
Chapter 8 
Abstraction: Mathematics Since 
the Twentieth Century 

Number is the ultimate abstract expression of all forms of art. 

Wassily Kandinsky 

Philosophy must be of some use and we must take it seriously 

Frank Ramsey 

The Road to Abstraction 

Set Theory and Axiomatic Systems 

The revolutions in mathematics in the nineteenth century paved the way for rapid 
development and unprecedented expansion in mathematics in the twentieth. Modern 
mathematics no longer comprises only geometry, algebra, and analysis. Rather, 
mathematics today is a vast web of interconnected and evolving disciplines and 
concepts, characterized not only by rigorous logic but also by high abstraction 
and wide applicability. This indicates the basic division of modern mathematical 
research into pure mathematics and applied mathematics. The latter classification 
has expanded in recent decades to include computer science, the importance 
of which in the modern world goes without saying: from the perspective of 
employment opportunities alone, it has already exceeded every other branch of 
mathematics (Fig. 8.1). 
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Fig. 8.1 Georg Cantor, 
founder of set theory 

The modernization of pure mathematics was driven primarily by two innovations: 
the invention of set theory and the introduction of axiomatic methods. Set theory 
was created in the nineteenth century by Georg Cantor. Its invention was initially 
ill received by the mathematics community, notably Kronecker, but eventually 
achieved widespread success. Sets were originally conceived as collections of 
numbers or points, but the definition of a set quickly expanded to include collections 
of arbitrary elements, for example, sets of functions, sets of shapes satisfying a 
given property, and so forth. Today, it is the universal language of mathematics 
in which the basic concepts of mathematics, say integrals, functions, and spaces 
of various kinds, are all expressed. The introduction of set theory has also had 
a profound influence on the machinery of mathematical logic and motivated the 
debate between mathematical intuitionism and formalism, which is the subject of 
the present chapter. 

Georg Cantor was born in 1845 in Saint Petersburg into a family of second-
generation German emigrants. His father was a businessman with connections 
in Hamburg, London, and even New York. When Cantor was 11 years old, his 
father became ill, and the family returned to Germany. He completed his secondary 
education in Amsterdam and attended universities in both Zurich, Switzerland, and 
Berlin. He had a talent for painting which was a source of considerable pride for his 
family, but settled eventually upon a career in mathematics. 

As Cantor saw it, a set consists of any abstract collection of well-distinguished 
objects. He introduced the notion of the cardinality of a set in order to compare the 
sizes of different sets, whether finite or infinite. His definition relies on the notion of
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a one-to-one correspondence between sets, which is illustrated by a surprising and 
beautiful demonstration: Cantor discovered and proved that it is possible to set up a 
one-to-one correspondence between the rational numbers and the natural numbers. 
The proof is encapsulated by the following diagram. 

Such infinite sets that can be put into a one-to-one correspondence in this way with 
the natural numbers are called countable. Infinite sets that cannot be put into any 
one-to-one correspondence with the natural numbers are called uncountable. Cantor 
proved that the set of real numbers is uncountable. 

Moreover, Cantor was able to use set theoretical arguments to provide a simple 
nonconstructive proof for the existence of transcendental numbers: since it is not 
difficult to see that the set of algebraic numbers, which includes as a subset the set 
of rational numbers, is countable. Since every real number is either algebraic or tran-
scendental, and the set of real numbers is uncountable, it follows that the majority of 
real numbers must be transcendental. The study of transcendental numbers became 
a deep and active area of research in twentieth-century mathematics. 

The philosophical assumptions and implications at the heart of Cantor’s research 
were not uncontroversial. In particular, the successful and influential mathematician 
Leopold Kronecker opposed the introduction of actual infinities into mathematics. 
Kronecker was head of mathematics at the University of Berlin and a successful 
businessman, and his vigorous public opposition to Cantor may have prevented 
Cantor from ever obtaining a post there, and Cantor spent the entirety of his career 
at the less prestigious University of Halle. 

Cantor borrowed from Hebrew the notation .ℵ0 (aleph null) to stand for the 
cardinality of the natural numbers and showed that it is possible to construct an 
increasing sequence .ℵ0 < ℵ1 < ℵ2 < · · · of transfinite cardinalities. Since
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the cardinality of the real numbers is strictly larger than the cardinality . ℵ0 of the 
natural numbers, Cantor proposed a natural conjecture, referred to today as the 
continuum hypothesis: there exists no cardinal number lying strictly between the 
two. When David Hilbert presented his famous list of open problems at the turn of 
the twentieth century at the International Congress of Mathematicians in Paris in 
1900, the problem of the continuum hypothesis was first among them (a problem 
related to transcendental numbers was seventh). 

Cantor corrected a serious defect in the foundations of mathematics that had 
persisted since the time of Zeno in Ancient Greece. The philosopher Bertrand 
Russell discusses the historical significance of his work in his Mathematics and 
the Metaphysicians, published in 1901: 

Zeno was concerned, as a matter of fact, with three problems, each presented by motion, but 
each more abstract than motion, and capable of a purely arithmetical treatment. These are 
the  problems  of  the  infinitesimal, the  infinite,  and  continuity  . . . From  him  to  our  own  day,  
the finest intellects of each generation in turn attacked the problems, but achieved, broadly 
speaking, nothing. In our own time, however, three men—Weierstrass, Dedekind, and 
Cantor—have not merely advanced the three problems, but have completely solved them. 
The solutions, for those acquainted with mathematics, are so clear as to leave no longer the 
slightest doubt or difficulty. This achievement is probably the greatest of which our age has 
to  boast  . . . Of  the  three  problems,  that  of  the  infinitesimal  was  solved  by  Weierstrass;  the  
solution of the other two was begun by Dedekind, and definitively accomplished by Cantor. 

Unfortunately, Cantor’s Promethean efforts and many personal insecurities and 
misfortunes led to his own mental breakdown at the age of 40, and he spent much 
of his later life in and out of sanatoriums, in one of which he died some many years 
later (Fig. 8.2). 

The story of axiomatization in mathematics also begins in Ancient Greece, with 
Euclid and his Elements of Geometry. In it, he introduced the five axioms discussed 
at length in the previous chapter. His system however was incomplete and imperfect. 
The mathematician David Hilbert introduced a new system of axioms for geometry 

Fig. 8.2 A commemorative stamp issued by the Democratic Republic of the Congo featuring 
David Hilbert
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in order to clear up its ambiguities. He is reported to have described the objective of 
his axiomatic system with the words: “One must be able to say at all times—instead 
of points, straight lines, and planes—tables, chairs, and beer mugs.” 

In Euclid, points, lines, and planes have descriptive definitions in terms of 
their spatial properties. Hilbert endeavored to replace these descriptive definitions 
with purely formal definitions. Points, lines, and planes become purely abstract 
objects with no specific content, and the axioms define formal relations between 
them. Hilbert established three legitimacy requirements for an axiomatic system: 
consistency, independence, and completeness. Of course, axiomatization at this 
stage was only a methodological question and does not possess as rich a content as 
set theory. Nevertheless, Hilbert provided with his method a rigorous foundation for 
geometry, and since then, the method of axiomatization has gradually seeped into 
other branches of mathematics and become a powerful tool for refining mathematics 
and a specific topic of mathematical research in its own right. 

David Hilbert was born in 1862 in the outskirts of Königsberg, a Prussian city 
that today is part of Russia and known as Kaliningrad. Probably the most famous 
resident in the history of Königsberg was Kant, who spent his entire life there. The 
city is also associated with a famous problem in mathematics. There are seven 
bridges across the river Pregel running through it, some of them connecting the 
mainland to one or the other of two large islands at its center, one of them joining 
the two islands to one another (Fig. 8.3). 

The problem was to find a walk through the city that would cross each of the 
bridges once and only once, and it was resolved by Euler in the eighteenth century, 
who proved that no such walk exists. This seemingly simple mathematical problem 
eventually gave rise to the modern theory of topology. Another mathematically 
famous resident of Königsberg was Christian Goldbach (1690–1764), responsible 
for a famous eponymous open conjecture in mathematics, that every even integer 
larger than 2 admits a presentation as a sum of two primes. Perhaps the greatest 
progress toward the resolution of this problem was provided by the Chinese 
mathematician Chen Jingrun, who proved in 1966 that every sufficiently large even 

Fig. 8.3 Abstract illustration of the Seven Bridges of Königsberg problem
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number can be written as a sum of either two primes or the sum a prime and the 
product of two primes. In 2013, Zhang Yitang (1955–), another mathematician born 
and raised in China, made a breakthrough in the study of the twin prime conjecture, 
which states that there exist infinitely many pairs of prime numbers with a difference 
of two, such as, for example, 5 and 7, 11 and 13. His result was subsequently 
improved by a new method created by the British mathematician James Maynard 
(1987–), who was awarded the Fields Medal in 2022. 

During Hilbert’s lifetime, the Königsberg mathematician who played the largest 
role in his mathematical career was his colleague Hermann Minkowski (1864– 
1909) who was born 2 years after Hilbert in the Russian town of Aleksotas, now 
part of Kaunas in Lithuania, and moved with his family when he was 8 years 
old to Königsberg, where they lived across the river from Hilbert. This talented 
mathematician earned the prestigious Mathematics Prize of the French Academy 
of Sciences when he was 18 years old for a manuscript on the theory of quadratic 
forms. His brother Oskar Minkowski (1858–1931) was also a successful medical 
researcher, who discovered the relationship between the pancreas and diabetes, 
which led to the discovery of insulin as a treatment of the disease. 

Hilbert’s talent was in no way outshone by the remarkable talent of Minkowski, 
but rather he was impelled to hone and accumulate his skills and quietly endeavor 
to build for himself an even more solid foundation. The two of them developed a 
remarkable friendship that spanned more than a quarter century until Minkowski’s 
sudden death due to appendicitis in 1909. Hilbert lived to see his eighties and 
became one of the most accomplished and respected elder statesman of mathematics 
in his time. The famous list of open questions and research projects that he 
introduced at the turn of the century remain to this day an influential guidepost 
for the entire discipline. 

We say a bit here about Hilbert’s ninth problem, which was partially resolved by 
the work of the Austrian mathematician Emil Artin (1898–1962) and the Japanese 
mathematician Teiji Takagi (1875–1960) with the creation of class field theory. 
Takagi pursued his doctorate at the University of Göttingen under the supervision 
of Hilbert and later returned to his country where he trained a generation of 
outstanding Japanese mathematicians: indeed, following the end of World War II, 
Japan produced three Fields Medalists, the first of them being Kunihiko Kodaira 
(1915–1997). 

The Abstraction of Mathematics 

Set theory and the axiomatic method became the paradigms for mathematical 
abstraction in the twentieth century, even more so after they were integrated into 
a singular foundational approach to all of modern mathematics. Eventually, four 
central disciplines emerged: real analysis, functional analysis, topology, and modern 
(or abstract) algebra. It is interesting to note that all the mathematicians mentioned 
in the previous section in connection with this development hailed from Germany,
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a country which has always nurtured a talent for the abstract, whether in art, music, 
or the humanities and social sciences. 

The introduction of set theory brought about a revolution in integral calculus 
which led to development of the modern theory of functions of a real variable. The 
rigorous treatment of analysis in the nineteenth century had forced into the light 
a variety of pathological functions such as the Weierstrass’s function, discussed in 
the previous chapter. Another example is Dirichlet function, named after another of 
Gauss’s students, who discovered it: 

. f (x) =
{

1 if x is a rational number

0 otherwise
.

This function has the interesting property of being discontinuous at every real 
number. Such examples forced mathematicians to study a more general class of 
functions than that which had typically been admitted into calculus (Fig. 8.4). 

The first significant success in this d irection was achieved by the French 
mathematician Henri Lebesgue (1875–1941). He adopted a set theoretical approach 
to invent a new mathematical discipline called measure theory. In measure theory, 
certain familiar geometrical concepts including length and area are generalized 
and made abstract by the introduction of a measure on a given space. Similarly, 
Lebesgue extended the integral of classical calculus by defining the Lebesgue 
integral. On the basis of these foundations, it is possible to recover the fundamental 
theorem of calculus relating the differential operation and the integral operation 
and the other familiar theorems in calculus due to Leibniz and Newton. The 
contributions of Lebesgue became the building blocks of modern real analysis. 
However, his work received a hostile reception from classical analysts, and he 
struggled to find consistent work for a period of time after its publication. Its 
importance is recognized today by the division in analysis between classical analysis 

Fig. 8.4 Henri Lebesgue, 
father of modern analysis
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and modern analysis, the latter of which refers to any topic in analysis which makes 
use of his innovations. 

Another deep development in analysis in the twentieth century was the devel-
opment of modern functional analysis. The word functional was coined by Jacques 
Hadamard (1865–1963) to describe a function whose argument is another function. 
We have had occasion already to discuss examples of such functions in our treatment 
of the calculus of variations. The list of mathematicians who contributed important 
results in functional analysis is a long one. Hilbert, for example, studied the space 
of square-summable sequences: sequences .(a1, a2, . . . , an, . . .) of real numbers 

subject to the requirement that the series .
∞∑

n=0
a2
n converges. He defined the notion 

of an inner product on such a space, as well as its various operations, and provided 
in this way the first example of an infinite-dimensional vector space. This space is 
referred to today as a Hilbert space. 

Ten years later, the Polish mathematician Stefan Banach (1892–1945) presented 
a more general class of vector spaces, the so-called Banach spaces. He replaced the 
inner product of Hilbert with a real valued function called a norm by means of which 
it is possible to provide general definitions of the length of a vector, the convergence 
of a sequence of vectors, and so on. The study of general Banach spaces marked 
a considerable expansion and abstraction in the scope of functional analysis as a 
discipline. Around the same time, considerable progress was made toward a more 
abstract and general concept of a function. We present here only an example of this 
work: the so-called Dirac delta function .δ(x), invented by the British physicist Paul 
Dirac (1902–1984)1 and defined by the properties 

. δ(x) = 0 for all x �= 0, and

+∞∫
−∞

δ(x)dx = 1.

