
Chapter 5 
From the Renaissance to the Birth 
of Calculus 

I would wish that the painter could be as learned as possible in 
the liberal arts, but first and foremost I would wish that he know 
geometry. 

Leon Battista Alberti 

Here is buried Isaac Newton, Knight, who by a strength of mind 
almost divine, and mathematical principles peculiarly his own, 
explored the course and figures of the planets, the paths of 
comets, the tides of the sea. . . 

Inscription at Newton’s monument 

The Renaissance in Europe 

Medieval Europe 

During the period when the ancient civilizations of China, India, and Arabia in 
the east were making new contributions in mathematics, Europe was in the midst 
of its long Dark Age, a term first used by the Italian poet and scholar Petrarch 
(1304–1374), often considered the father of the Renaissance. The start of this period 
is marked by the collapse of Roman civilization in the fifth century, but there 
is no universal agreement as to its end, which could be considered to belong to 
the fourteenth, fifteenth, or even sixteenth century, with the start of the European 
Renaissance. The Dark Ages, which lasted for a thousand years, was later called the 
Middle Ages by Italian humanists in order to highlight their own works and ideals 
and to mark out the echoes of classical Greece and Rome formed by their era in 
contrast with the intervening centuries (Fig. 5.1). 

Prior to the Middle Ages, the European territories outside of Greece and Rome 
had not done much to leave behind any deep marks on the history of human 
civilization, and since later there was no sign of intellectual revival in Greece, such 
terms as the Dark Age and Middle Ages alike, with the exception of the epidemic 
of the Black Plague, were mainly technical terms of academic humanism, limited 
in scope to Italy. In fact, even along the Apennines, the situation of mathematics 
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148 5 From the Renaissance to the Birth of Calculus

Fig. 5.1 Likeness of Pope 
Sylvester II on a French 
stamp 

during these times was not so bleak. Pope Sylvester II (ca. 945–1003) in particular 
admired and endorsed mathematics, and his election to the papacy was not unrelated 
to his mathematical facility, establishing him as something of a legend in the history 
of mathematics. 

This pope, originally known as Gerbert of Aurillac, was born in central France 
and spent 3 years in Spain in his youth, where he studied the quadrivium at a 
monastery north of Barcelona, where the level of mathematics was high as a result 
of the legacy of Muslim Spain. When later he visited Rome, where he met the 
pope and the emperor, who were impressed by his mathematical knowledge, the 
latter hired him as a tutor for the young prince. With the further support of the 
subsequent emperor, Gerbert was elected eventually to the papacy and took the name 
Sylvester II. He is also said to have constructed an abacus and an armillary sphere, 
reintroducing them to Europe, and to have invented the first mechanical clock. In his 
mathematical work De geometria, he solved an open problem of the period: given 
the hypotenuse and area of a right triangle, determine the length of its remaining 
two sides (Fig. 5.2). 

The period of Pope Sylvester II corresponds more or less with the era of 
translation in the history of science, when the classic works of Greek mathematics 
and science began to reappear in Western Europe, having been for centuries 
preserved primarily in the Islamic world long after they had disappeared from 
Alexandria and other centers of Greek academic activity. Whereas the translation 
of these works from Greek into Arabic had taken place mainly in the House of
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Fig. 5.2 Toledo, Spanish 
capital city after the fall of the 
Roman empire; photograph 
by the author 

Wisdom in Baghdad, the route from Arabic to Latin was more varied, taking place 
in the ancient Spanish city Toledo (which flooded with European scholars after the 
Christian defeat of the Muslims) and Sicily (which had been under Muslim rule for 
a period) and involving also diplomats in Baghdad and Constantinople. 

The works translated into Latin included not only Euclid’s Elements, Ptolemy’s 
Almagest, Measurement of a Circle by Archimedes, Conics by Apollonius of Perga, 
and other Greek classics but also the more recent gems from the Islamic world, 
such as al-Khwarizmi’s Algebra. All this took place mostly in the twelfth century, 
as the center of economic power in this part of the world shifted gradually from the 
eastern Mediterranean to the west. The primary mover of this change came from 
developments in agriculture, when the cultivation of pulses provided for the first 
time in history a guaranteed source of protein, leading to a population explosion 
that became one of the factors contributing to the disintegration of the old feudal 
structure. 

By the thirteenth century, an endless proliferation of different social organi-
zations emerged in Italy, including various guilds, associations, civic councils, 
churches, and so on, all of them desperate for some measure of autonomy. The 
idea of representation in the determination of important laws developed and spread



150 5 From the Renaissance to the Birth of Calculus

Fig. 5.3 Portrait of 
Fibonacci as a court 
mathematician 

until finally a political assembly was formed whose members had authority to make 
binding decisions on behalf of all citizens participating in their election. In art, 
the classic models of Gothic architecture and sculpture sprang into being, and in 
terms of cultural and intellectual life, the methodology of scholastic philosophy 
took place of prominence. The representative figure of this trend was St. Thomas 
Aquinas (ca. 1225–1274), a Christian philosopher who was born in Sicily and took 
tremendous inspiration from the works of Aristotle (the French philosopher Jacques 
Maritain mentioned in the previous chapter was an important modern Thomist). 
For the first time, longstanding conservative beliefs came up against scientific 
rationalism (Fig. 5.3). 

Fibonacci’s Rabbits 

In this relatively open and humanistic political atmosphere, mathematics did not 
lag far behind. The most outstanding mathematician of the European Middle Ages 
Fibonacci (ca. 1170–ca. 1250) was born during this time, a bit later than Bhaskara 
II in India and a bit earlier than Li Ye in China. Fibonacci, known in his time as 
Leonardo Bonacci or Leonardo of Pisa, was born in Pisa. His father was a merchant 
and customs official who brought his young son with him to Bugia (now Algeria), 
where Fibonacci was exposed to Islamic mathematics and learned to use Hindu-
Arabic numerals. He subsequently visited Egypt, Syria, Byzantium, and Sicily, 
acquainting himself with the calculation of both the East and the Middle East. Not
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Fig. 5.4 Graphical 
representation of the 
Fibonacci numbers 

long after he returned to Pisa, he wrote and published his masterpiece the Liber 
Abaci (The Book of Calculation). The title of this book suggests some connection 
with the abacus, but this is misleading: actually, it is in reference to sand table 
calculations without the use of an abacus. The original 1202 manuscript is not 
known to exist; rather, the work survives in a copy from 1227, dedicated to one 
of the scientific advisors of the Holy Roman Emperor Frederick II (1194–1250). 

The first section of the  Liber Abaci introduces the basic arithmetic of numbers, 
with calculations in sexagesimal; a noteworthy innovation is the introduction also of 
the horizontal bar demarcating the numerator and denominator of a fraction, which 
notation is still in use today. The second section consists of word problems related 
to commerce, including the Hundred Fowls Problem from China. This problem, first 
posed by Zhang Qiujian, seems to have spread to the Arabic world. The third section 
contains miscellaneous problems and mathematical oddities, including a problem 
concerning rabbits that has proved significant. This problem asks how many rabbits 
can be bred in 1 year, starting from a single pair, under the stipulations that each 
pair of rabbits begins to breed at the age of 2 months and can produce thereafter a 
new pair of rabbits each month (Fig. 5.4). 

Subsequent generations have referred to the sequence of numbers determined by 
the rabbit problem as the Fibonacci sequence: 

. 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . .

This sequence can also be described by the recurrence relation 

. 

{
F1 = F2 = 1

Fn = Fn−1 + Fn−2 (for n ≥ 3)
,

one of the first recurrence relations to appear in mathematics. There is also a 
remarkable explicit expression for the terms of this sequence involving the irrational 
number . 

√
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The Fibonacci sequence has many interesting properties and important applica-
tions. For example, as n grows larger and larger approaching infinity (.n −→ ∞), 

. 
Fn+1

Fn

−→ 1 + √
5

2
≈ 1.618.

This number is related to the golden ratio identified as a ratio of line segments by 
Pythagoras in the early years of the history of mathematics. In addition to tendrils 
stretching into many areas of mathematics, the Fibonacci sequence has also turned 
up in applied problems related to the reproduction of bees, the petals of certain 
flowers, and aesthetics. 

