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The book of time 

like numbers are divided into odd and even, 
a book has its front and back, 
and time is cut into day and night. 

but when I turn the pages over, 
there is no obvious difference 
between the first and last line. 

this is the uniqueness of twilight, 
and also of dawn – the profound 
and subtle nature of the book of time. 

Lake Geneva, 20071 

1 Tr. Robert Berold and Cai Tianxin. Published in Every Cloud has its Own Name: Selected Poems 
and Essays of Cai Tianxin, 1 Plus Books, San Francisco (2017). 
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Preface 

In the summer of 2011 the world received news of a shocking event in Norway. A 
solitary political extremist detonated a bomb in a government center in Oslo before 
proceeding to a youth camp taking place on the island of Utoya not far away and 
carrying out an attack that left more than 80 people dead. Norway is among the 
most peaceful, comfortable, and rich nations in the world today, home of the great 
nineteenth-century mathematical genius Niels Henrik Abel. The first Fields medal 
was awarded in Oslo in 1936, and the Nobel Peace Prize has its home there, as does 
the Abel Prize in mathematics. It was difficult and painful to imagine such a tragic 
incident taking place there. 

Abel was the first Norwegian to achieve international fame for his achievements. 
Although he died of tuberculosis in 1829 in obscurity at the age of 26, he was soon 
recognized as one of the greatest mathematicians of the nineteenth century or for 
that matter in human history. His life and accomplishments seem to have inspired 
the talents of fellow Norwegians. The playwright Henrik Ibsen was born one year 
before his death, and not long after there appeared also the composer Edvard Grieg, 
the artist Edvard Munch, and the explorer Roald Amundsen. I could not help but 
think about all of this when I heard about the shootings. Perhaps Abel’s early death, 
the long expatriation of Ibsen, and the naked dread in Munch’s famous painting The 
Scream speak also to some sense of tragedy in that northern country. 

In every book related to mathematics, Abel’s name always appears first in the 
index. This book also discusses his life at length, as well as his fellow Norwegian, 
the mathematician Sophus Lie (1842–1899), after whom are named two of the most 
important topics in contemporary mathematics—Lie groups and Lie algebras. In 
1872, the German mathematician Felix Klein (1849–1925) initiated his so called 
Erlangen program in an effort to use group theory to unify all of geometry and even 
all of mathematics by way of ideas developed by Lie. 

This book does not have occasion to introduce another great Norwegian mathe-
matician, Atle Selberg (1917–2007), who passed away in 2007 and with whom the 
author had the opportunity to meet and discuss number theory. Selberg was awarded 
a Fields Medal in 1950 for his many accomplishments, including an elementary 
proof of the prime number theorem. In perhaps another coincidence, one of the 

vii 
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last figures to make an appearance in this book is the Austrian philosopher Ludwig 
Wittgenstein (1889–1951) who formed a deep attachment during his life to the 
remote Norwegian landscape. During his time at Cambridge University he built 
a cabin in a rural area in western Norway to which he would retreat to think, 
sometimes staying for as long as a year. It was there that he began work on his 
great posthumous work Philosophical Investigations. 

It must be clear already from the passages in this preface that this is a book that 
does not want to leave out any great mathematician or mathematical line of thought 
or to pass up any opportunity to investigate the interminglings of mathematics 
with all the other modes of culture and human activity. The contents and style of 
writing are intended precisely to suit this end. Such a book as far as I know has no 
blueprint. Probably its most similar precursor is Mathematics in Western Culture 
by Morris Kline (1908–1992). The appearance, however, of the words western and 
culture in the latter title point toward a substantial difference. I feel we have no 
choice here but to take into consideration the history of humanity across the globe. 
The domain of mathematics is beyond the scope of any single culture. The British 
mathematician and philosopher Alfred North Whitehead (1861–1947) observed that 
modern science was born in Europe, but its home is the whole world. 

From the perspective of composition, although there are many possibilities, in 
the main the most important consideration was whether or not to take the history of 
mathematics itself as an organizing principle. Although Kline had based his work 
on chronology (and the same is true of his other masterpiece, Mathematical Thought 
from Ancient to Modern Times), he devotes a topic in each chapter to the relationship 
between mathematics and culture. It is evident that Kline is both proficient in 
mathematics and possesses a deep familiarity with western culture since Ancient 
Greece. I felt it would be difficult to surpass him in this regard. 

However, it is immediately apparent in reading his works that Kline had in mind 
in the course of composition an audience consisting of experts in mathematics or the 
history of western culture. I have in mind for this book a much broader readership. 
I hope to reach readers who have studied only elementary mathematics, maybe a 
little calculus, and readers who perhaps do not really know much about the history 
of mathematics and its relationship to human culture. The role that mathematics 
has played in the development of civilization is not widely enough understood, 
especially with respect to the origins of modern mathematics, and modern culture 
and art. 

It seems to me that mathematics, science, and the various humanities all stand 
as equals as representatives of the human mind and the process of intellectual 
development. In any given period they are all intermixed with one another and 
exhibit similar processes and characteristics. I have therefore organized this book 
chronologically, moving freely from one region of the earth to another in any given 
period. In this way it is possible to find points of commonality and distinction 
between the various approaches. For example, the mathematics of ancient Egypt 
and Babylon was driven primarily by the need for survival, whereas mathematics 
in Greece was closely connected with philosophy. The motivation for mathematics 
in China was driven largely by questions of calendar reform. In India mathematics 



Preface ix 

sprang from religion; in Persia and the Arab world, mathematics was inseparable 
from astronomy. 

The Renaissance in Europe is an indisputable milestone in the history of human 
civilization. During this period, the development of geometry was inspired by 
artistic considerations. In the seventeenth century the invention of the calculus 
emerged in the wake of the scientific and industrial revolutions to meet its newly 
discovered needs. Mathematicians in the time of the French Revolution concerned 
themselves with mechanics and innovation in civil and military engineering. During 
the first half of the nineteenth century, mathematics and art leapt forward into 
the modern era almost simultaneously. These revolutions were marked by the 
appearance of noncommutative algebra and non-Euclidean geometry on the one 
hand, and the poetry of Edgar Allan Poe (1809–1849) and Charles Baudelaire 
(1821–1867) on the other. Since the beginning of the twentieth century, abstraction 
has become the common law of mathematics and the humanities. 

In mathematics there appeared the new disciplines of set theory and the axiomatic 
method; in art there was the abstract movement, action painting, and various other 
developments towards the abstract. The reunion inaugurated by these developments 
between mathematics and philosophy has produced modern logic and facilitated the 
remarkable innovations of Wittgenstein and Gödel. Perhaps what is most surprising 
in all of this is that mathematics has not proved indulgent in its tendency toward 
abstraction, but rather has become only more useful, with new applications to theo-
retical physics, biology, economics, computer science, chaos theory. This conforms 
splendidly with the state of things at every stage of its historical development. 
Nevertheless, the future of the mathematical horizon remains unclear. 

The definitive feature of this book therefore is a comparative analysis and 
interpretation of modern mathematics and modern civilization. This is the fruit of 
many years of writing and active research in mathematics. With respect to ancient 
mathematics I have chosen to focus especially on those mathematical topics that 
retain a vital interest from a modern perspective. For example, the discussion of 
Egyptian mathematics places special emphasis on the topic of Egyptian fractions, a 
topic which provides number theorists with deep and challenging problems even in 
the twenty-first century. As another example, it seems to have been the Babylonians 
who first discovered the Pythagorean theorem, and began to investigate the problem 
of Pythagorean triples, a beautiful achievement that was recapitulated throughout 
ancient history, for example, in Greece more than a thousand years later. But it also 
has deep connections to one of the most modern and challenging problems of the 
twentieth century, the proof of Fermat’s Last Theorem. 

Another characteristic feature of this book is the sections are mostly named 
after colorful and important figures in the history of mathematics and culture; I 
have written them in the hope that they are easy to understand, to enjoy, and to 
remember. I have also included more than a hundred carefully selected illustrations, 
some of which I photographed myself, in order to bring to life the various topics in 
mathematics, science, art, literature, and education within. I hope that anyone who 
reads this book can experience through it a closer connection to a subject that is 
sometimes considered forbidding and relentlessly abstract, and reflect more deeply 
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upon the relationships between mathematics and the other creative disciplines, 
perhaps even on the nature of human life and civilization. 

My Chinese readers will recognize this book as a revision of my textbook 
Mathematics and Human Civilization, published in 2012 by the Commercial Press 
in Beijing. After the copyright expired, I revised the entire book according to 
suggestions offered by the CITIC Publishing House, and updated many of the 
illustrations. In 2017 we renamed the book A Brief History of Mathematics, which 
is more in line with the original intention of the book. Since the book focuses on 
the history of mathematics and its relationship to human civilization, it has proved 
advantageous to avoid many of the intricate complexities of modern mathematics 
and I have endeavored instead to offer the reader a variety of different angles from 
which to approach the subject. I have since been gratified to see versions published 
in Korean, Russian, and Taiwanese. 

I would like to bring this preface to a close with a poem. I wrote it in the summer 
of 2005, when I traveled with four graduate students to participate in an international 
seminar on number theory and cryptography at the University of the Philippines in 
Manila, the country where Magellan died and which has been too easily overlooked 
in a history of mathematics and culture. There appear in the poem some geometric 
phrases, lines, arcs, circles, surfaces, and topological deformations, transformed of 
course into a language suitable to poetry. The poem at first glance seems to be 
operating within the abstruse territories of mathematics, but its aim is toward the 
pure emotions of life. 

Skipping 

Each bright and clean rice stalk 
is covered entirely in silver moonlight 

and then woven into the rope. 

Like a silver chain on the ankle 
the circle around the circle 
also covered in moonlight 

The tip of the eyebrow, the temple 
and the scald mark on the arm 
All oscillate through the rope.2 

West Brook, Hangzhou, China Tianxin Cai 
Late Spring, 2023 

2 Tr. Robert Berold and Cai Tianxin 
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Jamshı̄d al-Kāshı̄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141 

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144 

5 From the Renaissance to the Birth of Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . .  147 
The Renaissance in Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147 

Medieval Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147 
Fibonacci’s Rabbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150 
Alberti’s Perspective Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153 
Da Vinci and Dürer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  156 

The Invention of Calculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  160 
The Awakening of New Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  160 
Analytic Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164 
The Pioneers of Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169 
Newton and Leibniz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174 

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182 



Contents xiii 

6 The Age of Analysis and the French Revolution. . . . . . . . . . . . . . . . . . . . . . . . . .  187 
The Age of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187 

The King of the Amateurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187 
The Further Development of Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  193 
The Influence of Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  198 
The Bernoulli Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  202 

The French Revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  207 
Napoleon Bonaparte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  207 
The Lofty Pyramid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211 
The French Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215 
The Emperor’s Friend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218 

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223 

7 Modern Mathematics, Modern Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227 
The Rebirth of Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227 

Toward a Rigorous Treatment of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227 
Abel and Galois . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  232 
The Quaternions of William Rowan Hamilton . . . . . . . . . . . . . . . . . . . . . . . .  238 

A Revolution in Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243 
A Scandal in Elementary Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243 
The Arrival of Non-Euclidean Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  246 
Riemannian Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  251 

A New  Era of Art. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  257 
Edgar Allan Poe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  257 
Baudelaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  260 
From Imitation to Wit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  264 

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  267 

8 Abstraction: Mathematics Since the Twentieth Century . . . . . . . . . . . . . . . .  271 
The Road to Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  271 

Set Theory and Axiomatic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  271 
The Abstraction of Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276 
Abstraction in Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  284 

Applications of Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  290 
Theoretical Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  290 
Biology and Economics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  295 
Computers and Chaos Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  299 

Mathematics and Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  310 
Russell’s Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  310 
Wittgenstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  316 
Gödel’s Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  320 

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  324 



xiv Contents 

A A Mathematical Chronology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  331 

B The Origin of Some Common Mathematical Symbols . . . . . . . . . . . . . . . . . . .  335 

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  337 

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  339 



About the Author 

Cai Tianxin was born in Taizhou, in southeastern China in 1963, and was admitted 
to Shandong University at the age of 15. He received his doctorate in science in 
1987, and currently serves as an outstanding professor at the School of Mathematics 
at Zhejiang University. He is also a poet, writer, and photographer, who has 
published more than 40 literary and scholarly works, translated variously into more 
than 20 languages, including seven works translated into English. In 2007, he was 
invited to be a resident writer at Château de Lavigny in Switzerland; he served as 
judge in a Haiku competition in Tokyo in 2008, was a guest at the Arabic Capital 
of Culture in Baghdad, Iraq, in 2014, participated in the Frankfurt Book Fair in 
2010 and the International Writing Program in Iowa, USA, in 2018. In total, he 
has participated in more than 30 international festivals of poetry and literature. 
Since 2010, he has served as the founding editorial board member of the quarterly 
magazine Mathematical Culture based in Hong Kong. 

Since the start of the new millennium, Cai has given hundreds of public lectures 
around the world, including at Princeton University, London School of Economics, 
the Australian National University, the National University of Singapore, Pontifical 
Catholic University of Peru, and University of Nairobi. Poetry readings and 
photography exhibitions dedicated to his work have been held in New York, Paris, 
Los Angeles, Chicago, San Francisco, Houston, St. Louis, Cambridge, Kharkiv, and 
other cities around the world. He first saw a train on his journey to college, and 
now his footprints have spread across the provinces and cities and to more than one 
hundred countries. 

In his capacity as a professor of mathematics, Cai proposed a class of Dio-
phantine equations that was hailed as a “truly original contribution” by the British 
mathematician and recipient of the Fields Medal Alan Baker. In his capacity as a 
writer and a poet, Cai was awarded the Naji Naaman Poetry prize (Beirut) in 2013, 
and the Kathak Literary Award (Dakar) in 2019. In 2022, he was selected as an 
influential writer on Dangdang (the Chinese analogue to Amazon.com). 

xv 



Chapter 1 
The Middle East, or the Beginning 

It must have required many ages to discover that a brace of 
pheasants and a couple of days were both instances of the 
number 2: the degree of abstraction involved is far from easy. 

Bertrand Russell 

The Origins of Mathematics 

The Beginnings of Counting 

There is a story in The Odyssey by the Greek poet Homer: after the itinerant hero 
Odysseus had struck out the eye of the cyclops Polyphemus, the unfortunate creature 
lived out his days in isolation tending to his sheep from his mountain cave. Each 
morning as the sheep went out to graze, the blind giant would take out a single stone 
from a pile and cast it to one side. When they returned to the cave in the evening, 
he would toss the stones back into the pile one by one. Only after he had thrown 
back every stone that he had gathered in the morning he could rest assured that all 
of the sheep had made their way home to rest. In this story we can catch a glimpse 
of the birth of mathematics from the counting of sheep. Just as poetry has its origins 
in prayers for a bountiful harvest, these two most basic inventions of humanity are 
the product of our needs (Fig. 1.1). 

Of course the earliest figures in the story of mathematics are lost amid the 
shrouds of prehistory, and we can only speculate as their inventions only by way 
of the inevitable concomitant developments in the history of human civilization. 
Many millions of years ago, our ancestors in caves must already have hit upon 
the concept of number, adding or taking away individual objects from a collection 
say of foodstuffs to distinguish between few and many. Indeed, even many animals 
possess this ability. With the slow passage of time, humanity came to develop some 
conception of the basic numbers .1, 2, 3, . . .. In this way the tribal leaders came to 
know the number of their purview, and the shepherds the number of their sheep. 

Counting and basic arithmetic also sprang up before the dawn of recorded history. 
The hunter, for example, at some point discovered that two arrows and three arrows 
together make five arrows. Just as different peoples around the world have all 
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2 1 The Middle East, or the Beginning

Fig. 1.1 Pottery scene: 
Odysseus blinds the cyclops 

alike similar sounding words to mama and papa to designate the most fundamental 
familial relations, so too it must have happened that the earliest form of counting was 
carried out everywhere in the past as it is by children today, by means of the fingers. 
Some time later there appeared three standard approaches to the basic problem of 
enumeration: (1) by pebbles or small wooden rods, (2) by knots, and (3) by notches 
recorded in bricks of mud, blocks of wood, stone, the bark of trees, and the bones 
of animals. It was possible by way of these methods not only to keep track of larger 
quantities of things but also to create a more permanent record of their number and 
to add together or compare to one another two separate tallies. 

Naturally counting proved useful in war and in hunting as well. Some peoples 
recorded the number of their defeated enemies by means of scalps, and others the 
number of their slaughtered prey by means of teeth. Among certain peoples it was 
custom among the women to adorn their necks with rings representing age in years. 
In more recent history, it used to be custom among British bartenders to tally up 
the drinks of the customers with marks on a slate, while in Spain the bartenders 
would toss little pebbles into the customer’s hat. Perhaps there are some cultural 
observations to be drawn from all these differences. 

As language emerged and developed, there came with it a variety of linguistic 
means for the expression of numbers. Initially it was commonplace for number 
words and signs to come with predetermined attachments to specific objects and 
categories, as, for example, in English one says a team of horses, a yoke of oxen, a 
span of mules, a pair of shoes, and so one. In Chinese the variety of measure words 
is even greater, and a great many of them have survived to the present day. 

Eventually however humanity managed to abstract the concept of a number from 
its specific contexts. The British philosopher and mathematician Bertrand Russell 
(1872–1970) describes this scope of this achievement as follows: “It must have
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required many ages to discover that a brace of pheasants and a couple of days 
were both instances of the number 2: the degree of abstraction involved is far from 
easy.” The invention of mathematics proper must have come a little later still, when 
people managed the conceptual leap from such propositions as two chickens and 
three chickens makes five chickens, two arrows and three arrows makes five arrows, 
etc. to the identity .2 + 3 = 5. 

Number Bases 

As people had occasion to communicate more extensively, it became necessary to 
make systematic the notations of enumeration. The same basic solution seems to 
sprung up independently around the world among various peoples: take some fixed 
ensemble of symbols .1, 2, . . . , b and use them in combination with one another to 
represent arbitrarily large numbers. The number b in this system is called its base. 

There is some evidence that .2, 3 and 4 have all been used as number bases at 
one point or another. For example, the aboriginal people of Queensland in northern 
Australia reckon their numbers as 1, 2, and 2 and 1, 2, and 2, . . . .. Among certain 
groups in Africa, the first six numbers are reckoned as a, oa, ua, oa-oa, oa-oa-a, 
and oa-oa-oa. Both systems are essentially binary, a way of counting that has since 
proved useful in computer science. Examples of number systems in base 3 and 4 
have been found in parts of South America. 

Because people possess five fingers on each hand and five toes on each foot, 
it is not difficult to imagine that number systems in base five would turn up 
sooner or later, and indeed it seems that some people in South America count as 
.1, 2, 3, 4, hand, hand and 1, and so on. The German lunar calendar took five as its 
base until as late as 1880. In 1937 the bones of a young wolf were excavated in 
Moravia in Czechoslovakia with tallies arranged in groups of five. The Yukaghir 
people in Siberia, who live off the Lena river in the coldest part of the inhabited 
earth, use a system that resembles a combination of base five and decimal (Fig. 1.2). 

The number 12 has also been a common choice of base. The American 
mathematician H.W. Eves (1911–2004) has argued that this may be because twelve 
is a highly divisible number, with six divisors. Or it may be because there are 12 
lunar months in a year. In any case, examples are plentiful: there are 12 inches to the 
foot and 12 pence to the shilling. There are also the words dozen and gross (meaning 
a dozen dozens). As late as the 1980s, it was common for scales in Chinese villages 
to include measurements in both decimal and hexadecimal (with base 16). 

Twenty seems also to have occurred here and there throughout history as a 
number base, which again suggests counting by means of the fingers and toes. The 
most famous example of mathematics in base 20 was among the Mayan people, 
who used it to construct their calendar as recorded in three codices which survived 
the Spanish Inquisition in the new world: the Dresden codex, the Madrid codex, 
and the Paris codex, named for the cities in which they each eventually settled. The 
Dresden codex is generally considered to be the most important of the three and
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Fig. 1.2 British chipped 
wood talley 

contains the richest treasury of mathematical content. Its final page also warns of 
the coming of the end of the world, that is, the famous “2012 doomsday prophecy,” 
and even describes the scene, in which a flood triggered by crocodiles brings about 
the destruction of the whole world. The Dresden codex was probably copied from 
stone engravings of the twelfth century. The bulk of the codex is concerned with 
astronomical tables and events, climate forecasting, and the record of religious 
ceremonies and details. The codex was purchased for the Royal Library at Dresden 
from a private owner in Vienna in 1739. The original suffered serious water damage 
during the bombing of Dresden in 1945 (Fig. 1.3). 

The French language contains some interesting vestiges of base 20 enumeration: 
the French word for 80, for example, is quatre-vingt (four twenties), and the 
French word for 90 is quatre-vingt-dix (four twenties and ten), reminiscent of the 
archaic English word score. Similar remnants persist in other languages of disparate 
geographic origin, including Danish, Welsh, Gaelic, and Chinese, which has the 
word “廿.” Surprisingly, not all of these places are in temperate zones. Finally there 
is the prevalence of base 60, which seems to have originated among the ancient 
Sumerian and Babylonian people and remains in use today for the measure of time 
and angles. 

One way or another, however, humanity seems eventually to have settled almost 
everywhere on decimal notation. The hieroglyphic numbers of Ancient Egypt, the 
oracle bones and counting rods in Ancient China, the attic numerals of Ancient 
Greece, and the Brahmi numeral system of Ancient India all adopt decimal notation. 
Somehow ten seems to be the most natural number base of the human mind, just as 
two is the most natural number base for digital systems. The Greek philosopher 
Aristotle naturally speculated that this is a basic fact of anatomy. This situation is 
reflected in the language we use as well. In English the word digits stood originally 
for the fingers and toes and was adopted only later to for the numbers one through 
nine. Traditional and modern cultures alike preserve through the present-day rich 
representation systems for small numbers by means of gestures and configurations



The Origins of Mathematics 5

Fig. 1.3 Dresden codex original, containing the infamous Mayan 2012 prophecy 

Fig. 1.4 Ancient Egyptian hieroglyphic numerals 

of the hand. In modern China it is still possible to work out what region or province 
a person comes from by the gestures he or she makes while casting fingers for 
numbers in a popular drinking game (Fig. 1.4). 

Arabic Numerals 

According to the archaeological evidence, the use of tally marks in enumeration 
first appeared about 30,000 years ago. It was many millenia again before written 
numbers and number systems appeared, around 3000 BCE. Corresponding perhaps 
to a direct representation of the fingers, the earliest written number systems seem to
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have comprised vertical or horizontal tallies in groups of 1, 2, 3, or 4. Vertical strokes 
appeared in hieroglyphics, in Attic numbers, Mayan numerals, and the vertical 
counting chips of Ancient China. Horizontal strokes turn up among the oracle bones 
and horizontal counting chips in China and the Brahmi numerals in India (excluding 
the numeral 4). 

It is interesting to note that the above systems in which the first four were 
represented by horizontal or vertical strokes without exception all made the 
transition to decimal notation in the same way. The other two famous number 
systems of antiquity, namely, the sexagesimal system of ancient Babylon and the 
vigesimal system of the ancient Mayans, made use of a notation consisting of little 
isosceles triangles and circles. As for the numbers greater than four, each of the 
tally-based enumerations handled them differently. The number ten, for example, 
was represented in the Egyptian system by the symbol . ∪, resembling the symbol for 
the union of two sets in modern set theory. The Greeks used the symbol . �, the fourth 
letter of their alphabet. In China, the number ten was represented by an ensemble of 
four vertical strokes and one horizontal (Fig. 1.5). 

The system of Arabic numerals refers to the decimal writing system represented 
by the digits .0, 1, 2, 3, · · · , 9 and their combinations. For example, in the number 
911, the rightmost 1 stands for 1, the middle 1 for 10, and the 9 for 9 times 100. 
Among the thousands of languages extant in the world today, these ten Arabic 
numerals are the only universal symbols, far more commonplace than even the Latin 
alphabet. It is conceivable that if there were no Arabic numeral system, international 
communication in science and technology, culture, economics, military affairs, and 
sport would be much more difficult, even impossible. 

This system is sometimes also referred to as the system of Hindu-Arabic 
numerals, since they were invented originally in India and subsequently transmitted 
to Europe by way of the Arabic world. The transition to the modern system in India 
was complete by the twelfth century, and all earlier forms of numerals disappeared 
from view until the development of modern archaeology facilitated their rediscovery 
on cave walls and stone pillars in India. It is believed today that those records of 
an earlier age were all made between the years 250 BCE and 200 CE. It is worth 
mentioning that no notion of the number zero occurs in any of the early systems. 
In the year 825, the Persian mathematician Al-Khwarizmi wrote a book On the 
Use of Indian Numerals in Arabic, which presented a complete treatment of the 
Hindu numeral system including zero. The modern English word zero came into the 
language from Arabic by transliteration. 

Arabic numerals entered Europe by way of Northern Africa and Spain during 
a period of great Arabic flourishing and prosperity. A pivotal figure in this story 
was the Italian mathematician Leonardo of Piso, more commonly known as 
Fibonacci. In his youth, Fibonacci was able to receive instruction from a Spanish 
Muslim mathematician and to travel to Northern Africa. When he returned to Italy 
around 1202, he published an influential book called the Liber Abacia (Book of 
Calculation). This book is an incomparable milestone in the history of mathematics. 
In addition to inaugurating the transmission of Hindu-Arabic numerals from the 
Muslim world to greater Europe, it also contributed a number of topics of profound
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Fig. 1.5 The evolution of Hindu-Arabic numerals 

importance for the future direction of mathematical research during the Italian 
Renaissance and indeed throughout the world. It was also during the same century 
that the Venetian traveller Marco Polo (1254–1324) completed the first European 
expeditions to the far East. At that time Constantinople (now Istanbul in Turkey) 
was troubled by continuous strife and conflict. Marco Polo was able to bypass the 
Mediterranean by way of North Africa and the Middle East, travelling in a direction 
exactly opposite to the transmission of Arabic numerals.
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Shape and Geometry 

The invention of number systems facilitated the development of written math-
ematics, arithmetic, and computation. The operations of addition, subtraction, 
multiplication, division, and even the rather advanced concept of prime numbers 
seem to have sprung up independently among various ancient civilizations. The 
subsequent unification of notation spurred mathematicians onto deeper and deeper 
discoveries and inventions. Similarly the science of geometry emerged at first from 
the basic human intuition for shape. People across the world must have recognized 
from the beginning that there is something fundamentally different between the form 
of the moon and the tall trees. It is easy to imagine that geometry was the product 
of observations of this sort in the natural world. 

The earliest notion of a straight line seems to have been derived from the 
experience of a tightly tied rope. In fact the Greek word hypotenuse simply means 
to stretch. It is clear how the word for arms came to stand for the two sides of 
a right triangle. In this way, the concept of a triangle seems to have originated in 
our experience of our bodies. Coincidentally, it was exactly the same in China, 
where the words for hook and thigh were adopted to represent, respectively, 
the shorter and longer sides of a right-angled triangle. This is why the Chinese 
word for the Phythagorean theorem translates directly into English as hook-thigh-
theorem. Ancient pottery pieces discovered at the Banpo archaeological site in 
Xi’an, China, show patterns of congruent triangles, each side connected by eight 
small holes separated by equal intervals. Tomb murals in Thebes, the ancient capital 
of Egypt, also include geometric figures made up of straight lines, triangles, and 
curvilinear arcs. Presumably the other basic geometric structures, circles, squares, 
and rectangles were also the byproducts of everyday experience. 

The Ancient Greek historian Herodotus (ca. 480–425 BCE) described geometry 
as the gift of the Nile. As early as the fourteenth century BCE, the pharaohs in Egypt 
were already carrying out large-scale projects in land surveying and taking a census, 
such that every citizen was allotted a portion of land equal in area to every other. 
When the Nile flooded in spring, anyone whose land was affected was to report 
the loss to the pharaoh, who would send a specialist to measure the extent of the 
loss and calculate a corresponding decrease in its taxation. This process marked the 
birth of geometry proper in the ancient world. The word geometry itself means the 
measurement of the earth in Greek, and the specialists in its practical application 
were known as rope stretchers (Fig. 1.6). 

Demand for precise measurements of land also led to the development of 
geometry in Babylon. The characteristic feature of Babylonian geometry was its 
arithmetic nature. As early as 1600 BCE, the Babylonians were comfortable with 
calculations about rectangles, right triangles, isosceles triangles, and the areas of 
various trapezoids. In India, the development of geometry was connected with 
religion and architecture. The Sulbasutras, written sometime between the eighth 
century BCE and the second century CE, record a method using ropes to solve 
geometric problems and facilitate the construction of temples and altars. In China,
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Fig. 1.6 Diagram from the Zhoubi Suanjing, containing the smallest Pythagorean triple (3,4,5) 

the primary motivation for the development of geometry came from astronomical 
observations. The text Zhoubi Suanjing written around the first century BCE 
detailed various geometrical approaches to astronomy. 

Civilization on the Nile River 

A Peculiar Terrain 

According to the European conception of geography, the Near East, or Middle East, 
designates the eastern coast of the Mediterranean and also includes the Asiatic part 
of Turkey and North Africa, that is, the Mediterranean and its nearby vicinity from 
the Black Sea to the Sea of Gibraltar. The Near East is both the cradle of human 
civilization and the birthplace of western civilization. The American historian of 
mathematics Morris Kline observed: 

While the more restless abandoned this birthplace to roam the plains of Europe, their 
kinsman remained behind to found civilizations and cultures. Many centuries later the wise 
men of the East had to assume the task of educating their still untutored relatives. 

Egypt lies at the southeast corner of the Mediterranean, the intersection of the 
Middle East and North Africa. To the west and to the south is the Sahara, the 
largest desert in the world. The east and the north are for the most part closed in 
by the waters of the Red Sea and the Mediterranean. The only passage by land 
from out of Egypt is through the Sinai Peninsula, an area of only 60,000 square 
kilometers sandwiched between the Gulf of Aqaba and Gulf of Suez on its east 
and west sides, respectively. This peninsula is moreover covered mostly by desert 
and high mountains. It is therefore only a narrow passage that connects Egypt to
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Fig. 1.7 Map of Egypt 

Israel. Although Roman leaders such as Julius Caesar were able to invade Egypt via 
this route, such an occurrence in ancient times would have been almost impossible. 
Egypt was therefore able to maintain its stability across a long period (Fig. 1.7). 

In addition to its protective geographic barrier, Egypt also boasts the clear waters 
of the Nile river, the longest river in the world; this river runs through the entire 
territory of Egypt from south to north until at last it flows into the Mediterranean 
Sea, forming in its path a long and fertile valley. This has been called the largest 
oasis in the world, flanked as it is by the vast Sahara to the west and Arabia to the 
east. In fact, the original Greek meaning of the word nile is valley or river valley. It is 
precisely because of these two special geographic features that the ancient Egyptian 
civilization, home of hieroglyphics and massive pyramids, could last for some 3000 
years (FIg. 1.8). 

The hieroglyphics were developed before the year 3000 BCE. These were 
a completely pictorial system of writing, later split into the hieratic or priestly 
and demotic or popular scripts in order to facilitate easier use. Around the third 
century CE, concomitant to the rise of Christianity, the ancient religions of Egypt
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Fig. 1.8 Hieroglyphs on papyrus 

faded away, and with them the hieroglyphs too died out. The last occurrence of 
hieroglyphs among extant artifacts is an inscription from the year 394 CE. Christian 
Egyptians switched instead to a somewhat modified Greek alphabet and, later, to 
Arabic, after the Muslim invasion in the seventh century. The hieroglyphs became 
an enigma. 

In 1799, French soldiers accompanying Napoleon on his campaign in Egypt 
discovered a stone monument with an area no larger than a single square meter 
in Rosetta, an ancient port city not far from Alexandria. The stone was engraved 
with three copies of a single inscription, one in hieroglyphics, one in the demotic 
script, and one in Ancient Greek. Building upon earlier work by the British doctor 
and physicist Thomas Young (1773–1829), the French historian and linguist Jean-
François Champollion (1790–1832) finally completed the interpretation of all three 
inscriptions. This opened the door for modern people to begin reading hieroglyphics 
and the demotic literature and to gain thereby a better understanding of Egyptian 
civilization, including Egyptian mathematics. The stone tablet has since come to be
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known as the famous Rosetta Stone; it has been on display on the British Museum 
in London since 1802. 

The Rhind Papyrus 

If ever you have the chance to visit Cairo, in addition to visiting the pyramids and 
the museums, taking a boat along the Nile, and taking in the tradition belly dancing, 
your friend or guide will also take you to the marketplace and workshops where 
papyrus is made and sold (often these two activities are combined into one). The 
papyrus plant is a wetland sedge that grows in the Nile delta. After it is picked, the 
pith at the center of its stem is cut into long narrow strips, pressed together, and 
dried out to form a smooth and thin writing surface. The ancient Egyptians did their 
writing on such paper, and it was later adopted as well by both the Greeks and the 
Romans. It was only in the third century CE that papyrus was replaced by parchment 
paper (produced in what is today Turkey), which is cheaper and able to be written 
upon on two sides rather than one. Parchment was in use up until the eighth century. 

What we call papyrus books consist of texts written and bound in papyrus. The 
knowledge we have today of mathematics in ancient Egypt derives in the main from 
two papyrus books. The first of these is the Rhind Mathematical Papyrus, named 
after the Scottish lawyer and antiquarian Alexander Henry Rhind (1833–1863); it 
too is housed today in the British Museum in London. The other is the Moscow 
Mathematical Papyrus, purchased in Thebes by the Russian Egyptologist Vladimir 
Golenischev (1856–1947); today it is in the Pushkin State Museum of Fine Arts in 
Moscow. The Rhind papyrus is sometimes also referred to as the Ahmes papyrus, in 
honor of the scribe who copied out this text in about 1650 BCE. This makes Ahmes 
the first person in human history to make a name for himself for his contributions 
to mathematics. The whole volume is 525 cm long and 33 cm wide, with a few 
fragments missing from the middle; these missing fragments can be seen today in 
the Brooklyn Museum in New York City (Fig. 1.9). 

Both the Rhind papyrus and the Moscow papyrus are written in the hieratic script, 
and both are very old. In his prefatory remarks, Ahmes states that the text had been in 
circulation for at least two centuries before he made his copy of it; for the Moscow 
papyrus, the modern research consensus is that it was written around 1890 BCE. 
These two books can therefore safely be regarded as the oldest works of written 
mathematics. In terms of content, they are essentially just compilations of various 
types of mathematical problem. The main text of the Rhind papyrus consists of 85 
questions, and the Moscow papyrus 25. Most of these problems are drawn from 
real-life applications, for example, the composition of bread and the composition of 
beer, the feed ratio of cattle and poultry, and grain storage. These problems were 
compiled by the authors as demonstrative examples (Fig. 1.10).
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Fig. 1.9 Detail from the Moscow papyrus 

Fig. 1.10 Scottish antique dealer Alexander Henry Rhind
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We consider next the achievements of the Egyptians in geometry, the mathemati-
cal gift of the Nile. In one ancient land contract, we have a formula for the area of an 
arbitrary quadrilateral: if a, b, c, and d represent opposite sides of the quadrilateral 
and S its area, then this formula is 

. S = (a + b)(c + d)

4
.

This is a very bold but rough attempt at a general formula; only in the special case 
where the given quadrilateral is rectangular is it correct. There is also a calculation 
for the area of a circle: in the 50th question in the Rhind papyrus, a circle with a 
diameter given by 9 is said to have an area equal to a square with sidelength 8. From 
this we can conclude that the Egyptian approximation of . π (if they had any such 
concept) is 

. (8 × 2

9
)2 ≈ 3.1605.

In light of these rather imprecise approximations, it is perhaps surprising that 
the Egyptians achieved a very high level of accuracy in the determination of 
solid volumes, which problem they considered in connection with the storage of 
foodstuffs. For example, they knew already that the volume of a cylinder is the 
product of its base and its height. For the volume of a square frustum with height h 
and top and base a and b, respectively, Question 14 of the Moscow papyrus gives 
the formula 

. V = h

3
(a2 + ab + b2).

This conclusion is correct, a remarkable achievement. The American historian of 
mathematics Eric Temple Bell called this the greatest pyramid. 

Egyptian Fractions 

In the Stone Age, the only numbers of which people had need were the integers; 
but advancing into the Bronze Age, the concepts of fraction and sign came into 
play. From the papyrus books, we observe an interesting and important feature of 
the Egyptian treatment of fractions: that is, they favored the use of unit fractions 
(fractions of the form . 1

n
with n an integer), and they would express any rational 

number smaller than 1 as a sum of unit fractions. For example, 

.
2

5
= 1

3
+ 1

15
,

7

29
= 1

6
+ 1

24
+ 1

58
+ 1

87
+ 1

232
.
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It is not clear today why the Egyptians maintained such a preference for unit 
fractions, especially in light of the fact that the familiar four basic arithmetic 
operations are quite tedious to carry out in terms of such fractions. In fact, it is 
precisely because of this that later generations of mathematicians identified an 
important mathematical problem as the problem of Egyptian fractions; this is the 
most substantial mathematical problem associated with the Rhind papyrus. The 
problem of Egyptian fractions belongs to a branch of theory known as indefinite 
equations (or Diophantine equations, after Diophantus, the last great mathematician 
of ancient Greece). This problem concerns the solutions in positive integers to 
equations of the form 

. 
4

n
= 1

x1
+ · · · + 1

xk

.

In fact, Egyptian fractions have given rise to a great number of mathematical 
problems, many of which have not yet been resolved, and this topic continues 
to this day to generate new questions. It is no exaggeration to say that in any 
given year, they are the research topic of any number of master’s theses and 
doctoral dissertations; professional mathematicians also continue to carry out 
research into this issue. We present here a few examples. In 1948, the Hungarian 
mathematician Paul Erdős (1913–1996), who shared the 1983/1984 Wolf Prize 
in Mathematics with Shiing-Shen Chern, conjectured together with the German-
American mathematician and assistant to Einstein Ernst G. Strauss (1922–1983) 
that the equation 

. 
4

n
= 1

x
+ 1

y
+ 1

z

has solutions in integers for all .n > 1. 
It is not hard to see that it is only necessary to verify the conjecture when .n = p is 

a prime number. The American-born British mathematician Louis J. Mordell (1888– 
1972), who was awarded a Fields Medal for his proof of one of his own conjectures, 
obtained a partial proof. He showed the result holds for all .n > 1 except for .n ≡ 1, 
. 112, . 132, . 172, . 192, or .232 (mod 840), where .a ≡ b (mod m) (pronounces a is 
congruent to b modulo m) means that m divides . a − b. For .n ≡ 2 (mod 3), we can 
also produce an explicit solution 

. 
4

n
= 1

n
+ 1

n−2
3 + 1

+ 1

n
(

n−2
3 + 1

) .

The conjecture has also been verified by inspection for all .n < 1014. 
It is a natural extension of this problem to consider also the equation 

.
5

n
= 1

x
+ 1

y
+ 1

z
.
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Fig. 1.11 Egyptian license 
plates feature two different 
numeral systems; photograph 
by the author, in Cairo 

In 1956, the Polish mathematician Wacław Sierpiński (1882–1969) proposed as a 
conjecture that this equation too has solutions for all .n > 1. It has since been verified 
that this conjecture holds for all .n < 109 and all .n > 1 not of the form . n =
1 + 278, 460k for some .k ≥ 1 (Fig. 1.11). 

Apart from these partial results, it seems that a complete resolution of the two 
problems just mentioned is still quite out of reach. I have presented them here in 
some detail only to emphasize that the mathematics of the ancient Egyptians is not 
so simple as we might think; also I hope that this example shows how in mathematics 
it often happens that studying some classic and apparently simple problems leads to 
new insight all the way through to the present day and modern civilization. Another 
good example of this phenomenon is Fermat’s Last Theorem; this theorem was first 
proposed by a French mathematician in the seventeenth century as he was reading 
the mathematical works of a third-century Greek. Here we see the truth behind the 
saying from Ezra Pound, the twentieth-century American poet and leader of the 
modernist movement in poetry, that the most ancient is also the most contemporary. 

Between the Rivers 

Babylonia 

The waters of the Nile flow gently through Egypt from the capital city Cairo all 
the way to where it enters the sea; in contrast, the Tigris river that flows through 
Baghdad and its companion the Euphrates river are turbulent and rough. The people 
who lived in between these rivers too suffered through many wars and hardships. 
This region is known by its ancient Greek name Mesopotamia, meaning simply 
between the rivers, situated in the main in modern-day Iraq. According to surviving 
records, Mesopotamia was invaded and occupied across its history by more than a
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Fig. 1.12 Sumerian cylinder seals; photograph by the author, in Baghdad 

dozen foreign nations. Nevertheless, the people of this region maintained a highly 
unified culture; the economy developed rapidly during times of peace, and it was 
always a necessary destination along the routes of travelling merchant caravans. 
Three great civilizations emerged in Mesopotamia: the Sumerian, Babylonian, and 
Neo-Babylonian civilizations. All of them were characterized by the use of a special 
kind of writing called cuneiform, which undoubtedly played an important role in the 
cultural unity of the Mesopotamian peoples (Fig. 1.12). 

Babylonia was located in the southeastern part of Mesopotamia, containing 
modern Baghdad, with the Persian Gulf to its south. The capital city of this territory 
during its greatest ages was the city of Babylon, for which reason the whole area 
is sometimes also referred to as Babylon. Like the Egyptians, the Babylonians 
lived on the banks of the river, where the land was fertile and easy to immigrate, 
and gave birth to a splendid civilization. In addition to cuneiform writing, the 
Babylonians produced the earliest known legal codes, established flourishing city-
states, and developed a wide array of technological inventions, including pottery 
wheels, sailboats, and ploughs. They were also capable and pioneering architects, 
as attested in legend to by the famous Hanging Gardens of Babylon and the Tower 
of Babel. The editors of the Encyclopedia Brittanica have cited the influence of 
Babylonian literature, music, and architectural style on all of western civilization. 

With respect to counting, too, the Babylonians were creative and original. 
They used a sexagesimal system (base 60), written in an interesting notation 
consisting only of a vertical downward wedge and a horizontal leftward wedge, the 
permutations and combinations of which were sufficient to represent every natural 
number. The familiar division of the day into 24 hours, with 60 minutes to the
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hour and 60 seconds to the minute, is also due to the Babylonians; this division 
subsequently spread across the globe and has been in use now for more than 4000 
years. 

Their writing system was different from that of the Egyptians, who preferred 
to write on papyrus. The Mesopotamians instead used pointed reed pipes to carve 
their wedge-shaped characters on wet clay, which they dried in the sun or by direct 
application of heat. They clay texts composed in this way were more durable than 
papyrus, and the cursive script holds its form easily. To date, more than 500,000 
texts have been unearthed, and these form the main documents and research objects 
through which we have studied the Babylonian civilization. On the other hand, the 
modern interpretation of Babylonian cuneiform writing was accomplished later than 
that of Egyptian hieroglyphics. It was completed around the mid-nineteenth century, 
via the writings on a rock relief in a stone cliff on Mount Behistun, near the city of 
Kermanshah in western Iran, not far from its border with Iraq. 

Similarly to the Rosetta Stone, the Behistun inscriptions consist of a single 
text engraved in three different cuneiform languages: Babylonian, Old Persian, and 
Elamite, all three of which later were forgotten together. The first person to decipher 
the inscriptions was a British officer named Sir Henry Rawlinson (1810–1895). In 
1835, at the age of 23, he and other officers of the British East India Company army 
were sent to Persia to assist and reorganize the troops of the Shah of Iran. He became 
interested in Persian inscriptions and local monuments, and he used his knowledge 
of the Persian language to transcribe and eventually decipher the Old Persian text. 
With this completed, it became possible to decipher and read completely the entirety 
of the inscriptions. 

The text relates the rise to the throne of Darius I, commonly referred to as Darius 
the Great, the most famous king of the Persian empire; Darius ascended to the throne 
by overthrowing its legitimate heir and putting down a long succession of rebellions. 
It is related by Herodotus that Darius died after learning of the defeat of his army in 
the famous battle at Marathon, during the first Persian invasion of Greece. 

In any case, even after the Babylonian written language had successfully been 
deciphered, it was not until the 1930s and 1940s that the first breakthroughs were 
achieved in the interpretation of the mathematical contents of the surviving clay 
documents. 

The Clay Tablets 

Among the 500,000 clay tablet works so far discovered, more than 300 are mathe-
matical texts, and our understanding today of Babylonian mathematical achievement 
is based on these sources. As we have already seen, the Babylonians used a 
sexagesimal system of cuneiform numerals, represented by repeated short lines or 
circles, and divided the hours and minutes into 60 units. Unlike the Egyptians, the 
Babylonians used a positional numeral system, the first such system in recorded 
history. This is a remarkable achievement. Later, they even extended this notation
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Fig. 1.13 Cuneiform writing on clay tablets 

to fractions other than the integers. In particular, they were not restricted in their 
notion of fractions to unit fractions, as were the Egyptians (FIg. 1.13). 

The Babylonians were also more sophisticated in their arithmetic than the Egyp-
tians. They developed many effective algorithms, for example, for the computation 
of square roots as follows: let . a1 be a first approximation to . 

√
a, let .b1 = a

a1
, and 

set .a2 = a1+b1
2 ; the continuing, .b2 = a

a2
, .a3 = a2+b2

2 , and so on. The numbers . an

will oscillate around the true value of . 
√

a, approaching every closer to it with each 
iteration. In one clay tablet (No. 7289) in the collection of Yale University in the 
United States, the square root of two is calculated by this method as 

. 
√

2 ≈ 1 + 24

60
+ 50

602 + 10

603 = 1.41421296 . . . ,

an approximation not at all far off from the true value 

. 
√

2 = 1.41421356 . . . .

The Babylonians also achieved impressive results in algebra. The Egyptians were 
able to solve on linear equations and the simplest quadratic equations of the form
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Fig. 1.14 Ancient 
Babylonian approximation 
for . 

√
2, approximate to five 

decimal places 

2
.ax = b. By contrast, another clay tablet in the Yale collection gives a process 
equivalent to the general formula for quadratic equations of the form 2

.x −px−q = 0 

. x =
√(p

2

)2 + q + p

2
,

as well as correct solutions to the two remaining cases of monic quadratic 
polynomials with at least one negative coefficient; a quadratic polynomial with all 
positive coefficients, of course, does not have a positive root (Fig. 1.14). 

This result, which we might well call the Babylonian formula, can be considered 
a precursor to the general relationship between the roots and coefficients of a 
polynomials obtained in the sixteenth century by the French mathematician François 
Viète, which is valid in the quadratic case for the more general equation . ax2 +bx +
c = 0. 

As for cubic equations, the Babylonians were not able to work out a general 
solution, even for special cases such as .x3 = a and .x3 + x2 = a; nevertheless, they 
compiled the solutions to these special cases in tables, the former being simply the 
table of cube roots. 

When it comes to geometry, however, the Babylonians did not surpass the 
Egyptians. Their estimate for the area of a quadrilateral, for example, is consistent 
with the Egyptian approximation, which we have seen already to be very rough. For 
the area of a circle, they seem to have generally assumed its value to be three times 
the square of the radius, corresponding in modern notation to an approximation 
.π ≈ 3; the Egyptians did better. There is some evidence that the Babylonians knew 
how to use to concept of similar figures to determine the length of a line segment,
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and they had a formula for the volume of a square frustum similar to the formula in 
the Moscow papyrus praised by E.T. Bell as the greatest pyramid. 

Plimpton 322 

There are some problems in the clay tablet texts that suggest that the Babylonians 
sustained a theoretical interest in mathematics separate from its practical applica-
tions, which does not seem to have been true of the Egyptians. A good example of 
this is the clay tablet known as Plimpton 322. The origins of this tablet are uncertain, 
but the publisher George Arthur Plimpton bought it from an archaeological dealer 
in around 1922 and subsequently bequeathed it along with the rest of his collection 
to Columbia University in New York; the number 322 refers to its index in this 
collection. In fact, it is possible that this tablet is part of a larger document, since the 
left side is broken and contains traces of glue, suggesting that a defective portion 
was left behind when the tablet was unearthed (Fig. 1.15). 

The remaining plate is small, with length and width only 12.7 cm and 8.8 cm, 
respectively. The text written on it is in Babylonian, which puts the date of its 
composition as late as 1600 BCE. The contents consist only of a table containing 
4 columns and 15 rows, a total of 60 sexagesimal numbers. Because of this, it was 
at first assumed to be a simple bit of accounting, and for a long time, it was not 
taken seriously. It was only in 1945 that Otto E. Neugebauer (1899–1990), at that 

Fig. 1.15 Plimpton 322
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time editor of the journal Mathematical Reviews under the auspices of the American 
Mathematical Society, recognized the number theoretical significance of Plimpton 
322. Since then, Plimpton 322 has attracted substantial interest. 

Neugebauer noticed that table in Plimpton 322 is related to Pythagorean triplets. 
A Pythagorean triplet consists of three positive integers a, b, c, satisfying the 
equation 

. a2 + b2 = c2.

The smallest three such numbers are .a = 3, .b = 4, and .c = 5. In ancient China, 
such numbers were also known as right triangle numbers; from the geometrical 
perspective, such numbers represent the lengths of the three sides of a right triangle 
with integer-valued sidelengths. Neugebauer had observed that the corresponding 
numbers in the second and third columns of the table give the lengths of the 
hypotenuse c and leg b of a right triangle. There were also four deviations from 
this rule, which Neugebauer attributed to a clerical error and corrected. 

As an example, the middle columns of rows 1, 5, and 11 of the table (in sexages-
imal) are .(1, 59; 2, 49), .(1, 5; 1, 37), and .(45; 1, 15), respectively. Converting this 
into decimal gives .(119, 169), .(65, 97), .(45, 75), which correspond to sidelengths 
of right triangles with third side given by 120, 72, and 60, respectively, all integers. 
After filling in the missing length, Neugebauer found that the number in the first 
column is obtained as .s = (a/c)2 (the number in the final column is simply the row 
index); in words, s is the square of the secant of the angle opposite side b. If we  
write B for the angle opposite B, we have  

. s = csc2B.

Therefore this column actually gives a table of squared secants for angles from . 31◦
to .45◦ at . 1◦ increments. 

The Pythagorean triplets .(a, b, c) in the table can be determined from the 
parametrization .a = 2uv, .b = u2 − v2, .c = u2 + v2 where u and v are 
relatively prime with one even and the other odd. It is a mystery, however, how 
the Babylonians calculated these numbers, whether by this method or another. 

Since the mathematical reputation of the Babylonians today rests so much upon 
this discovery by Neugebauer, I would like to introduce in a bit more detail this 
figure in the history of mathematics. Otto E. Neugebauer was born in Innsbruck, 
Austria, in the last year of the nineteenth century. His parents died when he was still 
young, and he was raised by his uncle. During World War I, in order to avoid his 
graduation examinations, Neugebauer enlisted in the Austrian Army as an artillery-
man, and he spent the end of the war in an Italian prisoner-of-war camp alongside 
his countryman the philosopher Ludwig Wittgenstein. After the end of the war, he 
enrolled in several different universities to study mathematics and physics, before 
he undertook a study of the history of mathematics at Göttingen University. After 
graduating, he eventually emigrated to America and took American citizenship. He 
became a professor at Brown University, where he remained for many years, until
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he moved to the Institute for Advanced Study in Princeton. He was proficient in 
both ancient Egyptian and Babylonian and founded journals in both Germany and 
the United States. 

Conclusion 

In addition to their mathematical achievements detailed above, the Egyptians and 
the Babylonians also made extensive use of practical mathematics in their daily 
lives. They recorded accounts, promissory notes, debts, sales receipts, mortgage 
contracts, outstanding payments, and the distribution of profits in papyrus or in 
clay, respectively. They made use of algebra and arithmetic in their commercial 
transactions and of geometric formulas in the calculation of area, the reckoning of 
their canals, and the storage of their foodstuffs in circular or conic silos. And of 
course in architecture, the great Egyptian pyramids, the fabled Hanging Gardens of 
Babylon, and the Tower of Babel, all attest to mathematical wisdom and skill. 

Prior to the use of mathematics and astronomy to calculate calendars and 
facilitate navigation, humankind possessed for countless eras an instinctive relation 
of fear and curiosity toward nature. They observed and considered the movement 
sun and the stars and the moon year after year. The Egyptians knew already that 
there are 365 days in the year and understood and mastered the niceties of seasonal 
change. Through observations of the position and angle of the sun, they could 
predict the flooding of the Nile; from the position and direction of the stars, they 
could determine the orientation of a ship in the Mediterranean or Red Sea. The 
Babylonians could not only predict the positions of the planets from day to day but 
also determine the time of the number to within an accuracy of a few minutes. 

In another direction, the connection in both Babylonia and Egypt between 
mathematics and painting, architecture, religion, and the mysteries of the natural 
world was not as significant than the application of mathematics to commerce and 
agriculture. The priests of Babylon and Egypt may well have mastered general 
mathematical principles, but they kept this knowledge secret and communicated it 
only verbally, perhaps in order to increase the sense of awe among the common 
people toward the ruling class. From this perspective, especially in comparison 
with a civilization without a ruling priestly caste, conditions seem to have been 
in some ways unfavorable for the development and dissemination of advanced 
mathematics (Fig. 1.16). 

Of course, the numbers and the nature of number play a role in the history of 
religious mysticism and its expression. It is generally believed that numerology and 
the mystical or even magical attitude toward number was a Babylonian innovation, 
later transmitted to the Hebrew people. For example, the number seven was first 
emphasized by the Babylonians as a point of harmony between the power of the 
gods and the complexity of nature. In the hands of the Hebrews, seven became the 
number of the days in a week, and it of course plays a fundamental role in their
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Fig. 1.16 Latin Bible from 1531 

sacred text, which states that God created the world and its inhabitants in 6 days, 
and on the seventh day he rested. 

There are also some outstanding mysteries. For example, why did the Babyloni-
ans divide the circle in 360 degrees? This seems to have been an innovation from 
the last century BCE, and not a straightforward artifact of the use of sexagesimal 
and concomitant to the division of hours and minutes into units of 60. In the second 
century CE, the influential Greek astronomer Ptolemy (ca. 100 CE–ca. 170 CE) 
accepted and adopted the Babylonian division of the circle, and it has remained 
in use ever since. Another the Egyptians used their knowledge of geometry and
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astronomy to build their temples such that on the longest day of the year sunlight 
would enter into the temple and illuminate the gods on the altar. The orientation of 
the pyramid with respect to the space and the eastward facing sphinx seem also to 
have been intentional. 

It seems that the endless needs and interests of human beings, and our inborn 
tendency to meditate upon the sky, give birth to the potential for mathematical 
inspiration. Nature itself seems to contain somehow the laws of mathematics, or 
rather the laws of nature take on the form of mathematics. Plato is said to have 
claimed that God is always doing geometry, and Jacobi later commented on this 
with the revision that God is always doing arithmetic. They both seem to have meant 
that the creation of world itself is a mathematical phenomenon. In this way we can 
consider that mathematics not only derives from the needs of human survival but 
also brings about a return into this world. 

Unfortunately, both Egypt and Babylon suffered constant invasion by external 
forces throughout history, and there have been frequent changes in culture and 
civilization in the Middle East in the subsequent millenia. In particular, in the 
middle of the seventh century CE, Arabic rule reoriented the languages and religious 
customs throughout the region. Later, both of these territories can be said to have 
gone through a rocky transition to modernity, and neither was able to quickly reach 
a high level of development and economic productivity, although Iraq is home to 
the second largest concentration of oil reserves in the world. Since the advent of 
the twenty-first century, there has been back to back the Iraq war and the Jasmine 
Revolution. In any case, it follows that the mathematical and cultural development 
in a region at one point in history serves as no guarantee of the continuous and 
effective development of its economy and society.



Chapter 2 
The Sages of Ancient Greece 

Whatever we Greeks receive, we improve and perfect it. 

Plato 

The Birth of Mathematicians 

The Greek Arena 

Sometime around the seventh century BCE, Greek civilization emerged in modern-
day southern Italy, Greece, and Asia Minor (the western part of Turkey in Asia). 
This civilization was different in many respects from the Egyptian and Babylonian 
civilizations discussed in the previous chapter. The British writer H.G. Wells (1866– 
1946) observed that Egypt and Babylonia developed over a long and slow period, 
starting as primitive agricultural societies and eventually building up around a 
culture of temples and the priestly caste; the nomadic Greeks, on the other hand, 
came into their territory from abroad, and the peoples of the land they occupied were 
already developed in the ways of agriculture, seafaring, the formation of city-states, 
and even writing. So the Greeks did not so much grow up with their civilization but 
rather tore down another and set up their own atop its ruins. It is perhaps for this 
reason that much later the Greeks were able to accept conquest by the Macedonians 
who readily assimilated their invaders into their own culture. 

Bertrand Russell remarks in his discussion of the Egyptian and Babylonian 
civilizations that the free pursuit of intellectual activity was restrained by their 
religious preoccupations. The Egyptian religion was obsessed with the afterlife, and 
the greatest monuments of Egypt, its pyramids, were tombs. The Babylonian interest 
in religion was rather in service of prosperity in this world; they recorded with care 
the movements of the stars and performed various rituals and divinations for this 
purpose. In Greece, however, there were no figures equivalent to a prophet or a high 
priest and no concept of a singular and omniscient god presiding over all creation. 
The Greeks, perhaps in light of their nomadic origins, had a pioneering spirit. They 
were unwilling to bind themselves too closely to tradition and preferred instead 
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Fig. 2.1 Birthplaces of 
ancient Greek 
mathematicians, as drawn by 
the author 

to come into contact with new ideas and learn from them. As one example, the 
Greeks quietly changed the hieroglyphics they had originally used to adopt instead 
the Phoenician phonetic alphabet (Fig. 2.1). 

Another significant factor in the development of the culture of ancient Greece 
is its geography. Any tourist who has ever visited can attest that the land is rugged 
and uneven, partitioned by barren mountains, and that land transportation is by no 
means convenient. There are no smooth rivers or river systems and only a few fertile 
plains. When it was not possible to sustain its population, the people of Greece 
would cross the sea and establish new colonies. Greek towns pepper the landscape 
from Sicily and southern Italy to the shores of the Black Sea. The level of emigration 
necessitated the development of regular nautical routes connecting the ports of the 
Eastern Mediterranean with the Black Sea in order to facilitate trade and visits 
home from abroad. Indeed, this phenomenon continues through to the present day, 
with a dense network of routes between Athens and the islands of the Aegean Sea. 
Following the early migration of many of the Cretans to Asia Minor on account of 
an earthquake, the Greeks came more and more into contact with the East. 

