlled conditions.
And the use of organisms, animal models, or humans can translate the findings from
studies of cells and subcellular organelles to investigate the pathogenesis of human
diseases (Fan et al. 2009; Locasale et al. 2011; Lane et al. 2011).

2.5.2 Isotope Labeling Focused on Metabolite Analysis

Isotope labeling in vivo in plants and organisms such as bacteria and yeast offers
significant enhancement to spectral resolution and the detection sensitivity (Zhang
et al. 2012; Chikayama et al. 2008; Bingol et al. 2012, 2013). In particular, it
alleviates the challenges invariably met with the analysis involving low natural
abundance heteronuclei and enables analysis of a large number of metabolites
using conventional high-resolution 2D NMR experiments such as HSQC and
HMBC. The uniform labeling using nuclei such as '*C also enables characterization
of metabolites based on homonuclear 2D '*C NMR experiments. Carbon-bond
topology networks obtainable from such homonuclear 2D '*C experiments provide
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additional avenues for metabolite identification (Chikayama et al. 2008; Bingol et al.
2012).

An altogether different approach is to label different classes of metabolites based
on the specific functional group (Shanaiah et al. 2007; Desilva et al. 2009; Ye et al.
2009). Chemical derivatization of metabolites using a substrate that contains isotope
such as 3 C, ISN, or 3P offers both sensitivity and resolution enhancement, owing to
the high isotopic abundance and wide chemical shift dispersion imparted by the
incorporated isotope. The 'H decoupled 1D or 2D NMR spectrum involving the
isotope labeled heteronuclei provides a single peak for each metabolite, which
further adds to the sensitivity and resolution. Metabolite classes including amines,
carboxylic acids, and hydroxyls have thus been tagged with isotopes and analyzed
using 1D or 2D NMR (Shanaiah et al. 2007; Desilva et al. 2009; Ye et al. 2009;
Vicente-Mufioz et al. 2021). Owing to its high natural abundance, >'P signals from
metabolites, however, can show up as strong background peaks in the *'P enriched
experiments, unlike the other nuclei. Incorporation of a “smart isotope tag” such as
N-cholamine enables analysis of the carboxylic acid class of metabolites using
both NMR and MS methods (Tayyari et al. 2013). The smart isotope tag possesses
an NMR sensitive isotope (‘°N) that offers good chemical shift dispersion and a
permanent positive charge that improves MS sensitivity and enables quantitation of
metabolites more accurately by both NMR and MS. Such analysis allows direct
comparison of NMR and MS data, which is an important characteristic for biomarker
discovery and biological interpretation in the metabolomics field.

3 Conclusion

The ability to identify unknown metabolites, absolute quantitation and analysis of
intact bio-specimens including live cells and subcellular organelles, is expanding the
application of NMR to new and exciting areas in metabolomics. Technological
advances have provided significant improvements to sensitivity and resolution,
which have led to the identification and quantitation of an expanded pool of
metabolites. NMR spectroscopy offers opportunities to gain mechanistic insights
into biochemical pathways in health and diseases, to discover biomarkers and
potential therapy targets, and to translate laboratory findings to clinical applications.
Continuing, multifaceted efforts to boost sensitivity, resolution, and the speed of
data acquisition and to improve quantitative accuracy promise to alleviate the
increasingly realized complexity of biological mixtures and large-scale
metabolomics studies. Moreover, ongoing technical and methodological advances
contribute to further expanding the routinely quantifiable metabolites in biological
specimens and hence NMR-based metabolomics is anticipated to greatly improve
and impact our understanding of systems biology and to help make progress in the
treatment and management of human diseases.
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Abstract

The understanding of biochemical processes of metabolism is gained through the
measurement of the concentration of intermediates and the rate of metabolite
conversion. However, the measurement of metabolite concentrations does not
give a full representation of this dynamic system. To understand the kinetics of
metabolism, the system must be described and quantified in terms of metabolite
flow as a function of time. In order to measure the metabolite flow, or more
precisely the metabolic flux through a biological system, substrates of the cell are
labelled with stable isotopes. The usage of these substrates by the cell leads to the
incorporation of the isotopes into downstream intermediates.
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The most important metabolic pathways are encompassed in the central carbon
metabolism (CCM). According to the Kyoto Encyclopedia of Genes and
Genomes (KEGG), the central carbon metabolism “is the most basic aspect of
life”. It includes all metabolites and enzymatic reactions within: glycolysis and
gluconeogenesis, pentose phosphate pathway (PPP), tricarboxylic acid (TCA)
cycle, oxidative phosphorylation (OXPHOS), amino acids and nucleotide meta-
bolic pathways. Some molecules are at the crossroad of metabolic pathways,
interconnecting diverse metabolic and therefore functional outcomes. Labelling
these nodal metabolites and analysing their isotopic composition allows the
precise determination of the metabolic flow within the biochemical networks
that they are in.

Application of stable isotope labelled substrates allows the measurement of
metabolic flux through a biochemical pathway. The rapid turnover of metabolites
in pathways requires pulse-feeding cells with a labelled substrate. This method
allows for the determination of different cell states. For example, the action of a
drug from immediate impact until the compensatory response of the metabolic
system (cell, organs, organisms). Pulsed labelling is an elegant way to analyse the
action of small molecules and drugs and enables the analysis of regulatory
metabolic processes in short time scales.

Keywords

Cancer metabolism - Isotope-resolved metabolomics - Mass spectrometry
methods - Metabolic flux analysis

1 Introduction: A Brief History of Isotopic Labelling

The use of isotope labelled molecules in metabolic research began within the first
decades of the last century. In the early days of metabolism research, radioactive
isotopes were used to investigate the metabolic flow in bacteria, plants and animals.
In order to investigate the structure of biochemical pathways and specifically
metabolic cycles, e.g. tricarboxylic acid cycle, reverse tricarboxylic acid cycle or
Calvin-Benson cycle, isotopes were applied in a time resolved manner. Time
resolution allowed for the elucidation of the consecutive order of chemical reactions
within the investigated pathways. The use of radioactive isotopes was of paramount
importance to decipher the flow of carbon within cells and organisms.

In 1910, English chemist Frederick Soddy observed that “elements of different
atomic weights may possess identical (chemical) properties” and therefore belong to
the same position in the periodic table. This included not only radioactive elements
but also stable isotopes of atoms, i.e. atoms with the same number of protons but
different numbers of neutrons in their nucleus. We can refer to these elements as
“hot” or “cold” isotopes of an atom in dependency of their radio- or
non-radioactivity. The presence of radioactive isotopes was discovered by black
spots occurring on photosensitive emulsions, as the decaying radioactive element
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produced traceable radiation. This phenomenon gave rise to years of research into
the isotopes of the periodic table and their many uses in a broad range of analytical
fields, including: chemistry, geology, biology, physics and medicine (Wilikinson
2018).

Georg Charles de Hevesy was a Hungarian radio-chemist and Nobel Prize in
Chemistry laureate, recognised in 1943 for his achievements in the development of
radioactive tracers in the study of metabolism in animals. Hevesy is considered the
first to use radioisotopes to measure metabolic flux in biological systems. One such
(sadly unpublished) experiment of Hevesy and Rutherford describes the practices of
a shrewd landlady in 1911, Manchester. Hevesy was convinced that his landlady was
recycling food, much to the denial of such practice. In order to thwart the thrifty
landlady, Hevesy “spiked” a portion of leftover meat with a tiny amount of a
radioactive material. A few days later he brought an electroscope to the table to
demonstrate to the indignant landlady that the food served that day was radioactive.
Hevesy is thought to have enjoyed fresh hot meals as a result of his radioactive
tracing experiment (Myers 1996). Hevesy continued his endeavours into the usage of
tracers in biological systems. In 1934, Hevesy and Hofer first used tracers in
medicine by using an enriched stable isotope to determine the rate of elimination
of water from the human body. Hevesy and Hofer drank dilute deuterated water and
assayed the isotopic dilution of the deuterium in their urine. From their results they
concluded the average time a water molecule spent in their bodies was 13 + 1.5 days
(Hevesy and Hofer 1934).

