
Chapter 6 
The Age of Analysis and the French 
Revolution 

Everything our minds can comprehend is interrelated. 

Leonhard Euler 

The Age of Analysis 

The King of the Amateurs 

Considering the art of the Renaissance, it is not difficult to arrive at the conclusion 
that painting as the representative of the spatial arts is intimately tied to geometry, 
just as in Ancient Greece, the Pythagoreans recognized that algebra or arithmetic is 
closely related to music, the representative of the temporal arts. It is interesting to 
note in this light that the great masters of modern music in Europe did not appear 
until late in the seventeenth century, with the appearance of such figures as Antonio 
Vivaldi (1678–1741), Johann Sebastian Bach (1685–1750) in Germany, and George 
Frideric Handel (1685–1759), who was also born in Germany, but spent most of 
his life in England. They arrived on the scene much later than the master painters 
and sculptors of the Renaissance. Perhaps this is related to the fact that prior to the 
invention of calculus, geometry occupied the undisputed place of prominence in 
mathematics, with Euclidean geometry as its core (Fig. 6.1). 

From antiquity, most mathematicians in Europe referred to themselves as 
geometers; this is exemplified by the most famous epigrams associated with ancient 
mathematics, Euclid’s remark that “there is no royal road to geometry,” and 
the inscription “let no one ignorant of geometry enter here” at the entrance to 
Plato’s Academy. Much later, Pascal refers to geometers in the broad sense in his 
melancholic aphorism from the Pensées, “all geometers would be intuitive, if only 
they had clear sight, ... and all intuitive minds would become geometers, if only they 
could direct their sight to the unfamiliar principles of geometry.” 

The establishment of the Cartesian coordinate system provided a bridge linking 
the study of geometry to the use of algebraic methods, and the impression of algebra 
as a subordinate discipline in mathematics also changed. All the same, the primary 
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188 6 The Age of Analysis and the French Revolution

Fig. 6.1 Pierre de Fermat 

focus of research in algebra at the time revolved still around problems relation 
to solving equations, and it would have to wait until the nineteenth century for 
truly revolutionary changes in algebra to appear, as for that matter in geometry. 
Rather the first branch of mathematics to experience true breakthroughs was number 
theory, the most ancient topic in mathematics, concerned with the properties of the 
natural numbers or the integers and their interrelationships, a topic which could 
be described as frequently stepping out from the garden of algebra. This was due 
mainly to the private interest and efforts of an unassuming amateur named Pierre de 
Fermat (1607–1665), a civilian official in the small town of Toulouse in the south of 
France (Fig. 6.2). 

At his provincial remove far from the capital city Paris, Fermat spent his days 
occupied in judicial affairs and devoted the evenings and the holidays almost 
exclusively to his passion for mathematics and its study. Partially, this was on 
account of opposition in France at the time to private social activity among its 
councilors, in light of the fact that friends and acquaintances might someday find 
themselves before the court. This forced isolation from the upper echelons of 
Toulouse society to which he might otherwise naturally have belonged enabled 
Fermat to focus on his research hobby; he spent nearly all his nights engrossed 
in mathematics, and he was drawn especially to problems in number theory. He 
proposed a wealth of propositions and conjectures, many of which have kept 
mathematicians busy through the centuries since. 

There are not so many complete conclusions associated with Fermat for which 
he himself provided proofs; among these, the most famous are as follows: every
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Fig. 6.2 Andrew Wiles, who 
proved Fermat’s last theorem 

odd prime number can be expressed as a difference of two square numbers in one 
and only one way, and every odd prime number of the form .4n + 1 denotes the 
hypotenuse of a right triangle with integer sides in exactly one way when not raised 
to any power, in two ways when squared, in three ways when cubes, and so on, as, 
for example, 

. 52 = 32 + 42,

252 = 152 + 202 = 72 + 242,

1252 = 752 + 1002 = 352 + 1202 = 442 + 1172.

More often, Fermat would present his results either in his correspondences or by 
way of a mathematical challenge simply with a statement of the conclusion, without 
any proof. These include the following: the area of a right triangle with integer side 
lengths can never be a square number, and every natural number can be written as a 
sum of four or fewer square numbers. There is a famous generalization of this latter 
conclusion known as Waring’s problem. Research on Waring’s problem attracted 
international attention to the autodidact Chinese mathematician Hua Luogeng 
(1910–1985), who was partially paralyzed by typhoid fever in his youth and made 
contributions to mathematics in the fields of analytic number theory, algebra, the 
theory of functions of several complex variables, numerical analysis, and others. 

The two propositions just mentioned were only proved later by the French math-
ematician Joseph-Louis Lagrange; the Swiss mathematician Leonhard Euler also 
devoted considerable energy to the resolution of various questions left unresolved 
by Fermat, and it is for this reason that we have delayed a discussion of Fermat until 
the beginning of this chapter, since both Lagrange and Euler were mathematicians
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of the eighteenth century. In fact, throughout his long career, Euler carried out deep 
and meticulous research into almost problem posed by Fermat. As one example, 
Fermat famously conjectured that for every nonnegative inter n, the number 

. Fn = 22n + 1

is prime; such prime numbers are called Fermat primes. Fermat himself verified this 
conjecture for the cases .0 ≤ n ≤ 4. But Euler discovered that . F5 is not prime and 
even identified a prime factor 641 of . F5. Since that time, no new Fermat primes have 
been found. 

For another example, Fermat had proposed in 1740 in a correspondence with a 
friend that following divisibility result: if p is a prime number, and a is any integer 
relatively prime to p (i.e., the greatest common factor of a and p is 1, which means 
simply that a is not a multiple of p when p is prime), then .ap−1−1 is divisible by p. 
Nearly a century later, Euler not only proved this proposition but also generalized 
it considerably to the case where p in the proposition is replaced by any positive 
integer. For this generalization, he introduced what has since come to be called 
the Euler totient function .φ(n), which counts the number of positive integers not 
exceeding n that are relatively prime to n. So .φ(1) = φ(2) = 1, . φ(3) = φ(4) =
φ(6) = 2 (because, e.g., 1 and 5 are the only two positive integers not exceeding 6 
that are relatively prime to it), .φ(5) = 4, and so on. Euler’s generalization states that 
for any two relatively prime positive integers n and a, .aφ(n) − 1 is divisible by n. 

The special case and its generalization just discussed are known as Fermat’s little 
theorem and Euler’s theorem, respectively. It is somewhat astonishing that Euler’s 
theorem has sprouted important applications in modern society several centuries 
later: it plays an important role in the RSA public key cryptosystem developed 
in 1977 and widely used today for secure data transmission. But in contrast with 
Fermat’s little theorem, Euler could make no dents in the conjecture and eventual 
theorem that came to be known as Fermat’s last theorem, first written down by 
Fermat in 1637. Fermat’s last theorem states that there are no solutions x, y, z in 
positive integers for the equation 

. xn + yn = zn

whenever .n ≥ 3. Of course when .n = 2, there are infinitely many solutions; 
these are precisely the Pythagorean triples, which can be easily and completely 
characterized. Fermat himself proved that there are no solutions when .n = 4, and 
Euler resolved the case .n = 3 (which is more difficult than the case .n = 4). But a 
fully general proof remained completely out of reach. 

For more than three centuries after it was first written down, this conjecture 
continued to attract innumerable bright and intelligent mathematicians to make their 
own contributions to it, until finally it was proved toward the end of the twentieth 
century by the British mathematician Andrew Wiles (1953-), working at Princeton 
in the United States. This news made the front page of The New York Times, 
alongside a portrait of Fermat. In fact, what Wiles, with assistance from his student
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Richard Taylor (1962-), proved is actually something known at the time as the 
Taniyama-Shimura conjecture, proposed in 1957 by two Japanese mathematicians 
and now referred to as the modularity theorem. More precisely, Wiles and Taylor 
proved a special case of the conjecture as applied to semistable elliptic curves, which 
was sufficient to prove Fermat’s last theorem as a corollary. The modularity theorem 
elucidates the relationship between elliptic curves and modular forms; the former 
are geometric objects with profound arithmetic properties, and the latter are highly 
periodic functions derived from the field of analysis. 

In addition to the two Japanese mathematicians just mentioned, many math-
ematicians have made important contributions to general mathematics along the 
road toward a proof of Fermat’s last theorem. Particularly worthy of mention 
is the German mathematician Ernst Kummer (1810–1893), who introduced the 
theory of ideal numbers and thereby established the discipline of algebraic number 
theory, a development that is probably more important than Fermat’s last theorem 
itself. His extended family also included the composer Felix Mendelssohn and the 
mathematician Peter Gustav Lejeune Dirichlet. 

Finally, there is a famous story concerning the origins of Fermat’s last theorem: 
Fermat wrote his conjecture in the margins to his Latin copy of the book Arithmetica 
by the Ancient Greek mathematician Diophantus. Following it, the mischievous 
recluse scribbled an additional remark: “I have discovered a truly marvelous proof 
of this, which this margin is too narrow to contain.” 