Originally, Greece was relatively close to the civilizations of the two river valleys 
and much susceptible to their cultural influence. When the many Greek merchants 
and scholars who travelled to Egypt and Babylon made their return, they brought 
with them new mathematical knowledge, and in the atmosphere of rational enquiry 
peculiar to the Greek city-states, these empirical arithmetical and geometric rules 
were raised up into a system of logical structure and mathematical demonstration. 
People often put forward the questions, “why are the two base angles of an isosceles 
triangle equal?” and “why does the diameter of a circle divide it in half?” The 
American historian of mathematics Howard Eves (1911–2004) has pointed out that
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in the empirical tradition of the ancient East, the question how can be answered with 
confidence, but the more scientific question why is a source of more trepidation. 

We close this section with a discussion of the city-states and political charac-
teristics of ancient Greece. Unlike the vast and long unified eastern civilizations of 
the ancient world, the Greek city-states existed always in a state of stark separation 
from one another. This of course was a product of geography: the mountains and the 
sea scattered the people across distant coasts. As for the social structure of ancient 
Greece, there were in the main two distinct classes the nobility and the commoners 
(in some regions the aboriginal people were also present as farmers, craftsmen, or 
slaves). These two classes were not, however, completely isolated from one another, 
and they followed the same ruler into war, the ruler being simply the head of one 
of the noble families. The society so organized produced an environment ripe for 
democracy and rationalism. 

All of these various factors set the Greeks up to play an important role on the 
stage of world civilization. 

The First Proofs 

History never lacks for coincidence and rhyme. The mathematicians and philoso-
phers of ancient Greece poured out in a multitude, just as much later the writers 
and artists in Italy during the Renaissance period. If we consider 1266, 1 year after 
the great poet Dante Alighieri (1265–1321) was born in Florence, that city produced 
also Giotto (1266–1377), the most outstanding painter of his time. Italians generally 
date the start of the greatest period in the history of art by his life. The art historian 
Sir Ernst Gombridge (1909–2001) has argued that prior to Giotto, artists were 
viewed in the same light as a carpenter or tailor, and they even signed their works 
only infrequently; since Giotto, art history became the history of artists (Fig. 2.2). 

The mathematicians made their debut quite a bit earlier. The first mathematician 
to make his name famous to future generations was Thales of Miletus (ca. 625– 
ca. 547 BCE), some eighteen centuries before Giotto. Thales was born in Miletus 
in Asia Minor (now near the mouth of the Maeander river in the Aydin province 
of southwestern Turkey). At that time it was the largest eastern city in Greece. 
Most of the residents in the region at that time were members of the Ionian tribe 
who had some time early spread out across the area; for this reason the whole 
territory was also referred to as Ionia. In the city of Miletus, the mercantile class had 
replaced the aristocracy as political leaders, and the intellectual air was more free 
and open, producing a wealth of notable figures in literature and what we would now 
call philosophy of science. Inherited legend has it that the poet Homer (ca. ninth 
century–ca. eighth century BCE) and the historian Herodotus were both native to 
Ionia (Fig. 2.3). 

The life of Thales is related to us mainly by way of later philosophers. In his 
early years, he traveled on business to both Egypt and Babylon, where he quickly 
encountered and mastered their astronomy and mathematics. In addition to these
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Fig. 2.2 Bust of Thales 

Fig. 2.3 Remains of a columned Ionic Stoa at Miletus 

fields, he also carried out investigations in physics, engineering, and philosophy. 
Aristotle tells an amusing story: Thales predicted a plentiful olive harvest in a certain 
year on the basis of his agricultural knowledge and the meteorological data, so he 
put down a substantial deposit on all the olive presses in the area at a very low 
price. When his prediction proved true, he was able to let out again the presses for
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considerable profit, and he became wealthy. All this was not so as to become rich, 
but rather to refute some ridicule he had received: “If you’re so smart, why aren’t 
you rich?” 

Plato recounts another amusing anecdote: at one time, Thales was looking up 
at the sky when he accidentally fell into a ditch. A beautiful woman passing by 
laughed and asked him how could he hope to know the sky when he could not even 
see what is at his feet? Thales made no response to this, but he was troubled to 
respond to another question put to him by Solon, archon of Athens. Solon had come 
to Miletus to visit Thales and one day asked him why he had never married (indeed, 
Thales may be the first of many renowned scholars who lived along his entire life). 
At the time, Thales made no answer. Some days later, Solon received news that his 
son had died in Athens, and he became distraught with grief. Thales came to him 
with a smile and, after telling him that the news was false, explained that the reason 
he had never married and had children was his fear of the pain of losing a loved 
one (Fig. 2.4). 

The first historian of mathematics, Eudemus (ca. fourth century BCE), wrote that 
Thales first introduced the study of geometry from Egypt into Greece; moreover, he 
himself discovered many propositions and instructed his students to research the 
basic principles from which other propositions can be derived. According to legend, 
he measured the height of the pyramids in Egypt from their shadows by comparing 
human height to human shadows. One of Plato’s disciples alleged in writing that 
several propositions in plane geometry were first proved by Thales, namely, that 
the diameter of a circle divides the circle into two equal parts, that the base angles 
of an isosceles triangle are equal to one another, that the opposite angles formed 
by two intersecting lines are equal to one another, and that, if two triangles have 
two angles and the side between them equal, respectively, then the triangles are 
congruent. The most interesting result attributed to Thales is that the angle formed 
on the circumference of a circle by a triangle with its diameter as base is a right 
angle; this result is now known as Thales’s theorem. 

But much more important than any single result, Thales introduced the concept 
of a proof of a mathematical proposition, the idea that a given proposition should 
be demonstrated by logical argumentation on the basis of axioms and more 

Fig. 2.4 Thales’s Theorem
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basic propositions the truth of which has already been established. This marks 
an extraordinary leap in the history of mathematics and set the precedent for 
mathematical demonstration. There is no primary source to prove that all of these 
achievements were due to Thales; rather, his contributions were passed down to 
the future as oral history, identifying him as the first mathematician proper and the 
founder of demonstrative geometry. The theorem named after him is also the first 
theorem in history to be named after a mathematician. 

Thales achieved great things outside the discipline of mathematics as well. He 
developed a cosmology with water as the essence of all things, following the cycle 
of water evaporating into steam in the sunlight to form clouds and falling to the earth 
again as rain. His cosmology proved false, of course (he also believed the earth to 
be a disk floating in water), but he had dared to gaze into nature and develop his own 
system of thought. For this reason, he is recognized as one of the founding figures 
in Greek philosophy. In physics, Thales is also said to have first discovered the 
phenomenon of static electricity generated in amber by friction. Herodotus, himself 
known as the father of history, claimed that Thales had accurately predicted a solar 
eclipse, and Eudemus states that the division of the seasons according to the vernal 
equinox, the summer solstice, the autumnal equinox, and the winter solstice is not 
an equal division. 

Pythagoras 

Following after the leadership of Thales, Miletus produced two more significant 
philosophers, Anaximander (ca. 610 BCE–ca. 545 BCE) and Anaximenes (ca. 588 
BCE–ca. 526 BCE), and the writer Hecataeus (ca. 550 BCE–ca. 476 BCE), who 
wrote the first travelogue, in a simple and beautiful prose style, and also produced 
pioneering work in geography and ethnography. Anaximander believed that the 
world is not composed in its essence of water, or any of the other elements, but 
rather a certain special basic substance whose form is not known to us. He thought 
also that the earth is a freely floating cylinder at the center of an infinite universe. 
He developed a methodology of reductio ad absurdum and applied it to conclude 
that humankind had evolved from marine life, with a period of time spent maturing 
within the bodies of fish. Anaximenes had yet another theory; he held air to be the 
primordial element, with all other matter formed from its various condensations and 
evacuations (Fig. 2.5). 

Meanwhile in the Aegean Sea, just a stone’s throw from Miletus, there is a small 
island known as Samos. The inhabitants of this island were of a more conservative 
bent than their neighbors on the mainland, and they practiced a kind of loose 
Orphism, without a strict dogma, frequently gathering into the fold people of similar 
beliefs. It may have been here that philosophy first came to be associated with a way 
of life, and the forerunner of this new philosopher was called Pythagoras of Samos 
(ca. 580 BCE–500 BCE). He left Samos as an adult and travelled to Miletus to 
study, but Thales turned him away on account of his advanced age, suggesting that
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Fig. 2.5 Monument to 
Pythagoras at Samos 

he go instead to Anaximander. Pythagoras quickly came to realize that philosophy in 
Miletus was a practical undertaking, contrary to his own preference for meditation 
and worldly detachment. Pythagoras held that humankind is naturally partitioned 
into three categories: the lowest of the three engage in sales and purchases, members 
of the middle category are suitable for participation in competitions such as the 
Olympic games, and the highest category contains the spectators of the world, the 
scholars or philosophers, as they came to be called. 

Pythagoras abandoned Miletus and travelled alone to Egypt, where he lived for 
10 years, and studied Egyptian mathematics. Later, he was taken captive by Persians 
in Egypt and transported to Babylon, where he spent another 5 years and mastered 
the more advanced mathematics that was known there. Including the duration of 
his journey home by boat, Pythagoras spent a total of 19 years abroad, longer than 
Faxian (337–322) of the Eastern Jin dynasty in China and Xuanzang (602–664) of 
the Tang dynasty spent in India studying the Buddhist teachings. 

However, Samos was still too conservative to accommodate his way of thinking, 
and Pythagoras was obliged to travel across the ocean again to Croton, in southern 
Italy, where he settled down, married, had children, and recruited disciples. This 
was the birth of what is known as the Pythagorean School; although this was a 
very secretive society, subject to strict discipline, it was not influenced by existing 
religious dogmas. Rather, they created a scientific (but mainly mathematical)
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tradition that has retained its influence for some two millenia. Indeed, the words 
philosophy (.ϕιλoσoϕία) and mathematics (.μάθημα) are said to have been coined 
by Pythagoras himself. The former means love of wisdom, and the latter knowledge 
that can be learned. 

The mathematical achievements of the Pythagorean school include the 
Pythagorean theorem; the introduction of special categories of natural numbers 
such as perfect numbers, amicable numbers, triangular numbers, and Pythagorean 
triplets; the construction of the regular polyhedra; the irrationality of . 

√
2; the  

identification of the golden ratio; and so on. Some of these topics have not yet 
been resolved completely (e.g., the perfect numbers and amicable numbers); others 
appear routinely in all aspects of daily life, and still others have generated deep 
and modern flowers at the heart of mathematics, as, for example, the Pythagorean 
theorem can be said to have generated Fermat’s Last Theorem. The Pythagorean 
School also emphasized harmony, order, and moderation, believing these to be 
fundamental goods, and at the same time valued the expression of form, proportion, 
and number. 

In Greece, the birthplace of Homer, poetry was at the foundations of all 
education, and many families of means, including that of the chief magistrate of 
Samos, hired poets to serve as tutors to their children; in some cases poetry schools 
were also established. Pythagoras is alleged to have described the theorem that bears 
his name in verse: 

The square of the hypotenuse, 
If I have made no errors, 
Is equal to the sum of squares 
Of the remaining two sides. 

Pythagoras is also attributed with the first proof of this theorem, which had been 
discovered already by the Babylonians and the Chinese. He is said to have hugged 
his wife, who was mute, and shouted, “I finally found it!” He discovered also that 
the sum of the three interior angles of a triangle is equal to the sum of two right 
angles, and that the plane can be tiled with regular triangles, regular quadrilaterals, 
or regular hexagons. A result due to the later theory of tessellations states that it is 
impossible to tile the plane with any other regular polygons (Fig. 2.6). 

As for the proof, one widespread theory is that he used a method of subdivision. 
If we let a, b, and c denote the two legs and the hypotenuse of a right triangle, 
respectively, as in the figure, we construct a square with sidelength .a+b. This square 
is subdivided into five areas: a square with sidelength given by the hypotenuse c and 
four triangles congruent with the original right triangle. Computing the area in two 
ways and simplifying give 

. a2 + b2 = c2.

When it comes to the natural numbers, the most interesting contributions due to 
Pythagoras were the definitions of perfect numbers and amicable numbers. A perfect 
number is a number equal to the sum of its proper divisors; for example, 6 and 28
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Fig. 2.6 Proof of the 
Pythagorean theorem 

are perfect numbers, since 

. 6 = 1 + 2 + 3,

28 = 1 + 2 + 4 + 7 + 14.

Both of these numbers played an important role in ancient mysticism: in the Bible, 
it is written that God created the world in 6 days, with the seventh day set aside 
for rest; and the geocentric theory of the ancient Greeks held that the time required 
for the moon to revolve around the earth is 28 days. It was also believed as late as 
Copernicus that there are only six planets in the solar system. It is necessary to point 
out that there remain many unresolved questions concerning the perfect numbers. 
For example, people have discovered so far only 51 even perfect numbers, and not 
even a single odd perfect numbers, but nobody has been able to prove whether or not 
there are infinitely many perfect numbers or whether an odd perfect number exists. 

It is not difficult to prove that the decimal representation of every perfect number 
terminates in either a 6 or an 8. The ancient Greeks believed that these two final 
digits alternate among successive perfect numbers, but this turned out not to be 
true. Nevertheless, the author of this book has noticed that among the first 50 
perfect numbers, those ending with 6 and those ending with 8 occur 19 and 31 
times, respectively, and the ratio .19 : 31 between them is very close to the golden 
ratio .0.618.... The numbers 19 and 31 are also the height and width in meters 
of the Parthenon in Athens. The golden ratio is another concept associated with 
Pythagoras, but he did not think to make any connection between it and the perfect 
numbers. 

The amicable numbers consist of pairs of natural numbers such that each is equal 
to the sum of the proper divisors of the other, for example, the numbers 220 and
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284 form an amicable pair. Among later generations, the amicable numbers were 
frequently associated with magic and astrology, and various mystical properties 
were attributed to them. The number 220 also makes an appearance in the Bible, 
as the number of sheep that Esau gave to his brother Jacob as an expression of 
his love. Nevertheless, it was more than 2000 years before the second pair of 
amicable numbers was discovered. These are 17926 and 18416, discovered by the 
French mathematician Pierre de Fermat; his contemporary and fellow countryman 
René Descartes discovered the third pair. Using modern computers and modern 
mathematical techniques, more than 100 million pairs of amicable numbers have 
since been found. The smallest pair after the first (1184 and 1210), however, 
was discovered by a 16-year-old Italian boy named B. Nicolò I. Paganini in the 
nineteenth century (Fig. 2.7). 

But the greatest achievement that can be attributed to Pythagoras is the influence 
his thought continued to exert upon later generations. In the Middle Ages, he was 
regarded as the originator of the quadrivium of academic disciplines: arithmetic, 
geometry, music, and astronomy. During the Renaissance, his views on harmonious 
proportions and the golden ratio become important in aesthetics. At the start 
of the sixteenth century, Copernicus claimed the inheritance of the Pythagorean 
philosophical tradition for his proposed heliocentric model of the solar system, and 
Galileo, who discovered the law of freely falling bodies, was likewise considered to 
be a Pythagorean. In the seventeenth century, Leibniz, who created calculus, thought 
of himself as the last of the Pythagoreans. 

Pythagoras in particular considered music to be the most effective source of 
purification in human life. He discovered the relationship between harmonious 
musical intervals and the ratios of the lengths of strings used to produce them. For 
example, if the length of a tuned string is halved, the note it produces will sound 

Fig. 2.7 Bust of Pythagoras, 
now in the Capitoline 
Museums in Rome
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an octave higher than the original; if it is shorted by a ratio of two thirds, the ratio 
is a perfect fourth; and so on. The concepts of tuned strings and harmony played 
an important role in Greek philosophy. Harmony means balance, the adjustment 
and union of opposing forces, just as the proper tuning of an interval requires 
its adjustment upward and downward in musical space. Russell argued that such 
concepts of the Golden Mean in ethics and moral philosophy also bear the imprint 
of these musical discoveries. 

Musical considerations also led Pythagoras to the conclusion that all things 
are number, the most important tenet of his philosophy, in stark contrast with the 
philosophies of the three philosophers of Miletus. Pythagoras held that whoever 
can master the structure of numbers can master also the world. Prior to this, 
mathematical interest arose mainly out of practical needs, as, for example, the 
Egyptians required a certain minimum of mathematics to measure their land and 
build their pyramids. But for Pythagoras, however, Herodotus tells us that the 
purpose of mathematics was simply in order to explore the world. We see this 
also in the Pythagorean nomenclature, philosophy and mathematics. Or, as another 
example, the original meaning of the word calculation is the manipulation of 
stones (Fig. 2.8). 

Pythagoras referred to numbers as the language of the gods: whereas most of 
the material of human life and the human world is fleeting and ephemeral, passing 

Fig. 2.8 Ruins of the Pythagorean Academy; photograph by the author, in Crotone
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through for only a brief moment and then dying away again, only numbers and 
the gods are deathless and eternal. The rise of the digital age in the modern world 
seems to confirm some aspects of this Pythagorean hypothesis. On the other hand, 
it is perhaps regrettable that while numbers today lie at the heart of so much of the 
material world, the sacred or aesthetic aspect of nature remains underemphasized. 

The Platonic Academy 

Zeno’s Tortoise 

The Pythagorean School allied itself politically with the aristocratic system, and 
so it suffered a blow with the rise of Greek democracy, and gradually its influence 
collapsed. Pythagoras himself was forced to flee from Croton, and he was killed not 
long afterward. After the Greek victory in the first Greco-Persian war, the political, 
economic, and cultural center of Greece shifted to Athens, especially during the 
era of Pericles (ca. 495–ca. 429 BCE), who made significant contributions to the 
formation of Athenian political institutions and social development, including the 
construction of the Acropolis in 447 BCE (Fig. 2.9). 

Greek mathematics and philosophy also prospered throughout this period, and 
many competing schools of thought sprang up. The first to gain prominence was the 
Eleatic school, which was established by Parmenides (ca. 515 BCE–ca. 445 BCE), 

Fig. 2.9 Bust of Pericles
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who had been a disciple of one of the latter day Pythagoreans. Parmenides lived in 
Elea in southern Italy (a bit more than a hundred kilometers southeast of modern-day 
Naples), and his views were most vigorously propounded by his student Zeno (ca. 
490 BCE–ca. 425 BCE). These two, master and pupil, were the most accomplished 
thinkers of pre-Socratic Greece. 

Parmenides was one of the few Greek philosophers to express his thought in 
verse; his only surviving work is a poem fragment whose title is not known for 
certain, but which is generally referred to as On Nature. Its first part is called “the 
way of truth” which includes a logical argument that attracted considerably the 
interest of later philosophers. Parmenides believed that the diversity of experience 
and its shifting forms are but manifestations of timeless, changeless, and uniform 
existence, encapsulated by the slogan, “everything is one.” He argued also that 
whatever cannot be thought cannot exist, and whatever exists necessarily can 
be thought. This is in contrast to his philosophical predecessor Heraclitus (ca. 
540 BCE–ca. 470 BCE), who put forward a paradoxical philosophy of the unity 
of opposites, being and nonbeing. Parmenides also introduced to philosophy the 
method of rational proof as the basis of judgment and is considered for this 
reason to be the founder of metaphysics. It is interesting to note that each of these 
three philosophers, Pythagoras, Heraclitus, and Parmenides, were considered to be 
overseas Ionians. 

In his dialogue Parmenides, Plato describes in an ambiguous tenor a visit paid by 
Parmenides and his student Zeno to Athens. He wrote that “[Parmenides] was, at the 
time of his visit, about 65 years old, very white with age, but well favoured. Zeno 
was nearly 40 years of age, tall and fair to look upon; in the days of his youth he was 
reported to have been beloved by Parmenides.1 ” Later Greek scholars speculated 
that this visit was a fictitious invention, but accurately and reliably represented 
the philosophical views and arguments of the two visiting philosophers. Zeno in 
particular defended the difficult ontological theories of his teacher by way of a 
peculiar reductio ad absurdum, claiming that the view that things are many entails 
more ridiculous conclusions than the hypothesis that everything is one. 

This method is the origin of the famous Zeno’s Paradoxes. Taking as his starting 
point the two hypotheses that everything is many and motion is possible, Zeno 
developed in total some 40 different paradoxes, of which unfortunately only 8 have 
survived. The most famous are the paradoxes of motion, which are discussed in 
Aristotle’s Physics and elsewhere. Even these famous paradoxes were not entirely 
appreciated by subsequent generations, who viewed and criticized them only as 
interesting fallacies and diversions. It was only in the second half of the nineteenth 
century that scholars reevaluated them and realized their close connection with such 
mathematical concepts as continuity and infinitude. 

We introduce in turn the four paradoxes of motion presented by Zeno. The 
quotations below are taken directly from Aristotle’s Physics.2 

1 Tr. Benjamin Jowett 
2 Tr. R.P Hardie and R.K. Gaye
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(1) Motion Between Two Points: “The first asserts the non-existence of motion on 
the ground that which is in locomotion must arrive at the half-way stage before 
it arrives at the goal.” 

(2) Achilles and the Tortoise: Achilles, the soldier at the center of The Iliad by 
Homer and renowned for his swift speed as a runner, can never catch up to the 
tortoise with a head start, because in the time he catches up to its initial position, 
the tortoise will have advanced some distance. 

(3) The Flying Arrow: “. . . the  flying  arrow  is  at  rest,  which  result  follows  from  
the assumption that time is composed of moments . . . .”  

(4) The Stadium: Space and time cannot be made up of indivisible units; suppose 
that there are three rows A, B, and C of stationary bodies of equal size situated 
with the bodies in A situated at the left of the racetrack of a stadium, the bodies 
in C situated at its right, and the bodies in B situated at the center. As the bodies 
in A move to the right, and the bodies in C move to the left, each moving a single 
unit of distance in a single unit of time, then the bodies in A cross two of the 
bodies in C in each unit of time, implying the existence of a still smaller unit of 
time. 

The first two of these paradoxes take aim at the view that things are infinitely 
divisible, and the latter two consider the notion of indivisible units and infinites-
imals. A full clarification of these paradoxes requires concepts from modern 
mathematics, in particular the concepts of a limit, continuity, and infinite sets, all 
of which were still many centuries away, and so even careful thinkers such as 
Aristotle struggled to give an explanation. Aristotle did take note of the fact that 
Zeno proceeded in his arguments by taking as his starting point the position of his 
opponent and deriving from it some contradiction. For this reason, Aristotle referred 
to Zeno as the inventor of dialectic. And of course, all this vigorous disputation was 
possible only in light of the freedom of speech and open academic atmosphere in 
Greece that gave free reign to its thinkers to seek out truth. 

Zeno grew up in the countryside and sustained a lifelong passion for athletics. 
Perhaps he put forward his paradoxes purely in the spirit of curiosity and play, and 
not to upset the sensitivities of urban intellectuals. In any case, they mark him out as 
standing against Pythagorean thought, since the latter attributed all things to number. 
E.T. Bell remarks that Zeno discussed, “...in non-mathematical language, ... the sort 
of difficulties that early grapplers with continuity and infinity encountered.” Today, 
more than 2400 years later, it is clear that Zeno’s name will never be absent from 
any history of mathematics or philosophy. The German idealist philosopher G.W.F. 
Hegel discusses Zeno in his Lectures on the History of Philosophy and concludes 
that he investigated the nature of motion objectively and dialectically. He reiterates 
and extends the praise originally due to Aristotle: “Zeno had the very important 
character of being the originator of the true objective dialectic.3 ”

3 Tr. E.S. Haldane 
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Plato’s Academy 

We turn now to Plato (427 BCE–347 BCE), one of the three great philosophers 
of ancient Greece, alongside his teacher Socrates (460 BCE–399 BCE) and student 
Aristotle (384 BCE–322 BCE). All three of them are connected deeply with Athens: 
Socrates and Plato were both born there, and Aristotle spent time in Athens as 
both a student and a teacher. Socrates left behind no written works and founded 
no institutions, and we have learned what we know of him mainly through Plato and 
another of his students named Xenophon (440 BCE–354 BCE), who was a military 
general, but also spent his time composing histories and essays. Socrates did not 
make much in the way of contributions to mathematics, but both of his disciples 
just mentioned observed that he made major contributions to logic, specifically the 
principles of induction and generalization. 

Socrates exerted an inestimable influence on Plato, in spite of the great difference 
between their stations in life: the latter was born into a prominent family, while the 
former had a carver and a midwife for parents. Socrates was notably unbeautiful 
in appearance, but he exercise throughout his life an amazing restraint in worldly 
things, and he was observed on many occasions to fall into a kind of contemplative 
reverie midspeech. He rarely drank alcohol, but whenever he did so, it would 
happen that one of his fellow drinkers would end up drunk and under the table 
while Socrates himself remained sober. His martyrly death by hemlock, having been 
accused and convicted of corrupting the youth of Athens and turning them away 
from the gods, made a deep impression on Plato and convinced him to turn away 
from political life and devote himself to philosophy. He later referred to Socrates in 
writing as the bravest, wisest, and most just person he had ever known (Fig. 2.10). 

Following the death of Socrates, Plato left Athens and spent 10 or 12 years 
wandering, travelling in succession to Asia Minor, Egypt, Cyrene (now in Libya), 
southern Italy, and Sicily. Along his way, he came into contact with several 
mathematicians and undertook a personal study of mathematics. After his return to 
Athens, Plato founded an academy, similar in spirit to a modern private university 
(the word academia derives from the Athenian hero Akademos and refers now to the 
cultural accumulation of knowledge, as in the academies of science). There were 
classrooms, dining rooms, auditoriums, gardens, and dormitories. Plato served as 
the head of school, and he and his assistants lectured on various topics. Apart from 
several visits to Sicily as a guest lecturer, Plato spent the last 40 years of his life 
in his academy, and the academy itself continued to exist as an institution for a 
miraculous nine centuries (Fig. 2.11). 

As a philosopher, Plato made a most profound impression on European phi-
losophy and the development of all western culture and society. He composed 36 
philosophical texts in his lifetime, mostly in the form of dialogues. The content 
for the most part concerns political and moral questions but also touches upon 
metaphysics, epistemology, theology, and cosmology. In his famous dialogue The 
Republic, Plato argued that all people, men and women alike, should share the 
opportunity to display their talents and enter into the rulership class. In Symposium,
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Fig. 2.10 Raphael’s famous School of Athens; Plato and Aristotle are at the center; Pythagoras, 
Zeno, and Euclid appear among the other figures 

the topic is eros, or erotic love: “... if, has as already been admitted, love is of 
the everlasting possession of the good, all men will necessarily desire immortality 
together with the good—wherefore love is of immortality.” In common language, 
the dialogue concludes that to love a beautiful person is to pursue immortality by 
way of the beauty of the body and the production of descendants (Fig. 2.12). 

Although Plato himself did not make any deep new contributions to mathematics 
(some people attribute to him the distinction between analysis and reduction to 
absurdity), his school was the center of mathematical activity in his time, and 
the most significant mathematical achievements of the period were obtained by 
his followers. These include the irrationality of square roots and n-th roots of 
integers other than n-th powers and concomitant the resolution of the mathematical 
crisis caused by the discovery of irrational numbers, the construction of the regular 
octahedron and regular icosahedron, the invention of conic sections (developed 
in pursuit of a solution to the problem of doubling the cube,4 ) the method of

4 The problem of doubling the cube, known also as the Delian problem, was one of three major 
problems in compass and straightedge geometry of ancient Greece. The other two were to square 
the circle, or more precisely to construct a square having the same area as a given circle, and 
develop a general construction for the trisection of any given angle. In each case, the solution was 
required to use constructions that could be completed using only a straightedge and a compass. It 
was only in the nineteenth century that mathematicians were able to show that all three of these 
problems are without solution. 
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Fig. 2.11 2008 English 
edition of Plato’s dialogues 

exhaustion, and so on. Even the later great mathematician Euclid spent some time 
learning geometry at the Academy in his youth. Plato’s Academy became known as 
the great incubator of mathematicians. 

Investigations into the philosophy of mathematics also start from Plato. He 
argued that the proper object of mathematical research is eternal relations and ideas 
in the abstract world of forms, and not the volatile objects of everyday reality. He 
not only distinguished mathematical objects from the objects approximating them 
in our world but also from the geometric figures and specific constructions used to 
illustrate them in demonstrations. For example, the form triangle denotes a unique 
concept, although there are many triangles, all different from one another in their 
details, and also many imperfect representations of these triangles, that is to say, 
concrete objects of triangular shape. In this way Plato advanced the process of 
abstraction in mathematics that had been initiated by Pythagoras.



44 2 The Sages of Ancient Greece

Fig. 2.12 The Platonic solids 

Among the many works of Plato, the most influential by far has been The 
Republic. This dialogue consists of ten books. In addition to its political contents, 
this book contains at its core an outline of his metaphysics and philosophy of 
science, and the sixth book discusses mathematical assumptions and proof. He 
writes 

I suppose you know that the men who work in geometry, calculation, and the like treat as 
known the odd and the even, the figures, three forms of angles, and other things akin to these 
in each kind of inquiry. These things they make hypotheses and don’t think it worthwhile 
to give any further account of them to themselves or others, as though they were clear to 
all. Beginning from them, they go ahead with their exposition of what remains and end 
consistently at the object toward which their investigation was directed.5 

It can be inferred from this the role that deductive reasoning had already 
begun to play at the Academy. It was also Plato who insisted on the restriction 
in mathematical figure drawing to the use of straightedge and compass, which 
restriction played an important role in the axiomatic development of Euclidean 
geometry. 

As for geometry, it is well known that Plato admired this subject first and 
foremost among all forms of knowledge, and he gave it a place of prominence in the 
10 years of education in the exact sciences for which he advocated. He described 
god as a great geometer, and he himself explained in a systematic way the diagrams 
and characteristics of the only five regular polyhedrons, which in later generations 
came to be called the Platonic solids. A tradition originating in the sixth century 
holds that the words “let no one ignorant of geometry enter” were engraved at the 
entrance to the Academy. In any case, it is clear that Plato considered mathematics to 
be an essential piece of search for human ideals. In his posthumous book The Laws,

5 Tr. Allan Bloom 
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he went so far as to describe those who neglect the significance of mathematics as 
pigs. 

Aristotle 

In the year 347 BCE, Plato became uncomfortable at the wedding banquet of a 
friend and retreated to a quiet corner of the house, where he died peacefully at the 
age of 80. Although there is no record of this fact, it is likely that one of the attendees 
at his funeral was a student by the name of Aristotle (384 BCE–322 BCE), who had 
studied personally under Plato and continued to work with him for some 20 years 
after he had been sent to the Academy by his guardian at the age of 17. Aristotle 
is without question the most exceptional student produced by the Academy, and he 
went on to become the greatest philosopher and scientist in the ancient history of 
the world. He had an influence on the nature and content of western culture to which 
no other thinker can be compared. 

Aristotle was born on the peninsula of Chalkidice in the northern part of Greece, 
at that time under the rule of Macedonia, and now the tourist center of all of northern 
Greece. His father served as royal physician to the King of Macedonia, and it 
was perhaps due to the influence of his father that Aristotle developed an interest 
in biology and the empirical sciences; but later, his time with Plato cultivated in 
him an obsession with philosophical reasoning. After Plato died, Aristotle took to 
wandering, just as Plato had taken to wandering after the death of Socrates. Along 
with a classmate and companion, he spent 3 years in Assos in Asia Minor, before he 
traveled to Mytilene on the island of Lesbos, where he set up a research center and 
set about a program of biological investigations (Fig. 2.13). 

At the age of 42, Aristotle was invited by King Philip II of Macedon to resettle 
in the capital Pella and serve as tutor to the 13-year-old prince Alexander. Aristotle 
based his tutelage after the models of the Homeric epics in the hopes that the young 
prince could come to embody the highest ideals of Greek civilization. After several 
years, Aristotle returned to his hometown, where he stayed until the year 335 BCE, 
when Alexander came into the throne. He then returned to Athens and established 
his own school there, known as the Lycaeum. He devoted himself to teaching and 
administration at the Lycaeum for some 12 years, in addition to his continued efforts 
as a researcher and writer. He was known to prefer delivering his lectures on walks 
through the gardens, from which habit the Peripatetic school of philosophy that was 
associated with the Lycaeum got its name. 

Both the Lycaeum and Plato’s Academy were situated on the outskirts of Athens. 
In contrast with Plato’s interest in mathematics, Aristotle preferred biology and 
history. All the same, he had spent some 20 years in the Academy and could not but 
inherit some of its mathematical way of thinking. He discussed certain mathematical 
definitions in more detail than had Plato and carried out a detailed investigation into 
the basic principles of mathematical reasoning. He introduced a distinction between
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Fig. 2.13 2004 English 
edition of Aristotle’s Physics 

axioms and postulates, with axioms defined to be the truths common to all sciences 
and postulates the original principles peculiar to a particular scientific discipline. 

His most important contribution to the field of mathematics was his systemati-
zation and standardization of mathematical reasoning. The most basic principles 
are the law of contradiction, which states that a proposition cannot be both true 
and false, and the law of the excluded middle, which states that every proposition 
is either true or false. These two principles have long been the centerpiece of 
mathematical proof. His greatest contribution to philosophy was the invention of 
formal logic, most notably the logical structure known as the syllogism, a central 
pillar of his many achievements. The formal logic developed by Aristotle was held 
to be the standard of reasoning and deductive thought by subsequent generations. 
At the time of its invention, it laid the methodological foundations for Euclidean 
geometry, an indisputable apex of the golden age of Greek mathematics (Fig. 2.14). 

Aristotle was also the originator of statistics, until recently a discipline altogether 
independent from mathematics. His voluminous but mostly lost compilations of 
city-state constitutions included a survey and comparative analysis of the social and
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Fig. 2.14 1997 English 
edition of Aristotle’s Poetics 

economic conditions of various city-states, encompassing their histories, adminis-
trations, sciences, art, populations, resources, and wealth. This manner of analysis 
prevailed for more than 2000 years, until it was replaced by a new methodology in 
the middle of the seventeenth century and quickly developed into modern statistics, 
which word still contains the etymological traces of its origins in statecraft. 

Finally, a few words concerning the Poetics. This treatise instructs its readers not 
only in the composition of poetry, but also painting and acting. A thin pamphlet 
in comparison with Euclid’s Elements, which appeared not long afterward, these 
two works involve the imitation of three-dimensional space, although the former 
concerns the imitation of images and the latter a kind of abstract imitation. They are 
the two greatest representatives of literary and artistic theory on the one hand and 
mathematical theory on the other in the ancient world.
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The Alexandrian School 

Euclid’s Elements 

There are two notable figures named Euclid in the history of Greek thought, one 
a philosopher, and the other a mathematician. The philosopher, Euclid of Megara 
(ca. 435 BCE–ca. 365 BCE), was yet another disciple of Socrates, several years 
older than Plato. He was born in Megara, to the west of Athens, and established the 
Megarian school of philosophy, also referred to sometimes as the Eristic school. 
Euclid and the Megarian philosophers were deeply influenced by both Socrates 
and the Eleatics, unifying the Socratic notion of the good with the preeminence 
of unity inherited from Parmenides. In short, the good and the one are the same, 
and there is nothing else that exists. They were also skilled in disputation, most 
notably Eubulides of Miletus, who studied under Euclid and became famous for 
seven logical paradoxes, the most famous of which is the liar’s paradox: “What I am 
saying right now is a lie.” On the basis of these paradoxes, Eubulides emphasized 
the inherent contradiction of things, the problematic distinction between qualitative 
and quantitative change, and promoted the development of logic (Fig. 2.15). 

The mathematician Euclid, by contrast, was born much later and left behind no 
details or even clues concerning his life. We cannot even say today what continent 
he was born on, whether Europe, Asia, or Africa, or the years of his birth and 

Fig. 2.15 Statue of Euclid
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death. This is a frustrating elision in the history of mathematics. It is known only 
that he studied for a time at the Academy in Athens and sometime around the 
year 300 BCE was hired to teach mathematics in Alexandria in Egypt. He left 
behind a book entitled Elements, which became an essential mathematical textbook 
for more than 2000 years and indeed contains the main content of even modern 
elementary mathematical pedagogy. In light of the importance of mathematics for 
human reason, he is considered to be the most influential mathematician in all of 
world history. 

First, a few words about the city of Alexandria. Following the Peloponnesian 
War, Greece suffered a period of political disunity. The Macedonians to the north 
took advantage of this weakness and not long afterward captured Athens. When 
young Alexander inherited the throne, although possessed by deep reverence toward 
Greek civilization, he turned his ambitions to world conquest. Wherever his army 
was victorious, he would look to good locations for the establishment of new cities, 
and after he took Egypt, he set up in 332 BCE a city on the Mediterranean bearing 
his own name more than 200 kilometers northwest of Cairo. He not only invited 
the best architects of the time to contribute to it but also personally supervised the 
planning, construction, and the management of immigration. 

Nine years later, Alexander returned from an expedition in India and died 
suddenly of illness in Babylon at the age of 32. His massive empire was divided 
into three, although united under the banner of Greek culture. When Ptolemy the 
Great became ruler of Egypt, he made Alexandria its capital. In order to attract 
the greatest minds to the city, he established the Mouseion, a research institution 
comparable in size and scope to modern research universities. At its center was a 
large library, the famous Library of Alexandria, said to have contained more than 
600,000 papyrus scrolls. From that time on, Alexandria was the spiritual and cultural 
capital of Greece for nearly a thousand years. As late as the nineteenth and twentieth 
centuries, Constantine P. Cavafy (1863–1933), the most celebrated modern Greek 
poet, chose to spend most of his life in Alexandria. 

Euclid came to Alexandria during this period of flourishing, and presumable the 
Elements was written around the same time. Almost all of the theorems of geometry 
and number theory presented in the book were known before his time, generally 
alongside the proofs he gives for them, but Euclid organized and systematically laid 
out in logical order these preexisting materials and set them up atop an appropriate 
selection of axioms and postulates. This is by no means an easy task, but rather 
requires tremendous judgment and insight. He was careful also in the arrangement 
of the theorems to ensure that each new theorem was logically consistent with its 
precursors. Euclid was recognized as the foremost authority on geometry in ancient 
Greece, and the Elements quickly replaced every earlier textbook. 

The nature of the Elements presumably exhibits some of the influence on its 
author of his time at the Platonic Academy. Plato had emphasized the abstract 
nature of reality and the importance of mathematics for philosophical thought. His 
influence led some mathematicians, including Euclid, to divorce their mathematical 
activities from practical considerations. In what became the most important math-
ematical textbook of the ancient world, perhaps even of all time, Euclid began his
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treatise with a statement of its definitions, axioms, and postulates. He defined a point 
to be that which has no part, a line (which we would now more commonly call a 
curve) to be a breadthless length, a straight line to be a line which lies evenly with 
the points on itself, and so on. The text is divided into 13 books: Books 1 through 6 
discuss plane geometry, Books 7 through 9 discuss number theory, Book 10 is about 
irrational numbers, and Books 11 through 13 present solid geometry. In total there 
are 465 propositions, built atop 5 axioms and 5 postulates. In particular, attempts to 
prove or replace Euclid’s fifth postulate led to the birth of non-Euclidean geometry, 
as we will discuss in detail in Chap. 7. 

I would like to introduce specifically the sections of the book dealing with 
number theory. Many of the number theoretic propositions still appear today 
in textbooks on elementary number theory. Chapter 7 introduces a method for 
determining the greatest common divisor of two or more positive integers, known 
today as the Euclidean algorithm, and uses it to determine when two numbers 
are relatively prime. Proposition 14 in Book 9 is equivalent to the fundamental 
theorem of arithmetic, which states that any positive integer larger than 1 can be 
uniquely decomposed as a product of prime powers. Proposition 20 in the same 
book proves the infinitude of prime numbers, and the proof itself is frequently 
presented as a model example of mathematical proof. All of these results are 
indispensable to modern number theory and appear in any elementary treatment 
of the subject. Proposition 36 presents a sufficient condition for an even number to 
be a perfect number, contributing to a problem originating with Pythagoras and still 
not completely resolved at present. 

Finally, I would like to relate two famous anecdotes concerning Euclid, both of 
which appear in annotations to the Elements by later Greek commentators. It is said 
that Ptolemy the Great found the book too difficult to understand and asked Euclid if 
there was not some easier way to master its contents, to which Euclid replied, “there 
is no royal road to geometry!” On another occasion, one of his students asked Euclid 
what could be gained from the study of geometry. Euclid made no direct answer, but 
rather sent a servant to bring the student a coin with the words “give him a coin, since 
he must profit from what he learns.” 

Since Gutenberg’s invention of the printing press in fifteenth-century Germany, 
Euclid’s Elements has appeared in thousands of editions around the world. It is 
considered to have made a major contribution to the development of modern science, 
and its logical structure and rigorous deductive reasoning continue to fascinate even 
contemporary thinkers. The first Latin version of Euclid’s Elements was translated 
from Arabic, since versions in its original language had vanished at that time from 
the world following the successful burning of the Library of Alexandria first by the 
Roman army and later by Christian extremists. It was first translated into Chinese by 
the Italian missionary Matteo Ricci (1552–1610), in collaboration with Xu Guangqi 
(1562–1633) in the seventeenth century, but they translated only the first six books. 
It was two and half centuries before the British missionary Alexander Wylie (1815– 
1887) and Li Shanlan (1810–1882) prepared a complete translation.
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Archimedes 

On the strength of Euclid’s reputation, the Mouseion at Alexandria became famous 
for mathematics and attracted young talents from all walks of life. The most famous 
of these was Archimedes (287 BCE–212 BCE). Biographical details concerning 
Archimedes are more reliable than for many mathematicians of the period due to the 
careful efforts of Roman historians. He was born in Syracuse in southeastern Sicily, 
the son of an astronomer. In his youth, Archimedes studied under the disciples of 
Euclid in Egypt, and he remained collegiate with the Alexandrian scholars even after 
his return to Alexander. Indeed, the letters between them form the main record of 
his academic achievements. For this reason, he is numbered among the members of 
the Alexandrian school (Fig. 2.16). 

Archimedes wrote prolifically, mostly in the form of brief manuscripts rather 
than long treatises, perhaps the first person in the history of mathematics to 
adopt a format that anticipates the modern journal article. The contents of these 
works include mathematics, mechanics, and astronomy. The geometric works are 
Measurement of a Circle, Quadrature of the Parabola, On Spirals, On the Sphere 
and the Cylinder, On Conoids and Spheroids, and On the Equilibrium of Planes. 
The works dealing with mechanics are On Floating Bodies and The Method of 
Mechanical Theorems. There is also a sort of astronomical divertimento entitled 
The Sand Reckoner, written for a young prince who later inherited the throne and 
continued to look kindly upon Archimedes, an apparently apocryphal text entitled 
Book of Lemmas that survived only in Arabic, and a mathematical poem of 44 

Fig. 2.16 Portrait of 
Archimedes (1620)
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lines entitled The Cattle Problem and addressed in a subtitle to the Alexandrian 
mathematician Eratosthenes and his colleagues. 

As a geometer, Archimedes was most adept in the calculation of areas, volumes, 
and related problems, in which he far surpassed the results in Euclid. As one 
example of his work, he evaluated the circumference of a circle using the method 
of exhaustion: by increasing the number of sides of regular polygons inscribing and 
circumscribing a given circle, he was able to achieve better and better approxima-
tions with the increase in the number of sides of the polygons. In particular, he was 
able to conclude from polygons with 96 sides that the number . π lies greater than 
.
223
71 and smaller than . 22

7 , the most precise approximation in ancient history. By the 
same method, he was able to show that the surface area of a sphere is four times the 
area of a great circle lying on it and therefore calculate precisely the surface areas 
of given spheres (Fig. 2.17). 

But while the method of exhaustion is a powerful tool for proving results already 
known or conjectured to be true, it is ill-suited to the discovery of new results. For 
this purpose, Archimedes developed a method involving equilibrium and the law 
of the lever; this method makes use of infinitesimals and anticipates the notion of 

Fig. 2.17 1534 edition of the 
writings of Archimedes
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limits and the differential method of modern integral calculus. Archimedes was able 
to discover using this method the formula 

. V = 4

3
πr3

for the volume V of a sphere in terms of its radius r . He also provided a 
rigorous proof of this result using the method of exhaustion. By the same method, 
Archimedes was able to determine that the ratio between the area of enclosed 
between a parabolic arc and a straight line and a triangle with equal base and height 
is .4 : 3. The discovery of this proposition is a corroboration of the proportionality 
of Pythagorean numbers. 

Archimedes was more of an applied mathematician than Euclid seems to have 
been, and there are many stories and legends concerning his practical achievements. 
The Roman architect Vitruvius composed a work in ten volumes called De 
architectura dedicated to the preservation of classical traditions in the architecture 
of temples and public buildings. The ninth volume of this work relates an anecdote 
that has remained famous through the ages. The King of Syracuse had ordered as a 
display of gratitude and largesse for a golden crown to be fashioned and placed in 
a certain temple. After the completion of this work, rumor began to spread that 
a certain portion of gold had been pilfered by the goldsmith and replaced with 
silver. The king invited Archimedes to appraise it, and as he was thinking about 
the problem during his daily bath, Archimedes noticed that as he lowered his body 
into the water, more and more of it flowed over the sides. He realized that this was 
the solution of the problem, that the specific gravity and composition of a solid can 
be measured by the water it displaces. Allegedly he jumped out of the baths and 
immediately ran home without even remembering to get dressed, shouting along 
the way “Eureka!”, meaning “I’ve got it!” 

Less trivially, Archimedes discovered the basic principle of fluid mechanics, or 
the law of floating bodies, after much careful thought and experimentation: the 
weight of an object in a fluid medium is equal to the weight of the water displaced 
by it. According to Pappus, the last great geometer of ancient Greece, Archimedes 
once also declared “if you give me a lever and a place to stand, I can move the 
world.” As evidence for this claim, he is supposed to have devised a set of pulleys 
that enabled the king to move with his own strength a three-masted galleon. The king 
was suitably impressed and replied that from that time on it would be necessary to 
believe anything that Archimedes said. Even in modern times, the huge ships that 
pass through the Panama Canal or the Suez Canal are pulled on their way by means 
of tracked pulleys. 

Archimedes was able to make such bold and confident claims because he had 
mastered already the principle of leverage. He used this knowledge and his expertise 
to defend his city and finally died for his country. During the third and second
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centuries BCE, commercial and territorial conflicts between Carthage,6 neighboring 
Syracuse, and the Romans had bubbled over into wars, known as the Punic Wars. 
The second of these wars saw Syracuse dragged into the fray as Carthaginian allies. 
In 214 BCE, the Romans surrounded Syracuse. 

According to legend, the citizens of Syracuse first employed cranes invented by 
Archimedes to lift the ships near the shore or the walls of the city and slam them 
down again with great force and powerful machinery to rain boulders down on the 
retreating invaders like torrential rains. An especially extravagant embellishment has 
it that Archimedes used a huge mirror to focus the rays of the sun upon the Roman 
ships and light them ablaze. A more credible account is that they set the ships on 
fire with burning projectiles. The Romans changed strategy eventually and mounted 
a long siege until finally Syracuse fell due to exhaustion and scarcity of food and 
ammunition. Archimedes is said to have been drawing up geometric figures in the 
sand when the Romans finally took the city, and a reckless soldier put him to death 
on the spot. The death of Archimedes marked the beginning of the decline of Greek 
mathematics and the splendid culture of Greece. The Romans that replaced them 
established in their place a philistine rule. 

Other Mathematicians 

Just at the time that the Romans captured Syracuse, another representative of the 
Alexandrian school of mathematics named Apollonius of Perga (ca. 262 BCE– 
ca. 190 BCE) was on the verge of completing his life’s work. Apollonius was 
born in Pamphylia in southern Asia Minor, not far from the island of Rhodes. 
Like Archimedes, Apollonius studied mathematics at Alexandria in his youth. His 
greatest achievement was the treatise Conics, in which appeared for the first time 
in a mathematical book the parabola, hyperbola, and ellipse with which we are all 
familiar today (Fig. 2.18). 

Apollonius defined the conic sections as follows. Given any circle and a point 
lying outside the plane of the circle, draw any straight line connecting the point 
to a point on the circumference of the circle. The movement of the line along the 
circumference generates the surface of a cone with two branches. A section of the 
cone is the curve produced by its intersection with a plane. If the plane does not 
intersect the circular base, then the curve is an ellipse; if it does intersect the base, but 
does not run parallel to any of the generating lines, then the section is a hyperbola; 
and if it intersects the base and also runs parallel to one of the generating lines, 
then the section is a parabola. Apollonius also defined and studied the diameters, 
tangents, centers, asymptotes, foci, etc. of the conic sections.

6 An ancient country established by Phoenicians and centered about what is now Tunisia in North 
Africa. During its greatest period, its territory stretched from Sicily in the east, to Morocco and 
Spain in the west. 
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Fig. 2.18 Geometric 
construction of the conic 
sections 

Apollonius used the methods of pure geometry to obtain some of the major 
results of analytic geometry, introduced nearly two millenia later, a remarkable 
achievement. His theory of conic sections marks perhaps the high point of Greek 
deductive geometry, and later generations referred to him alongside Euclid and 
Archimedes as the three great mathematicians of early Alexandria. They are the 
main figures of the golden age of Greek mathematics. Subsequently, after the 
expansion of the Roman empire, academic research in Athens and other cities 
quickly withered away. Nevertheless, the inertial influence of Greek civilization and 
the lax attitude of the Romans toward freethinking in remote Alexandria meant 
that there were still mathematicians producing substantial results even in later 
Alexandria. 

For the most part, this second school of Alexandrian mathematicians did not 
contribute much to geometry. The only result worth mention is Heron’s formula 

. � = √
s(s − a)(s − b)(s − c)

for the area . � of a triangle in terms of its three sides a, b, c and its perimeter 
.2s = a + b + c. It came to light later that even this formula had been discovered 
earlier by Archimedes, although it does not appear in any of his extant works. 

More significant was the establishment of trigonometry. Work in this area was 
presented in an influential astronomical text entitled the Almagest and written by 
a mathematician, geographer, and astronomer with the same name Ptolemy as the 
earlier pharaohs of Ptolemaic Egypt. This book propounded a detailed geocentric 
model of the solar system and became a classic of western astronomy throughout 
the Middle Ages. Its author is considered to have been the greatest astronomer of 
ancient Greece. Ptolemy also gave a fast an efficient approximation method for .π
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and obtained the value (in sexagisemal) .3; 8, 30 = 377
120 = 3.141666 . . . . Finally, 

there is Ptolemy’s theorem, which states: 

if a quadrilateral is inscribable in a circle then the product of the lengths of its diagonals is 
equal to the sum of the products of the lengths of the pairs of opposite sides. 

An important feature of the later period of Alexandrian mathematics was that 
it broke from the geometric tradition of earlier times and treated arithmetic and 
algebra as independent subjects. The arithmetic of the Greeks is what today we call 
number theory, although some authors retain the archaic usage of arithmetic; for 
example, the preeminent journal of number theory in Poland is Acta Arithmetica. 
After Euclid, the most important work in number theory was Arithmetica, by  
Diophantus (ca. 246–330). The title is in Latin, translated from an Arabic translation 
of the original, which is lost. This book is famous for its treatment of indeterminate 
equations, also called Diophantine equations. These are algebraic equations with 
integer coefficients and solutions required to be integers. Usually, the number of 
unknowns is more than the number of equations. 

The best known problem in this book is Problem 8 in Volume 2 which requires 
the statement of a known square number as a sum of two square numbers. In the 
seventeenth century, the French mathematician Pierre de Fermat added a note to 
this margin of his copy of Arithmetica next to this problem, and this note became 
Fermat’s Last Theorem, which attracted the interest of the entire world some time 
later. Diophantus, who is generally believed to have lived around 250 CE, also 
makes an appearance in Greek anthology of number games and puzzles from the 
first year of the sixth century, in the form of a poem or epitaph: 

Here lies Diophantus,’ the wonder behold. 
Through art algebraic, the stone tells how old: 
‘God gave him his boyhood one-sixth of his life, 
One twelfth more as youth while whiskers grew rife; 
And then yet one-seventh ere marriage begun; 
In five years there came a bouncing new son. 
Alas, the dear child of master and sage 
After attaining half the measure of his father’s life chill fate took him. After consoling his 
fate by the science of numbers for four years, he ended his life. 

This riddle is equivalent to solving the equation 

. x = x

6
+ x

12
+ x

7
+ 5 + x

2
+ 4,

which has solution .x = 84, implying that Diophantus died when he was 84 years 
old. 

Pappus, whom we have already mentioned, lived sometime around the year 
320, at which time the Chinese mathematician Liu Hui was alive already. Like 
Diophantus, Pappus left behind a single well-known work, the Synagoge, or  
Collection, which is regarded as a kind of requiem for Greek mathematics. The most 
notable conclusion in it is that a circle is the largest plane area that can be contained 
by a closed curve of fixed circumference. This is an example of an extreme value
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problem and can be considered a part of relatively advanced mathematics. This book 
also recounts four attempts to solve the problem of doubling the cube, the first of 
which was due to Eratosthenes (ca. 276–ca. 194 BCE). Eratosthenes was born in 
Cyrene in modern-day Libya and studied in Alexandria. He earned a reputation as 
a second Plato, but he was a much more versatile character, a poet, philosopher, 
historian, astronomer, and pentathlon athlete. 

In number theory, there is the so-called Sieve of Eratosthenes associated with 
him, an algorithm for finding all prime numbers up to any given size, and the original 
method for the construction of prime tables. Even as late as the twentieth century, 
research into Goldbach’s conjecture that every even number larger than two can be 
expressed as the sum of two primes relied primarily on variations of this method. 
Eratosthenes was also the first person to achieve a reasonably accurate calculation 
of the circumference of the earth, a considerably better result than his colleague in 
Alexandria Archimedes was able to achieve. In the practical sphere, Eratosthenes 
took the lead in marking out the five climatic zones of the earth, a division still 
in use today. He also analyzed and compared the waters of the Mediterranean, 
belonging to the Atlantic water system, and the Red Sea, belonging to the Indian 
Ocean water system. He concluded that the two were connected, paving the way for 
the Portuguese explorer Vasco de Gama to reach India by water at the end of the 
fifteenth century (Fig. 2.19). 

Nevertheless, the map of the world drawn by Eratosthenes, which was suppos-
edly the first of its kind in human history, revealed that the known world of the 
Greeks was still very limited (in the figure, the Arabian Gulf is the Red Sea, and 
the Erythraean Sea is the Indian Ocean, missing of course the eastern part of Asia, 

Fig. 2.19 Map of the world by Eratosthenes, ca. 220 BCE
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the Americas, Australia, and Antarctica). This suggests that their achievements in 
mathematics and art, which marked the high point of human achievement in the 
classical era, were still piecemeal and incomplete, planting seeds for the emergence 
and growth of modernism in the first half of the nineteenth century, which saw 
mathematical expression as non-Euclidean geometry and noncommutative algebra. 

Conclusion 

It is easy to see from the discussion above that Greek mathematics was characterized 
by two outstanding features: its abstraction and deductive spirit on the one hand and 
on the other its connection with philosophy. As Morris Kline put it, the mathematical 
knowledge accumulated by the Egyptians and the Babylonians was like a castle in 
the sky, or a house made of sand, that crumbles and collapses under the slightest 
touch, while the Greeks built up impregnable and eternal mathematical palaces. 
And just as music lovers appreciate music purely for its combination of structure, 
harmony, and melody, the Greeks appreciated beauty as order, completeness, 
consistency, and clarity. Plato wrote, “Whatever we Greeks receive, we improve 
and perfect it.” 

Plato truly loved geometry, and Aristotle was not willing to separate mathematics 
from aesthetics. He felt that the principles of order and symmetry that are so 
important to the appreciation of beauty are not difficult to find in mathematics. In 
fact, the ancient Greeks considered the sphere to be the most beautiful of all shapes 
and therefore that it was sacred and good. They also admired the circle. It was not 
unnoticed that the planets in their heavenly trajectories seem to move along a circle, 
while in the sublunary world below, things tend to move in straight lines. It was 
precisely because mathematics held some aesthetic appeal for the Greeks that they 
insisted on exploring mathematical theorems and principles beyond the remit of 
nature. 

The Greeks were also philosophers by nature, possessed a deep and sincere 
love for reason, sport, and spiritual activity, a significant distinction from other 
civilizations of the time. The period from Thales of Miletus in the sixth century 
BCE to the death of Plato in 337 BCE was the honeymoon of mathematics and 
philosophy, and the two disciplines frequently coexisted even in a single person. One 
of the distinguishing features of Greek philosophy is that it takes the entire universe 
as its object of study; it is all-encompassing. There is no doubt connected with 
the infancy of the development of mathematics at that time. The mathematicians 
could only discuss simple geometry and arithmetic and could not do anything with 
movement and change, leading to such problems as Zeno’s paradoxes. They had no 
choice but to take on the role of philosophers to interpret the world. 

As the Greek city-states fell under the rule of Macedonia after 338 BCE, the 
center of Greek mathematics shifted from Athens to Alexandria in the southern 
Mediterranean, and the honeymoon period of mathematics and philosophy came 
to an end. In spite of this, the highest crystallization of logical deduction in the
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Fig. 2.20 Death of the philosopher Hypatia, Alexandria (1866) 

ancient world emerged in its afterglow, Euclid’s Elements. The significance of this 
book was not only the many wonderful theorems it contains but rather the spirit 
of rational deduction that it inculcates. Generation after generation of European 
thinkers learned impeccable reasoning from this book. No doubt its influence is 
also felt in the enduring democratic institutions and rich judicial systems of western 
society (Fig. 2.20). 

It must be pointed out that the leisurely pursuit of rational enquiry in Greece was 
facilitated by the many native and foreign slaves who were responsible for farming 
the land, harvesting crops, and engaging in the menial tasks of the city-state. Such a 
lifestyle cannot last in the absence of material abundance. Eventually, the pragmatic 
Romans took the place of the aesthetic Greeks, as much later the spirit of material 
progress in the United States gained prominence over the more idealist temperament 
of Europe. In the year 415 CE, the first known female mathematician in the history 
of mathematics Hypatia (ca. 370–415) was slaughtered by a Christian mob in her 
home city Alexandria, and the inevitable final decline of Greek civilization became 
undeniable. 

