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Abstract. To achieve the transition from a linear economy to a circular bioecon-
omy, a full implementation of the biorefinery concept is needed. The sustainability
of biorefineries requires knowledge of the characteristics of sitespecific biomasses
and residual biomasses. However, the complexity, variability and seasonality of
biomasses pose huge challenges to the conception, assessment and management
of biorefinery installations. In this context the classification of biomasses based on
machine learning approaches and using proximate analysis data may be helpful in
the decision-making process and management of biorefinery units. On the other
hand, automatic identification of the sources of solid biofuel material might be
advantageous in the context where the material has already been processed and
must be used in energy generation or as raw materials of a biorefinery scheme, or
when the elementary contents of thematerials might not be existent or easily avail-
able. In this work, we use a public dataset to build classification models to predict
the solid biofuel type from their fixed carbon, volatile matter, and ash contents.
The dataset aggregates 585 examples of solid biofuels classified as one of four dif-
ferent types: coals, woods, agriculture residues, and manufactured biomass. Since
the dataset presents a strong imbalance towards one of the classes, an algorithm to
promote class balancing with synthetic oversampling is used. Then, six different
models for biofuel classification are built, tested, and validated. The analysis of
the relative contribution to each of the features for the final model is performed.
The results show that it is possible to achieve an overall classification accuracy of
90%.

Keywords: Solid biofuels · Biorefinery · Machine learning · Multi-class
classification · Random forest · Extreme gradient boosting

1 Introduction

To achieve the transition from a linear economy, based mainly on fossil resources,
to a circular bioeconomy, based on renewable resources, a full implementation of the
biorefinery concept is needed. Biorefinery is the sustainable integration of processes
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to transform biomasses into a portfolio of biofuels, bioenergy, and bioproducts, while
minimizing or zeroing residues generation [1]. But the ecological, economic, and tech-
nological sustainability of biorefineries will require the knowledge of the characteristics
of site-specific biomasses and residual biomasses, since ideally generation of energy and
production of goods should be decentralized [2]. However, variation in complexity, geo-
graphic availability and seasonality of biomasses, and respective characteristics poses
huge challenges to the conception and assessment of proposed or and management of
running biorefinery installations.

Indeed, the nature and properties of biomasses are of critical importance in the selec-
tion of the processing technologies, particularly for its use as fuel. Depending on the
nature of biomasses, biofuels and biorefineries may be classified as first generation, if
the use of its biomass raw material competes in any form with food or feed production,
including land occupation. Second generation biofuels and biorefineries use lignocellu-
losic, particularly residual, biomasses as row materials. Third generation biofuels and
biorefineries applies algae as staring materials [1]. In terms of processing technologies
those installations may be classified in thermal, chemical, or biochemical “platforms”.

Option for one or more of these platforms depends undoubtedly on the final main
products to be obtained, but also on the characteristics of raw biomasses. Evidently a
deep knowledge of the startingmaterial, as detailed as possible, particularly, information
on the ultimate or elemental analysismay be helpful in conception and implementation of
conversion scheme.However ultimate analysis requires expensive equipment andmay be
frustrating and inefficient [3].On the other hand, the so-called proximate analysis, i.e., the
characterization of biomasses based on its water, fixed carbon, volatile matter, and ashes
contents requires less expensive equipment and, therefore, is widely used by researchers
in various modelling and prediction studies, also for process designing proposes. For
instance, proximate analysiswas extensively used to predict higher heating value (HHV),
an extremely important parameter for the characterization of fuels, showing that it is a
reasonable alternative to ultimate analysis [3].

In this context the classification of biomasses based on machine learning approaches
and using proximate analysis data may be helpful in the decision-making process on and
management of biorefinery or biofuels producing units. In this work, the methodologies
and results for the identification of biofuels from their fixed carbon, volatile matter, and
ashes contents using machine learning is presented.

2 Methods

In this section the dataset used is presented, along with the methods used to deal with
the unbalanced nature of the data, and the methodology used to train and evaluate the
classification models.