Around the year 1220, Fibonacci was summoned by Frederick II, who was 
visiting Pisa at the time. His scientific advisors posed to Fibonacci a series of 
mathematical problems, which Fibonacci answered one by one. One of these 
problems was to find the roots of the cubic equation .x3 +2x2 +10x = 20. Fibonacci 
used an approximation method to give the answer in sexagesimal, accurate up 
to nine digits after the decimal point. Afterward, Fibonacci maintained a long 
correspondence with the emperor and his court, where mathematics was held in 
high regard (according to some accounts, he was rather hired by the emperor to 
serve at the palace and became the first court mathematician in European history). 
Frederick II seems to have had almost limitless energy and served simultaneously 
as the King of Sicily, the King of Germany, and later the Holy Roman Emperor and 
the King of Jerusalem. 

Fibonacci devoted his second substantial work, The Book of Squares (Liber 
Quadratorum), to Frederick II. In this book, Fibonacci presents the profound 
proposition that .x2 +y2 and .x2 −y2 cannot both be perfect squares simultaneously. 
This book is perhaps the first monograph ever devoted to a specific class of problems 
in number theory and established Fibonacci as the significant number theorist 
between the times of Diophantus and Fermat. Considering the legacy of Fibonacci, 
he not only played a pioneering role in the revival of European mathematics but 
also served as an important bridge in the transfer of mathematics from east to 
west. Gerolamo Cardano, the finest Italian mathematician of the sixteenth century, 
remarked: “We can conclude that all the knowledge we have of mathematics outside 
of Greece is due to the appearance of Fibonacci.” 

Judging from the surviving likenesses of Fibonacci, he had a charm similar to 
that of his compatriot the painter Raphael, who lived three centuries later, and he 
seems to have regarded himself as a kind of wanderer. The name Leonardo of Pisa by 
which he is also known places him in the company of Leonardo da Vinci, the painter 
of the Mona Lisa. In the year 1963, a group of American mathematicians inspired 
by the rabbit problem established the Fibonacci Association and began to publish 
Fibonacci Quarterly in the United States, dedicated to mathematical research papers 
related to the Fibonacci sequence. Since 1984, the Fibonacci Association has also 
hosted biannually an International Conference on Fibonacci Numbers and Their 
Applications around the world. The development of such a rich universe of research 
from a simple model of rabbit reproduction is another miraculous legend in the 
history of mathematics.
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Fig. 5.5 Alberti the humanist 

Alberti’s Perspective Method 

After the collapse of the old feudal structure in Europe, there followed an astonish-
ing sequence of events that taken together signified the birth of a new era governed 
by a totally new mental outlook: the strengthening of the Italian city-states; the 
rise of the monarchies in Spain, France, and England; the development of secular 
education; the discovery of new maritime routes and the New World; the radical 
proposal of a heliocentric solar system by Nicolaus Copernicus;1 the invention and 
application of movable type printing; and so on. This new era recalled and took 
inspiration from the scholarship, wisdom, and values of the classical world; for this 
reason, it was called the Renaissance. 

The Italian thinkers of the Renaissance period embraced a humanistic ideal with 
man at the center of the universe and capable of unlimited development. It followed 
naturally for many such thinkers that is incumbent on humankind to pursue the total 
acquisition of knowledge and the development of abilities, that is, the refinement of 
skill and capability not only in every intellectual field but also in physical training, 
social activity, literature, and art. Such polymathic individuals are often referred to 
today as Renaissance men in honor of this ideal. The archetypal Renaissance man 
was Leon Battista Alberti (1404–1472), a humanist, artist, writer, mathematician, 
and thinker, who also excelled in horsemanship and martial arts (Fig. 5.5).

1 Copernicus was studying at the University of Kraków, a medium-sized city in Poland that was 
home to the two Nobel Laureates Czesław Miłosz and Wisława Szymborska at the same time in 
the early twenty-first century, at the time when Columbus reached the New World. 



154 5 From the Renaissance to the Birth of Calculus

Alberti was born in Genoa, the illegitimate son of a wealthy Florentine banker, 
who taught him mathematics in his youth. He took to writing early on, composing 
Latin comedies, and later obtained a doctorate in law, took holy orders, and served 
the papal court. Alberti used his knowledge of geometry to determine for the first 
time in history precise laws for the representation of a three-dimensional scene on a 
flat wooden block or the surface of a wall. This had an immediate effect on Italian 
painting and relief-making and facilitated the production of an accurate, rich, and 
geometrically correct perspective style. Alberti wrote, “a man can do anything if he 
but wills it,” and “I would wish that the painter could be as learned as possible in 
the liberal arts, but first and foremost I would wish that he know geometry.2 ” 

Prior to Alberti, Florence had already produced the great architect Filippo 
Brunelleschi (1377–1446), responsible for the dome over the most famous cathedral 
to this day in this art capital. According to one saying, he loved mathematics 
since childhood and took up painting only in order to engage with geometry; of 
course, this was not enough to achieve mastery in mathematics, and he turned later 
to engineering and architecture, but nonetheless he was the first person to study 
perspective, and Alberti’s own interest in perspective came about because of his 
connection to such predecessors. The basic principles of perspective that Alberti 
introduced can be described as follows: 

Place upright a glass screen between the eyes of the observer and the scene, and imagine 
rays of light emitted from one eye to every point of the scene, creating a cross-section as they 
pass through the screen. This cross-section should present to the eye the same impression 
as the scene itself, so that the problem of realistic painting is precisely the production of 
this cross-section of glass on the canvas. Alberti noticed that if two such glass screens are 
placed between the eyes and the scene at different locations, the results will be different, 
and similarly if the eyes look through the same screen from two different positions, the 
cross-section in glass again will be in each case different. 

In every case, Alberti asked what is the mathematical relationship between 
any two parallel scenes; this question is the starting point of projective geome-
try (Fig. 5.6). 

Alberti also discovered that in a realistic representation of the scene, parallel lines 
(except those parallel to the glass screen or to the plane of the image) must intersect 
in a certain point. This point is called the vanishing point, and its discovery was a 
turning point in the history of painting. In the past, it was rare to paint so accurately, 
but subsequent generations of painters mostly followed this principle, although of 
course the vanishing point itself need not appear in the painting. The origin or rather 
cause of the existence of the vanishing point is as follows: any two parallel lines 
in the real scene form two intersecting planes containing the observation point, 
and the point where the line of intersection of these two planes meets the glass 
screen forms the vanishing point. It is precisely because of his work with perspective 
and the vanishing point that Alberti became the most important art theorist of the 
Renaissance (Fig.,5.7).

2 On Painting, Tr. Rocco Sinisgalli 
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Fig. 5.6 Dome of the Florence Cathedral, designed by Brunelleschi 

Fig. 5.7 Alberti’s perspective method
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Fig. 5.8 Alberti’s vanishing 
point 

Throughout his entire body of work, Alberti always maintained the outlook of 
civic humanism that flourished in Florence at the time. For example, he wrote 
the first Italian grammar, arguing that Italian was as regular as Latin and equally 
suited to literary composition; he also wrote a pioneering treatise in cryptography, in 
which appear the first polyalphabetic cipher and the first table of letter frequencies. 
His final work, written several years before his death, was a dialogue entitled De 
iciarchia (On Ruling the Household), in which he praises human accomplishment 
and public service as virtues, fully in line with the spirit of humanism in pursuit of 
public welfare. According to the biographer Giorgio Vasari (1511–1574), Alberti 
died quietly and contented (Fig. 5.8). 

Da Vinci and Dürer 

When Alberti was approaching 50 years of age, the most glorious figure of the 
Renaissance period was born in a village called Vinci on the outskirts of Florence: 
Leonardo da Vinci (1452–1519). He was born out of wedlock to a peasant woman 
who later married a craftsman and a successful Florentine notary and landlord, who 
also married shortly afterward. His first of several wives was unable to bear children, 
however, and Leonardo’s father took custody of him early on and provided for his 
elementary education in reading, writing, and arithmetic. He became a studio boy 
in his adolescence and took up painting as an apprentice and after the age of 30 
turned his attention to advanced geometry and arithmetic. His two famous works 
The Last Supper and the Mona Lisa were painting in his middle age and old age, 
respectively (Fig. 5.9). 

