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Abstract. The renewable energy market, like conventional energy, is often unsta-
ble. Solar energy in particular presents disturbances linked to the spatiotemporal
fluctuations that solar radiation undergoes. To remedy this problem, it is essential
to predict its fluctuations that have exhausting consequences for integration into
the electricity network and reduce the dependence on fossil fuels essential for
socio-economic development. The main objective of this study is to propose a
prognostication model based on artificial intelligence to predict with great accu-
racy the fluctuations of global solar radiation (GSR). Indeed, we adopted a deep
dynamic recurrent memory artificial neural network (ANN) model which can
manipulate the dynamics of atmospheric factors and is capable to save the his-
tory of these characteristics. For this purpose, we developed two long-short term
memory (LSTM) models for short and long term forecasting of global solar radi-
ation time series. The first model is a monovariate LSTM, the second one is a
multivariate LSTM, after selecting the input variables (predictors) by correlation
study, the models are trained by dividing the data set into two subsections, the first
subsection is used for model training and the second subsection is reserved for
testing. The indices and results established in this work demonstrate the robustness
attributed to our method which can provide power grid managers at Er-Rachidia,
MOROCCO (Latitude: 31°55′53′′N; Longitude: 4°25 ′35′′ W; Altitude: 1039 m)
credible predictions to ensure better supervision of the energy system and to adapt
solar energy to the electricity production system, especially multivariate LSTM
model which proved more accuracy compared to monovariate LSTM.

Keywords: Global solar radiation · Prediction · Deep artificial neural network ·
Long short time memory

1 Introduction

The world faced severe crises related to energy issues. To ease these crises, it is essential
to make a transition to renewable energies. Nevertheless, the integration of this type of
energy in the Grid is not always obvious and often unsuitable and destabilizes the Grid.
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The deployment of renewable energy sources and their storage reinforces the idea
of the Smart Grid to solve the problem of interruption of renewable energy, stabilize
the frequency of grid integration and prevent back-feeding to avoid the reversal of the
electric flow [1]. Since December 2015, Morocco has set a challenge to accelerate its
energy transition toward a smart grid by increasing the installed power from renewable
energies to up 52% by 2030 [2].

Current scientific research dedicated to the integration of renewable energies is
directed towards the exploitation and application of new technologies to accurately
predict solar energy. Artificial intelligence with its rapidly growing in several areas [3–
5] remains a very relevant choice, especially with the appearance of new information
technologies and the availability of a large database. Indeed, several recent researches
based on Machine Learning (ML) algorithms have been adopted with the aim of the
prediction and optimization of energy systems.

In this context, Voyant et al. [6] listed several journals associated with ML processes
that aim to predict global solar radiation. Several methods of predictors demonstrate
that it is the ANNs that are generally used to establish a set of predictors (> 70%
of cases). Some articles have reviewed various hybrid approaches involving decision
tree-based ML methods and non-linear learning i.e. Deep Learning (DL) methods such
as Long- and Short-Term Memory neural networks (LSTM) and Convolution Neural
Networks (CNN) [7–9]. Other papers have focused on LSTM and/or Gated Recurrent
Unit (GRU) memory neural networks to highlight and use time series of weather data
that helps in optimizing the power of output of photovoltaic parks [10–12]. LSTM
networks have shown great importance in terms of storing and transporting information
over long distances and capturing long-term dependencies. Recently Jallal et al. [13,
14] proposed two DL algorithms, able to handle nonlinearities and dynamic behaviour
of meteorological data and also able to generate accurate real-time predictions of RSG
data, the first algorithm achieves a coefficient of correlation R = 99.38% and the second
one achieves a coefficient of correlation R = 99.13%.

For this purpose, we are interested in predicting the time series of global solar
radiation with less complexity. We are motivated by the research mentioned above, the
optimal parameters for the proposed model will be examined and designated. Another
strong point of the suggested technique is demonstrated by the considerable prediction
data which reaches 217 days.