Of course, there exists no function in the classical sense satisfying these properties, 
but the Dirac delta function proved extremely useful for physics, and eventually, 
a mathematical formalism was discovered to handle such cases. Today, functional 
analysis is among the areas of mathematics that has proved most useful to physics 
and the other sciences, in particular engineering technology (Fig. 8.5). 

At the same time that set theoretical methods were facilitating revolutions in 
real analysis and functional analysis, the axiomatic method was also extending 
its reach into every area of mathematics. The most significant developments were 
in abstract algebra. Ever since Galois had first introduced the group concept into 
mathematics, mathematicians had expanded the class of groups to include finite 
groups, discrete groups, infinite groups, and continuous groups. A host of other

1 In 1928, Dirac introduced the theory of relativity into quantum mechanics and established the 
relativistic version of the Schrödinger equation, known as the Dirac equation. That year, he and 
Schroödinger both won the Nobel Prize in Physics. 
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Fig. 8.5 Emmy Noether, a 
founding figure in abstract 
algebra 

Fig. 8.6 The witch of Agnesi curve 

algebraic systems also appear, including rings, fields, lattices, ideals, etc. The focus 
of algebraic research began to shift toward abstract algebraic structures; such a 
structure consists of a set equipped with some number of finitary operations subject 
to a list of prescribed axioms (Fig. 8.6). 

It is generally believed that the first mathematician to formally set down the 
idea of modern abstract algebra was the German mathematician Emmy Noether 
(1882–1935) in her 1921 paper Idealtheorie in Ringbereichen (Theory of Ideals 
in Ring Domains). She was one of the finest mathematicians of her age or any 
age and contributed to the axiomatic treatment of the general theory of ideals and 
noncommutative algebra. At the time of her death, she was memorialized as the 
greatest woman mathematician of all time, having surpassed in accomplishment 
the mathematicians Hypatia (c. 350–415) of Ancient Gaetana Agnesi (1718–1799) 
of Italy, Sophie Germain (1776–1831) of France, and Kovalevskaya of Russia.
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Sex discrimination prevented her for many years from obtaining a regular post at 
Göttingen despite the fervent recommendations of David Hilbert, and she often 
worked for no pay. After the rise of Hitler the Nazi party, she was removed from her 
position and eventually moved to America where she spent her final years lecturing 
at Bryn Mawr College. 

In addition to abstract algebra, probability theory also benefited from axiomatiza-
tion. The main work in this area was carried out by the Soviet mathematician Andrey 
Kolmogorov (1903–1987). Kolmogorov graduated from Moscow State University 
in 1925 and immediately began to carry out research at the same institution. 
Four years later, he published his General Theory of Measure and Probability 
Theory, in which he proposed six axioms as a foundation for probability. He also 
contributed to the practical development of probability theory through his work 
on continuous-time Markov process. Leaving probability aside, Kolmogorov also 
carried out important work in functional analysis, topology, the theory of turbulence, 
information theory, dynamic systems, and classical mechanics. 

In 1980, Kolmogorov shared the Wolf Prize in Mathematics with the French 
mathematician Henri Cartan (1904–2008). Two years earlier, his student Israel 
Gelfand (1913–2009) had received the first ever Wolf Prize in Mathematics for 
his work on functional analysis, group theory, and representation theory; Gelfand 
shared this award with the German mathematician Carl Ludwig Siegel (1896–1981). 
Israel Gelfand was born into a poor Jewish family in the Odessa Oblast (province) of 
Ukraine, where he was expelled from high school, according to his own account for 
political reasons related to his father’s status as a mill owner. At the age of 17, he and 
his father made his way to Moscow to live with some distant relatives. Two years 
later, without having received a high school diploma or university degree, Gelfand 
begin postgraduate studies at Moscow State University under the supervision of 
Kolmogorov. His doctoral dissertation introduced the theory of normed rings; he 
also proved an important theorem concerning the space of maximal ideals in rings 
of continuous functions and established the general spectral theory of .C∗-algebras. 

We turn finally to topology. The great German-born American mathematician 
Hermann Weyl (1885–1955) famously said, “In these days the angel of topology 
and the devil of abstract algebra fight for the soul of every individual discipline 
of mathematics.” This indicates something of the great importance of these two 
disciplines. The premodern origins of topology however appear much earlier than 
those of abstract algebra, and its motivating examples are more immediately 
accessible. These include the problem of the bridges of Königsberg (1736), the 
four-color problem for maps (1852), and the famous Möbius strip (1858). The 
basic objects of interest in topology are abstractions of geometric shapes subject 
to continuous processes – two topological structures are considered to be equivalent 
to one another if one can be obtained from the other by an invertible continuous 
transformation (intuitively, transformations that can be achieved by stretching or 
distorting, but without introducing any cuts or joins). The word topology seems to 
have first been coined by a student of Gauss in 1847. In Greek, it means the study 
of position.
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Modern topology is subdivided into point-set topology, also called general 
topology, and algebraic topology. In point-set topology, the basic structure is that 
of a set equipped with a collection of distinguished subsets referred to as open 
sets or neighborhoods. The entire ensemble is known as a topological space. In 
this way, it is possible to give abstract definitions for various properties of interest 
to mathematicians, including continuity, connectedness, and dimension, and also 
some more specialized concepts such as compactness and separability. The theory 
has some interesting and surprising applications. For example, it follows from the 
famous fixed point theorem of topology that at any given time there is always some 
point on the surface of the earth at which there is no wind (like the eye of a hurricane) 
and that there is some point on the surface of the earth from which every direction 
points southward, specifically the North Pole. The fixed point theorem states: every 
continuous map from an n-dimensional object (satisfying certain conditions) to 
itself has a fixed point. 

Algebraic topology was founded by the French mathematician Henri Poincaré 
(‘854–1912). Just as a wall is made up of bricks, Poincaré began by partitioning geo-
metric spaces into finitely many little regions. He defined in terms of these regions 
the topological concepts of higher-dimensional manifolds, homeomorphisms, and 
homology. Subsequent mathematicians also developed such related concepts as 
homotopy and homology. This procures a translation of topological problems into 
the domain of abstract algebra. One of the earliest results in what is now referred to 
as algebraic topology was first discovered by Descartes in 1635 and independently 
rediscovered by Euler in 1752. This is the famous Descartes-Euler polyhedral 
formula which says that for any simply connected convex polyhedron, the sum of 
the number of vertices and the number of faces minus the number of edges is always 
equal to 2. Another famous result in algebraic topology is the Poincaré conjecture, 
which states that every simply connected closed 3-manifold is homeomorphic to the 
3-sphere. Poincaré first proposed his conjecture in 1904, and it was proved by the 
Russian mathematician Grigori Perelman (b. 1966) in 2006 (Fig. 8.7). 

Henri Poincaré was born in Nancy, Meurthe-et-Moselle, in 1854, the same year 
in which Riemann developed his theory of non-Euclidean geometry. He exhibited a 
prodigious intelligence from an early age, although he became seriously ill with 

Fig. 8.7 French 
mathematician Henri 
Poincaré
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Fig. 8.8 Grigori Perelman, 
who proved Poincaré’s 
conjecture 

diphtheria when he was 5 and sometimes had trouble expressing his thoughts 
fluently for a period afterward. Nevertheless, he enjoyed all manner of games 
and dancing as a child and developed a reputation as a remarkably quick and 
attentive reader. In school, he excelled in all his subjects and especially in written 
composition. His interest in mathematics flowered somewhat late, probably when 
he was about 15, but his talent quickly revealed itself. He enrolled at the École 
Polytechnique when he was 19 (Fig. 8.8). 

Poincaré never stayed too long in one area of research – one of his contem-
poraries described him as more a conqueror than a colonizer. To some extent, he 
planted his flag in every discipline in mathematics, and several disciplines outside 
it, but his most important contributions were certainly in topology. Research into 
the Poincaré conjecture and its generalizations and eventual proof produced three 
separate Fields Medalists at intervals separated by 20 years: first in 1966 and then 
again in 1986 and 2006 (Fig. 8.9). 

Poincaré was also an exceptional popularizer of mathematics. His popular works 
were translated into many languages and read with interest by people from all walks 
of life with an influence not unlike that of A Brief History of Time by Stephen 
Hawking (1942–2018) in the present day. Finally, Poincaré sustained an active 
interest in philosophy throughout his life and published three influential works 
on the philosophy of science: Science and Hypothesis, The Value of Science, and 
Science and Method. He famously argued for the position of conventionalism in 
physics, which holds that the laws that govern physics and physical space are subject 
to competing equivalent formulations and that the choice of one or another particular 
system of formulations is a question of convention and convenience. At the same 
time, he was opposed to the use of infinite sets in mathematics and believed instead 
that the most basic concept in mathematics is the concept of the natural numbers.
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Fig. 8.9 Les Demoiselles d’Avignon, Picasso (1907) 

In this respect, he was one of the earliest proponents of intuitionism. In connection 
with this belief, Poincaré always emphasized the role of creativity in mathematics 
and its relation to the arts. He wrote in The Value of Science that “it is only through 
science and art that civilization is of value.” 

At a time when people were still actively debating the legitimacy of non-
Euclidean geometry, Poincaré presented in powerful intuitive guides to the geometry 
of space in four dimensions. In Science and Hypothesis, he argues “consider a purely 
visual impression, due to an image formed on the back of the retina. A cursory 
analysis shows us this image as continuous, but as possessing only two dimensions. 
However, sight enables us to appreciate distance, and therefore to perceive a third 
dimension.” Just as information in three spatial dimensions can be translated onto 
the two dimensions of the retina, it is possible to imagine that the three dimensions 
of physical space are projections onto a surface in four-dimensional space not 
unlike the artistic choice of perspective on a canvas. This argument had a profound 
influence on Pablo Picasso, who was inspired by it to begin his experiments in 
cubism with the painting Les Demoiselles d’Avignon in 1907. 

Science and Hypothesis also had a profound effect on another member of 
Picasso’s circle, the Paris actuary Maurice Princet (1875–1973), who is generally 
credited with introducing its ideas to the cubists who lived and met at the 
Bateau-Lavoir building in the Montmartre district. The writer and critic Guillaume
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Fig. 8.10 Self Portrait 1875, 
Cézanne 

Apollinaire (1880–1918), who moved in the same circles and invented the term 
cubism, observes in his book The Cubist Painters (1913) that “geometry, the science 
of space, its dimensions and relations, has always determined the norms and rules 
of painting.” He likened the idea of a fourth spatial dimension to the “immensity 
of space eternalizing itself in all directions at any given moment,” a great metaphor 
containing the seeds of an entirely new art. He further pointed out that “geometric 
figure is as essential to painting, and geometry is as important to the plastic arts, as 
grammar is to writing.” We can perhaps regard Cubism as a second great encounter 
between painting and geometry after the Renaissance (Fig. 8.10). 

Abstraction in Art 

The word “abstract” as a noun occurs frequently at the beginning of mathematical 
and other scientific papers, just beneath the title, author, and institution, where it has 
the meaning of “summary.” In this section, we discuss its more usual descriptive 
meaning in the context of art and mathematics (Fig. 8.11). 

Just as the introduction of set theory and the tendency toward abstraction in 
mathematics in the early part of the twentieth century was not met without a certain 
amount of resistance and controversy, the abstract movement in art has also been 
cause for significant dispute. Ever since Aristotle, the ultimate aim of painting and 
sculpture had always been the imitation of nature.
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Fig. 8.11 The Card Players, Cézanne (1893) 

Fig. 8.12 La Nuit étoilée (Starry Night), van Gogh (1889) 

It was only in the mid-nineteenth century that artists began to view their project 
differently and regard painting as an end in itself without reference to verisimilitude. 
Over time, a new style emerged: specific forms increasingly were exaggerated and 
deformed and transformed for expressive effect. The pioneer of this new style was 
Paul Cézanne (1839–1906). Cézanne took inspiration from his own idiosyncratic 
optical theories according to which the eyes perceive a scene continuously in time 
and from a variety of perspectives. His innovative ideas concerning nature, people, 
and painting are all on display in his paintings of mountains, rivers, and still 
life compositions in his native Provence. For Cézanne, abstraction was a tool for 
restoring to painting its natural beauty and independence (Fig. 8.12). 

Cézanne is known as the father of modern art, and his guidance initiated a great 
wave of modernism in art in the late nineteenth and early twentieth century. His



286 8 Abstraction: Mathematics Since the Twentieth Century

Fig. 8.13 Landscape at Murnau, Kandinsky (1908) 

immediate heirs were the Fauvists, represented by Henri Matisse (1869–1964), and 
the Cubists, represented by Picasso. All of these artists however retained in their 
work some connection to the representation of natural forms. Their work cannot yet 
be called abstract art, but rather only abstracted art, or perhaps half-abstract. The 
word abstract here is merely descriptive and does not have the status of a proper 
noun, as in “abstract art” and the mathematical term “abstract algebra.” Rather the 
phrase abstract art in its fullest sense refers to works with no identifiable subject 
matter (Fig. 8.13). 

The first truly abstract artist was probably the Russian painter Wassily Kandinsky 
(1866–1944). Since the eighteenth century, Russia under Peter the Great and Cather-
ine II had engaged in large-scale patronage in the arts and sciences. Beneficiaries 
of this patronage in mathematics alone included Euler and the Bernoulli brothers. 
Russians at that time travelled often to France, Italy, Germany, and other countries, 
and by the nineteenth century, Russian literature, music, drama, and ballet had all 
developed to an extraordinarily high degree of refinement. 