2.1 Data

The public dataset presented in [4] was used to build classification models to predict the
solid biofuel type from their fixed carbon, volatile matter, and ash contents. The dataset
was built from raw fuel composition data presented in a number of scientific publications
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that were categorized as four different types of solid biofuels: coals, woods, agriculture
residues, and manufactured biomass. The raw fuel elements categorized in each class
are presented in Table 1.

Table 1. Categorization of raw fuels. From [4].

Class name Raw fuels

Coals Coals, charcoals, chars

Woods Woods, shell, pruning

Agriculture Residues Seed, husk, leaves, grass, bark, straw,
stalk

Manufactured Biomass Municipal solid waste, RDF, sludge,
briquettes

The dataset comprises a total of 585 samples, with unequal distribution among the
four classes of biofuels, as represented in Fig. 1.

Fig. 1. Distribution of the dataset samples among the four solid biofuel classes.

The features available in the dataset for each sample the contents on fixed carbon,
volatile matter, and ash. The kernel density estimate (kde) plots presented in Fig. 2 show
the distribution of the contents according to the biofuel class.
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Fig. 2. Density plots for a) Fixed Carbon content, b) Volatile Matter content and c) Ash content.
Different colors represent the different biofuel classes.

The kde plots show that both Manufactured Biomasses and Coals present to the
naked eye with a good degree of separability from the other contents at least for one of
the features, while Woods and Agriculture Residues are mostly overlapping.

The goal is to build classification models that allow to identify the biofuel category
of the samples from the three mentioned features. Additionally, there is an appreciable
degree of data unbalance, where the most represented class (Woods) represents 43% of
the samples, whereas the less represented class (Manufactured Biomass) represents only
12% of the samples.

2.2 Data Sampling

The fact that the dataset presents an appreciable degree of class imbalance might con-
stitute a challenge to the classification task. This happens because the machine learning
models will tend to be more biased towards the majority class (or classes), and perform
worse for the minority class (or classes) [5].

There are two main approaches to deal with the issue of data unbalance at the data
level: either under-sampling or over-sampling. Under-sampling techniques, where some
data are eliminated from the majority classes, have the disadvantage of reducing the size
of the dataset. Over-sampling techniques can be used by generating new synthetic data.
This was the approach followed in this work, where the SMOTE – Synthetic minor-
ity over-sampling technique [6] was used. For synthetizing new samples, the SMOTE
algorithm starts by identifying neighbor examples from the minority classes in the fea-
ture space and then synthetizes a new example in the space between those neighbors. It
repeats this procedure as many times as needed to create a balance between the number
of samples in the classes.

In this work, the SMOTE implementation available at the imbalanced-learnmodule
in the scikit-learn library [7] was used, which allows dealing with multiple minority
classes, such as the present case.
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2.3 Classification Models

Six different classification algorithms were chosen to train the classifiers: Logistic
Regression(LR) [8] and Support Vector Machines (SVM) [9] were chosen due to their
simplicity, ease to tune, and difficulty to overfit; Decision Trees (DT) [10] model was
used because it provides more complex models, although at the expense of a tendency
to overfit; Random Forests (RF) [11] and Extreme Gradient Boosting (XGB) [12], two
ensemble techniques, although more difficult to tune, usually provide good performance
models that are less likely to overfit than Decision Trees. To train these models the
implementations available at the Scikit-learn library in Python [13] were used.

2.4 Model Training, Evaluation Metrics

Following the usual procedure, data were divided into a training set (80% of the samples)
and a test set (20% of the samples). Then, for each model, a 5-fold cross validation
procedure was used to avoid overfitting. This means that the training data set was divided
into 5 blocks, and the training of each model was done with 4 of the blocks, with the
remaining one being used for validation purposes. The process was repeated 5 times,
once for each block, thus enabling the maximization of the total number of observations
used for validation. The best average cross-validation estimator score was elected. Then,
the overall performance of each elected model was assessed with the test set.