2 Methodology

2.1 LSTM Theory

The standard Recurrent Neural Networks (RNN) are challenged with the complications
of the disappearance of gradient i.e. the vanishing gradient problem, which does not
allow to change parameters (weight matrices) considering the previous entries [15].
However, with the appearance of LSTM type networks, answers have been attributed to
these problematics [3]. An LSTM network, or recurrent short- and long-term memory
networkor evenmore explicitly, an intelligentmemory cellwith feedback connections. In
practice, this type of network is frequently used, and it offers solutions to the difficulties
of gradient disappearance.
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In this section, we discuss the LSTM theory. Unlike the recurrent unit, which simply
calculates a weighted sum of the input signals and applies a nonlinear function, each
LSTM unit maintains one memory at a time. An LSTM unit consists of three gates, an
input gate that can accept or reject the upgrade of the LSTM system, another output
that checks if the state of the cell is transferred out of this system, and a for-gotten gate
with internal memory providing the ability to perform a cell state reset. An LSTM unit
thus can decide whether to keep or forget the existing memory via the introduced gates.
Intuitively, if the LSTM unit detects an important feature of an input sequence at an early
stage, it easily carries that information over a long distance, thereby capturing potential
long-distance dependencies. A comparison between simple RNN and LSTM units is
shown in Fig. 1.

LSTMs are the most interesting RNN models used for DL to solve time-series data
prediction problems [9, 10].

The parameters of an LSTM network shown in Fig. 1 are calculated from the
following formulas:

The LSTM network input gate it decides how much current information should be
transmitted according to the following equation:

it = σ
(
xtU

i + ht−1W
i
)

(1)

The forget gate ft decides which information to forget from the previous state as
follows:

ft = σ
(
xUf + ht−1W

f
)

(2)

The output gate Ot defines the internal state information that should be transmitted
using the following equation:

Ot = σ
(
xtU

o + ht−1W
o)

The cell state also called the internal memory Ct is updated in two steps. The first
one consists of the information about the state of the cell

C
∧

t = tanh
(
xUg + ht−1W

g) (3)

The U and W correspond to each of the weight matrices applied to the inputs of
the associated operation. After calculating the cell state Ct, the internal memory Ct is
updated from C

∧

t as follows:

Ct = σ
(
ft ∗ Ct−1 + it ∗ C

∧

t

)
(4)

where * is an element-by-element multiplication operation. The state of a cell Ct, is used
to get the state of the next time step using the following formula:

ht = tanh(Ct) ∗ Ot (5)

where xt, ht−1 andCt−1 are respectively the input to the hidden layer, the previous hidden
state of the previous time step, and the previous state of the cell of the previous time
step.
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Fig. 1. Comparison between simple RNN and LSTM cells

Activation Function
There are several types of activation functions, the choice of the activation function
depends on the application, whether or not it is necessary to have binary outputs.
The mentioned activation functions are the Sigmoid (σ), and Tangent-hyperbolic (tanh)
functions [14]:

Sigmoid function:

σ(x) = 1

1 + e−x (6)

Hyperbolic tangent function;

tanh(x) = ex − e−x

ex + e−x (7)

3 Database Collection and Preprocessing

The PROPRE.MA project initiated by Cadi Ayyad University, MOROCCO and spon-
sored by the Research Institute for Solar Energy and Renewable Energies (IRESEN), the
data used during the design of this RSG prediction system are drawn from the meteoro-
logical station installed within this project in the Faculty of Sciences and Techniques of
Er-Rachidia. The data collected between 01/01/2016 and 01/10/2020 are analyzed and
processed to obtain information that may be useful for learning our predicting system.
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3.1 Data Collection

Theweather data measured by the sensors and instruments of the weather station are sent
in real-time by wireless connection in an orderly manner to the weather station console.
The Weather link data management software installed on our PC retrieves the recorded
weather data at a frequency of 30 min, and allows us to visualize them in the form of
bulletins or graphs over several periods of time as shown in Fig. 2.