It was in this context that Kandinsky was born in Moscow in the same year 
that Riemann died in Germany and only a few months before Baudelaire died in 
Paris. His father was a tea merchant from Siberia, and his grandmother a princess 
of Chinese Mongolian descent. His mother was a Moscow local. When he was still 
young, Kandinsky travelled with his parents to Italy. After his parents divorced, he 
lived with an aunt in Odessa on the shores of the Black Sea in modern Ukraine 
and completed his education there. He took up piano and cello and began to teach 
himself painting (Fig. 8.14). 

When he was 20, Kandinsky enrolled at the University of Moscow to study law 
and economics and eventually obtained a degree equivalent to a modern doctorate. 
He maintained a strong interest in painting however and was especially influenced 
by the colorful folk art he experienced as part of an ethnographic research expedition
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Fig. 8.14 Abstract painting 
by Kandinsky 

Fig. 8.15 On the Spiritual in 
Art, German edition (1912) 

to the Vologda region north of Moscow. In 1896, when he was already 30 years old, 
Kandinsky decided once and for all to become a painter. He abandoned a promising 
teaching career and took the train for Germany, where he studied privately at first 
and later enrolled as an art student at Munich Academy. Among his classmates was 
a young Swiss artist named Paul Klee (1879–1940) who later became one of the 
great painters of the early twentieth century alongside Kandinsky (Fig. 8.15).



288 8 Abstraction: Mathematics Since the Twentieth Century

Fig. 8.16 Progression from 
representation to abstraction: 
Flowering Trees by Mondrian 

It was during his time in Munich that Kandinsky began to develop his mature 
ideas about nonobjective and nonrepresentational art. After a period of exploration, 
he struck upon his purpose in art: the creation of decisive spiritual and emotional 
reaction by way of line and color, space and movement, without reference to 
the representation of natural objects. In his tract Concerning the Spiritual in Art, 
Kandinsky discusses his first encounter with the impressionist paintings of Édouard 
Manet (1832–1883) and the attraction he felt toward an art in which the material 
reality of its objects was deemphasized. Revolutionary advances in the natural 
sciences in his lifetime further corroded his commit to the world of direct sense 
perception (Fig. 8.16). 

Kandinsky endeavored in his art to give spiritual expression to mystic inner expe-
rience independent from external reality on the one hand and technical refinement 
on the other. He believed that the harmony of color and form must always take as
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Fig. 8.17 Painting by Kazimir Malevich 

its primary objective the task of reaching the human soul. In middle age, Kandinsky 
wrote an autobiography in which he described his experience of colors: 

The colors which made the greatest impression on me were bright green, white, magenta, 
black, yellow. Even now I have memories of them from when I was three years old. I noticed 
them again and again in a variety of shapes and objects, and over time the objects became 
less clear in my eyes than the colors themselves. 

In his later years, Kandinsky began to develop a more geometric style of 
abstraction built in circles and in triangles. His ideas are reflected in the titles 
of some of his works: Concentric Circles; A Center; Yellow, Red and Blue; and 
Sounds. In another important treatise, Point and Line to Plane, Kandinsky analyzed 
the specific emotional effect of formal elements in painting, claiming, for example, 
that a horizontal line has a coldness to it, while a vertical line is hot. In any case, his 
works are characterized by an immediately recognizable feeling for color and form 
that suggest the new horizons of expression facilitated in art by the turn toward the 
abstract, in much the same way that non-Euclidean geometry had conjured up a 
broader space of possibilities in mathematics (Fig. 8.17). 

After Kandinsky, the prominent representatives of abstraction in art have 
included the Russian painter Kazimir Malevich (1879–1935), the Dutch paint Piet 
Mondrian (1872–1944), and the American painter Jackson Pollock (1912–1956). 
Malevich brought geometric abstract to its ultimate and simplest form of expression, 
for example, in such Black Square. Both Malevich and his contemporary Mondrian 
had also deeply influenced by the Cubist movement (Fig. 8.18). 

Pollock, inspired by the Surrealists, worked in a very different style, sometimes 
called action painting, which involved subconscious and bodily techniques such as 
the dripping and pouring of paint onto the surface of the canvas or even the hood of
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Fig. 8.18 Action painting by Jackson Pollock 

a car. The success that he and his fellow traveller Willem de Kooning (1904–1997) 
enjoyed (de Kooning was born in Holland and came to America as a stowaway) 
suggests the shift in the center of gravity of the art world from Europe to America 
in the second half of the twentieth century. 

Applications of Mathematics 

Theoretical Physics 

At the beginning of this chapter, we mentioned that research in modern mathematics 
split into two major directions, pure mathematics and applied mathematics. The 
previous section introduced briefly the four main branches of modern abstract 
mathematics; the interactions between these branches also contributed to the birth 
of further branches, such as algebraic geometry, differential topology, and so on. 
Given the limitations space and scope of this book, we will not discuss these in 
any further detail. Instead, we turn now to the penetration of mathematics into the 
other intellectual crystallizations of human civilization, that is, the sciences, starting 
with physics. The eighteenth century had been the golden age for the synthesis of 
mathematics with classical mechanics, and in the nineteenth century, the greatest 
mathematical applications to physics occurred in the theory of electricity and 
magnetism, and its best representative was James Clerk Maxwell (1831–1879), 
associated with the mathematical physics school at Cambridge University. Maxwell 
established a complete system of electromagnetic theory consisting of four concise 
partial differential equations. He seems to have first developed a more complicated 
formulation, but started over on the basis of his belief that the mathematics 
representing the physical world should be beautiful (Fig. 8.19).
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Fig. 8.19 Maxwell at 
Cambridge 

Maxwell joined a long line of Scottish thinkers and inventors; indeed, this small 
country has contributed the largest number of inventors relative to its population 
of any in the world. Prior to Maxwell, there was James Watt (1736–1819), who 
contributed one of the early practical steam engines, and afterward, there appeared 
also Alexander Graham Bell (1847–1922), inventor of the telephone; John Macleod 
(1876–1935), a coauthor in the discovery and isolation of insulin; Alexander 
Fleming (1881–1955), who discovered penicillin; and John Logie Baird (1888– 
1946), who contributed to the invention of television and demonstrated the first 
true working television in London in 1927. Scotland was also home to Adam 
Smith (1723–1790), who presented the first complete and systematic theory of 
economics. The central concept of his masterpiece The Wealth of Nations is that the 
apparent chaos of the free market consists in fact of the workings of a self-regulating 
mechanism that tends as if automatically to the production of those products that are 
most desired and needed by society (Fig. 8.20). 

After the advent of the twentieth century, mathematics has occupied the center 
of such disciplines in theoretical physics as relativity, quantum mechanics, and ele-
mentary particle theory. In 1908, the German mathematician Hermann Minkowski 
(1864–1909) proposed his four-dimensional spacetime model .R3,1 equipped with 
the metric relation 

. ds2 = c2dt2 − dx2 − dy2 − dz2

where c is the speed of light. This provided the most suitable mathematical model 
for the special theory of relativity introduced only a few years early in 1905 by 
Albert Einstein (1879–1955); this model is now referred to as Minkowski space. 
Incidentally, Minkowski had been among the teachers of Einstein, although he was 
unimpressed by the mathematical ability of his early student. 

Afterward, Einstein sought to expand his theory to account for the gravitational 
field; he achieved a basic outline of his new theory by summer of 1912, but he 
lacked sufficiently sophisticated mathematical tools to develop it completely. But
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Fig. 8.20 Einstein’s 
mathematics teacher, 
Hermann Minkowski 

during this time, he reacquainted with an old classmate in Zurich who had since 
become a professor of mathematics, who introduced him to Riemannian geometry 
and more generally to differential geometry, which Einstein referred to as tensor 
calculus. After more than 3 years of hard work, in a paper completed on November 
25, 1915, Einstein derived the gravitational field equations 

. Rμν = kTμν + 1

2
Rgμν

where .Rμν is the Ricci tensor, .Tμν is the stress-energy tensor, R is the scalar 
curvature, .gμν is the metric tensor, and k is a constant related to the gravitational 
constant and the speed of light. With these equations in hand, Einstein remarked that 
the logical construction of general relativity was now complete. 

Although Einstein had completed his derivation of the general theory of relativity 
in 1915, his work was published only the next year. It is fascinating that at almost 
the exact same time, the German mathematician David Hilbert obtained the same 
gravitational field equations from along a different line of thought. Hilbert took 
an axiomatic approach based on the theory of invariants for continuous groups 
developed by Emmy Noether. He submitted this paper to the Göttingen Academy 
of Sciences on November 20, 1915; it was published 5 days earlier than Einstein’s 
paper. 

On the basis of his theory of general relativity, Einstein predicted the existence 
of gravitational waves and black holes, which were confirmed experimentally in 
2017 and 2019, respectively; more precisely, in 2017, scientists directly detected
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gravitational waves produced by a collision of binary neutron stars, and in 2019, the 
first photograph of a black hole was produced. These remarkable achievements were 
the result of a collaboration between many scientists from many different countries. 
Another consequence of general relativity is that spacetime taken as a whole is not 
uniform; it is uniform only across tiny regions. Mathematically, this nonuniformity 
can be expressed via the Riemannian metric 

. ds2 =
2∑

μ, ν=1

gμνdxμdxν.

The mathematical description of general relativity revealed for the first time the 
practical significance of non-Euclidean geometry and stands as one of the greatest 
achievements of applied mathematics in history. This perhaps does not quite place 
its realization on a level with the establishment by Newton of the law of universal 
gravitation, since Newton unlike Einstein also developed the entire mathematical 
basis for his new mechanics (Fig. 8.21). 

In contrast with the theory of relativity, the development of quantum mechanics 
is not associated with the name of any single physicist but rather with an ensemble 
of scientists working around the same time. The pioneers were Max Planck (1855– 
1947), Einstein, and Niels Bohr (1855–1962) and subsequently Erwin Schrödinger 
(1887–1961), Werner Heisenberg (1901–1976), and Paul Dirac (1902–1984); they 
established formulations of quantum mechanics in terms of wave mechanics, matrix 
mechanics, and operator theory, respectively. The integration of these various theo-

Fig. 8.21 Einstein’s home; photograph by the author, Bern
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ries into a unified system called for new mathematical theories. Hilbert introduced 
analytical tools such as integral equations for this purpose, and John von Neumann 
(1903–1957) further extended what is known as the theory of Hilbert spaces to solve 
the eigenvalue problem in quantum mechanics. He also finally extended the spectral 
theory introduced by Hilbert to address the situation of unbounded operators 
that frequently arise in quantum mechanics. This laid the rigorous mathematical 
foundations for the discipline. 

In the second half of the twentieth century, there were further developments 
in theoretical physics that required applications from the abstract branches of 
pure mathematics; two well-known examples are gauge theory and superstring 
theory. In 1954, the Chinese physicist Yang Chen-Ning (1922-), who shared a 
Nobel Prize in 1957 with another Chinese physicist Tsung-Dao Lee (1926-), and 
the American physicist Robert Mills (1927–1999) introduced Yang-Mills theory, 
which proposes gauge invariance as the common feature of the four fundamental 
forces of nature (electromagnetic force, gravitational force, and the strong and 
weak forces), bringing back into the spotlight the theory of gauge fields which by 
that time had already been long established. They attempted to achieve through 
this theory a unification of the interactions between known forces. Mathematicians 
quickly observed that the necessary mathematical tools were already available in the 
form of the fiber bundles of differential geometry. The Yang-Mills equations were 
recognized as a set of partial differential equations, and research into these equations 
has promoted the further development of mathematics. Another bridge between 
pure mathematics and theoretical physics by way of Yang-Mills theory came from 
the Atiyah-Singer index theorem, proved in 1963 and subsequently determined 
to have important applications in Yang-Mills theory. The research areas involved 
in this topic include analysis, topology, algebraic geometry, partial differential 
equations, functions of several complex variables, and other core disciplines in pure 
mathematics, a remarkable instance of the unity of modern mathematics. 

Superstring theory, and string theory more generally, emerged in the 1980s. This 
theory views the elementary particles as a kind of stretch one-dimensional stringlike 
massless forms, about .10−33 centimeters in length (i.e., on the order of the Planck 
length), in place of the dimensionless points in spacetime that feature in other 
theories. This theory takes aim at a unified mathematical description of gravitation, 
quantum mechanics, and elementary particle interactions and has become one of 
the most active areas of collaboration between mathematicians and physicists. In 
particular, the mathematics involved includes differential topology, algebraic geom-
etry, differential geometry, group theory, infinite-dimensional algebra, complex 
analysis, the moduli spaces of Riemann surfaces, and so on; countless physicists 
and mathematicians have now associated themselves with this research.



Applications of Mathematics 295

Biology and Economics 

Outside of physics, mathematics has also played an important role in other 
disciplines in the natural sciences and social sciences. For reasons of space, we 
limit our discussion here to a treatment of mathematics in biology and mathematical 
economics as representative examples. Modern biology is a younger discipline than 
physics, which took off in earnest only after the invention of the microscope in 
the seventeenth century, but alongside physics these are the two most important 
disciplines within natural science. The introduction of mathematical methods to 
research in biology was also relatively slow to get off the ground, and the story 
begins at the start of the twentieth century, when the versatile British mathematician 
Karl Pearson (1857–1936) began to apply statistics to the study of problems in 
genetics and the theory of evolution. In 1901, he founded the journal Biometrika, 
the first journal in the discipline of biomathematics. 

In 1926, Italian mathematician Vito Volterra (1860–1940) proposed the system 
of differential equations 

. 

{
dx
dt

= ax − bxy
dy
dt

= cxy − dy

as a successful model of the dynamics of fish populations in the Mediterranean Sea. 
Here, x represents the number of small fish eaten as prey and y the number of large 
carnivorous fish. These equations, known also as the Lotka-Volterra equation, set a 
precedent for the use of differential equations in biological modelling (Fig. 8.22). 