The artistic achievements of Leonardo da Vinci are common knowledge and 
need no further introduction here; his name even inspired a suspense novel in the 
twenty-first century that became a worldwide bestseller. He believed deeply that the 
foundation of painting was the accurate reproduction of the original impression, 
which can be achieved only through rigorous adherence to the mathematics of 
perspective, which he referred to as the steering wheel and guiding principle of 
painting. It was probably in response to this attitude that the twentieth-century 
French avant-garde painter Marcel Duchamp made his L.H.O.O.Q., consisting of 
a cheap postcard reproduction of the Mona Lisa on top of which the artist drew a
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Fig. 5.9 Leonardo da Vinci’s 
famous Vitruvian Man, drawn 
around 1487 

Fig. 5.10 Statue of Leonardo 
da Vinci in Amboise, France 

moustache and beard in pencil. In geometry, Leonardo’s main achievement was the 
determination of the position of the center of gravity of the tetrahedron, given as a 
quarter of the distance along the line to the opposite vertex from the center of gravity 
of the base triangle. On the other hand, he made an error in his similar determination 
of the center of gravity of the isosceles trapezoid, providing two methods, only one 
of which was correct (Fig. 5.10). 

Leonardo also achieved outstanding results beyond the scope of art and math-
ematics. His observations of the celestial bodies led him to secretly record in his 
notebooks that “il sole no si muove” or “the sun does not move” earlier than 
Copernicus, in contradiction with the doctrine of the Bible that God created the 
sun and the moon and made them to travel around the earth. The flight of birds 
inspired him to investigate air resistance and sketch the first designs for a flying
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Fig. 5.11 Self Portrait, 
Albrecht Dürer (1498) 

machine. Some dynamicists believe today that if Leonardo had access to a light 
fuel source at the time, he could have made it to the heavens. He also personally 
dissected more than 30 corpses in his research in the mysteries of human anatomy 
and life. All of these various researches were abandoned midway, but contributed to 
the development of his observational powers and accuracy in painting (Fig. 5.11). 

Also in the fifteenth century, another versatile artist and Renaissance figure 
appeared in Nuremburg in Bavaria, Germany, in Northern Europe. This was 
Albrecht Dürer (1471–1528), born 1 year before the death of Alberti, whose 
humanistic ideals lent to his art its characteristic air of knowledge and rationality. 
Dürer spent about 20 years of his life travelling and living in Holland, Switzerland, 
Italy, and other places. He also maintained some connection to his fellow religious 
reformer Martin Luther (1483–1546), a few years his junior, and the various figures 
surrounding him. He produced creative work in a very broad range of fields, 
including oil painting, printmaking, woodcutting, illustration, and so on, and it 
is obvious from his work that Dürer was well versed in the perspective method 
introduced by Alberti (Fig. 5.12). 

Among all Renaissance artists, Dürer is generally considered to be the one 
with the greatest knowledge of mathematics. His Four Books on Measurement (or 
Instructions for Measuring with Compass and Ruler) deals mainly with geometry 
and touches also on linear perspective. Among its innovations is a treatment of the 
projections on to the plane of curves in space and the introduction of the epicycloid, 
the curve traced by the trajectory of a fixed point on the circumference of a 
rolling circle. Even more impressive, Dürer considered the orthogonal projections of 
curves or figures onto two or three mutually perpendicular planes, a very advanced 
topic that was not developed further until the eighteenth century, when the French
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Fig. 5.12 Melencolia I, Albrecht Dürer (1514) 

mathematician Gaspard Monge created the field of descriptive geometry, earning a 
place for his own name in the history of mathematics. 

In his large 1514 engraving Melencolia I, Dürer depicts in the foreground a 
winged young woman sitting in contemplative manner with her head resting in her 
left hand. In the background, there is a fourth-order magic square: 

. 

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

.

In this magic square, every row, column, and diagonal sums to 34, as do the terms 
of the five second-order submatrices in the four corners and the center, and even 
four of the third-order submatrices and the unique fourth-order submatrix, as well 
as other such arrays. 

Comparing this to the example cited in the works of Yang Hui of the Southern 
Song dynasty in China, the only difference is in the order of the rows. The presence 
of this magic square undoubtedly contributes to the enigmatic melancholia of the
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engraving; it is interesting also to note that the middle two numbers of the final row 
serve to date the picture: 1514. This year saw the death of his mother, and he may 
have made this engraving as an expression of his grief. The magic square contained 
within it, however, is not altogether perfect. There is one inscribed at the entrance 
to Parshvanatha temple in Khajuraho, India, in the twelfth century which is more 
satisfactory in some respects although less so in others. In particular, the terms of 
all nine of its second-order submatrices also sum to 34. 

Speaking broadly with respect to painting, it is generally the case that colors are 
more expressive of emotion, while line is more expressive of reason. In line with 
the German reputation for rational thought, German painters have proved excellent 
in their use of line. Certainly this holds for Dürer. His precise line drawings directly 
reveal the subtlety of his observation and the complexity of his conception, and 
the combination of his cerebral approach with his ardent ideals produces a unique 
effect. In addition to the visual arts and mathematics, Dürer worked in art theory 
and scientific writing, including works on draftsmanship, human proportions, and 
architectural engineering, featuring his own illustrations. 

The Invention of Calculus 

The Awakening of New Mathematics 

Although the artists of the Renaissance offered novel insights into mathematics, 
the revival of mathematics, and indeed the rise of modern mathematics, did not 
take place until the sixteenth century. The first new advances in mathematics began 
with algebra: for example, trigonometry had been separated from astronomy, the 
study of perspective gave rise to projective geometry, and the invention of logarithms 
facilitated easier computation, but the main breakthrough was in the solution of 
cubic and quartic equations and the development of symbolic algebra. After the 
Algebra of al-Khwarizmi was translated into Latin, it was widely circulated and 
used as a textbook throughout Europe. At this time, people considered the solution 
of cubic and quartic equations to be a problem as difficult as the three unsolved 
geometric problems of Ancient Greece. But at the turn of the century, two Italian 
mathematicians were born who managed to settle this issue completely: Tartaglia 
and Cardano (Fig. 5.13). 

Tartaglia (1499–1557), whose name at birth was Niccolò Fontana, was born in 
Brescia, not far from Milan, to a dispatch rider father who was murdered several 
years later. In a further misfortune, Tartaglia’s jaw and palate were sliced with a 
saber by an invading French soldier in 1512, leaving him with a speech impediment 
that earned him the nickname by which he is remembered today (tartaglia means 
stammerer). As an adult, Tartaglia made his living teaching mathematics; he made a 
name for himself with his claim that he could solve any cubic equation lacking either 
the linear or quadratic term, that is, equations of the form .x3+mx2 = n or .x3+mx =
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Fig. 5.13 Gerolamo 
Cardano, prominent 
physician, lawyer, and 
politician 

n with m, .n > 0. A professor at the University of Bologna doubted this claim and 
sent a student to challenge Tartaglia, which challenge Tartaglia readily met, since 
his opponent could handle only those cubic equations lacking the quadratic term. 

In 1539, a mathematics enthusiast and medical practitioner in Milan named 
Gerolamo Cardano (1501–1576) invited Tartaglia to stay at his home as a guest 
for 3 days to discuss mathematics. After sharing together a full and satisfying meal, 
Cardano cajoled Tartaglia into revealing his solution to the cubic equation with the 
promise never to publish it. Tartaglia presented his solution encoded in a poem of 25 
lines. Several years later, Cardano encountered the same solution in an unpublished 
work and determined that his promise was no longer binding. Tartaglia was shocked 
to see his solution published by Cardano in his book Ars Magna to quite some 
fanfare, and a bitter enmity developed between the two mathematicians. 