Fermat also carried out important research outside the scope of number theory. 
In optics, there is Fermat’s principle, which states that the path taken by a ray 
of light between two points is that which can be travelled in the least amount of 
time, whether a straight line or bent due to refraction. A corollary is that light 
travels in straight lines through a vacuum. Returning to mathematics, Fermat also 
discovered the basic principles of analytic geometry independent of Descartes, 
and his methods for finding the maxima and minima of curves established him 
as a founder of differential calculus. And in his correspondence with Pascal, the 
two mathematicians inaugurated probability as mathematical subject. They were 
interesting in particular in a gambling problem: suppose A and B are two gamblers 
with a comparable level of skills playing a game in which A needs to earn at least 
two points in a round to win, while B needs at least three; what is the probability of 
victory for each? 

Fermat analyzed the situation in a table as follows, using the lowercase letters a 
and b to indicate a point earned by A or B, respectively, and taking into account that 
every game is completed in at most four rounds: 

aaaa aaab abba bbab 

baaa baba abab babb 

abaa bbaa aabb abbb 

aaba baab bbba bbbb
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From this, the solution can be read off directly: the probability of victory for A 
is . 11

16 , and for B, it is . 5
16 . 

It is necessary here also to include some discussion of statistics, which appeared 
later than probability and consists mainly of the collection of data, the use of 
probability theory for the construction of models, quantitative analysis, consol-
idation of results, and ultimately inference and prediction; all of this makes 
statistics an invaluable tool for research and decision-making, in areas as diverse 
as physics and the social sciences, the humanities, and business and government. 
Major applications in particular are in insurance, epidemiology, census making, and 
public polling. In the modern zoology of disciplines, statistics has separated from 
mathematics and established itself like computer science as an independent field of 
research derived from mathematical origins. 

We mentioned in the first chapter that statistics had its earliest development in 
the work of Aristotle, but this did not yet include its maturation as an independent 
discipline. Modern statistics, like the theory of probability, grew from not altogether 
reputable origins, the latter from the study of gambling and the former from 
the analysis of death. In 1666, the Great Fire of London swept through the city 
destroying such notable buildings as St. Paul’s Cathedral and possibly helping to 
bring an end to the plague years. One of its victims was a local haberdasher named 
John Graunt (1620–1674), who was bankrupted by the devastation, who had made 
a study of 130 years worth of death records in London. He used survival rates at 
ages 6 and 76 to extrapolate the proportion of the population that had lived to other 
ages and determine their life expectancies. A similar study was carried out in 1693 
by the British astronomer Edmond Halley (1656–1742), who conducted a statistical 
survey of the mortality rate in the German city of Breslau (now known as Wrocław 
and part of Poland). 

We close this section with some further remarks on Fermat’s last theorem, 
which has been likened to a goose that lays golden eggs. When Wiles announced 
that he had conquered this problem, the mathematical community was at once 
overjoyed but also concerned that there would be no more such problems that 
would stimulate so fruitfully the development of number theory. But within a few 
years, the abc conjecture emerged as an important candidate for its replacement. 
The abc conjecture is an inequality relating the two fundamental integer operations 
of addition and multiplication. We introduce first a bit of notation: if n is a 
natural number, define its radical .rad(n) as the product of its distinct prime factors. 
For example, .rad(12) = 6, since the distinct prime factors of 12 are 2 and 3. 
The abc conjecture, which was proposed in 1985 independently by the French 
mathematician Joseph Oesterlé (1954-) and the British mathematician David Masser 
(1948-), states, in its weaker form, that if a, b, and c are relatively prime integers 
such that .a + b = c, then 

. c ≤ (rad(abc))2 .

The resolution of the abc conjecture or its weaker version could lead to the solution 
of a number of important and outstanding problems in number theory. It is also easy
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to derive directly some well-known theorems and conjectures as corollaries to the 
abc conjecture, including four results that earned Fields Medals for their proofs, one 
of these being Fermat’s last theorem. Taking this as an example, suppose .n ≥ 3 and 
.xn + yn = zn. Then with .a = xn, .b = yn, and .c = zn, the weak form of the abc 
conjecture states that 

. zn ≤ (rad(xnynzn))2 < (xyz)2 < z6.

This limits the possible values of n to .n = 3, 4, or 5, and these cases can be handled 
by purely elementary methods. 

The Further Development of Calculus 

For the Western European powers at the center of the recent scientific developments, 
the transition from the seventeenth to the eighteenth century was a relatively smooth 
period, but the northern regions experience some turbulence and change during this 
time. In the year 1700, Tsar Peter the Great of Russia adopted the Julian calendar, 
with January 1st as the first day of the new year, and at the same time began the 
undertaking of various reforms of a military nature. That summer, only a week 
after the conclusion of a 30-year truce agreement with Turkey, Russia, with Poland 
and Denmark as allies, launched the Great Northern War against Sweden. Denmark 
withdrew from the effort not long afterward, however, when King Charles XII of 
Sweden, who was fond incidentally of mathematics, painting, and architecture, led 
his troops to Copenhagen. In Germany at this time, the Royal Prussian Academy of 
Sciences was established in Berlin, with Leibniz as its first president. 

The rapid development of calculus shortly after its invention was facilitated 
precisely by the peace and prosperity of this era. Its applications also spread wide 
and quickly, resulting in many new branches of mathematics, collected together 
under the umbrella term analysis as an ensemble of distinct concepts and methods. 
The eighteenth century became known in mathematics as the era of analysis, an 
important period of transition from ancient to modern mathematics. Intriguingly, 
just as analysis presented a synthesis of geometry and algebra, there also appeared 
a new synthesis in the arts between spatial art and temporal art. The characteristic 
form of synthetic art is theater, and eventually film, which comprises both a spatial 
component alike to the visual arts such as painting and sculpture and a temporal 
component, for which the classical analogues are poetry and music. It was after the 
Renaissance that European theater began its rapid development (Fig. 6.3). 

In France, the golden age of drama was the seventeenth century, in which time 
the great dramaturges Pierre Corneille (1606–1684), Molière (born Jean-Baptiste 
Poquelin, 1622–1673), and Jean Racine (1639–1699) all lived and worked. Much as 
English Elizabethan drama, and most notably Shakespeare, was heavily influenced 
by the Italian Renaissance (see, e.g., The Merchant of Venice, Romeo and Juliet, The 
Tempest, and so on, all of which were set in the Apennines), modern French drama



194 6 The Age of Analysis and the French Revolution

Fig. 6.3 The Russian 
Orthodox Chapel of Weimar, 
situated next to the Weimarer 
Fürstengruft, which houses 
the coffins of Goethe and 
Schiller; photograph by the 
author 

drew upon Spanish dramas; for example, the protagonist of Le Cid by Corneille 
was a Spanish national hero. In Germany, drama sprang to life in the eighteenth 
century, with the emergence of such figures as Gotthold Lessing (1729–1781), 
Johann Wolfgang von Goethe (1749–1832), and Friedrich Schiller (1759–1805). 

Returning to the development of calculus, the mathematicians of the eighteenth 
century were presented with a full plate of new problems and even disciplines left 
over in germinal form in the original works of Newton and Leibniz. But before 
these developments could be seen through to their completion, it was necessary to 
carry out the perfection and expansion of calculus itself, and the first task at hand 
was to achieve a full understanding of elementary functions. An example of the 
issues involved is the logarithmic function, which had originated as a description 
of the termwise relationship between the geometric and arithmetic series and was 
later recognized as the integral of the rational function . 1

1+x
; at the same time, 

this function also serves as the inverse of the exponential functional, a particularly 
simple characterization. 

In the period after Newton, the main results in British mathematics were in the 
study of power series expansions. A particularly important result is due to Brook 
Taylor (1685–1731), known today as the Taylor series: 

.f (x + h) = f (x) + hf (1)(x) + h2

2! f (2)(x) + · · · ,
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which makes it possible to expand any function as a power series and quickly proved 
to be a powerful tool for the development of calculus, to the extent that the French 
mathematician Lagrange even later referred to it as the basic principle of differential 
calculus. 

On the other hand, Taylor’s proof of this result was by no means rigorous, and 
he did not even take into account the question of the convergence or divergence 
of this series. These shortcomings in his work can perhaps be overlooked in 
light of his additional talents as a painter, which inspired him to compile a 
comprehensive treatment of perspective in his 1715 essay Linear Perspective, in  
which he introduced for the first time the term vanishing point, and provided the 
first full explanation of the geometry of multipoint perspective. An important special 
case of the Taylor series is the Maclaurin series, corresponding to the evaluation at 
.x = 0, familiar today to any high school student. 

Colin Maclaurin (1698–1746) was 13 years younger than Taylor and arrived at 
his result later, but it is his name that has been attached to it ever since. Partially, 
this is because Taylor was not well known during his lifetime, but Maclaurin was 
also a savvy academician, an early promoter of Newton’s method of fluxions, who 
was admitted as a member of the Royal Society at the age of 21. After the deaths of 
these two mathematicians, British mathematics suffered a long period of decline. 
One cause of this was a conservative and nationalistic mentality among British 
mathematicians of the period inspired by the priority dispute over the invention of 
calculus. They were loath to acknowledge let alone overcome the weaknesses of the 
fluxion formulation associated with Newton during a time when their continental 
counterparts were taking full advantage of the symbolic and conceptual clarity of 
the calculus as developed by Leibniz to achieve fast and fruitful results. 

Consider Switzerland, for example. This small, landlocked country in Central 
Europe was home to several of the most important mathematicians of the eighteenth 
century. These included Johann Bernoulli, the first to provide a formal definition for 
the concept of a function and who also introduced various integration techniques 
such as substitution of variables and integration by parts, and then his student 
at the University of Basel, Leonhard Euler (1707–1783), arguably the greatest 
mathematician of the century, who carried out meticulous research into every corner 
touched by calculus (Fig. 6.4). 