In 1953, 2 years after Hartline and Ratliff introduced their model, the American 
biochemist James Watson (1928-) and the British biophysicist Francis Crick (1916– 
2004) discovered the double helix structure of DNA (deoxyribonucleic acid); this 
not only marked the birth of molecular biology as a discipline but also introduced 
abstract topology as a tool in biology. Since the double helix strands exhibit winding 

Fig. 8.22 Biologist Sir 
Andrew Huxley, grandson of 
the physiologist Thomas 
Henry Huxley and brother to 
novelist Aldous Huxley
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Fig. 8.23 Watson and Crick 
display their DNA model 

and kinking under the gaze of the electron microscope, a sub-branch of algebraic 
topology known as knot theory came into play, fulfilling a prediction made by Gauss 
more than a century earlier. In 1984, the New Zealand mathematician Vaughan 
Jones (1952–2020) established the Jones polynomial as an invariant of an ordered 
knot, which has proved useful to biologists for the classification of knots observed 
in the structure of DNA. Jones himself received the Fields Medal in 1990 for his 
work (Fig. 8.23). 

Watson and Crick were awarded the Nobel Prize in Physiology or Medicine 
in 1962, and the significance of their discovery has still not been fully unraveled, 
and I would like to say here a bit more about it. We contrast the scope of 
various disciplines: physics and classical mechanics takes as its object primarily 
the macroscopic world, and the importance of the internal structure of atoms is 
seen also at the level of the large via the tremendous energy of nuclear fusion and 
fission; the objects of biology such as cells and genes on the other hand are mainly 
microscopic. Darwin’s theory of evolution can be compared to Galileo’s law of free 
fall insofar they express the external life, motion, and development of things. On 
the other hand, Newton’s law of universal gravitation introduced the internal laws 
and causes governing the motions of objects, even the universe. The corresponding 
achievement to this in biology is precisely the discovery of the double helix structure 
of DNA, which reveals the internal mysteries of life. Watson and Crick announced 
this monumental result at the Eagle Pub in Cambridge, where they were frequent 
patrons alongside their various colleagues. 

We discuss finally another pair of recipients of the Nobel Prize in Physiology or 
Medicine; in 1979, it was awarded to the South African-born American physicist 
Allan M. Cormack (1924–1998) and the British electrical engineer Sir Godfrey 
N. Hounsfield (1919–2004), both of them nonspecialists in biology. While he was 
working part-time in the radiology department at a hospital in Cape Town alongside
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Fig. 8.24 Thomas Nash, 
mathematician and 
protagonist of the film A 
Beautiful Mind 

his regular job as a physics lecturer, Cormack became interested in X-ray imaging of 
human soft tissue and tissue layers of different densities. After he began teaching in 
the United States, he established the mathematical basis for computerized scanning, 
specifically a formula for determining the amount of X-ray absorption in different 
human tissues. This formula was rooted in integral geometry and lay the theoretical 
foundations for digital tomography, which prompted Hounsfield to invent the first 
computerized tomography scanner (CT scanner), which achieved profound success 
in clinical trials (Fig. 8.24). 

Leaving biology aside, we turn next to mathematical economics. This discipline 
was introduced by the Hungarian mathematician John von Neumann, who coau-
thored a book entitled Theory of Games and Economic Behavior in 1944, in which 
he proposed a mathematical model of competition and its application to problems in 
economics. A full half-century later, the American mathematician John Nash (1928– 
2015) and the German economist Reinhard Selten (1930–2016) shared the Nobel 
Prize in Economics for achievements in game theory. Nash was the subject of the 
successful film A Beautiful Mind, and he developed the concept of Nash equilibrium 
as an attempt to explain the dynamics of conflict and action between competitors. 
In the last year of his life, Nash was awarded the highest honor in mathematics, 
the Abel Prize, for his contributions to the theory of nonlinear partial differential 
equations. 

Two relatively simple further contributions came from the Soviet mathematician 
and economist Leonid Kantorovich (1912–1986), who created the discipline of 
linear programming, and the Dutch-American mathematician Tjalling Koopmans 
(1910–1985), who studied in particular the relationship between inputs and outputs 
in production. They shared the Nobel Prize in Economics in 1975 for their contri-
butions to the theory of optimal resource allocation. More profound mathematics
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also began to appear in economic applications as well: the French-born American 
economist Gerard Debreu (1921–2004) and the American economist Kenneth 
Arrow (1921–2017) introduced tools from topology into economics, in particular 
the theories of convex sets and fixed points. Following upon their research on 
equilibrium price theory, others added additional abstract mathematical concepts 
to the toolkit, including differential topology, algebraic topology, the theory of 
dynamical systems, and global analysis. These two also received Nobel Prizes in 
Economics, but many years apart from one another: Arrow in 1972 and Debreu in 
1983. 

Since the 1970s, stochastic analysis has emerged as a fundamental tool in 
economics. In particular, the American economist Fischer Black (1938–1995) 
and Canadian-American economist Myron Scholes (1941-) developed the Black-
Scholes model, which reduces options pricing in the stock exchange to the solution 
of a stochastic differential equation to obtain the Black-Scholes formula, an option 
pricing formula that is consistent with real market behavior. Previously, investors 
struggled to precisely determine the value of future options, but with the introduc-
tion of this formula and its inclusion in the risk premium in the price of the stock, the 
complexity risk of investing in stocks was diminished significantly. Following upon 
their work, the American economist Robert C. Merton (1944-) removed many of the 
restrictions on this model, expanding the scope of its application to other areas of 
financial activity, such as residential mortgages. The Nobel Prize in Economics was 
jointly awarded to Merton and Scholes in 1997 for this work. 

However, the development of the world economy in the twenty-first century has 
been significantly affected by the subprime mortgage crisis in the United States 
and the global financial crisis precipitated by it in 2008. In particular, people had 
become reluctant to apply for bank loans as they would under normal circumstances 
in such circumstances as poor credit conditions. As a result, many leading lending 
institutions began to issue loans under looser credit requirements but with higher 
interest. Such subprime loans involve a greater risk of default, mainly due to 
the derivative products based on them. The relevant departments were generally 
reluctant to take on risk on their own and instead sold package deals to investment 
banks or even insurance or hedging institutions. The derivative products became 
invisible and intangible, and their prices and packaging schemes were in accessible 
to estimation by ordinary human judgment; all of this required and encouraged the 
development of a new branch of mathematics, which became financial mathematics 
or quantitative finance. 

The pricing process of derivatives involves two especially important parameters, 
the discount rate and the default probability. The former is a stochastic differential 
equation, and the latter is given as a Poisson probability density function. The global 
financial crisis made it clear that these and other methods related to pricing and 
estimation were in need of refinement. In the 1990s, the Chinese mathematician 
Peng Shige (1947-) and French mathematician Étienne Pardoux (1947-), who were 
born in the same year, collaborated to develop the theory of backward stochastic 
differential equations, which has become an important tool for the study of pricing 
of financial products. In the eighteenth century, Jacob Bernoulli had remarked that
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anyone who carries out research physics without understanding mathematics is 
actually investigating without sense. In the twenty-first century, this has also proven 
to hold for the financial and banking industries. Citibank, based in New York City, 
has claimed that some 70% of their business depends on mathematics, emphasizing 
that they could not survive without this dependence on mathematics. 

Finally, we return to the linear programming theory of Kantorovich to remark 
that it was one of the earliest mature research branches of operations research, 
which is the study of analytic methods based in mathematics and logic for decision-
making and organization management in order to obtain optimal results. This 
was born as a scientific discipline in the flames of World War II, alongside the 
applied mathematical disciplines of cybernetics and information theory, founded by 
the American mathematicians Norbert Wiener (1894–1964) and Claude Shannon 
(1916–2004), respectively. Both Wiener and Shannon were professors at MIT until 
their retirements and served as influential public figures. Wiener had received his 
doctorate from Harvard at the age of 18 and later published two autobiographies, 
Ex-Prodigy: My Childhood and Youth and I am a Mathematician. Shannon is widely 
considered the preeminent founding figure of the age of digital communication. 

As formulated by Wiener, cybernetics takes as the object of its study laws of 
control and communication that govern both machines and living things, and the 
maintenance in such a dynamic system of stability or equilibrium under changing 
environmental conditions. He coined the name cybernetics for his new research 
program, borrowing from the Greek word .κυβερνητική, meaning governance 
and derived in turn from the word for navigation or steering. Plato used this 
word often in his writings to describe the art of managing and governing human 
affairs. Information theory refers to the use of mathematical statistics to study 
the measurement, transmission, and transformation of information. It is important 
to point out however that information in this context has a specialized meaning 
and refers to a specific hierarchy order or degree of non-randomness that can be 
measured and quantified as precisely as mass, energy, and other such physical 
quantities. 

Computers and Chaos Theory 

As a definition, the word computer refers to any automated electronic device 
capable of storing and processing data according to programmatic instructions 
and returning the results of its operations as output. Throughout the history of 
computing, the most important figures contributing to its innovations have almost all 
been mathematicians. In China, computer science majors were for the most enrolled 
in mathematics departments through to the end of the 1970s, just as in the past, say 
in the time of Kant, mathematics was considered a part of philosophy departments. 
Today, most universities have one or two schools dedicated to computer science. 
It has long been a human desire to replace manual computation with automated 
machines; perhaps the best early example is the abacus, which may not have
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first been used by the Chinese people, but enjoyed the widest use for the longest 
period of time in China. In a book published in 1371, during the Ming dynasty, 
there appear illustrations showing the ten-speed abacus. In fact, its invention was 
much earlier. Later, the mathematician Cheng Dawei (1533–1606) published his 
Suanfa Tongzong (算法統宗, General Source of Computation Methods), in which 
he detailed the system and use methods of the abacus, marking its technological 
maturity. This book spread to Korea and Japan, where the abacus also gained 
widespread popularity. 

The first to propose a mechanical calculating machine was the German scientist 
Wilhelm Schickard (1592–1635), who described his idea in a letter to Johannes 
Kepler. The first working mechanical calculator, capable of addition and subtraction, 
was invented by Pascal in 1642, and 30 years later, Leibniz created a calculator 
further capable of multiplication, division, and root extraction. A key step in the 
transition toward modern computing was achieved by the English mathematician 
Charles Babbage (1791–1871) who had the bold insight to make the arithmetic 
operations of his device programmable. In number theory, there is also a congruence 
relation related to the binomial coefficients named after Babbage. The Analytical 
Engine that Babbage proposed in 1837 as a successor to his earlier Difference 
Engine was divided into a storage component and a processing component, as well 
as a special mechanism for the operation of its programming. He envisaged for it 
the possibility of various arithmetical operations according to the instructions given 
in zeros and ones on punch cards; this was the prototype for the modern electronic 
computer (Fig. 8.25). 

In a tragic turn, Babbage devoted the remainder of his life and most of his 
property to the promulgation of his ideas and inventions, to the extent that eventually 
he was compelled to turn his resignation as a Lucasian professor at Cambridge, 
but few people could understand his thinking. He seems to have had only three 
true supporters: his son, Major General Henry Prevost Babbage (1824–1918), who 
continued the struggle to promote the Difference Engine and Analytical Engine even 
after the death of his father; Luigi Menabrea (1809–1896), a professor of mechanics 
and construction at the University of Turin who later became Prime Minister of 
Italy; and Ada Lovelace (1815–1852), daughter of the poet Lord Byron. Ada was 
the only daughter of Byron and his wife, who separated a month after her birth. She 
compiled calculation programs for various functions and can therefore be regarded 
as the first modern programmer. Due however to the limitations of the times, there 
were huge technical obstacles to the implementation of the Analytical Engine, 
and the ingenious and forward-looking idea that Babbage dreamed up to control 
digital computers by general-purpose programs would not be realized for more 
than a century. From the beginning of the twentieth century, the rapid development 
of science and technology brought with it a mountain of new problems for data 
analysis. In particular, the computing needs of the military during World War II 
brought urgency to the requirement for improved computing speed. The first steps 
were the replacement of mechanical gears with electrical components. In 1944, 
the American physicist and mathematician Howard Aiken (1900–1973), working at 
Harvard University, designed and manufactured the first practical general-purpose
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Fig. 8.25 Charles Babbage 
on a British postage stamp 

programmable computer, which occupied a space of 170 square meters. The first 
of these made only partial use of electronic components, but he quickly followed 
up with another computer containing entirely electronic components, specifically 
relays. Meanwhile, at the University of Pennsylvania, computers were produced 
using vacuum tubes in place of relays. The first programmable, electronic, general-
purpose, digital computer was the ENIAC (Electronic Numerical Integrator and 
Computer), produced the following year in 1945, a thousand times faster than the 
computer made by Aiken (Fig. 8.26). 