Tartaglia’s solution, which we present here in modernized exposition, was as 
follows. In light of the identity 

. a3 − b3 = (a − b)3 + 3ab(a − b),

choose appropriate a and b such that 

.

{
3ab = m,

a3 − b3 = n
.
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Then .a−b is a solution of the equation .x3 +mx = n, and it is not difficult to further 
solve for a and b to obtain them as 

. 
3

√
±n

2
+

√(n

2

)2 +
(m

3

)3
.

This solution is what is known as Cardano’s equation, although Cardano was careful 
to give credit for it to Tartaglia. Cardano also considered the case .m < 0 and gave 
in this case also the complete solution. As for cubic equations lacking a linear term, 
they can always be transformed into equations of this type by a change of variables. 

Even more impressively, the Ars Magna also gave a general solution for the 
quartic equation, which was also not due to Cardano, but rather to his former servant 
and eventual student Lodovico Ferrari (1522–1565). Ferrari had begun his career at 
the age of 15 as a house servant to Cardano, known at that time mainly as a doctor. 
Cardano quickly recognized his intelligence and began to teach him mathematics. 
And indeed, Ferrari quickly discovered a way to convert quartic equations into 
cubic ones and became as a result the first mathematician to successfully solve the 
quartic equation. He also represented Cardano in a second mathematical challenge 
against Tartaglia, this time in Milan; on this occasion, Tartaglia did not emerge 
victorious (Fig. 5.14). 

After making a name for himself while still in his teens, Ferrari quickly obtained 
a prestigious teaching post in Rome, from which he retired at the age of 42 to move 
back to his hometown and serve as a professor of mathematics at the University of 
Bologna. Unfortunately, he died not long after at the young age of 43 of arsenic 
poisoning, given to him according to legend by a widowed and greedy sister. 
The question of polynomials of degree five and higher was not resolved until the 
Norwegian mathematician Niels Henrik Abel proved their insolvability by radicals 
in the nineteenth century; from this, it is evident that the achievements and stories 
associated with these Italian mathematicians circulated among their mathematical 
colleagues and successors for a long stretch of time. 

From the discussion above, we can conclude that although Tartaglia and Ferrari 
were more adept at discovering clever solutions to specific problems, Cardano 
played a more important and unifying role in this story. In this respect, he was a 
kind of Euclidean character for this period in the history of mathematics. Another 
such character emerged in France in the sixteenth century: François Viète (1540– 
1603), more commonly known by the Latinized form of his name, Franciscus Vieta. 
Vieta is credited with the creation of the first symbolic algebra, with which he was 
able to make substantial contributions to the theory of equations. Middle school 
mathematics textbooks today include a special case of Vieta’s formula, which relates 
the two roots . x1 and . x2 of the quadratic polynomial .ax2 + bx + c to its coefficients: 

.x1 + x2 = −b

a
, and x1x2 = c

a
.
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Fig. 5.14 François Viète, 
lawyer and politician 

Vieta was a lawyer and politician by profession. During the wars between France 
and Spain, Vieta used his mathematical talent to uncover the key to a Spanish 
cipher. It was during a period of political frustration that he devoted himself to 
mathematical research and he developed the ideas of using letters to represent 
algebraic terms while reading the writings of Diophantus. Although most of the 
symbols he himself used have since been replaced, Vieta is still recognized as the 
father of symbolic algebra. In particular, Vieta used consonants to represent known 
constants, and vowels to represent unknown terms, with the symbol . ∼ indicating 
a negative quantity. Considering more generally the standard notation in modern 
mathematics texts, the addition and subtraction signs . + and . − and notation for 
powers were introduced in the fifteenth century, the equals and greater-than signs 
. = and . > were introduced in the sixteenth century, and the less-than sign . <, the  
radical . √ , the multiplication and division signs . × and . ÷, the use of the bottom 
of the alphabet (a, b, c, . . . . ) for knowns and the top of the alphabet (. . . . , x, y, 
z) for unknowns, and exponential notation were all introduced in the seventeenth 
century (Fig. 5.15).
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Fig. 5.15 Desargues’s 
theorem 

Analytic Geometry 

After the advent of the seventeenth century, various mathematical theories and 
branch began to spring up like bamboo shoots after a rain. It is impossible for us 
to analyze here these developments in comprehensive detail, and inevitably, we will 
have to leave out even some of the more important mathematicians. We press on 
all the same and turn first to the French mathematician Girard Desargues (1591– 
1661). It was Desargues who answered the outstanding questions about perspective 
left over from Alberti and established the discipline of projective geometry. Indeed, 
Desargues is considered as the founder of this branch of mathematics. Desargues 
was originally a soldier and later earned his living as an engineer and architect. 
He was a regular participant in the mathematical salons organized by the priest and 
polymath Marin Mersenne, where he won the respect of such young mathematicians 
as Descartes, Pascal, and others (Fig. 5.16). 

One of the fundamental contributions that Desargues made to projective geom-
etry is the concept of the point at infinity, unifying the classes of parallel lines and 
intersecting lines in the plane by allowing parallel lines to intersect in the point 
at infinity; this point of view would later prove very fruitful for the development 
of non-Euclidean geometry. It follows that in projective geometry, every pair of 
lines lying in the same plane eventually intersect, which is the starting point on 
which the theory is built. An additional innovation is that Desargues concerned 
himself only with the interrelationships between geometric figures without any 
reference to measurement, also a novel and forward-looking idea in geometry. 
Finally, there is also Desargues’ theorem, which states that if the lines formed by 
three corresponding pairs of vertices of two triangles all intersect, respectively, then 
the three sets of intersection points so obtained are each individually colinear. From 
the point of view of the painter, this theorem can be stated as follows: if two triangles 
can be seen in perspective from a single external point (which turns out to be just 
at two different sections of the cone), the points of intersection of the extended 
corresponding edges are colinear, provided none of the edge pairs are parallel.
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Fig. 5.16 Fashion show with 
designs based on Desargues’s 
theorem 

More generally, geometric research in the seventeenth century broke out along 
two main strands. The path taken by Desargues can be described as a continuation 
of the tradition of synthetic geometry, but under conditions of a broader generality. 
The second path proved ultimately to be the more brilliant and influential; this was 
to introduce the use of algebraic tools to the study of geometry, specifically, the 
discipline of analytic geometry established by Descartes. 

At its essence, the contrast between modern mathematics and ancient mathe-
matics is that modern mathematics is concerned with variables, whereas ancient 
mathematics was concerned with constants. The development of capitalist pro-
duction following upon the Renaissance created new demands on science and 
technology: the widespread use of machinery, for example, necessitated the study 
of mechanical motion; the development of a maritime industry driven by trade 
created a demand for more accurate and convenient methods for the determination 
of the positions of ships, leading people to study the laws of motion governing the 
celestial bodies; and the improvement of weapons technology stimulated research 
into problems of ballistics. All of these various topics and questions indicate that the 
study of movement and change had become the central research topic in the natural 
sciences and mathematics (Fig. 5.17). 

The first milestone in the mathematics of variables was the invention of analytic 
geometry. The basic idea of analytic geometry is to introduce coordinates to the
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Fig. 5.17 Cartesian coordinates 

Fig. 5.18 Map of the world by Mercator  

plane; for this reason, analytic geometry is known also by the name coordinate 
geometry. The coordinates are determined by a coordinate system as follows: fix 
any two intersection straight lines A and B in the plane and designate their point 
of intersection O as the origin of the system. The two lines A and B are referred 
to as the coordinate axes, and the coordinate system is established by fixing unit 
coordinates along the two axes. In this way, every ordered pair .(x, y) of real numbers 
corresponds to a unique point in the coordinate plane, and vice versa (Fig. 5.18).
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With the tools of analytic geometry in hand, it becomes possible to associate the 
solution set of any algebraic equation of the form 

. f (x, y) = 0

with a curve in the plane. This amounts to a reduction of problems in geometry to 
algebraic problems, so that new geometric results can be obtained through the study 
of problems in algebra. In the other direction, this association produces a natural 
geometric interpretation of algebraic problems. 