Euler proceeded from the loose notion of a function as consisting of an analytical 
expression of a certain form involving a variable and constants; this was enough 
to encompass polynomials, power series, exponential and logarithmic functions, 
trigonometric functions, and even multivariate functions. Euler also separated the 
algebraic operations involved in the definition of a function into two categories: 
rational operations, involving only the four basic arithmetic operations, and irra-
tional operations, involving, for example, square roots (Fig. 6.5). 

Euler gave the definition of some important functions in terms of limits, for 
example, the logarithmic function, which he defined for .x > 0 by 

.log x = lim
n→∞ n

(
x1/n − 1

)
,
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Fig. 6.4 The tomb of Euler; 
photograph by the author, in 
St. Petersburg 

Fig. 6.5 Leonhard Euler 

and along with this the exponential function defined as 

. ex = lim
n→∞

(
1 + x

n

)n

.

The symbol e is generally regarded now as a tribute to Euler, although he does not 
seem to have introduced it for this constant with any special meaning in mind. 

The Euler family included many generations of craftsmen, originally based on the 
shore of Lake Constance at the border between Switzerland and Germany. Toward 
the end of the seventeenth century, they had made their way down along the Rhine 
River to Basel, where Euler was born in 1707. He graduated from the University of
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Fig. 6.6 Euler’s formula, 
relating five of the most 
important mathematical 
constants 

Fig. 6.7 Bernoulli’s catenary 

Basel at the age of 15 and earned a master’s degree a year later. He also came to the 
attention of the Bernoulli family early on, and they became important mentors and 
friends. In 1727, he entered the Paris Academy prize competition for the first time; 
he would go on to win this prize a total of 12 times (Fig. 6.6). 

When he was 20, Euler moved to Russia after having failed to earn a physics 
professorship at his alma mater. He obtained a position with the Imperial Russian 
Academy of Sciences in Saint Petersburg and succeeded Daniel Bernoulli as a 
professor of mathematics in 1733. Although he never returned to his home country, 
Euler retained his Swiss nationality his entire life. He spent 25 years in Berlin at 
the Prussian Academy of Sciences. The remainder of his life took place in Saint 
Petersburg. Euler was a remarkably prolific mathematician and father to 13 children, 
only 5 of whom survived to adulthood. He made seminal contributions to number 
theory, analysis, geometry, topology, graph theory, and mechanics (Fig. 6.7). 

Euler further introduced distinctions between explicit and implicit functions, 
single-valued and multiple-valued functions, and algebraic and transcendental 
functions and provided a definition for continuous functions equivalent to the
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Fig. 6.8 The path of fastest 
descent between two points is 
not a straight line 

modern notion of an analytic function. He considered the power series expansions 
of various functions and made the assertion that any function can be expanded in 
a power series, which is not strictly correct from a modern perspective. His work 
touched deeply upon physics, astronomy, architecture, and navigation. Euler was a 
remarkably productive mathematician, who also found time to raise a large family 
of many children. He famously remarked: “everything our minds can comprehend 
is interrelated.” 

The Influence of Calculus 

At the same time that the calculus was undergoing internally a continuous devel-
opment, rigorization, and refinement, and the concept of functions was to become 
more and more deep, the scope of calculus was also expanding widely and rapidly 
in its application to other fields, leading to the formation of some new branches 
of mathematics. One of the most notable developments was that mathematics and 
mechanics grew more closely related to one another than they had ever been. Most 
of the Western mathematicians of the period also carried out work in mechanics,1 

much as in ancient times in the east most mathematicians were also astronomers. 
These emerging disciplines included among them the study of ordinary and partial 
differential equations, the calculus of variations, differential geometry, and the 
theory of algebraic equations. Moreover, the influence of the calculus extended 
beyond simply mathematics and the natural sciences and penetrated even into the 
humanities and the social sciences (Fig. 6.8). 

The theory of ordinary differential equations sprang up directly concomitantly 
with the growth of calculus. Starting at the end of the seventeenth century, practical 
problems related to cycloid motion, the theory of elasticity, and celestial mechanics

1 Later, in the twentieth century, many colleges and universities in China established departments 
of mathematics and mechanics. 
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Fig. 6.9 Mathematician and 
Enlightenment thinker Jean le 
Rond d’Alembert 

produced a series of equations involving differentials, laying down a challenge at 
the feet of the mathematicians. The most famous of these was the catenary problem, 
which asks for the equation of the curve formed by an idealized flexible but inelastic 
cable hanging between two fixed points in a uniform gravitational field. The problem 
was first posed explicitly as a challenge by Jacob Bernoulli, the brother of Johann 
Bernoulli, and given its name by Leibniz. Johann Bernoulli derived the equation 

. y = c cosh
x

c

for the catenary curve, where c is a constant determined by the weight per unit rope 
length and .cosh is the hyperbolic cosine function. 

Subsequently, the theory of ordinary differential equations developed from first-
order equations, to higher-order equations with constant coefficients, and then on to 
higher-order equations with variable coefficients. Finally, this topic was perfected 
by the two great mathematicians Euler and Lagrange. Euler also established the 
important distinction between the particular and general solutions of an ordinary 
differential equation (Fig. 6.9). 

Partial differential equations appeared later and were first studied in 1747 by 
the French mathematician and polymath of the Age of Enlightenment Jean le 
Rond d’Alembert (1717–1783), who published a paper on the mechanics of string 
vibrations containing within it the concept of the partial derivative. D’Alembert had 
been abandoned by his parents as an infant and was later adopted by the wife of a 
glazier. His name was taken from the patron saint of the church on the steps of which 
he was found, in keeping with the custom of the time. His knowledge of mathematics
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was almost entirely self-taught. Later, Euler provided a particular solution involving 
the sine and cosine functions under the assumption that the initial condition is 
sinusoidal. Motivated by applications to musical aesthetics and instrument design, 
Euler and Lagrange both also studied the vibration of tympanic membranes and the 
wave equation generated by the propagation of sound. 

Another important contribution to the development of partial differential equa-
tions came from the French mathematician Pierre-Simon Laplace (1749–1827), who 
introduced the so-called Laplace equation: 

. 
∂2V

∂x2 + ∂2V

∂y2 + ∂2V

∂z2 = 0.

Here, V refers to a potential function, and for this reason, this equation is sometimes 
also called the potential equation. Potential theory provided a solution to a problem 
much clamored about in mechanics: the determination of the gravitational force 
between two objects. If the mass of the objects is negligible in comparison with the 
distance between them, then the partial derivative of V is the gravitational compo-
nent between them, determined by Newton’s formula for universal gravitation. 

In contrast, the genesis of the calculus of variations was more dramatic, and 
its eventual applications were extremely broad, including both the study of soap 
bubbles and the theory of relativity, geodesics and minimal surfaces, and isoperi-
metric problems (the determination of maximal areas enclosed by a curve of a fixed 
perimeter). The original problem for which this discipline was invented however 
was a simple one: the identification of the line of fastest descent. This problem is as 
follows: given two points that do not lie in the same plane horizontally or along the 
same line vertically, determine the curve between them along which a particle travels 
in the least time subject only to the action of gravity. After Johann Bernoulli publicly 
posed this problem in 1696, it attracted the great mathematical minds from around 
Europe, including Newton, Leibniz, and Johann’s brother Jacob Bernoulli. At its 
core, the problem boiled down to the identification of a pole of a certain special 
function. Among the various correct solutions that appeared, Newton submitted a 
solution anonymously, but Johann Bernoulli quickly discerned the identity of its 
author, famously remarking that he could be recognized “as the lion from its claw.” 

Through the joint effort of many mathematicians in the establishment of the 
above various offshoots of calculus, the broad mathematical discipline of analysis 
was born. This became one of the three major areas of modern mathematics, 
alongside algebra and geometry, and its fruits in this time were the most numerous of 
the three. Even today, greater weight is placed on mathematical analysis than algebra 
or geometry as the foundation of mathematical education at the undergraduate level. 
Calculus also exerted a profound influence on the study of algebra and geometry, 
starting with the birth of differential geometry. But in the eighteenth century, this 
was limited to a discussion of geometrical properties in the region near a point or 
local differential geometry as we would say today; we discuss this in some detail 
below.
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Due to the rise of calculus and its connection with the other natural sciences, 
this period aroused the enthusiasm of remarkable and careful thinkers and inspired 
in them confidence in the power of rational thought and the application of 
mathematical methods to physics and even the normative sciences. There was much 
faith that this success could be extended to the totality of knowledge. Descartes, 
for example, believed early on that all problems can be reduced to mathematical 
problems, all mathematical problems can be reduced to algebraic problems, and all 
algebraic problems can be reduced to basic equation solving. It could be said that he 
regarded mathematical reasoning as the only reliable method of thought and sought 
to reconstruct all knowledge atop these sure foundations. 