The accounts of Hevesy are far more than comical anecdotes. They provide an
understandable example for the use of radioisotopes in analytical chemistry.
Through the development of mass spectrometry, stable isotopes replaced
radioisotopes in tracing experiments. In mass spectrometry, a metabolite can be
identified by the mass spectrum of its fragments, i.e. the intensity of the fragment’s
peaks at a defined mass-to-charge (m/z) ratio. The additional neutron in the atomic
nucleus of isotopes makes the atom 1 Da heavier and increases the m/z ratio. The
incorporation of isotopes into a metabolite changes the atomic composition of this
intermediate and induces a shift in the respective fragment’s mass spectrum. Specifi-
cally, stable isotopes of carbon ('*C), nitrogen (*°N), oxygen (‘*0) and hydrogen
(*H) can be introduced into organic compounds. By tracing the incorporation of the
isotope, the metabolic fate of these compounds within biological systems can be
characterised (Wilikinson 2018). The incorporation of these isotopes can be resolved
in molecules such as sugars, amino acids or nucleotides. This method of isotope
labelling was used to describe the effect of oncogenes on cancer cell metabolism. For
example, Le et al. applied '*C-Glucose and '*C,'*N-Glutamine to trace glucose and
glutamine metabolism when the MYC oncogene was induced in P493 cancer cells.
The authors showed that glutamine plays an essential role in the cells’ proliferation
and survival, highlighting targets of glutamine metabolism for cancer therapy
(Le et al. 2012). The usage of isotope labelling provides insights into the dynamics
and kinetics of metabolism, as a function of time and cell state.
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2 Time- and Isotope-Resolved Metabolomics
2.1 Stable Isotope-Resolved Metabolomics

In order to measure the metabolite flow, or more precisely the metabolic flux through
a biological system, substrates of the system are labelled with stable isotopes. These
substrates may be, glucose or glutamine which provide carbon and nitrogen to the
central metabolic pathways (Fig. 1). The usage of these substrates by the cell leads to
the incorporation of the isotopes into downstream intermediates. After isotopically
labelling a biological system and extracting the cellular metabolites, mass spectrom-
etry is then employed to analyse the number of heavy atoms incorporated
(isotopologues) and their positions (isotopomers) in detected metabolites (Bruntz
et al. 2017). Isotopologues can be identified by increasing mass shifts, as every
heavy atom incorporated rises the m/z ratio by one. Isotopomers, on the other hand,
can be distinguished by the heavy atom incorporation visible in different fragments
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Fig. 1 Scheme of central metabolic pathways indicating carbon and nitrogen flow. The scheme
displays main central metabolic pathways: glycolysis, pentose phosphate pathway, nucleotide
metabolism, tricarboxylic acid cycle and glutaminolysis. The different colours depict the contribu-
tion of the distinct carbon and nitrogen atoms stemming from glucose or glutamine, respectively
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of the same metabolite. In summary, the usage of isotope labelled substrates allows
for the follow-up of interconnected anabolic and catabolic pathways. The tracing of
isotope labels in metabolites, and the atomic position in which the label resides, is
referred to as stable isotope-resolved metabolomics (SIRM).

Cellular metabolism is a rapid, dynamic process, in which both anabolism and
catabolism of metabolites produce energy, build macromolecules for biomass and
generate intermediates involved in intra- and inter-cellular signalling. The under-
standing of biochemical processes of metabolism is inferred through the concentra-
tion of intermediates and the rate of metabolite conversion. However, the
measurement of metabolite concentrations does not give a full representation of
this dynamic system. In order to understand the kinetics of metabolism, it must be
described and quantified in terms of metabolite flow as a function of time (Sauer
2006; Pietzke et al. 2014; Buescher et al. 2015; Jang et al. 2018).

2.2 Time Resolved Isotope Labelling Studies

Metabolism is a highly dynamic system in which biochemical reactions occur
rapidly. This allows the cell to constantly meet its needs and adapt to changing
stimuli and micro-environments. The time for which cells are exposed to a labelled
substrate determines the amount of isotopic label incorporated into its metabolites.
Supplying a cell with an isotope labelled substrate for extended periods of time will
lead to complete usage and saturation of downstream pathways. This condition is
referred to as isotopic steady state and solely reflects the usage of metabolic
pathways in relation to each other, i.e. in which pathways the given substrate is
involved in. In other words, if one applies the labelled substrate for such a period of
time that the label incorporation has reached saturation, then the model of flux would
be stationary (Fig. 2, left (I)).

To understand the flux of labelled metabolites, we aim to assess metabolism in a
non-stationary state. In order to measure the metabolic activity, the time a labelled
substrate is offered to a cell is limited. A labelling time is chosen where the label
incorporation into intermediates of interest is in linear relationship to time (Fig. 2,
left (I)). At this chosen labelling time, one can analyse the speed of a specific
pathway. It is also possible to assess how different conditions the cell is exposed
to affect the velocity of the pathway in use.

By avoiding saturating the system, information about pathway preference and
directionality is provided, as discussed in Sect. 2.3. The reduction in labelling time
can be implemented by a pulsed labelling-quenching strategy, referred to as pulsed
stable isotope-resolved metabolomics (pSIRM).

We may take glycolysis as a metabolic pathway that can be analysed by a tracing
experiment. '*Cg-Glc is used as a substrate for the glycolytic pathway. This labelled
tracer contains '°C at every carbon position on the glucose molecule. As glycolysis
proceeds *C is incorporated into downstream metabolites (Fig. 2, right). The rate of
label incorporation can be described in both functions of time and quantity of
labelled metabolite. The rate of label incorporation, or indeed the metabolic rate,
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Fig. 2 Modelling the kinetics of metabolite labelling. As cells are incubated with a labelled
substrate for a period of time, the quantity of label incorporated into metabolites increases. The
rate of reaction, or the percentage of label in the metabolites relative to the unlabelled fraction, is
dependent on the position of the metabolite in the pathway and the efficiency of associated
enzymes. In order to understand the rate and kinetics of metabolic processes, we aim to observe
labelled metabolites in the instationary phase (Fig. 2, left (I)). On the contrary, if all metabolites
are saturated with label after a given period of time (Fig. 2, left (II)), then no kinetic information
can be derived

of glycolysis is rapid. For instance, glucose-6-phosphate (G6P) — the primary step in
glycolysis — is labelled to saturation in approximately 2—-5 min (Pietzke et al.
2014). Longer labelling times are required for the label to reach saturation in
metabolites downstream of G6P. Through a pulse-quench-harvest labelling strategy
we can determine the rate of label incorporation into metabolites of the glycolytic
pathway, as a function of the time cells are exposed to the labelled substrate. With
this information we can determine how “glycolytic” a certain cell type is.

Furthermore, we can study the effects on inhibitors on pathways by monitoring
the relative changes in label incorporation upon inhibitor treatment.
3-Bromopyruvate (BrPyr), for example, is a strong glycolytic inhibitor. More spe-
cifically, BrPyr inhibits glycolysis at the glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) reaction (Pietzke et al. 2014). In order to localise BrPyr action on
GAPDH, cells were pre-incubated with BrPyr for 12 min followed for a tracing with
13C-Glc for 3 min to label glycolytic metabolites. They showed that the carbon flow
through metabolites downstream of GAPDH was almost completely inhibited in
BrPyr treated cells (Fig. 3). The concentration of 3PGA drops below the detection
limit and the dramatic decrease in the label incorporation into pyruvate, lactate and
citrate proved bromopyruvate’s inhibitory activity in the lower glycolysis. In con-
trast fructose-1,6-bisphosphate (above the blockage) accumulates roughly fourfold,
while at the same time the label incorporation decreases by a factor 4, so the total
flow into this compound remains constant. This illustrates the connection of metab-
olite pool size and label incorporation and highlights the importance of considering
both readouts simultaneously during a pSIRM experiment.
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Fig. 3 pSIRM data in 2D. Each point represents one single metabolite of the CCM. On the x-axis
fold-changes of metabolite concentrations and on the y-axis changes of isotope incorporation are
shown. For this experiment cancer cells were incubated for a total time of 15 min with BrPyr and
metabolites were measured using the pSIRM technology (see Pietzke et al. (2014)). The graph
shows that in some metabolites a quantitative change in metabolite concentration can be observed.
However, the effect on glycolytic inhibition can only be observed in the label incorporation of
metabolites downstream of the GAPDH reaction