In 1947, von Neumann arrived at the idea of replacing the external programs 
used by the ENIAC with internally stored programs. Computers made after this 
model operate according to stored instructions, and the programs can be modified by 
making changes to these instructions. A year earlier, von Neumann had coauthored 
a paper proposing a comprehensive structure for parallel programming and stored-
program computers, which ideas had a profound impact on the design of later digital 
computers. John von Neumann was born in Budapest, Hungary, and became an 
extraordinarily prolific and versatile thinker; he made remarkable contributions to 
mathematics, physics, economics, meteorology, explosion theory, and computing. 
He is said to have met the designer of ENIAC while they were both waiting at a 
station for the train to arrive. The latter caught his attention and asked him to explain 
some technical problems related to computing (Fig. 8.27).
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Fig. 8.26 John von Neumann with his computer 

Fig. 8.27 Bronze statue of Alan Turing; photograph by the author, in Manchester 

Another outstanding contribution to the concept and development of computer 
design came from the British mathematician Alan Turing (1912–1954). In order 
to solve theoretical problems in mathematical logic, in particular compatibility 
and the problem of mechanical determination of solvability or computability in 
mathematics, Turing introduced the concept of an abstract automatic machine (now 
referred to as a universal machine), an idealized model of the computer from which 
they have not departed to this day. This model comprises: 

• Input and output (infinite memory tape divided into cells and a machine head 
capable of reading and writing)
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• Memory (a table) 
• Central processing unit (or control mechanism) 

Turing also investigated the question of an artificial thinking machine, making 
him an early pioneer in the field of artificial intelligence. He proposed a famous 
standard for machine intelligence known as the Turing test, which requires that at 
least 30% of a team of human interrogators could not correctly identify the test 
subject as human or machine. His life had a tragic end, unfortunately: he had been 
persecuted and eventually prosecuted for his sexuality and died of poisoning after 
having eat an apple laced with cyanide shortly before his 42nd birthday. In 1966, 
Intel Corporation established the Turing Award, to this day the highest distinction 
in computer science. His death seems also to have inspired the logo of Apple Inc., 
founded in 1976 and famous around the world today for its computers and iPhones. 
The logo suggests also that only imperfection can lead to progress and the pursuit 
of perfection. Since 2019, Turing has appeared on the $50 banknote. 

An interesting influence on Turing during his time at Cambridge was the math-
ematician G.H. Hardy (1877–1947), who was a natural leader in the mathematics 
department at Cambridge who is credited with establishing the Cambridge school 
of number theory. Hardy was obsessed with the Riemann conjecture and proved 
that there are infinitely many zeros along the critical line (the line in the complex 
plane with real part equal to . 12 ). Turing wrote the last research paper of his life on 
the Riemann hypothesis, in which he proposed a numerical method for verifying it 
and its implementation on an early computer. He seems to have believed that the 
Riemann hypothesis is false and hoped to find a nontrivial zero off the critical line 
through his method. Of course, he did not succeed; perhaps if he had, it would have 
furnished him with some encouragement and prevented him from succumbing to 
despair at the end of his life. 

Through four successive generations of digital computers, from tubes and 
transistors to integrated circuits and eventually very massive integrated circuits, 
binary switches have remained a constant, and this will not change even if someday 
electronic computers are replaced, for example, by quantum computers (a recently 
developing kind of physical device that uses the laws of quantum mechanics to 
perform mathematical and logical operations at high speed and store and process 
quantum information; this discipline is called quantum computing). This is a natural 
extension of the system of symbolic logic developed by the British mathematician 
George Boole (1815–1864) in the nineteenth century. Boole completed work 
dreamed of by Leibniz two centuries earlier, the creation of ideographic symbols 
standard for simple or atomic concepts and their combination into complex ideas. He 
was born into a poor family, the son of a cobbler, and his knowledge of mathematics 
came mainly through self-study, eventually enabling him to earn a post as professor 
of mathematics at Queen’s College, Cork, in Ireland and an election as a Fellow of 
the Royal Society. His life was cut short at the age of 49 by pneumonia brought on 
by a walk in heavy rain. Earlier in the same year, his youngest daughter Ethel Lilian 
Voynich (née Boole, 1864–1960), who went on to write the novel The Gadfly, was  
born.
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Fig. 8.28 Illustration of the 
four-color theorem of maps 

As a shining example of the applicability of abstract mathematics, the computer 
has also become a powerful tool for mathematical research and even a source of 
new problems for mathematical inquiry, leading to the birth of the new branch 
of mathematics, computational mathematics. This branch is concerned with the 
design and improvement of various numerical methods, as well as problems of 
error analysis, convergence, and stability related to these calculations. von Neumann 
appears again here as an important early founder of this research area. He introduced 
a new method for numerical calculation known as the Monte Carlo method and led 
a team of researchers to use ENIAC to accomplish numerical weather prediction 
for the first time. The centerpiece of this effort was the solution of the relevant 
hydrodynamical equations. In the 1960s, the Chinese mathematician Feng Kang 
(1920–1993) created another method for numerical analysis known as the finite 
element method, independent of simultaneous research efforts in the Western world. 
The finite element method has found applications in the calculations involved in 
aviation, the study of electromagnetic fields, and the design of bridges (Fig. 8.28). 

In the fall of 1976, two mathematicians at the University of Illinois named 
Kenneth Appel (1932–2013) and Wolfgang Haken (1928–) proved with the aid of 
computers a result known as the four-color theorem for maps, a problem with a 
history stretching back more than a century, perhaps the most inspiring example of 
the use of computers to solve a big problem in mathematics. The four-color theorem 
was proposed as a conjecture in 1852 by the British mathematician Francis Guthrie 
(1831–1899), who had just earned a double bachelor’s degree at University College 
London. As part of his research, he undertook to color a map of the counties of 
England and noticed that four colors were sufficient to complete the task such that 
no two neighboring counties shared the same color. But neither he nor his younger 
brother, at that time still a student, could prove that this is always sufficient, and 
his well-established teachers, De Morgan and Hamilton, were also defeated by the
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problem. Arthur Cayley heard of the problem and presented it as a report to the 
London Mathematical Society, and it became a famous problem in mathematics. 

Since that time, computers have become a powerful tool for the study of pure 
mathematics. Perhaps the most outstanding example of this is the discovery of 
solitons and chaos theory, the two core problems of nonlinear dynamics, which can 
be described as the two beautiful flowers of mathematical physics. The history of 
solitons predates the formulation of the four-color theorem. In 1834, the British 
engineer John Scott Russell (1808–1882) followed the water waves caused by 
sudden stops of ships in the canal on horseback and observed that they mostly 
maintain their shape and speed in the course of their propagation. He reproduced this 
effect in a water tank and named such waves of translation; today, they are referred to 
as solitons or solitary waves. More than a century later, mathematicians discovered 
that two solitons remain solitons upon collision, which explains the etymology of 
their name. Such waves occur in large numbers in optical fiber communication, 
activity at the Great Red Spot on Jupiter, nerve impulse conduction, and other fields. 
Chaos theory is another powerful tool for the description of irregular phenomena in 
nature and considered one of the major revolutions in modern physics following 
relativity and quantum mechanics. 

The rapid development of computer science has not only been inseparable from 
mathematical logic but also promoted the transformation and even creation of other 
related branches of mathematics. A characteristic example of the former comes 
from combinatorics, while a field of the latter type is fuzzy logic. The origins of 
combinatorics can be traced by to the ancient Chinese legend of the Luo Shu. The  
term combinatorics was first proposed by Leibniz in his Dissertation on the Art 
of Combinations (Dissertatio de arte combinatoria). Over time, mathematicians 
resolved some substantial problems in this field, such as the Seven Bridges of 
Königsberg problem (which gave birth to graph theory, the main branch of combina-
torial mathematics), the 36 officers problem, Kirkman’s schoolgirl problem, and the 
problem of Hamiltonian cycles. But since the second half of the twentieth century, 
problems of computer system design and information storage and recovery have 
injected the study of combinatorics with a new and powerful impetus. 

In contrast with the long history of combinatorics, fuzzy mathematics is a truly 
young discipline: it was introduced only in 1965. Fuzzy mathematics is established 
as an alternative to classical set theory, in which every set is defined as composed 
of its elements, and membership in the set is a clear and binary proposition, for 
example, given by the characteristic function 

. μA(x) =
{

1 if x ∈ A
0 if x /∈ A

.

In fuzzy logic, the characteristic function is replaced by a membership function 
satisfying .0 ≤ μA(x) ≤ 1. In this case, . A is called a fuzzy set, and .μA(x) the 
degree of membership of x in . A. The values .μA(x) = 1 and .μA(x) = 0 of 
classical theory correspond to .100% and .0% membership in . A, but such situations
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Fig. 8.29 Lee Sedol does battle against AlphaGo in 2016 

as .μA(x) = 0.2 corresponding to .20% membership in . A or . μA(x) = 0.8
corresponding to .80% inclusion in . A have no place in classical set theory. 

Fuzzy mathematics was created in a paper by the mathematician Lotfi A. Zadeh 
(1921–2017), born in Azerbaijan but later based in Iran and eventually the United 
States. Since human thought encompasses both precise and fuzzy aspects, fuzzy 
mathematics has played an important role in the simulation process of artificial 
intelligences and related aspects of modern computer design. As a branch of 
mathematics, however, fuzzy mathematics is not yet fully mature (Fig. 8.29). 

We now discuss artificial intelligence in more detail. The name and concept of 
artificial intelligence was first formally proposed at a research seminar hosted at 
the Dartmouth Institute in 1956. Its main practical goal is enable machines to carry 
out complex tasks that ordinarily require human intelligence, including language 
and image recognition and processing, robotics, and so forth, which involve tools 
from machine learning, computer vision, and other recent fields. The mathemat-
ical foundations of machine learning include statistics, information theory, and 
cybernetics, and the mathematical tools involved in computer vision also include 
projective geometry, matrix and tensor algebra, and model estimation. Artificial 
intelligence was considered alongside space technology and energy technology as 
one of the three most cutting-edge technological areas of the twentieth century, 
starting especially in the 1970s, and developments in artificial intelligence were 
rapid and plentiful in the past half-century, as were its applications in various fields 
with outstanding results. In the twenty-first century, artificial intelligence remains 
at the forefront, but the other two most cutting-edge technologies of our times are 
probably genetic engineering and nanoscience. 

Artificial intelligence does not exhibit the same contours as human intelligence, 
but machines can think as a human does and may eventually surpass general
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human intelligence. One striking example of this was the 1997 defeat of the 
Azerbaijan-born Russian chess master Garry Kasparov (1963-) by the Deep Blue 
chess supercomputer developed by IBM. In 2016 and 2017, AlphaGo, developed 
by the subsidiary DeepMind Technologies of Google, also defeated two world 
champions of Go, Lee Sedol (1983-) of South Korea and Ke Jie (1997-) of China. 
Advances in this area have benefited from the development of cloud computing, big 
data, neural network technology, and the progression of Moore’s law. At present, 
artificial intelligence has already surpassed human thought in terms of mechanical 
or logical reasoning, but achievements in cognitive emotion and decision-making 
remain very limited. Experts believe that artificial intelligence remains for the time 
being a mathematical problem and has not yet reach a stage of sufficiently advanced 
development to require ethical discussions as, for example, is the case for cloning 
technology. 

We consider next cloud computing and big data. The cloud is a metaphor for 
the internet, and cloud computing refers to shared computing across a large number 
of servers distributed through the cloud. The user sends instructions to the service 
provider through his or her personal computer, and the service provider returns the 
result to the user via a calculation that can be compared to a nuclear explosion of 
computing activity. Since the era of cloud computing, big data has received more 
and more attention as a mode of thought. The explosion of data and its analysis 
have replaced the traditional cognitive tools of experience and intuition with an 
influence on decision-making in business, economics, and beyond. In 2013, the Aus-
trian researcher Viktor Mayer-Schönberger (1966-) and the editor Kenneth Cukier 
(1968-) of The Economist published a book entitled Big Data: A. Revolution That 
Will Transform How We Live, Work and Think that has proved a pioneering work 
in the development of big data. The authors pointed out as their title suggests that 
big data and the resulting storm of information associated with it are transforming 
every aspect of our lives, thought, and work. Mayer-Schönberger believes that the 
core feature of big data is its predictive power, which suggests three subversive 
conceptual shifts: first, everything is data, and not random sampling; second, big 
data provides general direction rather than precise guidance; and third, correlation 
takes precedence over causality. The latter is equivalent to replacing the question 
why? with the question what?, which recalls also the traditional mode of thought of 
the Chinese people (Fig. 8.30). 

As we have seen, every leap forward in computer technology has been insepara-
ble from the work of mathematicians, but at the same time, advances in computing 
have promoted new directions in mathematical research. We introduce here a final 
example of a wonderful interaction between computer science and geometry. In the 
twentieth century, there occurred two great developments in geometry: in the first 
half of the century, the study of finite-dimensional spaces was extended to infinite-
dimensional spaces, and in the second half of the century, integer-dimensional 
spaces were expanded to fractional-dimensional spaces. The latter refers to fractal 
geometry, which provides mathematical foundations for the emerging scientific 
discipline of chaos theory. The geometry of fractals was established through a 
study of self-similarity carried out by a Polish-born Lithuanian mathematician with
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Fig. 8.30 The Mandelbrot 
set 

dual French and American nationality named Benoit Mandelbrot (1924–2010). The 
new features uncovered by this geometry include spots, pits, broken, twisted, and 
winding and kinking spaces, which feature a kind of dimensionality not necessarily 
measured in integers. 

In 1967, Mandelbrot published How Long is the Coast of Britain?. He had con-
sulted the encyclopedias of Spain and Portugal, and Belgium and the Netherlands, 
and found that the estimates of these neighboring counties of their shared borders 
differed by up to 20%. It turns out that the length of a coastline or national border 
depends on the length of the scale used to measure it; for example, an observer 
attempting to estimate the length of a coastline from aboard a satellite will arrive at 
a smaller number than surveyor working directly on its bays and beaches. The latter 
in turn will provide a smaller number than say an erudite snail crawling across its 
every pebble. 

Common sense suggests that while each of these successive estimates is larger 
than the last, they should converge toward a certain value that represents the true 
length of the coastline. But Mandelbrot proved that this is not so, and in fact every 
coastline is in a certain sense infinite, as its bays and peninsulas give way to smaller 
and smaller sub-bays and sub-peninsulas. This is a kind of self-similarity, a special 
type of symmetry with respect to scale that is associated with recursion and patterns 
within patterns. It is not a new concept, and in fact, it has ancient roots in Western 
culture. As early as the seventeenth century, Leibniz had imagined that a single drop 
of water includes within itself an entire variegated universe. Later, the English poet 
and painter William Blake (1757–1827) wrote in his Auguries of Innocence: 

To see a World in a Grain of Sand 
And a Heaven in a Wild Flower 
Hold Infinity in the palm of your hand 
And Eternity in an hour. 