Leibniz went further even than the ambitious goals outlined by Descartes in 
his attempt to create a framework for universal logical calculation and universal 
conceptual language that would render the solution of all human problems trivial. 
Mathematics was not only the starting point for his program but also its beating 
heart. Among his other proposals, he suggested that the human mind can be factored 
into basic and distinct parts, just as the number 24 can be written as a product of its 
prime factors 2 and 3. Although neither Leibniz nor his successors could ever see 
this program through to completion, the development of mathematical logic in the 
second half of the nineteenth century and the twentieth century was based on his idea 
of a purely formal language, and for this reason, he has sometimes been celebrated 
as the father of modern logic. 

The birth of calculus and turn toward faith in mathematics had an even more 
direct and obvious influence on religion, which at that time played a central role 
in both spiritual and secular life. Although Newton attributed to God the power to 
create the universe, he limited his role in daily life, and Leibniz further depreciated 
his influence. Although Leibniz too acknowledged his role in creation, he believed 
that God was constrained to proceed according to established mathematical order. 
The increased emphasis on reason in this period also contributed to a decrease 
in devotion to religion, although was not necessarily an outcome intended by 
mathematicians and scientists of the time. Just as Plato described God as a geometer, 
Newton believed him to be a capable physicist and mathematician (Fig. 6.10). 

In the eighteenth century, the further development of calculus introduced further 
changes to the spiritual and intellectual landscape. The pioneer and spiritual leader 
of the French Enlightenment François-Marie Arouet (1694–1778), better known 
as Voltaire, was a stalwart advocate of Newtonian mathematics and physics and 
simultaneously a leading proponent of the emerging philosophy of Deism, a 
theological system in which reason and nature were equated to one another that 
quickly gained popularity among the intellectuals of the period. In the United States, 
its adherents included Thomas Jefferson and Benjamin Franklin, the former of 
whom did much to encourage the instruction of advanced mathematics. In fact, none 
of the first seven presidents of the United States, including its first president George 
Washington, identified themselves as Christian. Among the disciples of Deism, 
nature was God, and Newton’s Principia is its bible. With philosophy and theology 
as its accomplices, calculus has exerted a remarkably broad-reaching influence on 
just about every sphere of human activity, including economics, law, literature, and 
aesthetics (Fig. 6.11).
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Fig. 6.10 George 
Washington, during his time 
as public land surveyor 

Fig. 6.11 Thomas Jefferson, 
coauthor of the Declaration 
of Independence 

The Bernoulli Family 

We have mentioned several times already in the preceding sections the outstanding 
contributions of the Bernoulli brothers Johann and Jacob, and their Swiss compatriot 
Euler, in the development and application of the calculus. We discuss now in detail
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this most famous mathematical family in history, a family seemingly destined for 
calculus. The Bernoulli family was originally based in Antwerp in Belgium, at 
that time part of the Spanish Netherlands, where they were practicing Huguenots, a 
protestant sect which suffered persecution by the Catholic church, like the Calvinists 
and the Puritans. As a result, Jakob Bernoulli fled his hometown in 1583, taking 
refuge first in Frankfurt in Germany and eventually settling in Basel in Switzerland, 
where he married into a prominent local family and established a career as a well-
connected merchant of medicinal herbs. 

More than a century later, the first of many mathematicians in this family was 
born; this was Jacob Bernoulli (1654–1705), who mastered the new discipline of 
calculus as formulated by Leibniz through diligent self-study and later served as 
a professor of mathematics at the University of Basel. Initially intended for a life 
as a man of the cloth, Jacob initially studied theology and entered the ministry, 
but he became obsessed with mathematics over the objections of his father and 
eventually rejected his church appointments. In 1690, he was the first to introduce 
the term integral into the mathematical lexicon, and in the following year, he studied 
catenary curves and applied the fruits of his research to bridge design. His other 
important research areas included the theory of permutations and combinations, the 
law of large numbers in probability, the Bernoulli numbers derived from the sums of 
integer powers, and the calculus of variations, discussed already above (Fig. 6.12). 

Fig. 6.12 Map of the ancient city of Carthage; photograph by the author, in Tunisia
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The basic idea of the calculus of variations makes some interesting and beautiful 
appearances in ancient literature: according to Greek legend, the founder Queen 
Dido of Carthage cleverly offered a high price to purchase for the establishment 
of her new city all the land that could be enclosed in a single leather hide. She 
then proceeded to cut the hide into a very thin continuous strip, long enough to 
enclose all the territory she needed for the city. In another version of this story, Dido 
fled her home city of Tyre upon discovering that her cruel brother Pygmalion had 
orchestrated the murder of her husband; she made her way to the coast of Africa and 
purchased a plot of land for the establishment in Carthage, the territory demarcated 
in such a way as to match the size of a ditch dug in a single day. A very moving 
and tragic love story involving Dido and Aeneas, the legendary founder of Rome, 
as well as Dido’s sister Anna, appears in the Aeneid by the Roman poet Virgil (70 
BCE–19 BCE) and in the Heroides by Ovid (43 BCE–14 CE). 

Returning to Jacob Bernoulli, the Bernoulli numbers . Bn named in his honor play 
an invaluable role in number theory. These numbers can be defined recursively as 

. B0 = 1, B1 = 1

2
, Bn =

n∑
k=0

(
n

k

)
Bk (n ≥ 2),

where the numbers .
(
n
k

)
are the usual binomial coefficients. From this, it is obvious 

that every .Bn is a rational number, and these numbers exhibit some remarkable 
properties. For example, it is easy to prove that .Bn = 0 whenever .n ≥ 3 is an odd 
number; and for odd prime numbers p, the special case of Fermat’s last theorem 
with exponent given by p can be directly resolved by way of the number . Bp−3. The  
Bernoulli polynomials, which also play an important role in number theory, as well 
as in the theory of functions, are also defined in terms of the Bernoulli numbers. 
Upon his death, Jacob Bernoulli requested that his gravestone be engraved with a 
logarithmic spiral and the motto Eadem mutata resurgo (Although changed, I rise 
again the same), but instead it was engraved with an Archimedean spiral. 

The mathematical contributions of his younger brother Johann Bernoulli (1667– 
1748) were no less significant; some of them have been discussed already above. 
Johann first studied medicine and earned a doctorate in Basel for a thesis on 
muscle contraction. Later, like Jacob over the objections of his father, he studied 
mathematics with his brother and went on to become a professor of mathematics 
at the University of Groningen in the Netherlands. He returned to Basel only many 
years later, shortly after his brother had succumbed to tuberculosis. 

The best-known mathematical discovery associated with Johann Bernoulli is his 
method for determining the limit of a fraction of functions as both numerator and 
denominator tend to zero, a familiar favorite of calculus students. This rule states 
that if two functions .f (x) and .g(x) both admit derivatives .f ′(x) and .g′(x) in the 
neighborhood of a certain point a with 

. lim
x→a

f (x) = lim
x→a

g(x) = 0,
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Fig. 6.13 Daniel Bernoulli: 
the second generation of 
Bernoulli family 
mathematicians 

and .g′(x) �= 0 for all .x �= a near a, then if .limx→a
f ′(x)
g′(x)

exists, we can calculate 

. lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

This rule was included in the first systematic textbook on infinitesimal calculus, 
written by a French former student of Johann Bernoulli’s named Guillaume de 
l’Hôpital, and it has ever since been referred to as l’Hôpital’s rule. Johann also 
used calculus to tackle the problem of fastest descent, known as the brachistochrone 
problem, and to determine the lengths and enclosed areas of related tautochrone 
curves (Fig. 6.13). 

The brothers Johann and Jacob Bernoulli were academic colleagues and both 
were friends to Leibniz, but between them, there developed frequent academic 
rivalry. Johann was known for a quick temper and jealous disposition. In spite of 
this, he seems to have been an impressive teacher: not only did he nurture such 
impressive students as l’Hôpital, but he also trained his three sons for lives as 
mathematicians, although he encouraged both the eldest Niklaus and the second 
eldest Daniel to pursue careers other than mathematics; the former studied law and 
the latter medicine, but they both eventually took posts as professors of mathematics 
at the newly founded Saint Petersburg Academy. It was these two who introduced 
their close friend Euler to Russia, where he spent the better part of his life. The 
youngest of the three, Johann II, succeeded his father as professor of mathematics 
at the University of Basel, after an earlier stint as a professor of rhetoric. The legacy 
did not end with this generation: the two sons Johann and Jakob of Johann II also 
found their way to mathematics, after some detours (Fig. 6.14). 

In general, the second and third generations of Bernoulli mathematicians did not 
achieve the same heights as the first, with the notable exception of Daniel Bernoulli 
(1700–1782), who at several points throughout his life could be said to rival his
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Fig. 6.14 The lemniscate of 
Bernoulli 

friend and contemporary, the great Euler, with whom he shared several of the ten 
prizes he was awarded by the French Academy of Science. Upon his return to 
Basel from Saint Petersburg, Daniel successively served as a professor of medicine, 
metaphysics, and natural philosophy while continuing to make contributions in 
a number of different fields within mathematics, including calculus, differential 
equations, and the theory of probability. 

The most famous result due to Daniel Bernoulli is Bernoulli’s principle, a 
result in fluid dynamics that has direct applications in modern aircraft design. 
This theorem states that the total energy of a moving fluid (gas or liquid) remains 
constant; this includes its kinetic energy and dynamic pressure, potential energy due 
to gravity and static pressure, and internal energy. As an example, a fluid flowing 
horizontally experiences no change in its gravitational potential energy, and from 
this, it follows that its static pressure decreases with an increase in the speed of its 
flow. This principle provides the theoretical basis for many problems in engineering, 
notably in the design of aircraft wings: since the airflow along the curved upper 
surface of the wing is faster than along its lower surface, Bernoulli’s principle 
implies that the pressure along the lower surface is greater than along the upper 
surface, thereby generating lift. 