We have described the use of isotope labelled substrates for investigating the rate
of reactions in metabolic pathways. One may also investigate the direction of
metabolic pathways or deduce the relative dominance of a pathway by using
substrates labelled at specific carbon positions. For example, the pentose phosphate
pathway (PPP) — which links glycolysis to nucleotide synthesis — generates ribose-5-
phosphate (R5P) from two reactions. The oxidative PPP utilises glucose-6-phos-
phate to produce 6-phosphogluconate which is de-carboxylated to ribulose-6-phos-
phate (Ru5P). In turn Ru5P is isomerised to RSP. The non-oxidative PPP cycles
carbons from fructose-6-phosphate, glyceraldehyde-3-phosphate and erythrose-4-
phosphate to produce xyulose-5-phosphate and R5P. This branch does not contain a
de-carboxylation event and carbon number is maintained in the process. Therefore,
we may employ a labelling strategy to decipher the ratio of the oxidative and
non-oxidative branches by assessing the state of the de-carboxlyation event in the
oxidative branch. By using 1,2-['*C]-Glc as the labelling substrate we can measure
the ratio of RSP present in the sample which contains a single (m/z + 1) or a double
(m/z + 2) label. R5P which is derived from the oxidative PPP will only contain a
single label as the labelled carbon is lost during the de-carboxylation event (Fig. 4).

Oxythiamine is an inhibitor of the non-oxidative PPP enzyme, transketolase
(TKT). Boros et al. (1997) showed that oxythiamine inhibits Mia pancreatic adeno-
carcinoma cell growth by 39%. By using 1,2-[">C]-Glc labelling the authors
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Fig. 4 Utilising 1,2-["*C]-Glc in the analysis of the pentose phosphate pathway. The pentose
phosphate pathway is comprised of the oxidative and non-oxidative branches. The oxidative branch
observes a de-carboxylation event which removes a labelled carbon from glucose-6-phosphate. In
the non-oxidative branch, labelled carbons are maintained as de-carboxylation does not occur. The
ratio of single to double labelled R5P shows the relative dominance of the branches. One may
observe the single or double labelled RSP in a mass spectrum generated by MS, by the relative
abundance of R5P (m/z + 1) and R5P (m/z + 2). This is depicted in the simulated MS spectrum on
the right

discovered that this tumour cell line generated RSP predominantly through
transketolase and the non-oxidative PPP (85%). It was deduced that oxythiamine
was an effective anti-tumour inhibitor due to the dependency of RSP synthesis, and
downstream nucleotide synthesis, on the non-oxidative PPP (Boros et al. 1997). In
summary, differential labelling of substrates permits not only the analysis of the
kinetics of metabolism but also gives information on the relative dependencies of
parallel reactions in different cell lines for targeted therapy development.

2.3 Isotope Tracing at the Crossroad of Metabolic Pathways

The most important metabolic pathways are encompassed in the central carbon
metabolism (CCM). According to the Kyoto Encyclopedia of Genes and Genomes
(KEGG), the central carbon metabolism “is the most basic aspect of life”. It includes
all enzymatic reactions within: glycolysis and gluconeogenesis, pentose phosphate
pathway (PPP), tricarboxylic acid (TCA) cycle and oxidative phosphorylation
(OXPHOS), amino acids and nucleotide metabolism pathways. Additionally, the
CCM includes six known carbon fixation pathways (reductive pentose phosphate
cycle (Calvin cycle), reductive citrate cycle, 3-hydroxypropionate bi-cycle, two
variants of 4-hydroxybutyrate pathway and reductive acetyl-coenzyme A (CoA)
pathway) as well as some pathways of methane metabolism, all not relevant in
animal cells (Qiu 2013). Some molecules are at the crossroad of metabolic pathways,
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interconnecting diverse metabolic and therefore functional outcomes. Labelling
these nodal metabolites and analysing their isotopic composition allows the precise
determination of the metabolic flow within the biochemical networks that they are in
(Fig. 5).

One example of such intersections is citrate. Glucose-derived pyruvate can be
metabolised by pyruvate dehydrogenase to citrate or by pyruvate decarboxylase to
oxaloacetate, which itself feeds into citrate during TCA cycling. On the other hand,
glutamine can enter the TCA cycle via glutamic acid and 2-oxo-glutaric acid and
feed into citrate via both, oxidative (classic) and reductive (reverse) TCA cycling.
Via ATP-citrate lyase, citrate is further interconnected with fatty acid oxidation and
fatty acid biosynthesis. When labelling with '*C-glucose, '*C-glutamine or '*C-fatty
acids one will be able to distinguish between different mass shifts in citrate,
depending on the source of the *C-label as well as the directionality of TCA cycling.
'3C atoms derived from pyruvate dehydrogenase activity or fatty acid oxidation-
derived acetyl-CoA will lead to an m/z + 2 mass shift in citrate, as two heavy carbon
atoms are incorporated in the latter. On the contrary, an m/z + 3 mass shift is
observed when pyruvate integrates into oxaloacetate and subsequently into citrate.
Similarly, when providing cells with '*C-glutamine, mass shifts of m/z + 4 and
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m/z + 5 in citrate are the result of anaplerotic fuelling from glutamine into the TCA
cycle and oxidative or reductive cycling, respectively.

Other examples of pathway interconnection are pyruvate and glutamine, as both
can be metabolised into very different intermediates and play a role in distinct
cellular functions. Pyruvate-derived 13C_atoms can integrate, as described above,
into citrate or oxaloacetate, but also into alanine or lactate. Thereby, metabolic flow
through pyruvate merges amino acid metabolism, anaerobic glycolysis and TCA
cycle. Glutamine, on the other hand, is an important nitrogen donor and is involved
in amino acids metabolism and de novo biosynthesis of purine and pyrimidine
nucleotides (Bayram et al. 2020). Additionally, via glutamic acid, the carbon
backbone of glutamine feeds into TCA cycle, as well as polyamine and glutathione
synthesis. The example of glutamine highlights the necessity of dual carbon and
nitrogen labelling in order to greatly increase our understanding of pathway connec-
tivity and metabolic fate. Combining '*C- and '*N-labelling allows the follow-up of
glutamine usage, while distinguishing between the amino group, amido group and
carbon backbone utilisation.

24 The Application of Ultra-High Resolution Mass Spectrometry
Allows the Tracing of Different Isotopic Species

Using stable isotopes of different elements allows to determine the utilisation of two
metabolic precursors (e.g. glucose and glutamine) in a single experiment simulta-
neously, or to follow the fate of different atoms from the same precursors (e.g. C and
N from glutamine) into the downstream metabolic network.

For a long time such experiments have not been possible, since mass analysers
with nominal mass resolution are not able to distinguish the mass increase due to the
presence of different elemental isotopes. For example, the difference in the mass
increase given by one '*C or one '°N is only 0.00632 Da (Fig. 6). According to the
IUPAC definition (McNaught and Wilkinson 2008), the resolution needed to sepa-
rate such mass difference for two molecules with nominal mass of 400 Da is around
60,000, far beyond the resolution of conventional quadrupole or ion trap analysers
and barely reached by Time-of-Flight instruments. Only with the advent of (ultra)
high resolution Fourier transform mass spectrometry mass analysers it became
possible to analyse the isotopic fine structure of labelled compounds (Werner et al.
2008; Marshall and Hendrickson 2008).

One implementation of (ultra) high resolution MS for isotope tracing is the direct
infusion of the metabolites in an Fourier-transform ion cyclotron resonance mass
spectrometer (Le et al. 2012; Yang et al. 2017). This approach offers excellent results
in terms of achievable resolution and accuracy in the determination of the ratios
between different isotopes, because the ion signal in the ion cyclotron resonance cell
can be averaged for long times. However, in direct infusion highly abundant analytes
can suppress the ionisation of low abundant ones (Han et al. 2008). In addition, in
absence of another mean of separation, isomers cannot be distinguished because they
have the same accurate m/z ratio, like G6P and F6P. MS/MS experiments can help
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confirming or excluding the presence/absence of one or more isomers. Nevertheless,
isomers often require different collision energies, making an accurate quantification
difficult, if not impossible. Orbitrap mass analysers also can achieve high resolution
with fast scanning rate (Makarov et al. 2006). With a scan rate up to 40 Hz (Kelstrup
et al. 2018), this analyser is fast enough to be seamlessly hyphenated with GC or LC
separation.