Fig. 2. Data collection process

3.2 Data Cleaning

Before analyzing the collected data and adjusting the prediction models, it is essential
to process and purify its content. As a matter, missing data can mislead the learning
process or be contributing to misinterpretation of the data. To avoid any such issues, we
replace the missing values with the average of measured values of the previous and the
following days at the same time step, provided that the total number of missing values
on the same day does not exceed 12-time steps (6 h).

3.3 Selection of Predictors by a Correlation Study

Statistical studies are proposed to master the database which allows the analysis of the
relationship between the elements that contribute to this database.

Figures Fig. 3 and Fig. 4 show Pearson’s (R) and Phik’s (ϕk) correlation indicators
respectively [16]. It can be considered that the three variables: THWindex, Solar Energy,
and UVindex can build the best predictors for the prediction of global solar radiation
since the last three fields are strongly correlated and interactive with the field from GSR.
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Fig. 3. Pearson’s correlation of the global solar radiation parameters.

Fig. 4. Phik (ϕk) correlation matrix of the global solar radiation parameters.

3.4 Model Architecture

The architecture of the model is, in general, a set of an input layer, which receives the
collected data, an output layer, which produces information, calculated in the form of
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predictions and a hidden layer used to connect the input layer, and the output layer using
processing unit neurons [17]. However, recent established studies seek to improve the
performance of the models by increasing the number of hidden layers and the number
of nodes [10], the optimization of the model is done randomly at the beginning and then
validated later by error estimators and the correlation coefficient [17, 18].

In this study, all the basic LSTM models are structured in the same form of the
Adam learning algorithm [19] to train the LSTMmodels. Each model receives as input a
sequence of successive input vectors of sizeN−1withN the number of base observations
to predict the elements y(t) [20]. In the case of multivariate LSTM, these vectors include
subsets of the vectors for the P = 3 parameters (the predictors selected in section A).
However, oscillating windows of univariate LSTM contain the RSG parameter only. The
samples of the resulting input data will be in the form of the 2D vectors of dimension [n,
P] = [200, 1] for monovariate LSTM, and in the form of the 3D vectors [N, n, P] = [N,
200, 3] in case of multivariate LSTM. Each sample of the output data is a 1-dimensional
vector.

3.5 Optimization Parameters Choice

Before proceeding to train each neural network model it is essential to normalize
the database for scaling high contrast data for harmonized and easier computation
afterwards. Indeed, we converted the characteristic values to a range of (0, 1) by the
MinMaxScaler() transformer from the formula:

Xn = X − Xmin

Xmax − Xmin
(8)

where Xn is the normalized value, X is the actual value, Xmax is the maximum value
among all the values of the variable linked to X, and Xmin is the minimum value among
all the values of the variable associated with X.

Many tests have been performed to collect the appropriate hidden layers numbers
and the number of neurons in each layer based on the values of Mean Squared Error
(MSE) and Mean Absolute Error (MAE) calculated by the formulas mentioned in the
research papers [7, 13]. MSE is practically essential in Machine Learning, it is often the
error metric that is frequently used (loss function).

3.6 Classification Type

Deep neural networks such as LSTM can simulate single-variable problems and prob-
lems with multiple input variables. This research work aims to develop univariate LSTM
models and multivariate LSTM models that can accurately predict short-term GSR at
Er-Rachidia. Then, compare the results obtained by each approach. In the study con-
ducted in this reference [21], the authors developed and compared twomentioned LSTM
classes to predict global horizontal irradiation. However, they combined several vari-
ables to build multivariate models. Moreover, among these combinations, the model that
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includes the temperature with the global horizontal irradiation as an input has the highest
performance.

Monovariate LSTM Model
In this class, we consider that the GSR varies only in time. Consequently, the input
tensor contains one feature as a variable. Nevertheless, we win in computation time and
optimizing sensors. But, we lose the diversity of the variables that can advantageously
characterize the problem of prediction to solve.

Multivariate LSTM Model
The time series forecasting method using multiple input variables for LSTM networks
offers a great advantage in handling complex problems that are difficult to handle by
conventional methods. In this class, we established a sense of the relationship of all
variables with the GSR using the correlation matrix and then used the selected variables
to develop a multivariate LSTM model. Therefore, the input tensor shapes for LSTM
models this time is in the form (N, 200, 4).