In the 1990s, the Bernoulli Society for Mathematical Statistics and Probability in 
the Netherlands introduced the Bernoulli Journal in commemoration of the mathe-
matical contributions of the Bernoulli family. This is now the second mathematical 
journal we have encountered to derive its name from a significant mathematician or 
mathematical family, after the Fibonacci Quarterly.
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The French Revolution 

Napoleon Bonaparte 

In the year 1769, the situation of the two French mathematicians Laplace and 
Lagrange was as follows: Lagrange was 31 years old and serving as the director 
of mathematics at the Prussian Academy of Sciences in Berlin; Laplace, 11 years 
his junior, was employed as a professor of mathematics at the École Militaire. At 
this time, their future student and friend Napoleon Bonaparte was born in Ajaccio, 
capital of the Mediterranean island of Corsica. Only a year earlier, this island had 
belonged to the Republic of Genoa in the Apennine Peninsula. If its transfer to 
France had been delayed for even a few more years, Napoleon might have found 
himself as an adult fighting instead for the territorial defense and expansion of Italy, 
or a part of the underground resistance against France, as indeed his father had 
been. In fact, his paternal ancestors the Bonapartes descended from a family of 
minor nobles in Tuscany, whose capital city Florence had been the central city of 
the Italian Renaissance (Fig. 6.15). 

The Corsican resistance against France quickly collapsed, however, and 
Napoleon’s father was obliged to submit to French rule and serve in his capacity as 
an attorney for the new regime, eventually becoming the representative of Corsica 
to the court of Louis XVI. All this paved the way for young Napoleon, at the 
age of 9, to move to the French mainland and enroll briefly in a religious school 

Fig. 6.15 Napoleon, the 
amateur geometer
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Fig. 6.16 La Marseillaise, the national anthem of France, was born during the French Revolution 

before obtaining a scholarship to a military academy at Brienne-le-Château, and 
eventually, many transfers later, to graduate from the École Militaire in Paris. It 
was while Napoleon was at the École Militaire that his father died, compelling him 
to complete his course in a single year. He exhibited some talent for mathematics 
during his studies and was examined for graduation at the age of 16 by none other 
than Laplace (Fig. 6.16). 

After he graduated from the military academy, Napoleon became a second 
lieutenant in an artillery regiment. During this time, he carried out an extensive 
reading of military treatises. Not long afterward, he returned for 2 years to Corsica, 
and it seems that he sustained a strong affection for his homeland, to which he 
returned again several times in later years, and which had things gone differently he 
might still have helped to achieve its independence. But as the French Revolution, 
Napoleon was more and more attracted to Paris; he was a loyal student of Voltaire 
and Rousseau and fervently believed that political change was necessary for France. 
All the same, when the revolution actually arrived and the Parisians stormed the 
Bastille, a fortress that served as a symbol of the tyranny of the king, on July 14, 
1789 (later the national holiday of France), Napoleon was in the provinces. 

The French Revolution not only brought an end to the ancient regime in France 
but also marked a change in the entire political climate of Europe. Although 
historians disagree about the precise causes of this revolution, there are five 
generally agreed-upon explanations: (1) France had the largest population of any 
European nation at the time and could no longer adequately support it; (2) the rise
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of a wealthy bourgeoisie class and its exclusion from political power, a divide more 
extreme than that which existed in other nations of the period; (3) a deepening 
understanding among the peasants of the situation and with it their inability to 
tolerate a feudal system that subjected them to fraud and exploitation; (4) the 
appearance of radical philosophers promoting political and social change and the 
widespread circulation of their works; and (5) the depletion of the national treasury 
due to French participation in the American Revolution. 

There is no doubt however that Napoleon’s march into Paris required many 
blessings from the goddess of fate. In January of 1793, King Louis XVI was 
executed by guillotine for high treason. This was a period of intense crisis within 
France and even throughout Europe, as the revolutionaries had earlier declared 
war against the counterrevolutionary forces in various European countries. The 
following winter, Napoleon led the artillery of the republican forces in the port city 
of Toulon to defeat the royalist British navy assembled at the behest of the Baron 
d’Imbert and force them to evacuate. This battle brought him fame and recognition 
and earned him a promotion to brigadier general. Another year passed, in which 
time the royalists carried out their White Terror campaign and an attempt to seize 
power in Paris. Napoleon crushed their efforts; by the age of 26, this young Corsican 
soldier was widely recognized as the savior and hero of the French Revolution. 

Also in the year 1795, the old University of Paris and the Academy of Sciences 
in Paris were abolished by the National Assembly in the name of egalitarianism, 
replaced by the École Polytechnique and the University of France, the latter of 
which absorbed the Paris Academy of Sciences as one of its three branches, as well 
as a new normal academy in Paris founded the year earlier and later rebranded in 
1808 as the École Normale Supérieure. Although these two schools were originally 
conceived as training schools for engineers and teachers, respectively, both placed a 
high importance on mathematics, perhaps not unrelated to the fact that the Marquis 
de Condorcet, whose was involved in the establishment of the new state education, 
was himself a mathematician. He brought in the most respected mathematicians in 
France at the time: Lagrange, Laplace, Legendre, and Gaspard Monge, who later 
also served as the first Director of the École Polytechnique. 

It was a few more years however before Napoleon became the First Consul 
of the Republic; during this time, he led military campaigns both northward and 
southward, leaving behind him his footprints in Italy, Malta, and Egypt, where 
he commanded more victories than losses. It was after he returned to France that 
he could truly be said to have consolidated beneath him the military and political 
power, not unlike the return of Caesar from Egypt to Rome. On the last Christmas 
of the eighteenth century, France established a new national constitution in which 
Napoleon was designated the first consul for a period of 10 years, with basically 
unlimited powers, including the appointment of ministers, generals, civil officers, 
magistrates, and legislators. Afterward, Napoleon included his mathematician 
friends among the high-ranking officials. 

Although his rise to power was facilitated by the French Revolution, Napoleon 
himself was a man of tremendous ambition, and his belief in the sovereignty 
of the people and the virtue of free legislative debate quickly proved illusory.
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Fig. 6.17 Answer to a 
question raised by Napoleon 

Rather Napoleon took up the mantle of the philosopher king of pure reason and 
intellect, with mathematics and jurisprudence as his advisors. The war effort was 
still unresolved however, and his campaign of territorial expansion had just begun. 
In his capacity as First Consul, Napoleon considered the management of the army 
as in need of most careful attention in order to consolidate power and achieve his 
imperial ends. As a result, the École Polytechnique was militarized and charged with 
the training of artillery officers and engineers, and its professors were encouraged 
to turn their attention to mechanics, the development of artillery shells and other 
weaponry, and to maintain close contact with the consulate (Fig. 6.17). 

The mathematical talent nourished in his early years and his continued contact 
with eminent mathematicians encouraged Napoleon to propose a question in 
geometry: using only a compass but no straightedge, how to divide a circle into 
four equal parts? This problem was solved by the Italian mathematician Lorenzo 
Mascheroni (1750–1800), who had been trapped in Paris by the war. Mascheroni 
also wrote a book entitled Geometria del Compasso, dedicated to Napoleon, in 
which he proved that any geometrical construction than can be accomplished by 
compass and straightedge can also be accomplished by compass alone, that is, that 
the straightedge of classical Euclidean geometry is superfluous. It was discovered 
by later generations that this result had in fact already been proven in an obscure 
book by the Danish mathematician Jørgen Mohr (1640–1697) (Fig. 6.18). 

The specific method for the division of the circle into four parts is as follows: 
let A be any point on the given circle O, and with one bisector at A, set up a total 
of six bisectors at A, B, C, D, E, and F , dividing the circle into six equal parts as 
shown in the figure. Construct two circles with centers A and D and radius AC or 
BD, intersecting in the point G. Construct another circle with A as its center and 
with radius OG, meeting the circle O in points M and N . Then the points A, M , D, 
and N divide the circle into four equal arcs. Indeed, according to the Pythagorean 
theorem, .AG2 = AC2 = (2r)2 − r2 = 3r2, and therefore, . AM2 = OG2 =
AG2 − r2 = 2r2, .AM = √

2r , so  AO and MO are perpendicular.
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Fig. 6.18 Marquis de 
Condorcet, a revolutionary 
and a mathematician 

The Lofty Pyramid 

We turn now to Joseph-Louis Lagrange (1736–1813), considered alongside Euler as 
one of the two greatest mathematicians of the eighteenth century. As for which of 
the two was in fact the greater, this has been a topic of much debate and not immune 
to the preference in mathematical interests of the supporters of one or the other. 
Lagrange was born in Turin, a famous city in northwestern Italy, known today as the 
home of Fiat and the Juventus Football Club. Its close proximity to France had meant 
that Turin was for a time occupied by France, during the sixteenth century, and by 
the time that Lagrange was born, it was the capital of the Kingdom of Sardinia. Its 
status did not afterward change until the nineteenth century, when Turin was at the 
political and ideological center of the struggle for Italian unification, to the extent 
that it was even briefly the capital of the newly independent Kingdom of Italy. 