3 Applications and Future Perspectives

In line with the general “OMICS” concept, metabolomics aims to measure all
metabolic components of a biological system at once in a quantitative manner.
Unfortunately that’s not possible so far. The chemical space of biomolecules regard-
ing polarity and size as well as their quantities — ranging from a few molecules up to
millimolar concentrations — is hindering its simultaneous detection. One step further
is the measurement of the dynamics of metabolism. The combination of stable
isotope labelling and mass spectrometric detection made a big contribution in this
regard. More and more methods allow the simultaneous measurement of metabolite
concentrations and isotope incorporation (Pietzke et al. 2014). Such integrated
methods are a prerequisite when metabolic dynamics in vivo or in tissues will be
analysed in a clinical context. Often a consecutive sampling and parallel quantifica-
tion in additional samples is not possible. The application of pSIRM together with
the present knowledge of the biochemical network allows to define certain metabolic
nodes that contain superior information of the usage of metabolic pathways,
e.g. citrate. Future method development may focus on such nodes, allowing for
more directed pSIRM applications with tailored isotopically labelled substrates.

3.1 Applications of pSIRM

In the last years, pSIRM has been applied to successfully analyse metabolic changes
within short and defined windows, e.g. during differentiation of cells. Delp et al.
found that immature and mature neurons rely on different fuels. Precursor cells were
found to be mainly glycolytic and strongly dependent on glutamine. During differ-
entiation, however, they lost their glutamine dependency while gaining flexibility in
energy production (Delp et al. 2018). By analysing the glutamine-derived carbon
utilisation in high salt-treated differentiating macrophages a specific down-
regulation of the succinate to fumarate conversion could be revealed. This observa-
tion led to the identification of sodium as strong regulator of complex II activity
(Geisberger et al. 2021).

pSIRM can also be applied in vivo as well as ex vivo in tissue slices or organs. By
administering '*Ce-glucose into the peritoneum of a hepatocellular carcinoma mouse
model, Berndt et al. described enhanced glycolytic rates in tumours compared to
normal liver. These data contributed to the creation of individualised metabolic
profiles of tumours and modelling predictions of the efficacy of drug therapies
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(Berndt et al. 2020). Similarly, application of stable isotopes in situ to cancerous and
non-cancerous lung tissue revealed higher activity of glycolysis and the Krebs cycle
in the tumour tissue (Fan et al. 2009). In brain tissue slices from naked mole rats,
e.g. labelling with '*Cg-fructose uncovered the ability of these animals to metabolise
fructose as fuel for neuronal tissues under hypoxic conditions (Park et al. 2017).

Beside the application of stable isotope labelled organic compounds, inorganic
compounds such as CO, can be used for labelling experiments. For example,
Rohwer et al. used '*CO, to demonstrate the reductive carboxylation in gastric
cancer cells (Rohwer et al. 2016). These are only few examples of the wide range
of applications pSIRM; a very versatile technique to describe metabolism in function
of quantity and time.

3.2 Perspective Towards Single Cells

The advent of single cell “OMICS” has allowed for the analysis of the architecture of
heterogenous cell samples at single cell resolution. Currently, single cell proteomics,
genomics and transcriptomics dominate the single cell technology landscape, while
single cell metabolomics is still in its infancy. The discrepancy of single cell
metabolomics is mainly due to the hardware of mass spectrometry being incompati-
ble with single cell resolution. A mammalian cell contains roughly 1 pL of analytical
volume. Due to this extremely small sample volume GC-MS methods often use
around two million cells per analysis. To further add complexity, metabolism is
highly dynamic — temporally and spatially — in tissue. Therefore, acquisition of
single cells and their processing presents many challenges in the context of meta-
bolic profiling.

Firstly, we will address the process of sampling single cells. The sorting of cells
from a sample is essential to single cell analysis. Fluorescence-activated cell sorting
(FACS) employs fluorescent labels to sort cells of specified origin. FACS may be
coupled to mass spectrometry methods to assess the profiles of sorted cells. How-
ever, the FACS process may interfere with metabolic profiles and therefore FACS
coupled with MS is more suited to proteomic analysis (Bandura et al. 2009). To
minimise the sampling time methods such as matrix-assisted laser desorption/
ionisation (MALDI) employ a laser to ablate cells and their metabolites in situ.
Following laser ablation the ionised metabolites are analysed via MS. Advances
towards single cell resolution have been reported. By using a combination of
computational imaging techniques and nuclei staining, the points of laser ablation
during MALDI-MS analysis can be inferred as metabolite acquisition from a single
cell (Rappez et al. 2021). However, this method is not quantitative and is biased to
high abundant metabolites and proteins.

Current technologies are aiming to sample single cells through microfluidic
trapping coupled with acquisition of intracellular metabolites through micro
capillaries. However, efforts to move to a microfluidic environment present their
own complications, mainly due to maintaining homeostatic environment in a
miniaturised platform (Ali et al. 2019).
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In conclusion, as mass spectrometers become more sensitive coupled with inven-
tive single cell trapping techniques, metabolomics will be a valid and useful addition
to the single cell “OMICS” universe.
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Abstract

Metabolomics has long been used in a biomedical context. The most typical
samples are body fluids in which small molecules can be detected and quantified
using technologies such as Nuclear Magnetic Resonance (NMR) and Mass
Spectrometry (MS). Many studies, in particular in the wider field of cancer
research, are based on cellular models. Different cancer cells can have vastly
different ways of regulating metabolism and responses to drug treatments depend
on specific metabolic mechanisms which are often cell type specific. This has led
to a series of publications using metabolomics to study metabolic mechanisms.
Cell-based metabolomics has specific requirements and allows for interesting
approaches where metabolism is followed in real-time. Here applications of
metabolomics in cell biology have been reviewed, providing insight into specific
technologies used and showing exemplary case studies with an emphasis towards
applications which help to understand drug mechanisms.

Keywords

Cell biology - Metabolomics

1 Introduction
1.1 Omics Context

Metabolomics is the omics-science that analyses the small molecule compartment of
biological samples. Originally, Nicholson coined the term metabonomics as the
science that studies responses of living systems to metabolic changes (Nicholson
et al. 1999). What distinguishes metabolomics from conventional analytical
approaches is the way data are analysed, looking at many components of a sample
at the same time in an untargeted manner, often in a high-through-put manner with
subsequent statistical data analysis. Metabolomics is now often found in the context
of other omics technologies, as part of multi-omics workflows, usually involving
computational systems biology to integrate the different types of data. On the other
hand, targeted analyses have been used to study mechanisms based on biological
hypotheses in a targeted manner, often using isotopically labelled metabolic
precursors as tracers.

Overall, metabolomics has become a broadly used technology in many fields
of biomedical and nutritional sciences (Wishart 2016). Biomedical analyses
are often based on body fluids with the goal to derive biomarkers. This often
involves large sample numbers and high-throughput approaches and is increasingly
linked to genetic and epigenetic features. Wishart, who has established the most
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comprehensive repositories and online tools for metabolomics, has recently
discussed the relevance of metabolomics to study disease mechanisms, to customise
treatments and monitor treatment response and to identify new drugs (Wishart
2016). The expression phenotyping is often used, considering that metabolomics
links genomics, epigenomics and transcriptomics with biological phenotypes.