3.7 Number of Hidden Layers Optimization

Two steps were defined to select the hidden number layers:

• Step1: following several tests, we fixed, while comparing the error obtained in each
test, the number of neurons to 50 in the model with a single hidden layer.

• Step2: we test the model performance by increasing the number of hidden layers by
one for each test. The results are summarized in Table 1 and Fig. 5.

Table 1. Hidden layers number variation versus calculated MSE and MAE.

Learning algorithm «Adam»

Number of
epochs

Number of
hidden layers

MSE MAE

30 1 0.0234 0.060

2 0.0107 0.057

3 0.0022 0.0269

4 0.0023 0.0272

5 0.0024 0.0271
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Fig. 5. Hidden layers number variation diagram versus the error metrics.

The model showed a convergence near a minimum error of MSE = 0.0022 and
MAE = 0.0269 from the third layer, beyond this layer the model learning became
almost stationary. Based on the above figure, the number of 3 hidden layers turned out
to be the best one for the prediction model adopted in this study. In what follows, we
will fix the number of layers in 3 and seek the number of optimal neurons for each layer.

3.8 Number of Neurons Optimization

By the same process as earlier, we carried out error tries, which narrowed the range of
tests on the number of neurons in the three layers in (20, 60) neurons. Indeed, after several
tests it has been observed that beyond 60 neurons the error committed by the model has
become almost stable, similarly, below 20 neurons the performance of the model no
longer improves. Consequently, the tests are carried out according to the combinations
of Table 2 and the calculation results are grouped in Table 3.

The results show that on one hand, the increase in the number of neurons in the
hidden layers beyond (50-50-50) neurons do not improve the learning rate of the model
according to the values of the MSE, but also the MAE drops slightly, on the other hand,
the reduction in the number of neurons in the three layers below (50-30-30) neurons
increases the learning error of the model. Though, we scanned our tests between these
extremities until the most adequate configuration (50-40-30) neurons which corresponds
to an MSE = 0.0017 and MAE = 0.0180.

Table 2. Combination interval for neuron number in the hidden layer.

Hidden layer 1 Hidden layer 2 Hidden layer 3

(20-60) (20-60) (20-60)
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Table 3. MSE and MAE values for different hidden neurons number.

Number of neurons in a hidden layer MSE MAE

Layer 1 Layer 2 Layer 3

60 60 60 0,0022 0,0261

55 55 55 0,0022 0,0267

50 50 50 0,0022 0,0269

45 45 45 0,0023 0,0281

40 40 40 0,0023 0,0287

55 30 20 0,0028 0,0330

50 40 30 0,0017 0,0180

50 30 30 0,0025 0,0298

50 45 30 0,0029 0,0338

50 40 20 0,0028 0,0331

Therefore, an LSTM recursive neural network with deep machine learning by three
hidden layers and 50, 40, and 30 neurons respectively in each layer was found to be
the best implementation for predicting the semi-hourly global solar radiation at the Er-
Rachidia site with a minimum of MSE. Suffice to say that the evolution of MSE and
MAE during model training adheres to model convergence towards minimum error as
shown in Fig. 6.

Fig. 6. MSE and MAE evolution versus epoch’s number.
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4 Realization of Predictions and Discussions

Two variants of the LSTM network (LSTM-multivariate and LSTM-monovariate) were
experimented with within this part to predict RSG at the Er-Rachidia level as accurately
as possible with learning rate (Learning rate = 0.001) and introduce one (Dropout =
0.1) after the first hidden layer to avoid the risk of overfitting [22]. The performance
of the two varieties is evaluated according to the MSE and the MAE. The batch size is
given as 100 and 48 for monovariate LSTM and multivariate LSTM respectively.