Hypatia’s father provided the most authoritative ancient commentary on Euclid’s 
Elements, and Hypatia herself contributed annotations to the Arithmetica by Dio-
phantus and the Conics by Apollonius. She was also the leader of the Alexandrian 
Neoplatonists, and she was said to have attracted a large number of admirers 
on account of her beauty, kindness, and extraordinary talents. Unfortunately, her 
commentaries have all been lost, and we do not even have any record of her
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philosophical writings. The only remaining documents connected with Hypatia 
are letters written to her by her students, asking her about the construction of the 
astolabe and the water clock. 

Following the retreat of the Greek civilization, in both the ancient Roman period 
and the long Middle Ages, mathematics and philosophy drifted apart. We shall see 
however in the next two chapters that this created an opening for several ancient 
eastern countries to take the stage of our world history. It was not until the sixteenth 
century that a reunification began. In the words of Russell: 

Of much greater importance in the thinking of the Italian humanists was the renewed 
emphasis on the mathematical tradition of Pythagoras and Plato. The numeric structure 
of the world was once again emphasized, thus displacing the Aristotelian tradition that had 
overshadowed it. 

In the seventeenth century, the birth of calculus brought mathematics and 
philosophy closer to one another again, but by that time the philosophers had 
narrowed the scope of their research to determining only how it is that people 
understand the world.



Chapter 3 
The Chinese Middle Ages 

The carpenter’s square is not square, compasses cannot make 
circles; The shadow of the flying bird never moves. 

Hui Shi (as recorded in the Zhuangzi) 

Prologue 

The Pre-Qin Era 

Just at the time that the civilizations of Egypt and Babylon were developing in 
the borderlands of the three continents of Asia, Africa, and Europe, another very 
different civilization was emerging in the far east and spreading out along the river 
basins of the Yellow River and the Yangtze River: the Chinese civilization. Scholars 
generally believe today that in ancient times migration between the Tarim Basin in 
modern-day Xinjiang and the Euphrates riverlands was impossible on account of a 
forbidding series of mountain ranges, harsh deserts, and the ferocity of the nomadic 
tribes of the region. Sometime between the years 2700 BCE and 2300 BCE, the Five 
Emperors of legend emerged in ancient northern China and after them a series of 
dynasties one after another.1 Although the bamboo boards which were traditionally 
used for the inscription of Chinese characters are not so durable as clay tablets or 
papyrus books, nevertheless the science historian Joseph Needham has pointed out 
that a great wealth of ancient texts have survived intact in China due to the diligent 
record keeping of the Chinese people (Fig. 3.1). 

Like both Babylon and Egypt, China in ancient times had grasped already the 
mathematical seeds of number and shape. Although the Shang oracle bones have 
been only incompletely deciphered, they have been found to contain a complete 
decimal system; strict calculations and counting appeared at the latest in the spring 

1 The announcement in 2007 of the discovery of ancient city wall relics at the Liangzhu Ancient 
City in Zhejiang Province suggests that the Xia Dynasty was not the first dynasty in the history of 
Chinese civilization. 
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Fig. 3.1 Arithmetical notation of ancient China 

and autumn period and the Warring States period. This notational system consisted 
of vertical and horizontal counting rods, representing even and odd digits, with a 
blank space where zero would go. The first century BCE Chinese historian Sima 
Qian (ca. 145 BCE–ca. 90 BCE) writes in his Records of the Grand Historian, 
Annals of the Xia Dynasty (史记 . ·夏本纪); “[Xia Yu] surveyed the nine mountains, 
with a water level and chalk line in his left hand, a compass and carpenter’s square 
in  his  right. . . .2 ” This can be regarded as an early application of geometry. 

It is perhaps more noteworthy that, just at the time when the Athenian school in 
Greece was overflowing with discourse on philosophy and theoretical mathematics, 
the Warring States period in China (475 BCE–221 BCE) too was teeming with 
all manner of scholars, belonging to what has been called the Hundred Schools 
of Thought. This was the time in world history when philosophers were springing 
up across the globe, sometimes called the axial age, a term coined by the German 
philosopher Karl Jaspers (1883–1969). Among the works of this period, the Mojing 
(墨经) is representative of the Mohist philosophy of logic and rational thought; 
in it appear certain laws for formal logic, and built atop them a series of abstract 
mathematical definitions, even involving the concept of infinity. The logicians of 
the Ming school (or Mingjia, 名家), known for their eloquence, expressed a deeper 
understanding of the infinite. The landmark book Zhuangzi (庄子) of the Taoist 
philosophical tradition records the proposition of the representative of the Ming 
school Hui Shi: “The largest thing has nothing beyond it; it is called the One of 
largeness. The smallest thing has nothing within it; it is called the One of smallness.” 
The largest thing here indicates the infinite universe; the smallest thing can be 
considered equivalent to the atoms of Democritus. 

Hui Shi (ca. 370 BCE–ca. 310 BCE) was a philosopher of the Song state under 
the Zhou Dynasty in modern-day Henan Province, and his reputation in his time 
was second only to Confucius and Mozi. He served for 15 years as chief minister of 
the Wei state and advocated for the unification with the Qi and Chu states against 
the Qin with considerable political success. Hui Shi and his contemporary Zhuang 
Zhou, author of the Zhuangzi, were at once friends and rivals. The Debate on the 
Joy of Fish between the two of them is among the famous dialogues in Chinese 
philosophy. After the death of Hui Shi, Zhuang Zhou is said to have remarked that 
there was no one left to talk to anymore. Hui Shi and the Ming school with which

2 Tr. Tsai-fa Cheng, Zongli Lu, William H. Nienhauser, Jr., Robert Reynolds 
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he was associated are remembered for many wonderful and paradoxical statements 
involving mathematical concepts: 

The carpenter’s square is not square, compasses cannot make circles; 
The shadow of the flying bird never moves; 
No matter how swift the barbed arrow, there are times when it is neither moving nor at rest; 
Take a pole one foot long, cut away half of it every day, and at the end of ten thousand 
generations, there will still be some left;3 

and so on. It is easy to see the resemblance to the paradoxes invented by Zeno in 
Greece about a century earlier. The immediate successor to Hui Shi was Gongsun 
Long (325 BCE–250 BCE), who was famous for the aphorism “white horses are 
not horses.” This paradox is generally interpreted as pointing toward the distinction 
between the general and the particular, but inevitably it has also given rise to 
accusations of shallow sophistry. 

Regrettably, the Ming school and Moist philosophical traditions were exceptions 
among pre-Qin thought. The more socially influential works in the Confucian, 
Taoist, and Legalist traditions paid little heed to mathematics and abstract topics, 
but rather were focused exclusively on the successful governance of the state and 
the world, social ethics, and the sound cultivation of body and mind, markedly at 
odds with the austere rationalism of ancient Greek philosophy. After Qin Shi Huang, 
the first emperor of Qin, unified China, he put a decisive stop to the contention of 
the Hundred Schools of Thought and burned the history books and folk collections 
of various states. By the time of Emperor Wu of the Han dynasty (around 140 BCE), 
the only female emperor in the history of China, Confucianism had monopolized the 
intellectual landscape, and the mathematical disputations of the Ming school and the 
Moists had no opportunity for further development. On the other hand, due to a long 
period of social stability and increased exposure to the outside world, the economy 
had blossomed to an unprecedented level of prosperity, driving the development of 
mathematics along practical and computational lines, with greater success. 

Zhoubi Suanjing 

In the year 47 BCE, the Library of Alexandria was partially burned by the Roman 
army under the command of Julius Caesar in the course of military operations 
intended to assist his lover Cleopatra in the seizure of Egyptian power. Cleopatra 
was the second daughter of Ptolemy XII Auletes, and she ruled alongside her 
two younger brothers Ptolemy XIII and Ptolemy XIV and her son with Caesar, 
Caesarion. At this time, China was under the rule of the Western Han dynasty 
and experiencing its first period of ascendance in mathematical achievement. It is 
generally believed the greatest masterpiece of classical Chinese mathematics, the 
Nine Chapters on the Mathematical Art, was written during this era (around the

3 Tr. Burton Watson 
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Fig. 3.2 The earliest known mathematical work in China, the Book of Numbers and Computations 

first century BCE). The oldest Chinese mathematical classic, the Zhoubi Suanjing,4 

presumably came a bit earlier (Fig. 3.2). 
It is worth mentioning here, however, that although Needham agrees that the 

mathematical level of Nine Chapters on the Mathematical Art is more advanced 
than that of the Zhoubi Suanjing, nevertheless the earliest date we can assign to the 
latter according to the archaeological evidence is in fact two centuries later than 
the former. This lacuna is a source of some disappointment to archaeologists and 
historians of mathematics. Needham himself remarks in his landmark Science and 
Civilization in China that some of the results in the Zhoubi Suanjing are so early 
that it seems impossible not to believe that its composition dates back to the Warring 
States period. 

In addition to the uncertain provenance of the Zhoubi Suanjing, its author is also 
completely unknown, a situation very different from the fate of Euclid’s Elements 
in Greece. There are two most interesting mathematical results in this book. One of 
these is the Gougu theorem, as the Pythagorean theorem concerning right triangles 
is known in China. This was derived earlier than Pythagoras, but there is no detailed 
proof of this result like that of Proposition 47 Book 1 of the Elements. Rather this 
proposition is recorded in the form of a dialogue between the Duke of Zhou and his

4 In fact, an earlier Western Han text written across 190 bamboo strips and entitled Book of 
Numbers and Computations (算数书), was unearthed in a tomb in Zhangxiangshan in Hubei 
Province in 1984. This text, which consists of a collection of problems, is now the earliest known 
Chinese mathematical text. 
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astronomer and mathematician Shang Gao in the early years of the Western Zhou 
dynasty (eleventh century BCE). This marks these two out as the earliest characters 
in the history of Chinese mathematics. 

The Duke of Zhou, whose personal name was Dan (旦), was the fourth son 
of King Wen of Zhou and the younger brother of King Wu. After King Wu died 
and left the kingdom to his son, the Duke of Zhou became regent and oversaw the 
administration of the kingdom, provoking revolts, which he successfully put down, 
before dutifully acquiescing to a peaceful transfer of power when King Cheng came 
of age after 7 years had passed. As regent, the Duke of Zhou is also credited with 
formalizing the legal and ritual basis of the feudal system of ancient China, the 
foundations atop which the Zhou dynasty endured for a further 800 years. Confucius 
revered him as a model of the ideal. 

Returning to the Zhoubi Suanjing, Shang Gao answers the question posed to him 
by the Duke of Zhou with the remarks: 

. . . a  base  of  three  in  breadth,  the  altitude  makes  four,  and  the  diameter  is  five  diagonally. 

This is a special case of the Pythagorean theorem, which for this reason is also 
referred to as the Shang Gao theorem in China. Shang Gao also outlined a proof 
of the theorem. Its other name in Chinese uses the characters 勾 (gou) and 股 (gu), 
meaning hook and thigh (or thigh bone), respectively, but which were understood 
in ancient Chinese to refer to the shorter and longer sides about the right angle of a 
right triangle, that is, its base and altitude (Fig. 3.3). 

The Zhoubi Suanjing also records a dialogue between the two figures Chen Zi and 
Rong Fang who are presumed to be later descendants of the Duke of Zhou (sixth 
and seventh centuries BCE) which includes the general form of the Pythagorean 
theorem: 

Take the point beneath the sun as the base, and the height of the sun as altitude, square both 
the base and the altitude and add them, and take the square root to get the oblique distance 
to the sun. 

It is easy to see that this rule was obtained as part of the study of astronomical 
measurements. Another important mathematical result contained in the Zhoubi 
Suanjing is solar height formula, which was widely used in early astronomy and 

Fig. 3.3 Graphical proof of 
the Pythagorean theorem by 
Zhao Shuang
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calendrical calculation. For a long time, it was not known how this formula came 
about, until 1975 when the contemporary Chinese mathematician Wu Wenjun 
(1919–2017) restored its proof. 

In addition, there appear also the use of fractions, a discussion of multiplication, 
and a method for finding greatest common denominators, indicating that the concept 
of square roots was already in use. It is also worth mentioning that the dialogue 
in the Zhoubi Suanjing touches also upon the rules and regulations of the three 
mythological figures Yu the Great, who was said to have controlled the waters, 
Fu Xi, and Nüwa. The discussion reveals an early familiarity with surveying 
methodology and applied mathematics. There are also sporadic bits of geometry, 
arising as questions of measurement. Needham argues that this seems to indicate 
that the Chinese people have exhibited arithmetical and mercantile acumen since a 
very early date. On the other hand, there does not seem to have been much interest 
in abstract geometry made up of general theorems and propositions atop axiomatic 
foundations, without specific numerical motivation. 

It is gratifying, however, that the Eastern Wu mathematician Zhao Shuang, 
a third-century commentator on the Zhoubi Suanjing, independently proved the 
Pythagorean theorem in a very beautiful way, by a method of complementary areas. 
Let the lengths of the two sides about the right angle of a right triangle be a and b 
as in the figure, with .b > a. Then the square with hypotenuse c as its sidelength 
can be decomposed into five areas consisting of a square with sidelength .b − a and 
four triangles congruent to the original right triangle. After some simplification, this 
gives again .a2 + b2 = c2. This is similar in favor to the proof we have encountered 
already in our discussion of Pythagoras above, but whereas that proof is attributed 
to him only by way of later speculation, the proof presented by Zhao Shuang is 
authoritatively documented, and moreover he included with his annotations a very 
beautiful diagram. 

Nine Chapters on the Mathematical Art 

Unlike the Zhoubi Suanjing, somewhat more is known about the authorship and 
year of composition of the classic Nine Chapters on the Mathematical Art. This  
book was almost certainly developed from the Nine Arithematical Arts, one of six 
compulsory courses (the six arts) taught to the sons of Western Zhou nobles; later 
it was compiled and supplemented by two mathematicians during the Western Han 
dynasty, under the leadership of Zhang Cang, a famous politician and thinker who 
had personally contributed to the formulation of laws, measures, and weights as 
prime minister under Emperor Wen of Han. In general, the Nine Chapters on the 
Mathematical Art seems to be the product of a continual process of synthesis and 
revision lasting from the pre-Qin era through to the middle of the Western Han 
dynasty (Fig. 3.4). 

The book takes the form of a problem set, containing 246 problems divided 
across its 9 chapters, which are as follows: .(1) Fangtian (方田) – Bounding Fields,
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Fig. 3.4 The Nine Chapters on the Mathematical Art, Qing dynasty engraving 

.(2) Sumi (粟米) – Millet and Rice, .(3) Cuifen (衰分) – Proportional Distribution, 

.(4) Shaoguang (少廣) – Dimension Reduction, .(5) Shanggong (商功) – Figure 
Construction, .(6) Junshu (均輸) – Equitable Taxation, .(7) Yingbuzu (盈不足) –  
Excess and Deficit, .(8) Fangcheng (方程) – Equations, and .(9) Gougu (勾股) –  
Right Triangles. It can be seen from the chapter titles alone that the primary focus 
of the book is calculation and mathematical applications. The only materials related 
to geometry concern primarily the calculation of areas and volumes. 

The chapters entitled Millet and Rice, Proportional Distribution, and Equitable 
Taxation deal with proportions of numbers in a way that contrast sharply with the 
geometric theory of proportions developed by the Greeks via line segments. The 
topic of Proportional Distribution is concerned with distribution of wealth and 
commodities according to fixed proportional rates, Equitable Taxation addresses 
more advanced problems of proportion, and Millet and Rice concerns the solution 
to even distribution of the burden of grain transportation. 

The most academically valuable arithmetic problem in the book is the method 
of excess and deficit, which concerns the solution of equations using the principle 
known later as the rule of false position. Consider an equation .f (x) = 0, and 
suppose the two values .f (x1) = y1 and .f (x2) = −y2 are known. Then the root 
is given by 

. x = x1y2 + x2y1

y1 + y2
= x1f (x2) − x2f (x1)

f (x1) − f (x2)
.

If f is linear, then this solution is exact, whereas for nonlinear f , it provides only 
an approximation. From the modern perspective, this technique is equivalent to the 
method of linear interpolation.
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In the thirteenth century, the Italian mathematician Fibonacci included in his 
treatise the Liber Abaci a chapter devoted to the method of excess and deficit, 
which he called the Method Elchataym, transliterating an Arabic word which has 
been conjectured to refer to the archaic designation Khitan or Cathai for China, 
although it also translates directly as the two errors. It is all the same by no means 
inconceivable that this method was spread to Arabic countries through Central Asia 
by way of the Silk Road and later transmitted to the western world via Arabic 
sources. 

The Nine Chapters on the Mathematical Art presents more substantial results in 
the field of algebra. In the chapter Fangcheng dealing with equations, there appear 
already solutions to linear systems of equations, for example, 

. 

⎧
⎪⎪⎨

⎪⎪⎩

x + 2y + 3z = 26

2x + 3y + z = 34

3x + 2y + z = 39

.

Such systems are presented without the use of any symbol for unknown or 
indeterminate quantities. Rather, the coefficients and constants are presented as an 
array or matrix, as in 

. 

1 2 3
2 3 2
3 1 1
26 34 39

.

Then by a method referred to as multiply and directly divide, this system is 
transformed so that there are zeros everywhere except along the antidiagonal: 

. 

0 0 4
0 4 0
4 0 0
11 17 37

,

from which the solution can be obtained. This method is equivalent to that known 
in western countries as Gaussian elimination, and this art of equation solving is 
considered a jewel in the history of Chinese mathematics (Fig. 3.5). 

There are two more very notable features of the Nine Chapters on the Mathe-
matical Art. The first is the inclusion of both positive and negative numbers and 
the rules for the addition and subtraction of both. The other concerns the root 
extraction method, about which it is stated, “if the root extraction method continues 
without end, then it is impossible to extract the root.” The former shows that 
Chinese mathematicians were comfortable with negative quantities very early on, 
in contrast with Indian mathematicians, who introduced negative numbers in the
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Fig. 3.5 Representation of 
simultaneous equations by 
counting-rods 

seventh century, and western mathematicians, who accepted them only much later. 
The latter shows that Chinese mathematicians were aware already of the existence 
of irrational numbers, although they did not pay it serious heed on account of its 
inclusion as a curiosity in the process of solving equations. The Greeks, who prized 
rigorous deduction above all things, took more notice; they were not ones to easily 
abandon an opportunity worth pursuing. 

It is in the treatment of geometrical problems in the Nine Chapters on the 
Mathematical Art that the deficiencies of ancient Chinese mathematicians become 
apparent. For example, the formula for the approximation of the area of a circle in 
the Bounding Fields chapter makes use of the approximate value .π ≈ 3, identical 
to the value used by the ancient Babylonians. The formula given for the volume 
of a sphere is only half the exact value obtained in Greece by Archimedes, and 
incorporating into this formula the very imprecise approximation for . π , the error 
is even worse. On the other hand, there are basically correct formulas for the areas 
and volumes of linear geometric figures. One way to summarize the situation is that 
the Nine Chapters on the Mathematical Art arithmetizes or algebraizes geometric 
problems, just as Euclid’s Elements geometrizes algebraic problems. Unfortunately, 
no derivation is given for the algorithmic treatment of geometric problems in the 
text, so it can be considered really only as a practical geometrical toolkit. 

From Circle Divisions to the Method of Four Unknowns 

Liu Hui’s π Algorithm 

In the year 391 CE, after years of conflict both within the Christian church and 
between the local church and the Holy See in Rome, Emperor Theodosius I, who 
abolished the Olympic games and divided Rome in two, sanctioned or at least 
failed to prevent the destruction of the Temple of Serapis at Alexandria, and with 
it the treasures and Greek manuscripts Cleopatra had earlier ordered to be rescued
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from the old Library. In China at that time, the Eastern Han dynasty, which had 
produced Cai Lun, who had improved the science of papermaking, and Zhang 
Heng,5 a remarkable scientist and polymath, had already split apart, and the Sui 
dynasty had not yet risen to power. This was the turbulent period of the Wei, Jin, 
and Southern and Northern dynasties. After a long period in which Confucianism 
was the dominant trend in intellectual life, this period saw a newfound spirit of 
speculative thought, producing the Wei-Jin philosophy and the Seven Sages of the 
Bamboo Grove, remembered still today. 

The Wei-Jin style refers to the habits and demeanor of the leading figures of 
the period; it has sometimes also been called Wei-Jin romanticism. The central 
principles of this style were its admiration for nature, detachment, directness, and 
magnanimity. Its adherents admired refined eloquence, enjoyed alcohol, and cared 
little for worldly affairs, preferring instead an aesthetic seclusion. The Wei-Jin 
thinkers referred to the seminal texts the I Ching (or Book of Changes), the Zhuangzi, 
and the Laozi as The Three Xuan (三玄, meaning three profound studies), and 
qingtan (（清谈,idle conversation) or  xuantan (玄谈, profound conversation) came 
to refer to the doctrine of pure conversation in metaphysics and philosophy. At the 
end of the Wei dynasty and the beginning of the Jin dynasty, the representatives 
of the Wei-Jin school were the Seven Sages of the Bamboo Grove, a collective of 
scholars, writers, and musicians headed by the poets Ruan Ji and Ji Kang. In later 
times, the Wei-Jin style became a popular aesthetic ideal for the demeanor and self-
expression of the scholar-official (Fig. 3.6). 

In the atmosphere of this social and humanistic environment, Chinese mathemat-
ics also experienced a new flourishing. Several academic works appeared in the form 
of commentaries on the Zhoubi Suanjing or the Nine Chapters on the Mathematical 
Art, in particular providing proofs for some of the important conclusions in these 
books. One of the pioneers of this practice was Zhao Shuang (from the Eastern Wu 
state of the Three Kingdoms period), whom we have already encountered, and its 
most accomplished practitioner was Liu Hui. Like Zhao Shuang, we do not know 
the dates of his birth or death, only that he lived sometime in the third century 
and that he wrote his Notes on the Nine Chapters on the Mathematical Art in the 
year 263, before the collapse of the Wei and Wu states. It is difficult to determine 
whether Zhao Shuang or Liu Hui was the earlier mathematician; both are recognized 
as the earliest Chinese mathematicians to have made major individual contributions 
to mathematics (Fig. 3.7). 

Liu Hui was able to verify and justify various geometrical calculations in the Nine 
Chapters on the Mathematical Art by a method of subdivision and complementary 
areas identical to the method used by Zhao Shuang in his proof of the Pythagorean 
theorem, inaugurating a standard of logical proof for mathematical propositions in

5 Zhang Heng (78–139) is famous among other things for having invented the first seismoscope. 
He is also said to have given the value . 730232 = 3.1466 as an approximation for . π . If true, this 
approximation predates Liu Hui, but unfortunately none of his mathematical works have survived. 
He was also known for his talents as a painter and a writer. 
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Fig. 3.6 Liu Hui, a 
mathematician of the Wei and 
Jin period 

Fig. 3.7 Calculation of . π

ancient Chinese mathematics. Liu Hui also noticed an important limitation of this 
method: it cannot be extended to three-dimensional figures, since it is not possible 
in three dimensions as it is in two to transform any figure into another of identical 
volume by a process of planar cuts and rearrangements. In order to circumvent this 
obstacle to the determination of volume formulas, Liu Hui resorted to infinitesimal 
methods, just as Archimedes had. He used two such methods, a method of limits
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and a method of indivisibles, and he determined in this way that the formula for the 
volume of a sphere in the Nine Chapters on the Mathematical Art was incorrect. 

In more detail, Liu Hui considered two cylinders inscribed in a cube with 
perpendicular axes, such that their intersection just touches the sphere inscribed 
in the cube. He called this figure a box-lid (牟合方盖) and determined that the 
ratio of the volume of the sphere to the volume of the box-lid should be as . π4 . His  
innovations in this argument come very close to Cavalieri’s principle, developed 
many centuries later by an Italian mathematician who played an important role in 
the development of integral calculus. Liu Hui did not however take the further step 
of calculating its general form and was not able to determine the volume of his box-
lid or correspondingly the volume of the sphere. On the other hand, his methods 
paved the way for Zu Chongzhi and his son Zu Geng to complete this work some 
two centuries later. 

In addition to his annotations to Nine Chapters on the Mathematical Art, Liu  
Hui added as a tenth chapter to this book an essay of his own composition, later 
published separately as The Sea Island Mathematical Manual (海岛算经). In this 
book, Liu Hui develops his double-difference-algorithm (重差术), an important 
tool in ancient astronomy, and The Sea Island Mathematical Manual became a 
classic in the field of surveying. But Liu Hui’s most famous and valuable work 
is the technique of circle division he introduces in his commentary on the first 
chapter of the Nine Chapters on the Mathematical Art for the determination of the 
circumference and area of a circle and an approximation algorithm for . π . The basic 
idea is to approximate a circle by an inscribed regular polygon. Liu Hui writes: 

If the division is fine, then the deficit is less, and if the process of division is continued and 
continued until the point of indivisibility, then it will become as one with the circle without 
any deficit whatsoever. 

He also noticed that the sidelength . l2n of a regular 2n-gon can be easily obtained 
from the sidelength . ln of a regular n-gon by a double application of the Pythagorean 
theorem. In the figure, if the radius of the circle is r , then 
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If we put .r = 1 and start from the regular hexagon and double the number of sides 
five times, we obtain from the regular 192-gon (.192 = 6 × 25) an approximation 

. π ≈ 157

50
= 3.14,

which Liu Hui argued was a fine enough approximation for practical purposes. This 
is all basically consistent with the results and methods employed by Archimedes
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in the third century BCE, except that Archimedes made use of both inscribed 
and circumscribed polygons and was able therefore to obtain the same value from 
polygons with only .96 = 6 × 24 sides. In a note that cannot definitely be attributed 
to Liu Hui, this computation is carried out as far as a polygon with . 3072 = 6 × 29

sides to obtain the approximation 

. π ≈ 3927

1250
= 3.1416.

In light of his extraordinary achievements in mathematics, Emperor Huizong of 
Song honored him as a noble man of Zi (淄乡男) in the year 1109. Since this 
honorific was customarily designated after the hometown of its recipient at that 
time, we can infer from this that Liu Hui was from either Linzi or Zibo in Shandong 
Province. As the birthplace of Confucius and Confucianism in the time of the Qi 
and Lu states in the spring and autumn period, the academic atmosphere of this 
region was refined from throughout the Han dynasty up to the Wei and Jin period, 
a rich cultural environment in which Liu Hui would have had exposure to extensive 
scholarly debate and history. It can be seen in his writings that he was indeed familiar 
with a wide range of earlier thought and worked from within the position of freedom 
from ideology in his time. This no doubt contributed to his ability to achieve such 
remarkable results in mathematics. 

Three years after Liu Hui completed his annotations to Nine Chapters on the 
Mathematical Art, China experienced its second reunification (the first being the 
establishment of the Qin dynasty), when Sima Yan, a general of the Wei state, 
established the Jin dynasty (Western Jin) as its first emperor, Emperor Wu of Jin. 
Increased economic development and interregional exchange during this period 
stimulated the emergence of geography as an intellectual discipline, culminating in 
the works of the cartographer Pei Xiu, who proposed six principles for cartography, 
including consistent scaling, and standards for orientation and distance, setting 
down the theoretical framework for the future of Chinese cartography. New customs 
and habits also sprang up during this period, including the consumption of tea, and 
several new tools were invented in order to save labor, including the wheelbarrow 
and the water mill. In the year 283, the Daoist naturalist and alchemist Ge Hong was 
born. 

The northern regions however still suffered under constant threat of foreign 
invasion. In the year 317, the Jin family was forced to relocate to the south of the 
Yangtze River and set up the capital of their empire in Jiankang (now Nanjing). This 
became the Eastern Jin dynasty, which lasted for just over a century, during which 
time the north split up into 16 small countries. Subsequently the Jin dynasty in the 
south was destroyed, and four military figures in succession took power by force and 
changed the name of the regime: first the Liu Song dynasty and then in order the 
Southern Qi dynasty, the Liang dynasty, and the Chen dynasty, collectively referred 
to as the Southern dynasties. This period lasted about 170 years, with the capital 
still at Jiankang throughout. In the year 429, 10 years into the Liu Song dynasty, 
Zu Chongzhi was born into an erudite and respected family of calendarists in the
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Fig. 3.8 Zu Chongzhi, a 
mathematician of the Liu 
Song and Southern Qi 
dynasties 

capital city. Although his professional achievements consist of minor official posts 
in Zhenjiang (Southern Xuzhou), Suzhou, and other places, his central achievement 
was in mathematics, for which he earned a place in history as the first mathematician 
in China to be listed in the official dynastic histories (FIg. 3.8). 

In the Book of Sui, the official history of the Sui dynasty, Zu Chongzhi is credited 
with the lower and upper bounds 

. 3.1415926 < π < 3.1415927

for the value of . π , which is accurate to the seventh decimal place. This is his most 
important mathematical achievement, and this level of accuracy was not surpassed 
until the year 1424, when the Persian mathematician Jamshı̄d al-Kāshı̄ obtained 
an approximation valid up to the 17th decimal digit. Consensus opinion is that Zu 
Chongzhi achieved this approximation via Liu Hui’s method of circle division, a 
feat of incredible perseverance: by this method, it is necessary to carry out the 
computation up to a polygon with 24576 sides to arrive at the data above. 

In the same book, there appears another result due to Zu Chonghi’s calculations 
with . π : the fraction approximations .π ≈ 22

7 and .π ≈ 355
113 . The former is consistent 

with approximations by Archimedes and valid to two decimal places; the latter is 
accurate to six decimal places. In modern mathematics these fractions appear as the 
first few convergents in the continued fraction presentation of . π
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The first term is of course the approximation used by the Babylonians and in the 
Nine Chapters on the Mathematical Art; we can call it the ancient approximation. 
The second and fourth terms are known as the approximate ratio (约率) and 
close ratio (密率) in China due to Zu Chongzhi. The latter is the best rational 
approximation for . π with numerator and denominator not exceeding 1000. 

In 1913, the Japanese mathematician and historian of mathematics Yoshio 
Mikami advocated in his influential book The Development of Mathematics in China 
and Japan that the rational approximation . 355113 for . π be designated as Zu’s ratio in 
honor of Zu Chongzhi. In Europe, this result was not recapitulated until 1573, when 
it was rediscovered by the German mathematician Valentinus Otho. Unfortunately, 
we do not know even to this day how Zu Chongzhi arrived at this approximation. It 
cannot be reached directly by the method of circle division, and there is no evidence 
that ancient Chinese mathematicians had any concept of or practical experience 
with continued fractions. Some historians have speculated that he used a fractional 
interpolation method known as harmonization of the divisor of the day (调日法) 
developed by He Chengtian, a mathematician and calendarist contemporary to Zu 
Chongzhi. 

Briefly stated, this method consists of updating lower and upper rational approx-
imations . a

b
and . c

d
, respectively, to a better approximation . ma+nc

mb+nd
by a suitable 

selection of weights m and n. If you take .m = 1, .n = 9 with known upper and 
lower approximations . 15750 and . 227 or, alternatively .m = 1, .n = 16 with known upper 
and lower approximations . 31 and . 227 , in either case you obtain the close ratio . 

355
113 . 

We can speculate that after Zu Chongzhi obtained his rational approximations by 
this method, he used the method of circle division to verify their validity, much as 
Archimedes verified his results obtained by arguments from equilibrium by proofs 
using the method of exhaustion. 

Like Liu Hui, another mathematical achievement of Zu Chongzhi is in the 
calculation of the volume of a sphere. This result appeared in a chapter on calendrics 
in a political work entitled Song Shu and was mostly likely also included in his 
mathematical treatise Methods for Interpolation or Zhui Shu (缀术), which has 
unfortunately been lost since the Song dynasty. Intriguingly, the Tang dynasty math-
ematician Li Chunfeng referred to this result in yet another annotation of the Nine 
Chapters on the Mathematical Art as Zu Geng’s cube root extraction technique. Zu 
Geng was Zu Chongzhi’s son and also an accomplished mathematician. Modern 
historians generally attribute the derivation in China of the correct formula for the 
volume of a sphere to the Zu family, father and son together (Fig. 3.9). 

According to Li Chunfeng’s description, they calculated the volume of Liu Hui’s 
box-lid as follows. Take first a cube with sidelength given by the radius r of a circle. 
Fix one vertex as the center of a circle with radius r , and remove the cross-section 
of the cube cut out by this circle. Carrying out this process both horizontally and 
vertically produces a truncated cube obtained as the intersection of two cylinders 
with perpendicular axes. In total, the cube is subdivided into four volumes: the 
intersection of two cylinders is one (the interior, covered by . 18 of the box-lid), 
and there are three exterior volumes. The key to the problem was the calculation
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Fig. 3.9 One eighth of the 
box-lid 

of the volume of the outer three components. Zu Geng found that the sum of the 
cross-sectional area of these three parts at any given height is equal to that of an 
inverted square cone with volume equal to . 13 the volume of the cube. It follows 
that the volume of the inner component is . 23 the volume of the cube, and therefore 
the volume of the box-lid is given by . 163 r2. Finally, from Liu Hui’s calculation that 
the ratio of the volume of the sphere to the volume of the box-lid is . 4

π
, we get 

Archimedes’s formula for the volume of a sphere: 

. V = 4

3
πr3.

The contemporary Chinese historian of mathematics Li Wenlin has observed: 

The work of Liu Hui and the father and son Zu Chongzhi and Zu Geng is very profound. 
It reflects the tendency towards disputation and rigor that appeared in Chinese classical 
mathematics throughout the Wei, Jin, and Southern and Northern dynasties, and marks the 
culmination of this tendency. But what is puzzling is that this tendency came to a very 
abrupt end with the end of this period. 

The text Zhui Shu in which Zu Chongzhi compiled his mathematical results was 
listed alongside the Nine Chapters on the Mathematical Art as an official textbook 
in both the Sui and Tang dynasties, and the School of Mathematics at the Imperial 
Academy (Guozijian, 国子监) included it as required reading with a recommended 
period of study lasting as long as 4 years. The influence of this book spread even as 
far as Korea and Japan, but it disappeared completely after the tenth century.
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The Sun Zi-Qin Jiushao Theorem 

In the year 639, Arabic forces invaded Egypt on a large scale. At this time, the 
Romans had long since withdrawn, and Egypt was under the administrative control 
of Byzantium. After 3 years of fighting, the Byzantine army was forced to withdraw. 
The last few scraps of the former academic treasure trove that was Alexandria 
were burned, and ancient Greek civilization came to its decisive end. After that, 
Cairo came into being, and the Egyptian people took up the Arabic language and 
embraced the Muslim religion. At the same time in China, the Tang dynasty was 
seeing its golden age under the rule of Emperor Taizong (Li Shimin). This was the 
most prosperous era in the history of feudal China, a period of continuous territorial 
expansion. The capital city Chang’an, known today as Xi’an, was a gathering place 
for merchants and luminaries from various countries, and China was in frequent 
contact with western regions and other lands (Fig. 3.10). 

Although the Tang dynasty did not produce any mathematicians comparable in 
achievement to those of the previous Wei, Jin, Southern, and Northern dynasties, 
or the later Song and Yuan dynasties, nevertheless this period saw substantial 
achievements in the establishment of systematic mathematical education and the 
compilation of earlier mathematical classics. The Tang dynasty extended the 
“School of Computation” initiated during the Northern and Sui dynasties and 
established Doctor of Arithmetic6 as an official title. Mathematics was also added 
during this time to the imperial examinations, and anyone who could successfully 
pass the mathematical examination would be awarded an official title, although 
this title was the lowest ranking among all official titles and it was abolished in 
the late Tang dynasty. But in general, the predominant strains in the intellectual 
atmosphere of the Tang dynasty were humanistic, without much concern for science 
and technology, somewhat similar in favor to the Italian renaissance. The most 
significant mathematical event of the Tang dynasty, which lasted for nearly 300 
years, was the compilation and publication of the Ten Computational Canons by Li 
Chunfeng under the rule of Emperor Gaozong (Li Zhi) (Fig. 3.11). 

Li Chunfeng (602–670) was known also for his astronomical work and the com-
position of a remarkable fortunetelling book entitled Massage-Chart Prophecies 
(推背图). In his Yisizhan, one of the earliest monographs on meteorology in world 
history, Li Chunfeng classified wind strength into 8 levels, or rather 10 if no wind 
and a light breeze are included, a system that was echoed in 1805 when a British 
hydrographer introduced a scale from 0 to 12 for wind speed that remains in use 
today. 

In addition to the Zhoubi Suanjing, the  Nine Chapters on the Mathematical Art, 
the Sea Island Mathematical Manual, and the Zhui Shu, there are three more books 
in the Ten Computational Canons worth mentioning. These are the Sunzi Suanjing

6 This was not the earliest title to designate a specialist in a single art. The first was Doctor of Law, 
established during the Western Jin dynasty, and after that Doctor of Medicine was added under the 
Northern Wei dynasty. 
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Fig. 3.10 Plan of Chang-an city during the Tang dynasty, featuring rectangles arranged in squares 

(孙子算经), or The Mathematical Classic of Sun Zi; the  Zhang Qiujian Suanjing (张 
丘建算经), or The Mathematical Classic of Zhang Qiujian; and the Jigu Suanjing 
(缉古算经), or The Continuation of Ancient Mathematics Classic. Each of these 
books raises some very valuable question to pass down to the world (Fig. 3.12). 

The author of the Sunzi Suanjing is not known today, although presumably his 
surname was Sun; this book is generally believed to have been written sometime in 
the fourth century. The best known feature of the Sunzi Suanjing is the problem of 
the unknown number, which is stated as: 

Now there are unknown number of things; if we count by threes there is a remainder of two, 
if we count by fives a remainder of three, and if we count by sevens a remainder of two. 
What is the number?
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Fig. 3.11 Chunfeng temple; 
photograph by the author in 
Langzhong, Sichuan province 

This is equivalent to the system of congruences 

. 

⎧
⎪⎪⎨

⎪⎪⎩

n ≡ 2 (mod 3)

n ≡ 3 (mod 5)

n ≡ 2 (mod 7)

.

The given answer is .n = 23, which is the smallest positive integer simultaneously 
satisfying these three congruences. The book also discusses the method for solving 
this problem, where the remainders 2, 3, and 2 can be replaced by any numbers, a 
special case of the Chinese remainder theorem. For this reason this theorem is also 
known as Sun Zi’s theorem, although a fully general method was not given until the 
Song dynasty when Qin Jiushao presented it. In the eighth century, the Tang dynasty 
monk and astronomer Yi Xing (673–727) used this result to formulate the calendar. 

The Zhang Qiujian Suanjing was written in the fifth century, and its author 
was a native of the Northern Wei dynasty. The highlight of this book is its last 
topic, generally known as the Hundred Fowls Problem. The problem statement is as 
follows: 

Now one cock is worth 5 qian, one hen 3 qian and 3 chicks 1 qian. It is required to buy 100 
fowls with 100 qian. In each case, find the number of cocks, hens and chicks bought.7 

7 Tr. Lam Lay Yong
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Fig. 3.12 Qing dynasty 
edition of the Jigu Suanjing 

If we label the number of cocks, hens, and chicks x, y, z, respectively, then in 
modern notation, this problem asks for solutions in positive integers of the system 
of indefinite equations 

. 

{
x + y + z = 100

5x + 3y + z
3 = 100

.

Zhang Qiujian gives all of the three possible solutions with each of x, y, z nonzero: 

. 

⎧
⎪⎪⎨

⎪⎪⎩

x = 4, y = 18, z = 78

x = 8, y = 11, z = 81

x = 12, y = 4, z = 84

.

These can be obtained by transforming the two linear equations in three variables 
into equations for y and z in terms of a parameter .x = 4t and solving for positive 
values of y. In modern times, we know that a linear equation in several variables 
can give rise to general solutions. But issues along these lines were not explored
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Fig. 3.13 Statue of the Tang 
dynasty monk and 
mathematician Yi Xing; 
photograph by the author in 
Xi’an 

until much later, when Fibonacci investigated similar problems in thirteenth-century 
Italy, as did Jamshı̄d al-Kāshı̄ in fifteenth-century Iran. Unlike Sun Zi, whose work 
was extended by Qin Jiushao, Zhang Qiujian did not follow up his computational 
achievement with any efforts toward a more general result, and nobody seems to 
have looked more deeply into it (Fig. 3.13). 

The Jigu Suanjing is the most recent of the books in the Ten Computational 
Canons, written in the seventh century by Wang Xiaotong, a Doctor of Mathematics 
of the early Tang dynasty and probably the most accomplished among all the 
mathematicians to hold this title. This book is yet again a collection of practical 
problems, but people found it very difficult at the time. Most of the problems 
concern astronomical calendry, civil engineering, warehouse and storage cellar 
sizes, and Pythagorean problems, and most require biquadratic or higher-order 
polynomials. The books lists 28 equations of the form 

. x3 + px2 + qx = c

in positive coefficients and provides annotations detailing the origins of each coeffi-
cient. The author supplies the positive rational roots, but no general solution method. 
Nevertheless, this is the oldest document in the history of world mathematics 
concerning the numerical solution of cubic equations and their applications. 

It is worth a mention that the oldest surviving paper book in the world, the 
Chinese edition of the Indian Buddhist classic The Diamond Sutra, was printed 
during the Tang dynasty, in the year 868. A copy of this book was found among the 
Dunhuang (敦煌) manuscripts in 1900 and purchased by the British archaeologist
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Sir Marc Aurel Stein (1862–1943). It was displayed at one point at the British 
Museum in London and is now housed at the British Library. In any case, the much 
earlier Ten Computational Canons certainly has not survived in any original edition. 
When the Italian missionary Matteo Ricci spent time in China much later during the 
Ming dynasty, China had extremely large volumes of books in circulation available 
at very low prices. 

In spite of the economic and cultural prosperity of the Tang dynasty, in later 
periods after the end of the ninth century, many semiautonomous governments of 
hereditary rule began to spring up around the borderlands, and the bureaucratic 
central government was no longer able to restrain them. Increasing levels of taxation 
and the participation of these chieftans in the suppression of the Huang Chao 
peasant uprising expanded their power significantly, and by the year 907, the Tang 
dynasty had come to an end, and China was once again a state divided. This was 
the beginning of the Five Dynasties period, which saw the quick succession of 
five separate dynasties in the span of only half a century: the Later Liang, Later 
Tang, Later Jin, Later Han, and Later Zhou dynasties. The capital was moved to 
Kaifeng or Luoyang, two cities nearby to one another in the heart of Henan Province. 
The aftermath of all this unrest caused the loss of many classics, including Zu 
Chongzhi’s Zhui Shu. During this time there separately appeared also ten small 
countries in the south, including the Southern Tang kingdom with its capital at 
Jinling, another name for Nanjing. The last ruler Li Yu of Southern Tang became a 
great lyric poet following the destruction of his country. 

But “the empire long divided must unite, long united must divide,8 ” as goes the 
famous opening line of the Romance of the Three Kingdoms by Luo Guanzhong. In 
the year 960, a soldier from Henan Province named Zhao Kuazngyin took power 
at the urging of his soldiers and became the first emperor Emperor Taizu of the 
Song dynasty in a bloodless coup, after which he “dissolved the military power 
over a glass of wine” and released many of his generals into retirement to return to 
their hometowns with a general prohibition against looting and violence. Following 
this reunification, there were developments in Chinese society that were altogether 
conducive to cultural and scientific undertakings. A special form of prose poetry 
known as Songci (宋词) brought literary culture to its highest peak since the Tang 
dynasty. Commerce and craft saw a period of great prosperity and produced a 
flurry of technological advancements, including three of the four great inventions 
of ancient China: printing, gunpowder, and the compass. All this injected a new 
vitality into the cultivation of mathematics. In particular, the invention of movable 
type printing technology facilitated the convenient preservation and dissemination 
of mathematical texts. The first known mathematical book to be printed was Liu 
Hui’s Sea Island Mathematical Manual. 

Needham remarks in his Science and Civilization in China that Sun Zi’s result 
is not of sufficient generality to quite be considered a theorem; but he also 
points out that the four greatest mathematicians in the history of ancient Chinese

8 Tr. Moss Roberts 
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Fig. 3.14 Statue of Qin Jiushao; photograph by the author in Nanjing 

mathematics appeared in the (Southern) Song dynasty, around the thirteenth century, 
coincidentally the last days of the European Middle Ages. These were Yang Hui, 
Qin Jiushao, Li Ye, and Zhu Shijie, known as the four great masters of the Song 
and Yuan dynasties. In addition to these four mathematicians, there were also two 
significant mathematicians of the Northern Song dynasty: Shen Kuo and Jia Xian. 
Of the six of them, Qin Jiushao is the most legendary and best-known; he is perhaps 
the most accomplished mathematician of ancient China (Fig. 3.14). 

Qin Jiushao (1202 or 1208–1261) is known to us on the basis of a relatively 
short academic career. His ancestors came from what is now Fan County, in Henan 
Province, though sometimes this territory has also fallen under the administrative 
control of Shandong Province, and Qin Jiushao himself was born in Anyue, in 
Sichuan. His hometown was a tumultuous place for many years, and he and his 
family spent part of his youth living in the capital city Lin’an. As an adult he left 
Sichuan again, passed the imperial examinations, and served as an administrator in 
Hubei, Anhui, Jiangsu, Fujian, and other places. During his tenure in Nanjing, his 
mother passed away, and Qin Jiushao left his post to return to Huzhou in Zhejian 
province. It was during a period of 3 years in mourning in Huzhou that he took up 
seriously the study of mathematics and wrote his treatise Mathematical Treatise in 
Nine Sections (数书九章), a work completely surpassing its predecessor the Nine 
Chapters on the Mathematical Art. 

The two most important achievements in the Mathematical Treatise in Nine 
Sections are the “positive and negative evolution method” and the “Da Yan Shu” 
(大 衍 总 数 术). The positive and negative evolution method, known also as
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Qin Jiushao’s algorithm, is an algorithm for the numerical solution of algebraic 
equations of any degree, that is, polynomial equations of the form 

. a0x
n + a1x

n−1 + · · · + an−1x + an = 0

with positive or negative coefficients. Ordinarily, the solution of such an equation 
requires an iterative method in which the value of the polynomial is repeatedly 
evaluated, with each evaluation in turn requiring .n(n+1)

2 multiplications and n 
additions, but Qin Jiushao converts the problem into a system of n linear equations, 
requiring only n multiplications and n additions to solve. Even through to the 
present day, Qin Jiushao’s method has important applications in the age of computer 
algorithms (Fig. 3.15). 

The Da Yan Shu is a mathematically precise generalization and statement of Sun 
Zi’s theorem. In modern notation and terminology, suppose .m1, . . . , mk are pairwise 
relatively prime integers larger than 1. Then for any integers .a1, . . . , ak , the system 

Fig. 3.15 Illustration from a Japanese edition of the Mathematical Treatise in Nine Sections
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of simultaneous congruences 

. 

⎧
⎪⎪⎨

⎪⎪⎩

x ≡ a1 (mod m1)

...

x ≡ ak (mod mk)

has a unique solution modulo .m1 · · · mk . Qiu Jinshao further discusses the detailed 
method for determining this solution, for which purpose he introduces the linear 
congruence 

. ax ≡ 1 (mod m)

where a and m are relatively prime integers. He makes use of the algorithm 
known in modern elementary number theory as the division algorithm, or the 
Euclidean algorithm, which he calls in particular the Da Yan Qiu Yi Shu. His 
method is completely correct and rigorous, with important modern applications in 
cryptography, in particular the RSA key algorithm. 

Sun Zi’s theorem is the most perfect and beautiful result in the history of ancient 
Chinese mathematics. It appears in every modern textbook on number theory, and 
in western textbooks it is known as the Chinese remainder theorem, perhaps due 
to a general parcity of well-known results with origins in China. The author of 
this book feels it should rather be known as the Sun Zi-Qin Jiushao Theorem, or 
simply the Qin Jiushao Theorem, and refers to it in this way in his own textbook 
on number theory, A Modern Introduction to Classical Number Theory (经典数论 
的现代导引). Like other ancient Chinese mathematicians, who rarely entered into 
theoretical abstractions and viewed mathematics primarily from the perspective of 
applications to calendry, engineering, taxation, and military purposes, Qin Jiushao 
did not provide a proof of his theorem, although his solution falls really only a single 
step short of a proof. He did however consider the case in which the moduli are not 
pairwise relatively prime and provided a computational method to reduce this to the 
relatively prime case. 

In Europe, questions of divisibility and congruence were studied systematically 
by Euler in the eighteenth century and Gauss in the nineteenth, and they obtained 
results identical to Qin Jiushao’s theorem, including rigorous proofs. After the 
British missionary and sinologist Alexander Wiley published his Jottings on the 
science of the Chinese in 1853, European academic circles became aware of the 
pioneering work of Chinese mathematicians and Qin Jiushao in particular in this 
area, and the Chinese remainder theorem took the name by which it is known today. 
This result has a generalization in the field of modern algebra, and its scope today 
extends to branches of mathematics other than number theory. The German historian 
of mathematics Moritz Cantor referred to Qin Jiushao as the luckiest genius, and the 
Belgian-born American chemist and historian of science George Sarton wrote that 
he was “. . . one of the greatest mathematicians of his race, of his time, and indeed 
of all times.”
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Fig. 3.16 Shen Kuo, a 
naturalist of the Northern 
Song dynasty 

Other Mathematicians 

Traveling backward now some 170 years, we arrive at Shen Kuo (1031–1095), who 
was born in Qiantang (modern-day Hangzhou) and wrote one of the wonderful 
works in the history of Chinese science, entitled Dream Pool Essays (or Mengxi 
Bitan, 梦溪笔谈) in 1086. In his later years, Shenkuo settled on the outskirts of 
modern-day Zhenjiang, in Jiangsu Province, and purchased there a lavish garden 
which he named Dream Brook Estate, perhaps in honor of the Dongtiao river 
flowing through his hometown (Fig. 3.16). 

Shen Kuo was a successful candidate in the Jinshi (进士) system of imperial 
examination; he participated in the reforms initiated by the writer Wang Anshi 
(1021–1086) and came also into contact with the poet Su Shi (1037–1101). Later, he 
was sent as an envoy to the Khitan Liao Dynasty, and upon his return he served as a 
member of the Hanlin Imperial Academy as an imperial secretary, with outstanding 
political achievements. In the course of any and all of his travels, in addition 
to fulfilling his official obligations, Shen Kuo would diligently record whatever 
materials of scientific or technological significance he encountered (Fig. 3.17). 

He can also be regarded as the greatest naturalist of ancient China, and the 
Dream Pool Essays includes a survey of all the known natural and social sciences 
of his time. As an example, it was Shen Kuo who identified and measured the 
inconsistency in the length of the days throughout the year, with the summer 
solstice as the longest day and the winter solstice the shortest, and he introduced 
a bold calendar reform consisting of 12 solar months with longer months of 31 
days and shorter months of 30 days. In physics, he performed experiments with 
concave mirror imaging and sound resonance. In geography and geology, Shen Kuo 
successfully explained the origins of strange landforms as due to the intrusion of
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Fig. 3.17 Tomb of Shen Kuo; photograph by the author, in Yuhang, Hangzhou 

flowing water, inferred the evolution of geological features from the presence of 
fossils, and so on. 

We turn now to the mathematical achievements recorded in Shen Kuo’s writings. 
In geometry, Shen Kuo rose to the challenge of measuring the lengths of circular 
arcs and developed a technique for substituted straight lengths for curved ones, later 
the basis for spherical trigonometry in China. In algebra, he gave a formula for 
the sum of squares of consecutive adjacent integers as part of the solution to the 
problem of finding the number of wine barrels that fit in a shape like the frustum 
of a square pyramid. This is the first example in Chinese mathematics of a sum 
of higher-order arithmetic series. As a mathematician, Shen Kuo was introspective 
and considered the essence of mathematics to lie in simplicity. He observed that 
everything has its own fixed shape, and every shape has its own true number, a 
mathematical philosophy not far removed from the perspective of Pythagoras. 

In contrast, very little is known about the life of Jia Xian (ca. 1010–ca. 1070), a 
mathematician who was contemporary to Shen Kuo. He wrote a book entitled The 
Detailed Solutions of the Yellow Emperor to the Nine Chapters on the Mathematical 
Art, which has since been lost. Fortunately, the main content of this book appeared 
in excerpts some 200 years later in the book Xiangjie Jiuzhang Suanfa (祥解九章算 
法, A Detailed Analysis of the Nine Chapters on the Mathematical Art, 1261) by the 
Southern Song mathematician Yang Hui. This book records Jia Xian’s method for
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the expansion of higher-order binomials according to a source map, which is simply 
a table of the coefficients in the expansion of .(x + a)n for .0 ≤ n ≤ 6: 

. 

n = 0 1
n = 1 1 1
n = 2 1 2 1
n = 3 1 3 3 1
n = 4 1 4 6 4 1
n = 5 1 5 10 10 5 1
n = 6 1 6 15 20 15 6 1

This triangle is of course known as Pascal’s triangle in western countries, after a 
French mathematician who discussed it more than 600 years later. In China, it is 
known as the Jia Xian triangle or the Yang Hui triangle. Jia Xian used this table to 
compute square roots and achieved unexpected results in this direction, known as 
the additive-multiplicative method. 

As early as the Five Dynasties period, there existed in the northeastern dynasties 
and in Mongolia a dynasty known as the Liao dynasty or the Khitan Empire, under 
the rule of the Khitan people and established just at the tail end of the Tang dynasty. 
At the start of the Song dynasty, Emperor Taizong personally led or sent troops 
to attack the Liao dynasty, but he quickly found himself on the defensive, and in 
the end the Song dynasty was compelled to pay a tribute to the Liao and set up a 
precedent for the regular delivery of property. We have seen in the previous section 
that Shen Kuo once acted as an envoy to the Liao dynasty. During the same period, 
there was also a group tribe living in the Heilongjiang river basin in the northeastern 
part of China, later known as Mongolia, called the Jurchen people (女真), renowned 
for their skill at horseback riding. The Jurchen people had suffered as vassals of the 
Khitan rulers of the Liao dynasty, and when the winds of fortune shifted in their 
favor, they established the Jin dynasty and sent troops to bring about the destruction 
of the Liao dynasty. They went on to attack the heart of the Northern Song dynasty 
in Bianjing (Kaifeng), and they captured the father and son Emperors Huizong and 
Qinzong. The youngest brother of Qinzong took rule as Emperor Gaozong of Song 
and moved the capital to Hangzhou (at that time called Lin’an) in 1127. This was 
the beginning of the Southern Song dynasty (Fig. 3.18). 

Although the northern threat was ever present, the people of the Southern 
Song dynasty lived happily through a time of even greater prosperity and cultural 
development. The mathematician Yang Hui, like Shen Kuo before him, was from 
the capital city Lin’an. Although we do not have the dates of his birth or death, 
it is known that Yang Hui lived in the thirteenth century; served as a local official 
in Taizhou, Suzhou, and elsewhere; and studied mathematics in his spare time. In 
the space of 15 years spanning 1261 to 1275, Yang Hui completed five substantial 
mathematical works, including that Xiangjie Jiuzhang Suanfa discussed above. 
His writing is simple and profound, and he developed such a reputation as a 
mathematician and mathematics educator that people would ask his advice wherever 
he went.
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Fig. 3.18 Korean edition of 
the Yang Hui Suanfa (1433) 

Following up upon Jia Xian’s additive-multiplicative method, Yang Hui pre-
sented an example of its use to solve quartic equations. This is a highly mechanical 
computation that can be applied to solve polynomial equations of any degree, 
essentially identical to Horner’s method, developed in 1819 a widely used thereafter 
in the western world. Yang Hui also used his method of multiplicative piles to 
calculate the volume of a square prism, and in order to facilitate a fast algorithmic 
implementation, he introduced for the first time in China the concept of prime 
numbers, presenting all of the 16 prime numbers between 200 and 300. His research 
into this topic was of course less sophisticated than what is in Euclid, both in scope 
and rigor (Fig. 3.19). 

His most interesting mathematical contribution however was in the study of 
magic squares, which at that time were known as vertical-horizontal figures (纵 
横图). Magic squares first appeared in the Classic of Changes or I Ching (易经), 
the oldest classical text in Chinese culture, with provenance stretching as far back 
as the eleventh century BCE. In this book there appear two cosmological diagrams 
of numbers called the Yellow River Map (He Tu, 河图) and Inscription of the River 
Luo (Luo Shu, 洛书). According to the legend, Emperor Yu who controlled the 
waters (other legends say it was Fuxi) appeared on the banks of the Yellow River 
riding a dragon horse sometime around the year 2200 BCE during a time of deluge 
and flooding, and there emerged from the waters a magical turtle with the Luo Shu 
pattern on its shell. The Yellow River Map is a figure consisting of five elements 
arranged in a cross, with two numbers corresponding to each element, one even, 
one odd, and at the center the number five. The Luo Shu is as follows, represented
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Fig. 3.19 The Luo Shu 
magic square 

here in Arabic numerals: 

. 

4 9 2
3 5 7
8 1 6

.

The sum along any vertical, horizontal, or diagonal line is in every case 15. 
Prior to the thirteenth century, Chinese mathematicians viewed such systems 

as mere number games, perhaps shrouded in a certain aura of mystery, but not to 
be taken seriously. Yang Hui however devoted considerable effort to the nature 
of magic squares and discovered that such systems are governed by rules and 
regularity. In particular, he used the summation formula for arithmetic series to 
cleverly construct magic squares of orders three and four. For magic squares of 
orders five and higher, he gave only examples without indicating any method, but 
his examples for orders five, six, and even ten were all correct, showing that he had 
mastered the rules of their composition. Yang Hui called his magic square of order 
ten, with row and column sums given by the number 505, the hundred numbers 
figure. He also invented and investigated magic circles. As seen in the diagram, the 
sum of the eight numbers on any of the four circles or four diameters is 138, except 
one of each given by 140. It seems likely that he was inspired in this research by the 
Luo Shu (Fig. 3.20). 

There were at the same time other mathematicians in Persia, Arabia, and India 
carrying out research into magic squares. In Europe, magic squares came under 
scrutiny much later, but there is one especially famous example in the engraving 
Melencolia I by the German painter and printmaker Albrecht Dürer, which we shall 
discuss later. It is not difficult to see that any magic square remains a magic square 
if subject to rotation or reflection about an axis. Without counting more than once 
the eight squares that are equivalent to one another under these operations, there
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Fig. 3.20 Yang Hui’s 
circular magic square 

is only a single magic square of order three, while there are 880 magic squares of 
order four, and .275, 305, 224 of order five. 