1.2 History of Metabolomics Using Cellular Samples

Besides the use of metabolomics in a medical context, often with the intent to find
biomarkers, there are an increasing number of applications in biological studies with
the goal to identify specific mechanisms in cells. When looking at such applications
of metabolomics in cellular systems the boundaries between targeted and
non-targeted analysis are often more fluid. As a matter of fact, some of the earliest
applications of what would now be called metabolomics were conducted in cellular
systems. As early as 1978, Ugurbil and Shulman used NMR to study metabolic
turnover in Escherichia coli cells (E. coli), first by *'"P-NMR and soon afterwards by
3C-NMR. The first report used *'P-NMR to measure glycolysis rates in E. coli, and
also looked at the effect of ATPase inhibition (Ugurbil et al. 1978a). Even at a
spectrometer with 360 MHz proton frequency, a 2 min time resolution was achieved.
In a second publication, E. coli cells were incubated with [1-'*C]-labelled glucose in
an NMR tube and followed the turnover of glucose via fructose bisphosphate into
amino acids (alanine and valine) along with lactate, succinate and acetate using
13C-NMR spectra (Ugurbil et al. 1978b). Upon oxygenation, the authors also
observed glutamate, labelled at the C-4, C-3 and C-2 positions. Time-courses were
reported over up to 3 h with a time resolution of 1 min, which is remarkable
considering that the NMR instrumentation in 1978 was at 90 MHz proton frequency.
This early work demonstrates the advantage of NMR to identify site-specific label
incorporation. In a subsequent publication from Shulman’s group, rat hepatocytes
were used to quantitatively assess the metabolic flux of glycerol in gluconeogenesis,
showing label incorporation in several glycolytic intermediates and products (Cohen
et al. 1979) and to understand whether or to what extent hyperthyroid cells (after
pre-treatment of rats with triiodothyronine hormone (T3)) increases the rate of
glycerol consumption and glucose formation. In this work not only signal intensities
were used but also scalar couplings between '>C nuclei to quantitatively assess label
incorporation. In hyperthyroid cells labelling was also reported in lactate, alanine,
aspartate, glutamate and ketone bodies. By analysing time-courses of label
incorporation in different positions of glucose from differently labelled glycerol
precursors pentose phosphate pathway activity could be determined, along with
activities of transaldolase and transketolase. These early findings which provide a
historical background for cell-based metabolic studies are confirmed by more recent
work taking similar approaches to measure fluxes by NMR (Jin et al. 2013).

Soon afterwards, Jardetzky and co-workers described a system for continuous-
flow monitoring of metabolism in mammalian cells (Chinese hamster ovarian cells)
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(Gonzalez-Mendez et al. 1982). These seminal experiments laid the ground for using
NMR to look at metabolism at a time when nobody thought about metabolomics.
They exemplify the virtues of NMR for examining metabolism in cellular systems,
which include real-time analysis of intact cells, using isotopic labels as tracers and
the ability to observe site-specific label incorporation in molecules. Although any
analysis that uses labelled precursors is by definition not untargeted, NMR was
always used to simultaneously detect many metabolites in one NMR spectrum.

Another milestone in this development has come from Szyperski et al. (Szyperski
1995; Szyperski et al. 1996) in 1995, using 'H-"*C_HSQC spectra to analyse cellular
label incorporation. Today HSQC spectra are often preferred as they offer higher
sensitivity than'>C-observed spectra. Szyperski was able to make sense of highly
complex Jcc couplings patterns which arise from mixtures of isotopomers. Today’s
most advanced NMR systems work at 1.2 GHz, commonly used metabolomics
systems work at 600 MHz. Cryoprobes and other improvements of NMR technology
have boosted the sensitivity of NMR experiments by at least an order of magnitude.
There are now cryoprobes available that have been optimised for mass limited
samples which provide immense sensitivity advantages for cell-based studies
(Saborano et al. 2019). Microprobes hold great promise to work with very few
cells (Finch et al. 2016).

Here we review approaches of metabolomics in cells and present the methods
used, with a specific focus on advanced NMR methods. Exemplary case studies are
presented which demonstrate how metabolomics can be used in cell-based
investigations in the wider context of drug discovery.

2 Metabolomics Approaches: Targeted vs. Untargeted

Metabolomics can be carried out at different levels and using very different
approaches (Fig. 1). Methods are typically classified as targeted or non-targeted. In
early metabolomics non-targeted fingerprinting was commonly used where
“features” or raw spectra were employed without specific assignments, often using
multivariate statistical approaches to identify the most relevant features for given
classes (Nicholson et al. 1999). The general advantage of fingerprinting is that data
can be left unassigned. For NMR most initial work has used raw spectra for
subsequent statistical, often multivariate analyses (Nicholson et al. 1999), although
this approach is becoming increasingly uncommon as metabolites are now easily
assigned in many types of samples, including cell extracts where it is extremely well-
known which signals are unique identifiers for individual metabolites. In the case of
GC-MS, the assignments of the signals are usually also well-known thus favouring
targeted approaches. This has included tracer-based approaches for which GC-MS is
equally well suited (Bruntz et al. 2017). Employing typical LC-MS methods,
thousands of features can be detected which can either be used in univariate or
multivariate statistical analyses in an untargeted manner. Alternatively in targeted
approaches features are assigned and only fully assigned signals are used for further
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Target analysis
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Fig. 1 Approaches towards metabolomics

analysis. In the special case of direct-injection MS, only a small percentage of
signals can be uniquely assigned which makes the method better suitable for
fingerprinting.

In today’s applications of metabolomics in cell-based biological systems, targeted
approaches have become much more common, although we also find high-
throughput studies without assigning all signals. Whenever hypothesis-driven
projects aim to decipher metabolic mechanisms in cells, targeted approaches are
needed. This has often also included tracer-based metabolomics using '*C- or
>N-labelled metabolic precursors to study the fate of metabolites along often
complex metabolic pathways. In the specific case of flux analysis, time-courses are
used to derive Kinetic data, or at least to determine the direction of metabolic fluxes
(Kempa, “Advancements in pulsed stable isotope re-solved Metabolomics™). Com-
monly used isotopically labelled metabolic precursors have been glucose and gluta-
mine, but there have also been reports using other metabolites (reviewed in
(Saborano et al. 2019; Cascante and Marin 2008; Jang et al. 2018)). To a certain
degree, it is also possible to obtain fluxes by looking at rates of consumption and
production of metabolites in media. The expression “metabolic flux” is also often
also used for modelling metabolic pathways using tracer-based data (Selivanov et al.
2006, 2020).



186 Z. Eraslan et al.

2.1 Sample Types

When working with cellular systems or organelles, there is a wide array of possible
samples. Primary cultures are directly taken from organisms and can be subject to
investigation for at least a short time. Cell lines arise from primary cells which have
been immortalized. Cell cultures are available from public resources, such as ATCC
(http://www.atcc.org), Coriell (http://ccr.coriell.org), DSMZ (http://www.dsmz.de),
ECACC (https://www.culturecollections.org.uk), JCRB (https://cellbank.nibiohn.
go.jp) or RIKEN Bioresource centre (https://web.brc.riken.jp/en), for which robust
quality control protocols have been established (Yu et al. 2015). Most studies use
immortalised cell lines which can be readily grown to obtain sufficient amounts of
metabolites. Cell extracts represent the most common type of sample, but it is also
possible and often reasonable to measure metabolite concentrations in the medium in
which cells were grown, which can be used to calculate turnover for individual
nutrients. Media-sampling can also be carried out in bioreactors where metabolic
turnover can be directly detected. Moreover, NMR is also suitable for non-invasive
analysis of metabolism in living cells and organelles which has led to several
interesting studies focussed on specific metabolic mechanisms.

2.2 Preparation of Cell Extracts for Metabolomics

Several recent publications have reported protocols for the preparation of
metabolomic samples from cells (Bhinderwala and Powers 2019; Halama 2014;
Dietmair et al. 2012; Rais et al. 1999). A consensus protocol has been summarised in
Fig. 2. Whether primary cells, or certain strains of cells or cell lines are used is less
relevant for metabolomics sample preparation than the way the cells are grown. The
protocol is different for cells grown in suspension or adherently on an inert surface
(typically plastic or glass). Among mammalian cells, it is mainly haematological
cancer cells which are grown in suspension. In the case of adherent cells it is useful
to wash cells with ice cold buffer (usually PBS) as the first step of the preparation for
metabolomics extraction. For suspension cells we wash with prewarmed PBS and
then transfer cells into Eppendorf tubes. Suspension cells can be harvested by
centrifugation or by filtration, in our lab we prefer centrifugation at 4°C as filters
need to be washed to avoid contamination with small molecules from the filter. Cells
grown adherently need to be removed from the surface on which they were grown.
This can be achieved by scraping them off the surface or by trypsinization, where the
latter is generally more common, as it is easier to be carried out reproducibly.
Metabolism needs to be quenched by cooling cells rapidly, which is often carried
out with precooled methanol and/or acetonitrile. Other authors prefer sonication
and/or submerging cells in liquid nitrogen. Subsequently, chloroform can be added
to obtain two phases. Often only the aqueous phase is used but it is also possible to
analyse the lipids from the chloroform layer. Precipitated proteins are found at the
interface between the two phases and the polar and non-polar extracts can readily be
obtained with a syringe. We found it to be important to use glass vials from the first
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b
Centrifuge for 10 minutes at 4000 RPM
Z
Keep on the bench for 5 minutes (optional)
<z
Transfer polar layer to an Eppendorf and non-polar layer to a glass vial

Fig. 2 Protocol for the preparation of metabolomics samples from cells

addition of methanol as tests with plastic vials showed compounds leaching from the
plastic with methanol and chloroform. More recently plastic tubes have become
available that are supposed to be chloroform proof.