Mandelbrot considered the simple function .f (z) = z2 + c where z is a complex 
variable and c an arbitrary complex parameter. Starting from an initial point . x0 and 
iterating this function generates a set of points .x1, x2, x3, . . . where .xn+1 = f (xn). 
In 1980, Mandelbrot noticed that for some values of the parameter c, the values . xn

would fall into a cyclical repetition or at least remain bounded in value, while for
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Fig. 8.31 The Lorenz attractor and chaos butterfly 

other values of c, the values of . xn would explode without bound. Parameters of the 
former kind are called attractors, and the latter type chaotic; the set of all attractors 
in the complex plane is known now as the Mandelbrot set (Fig. 8.31). 

Since the complex iterative process requires a huge number of calculations 
even for relatively simple equations (or dynamical systems), research into fractal 
geometry and chaos theory can only be carried out with the aid of high-speed 
computers. The visuals associated with this subject have proved popular as book 
illustrations and even wall calendars, but the practical applications are many: 
fractal geometry and chaos theory have been used to describe and explore many 
irregularities in nature, such as the shape of coastlines, atmospheric movements, 
ocean turbulence, wildlife, and even the fluctuations of stocks and funds. 

In its aesthetics, this new geometry also brings the hard sciences in line with 
the particularities of modern taste, in particular the return to wild, uncivilized, 
and natural forms that became popular with postmodern artists since the 1970s. 
Mandelbrot expressed the view that satisfying art should not be fixed to any specific 
scale, or rather that it should contain attractive elements in every dimension. As 
an antithesis to the boxy skyscraper, he points to the Palais des Beaux-Arts in Paris, 
with its sculptures and gargoyles, horns and jambs, and swirls of arches and cornices 
with gutter dents, all of which present some pleasing detail to an observer situation 
at any distance away. As you approach it, the construction itself changes, revealing 
new structural elements.
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Mathematics and Logic 

Russell’s Paradox 

Since the twentieth century, the turn toward abstraction in mathematics has not 
only brought it into closer alignment with science and art but has also facilitated 
a resurgence in dialogue between mathematics and philosophy, for the third time 
considering the earlier periods of their sympathetic harmony, first in Ancient 
Greece and later in seventeenth-century Europe. It is perhaps no coincidence that 
mathematics has also struggled through three periods of crisis, corresponding to 
these moments in history. The first was the discovery of irrational numbers or 
incommensurable quantities in Ancient Greece, in contradiction with the doctrine 
that all numbers are represented by integers or ratios of integers. The second 
occurred in the seventeenth century, when calculus ran up against serious theoretical 
obstacles, and in particular the question whether an infinitesimal or vanishing 
quantity was identical with zero or in fact has some nonzero value. The problem 
is apparent: if it is zero, how can it appear as a divisor?; but if it is not zero, how is 
it permissible to eliminate terms involving infinitesimal quantities? 

Recall that it was the Pythagoreans who first discovered that the diagonal of 
a square with unit sides is neither an integer nor can it be written as a ratio of 
integers. This triggered the first crisis, and one legend has it that the response 
was so severe that a disciple of Pythagoras named Hippasus who is credited either 
with revealing the existence of irrational numbers was thrown overboard into the 
Mediterranean Sea to drown for his offenses. In a strange coincidence, the birthplace 
Metapontum of Hippasus was also the site of the murder of Pythagoras. In any 
case, the crisis was resolved some two centuries later by Eudoxus, who introduced 
a geometrical formulation of incommensurable quantities. According to Eudoxus, 
two line segments are said to be commensurable if there is some third segment 
that can simultaneously measure each of them and otherwise incommensurable. For 
the sides and diagonal of a square, there is no such third line segment, and they 
are therefore incommensurable with one another. But as long as the existence of 
incommensurable quantities is admitted in geometry, the crisis is dissolved. 

More than two millennia later, the birth of calculus introduced the second 
crisis of basic theoretical contradictions, sowing chaos within the foundations 
of mathematics. This crisis involved the definition of infinitesimal quantities, 
among the most basic concepts involved in calculus. In the course of very typical 
derivations, Newton would introduce the infinitesimal as a denominator by which 
to divide a quantity or expression; afterward, he would treat the infinitesimal as 
though it were zero and eliminate any terms still containing infinitesimal terms 
once the division is carried through. Although their application to mechanics and 
geometry allowed for no doubt that the formulas obtained by this process were 
correct, the process itself is logically self-contradictory, and this problem was not 
clarified until the first half of the nineteenth century, when Cauchy developed his
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Fig. 8.32 The versatile 
Bertrand Russell 

theory of limits. Cauchy treated the infinitesimal as an arbitrarily small but positive 
quantity quantified in such a way as to permit it to behave as a vanishing variable. 

After the advances in analytical rigor at the end the nineteenth century and 
in particular its crowning achievement in the birth of set theory, mathematicians 
believed that it should be possible to eliminate all crises and even the possibility 
of crisis from the foundations of mathematics once and for all. In 1900, Henri 
Poincaré even declared to the International Congress of Mathematicians in Paris 
that complete rigor had at last been achieved. But a new paradox in set theory, which 
seemed the simplest and most clear of theories, provoked a new debate concerning 
the foundations of mathematics and triggered its third crisis. In order to resolve this 
crisis, mathematicians turned to a deeper consideration of the basis of mathematics 
and undertook the development of mathematical logic, another important trend in 
pure mathematics in the twentieth century (Fig. 8.32). 

A key figure in this story is Bertrand Russell (1872–1970), who was born in 
1872 into an aristocratic family in England. His grandfather had twice served as 
Prime Minister of the United Kingdom. Russell lost both his parents by the age of 
3, and the strict puritanical bent of his subsequent education made him suspicious 
of religion as early as the age of 11. Rather, he began to consider the world always 
through a skeptical eye, inclined to consider how much we know and do not know 
and with what degrees of certainty and uncertainty. Starting around the onset of 
puberty, loneliness and despair began to take hold in his thoughts, and Russell 
struggled with suicidal thoughts. In the end, it was an obsession with mathematics 
than enable to him to break free of his darker impulses, and at the age of 18, he was 
admitted to Cambridge University after having spent the entirety of his previous
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Fig. 8.33 Russell’s teacher, 
Alfred North Whitehead 

schooling at home. He continued to search for perfect and definite goals for his 
mathematical ambitions, but during his final year became attracted to the writings 
of Hegel and turned to philosophy (Fig. 8.33). 

It seems obvious that the most natural area of research for Russell was in 
mathematical logic and philosophy of mathematics, which had been established not 
long earlier as a unified discipline by the German philosopher and mathematician 
Gottlob Frege (1848–1925). Fortunately, Cambridge University offered both fertile 
grounds and admirable colleagues for this pursuit. These included Alfred North 
Whitehead (1861–1947), a teacher and a friend; George Edward Moore (1873– 
1958), 1 year Russell’s junior; and later his brilliant student Ludwig Wittgenstein 
(1889–1951). Russell was proficient early on in mathematics and a passionate 
believer in the basic correctness of the scientific worldview, and on this basis, he 
identified for himself three major goals as a philosopher. The first was to reduce the 
vanity and pretense to which human cognition is by nature subject to an absolute 
minimum and express himself as simply as possible, the second was to establish a 
link between logic and mathematics, and the third was to find a path of inference 
from language to the world it describes. These three goals were each of them 
eventually achieved with more or less success by Russell and his colleagues, setting 
the stage for analytic philosophy. 

A significant factor in the wide reach of Russell’s influence was also his natural 
ability as a popularizer. His philosophical prose is clear and beautiful, and many
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philosophers have been first drawn to the subject by way of his popular works, 
Introduction to Western Philosophy, Wisdom of the West: A Historical Survey 
of Western Philosophy, and even the somewhat more specialist work Human 
Knowledge: Its Scope and Limits. Russell was also prone to venture beyond the 
ivory tower in his writings and touch upon social, political, and moral issues, never 
shirking from addressing sensitive issues with passion. He was twice imprisoned, 
fined, and at one point dismissed from his position at Trinity College, Cambridge, 
for his controversial views and activities as a conscientious objector. Nevertheless, 
he was awarded the Nobel Prize in Literature in 1950. Later recipients of this award 
have also included writers with a background in mathematics: the Russian novelist 
Aleksandr Solzhenitsyn (1918–2008), who won the Nobel Prize in Literature in 
1970, and the South African-Australian writer J.M. Coetzee (1940-) who won it in 
2003 both studied mathematics as undergraduate students. 

The paradox in set theory known as Russell’s paradox goes like this: consider the 
menagerie of sets as divided into two categories. The first kind consists of sets that 
do not contain themselves as elements; most ordinary sets are like this. The second 
kind consists of sets . A satisfying .A ∈ A. An example of a set of this kind would 
be the set of all sets, if such a thing exists. It is obvious that every set . A belongs 
to one of these kinds. Let .M be the set of all sets of the first kind, that is, the set 
containing every set that does not contain itself. Then the natural question is, does 
. M belong to the first kind or the second kind? Suppose it belongs to the first kind; 
then .M does not contain itself, and it follows then from the definition of .M that 
.M ∈ M, a contradiction. But suppose instead that it belongs to the second kind. 
Then .M ∈ M, from which it follows again by the definition of . M that . M is not 
an element of . M, another contradiction (Fig. 8.34). 

Fig. 8.34 The village barber challenges the mathematicians
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In 1919, Russell presented a colloquial version of this paradox known as the 
barber paradox: 

Consider a village barber who shaves all those and only those who do not shave themselves. 
Does this barber shave himself? 

In both the formal and informal case, it is apparent that the construction leads to 
an unresolvable contradiction, and this pointed to a flaw in the very foundations of 
set theory as it had been formulated up to that point. Recall that the second crisis 
in mathematics, the crisis of calculus, had been resolved through the development 
of the theory of limits. But the theory of limits was in turn based on set theory. 
Therefore, the appearance of Russell’s paradox in set theory formed an even deeper 
crisis for the foundations of mathematics. 

In order to remove this paradox, mathematical logicians began to work toward 
an axiomatization of set theory. The first attempt was made by the German mathe-
matician Ernst Zermelo (1873–1953), who put forward seven axioms that support a 
set theory free from paradoxes. This system was further refined by the German-born 
Israeli mathematician Abraham Fraenkel (1891–1965), resulting in ZF set theory, 
which remains the most widely used axiomatic foundation for mathematics in use 
today (commonly with the somewhat controversial axiom of choice append to it to 
form ZFC set theory). This eased the severity of the mathematical crisis, although 
nobody can prove that this system itself is consistent, and indeed it follows from 
Gödel’s second incompleteness theorem that it cannot prove its consistency; few 
mathematicians however suspect that there are hidden inconsistencies lurking with 
ZFC, but there are nevertheless mysteries still to be unraveled in the foundations of 
mathematics. One particularly noteworthy example: the American mathematician 
Paul Cohen (1934–2007) proved in 1963 that the continuum hypothesis cannot be 
proved within the Zermelo-Fraenkel system, which taken in conjunction with an 
earlier result due to Kurt Gödel shows that in fact it is independent of the Zermelo-
Fraenkel axioms, a resolution of sorts to Hilbert’s first problem, and perhaps that 
most complete resolution of it that can be expected. Cohen received a Fields Medal 
in 1966 (Fig. 8.35). 

Further efforts to find a logical solution to the paradox of sets led to the formation 
of three major philosophies of mathematics. The first is logicism, represented by 
Frege and Russell. The second was called intuitionism, introduced by the Dutch 
mathematician L.E.J. Brouwer (1881–1966), and the third was formalism, repre-
sented by Hilbert. The formation and activity of these competing schools of thoughts 
elevated the question of the foundations of mathematics to an unprecedented height. 
Although these efforts failed to achieve a completely satisfactory resolution to the 
situation, they contributed substantially to the formation and development of the 
program of mathematical logic first initiated by Leibniz. Due to space limitations, 
we present only a few of the arguments associated with each school below. 

The first position is logicism, as promoted by Russell and his school. According 
to logicism, mathematics is simply an extension of logic, and there is no need 
to introduce any special axioms to demarcate the two. Rather, all of mathematics 
can be written in language of logic, mathematical concepts are simply a certain 
family of logical concepts, and mathematical theorems can be derived entirely
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Fig. 8.35 L.E.J. Brouwer, 
one of the founders of 
topology, who introduced and 
proved the fixed-point 
theorem 

from the axioms of logical and logical rules of deduction. As for the development 
of logic itself, the proceedings are entirely axiomatic. For the reconstruction of 
mathematics, the logicists first defined the theory of propositional functions and 
classes; proceeded to the construction of cardinal and ordinal numbers, and in 
particular the natural numbers; and on this basis established the real and complex 
number systems, functions, and analysis; the contents of geometry can also be 
fully reproduced atop these foundations. In this way, mathematics became the 
mathematics of philosophers, with no special content of its own, only a special form 
of logical thought. 

Intuitionism stands in direct contrast with logicism and holds that mathematics 
exists independent of logic in the mental activity of humans. The essence of 
intuitionism is its insistence on purely constructive approaches to mathematical 
objects. Brouwer in particular held that the proof that this or that mathematical 
object exists is valid if and only if it as accompanied by a construction or proof 
of construction that can be carried out in finitely many steps. In set theory, for 
example, the intuitionists admit only the existence of finite constructible sets, in this 
way easily avoiding the paradoxes associated with infinite sets such as the set of all 
sets. One striking consequence of this perspective is that it necessitates the denial of 
the so-called law of the excluded middle, which states that either every proposition 
is true or its negation is true. It is also necessary to throw out the general theory 
of irrational numbers, and even the well-ordering principle of the natural numbers, 
which states that every subset of the natural numbers, including of course infinite 
subsets, has a smallest element. 