Yang Hui like Qin Jiushao spent his life and career based in the south; we 
consider next two other great mathematicians of the Song dynasty, Li Ye and Zhu 
Shijie, both of whom were based in the north. Li Ye (1192–1279) was born in 
Daxing (now the outskirts of Beijing), under the rule of the Jin dynasty. His name 
at birth was Li Zhi, but since it was later noticed that this is the same as the name 
of Emperor Gaozong of the Tang dynasty, he changed his name by the removal of a 
single stroke (so that instead his name was the same as that of one of the four great 
female poets of the Tang dynasty). Li Ye’s father was a respected local official and 
erudite scholar, and Li Ye was influenced from childhood to value knowledge more 
than wealth. He took an early interest in literature, history, and mathematics, and 
he was admitted to the imperial academy where he earned praise for his intellectual 
talents. After the Mongol invasion under Ögedei Khan, he did not go to Shaanxi as 
planned but rather took up an administrative post in Henan. 

In the year 1232, the Mongols invaded the Central Plains. Li Ye, who was 40 
years old at the time, took up civilian attire and began a long and arduous journey 
into exile. Two years later, the Jin dynasty came to end. Li Ye did not however 
escape to the Southern Song dynastic territory, but rather remained in the north 
under the Mongolian rule of the Yuan dynasty. He had his reasons: the Jin dynasty 
and the Southern Song dynasty had always been at odds, and Kublai Khan, who 
established the Yuan dynasty, extended his courtesy to the intellectuals of the Jin 
dynasty and even to Li Ye personally, whom he had summoned on three occasions 
to provide scientific counsel. On one of these occasions, Li Ye persuaded Kublai 
Khan to reduce the severity of his penal measures and put an end to his conquest. 

This was the turning point in his life, and Li Ye embarked upon an academic 
career lasting nearly half a century (he 3 years longer even than Diophantus). He
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returned to his hometown in Hebei and spent his final years teaching near Fenglong 
Mountain in the southwestern suburbs of modern Shijiazhuang. He wrote books and 
various essays recording his thoughts on all manner of topic. 

The book of which Li Ye was most proud was his Sea mirror of circle 
measurements (测圆海镜, 1248), which laid the foundations for the Tian Yuan 
Shu system of algebraic notation for polynomial equations. In the Nine Chapters 
on the Mathematical Art, quadratic equations occur only in narrative form, and 
there was no notion of indeterminate quantities. In the Tang dynasty, although 
mathematicians had begun to work with cubic equations, these were presented 
geometrically, requiring skill and cleverness, and not suitable to easy generalization. 
For a long time afterward, algebra was tied to geometric thinking, prohibiting 
nonpositive constant terms, and avoiding polynomials of degree higher than three. 
It was only during the time of the Northern Song dynasty that Jia Xian and others 
were able to find positive roots for equations of higher degree (Fig. 3.21). 

More complex problems, however, generated an urgent need for a more general 
method for handling polynomials of arbitrarily large degree, and the Tian Yuan Shu 
system met this need. Li Ye recognized that it was necessary to abandon geometric 
thinking altogether and establish universal procedures that do not rely on the specific 

Fig. 3.21 Illustration from 
Sea mirror of circle 
measurements by Li Ye
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Fig. 3.22 Li Ye introduced 
the use of slashes through 
numbers to indicate negative 
quantities 

details of the problem to be solved. The Tian Yuan (or heavenly variable) played the 
same role as symbols x, y, etc. in modern algebra: “let the heavenly element be such 
and such” in place of “let x be such and such.” The word yuan (元) was to be placed 
adjacent to the coefficient of the term in the first degree, with coefficients of all 
the terms arranged vertically with the degrees of the terms increasing from top to 
bottom. Moreover, its meaning was purely algebraic, and there was no requirement 
that the square term represents an area or the cubic term a volume. The constant term 
could be either positive or negative. With this system, it became trivial to represent 
polynomials of any degree, a challenge that had troubled Chinese mathematicians 
for more than a thousand years (Fig. 3.22). 

Li Ye also used the symbol ○in place of the empty space previously in use in 
decimal notation. The Mathematical Treatise in Nine Sections, which had come 
out 1 year earlier in the south, adopts the same notation, and the number zero 
quickly gained popularity throughout China. Finally, Li Ye introduced a notation 
for negative numbers (a slash drawn through the numeral), filling out a very 
simple and practical system of decimal notation. These two notational innovations 
appeared in China two and four centuries earlier than in Europe, respectively. At this 
point, Chinese algebra was in a semisymbolic state: there were still no operational 
symbols or relational symbols such as an equal sign. It seems that Li Ye was of a 
philosophical bent and believed that for all their infinite mystery, numbers can be 
simply understood (Fig. 3.23). 

In the same year that Li Ye died, the Southern Song dynasty fell to the Yuan 
dynasty. Before this, there had been very little intellectual exchange, mathematical 
or otherwise, between the north and the south. Zhu Shijie (1249–1314) was the last 
of the four great masters of the Song and Yuan dynasties, and he was born late 
enough to enjoy the best mathematical offerings of both north and south. Since Zhu 
Shijie never embarked upon any official career, we do not know his family history. 
Whatever information we have about his life is drawn from prefatory material to 
his two books Introduction to Computational Studies (Suanxue Qimeng, 算学启蒙, 
1299) and Jade Mirror of the Four Unknowns (四元玉鉴, 1303). Zhu Shijie like Li 
Ye was born near modern Beijing, but at that time the Jin dynasty had already been 
destroyed by the Yuan dynasty, and Beijing (or Yanjing) had become an important 
political and cultural center.
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Fig. 3.23 Korean reprint of the Introduction to Computational Studies by Zhu Shijie 

After more than 20 years of travel and study, Zhu Shijie settled in Yangzhou, 
where he published the two books just mentioned. The Introduction to Computa-
tional Studies begins from the four basic arithmetical operations and discusses all 
the important mathematical achievements of the time, including the extraction of 
higher-order roots, the Tian Yuan Shu system, achieving a very thorough synthesis 
of extant materials to serve as an excellent pedagogical text for the development 
of mathematics. Perhaps due to the influence of the practical and mercantile use of 
mathematics in the Southern Song dynasty, Zhu Shijie includes in a frontispiece the 
nine-nine multiplication song, the nine-nine division song, and other such formulas 
to entice a broader readership. 

According to historical records, the Jiajing Emperor of the Ming dynasty (1507– 
1566) studied from the Introduction to Computational Studies and discussed it with
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his ministers, but this book was lost in China by the end of the Ming dynasty. 
Fortunately, it had spread to Korea and Japan shortly after its publication, where 
it was frequently annotated and exerted a special influence on Japanese wasan 
mathematics. It was not until the reign of the Daoguang Emperor of the Qing 
Dynasty (1839) that this book was republished in Yangzhou, its birthplace, on the 
basis of a Korean version. 

In comparison with the populist aims of the Introduction to Computational 
Studies, the  Jade Mirror of the Four Unknowns is a crystallization of years of 
personal research. Its most important contribution is an extension of the Tian Yuan 
Shu system to systems of indeterminate equations in two, three, or four variables, 
the four unknowns of the title. 

In the method of four unknowns, the constant term appears in the center, and the 
indeterminate quantities which today we would write as x, y, z, w are labelled as the 
heavenly element on the bottom, the earthly element on the left, the human element 
on the right, and the material element on top. For example, the equation 

. x + 2y + 3z + 4w + 5xy + 6zw = A

would be written as 

. 

4 6
2 A 3
5 1

.

In addition to developing this notation for indeterminate equations in four 
variables, Zhu Shijie also invented the elimination method for reducing the number 
of unknowns in a system of polynomial equations to a single variable. In Europe, 
it was not until the nineteenth century that Sylvester, Cayley, and others carried out 
a more comprehensive analysis using matrix methods. Zhu Shijie also presents a 
detailed treatment of the summation higher-order arithmetic series and continues 
the work of Shen Kuo and Yang Hui with more complex calculations of triangular 
piles. Finally, he anticipates the interpolation formulas later rediscovered by Isaac 
Newton in 1676 (Fig. 3.24). 

Sarton praised the Jade Mirror of the Four Unknowns as the most important 
work of Chinese mathematics and one of the most outstanding mathematical works 
of the middle ages. George Sarton (1884–1956) is remembered today as the father 
of the history of science in recognition of his role as the founder of this discipline. 
He was proficient in 14 languages, including Chinese and Arabic, and taught the 
Chinese linguist Zhao Yuanren (1892–1982) during his time at Harvard University. 
The George Sarton Medal is the most prestigious prize given by the History of 
Science Society, and its recipients include Sarton himself in 1955, Joseph Needham 
in 1968; Thomas S. Kuhn, author of the influential book The Structure of Scientific 
Revolutions, in 1982; and Richard Westfall, author of a biography of Newton, in 
1985.
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Fig. 3.24 The abacus might not have been invented in China but enjoyed its widest use there 

Conclusion 

After the Jade Mirror of the Four Unknowns, the Yuan dynasty produced no further 
mathematical works of note. In the Ming dynasty, agricultural, commercial, and 
industrial development continued apace, and Western classics such as Euclid’s 
Elements were introduced in China; the rigid ideology of neo-Confucianism, the 
selection of scholars by overly standardized criteria, harsh penalties including 
imprisonment for impolitic speech and writing, all conspired to stifle the free 
creation of open thought. The mathematical level of the Ming dynasty fell far 
short of that of the Song and Yuan dynasties, and mathematicians could no longer 
understand the additive-multiplicative method, the Tian Yuan Shu, and the method 
of four unknowns. The mathematical works of the Han, Tang, Song, and Yuan 
dynasties not only went out of print, but many of them were even lost. It was not 
until the late Qing dynasty that Li Shanlan emerged as a new pioneer and propagator 
of modern science. He also introduced translations for many mathematical terms, 
which remain in use today. But by that time, Chinese mathematics had fallen 
far behind the mathematics of the west, and Li Shanlan alone could not catch 
up (Fig. 3.25). 

I would like to also say a few words here about Japanese mathematics, which 
was influenced deeply by Chinese culture. While Chinese mathematics stagnated in 
the late Ming and early Qing dynasties, the mathematical prodigy Seki Takakazu 
(1642–1708) was born in Edo (now Tokyo). He was just a few months older than 
Newton and has since been recognized as the founder of Japanese mathematics. 
His foster father had been a samurai, and he himself served as a samurai under the 
shōgun before he became involved with a surveying project. Takakazu improved 
upon Zhu Shijie’s Tian Yuan Shu system and established a theory of determinants 
both earlier and in a more extensive than what Leibniz achieved. He is also credited 
with early contributions to calculus, but due to the humility of the samurai tradition 
and the secrecy between competing schools of the time, these cannot be attributed 
to him with certainty. The body of work produced by Takakazu and his successors
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Fig. 3.25 Qing dynasty 
mathematician Li Shanlan 

Fig. 3.26 Seki Takakazu, the 
mathematical sage of Japan 

who formed the dominant school in Japanese mathematics during the Edo period is 
the most substantial body of wasan mathematics, and he is remembered today as the 
mathematical sage of Japan (Fig. 3.26). 

Looking over the history of Chinese mathematics through the Middle Ages, most 
mathematicians pursued attractive research programs only after achieving a certain 
degree of renown in the composition of formulaic essays. There were no institutions 
for group research or large-scale data centers like the Library of Alexandria or the 
Academy in Greece, and as a result it was difficult to devote professional efforts 
entirely to research. In the Song dynasty, for example, when mathematics developed 
rapidly, most of the significant mathematicians were minor officials who focused 
their attention primarily on issues important to the daily lives of ordinary people 
and technicians. They could not attend to theoretical work, and their writings came 
mainly in the form of annotations of classics.
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Nevertheless, in comparison with the mathematical development of other ancient 
peoples, such as the Egyptians, the Babylonians, the Indians, the Arabic peoples, 
and even the Europeans of the middle ages, the Chinese people have much to 
be proud of. In terms of rigor and systematic abstraction, Greek mathematics as 
represented by Euclid’s Elements represents an absolute peak, but in the field of 
algebra, it cannot be said that the Chinese mathematicians were inferior, and in 
some ways they may have achieved even better results. The biggest defect of 
Chinese mathematics is that there never developed in ancient China the notion of 
rigorous verification and proof, and mathematics for its own sake was a very rare 
phenomenon (one prominent example is the difference between ruler drawing and 
Euclidean diagrams). The situation is like that of the literary luminaries who chase 
after fame; altogether it is a kind of utilitarianism. 

This attitude of course has firm social roots: it is natural that scholars work first 
toward the solution of problems required by the ruling classes. In ancient China, 
mathematics came to prominence mainly by way of its relation to the calendar. After 
Zhao Shuang proved the Pythagorean theorem, his first application of it was to find 
the roots of quadratic equations that came up in calendry. Zu Chongzhi obtained 
very fine rational approximations for . π , which were used to calculate the leap year 
cycle. Qin Jiushao’s Da Yan Shu, or the Chinese remainder theorem, was used 
mainly to calculate the years of the superior epoch, from which were determined 
certain astronomical constants such as tropical years and synodic moons (Fig. 3.27). 

Fig. 3.27 The new Daogu 
Bridge; photograph by the 
author, in Hangzhou
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In ancient China, whenever the harvest were bad for several years running 
and the population gave way to famine, the rulers would begin to worry about 
rebellions and peasant uprisings. Certainly one good excuse was to lay the blame 
at the feet of an insufficiently accurate calendar. At such times, the imperial court 
would issue an edict calling upon the scholars to undertake calendar reform, and 
the result of all this is that the greatest mathematical minds of ancient times 
were always drawn back again and again into ancient calculations. There were 
few opportunities and little courage to strike out for new mathematical worlds. 
But in modern times, contemporary Chinese mathematicians such as Wu Wenjun 
have taken inspiration from ancient Chinese algorithmic ideas. He developed an 
algorithmic method for solving multivariate polynomial equations with powerful 
applications for mechanical theorem proving in elementary geometry. 

Finally, a few stories are connecting ancient Chinese mathematicians with 
modern China, and especially the city of Hangzhou, home of Chen Jiangong 
(1893–1971) and Su Buqing (1902–2003), two Zhejiang natives who earned 
doctoral degrees in mathematics in Japan. They established the Chen-Su School 
of Mathematics at Zhejiang University. Among the ancient mathematicians we have 
discussed in this chapter, two of them were born in Hangzhou: Shen Kuo and Yang 
Hui. Qin Jiushao, whose courtesy name was Daohu, also remarked that he lived 
in Hangzhou for some years with his family when he was young. There is a stone 
bridge near the Xixi Campus of Zhejiang University called Daogu Bridge; tradition 
has it that this bridge was initiated, designed, and built by Qin Jiushao. It was built 
across the Xixi River and originally called Xixi Bridge; its change of name was 
proposed by Zhu Shijie. 

In his later years and after his death, two literary rivals wrote articles alleging that 
Qin Jiushao was corrupt and immoral, severely damaging his reputation. His name 
and the name of his bridge seem to be flickering out of sight, and it was not until 
the Qing dynasty that some sympathetic admirers defended him and denounced this 
slander. Sadly, in the twenty-first century, a municipal project caused the bridge to 
be destroyed and the river filled in so that the only remnant of it to remain was the 
Daogu Bridge Bus Station. In 2012, at the author’s suggestion, the city authorities 
agreed to name a new bridge Daogu Bridge in honor of Qin Jiushao and about a 
hundred meters away from its original location. 

In comparison with Zu Chongzhi’s approximations of . π and formula for the 
volume of a sphere, Qin Jiushao’s algorithm and the Chinese remainder theorem are 
the more substantial achievements. But stories related to . π are more easily digested 
by the public and more in line with the heroic imagination of the Chinese people.



Chapter 4 
India and Arabia 

One might write a history of India coming down to four hundred 
years ago and hardly mention the sea. 

H.G. Wells 
In the Rubáiyát we read that the history of the universe is a 
spectacle that God conceives, stages, and watches 

Jorge Luis Borges 

From the Indus River to the Ganges 

The Indo-European Past 

About 4000 years ago, at the time when the Egyptians, Babylonians, and Chinese 
were developing their river valley civilizations after their separate fashions, a 
nomadic people speaking a language that has since been classified as Indo-European 
made a long journey from Central Asia across the Gangdisi Mountains in the 
Transhimalaya system and settled in what is now northern India. These people later 
referred to themselves as Aryans, a word derived from Sanskrit and meaning noble 
or landowner. Some of them also travelled westward and became the ancestors 
of the Iranian people and some European peoples. It was believed in the middle 
nineteenth century and early twentieth century that the most purely Aryan people 
are found in Germany and the Nordic countries, a fallacy that saw widespread use 
by Hitler and his followers in the 1930s and 1940s to justify their theory of the noble 
race (Fig. 4.1). 

Prior to the arrival of the Aryans, there were already indigenous people living 
in India, known as the Dravidian peoples. The history of these peoples can be 
traced back at least a further thousand years, when they are believed to have spread 
across the Indus River basins from western Pakistan. In modern times, about a 
quarter of the population of India still speaks languages belonging to the Dravidian 
language family, and four such languages, including Tamil and Telugu, are among 
the many official languages of India. Unfortunately the hieroglyphs used by the early 
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Fig. 4.1 Bathing pilgrimage festival at Allahabad 

Dravidians are as difficult to decipher as the oracle bone inscriptions of ancient 
China, and very little is known today about the Indus valley civilization, including 
the state of their mathematical knowledge. 

After they had gained a foothold in northwestern India, the Aryan people 
continued to advance eastward, crossing the Indo-Gangetic Plain and eventually 
reaching the region known today as the state of Bihar, with a population of more 
than 100 million and twice the population density of Japan. They conquered the 
Dravidian people and made the northern regions into the cultural core of India. The 
major religions of India, including the predecessor Vedicism of Hinduism, Jainism, 
Buddhism, and much later Sikhism, were all born here, and the Aryan influence 
gradually spread throughout India. Sometime in the first millennium after their 
arrival, written and spoken Sanskrit were developed, as well as the Vedic religion, 
the oldest documented religion in India. It could be said that the Vedic religion and 
the Sanskrit language are the roots of the culture of ancient India. 

The historical Vedic religion was a kind of polytheism with a heavy emphasis on 
ritual, in particular the ritual worship of various male deities associated with the sky 
and other natural phenomena, very different from the later tradition of Hinduism. 
The Vedic rituals involved animal sacrifice and the consumption of a sacred drink 
called soma, derived from a plant the identity of which is now unknown. This 
drink, which was extracted from the stems, pressed through wool, and mixed with 
water or milk, was cherished by adherents of the Vedic religion for its effects as a 
stimulant and even a hallucinogen. As for the purposes of the sacrifices, they sprang 
from the belief that the gods would repay them with material offerings such as
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plentiful livestock, good fortune, health, longevity, and male descendants. However 
the abundance of cumbersome rituals and exacting precepts may have contributed 
to the gradual decline of Vedicism. 

The Vedic religion takes its name from its holy texts, the Vedas, transmitted and 
written down over a period of about a thousand years lasting from the fifteenth 
century to the fifth century BCE. The original meaning of the word veda in 
the Vedic Sanskrit in which they were written is knowledge or light. These books 
present sacrificial speeches in prose and poetry, as well as commentary, exegesis, 
and various philosophical ruminations. These texts also introduce the division of 
Indian society into four castes: Brahmins (priests), Kshatriyas (warriors), Vaishyas 
(skilled traders, merchants), and Shudras (unskilled workers or slaves), a division 
which persisted through later Hinduism (Fig. 4.2). 

The exegetic materials appear primarily in the Brahmanas, the  Aranyakas, and 
the Upanishads. The  Brahmanas contain explanations of ritual procedure, the 
Aranyakas discuss the meaning of ritual sacrifice and the worship of heaven, and 
the Upanishads discuss the relation between individual souls and cosmic reality, 
the obliteration of ignorance, and concomitant the liberation from attachments to 

Fig. 4.2 Cover page of a  
Chinese edition of the 
Upanishads
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Fig. 4.3 A typical Hindu 
temple, with the form of an 
isosceles trapezoid; 
photograph by the author, in 
Malaysia 

the material world, secular temptations, and physical ego. These texts comprise 
the sacred heard text (shruti) tradition; there is also a tradition of remembered 
text (smriti), with the famous Bhagavad Gita as the most representative example. 
Among the doctrines of this book, it is remembered for the teaching that tranquility 
is achieved through yogic practice (Fig. 4.3). 

The Vedas were originally transmitted orally and later recorded on palm leaves 
or bark. Although many of the original texts have been lost, it is fortunate from the 
perspective of the history of mathematics that the Shulba Sutras are among those 
that have survived. The word shulba means string, cord, or  rope, and the Shulba 
Sutras discuss the design and measurement of altars and temples. This is the earliest 
mathematical literature in the history of India, excluding a few fragments of math-
ematical notation appearing on coins and inscriptions. The mathematical content of 
the Shulba Sutras includes some geometric figures and algebraic calculations related 
to altar design, including an application of the Pythagorean theorem and a general 
treatment of the diagonal of a rectangular figure, some discussion of similar plane 
figures, and some basic instructions for the construction of geometric diagrams.



From the Indus River to the Ganges 105

The most essential features of the Shulba Sutras are the method of measurement by 
drawn ropes and basic area calculations. 

The Shulba Sutras and Buddhism 

The Shulba Sutras were written sometime between the eighth century BCE and 
second century CE, no later than the two classical Indian epics Mahābhārata and 
Rāmāyan. a. Four major Shulba Sutras have survived, each named individually after 
its author or the school of thought represented by its author. These books contain 
detailed instructions for the construction of fire altars, including in particular the 
appropriate shapes and sizes. The three most commonly used shapes are square, 
circle, and semicircle, but an important regulation is that the altar should have a 
fixed area regardless of its shape. For these reason, ancient Indian mathematicians 
had to have learned or already known how to construct a circle with the same area 
as a given square or twice the area of a given square. Another common shape is the 
isosceles trapezoid, and even more exotic geometric figures appear, all constrained 
to a given area. This raises a host of new and interesting problems in plane geometry. 

The design of the altar according to a prescribed shape requires some basic 
geometric knowledge and results, for example, the Pythagorean theorem. The Indian 
mathematicians give a unique statement of this theorem: 

The areas produced separately by the lengths of the breadths of a rectangle taken together 
equal the area produced by its diagonal. 

This is very obviously different in character from the solar height presentation 
in the Zhoubi Suanjing. More generally, the Indian mathematics of this period is a 
scattered assemblage of approximate laws for the calculation of areas and volumes, 
expressed in words rather than in notation. A few of these laws included deductive 
proofs, while most of them were purely empirical. 

As an example, the construction of a circular area with twice the area of a given 
square (say, for a semicircular altar) requires an approximation of . π . The  Shulba 
Sutras record the following approximate value, which we present in an equivalent 
formulation with unit fractions: 

. π ≈ 4

(
1 − 1

8
+ 1

8 · 29 − 1

8 · 29 · 6 − 1

8 · 29 · 6 · 8
)

≈ 3.0883.

The approximations .π ≈ 3.004 and .π ≈ 4 ×
(
8
9

)2 ≈ 3.16049 seem also to have 
been in use. Similarly, the construction of a square altar with area 2 requires a value 
for . 

√
2. The  Shulba Sutras give 

.
√
2 ≈ 1 + 1

3
+ 1

3 · 4 − 1

3 · 4 · 34 ≈ 1.414215686,
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Fig. 4.4 Statue of a reclining 
Buddha in the Ajanta Caves 

accurate to the fifth decimal place. It is interesting that both of these approximations 
can be recognized as unit fractions, suggesting perhaps that such fractions also held 
significance for Indian mathematicians as they did for Egyptian mathematicians, 
whether by coincidence or as the product of cultural exchange (Fig. 4.4). 

The founding promulgator of Jainism in India, Mahavira, was born in about 599 
BCE Bihar, not far from where the founder Gautama Buddha of Buddhism was born 
some 36 years later. The parallels between the lives of these two pivotal figures are 
manifold. Both grew up in an environment of prosperity and material abundance, 
which later they renounced along with all family and property at about the age of 
30, when both left their homes to lead perambulatory lives in pursuit of truth. One 
minor difference is Gautama Buddha is said to have left behind a wife and infant son 
in course of his renunciation and Mahavira is said to have had a daughter instead. In 
any case, Buddhism and Jainism arose in India at almost exactly the same time and 
probably due to a common cause: opposition to the bureaucratic fuss of Vedicism 
and the elitism of the Brahman caste in the caste system. 

The original Sanskrit word jain derives from the base ji , meaning victor 
or to conquer. Jainism is a religion without any central creative deity; rather both 
time and the universe are held to be eternal and endless, with all things divided 
into the categories of souls and nonsouls. The foundational texts of Jainism cover 
a wide range of intellectual territory. In addition to expounding and clarifying the 
basic doctrine, they also include important contributions to literature, drama, art, 
architecture, and other topics, as well as some basic principles and conclusions 
in mathematics and astronomy. Many Jain texts were written between the fifth 
century BCE and second century CE in the vernacular Prakrit language; the word 
prakrit means natural, distinguished it from the classical sanskrit language, meaning 
refined. These texts include some mathematical results, including approximations 
for the circumference of a circle .C = √

10d, for an arc length .s = √
a2 + 6h2, and 

other approximation formulas of a similar flavor (Fig. 4.5). 
In contrast, Buddhist doctrine holds that all things are impermanent and transient, 

subject to constant change both within and without the human experience. Such 
things as the area of an altar are impossible to state with fixed specificity. Buddhism
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Fig. 4.5 The pattern on the altar 

accepted all people without regard for caste and does not recognize any essential 
differences between different people. Buddhism is more of a philosophical concept 
than a precise religious doctrine than either Jainism or Hinduism, especially as it 
is practiced in India. The concept of time in Buddhism is also very unique and 
somewhat of a mathematical character. For example, perhaps because India has three 
seasons (rainy season, hot season, and dry season), the Buddhist scriptures also 
divide the days and the nights each into three parts: early day, midday, and late day 
and similarly early night, midnight, and late night. As for the years, 100 years is 
one lifespan, 500 years is an evolution, 1000 years is a turn, and 12,000 years is an 
epoch.
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More interesting is the subdivision of time. The shortest period of time is the 
single moment (ks.ān. a), the time between 2 thoughts, and 60 of these make up the 
time of a finger snap. From this we get also the saying “the sixty-three moments 
of youth is a snap of a finger.” However, the true duration of a moment cannot be 
known except to the Buddha. It is as in the following poem: 

We see the fullness of the moon and understand that time is always moving 
We understand the birth and death of our minds, we know the shortness of time. 

At the same time that Buddhism and Jainism emerged in India in the sixth century 
BCE, the concepts of the reincarnation of the soul, karma, and the transcendence 
of reincarnation through meditation became widespread amongst the Vedics. This 
became what is now known as the Hindu religion. 

Since that time, this reform religion involving almost every aspect of life has 
gradually come to dominate almost the entire Indian continent, and its philosophy 
and moral code have even spread into the beliefs, customs, and social religious 
systems of many ethnic groups in South Asia, including the Nepalese and Sri 
Lankans. This is in contrast with Buddhism, which developed a broad influence 
in Southeast Asia, but in India comprised mainly a philosophical system, and with 
Jainism, the sphere of influence of which remained restricted primarily to some 
western and northern Indian states. Around this time, mathematics broke free of 
its connection with religion and developed independently instead as a powerful 
astronomical tool (Fig. 4.6). 

Fig. 4.6 Alexander the 
Great, whose expeditions 
bridged the East and the West
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The Number Zero and Hindu Numerals 

By the middle of the fifth century BCE, the people of the Magadha region, 
encompassing Bihar, had expanded the boundaries of their territory to include the 
entire Indo-Gangetic Plain. This laid the foundations for a period of prosperity under 
the Maurya Empire (322 BCE–185 BCE), which reach its peak under the rule of 
the emperor Ashoka the Great, often remembered as the greatest monarch in the 
history of India. He devoted his life and his rule to the promotion and dissemination 
of Buddhism and served a role in that religion similar to that of Paul the apostle 
in Christianity, facilitating its eventual spread around the world. His grandfather 
Chandragupta Maurya had been the founder of the Maurya Empire, who expelled 
the forces left behind by Alexander the Great during his campaign in India and 
around the same time or slightly later conquered and unified northern India. This 
established the first empire in Indian history. This campaign by Alexander was in 
itself a remarkable expedition, forming a bridge so to speak between Greece in the 
west and India in the east. They reached the southern shores of the Caspian Sea 
and continued to march eastward and laid the foundations for the modern cities 
of Kandahar and Herāt in Afghanistan, before heading north into Samarkand in 
Central Asia. He did not occupy this territory but rather used it to send his troops 
southward again through the crevices of the Hindu Kush mountain range and enter 
India via the Khyber Pass east of Kabul. His original intent was to continue further 
and further to the east, crossing the desert to the Ganges river basin. Years of fighting 
had exhausted his soldiers, however, and in 325 BCE Alexander withdrew with his 
troops from the Indus valley and returned to Persia. He left behind an army and a 
governor in Punjab, later driven away by Chandragupta Maurya. 

Despite its failure, this short campaign forged indelible traces, including the 
facilitation of future trade and exchange between India and Greece. It is believed 
that by Roman times Alexandrian merchants had established many settlements 
throughout South India and even built a temple to Augustus in Muziris. These 
settlements were usually guarded by two teams of Roman troops, and at this time, 
the Roman emperor also sent envoys to South India. Moreover, this encounter 
with Greek civilization certainly had an influence in India on the development of 
mathematics and the other sciences. A fifth-century Indian astronomer observed that 
although the Greeks were impure from the perspective of Indian religious belief, 
nevertheless they ought to be revered for their training in the sciences, in which 
direction they surpass all other peoples. 

In the summer of 1881, in the small village of Bakhshali (near Peshawan in 
modern Pakistan, but a part of India for most of its history), a local peasant unearthed 
a birch bark manuscript containing written text. This is the Bakhshali document, 
which records a rich compilation of Jain mathematics, including treatments of 
fractions, squares, sequences, proportions, problems involving revenue, expenditure, 
and the calculation of profits, series summations, algebraic equations, and so forth. 
This manuscript makes use of a sign for negative numbers, identical visually to 
the modern addition sign . +, but placed to the right of a numeral rather than to its
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left. And even more consequentially, this manuscript includes numerals written in 
complete decimal notation, with a solid dot to represent the number zero. 

This solid dot evolved over time into a circle and finally into the modern symbol 
0. The earliest verified evidence of the modern notation appears in an engraving 
at a temple in Gwalior date to the year 876. The city of Gwalior is in northern 
India, in its most densely populated state of Madhya Pradesh, adjacent to Bihar in 
the Ganges river basin. This engraving is on a stele in a garden and supposed to 
indicate the number of wreaths or corollas to be supplied daily to local temples. 
Although the two occurrences of the numeral 0 are small, they are clear and 
unmistakable (Fig. 4.7). 

The use of a circle to indicate zero and more broadly the introduction of the 
concept of zero as an independent number are a great contribution to mathematics 
from India. The use of zero as a placeholder in decimal notation had predecessors in 
early Babylonian cuneiform and in Chinese arithmetic prior to the Song and Yuan 
dynasties, where it was indicated by an empty space, and with a specific symbol 
in later Babylonian texts and in Mayan mathematics (which made use of a shell or 
eye symbol), but it was not regarded as in India as an independent number with a 
role to play in calculations. Perhaps there is some connection here with religious 
culture: in Indian religions the idea that the universe was born from nothing was 
widespread. The Indian mathematicians were also comfortable with the distinction 
between positive numbers to represent property and negative numbers to represent 
debts. 

The numerals engraved at the Gwalior temple are also closer in form to the so-
called Arabic numerals used throughout the world than the numbers used in the 
Arabic world. After the eighth century CE, Indian digits and the zero numeral were 
spread successively first to the Arabic-speaking world and later to Europe. After 
these notations were accepted and formalized in Europe, having been introduced 
in the influential book Liber Abaci by the thirteenth-century Italian mathematician 
Fibonacci, they have played an invaluable role in the progress of modern science. 
Since that time, the history of mathematics in India is also the history of some of 
the leading mathematicians in the world. 

From North India to South India 

Aryabhata 

In the year 476 CE, on the south bank of the Ganges not far from the historical city 
Pataliputra, known today as the capital city Patna of Bihar, Aryabhata, the earliest 
Indian mathematician known by name, was born. This city obtained its modern 
name when the Afghans invaded and rebuilt it in the sixteenth century. Gautama 
Buddha also taught here in his later years, and this city was the capital of the two 
most powerful empires in Indian history: the Maurya Empire and the Gupta Empire
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Fig. 4.7 Arithmetic 
problems from the Bakhshali 
document
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Fig. 4.8 Statue of Aryabhata 
in Pune 

(ca. 320–540), the first empire to unify India during the Middle Ages. The territory 
of the Gupta Empire included most of the northern, central, and western parts of 
modern India. It was during this period that decimal notation, Hindu art, and the 
great Sanskrit epic Abhijnanashakuntalam or The Sign of Shakuntala and its author 
the poet Kālidāsa (ca. fifth century) were all born. The Eastern Jin dynasty Buddhist 
monk Faxian (法显), who travelled by foot from China to India, also came to this 
city to study during his travels (Fig. 4.8). 

By the time of Aryabhata’s birth, the capital of the Gupta Empire had moved 
further west, and the city of Pataliputra had begun to decline from the height of its 
glory. Nevertheless it was still a significant academic center: indeed, the influential 
Tang dynasty Buddhist monk Xuanzang (玄奘) visited in around the year 631. As 
with later Indian mathematicians, Aryabhata studied mathematics mainly for its 
uses in astronomy and astrology. His two representative works are the Aryabhatiya 
and a book of computations the Arya-siddhanta, which has since been lost. The 
Aryhabhata is primarily an astronomical compendium, but it contains significant 
mathematical content, including arithmetic, a discussion of the measurement of 
time, spheres, and so on. Around the year 800, this book was translated into Latin 
and made its way into Europe. Its influence in Indian intellectual history has been 
huge, especially in South India, and it has been the subject of many commentaries 
and annotations by subsequent mathematicians.
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Aryabhata gives expressions for the sums of squares and cubes of the first n 
consecutive positive integers: 

. 12 + 22 + · · · + n2 = n(n + 1)(2n + 1)

6

13 + 23 + · · · + n3 = n2(n + 1)2

4
.

He was also the first person in India to obtain the valued .π ≈ 3.1416, but it is not 
known by what method he arrived at this approximation, which can be compared 
with ancient approximations in China. There is some speculation that he calculated 
the perimeter of an inscribed regular polygon with 384 sides. In trigonometry, 
Aryabhata is remembered for his sine tables. Earlier such tables had been compiled 
by Ptolemy in Greece, but Ptolemy used different units of length for circular arcs 
and the straight radius, an unwieldy system. Aryabhata assumed instead a common 
measure of length for straight and curved lines and completed his table on this basis 
from . 0◦ to . 90◦ in .3◦45 increments. Aryabhata used the word ardha-jya meaning 
half-chord for sine. This was later simplified to jya (the bowstring of a hunter), 
which became jaib, meaning pocket or fold, in Arabic and eventually by way of 
Arabic sinus (meaning cove or bay) in Latin transliteration. This is the origin of 
English word sine. 

In arithmetical work, Aryabhata frequently makes use of trial solutions and 
working backward from the given conditions. As an example, he states a certain 
problem as: 

Oh beautiful girl with smiling eyes, can you tell me please, what number multiplied by 
3 and then adding again . 34 of this product, dividing by 7, subtracting . 13 of the result and 
multiplying it with itself, then subtracting from this 52, taking the square root and adding to 
it 8, and finally dividing by 10, gives  2? 

According to the method of working backward, the solution is found by starting 
from the solution 2 and inverting the operations as follows: 

. ((2 × 10) − 8)2 + 52 = 196,√
196 = 14,

14 × 3

2
× 7 × 4/7

3
= 28,

which is the required number. We see in this example also that Indian mathematics 
were prone to express their mathematical work in the language of poetry. 

Aryabhata’s most significant contribution is the solution of the first-order 
indefinite equation 

.ax + by = c.
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He uses a method he calls kut.t.aka, meaning pulverization. For example, assume 
.a > b > 0 and .c = gcd(a, b) is the greatest common divisor of a, b. Then we find 
integers . q1, . r1, . . . . , .qn+1, . rn such that 

. a = bq1 + r1(0 ≤ r1 < b),

b = r1q2 + r2(0 ≤ r2 < r1),

...

rn−2 = rn−1qn + rn(0 ≤ rn < rn−1),

rn−1 = rnqn+1.

By iteration, the number .c = gcd(a, b) = rn can be expressed as a linear 
combination of a and b, providing integer solutions x and y to the indeterminate 
equation given above. 

In fact, this method was also used later by Qin Jiushao in his Da Yan Shu and 
the positive and negative evolution method, with a rudimentary version appearing 
earlier in the Nine Chapters on the Mathematical Art. In western countries, this 
method is known as the extended Euclidean algorithm, but the version given by 
the Greek is incomplete; even the last master of number theory among the Greeks, 
Diophantus, considered only positive integer solutions to such equations. This 
restriction was lifted by Aryabhata and his followers. 

Aryabhata also made important contributions to astronomy. He used mathe-
matical methods to calculate the circumference of the earth, the movement of the 
ascending and descending nodes of the ecliptic and lunar path, the latest points and 
points of slowest motion of certain stars, and even proposed methods for the accurate 
prediction of solar and lunar eclipses. He also promoted the notion of the rotation 
of the earth, but this idea was not recognized and carried forward by subsequent 
generations. In the year 1975, India launched its first man-made satellite, named 
Aryabhata, in honor of his achievements and significance in the history of Indian 
science. 

Brahmagupta 

After Aryabhata, it was more than a century for the appearance of another great 
mathematician: Brahmagupta (ca. 598–ca. 668). It is interesting to note that in fact 
there do not seem to have been any important mathematicians anywhere in the world 
during this century. Brahmagupta may have had ancestors from the region of the 
Sindh province in modern Pakistan, home to its capital and largest city Karachi, 
but Brahmagupta was probably born in Bhillamāla in Gurjaradesa and spent the 
better part of his life in Ujjain, a city in the southwestern part of the Indian state of 
Madhya Pradesh. Alongside its neighboring state of Bihar, these two states formed



From North India to South India 115

Fig. 4.9 Brahmagupta, deep 
in calculation 

the political, cultural, and scientific hub of ancient India, a role similar to that of the 
Guanzhong Basin and the Central Plains in China (Fig. 4.9). 

Although Ujjain was never the capital of a unified empire in India (and indeed 
India had been divided since the end of the Gupta Empire), it is regarded as one 
of seven holy cities in India. The Tropic of Cancer passes through the northern 
suburbs of the city, as does the first meridian set down by Indian geographers. 
After the decline of Pataliputra, Ujjain was the second city to occupy the center 
of ancient Indian mathematics and astronomy. It was also the birthplace of the poet 
and dramaturge Kālidāsa, often considered the greatest writer in the history of India. 
Since these two cities are separated by nearly a thousand kilometers, with Ujjain 
closer to Mumbai than Pataliputra, this represented a shift in the center of Indian 
intellectual activity toward the southwest. It is also believed that Ashoka spent time 
in Ujjain as a governor before his succession to the throne. Brahmagupta served 
as the head of the astronomical observatory in Ujjain, one of the oldest and most 
prestigious observatories in the world prior to the invention of the telescope. 

Brahmagupta left behind two important astronomical works: the Brāhmasphut.asi 
ddhānta or Correctly Established Doctrine of Brahma, composed in the year 628, 
and the Khan. d. akhādyaka (meaning a morsel), written around 665 and published 
after the death of its author. The latter work includes a new sine table, calculated 
using a different method than that of Aryabhata: the quadratic interpolation method. 
The Brāhmasphut.asiddhānta contains more extensive mathematical content. This
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book was written entirely in verse, divided into 24 chapters, with 2 of them devoted 
entirely to mathematics. These are Lectures on Arithmetic and Lectures on Indefinite 
Equations. The former discusses triangles, quadrilaterals, the quadratic formula, and 
the arithmetical properties and operations related to zero and negative numbers. The 
latter introduces the study of first-order and second-order indefinite equations. The 
remaining chapters discuss astronomical research but call upon a rich foundation of 
mathematical knowledge. 

For example, Brahmagupta gives the following rules for calculations involving 
zero: 

A negative number minus zero is negative, a positive number minus zero is positive; zero 
minus  zero  is  zero  . . . the  product of zero with a positive number or with a negative number 
or with zero is zero . . . zero divided by zero is zero, and a positive or a negative number 
divided by zero is a ratio with zero as the divisor. 

This is the earliest record of the problem of division by zero in the Indian 
literature, although the conclusion is different from the modern understanding of 
the situation. The idea of operating with zero as with any other number survived in 
the works of later Indian mathematicians. 

Brahmagupta also elucidated the concept and notation for negative numbers and 
provided rules for their treatment in computations: 

The sum of a positive number and a negative is the difference of their absolute values or 
zero if they are equal; the product of a positive number and a negative number is negative, 
and the product of a two positive numbers or two negative numbers is positive. 

This is the first consideration of its kind in the history of the world. 
The most important mathematical achievement due to Brahmagupta is his 

solution of the indefinite equation 

. nx2 + 1 = y2

where n is a nonsquare integer. Brahmagupta was the first mathematician to consider 
such equations; they were later misattributed by the eighteenth-century Swiss 
mathematician Leonhard Euler to a British mathematician from the previous century 
named John Pell, and they are known today collectively as Pell’s equation. In fact, 
the first mathematician to discuss this equation in Europe was Fermat, and it was 
Lagrange who resolved it. Brahmagupta found solutions in the special case . n = 92
(and other special cases) using a method he called samasa and which is known 
today as the method of compositions or an application of Brahmagupta’s identity. 
His approach was clever and powerful and deserves its special place in the history 
of mathematics. 

Brahmagupta also gave a general formula for a root of a quadratic equation in one 
unknown, although he neglected to account for the second root of such equations. 
He provided a formula for the area of a quadrilateral with sidelengths a, b, c, d 

.s = √
(p − a)(p − b)(p − c)(p − d),
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where .p = 1
2 (a + b + c + d). This result is only valid for a quadrilateral inscribed 

in a circle, as Brahmagupta himself pointed out, but it is still a very impressive 
result. Finally, he also gave a beautiful proof of the Pythagorean theorem, using the 
proportional relationship between the sidelengths of two adjacent triangles. 

Mahāvı̄ra 

Brahmagupta was a sophisticated mathematician, but unfortunately very little 
information about his thought, life, and work is known to us. He wrote that just as 
the stars are eclipsed by the rays of the sun, so too are the works of learned scholars 
eclipsed by those who can put forward problems in algebra and even more so by 
those who can solve them. Presumably the academic atmosphere during his lifetime 
was very refined; there was also a movement in the study of history known as the 
Ujjain school. But for four centuries after the death of Brahmagupta, no further 
mathematicians of note appeared in Ujjain, perhaps due to political turmoil and 
dynastic change. Rather during this time, two mathematicians of genius emerged 
in the relatively remote state of Karnataka in southwestern India: Mahāvı̄ra and 
Bhāskara. 

Although the area within the borders of India is only about 3 million square 
kilometers, and the distance between its eastern and western borders is greater than 
between its northern and southern borders, nevertheless the distinct character of 
South India has long played a deep role in the self-conception of the Indian people. 
The towering Deccan Plateau of South India and the two mountains at its northern 
edge, along with the Narmada river, form a natural defense against incursion by the 
northern imperial powers (the name of the Deccan Plateau derives from a Sanskrit 
word meaning south). And indeed, many attempts at conquest by the north were 
met with fierce resistance by the south. As a result, the dietary habits of the Indo-
Aryan peoples never spread to the south, the armies of Alexander never set foot 
there, the various invasions of the Mongols and Muslim armies all fell short, and 
even in later times the influence of France and Britain was more muted in southern 
India (Fig. 4.10). 

Very little is known about the history of South India prior to the time of Ashoka, 
but it is clear that even in spite of factionalism, its culture was no less advanced or 
deep than that of the north with respect to religion, philosophy, moral customs, 
artistic expression, and material development. Several large states or dynasties 
competed for dominance throughout history, but none of them succeeded in unifying 
the entire southern territories of India. Every such dynasty maintained a developed 
maritime trade with Southeast Asia and established variously a capital city as a 
cultural center, characterized by extensive temple architecture. 

Among these several dynasties, one was the Rashtrakuta dynasty, who ruled the 
Deccan Plateau and a strip of nearby land from about the year 755 to 975. The 
originators of this dynasty may have been Dravidian farmers, and their empire
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Fig. 4.10 Birthplaces of Indian mathematicians 

became so great that a Muslim traveller and commentator of the time referred to 
its ruler as one of the four great emperors of the world, the other three being the 
Caliph, the emperor of Byzantium, and the emperor of China. The Trinidad and 
Tobago-born British writer V.S. Naipaul (1932–2018) observed that there remains a 
relic of the capital of the kingdom of Vijayanagar some 200 miles from Bangalore. 
This city was among the most resplendent in the world by the fourteenth century. 

The Jain mathematician Mahāvı̄ra, who shared a name with one of the founding 
figures of that religion, was born during the peak of the Rashtrakuta dynasty, 
probably in the city of Mysore. Mysore was the second largest city in the state 
of Karnataka (the word Karnataka probably originates from a word meaning 
highlands), located on the southwestern coast of India, between the two famous 
cities Bangalore and Kolkata. Bangalore is the capital city of Karnataka, now 
widely regarded as the Silicon Valley of India and home to the National Institute 
of Mathematics. Kolkata is a famous port city, the city where the Chinese explorer 
Zheng He died and to which the Portuguese explorer Vasco da Gama arrived much 
later via the first voyage to India by sea from Europe, around the Cape of Good 
Hope.
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Not much is known about the life of Mahāvı̄ra: as an adult, he lived in the court of 
the Rashtrakuta dynasty, where he served as court mathematician. Around the year 
850, he wrote a book entitled Gan. itasārasan̄graha or Compendium on the Gist of 
Mathematics, later widely used as a textbook throughout South India. This book was 
translated into English in 1912 and published in Madras. This is the first book in the 
history of India with the form of a modern mathematical textbook, and it contains 
already glimpse of the topics and structure of current mathematical textbooks. It 
is especially remarkable that the Gan. itasārasan̄grah really is a treatise on pure 
mathematics, with hardly any mention of astronomical matters. The book is divided 
into nine chapters, and its most valuable research results include further discussion 
of zero, quadratic equations, calculations with interest rates, the properties of 
integers, and topics in what is now known as combinatorics. 

Mahāvı̄ra observed that multiplication of a number by zero yields zero and 
subtracting zero from any number does not reduce its value. He further noticed 
that division by a number is equivalent to multiplication by its reciprocal and even 
put forward that division by zero yields an infinitely large value. On the other hand, 
he asserted that negative numbers have no square roots, contrary to the modern 
theory of complex numbers. It is interesting to note that in the same way as the 
Chinese mathematicians who were fascinated by magic squares, Mahāvı̄ra devoted 
considerable energy to the study of a numerical game he called garland numbers. 
These are pairs of numbers whose product is a palindromic number 

. 14287143 × 7 = 100010001,

12345679 × 9 = 111111111,

27994681 × 441 = 12345654321.

This terminology of garland number survives in Chinese poetry to indicate palin-
dromic numbers. There is also a variation on palindromic numbers known as 
Scherezade numbers, after the storyteller in One Thousand and One Nights. 
Palindromic numbers also frequently occur as powers, for example, .121 = 112, 
.343 = 73, and .14641 = 114, but nobody has ever found a palindromic number 
occurring as a fifth power. 

Earlier classic of Jain mathematics had already introduced some simple problems 
in permutations and combinations. In the course of summarizing these topics, 
Mahāvı̄ra introduced for the first time the formula for binomial coefficients with 
which we are familiar today 

. 

(
n

r

)
= n × (n − 1) × · · · × (n − r + 1)

r × (r − 1) × · · · × 1
,

where .1 ≤ r ≤ n. This was two centuries before the birth of Jia Xian in China. 
Mahāvı̄ra improved upon the kut.t.aka method for indeterminate equations of 

Aryabhata and also carried out extensive research into Egyptian fractions. He 
determined that the number 1 can be expressed as a sum of any fixed number n
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unit fractions and found ways to express arbitrary fractions as sums of unit fractions 
subject to various constraints. He also studied in detail the solutions to certain 
higher-order indeterminate equations and construction problems in plane geometry 
and gave approximation formulas for the perimeter of an ellipse and area of a circular 
arc, in agreement with results that appear in the Chinese classic Nine Chapters on 
the Mathematical Art. 

Bhāskara II 

We turn finally to the greatest mathematician and astronomer of ancient and 
medieval India: Bhāskara II, the second of two mathematicians named Bhāskara 
in the history of India. The first of them lived in the seventh century, and Bhāskara 
II in the twelfth century. He was born in 1114, probably in Bidar in the western part 
of the Deccan Plateau in South India. This city is located today along the railway 
connecting Mumbai and Hyderabad (host city of the 2010 International Congress of 
Mathematicians) and like the hometown of Mahāvı̄ra a part of the Karnataka state. 
His father was on orthodox Hindu Deshastha Brahmin who authored a popular book 
on astrology. As an adult, Bhāskara worked at the astronomical observatory at Ujjain 
and later became its director, a worthy successor to Brahmagupta. 

By the twelfth century, Indian mathematics had already accumulated a consid-
erable corpus of research results, which Bhāskara assimilated and built upon to 
achieve deeper results than any of his predecessors. His literary talents were also 
formidable, and a poetic flavor permeates his works. His two most significant works 
are entitled Lı̄lāvatı̄ (named after his daughter) and Bı̄jagan. ita (Algebra), two vol-
umes of a larger work entitled Siddhānta-Śiromani (Crown of Treatises) (Fig. 4.11). 

The Bı̄jagan. ita includes discussion of positive and negative numbers, linear 
equations, low-order indeterminate equations in integer coefficients, and so on. 
There appear also two beautiful proofs of the Pythagorean theorem, one of which is 
very similar to the method of Zhao Shuang, the other of which was only rediscovered 
in the seventeenth century, by the British mathematician John Wallis. With reference 

Fig. 4.11 Diagram of the 
proof of the Pythagorean 
theorem by Bhaskara
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to the figure, we can obtain from the properties of similar triangles that 

. 
c

a
= a

m
,

c

b
= b

n
,

from which it follows that .cm = a2, .cn = b2; adding these two identities, 

. a2 + b2 = c(m + n) = c2.

Bhāskara also discusses formally a crude version of the concept of mathematical 
infinity. He writes: 

If we divide a number by zero the result is a quotient with divisor zero, for example three 
divided by zero is the quotient . 3/0. Such a quotient is called infinity. Just as during the 
period of cosmic dissolution beings merge into the creator and during the period of creation 
beings emerge out of him, but the creator himself remains unaffected, likewise nothing 
happens to the number infinity when any other number is added to it or subtracted from it; 
it remains unchanged. 

The content of Lı̄lāvatı̄, which opens with a salutary Hindu prayer, is more 
extensive. There is also an interesting legend surrounding the authorship of this 
book. According to the legend, Bhāskara had concluded through his studies into the 
horoscope of his daughter Lı̄lāvatı̄ after whom the book was named that she would 
remain unmarried and childless throughout her life, unless her wedding were held 
at a precise time on a certain auspicious day. He placed a cup with a small hole 
in a vessel of water such that the cup would sink at precisely the correct moment 
for the wedding and warned his daughter not to approach or disturb it. But her 
curiosity led her to investigate the device, and in the process, a pearl from her bridal 
headdress dropped into the cup, upsetting it and causing the specified moment to 
pass by unnoticed. After the marriage, the unfortunate Lı̄lāvatı̄ lost her husband, 
and Bhāskara promised his devastated daughter to teach her arithmetic and write a 
book in her honor that would preserve her name to history.1 

Bhāskara’s main mathematical contributions include the use of abbreviated 
words and symbols to represent unknown quantities and operations; a thorough 
mastery of trigonometric identities, including the now familiar sum and difference 
rules; and a more comprehensive discussion of negative quantities, which he referred 
to as losses or deficits and indicated by way of a small dot over the numeral. He 
observed that the square of a positive or a negative number is always positive and 
that positive numbers have two square roots, one positive and one negative. He 
also held that negative numbers are not square numbers and have no square roots.

1 Since the 2010 meeting of the International Congress of Mathematicians in Hyderabad, this 
institution now offers once every 4 years a Leelavati Award for work in the dissemination and 
popularization of mathematics. 
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More significantly, Bhāskara and other Indian mathematicians made free use of 
irrational numbers and did not distinguish them from rational numbers in arithmetic 
computations. This is in contrast with the Greeks, who had a worked out theory of 
incommensurable qualities but did not admit irrational numbers into the pantheon 
of numbers proper. 

As heir to the mathematical tradition of Brahmagupta, Bhāskara studied care-
fully and understood deeply the complete works of his predecessor and made 
improvements to some of his results, in particular with respect to Pells’ equation 
.nx2 + 1 = y2. He was also productive and successful as an astronomer, which 
discipline he always pursued from the perspective of a mathematician, introducing 
innovations in spherical trigonometry, cosmography, astronomical instruments, and 
so on. Perhaps most astonishing is his use of a technique of instantaneities essentially 
identical with what would centuries later be the differential calculus to study the 
motion of the planets. It is said that some generations after his lifetime, a stone stele 
was discovered in Pataliputra with records of the donation of a sum of money on 
August 9th, 1207, by local dignitaries to a local educational institution to sponsor 
the study of his writings. At that time he had already passed away more than 20 
years earlier, around the year 1185 (Fig. 4.12). 

Remarkably, another very advanced mathematician and astronomer appeared in 
Kerala at the southern tip of India more than two centuries later. This was Mādhava 
of Sangamagrāma (ca. 1340–ca. 1425). He was the leading representative of the 
Kerala school of mathematicians, and the results attributed to him include power 
series expansions for trigonometric functions and their derivations. We will say 
something about this work in connection with Leibniz in the final section of Chapter 

Fig. 4.12 Srinivasa 
Ramanujan, Indian 
mathematician of genius
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Fig. 4.13 Indian 
mathematician Kanakanahalli 
Ramachandra; photograph by 
the author, in Bangalore 

5. Indeed it is necessary to point out that at the time that Mādhava was born, two 
pioneers of the European Renaissance, the poet Dante Alighieri and Giotto, the 
father of European painting, had already died. 

We close this section with a discussion of a few mathematicians born in India 
in the nineteenth and early twentieth centuries, at which time India was under the 
control of the British Empire as a colony. In addition to the British writers William 
Thackeray, Eric Blair (better known by his pen name George Orwell), and Rudyard 
Kipling, two British mathematicians were also born in India during this period. The 
first of these was the mathematical logician Augustus De Morgan, born in Madurai 
in the state of Tamil Nadu in South India in 1806, and about a century later, the 
algebraic topologist J.H.C. Whitehead was born in Chennai, at that time known as 
Madras, in the same state. De Morgan was responsible for a significant revolution in 
mathematical logic, freeing it from the restrictive laws passed down by Aristotle, and 
is recognized today as one of the founders of modern mathematical logic. Whitehead 
made significant contributions to the development of homotopy theory, one of the 
fundamental tools of algebraic topology, and also gave the first precise definition of 
differentiable manifolds (Fig. 4.13). 

It was also in this same state of Tamil Nadu that one of the great geniuses 
of Indian mathematics was born: Srinivasa Ramanujan (1887–1920). Ramanujan 
was an almost entirely self-taught prodigy who made remarkable contributions to 
number theory, especially in the theory of integer partitions, but also in the fields 
of elliptic functions, hypergeometric functions, and divergent series. Alongside the 
polymath and poet Rabindranath Tagore (1861–1941), these two figures are the 
pride of modern Indian intellectual history. The inspiration provided by Ramanujan 
in particular spurred India to achieve great progress in mathematics and the natural 
sciences in the second half of the twentieth century. The Indian mathematician 
Kanakanahalli Ramachandra (1933–2011) formed an Indian school of number 
theory, establishing him as perhaps the true successor of Ramanujan. In physics, 
the University of Madras has produced two Nobel Laureates: CV Raman (1888– 
1970) and Subrahmanyan Chandrasekhar (1910–1995). The latter of these two was 
10 years old in the year that Ramanujan died.
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Sacred Land 

The Arabian Empire 

We turn now from India to the Arabian Peninsula, where the prosperity of the 
Arabian Empire contributes one of the most exciting episodes in the history of 
humanity. The starting point of this narrative is of course the legendary life of the 
prophet Muhammad. Muhammad ibn Abdullah was born around the year 570 in 
Mecca in the southwestern Arabian Peninsula. In contrast with the founding figures 
of Jainism and Buddhism, who were raised in opulence, Muhammad was orphaned 
in childhood, which, although his grandfather was an important tribal leader, cut 
him off from his inheritance. At that time Mecca was also a remote place, far 
removed from every commercial, cultural, and artistic centers, and Muhammad grew 
up under difficult conditions. When he was 25 years old, Muhammad married the 
businesswoman widow of a successful businessman, and his economic situation 
improved considerably, but it was not until the age of 40 that the events that have 
cemented his place in history took place (Fig. 4.14). 

Muhammad experienced a revelation that there is one almighty god Allah with 
dominion over the world, who had chosen Muhammad as prophet to preach his faith. 
This was the birth of the religion of Islam. The word islām means submission in 
Arabic, and the believers in this religion are called Muslim, meaning those who 
submit. Islam teaches that the end of the world will see the resurrection of the 
dead and the judgment of all people according to their actions. Muslims have an 

Fig. 4.14 Mosque geometry
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obligation to relieve poverty and the suffering of others, the accumulation of wealth 
or mistreatment of the poor are considered social ills that will receive the harsh 
judgment of later generations. It is also emphasized in Islam that all believers are 
brothers and should live together in a close group. One saying has it that Allah is 
closer to his followers than the blood vessels in their necks. 

In the year 622, Muhammad had gathered around him about 70 followers, and 
persistent persecution caused them to migrate from Mecca to Medina, about 200 
kilometers to the north. This marked a turning point in the story of Islam and led 
to a rapid accumulation of new followers. The Bedouin living at that time on the 
Arabian Peninsula were nomadic Arabic-speaking tribes who were known for their 
bravery and martial talents, but they had long been divided and had never united in 
rivalry against the tribes living on the arable land further north along the peninsula. 
Muhammad brought them together through religious and institutional maneuvers 
such as intermarriage and began an unprecedented period of conquest, including a 
campaign that he himself led that pushed as far as the edge of Syria (Fig. 4.15). 