There were several precursors to this innovation throughout history: the 
fourteenth-century French mathematician Nicole Oresme (ca. 1320–1382) 
borrowed from geography the terms longitude and latitude to describe his geometric 
figures (he was also the inventor of the . + symbol in mathematics), and in the 
sixteenth century, the Flemish geographer Gerardus Mercator (1512–1594) used 
orthogonal longitudinal and latitudinal lines to draw the first atlas in history. He 
was also the first to use the term atlas. He was deeply versed in the mathematics 
and physics of his time and applied his knowledge freely in his work; he was in 
addition an excellent engraver and calligrapher. But in any case, neither of these 
two forerunners took the further step of establishing a direct association between 
numbers and geometric figures. Rather the credit for the invention of analytic 
geometric belongs properly to two later French mathematics, Descartes and Fermat. 

It is necessary to point out that Descartes and Fermat alike both took as their 
starting point the general consideration of oblique coordinate systems, with the 
system of rectangular coordinates with axes A and B perpendicular to one another, 
say as horizontal and vertical, considered only as a kind of special case. They also 
both discussed the further possibility of a coordinate system in three dimensions. 
It has since become customary to refer to the coordinate system as Cartesian 
coordinates, or to the plane equipped with a coordinate system as the Cartesian 
plane, although this should not be taken to mean that Descartes achieved earlier 
or more brilliant results in this domain than Fermat. The main difference between 
the two is that Descartes considered his invention to mark a sharp break from 
Greek tradition and in particular emphasized the power of algebraic methods, while 
Fermat regarded his work as a straightforward restoration of the mathematics of 
Apollonius. But Fermat was also decidedly more explicit in his emphasis on the use 
of equations to define trajectories and curves. He gives directly the modern forms for 
the equations of many curves, including straight lines, circles, ellipses, parabolas, 
and hyperbolas (Fig. 5.19). 

Although Descartes and Fermat arrived at analytic geometry by different routes 
and for different purposes, nevertheless, they became caught up in a priority dispute. 
Descartes had published his results in analytic geometry, in 1637, under the title 
Geometry (La Géométrie), an appendix to his Discourse on Method (Discours de 
la méthode), a broad philosophical treatise. Fermat never published his work, but 
he had discovered the basic principles of coordinate geometry as early as 1629. 
This was published only after his death in 1665, along with many other of his 
mathematical discoveries. Perhaps because they were both French, this dispute
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Fig. 5.19 Title page of Discourse on Method by Descartes 

never bubbled over into troubling proportions, but each had their supporters: Pascal 
took up with Fermat, and Desargues with Descartes (Fig. 5.20). 

This was not the only coordinate system invented in this period. In 1671, 2 years 
after the publication of Fermat’s work in coordinate geometry, Isaac Newton in 
Britain invented his own system of coordinates, known today as polar coordinates. 
In modern terminology, polar coordinates are determined by a fixed point O in the 
plane and a half-line A extended in any direction from O. Then any point B in the 
plane is determined by the distance r between the points O and B, and the angle 
. θ formed by the intersection of lines OA and OB. The elements of the ordered 
pair .(r, θ) are called the polar coordinates of the point B. As everybody has learned 
in middle school, some geometric figures lend themselves to simpler expression in 
polar coordinates than in Cartesian coordinates, for example, Archimedean spirals, 
catenary curves, cardioids, three- and four-leafed rose curves, and so on.
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Fig. 5.20 Descartes 

The Pioneers of Calculus 

The invention of analytic geometry not only enabled the application of algebraic 
methods to geometric problems but also introduced variables into mathematics, 
paving the way for the creation of calculus; but an even more crucial development 
was the establishment of the concept of a function. 

In the year 1642, 5 years after the publication of Descartes’ Geometry, Isaac 
Newton (1642–1727) was born in a hamlet in the country of Lincolnshire in 
England. It was also the same year in which Galileo died. Newton was a posthumous 
child, born 3 months after the death of his father, and did exhibit in childhood the 
signs of a prodigy. He did however develop a love for extracurricular reading and 
in middle school picked up the habit of compiling notebooks, which he referred 
to as his waste book. This habit, which some generations later was also practiced 
by Gauss, would prove very important, and later he brought his notebooks with 
him to Cambridge University, where he used them for notes on mathematics and 
mechanics, including his work on calculus and the theory of gravity. 

At around the age of 22, Newton began to include in his notes a record of his 
work on calculus, in which he always used the word fluent to denote a relationship 
between variables. It was the German mathematician Leibniz who first used the 
word function to designate to any quantity that changes according to the change in 
position of a point on a curve. The familiar notation .f (x) to represent a function in 
the variable x was only introduced in 1734, by the Swiss mathematician Leonhard
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Fig. 5.21 Polish astronomer 
Copernicus 

Euler, when functions had long already been the centerpiece of the conceptual 
machinery of calculus (Fig. 5.21). 

In fact, the basic ideas of calculus, and in particular integral calculus, can be 
traced back to ancient times. As we have discussed already, the calculation of 
areas and volumes has been a topic of interest to mathematicians since ancient 
times, and there appear many examples of the use of infinitesimal arguments 
to compute the areas, volumes, or arc lengths of various special figures in the 
mathematical writings of Ancient Greece, China, and India. These include the work 
of Archimedes in Greece and Zu Chongzhi and his son in China on the calculation 
of the volume of a sphere. The example of Zeno’s paradox also introduces the 
idea of the infinite division of an ordinary constant. As for differential calculus, 
Archimedes and Apollonius discussed, respectively, the tangent lines to spirals 
and conic sections, although only individually or statically. But calculus in its 
modern form was introduced mainly in order to solve the scientific problems of 
the seventeenth century (Fig. 5.22). 

The first half of the seventeenth century in Europe saw successive major advances 
in the fields of astronomy and mechanics. First, a Dutch lensmaker invented the 
telescope in 1608, and when the Italian scientist Galileo Galilei (1546–1642) heard 
of its invention, he quickly built a powerful telescope of his own and used it to 
discover many hitherto unknown secrets of the solar system. In particular, his 
observations confirmed the validity of the heliocentric model of the solar system 
first proposed in modern times in the fifteenth century by Polish astronomer 
Nicolaus Copernicus (1473–1543). This remarkable achievement however brought 
upon Galileo a series of disasters, including interrogation and persecution by the 
church and leading eventually to blindness and despondency at the end of his life. 
Simultaneously, the German astronomer Johannes Kepler (1571–1630), 7 years
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Fig. 5.22 Italian physicist 
Galileo 

Fig. 5.23 Kepler determined 
that the orbits of the planets 
are elliptical 

Galileo’s junior, was in the process of obtaining a more precise mathematical 
argument for the heliocentric model on the basis of data collected by his predecessor 
and employer, the Danish astronomer Tycho Brahe (1546–1601) (Fig. 5.23). 

Copernicus and Tycho Brahe however both believed that the orbits of the planets 
were circular (and Galileo too said nothing against this theory). It was Kepler who 
first stated as his first law of planetary motion, which states that: 

the orbit of every planet is an ellipse, with the sun at one of its two foci.
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Fig. 5.24 The Leaning 
Tower of Pisa and associated 
with it a famous experiment 
on freely falling bodies 

His second and third laws of planetary motion demonstrate even more thoroughly 
his mathematical ability, which was probably greater even than that of Galileo. The 
second states that: 

the line segment joining a planet and the sun sweeps out an equal area in equal intervals of 
time, 

and the third that: 

the square of the orbital period of a planet is proportional to the cube of the length of the 
semi-major axis of its orbit. 

This is not to say however that the achievements of Galileo lagged behind those 
of Kepler. In the first half of his life, that is, in the late sixteenth century, Galileo 
introduced the law of free fall .s = 1

2gt2 and the law of inertia or Galilean relativity; 
he was also a great pioneer in the use of experimental methods in science (Fig. 5.24). 