Lagrange was of mixed French and Italian ancestry. His great-grandfather 
had been a captain in the French cavalry, who settled in Turin and married 
into a prominent local family after having served under the king of Sardinia, a 
Mediterranean island that is today a part of Italy. His father briefly had charge of 
the king’s military chest and served as Treasurer of the Office of Public Works and 
Fortifications in Turin, but all the same he failed to effectively manage his family 
property, and Lagrange, who was the firstborn of 11 children, received only a small 
inheritance. Later he regarded this as the luckiest thing that could have happened 
to him, reasoning that a large fortune might have cut him off from his fate as a 
mathematician.
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In his school years, Lagrange was drawn first to classical literature and not much 
inspired by his encounters with the geometric works of Euclid and Archimedes. 
Later he stumbled by accident across a popular work written by Edmond Halley 
(1656–1742), a friend of Newton responsible for the discovery of Halley’s Comet, in 
which the topic of calculus was introduced and exalted. Lagrange became fascinated 
with this new subject and quickly mastered through self-study the full body of 
knowledge in analysis of his era. At the age of either 19 or 16 (accounts vary), 
Lagrange was appointed Sostituto del Maestro di Matematica (assistant professor 
of mathematics) at the Royal Military Academy of the Theory and Practice of 
Artillery and embarked upon one of the most glorious careers in the history of 
mathematics. By the age of 25, Lagrange was already regarded as one of the greatest 
mathematicians in the world (Fig. 6.19). 

Unlike any earlier mathematician, Lagrange was an analyst right from the start 
of the career, further evidence that analysis had already become the most popular 
branch of mathematics in that period. This preference achieved its full realization in 
his Mécanique analytique (Analytical Mechanics), which Lagrange first conceived 
at the age of 19, although its publication in Paris did not appear until he was already 

Fig. 6.19 Lagrange, a 
descendant of France and 
Italy
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52, by which time he had largely lost interest in mathematics. In the preface to this 
work, Lagrange writes: 

No diagrams will be found in this work. The methods that I explain require neither 
geometrical, nor mechanical, constructions or reasoning, but only algebraical operations 
in accordance with regular and uniform procedure. 

All the same, his framework for mechanics is novel in its appeal to the geometry 
of four dimensions: three coordinates representing spatial position and a fourth 
coordinate representing time. According to this conception, the mechanics of a 
moving point is determined entirely by its geometrical description. 

Lagrange also introduced the notations .f ′(x), .f (2)(x), .f (3)(x), etc., for the 
derivatives of a function .f (x) with which we are familiar today, and discovered 
an early version of the mean value theorem, sometimes referred to as Lagrange’s 
mean value theorem. This theorem states that if a function .f (x) is continuous on 
the closed interval .[a, b] and differentiable on the open interval .(a, b), then there 
exists at least one point . ζ in the interval .a < ζ < b satisfying 

. f ′(ζ ) = f (b) − f (a)

b − a
.

In addition, Lagrange developed approximation methods for determining the real 
roots of polynomial equations using continued fractions and investigated the 
question of the representation of arbitrary functions by power series. 

In his Analytical Mechanics, which the Irish mathematician William Rowan 
Hamilton referred to in the nineteenth century as “a scientific poem,” Lagrange 
reduced the general equations of solid and fluid dynamics to a single principle from 
which he derived the general equations of dynamical systems, including what have 
since come to be called the Lagrange equations. This work also includes some of his 
best known results concerning differential equations, partial differential equations, 
and the calculus of variations. Its importance to general mechanics is as great as the 
importance of Newton’s law of universal gravitation for celestial mechanics. Not to 
say, however, that Lagrange paid no heed to the celestial bodies; in fact, he solved 
the problem of the moon’s libration, that is, why is it that the moon presents the same 
face to the earth at almost all times. His analytical approach to problem-solving in 
mechanics marked a departure from the classical Greek tradition, and even from the 
study of mechanics by Newton and his immediate successors, which still made use 
of geometry and figures (Fig. 6.20). 

From the start of his career, Lagrange received generous praise and support 
from his potential rival Euler, almost 30 years his senior, and the intellectual 
selflessness of their relationship has become one of the pivotal stories in the history 
of mathematics. Like Euler, Lagrange applied himself primarily to analysis and 
its applications but also indulged his curiosity with countless investigations into 
number theoretic questions: we have seen already that he resolved two important 
conjectures left over by Fermat. There is also Lagrange’s theorem in modular 
arithmetic, which states that if some prime number p does not divide every
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Fig. 6.20 First volume of 
Mécanique analytique, by  
Lagrange (1811) 

coefficient of a polynomial .f (x) of degree n, then the congruence . f (x) ≡ 0
(mod p) has at most n distinct solutions modulo p. But the most famous theorem 
associated with the name Lagrange is Lagrange’s theorem in group theory, which 
states that the order of any subgroup of a finite group G is a factor of the order of G. 

In light of his achievements, Lagrange obtained funding from the king of Sardinia 
to travel to Paris and London, but he fell ill during his time in Paris and returned early 
to Turin upon his recovery. Not long afterward, he travelled again, this time to Berlin 
at the invitation of King Frederick of Prussia, and he remained there for 11 years 
until the death of the king, at which time France did not miss a second opportunity to 
invite him to Paris at the behest of King Louis XVI. This was in the year 1787, and 
Lagrange had already turned his attention mainly to the humanities, medicine, and 
botany. He became close with the king and his queen Marie Antoinette, who looked 
after him with care and did her best to soothe his bouts of depression (Fig. 6.21). 

Two years later, the French Revolution reached its climax in Paris, and this seems 
to have penetrated through the intellectual lethargy into which Lagrange had sunk 
and inspired him to become active in mathematics. He wrote several academic works 
and textbooks and declined an invitation to return to Berlin, surviving through the 
reign of terror by virtue of his silence and discretion; his friend the chemist Antoine 
Lavoisier (1743–1794) was not so lucky and died under the guillotine. When the 
École Normale Supérieure was established, Lavoisier was appointed as a professor, 
and later, he also became the first professor at the École Polytechnique, teaching 
mathematicians to young military engineers in the service of Napoleon; among
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Fig. 6.21 The Death of 
Marat, by Jacques-Louis 
David (1793) 

them was the future mathematician Augustin-Louis Cauchy. Napoleon, who turned 
his attention to internal affairs in the intermission between two campaigns, paid 
frequent visits to Lagrange to discuss mathematics and philosophy and honored him 
by making him a Senator and a Count of the Empire. This towering emperor who 
had invaded Egypt described Lagrange as “the lofty pyramid of the mathematical 
sciences.” 

The French Newton 

In his later years, Lagrange referred to Newton with a measure of envy, remarking 
that although he was no doubt a particularly gifted man, also he was the luckiest 
of scientists, since there history admits but one opportunity to explain the universe. 
In this sense, Pierre-Simon Laplace (1749–1827) could be said to have been less 
fortunate than Lagrange; he too came too late to achieve the monumental revolutions 
of Newton, and his career spread evenly across the eighteenth and nineteenth 
centuries, the former dominated by the shadow of Euler and Lagrange and the latter 
by that of Gauss; he is automatically disqualified therefore for such titles as the 
greatest mathematician of this or that century. All the same, his was a brilliant life 
marked by a tremendous intellect, diligence, and his association with his student 
Napoleon (Fig. 6.22). 

Laplace was born to farmer parents in Beaumont-en-Auge in Calvados, Lower 
Normandy, not far from the English Channel, site of the Allied invasion of Western 
Europe during World War II. He exhibited considerable talent as a student at the
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Fig. 6.22 Pierre-Simon 
Laplace, the “French 
Newton” 

Fig. 6.23 Laplace metro 
station, Paris; photograph by 
the author 

village school, including special eloquence in theological debates, attracting the 
attention of his wealthy neighbors and securing for him a place as a day student at a 
local military school. It may have been on account of his prodigious memory rather 
than his mathematical ability, but in any case, he secured a letter of recommendation 
from an influential figure to travel for the first time to Paris at the age of 18 to 
advance his fortune (Fig. 6.23).
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This letter nearly proved his undoing. It was addressed to d’Alembert, a famous 
mathematician and co-editor of the Encyclopédie, who did not as a rule pay much 
attention to letters of introduction submitted to him and turned the young man away. 
Returning dejected to his residences, Laplace wrote overnight a new introduction 
containing a treatment of the principles of mechanics and possibly the solution of 
a problem posed to him in passing by d’Alembert, and it was this letter rather that 
caught the attention of d’Alembert, who wrote back after having read it and invited 
Laplace for an immediate audience, remarking that he should not have brought any 
letter of recommendation in the first place as he had introduced himself so much 
more capably. Just a few days later, at the recommendation of d’Alembert, Laplace 
was awarded a teaching position at the École Militaire, where he came into contact 
with his future student Napoleon. 

Laplace devoted less energy to pure mathematics and achieved in it fewer results 
than Lagrange, preferring instead to carry out his research toward applications in 
astronomy. Among the results associated with him, there is the Laplace expansion 
for the calculation of the determinant of a matrix; in its most general form, this 
states that the determinant can be obtained as an expansion along any arbitrarily 
selected k rows or columns of the matrix by taking a weighted sum of the products 
of determinants of various submatrices and their complements determined by the 
particular choice of k rows or columns. There is also the Laplace transform for 
differential equations; this transform replaces a suitable function .F(t) with another 
type of function .f (p) via the improper integral 

. f (p) =
∫ ∞

0
e−ptF (t)dt.