Accuracy (Eq. 1) is the global metric often used for evaluating classification models,
computed as the number of correct predictions divided by the total number of predic-
tions. It might however become an unreliable metric in the case of unbalanced data. In
such cases, single class metrics are more adequate [14], since they allow for a better
understanding of how the models behave for each class. In this work the f1-score (Eq. 4)
is used, which accounts for the trade-off between precision (Eq. 2) and recall (Eq. 4),
which also represent single class metrics.

Accuracy = TP + TN

TP + TN + FP + FN
(1)

Precision = TP

TP + FP
(2)

Recall = TP

TP + FN
(3)

f 1 − score = 2 ∗ Precision ∗ Recall

Precision + Recall
(4)

For each trained model, f1-score, precision and recall were computed for each class, as
well as the accuracy, and the average-f1score.

In the previous equations, TP stands for True Positive, TN for True Negative, FP for
False Positive, and FN for False Negative. For eachmodel, these values were also plotted
in a confusionmatrix, a table that summarizes the performance of the classificationmodel
for each class.

For each trained model, f1-score, precision, and recall were computed for each class,
as well as the accuracy, and the average f1-score.



Using Machine Learning to Identify Solid Biofuels 83

3 Results

The confusion matrices obtained for each of the trained models are presented in Fig. 3.
The dark green values along the main diagonal represent the percentage of True Pos-
itive values for each class. For each row, the values outside the diagonal represent the
percentage of False Negative values for the respective class; for each column, the values
outside the diagonal represent the percentage of False Positive values for the respective
class.

From these matrices, it’s possible to identify that both Coals and Woods are easier
to correctly classify, regardless of the classifier used, than the other two biofuel classes.
Coals is also one of theminority classes. The fact that every classificationmodel presents
high f1-score for this class is an indication that the data sampling technique achieved its
goals. Agricultural Residues are often misclassified as Woods, which was expectable,
given their content superposition, and alsomisclassified asManufactured Biomasses. On
the other hand, Manufactured Biomasses can be misclassified as Agriculture Residues.

Fig. 3. Confusion matrix for the models a) Logistic Regression; b) k-Nearest Neighbors; c)
Support Vector Machines; d) Decision Tree; e) Random Forest; e) Extreme Gradient Boosting.

The values for f1-score obtained with the six classification models for each class are
presented in Table 2.

The f1-score values for the individual classes confirm that, in general, all models
classifyCoals andWoodswith high f1-score (above 0.91), and thatAgricultural Residues
andManufacturedBiomasses seem to be harder to correctly classify,with lower f1-scores
for those classes (below 0.91).

Finally, Table 3 presents the global metrics obtained for each of the trained models:
accuracy, and the average values of f1-score, precision and recall.
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Table 2. f1-score values for the individual classes, for the several trained models.

Biofuel class LR kNN SVM DT RF XGB

AR 0.82 0.80 0.80 0.83 0.84 0.84

Coals 1.00 0.97 1.00 0.90 0.93 0.92

MB 0.87 0.90 0.87 0.87 0.90 0.90

Woods 0.93 0.91 0.92 0.93 0.92 0.92

Table 3. Global metrics obtained with the trained models: average f1-score, average precision,
average recall, and accuracy.

Model f1-score Precision Recall Accuracy

Logistic Regression 0.89 0.89 0.88 0.87

k-Nearest Neighbors 0.90 0.90 0.90 0.89

Support Vector Machines 0.88 0.89 0.88 0.88

Decision Tree 0.84 0.89 0.83 0.86

Random Forest 0.90 0.90 0.90 0.90

Extreme Gradient Boosting 0.90 0.90 0.90 0.90

Among the six trained classifiers, Random Forest and Extreme Gradient Boosting
stand with the highest performance metrics, followed by the kNN model.

4 Discussion

In this work, a public dataset was used to build six classification models to predict
the type of biofuel. The problem is addressed as a four-category classification task,
in which there’s an imbalance towards two of the classes. The SMOTE algorithm is
used to promote class balancing with synthetic oversampling and six machine learning
classificationmodels are trained. The results show that both RandomForest and Extreme
Gradient Boosting have the highest classification accuracy and that the Agriculture
Residues is the biofuel type that is harder to correctly identify.
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