In the 10 years following Muhammad’s death in the year 632, the army he had 
assembled, led by two heirs to the caliphate, both of whom were father-in-law to 
Muhammad, defeated the Sassanid army of Persia; occupied Mesopotamia, Syria, 
and Palestine; and seized Egypt by way of Byzantium, landing the final blow to 
the Alexandrian civilization. Around the year 650, a holy text known as the Quran 

Fig. 4.15 Cover page of the  
Quran



126 4 India and Arabia

was published, based on the words of Muhammad and his followers. This book is 
considered by Muslims to be a revelation directly from God, written in the language 
of Allah, and forms the basic text of the Islam religion, one of the four valid sources 
of law in Usuli jurisprudence, alongside the teachings and normative examples of 
Muhammad known as the sunnah and composed of oral accounts called hadith, the  
consensus of scholars (referred to as ijmā . ↪), and the guidance of the rational faculty 
of the soul ( ‘aql). 

The Muslim campaign continued its rapid expansion: in the year 711, they swept 
North Africa and proceeded toward the Atlantic Ocean; they crossed the Strait 
of Gibraltar to the north and occupied Spain. During this period, China was still 
experiencing the peace and prosperity of the Tang Dynasty, the poet Li Bai was still 
in his youth, and his younger friend and fellow poet Du Fu was still in his mother’s 
womb. From the perspective of mathematical history, it had been half a century 
since the death of Brahmagupta, and there were not at this time any significant 
mathematical figures alive in either the east or the west. It was not inconceivable 
that the Muslim army would conquer the entirety of Christian Europe. But in the 
year 732, the Muslim invaders had reached the Aquitane region in what is now 
central France, where they were defeated in the Battle of Tours. 

The Muslim army had expanded their territory to a vast area from India in the 
east to the Atlantic Ocean to the west, encompassing areas north of the Caspian 
Sea stretching into Central Asia. This was the Umayyad Caliphate, probably the 
largest empire in human history to this date, committed throughout its expansion 
to the dissemination of Islam. But internal power struggles caused the caliphate to 
split into two powers, one with its capital at Córdoba in Spain and the other with 
its capital in Damascus, in Syria. The latter became the Abbasid Caliphate, founded 
by descendants of Muhammad’s uncle Abbas ibn Abdul-Muttalib, and its center 
of power switched gradually eastward to Baghdad in Iraq. Here the Abbasids built a 
city unparalleled in the world, a center of science, culture, philosophy, and invention 
during the period later known as the Golden Age of Islam. The Abbasid Caliphate 
became the longest and most renowned dynastic power in the history of Islam. 

The House of Wisdom in Baghdad 

Baghdad is located along the Tigris River, at the point where the distance between 
the Tigris and the Euphrates is smallest, and surrounded by a flat alluvial plain. 
The word baghdad is most likely a Middle Persian compound meaning a gift from  
God, and this city quickly began to prosper after it was established as the capital of 
the Abbasid Caliphate by its second caliph, Al-Mansur in 762. Palaces and various 
buildings sprang up from the ground between the circular city walls, and the city 
reached the peak of its economic and academic prosperity by the late eighth century 
and the first half of the ninth century, under the governance of Al-Mahdi and his 
successors Harun al-Rashid and Al-Ma’mun. At this time, Baghdad was one of the 
richest cities in the world (another was Chang’an in China) (Fig. 4.16).
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Fig. 4.16 1237 illustration of 
the House of Wisdom 

The ninth century in world history begins with the appearance on the world stage 
of two emperors with a dominant role in international affairs: Charlemagne, King of 
the Franks, and Harun al-Rashid. Charlemagne was the grandson of Charles Martel, 
who had defeated the Umayyad invasion of Aquitaine at the Battle of Tours, and 
Charlemagne was crowned Emperor of the Romans by Pope Leo III on Christmas 
Day in the year 800. Harun al-Rashid exerted an even greater influence on the course 
of history, and these two leaders in the east and the west, respectively, established 
a diplomatic alliance and even a personal friendship, characterized by frequent 
exchanges of valuable gifts. Charlemagne hope that Harun could aid him in his 
efforts against the Byzantine efforts, and Harun in turn hoped for Charlemagne’s 
assistance in his struggle against the surviving Umayyad dynasty in Spain. 

Both legend and historical evidence confirm that the period under Harun al-
Rashid was the most glorious time in the history of Baghdad. In less than half a 
century, the city had grown from its humble beginnings as a deserted village to 
a cosmopolitan center of extraordinary wealth. Only Constantinople in Byzantium 
could compete with it for splendor at the time. Harun was a typical Muslim monarch, 
whose magnetic generosity attracted poets, musicians, singers, dancers, and trainers 
for hounds and cock-fighting, in a word all manner of remarkable people, to the 
capital. He was immortalized as an extravagant, even profligate, caliph in The 
Thousand and One Nights. 

About the year 771, 9 years after the establishment of Baghdad, an Indian 
traveller brought with him two scientific papers to the capital. One of these 
was an astronomical treatise, which Al-Mansur had translated into Arabic. This
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Fig. 4.17 Arabic translation 
of Greek writings 

translator became the first astronomer of the Islamic world. Previously, the nomadic 
inhabitants of the Arabian Peninsula had sustained a deep interest in the position 
of the stars, but they had not conducted any systematic scientific research into 
this phenomenon. But the rise of Islam provided a need for careful astronomical 
calculations due to the requirement to pray facing the direction of Mecca five times 
daily. This obligation to prayer (Salah) is one of the five pillars of Islam; the others 
are the declaration of faith (Shahada), almsgiving (Zakat), fasting (Sawm), and 
pilgrimage (Hajj) (Fig. 4.17). 

The second paper was a mathematical essay by Brahmagupta. The Lebanese-
American historian Philip K. Hitti has observed that the numerals known to 
Europeans as Arabic numerals, and known in Arabic as Indian numerals, were 
first introduced to the Muslim world by this paper. Apart from this however, the 
cultural exports of India were very few, and eventually the Greeks came to have 
the most substantial influence on Arabic thought of this period, especially after the 
conquest of Syria and Egypt. They began to actively seek out Greek works, including 
Euclid’s Elements, Ptolemy’s Almagest, and the dialogues of Plato, all of which were 
translated one after another into Arabic. 

Here we point out that also Chinese papermaking technology had not long 
earlier been introduced to the Arabic world at this time, four centuries before its 
introduction to Europe by way of the Middle East and North Africa (bypassing the 
Mediterranean, like Hindu-Arabic numerals). Indeed, there was a paper mill in the 
city of Baghdad already. The Chinese had kept the art of papermaking a deeply held 
secret for many centuries after improvements were made to this craft in the second 
century by Cai Lun of the Eastern Han dynasty. But in 751, a Tang dynasty army
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was defeated by Muslim forces in the Battle of Talas in Kazakhstan, and a group 
of paper workers were taken prisoner to Samarqand, where they were compelled to 
divulge their knowledge. 

The Greek influence reached its peak after Harun al-Rashid was succeeded by 
his son al-Ma’mun, who became obsessed with rational inquiry. He is said to have 
been visited by Aristotle in a dream, who assured him that there was no substantial 
conflict between reason and then teachings of Islam. In 830, al-Ma’mun ordered 
the construction of the Bayt al-H. ikmah or The House of Wisdom in Baghdad. This 
was a joint institution with integrated functions as a library, science academy, and 
translation center. This was undoubtedly the most important academic institution 
to appear since the establishment of the Library of Alexandria in the third century 
BCE, and it quickly became the center of the academic world, a place of extensive 
research activity in philosophy, medicine, zoology, botany, astronomy, mathematics, 
mechanical technology, architecture, Islamic theology, Arabic grammar, and more. 

The Algebra of al-Khwarizmi 

In the latter half of the long and effective era of translations under the Abbasid 
caliphate, Baghdad became home to an age of scientific originality. The most 
important figure in this story is the mathematician and astronomer Muh. ammad ibn 
Mūsā al-Khwārizmı̄ (780–850). He was born more than a century after the death of 
Brahmagupta and before the birth of Mahāvı̄ra. Relatively little is known about his 
life, although it is generally believed on the basis of his name that he was born in the 
Khwarazm region of Greater Iran, where the Amu Darya river flows into the Aral 
Sea, not far from the city of Khiva in modern Uzbekistan. Another theory has it that 
al-Khwarizmi was born on the outskirts of Baghdad but descended from people of 
the Khwarazm region (Fig. 4.18). 

One of his epithets also implies that al-Khwarizmi had among his ancestors 
adherents of the ancient Zoroastrian religion. Zoroastrianism, also known as 

Fig. 4.18 Statue of 
al-Khwarizmi in Samarkand
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Mazdayasna, is one of the oldest continuously practiced religions in the world, with 
a history stretching back even at that time more than two and a half millennia. Its 
tenets include a form of elementalism with special prominence given to the role 
of fire, a theology of cosmic dualism, and its opposition to abstinence, celibacy, 
fasting, and other such forms of ascetic self-denial. The founding prophet Zoroaster 
(or Zarathustra) of Zoroastrianism probably lived about the same time as the early 
Jainist preacher Mahavira, perhaps about 30 years earlier, somewhere in the northern 
parts of what is today Iran. Since his death, the religion he founded became at several 
times the state religion of the Persian Empire. 

For these reasons, it can be inferred that al-Khwarizmi had Persian ancestors; 
even if this is not the case, for example, if he was rather of Central Asian descent, 
his spiritual life was essentially linked to Persia, a nation with a long and deep 
cultural tradition, and he was proficient in Arabic. Al-Khwarizmi spent the years 
of his early education in his hometown, before travelling to the ancient city of 
Merv in Central Asia to continue his studies. He also visited Afghanistan, India, and 
other places in pursuit of learning. He quickly became a well-known and respected 
scholar, and al-Ma’mun, at that time governor of Khorāsān in the eastern Iranian 
Plateau, summoned him back to Merv. Later, after al-Ma’mun became caliph of the 
Abbasid Caliphate, he hired al-Khwarizmi to work in the capital Baghdad, where al-
Khwarizmi eventually became one of the lead researchers at the House of Wisdom. 
After the death of al-Ma’mun, his successor continued to employ al-Khwarizmi, 
who remained in Baghdad until his own death. This was a time of tremendous 
political stability, economic development, and cultural and scientific prosperity for 
the Islamic empire (Fig. 4.19). 

Al-Khwarizmi left behind two influential mathematical treatises: Algebra and 
On the Calculation with Hindu Numerals. The full title of the book referred to 
colloquially as Algebra was The Compendious Book on Calculation by Completion 

Fig. 4.19 Manuscript of the 
Algebra of al-Khwarizmi
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and Balancing, and the modern word algebra derives from the term al-jabr 
contained within it, meaning restoration and designating the process of adding a 
number to both sides of an equation to cancel or consolidate terms. This book 
was translated into Latin in the twelfth century during a period that saw a burst 
of translation activity and exerted an inestimable influence on the subsequent 
development of European sciences. It would not be inaccurate to say that algebra 
was an Arabic invention, as perhaps geometry was an Egyptian invention; perhaps 
algebra was even something like the grammar through which the people of the 
Arabian Peninsula understood the workings of numbers. 

Al-Khwarizmi completed Algebra in about the year 820. The problems he 
discusses are not more difficult than those in Diophantus or Brahmagupta, but since 
he concerns himself with general rather than particular solutions, his perspective 
is much closer to that of modern elementary algebra than anything that appears in 
the ancient Greek or Indian mathematical literature and constitutes a remarkable 
achievement in the history of mathematics. The book discusses the algebraic 
treatment of linear equations and provides a general algebraic solution to the 
quadratic equation. More importantly, it also introduces generalized algebraic tools, 
such as shifting terms from one side of an equation to the other and merging like 
terms, paving the way for algebra to develop as the science of equation solving. It is 
hardly surprising that al-Khwarizmi’s book became a standard textbook in Europe 
for several centuries, an unusual situation for a scientific work from the east. 

Whereas Brahmagupta provided only a single solution for quadratic equations in 
one variable, al-Khwarizmi gives both. He was perhaps the first mathematician in 
world history to observe explicitly that quadratic equations have two roots. On the 
other hand, although he was aware that such equations can have negative roots, he 
did not admit either negative roots or zero roots as solutions to quadratic equations. 
He also pointed out that if the discriminant of a quadratic equation is negative, 
then there are no (real) roots (here we introduce modern terminology to describe 
this observation). After having provided solutions to various typical equations, al-
Khwarizmi provides also geometric proofs for his results, a practice which shows 
the obvious fingerprints of Euclid and the Greeks. Therefore it is reasonable to 
say that unlike other mathematicians of the Arabian Peninsula, al-Khwarizmi was 
influenced by the two civilizations of Greece and India, which of course also reflects 
their relative geographic positions. 

On the Calculation with Hindu Numerals was another immensely important book 
in the history of mathematics, since it provides a systematic introduction to Hindu 
numerals and decimal notation, both of which had previously been described to 
scientists in Baghdad by Indian visitors, but which had not yet attracted widespread 
attention. Like Algebra, this book was translated into Latin and widely disseminated 
in the twelfth century. An early Latin edition is housed today in the University of 
Cambridge library. Subsequently, the Indian system of numeral notation gradually 
came to replace the alphabetic system employed by the Greeks, and the system of 
Roman numerals, until eventually it became the universal number system across the 
globe. On account of the history of its adoption, such numerals are generally known 
today as Arabic numerals or Hindu-Arabic numerals. It is also worth mentioning that
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the original title of the Latin translations of On the Calculation with Hindu Numerals 
was Algoritmi de numero Indorum, where Algoritmi was the Romanization of the 
name al-Khwarazmi. It is from this that the modern term algorithm in mathematics 
and computer science derives. 

Al-Khwarizmi also made contributions to geometry, in particular to the measure-
ment of area. He classified triangles and quadrilaterals and gave, respectively, the 
formulas for the calculation of their areas. He also gave an approximate formula for 
the area of a circle  

. A =
(
1 − 1

7
− 1

2
× 1

7

)
d2,

where d is the diameter of the given circle, corresponding to the value .π ≈ 3.14. 
We see also here that the Arabic mathematics like the Indians adopted the Egyptian 
preference for unit fractions. Al-Khwarizmi also gave an area formula for a circular 
segment, considering separately the cases where the segment is larger or smaller 
than the semicircle, respectively. 

In astronomy, al-Khwarizmi compiled trigonometric and astronomical tables to 
calculate the positions of the stars and lunar and solar eclipses and wrote numerous 
books on astrolabes, the sine quadrant, sundials, and the calendar. In astronomy 
in particular, al-Khwarizmi’s work inspired a remarkable successor: al-Battani (ca. 
858–929), who was born in Syria and discovered for the first time that the radius 
between the earth and the sun varies throughout the year and determined that 
the apogee of the sun (the point when it is furthest from the earth) produces an 
annular solar eclipse. Al-Battani replaced the geometric method in astronomy with 
trigonometry, introduced the use of the sine function in calculations, and corrected 
some of errors in the works of Ptolemy, including improved calculations for the 
orbits of the sun and certain planets. His astronomical works were also translated 
into Latin in the twelfth century and became the best known works of their kind in 
medieval Europe. 

The intellectual achievements of al-Khwarizmi were not limited to mathematics 
and astronomy. He also wrote the first works of academic history in Arabic 
and promoted thereby the development of history as a research subject. He also 
participated in an important project of the period, the creation of a world map, 
which was in high demand for its military and commercial utility (the people of 
the Arabian Peninsula have proved to be especially savvy businesspeople). This led 
to the composition of a book entitled Kitâb Sûrat al-Ard, or  Book of the Image 
of the Earth, the first geographical monograph in medieval Muslim history, which 
describes the important settlements, mountains, rivers, lakes, seas, and islands of 
the known world at that time, accompanied by four maps.
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The Scholars of Persia 

Omar Khayyam 

Although the mathematics and science of the Arabian Peninsula in the medieval 
period exhibited mainly the influence of Greece and India, the main influence on 
the culture of this civilization was undoubtedly Persia, in a relationship similar to 
that of Macedonia under the sway of the Greek civilization, the fruit of which was 
the great polymath Aristotle. The people of the Arabian Peninsula were known not 
only for their decisiveness and bravery but also for their excellent organizational 
and management skills, and an attitude of tolerance and generosity, but in rational 
philosophy they lagged behind the Persians. In the end, there were two main 
indigenous features of this civilization: the rise of Islam, which became the state 
religion, and the Arabic language, which was preserved as the official national 
language. In other respects, the Persian influence was everywhere: in Baghdad, 
Persian titles, Persian wine, Persian romance, Persian songs, and more gradually 
became more and more fashionable (Fig. 4.20). 

Fig. 4.20 Mausoleum of 
Omar Khayyam, Nishapur
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According to legends, it was al-Mansur himself who first came to revere and 
emulate the Persians, and his subjects naturally followed his lead. He also initiated 
a Persian revival under his government, including a heavy dependence on Persian 
diplomats. Al-Mansur appointed the first Persian vizier Yahya ibn Khalid, and the 
two became close to the point that their wives nursed each of the other’s children, 
who were born around the same time, and Jafar bin Yayha, son of Yayha ibn Khalid, 
served as a tutor to Harun al-Rashid. Eventually however there was a falling out 
between these two families, according to story, because Jafar bin Yayha violated the 
terms of what was intended to be a purely formal marriage with Harun’s beloved 
sister Abbāsa, and the two of them had conceived a child. In any case, the Barmakid 
family to which Yayha belonged fell out of favor, Jafar was beheaded, and many of 
the remaining family members were imprisoned. 

Following the death of al-Ma’mun, the Abbasid Caliphate went into decline, 
and many smaller autonomous dynastic powers begin to spring up at the periphery 
of Baghdad. The political situation became increasingly turbulent, competing 
religious factions proliferated, the empire gradually fractured, and what central 
power remained fell to the military over the course of multiple troop riots and 
finally a slave uprising known as the Zanj rebellion. All this provided an opening 
for the Turks and the Persians to direct again the point of their blades at the heart of 
Baghdad. 

In spite of all this, noteworthy intellectual activity continued in Baghdad. In the 
tenth century, the Persian mathematician al-Karaji (953–1029) carried out research 
into the binomial coefficients (later than the Indians, but earlier than Jia Xian) and 
the algebra of exponents, and made contributions to the theories of linear equations 
and mathematical induction. In 1065, the first official institution of higher learning 
in the Muslim world, the Al-Nizamiyya, was established in Baghdad, but it failed 
to attract the brightest young talents of the period, such as Omar Khayyam, perhaps 
the greatest mind of the medieval Islamic world. 

Omar Khayyam (1048–1131) was born in 1048 in Nishapur, an ancient city in the 
Khorasan region of northeastern Iran. The name khayyam means tent-maker, which  
suggests that his father or more distant forebears were engaged in the practice of tent-
making. Perhaps for this reason, his childhood was spent roaming freely with his 
father, first within the confines of his hometown, later in the province of Bukhara, 
home to a famous library, and the small city of Balkh in northern Afghanistan, 
where he studied, before finally he moved to Samarkand, the oldest city in Central 
Asia, where he gained political favor. Here he began to compose his substantial 
mathematical works, under the patronage of the governor and chief judge of the 
city (Fig. 4.21). 

Already in Euclid’s Elements, there appear geometric solutions to quadratic 
equations of the form .x2 + ax = b2, where one of the solutions is given by 

.

√(a
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)2 + b2 − a

2
.
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Fig. 4.21 Graph used by 
Omar Khayyam to find 
solutions to cubic equations 

This can be proven by using right triangles and the Pythagorean theorem: construct a 
right triangle with sides of length . a2 and b about the right angle. Then after removing 
a length . a2 from the hypotenuse, what remains will be the solution as given. But 
the solution of cubic equations is obviously more complicated. Omar Khayyam 
considers 14 types of cubic equations in his research and determined their roots 
by considering the intersections of two conic sections. 

Consider as an example the cubic equation .x3 + ax = b. This can be rewritten 
as .x3 + c2x = c2h, which equation Omar Khayyam considered as determined by 
the abscissa x of the intersection C of the parabola .x2 = cy and the semicircle 
.y2 = x(h−x) (see the figure), since the variable y can be eliminated from the latter 
two equations to recover the original cubic equation. As a result, Omar Khayyam 
obtained solutions to cubic equations by way of conic sections and paved the way 
for the study of polynomial equations of higher degree. He presented his results 
in an important treatise Maqāla fi l-jabr wa l-muqābala (On proofs for problems 
concerning Algebra). He almost contributed a historically important attempt at a 
proof of Euclid’s fifth postulate, the parallel postulate. 

In the eleventh century, a Turko-Persian empire called the Seljuk Empire swept 
into power and gained control over a vast area, stretching from western Anatolia 
and the Levant in the west to Hindu Kush in the east and from Central Asia in 
the north to the Persian Gulf in the south, also under the banner of Islam. Omar 
Khayyam was commissioned by the Sultan Malik-Shah I of the Seljuk Empire to 
travel to the Isfahan to preside over the establishment of a new observatory and the 
reform of the Persian calendar. This became his main source of livelihood, while 
mathematical research remained an important recreational pursuit. In his calendar 
work, he proposed the addition of 8 leap days every 33 years to the basic 365 days of 
the normal year. This reduces the difference from the actual year to an error of 19.37 
seconds, or 1 day every 4460 years, more accurate even than the Gregorian calendar 
in use around the world today. A change of leadership however had the unfortunate 
result that his reforms were not implemented (Fig. 4.22). 

Omar Khayyam spent most of his life in Isfahan. It can be said that he experienced 
in his lifetime each of the three dominant strands of his period: Islam, the Suljuk
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Fig. 4.22 Poem of four lines 
by Omar Khayyam, with 
illustration 

court, and Persian culture. But all this turmoil and an eccentric personality made 
a solitary and somewhat unsettled life, and he recorded his occasionally untimely 
thoughts in the form of Persian poems of four lines, a style popular in Khorasan 
at the time. Probably he could not have imagined that some eight centuries later 
in 1859 an Englishman named Edward FitzGerald would translate and publish 
a selection of these poems under the title Rubáiyát of Omar Khayyám with the 
result that Omar Khayyam became known the world over for his poetry, while his 
mathematical achievements drifted under its shadow. In one of these poems (No. 57 
in the numbering of the Rubáiyát), he laments the failure of his calendar reform: 

Ah, but my Computations, People say, 
Reduced the Year to better reckoning?–Nay 
’Twas only striking from the Calendar 
Unborn To-morrow, and dead Yesterday.2 

The ancient Iranian people referred to themselves as Aryans and probably 
belonged to the same group of Indo-European speaking Central Asian nomads who 
travelled toward Europe sometime between the years 2000 and 1000 BCE. Indeed, 
the modern Persian name of Iran means the land of the Aryans, and likely these were 
the same people who earlier had migrated into India, where some remained and 
intermarried with the aboriginal Dravidian peoples. The name Persia itself derives 
from Parsa, the name of the people from whom Cyrus the Great of the Achaemenid

2 Tr. Edward FitzGerald 
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dynasty emerged. These people gave their name to the region where they settled as 
Fars (or Pars), today a province of Iran containing the central city of Shiraz, known 
as the city of poets and flowers. 

This was the birthplace of modern Persia. Cyrus the Great was born in the sixth 
century BCE and started as a local leader in his native region, before eventually 
managing to defeat the Babylonians and many other powers and establishing a great 
empire between India and the Mediterranean. After the death of Cyrus, one of his 
sons, and the son Darius of one of his ministers, continued to expand the territories 
of the empire to encompass Egypt, which is when legend has it that Pythagoras was 
taken captive in Babylon. The cuneiform inscriptions at Mount Behistun in western 
Iran that we have already encountered relate how Darius came to the throne. It 
seems also that after the decline of Plato’s Academy in Greece, many Greek scholars 
travelled to Persia and contributed to the development of its civilization. 

Nasir al-Din al-Tusi 

About 70 years after the death of Omar Khayyam, during which time both the 
Italian mathematician Fibonacci and the Chinese mathematician Li Ye were born, 
the great Persian polymath Nasir al-Din al-Tusi (1201–1274) was born in the city 
of Tus, also in Khorasan. At this time Tus was the intellectual center of the Arabian 
Peninsula, and Harun al-Rashid also died there. Nasir-al-Din Tusi’s father was a 
scholar of jurisprudence, who encouraged his son to take seriously his studies and 
saw himself to his elementary education before his early death, while an uncle 
in the same city taught Nasir-al-Din al-Tusi logic and philosophy. He also took 
up algebra and geometry during this time. In his later youth, Nasir-al-Din al-Tusi 
moved to Nishapur, home of Omar Khayyam, to study medicine and mathematics 
with disciples of the legendary Persian philosopher and scientist Ibn Sina (ca. 980– 
1037), more famous in western countries by his Latin name Avicenna. Gradually 
Nasir-al-Din al-Tusi made a name for himself as a thinker (Fig. 4.23). 

At this time, the armies of Genghis Khan were sweeping westward, and the 
vestiges of the Islamic empire were crumbling. In the absence of any stable 
academic environment, Nasir-al-Din al-Tusi was invited to move from stronghold 
to stronghold at the behest of the Nizari Ismaili state, and it was in this context 
that he composed several important works of mathematics and philosophy. Finally 
in 1256 the grandson Hulagu Khan of Genghis Khan (the brother of Mongke Khan 
and Kublai Khan) conquered northern Persia and occupied the stronghold Maymun-
Diz where Nasir-al-Din al-Tusi had settled. He was captured, but managed to earn 
the respect of Hulagu Khan, who appointed him as scientific advisor to the Mongols. 
Two years later, Nasir-al-Din al-Tusi served under Hulagu Khan in a brutal and 
bloody expedition against Iraq that signaled the final end of the Abbasid Caliphate. 

After the death of Mongke Khan, Kublai Khan succeeded to the throne, and 
Hulagu Khan was made king of the Ilkhanate territory and charged with the 
subjugation of Persia and any remaining Muslim states in southwestern Asia, which



138 4 India and Arabia

Fig. 4.23 Iranian 
commemorative stamp in 
honor of Nasir al-Din al-Tusi 

he accomplished at the head of a massive Mongol army, establishing a capital in 
the city of Tabriz in northwestern Iran adjacent to Azerbaijan. With the approval 
and funding of Hulagu Khan, Nasir-al-Din al-Tusi had established the Maragheh 
observatory in this region, and he set about recruiting talented scholars, writing and 
carrying out research, and commissioning the production of advanced instruments 
of observation, so that the Maragheh observatory became an important center of 
academic activity. Nasir-al-Din al-Tusi has been twice featured on commemorative 
stamps in Azerbaijan on account of his importance to the region. 

In 1274, Nasir-al-Din al-Tusi paid a visit to Baghdad, where he succumbed to 
an illness and was buried in the suburbs. Hulagu Khan had already died at this 
time, having conquered an area including all of Persia and of course Baghdad in 
particular. By the time his grandson came into power, the Ilkhanate extended from 
the Amu Darya river in the east to the Mediterranean Sea in the west, from the 
Caucasus in the north to the Indian Ocean in the south (Fig. 4.24). 

Nasir-al-Din al-Tusi was a diligent writer throughout his entire life, leaving 
behind a trove of treatises and letters in Arabic, as well as a small number of 
philosophical texts in Persian. He was also reputed to be familiar with the Greek 
language, and Turkish makes an appearance in some of his writings. He touched 
upon every aspect of the Islamic intellectual world of the time, in particular 
mathematics, astronomy, logic, philosophy, ethics, and theology. These works are 
not only classics of Islamic scholarship but also influenced deeply the awakening of
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Fig. 4.24 A manuscript of 
Nasir al-Din al-Tusi 

European science. Some of his astronomical instruments may also have made their 
way to China where they served as reference for the astronomers there. 

Three of his books in particular are noteworthy mathematical treatises. In a 
collection of arithmetical writings entitled Jami’ al-hisab bi-‘ l-Takht wa- ‘l-turab, 
Nasir-al-Din al-Tusi presents familiar results from Omar Khayyam and extends the 
research of numbers more deeply in the direction of irrational numbers and other 
fields. The numerals are Hindu throughout and include some discussion of Pascal’s 
triangle and methods for finding fourth roots and other higher roots of numbers. 
This seems to be the earliest extant work on this topic. It is also fascinating that 
Nasir-al-Din al-Tusi discovered the important number theoretic result that the sum 
of squares of two odd numbers cannot be square, which is usually proven by way of 
the theory of congruences (Fig. 4.25). 

A more substantial work is contained across the Al-Risala al-shafiya ‘an al-
shak fi al-khutut mutawaziyya (Treatise healing the doubt about the parallel lines) 
and the Tahrir al-Usul al-Handasiya li-Uqlidis (Exposition of Euclid’s Elements), 
comprising two revisions and annotations of the Elements and containing a more 
detailed consideration of the parallel postulate. Nasir-al-Din al-Tusi argued that the 
parallel postulate ought not to be a postulate but rather something than can be 
proved on the basis of the four other fundamental postulates of Euclidean geometry. 
He followed in this regard the methodology of Omar Khayyam: if ABCD is a 
quadrilateral, with segments DA and CB equal in length and perpendicular to the 
side AB, then the angles at C and D are equal. If these two angles are acute, Nasir-
al-Din al-Tusi showed that it follows that the sum of the interior angles of a triangle 
is less than two right angles, which is the basic starting point of Lobachevskian 
geometry, although Nasir-al-Din al-Tusi did not pursue this line of thought any 
further.
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Fig. 4.25 Quadrilateral used 
by Nasir al-Din al-Tusi in 
connection with the parallel 
postulate 

The most important mathematical work of Nasir-al-Din al-Tusi is his Treatise on 
the Quadrilateral, the first mathematical monograph devoted solely to trigonometry 
in the history of mathematics – prior to this, trigonometric results appeared only 
in astronomical texts, as a computational tool, and it was only after the work of 
Nasir-al-Din al-Tusi that trigonometry developed as an independent branch of pure 
mathematics. This book contains also the first statement of the sine law for plane 
triangles: if A, B, C are three angles in a triangle, and a, b, c the lengths of the sides 
opposite to them, respectively, then 

. 
a

sinA
= b

sinB
= c

sinC
.

Nasir-al-Din al-Tusi made equally outstanding contributions to astronomy, which 
we will not go into in more detail here. His two sons seem to have also worked at 
the Maragheh observatory, as well as a Chinese astronomer whose name and origins 
cannot be identified. The History of Yuan (元史) lists seven western instruments of 
Arabic design, some of which are very similar to those of Nasir-al-Din al-Tusi. Much 
later in the eighteenth century, several observatories built by Indians in Delhi and 
other places imitated the structure and appearance of the observatory established by 
Nasir-al-Din al-Tusi at Maragegh.
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Jamshı̄d al-Kāshı̄ 

It is a historical fact concerning the broad appeal of Islam that although the territory 
captured by the various Muslim powers may be lost in time, the people inhabiting 
almost always will have long converted to Islam. Iran, or Persia, is a typical example. 
After the Arabic conquest in 640 and the advent of Islam after a series of debilitating 
wars with the Byzantine Empire, the rule over this territory changed hands again and 
again, as it was occupied by various powers. But the influence of Islam has remained 
a constant and is reflected through to today in the national emblem and national flag 
of Iran. The former contains four crescents, a sword in the shape of a water lily, and 
a stylized script, symbolizing, respectively, Islam, power, and the Quran. The latter 
is green, white, and red, with that Takbir (“Allah is great”) written 11 times each in 
the Kufic script along the edges of the green and red bands. 

We turn now to the last great mathematician and astronomer of the ancient Arabic 
world and indeed of the ancient east: Jamshı̄d al-Kāshı̄, whose death in 1429 marks 
the end of an era. There is no record of the year of his birth, but probably it was 
in around 1380. Rather the earliest record of his existence dates from June 2nd, 
1406, when he observed a lunar eclipse from his hometown Kashan, in the eastern 
foothills of the central mountain range of Iran, today along the railway line between 
the old capital Isfahan and the modern capital Tehran. Although al-Kāshı̄ seems to 
have come from a humble background, nevertheless like Omar Khayyam and Nasir-
al-Din al-Tusi before him, his talents were early recognized and appreciated by the 
political elite. 

At the end of the fourteenth century, a descendent of Genghis Khan named 
Timur (or Timūr Gurkānı̄), who had been crippled for life during a failed raid in 
his youth, established the Timurid Empire, with its capital at Samarkand. Timur 
belonged to the Turco-Mongol tradition and a believer in Islam, and he carried out 
a fierce and unstoppable campaign across lands stretching from Russia to India and 
the Mediterranean in pursuit of the restoration of the Mongol empire. He did not 
return to Samarkand until he had secured tribute from the Sultan of Egypt and the 
Byzantine emperor. Although Timur himself was illiterate, he enjoyed the company 
of learned scholars with whom he could play chess and discuss various questions of 
history, Islamic theology, and applied science (Fig. 4.26). 

In 1405, as he was preparing to embark upon a new campaign against China, 
where the Yuan dynasty had already come to an end, Timur died of an illness. 
His grandson Ulugh Beg had no appetite for martial affairs, but rather developed 
an obsession with the sciences and astronomy in particular; he himself discovered 
through his own observations of calculation errors in the works of Ptolemy. He also 
wrote poetry, studied history and the Quran, and became a powerful patron and 
protector of art and science. He established early on an institute for science and 
theology in Samarkand and made plans to build an observatory as well. Samarkand 
quickly became the most important academic center in the eastern world at the 
time (Fig. 4.27). 

The academic career of al-Kāshı̄ was closely linked with Ulugh Beg. Although 
he was trained as a doctor, his passion was for mathematics and astronomy, and he



142 4 India and Arabia

Fig. 4.26 Uzbekistani commemorative stamp in honor of Ulugh Beg 

Fig. 4.27 Ancient city gates of Samarkand
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Fig. 4.28 Illustration of the 
value of . π obtained by 
Al-Kāshı̄ 

found stable patronage at Samarkand in the court of Ulugh Beg after a long period 
of poverty and hesitation. He participated in the construction of the observatory 
and the installation of its various instruments and became its first director after its 
completion. In his astronomical works, such as Sullam al-sama’ (Ladder to the Sky), 
al-Kāshı̄ discussed the distance and size of the stars and other celestial bodies and 
introduced the armillary sphere and other astronomical instruments, some of which 
were his own inventions. He also participated like almost every other ancient scholar 
in calendar reform. 

In a letter to his father, al-Kāshı̄ praised in the highest terms the knowledge, 
organizational skills, and mathematical talents of Ulugh Beg and emphasized 
especially the spirit of academic freedom in the court at that time, which he 
considered a necessary prerequisite for scientific progress. Ulugh Beg seems to have 
been deeply sympathetic to the scientists working under him and was very willing to 
tolerate in al-Kāshı̄ his lack of refined court etiquette and somewhat unconventional 
habits. In the preface of a calendar book bearing his name as its title, Ulugh Beg 
praised al-Kāshı̄ as an outstanding scientist and one of the greatest scholars in the 
world, well versed in the ancient scientific sources and capable of solving the most 
difficult problems (Fig. 4.28). 

Al-Kāshı̄ contributed two landmark mathematical achievements: the first is his 
approximation of . π , and the second is his approximation of .sin 1◦. Throughout 
ancient times, research into the calculation of . π reflected to a certain extent the 
mathematical development of a civilization, just as today the calculation of large 
prime numbers stands as a benchmark for the computer power available to a 
corporation or even a country. In 1424, Al-Kāshı̄ set a new record for accuracy 
in the calculation of . π , 962 years after Zu Chongzhi had established the previous 
record of accuracy up to the seventh decimal place. Al-Kāshı̄ obtained 

.π ≈ 3.14159265358979325,
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Fig. 4.29 Calculation of . π
by Al-Kāshı̄ 

accurate to 17 decimal places, by determining the perimeter of a polygon with . 3×228

sides. This record held until 1596, when Dutch mathematician Ludolph von Ceulen 
used inscribed and circumscribed polygons of .60 × 233 sides to obtain an accuracy 
of 20 decimal places (Fig. 4.29). 

We present here the method used by Al-Kāshı̄ in his calculation. As shown in 
the figure, suppose .AB = d = 2r is the diameter of the circle and . ln (respectively, 
. l2n) is the length of one side of the regular polygon with n (respectively, 2n) sides 
inscribed in it. Then the other two sides about the right angle have a recurrence 
relationship given by 

. c2n = d cosβ = d

√
1 + cos 2β

2
= √

r(2r + cn).

Then by the Pythagorean theorem, 

. ln =
√

(2r)2 − c2n.

A similar calculation gives the length of one side of the circumscribed regular 
polygon, and taking the arithmetic average of the two provides an approximation 
for the circumference of the circle from which the value of . π can be obtained. In 
comparison with Liu Hui’s method of circle division, Al-Kāshı̄ is able to double 
the sides of the relevant polygon by calculating a single root, using the half-angle 
formula for cosines. 

Conclusion 

Bhāskara II died in Ujjain in about 1185, and afterward scientific activity in India 
went into gradual decline and mathematical progress more or less ceased entirely. 
In 1206, the long-lasting Delhi Sultanate was established, and India came into the 
Muslim sphere. About a century later, parts of the south became independent, and 
there began a protracted struggle for power. In contrast with India, mathematics in 
Persia both rose later and declined later. But shortly after the assassination of Ulugh
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Fig. 4.30 Commemorative 
stamp of the Indian 
Mathematical Society 

Beg, allegedly orchestrated by his own son, the Safavid dynasty, which was still 
essentially martial and internally constrained in nature, took power, and the glorious 
age of mathematics in Persia and indeed the entire Arabic world came to an end. 
But at precisely this time, the European Renaissance lit a new fire starting in the 
Apennine Mountains (Fig. 4.30). 

As in Egypt, the mathematical minds of India were almost all clerical figures 
or otherwise belonged to a higher caste. This is in contrast with Greece, with the 
doors of mathematics in spirit at least were open to all. Another point of contrast 
is the Indian mathematicians, with the exception of Mahāvı̄ra, were almost all 
astronomers by profession, whereas the Greeks viewed mathematics from the start 
as an independent discipline, worthy of study in its right (mathematics for the 
sake of mathematics). Third, the Indians expressed their mathematical thought in 
poetic language; the works could be mysterious or mystical, although of course 
they also introduced the zero numeral, and the results were mainly empirical, 
without derivations and proofs. The Greeks preferred a logical and even austere 
presentation and required proofs for every result. The astronomical bent of the Indian 
mathematicians produced however some splendid results. For example, Indian 
astronomers recognized that when the moon is half-full, the positions of the sun, 
the moon, and the earth form the vertices of a right triangle and were able to use this 
fact and their knowledge of the sine function to conclude that the distance between 
the moon and the earth is one-fortieth the distance between the sun and the earth. 

The Persians were more accomplished in geometry than the Indians, though 
not so much as the Greeks, with a natural peak given by the geometric solution 
of cubic equations by Omar Khayyam. Like the Indian mathematics, the Arabic 
mathematicians for the most part considered themselves to be astronomers, and 
this emphasis on astronomy facilitated substantial contributions in trigonometry. 
The four mathematicians mentioned previously all carried out excellent work in 
astronomy, and the names of many stars even today use Latinate forms of Arabic 
words, for example, Aldebaran in Taurus, Vega in Lyra, Betelgeuse in Orion, 
Megrez in the Big Dipper asterism of Ursa Major, and Algol in Perseus. Arabic 
mathematicians also made substantial contributions to algebra, and many of the
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questions that appear later in Fibonacci’s Liber Abaci are taken from al-Khwarizmi’s 
Algebra. 

The emphasis on astronomy under Islamic rule stemmed in part from the 
requirement to pray five times a day while facing toward Mecca, a challenging 
problem of coordination across a vast empire. To this end, they spared no expense 
in the construction of observatories and the recruitment of talented mathematical 
minds to staff them. The main work of these scholars included improvements to 
astronomical data, the construction of observatory sites, and the development of the 
science of optics. The Arabic interest in mathematics can be said to have arisen 
primarily through the practical demands of astronomy, astrology, and optics. But 
they were also excellent businesspeople and so had need to calculate distributions, 
inheritance, dividends, and so on. This led to the emphasis on algebra and especially 
calculation. 

From the perspective of the history of mathematics, the Arabic mathematicians 
also served as a conduit through which the mathematical writings of India and 
ancient Greece were transmitted to Europe during a period of intense interest in 
translation. Translations of various mathematical works, including Euclid’s Ele-
ments, survived in good condition in the House of Wisdom in Baghdad, long after 
the original texts had been lost or burnt. Later, this book was translated into Latin 
by European scholars, primarily in the western part of the Islamic empire centered 
in Toledo, the former capital of Spain. But as in the Indian and Chinese civilizations 
of the Middle Ages, Arabic mathematicians emphasized mostly practical results and 
did not inaugurate any new theoretical peaks or sustained development. 

We now compare a bit the different philosophical attitudes of the Greeks and 
the thinkers to the east. The twentieth-century French philosopher Jacques Maritain 
(1882–1974) argued that the Indian philosophers viewed wisdom as a form of 
liberation, salvation, or divine wisdom and concomitantly their metaphysics never 
took the form of pure speculation in the practical sciences associated with the 
Greeks, who regarded wisdom rather as the target of rational human inquiry. This 
begins in the lower realm of earthly things, the tangible reality of change and 
movement, and the diversity of existence. It is somewhat paradoxical to note that 
the divine perspective of Indian philosophy contributed to simple and practical 
mathematical requirements, while for the earthly considerations of the Greeks and 
eventually all of Europe, mathematics developed its independent existence through 
the perfection of logical deduction. 

It is worth a mention in closing that since the start of the twenty-first century, 
two mathematicians of Indian descent and two mathematicians of Persian or Iranian 
descent have earned Fields Medals. These are Manjul Bhargava in 2014 and Akshay 
Venkatesh in 2018 and Caucher Birkar in 2018 and Maryam Mirzakhani in 2014; 
Mirzakhani remains the first and only female recipient of the Fields Medal. Other 
developing countries have contributed several Fields Medalists in this century: Chi-
Shen Tao, better known as Terence Tao, of Chinese descent in 2006, Ngô Châu 
of Vietnamese descent in 2010, and Artur Avila from Brazil in 2014.



Chapter 5 
From the Renaissance to the Birth 
of Calculus 

I would wish that the painter could be as learned as possible in 
the liberal arts, but first and foremost I would wish that he know 
geometry. 

Leon Battista Alberti 

Here is buried Isaac Newton, Knight, who by a strength of mind 
almost divine, and mathematical principles peculiarly his own, 
explored the course and figures of the planets, the paths of 
comets, the tides of the sea. . . 

Inscription at Newton’s monument 

The Renaissance in Europe 

Medieval Europe 

During the period when the ancient civilizations of China, India, and Arabia in 
the east were making new contributions in mathematics, Europe was in the midst 
of its long Dark Age, a term first used by the Italian poet and scholar Petrarch 
(1304–1374), often considered the father of the Renaissance. The start of this period 
is marked by the collapse of Roman civilization in the fifth century, but there 
is no universal agreement as to its end, which could be considered to belong to 
the fourteenth, fifteenth, or even sixteenth century, with the start of the European 
Renaissance. The Dark Ages, which lasted for a thousand years, was later called the 
Middle Ages by Italian humanists in order to highlight their own works and ideals 
and to mark out the echoes of classical Greece and Rome formed by their era in 
contrast with the intervening centuries (Fig. 5.1). 

Prior to the Middle Ages, the European territories outside of Greece and Rome 
had not done much to leave behind any deep marks on the history of human 
civilization, and since later there was no sign of intellectual revival in Greece, such 
terms as the Dark Age and Middle Ages alike, with the exception of the epidemic 
of the Black Plague, were mainly technical terms of academic humanism, limited 
in scope to Italy. In fact, even along the Apennines, the situation of mathematics 
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Fig. 5.1 Likeness of Pope 
Sylvester II on a French 
stamp 

during these times was not so bleak. Pope Sylvester II (ca. 945–1003) in particular 
admired and endorsed mathematics, and his election to the papacy was not unrelated 
to his mathematical facility, establishing him as something of a legend in the history 
of mathematics. 

This pope, originally known as Gerbert of Aurillac, was born in central France 
and spent 3 years in Spain in his youth, where he studied the quadrivium at a 
monastery north of Barcelona, where the level of mathematics was high as a result 
of the legacy of Muslim Spain. When later he visited Rome, where he met the 
pope and the emperor, who were impressed by his mathematical knowledge, the 
latter hired him as a tutor for the young prince. With the further support of the 
subsequent emperor, Gerbert was elected eventually to the papacy and took the name 
Sylvester II. He is also said to have constructed an abacus and an armillary sphere, 
reintroducing them to Europe, and to have invented the first mechanical clock. In his 
mathematical work De geometria, he solved an open problem of the period: given 
the hypotenuse and area of a right triangle, determine the length of its remaining 
two sides (Fig. 5.2). 

The period of Pope Sylvester II corresponds more or less with the era of 
translation in the history of science, when the classic works of Greek mathematics 
and science began to reappear in Western Europe, having been for centuries 
preserved primarily in the Islamic world long after they had disappeared from 
Alexandria and other centers of Greek academic activity. Whereas the translation 
of these works from Greek into Arabic had taken place mainly in the House of
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Fig. 5.2 Toledo, Spanish 
capital city after the fall of the 
Roman empire; photograph 
by the author 

Wisdom in Baghdad, the route from Arabic to Latin was more varied, taking place 
in the ancient Spanish city Toledo (which flooded with European scholars after the 
Christian defeat of the Muslims) and Sicily (which had been under Muslim rule for 
a period) and involving also diplomats in Baghdad and Constantinople. 

The works translated into Latin included not only Euclid’s Elements, Ptolemy’s 
Almagest, Measurement of a Circle by Archimedes, Conics by Apollonius of Perga, 
and other Greek classics but also the more recent gems from the Islamic world, 
such as al-Khwarizmi’s Algebra. All this took place mostly in the twelfth century, 
as the center of economic power in this part of the world shifted gradually from the 
eastern Mediterranean to the west. The primary mover of this change came from 
developments in agriculture, when the cultivation of pulses provided for the first 
time in history a guaranteed source of protein, leading to a population explosion 
that became one of the factors contributing to the disintegration of the old feudal 
structure. 

By the thirteenth century, an endless proliferation of different social organi-
zations emerged in Italy, including various guilds, associations, civic councils, 
churches, and so on, all of them desperate for some measure of autonomy. The 
idea of representation in the determination of important laws developed and spread



150 5 From the Renaissance to the Birth of Calculus

Fig. 5.3 Portrait of 
Fibonacci as a court 
mathematician 

until finally a political assembly was formed whose members had authority to make 
binding decisions on behalf of all citizens participating in their election. In art, 
the classic models of Gothic architecture and sculpture sprang into being, and in 
terms of cultural and intellectual life, the methodology of scholastic philosophy 
took place of prominence. The representative figure of this trend was St. Thomas 
Aquinas (ca. 1225–1274), a Christian philosopher who was born in Sicily and took 
tremendous inspiration from the works of Aristotle (the French philosopher Jacques 
Maritain mentioned in the previous chapter was an important modern Thomist). 
For the first time, longstanding conservative beliefs came up against scientific 
rationalism (Fig. 5.3). 

Fibonacci’s Rabbits 

In this relatively open and humanistic political atmosphere, mathematics did not 
lag far behind. The most outstanding mathematician of the European Middle Ages 
Fibonacci (ca. 1170–ca. 1250) was born during this time, a bit later than Bhaskara 
II in India and a bit earlier than Li Ye in China. Fibonacci, known in his time as 
Leonardo Bonacci or Leonardo of Pisa, was born in Pisa. His father was a merchant 
and customs official who brought his young son with him to Bugia (now Algeria), 
where Fibonacci was exposed to Islamic mathematics and learned to use Hindu-
Arabic numerals. He subsequently visited Egypt, Syria, Byzantium, and Sicily, 
acquainting himself with the calculation of both the East and the Middle East. Not
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Fig. 5.4 Graphical 
representation of the 
Fibonacci numbers 

long after he returned to Pisa, he wrote and published his masterpiece the Liber 
Abaci (The Book of Calculation). The title of this book suggests some connection 
with the abacus, but this is misleading: actually, it is in reference to sand table 
calculations without the use of an abacus. The original 1202 manuscript is not 
known to exist; rather, the work survives in a copy from 1227, dedicated to one 
of the scientific advisors of the Holy Roman Emperor Frederick II (1194–1250). 

The first section of the  Liber Abaci introduces the basic arithmetic of numbers, 
with calculations in sexagesimal; a noteworthy innovation is the introduction also of 
the horizontal bar demarcating the numerator and denominator of a fraction, which 
notation is still in use today. The second section consists of word problems related 
to commerce, including the Hundred Fowls Problem from China. This problem, first 
posed by Zhang Qiujian, seems to have spread to the Arabic world. The third section 
contains miscellaneous problems and mathematical oddities, including a problem 
concerning rabbits that has proved significant. This problem asks how many rabbits 
can be bred in 1 year, starting from a single pair, under the stipulations that each 
pair of rabbits begins to breed at the age of 2 months and can produce thereafter a 
new pair of rabbits each month (Fig. 5.4). 

Subsequent generations have referred to the sequence of numbers determined by 
the rabbit problem as the Fibonacci sequence: 

. 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . .

This sequence can also be described by the recurrence relation 

. 

{
F1 = F2 = 1

Fn = Fn−1 + Fn−2 (for n ≥ 3)
,

one of the first recurrence relations to appear in mathematics. There is also a 
remarkable explicit expression for the terms of this sequence involving the irrational 
number . 

√
5, that is: 

.Fn = 1√
5

((
1 + √

5

2

)n

−
(

1 − √
5

2

)n)
.
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The Fibonacci sequence has many interesting properties and important applica-
tions. For example, as n grows larger and larger approaching infinity (.n −→ ∞), 

. 
Fn+1

Fn

−→ 1 + √
5

2
≈ 1.618.

This number is related to the golden ratio identified as a ratio of line segments by 
Pythagoras in the early years of the history of mathematics. In addition to tendrils 
stretching into many areas of mathematics, the Fibonacci sequence has also turned 
up in applied problems related to the reproduction of bees, the petals of certain 
flowers, and aesthetics. 

Around the year 1220, Fibonacci was summoned by Frederick II, who was 
visiting Pisa at the time. His scientific advisors posed to Fibonacci a series of 
mathematical problems, which Fibonacci answered one by one. One of these 
problems was to find the roots of the cubic equation .x3 +2x2 +10x = 20. Fibonacci 
used an approximation method to give the answer in sexagesimal, accurate up 
to nine digits after the decimal point. Afterward, Fibonacci maintained a long 
correspondence with the emperor and his court, where mathematics was held in 
high regard (according to some accounts, he was rather hired by the emperor to 
serve at the palace and became the first court mathematician in European history). 
Frederick II seems to have had almost limitless energy and served simultaneously 
as the King of Sicily, the King of Germany, and later the Holy Roman Emperor and 
the King of Jerusalem. 

Fibonacci devoted his second substantial work, The Book of Squares (Liber 
Quadratorum), to Frederick II. In this book, Fibonacci presents the profound 
proposition that .x2 +y2 and .x2 −y2 cannot both be perfect squares simultaneously. 
This book is perhaps the first monograph ever devoted to a specific class of problems 
in number theory and established Fibonacci as the significant number theorist 
between the times of Diophantus and Fermat. Considering the legacy of Fibonacci, 
he not only played a pioneering role in the revival of European mathematics but 
also served as an important bridge in the transfer of mathematics from east to 
west. Gerolamo Cardano, the finest Italian mathematician of the sixteenth century, 
remarked: “We can conclude that all the knowledge we have of mathematics outside 
of Greece is due to the appearance of Fibonacci.” 

Judging from the surviving likenesses of Fibonacci, he had a charm similar to 
that of his compatriot the painter Raphael, who lived three centuries later, and he 
seems to have regarded himself as a kind of wanderer. The name Leonardo of Pisa by 
which he is also known places him in the company of Leonardo da Vinci, the painter 
of the Mona Lisa. In the year 1963, a group of American mathematicians inspired 
by the rabbit problem established the Fibonacci Association and began to publish 
Fibonacci Quarterly in the United States, dedicated to mathematical research papers 
related to the Fibonacci sequence. Since 1984, the Fibonacci Association has also 
hosted biannually an International Conference on Fibonacci Numbers and Their 
Applications around the world. The development of such a rich universe of research 
from a simple model of rabbit reproduction is another miraculous legend in the 
history of mathematics.
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Fig. 5.5 Alberti the humanist 

Alberti’s Perspective Method 

After the collapse of the old feudal structure in Europe, there followed an astonish-
ing sequence of events that taken together signified the birth of a new era governed 
by a totally new mental outlook: the strengthening of the Italian city-states; the 
rise of the monarchies in Spain, France, and England; the development of secular 
education; the discovery of new maritime routes and the New World; the radical 
proposal of a heliocentric solar system by Nicolaus Copernicus;1 the invention and 
application of movable type printing; and so on. This new era recalled and took 
inspiration from the scholarship, wisdom, and values of the classical world; for this 
reason, it was called the Renaissance. 

The Italian thinkers of the Renaissance period embraced a humanistic ideal with 
man at the center of the universe and capable of unlimited development. It followed 
naturally for many such thinkers that is incumbent on humankind to pursue the total 
acquisition of knowledge and the development of abilities, that is, the refinement of 
skill and capability not only in every intellectual field but also in physical training, 
social activity, literature, and art. Such polymathic individuals are often referred to 
today as Renaissance men in honor of this ideal. The archetypal Renaissance man 
was Leon Battista Alberti (1404–1472), a humanist, artist, writer, mathematician, 
and thinker, who also excelled in horsemanship and martial arts (Fig. 5.5).

1 Copernicus was studying at the University of Kraków, a medium-sized city in Poland that was 
home to the two Nobel Laureates Czesław Miłosz and Wisława Szymborska at the same time in 
the early twenty-first century, at the time when Columbus reached the New World. 
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Alberti was born in Genoa, the illegitimate son of a wealthy Florentine banker, 
who taught him mathematics in his youth. He took to writing early on, composing 
Latin comedies, and later obtained a doctorate in law, took holy orders, and served 
the papal court. Alberti used his knowledge of geometry to determine for the first 
time in history precise laws for the representation of a three-dimensional scene on a 
flat wooden block or the surface of a wall. This had an immediate effect on Italian 
painting and relief-making and facilitated the production of an accurate, rich, and 
geometrically correct perspective style. Alberti wrote, “a man can do anything if he 
but wills it,” and “I would wish that the painter could be as learned as possible in 
the liberal arts, but first and foremost I would wish that he know geometry.2 ” 

Prior to Alberti, Florence had already produced the great architect Filippo 
Brunelleschi (1377–1446), responsible for the dome over the most famous cathedral 
to this day in this art capital. According to one saying, he loved mathematics 
since childhood and took up painting only in order to engage with geometry; of 
course, this was not enough to achieve mastery in mathematics, and he turned later 
to engineering and architecture, but nonetheless he was the first person to study 
perspective, and Alberti’s own interest in perspective came about because of his 
connection to such predecessors. The basic principles of perspective that Alberti 
introduced can be described as follows: 

Place upright a glass screen between the eyes of the observer and the scene, and imagine 
rays of light emitted from one eye to every point of the scene, creating a cross-section as they 
pass through the screen. This cross-section should present to the eye the same impression 
as the scene itself, so that the problem of realistic painting is precisely the production of 
this cross-section of glass on the canvas. Alberti noticed that if two such glass screens are 
placed between the eyes and the scene at different locations, the results will be different, 
and similarly if the eyes look through the same screen from two different positions, the 
cross-section in glass again will be in each case different. 

In every case, Alberti asked what is the mathematical relationship between 
any two parallel scenes; this question is the starting point of projective geome-
try (Fig. 5.6). 

Alberti also discovered that in a realistic representation of the scene, parallel lines 
(except those parallel to the glass screen or to the plane of the image) must intersect 
in a certain point. This point is called the vanishing point, and its discovery was a 
turning point in the history of painting. In the past, it was rare to paint so accurately, 
but subsequent generations of painters mostly followed this principle, although of 
course the vanishing point itself need not appear in the painting. The origin or rather 
cause of the existence of the vanishing point is as follows: any two parallel lines 
in the real scene form two intersecting planes containing the observation point, 
and the point where the line of intersection of these two planes meets the glass 
screen forms the vanishing point. It is precisely because of his work with perspective 
and the vanishing point that Alberti became the most important art theorist of the 
Renaissance (Fig.,5.7).

2 On Painting, Tr. Rocco Sinisgalli 
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Fig. 5.6 Dome of the Florence Cathedral, designed by Brunelleschi 

Fig. 5.7 Alberti’s perspective method
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Fig. 5.8 Alberti’s vanishing 
point 

Throughout his entire body of work, Alberti always maintained the outlook of 
civic humanism that flourished in Florence at the time. For example, he wrote 
the first Italian grammar, arguing that Italian was as regular as Latin and equally 
suited to literary composition; he also wrote a pioneering treatise in cryptography, in 
which appear the first polyalphabetic cipher and the first table of letter frequencies. 
His final work, written several years before his death, was a dialogue entitled De 
iciarchia (On Ruling the Household), in which he praises human accomplishment 
and public service as virtues, fully in line with the spirit of humanism in pursuit of 
public welfare. According to the biographer Giorgio Vasari (1511–1574), Alberti 
died quietly and contented (Fig. 5.8). 

Da Vinci and Dürer 

When Alberti was approaching 50 years of age, the most glorious figure of the 
Renaissance period was born in a village called Vinci on the outskirts of Florence: 
Leonardo da Vinci (1452–1519). He was born out of wedlock to a peasant woman 
who later married a craftsman and a successful Florentine notary and landlord, who 
also married shortly afterward. His first of several wives was unable to bear children, 
however, and Leonardo’s father took custody of him early on and provided for his 
elementary education in reading, writing, and arithmetic. He became a studio boy 
in his adolescence and took up painting as an apprentice and after the age of 30 
turned his attention to advanced geometry and arithmetic. His two famous works 
The Last Supper and the Mona Lisa were painting in his middle age and old age, 
respectively (Fig. 5.9). 