But the work for which Laplace is best known is of course his treatise Celestial 
Mechanics (Traité de mécanique céleste) in five volumes which earned for him this 
nickname as the French Newton. Starting from the age of 24, Laplace had carried out 
research into the application of the Newtonian theory of gravity to the solar system 
as a whole and sought to answer why it is that the orbit of Saturn is expanding 
while that of Jupiter is shrinking. He proved that the mutual action of two planets 
could only ever produce small changes to their eccentricities and inclinations. He 
showed also that the acceleration of the moon is related to the eccentricity of 
the orbit of the earth, providing a theoretical solution to the last anomaly in the 
dynamical observations of the solar system. His name is inseparably linked with 
the nebular theory for the formation and evolution of planetary systems throughout 
the universe, and another testimony to his achievements is the Laplace equation for 
potential energy that we have introduced already in our discussion of the influence 
of calculus. 

The respective and comparative work of Laplace and Lagrange, two giants 
in the history of science, is a topic much discussed among their successors. 
The nineteenth-century French mathematician Siméon Denis Poisson observed 
a profound difference between the thought and working methods of the two in 
everything they did, from pure mathematics to studying the libration of the moon.
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“Lagrange,” Poisson observed, “often appeared to see in the questions he treated 
only mathematics, of which the questions were the occasion – hence the high value 
he put upon elegance and generality. Laplace saw in mathematics principally a tool, 
which he modified ingeniously to fit every special problem as it arose.” 

There were also stark differences between them in terms of their personal 
attributes. Joseph Fourier remarked of Lagrange: 

By his whole life he proved, in the moderation of his desires, his immovable attachment to 
the general interests of humanity, by the noble simplicity of his manners and the elevation 
of his character, and finally by the accuracy and depth of his scientific works. 

In contrast, Laplace developed a reputation among mathematicians as a political 
actor and a snob. The historian of mathematics E.T. Bell summarizes his character 
by his greed for titles, casual political flexibility, and an intense desire to gain the 
respect of the public at the center of its ever-shifting attention. 

But Laplace was not without his candid and sincere side. His dying words were 
reported by Fourier to have been, “What we know is not much. What we do not 
know is immense.” Napoleon also found much fault with his administrative work 
as Minister of the Interior on account of his fastidiousness and tendency to look 
for the subtlest nuances in all things; he even quipped that Laplace brought the 
spirit of the infinitesimal with him into his efforts as an administrator. All the 
same, Napoleon heaped upon him many honors, making him a senator, a Count 
of the Empire, appointing him to the Bureau of Longitudes, and awarding him the 
Legion of Honour. In spite of this, Laplace signed the decree to banish Napoleon 
and continued to flourish under the Bourbon Restoration, during which time he was 
awarded the further title of Marquis de Laplace and a seat in the Chamber of Peers; 
he served also during this time as chairmen of the committee for the reorganization 
of the École Polytechnique. 

In the eighteenth century and early nineteenth century, French mathematicians 
spoke of the three Ls of mathematics: Lagrange, Laplace, and Legendre. Legendre 
spent his entire life in Paris; he became a professor at the École Militaire at the 
age of 23. Later in 1795, he became a professor at the École Normale Supérieure. 
His outstanding work on elliptic integration provided fundamental analytic tools 
for mathematical physics, and along with Gauss, he introduced the least squares 
method, proposed the prime number theorem as a conjecture, and proved the law 
of quadratic reciprocity in number theory. There is also the Legendre symbol in 
number theory, which appears in every introductory course in that topic. His book 
Éléments de géométrie replaced Euclid’s Elements as the basic geometry textbook 
in European and American universities. 

The Emperor’s Friend 

There is a widely circulated legend about Laplace that he had presented Napoleon 
with a copy of the Celestial Mechanics after the latter had become emperor and
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received from him the pointed question how is it that he had written a work on the 
system of the world without any mention of its author. Laplace replied, “I had no 
need of that hypothesis.” This sentence recalls to mind the response of Euclid to 
Ptolemy I, “There is no royal road to geometry.” In fact, Laplace may have had in 
mind with this omission a contrast the Newtonian tradition, since Newton did in fact 
make reference to God in his works, and Laplace considered his celestial mechanics 
to accommodate a wider scope than the solar system as conceived by Newton. 

Both Laplace and Lagrange enjoyed a relationship with Napoleon that fit the 
classical conception of the relation between scientist and enlightened monarch; 
in particular, the distinction between monarch and subject was well delineated. 
Not so with Monge. Gaspard Monge (1746–1818) was 3 years older than Laplace 
and somewhat less talented in mathematics, but his personal experiences and open 
personality led him to establish a close friendship with the young Napoleon. As 
a result, during the Bourbon Restoration, Monge was not showered in glory as 
Laplace was but rather he became a wanted man and went into hiding, widely 
regarded as a close confidante of the Corsican emperor, as indeed he was: Napoleon 
had said of him that Monge loved him as a man loves a mistress (Fig. 6.24). 

Monge was born in Beaune, a small town in Côte-d’Or in central France, 
belonging to the Burgundy region, famous for its wine, and located to the southwest 
of Dijon. Today, it is a stopping point along the high-speed rail line between Monte 
Carlo and Paris. His father was a hawker and knife sharpener who placed great 
emphasis on the education of his son, and as a result, his son took naturally to a 
leadership position in everything from sports to crafts. When he was 14 years old, 
Monge designed a fire truck without reference to any preexisting diagrams, relying 
only on his own perseverance and dexterity, and presented his construction with 
geometrical precision. Two years later, he drew up a detailed map of his hometown 

Fig. 6.24 Gaspard Monge, 
among the few who dared to 
contradict Napoleon
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Fig. 6.25 Zoning map of Paris, exhibiting an Archimedean spiral 

on a large scale and was recommended for a teaching position in physics at the 
Collège de la Trinité at Lyon (Fig. 6.25). 

On one occasion, Monge encountered in the course of his return home from Lyon 
an officer of engineers who had seen his map and recommended him for a position at 
the École Royale du Génie at Mézières, capital of the Champagne-Ardenne region in 
northern France. This city is only 14 kilometers from the Belgian border, and nearby 
Charleville was the birthplace of the great poet Rimbaud more than a century later. 
Monge worked during this time as draftsman, responsible for measurements and 
drawing, and took advantage of this experience to create a new form of geometry, 
now known as descriptive geometry, which involves the representation of three-
dimensional objects in the two-dimensional plane according to specific rules. He 
also worked as a teacher, and one of his students Lazare Carnot (1753–1823) later 
enjoyed a fruitful career as a geometer and participated in the French Revolution. 

In 1768, when he was 22 years old, Monge began to teach mathematics at the 
École Royale du Génie at Mézières, and a few years later, he was appointed there 
as a professor of mathematics and physics. He left the city only in 1783 when he 
travelled to Paris and took a post as an examiner of naval candidates. Before moving 
to Paris, he married a young widow renowned for her beauty and devotion. He was 
surrounded in Paris by powerful figures and became enmeshed in the petty struggles 
of the city elite; inevitably, he was drawn into the French Revolution when it broke 
out. He was compelled to serve for a time as the Minister of the Marine after the 
formation of an executive council by the new Legislative Assembly. When the École 
Polytechnique was established in Paris in 1795, Monge was heavily involved in its 
founding and served there afterward as a professor of descriptive geometry. The
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Fig. 6.26 The tombs at the 
Panthéon in Paris, where 
Lagrange, Monge, Carnot, 
and Condorcet are buried; 
photograph by the author 

birth of this school and the École Normale Supérieure in the same year marked the 
beginning of a glorious period in the history of French mathematics (Fig. 6.26). 

The next year, Monge received a letter from the young Corsican who had already 
ascended quite some way along his rise to power. This letter recalled first the cordial 
welcome that Napoleon had received as an unknown artillery officer from Monge 
in his capacity as an examiner for the navy, remarking with gratitude that he had 
now already risen to the rank of general of the army and was on an expedition 
to Italy. As an expression of his appreciation, Napoleon appointed Monge as a 
commissioner to select various paintings, sculptures, and other works of art for 
return to Paris. Fortunately, Monge succumbed to his conscience after carrying out 
his task to a suitable degree of completion counselled moderation rather than strip 
Italy completely of its masterpieces. Subsequently, Monge and Napoleon began a 
long and close friendship; it has been remarked that after Napoleon had become 
emperor, Monge was along among his friends who dared to contradict him or speak 
plain truths in his hearing. 

Napoleon however was not at this time entirely occupied by domestic affairs, and 
in 1798, he led an expedition to Egypt, and Monge accompanied him as a member of 
the Legion of Culture, alongside Fourier, inventor of the well-known Fourier series 
expansion of functions. Along the voyage to the Mediterranean, Napoleon seems 
to have summoned Monge and others to his flagship each morning for a discussion 
on the same major topic, for example, the age of the earth, the possibility of its 
destruction by fire or flood, the existence of any other habitable planets, and so on. 
Upon their arrival to Cairo, Monge helped to establish the Institut d’Égypte, after 
the model of the Institut de France. 