The raw data run through the model in the form of oscillating windows [10] as input
and following the flowchart in Fig. 7 to estimate the output RSG. The first step inmachine
learning is data acquisition. Then, the acquired data was shared by various interested
parties and summarized into useful information. The steps included in this process are
data selection, purification and preprocessing, also data scaling. The data is divided into
two disjoint subsets, a training set and another reserved for testing and evaluating the
model according to different appropriate statistical indicators. The correlation coefficient
R is chosen to assess the performance of the models in this study. R is calculated by the
following formula:

R =
√√√√

∑N
i=1(xi − yi)2∑N
i=1(xi − y)2

(9)

where, xi is the observed value of semi-hourly RSG, yi is the estimated value of semi-
hourly RSG, y is the average of observations, and N is the total number of observations.

Fig. 7. DATA processing diagram and learning process.
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4.1 First Experience

Over the period from 01/10/2016 until 13/03/2017 two simulations were carried out by
the twomethods monovariate LSTM andmultivariate LSTM by the data shown in figure
Fig. 8. Over this period, the two ANNs are tested by the totality of the data (training
data and test data): the training data to control and visualize the training phase and the
test data are processed in installments: 20%, 30%, and 40% of the database to study the
stability of the models.

Based on the coefficient of determination R and the error metrics, both methods
showed high accuracy, with prediction quality stability up to 40% as shown in Table 4.
Emphasizing that the multivariate LSTM model converges faster than monovariate
LSTM. A comparison between the estimated values in different forms and the measured
values for the two methods is presented in Fig. 9 and Fig. 10.

Fig. 8. Selected parameters for building ANN models for 2016

The four parameters shown in Fig. 8 are very important. Indeed, the actors of alterna-
tive energies especially solar energy need to track the amount of solar radiation for solar
energy production purposes. However, the THWindex field uses humidity, temperature
and wind measurements to calculate an apparent temperature, and the UV index assigns
a number between 0 and 16 to the current UV intensity, which will help to analyze
changing UV radiation levels.
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Fig. 9. Estimated GSR in the training and testing phases—(a) by univariate LSTM, (b) by
multivariate LSTM.

Considering the convergence of the loss function as a function of epochs and the
values of the significant correlation coefficients obtained at the end of the tests (Table 4),
can guarantee that the learning rate and the other optimization parameters are selected
appropriately. The maximum correlation coefficient obtained for this first simulation is
R = 98.97% (Fig. 12).
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Fig. 10. Estimated andmeasured GSR in the training and testing phase—(a) by univariate LSTM,
(b) by multivariate LSTM.

4.2 Error Metrics Synthesis of the Developed Models

To prove the stability of our models, we have calculated the MSE, MAE, and R for the
two approaches developed in this work during the training and the testing phase.



690 M. Khala et al.

Table 4. Model performance in terms of MSE, MAE, and R indicators during the training and
testing phases.

Test size Train Test

MSE MAE R MSE MAE R

LSTM_MONO 20% 0.0014 0.0152 0.9908 0.0010 0.0125 0.9800

30% 0.0018 0.0221 0.9895 0.0010 0.0160 0.9890

40% 0.0017 0.0219 0.9897 0.0019 0.0222 0.9886

LSTM_MULTI 20% 0.0010 0.0153 0.9929 0.0010 0.0139 0.9803

30% 0.0011 0.0152 0.9865 0.0011 0.0153 0.9897

40% 0.0011 0.0162 0.9932 0.0017 0.0207 0.9827

Based on the mean square error and the mean absolute error values given in Table 4,
the scores obtained for MSE and MAE indicate that the two models examined showed
great stability, especially the LSTM_MULTI model which committed an error of MSE
= 0.0017W/m2 at 40% test size compared to LSTM_MONO model which reached an
error of MSE = 0.0019W/m2. The results obtained in the training and testing phase
mean that our model is correctly calibrated, also it’s able to overcome learning problems
such as vanishing gradient.