The artistic achievements of Leonardo da Vinci are common knowledge and 
need no further introduction here; his name even inspired a suspense novel in the 
twenty-first century that became a worldwide bestseller. He believed deeply that the 
foundation of painting was the accurate reproduction of the original impression, 
which can be achieved only through rigorous adherence to the mathematics of 
perspective, which he referred to as the steering wheel and guiding principle of 
painting. It was probably in response to this attitude that the twentieth-century 
French avant-garde painter Marcel Duchamp made his L.H.O.O.Q., consisting of 
a cheap postcard reproduction of the Mona Lisa on top of which the artist drew a
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Fig. 5.9 Leonardo da Vinci’s 
famous Vitruvian Man, drawn 
around 1487 

Fig. 5.10 Statue of Leonardo 
da Vinci in Amboise, France 

moustache and beard in pencil. In geometry, Leonardo’s main achievement was the 
determination of the position of the center of gravity of the tetrahedron, given as a 
quarter of the distance along the line to the opposite vertex from the center of gravity 
of the base triangle. On the other hand, he made an error in his similar determination 
of the center of gravity of the isosceles trapezoid, providing two methods, only one 
of which was correct (Fig. 5.10). 

Leonardo also achieved outstanding results beyond the scope of art and math-
ematics. His observations of the celestial bodies led him to secretly record in his 
notebooks that “il sole no si muove” or “the sun does not move” earlier than 
Copernicus, in contradiction with the doctrine of the Bible that God created the 
sun and the moon and made them to travel around the earth. The flight of birds 
inspired him to investigate air resistance and sketch the first designs for a flying
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Fig. 5.11 Self Portrait, 
Albrecht Dürer (1498) 

machine. Some dynamicists believe today that if Leonardo had access to a light 
fuel source at the time, he could have made it to the heavens. He also personally 
dissected more than 30 corpses in his research in the mysteries of human anatomy 
and life. All of these various researches were abandoned midway, but contributed to 
the development of his observational powers and accuracy in painting (Fig. 5.11). 

Also in the fifteenth century, another versatile artist and Renaissance figure 
appeared in Nuremburg in Bavaria, Germany, in Northern Europe. This was 
Albrecht Dürer (1471–1528), born 1 year before the death of Alberti, whose 
humanistic ideals lent to his art its characteristic air of knowledge and rationality. 
Dürer spent about 20 years of his life travelling and living in Holland, Switzerland, 
Italy, and other places. He also maintained some connection to his fellow religious 
reformer Martin Luther (1483–1546), a few years his junior, and the various figures 
surrounding him. He produced creative work in a very broad range of fields, 
including oil painting, printmaking, woodcutting, illustration, and so on, and it 
is obvious from his work that Dürer was well versed in the perspective method 
introduced by Alberti (Fig. 5.12). 

Among all Renaissance artists, Dürer is generally considered to be the one 
with the greatest knowledge of mathematics. His Four Books on Measurement (or 
Instructions for Measuring with Compass and Ruler) deals mainly with geometry 
and touches also on linear perspective. Among its innovations is a treatment of the 
projections on to the plane of curves in space and the introduction of the epicycloid, 
the curve traced by the trajectory of a fixed point on the circumference of a 
rolling circle. Even more impressive, Dürer considered the orthogonal projections of 
curves or figures onto two or three mutually perpendicular planes, a very advanced 
topic that was not developed further until the eighteenth century, when the French
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Fig. 5.12 Melencolia I, Albrecht Dürer (1514) 

mathematician Gaspard Monge created the field of descriptive geometry, earning a 
place for his own name in the history of mathematics. 

In his large 1514 engraving Melencolia I, Dürer depicts in the foreground a 
winged young woman sitting in contemplative manner with her head resting in her 
left hand. In the background, there is a fourth-order magic square: 

. 

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

.

In this magic square, every row, column, and diagonal sums to 34, as do the terms 
of the five second-order submatrices in the four corners and the center, and even 
four of the third-order submatrices and the unique fourth-order submatrix, as well 
as other such arrays. 

Comparing this to the example cited in the works of Yang Hui of the Southern 
Song dynasty in China, the only difference is in the order of the rows. The presence 
of this magic square undoubtedly contributes to the enigmatic melancholia of the
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engraving; it is interesting also to note that the middle two numbers of the final row 
serve to date the picture: 1514. This year saw the death of his mother, and he may 
have made this engraving as an expression of his grief. The magic square contained 
within it, however, is not altogether perfect. There is one inscribed at the entrance 
to Parshvanatha temple in Khajuraho, India, in the twelfth century which is more 
satisfactory in some respects although less so in others. In particular, the terms of 
all nine of its second-order submatrices also sum to 34. 

Speaking broadly with respect to painting, it is generally the case that colors are 
more expressive of emotion, while line is more expressive of reason. In line with 
the German reputation for rational thought, German painters have proved excellent 
in their use of line. Certainly this holds for Dürer. His precise line drawings directly 
reveal the subtlety of his observation and the complexity of his conception, and 
the combination of his cerebral approach with his ardent ideals produces a unique 
effect. In addition to the visual arts and mathematics, Dürer worked in art theory 
and scientific writing, including works on draftsmanship, human proportions, and 
architectural engineering, featuring his own illustrations. 

The Invention of Calculus 

The Awakening of New Mathematics 

Although the artists of the Renaissance offered novel insights into mathematics, 
the revival of mathematics, and indeed the rise of modern mathematics, did not 
take place until the sixteenth century. The first new advances in mathematics began 
with algebra: for example, trigonometry had been separated from astronomy, the 
study of perspective gave rise to projective geometry, and the invention of logarithms 
facilitated easier computation, but the main breakthrough was in the solution of 
cubic and quartic equations and the development of symbolic algebra. After the 
Algebra of al-Khwarizmi was translated into Latin, it was widely circulated and 
used as a textbook throughout Europe. At this time, people considered the solution 
of cubic and quartic equations to be a problem as difficult as the three unsolved 
geometric problems of Ancient Greece. But at the turn of the century, two Italian 
mathematicians were born who managed to settle this issue completely: Tartaglia 
and Cardano (Fig. 5.13). 

Tartaglia (1499–1557), whose name at birth was Niccolò Fontana, was born in 
Brescia, not far from Milan, to a dispatch rider father who was murdered several 
years later. In a further misfortune, Tartaglia’s jaw and palate were sliced with a 
saber by an invading French soldier in 1512, leaving him with a speech impediment 
that earned him the nickname by which he is remembered today (tartaglia means 
stammerer). As an adult, Tartaglia made his living teaching mathematics; he made a 
name for himself with his claim that he could solve any cubic equation lacking either 
the linear or quadratic term, that is, equations of the form .x3+mx2 = n or .x3+mx =
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Fig. 5.13 Gerolamo 
Cardano, prominent 
physician, lawyer, and 
politician 

n with m, .n > 0. A professor at the University of Bologna doubted this claim and 
sent a student to challenge Tartaglia, which challenge Tartaglia readily met, since 
his opponent could handle only those cubic equations lacking the quadratic term. 

In 1539, a mathematics enthusiast and medical practitioner in Milan named 
Gerolamo Cardano (1501–1576) invited Tartaglia to stay at his home as a guest 
for 3 days to discuss mathematics. After sharing together a full and satisfying meal, 
Cardano cajoled Tartaglia into revealing his solution to the cubic equation with the 
promise never to publish it. Tartaglia presented his solution encoded in a poem of 25 
lines. Several years later, Cardano encountered the same solution in an unpublished 
work and determined that his promise was no longer binding. Tartaglia was shocked 
to see his solution published by Cardano in his book Ars Magna to quite some 
fanfare, and a bitter enmity developed between the two mathematicians. 

Tartaglia’s solution, which we present here in modernized exposition, was as 
follows. In light of the identity 

. a3 − b3 = (a − b)3 + 3ab(a − b),

choose appropriate a and b such that 

.

{
3ab = m,

a3 − b3 = n
.
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Then .a−b is a solution of the equation .x3 +mx = n, and it is not difficult to further 
solve for a and b to obtain them as 

. 
3

√
±n

2
+

√(n

2

)2 +
(m

3

)3
.

This solution is what is known as Cardano’s equation, although Cardano was careful 
to give credit for it to Tartaglia. Cardano also considered the case .m < 0 and gave 
in this case also the complete solution. As for cubic equations lacking a linear term, 
they can always be transformed into equations of this type by a change of variables. 

Even more impressively, the Ars Magna also gave a general solution for the 
quartic equation, which was also not due to Cardano, but rather to his former servant 
and eventual student Lodovico Ferrari (1522–1565). Ferrari had begun his career at 
the age of 15 as a house servant to Cardano, known at that time mainly as a doctor. 
Cardano quickly recognized his intelligence and began to teach him mathematics. 
And indeed, Ferrari quickly discovered a way to convert quartic equations into 
cubic ones and became as a result the first mathematician to successfully solve the 
quartic equation. He also represented Cardano in a second mathematical challenge 
against Tartaglia, this time in Milan; on this occasion, Tartaglia did not emerge 
victorious (Fig. 5.14). 

After making a name for himself while still in his teens, Ferrari quickly obtained 
a prestigious teaching post in Rome, from which he retired at the age of 42 to move 
back to his hometown and serve as a professor of mathematics at the University of 
Bologna. Unfortunately, he died not long after at the young age of 43 of arsenic 
poisoning, given to him according to legend by a widowed and greedy sister. 
The question of polynomials of degree five and higher was not resolved until the 
Norwegian mathematician Niels Henrik Abel proved their insolvability by radicals 
in the nineteenth century; from this, it is evident that the achievements and stories 
associated with these Italian mathematicians circulated among their mathematical 
colleagues and successors for a long stretch of time. 

From the discussion above, we can conclude that although Tartaglia and Ferrari 
were more adept at discovering clever solutions to specific problems, Cardano 
played a more important and unifying role in this story. In this respect, he was a 
kind of Euclidean character for this period in the history of mathematics. Another 
such character emerged in France in the sixteenth century: François Viète (1540– 
1603), more commonly known by the Latinized form of his name, Franciscus Vieta. 
Vieta is credited with the creation of the first symbolic algebra, with which he was 
able to make substantial contributions to the theory of equations. Middle school 
mathematics textbooks today include a special case of Vieta’s formula, which relates 
the two roots . x1 and . x2 of the quadratic polynomial .ax2 + bx + c to its coefficients: 

.x1 + x2 = −b

a
, and x1x2 = c

a
.



The Invention of Calculus 163

Fig. 5.14 François Viète, 
lawyer and politician 

Vieta was a lawyer and politician by profession. During the wars between France 
and Spain, Vieta used his mathematical talent to uncover the key to a Spanish 
cipher. It was during a period of political frustration that he devoted himself to 
mathematical research and he developed the ideas of using letters to represent 
algebraic terms while reading the writings of Diophantus. Although most of the 
symbols he himself used have since been replaced, Vieta is still recognized as the 
father of symbolic algebra. In particular, Vieta used consonants to represent known 
constants, and vowels to represent unknown terms, with the symbol . ∼ indicating 
a negative quantity. Considering more generally the standard notation in modern 
mathematics texts, the addition and subtraction signs . + and . − and notation for 
powers were introduced in the fifteenth century, the equals and greater-than signs 
. = and . > were introduced in the sixteenth century, and the less-than sign . <, the  
radical . √ , the multiplication and division signs . × and . ÷, the use of the bottom 
of the alphabet (a, b, c, . . . . ) for knowns and the top of the alphabet (. . . . , x, y, 
z) for unknowns, and exponential notation were all introduced in the seventeenth 
century (Fig. 5.15).
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Fig. 5.15 Desargues’s 
theorem 

Analytic Geometry 

After the advent of the seventeenth century, various mathematical theories and 
branch began to spring up like bamboo shoots after a rain. It is impossible for us 
to analyze here these developments in comprehensive detail, and inevitably, we will 
have to leave out even some of the more important mathematicians. We press on 
all the same and turn first to the French mathematician Girard Desargues (1591– 
1661). It was Desargues who answered the outstanding questions about perspective 
left over from Alberti and established the discipline of projective geometry. Indeed, 
Desargues is considered as the founder of this branch of mathematics. Desargues 
was originally a soldier and later earned his living as an engineer and architect. 
He was a regular participant in the mathematical salons organized by the priest and 
polymath Marin Mersenne, where he won the respect of such young mathematicians 
as Descartes, Pascal, and others (Fig. 5.16). 

One of the fundamental contributions that Desargues made to projective geom-
etry is the concept of the point at infinity, unifying the classes of parallel lines and 
intersecting lines in the plane by allowing parallel lines to intersect in the point 
at infinity; this point of view would later prove very fruitful for the development 
of non-Euclidean geometry. It follows that in projective geometry, every pair of 
lines lying in the same plane eventually intersect, which is the starting point on 
which the theory is built. An additional innovation is that Desargues concerned 
himself only with the interrelationships between geometric figures without any 
reference to measurement, also a novel and forward-looking idea in geometry. 
Finally, there is also Desargues’ theorem, which states that if the lines formed by 
three corresponding pairs of vertices of two triangles all intersect, respectively, then 
the three sets of intersection points so obtained are each individually colinear. From 
the point of view of the painter, this theorem can be stated as follows: if two triangles 
can be seen in perspective from a single external point (which turns out to be just 
at two different sections of the cone), the points of intersection of the extended 
corresponding edges are colinear, provided none of the edge pairs are parallel.
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Fig. 5.16 Fashion show with 
designs based on Desargues’s 
theorem 

More generally, geometric research in the seventeenth century broke out along 
two main strands. The path taken by Desargues can be described as a continuation 
of the tradition of synthetic geometry, but under conditions of a broader generality. 
The second path proved ultimately to be the more brilliant and influential; this was 
to introduce the use of algebraic tools to the study of geometry, specifically, the 
discipline of analytic geometry established by Descartes. 

At its essence, the contrast between modern mathematics and ancient mathe-
matics is that modern mathematics is concerned with variables, whereas ancient 
mathematics was concerned with constants. The development of capitalist pro-
duction following upon the Renaissance created new demands on science and 
technology: the widespread use of machinery, for example, necessitated the study 
of mechanical motion; the development of a maritime industry driven by trade 
created a demand for more accurate and convenient methods for the determination 
of the positions of ships, leading people to study the laws of motion governing the 
celestial bodies; and the improvement of weapons technology stimulated research 
into problems of ballistics. All of these various topics and questions indicate that the 
study of movement and change had become the central research topic in the natural 
sciences and mathematics (Fig. 5.17). 

The first milestone in the mathematics of variables was the invention of analytic 
geometry. The basic idea of analytic geometry is to introduce coordinates to the
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Fig. 5.17 Cartesian coordinates 

Fig. 5.18 Map of the world by Mercator  

plane; for this reason, analytic geometry is known also by the name coordinate 
geometry. The coordinates are determined by a coordinate system as follows: fix 
any two intersection straight lines A and B in the plane and designate their point 
of intersection O as the origin of the system. The two lines A and B are referred 
to as the coordinate axes, and the coordinate system is established by fixing unit 
coordinates along the two axes. In this way, every ordered pair .(x, y) of real numbers 
corresponds to a unique point in the coordinate plane, and vice versa (Fig. 5.18).
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With the tools of analytic geometry in hand, it becomes possible to associate the 
solution set of any algebraic equation of the form 

. f (x, y) = 0

with a curve in the plane. This amounts to a reduction of problems in geometry to 
algebraic problems, so that new geometric results can be obtained through the study 
of problems in algebra. In the other direction, this association produces a natural 
geometric interpretation of algebraic problems. 

There were several precursors to this innovation throughout history: the 
fourteenth-century French mathematician Nicole Oresme (ca. 1320–1382) 
borrowed from geography the terms longitude and latitude to describe his geometric 
figures (he was also the inventor of the . + symbol in mathematics), and in the 
sixteenth century, the Flemish geographer Gerardus Mercator (1512–1594) used 
orthogonal longitudinal and latitudinal lines to draw the first atlas in history. He 
was also the first to use the term atlas. He was deeply versed in the mathematics 
and physics of his time and applied his knowledge freely in his work; he was in 
addition an excellent engraver and calligrapher. But in any case, neither of these 
two forerunners took the further step of establishing a direct association between 
numbers and geometric figures. Rather the credit for the invention of analytic 
geometric belongs properly to two later French mathematics, Descartes and Fermat. 

It is necessary to point out that Descartes and Fermat alike both took as their 
starting point the general consideration of oblique coordinate systems, with the 
system of rectangular coordinates with axes A and B perpendicular to one another, 
say as horizontal and vertical, considered only as a kind of special case. They also 
both discussed the further possibility of a coordinate system in three dimensions. 
It has since become customary to refer to the coordinate system as Cartesian 
coordinates, or to the plane equipped with a coordinate system as the Cartesian 
plane, although this should not be taken to mean that Descartes achieved earlier 
or more brilliant results in this domain than Fermat. The main difference between 
the two is that Descartes considered his invention to mark a sharp break from 
Greek tradition and in particular emphasized the power of algebraic methods, while 
Fermat regarded his work as a straightforward restoration of the mathematics of 
Apollonius. But Fermat was also decidedly more explicit in his emphasis on the use 
of equations to define trajectories and curves. He gives directly the modern forms for 
the equations of many curves, including straight lines, circles, ellipses, parabolas, 
and hyperbolas (Fig. 5.19). 

Although Descartes and Fermat arrived at analytic geometry by different routes 
and for different purposes, nevertheless, they became caught up in a priority dispute. 
Descartes had published his results in analytic geometry, in 1637, under the title 
Geometry (La Géométrie), an appendix to his Discourse on Method (Discours de 
la méthode), a broad philosophical treatise. Fermat never published his work, but 
he had discovered the basic principles of coordinate geometry as early as 1629. 
This was published only after his death in 1665, along with many other of his 
mathematical discoveries. Perhaps because they were both French, this dispute
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Fig. 5.19 Title page of Discourse on Method by Descartes 

never bubbled over into troubling proportions, but each had their supporters: Pascal 
took up with Fermat, and Desargues with Descartes (Fig. 5.20). 

This was not the only coordinate system invented in this period. In 1671, 2 years 
after the publication of Fermat’s work in coordinate geometry, Isaac Newton in 
Britain invented his own system of coordinates, known today as polar coordinates. 
In modern terminology, polar coordinates are determined by a fixed point O in the 
plane and a half-line A extended in any direction from O. Then any point B in the 
plane is determined by the distance r between the points O and B, and the angle 
. θ formed by the intersection of lines OA and OB. The elements of the ordered 
pair .(r, θ) are called the polar coordinates of the point B. As everybody has learned 
in middle school, some geometric figures lend themselves to simpler expression in 
polar coordinates than in Cartesian coordinates, for example, Archimedean spirals, 
catenary curves, cardioids, three- and four-leafed rose curves, and so on.
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Fig. 5.20 Descartes 

The Pioneers of Calculus 

The invention of analytic geometry not only enabled the application of algebraic 
methods to geometric problems but also introduced variables into mathematics, 
paving the way for the creation of calculus; but an even more crucial development 
was the establishment of the concept of a function. 

In the year 1642, 5 years after the publication of Descartes’ Geometry, Isaac 
Newton (1642–1727) was born in a hamlet in the country of Lincolnshire in 
England. It was also the same year in which Galileo died. Newton was a posthumous 
child, born 3 months after the death of his father, and did exhibit in childhood the 
signs of a prodigy. He did however develop a love for extracurricular reading and 
in middle school picked up the habit of compiling notebooks, which he referred 
to as his waste book. This habit, which some generations later was also practiced 
by Gauss, would prove very important, and later he brought his notebooks with 
him to Cambridge University, where he used them for notes on mathematics and 
mechanics, including his work on calculus and the theory of gravity. 

At around the age of 22, Newton began to include in his notes a record of his 
work on calculus, in which he always used the word fluent to denote a relationship 
between variables. It was the German mathematician Leibniz who first used the 
word function to designate to any quantity that changes according to the change in 
position of a point on a curve. The familiar notation .f (x) to represent a function in 
the variable x was only introduced in 1734, by the Swiss mathematician Leonhard
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Fig. 5.21 Polish astronomer 
Copernicus 

Euler, when functions had long already been the centerpiece of the conceptual 
machinery of calculus (Fig. 5.21). 

In fact, the basic ideas of calculus, and in particular integral calculus, can be 
traced back to ancient times. As we have discussed already, the calculation of 
areas and volumes has been a topic of interest to mathematicians since ancient 
times, and there appear many examples of the use of infinitesimal arguments 
to compute the areas, volumes, or arc lengths of various special figures in the 
mathematical writings of Ancient Greece, China, and India. These include the work 
of Archimedes in Greece and Zu Chongzhi and his son in China on the calculation 
of the volume of a sphere. The example of Zeno’s paradox also introduces the 
idea of the infinite division of an ordinary constant. As for differential calculus, 
Archimedes and Apollonius discussed, respectively, the tangent lines to spirals 
and conic sections, although only individually or statically. But calculus in its 
modern form was introduced mainly in order to solve the scientific problems of 
the seventeenth century (Fig. 5.22). 

The first half of the seventeenth century in Europe saw successive major advances 
in the fields of astronomy and mechanics. First, a Dutch lensmaker invented the 
telescope in 1608, and when the Italian scientist Galileo Galilei (1546–1642) heard 
of its invention, he quickly built a powerful telescope of his own and used it to 
discover many hitherto unknown secrets of the solar system. In particular, his 
observations confirmed the validity of the heliocentric model of the solar system 
first proposed in modern times in the fifteenth century by Polish astronomer 
Nicolaus Copernicus (1473–1543). This remarkable achievement however brought 
upon Galileo a series of disasters, including interrogation and persecution by the 
church and leading eventually to blindness and despondency at the end of his life. 
Simultaneously, the German astronomer Johannes Kepler (1571–1630), 7 years
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Fig. 5.22 Italian physicist 
Galileo 

Fig. 5.23 Kepler determined 
that the orbits of the planets 
are elliptical 

Galileo’s junior, was in the process of obtaining a more precise mathematical 
argument for the heliocentric model on the basis of data collected by his predecessor 
and employer, the Danish astronomer Tycho Brahe (1546–1601) (Fig. 5.23). 

Copernicus and Tycho Brahe however both believed that the orbits of the planets 
were circular (and Galileo too said nothing against this theory). It was Kepler who 
first stated as his first law of planetary motion, which states that: 

the orbit of every planet is an ellipse, with the sun at one of its two foci.
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Fig. 5.24 The Leaning 
Tower of Pisa and associated 
with it a famous experiment 
on freely falling bodies 

His second and third laws of planetary motion demonstrate even more thoroughly 
his mathematical ability, which was probably greater even than that of Galileo. The 
second states that: 

the line segment joining a planet and the sun sweeps out an equal area in equal intervals of 
time, 

and the third that: 

the square of the orbital period of a planet is proportional to the cube of the length of the 
semi-major axis of its orbit. 

This is not to say however that the achievements of Galileo lagged behind those 
of Kepler. In the first half of his life, that is, in the late sixteenth century, Galileo 
introduced the law of free fall .s = 1

2gt2 and the law of inertia or Galilean relativity; 
he was also a great pioneer in the use of experimental methods in science (Fig. 5.24). 

Neither Stuttgart, not far from which Kepler was born, nor Prague, where he 
later lived, was at the center of European civilization at the time, and his work did 
not receive as much attention as it deserved. On the other hand, he also avoided 
the religious persecutions suffered by Galileo. Still, his life was not altogether 
a happy one: he was a premature and sickly baby and the child of an unhappy 
marriage, and he himself later suffered through two disastrous marriages and a 
series of family troubles. He was comforted in his difficulties by his belief in 
the mathematical harmony of the heavens as revealed to him in mathematics and 
astronomy, a doctrine showing the distance influences of Pythagoras and Plato, and 
it was this conviction that set him in pursuit of the laws of planetary motion. In 
another story from his life, Kepler apparently was at one time deeply dissatisfied 
with the rough calculation for the volume of a wine barrel employed by the merchant 
who sold it to him and took it upon himself to discover a method for determining
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Fig. 5.25 Statue of Tycho Brahe and Johannes Kepler in Prague 

precisely the volume contained in a surface of revolution, a generalization of the 
spherical volume formula discovered by Archimedes (Fig. 5.25). 

Kepler discovered the first two of his three laws of planetary motion in the year 
1609, but it took him another 10 years to produce the third. The main obstacle 
was the complexity of the date left behind by Tycho Brahe and the computational 
challenges posed by it, in particular the continuous need to multiply together very 
large numbers. In 1614, the Scottish landowner and mathematician John Napier 
(1550–1617) invented the logarithm, which simplified the calculations involved in 
multiplication and division to addition and subtraction. But the practical use of 
logarithms only became possible 2 years later, when the British mathematician 
Henry Briggs (1561–1630) paid a visit to Napier in Scotland and encouraged him 
to reformulate his logarithms in base ten and to compile the first comprehensive 
logarithm tables. News of this innovation reached Kepler and played a critical role 
in the development of his third law of planetary motion. 

The method that Kepler employed was precisely the method of infinitesimal 
elements of integral calculus; in modern terminology, this is to take the sum of 
infinitely many infinitely small elements to determine the area contained in a 
curve or the volume contained in a surface of revolution. A contemporary Italian
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mathematician Bonaventura Cavalieri (1598–1647), who was a disciple of Galileo 
but more committed to pure mathematics, devoted his life to the study of indivisible 
elements, another precursor to infinitesimal calculus, according to which lines, 
surfaces, and solids, respectively, are considered as composed of infinitely many 
surfaces, lines, and planes. Using this method, Cavalieri was able to calculate the 
definite integral of the power function . xn subject to the constraint that n is a 
positive integer. The British mathematician John Wallis (1616–1703) considered 
the more general power function .xp/q , but only managed to resolve the case .p = 1. 
John Wallis was the most direct predecessor of Isaac Newton in terms at least of 
chronology. 

In another direction, tracing backward the roots of differential calculus, we cite 
also the works of three different predecessors: Descartes, Fermat, and Isaac Barrow 
(1630–1677), who was Newton’s teacher. Descartes and Barrow had endeavored 
to calculate the tangent line to a generic curve in the plane, using, respectively, 
an algebraic method known as the circle method or the method of normals and 
a geometric method making use of the so-called differential triangle. Fermat 
meanwhile used the nascent methods of differential calculus to determine the 
extreme values of a function, except for a difference in sign. He realized in fact 
that it was also possible to obtain tangent lines with this method but mentioned it 
only in passing in a letter to Mersenne, accompanied by the remark that he would 
discuss it on another occasion. All things considered, Fermat came closest of the 
various mathematicians discussed above to success, but it remained to Newton and 
Leibniz to complete the work. 

Newton and Leibniz 

As we have seen in the previous section, the seventeenth century brought with it 
a host of new scientific problems that were closely related to the development of 
calculus. For example, tangent lines to a curve can be used to determine not only 
the direction of motion of a moving body at a given moment but also the angle of 
refraction formed between a ray of light entering a lens and the normal line of the 
lens; the extreme values of a function can be used to determine the launch angle 
of a projectile such that it achieves its maximum range and also to determine the 
closest and furthest distances between a planet and the sun. There was also the basic 
problem of dynamics: given the distance travelled by a moving body as a position 
of time, to calculate its velocity and acceleration at any moment. It was above all 
this uncomplicated problem and its inverse that prompted Newton to the creation of 
the calculus (Fig. 5.26). 

Newton established his formulation of calculus using what he called the method 
of fluxions, which concept started brewing in his thoughts during his time as a 
student at Cambridge and burst forth in full maturity during 2 years he spent in 
his hometown in Lincolnshire during the years of the plague. According to his 
own accounting, Newton invented the fluxion calculus (differential calculus) in
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Fig. 5.26 Newton’s apple 
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November of 1665 and the inverse fluxion calculus (integral calculus) in May 
of the following year. It follows that Newton, in contrast with all his colleagues 
who were working toward the calculus earlier, considered and resolved the two 
topics of differential calculus and integral calculus as inverse operations, as did his 
contemporary competitor Leibniz. It is interesting to note that Newton indicates in 
his Waste Book that although he had studied under Isaac Barrow at Cambridge, he 
had been more deeply influenced by the work of John Wallis, who taught at Oxford, 
and that of Descartes; rather, it was Leibniz who absorbed the teachings of Barrow, 
during his time in Paris. Barrow himself also proved a the fundamental theorem 
of calculus in geometric formulation several years later, in his 1670 treatise the 
Lectiones Geometricae. 

In the year 1669, upon his return to Cambridge, Newton distributed to his 
colleagues a mathematical work entitled De analysi per aequationes numero 
terminorum infinitas3 (On Analysis by Equations with an Infinite Number of Terms), 
having previously made public some similar considerations from a kinematic

3 At that time, Latin was the universal language of academia, and Newton composed his major 
works in Latin. 
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perspective. In this paper, Newton considered a curve y such that the area beneath 
it is given by the equation 

. z = axn

where n is an integer or rational number. An infinitesimal increment in x is written 
as o, and the area enclosed by the x-axis, the y-axis, the curve, and the ordinate at 
.x + o is represented by .z + oy, where oy is the incremental area: 

. z + oy = a(x + o)n.

Making use of his own generalization of the binomial theorem, the right-hand side 
of this equation is written as an infinite series; subtracting it from the previous 
equation, dividing each side of the equation by o, and omitting any terms in which 
the factor o still occurs give 

. y = naxn−1.

In the language of modern mathematics, the rate of change of the area under the 
curve at any point x is the value of y at x. Conversely, if the curve .y = naxn−1 is 
given, then the area underneath it is given by .z = axn. This is the basic prototype 
of the differential and integral calculus. Two years later, Newton presented a fuller 
account in a book entitled Method of Fluxions; in his terminology, a variable was 
called a fluent, and its rate of change the fluxion, from which he derived the name 
for his method (Fig. 5.27). 

In the same period, Newton put his calculus of fluxions and inverse fluxions to 
work in the calculation of tangent lines, curvatures, inflection points, arc lengths, 
the force of gravity, centers of mass, and so on. But like Fermat, he was reluctant to 
publish his results: the first of the two treatises discussed in the previous paragraph 
was published only inn 1711, after much urging by his colleagues, and the Method of 
Fluxions only in 1736, after his death. In his landmark work Philosophiæ Naturalis 
Principia Mathematica, which was published earlier in 1687, Newton cloaked his 
calculus in geometric costume, and its significance was not fully recognized straight 
away. This book nevertheless quickly earned its reputation as the greatest scientific 
work of modern times, on the basis of the establishment of the law of universal 
gravitation and a strict mathematical derivation of Kepler’s three laws of planetary 
motion; this was easily enough to ensure its immortality (Fig. 5.28). 

In contrast with Newton, Gottfried Wilhelm Leibniz (1646–1716) published his 
results in calculus earlier, in 1684 and 1686, although he arrived at their invention 
later; this sparked a protracted and bitter debate over priority. Leibniz also proceeded 
from a geometric rather than kinematic point of view. Specifically, he took his first 
inspiration from a paper by Pascal on circles that he read in 1673: consider as in 
the figure a characteristic small triangle with hypotenuse parallel to the tangent line
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Fig. 5.28 Leibniz 
formulation of the principles 
of differential calculus
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at any point P on a curve C; then from the proportional relationship between the 
sidelengths of similar triangles, 

. 
ds

n
= dx

y
,

where n represents the normal line to the curve C at P . Taking the sum, 

. 

∫
yds =

∫
ndx.

This result however was expressed rather vaguely, in words rather than in mathemat-
ical notation, and it was 4 years later that Leibniz explicitly stated the fundamental 
theorem of calculus in a manuscript. 

On the other hand, as early as 1666, Leibniz had considered in a published 
paper entitled De Arte Combinatoria (On the Combinatorial Art) the first-order and 
second-order differences of the square sequence 

. 0, 1, 4, 9, 16, 25, 36, . . . ,

which are 

. 1, 3, 5, 7, 9, 11, . . .

and 

. 2, 2, 2, 2, 2, 2, . . .

respectively. He noticed that the original sequence is obtained by taking successive 
sums of the first terms in the sequence of first-order differences, indicating the 
inverse relationship between summation and difference. It was this that led him to 
the relationship in calculus between differentiation and integration. In the notation 
of the Cartesian coordinate system, he wrote the ordinates of an infinite sequence 
of points on a curve as y and the corresponding abscissas as x. If the ordinates are 
given in terms of x and the sequence of differences between any consecutive values 
of y is considered, Leibniz was thrilled to discover that the derivative is simply a 
kind of difference and the integral a sum. 

From this observation, although his progress was not altogether smooth, Leib-
niz gradually arrived from the notion of the discrete difference to consider the 
increments of any arbitrary function. In 1675, he introduced the important symbol 
. 
∫

to represent the integral, and in the following year, he obtained the derivative 
and integral formulas for the power function. As for the fundamental theorem of 
calculus, it can be stated in modern terminology as follows: in order to find the area 
under a curve whose ordinate is y, it is only necessary to find a curve with ordinate 
z such that the slope . dz

dx
of its tangent line is given by the rule .

dz
dx

= y. If the interval
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Fig. 5.29 Pascal’s calculator 

under consideration is .[a, b], subtract the area on the interval .[0, a] from the area on 
the interval .[0, b] to obtain 

. 

∫ b

a

ydx = z(b) − z(a).

This is also known as the Newton-Leibniz formula. 
It is interesting and unusual that Leibniz developed his enthusiasm for mathemat-

ics initially for reasons of political ambition. At that time, Germany was in a divided 
state of separate feudal rule, not unlike the situation in the Spring and Autumn and 
Warring States periods in China more than two millennia prior. During one summer, 
Leibniz met the former chief minister of the Elector of Mainz.4 Although he had at 
that time been dismissed from his post, the erudite former chief minister retained 
his connection to the Elector of Mainz, to whom he recommended the learned and 
entertaining young Leibniz for a position as an assistant. 

France had become a major power center in Europe by that time, the peak of the 
rule of the Sun King Louis XIV, and was prone to attack its neighbors to the north 
at any time. As an assistant to the legal advisor of the Elector, Leibniz proposed a 
brilliant strategy to distract the French king with the prospect of conquering Egypt. 
Leibniz was sent at the age of 26 as a diplomatic to Paris where he spent 4 years. 
Although Descartes, Pascal, and Fermat had already passed away by that time, 
Leibniz came into contact during his time in Paris with the Dutch mathematician 
Christiaan Huygens (1629–1695), the inventor of the pendulum clock and the wave 
theory of light (Fig. 5.29). 

Leibniz soon realized the limitations of his mathematical education in techno-
logically regressive Germany, and he applied himself with humility and diligence 
to his studies under the careful guidance of Huygens. Due to his persistence and 
talent, and the still incompletely developed mathematical foundations of that era, 
Leibniz had already made major mathematical discoveries by the time he left Paris,

4 Historically, the Archbishops of Mainz were the most important of the electors of the Holy Roman 
Emperor; it was also in Mainz that Gutenberg invented his movable type printing press. 
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Fig. 5.30 Leibniz’s calculating machine, capable of multiplication 

although his original plans for intrigue involving France and Egypt had already been 
shelved. During this time, he first introduced the binary system and subsequently 
made improvements to Pascal’s mechanical calculator, inventing the first calculating 
machine capable of multiplication, division, and the operation of squaring a number. 
Of course, his most important contribution was his work with infinitesimals, that is, 
the invention of the calculus (Fig. 5.30). 

This was indeed an epochal contribution to the history of science, and it was 
precisely because of this innovation that mathematics came to play an outsize role 
in the natural sciences and social life. It also created a space for thousands of 
careers in mathematics in subsequent generations, not unlike the role played by the 
invention of the computer in the twentieth century. In addition, Leibniz also created 
the elegant theory of determinants and extended the binomial theorem to any number 
of variables with a beautifully symmetric formulation. Perhaps the most aesthetic of 
his results for the layman is the infinite series expression for . π that he discovered 
during a visit to London in 1673 at the age of 27: 

. 
π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · .

In fact, this formula had been independently discovered and forgotten at least 
twice earlier: by the Scottish mathematician and astronomer James Gregory (1638– 
1675) and in South India in the fourteenth century by Madhava of Sangamagrama. 
Madhava derived it from the power series expansion of the arctangent function and 
made use of his work to calculate . π to 13 decimal places. In 1424, 1 year before 
the death of Madhava, the Persian mathematician Jamshid al-Kashi had used an 
ancient technique to approximate . π to 17 decimal places. Madhava and his followers 
also obtained power series expansions for the sine and cosine functions, as well 
as the Taylor series expansions of various functions. Their work was recorded by 
an astronomer of the Kerala school in the 1530 in a treatise entitled Yuktibhasa, 
meaning Rationale in the Malayalam language. This treatise consists of seven 
chapters, the last of which includes the results just mentioned. It was first published 
as a book in modern India in 1948, and a critical edition was published with English
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Fig. 5.31 Newton’s rival, 
Leibniz 

Fig. 5.32 Leibniz’s grave; 
photograph by the author, in 
Hanover 

alongside the original by Springer in 2008. For these reasons, the formula above is 
sometimes referred to as the Madhava-Gregory-Leibniz formula (Fig. 5.31). 

Not long after Leibniz returned from Paris, his patron passed away; his repeated 
applications to the French Academy of Science as a foreign honorary member were 
rejected, and he was forced to earn his living as a tutor. In October of 1676, at the age 
of 30, Leibniz accepted the invitation from the Duke of Brunswick to travel north 
to Hanover to serve as a legal advisor and librarian. Leibniz continued however to 
devote himself to mathematics, philosophy, and science with remarkable results and 
became an honored guest in many of the royal houses of Europe (Fig. 5.32). 

I would like to close this section with a discussion of mathematical inheritance, 
in a sense broader than that of the relationship between mentor and student; rather, I 
mean something closer to intellectual telepathy or synchronicity. Just as later Euler 
carefully learned from that mathematical legacy of Fermat, Leibniz developed a 
particular affinity for the work of Pascal. His original inspiration for the invention 
of the calculus came from his familiarity with the characteristic triangle invented
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by Pascal, and his mechanical calculator was also an improvement upon one of the 
latter’s inventions. Pascal is also famous for his work with the binomial coefficients, 
known familiarly as Pascal’s triangle, and Leibniz extended its scope to expansions 
in any number of variables. In philosophy and the humanities more generally, 
Leibniz also walked a path paved by the footsteps of Pascal, and the two were alike 
even in never having married. 

Conclusion 

Starting from the twelfth century, the Europeans learned from China by way of the 
Arabian Peninsula the art of papermaking from hemp and cotton as a replacement 
for parchment and papyrus, and in the middle of the fifteenth century, Johannes 
Gutenberg (ca. 1400–1468) invented his movable type printing press. In short order, 
a large number of works on mathematics and astronomy appeared in print. As we 
have discussed in the previous chapter, the scholarly works of Ancient Greece were 
translated into Latin by way of the Arabic translations in which they had survived 
and in this way reappeared in Europe. In 1482, the first Latin edition of Euclid’s 
Elements was published in Venice. During this time, the compass and gunpowder 
were also introduced to Europe from China, the former facilitating voyages across 
the seas and the latter changing the nature of warfare and the structure and design 
of military fortifications. In particular, the study of ballistics became important. 

As Greek texts began to proliferate across Europe, certain concepts associated in 
the popular imagination with Ancient Greece also experienced a revival, especially 
in Italy, including an emphasis on the exploration of nature, admiration for and 
dependence upon reason, enjoyment of the material world, the pursuit of physical 
and intellectual perfection, desire and freedom of expression, and so forth. Artists 
were the first to embody these principles through their love of nature and commit-
ment to the Greek doctrine that mathematics is the essence of nature. They learned 
their mathematics through practice, in particular geometry, and this led to the rise of 
such Renaissance figures as Alberti and Leonardo da Vinci. Alberti also contributed 
directly to the birth of projective geometry as a branch of mathematics through his 
interest in perspective. 

The natural sciences were also increasingly dominated throughout this period by 
deductive reasoning, which led them to become more mathematical in nature and 
to an increase in the importance of mathematical terminology, methods, and results. 
The integration of mathematics and the sciences also fostered an acceleration in 
their development. From Galileo through to Descartes, the prominent thinkers of the 
age all believed the world is composed of matter in motion and that the purpose of 
science is to reveal the mathematical laws governing the motion of moving bodies. 
The finest examples of this movement are the law of universal gravitation and the 
three laws of motion, all of them due to Newton.



Conclusion 183

Fig. 5.33 French 
mathematician Blaise Pascal 

The most important invention in mathematics since the appearance of the 
Euclidean geometry was the calculus, and as such, it emerged from the background 
of a rich social tapestry. Most directly, the calculus was designed expressly to handle 
the major scientific problems of the seventeenth century, in physics, astronomy, 
optics, and military science alike. But also it met the needs for internal development 
in pure mathematics, posed by such problems as the determination of the tangent 
lines to given curves. And its path was paved by the advent of analytic geometry, 
which introduced the notion of a variable into mathematics and allowed for the 
quantitative representations of change and motion (Fig. 5.33). 

The history of great mathematics is also the history of great mathematicians, and 
the seventeenth century in particular has been dubbed the century of genius by the 
British philosopher Alfred North Whitehead. It is no exaggeration to say that the 
seventeenth century played a crucial role in the developmental history of human 
civilization, and this was in no small part due to the expansion in the scope and 
depth of mathematics exemplified by the birth of analytic geometry and calculus. 
It was also during this time that philosophy and mathematics reentwined in the 
works of such great thinkers as Descartes, Pascal, and Leibniz, after a long period 
of separation since the decline of Ancient Greece. All in all, a glorious chapter in 
the book of history (Fig. 5.34). 

I have not yet discussed the upbringings of the two French mathematicians René 
Descartes (1596–1650) and Blaise Pascal (1623–1662). They were both born in the 
provinces (as was Fermat), lost their mothers in childhood, and were known to be 
frail as children; moreover, both of them had fathers who provided for them a good 
education, and they both came to an interest in mathematics spontaneously. At the 
age of 12, Pascal discovered on his own without any relevant training the theorem 
in geometry that the three interior angles of a triangle sum to two right angles; it
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Fig. 5.34 Pensées by Pascal 

was only later that his father, who was himself an amateur mathematician, began 
to give Pascal lessons in Euclidean geometry. Descartes for his part developed an 
interest in mathematics when he saw the solutions to mathematical problems written 
on the barracks blackboard of the military camp during his time as a soldier in the 
Netherlands. 

Despite their considerable achievements in the discovery of new results in 
mathematics and science, Descartes and Pascal both resisted the honors associated 
with their work and preferred to direct their scientific interests toward the spiritual 
world. Descartes composed the important philosophical texts Discourse on Method, 
The World, Meditations on First Philosophy, and Principles of Philosophy. Pascal 
left behind his Lettres provinciales and Pensées. Of the two of them, Descartes 
was the more committed to abstract metaphysics, even perhaps to the point of 
indulgence; this was probably in response to the trial and conviction of Galileo, 
punished as one might suppose for having grounded his doctrine too much in 
reality. This made for remarkable philosophy, but somewhat less successful science. 
Pascal, who led a lonely life of deep but terrifying piety, composed aphoristic works 
of intense feeling and spirituality, marking a fascinating chapter in the history of 
French literature, indeed of world literature. 

In philosophy, Descartes is regarded as the liberator of philosophical thinking 
from the shackles of the scholastic tradition, and later generations have referred



Conclusion 185

to him as the father of modern philosophy. He is famous for his philosophy of 
dualism, promoting a stark division between the mind and the body; this has 
been often encapsulated by reference to his famous dictum cogito ergo sum, or  I 
think, therefore I am, one of the most powerful and well-known propositions in 
the history of philosophy. This was in contrast to the philosophy of the Greeks, 
including Pythagoras, who tended to believe that all the phenomena of the world 
were composed of a single substance. Pascal was a thinker more grounded in human 
reality: he understood early and all too well the limitations of human faculties, our 
frailties and faults. His work in mathematics contributed an awe bordering on terror 
for the concepts of the infinitely large and infinitely small, and his mathematical 
discoveries as a result were also confined to a limited space. 

It was worth also discussing here a bit the relationship of Pascal’s triangle to 
mathematical induction. We have seen already that various interesting properties of 
the triangle of binomial coefficients were known to Chinese, Indian, and Persian 
mathematicians many centuries before the life of Pascal. But it was Pascal who first 
made use of mathematical induction to give rigorous proofs that (e.g.) the sum of 
the k-th and .k + 1-th elements in the n-th row is equal to the .k + 1-th element of 
the .n + 1-th row. In fact, this is perhaps the first explicit and clear formulation and 
use of mathematical induction in the history of mathematics, although its prototype 
can be traced back to the proof in Euclid’s Elements that there exist infinitely many 
prime numbers. Since that time, mathematical induction has become a basic tool in 
the arsenal of mathematics, used to prove all manner of propositions about infinite 
sets of numbers, and in particular the positive integers. It provides an effective mean 
to prove infinite results from finite hypotheses. The name mathematical induction 
was coined in the nineteenth century by the British mathematician and philosopher 
Augustus de Morgan. 

Descartes and Pascal are both giants in this history of human thought, in both the 
sciences and the humanities. It is probably in no small part due to their influence 
that mathematics became such an integral part of the traditional intellectual culture 
of the French people, perhaps indeed its most excellent aspect. French mathematics 
has prospered and proliferated since the seventeenth century, with great masters 
emerging one after another. In typical French fashion, their mathematical geniuses 
have accepted the honors accrued to them without ever having viewed mathematics 
as a mere stepping stone. Since the establishment of the Fields Medal in 1936, 
11 French mathematicians have been awarded this highest honor, second only in 
number to the 13 Fields Medalists of the United States. 

It was also because of his encounter with French mathematics and the intellectual 
atmosphere of France that Leibniz turned to mathematics during his stay in Paris and 
eventually developed as a thinker to such an extent that Bertrand Russell later said of 
him that “Leibniz was one of the supreme intellects of all time.” In addition to having 
invented the calculus simultaneously to Newton, Leibniz propounded an influential 
philosophy which he referred to as monadology. The central tenet of this philosophy 
was that the universe is composed of infinitely many windowless monads, each 
resembling the soul to varying degrees. These monads are the ultimate, inextensible, 
spiritual essence at the foundation of all things. In particular, this implies that
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humans differ from animals and indeed living things from inanimate objects only 
as a matter of degree, and indeed, Leibniz pointed out in support of this that many 
of our thoughts and behaviors occur only at the trigger of subconscious impulses, 
which doctrine brings closer together than had ever been previously suggested the 
spheres of human and animal behavior. He derived also from this philosophy his 
belief that all things are interconnected and in particular that any singular entity is 
inseparable from its connection with every other entity in existence.



Chapter 6 
The Age of Analysis and the French 
Revolution 

Everything our minds can comprehend is interrelated. 

Leonhard Euler 

The Age of Analysis 

The King of the Amateurs 

Considering the art of the Renaissance, it is not difficult to arrive at the conclusion 
that painting as the representative of the spatial arts is intimately tied to geometry, 
just as in Ancient Greece, the Pythagoreans recognized that algebra or arithmetic is 
closely related to music, the representative of the temporal arts. It is interesting to 
note in this light that the great masters of modern music in Europe did not appear 
until late in the seventeenth century, with the appearance of such figures as Antonio 
Vivaldi (1678–1741), Johann Sebastian Bach (1685–1750) in Germany, and George 
Frideric Handel (1685–1759), who was also born in Germany, but spent most of 
his life in England. They arrived on the scene much later than the master painters 
and sculptors of the Renaissance. Perhaps this is related to the fact that prior to the 
invention of calculus, geometry occupied the undisputed place of prominence in 
mathematics, with Euclidean geometry as its core (Fig. 6.1). 

From antiquity, most mathematicians in Europe referred to themselves as 
geometers; this is exemplified by the most famous epigrams associated with ancient 
mathematics, Euclid’s remark that “there is no royal road to geometry,” and 
the inscription “let no one ignorant of geometry enter here” at the entrance to 
Plato’s Academy. Much later, Pascal refers to geometers in the broad sense in his 
melancholic aphorism from the Pensées, “all geometers would be intuitive, if only 
they had clear sight, ... and all intuitive minds would become geometers, if only they 
could direct their sight to the unfamiliar principles of geometry.” 

The establishment of the Cartesian coordinate system provided a bridge linking 
the study of geometry to the use of algebraic methods, and the impression of algebra 
as a subordinate discipline in mathematics also changed. All the same, the primary 
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Fig. 6.1 Pierre de Fermat 

focus of research in algebra at the time revolved still around problems relation 
to solving equations, and it would have to wait until the nineteenth century for 
truly revolutionary changes in algebra to appear, as for that matter in geometry. 
Rather the first branch of mathematics to experience true breakthroughs was number 
theory, the most ancient topic in mathematics, concerned with the properties of the 
natural numbers or the integers and their interrelationships, a topic which could 
be described as frequently stepping out from the garden of algebra. This was due 
mainly to the private interest and efforts of an unassuming amateur named Pierre de 
Fermat (1607–1665), a civilian official in the small town of Toulouse in the south of 
France (Fig. 6.2). 

At his provincial remove far from the capital city Paris, Fermat spent his days 
occupied in judicial affairs and devoted the evenings and the holidays almost 
exclusively to his passion for mathematics and its study. Partially, this was on 
account of opposition in France at the time to private social activity among its 
councilors, in light of the fact that friends and acquaintances might someday find 
themselves before the court. This forced isolation from the upper echelons of 
Toulouse society to which he might otherwise naturally have belonged enabled 
Fermat to focus on his research hobby; he spent nearly all his nights engrossed 
in mathematics, and he was drawn especially to problems in number theory. He 
proposed a wealth of propositions and conjectures, many of which have kept 
mathematicians busy through the centuries since. 

There are not so many complete conclusions associated with Fermat for which 
he himself provided proofs; among these, the most famous are as follows: every
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Fig. 6.2 Andrew Wiles, who 
proved Fermat’s last theorem 

odd prime number can be expressed as a difference of two square numbers in one 
and only one way, and every odd prime number of the form .4n + 1 denotes the 
hypotenuse of a right triangle with integer sides in exactly one way when not raised 
to any power, in two ways when squared, in three ways when cubes, and so on, as, 
for example, 

. 52 = 32 + 42,

252 = 152 + 202 = 72 + 242,

1252 = 752 + 1002 = 352 + 1202 = 442 + 1172.

More often, Fermat would present his results either in his correspondences or by 
way of a mathematical challenge simply with a statement of the conclusion, without 
any proof. These include the following: the area of a right triangle with integer side 
lengths can never be a square number, and every natural number can be written as a 
sum of four or fewer square numbers. There is a famous generalization of this latter 
conclusion known as Waring’s problem. Research on Waring’s problem attracted 
international attention to the autodidact Chinese mathematician Hua Luogeng 
(1910–1985), who was partially paralyzed by typhoid fever in his youth and made 
contributions to mathematics in the fields of analytic number theory, algebra, the 
theory of functions of several complex variables, numerical analysis, and others. 

The two propositions just mentioned were only proved later by the French math-
ematician Joseph-Louis Lagrange; the Swiss mathematician Leonhard Euler also 
devoted considerable energy to the resolution of various questions left unresolved 
by Fermat, and it is for this reason that we have delayed a discussion of Fermat until 
the beginning of this chapter, since both Lagrange and Euler were mathematicians
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of the eighteenth century. In fact, throughout his long career, Euler carried out deep 
and meticulous research into almost problem posed by Fermat. As one example, 
Fermat famously conjectured that for every nonnegative inter n, the number 

. Fn = 22n + 1

is prime; such prime numbers are called Fermat primes. Fermat himself verified this 
conjecture for the cases .0 ≤ n ≤ 4. But Euler discovered that . F5 is not prime and 
even identified a prime factor 641 of . F5. Since that time, no new Fermat primes have 
been found. 

For another example, Fermat had proposed in 1740 in a correspondence with a 
friend that following divisibility result: if p is a prime number, and a is any integer 
relatively prime to p (i.e., the greatest common factor of a and p is 1, which means 
simply that a is not a multiple of p when p is prime), then .ap−1−1 is divisible by p. 
Nearly a century later, Euler not only proved this proposition but also generalized 
it considerably to the case where p in the proposition is replaced by any positive 
integer. For this generalization, he introduced what has since come to be called 
the Euler totient function .φ(n), which counts the number of positive integers not 
exceeding n that are relatively prime to n. So .φ(1) = φ(2) = 1, . φ(3) = φ(4) =
φ(6) = 2 (because, e.g., 1 and 5 are the only two positive integers not exceeding 6 
that are relatively prime to it), .φ(5) = 4, and so on. Euler’s generalization states that 
for any two relatively prime positive integers n and a, .aφ(n) − 1 is divisible by n. 

The special case and its generalization just discussed are known as Fermat’s little 
theorem and Euler’s theorem, respectively. It is somewhat astonishing that Euler’s 
theorem has sprouted important applications in modern society several centuries 
later: it plays an important role in the RSA public key cryptosystem developed 
in 1977 and widely used today for secure data transmission. But in contrast with 
Fermat’s little theorem, Euler could make no dents in the conjecture and eventual 
theorem that came to be known as Fermat’s last theorem, first written down by 
Fermat in 1637. Fermat’s last theorem states that there are no solutions x, y, z in 
positive integers for the equation 

. xn + yn = zn

whenever .n ≥ 3. Of course when .n = 2, there are infinitely many solutions; 
these are precisely the Pythagorean triples, which can be easily and completely 
characterized. Fermat himself proved that there are no solutions when .n = 4, and 
Euler resolved the case .n = 3 (which is more difficult than the case .n = 4). But a 
fully general proof remained completely out of reach. 

For more than three centuries after it was first written down, this conjecture 
continued to attract innumerable bright and intelligent mathematicians to make their 
own contributions to it, until finally it was proved toward the end of the twentieth 
century by the British mathematician Andrew Wiles (1953-), working at Princeton 
in the United States. This news made the front page of The New York Times, 
alongside a portrait of Fermat. In fact, what Wiles, with assistance from his student
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Richard Taylor (1962-), proved is actually something known at the time as the 
Taniyama-Shimura conjecture, proposed in 1957 by two Japanese mathematicians 
and now referred to as the modularity theorem. More precisely, Wiles and Taylor 
proved a special case of the conjecture as applied to semistable elliptic curves, which 
was sufficient to prove Fermat’s last theorem as a corollary. The modularity theorem 
elucidates the relationship between elliptic curves and modular forms; the former 
are geometric objects with profound arithmetic properties, and the latter are highly 
periodic functions derived from the field of analysis. 

In addition to the two Japanese mathematicians just mentioned, many math-
ematicians have made important contributions to general mathematics along the 
road toward a proof of Fermat’s last theorem. Particularly worthy of mention 
is the German mathematician Ernst Kummer (1810–1893), who introduced the 
theory of ideal numbers and thereby established the discipline of algebraic number 
theory, a development that is probably more important than Fermat’s last theorem 
itself. His extended family also included the composer Felix Mendelssohn and the 
mathematician Peter Gustav Lejeune Dirichlet. 

Finally, there is a famous story concerning the origins of Fermat’s last theorem: 
Fermat wrote his conjecture in the margins to his Latin copy of the book Arithmetica 
by the Ancient Greek mathematician Diophantus. Following it, the mischievous 
recluse scribbled an additional remark: “I have discovered a truly marvelous proof 
of this, which this margin is too narrow to contain.” 

Fermat also carried out important research outside the scope of number theory. 
In optics, there is Fermat’s principle, which states that the path taken by a ray 
of light between two points is that which can be travelled in the least amount of 
time, whether a straight line or bent due to refraction. A corollary is that light 
travels in straight lines through a vacuum. Returning to mathematics, Fermat also 
discovered the basic principles of analytic geometry independent of Descartes, 
and his methods for finding the maxima and minima of curves established him 
as a founder of differential calculus. And in his correspondence with Pascal, the 
two mathematicians inaugurated probability as mathematical subject. They were 
interesting in particular in a gambling problem: suppose A and B are two gamblers 
with a comparable level of skills playing a game in which A needs to earn at least 
two points in a round to win, while B needs at least three; what is the probability of 
victory for each? 

Fermat analyzed the situation in a table as follows, using the lowercase letters a 
and b to indicate a point earned by A or B, respectively, and taking into account that 
every game is completed in at most four rounds: 

aaaa aaab abba bbab 

baaa baba abab babb 

abaa bbaa aabb abbb 

aaba baab bbba bbbb
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From this, the solution can be read off directly: the probability of victory for A 
is . 11

16 , and for B, it is . 5
16 . 

It is necessary here also to include some discussion of statistics, which appeared 
later than probability and consists mainly of the collection of data, the use of 
probability theory for the construction of models, quantitative analysis, consol-
idation of results, and ultimately inference and prediction; all of this makes 
statistics an invaluable tool for research and decision-making, in areas as diverse 
as physics and the social sciences, the humanities, and business and government. 
Major applications in particular are in insurance, epidemiology, census making, and 
public polling. In the modern zoology of disciplines, statistics has separated from 
mathematics and established itself like computer science as an independent field of 
research derived from mathematical origins. 

We mentioned in the first chapter that statistics had its earliest development in 
the work of Aristotle, but this did not yet include its maturation as an independent 
discipline. Modern statistics, like the theory of probability, grew from not altogether 
reputable origins, the latter from the study of gambling and the former from 
the analysis of death. In 1666, the Great Fire of London swept through the city 
destroying such notable buildings as St. Paul’s Cathedral and possibly helping to 
bring an end to the plague years. One of its victims was a local haberdasher named 
John Graunt (1620–1674), who was bankrupted by the devastation, who had made 
a study of 130 years worth of death records in London. He used survival rates at 
ages 6 and 76 to extrapolate the proportion of the population that had lived to other 
ages and determine their life expectancies. A similar study was carried out in 1693 
by the British astronomer Edmond Halley (1656–1742), who conducted a statistical 
survey of the mortality rate in the German city of Breslau (now known as Wrocław 
and part of Poland). 

We close this section with some further remarks on Fermat’s last theorem, 
which has been likened to a goose that lays golden eggs. When Wiles announced 
that he had conquered this problem, the mathematical community was at once 
overjoyed but also concerned that there would be no more such problems that 
would stimulate so fruitfully the development of number theory. But within a few 
years, the abc conjecture emerged as an important candidate for its replacement. 
The abc conjecture is an inequality relating the two fundamental integer operations 
of addition and multiplication. We introduce first a bit of notation: if n is a 
natural number, define its radical .rad(n) as the product of its distinct prime factors. 
For example, .rad(12) = 6, since the distinct prime factors of 12 are 2 and 3. 
The abc conjecture, which was proposed in 1985 independently by the French 
mathematician Joseph Oesterlé (1954-) and the British mathematician David Masser 
(1948-), states, in its weaker form, that if a, b, and c are relatively prime integers 
such that .a + b = c, then 

. c ≤ (rad(abc))2 .