Neither Stuttgart, not far from which Kepler was born, nor Prague, where he 
later lived, was at the center of European civilization at the time, and his work did 
not receive as much attention as it deserved. On the other hand, he also avoided 
the religious persecutions suffered by Galileo. Still, his life was not altogether 
a happy one: he was a premature and sickly baby and the child of an unhappy 
marriage, and he himself later suffered through two disastrous marriages and a 
series of family troubles. He was comforted in his difficulties by his belief in 
the mathematical harmony of the heavens as revealed to him in mathematics and 
astronomy, a doctrine showing the distance influences of Pythagoras and Plato, and 
it was this conviction that set him in pursuit of the laws of planetary motion. In 
another story from his life, Kepler apparently was at one time deeply dissatisfied 
with the rough calculation for the volume of a wine barrel employed by the merchant 
who sold it to him and took it upon himself to discover a method for determining
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Fig. 5.25 Statue of Tycho Brahe and Johannes Kepler in Prague 

precisely the volume contained in a surface of revolution, a generalization of the 
spherical volume formula discovered by Archimedes (Fig. 5.25). 

Kepler discovered the first two of his three laws of planetary motion in the year 
1609, but it took him another 10 years to produce the third. The main obstacle 
was the complexity of the date left behind by Tycho Brahe and the computational 
challenges posed by it, in particular the continuous need to multiply together very 
large numbers. In 1614, the Scottish landowner and mathematician John Napier 
(1550–1617) invented the logarithm, which simplified the calculations involved in 
multiplication and division to addition and subtraction. But the practical use of 
logarithms only became possible 2 years later, when the British mathematician 
Henry Briggs (1561–1630) paid a visit to Napier in Scotland and encouraged him 
to reformulate his logarithms in base ten and to compile the first comprehensive 
logarithm tables. News of this innovation reached Kepler and played a critical role 
in the development of his third law of planetary motion. 

The method that Kepler employed was precisely the method of infinitesimal 
elements of integral calculus; in modern terminology, this is to take the sum of 
infinitely many infinitely small elements to determine the area contained in a 
curve or the volume contained in a surface of revolution. A contemporary Italian
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mathematician Bonaventura Cavalieri (1598–1647), who was a disciple of Galileo 
but more committed to pure mathematics, devoted his life to the study of indivisible 
elements, another precursor to infinitesimal calculus, according to which lines, 
surfaces, and solids, respectively, are considered as composed of infinitely many 
surfaces, lines, and planes. Using this method, Cavalieri was able to calculate the 
definite integral of the power function . xn subject to the constraint that n is a 
positive integer. The British mathematician John Wallis (1616–1703) considered 
the more general power function .xp/q , but only managed to resolve the case .p = 1. 
John Wallis was the most direct predecessor of Isaac Newton in terms at least of 
chronology. 

In another direction, tracing backward the roots of differential calculus, we cite 
also the works of three different predecessors: Descartes, Fermat, and Isaac Barrow 
(1630–1677), who was Newton’s teacher. Descartes and Barrow had endeavored 
to calculate the tangent line to a generic curve in the plane, using, respectively, 
an algebraic method known as the circle method or the method of normals and 
a geometric method making use of the so-called differential triangle. Fermat 
meanwhile used the nascent methods of differential calculus to determine the 
extreme values of a function, except for a difference in sign. He realized in fact 
that it was also possible to obtain tangent lines with this method but mentioned it 
only in passing in a letter to Mersenne, accompanied by the remark that he would 
discuss it on another occasion. All things considered, Fermat came closest of the 
various mathematicians discussed above to success, but it remained to Newton and 
Leibniz to complete the work. 

Newton and Leibniz 

As we have seen in the previous section, the seventeenth century brought with it 
a host of new scientific problems that were closely related to the development of 
calculus. For example, tangent lines to a curve can be used to determine not only 
the direction of motion of a moving body at a given moment but also the angle of 
refraction formed between a ray of light entering a lens and the normal line of the 
lens; the extreme values of a function can be used to determine the launch angle 
of a projectile such that it achieves its maximum range and also to determine the 
closest and furthest distances between a planet and the sun. There was also the basic 
problem of dynamics: given the distance travelled by a moving body as a position 
of time, to calculate its velocity and acceleration at any moment. It was above all 
this uncomplicated problem and its inverse that prompted Newton to the creation of 
the calculus (Fig. 5.26). 

Newton established his formulation of calculus using what he called the method 
of fluxions, which concept started brewing in his thoughts during his time as a 
student at Cambridge and burst forth in full maturity during 2 years he spent in 
his hometown in Lincolnshire during the years of the plague. According to his 
own accounting, Newton invented the fluxion calculus (differential calculus) in
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Fig. 5.26 Newton’s apple 
tree; photograph by the 
author, Cambridge 

November of 1665 and the inverse fluxion calculus (integral calculus) in May 
of the following year. It follows that Newton, in contrast with all his colleagues 
who were working toward the calculus earlier, considered and resolved the two 
topics of differential calculus and integral calculus as inverse operations, as did his 
contemporary competitor Leibniz. It is interesting to note that Newton indicates in 
his Waste Book that although he had studied under Isaac Barrow at Cambridge, he 
had been more deeply influenced by the work of John Wallis, who taught at Oxford, 
and that of Descartes; rather, it was Leibniz who absorbed the teachings of Barrow, 
during his time in Paris. Barrow himself also proved a the fundamental theorem 
of calculus in geometric formulation several years later, in his 1670 treatise the 
Lectiones Geometricae. 

In the year 1669, upon his return to Cambridge, Newton distributed to his 
colleagues a mathematical work entitled De analysi per aequationes numero 
terminorum infinitas3 (On Analysis by Equations with an Infinite Number of Terms), 
having previously made public some similar considerations from a kinematic

3 At that time, Latin was the universal language of academia, and Newton composed his major 
works in Latin. 
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perspective. In this paper, Newton considered a curve y such that the area beneath 
it is given by the equation 

. z = axn

where n is an integer or rational number. An infinitesimal increment in x is written 
as o, and the area enclosed by the x-axis, the y-axis, the curve, and the ordinate at 
.x + o is represented by .z + oy, where oy is the incremental area: 

. z + oy = a(x + o)n.

Making use of his own generalization of the binomial theorem, the right-hand side 
of this equation is written as an infinite series; subtracting it from the previous 
equation, dividing each side of the equation by o, and omitting any terms in which 
the factor o still occurs give 

. y = naxn−1.

In the language of modern mathematics, the rate of change of the area under the 
curve at any point x is the value of y at x. Conversely, if the curve .y = naxn−1 is 
given, then the area underneath it is given by .z = axn. This is the basic prototype 
of the differential and integral calculus. Two years later, Newton presented a fuller 
account in a book entitled Method of Fluxions; in his terminology, a variable was 
called a fluent, and its rate of change the fluxion, from which he derived the name 
for his method (Fig. 5.27). 

In the same period, Newton put his calculus of fluxions and inverse fluxions to 
work in the calculation of tangent lines, curvatures, inflection points, arc lengths, 
the force of gravity, centers of mass, and so on. But like Fermat, he was reluctant to 
publish his results: the first of the two treatises discussed in the previous paragraph 
was published only inn 1711, after much urging by his colleagues, and the Method of 
Fluxions only in 1736, after his death. In his landmark work Philosophiæ Naturalis 
Principia Mathematica, which was published earlier in 1687, Newton cloaked his 
calculus in geometric costume, and its significance was not fully recognized straight 
away. This book nevertheless quickly earned its reputation as the greatest scientific 
work of modern times, on the basis of the establishment of the law of universal 
gravitation and a strict mathematical derivation of Kepler’s three laws of planetary 
motion; this was easily enough to ensure its immortality (Fig. 5.28). 

In contrast with Newton, Gottfried Wilhelm Leibniz (1646–1716) published his 
results in calculus earlier, in 1684 and 1686, although he arrived at their invention 
later; this sparked a protracted and bitter debate over priority. Leibniz also proceeded 
from a geometric rather than kinematic point of view. Specifically, he took his first 
inspiration from a paper by Pascal on circles that he read in 1673: consider as in 
the figure a characteristic small triangle with hypotenuse parallel to the tangent line
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Fig. 5.27 Statue of Isaac 
Newton at Trinity College 
Chapel; photograph by the 
author, Cambridge 

Fig. 5.28 Leibniz 
formulation of the principles 
of differential calculus
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at any point P on a curve C; then from the proportional relationship between the 
sidelengths of similar triangles, 

. 
ds

n
= dx

y
,

where n represents the normal line to the curve C at P . Taking the sum, 

. 