Validation Loss Function
For the validation task, we choose anMSE loss function to validate the predictive model.
Therefore, a graph is also created in Fig. 11 showing two-line plots, the top showing
the MSE for the training dataset over epochs, and the bottom showing the MSE for
the testing dataset over epochs. The graph shows that the training process has indeed
converged. But we can see that MSE shows an irregular evolution in the test phase,
although the dynamics of MSE do not seem to be too affected compared to the training
phase, given that the nature of GSR sometimes shows large outliers.

Fig. 11. Evolution of the loss function versus the number of epochs for the training and testing
phase.
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Fig. 12. Scattering diagram for testing data obtained in the first experience.

4.3 Second Experience

The second experiment is performed by monovariate LSTM based on the RSG time
series between 01/10/2016 and 01/10/2020 (Fig. 13). However, this period is tested by
20% of all data chosen between 2019-08-05 and 2020-10-01 of the GSR time series.
Model convergence is established at 30 epochs. Figure Fig. 14 shows that predicted SRG
versus actual GSR wish is very accurate. The predictions of the RSG time series show
high accuracy and a strong correlation between the measured values and the estimated
values with a correlation coefficient of R = 98.83%, (Fig. 15).

The performance demonstrated by ourmodel in the two experiments examined shows
that it could be applied to optimize the operation of solar energy-based electricity services
by predicting solar radiation. Several studies have recently been carried out internation-
ally to simulate solar radiation [14], the technique proposed in this study marks a high
accuracy in terms of correlation coefficient compared to the majority of studies shown
in Table 5.

The main common point between the studies that have marked a great correlation
between the estimated and the real values of GSR based on the coefficient of determina-
tion R is the integration of dynamic and recurrent ANN models such as LSTM models
that can handle the complexity of prediction problems. The prime keys to success in
this work are: The data analysis examined based on the correlation study which allows
selecting the most strongly correlated features that contribute to learning models with
less error and the adoption of a dynamic neural network LSTM to deal with the dynamics
of GSR which is influenced by the weather conditions changes.
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Fig. 13. Global solar radiation time series measurement between 2016 and 2020.

Fig. 14. Estimated GSR and actual GSR for the second experience

For a prediction dedicated to the short applications [30] of the GSR time series by
our model, a zoom on 2 days (Fig. 16) and 10 days (Fig. 17) of prediction. The figures
show the difference between real GSR and GSR predicted by our approach. For this
purpose, the developed prediction model allows the power grid managers to optimize
the operation of energy systems, and to generate simulated data of theGSRwhenmissing
values of this parameter are detected.
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Fig. 15. Scattering diagram for testing data obtained in the second experience.

Table 5. Some recent studies on the prediction ofGSR time series and their correlation coefficient.

Reference Applied technique R (%)

[13] (2020) ANN 99.13

[23] (2018) SVR-PLS 93.3

[24] (2018) Empirical model 96.7

[24] (2018) Empirical model 82.5

[25] (2019) DENFIS 94.2

[25] (2019) DENFIS 97.9

[26] (2020) PVGIS 97.1

[26] (2020) HILIOSAT 97.2

[26] (2020) HILIOSAT 97.6

[27] (2020) ANN 98.49

[28] (2020) ANN 97.93

[29] (2021) ANN (SR and Wind) 96.93–99.97

Present work (2022) Proposed model (ANN/LSTM) 98.97
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Fig. 16. Predicted GSR and actual GSR for two days.

Fig. 17. Predicted GSR and actual GSR for ten days.

5 Conclusion

The study we conducted in this article was meant to improve the solar irradiation pre-
diction tools using Deep Learning methods. The aim is to innovate in terms of new
technologies and then invest in smart systems to respond to a crucial need which is the
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integration of solar energy into the grid, in a fast dynamic and appropriate way. After-
wards studying statistically, the database and selecting strongly correlated fields to the
RSG parameter, we adopted a model based on LSTM neural networks to identify the
half-hourly RSG changes at Er-Rachidia, Morocco. We also controlled the dynamism
over time of this parameter during model training with a well-optimized calibration.
The pertinent results obtained show the robustness of our method. We reached a strong
Pearson correlation at R = 98.97% given by the multivariate LSTM model.
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