The resolution of the abc conjecture or its weaker version could lead to the solution 
of a number of important and outstanding problems in number theory. It is also easy
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to derive directly some well-known theorems and conjectures as corollaries to the 
abc conjecture, including four results that earned Fields Medals for their proofs, one 
of these being Fermat’s last theorem. Taking this as an example, suppose .n ≥ 3 and 
.xn + yn = zn. Then with .a = xn, .b = yn, and .c = zn, the weak form of the abc 
conjecture states that 

. zn ≤ (rad(xnynzn))2 < (xyz)2 < z6.

This limits the possible values of n to .n = 3, 4, or 5, and these cases can be handled 
by purely elementary methods. 

The Further Development of Calculus 

For the Western European powers at the center of the recent scientific developments, 
the transition from the seventeenth to the eighteenth century was a relatively smooth 
period, but the northern regions experience some turbulence and change during this 
time. In the year 1700, Tsar Peter the Great of Russia adopted the Julian calendar, 
with January 1st as the first day of the new year, and at the same time began the 
undertaking of various reforms of a military nature. That summer, only a week 
after the conclusion of a 30-year truce agreement with Turkey, Russia, with Poland 
and Denmark as allies, launched the Great Northern War against Sweden. Denmark 
withdrew from the effort not long afterward, however, when King Charles XII of 
Sweden, who was fond incidentally of mathematics, painting, and architecture, led 
his troops to Copenhagen. In Germany at this time, the Royal Prussian Academy of 
Sciences was established in Berlin, with Leibniz as its first president. 

The rapid development of calculus shortly after its invention was facilitated 
precisely by the peace and prosperity of this era. Its applications also spread wide 
and quickly, resulting in many new branches of mathematics, collected together 
under the umbrella term analysis as an ensemble of distinct concepts and methods. 
The eighteenth century became known in mathematics as the era of analysis, an 
important period of transition from ancient to modern mathematics. Intriguingly, 
just as analysis presented a synthesis of geometry and algebra, there also appeared 
a new synthesis in the arts between spatial art and temporal art. The characteristic 
form of synthetic art is theater, and eventually film, which comprises both a spatial 
component alike to the visual arts such as painting and sculpture and a temporal 
component, for which the classical analogues are poetry and music. It was after the 
Renaissance that European theater began its rapid development (Fig. 6.3). 

In France, the golden age of drama was the seventeenth century, in which time 
the great dramaturges Pierre Corneille (1606–1684), Molière (born Jean-Baptiste 
Poquelin, 1622–1673), and Jean Racine (1639–1699) all lived and worked. Much as 
English Elizabethan drama, and most notably Shakespeare, was heavily influenced 
by the Italian Renaissance (see, e.g., The Merchant of Venice, Romeo and Juliet, The 
Tempest, and so on, all of which were set in the Apennines), modern French drama
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Fig. 6.3 The Russian 
Orthodox Chapel of Weimar, 
situated next to the Weimarer 
Fürstengruft, which houses 
the coffins of Goethe and 
Schiller; photograph by the 
author 

drew upon Spanish dramas; for example, the protagonist of Le Cid by Corneille 
was a Spanish national hero. In Germany, drama sprang to life in the eighteenth 
century, with the emergence of such figures as Gotthold Lessing (1729–1781), 
Johann Wolfgang von Goethe (1749–1832), and Friedrich Schiller (1759–1805). 

Returning to the development of calculus, the mathematicians of the eighteenth 
century were presented with a full plate of new problems and even disciplines left 
over in germinal form in the original works of Newton and Leibniz. But before 
these developments could be seen through to their completion, it was necessary to 
carry out the perfection and expansion of calculus itself, and the first task at hand 
was to achieve a full understanding of elementary functions. An example of the 
issues involved is the logarithmic function, which had originated as a description 
of the termwise relationship between the geometric and arithmetic series and was 
later recognized as the integral of the rational function . 1

1+x
; at the same time, 

this function also serves as the inverse of the exponential functional, a particularly 
simple characterization. 

In the period after Newton, the main results in British mathematics were in the 
study of power series expansions. A particularly important result is due to Brook 
Taylor (1685–1731), known today as the Taylor series: 

.f (x + h) = f (x) + hf (1)(x) + h2

2! f (2)(x) + · · · ,
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which makes it possible to expand any function as a power series and quickly proved 
to be a powerful tool for the development of calculus, to the extent that the French 
mathematician Lagrange even later referred to it as the basic principle of differential 
calculus. 

On the other hand, Taylor’s proof of this result was by no means rigorous, and 
he did not even take into account the question of the convergence or divergence 
of this series. These shortcomings in his work can perhaps be overlooked in 
light of his additional talents as a painter, which inspired him to compile a 
comprehensive treatment of perspective in his 1715 essay Linear Perspective, in  
which he introduced for the first time the term vanishing point, and provided the 
first full explanation of the geometry of multipoint perspective. An important special 
case of the Taylor series is the Maclaurin series, corresponding to the evaluation at 
.x = 0, familiar today to any high school student. 

Colin Maclaurin (1698–1746) was 13 years younger than Taylor and arrived at 
his result later, but it is his name that has been attached to it ever since. Partially, 
this is because Taylor was not well known during his lifetime, but Maclaurin was 
also a savvy academician, an early promoter of Newton’s method of fluxions, who 
was admitted as a member of the Royal Society at the age of 21. After the deaths of 
these two mathematicians, British mathematics suffered a long period of decline. 
One cause of this was a conservative and nationalistic mentality among British 
mathematicians of the period inspired by the priority dispute over the invention of 
calculus. They were loath to acknowledge let alone overcome the weaknesses of the 
fluxion formulation associated with Newton during a time when their continental 
counterparts were taking full advantage of the symbolic and conceptual clarity of 
the calculus as developed by Leibniz to achieve fast and fruitful results. 

Consider Switzerland, for example. This small, landlocked country in Central 
Europe was home to several of the most important mathematicians of the eighteenth 
century. These included Johann Bernoulli, the first to provide a formal definition for 
the concept of a function and who also introduced various integration techniques 
such as substitution of variables and integration by parts, and then his student 
at the University of Basel, Leonhard Euler (1707–1783), arguably the greatest 
mathematician of the century, who carried out meticulous research into every corner 
touched by calculus (Fig. 6.4). 

Euler proceeded from the loose notion of a function as consisting of an analytical 
expression of a certain form involving a variable and constants; this was enough 
to encompass polynomials, power series, exponential and logarithmic functions, 
trigonometric functions, and even multivariate functions. Euler also separated the 
algebraic operations involved in the definition of a function into two categories: 
rational operations, involving only the four basic arithmetic operations, and irra-
tional operations, involving, for example, square roots (Fig. 6.5). 

Euler gave the definition of some important functions in terms of limits, for 
example, the logarithmic function, which he defined for .x > 0 by 

.log x = lim
n→∞ n

(
x1/n − 1

)
,



196 6 The Age of Analysis and the French Revolution

Fig. 6.4 The tomb of Euler; 
photograph by the author, in 
St. Petersburg 

Fig. 6.5 Leonhard Euler 

and along with this the exponential function defined as 

. ex = lim
n→∞

(
1 + x

n

)n

.

The symbol e is generally regarded now as a tribute to Euler, although he does not 
seem to have introduced it for this constant with any special meaning in mind. 

The Euler family included many generations of craftsmen, originally based on the 
shore of Lake Constance at the border between Switzerland and Germany. Toward 
the end of the seventeenth century, they had made their way down along the Rhine 
River to Basel, where Euler was born in 1707. He graduated from the University of
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Fig. 6.6 Euler’s formula, 
relating five of the most 
important mathematical 
constants 

Fig. 6.7 Bernoulli’s catenary 

Basel at the age of 15 and earned a master’s degree a year later. He also came to the 
attention of the Bernoulli family early on, and they became important mentors and 
friends. In 1727, he entered the Paris Academy prize competition for the first time; 
he would go on to win this prize a total of 12 times (Fig. 6.6). 

When he was 20, Euler moved to Russia after having failed to earn a physics 
professorship at his alma mater. He obtained a position with the Imperial Russian 
Academy of Sciences in Saint Petersburg and succeeded Daniel Bernoulli as a 
professor of mathematics in 1733. Although he never returned to his home country, 
Euler retained his Swiss nationality his entire life. He spent 25 years in Berlin at 
the Prussian Academy of Sciences. The remainder of his life took place in Saint 
Petersburg. Euler was a remarkably prolific mathematician and father to 13 children, 
only 5 of whom survived to adulthood. He made seminal contributions to number 
theory, analysis, geometry, topology, graph theory, and mechanics (Fig. 6.7). 

Euler further introduced distinctions between explicit and implicit functions, 
single-valued and multiple-valued functions, and algebraic and transcendental 
functions and provided a definition for continuous functions equivalent to the
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Fig. 6.8 The path of fastest 
descent between two points is 
not a straight line 

modern notion of an analytic function. He considered the power series expansions 
of various functions and made the assertion that any function can be expanded in 
a power series, which is not strictly correct from a modern perspective. His work 
touched deeply upon physics, astronomy, architecture, and navigation. Euler was a 
remarkably productive mathematician, who also found time to raise a large family 
of many children. He famously remarked: “everything our minds can comprehend 
is interrelated.” 

The Influence of Calculus 

At the same time that the calculus was undergoing internally a continuous devel-
opment, rigorization, and refinement, and the concept of functions was to become 
more and more deep, the scope of calculus was also expanding widely and rapidly 
in its application to other fields, leading to the formation of some new branches 
of mathematics. One of the most notable developments was that mathematics and 
mechanics grew more closely related to one another than they had ever been. Most 
of the Western mathematicians of the period also carried out work in mechanics,1 

much as in ancient times in the east most mathematicians were also astronomers. 
These emerging disciplines included among them the study of ordinary and partial 
differential equations, the calculus of variations, differential geometry, and the 
theory of algebraic equations. Moreover, the influence of the calculus extended 
beyond simply mathematics and the natural sciences and penetrated even into the 
humanities and the social sciences (Fig. 6.8). 

The theory of ordinary differential equations sprang up directly concomitantly 
with the growth of calculus. Starting at the end of the seventeenth century, practical 
problems related to cycloid motion, the theory of elasticity, and celestial mechanics

1 Later, in the twentieth century, many colleges and universities in China established departments 
of mathematics and mechanics. 
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Fig. 6.9 Mathematician and 
Enlightenment thinker Jean le 
Rond d’Alembert 

produced a series of equations involving differentials, laying down a challenge at 
the feet of the mathematicians. The most famous of these was the catenary problem, 
which asks for the equation of the curve formed by an idealized flexible but inelastic 
cable hanging between two fixed points in a uniform gravitational field. The problem 
was first posed explicitly as a challenge by Jacob Bernoulli, the brother of Johann 
Bernoulli, and given its name by Leibniz. Johann Bernoulli derived the equation 

. y = c cosh
x

c

for the catenary curve, where c is a constant determined by the weight per unit rope 
length and .cosh is the hyperbolic cosine function. 

Subsequently, the theory of ordinary differential equations developed from first-
order equations, to higher-order equations with constant coefficients, and then on to 
higher-order equations with variable coefficients. Finally, this topic was perfected 
by the two great mathematicians Euler and Lagrange. Euler also established the 
important distinction between the particular and general solutions of an ordinary 
differential equation (Fig. 6.9). 

Partial differential equations appeared later and were first studied in 1747 by 
the French mathematician and polymath of the Age of Enlightenment Jean le 
Rond d’Alembert (1717–1783), who published a paper on the mechanics of string 
vibrations containing within it the concept of the partial derivative. D’Alembert had 
been abandoned by his parents as an infant and was later adopted by the wife of a 
glazier. His name was taken from the patron saint of the church on the steps of which 
he was found, in keeping with the custom of the time. His knowledge of mathematics
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was almost entirely self-taught. Later, Euler provided a particular solution involving 
the sine and cosine functions under the assumption that the initial condition is 
sinusoidal. Motivated by applications to musical aesthetics and instrument design, 
Euler and Lagrange both also studied the vibration of tympanic membranes and the 
wave equation generated by the propagation of sound. 

Another important contribution to the development of partial differential equa-
tions came from the French mathematician Pierre-Simon Laplace (1749–1827), who 
introduced the so-called Laplace equation: 

. 
∂2V

∂x2 + ∂2V

∂y2 + ∂2V

∂z2 = 0.

Here, V refers to a potential function, and for this reason, this equation is sometimes 
also called the potential equation. Potential theory provided a solution to a problem 
much clamored about in mechanics: the determination of the gravitational force 
between two objects. If the mass of the objects is negligible in comparison with the 
distance between them, then the partial derivative of V is the gravitational compo-
nent between them, determined by Newton’s formula for universal gravitation. 

In contrast, the genesis of the calculus of variations was more dramatic, and 
its eventual applications were extremely broad, including both the study of soap 
bubbles and the theory of relativity, geodesics and minimal surfaces, and isoperi-
metric problems (the determination of maximal areas enclosed by a curve of a fixed 
perimeter). The original problem for which this discipline was invented however 
was a simple one: the identification of the line of fastest descent. This problem is as 
follows: given two points that do not lie in the same plane horizontally or along the 
same line vertically, determine the curve between them along which a particle travels 
in the least time subject only to the action of gravity. After Johann Bernoulli publicly 
posed this problem in 1696, it attracted the great mathematical minds from around 
Europe, including Newton, Leibniz, and Johann’s brother Jacob Bernoulli. At its 
core, the problem boiled down to the identification of a pole of a certain special 
function. Among the various correct solutions that appeared, Newton submitted a 
solution anonymously, but Johann Bernoulli quickly discerned the identity of its 
author, famously remarking that he could be recognized “as the lion from its claw.” 

Through the joint effort of many mathematicians in the establishment of the 
above various offshoots of calculus, the broad mathematical discipline of analysis 
was born. This became one of the three major areas of modern mathematics, 
alongside algebra and geometry, and its fruits in this time were the most numerous of 
the three. Even today, greater weight is placed on mathematical analysis than algebra 
or geometry as the foundation of mathematical education at the undergraduate level. 
Calculus also exerted a profound influence on the study of algebra and geometry, 
starting with the birth of differential geometry. But in the eighteenth century, this 
was limited to a discussion of geometrical properties in the region near a point or 
local differential geometry as we would say today; we discuss this in some detail 
below.
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Due to the rise of calculus and its connection with the other natural sciences, 
this period aroused the enthusiasm of remarkable and careful thinkers and inspired 
in them confidence in the power of rational thought and the application of 
mathematical methods to physics and even the normative sciences. There was much 
faith that this success could be extended to the totality of knowledge. Descartes, 
for example, believed early on that all problems can be reduced to mathematical 
problems, all mathematical problems can be reduced to algebraic problems, and all 
algebraic problems can be reduced to basic equation solving. It could be said that he 
regarded mathematical reasoning as the only reliable method of thought and sought 
to reconstruct all knowledge atop these sure foundations. 

Leibniz went further even than the ambitious goals outlined by Descartes in 
his attempt to create a framework for universal logical calculation and universal 
conceptual language that would render the solution of all human problems trivial. 
Mathematics was not only the starting point for his program but also its beating 
heart. Among his other proposals, he suggested that the human mind can be factored 
into basic and distinct parts, just as the number 24 can be written as a product of its 
prime factors 2 and 3. Although neither Leibniz nor his successors could ever see 
this program through to completion, the development of mathematical logic in the 
second half of the nineteenth century and the twentieth century was based on his idea 
of a purely formal language, and for this reason, he has sometimes been celebrated 
as the father of modern logic. 

The birth of calculus and turn toward faith in mathematics had an even more 
direct and obvious influence on religion, which at that time played a central role 
in both spiritual and secular life. Although Newton attributed to God the power to 
create the universe, he limited his role in daily life, and Leibniz further depreciated 
his influence. Although Leibniz too acknowledged his role in creation, he believed 
that God was constrained to proceed according to established mathematical order. 
The increased emphasis on reason in this period also contributed to a decrease 
in devotion to religion, although was not necessarily an outcome intended by 
mathematicians and scientists of the time. Just as Plato described God as a geometer, 
Newton believed him to be a capable physicist and mathematician (Fig. 6.10). 

In the eighteenth century, the further development of calculus introduced further 
changes to the spiritual and intellectual landscape. The pioneer and spiritual leader 
of the French Enlightenment François-Marie Arouet (1694–1778), better known 
as Voltaire, was a stalwart advocate of Newtonian mathematics and physics and 
simultaneously a leading proponent of the emerging philosophy of Deism, a 
theological system in which reason and nature were equated to one another that 
quickly gained popularity among the intellectuals of the period. In the United States, 
its adherents included Thomas Jefferson and Benjamin Franklin, the former of 
whom did much to encourage the instruction of advanced mathematics. In fact, none 
of the first seven presidents of the United States, including its first president George 
Washington, identified themselves as Christian. Among the disciples of Deism, 
nature was God, and Newton’s Principia is its bible. With philosophy and theology 
as its accomplices, calculus has exerted a remarkably broad-reaching influence on 
just about every sphere of human activity, including economics, law, literature, and 
aesthetics (Fig. 6.11).



202 6 The Age of Analysis and the French Revolution

Fig. 6.10 George 
Washington, during his time 
as public land surveyor 

Fig. 6.11 Thomas Jefferson, 
coauthor of the Declaration 
of Independence 

The Bernoulli Family 

We have mentioned several times already in the preceding sections the outstanding 
contributions of the Bernoulli brothers Johann and Jacob, and their Swiss compatriot 
Euler, in the development and application of the calculus. We discuss now in detail
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this most famous mathematical family in history, a family seemingly destined for 
calculus. The Bernoulli family was originally based in Antwerp in Belgium, at 
that time part of the Spanish Netherlands, where they were practicing Huguenots, a 
protestant sect which suffered persecution by the Catholic church, like the Calvinists 
and the Puritans. As a result, Jakob Bernoulli fled his hometown in 1583, taking 
refuge first in Frankfurt in Germany and eventually settling in Basel in Switzerland, 
where he married into a prominent local family and established a career as a well-
connected merchant of medicinal herbs. 

More than a century later, the first of many mathematicians in this family was 
born; this was Jacob Bernoulli (1654–1705), who mastered the new discipline of 
calculus as formulated by Leibniz through diligent self-study and later served as 
a professor of mathematics at the University of Basel. Initially intended for a life 
as a man of the cloth, Jacob initially studied theology and entered the ministry, 
but he became obsessed with mathematics over the objections of his father and 
eventually rejected his church appointments. In 1690, he was the first to introduce 
the term integral into the mathematical lexicon, and in the following year, he studied 
catenary curves and applied the fruits of his research to bridge design. His other 
important research areas included the theory of permutations and combinations, the 
law of large numbers in probability, the Bernoulli numbers derived from the sums of 
integer powers, and the calculus of variations, discussed already above (Fig. 6.12). 

Fig. 6.12 Map of the ancient city of Carthage; photograph by the author, in Tunisia
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The basic idea of the calculus of variations makes some interesting and beautiful 
appearances in ancient literature: according to Greek legend, the founder Queen 
Dido of Carthage cleverly offered a high price to purchase for the establishment 
of her new city all the land that could be enclosed in a single leather hide. She 
then proceeded to cut the hide into a very thin continuous strip, long enough to 
enclose all the territory she needed for the city. In another version of this story, Dido 
fled her home city of Tyre upon discovering that her cruel brother Pygmalion had 
orchestrated the murder of her husband; she made her way to the coast of Africa and 
purchased a plot of land for the establishment in Carthage, the territory demarcated 
in such a way as to match the size of a ditch dug in a single day. A very moving 
and tragic love story involving Dido and Aeneas, the legendary founder of Rome, 
as well as Dido’s sister Anna, appears in the Aeneid by the Roman poet Virgil (70 
BCE–19 BCE) and in the Heroides by Ovid (43 BCE–14 CE). 

Returning to Jacob Bernoulli, the Bernoulli numbers . Bn named in his honor play 
an invaluable role in number theory. These numbers can be defined recursively as 

. B0 = 1, B1 = 1

2
, Bn =

n∑
k=0

(
n

k

)
Bk (n ≥ 2),

where the numbers .
(
n
k

)
are the usual binomial coefficients. From this, it is obvious 

that every .Bn is a rational number, and these numbers exhibit some remarkable 
properties. For example, it is easy to prove that .Bn = 0 whenever .n ≥ 3 is an odd 
number; and for odd prime numbers p, the special case of Fermat’s last theorem 
with exponent given by p can be directly resolved by way of the number . Bp−3. The  
Bernoulli polynomials, which also play an important role in number theory, as well 
as in the theory of functions, are also defined in terms of the Bernoulli numbers. 
Upon his death, Jacob Bernoulli requested that his gravestone be engraved with a 
logarithmic spiral and the motto Eadem mutata resurgo (Although changed, I rise 
again the same), but instead it was engraved with an Archimedean spiral. 

The mathematical contributions of his younger brother Johann Bernoulli (1667– 
1748) were no less significant; some of them have been discussed already above. 
Johann first studied medicine and earned a doctorate in Basel for a thesis on 
muscle contraction. Later, like Jacob over the objections of his father, he studied 
mathematics with his brother and went on to become a professor of mathematics 
at the University of Groningen in the Netherlands. He returned to Basel only many 
years later, shortly after his brother had succumbed to tuberculosis. 

The best-known mathematical discovery associated with Johann Bernoulli is his 
method for determining the limit of a fraction of functions as both numerator and 
denominator tend to zero, a familiar favorite of calculus students. This rule states 
that if two functions .f (x) and .g(x) both admit derivatives .f ′(x) and .g′(x) in the 
neighborhood of a certain point a with 

. lim
x→a

f (x) = lim
x→a

g(x) = 0,
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Fig. 6.13 Daniel Bernoulli: 
the second generation of 
Bernoulli family 
mathematicians 

and .g′(x) �= 0 for all .x �= a near a, then if .limx→a
f ′(x)
g′(x)

exists, we can calculate 

. lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

This rule was included in the first systematic textbook on infinitesimal calculus, 
written by a French former student of Johann Bernoulli’s named Guillaume de 
l’Hôpital, and it has ever since been referred to as l’Hôpital’s rule. Johann also 
used calculus to tackle the problem of fastest descent, known as the brachistochrone 
problem, and to determine the lengths and enclosed areas of related tautochrone 
curves (Fig. 6.13). 

The brothers Johann and Jacob Bernoulli were academic colleagues and both 
were friends to Leibniz, but between them, there developed frequent academic 
rivalry. Johann was known for a quick temper and jealous disposition. In spite of 
this, he seems to have been an impressive teacher: not only did he nurture such 
impressive students as l’Hôpital, but he also trained his three sons for lives as 
mathematicians, although he encouraged both the eldest Niklaus and the second 
eldest Daniel to pursue careers other than mathematics; the former studied law and 
the latter medicine, but they both eventually took posts as professors of mathematics 
at the newly founded Saint Petersburg Academy. It was these two who introduced 
their close friend Euler to Russia, where he spent the better part of his life. The 
youngest of the three, Johann II, succeeded his father as professor of mathematics 
at the University of Basel, after an earlier stint as a professor of rhetoric. The legacy 
did not end with this generation: the two sons Johann and Jakob of Johann II also 
found their way to mathematics, after some detours (Fig. 6.14). 

In general, the second and third generations of Bernoulli mathematicians did not 
achieve the same heights as the first, with the notable exception of Daniel Bernoulli 
(1700–1782), who at several points throughout his life could be said to rival his
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Fig. 6.14 The lemniscate of 
Bernoulli 

friend and contemporary, the great Euler, with whom he shared several of the ten 
prizes he was awarded by the French Academy of Science. Upon his return to 
Basel from Saint Petersburg, Daniel successively served as a professor of medicine, 
metaphysics, and natural philosophy while continuing to make contributions in 
a number of different fields within mathematics, including calculus, differential 
equations, and the theory of probability. 

The most famous result due to Daniel Bernoulli is Bernoulli’s principle, a 
result in fluid dynamics that has direct applications in modern aircraft design. 
This theorem states that the total energy of a moving fluid (gas or liquid) remains 
constant; this includes its kinetic energy and dynamic pressure, potential energy due 
to gravity and static pressure, and internal energy. As an example, a fluid flowing 
horizontally experiences no change in its gravitational potential energy, and from 
this, it follows that its static pressure decreases with an increase in the speed of its 
flow. This principle provides the theoretical basis for many problems in engineering, 
notably in the design of aircraft wings: since the airflow along the curved upper 
surface of the wing is faster than along its lower surface, Bernoulli’s principle 
implies that the pressure along the lower surface is greater than along the upper 
surface, thereby generating lift. 

In the 1990s, the Bernoulli Society for Mathematical Statistics and Probability in 
the Netherlands introduced the Bernoulli Journal in commemoration of the mathe-
matical contributions of the Bernoulli family. This is now the second mathematical 
journal we have encountered to derive its name from a significant mathematician or 
mathematical family, after the Fibonacci Quarterly.
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The French Revolution 

Napoleon Bonaparte 

In the year 1769, the situation of the two French mathematicians Laplace and 
Lagrange was as follows: Lagrange was 31 years old and serving as the director 
of mathematics at the Prussian Academy of Sciences in Berlin; Laplace, 11 years 
his junior, was employed as a professor of mathematics at the École Militaire. At 
this time, their future student and friend Napoleon Bonaparte was born in Ajaccio, 
capital of the Mediterranean island of Corsica. Only a year earlier, this island had 
belonged to the Republic of Genoa in the Apennine Peninsula. If its transfer to 
France had been delayed for even a few more years, Napoleon might have found 
himself as an adult fighting instead for the territorial defense and expansion of Italy, 
or a part of the underground resistance against France, as indeed his father had 
been. In fact, his paternal ancestors the Bonapartes descended from a family of 
minor nobles in Tuscany, whose capital city Florence had been the central city of 
the Italian Renaissance (Fig. 6.15). 

The Corsican resistance against France quickly collapsed, however, and 
Napoleon’s father was obliged to submit to French rule and serve in his capacity as 
an attorney for the new regime, eventually becoming the representative of Corsica 
to the court of Louis XVI. All this paved the way for young Napoleon, at the 
age of 9, to move to the French mainland and enroll briefly in a religious school 

Fig. 6.15 Napoleon, the 
amateur geometer
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Fig. 6.16 La Marseillaise, the national anthem of France, was born during the French Revolution 

before obtaining a scholarship to a military academy at Brienne-le-Château, and 
eventually, many transfers later, to graduate from the École Militaire in Paris. It 
was while Napoleon was at the École Militaire that his father died, compelling him 
to complete his course in a single year. He exhibited some talent for mathematics 
during his studies and was examined for graduation at the age of 16 by none other 
than Laplace (Fig. 6.16). 

After he graduated from the military academy, Napoleon became a second 
lieutenant in an artillery regiment. During this time, he carried out an extensive 
reading of military treatises. Not long afterward, he returned for 2 years to Corsica, 
and it seems that he sustained a strong affection for his homeland, to which he 
returned again several times in later years, and which had things gone differently he 
might still have helped to achieve its independence. But as the French Revolution, 
Napoleon was more and more attracted to Paris; he was a loyal student of Voltaire 
and Rousseau and fervently believed that political change was necessary for France. 
All the same, when the revolution actually arrived and the Parisians stormed the 
Bastille, a fortress that served as a symbol of the tyranny of the king, on July 14, 
1789 (later the national holiday of France), Napoleon was in the provinces. 

The French Revolution not only brought an end to the ancient regime in France 
but also marked a change in the entire political climate of Europe. Although 
historians disagree about the precise causes of this revolution, there are five 
generally agreed-upon explanations: (1) France had the largest population of any 
European nation at the time and could no longer adequately support it; (2) the rise
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of a wealthy bourgeoisie class and its exclusion from political power, a divide more 
extreme than that which existed in other nations of the period; (3) a deepening 
understanding among the peasants of the situation and with it their inability to 
tolerate a feudal system that subjected them to fraud and exploitation; (4) the 
appearance of radical philosophers promoting political and social change and the 
widespread circulation of their works; and (5) the depletion of the national treasury 
due to French participation in the American Revolution. 

There is no doubt however that Napoleon’s march into Paris required many 
blessings from the goddess of fate. In January of 1793, King Louis XVI was 
executed by guillotine for high treason. This was a period of intense crisis within 
France and even throughout Europe, as the revolutionaries had earlier declared 
war against the counterrevolutionary forces in various European countries. The 
following winter, Napoleon led the artillery of the republican forces in the port city 
of Toulon to defeat the royalist British navy assembled at the behest of the Baron 
d’Imbert and force them to evacuate. This battle brought him fame and recognition 
and earned him a promotion to brigadier general. Another year passed, in which 
time the royalists carried out their White Terror campaign and an attempt to seize 
power in Paris. Napoleon crushed their efforts; by the age of 26, this young Corsican 
soldier was widely recognized as the savior and hero of the French Revolution. 

Also in the year 1795, the old University of Paris and the Academy of Sciences 
in Paris were abolished by the National Assembly in the name of egalitarianism, 
replaced by the École Polytechnique and the University of France, the latter of 
which absorbed the Paris Academy of Sciences as one of its three branches, as well 
as a new normal academy in Paris founded the year earlier and later rebranded in 
1808 as the École Normale Supérieure. Although these two schools were originally 
conceived as training schools for engineers and teachers, respectively, both placed a 
high importance on mathematics, perhaps not unrelated to the fact that the Marquis 
de Condorcet, whose was involved in the establishment of the new state education, 
was himself a mathematician. He brought in the most respected mathematicians in 
France at the time: Lagrange, Laplace, Legendre, and Gaspard Monge, who later 
also served as the first Director of the École Polytechnique. 

It was a few more years however before Napoleon became the First Consul 
of the Republic; during this time, he led military campaigns both northward and 
southward, leaving behind him his footprints in Italy, Malta, and Egypt, where 
he commanded more victories than losses. It was after he returned to France that 
he could truly be said to have consolidated beneath him the military and political 
power, not unlike the return of Caesar from Egypt to Rome. On the last Christmas 
of the eighteenth century, France established a new national constitution in which 
Napoleon was designated the first consul for a period of 10 years, with basically 
unlimited powers, including the appointment of ministers, generals, civil officers, 
magistrates, and legislators. Afterward, Napoleon included his mathematician 
friends among the high-ranking officials. 

Although his rise to power was facilitated by the French Revolution, Napoleon 
himself was a man of tremendous ambition, and his belief in the sovereignty 
of the people and the virtue of free legislative debate quickly proved illusory.
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Fig. 6.17 Answer to a 
question raised by Napoleon 

Rather Napoleon took up the mantle of the philosopher king of pure reason and 
intellect, with mathematics and jurisprudence as his advisors. The war effort was 
still unresolved however, and his campaign of territorial expansion had just begun. 
In his capacity as First Consul, Napoleon considered the management of the army 
as in need of most careful attention in order to consolidate power and achieve his 
imperial ends. As a result, the École Polytechnique was militarized and charged with 
the training of artillery officers and engineers, and its professors were encouraged 
to turn their attention to mechanics, the development of artillery shells and other 
weaponry, and to maintain close contact with the consulate (Fig. 6.17). 

The mathematical talent nourished in his early years and his continued contact 
with eminent mathematicians encouraged Napoleon to propose a question in 
geometry: using only a compass but no straightedge, how to divide a circle into 
four equal parts? This problem was solved by the Italian mathematician Lorenzo 
Mascheroni (1750–1800), who had been trapped in Paris by the war. Mascheroni 
also wrote a book entitled Geometria del Compasso, dedicated to Napoleon, in 
which he proved that any geometrical construction than can be accomplished by 
compass and straightedge can also be accomplished by compass alone, that is, that 
the straightedge of classical Euclidean geometry is superfluous. It was discovered 
by later generations that this result had in fact already been proven in an obscure 
book by the Danish mathematician Jørgen Mohr (1640–1697) (Fig. 6.18). 

The specific method for the division of the circle into four parts is as follows: 
let A be any point on the given circle O, and with one bisector at A, set up a total 
of six bisectors at A, B, C, D, E, and F , dividing the circle into six equal parts as 
shown in the figure. Construct two circles with centers A and D and radius AC or 
BD, intersecting in the point G. Construct another circle with A as its center and 
with radius OG, meeting the circle O in points M and N . Then the points A, M , D, 
and N divide the circle into four equal arcs. Indeed, according to the Pythagorean 
theorem, .AG2 = AC2 = (2r)2 − r2 = 3r2, and therefore, . AM2 = OG2 =
AG2 − r2 = 2r2, .AM = √

2r , so  AO and MO are perpendicular.
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Fig. 6.18 Marquis de 
Condorcet, a revolutionary 
and a mathematician 

The Lofty Pyramid 

We turn now to Joseph-Louis Lagrange (1736–1813), considered alongside Euler as 
one of the two greatest mathematicians of the eighteenth century. As for which of 
the two was in fact the greater, this has been a topic of much debate and not immune 
to the preference in mathematical interests of the supporters of one or the other. 
Lagrange was born in Turin, a famous city in northwestern Italy, known today as the 
home of Fiat and the Juventus Football Club. Its close proximity to France had meant 
that Turin was for a time occupied by France, during the sixteenth century, and by 
the time that Lagrange was born, it was the capital of the Kingdom of Sardinia. Its 
status did not afterward change until the nineteenth century, when Turin was at the 
political and ideological center of the struggle for Italian unification, to the extent 
that it was even briefly the capital of the newly independent Kingdom of Italy. 

Lagrange was of mixed French and Italian ancestry. His great-grandfather 
had been a captain in the French cavalry, who settled in Turin and married 
into a prominent local family after having served under the king of Sardinia, a 
Mediterranean island that is today a part of Italy. His father briefly had charge of 
the king’s military chest and served as Treasurer of the Office of Public Works and 
Fortifications in Turin, but all the same he failed to effectively manage his family 
property, and Lagrange, who was the firstborn of 11 children, received only a small 
inheritance. Later he regarded this as the luckiest thing that could have happened 
to him, reasoning that a large fortune might have cut him off from his fate as a 
mathematician.
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In his school years, Lagrange was drawn first to classical literature and not much 
inspired by his encounters with the geometric works of Euclid and Archimedes. 
Later he stumbled by accident across a popular work written by Edmond Halley 
(1656–1742), a friend of Newton responsible for the discovery of Halley’s Comet, in 
which the topic of calculus was introduced and exalted. Lagrange became fascinated 
with this new subject and quickly mastered through self-study the full body of 
knowledge in analysis of his era. At the age of either 19 or 16 (accounts vary), 
Lagrange was appointed Sostituto del Maestro di Matematica (assistant professor 
of mathematics) at the Royal Military Academy of the Theory and Practice of 
Artillery and embarked upon one of the most glorious careers in the history of 
mathematics. By the age of 25, Lagrange was already regarded as one of the greatest 
mathematicians in the world (Fig. 6.19). 

Unlike any earlier mathematician, Lagrange was an analyst right from the start 
of the career, further evidence that analysis had already become the most popular 
branch of mathematics in that period. This preference achieved its full realization in 
his Mécanique analytique (Analytical Mechanics), which Lagrange first conceived 
at the age of 19, although its publication in Paris did not appear until he was already 

Fig. 6.19 Lagrange, a 
descendant of France and 
Italy
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52, by which time he had largely lost interest in mathematics. In the preface to this 
work, Lagrange writes: 

No diagrams will be found in this work. The methods that I explain require neither 
geometrical, nor mechanical, constructions or reasoning, but only algebraical operations 
in accordance with regular and uniform procedure. 

All the same, his framework for mechanics is novel in its appeal to the geometry 
of four dimensions: three coordinates representing spatial position and a fourth 
coordinate representing time. According to this conception, the mechanics of a 
moving point is determined entirely by its geometrical description. 

Lagrange also introduced the notations .f ′(x), .f (2)(x), .f (3)(x), etc., for the 
derivatives of a function .f (x) with which we are familiar today, and discovered 
an early version of the mean value theorem, sometimes referred to as Lagrange’s 
mean value theorem. This theorem states that if a function .f (x) is continuous on 
the closed interval .[a, b] and differentiable on the open interval .(a, b), then there 
exists at least one point . ζ in the interval .a < ζ < b satisfying 

. f ′(ζ ) = f (b) − f (a)

b − a
.

In addition, Lagrange developed approximation methods for determining the real 
roots of polynomial equations using continued fractions and investigated the 
question of the representation of arbitrary functions by power series. 

In his Analytical Mechanics, which the Irish mathematician William Rowan 
Hamilton referred to in the nineteenth century as “a scientific poem,” Lagrange 
reduced the general equations of solid and fluid dynamics to a single principle from 
which he derived the general equations of dynamical systems, including what have 
since come to be called the Lagrange equations. This work also includes some of his 
best known results concerning differential equations, partial differential equations, 
and the calculus of variations. Its importance to general mechanics is as great as the 
importance of Newton’s law of universal gravitation for celestial mechanics. Not to 
say, however, that Lagrange paid no heed to the celestial bodies; in fact, he solved 
the problem of the moon’s libration, that is, why is it that the moon presents the same 
face to the earth at almost all times. His analytical approach to problem-solving in 
mechanics marked a departure from the classical Greek tradition, and even from the 
study of mechanics by Newton and his immediate successors, which still made use 
of geometry and figures (Fig. 6.20). 

From the start of his career, Lagrange received generous praise and support 
from his potential rival Euler, almost 30 years his senior, and the intellectual 
selflessness of their relationship has become one of the pivotal stories in the history 
of mathematics. Like Euler, Lagrange applied himself primarily to analysis and 
its applications but also indulged his curiosity with countless investigations into 
number theoretic questions: we have seen already that he resolved two important 
conjectures left over by Fermat. There is also Lagrange’s theorem in modular 
arithmetic, which states that if some prime number p does not divide every
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Fig. 6.20 First volume of 
Mécanique analytique, by  
Lagrange (1811) 

coefficient of a polynomial .f (x) of degree n, then the congruence . f (x) ≡ 0
(mod p) has at most n distinct solutions modulo p. But the most famous theorem 
associated with the name Lagrange is Lagrange’s theorem in group theory, which 
states that the order of any subgroup of a finite group G is a factor of the order of G. 

In light of his achievements, Lagrange obtained funding from the king of Sardinia 
to travel to Paris and London, but he fell ill during his time in Paris and returned early 
to Turin upon his recovery. Not long afterward, he travelled again, this time to Berlin 
at the invitation of King Frederick of Prussia, and he remained there for 11 years 
until the death of the king, at which time France did not miss a second opportunity to 
invite him to Paris at the behest of King Louis XVI. This was in the year 1787, and 
Lagrange had already turned his attention mainly to the humanities, medicine, and 
botany. He became close with the king and his queen Marie Antoinette, who looked 
after him with care and did her best to soothe his bouts of depression (Fig. 6.21). 

Two years later, the French Revolution reached its climax in Paris, and this seems 
to have penetrated through the intellectual lethargy into which Lagrange had sunk 
and inspired him to become active in mathematics. He wrote several academic works 
and textbooks and declined an invitation to return to Berlin, surviving through the 
reign of terror by virtue of his silence and discretion; his friend the chemist Antoine 
Lavoisier (1743–1794) was not so lucky and died under the guillotine. When the 
École Normale Supérieure was established, Lavoisier was appointed as a professor, 
and later, he also became the first professor at the École Polytechnique, teaching 
mathematicians to young military engineers in the service of Napoleon; among
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Fig. 6.21 The Death of 
Marat, by Jacques-Louis 
David (1793) 

them was the future mathematician Augustin-Louis Cauchy. Napoleon, who turned 
his attention to internal affairs in the intermission between two campaigns, paid 
frequent visits to Lagrange to discuss mathematics and philosophy and honored him 
by making him a Senator and a Count of the Empire. This towering emperor who 
had invaded Egypt described Lagrange as “the lofty pyramid of the mathematical 
sciences.” 

The French Newton 

In his later years, Lagrange referred to Newton with a measure of envy, remarking 
that although he was no doubt a particularly gifted man, also he was the luckiest 
of scientists, since there history admits but one opportunity to explain the universe. 
In this sense, Pierre-Simon Laplace (1749–1827) could be said to have been less 
fortunate than Lagrange; he too came too late to achieve the monumental revolutions 
of Newton, and his career spread evenly across the eighteenth and nineteenth 
centuries, the former dominated by the shadow of Euler and Lagrange and the latter 
by that of Gauss; he is automatically disqualified therefore for such titles as the 
greatest mathematician of this or that century. All the same, his was a brilliant life 
marked by a tremendous intellect, diligence, and his association with his student 
Napoleon (Fig. 6.22). 

Laplace was born to farmer parents in Beaumont-en-Auge in Calvados, Lower 
Normandy, not far from the English Channel, site of the Allied invasion of Western 
Europe during World War II. He exhibited considerable talent as a student at the
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Fig. 6.22 Pierre-Simon 
Laplace, the “French 
Newton” 

Fig. 6.23 Laplace metro 
station, Paris; photograph by 
the author 

village school, including special eloquence in theological debates, attracting the 
attention of his wealthy neighbors and securing for him a place as a day student at a 
local military school. It may have been on account of his prodigious memory rather 
than his mathematical ability, but in any case, he secured a letter of recommendation 
from an influential figure to travel for the first time to Paris at the age of 18 to 
advance his fortune (Fig. 6.23).



The French Revolution 217

This letter nearly proved his undoing. It was addressed to d’Alembert, a famous 
mathematician and co-editor of the Encyclopédie, who did not as a rule pay much 
attention to letters of introduction submitted to him and turned the young man away. 
Returning dejected to his residences, Laplace wrote overnight a new introduction 
containing a treatment of the principles of mechanics and possibly the solution of 
a problem posed to him in passing by d’Alembert, and it was this letter rather that 
caught the attention of d’Alembert, who wrote back after having read it and invited 
Laplace for an immediate audience, remarking that he should not have brought any 
letter of recommendation in the first place as he had introduced himself so much 
more capably. Just a few days later, at the recommendation of d’Alembert, Laplace 
was awarded a teaching position at the École Militaire, where he came into contact 
with his future student Napoleon. 

Laplace devoted less energy to pure mathematics and achieved in it fewer results 
than Lagrange, preferring instead to carry out his research toward applications in 
astronomy. Among the results associated with him, there is the Laplace expansion 
for the calculation of the determinant of a matrix; in its most general form, this 
states that the determinant can be obtained as an expansion along any arbitrarily 
selected k rows or columns of the matrix by taking a weighted sum of the products 
of determinants of various submatrices and their complements determined by the 
particular choice of k rows or columns. There is also the Laplace transform for 
differential equations; this transform replaces a suitable function .F(t) with another 
type of function .f (p) via the improper integral 

. f (p) =
∫ ∞

0
e−ptF (t)dt.

But the work for which Laplace is best known is of course his treatise Celestial 
Mechanics (Traité de mécanique céleste) in five volumes which earned for him this 
nickname as the French Newton. Starting from the age of 24, Laplace had carried out 
research into the application of the Newtonian theory of gravity to the solar system 
as a whole and sought to answer why it is that the orbit of Saturn is expanding 
while that of Jupiter is shrinking. He proved that the mutual action of two planets 
could only ever produce small changes to their eccentricities and inclinations. He 
showed also that the acceleration of the moon is related to the eccentricity of 
the orbit of the earth, providing a theoretical solution to the last anomaly in the 
dynamical observations of the solar system. His name is inseparably linked with 
the nebular theory for the formation and evolution of planetary systems throughout 
the universe, and another testimony to his achievements is the Laplace equation for 
potential energy that we have introduced already in our discussion of the influence 
of calculus. 

The respective and comparative work of Laplace and Lagrange, two giants 
in the history of science, is a topic much discussed among their successors. 
The nineteenth-century French mathematician Siméon Denis Poisson observed 
a profound difference between the thought and working methods of the two in 
everything they did, from pure mathematics to studying the libration of the moon.
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“Lagrange,” Poisson observed, “often appeared to see in the questions he treated 
only mathematics, of which the questions were the occasion – hence the high value 
he put upon elegance and generality. Laplace saw in mathematics principally a tool, 
which he modified ingeniously to fit every special problem as it arose.” 

There were also stark differences between them in terms of their personal 
attributes. Joseph Fourier remarked of Lagrange: 

By his whole life he proved, in the moderation of his desires, his immovable attachment to 
the general interests of humanity, by the noble simplicity of his manners and the elevation 
of his character, and finally by the accuracy and depth of his scientific works. 

In contrast, Laplace developed a reputation among mathematicians as a political 
actor and a snob. The historian of mathematics E.T. Bell summarizes his character 
by his greed for titles, casual political flexibility, and an intense desire to gain the 
respect of the public at the center of its ever-shifting attention. 

But Laplace was not without his candid and sincere side. His dying words were 
reported by Fourier to have been, “What we know is not much. What we do not 
know is immense.” Napoleon also found much fault with his administrative work 
as Minister of the Interior on account of his fastidiousness and tendency to look 
for the subtlest nuances in all things; he even quipped that Laplace brought the 
spirit of the infinitesimal with him into his efforts as an administrator. All the 
same, Napoleon heaped upon him many honors, making him a senator, a Count 
of the Empire, appointing him to the Bureau of Longitudes, and awarding him the 
Legion of Honour. In spite of this, Laplace signed the decree to banish Napoleon 
and continued to flourish under the Bourbon Restoration, during which time he was 
awarded the further title of Marquis de Laplace and a seat in the Chamber of Peers; 
he served also during this time as chairmen of the committee for the reorganization 
of the École Polytechnique. 

In the eighteenth century and early nineteenth century, French mathematicians 
spoke of the three Ls of mathematics: Lagrange, Laplace, and Legendre. Legendre 
spent his entire life in Paris; he became a professor at the École Militaire at the 
age of 23. Later in 1795, he became a professor at the École Normale Supérieure. 
His outstanding work on elliptic integration provided fundamental analytic tools 
for mathematical physics, and along with Gauss, he introduced the least squares 
method, proposed the prime number theorem as a conjecture, and proved the law 
of quadratic reciprocity in number theory. There is also the Legendre symbol in 
number theory, which appears in every introductory course in that topic. His book 
Éléments de géométrie replaced Euclid’s Elements as the basic geometry textbook 
in European and American universities. 

The Emperor’s Friend 

There is a widely circulated legend about Laplace that he had presented Napoleon 
with a copy of the Celestial Mechanics after the latter had become emperor and
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received from him the pointed question how is it that he had written a work on the 
system of the world without any mention of its author. Laplace replied, “I had no 
need of that hypothesis.” This sentence recalls to mind the response of Euclid to 
Ptolemy I, “There is no royal road to geometry.” In fact, Laplace may have had in 
mind with this omission a contrast the Newtonian tradition, since Newton did in fact 
make reference to God in his works, and Laplace considered his celestial mechanics 
to accommodate a wider scope than the solar system as conceived by Newton. 

Both Laplace and Lagrange enjoyed a relationship with Napoleon that fit the 
classical conception of the relation between scientist and enlightened monarch; 
in particular, the distinction between monarch and subject was well delineated. 
Not so with Monge. Gaspard Monge (1746–1818) was 3 years older than Laplace 
and somewhat less talented in mathematics, but his personal experiences and open 
personality led him to establish a close friendship with the young Napoleon. As 
a result, during the Bourbon Restoration, Monge was not showered in glory as 
Laplace was but rather he became a wanted man and went into hiding, widely 
regarded as a close confidante of the Corsican emperor, as indeed he was: Napoleon 
had said of him that Monge loved him as a man loves a mistress (Fig. 6.24). 

Monge was born in Beaune, a small town in Côte-d’Or in central France, 
belonging to the Burgundy region, famous for its wine, and located to the southwest 
of Dijon. Today, it is a stopping point along the high-speed rail line between Monte 
Carlo and Paris. His father was a hawker and knife sharpener who placed great 
emphasis on the education of his son, and as a result, his son took naturally to a 
leadership position in everything from sports to crafts. When he was 14 years old, 
Monge designed a fire truck without reference to any preexisting diagrams, relying 
only on his own perseverance and dexterity, and presented his construction with 
geometrical precision. Two years later, he drew up a detailed map of his hometown 

Fig. 6.24 Gaspard Monge, 
among the few who dared to 
contradict Napoleon
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Fig. 6.25 Zoning map of Paris, exhibiting an Archimedean spiral 

on a large scale and was recommended for a teaching position in physics at the 
Collège de la Trinité at Lyon (Fig. 6.25). 

On one occasion, Monge encountered in the course of his return home from Lyon 
an officer of engineers who had seen his map and recommended him for a position at 
the École Royale du Génie at Mézières, capital of the Champagne-Ardenne region in 
northern France. This city is only 14 kilometers from the Belgian border, and nearby 
Charleville was the birthplace of the great poet Rimbaud more than a century later. 
Monge worked during this time as draftsman, responsible for measurements and 
drawing, and took advantage of this experience to create a new form of geometry, 
now known as descriptive geometry, which involves the representation of three-
dimensional objects in the two-dimensional plane according to specific rules. He 
also worked as a teacher, and one of his students Lazare Carnot (1753–1823) later 
enjoyed a fruitful career as a geometer and participated in the French Revolution. 

In 1768, when he was 22 years old, Monge began to teach mathematics at the 
École Royale du Génie at Mézières, and a few years later, he was appointed there 
as a professor of mathematics and physics. He left the city only in 1783 when he 
travelled to Paris and took a post as an examiner of naval candidates. Before moving 
to Paris, he married a young widow renowned for her beauty and devotion. He was 
surrounded in Paris by powerful figures and became enmeshed in the petty struggles 
of the city elite; inevitably, he was drawn into the French Revolution when it broke 
out. He was compelled to serve for a time as the Minister of the Marine after the 
formation of an executive council by the new Legislative Assembly. When the École 
Polytechnique was established in Paris in 1795, Monge was heavily involved in its 
founding and served there afterward as a professor of descriptive geometry. The
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Fig. 6.26 The tombs at the 
Panthéon in Paris, where 
Lagrange, Monge, Carnot, 
and Condorcet are buried; 
photograph by the author 

birth of this school and the École Normale Supérieure in the same year marked the 
beginning of a glorious period in the history of French mathematics (Fig. 6.26). 

The next year, Monge received a letter from the young Corsican who had already 
ascended quite some way along his rise to power. This letter recalled first the cordial 
welcome that Napoleon had received as an unknown artillery officer from Monge 
in his capacity as an examiner for the navy, remarking with gratitude that he had 
now already risen to the rank of general of the army and was on an expedition 
to Italy. As an expression of his appreciation, Napoleon appointed Monge as a 
commissioner to select various paintings, sculptures, and other works of art for 
return to Paris. Fortunately, Monge succumbed to his conscience after carrying out 
his task to a suitable degree of completion counselled moderation rather than strip 
Italy completely of its masterpieces. Subsequently, Monge and Napoleon began a 
long and close friendship; it has been remarked that after Napoleon had become 
emperor, Monge was along among his friends who dared to contradict him or speak 
plain truths in his hearing. 

Napoleon however was not at this time entirely occupied by domestic affairs, and 
in 1798, he led an expedition to Egypt, and Monge accompanied him as a member of 
the Legion of Culture, alongside Fourier, inventor of the well-known Fourier series 
expansion of functions. Along the voyage to the Mediterranean, Napoleon seems 
to have summoned Monge and others to his flagship each morning for a discussion 
on the same major topic, for example, the age of the earth, the possibility of its 
destruction by fire or flood, the existence of any other habitable planets, and so on. 
Upon their arrival to Cairo, Monge helped to establish the Institut d’Égypte, after 
the model of the Institut de France. 

Finally, we turn to the contributions of Gaspard Monge to mathematics. In 
addition to the creation of descriptive geometry, Monge is also remembered as the



222 6 The Age of Analysis and the French Revolution

father of differential geometry, a form of geometry that makes use of the tools of 
calculus to study curves, surfaces, and their various extensions and applications. 
Monge greatly advanced the theory of curves and surfaces in space, a topic 
characterized by its close connection with differential equations; various properties 
of curves and surfaces can be represented in terms of differential equations, which 
is also why this branch of mathematics is called differential geometry. As one 
example, Monge obtained the general representation of a class of surfaces known 
as developable surfaces and showed that with the exception of cylindrical surfaces 
perpendicular to the xy plane, such surfaces always satisfy the partial differential 
equation 

. 
∂2z

∂x2 · ∂2z

∂y2 − −
(

∂2z

∂x∂y

)2

= 0.

Monge served for a time as director of the École Polytechnique and continued to 
occasionally deliver lectures to its students. During one such lecture, he discovered 
an ingenious theorem in geometry concerning the properties of the tetrahedron. 
Recall that a tetrahedron is a solid with four faces and six edges, each of which 
meets every other edge in a point except for one, called its opposite edge. Monge’s 
tetrahedron theorem states that the six planes passing through the midpoints of 
each edge and perpendicular to its opposite edge all meet in a point, now known 
as the Monge point. We close this section with the remark any readers who have the 
opportunity to visit Paris can find in that city a Rue Monge, a Place Monge, and a 
Café Monge. 

While Monge was serving at the École Polytechnique, there was a student there 
named Jean-Victor Poncelet (1788–1867), who went on to become the proper 
founder of modern projective geometry and serve as the director of his alma 
mater. Poncelet was born in Metz in eastern France, an illegitimate child, later 
legitimated. At the age of 24, he participated in an expedition to Moscow under 
Napoleon as an engineer lieutenant. He was captured and turned his attention to 
mathematical problems during his time in a prison camp along the Volga River, 
using charcoal intended for heating to scribble on the walls. During this time, he 
wrote his most influential work, the Traité des propriétés projectives des figures, 
which presented his central projection treatment of conic sections, now the starting 
point for projective geometry of three dimensions. This paved the way for his 
career as a mathematician. Starting a year after his death, the French Academy of 
Sciences began to offer the Poncelet Prize for mechanics, applied mathematics, and 
the advancement of science.
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Conclusion 

The development of mathematics has proven throughout its history to need occa-
sional nutrition from external sources; among these, physics has been consistently 
the most fruitful, and of course, it is also physics that has benefited most from 
the contributions of mathematics. Problems in physics have given much impetus to 
mathematics, especially in analysis, which has been closely linked with mechanics 
right from the birth of the calculus, and perhaps since the late nineteenth century also 
in geometry. This was the source of Lagrange’s great masterpiece, the Mécanique 
analytique. But Lagrange himself perhaps loved number theory most of all the 
mathematical disciplines, and he was very proud of his proof that every positive 
integer can be represented as a sum of four or fewer squares. Another impetus 
for mathematics came from the demands for military and technological innovation 
ignited by the French Revolution. Since that time, the revolving door linking the 
development of mathematics and its applications has never closed. 

It is necessary to observe that during the time after Newton and Leibniz 
had completed their work but before the appearance of Lagrange, the greatest 
mathematical minds in Europe were all concentrated in the small mountain country 
of Switzerland, at that time with a still relatively underdeveloped economy, culture, 
and scientific atmosphere: these of course were Leonhard Euler and the various 
members of the Bernoulli family, all of them from the same small city of Basel. 
The first-generation Johann and Jacob of the Bernoullis served as teachers to Euler 
in their capacities as professors at the University of Basel. After he graduated 
from this university, Euler spent most of his life in two distant and exotic cities, 
Berlin and Saint Petersburg. After his death, Euler appeared on the 10 Swiss francs 
banknote; alongside Newton on the 1 Pound Sterling banknote in Britain and 
Niels Henrik Abel on the 500 Norwegian Kroner banknote, he was one of three 
major mathematicians to appear on European currency still in circulation today. We 
mention also that Euler made his European debut in a prize competition organized 
by the Paris Academy of Sciences, which prize he won 12 times. 

The École Polytechnique played an important historical role as the start of a new 
type of university; it also provided reliable employment for mathematicians, espe-
cially applied mathematicians. Lagrange and Monge were the first mathematical 
luminaries to appear among the professorship of this institution, and young students 
competed fiercely for admission with the goal of entry into service as an officer or 
engineer. The most significant member of this next generation was Augustin-Louis 
Cauchy, responsible for deep and humanistic achievements, although in later years 
some shallowness of mind or conceit caused him to ignore his younger colleagues, 
in particular Abel. The tradition of this institution later spread across the globe, with 
notable examples after its prototype being the Massachusetts Institute of Technology 
and California Institute of Technology in the United States, Tsinghua University in 
China, and the Indian Institute of Technology, with seven independent campuses 
located in different cities across the country.
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Prior to Cauchy, there were two other great mathematicians to pass through the 
École Polytechnique. These were Joseph Fourier (1768–1830) and Siméon Denis 
Poisson (1781–1840). The greatest work by Fourier was his The Analytic Theory of 
Heat, which later James Clerk Maxwell is said to have called a great mathematical 
poem. In this book, he proved the important result that any function (today this 
claim requires some further qualification) can be expanded as a series of sine 
functions in multiples of the variable. Such expansions, known as Fourier series 
expansions, are important in the theory of boundary-constrained partial differential 
equations and also contributed an extension of the scope of the concept of a function. 
Poisson was the son of a former soldier and district president and became the first 
person to study integration along paths in the complex plane. His name comes 
up frequently in university mathematics: there is the Poisson integral, Poisson’s 
equation in potential theory, Poisson’s ratio in the theory of elasticity, the Poisson 
distribution and Poisson law in probability, the Poisson bracket in the theory of 
differential equations, and so on (Fig. 6.27). 

Fourier famously remarked: “The deep study of nature is the most fruitful source 
of mathematical discoveries.” There are also various interesting rumors surrounding 
Fourier and Poisson. Among them, it is said that during his time as Prefect in Egypt, 
he adopted the habit of wearing thick layers of clothes in the hot desert as part of 
his research into thermodynamics, and this aggravated his heart condition; when he 
died in Paris at the age of 63, he was alleged to have been as hot as if he had just 
been boiled. Poisson was looked after by a caretaker in his childhood. One day his 
father came for a visit and discovered the caretaker in absentia and his son hanging 

Fig. 6.27 French 
mathematician Joseph Fourier



Conclusion 225

Fig. 6.28 Tomb of Fourier, 
at Père Lachaise Cemetery, 
Paris 

in a cloth bag from a stud in the wall. The caretaker later offered the explanation 
that this was to prevent the child from catching an illness from the floor. Perhaps 
there is some connection between this event and his later years devoted to the study 
of pendulums (Fig. 6.28). 

It is not unreasonable to say that the number of great mathematicians to emerge 
in the eighteenth century was greater than in any previous period, including even the 
seventeenth century, which was not lacking for geniuses. On the other hand, no sin-
gular giant of Renaissance proportions appeared among them, and the increasingly 
pragmatic turn of the times led to a separation between mathematics and philosophy. 
For this reason, the eighteenth century has sometimes been referred to as the century 
of invention. As a point of fact, there was not a single mathematician-philosopher 
of note during this time, and both Euler and Lagrange came to feel in their later 
years that the supply of mathematical ideas was beginning to run out. They could 
not have anticipated that this would merely mark a new turning point in the story of 
the development of mathematics (Fig. 6.29). 