∫
yds =

∫
ndx.

This result however was expressed rather vaguely, in words rather than in mathemat-
ical notation, and it was 4 years later that Leibniz explicitly stated the fundamental 
theorem of calculus in a manuscript. 

On the other hand, as early as 1666, Leibniz had considered in a published 
paper entitled De Arte Combinatoria (On the Combinatorial Art) the first-order and 
second-order differences of the square sequence 

. 0, 1, 4, 9, 16, 25, 36, . . . ,

which are 

. 1, 3, 5, 7, 9, 11, . . .

and 

. 2, 2, 2, 2, 2, 2, . . .

respectively. He noticed that the original sequence is obtained by taking successive 
sums of the first terms in the sequence of first-order differences, indicating the 
inverse relationship between summation and difference. It was this that led him to 
the relationship in calculus between differentiation and integration. In the notation 
of the Cartesian coordinate system, he wrote the ordinates of an infinite sequence 
of points on a curve as y and the corresponding abscissas as x. If the ordinates are 
given in terms of x and the sequence of differences between any consecutive values 
of y is considered, Leibniz was thrilled to discover that the derivative is simply a 
kind of difference and the integral a sum. 

From this observation, although his progress was not altogether smooth, Leib-
niz gradually arrived from the notion of the discrete difference to consider the 
increments of any arbitrary function. In 1675, he introduced the important symbol 
. 
∫

to represent the integral, and in the following year, he obtained the derivative 
and integral formulas for the power function. As for the fundamental theorem of 
calculus, it can be stated in modern terminology as follows: in order to find the area 
under a curve whose ordinate is y, it is only necessary to find a curve with ordinate 
z such that the slope . dz

dx
of its tangent line is given by the rule .

dz
dx

= y. If the interval
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Fig. 5.29 Pascal’s calculator 

under consideration is .[a, b], subtract the area on the interval .[0, a] from the area on 
the interval .[0, b] to obtain 

. 

∫ b

a

ydx = z(b) − z(a).

This is also known as the Newton-Leibniz formula. 
It is interesting and unusual that Leibniz developed his enthusiasm for mathemat-

ics initially for reasons of political ambition. At that time, Germany was in a divided 
state of separate feudal rule, not unlike the situation in the Spring and Autumn and 
Warring States periods in China more than two millennia prior. During one summer, 
Leibniz met the former chief minister of the Elector of Mainz.4 Although he had at 
that time been dismissed from his post, the erudite former chief minister retained 
his connection to the Elector of Mainz, to whom he recommended the learned and 
entertaining young Leibniz for a position as an assistant. 

France had become a major power center in Europe by that time, the peak of the 
rule of the Sun King Louis XIV, and was prone to attack its neighbors to the north 
at any time. As an assistant to the legal advisor of the Elector, Leibniz proposed a 
brilliant strategy to distract the French king with the prospect of conquering Egypt. 
Leibniz was sent at the age of 26 as a diplomatic to Paris where he spent 4 years. 
Although Descartes, Pascal, and Fermat had already passed away by that time, 
Leibniz came into contact during his time in Paris with the Dutch mathematician 
Christiaan Huygens (1629–1695), the inventor of the pendulum clock and the wave 
theory of light (Fig. 5.29). 

Leibniz soon realized the limitations of his mathematical education in techno-
logically regressive Germany, and he applied himself with humility and diligence 
to his studies under the careful guidance of Huygens. Due to his persistence and 
talent, and the still incompletely developed mathematical foundations of that era, 
Leibniz had already made major mathematical discoveries by the time he left Paris,

4 Historically, the Archbishops of Mainz were the most important of the electors of the Holy Roman 
Emperor; it was also in Mainz that Gutenberg invented his movable type printing press. 
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Fig. 5.30 Leibniz’s calculating machine, capable of multiplication 

although his original plans for intrigue involving France and Egypt had already been 
shelved. During this time, he first introduced the binary system and subsequently 
made improvements to Pascal’s mechanical calculator, inventing the first calculating 
machine capable of multiplication, division, and the operation of squaring a number. 
Of course, his most important contribution was his work with infinitesimals, that is, 
the invention of the calculus (Fig. 5.30). 

This was indeed an epochal contribution to the history of science, and it was 
precisely because of this innovation that mathematics came to play an outsize role 
in the natural sciences and social life. It also created a space for thousands of 
careers in mathematics in subsequent generations, not unlike the role played by the 
invention of the computer in the twentieth century. In addition, Leibniz also created 
the elegant theory of determinants and extended the binomial theorem to any number 
of variables with a beautifully symmetric formulation. Perhaps the most aesthetic of 
his results for the layman is the infinite series expression for . π that he discovered 
during a visit to London in 1673 at the age of 27: 

. 
π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · .

In fact, this formula had been independently discovered and forgotten at least 
twice earlier: by the Scottish mathematician and astronomer James Gregory (1638– 
1675) and in South India in the fourteenth century by Madhava of Sangamagrama. 
Madhava derived it from the power series expansion of the arctangent function and 
made use of his work to calculate . π to 13 decimal places. In 1424, 1 year before 
the death of Madhava, the Persian mathematician Jamshid al-Kashi had used an 
ancient technique to approximate . π to 17 decimal places. Madhava and his followers 
also obtained power series expansions for the sine and cosine functions, as well 
as the Taylor series expansions of various functions. Their work was recorded by 
an astronomer of the Kerala school in the 1530 in a treatise entitled Yuktibhasa, 
meaning Rationale in the Malayalam language. This treatise consists of seven 
chapters, the last of which includes the results just mentioned. It was first published 
as a book in modern India in 1948, and a critical edition was published with English
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Fig. 5.31 Newton’s rival, 
Leibniz 

Fig. 5.32 Leibniz’s grave; 
photograph by the author, in 
Hanover 

alongside the original by Springer in 2008. For these reasons, the formula above is 
sometimes referred to as the Madhava-Gregory-Leibniz formula (Fig. 5.31). 

Not long after Leibniz returned from Paris, his patron passed away; his repeated 
applications to the French Academy of Science as a foreign honorary member were 
rejected, and he was forced to earn his living as a tutor. In October of 1676, at the age 
of 30, Leibniz accepted the invitation from the Duke of Brunswick to travel north 
to Hanover to serve as a legal advisor and librarian. Leibniz continued however to 
devote himself to mathematics, philosophy, and science with remarkable results and 
became an honored guest in many of the royal houses of Europe (Fig. 5.32). 

I would like to close this section with a discussion of mathematical inheritance, 
in a sense broader than that of the relationship between mentor and student; rather, I 
mean something closer to intellectual telepathy or synchronicity. Just as later Euler 
carefully learned from that mathematical legacy of Fermat, Leibniz developed a 
particular affinity for the work of Pascal. His original inspiration for the invention 
of the calculus came from his familiarity with the characteristic triangle invented
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by Pascal, and his mechanical calculator was also an improvement upon one of the 
latter’s inventions. Pascal is also famous for his work with the binomial coefficients, 
known familiarly as Pascal’s triangle, and Leibniz extended its scope to expansions 
in any number of variables. In philosophy and the humanities more generally, 
Leibniz also walked a path paved by the footsteps of Pascal, and the two were alike 
even in never having married. 

Conclusion 

Starting from the twelfth century, the Europeans learned from China by way of the 
Arabian Peninsula the art of papermaking from hemp and cotton as a replacement 
for parchment and papyrus, and in the middle of the fifteenth century, Johannes 
Gutenberg (ca. 1400–1468) invented his movable type printing press. In short order, 
a large number of works on mathematics and astronomy appeared in print. As we 
have discussed in the previous chapter, the scholarly works of Ancient Greece were 
translated into Latin by way of the Arabic translations in which they had survived 
and in this way reappeared in Europe. In 1482, the first Latin edition of Euclid’s 
Elements was published in Venice. During this time, the compass and gunpowder 
were also introduced to Europe from China, the former facilitating voyages across 
the seas and the latter changing the nature of warfare and the structure and design 
of military fortifications. In particular, the study of ballistics became important. 