Cell extracts recapitulate metabolic levels inside cells at one particular point of
time. Such cell extracts can be examined by NMR or by MS. If NMR is used, a
one-dimensional spectrum allows to reliably identify and quantify 30-40
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metabolites using a 600 MHz spectrometer with a cryoprobe. The number of cells
required for such measurements depends on the cell size. For reference,
haematological cancer cells such as HL60 or K562, approximately 1-10 million
cells are required for one-dimensional spectra, depending on the specific type of
NMR experiments. For tracer-based flux experiments the number of cells required is
larger and should be at least 10 million for 'H-'*C-HSQC spectra or isotope-filtered
spectra. For directly observed '*C-spectra even higher concentrations of metabolites
are required, although recently developed '*C-optimised micro-cryoprobes offer
huge sensitivity advantages with significant potential for metabolomics in cell-
based systems (Ramaswamy et al. 2013; Clendinen et al. 2014; Thomas et al.
2021). Most MS studies of metabolic mechanisms used GC-MS which is somewhat
more sensitive than NMR, >1 million cells are typically needed. LC-MS is much
more sensitive and can work with very small numbers of cells, very much depending
on the specific version of mass spectrometer that is used.

23 Metabolomics Technologies

As already introduced, the main technologies behind metabolomics are NMR and
MS, each with specific advantages (Verpoorte, “Natural products drug discovery: on
silica or in-silico?”’; Evans, “Compound Identification Strategies in Mass
Spectrometry-Based Metabolomics and Pharmacometabolomics”; Raftery, “Quanti-
tative NMR Methods in Metabolomics; Wishart, ‘“Practical Aspects of NMR-Based
Metabolomics”; McKay, “Metabolomics using NMR- avoiding the “Black-Box™”.).
NMR methods are well established in drug discovery, mainly for studying the
interaction of proteins with small molecules (Meyer and Peters 2003; Becker et al.
2018; Ludwig and Guenther 2009), and there is a range of methods to study cells.
Table 1 lists the overall advantages of NMR and MS approaches along with specific
sensitivities. For biologically driven users, it is particularly relevant to understand
the level of application in a cellular context, translated into accessible metabolite
concentrations, cell numbers and types of samples that can be studied. NMR requires
millions of cells (assuming haematological cancer cells such as HL60 and K562 as a
reference) whereas MS based methods are substantially more sensitive. NMR has a
significant advantage for quantification and to detect small but relevant changes.
Other advantages of NMR are the possibility to look a living cells non-invasively
enabling the measurement of time-courses, and to identify site-specific label
incorporation in tracer-based experiments. On the other hand, MS offers several
orders higher sensitivity, enabling even single-cell metabolomics and providing
access to a much wider range of metabolites.

MS can now be applied on a single-cell level, even combined with imaging
(Rappez et al. 2021). Table 1 provides an overview over the different analytical
methods that can be used providing information, their applicability, advantages and
limitations. GC-MS has commonly preferred for tracer-based approaches and there
are well-established protocols for this (Cascante and Marin 2008).
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Table 1 Metabolomics methods used for cellular systems

Technology
Metabolites

Sample types

"H-NMR
Water-soluble

metabolites; lipid fraction

‘Whole cells, cell extracts,

media, organoids

GC-MS

Water-soluble
metabolites which
must be derivatized

Cell extracts

189

LC-MS

Water-soluble
metabolites; lipid
fraction for lipidomics
Cell extracts

Number of cells* | Min 10 million 5-10 million <1 million
Single cell
Run-time 1D spectrum: 10 min 10 min 10-15 min
Detection limit 5-10 uM <1 pM pM—nM
Number of 30-40 150 Thousands of features,
metabolites in ca. 250 assigned
cell-based metabolites
samples
Excellent reproducibility; Good No simple
concentrations can be reproducibility; quantification, except
quantified semi-quantitative for BIOCRATES
approach

Simple sample
preparation; HR-MAS can
be used without
preparation

Sample extraction
and derivatization
required

Sample extraction
required

# Cell numbers for typical haematological cancer reference cells (HL60 or K562)

2.3.1 NMR-Based Methods

NMR in the context of metabolomics has been the subject of previous reviews which
cover NMR methods and protocols used (Wishart 2016; Bhinderwala and Powers
2019; Halama 2014; Duarte et al. 2009; Powers 2009; A(EuperloviA 2010; Palmnas
and Vogel 2013; Zhang et al. 2013; Markley et al. 2017; Vignoli et al. 2019).
Usually, one-dimensional (1D) NMR spectra are used for metabolomics. For this,
a pulse sequence called ID-NOESY is most commonly employed, mainly because it
allows for quantitative measurements with excellent suppression of the water signal.
The 3040 metabolites which can be quantified in 1D NMR spectra from cell
extracts include amino acids, glutathione, taurine, several energy metabolites, such
as UDP, ATP, UDP-glucose, lactate, pyruvate, succinate, fumarate and
a-ketoglutarate, a range of sugars, myo-inositol, cholesterol, fatty acids (typically
the CH, CH, and CHj groups), choline and phosphatidylcholine, phosphatidyletha-
nolamine and triglycerides. While this list is short compared to what MS can
observe, concentrations can be reproduced within 1-2% between repeats of cell
cultures as illustrated by Tiziani et al. (2009). Raftery and co-workers have used a
combination of 1D and 2D NMR methods to distinguish and quantify common
phosphorylated coenzymes such as AMP, ADP and ATP, NADH, NADPH, NAD*
and NADP* (Gowda et al. 2016).
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1D-spectra can also be used for absolute quantification of metabolites and this in a
highly reproducible manner. This can either be achieved by using an internal
standard such as Trimethylsilylpropanoic acid (TMSP) or by using an electronic or
software-generated reference signals using technologies which are now incorporated
in most spectrometers such as ERETIC and PULCON (Akoka et al. 1999; Watanabe
et al. 2016). These methods are now commonly used in NMR protocols for the
analysis of blood samples (Dona et al. 2014).

NMR also offers a large number of alternative pulse sequences which each yield
specific spectral features (reviewed in (Vignoli et al. 2019)). J-resolved (J-RES)
spectra are frequently used, in particular in samples with significant overlap between
signals. This is more common in plant-based samples than in samples arising from
mammalian cell lines. For the assignment of J-RES spectra, the Birmingham Metab-
olite Library (Ludwig et al. 2011) provides a unique resource. J-RES spectra are
usually processed in a manner where scalar couplings are removed thus providing
considerably simplified spectra. J-RES is also a quantitative method suitable to
calculate metabolite concentrations. Recently, a sophisticated *'P-selective J-RES
experiment has been used to identify several phosphometabolites from glycolysis
(Cox et al. 2021). While this method has limited sensitivity, it can distinguish
G6P/F6P or 2PG/3PG which is not possible using MS methods.

Many other NMR pulse sequences have been used to study metabolomics
samples. The most important ones are the TOCSY experiment which links chemi-
cally connected protons and HSQC spectra which correlate "H and '*C resonances.
The two can also be combined in 2D-HSQC-TOCSY spectra which represent
invaluable tools for the assignment of metabolites in metabolomics. Importantly,
HSQC and HSQC-TOCSY spectra have been compiled in the COLMAR database
which also offers online tools for metabolite identification (Robinette et al. 2008;
Bingol et al. 2014, 2015a; Wang et al. 2020). HSQC-TOCSY spectra have also been
used in conjunction with MS for the assignment of unknown metabolites in an
approach that involves the simulation of NMR spectra using preliminary assignment
from MS (Bingol et al. 2015b). Although generally important for metabolomics, this
approach is less relevant for mammalian cells where the same 30—40 metabolites are
observed in almost all cell extracts. Although TOCSY spectra cannot be used to
derive absolute concentrations of metabolites, they have been used extensively for
the analysis of tracer-based metabolism, mainly by Fan and Lane (2008). HSQC
spectra offer considerable deconvolution of NMR spectra although at a much lower
sensitivity than 1D spectra and with a loss of quantification. The reason for this lies
in the nature of HSQCs which depend on scalar 'H-3C couplings ('Jcp) which vary
considerably between metabolites. As a consequence, the signal intensity of a HSQC
spectrum depends not only on the concentration of a particular molecule but also on
the size of the coupling constant. Wan et al. suggested to determine these coupling
constants for a large number of metabolites and calculate the effect oflJCH on the
overall HSQC signal intensities (Wan et al. 2017), but this would require a signifi-
cant effort of collecting such a spectral database.