Hilbert replied: “Taking the principle of excluded middle from the mathematician 
would be the same, say, as proscribing the telescope to the astronomer or to the boxer 
the use of his fists2 .” As part of his criticism against intuitionism, Hilbert brought out

2 Tr. Jean van Heijenoort 
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his long incubating Hilbert program for the foundations of mathematics, referred to 
later as formalism. The main idea is that the basic objects of mathematical thinking 
are mathematical symbols themselves, rather than any meaning attached to them 
say as geometrical or physical objects, and therefore that all of mathematics can and 
should be reduced to the laws governing the use of symbols in formulas, without any 
reference to their interpretation. Formalism absorbed some ideas from intuitionism, 
but retains the law of the excluded middle, and permits the fundamental transfinite 
axiom that goes a certain way toward proving the consistency of the theory of natural 
numbers, with some restrictions. Any hopes for a more complete realization of this 
program, however, were dashed by the work of a young logician named Kurt Gödel, 
as we will discuss in more detail below. 

Wittgenstein 

But before we discuss Gódel’s incompleteness theorems, we turn to one of Bertrand 
Russell’s most brilliant students and collaborators, Ludwig Wittgenstein (1889– 
1951), who elevated in his works the abstract discipline of logic to the heights 
of pure philosophy. Wittgenstein was born in Vienna in 1889 in a wealthy Jewish 
entrepreneurial family, the youngest of eight children. He was educated at home 
until the age of 14 and only afterward underwent formal schooling with some 
hardship. After a study of engineering in Berlin, Wittgenstein enrolled at Victoria 
University of Manchester in 1908 to pursue a doctorate. His focus was on aeronau-
tical projects and patented the design of a propeller jet with small engines in 1911. 
All this fostered in him an interest in applied mathematics. His preference soon 
turned toward pure mathematics, and he became eager to understand more deeply 
the foundations of mathematics and eventually mathematical philosophy (Fig. 8.36). 

In 1912, the 23-year-old engineering student made his way to Cambridge, where 
he spent five semesters at Trinity College and quickly caught the attention of the 
philosophers Russell and Moore, both of whom regarded him as an intellectual 
equal. The outbreak of World War I however led Wittgenstein to volunteer in the 
Austrian army as an artilleryman on the eastern front; he wound up in Turkey, 

Fig. 8.36 Philosopher 
Ludwig Wittgenstein
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where he was captured by Italian soldiers in winter of 1918. He lost contact with his 
connections at Cambridge, and Russell wrote in his Introduction to Mathematical 
Philosophy, published the following year, that it was not clear whether or not he was 
even still alive. 

But in the same year, Wittgenstein wrote a letter to Russell from the prisoner-of-
war camp where he was being held. He had read his former teacher’s book while 
in prison and believed that he had answered successfully several of the questions 
raised within it. Both teacher and student hoped to meet as soon as possible after 
his release for a discussion of philosophy. By this time, however, Wittgenstein was 
destitute, having been persuaded by the writings of the great Russian author Leo 
Tolstoy to renounce his wealth and leave his considerable inheritance divided among 
his siblings under the condition that they not leave it in trust to him. Russell resorted 
to the sale of some of his furniture left behind in Cambridge in order to cover his 
travel expenses, and the two were able to meet at last in Amsterdam. 

Wittgenstein is rare even among philosophers of genius for having developed 
two brilliant and highly original systems of thought at two completely different 
periods in his life, the two of them also very different from one another. The 
first of these is represented by his classic, the Tractatus Logico-Philosophicus, 
published in 1921, and the second by his Philosophical Investigations, published 
posthumously in 1953. Both of these works exhibit a refined and bold style of 
writing and thinking and exerted a profound influence on the course of subsequent 
philosophy. Apart from a short essay entitled Some Remarks on Logical Form, the  
Tractatus Logico-Philosophicus was the only work published by its author during 
his lifetime (Fig. 8.37). 

This short book is an undisputed philosophical masterpiece, constructed from out 
of its central premise that philosophy in the final analysis is nothing other than the 
study of language. The central question of the book is how is it that language can be 
language?, prompted by a thoroughly familiar fact with which every living person 
is thoroughly familiar, but which surprised and amazed Wittgenstein: a person can 
understand a sentence that he or she has never heard before. He explains this fact 
as follows: a sentence or a proposition that describes something creates a picture of 
the world being a certain way. Propositions have a certain meaning, and the world 
has a certain state, and these are phenomena of the same kind. Wittgenstein argued 
that all proposition schemes and all possible states of the world are committed to 
the same logical form, which is simultaneously a form of representation and a form 
of reality. 

The nature of this logical form itself however cannot be discussed; rather, it is 
meaningless in a very literal sense of this word. Wittgenstein makes this claim by 
way of a very famous analogy: 

My propositions serve as elucidations in the following way: anyone who understands me 
eventually recognizes them as nonsensical, when he has used them— as steps— to climb 
beyond them. (He must, so to speak, throw away the ladder after he has climbed up it.)3 

3 Tr. David Pears and Brian McGuinness
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Fig. 8.37 The Tractatus 
Logico-Philosophicus 

There are certain things that simply cannot be spoken in language: the necessary 
existence of the simple elements of reality, the existence of the self of thought and 
will, and the existence of absolute values. These inexplicable things cannot even be 
imagined, because the limits of language are identical with the limits of thought. The 
last sentence of the book is associated with its author as a kind of motto: whereof 
we cannot speak, thereof we must be silent. 

Language had become the central topic in philosophy starting from the work 
of Gottlob Frege, mentioned above as the founder of modern philosophy of 
mathematics and who introduced the important distinction in language between 
sense and reference. Wittgenstein admired Frege deeply and visited him at the 
University of Jena in 1911 to show him some work on philosophy of mathematics 
and logic. In fact, he hoped to study under Frege, who recommended instead that 
he attend the University of Cambridge to learn from Russell. Wittgenstein later 
credited these two figures, Frege and Russell, as the source of his best ideas in 
philosophy. Frege was also an important influence upon the works of Russell and 
also Edmund Husserl; the former once communicated his deep admiration in a letter. 
Frege himself famously remarked, “Every good mathematician is at least half a 
philosopher, and every good philosopher is at least half a mathematician.” 

Wittgenstein believed sincerely that philosophy is not a merely theory or body 
of doctrine, but rather an activity whose goal is to clarify the propositions of
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Fig. 8.38 Wittgenstein’s 
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natural science and expose the emptiness of metaphysics.4 Since he believed that 
his work in this direction was completed in the Tractatus Logico-Philosophicus, he  
disappeared from philosophy after its publication and spent the next several years 
work as a primary school teacher in mountain villages in southern Austria, having 
also previously built for himself an isolated log cabin in the remote Norwegian 
countryside. Eventually, he returned however to England and submitted the Trac-
tatus Logico-Philosophicus as his doctoral dissertation to Cambridge University. 
Naturally, he earned his degree, and he was elected shortly afterward as a Fellow at 
Trinity College (Fig. 8.38). 

Wittgenstein remained there as a lecturer for a further 6 years, during which 
time he became increasingly dissatisfied with the contents of the Tractatus Logico-
Philosophicus. He began to dictate some new and original developments in his 
thought to two of his students. He paid a visit to the Soviet Union and considered 
settling there before spending a year in his cabin in Norway. He made his way again 
to Cambridge and succeeded the chair in philosophy vacated by Moore. After World 
War II broke out, he became disgusted with professional philosophy and worked 
instead a volunteer at Guy’s Hospital in London and then as a laboratory assistant at 
the Royal Victoria Infirmary in Newcastle upon Tyne. It was during this time that he 
began the writing of Philosophical Investigations. After the conclusion of the war, 
he returned to Cambridge as a professor for a further 2 years before resigning finally 
and making his way to Ireland, where he spent 2 years finishing the book. 

As for the Philosophical Investigations, although it is not so inextricably devoted 
to logic as the Tractatus Logico-Philosophicus, all the same it retains some 
connection with mathematics. In this masterpiece, Wittgenstein abandoned the idea 
of a unified nature underlying the endless varieties of language. He compares 
language to games, observing that there is no property common to all games, only 
a certain family resemblance. When we consider all the various activities that make

4 cf. Tractatus Logico-Philosophicus 4.112 



320 8 Abstraction: Mathematics Since the Twentieth Century

up games, there emerges a complex web of overlaps and intersecting similarities, 
sometimes broad, sometimes in specific details. 

In the course of his elucidation of this argument, Wittgenstein introduces as 
examples several integer sequences, since in his view numbers also constitute such a 
family of resemblances. His question is: what does it mean to grasp a mathematical 
pattern? One example is as follows. Suppose one person sees another write down 
the numbers 

. 1, 5, 11, 19, 29, . . . ,

concluding with the notorious phrase, “and so on.” Of course, there are various 
ways to continue the sequence, and the observer endeavors to write down various 
formulas to describe it, for example, .an = n2 + n − 1. Or even without identifying 
this formula, he or she recognizes that the first number is .12 + 0, the second number 
.22 + 1, and the third .33 + 2 and therefore obtains the next number as . 62 + 5 = 41
or notices instead that the differences between pairs of successive numbers make up 
the arithmetic sequence 

. 4, 6, 8, 10, . . .

and on this basis concludes that the next number should be .29 + 12 = 41. In any  
case, it requires little effort to continue. 

His point is that it is not necessary to derive an explicit formula to have success-
fully grasped the pattern governing the sequence. On the other hand, it is imaginable 
that the viewer equipped with the formula may experience a comprehension of the 
sequence that extends no further than the contents of the formula, unaccompanied by 
any intuitive epiphany or other special experience. The lesson of it all is that a pattern 
is not the same thing as a straitjacket; at all times, we are free to accept or reject 
the dictates of the pattern. He also insisted that the outcome of the mathematical 
process is not predetermined: although we follow a procedure that seems clear to 
us, we cannot predict exactly where it will lead. 

Gödel’s Theorems 

At the end of the last century, the American magazine Time published its list of the 
hundred most influential people of the previous hundred years, one-fifth of which 
consisted of leading scientists and technological and academic figures. Among these 
20, one of them was a philosopher and the other a mathematician. The philosopher 
was Wittgenstein, and the mathematician was Kurt Gödel, to whom we turn now. 
In fact, these two have much in common: both occupied an intellectual position at 
the intersection of mathematics and philosophy, and both were Austrian but wrote 
in English as a second language. But one made his way to England and Cambridge 
University to pass the latter part of his life, and the other to the United States and
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Fig. 8.39 Kurt Gödel 

Princeton University. And of course, neither of them remained Austrian citizens by 
the time of his death (Fig. 8.39). 

In 1906, Gödel was born in Brünn in Austria-Hungary, known now as Brno 
in the Czech Republic. It was in a monastery in this city that the nineteenth-
century Austrian geneticist Gregor Mendel (1822–1844) discovered the principles 
of genetics, and it was also home to the Czech composer Leoš Janáček (1854–1928). 
As for the broader Moravia region, both the father of psychoanalysis Sigmund Freud 
(1856–1939) and the father of phenomenology Edmund Husserl (1859–1938) were 
born there. Husserl had a background in mathematics and earned his doctorate 
from the University of Vienna for a thesis entitled Contributions to the Calculus of 
Variations. Gödel also ended up at the University of Vienna, after spending his youth 
entirely in his hometown, and he studied theoretical physics there before developing 
a keen interest in mathematics and philosophy and teaching himself mathematics to 
a more advanced level (Fig. 8.40). 

By his third year at university, Gödel was entirely preoccupied with mathematics, 
and his library card for this period showed that in particular he read a number 
of works devoted to number theory. He also began to participate in some of the 
proceedings of the famous Vienna Circle, having been introduced to him by his 
mathematics teacher. The Vienna Circle comprised an assortment of philosophers, 
mathematicians, and scientists who met to discuss primarily the linguistic nature 
and methodology of science; this group came to occupy an important position 
in the history of twentieth-century philosophy. At the age of 23, Gödel was the 
youngest of 14 members to attach his name to the manifesto of the Vienna Circle, 
Wissenschaftliche Weltauffassung: Der Wiener Kreis or The Scientific Conception of 
the World: The Vienna Circle. The following year, he completed his doctorate on the
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Fig. 8.40 Gödel and Einstein 

basis of a remarkable thesis On the Completeness of the Logical Calculus. Not long 
afterward, he obtained his world-shatter first and second incompleteness theorems. 

In January of 1931, when he had not yet reached the age of 25, Gödel published 
his Über formal unentscheidbare Sätze der Principia Mathematica und verwandter 
Systeme I or On Formally Undecidable Propositions of Principia Mathematica 
and Related Systems I in the Monthly Journal of Mathematics and Physics of 
Vienna. Within a few years, it was already considered among the most monumental 
milestones in the history of mathematics. The results of this paper are of their nature 
first and foremost negative results, overturning the belief among mathematicians 
of every stripe that mathematics as a whole could be subject to axiomatization 
and eradicating any hope of proving the internal consistency of mathematics as 
envisioned by Hilbert. But at the same time, this negative result eventually led 
to an epochal change in basic mathematics research, introducing a fundamental 
distinction between the concepts true and provable and also introducing analytic 
logic to the basic toolkit of mathematical thought. 

Gödel’s first incompleteness theorem states: 

Any consistent formal system F that is strong enough to carry out the basic arithmetic 
of numbers contains statements S such that both S and its negation are both not provable 
within F . 

In brief, any consistent axiomatization of the natural number system is incom-
plete. It follows immediately that no formal system completely describes all 
of mathematical theory. A few years later, the American mathematician Alonzo 
Church (1903–1995) proved an even stronger result along the same lines: (Church’s 
theorem) given any consistent formal system strong enough to contain the natural
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number system, there is no algorithmic decision process to determine whether a 
given arbitrary proposition is or is not a theorem of the system. 