As Greek texts began to proliferate across Europe, certain concepts associated in 
the popular imagination with Ancient Greece also experienced a revival, especially 
in Italy, including an emphasis on the exploration of nature, admiration for and 
dependence upon reason, enjoyment of the material world, the pursuit of physical 
and intellectual perfection, desire and freedom of expression, and so forth. Artists 
were the first to embody these principles through their love of nature and commit-
ment to the Greek doctrine that mathematics is the essence of nature. They learned 
their mathematics through practice, in particular geometry, and this led to the rise of 
such Renaissance figures as Alberti and Leonardo da Vinci. Alberti also contributed 
directly to the birth of projective geometry as a branch of mathematics through his 
interest in perspective. 

The natural sciences were also increasingly dominated throughout this period by 
deductive reasoning, which led them to become more mathematical in nature and 
to an increase in the importance of mathematical terminology, methods, and results. 
The integration of mathematics and the sciences also fostered an acceleration in 
their development. From Galileo through to Descartes, the prominent thinkers of the 
age all believed the world is composed of matter in motion and that the purpose of 
science is to reveal the mathematical laws governing the motion of moving bodies. 
The finest examples of this movement are the law of universal gravitation and the 
three laws of motion, all of them due to Newton.
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Fig. 5.33 French 
mathematician Blaise Pascal 

The most important invention in mathematics since the appearance of the 
Euclidean geometry was the calculus, and as such, it emerged from the background 
of a rich social tapestry. Most directly, the calculus was designed expressly to handle 
the major scientific problems of the seventeenth century, in physics, astronomy, 
optics, and military science alike. But also it met the needs for internal development 
in pure mathematics, posed by such problems as the determination of the tangent 
lines to given curves. And its path was paved by the advent of analytic geometry, 
which introduced the notion of a variable into mathematics and allowed for the 
quantitative representations of change and motion (Fig. 5.33). 

The history of great mathematics is also the history of great mathematicians, and 
the seventeenth century in particular has been dubbed the century of genius by the 
British philosopher Alfred North Whitehead. It is no exaggeration to say that the 
seventeenth century played a crucial role in the developmental history of human 
civilization, and this was in no small part due to the expansion in the scope and 
depth of mathematics exemplified by the birth of analytic geometry and calculus. 
It was also during this time that philosophy and mathematics reentwined in the 
works of such great thinkers as Descartes, Pascal, and Leibniz, after a long period 
of separation since the decline of Ancient Greece. All in all, a glorious chapter in 
the book of history (Fig. 5.34). 

I have not yet discussed the upbringings of the two French mathematicians René 
Descartes (1596–1650) and Blaise Pascal (1623–1662). They were both born in the 
provinces (as was Fermat), lost their mothers in childhood, and were known to be 
frail as children; moreover, both of them had fathers who provided for them a good 
education, and they both came to an interest in mathematics spontaneously. At the 
age of 12, Pascal discovered on his own without any relevant training the theorem 
in geometry that the three interior angles of a triangle sum to two right angles; it
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Fig. 5.34 Pensées by Pascal 

was only later that his father, who was himself an amateur mathematician, began 
to give Pascal lessons in Euclidean geometry. Descartes for his part developed an 
interest in mathematics when he saw the solutions to mathematical problems written 
on the barracks blackboard of the military camp during his time as a soldier in the 
Netherlands. 

Despite their considerable achievements in the discovery of new results in 
mathematics and science, Descartes and Pascal both resisted the honors associated 
with their work and preferred to direct their scientific interests toward the spiritual 
world. Descartes composed the important philosophical texts Discourse on Method, 
The World, Meditations on First Philosophy, and Principles of Philosophy. Pascal 
left behind his Lettres provinciales and Pensées. Of the two of them, Descartes 
was the more committed to abstract metaphysics, even perhaps to the point of 
indulgence; this was probably in response to the trial and conviction of Galileo, 
punished as one might suppose for having grounded his doctrine too much in 
reality. This made for remarkable philosophy, but somewhat less successful science. 
Pascal, who led a lonely life of deep but terrifying piety, composed aphoristic works 
of intense feeling and spirituality, marking a fascinating chapter in the history of 
French literature, indeed of world literature. 

In philosophy, Descartes is regarded as the liberator of philosophical thinking 
from the shackles of the scholastic tradition, and later generations have referred
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to him as the father of modern philosophy. He is famous for his philosophy of 
dualism, promoting a stark division between the mind and the body; this has 
been often encapsulated by reference to his famous dictum cogito ergo sum, or  I 
think, therefore I am, one of the most powerful and well-known propositions in 
the history of philosophy. This was in contrast to the philosophy of the Greeks, 
including Pythagoras, who tended to believe that all the phenomena of the world 
were composed of a single substance. Pascal was a thinker more grounded in human 
reality: he understood early and all too well the limitations of human faculties, our 
frailties and faults. His work in mathematics contributed an awe bordering on terror 
for the concepts of the infinitely large and infinitely small, and his mathematical 
discoveries as a result were also confined to a limited space. 

It was worth also discussing here a bit the relationship of Pascal’s triangle to 
mathematical induction. We have seen already that various interesting properties of 
the triangle of binomial coefficients were known to Chinese, Indian, and Persian 
mathematicians many centuries before the life of Pascal. But it was Pascal who first 
made use of mathematical induction to give rigorous proofs that (e.g.) the sum of 
the k-th and .k + 1-th elements in the n-th row is equal to the .k + 1-th element of 
the .n + 1-th row. In fact, this is perhaps the first explicit and clear formulation and 
use of mathematical induction in the history of mathematics, although its prototype 
can be traced back to the proof in Euclid’s Elements that there exist infinitely many 
prime numbers. Since that time, mathematical induction has become a basic tool in 
the arsenal of mathematics, used to prove all manner of propositions about infinite 
sets of numbers, and in particular the positive integers. It provides an effective mean 
to prove infinite results from finite hypotheses. The name mathematical induction 
was coined in the nineteenth century by the British mathematician and philosopher 
Augustus de Morgan. 

Descartes and Pascal are both giants in this history of human thought, in both the 
sciences and the humanities. It is probably in no small part due to their influence 
that mathematics became such an integral part of the traditional intellectual culture 
of the French people, perhaps indeed its most excellent aspect. French mathematics 
has prospered and proliferated since the seventeenth century, with great masters 
emerging one after another. In typical French fashion, their mathematical geniuses 
have accepted the honors accrued to them without ever having viewed mathematics 
as a mere stepping stone. Since the establishment of the Fields Medal in 1936, 
11 French mathematicians have been awarded this highest honor, second only in 
number to the 13 Fields Medalists of the United States. 

It was also because of his encounter with French mathematics and the intellectual 
atmosphere of France that Leibniz turned to mathematics during his stay in Paris and 
eventually developed as a thinker to such an extent that Bertrand Russell later said of 
him that “Leibniz was one of the supreme intellects of all time.” In addition to having 
invented the calculus simultaneously to Newton, Leibniz propounded an influential 
philosophy which he referred to as monadology. The central tenet of this philosophy 
was that the universe is composed of infinitely many windowless monads, each 
resembling the soul to varying degrees. These monads are the ultimate, inextensible, 
spiritual essence at the foundation of all things. In particular, this implies that
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humans differ from animals and indeed living things from inanimate objects only 
as a matter of degree, and indeed, Leibniz pointed out in support of this that many 
of our thoughts and behaviors occur only at the trigger of subconscious impulses, 
which doctrine brings closer together than had ever been previously suggested the 
spheres of human and animal behavior. He derived also from this philosophy his 
belief that all things are interconnected and in particular that any singular entity is 
inseparable from its connection with every other entity in existence.
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