Finally, we turn to the contributions of Gaspard Monge to mathematics. In 
addition to the creation of descriptive geometry, Monge is also remembered as the
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father of differential geometry, a form of geometry that makes use of the tools of 
calculus to study curves, surfaces, and their various extensions and applications. 
Monge greatly advanced the theory of curves and surfaces in space, a topic 
characterized by its close connection with differential equations; various properties 
of curves and surfaces can be represented in terms of differential equations, which 
is also why this branch of mathematics is called differential geometry. As one 
example, Monge obtained the general representation of a class of surfaces known 
as developable surfaces and showed that with the exception of cylindrical surfaces 
perpendicular to the xy plane, such surfaces always satisfy the partial differential 
equation 

. 
∂2z

∂x2 · ∂2z

∂y2 − −
(

∂2z

∂x∂y

)2

= 0.

Monge served for a time as director of the École Polytechnique and continued to 
occasionally deliver lectures to its students. During one such lecture, he discovered 
an ingenious theorem in geometry concerning the properties of the tetrahedron. 
Recall that a tetrahedron is a solid with four faces and six edges, each of which 
meets every other edge in a point except for one, called its opposite edge. Monge’s 
tetrahedron theorem states that the six planes passing through the midpoints of 
each edge and perpendicular to its opposite edge all meet in a point, now known 
as the Monge point. We close this section with the remark any readers who have the 
opportunity to visit Paris can find in that city a Rue Monge, a Place Monge, and a 
Café Monge. 

While Monge was serving at the École Polytechnique, there was a student there 
named Jean-Victor Poncelet (1788–1867), who went on to become the proper 
founder of modern projective geometry and serve as the director of his alma 
mater. Poncelet was born in Metz in eastern France, an illegitimate child, later 
legitimated. At the age of 24, he participated in an expedition to Moscow under 
Napoleon as an engineer lieutenant. He was captured and turned his attention to 
mathematical problems during his time in a prison camp along the Volga River, 
using charcoal intended for heating to scribble on the walls. During this time, he 
wrote his most influential work, the Traité des propriétés projectives des figures, 
which presented his central projection treatment of conic sections, now the starting 
point for projective geometry of three dimensions. This paved the way for his 
career as a mathematician. Starting a year after his death, the French Academy of 
Sciences began to offer the Poncelet Prize for mechanics, applied mathematics, and 
the advancement of science.
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Conclusion 

The development of mathematics has proven throughout its history to need occa-
sional nutrition from external sources; among these, physics has been consistently 
the most fruitful, and of course, it is also physics that has benefited most from 
the contributions of mathematics. Problems in physics have given much impetus to 
mathematics, especially in analysis, which has been closely linked with mechanics 
right from the birth of the calculus, and perhaps since the late nineteenth century also 
in geometry. This was the source of Lagrange’s great masterpiece, the Mécanique 
analytique. But Lagrange himself perhaps loved number theory most of all the 
mathematical disciplines, and he was very proud of his proof that every positive 
integer can be represented as a sum of four or fewer squares. Another impetus 
for mathematics came from the demands for military and technological innovation 
ignited by the French Revolution. Since that time, the revolving door linking the 
development of mathematics and its applications has never closed. 

It is necessary to observe that during the time after Newton and Leibniz 
had completed their work but before the appearance of Lagrange, the greatest 
mathematical minds in Europe were all concentrated in the small mountain country 
of Switzerland, at that time with a still relatively underdeveloped economy, culture, 
and scientific atmosphere: these of course were Leonhard Euler and the various 
members of the Bernoulli family, all of them from the same small city of Basel. 
The first-generation Johann and Jacob of the Bernoullis served as teachers to Euler 
in their capacities as professors at the University of Basel. After he graduated 
from this university, Euler spent most of his life in two distant and exotic cities, 
Berlin and Saint Petersburg. After his death, Euler appeared on the 10 Swiss francs 
banknote; alongside Newton on the 1 Pound Sterling banknote in Britain and 
Niels Henrik Abel on the 500 Norwegian Kroner banknote, he was one of three 
major mathematicians to appear on European currency still in circulation today. We 
mention also that Euler made his European debut in a prize competition organized 
by the Paris Academy of Sciences, which prize he won 12 times. 

The École Polytechnique played an important historical role as the start of a new 
type of university; it also provided reliable employment for mathematicians, espe-
cially applied mathematicians. Lagrange and Monge were the first mathematical 
luminaries to appear among the professorship of this institution, and young students 
competed fiercely for admission with the goal of entry into service as an officer or 
engineer. The most significant member of this next generation was Augustin-Louis 
Cauchy, responsible for deep and humanistic achievements, although in later years 
some shallowness of mind or conceit caused him to ignore his younger colleagues, 
in particular Abel. The tradition of this institution later spread across the globe, with 
notable examples after its prototype being the Massachusetts Institute of Technology 
and California Institute of Technology in the United States, Tsinghua University in 
China, and the Indian Institute of Technology, with seven independent campuses 
located in different cities across the country.
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Prior to Cauchy, there were two other great mathematicians to pass through the 
École Polytechnique. These were Joseph Fourier (1768–1830) and Siméon Denis 
Poisson (1781–1840). The greatest work by Fourier was his The Analytic Theory of 
Heat, which later James Clerk Maxwell is said to have called a great mathematical 
poem. In this book, he proved the important result that any function (today this 
claim requires some further qualification) can be expanded as a series of sine 
functions in multiples of the variable. Such expansions, known as Fourier series 
expansions, are important in the theory of boundary-constrained partial differential 
equations and also contributed an extension of the scope of the concept of a function. 
Poisson was the son of a former soldier and district president and became the first 
person to study integration along paths in the complex plane. His name comes 
up frequently in university mathematics: there is the Poisson integral, Poisson’s 
equation in potential theory, Poisson’s ratio in the theory of elasticity, the Poisson 
distribution and Poisson law in probability, the Poisson bracket in the theory of 
differential equations, and so on (Fig. 6.27). 

Fourier famously remarked: “The deep study of nature is the most fruitful source 
of mathematical discoveries.” There are also various interesting rumors surrounding 
Fourier and Poisson. Among them, it is said that during his time as Prefect in Egypt, 
he adopted the habit of wearing thick layers of clothes in the hot desert as part of 
his research into thermodynamics, and this aggravated his heart condition; when he 
died in Paris at the age of 63, he was alleged to have been as hot as if he had just 
been boiled. Poisson was looked after by a caretaker in his childhood. One day his 
father came for a visit and discovered the caretaker in absentia and his son hanging 

Fig. 6.27 French 
mathematician Joseph Fourier
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Fig. 6.28 Tomb of Fourier, 
at Père Lachaise Cemetery, 
Paris 

in a cloth bag from a stud in the wall. The caretaker later offered the explanation 
that this was to prevent the child from catching an illness from the floor. Perhaps 
there is some connection between this event and his later years devoted to the study 
of pendulums (Fig. 6.28). 

It is not unreasonable to say that the number of great mathematicians to emerge 
in the eighteenth century was greater than in any previous period, including even the 
seventeenth century, which was not lacking for geniuses. On the other hand, no sin-
gular giant of Renaissance proportions appeared among them, and the increasingly 
pragmatic turn of the times led to a separation between mathematics and philosophy. 
For this reason, the eighteenth century has sometimes been referred to as the century 
of invention. As a point of fact, there was not a single mathematician-philosopher 
of note during this time, and both Euler and Lagrange came to feel in their later 
years that the supply of mathematical ideas was beginning to run out. They could 
not have anticipated that this would merely mark a new turning point in the story of 
the development of mathematics (Fig. 6.29). 

On the other hand, the astonishing new achievements in mathematics and through 
its applications and with it the elevated light in which mathematics came to be 
regarded shook longstanding systems of philosophical and religious thought. For 
intellectuals of the period, a devout piety and religious was increasingly impossible, 
and philosophers took this as an opportunity to inquire more deeply into the 
foundations of truth and its discovery. The German philosopher Immanuel Kant 
(1724–1804) wrote extensively on the subject, and he took as an example the 
Euclidean axiom that a straight line is the shortest distance between two points
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Fig. 6.29 The philosopher 
Immanuel Kant; like Fermat, 
he remained in his small 
hometown (Königsberg) his 
entire life 

to argue that truth cannot be obtained from experience alone but rather requires 
comprehensive rational judgment. 

Another example from Kant was his introduction of the antinomies; these 
comprise inherent contradictions between two propositions each established in 
accordance with generally recognized principles. Antinomy is a fundamental 
concept in his philosophy, in particular in his Critique of Pure Reason, in which Kant 
presented with proofs four sets of antinomies in the form of thesis and antithesis. 
Among them, two are mathematical in nature and take the form of mathematical 
paradoxes: 

Third Antinomy 
Thesis: Causality as determined by the laws of nature is not sufficient to derive one and all 
of the appearances of the world; there must also be another form of causality in the form of 
spontaneity. 
Antithesis: There is no such thing as spontaneity, and everything in the world takes place 
solely according to the laws of nature. 
Fourth Antinomy 
Thesis: There exists in the world either as part of it or as its cause some being that is 
absolutely necessary. 
Antithesis: There exists no absolutely necessary being in the world, nor does one exist 
outside of it as its cause. 

The main pillar of the philosophical system established by Kant, at least 
with respect to mathematical truths then, is that mathematical truths contain both 
Euclidean geometry and paradox.
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