On the basis of his first incompleteness theorem, Gödel also proved the second 
incompleteness theorem: 

If F is a consistent formal system strong enough to contain the natural number system, then 
the consistency of F cannot be proven within F . 

In other words, among the propositions of the system that are true but unprovable, 
within it occurs the proposition that the system itself is consistent. This put a 
full stop to the hopes of Hilbert and his program. It appeared now that the 
internal consistency of classical mathematics cannot be obtained except by way of 
sophisticate principles of reasoning that are subject to questions of consistency no 
less worthy of suspicion as the question of the consistency of classical mathematics 
itself. 

Taken together, the two incompleteness theorems show that basic mathematics 
is as a whole out of the reach of axiomatization and furthermore that it is 
impossible to guarantee that mathematics harbors no hidden inconsistencies. These 
are strict limitations of the axiomatic approach and suggest that the procedure 
of mathematical proof cannot and does not conform to the procedure of formal 
axiomatization. Taken in a positive light, they suggest also that the role of human 
intuition and insight in mathematics cannot be fully formalized. In formal systems, 
it is possible to mechanically reproduce the provable content, but this is guaranteed 
not to exhaust the full spectrum of true statements within the system. Or in other 
words, all provable statements are true in the system, but not all true statements are 
provable within it (Fig. 8.41). 

Gödel’s two incompleteness theorems are indisputably among the most important 
theorems in the history of mathematics; we do not prove it here, since the proof is 
more technical than the general tenor of this book. It is worth mentioning however 
that the concept of a recursive function that appears in the proof was proposed to 
Gödel in a letter from a friend, who died suddenly and unexpectedly 3 months after 
writing it. After the appearance of the incompleteness theorem, recursive functions 

Fig. 8.41 Gödel’s tomb; 
photograph by the author, 
Princeton
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became widely known and used and eventually formed the basic starting point for 
the theory of algorithms. It was also this idea that led Turing to develop his idea of 
Turing machines and universal Turing machines, another foundational moment in 
the history of the electronic computer. Since that time, the controversy surrounding 
paradoxes and mathematical foundations has settled a bit, and concerns about such 
questions do not much intrude upon the daily work of ordinary mathematics; they 
did however contribute to a resurgence of interest and energy in mathematical logic, 
leading to a flurry of development within this discipline. 

Conclusion 

In modern times, the natural progression toward increased division of labor has led 
to an extension of the period of time dedicated to studies among aspiring scholars 
in various fields, and the content of their studies has become more complex and 
abstract. This is the case not only in mathematics but in every area of human 
civilization. In poetry, it is no longer possible to compose clear and simple poems 
such as Climbing Stork Tower by Wang Zhihuan (688–742); in mathematics, such 
easily derived low hanging fruit as Fermat’s little theorem seems to have been 
exhausted. Simultaneously, in mathematics, in the natural sciences, and in the 
arts and humanities, there have also been great changes in aesthetic preferences 
and conceptions, and complexity, abstraction, and depth have become completely 
standard measures of judgment (Fig. 8.42). 

This is not to say that abstraction has not relegated pure mathematics to the 
back shelf; if anything, its application is wider today than ever before, further 
confirming that the process of abstraction in mathematics is altogether in line with 
the developments and changes in social trends more broadly. With the birth of 
calculus, mathematics had emerged as a powerful tool in the course of the scientific 
and technological revolutions of the seventeenth and eighteenth centuries, with 
mechanical motion as the main protagonist. After 1860, the new stars of the tech-

Fig. 8.42 Notre-Dame du 
Haut Chapel by Le Corbusier 
(1953), in Ronchamp, France
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Fig. 8.43 The Guggenheim Museum in New York City, by Frank Lloyd Wright (1959). Photo-
graph by the author 

nological revolution appeared: generators, motors, and electronic communications. 
Finally, since the 1940s, electronic computers, atomic energy technology, space 
technology, the automation of production, and communications technology have 
all been inseparably linked to mathematics. The branches of mathematics called 
upon by newer fields of science such as relativity, quantum mechanics, superstring 
theory, molecular biology, mathematical economics, and chaos theory in particular 
are esoteric, abstract, and modern (Fig. 8.43). 

With the progression of science and technology and the increasingly complex 
developmental needs of human society, new mathematical theories and disciplines 
are constantly appearing. Here, we present two examples: catastrophe theory and 
wavelet analysis. Catastrophe theory was introduced in 1972 by the French topol-
ogist and Fields Medalist René Thom (1923–2002) in his book Structural Stability 
and Morphogenesis; its object of study is the methodology and classification 
of system control variables subject to sudden massive shifts in behavior. As a 
mathematical discipline, it is a branch of geometry, and the behavior and trajectories 
of its variables occur as curves or surfaces. An example of its application is the arch 
bridge, which deforms at first more or less uniformly under pressure until the load 
reaches a certain critical point, after which the shape of the bridge undergoes an 
instantaneous change and it collapses. Concepts from catastrophe theory were later 
used by sociologists to study such phenomena as gang warfare. 

Turning next to wavelet theory, it has sometimes been referred to as the 
microscope of mathematics, and it represents a milestone in the development of 
harmonic analysis. Around the year 1975, the French geophysicist Jean Morlet 
(1931–2007) invented the word wavelet to describe functions he was using to 
study signal processing problems for oil prospecting. Wavelet analysis or wavelet 
transform refers to the use of wavelike oscillations with finite length and fast decay 
to represent signals. As with the Fourier transform, these oscillations can be written 
as a sum of sinusoidal functions, but wavelets are local with respect to both time 
and frequency, whereas the Fourier transform in general is local only with respect
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to frequency. The computational complexity of the wavelet transform is also small: 
it is of .O(N), in comparison with the time .O(N log N) required for the fast Fourier 
transform. In addition to signal analysis, wavelet analysis has been used for military 
intelligence, computer classification and recognition problems, music and language 
synthesis, mechanical fault diagnosis, data processing for seismology, and so on. In 
medical imaging in particular, the wavelet transform allows for fast imaging times 
and improved resolution in B-scan ultrasonography, CT, and MRI. 

The mainstream of mathematics in the twentieth century can be described as 
structural mathematics, promoted and developed by a major school of French 
mathematicians known pseudonymously as Nicolas Bourbaki. The research objects 
of structural mathematics are not the classical objects of numbers and shapes 
in any traditional sense, and mathematics is no longer split up into the clean 
disciplines of algebra, geometry, and analysis, but rather organized according to 
the occurrences within it of equivalent structures. For example, linear algebra 
and elementary geometry are isomorphic to one another in the sense that it 
is possible to carry out a complete translation of statements between the two, 
and in this sense, they are considered simultaneously. The mathematician and 
historian of mathematics André Weil (1906–1998), who was a major figure in 
the Bourbaki school and a recipient of the Wolf Prize in Mathematics, was close 
with the cultural anthropologist Claude Lévi-Strauss (1908–2009), who borrowed 
structuralist ideas to study the mythologies of various cultures. He identified various 
isomorphic correspondences between them, a striking example of the influence 
of the new mathematics on linguistics and anthropology. This inaugurated a new 
trend in French philosophy in the 1960s known as structuralism. Its most famous 
adherents were Jacques Lacan (1901–1981), Roland Barthes (1915–1980), Louis 
Althusser (1918–1990), and Michel Foucault (1926–1984), who used structuralist 
ideas to investigate psychoanalysis, literature, Marxism, and socio-historical topics, 
respectively. Jacques Derrida (1930–2004) introduced his influential theory of 
deconstruction as a critique of linguistic structuralism. 

Looking now to the future, the major question facing mathematics is whether 
or not it can achieve some kind of unification. This has long been a preoccupation 
among mathematicians: as early as 1872, in the second year of German reunifi-
cation, the young German mathematician Felix Klein (1849–1925) published his 
famous Erlangen program, an attempt to unify modern geometry and mathematics 
from the perspective of group theory. The Erlangen program developed from col-
laborations with the Norwegian mathematician Sophus Lie (1842–1899), inventor 
of Lie groups and Lie algebras, and took its name from the university at which 
Klein was employed at the time, now known as the University Erlangen-Nürnberg, 
in Bavaria. Lie groups also played a deep role for the Bourbaki school, who 
regarded them as a synthesis of group theory and topology. The group theoretical 
perspective has since become commonplace in every area of mathematics, but the 
full achievement of the goals set forth by the Erlangen program has remained out of 
reach. 

Nearly a century later, the Canadian mathematician Robert Langlands (1936-) 
set up the banner of his Langlands program. In a 1967 letter to Weil, and then in
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1970, Langlands proposed a series of conjectures entailing a web of relationships 
intertwining the Galois groups of number theory, automorphisms in analysis, 
and representation theory in algebra. Langlands was awarded the Abel Prize in 
2018. Meanwhile, André Weil, whose sister was the famous philosopher Simone 
Weil (1909–1943), proposed in 1948 an analogue to the Riemann hypothesis 
in algebraic geometry, which was later proved by the Belgian mathematician 
Pierre Deligne (1944-), using methods pioneered by his uniquely brilliant mentor 
and doctoral advisor, the stateless mathematician Alexander Grothendieck (1928– 
2014). Both Grothendieck and Deligne received Fields Medals, in 1966 and 1978, 
respectively (Fig. 8.44). 

On the other hand, although there has emerged since the nineteenth century a 
trend toward the interpenetration and integration of disparate subjects in mathemat-
ics, which has led to the formation of new disciplines, at present, mathematics as 
a whole is still a highly differentiated domain, characterized in modern times by 
abstraction and generalization, but also intense specialization. A very considerable 
portion of new mathematics is necessarily divorced from the natural world and 
scientific applications, perhaps a troubling phenomenon. It is reasonable to ask then 
if abstraction or structuralism can provide a framework for mathematical unification. 
Certainly it is possible, but it seems also likely that mathematics cannot become 
unified in a context of isolation within itself. 

There is an analogy to be drawn with art, where collage has gradually become a 
central technique and in some cases even the predominant conception of art. Modern 
philosophers have also embraced collage as a kind of ideal myth. In the past, collage 
was considered primarily as an artistic technique involving the random combination 
of unrelated pictures, words, sounds, and so on in order to produce a special effect. 
Today, it seems that the range of this word should be expanded to include the 
combination of disparate ideas. In this sense, collage has played a role in modern
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mathematics, even in the nature of modern civilizations. For example, many of the 
new interdisciplinary topics in mathematics could be considered as an instance 
of collage. To some extent, collage and abstraction are identical phenomenon, 
except that the use of one word is more common in the art world and the other 
in mathematics (Fig. 8.45). 

For reasons of space, we have only considered the medium of painting, but 
abstraction has also occurred in other forms of art. Architecture, for example, 
has undergone tremendous changes with respect to content, form, and decoration. 
In his classic De architectura, the Roman architect Vitruvius held up the three 
words strength, utility, and beauty as the cornerstone of architecture, and these 
three words became the basic criteria for quality of buildings or architectural plans. 
In the Renaissance, Alberti subdivided the category of beauty into the beautiful 
and the decorative, where the beautiful is defined by harmonious proportion and 
the decorative consists of mere auxiliary splendor. Since the twentieth century, 
architects have rejected the dismissal of ornament as auxiliary splendor and treated 
it rather as an indispensable and ubiquitous aesthetic component, not unlike 
collage for painting. Geometric figures, both classical and modern, have played a 
particularly important role here. 

Like music, painting, architecture, and the other arts, mathematics is without 
borders and suffers little from the limitations of language barriers. It has been an 
essential part of human civilization, and it seems not unreasonable to speculate 
that if there exists any alien civilization, mathematics has played just an important 
role there as it has here. Indeed, if extraterrestrial intelligences exist, it seems very 
possible that they can understand mathematics and may even be proficient in it, 
and many have suggested that mathematics is the most suitable arena for the first 
attempts at communication. As early as 1820, Gauss proposed to use a graphical 
proof of the Pythagorean theorem cut into the vast Siberian forest as a signal to space 
indicating the presence of human civilization. Some 20 years later, the Austrian 
astronomer Joseph Johann von Littrow (1781–1840) proposed instead to fill a large 
circular canal dug out in the Sahara desert with burning kerosene for the same 
purpose.
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In any case, they both agreed that signals containing such prominently mathe-
matical imagery should attract the attention of any intelligent alien life, although 
neither of these ideas was ever put into practice. Carl Devito, a mathematician at the 
University of Arizona, has argued that accurate communication with a civilization 
from another planet must start from an exchange of scientific information, with 
the first step being the establishment of units of measurement. In recent years, he 
has collaborated with a linguist in an attempt to construct a language derived from 
universal scientific concepts. For example, differences in the chemical composition 
of the atmosphere or the energy output of a planet may facilitate communication. 
The basic idea is that both civilizations should have arrived at mathematical methods 
and computations, discovered chemical elements and the periodic table, and carried 
out quantitative studies of the states of matter. 

But of course there remain many difficulties and obstacles in the way of 
communication with an alien civilization even in the case of contact. Perhaps they 
have derived their laws of motion along very different mathematical lines and 
arrived at formulations very different from the ones with which we are familiar. The 
mathematical basis for our study of motion is calculus; indeed, calculus is the basis 
for many fields of science. Should this also be true of an alien civilization? Or as 
another example, will the natural starting point in geometry for a distant civilization 
be Euclidean as it was for ours or some non-Euclidean geometry? Their physics 
may be so different from ours that they would not recognize the theory of our solar 
system introduced by Copernicus or our picture of the universe. And afterward, 
there is the equally challenging question: how to present other aspects of human 
civilization in terms of mathematics. It is exactly this question, which still stands 
in need of much intercultural research and further discussion, that this book has 
endeavored to explore.
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