Nevertheless, HSQC spectra have been used in metabolomics, predominantly in
tracer-based metabolism (Saborano et al. 2019). For labelled samples, the effect of
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the coupling constant on the HSQC intensity can be ignored when signals are
compared for the same metabolite for samples grown under different conditions.
In such cases, ratios between signals provide the relevant information on relative
label incorporations. Alternatively specific filtering methods have been employed to
quantify label incorporation. Such filters can be designed to become largely inde-
pendent of the Jcy coupling constant (Reed et al. 2019).

A key advantage of NMR is that analyses are non-invasive, i.e. can be carried out
using living cells. This has been exploited in various real-time approaches where
metabolites have been measured over extended periods of time. Two main types of
real-time experiments have been reported. High-Resolution Magic Angle Spinning
(HR-MAS) stands for a technology which eliminates line broadening due to aniso-
tropic interactions in samples (Raftery, “Quantitative NMR methods in
metabolomics”). HR-MAS technologies for metabolomics have recently been
reviewed in (Edison et al. 2021). HR-MAS requires almost no sample preparation
and is non-destructive as long as cells can tolerate the high spinning forces.
HR-MAS enables the measurement of metabolites in intact tissue samples, small
animals (C. elegans (Blaise et al. 2007; Mobarhan et al. 2017) or drosophila (Sarou-
Kanian et al. 2015)) or cells. The need for MAS arises from the limited mobility of
molecules in semi-solid samples leading to broad lines in NMR spectra, either
caused by anisotropic dipole—dipole interactions or by local variations in magnetic
susceptibility. Both effects can be eliminated by rotating samples at the “magic
angle” of 54.7° to the magnetic field. This requires placing the sample in a small
rotor spinning at circa 6,000 Hz. For a 1.4 mm rotor at this spinning rate the sample
experiences 200,000 g acceleration which induces serious stress to the sample
(Edison et al. 2021). Recent developments may help to overcome this limitation,
with rotor synchronised pulse sequences it has been possible to obtain good spectra
of earth worms with as low as 100 Hz (Mobarhan et al. 2017). Micro-sized coils for
1 mm rotors were shown to further improve mass sensitivity (Lucas-Torres and
Wong 2019). HR-MAS has been used, for example, to study bacterial cells (Righi
etal. 2013), mycobacteria (Hanoulle et al. 2005a, 2006a; Lee et al. 2005) and also for
examination of mammalian cells (Nyblom et al. 2008; Garcia-Alvarez et al. 2011;
Gogiashvili et al. 2019; Judge et al. 2019; Garcia-Alvarez et al. 2009; Vermathen
et al. 2021) and recently a cellular fungus (Edison et al. 2021). Although such
g-forces are seen as being too large for haematological cancer cells, Edison et al.
demonstrated applicability to chronic lymphoid leukaemia cells (Edison et al. 2021).
Recent works by Edison et al. were focussed towards real-time monitoring using
HR-MAS (Edison et al. 2021). As an alternative approach, cells have been used in
flow bioreactors (Hall et al. 2016) or have been embedded in matrices such as
agarose for real-time measurements (Koczula et al. 2016; Alshamleh et al. 2020).
Examples will be shown below.

2.3.2 MS-Based Methods

GC-MS has been used in the context of metabolomics for more than 50 years and
protocols have been established which can identify and quantify more than
100 metabolites form cell cultures (reviewed in (Fiehn 2016)). First applications of
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GC-MS were reported in the 1960s covering sugars, amino acids, sterols, hormones,
hydroxyl acids, fatty acids, aromatics and many other small molecules (<650 Da), as
reviewed in (Fiehn 2016), before the term metabolomics had been coined. GC-MS
requires derivatization which has been established for a large range of small
molecules and is also well suited for metabolic flux analysis. The method benefits
greatly from large data bases (e.g. the NIST Mass Spectral Library (Babushok et al.
2007) and others reviewed in (Fiehn 2016)) and has played an important role in the
study of cellular metabolism and metabolic fluxes (Fischer et al. 2004). Unlike
NMR, GC-MS is not inherently quantitative but quantification is feasible using
external or internal standards (Fiehn 2016).

Most modern applications rely on LC-MS which does not require any derivatiza-
tion and is potentially truly global, covering thousands of features. LC-MS is a
widely used technology which is now available in many bioanalytical laboratories.
Unfortunately, there is much heterogeneity between LC-MS methods, different
upfront chromatographic approaches, different ionisation sources and different MS
hardware. The advantage of LC-MS for studying metabolomics in the context of
drug discovery is well illustrated by a recent workflow which combined
metabolomics, proteomics and transcriptomics datasets of 54 cancer cells to derive
a map of metabolite—transcriptional regulator interactions which was also used to
look at drug sensitivities (Ortmayr et al. 2019). Such studies typically involve a
systems biology layer that is used to combine large amounts of data. It should be
mentioned that direct flow-injection analysis time-of-flight mass spectrometry
(FIA-TOFMS) shows a lot of potential, in particular because measurements are
very fast, allowing for >5,000 samples to be run per day (Fuhrer et al. 2011) as
illustrated by a recent study by Ortmayr et al. (2019) who screened 54 cancer cell
lines linked with transcriptomic and proteomic data. This study reports 689 putative
assignments based on HMDB (Ortmayr et al. 2019). Typically, 250-350 metabolites
can be uniquely assigned using LC-MS, although not easily quantified.

For cell-based applications, the Biocrates kits approach has become popular as it
offers excellent quantification by using isotopically labelled reference compounds
(see (Illig et al. 2010) as an early example where this technology was used).
BIOCRATES kits now cover a wide range of hydrophilic and lipophilic metabolites
(Thompson et al. 2019) and offer a simple protocol for sample preparation.

Highly specialised MS metabolomics techniques have now reached a sensitivity
where single cells become amenable to investigation, even combined with imaging
(Rappez et al. 2021). This is particularly interesting to assess cancer cell heteroge-
neity and plasticity, manifested as metabolic heterogeneity. Several studies have
attempted to characterise metabolic heterogeneity in cancers (Rappez et al. 2021;
DeVilbiss et al. 2021; Lau et al. 2020), although this remains a challenging area of
MS research.
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3 Case Studies
3.1 Examples of Cancer Metabolomics

Tiziani and Lodi started to extract cells in 2009 to profile drug responses in Acute
Myeloid Leukaemia (AML) cell lines through NMR spectroscopy (Tiziani et al.
2009). For this work, they established protocols for sample preparation and charac-
terization which yield highly reproducible NMR spectra. PCA shows narrow clusters
for HL-60, K562 and KGla cell lines, perfectly separated from each other. Using
these AML cell lines a combination of two repurposed drugs, bezafibrate (BEZ) and
medroxyprogesterone acetate (MPA) was tested. This work has established the
mechanism of action of these drugs to be in part related to the generation of reactive
oxygen species (ROS) with a profound effect on cell viability. The mechanism
behind this is that high ROS causes chemically driven decarboxylation of a-keto-
acids, converting a-ketoglutarate into succinate, pyruvate to acetate and oxaloacetate
into malonate, a mechanism that has recently also been observed in acute myeloid
leukaemia cells interacting with stromal cells (Vilaplana-Lopera et al. 2021).

Tiziani et al. later developed this approach into a high-content drug screening tool
(Tiziani et al. 2011). For this, he developed a new protocol which combined growing
cells in 96-well plates with in situ lysing and quenching of metabolism via SDS
addition and sonication. The cell extracts were subsequently analysed by J-RES-
NMR spectra. Using this protocol, several inhibitors could be detected by monitor-
ing changes of the lactate/pyruvate ratio. Validation in cell lines and in primary
cancer cells was demonstrated. The key advantage of this approach is that it is not
based on a single read-out but rather a high-content metabolic measurement
reflecting increasingly well-understood metabolic changes in cells. Similarly, Lodi
showed in a cellular model how a combinatorial treatment using phytochemical
combinations affects prostate cancer cells (Lodi et al. 2017). In this work, flux
measurements were used to monitor changes in glutamine metabolism in response
to treatment.

Eraslan et al. have conducted metabolomic studies to reveal therapeutic metabolic
targets for germinal centre-derived Burkitt lymphoma (BL) and Diffuse large B-cell
lymphoma (DLBCL) by applying various 1D and 2D NMR techniques (Eraslan
et al. 2021). A principal component analysis (PCA) that was performed on the 1D
NMR spectra of the media showed a clear separation between the BL cells and
DLBCL (Fig. 3a). The loading plot of the corresponding PCA analysis depicted that
the separation of BL from DLBCL mostly derived from the difference in extracellu-
lar asparagine level of BL and DLBL (Fig. 3b, c). '*C-tracer-based NMR metabolic
analysis that was carried out with cell extracts derived from BL and DLBCL cells
cultured in a medium with or no asparagine containing '*C-stable-isotope labelled
tracers depicted that asparagine regulates the synthesis of serine from glucose
(Fig. 3d) and serine uptake (Fig. 3e) in both BL and DLBCL cells. By combining
a metabolomic platform with a transcriptomic platform, they uncovered that BL cells
express the genes involved in serine biosynthesis at a higher level than DLBCL cells
do (Fig. 3f) and defined a new treatment model which solely works for BL. They
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Fig. 3 The role of extracellular asparagine in regulation of serine metabolism in BL and DLBCL.
(a) Principal Component Analysis (PCA) for 1D "H-NMR for media samples of Burkitt lymphoma
cell lines (red) and diffuse large B-cell lymphoma cell lines (blue) (different symbols for different
types of cells). (b) Representation of corresponding loadings plot showing metabolites which
mostly contributed to separation of BL cells from DLBCL cells. (¢) Relative 1D "H-NMR peak
intensities for asparagine in the growth media of DLBCL and BL cells. (d) 2D '*C-NMR analysis of
the cell extraction of Glor and Farage cells cultured in a medium with or without asparagine cultured
with [U-13C]-glucose. (e) 2D BC-NMR analysis of the cell extraction of Glor and Farage cells
cultured in a medium with or without asparagine cultured with [U-'>C]-serine. (f) Heatmap of
statistically significant altered genes (FDR <0.01) associated with serine metabolism from differ-
ential expression analysis. (g) Analysis of 2D "*C-NMR spectra of serine extracted from Glor and
Farage cells cultured in a medium cultured [U-'C]-glucose treated with the PHGDH inhibitor
NCT-503 at 10 pM. (h) The viability of BL31 (BL cell line) and SUDHL6 (DLBCL cell line) cells
after treatment with ASNase at 0.1 U/ml and ASNase at 0.1 U/ml plus NCT-503 for 24, 48 and 72 h

firstly performed a metabolomic study to assess the metabolic effect of an inhibitor
(NCT503) that targets a rate-limiting enzyme PHGDH, in the serine biosynthesis
pathway utilising a '*C-tracer-based NMR metabolic approach (Fig. 3g). Then, they
combined asparaginase (ASNase), which is used to treat acute lymphoblastic leu-
kaemia (ALL) patients, at a very low dose with the PHGDH inhibitor. The combi-
nation of ASNase with the PHGDH inhibitor had a synergistic effect on cell viability
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in BL cells while no synergistic effect on the viability of DLBCL cells (Fig. 3h).
Thus, the integrated multi-omic approach with metabolomics and transcriptomic
data has suggested an attractive new treatment model for BL.

To the best of our knowledge, the first application of HR-MAS NMR spectros-
copy to study cells is a publication by Nyblom et al. studying fatty acid formation
from [1—13C]glucose in insulinoma cell lines (Nyblom et al. 2008)the effect of
an antimitotic glycoside in glioma cells (Garcia-Alvarez et al. 2009). Righi has
demonstrated the applicability of HR-MAS for Pseudomonas aeruginosa, a patho-
genic gram-negative bacterium (Righi et al. 2013). 25 metabolites could be assigned
in 1D and 2D spectra. In an elegant experiment, Hanoulle et al. showed the activa-
tion of the anti-tuberculosis prodrug ethionamide in mycobacteria (Hanoulle et al.
2005b, 2006b). Judge has demonstrated the use of HR-MAS for human multiple
myeloma cells showing that spectra can be obtained in 4 min thus allowing to
measure time-courses for continuous in vivo monitoring of metabolism. In multiple
myeloma cells, employing '*C-labelled a-keto-isovalerate, conversion into valine
could be monitored over a time-course of 60 min (Fig. 4) (Judge et al. 2018). The
production of branched chain amino acids is an essential process for multiple
myeloma cells which have a high demand for amino acids needed for protein
production. For multicellular Neurospora crassa fungal cells, time-courses for
central carbon metabolism, amino acids, TCA cycle intermediates, energy storage
molecules and lipid and cell wall precursors were monitored for up to 10 h (Judge
et al. 2018).

Vermathen et al. have used non-small cell lung cancer (NSCLC) cells to study
Cisplatin (cisPt)-resistance metabolic adaptations employing HR-MAS (Vermathen
et al. 2021). High-quality spectra allowed the detection of 53 metabolites. PCA
showed close clustering of replicates and a clear separation with increasing resis-
tance against cisPt. De-induced cells showed similar behaviour as cisPt-resistant
cells, indicating a long-term memory after cisPt treatment. Metabolites predomi-
nantly changed in cisPt-resistant cells and their de-induced counterparts include
glutathione and taurine (Vermathen et al. 2021). This study clearly demonstrates
how HR-MAS NMR can be used to explain metabolic adaptations during drug
resistance.

3.2 Real-Time Measurements of Cells

Koczula et al. described experiments where chronic lymphoid leukaemia (CLL) cells
were embedded in a low-density agarose matrix to monitor metabolism over several
hours yielding time-courses as shown in Fig. 5 (Koczula et al. 2016). The agarose
matrix first helped to maintain cells afloat in a homogenous matrix and enable
measurements with small numbers of cells (0.5—1.0 million) which would otherwise
only have covered 1-2 mm at the bottom of the NMR tube. The concentration of
cells in this experiment determines the overall turnover rate. Limited diffusion of the
matrix caused oxygen depletion after circa 2 h which causes an abrupt increase of
lactate, alanine and glutamate production along with changes in the rate of glutamine
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Fig. 4 Targeted isotopic CIVM-NMR measurements of metabolic flux in human leukaemia cells.
(a) 2C-labelled keto-isovalerate (KIV) was converted to valine. (b) '*C-labelled valine was not
converted to KIV, confirming unidirectional flux in ML cells. (c, d) Relative concentrations over
time of '*C-labelled KIV (orange) and 13 C-labelled valine (purple) compared to baseline noise
(grey), from spectral intensities within each region of the representative experiments in (a, b),
respectively, for 3 independent replicates. Reproduced from (Judge et al. 2018)

consumption (Koczula et al. 2016). By placing cells back in normoxic conditions
before repeating the real-time NMR experiment, reversible metabolic adaptation of
quiescent CLL cells to hypoxic conditions was demonstrated. By using chetomin as
a HIF-1a inhibitor, it could be shown that this process of metabolic adaptation to
hypoxia is HIF-1a dependent.

One advantage of this approach is that small numbers of cells are sufficient, the
number of cells merely determines the overall rate of metabolic turnover. A major
disadvantage of this approach is however that only the extracellular metabolome is
observed because signals arising from intra-cellular metabolites are too weak and
T,-broadened to be observed. Alshamleh et al. designed a similar experiment to
follow time-courses of metabolism using primary acute myeloid leukaemia (AML)
cells and used methylcellulose as a more cell-friendly matrix, not affecting ATP
levels as reported for agarose (Alshamleh et al. 2020).
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