On the other hand, the astonishing new achievements in mathematics and through 
its applications and with it the elevated light in which mathematics came to be 
regarded shook longstanding systems of philosophical and religious thought. For 
intellectuals of the period, a devout piety and religious was increasingly impossible, 
and philosophers took this as an opportunity to inquire more deeply into the 
foundations of truth and its discovery. The German philosopher Immanuel Kant 
(1724–1804) wrote extensively on the subject, and he took as an example the 
Euclidean axiom that a straight line is the shortest distance between two points
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Fig. 6.29 The philosopher 
Immanuel Kant; like Fermat, 
he remained in his small 
hometown (Königsberg) his 
entire life 

to argue that truth cannot be obtained from experience alone but rather requires 
comprehensive rational judgment. 

Another example from Kant was his introduction of the antinomies; these 
comprise inherent contradictions between two propositions each established in 
accordance with generally recognized principles. Antinomy is a fundamental 
concept in his philosophy, in particular in his Critique of Pure Reason, in which Kant 
presented with proofs four sets of antinomies in the form of thesis and antithesis. 
Among them, two are mathematical in nature and take the form of mathematical 
paradoxes: 

Third Antinomy 
Thesis: Causality as determined by the laws of nature is not sufficient to derive one and all 
of the appearances of the world; there must also be another form of causality in the form of 
spontaneity. 
Antithesis: There is no such thing as spontaneity, and everything in the world takes place 
solely according to the laws of nature. 
Fourth Antinomy 
Thesis: There exists in the world either as part of it or as its cause some being that is 
absolutely necessary. 
Antithesis: There exists no absolutely necessary being in the world, nor does one exist 
outside of it as its cause. 

The main pillar of the philosophical system established by Kant, at least 
with respect to mathematical truths then, is that mathematical truths contain both 
Euclidean geometry and paradox.



Chapter 7 
Modern Mathematics, Modern Art 

Out of nothing I have created a strange new universe. 

János Bolyai 

Whatever mud you give me, I can turn it into gold. 

Charles Baudelaire 

The Rebirth of Algebra 

Toward a Rigorous Treatment of Analysis 

In mathematics and in the arts, the first half of the nineteenth century marks a 
crucial turning point in the long march to modernity. In poetry, the works of 
Edgar Allen Poe and Charles Baudelaire announced the appearance of an entire 
host of new stylistic and thematic concerns. In mathematics, the development of 
non-Euclidean geometry and noncommutative algebra shook the foundations of the 
established order. Some two millennia in which Poetics of Aristotle and Elements 
by Euclid had served as standard bearers for their respective arts were coming 
to an end. Nevertheless, analysis remained the most active area of mathematical 
research during this time, and the mathematicians of the period introduced and 
developed substantial refinements with respect to rigor and clarity in the foundations 
of analysis, although perhaps without the revolutionary flavor of contemporary 
discoveries in geometry and algebra (Fig. 7.1). 

Among the many talented analysts in France in the nineteenth century, the most 
prominent was Augustin-Louis Cauchy (1789–1857). Cauchy was born in Paris in 
the summer of 1789, about a month after the citizens of the city had stormed the 
Bastille and initiated the French Revolution. His father had served as a magistrate 
prior to the revolution. Subsequently, after the tumult had died down, he was able 
to rise quickly through the bureaucratic ranks and eventually became the Secretary-
General of the newly formed Senate under Napoleon. In this capacity, he worked 
directly under Laplace and came into frequent contact with Lagrange, so that his 
son had opportunity from an early age to come into contact with two of the greatest 
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Fig. 7.1 French 
mathematician 
Augustin-Louis Cauchy 

mathematicians of the time. One story has it that Lagrange happened to observe 
Cauchy performing some calculations on scratch paper in his father’s office one day 
and remarked in passing, “This child! One day he will surpass us all.” But in any 
case, Lagrange also advised his father, on account of the sensitive constitution of 
his son, not to permit Cauchy to devote himself wholly to mathematics until he had 
completed his basic education. 

Starting in his childhood, Cauchy studied literature and classical languages with 
great success before eventually deciding to pursue a career in engineering. When he 
was 16, Cauchy sat the entrance examination at the prestigious École Polytechnique 
in Paris and was awarded admission. He completed his studies there 2 years later 
and transferred to the École des Ponts et Chausées (School for Roads and Bridges) 
to study civil engineering. Upon graduation, Cauchy accepted a post in Cherbourg, a 
harbor city in northwest France along the English channel where Napoleon intended 
to develop a naval base. Throughout this time, however, Cauchy sustained an intense 
interest in pure mathematics and devoted a considerable amount of his spare time to 
its study. Eventually, he decided to return to Paris, ostensibly due to illness, but also 
in order to better facilitate his mathematical research. Both Lagrange and Laplace 
welcomed his returned and encouraged his mathematical activity. At the age of 27, 
Cauchy accepted a contract as a professor of mathematics and mechanics at the 
École Polytechnique and subsequently replaced the mathematician Gaspard Monge 
as a member of the French Academy of Science, following the exile of Napoleon. 
Apart from some years spent abroad after having refused to take an oath to a new 
king at odds with his political sensitivities, Cauchy lived out the remainder of his
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life in peace and contributed tremendously to the development of mathematics in 
his time. 

During his time at the École Polytechnique, Cauchy used his own analytic results 
to prepare an influential course of lectures with the objective of formulating and 
presenting a rigorous treatment of various topics in analysis, including variables, 
functions, limits, continuity, derivatives, differentials, and the other basic concepts 
of calculus. For example, Cauchy was the first to state the definition of the derivative 
as the limit of the expression 

. 
�x

�y
= f (x + �x) − f (x)

�x

as .�x becomes arbitrarily close to zero. Cauchy was also the first to use the 
notation .dy = f ′(x)dy for the differential of a function. He provided rigorous 
definitions for the limiting processes of infinite sequences and series and established 
the important Cauchy criterion for the convergence of a sequence of real numbers. 
Cauchy explained the conditions of this criterion as follows: 

The necessary and sufficient condition for the convergence of a sequence . xn is this: for any 
.ε > 0 there must exist some positive integer N such that .|xn − xm| < ε whenever both 
.m > N and .n > N . 

Another important result is the so-called Cauchy mean value theorem, which 
generalizes the Lagrange mean value theorem discussed in the previous chapter and 
by means of which Cauchy was able to provide a new proof of the fundamental 
theorem of calculus, which says that if .f (x) is a continuous function defined on an 
interval .[a, b], then the function 

. F(x) =
∫ x

a

f (x)dx,

defined at every point in .[a, b], satisfies the relation .F ′(x) = f (x). 
The definitions and arguments given by Cauchy already exhibit the flavor of 

modern analysis, and represent a crucial turning point in its transition towards rigor. 
One story has it that Laplace, already advanced in years at the time, was in the 
audience when Cauchy presented his results on convergent series at the Academy 
of Science. At the conclusion of the lecture, Laplace rushed home and took up his 
copy of Celestial Mechanics from off the bookshelf so that he could use the new 
methods introduced by Cauchy to confirm the validity of various series invoked in its 
arguments. Only after he had checked them all was Laplace able to relax (Fig. 7.2). 

Nevertheless, notwithstanding a considerable increase in rigor as compared 
to its predecessors, there remained various substantial logical gaps in Cauchy’s 
work. In particular, Cauchy made free use of such concepts as “infinite approach,” 
“sufficiently large,” and similar intuitive formulations. Moreover, his use of limits in 
the proof of the existence of integrals of continuous functions and elsewhere relies
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Fig. 7.2 German 
mathematician Karl 
Weierstrass 

implicitly on the completeness of the system of real numbers, a concept that at the 
time had not yet been introduced to mathematics with any clarity. 

The next major developments in the history of nineteenth-century analysis came 
from Germany. In particular, the analytic baton was taken up by a German teacher 
of middle school mathematics named Karl Weierstrass (1815–1897). In the same 
year that Napoleon suffered defeat at Waterloo, Weierstrass was born in Westphalia, 
a province in the western part of Germany. After a misguided career choice in his 
youth, Weierstrass lost some years to the study of law, finance, and economics. At 
the age of 26, he returned to the region of his birth and spent 15 years in obscurity, 
teaching mathematics, physics, botany, and gymnastics at various middle schools 
in the region. Only in 1857, in the same year that Cauchy died, and at the age of 
42, was Weierstrass able to obtain a post as an assistant professor at the Technical 
Institute of Berlin. Despite a close friendship with the Russian mathematician Sofya 
Kovalevskaya (1850–1891) that seems to have exceeded the usual bounds of their 
relationship as student and teacher, Weierstrass, as well as his three siblings, never 
married (Fig. 7.3). 

Speaking of Sofya Kovalevskaya, she too was a legendary figure in the history 
of modern mathematics. She was born in Moscow. Her father was a Lieutenant 
General in the Russian Army and her mother a descendant of German immigrants. 
At the time, it was forbidden in Russia for women to study abroad, and so, not 
unlike the young Brahman Gandhi in India around the same time, Kovalevskaya 
elected to enter into a contrived marriage with Vladimir Kovalevsky, a young 
paleontology student, in order to obtain permission to travel to Germany to continue 
her studies. They settled first in Heidelberg, where Kovalevskaya was able to 
attend courses in mathematics and physics under professors including Herman von 
Helmholtz (1821–1894), a natural scientist of wide-ranging interests who had made
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Fig. 7.3 Russian 
mathematician Sofya 
Kovalevskaya 

important contributions to the theory of conservation of energy and many other 
topics. Afterward, Kovalevskaya relocated to Berlin, where she embarked upon a 
course of private lessons in mathematics under Weierstrass. 

In 1874, Kovalevskaya became the first woman to have been awarded a doctoral 
degree by a European university, on the basis of a thesis presented to the University 
of Göttingen on the topic of partial differential equations. Her paper included 
results remembered today as the Cauchy-Kovalevskaya theorem, on the existence 
and uniqueness of solutions for certain analytic partial differential equations. 
Weierstrass served as her advisor and helped her to obtain exemption from the usual 
requirement for oral examination. In 1888, Kovalevskaya received the prestigious 
Prix Bordin by the French Academy of Science for work on the rotation of rigid 
bodies around a fixed point, and in the same year, she became the first woman to 
serve as a Corresponding Member of the Russian Academy of Sciences, on the 
recommendation of the mathematician Pafnuty Chebyshev (1821–1894) and many 
others. A posthumous memoir entitled A Russian Childhood (1893) depicted details 
from her life growing up in mid-nineteenth-century Russia and enjoyed immediate 
success. 

We return now to the contributions of Weierstrass to the development of analysis. 
At that time, the system of real numbers was still incompletely understood, and this 
misunderstanding contributed to the commonly accepted but mistaken belief that 
every continuous function is necessarily differentiable. Weierstrass provided the first 
counterexample to this claim. Specifically, he was able to show that the function 

.f (x) =
∞∑

n=0

bn cos(anπx)
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where a is a positive odd integer, b is any real number with .0 < b < 1, and . a, b

jointly satisfy .ab > 1 + 3π
2 is everywhere continuous and nowhere differentiable. 

This came as a serious shock to the mathematical community. 
In addition to this discovery, Weierstrass introduced to mathematics the language 

of . δ—. ε arguments that remains to this day to the most basic gadget in the analytic 
toolkit. By way of such arguments, Weierstrass was able to make rigorous the 
notion of an infinitesimal limit inherited from Cauchy and also to formulate a 
rigorous construction of the real number system: Weierstrass first defined the 
rational numbers in terms of the integers and proceeded to define the real numbers 
in terms of infinite sets of rationals. On the basis of this construction, Weierstrass 
was able to clarify the concepts of limits, continuity, and other such basic elements 
of calculus. His innovations have led subsequent generations of mathematics to 
sometimes refer to Weierstrass as the father of modern analysis. 

In the generation after Weierstrass, his investigations into the logical structure 
of the real number system were carried further by his fellow countrymen Richard 
Dedekind (1831–1916) and Georg Cantor (1845–1918). The former presented a new 
construction of the real numbers as partitions of the set of rationals and the latter 
as limits of certain classes of sequences of rational numbers. Both Dedekind and 
Cantor succeeded in proving the completeness of the set of real numbers according 
to their respective constructions. Georg Cantor is also responsible for the invention 
of set theory, which today occupies a position of fundamental importance at the 
heart of modern mathematics. He was born in Saint Petersburg, son of a Danish 
father and Russian mother, and subsequently emigrated with his family to Germany 
at the age of 11, where he eventually had the opportunity to study under Weierstrass. 
Although he and Dedekind (who, incidentally, had been Gauss’s last student) 
developed competing formulations of a broad array of mathematical concepts and 
constructions, the two men sustained a lifelong correspondence characterized by 
mutual respect and encouragement (Fig. 7.4). 

Abel and Galois 

In 1821, the same year that Napoleon died at Saint Helena, a young Norwegian 
student named Niels Henrik Abel (1802–1829) enrolled at the Royal Frederick Uni-
versity. A mere 3 years later, Abel published at his own expense a remarkable article 
entitled Mémoire sur les équations algébraiques òu on démontre l’impossibilité de 
la résolution de l’équation générale du cinqiuème degré (Memoire on algebraic 
equations, in which the impossibility of solving the general equation of fifth degree 
is proven). In this paper, Abel proved the following result: it is impossible to 
produce a general equation involving only radicals and basic arithmetical operations 
to determine the roots of all polynomials in any fixed degree larger than four as a 
function of the coefficients. The historical and mathematical significance of this 
result was tremendous. The simplest case of polynomials in degree two had already 
been worked out many centuries earlier by Arabic mathematicians of the Middle
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Fig. 7.4 Niels Henrik Abel, 
genius of Norwegian 
mathematics 

Ages via a variant of the modern quadratic formula. During the Renaissance, Italian 
mathematicians had discovered similar solutions for polynomials in degrees three 
and four. And then for more than two centuries, mathematicians endeavored in vain 
to find an equation for polynomials of degree greater than four. Abel proved that no 
such equation exists. 

Abel was born in the village of Nedstrand, on the southwestern coast of the 
Nedstrand peninsula in Norway, the second child of a local pastor. Although Norway 
is counted among the wealthiest countries in Europe today, at the time, its economy 
was still relatively undeveloped, and at the time, the country had yet to produce any 
scientists of note. Abel was to be the first. In his youth, Abel had the good fortune 
to come into contact with an excellent mathematics teacher at the Cathedral School 
where he was attending lessons who recognized his talents and encouraged him to 
read advanced works in the subject by Euler, Lagrange, Gauss, and others. Abel 
took an interest in the problem of fifth-degree polynomials and believed at first that 
he had managed to discover a solution. However, there were no mathematicians in 
Norway at the time capable of confirming or disconfirming his result. Abel sent a 
manuscript containing his solution to a well-respected professor of mathematics in 
Copenhagen, who could not find any faults with it, but who asked Abel to produce 
a concrete numerical example demonstrating his method. As he was preparing his 
reply, Abel himself discovered a mistake in his argument, which led him eventually 
to his result on the nonexistence of a general solution by radicals for polynomials in 
degree greater than four. 

After he had made a name for himself in mathematics, Abel decided to apply 
to the government for a stipend to study abroad in France and Germany, which 
was awarded only on the condition that he first devote 2 years to the study of
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French and German. At the age of 23, shortly after the completion of his university 
studies, Abel finally obtained permission to travel and made his way to Berlin, 
where he befriended the publisher August Leopold Crelle, who was preparing to 
publish a new mathematical journal entitled Journal für die reine und angewandte 
Mathematik (Journal for Pure and Applied Mathematics), to which Abel contributed 
seven articles in the first year of its distribution, including an article on his results 
in the theory of polynomials. This was one of the first journals published outside 
the remit of any academy and is one of the oldest mathematical journals still in 
publication today. At the same time, Abel came to realize that various mathematical 
results he had sent to Gauss and other prominent mathematicians had not yet made 
any impression and made a roundabout way around Göttingen en route to Paris. 
In Paris, Abel submitted what he believed to be his most important and impressive 
result to the French Academy of Sciences, where it was to be reviewed by Cauchy. 
His work was almost completely unknown in France at the time, however, and 
Cauchy, like Gauss before him, put the work aside and neglected to review it. 

After 2 years abroad, Abel returned to Norway. He had exhausted his funds and 
contracted pulmonary tuberculosis in the course of his travels. For the remainder of 
his short life, Abel supported himself via a single loan and engagements as a private 
tutor. In the meantime, a small ensemble of sympathetic European mathematicians 
began to recognize the value of his work, which contained a great many deep and 
significant results in addition to the celebrated theorem on polynomial solutions. 
Abel also worked on the theory of elliptic integrals and in the process discovered 
a class of functions called elliptic functions. Subsequently, he was able to establish 
the double periodicity of such functions. The theory of elliptic functions, which 
was independently worked out by the German mathematician Carl Jacobi (1804– 
1851) around the same time, ranks among the brightest gems of nineteenth-century 
complex analysis. In the spring of 1829, Abel was finally awarded a position as 
a professor of mathematics at the University of Berlin, on the recommendation of 
his friend August Crelle. Sadly, Abel died of tuberculosis 2 days before the news 
arrived. 

After Abel’s death, the mathematical community gradually came to recognize the 
significance of his work. Today, he is remembered as among the greatest nineteenth-
century mathematicians and a true pioneer in the modernization of mathematical 
thought. In Norway, his life and achievements have been commemorated on postage 
stamps, on banknotes, and on coins. The generation that followed saw a great 
flowering of artistic and intellectual talent in Norway. First, there was the great 
playwright Henrik Ibsen (1828–1906), born in the year before Abel died. Then 
in short succession appeared the composer Edvard Grieg (1843–1907), the painter 
Edvard Munch (1863–1944), and the explorer Roald Amundsen (1872–1928), who 
led the first expedition to the South Pole, via sled. 

In the course of his work on the quintic polynomial, Abel considered various 
special cases of equations with solutions in radicals, considerations which amounted 
to the introduction into mathematics of what came to be known in modern algebra 
as an algebraic number field. Gauss had proved already at the end of the previous 
century that every polynomial with complex coefficients has a complex root, a result
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Fig. 7.5 Évariste Galois, the 
“Rimbaud of mathematics” 

generally referred to as the fundamental theorem of algebra, and it was natural in 
light of Abel’s work for mathematicians to ask what sort of equations were sufficient 
to express such roots. In particular, what exactly are the conditions according to 
which a given polynomial equation has solutions in radicals? This question was 
settled conclusively by yet another mathematician with a short and tragic biography: 
Évariste Galois (1811–1832). In the course of 2 years following Abel’s death, Galois 
was able to establish the necessary and sufficient conditions for the solvability of 
polynomial equations by radicals (Fig. 7.5). 

The main insight that Galois pursued was to investigate the complete collection 
of roots of a given polynomial and in particular their behavior under permutations. 
As an example, suppose . x1, . x2, . x3, and . x4 are the four roots of some fourth-
degree polynomial. Exchanging the first two of these roots corresponds to a certain 
permutation on four letters, expressed mathematically by the array 

. P =
(

x1 x2 x3 x4

x2 x1 x3 x4

)
.

Given two such permutations, define their product as the new permutation obtained 
by first applying one and then the other. Then if one considers the set of all 
possible permutations on some fixed number of letters, this product rule satisfies 
three important properties: (1) it is associative: .(P1P2)P3 = P1(P2P3) for all 
choices of permutations . P1, . P2, . P3, (2) there exists an identity element . P0 such
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that .PP0 = P0P = P for every choice of permutation P given by the permutation 
that leaves every letter unchanged, and (3) every permutation is invertible; that is, 
there is some other permutation that undoes the action of any given permutation, 
such that the composition of the two is the identity permutation. 

In modern terminology, a set of elements satisfying the above conditions is 
called a group (and if the group operation is also commutative, then it is called 
an abelian group). The group of permutations on the roots of a degree n polynomial 
is written . Sn. Galois designated certain subgroups having desirable properties as 
normal subgroups and investigated the largest normal subgroup of a given group. 
According to Lagrange’s theorem, the order of a finite group must be a multiple of 
the order of any of its subgroups, where the order of a group or subgroup means 
the number of its elements. The miracle of Galois theory is that a polynomial of 
degree n is solvable in radicals if and only if the order of each factor group in the 
largest subnormal series (the final subnormal group is always the trivial group) of 
the permutation group . Sn is prime. Such groups are called solvable groups. When 
.n = 3, the largest normal subgroup series has three terms, and the orders .2, 3 of 
the nontrivial factor groups are prime. When .n = 4, the largest normal subgroup 
series has five terms, and again, the orders .2, 3, 2, 2 of the nontrivial factor groups 
are prime. But when .n ≥ 5, the largest normal subgroup series has three  terms, 
with nontrivial orders n and .n!/2. The latter number is composite. 

Galois was born in 1811 in a small town at the southern outskirts of Paris. 
His father was a republican and an active participant in the French Revolution 
who eventually became mayor of the town. Galois enjoyed in his childhood a rich 
education under the tutelage of his mother. When Galois was 18 years old, his father 
committed suicide in the course of the fallout of a local political dispute. A few days 
later, Galois tried and failed for the second time to obtain admission to the École 
Polytechnique. He matriculated instead to the less prestigious École Normale and 
was expelled the following year on the basis of his political activities. In the period 
that followed, he was also arrested several times and eventually imprisoned for 6 
months. Not long after his release, Galois participated in a duel for reasons that 
remain murky but which seem to have been connected somehow to a tumultuous 
love affair. In any case, Galois was shot in the abdomen and died the following day 
and was buried in a common grave whose exact location is unknown. He was 20 
years old. 

Like Abel, Galois had the good fortune to come into contact with a gifted 
mathematics teacher in his high school years, who introduced to him the wonders of 
the mathematical universe. Galois abandoned his mathematics textbook and began 
to read in its place advanced contemporary works by Lagrange, Euler, Gauss, and 
Cauchy. He seems to have hit upon the idea of a group not long afterward. Unlike 
Abel, Cauchy lived in Paris and attended some of its most prestigious schools. He 
ought to have been able to avoid the neglect suffered by Abel. Unfortunately, the 
various papers and results that he submitted to the Academy of Sciences were either 
ignored or otherwise lost. On the night before the duel that took his life, Galois 
became convinced of his impending death and spent the night composing a letter 
to which he attached several of his mathematical manuscripts. It is this letter that
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forms the beautiful legacy that Galois gave to the mathematical future. In total, 
Galois published a single brief article in his lifetime, and the works assembled after 
his death comprise a mere 60 pages. 

Today, the work of Galois is recognized as the first chapter in the story of 
modern algebra. He brought to its complete resolution the problem of solvability 
by radicals with which mathematicians had been engaged for more than 300 years. 
But more importantly, Galois introduced to mathematics the concept of a group and 
thereby initiated a profound revolution in the contents and methods of algebra. In 
the subsequent development of mathematics and the natural sciences, groups have 
come to play an increasingly significant role in topics as diverse as the structure 
of crystals, the theory of fundamental particles, and quantum mechanics. The rapid 
rise in prominence of group theory in relation to the other sciences is illustrated 
by the following remarks. At the very start of the twentieth century, in the course 
of curriculum discussions among Princeton physicists and mathematicians, it was 
proposed that group theory could be omitted, since no use for it had yet been found 
in physics. But within the space of the following 20 years, no fewer than three 
monographs were published on the new science of quantum mechanics in terms 
of group theory. Meanwhile, the work of Abel and Galois and others prompted 
algebraists to shift their attention away from questions about the solutions to specific 
equations and turn instead toward development and innovation inside mathematics. 

Another mathematician of the same generation worthy of particular mention 
is Joseph Liouville (1809–1882), born 2 years before Galois. Liouville entered 
the École Polytechnique at the age of 16 and subsequently earned a position 
there as an assistant professor. He is remembered for pioneering work on rational 
approximations of algebraic numbers and the theory of transcendental numbers. 
Algebraic and transcendental numbers are defined as follows: a complex number is 
called an algebraic number if it is the root of a nonzero polynomial in one variable 
with rational complex numbers; a complex number that is not an algebraic number 
is called a transcendental number. The concept of a transcendental number had first 
been introduced by Euler in his seminal text Introduction to Analysis of the Infinite 
(1748), and Liouville provided the first proof that such numbers actually exist almost 
a century later in 1844. In particular, Liouville used power series methods to obtain 
infinitely many transcendental numbers known today as Liouville numbers, the most 
famous of which is the Liouville constant 

. 

∞∑
n=1

1

10n
= 0.1100010000 · · · .

In 1873, the French mathematician Charles Hermite (1822–1901) proved that 
Euler’s number .e = 2.7182818 · · · is a transcendental number, and in 1882, the 
German mathematician Ferdinand von Lindemann (1852–1939) proved that the 
number . π is also transcendental. Lindemann is a lesser known figure at the center 
of the story of modern German mathematics: he completed his doctoral dissertation 
under the supervision of the great mathematician Felix Klein and went on to
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supervise the doctoral work of such notable figures as David Hilbert and Hermann 
Minkowski, who obtained their degrees in the same year as one another. 

There remain to this day many open questions in the theory of transcendental 
numbers. For example, nobody has been able to prove that the sum .π + e is 
transcendental, or even irrational, although it is widely assumed to be. Similarly, 
it is unknown whether or not the Euler-Mascheroni constant 

. γ = lim
N→∞(

N∑
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n
− logN) = 0.5772156649 · · ·

is irrational and, if so, whether it is algebraic or transcendental. 

The Quaternions of William Rowan Hamilton 

After Galois had introduced the concept of a group, the next major development 
in the history of modern algebra was the discovery of the system of quaternions. 
Although the impact of the quaternions was not as deep or far reaching as the 
group theory of Galois or the theory of Abelian elliptic functions developed 
by Abel, nevertheless, they represent a revolutionary moment in the history of 
algebra as the first number system to come equipped with a noncommutative 
multiplication operation. They represent also the first contribution to this chapter 
of the history of mathematics from the United Kingdom, which in the nineteenth 
century included Ireland. In fact, for several generations following the death of 
Newton, the mathematical stage in Europe had been predominantly occupied by 
mathematicians from France and Germany. To the delight of the English-speaking 
world, this changed in the nineteenth century via the work of William Rowan 
Hamilton (1805–1865), who introduced the quaternions. 

Hamilton was born in Dublin in 1805. His father worked as a lawyer, and his 
mother was a woman of substantial learning. In any case, Hamilton was sent at an 
early age to a somewhat distant village to live with his uncle, a local priest. This 
uncle had a background in linguistics, and Hamilton developed under his care a 
great facility for languages as well. By the age of 13, Hamilton had acquired already 
as many languages as his age, including Latin, Hebrew, Arabic, Persian, Sanskrit, 
Hindustani, Bengali, Syriac, and Malay. He was preparing at the time to take up 
the study of Chinese, but the death of his parents and other events in his personal 
life caused him to turn his attention away from languages and focus instead on 
mathematics. 

Hamilton appears to have been almost entirely self-taught as a mathematician. 
He was able to quickly master analytic geometry and analysis and went on to read 
the Principia Mathematica by Newton and the Celestial Mechanics by Laplace. 
Hamilton discovered a mathematical error in the latter text, which attracted early 
attention to his abilities. The following year, and despite having received almost
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Fig. 7.6 Broome Bridge in Dublin, where Hamilton wrote down the fundamental formula for 
quaternions 

no formal training, Hamilton was awarded admission to Trinity College in Dublin, 
having obtained first marks in his entrance examinations. By the time he ought 
to have graduated, Hamilton had already invented a new system of geometrical 
optics. In fact, he never completed his degree as he was instead appointed directly 
to the Andrews Professorship of Astronomy at the University of Dublin. He was 
not yet 22 years old. Although Hamilton shares with Abel and Galois a biography 
characterized by early brilliance and accomplishment, his fate in later life was more 
happy than theirs. In particular, Hamilton enjoyed many honors and recognitions 
throughout his life: at the age of 30, he was knighted, and 2 years later, he was 
elected to the president’s chair of the Royal Irish Academy (Fig. 7.6). 

Although he made a name for himself early on for his contributions in physics 
and astronomy, Hamilton viewed pure mathematics as the field to which he was 
most fully devoted. Nevertheless, recognition and achievement in the domain of 
pure mathematics came a bit more slowly than in the natural sciences. Hamilton 
devoted considerable energy in particular to the problem of extending the system of 
complex numbers, which led eventually to his discovery of the quaternions. In the 
early years of the nineteenth century, Gauss and other mathematicians had worked 
out a geometrical interpretation of the system of complex numbers: every complex 
number .a + bi was taken to represent what we now call a vector in the plane. This 
point of view was particularly fruitful from the perspective of physics, in which 
discipline a great many of the most fundamental properties take the form of vectors, 
including force, velocity, and acceleration. Such directed quantities obey the so-
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called parallelogram law of addition, which is identical in two dimensions to the 
addition law for complex numbers. 

The particular advantage in interpreting vectors as complex numbers is that it 
facilitates the study of the behavior by proper purely algebraic means, without 
recourse to geometric figures. On the other hand, this method suffers from serious 
limitations: if, for example, several forces acting on some body in space fail to 
lie all in a single plane, there is simply no way to represent them separately 
by complex numbers. Rather some three-dimensional analogue of the system of 
complex numbers is required in this circumstance. If vectors in space are represented 
by Cartesian coordinates of the form .(x, y, z), the problem is to determine what 
law the operations of addition and multiplication should take such that the system 
so obtained shares certain desired properties with the system of complex numbers. 
This is the problem to which Hamilton devoted so much of his attention. 

In 1837, Hamilton published a paper in which he proposed that the use of the 
addition sign in the notation .a + bi for complex numbers was a matter of historical 
accident rather than mathematical necessity. He observed that it was possible to 
define complex numbers rather as ordered pairs .(a, b) of real numbers equipped 
with operations of addition and multiplication defined by the laws 

. (a, b) + (c, d) = (a + c, b + d)

. (a, b) × (c, d) = (ac − bd, ad + bc)

Hamilton proved that the set of such ordered pairs is closed under the two 
operations so defined and that both operations are associative and commutative. His 
goal was to generalize the ordered pairs involved in this definition to arbitrary arrays 
of numbers retaining the basic properties of real and complex numbers. In this he 
succeeded only partially: after much effort, Hamilton discovered a generalization to 
arrays with four components rather than with three. Moreover, it was necessary in 
this case to abandon the commutative law for multiplication that had been taken for 
granted in arithmetic since antiquity. He called his new system the quaternions. 

The generic quaternions has the form .a+bi+cj+dk, where .a, b, c, and d are real 
numbers and .i, j, k satisfy the relations .i2 = j2 = k2 = −1, . ij = −ji = k, jk =
−kj = i, ki = −ik = j . These relations ensure that any two quaternions can be 
multiplied by one another according to the usual distributive law of arithmetic to 
obtain a new quaternion. For example, if .p = 1+2i +3j +4k, .q = 4+3i +2j +k, 
then 

. pq = −12 + 6i + 24j + 12k, qp = −12 + 16i + 4j + 22k.

Although .pq �= qp, the multiplication operation for quaternions does obey the 
associative law, as Hamilton himself verified. When Hamilton discovered this result 
in 1843, he opened wide a door to many possibilities for the future of algebra. From 
that time on, mathematicians enjoyed a newfound freedom to introduce new and 
exotic number systems. 

It is necessary to point out that although the introduction of the system of 
quaternions was a significant moment in the history of mathematics, in many ways,
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the quaternions were not well suited to use in physics. Subsequent mathematicians 
and mathematical physicists found it more convenient to separate the first term in 
the definition of a quaternion from the remaining three, viewed as a single vector, 
and to redefine the operations on .i, j, and k in terms of what we recognize today 
in modern vector analysis as the dot product and cross product of vectors. At the 
same time, the German mathematician and polymath Hermann Grassmann (1809– 
1877) discovered in 1844 a much more general system for working with arbitrary 
arrays of numbers. The abstract notion of linear algebra that Grassmann introduced 
subsequently became an object of considerable independent research and one of the 
cornerstones of modern mathematics. 

The final years of Hamilton’s life have a certain tragedy about them. Although 
Hamilton believed that quaternions held the secrets to the universe and ought to play 
a role in the development of nineteenth-century science analogous to the discoveries 
of Newton in the seventeenth century, in fact, the system of quaternions departed the 
scene not long after they were invented and was regarded for some time afterward 
as a mathematical curiosity. Nevertheless, the system of quaternions did enjoy a 
period of popularity during Hamilton’s lifetime across the Atlantic in America, and 
the United States National Academy of Sciences included his name at the top of the 
list among their first round of foreign associates. 

The history of matrix algebras, developed around the same time, is rather 
different. The English mathematician Arthur Cayley (1821–1895) invented the 
concept of a matrix in 1857, 8 years before Hamilton died, and defined the 
laws of their arithmetic in such a way as to identify matrix operations with 
compositions of linear transformations. He discovered that the addition of matrices 
is both associative and commutative and that their multiplication is associative and 
distributes across addition. On the other hand, the multiplication of matrices, like 
that of the quaternions, is noncommutative. For example, one has 
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It is impossible to overstate the significance of the theory matrices and linear 
algebra, and in fact, it is primarily in connection with matrices that Hamilton’s name 
lives in on mathematics. Specifically, there is the Cayley-Hamilton theorem: 

if A is an .n×n matrix with entries drawn from a commutative ring, say the real or complex 
numbers, and if .f (λ) = det(λIn − A) is the characteristic polynomial of A, then . f (A) = 0
(the zero matrix). 

In the year 1925, the physicist Max Born (1882–1970) discovered in collab-
oration with Werner Heisenberg (1901–1976) that the algebra of matrices was 
especially well suited to serve as a mathematical framework for the newly emerging 
theory of quantum mechanics. In this way, it came to be appreciated that the 
arithmetic of certain physical quantities is noncommutative. One consequence of 
the new formalism is the famous uncertainty principle. It is worth mentioning in 
passing that the name matrix was coined by the English mathematician James
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Fig. 7.7 British 
mathematician Arthur Cayley 

Joseph Sylvester (1814–1897), who collaborated with Cayley on the theory of 
algebraic invariants, which played a role in the creation of both quantum mechanics 
and the theory of relativity. Sylvester studied in the United States for a period of a 
time and became an early pioneer in the development of mathematics in the New 
World (Fig. 7.7). 

Cayley’s father worked in Saint Petersburg as a merchant. Although Cayley was 
born in London, he spent his earliest years in Russia. His father intended for him 
to go into business, but Cayley exhibited a talent for mathematics from an early 
age, and one of his schoolteachers encouraged his father to allow Cayley to enroll 
at the University of Cambridge. These three mathematicians, Hamilton, Cayley, and 
Sylvester, inaugurated the first renaissance of pure mathematics in Britain since 
Newton. In addition to his achievements in mathematics, Cayley worked for some 
years as a lawyer, during which time he nevertheless maintained an impressive 
standard of mathematical research. There are some parallels to be drawn here with 
life of the great American poet Wallace Stevens (1879–1955), who served for much 
of his adult life as an executive at an insurance company. Cayley also took a keen 
interest in the education of women and played a role in bringing to an end the 
prohibition of their admission to Cambridge University (Fig. 7.8).
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Fig. 7.8 Cayley’s cardioid 
curve 

A Revolution in Geometry 

A Scandal in Elementary Geometry 

During the same period that algebra was undergoing such tremendous change 
and modernization, a great revolution was also taking place in the ancient and 
venerable mathematical discipline of geometry. On the other hand, due to its rich 
history and close connection to human thought, the new developments in geometry 
were more difficult to accept. The story begins in Ancient Greece, where Euclid 
established the rigorous and logical standards of mathematical practice that would 
govern all its future development. For some two millennia afterward, the sanctity 
of his mathematical methodology and results was unassailable. So, for example, 
even as Newton was revolutionizing mathematics and physics with the invention 
of calculus, he followed the example of his teacher Isaac Barrow, who had praised 
Euclid extensively, and presented his new ideas in the old language of Euclidean 
geometry. 

Although the analytic geometry of Descartes had proved an important update 
to the methods of geometrical research, it had not introduced any changes to the 
basic contents and presuppositions of Euclidean geometry, and Descartes himself 
was always careful to rework results obtained from his graphical methods into 
proofs in the Euclidean style. The philosophers of the period, including Thomas 
Hobbes (1588–1679), John Locke 1632–1704, Leibniz, and later G.W.F. Hegel 
(1770–1831), also each agreed from their various perspectives and analyses that 
the validity of Euclidean geometry constituted a clear and necessary truth. The most 
famous argument for this position was given by Immanuel Kant (1724–1804) in his 
influential treatise, Critique of Pure Reason. Kant argued that the nature of human



244 7 Modern Mathematics, Modern Art

Fig. 7.9 David Hume, the 
agnostic 

sense perception is mediated by spatial intuition and that spatial intuition necessarily 
imposes the structure of Euclidean geometry upon the world (Fig. 7.9). 

Kant developed his arguments in response to the radical ideas of the Scottish 
philosopher David Hume (1711–1776). In the year 1739, Hume had published a 
remarkable work in which he denied that we can know with certainty any set of 
laws governing the behavior of the universe. In particular, since in his account 
scientific knowledge can come about only through direct experience, Hume denied 
the exactitude of Euclidean geometry as a description of reality. 

In fact, the system of Euclidean geometry was not without certain deep fault 
lines from a purely mathematical perspective. Since its inception, there had been a 
question about its foundations that had perpetually puzzled mathematicians, namely, 
the problem of the parallel postulate. The parallel postulate occurs fifth and last 
among the postulates that Euclid sets out at the beginning of his Elements of 
Geometry, and its formulation is strikingly different in character from the four that 
precede it. It reads as follows: 

That, if a straight line falling on two straight lines make the interior angles on the same side 
less than two right angles, the two straight lines, if produced indefinitely, meet on that side 
on which are the angles less than the two right angles. 

It is a convoluted and finicky statement, entirely lacking the simplicity and clarity 
of the other postulates. Moreover, many mathematicians felt that it has more the 
flavor of a theorem than an axiom, that there ought therefore to be some way to 
derive it from the others. This state of affairs prompted d’Alembert to refer to the 
parallel postulate in 1767 as the scandal of elementary geometry (Fig. 7.10). 

Mathematicians endeavored to clear up this scandal along two main avenues of 
pursuit. In the first case, many mathematicians really did search for a way to prove it 
from simpler hypotheses, including the mathematicians Omar Khayyam and Nasir 
al-Din al-Tusi mentioned in the fourth chapter. Other mathematicians sought to
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Fig. 7.10 Scottish 
mathematician John Playfair 

settle the issue by reformulating the fifth postulate in some equivalent but simpler 
and more palatable version. The version that appears in most modern textbooks is 
associated with the eighteenth-century Scottish mathematician and physicist John 
Playfair (1748–1819). It reads as follows: 

In a plane, given a line and a point not on it, exactly one line parallel to the given line can 
be drawn through the point. 

It is necessary to point out however that this version of the fifth postulate 
in fact predates Playfair by many centuries. The Greek astronomer Ptolemy had 
presented perhaps the first attempt at a proof of the parallel postulate in the second 
century, and several centuries later, the philosopher Proclus (410–485) observed in 
his commentary on Elements that Ptolemy had implicitly assumed Playfair’s axiom 
in his proof. This shows that it was not Playfair who first proposed the axiom that 
bears his name. 

In the centuries after Proclus wrote his commentary, the text of Elements largely 
disappeared for a time from Europe and survived only in Arabic. A few Latin 
translations appeared during this time as well, but it was really only after the end of 
the medieval period that the story of the parallel postulate picks up again in Europe. 
In the time of Newton, Wallis made a thorough inquiry into the issue and proposed 
various proofs, but each of his proofs was found ultimately to rest on some axiom 
equivalent to the parallel postulate or otherwise to involve some other mistaken 
inference. Afterward, the only new and interesting developments prior to the 
eighteenth century were contributed by three relatively unknown mathematicians. 

In fact, the methods pursued by these three mathematicians were not essentially 
different than those of Omar Khayyam and Nasir al-Din al-Tusi. They all considered 
a quadrilateral, say ABCD in which the angles .� A = � B are assumed to be right 
angles, and endeavored by the method of contradiction to rule out case by case the 
possibility that the angles .� C = � D are acute or obtuse. But none of them were able 
to make any progress on the obtuse angle case. Slowly, the idea began to take hold
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in Europe that it might not in fact be possible to prove the parallel postulate on the 
basis of the other postulates. Notably, various mathematicians in Italy, Switzerland, 
and Germany tiptoed close to the precipice of non-Euclidean geometry, but each of 
them recoiled in turn from the prospect of such an apparently absurd proposition. 

The Arrival of Non-Euclidean Geometry 

The several mathematicians just mentioned were close to a revolution in mathe-
matics that would prove as substantial as the invention of analytic geometry by 
Descartes and Pascal or the invention of calculus by Newton and Leibniz. The 
decisive step however remained for a later generation to take, when, in a remarkable 
turn of events, three mathematicians hailing from three different countries, and 
working completely independently from one another, established once and for all 
the foundations of non-Euclidean geometry. These were Gauss in Germany, János 
Bolyai (1802–1860) in Hungary, and Nikolai Lobachevsky (1792–1856) in Russia. 
This of course is the same Gauss whose formidable name has already come up in 
a variety of contexts. The remaining two mathematicians were both newcomers to 
the mathematical scene when they completed the work for which they are primarily 
remembered today. 

All three of them began their investigations by way of Playfair’s axiom. There 
were three cases to resolve: given a line in the plane and some point not lying on 
it, it is possible to assume either that there exist several lines passing through the 
given point and parallel to the given line, or one line, or no lines. In fact, these 
three possibilities correspond one to one to presence of either right, acute, or obtuse 
angles in the quadrilaterals discussed above. Each of the three believed that the 
acute angle case ought to yield a consistent geometry, although they did not give a 
formal proof of its consistency. Rather, they provided proofs of various geometric 
and trigonometric results on the assumption of the acute angle hypothesis. In this 
way, a new geometry was born (Fig. 7.11). 

Here, we provide a simple example of the new results. Consider any arbitrary 
quadratic curve, for example, an ellipse, and the area it encloses. Such a curve can 
be taken to represent a geometric space satisfying the hypotheses of Lobachevsky. 
The line connecting any two points A and B on the curve (points at infinity) defines 
a straight line in the space. Then for any third point P lying inside the ellipse or 
on its perimeter, but not in the line joining AB, the two lines joining AP and BP 
intersect the ellipse in points C and D, respectively. Then according to the theorem 
of Desargues discussed in the fifth chapter, the two lines APC and BPD formed 
with the points at infinity are both parallel to the line AB and pass through the points 
P (Fig. 7.12). 

In this example, it is not actually the case that the first four Euclidean postulates 
are completely satisfied. This defect however is readily emended. It is necessary 
only to replace the straight lines in the example with curves selected so as to satisfy 
the postulates and meeting the ellipse at right angles. In this way, it really is possible
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Fig. 7.12 Geometric 
representation of 
Lobachevskian space 

to represent an arbitrary number of straight lines passing through a given point and 
parallel to a given line. 

It was Gauss who coined the term non-Euclidean geometry, so that every system 
of geometry retained some association with the name of its ancient progenitor. 
Gauss himself however was reluctant to make his results public and shared them 
instead only privately with a few close colleagues, recognizing perhaps that they 
brought him into conflict with the philosophical ideas of Kant, which were hugely 
popular at the time. Gauss himself said only that he feared the clamor of the 
Boeotians if he were to openly express his radical ideas. This created the opportunity 
for two young mathematicians of the next generation to earn a place for themselves 
in the history of mathematics as the inventors of non-Euclidean geometry and to 
earn this supreme honor for their motherlands (Fig. 7.13). 

János Bolyai belonged to the same generation as Abel. He was born in a small 
town in Transylvania, today a county in Romania, although at the time it had 
belonged to Hungary for more than eight centuries. His father Farkas Bolyai had
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Fig. 7.13 Likeness of János Bolyai on a Hungarian postage stamp 

studied mathematics at Göttingen, where he became lifelong friends with Gauss, 
before eventually returning to Transylvania and taking up a teaching position for 
mathematics and sciences, which he held for the remainder of his life. He instructed 
his son in mathematics, who mastered calculus and the elements of analytical 
mechanics by the age of 13. At 16, Bolyai enrolled at the Imperial and Royal 
Military Academy in Vienna. After graduating, Bolyai entered military service, 
but retained an active interest in mathematics and in particular the foundations of 
geometry (Fig. 7.14). 

Although Bolyai’s father always encouraged him in his mathematical research, 
he resolutely opposed any investigations into the parallel postulate, with which he 
too had become obsessed, writing: “You must not attempt this approach to parallels. 
I know this way to the very end. I have traversed this bottomless night, which 
extinguished all light and joy in my life. I entreat you, leave the science of parallels 
alone. . . .”  But  Bolyai  could not be dissuaded, and in 1823, he took advantage of 
a winter vacation spent at home to present his father with a treatise on the theory 
of parallel lines. Some 6 years later, Bolyai’s work appeared as an appendix to a 
textbook written by his father. This appendix eventually made its way to Gauss, 
who was impressed by its genius, but replied only after a long time with the claim 
that he had in fact hit upon the same theory some 30 years earlier. 

In any case, the appendix did not make much impression on the mathematical 
community at the time. In the years that followed, Bolyai suffered a debilitating 
accident and retired from the military. He returned home, where he suffered 
misfortune after misfortune—poverty and, like his father, a disastrous relationship 
and marriage. When he learned that the Russian mathematician Lobachevsky 
had published results in the theory of parallel lines somewhat earlier than his 
own treatise had appeared in print, Bolyai abandoned mathematics altogether
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Fig. 7.14 Home of Farkas Bolyai in Göttingen; photograph by the author 

and devoted his final years to private efforts in the composition of literary and 
philosophical works. Bolyai died forgotten and dejected after a protracted illness. 
Some 30 years later, the Hungarian government restored his grave and erected a 
statue in his honor. Today, the International János Bolyai prize is still awarded in his 
honor every 5 years by the Hungarian Academy of Sciences. Its notable recipients 
include the mathematicians Henri Poincaré, David Hilbert, and Albert Einstein. 

We turn now to Lobachevsky, the first mathematician to publish any results 
in non-Euclidean geometry. He was born 10 years earlier than Bolyai in the city 
of Nizhny Novgorod, some 400 kilometers to the east of Moscow. His father 
worked as clerk in a land surveying office and died when Lobachevsky was 
still a child. His mother, who was diligent and open minded, traveled with her 
three children to Kazan, where Lobachevsky attended Kazan Gymnasium. Four 
years later, Lobachevsky received a scholarship at the age of 14 to attend Kazan 
University. Later Kazan University would be recognized as one of the most 
prestigious educational institutions in Russia, alongside the universities of Moscow 
and Saint Petersburg, but at the time, it was still new and unknown. Lobachevsky 
remained in Kazan for the rest of his life. 

Like so many mathematicians discussed already in this chapter, Lobachevsky 
had the good fortune to encounter an exceptional mathematics teacher during 
his schoolboy years, who exerted a profound influence on his development. He 
began to read primary texts in mathematics and began to exhibit a remarkable 
talent. Notwithstanding a headstrong personality that led to occasional violations 
of school discipline, Lobachevsky excelled in his studies, and his teachers gave him 
their support. After he completed his master’s degree in physics and mathematics, 
Lobachevsky stayed on as a lecturer at Kazan University. Eventually, he was
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promoted to a full professor and occupied various additional positions of honor on 
the basis of his administrative abilities and mathematical achievements. Just at the 
time that Leo Tolstoy enrolled as a student in the Department of Oriental Languages 
at Kazan University, Lobachevsky had ascended through the ranks to the position of 
rector. Later, Vladimir Lenin enrolled in the Law Department of the same university. 

Although Lobachevsky enjoyed a brilliant academic career, the significance of 
his work on non-Euclidean geometry was not widely appreciated at first. The state of 
the sciences in Russia at the time was still relatively undeveloped, and Lobachevsky 
struggled to find an audience for his ideas. In 1823, Lobachevsky completed his 
first major work, entitled Geometriya, one part of which contained the germ his 
conception of non-Euclidean geometry. Three years later, he presented an expanded 
account of his ideas at the Kazan department of physics and mathematics where 
it was regarded as fantastical and absurd and attracted no further attention; the 
manuscript was subsequently lost. After another 3 years, he succeeded in publishing 
an article on the subject called A Concise Outline of the Foundations of Geometry 
in the university journal Kazan Messenger, news of which slowly made its way to 
mathematicians in Western Europe. 

In any case, a new universe of geometry was born and eventually came to be 
called Lobachevskian geometry, in spite of the contemporary contributions of Gauss 
and Bolyai to its development. Lobachevsky himself referred to his new system of 
geometry as imaginary geometry, while Bolyai used the name absolute geometry for 
his. The influence of non-Euclidean geometry was slow to spread, as people viewed 
the entire subject with considerable suspicion at first. But after Gauss died and the 
contents of notebooks pertaining to non-Euclidean geometry were made public, the 
imprimatur of his tremendous status and fame forced the issue, and the widespread 
feeling that the laws of geometry were single and immutable began to waver. 

We turn at last to the so-called prince of mathematics Gauss himself. Johann 
Carl Friedrich Gauss was born in 1777 in Brunswick in Northern Germany, the only 
child of poor farmers. He was a child prodigy, and legend has it that he discovered 
a mistake in his father’s account books at the age of 5. According to another story, 
when Gauss was 9, one of his teachers invited the class to add up all the numbers 
between 1 and 100 to pass some time in peace, and Gauss arrived at the correct 
answer almost immediately by working out an explicit expression for such sums. In 
any case, his extraordinary talent attracted the attention and subsequent financial 
support of the Duke of Brunswick. Gauss was able to attend the University of 
Göttingen, where he eventually became a professor of astronomy and director of 
the observatory (Fig. 7.15). 

Gauss exhibited also a talent for languages, and he hesitated at first in deciding 
between linguistics and mathematics before eventually devoting himself whole-
heartedly into mathematical research. His breakthrough came at the age of 19, 
when Gauss managed to use number theoretical methods to solve an outstanding 
problem with a 2000-year history: the construction of a regular polygon with 
17 sides using only a straightedge and compass as permitted by the rules of 
classical geometry. Afterward, Gauss maintained an astonishing pace of discovery 
and invention for some 50 years. In 1801, when he was only 24 years old, Gauss
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Fig. 7.15 Postage stamp 
featuring the Gaussian 
integers 

published his Disquisitiones Arithmeticae, which ushered in the modern era in the 
history of number theory. In it, Gauss discussed among other things the problem 
of regular polygon constructions, introduced the theory of modular arithmetic and 
the congruence symbol, and presented two proofs of the beautiful law of quadratic 
reciprocity (Fig. 7.16). 

In his later years, Gauss contributed continuously to just about every branch of 
mathematical research. He was also one of the most accomplished physicists and 
astronomers of his generation. Nevertheless, number theory remained without doubt 
his most beloved subject. He referred to number theory as the queen of mathematics 
and said of it that “the enchanting charms of this sublime science reveal themselves 
in all their beauty only to those who have the courage to go deeply into it.” Perhaps 
this preference for the purity and elegance of number theory was another reason that 
Gauss was reluctant to make public his results in non-Euclidean geometry. 

Riemannian Geometry 

After the introduction of non-Euclidean geometry, it still remained to verify 
formally its internal consistency and sort out its actual mathematical significance.



252 7 Modern Mathematics, Modern Art

Fig. 7.16 Title page of 
Disquisitiones Arithmeticae 
by Gauss 

Lobachevsky devoted considerable effort to this endeavor, but he was unable to 
settle the issue successfully. But 2 years before Lobachevsky died, a younger 
mathematician was able to set out an extraordinarily general system of geometry 
that expanded upon the work that Lobachevsky and others had initiated. This 
was Bernhard Riemann (1826–1866), one of the greatest mathematicians in the 
history of Germany and the world, and the system of geometry he developed 
included both Euclidean geometry and the new geometry of Lobachevsky as special 
cases. Before Riemann, mathematicians assumed that the obtuse angle hypothesis 
mentioned in the preceding section and the hypothesis that straight lines can be 
extended indefinitely in space contradict one another and for this reason neglected 
to investigate the former hypothesis (Fig. 7.17). 

Riemann took as his starting point a subtle logical distinction between the 
mathematical ideas of the infinite on the one hand and the arbitrarily large on 
the other. He denied that the requirement that a line admit arbitrary extension is 
equivalent to the requirement that it have infinite length. Rather, such a line is 
determined by an absence of terminal points or other such bounds. On the basis 
of this distinction, Riemann was able to show that it is possible to establish also a 
consistent system of geometry under the obtuse angle hypothesis, known today as 
Riemannian geometry or elliptical geometry. As an example, the great circles on the 
surface of a sphere can be regarded as the straight lines. It is easy to see that in this 
geometry any two straight lines necessarily intersect in two points.
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Fig. 7.17 Bernhard 
Riemann, the greatest of 
Gauss’s students 

Riemann carried out his research on foundations established by Gauss in the topic 
of intrinsic differentiable geometry on curved surfaces, a particularly fertile source 
of mathematical invention in the nineteenth century. In the original form given to 
it by French mathematician Gaspard Monge, differential geometry treats curved 
surfaces as embedded in ordinary Euclidean space. Gauss however presented a new 
and radical perspective in his treatise General Investigation of Curved Surfaces, 
completed in 1828. Gauss proposed to consider curved surfaces as spaces in their 
own right without any reference to some ambient space. He discovered that many 
of their properties, including the distance between points, the measurement of 
angles, and the curvature itself, could be determined from within the space by 
purely intrinsic considerations. Incidentally, the Chinese mathematician Shiing-
Shen Chern (1911–2004) made fundamental contributions to the later development 
of this subject and is sometimes referred to for this reason as the father of modern 
differential geometry. Chern proved a generalization to higher-dimensional Rieman-
nian manifolds of the Gauss-Bonnet theorem relating the Euler characteristic of 
a two-dimensional surface to its curvature. His student Shing-Tung Yau (b. 1949) 
further proved a famous conjecture due to Eugenio Calabi (b. 1923) concerning the 
existence of Riemannian metrics of a certain form for complex manifolds subject 
to certain conditions, a result of deep significance for superstring theory in modern 
physics and which constituted one piece of a rich body of research that earned Yau 
a Fields Medal in 1983 (Fig. 7.18).
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Fig. 7.18 Geometrical 
representation of Riemannian 
geometry 

In 1854, Riemann delivered in Göttingen a lecture entitled On the hypotheses 
which underlie Geometry in order to qualify to teach as a privatdozent. The topic 
had been selected specifically for him by his advisor Gauss from a list of three 
that Riemann had originally proposed. In this lecture, Riemann introduced for the 
first time the concept of an n-dimensional space for arbitrary n, which he called 
a manifold, and extended the work that his teacher Gauss had initiated into the 
properties of curvature to such higher-dimensional spaces. Riemann defined a point 
in a manifold as an ordered n-tuple of numbers or coordinates. He generalized 
the notions of distance, length, and angle to arbitrary manifolds. Riemann took 
advantage of these generalizations to define the curvature of a submanifold at a given 
point within it in terms of properties contained in the definition of the manifold 
itself. He was particularly interested in the properties of spaces with constant 
curvature, determined by the property that the curvatures at any two points in the 
space are identical. 

In the case of three-dimensional spaces, there are three possibilities to consider: 

the curvature is either a positive constant, or a negative constant, or zero. 

Riemann observed that the latter two cases correspond, respectively, to the 
geometries of Lobachevsky and Euclid. The first case corresponds to the new 
geometry he himself had invented, in which there exist no straight lines parallel 
to any given line through a given point not contained in it. In light of this, it is fair 
to say that Riemann was the first mathematician to really grasp the generality and 
significance of non-Euclidean geometry. 

There remained however a technical problem—it was still necessary to prove 
formally the consistency of non-Euclidean geometry and the independence of the 
parallel postulate from the other Euclidean axioms. The matter was soon settled 
however by mathematicians working independently in Italy, England, Germany, 
and France. They each adopted the same basic methodology: specifically, they
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constructed concrete models of abstract non-Euclidean spaces embedded within 
familiar Euclidean geometry. From this, it follows that any inconsistency in non-
Euclidean geometry entails a corresponding inconsistency in Euclidean geometry 
itself. That is, if Euclidean geometry is consistent, so too is non-Euclidean geometry. 
They closed the book entirely on questions of the legitimacy of non-Euclidean 
geometry. 

Many of theorems of Euclidean geometry carry over directly into the new 
geometries discovered by Riemann and Lobachevsky; for example, certain simple 
congruence criteria for triangles are valid in every system. On the other hand, certain 
properties of non-Euclidean geometry fly completely in the face of common human 
experience and intuition. In Riemannian geometry, for example, there are infinitely 
many lines perpendicular to a given line at a given point, and it is possible for two 
straight lines to define the border of a closed plane region. Moreover, there exist no 
parallel lines in Riemannian geometry, and the indefinite extension of a straight line 
produces a line of finite length. All of this is easy to see by analogy with the surface 
of a sphere: the curve formed by the shortest path connecting two points is the arc 
of a great circle passing through the two points, with the center of the sphere as its 
center. 

According to this analogy, a triangle on the surface of a sphere is defined as the 
region set out by three great circles. It is not difficult to discover that the interior 
angles of such a triangle add up to more than the 180 degrees of ordinary Euclidean 
geometry. In fact, it is possible for two sides of a triangle to both be perpendicular 
to the third. It is an interesting fact that in Lobachevskian geometry, precisely the 
opposite is true: the interior angles of any triangle add up to less than 180 degrees. 
Moreover, the deficiency increases as the area of the triangle increases in the case 
of Lobachevskian geometry and decreases in the case of Riemannian geometry. A 
few more final quirks of non-Euclidean are worth mentioning: in Lobachevskian 
geometry, similar triangles are always congruent, and parallel lines are separated by 
a distance that becomes smaller and smaller in one direction and larger and larger 
in the other (Fig. 7.19). 

Riemann was born in 1826 in a small village in the Kingdom of Hanover. His 
father was a poor Lutheran pastor; his mother was the daughter of a court magistrate. 
She died due to financial hardship and malnutrition while he was still young. 
Riemann began his education under the direction of his father and took a particular 
interest the history of Poland and the hardships endured by its people, which inspired 
in him a deeply felt sense of compassion. He also became obsessed with arithmetic 
and used to invent problems in mathematics for his brothers and sisters. When he 
was 14, Riemann moved to Hanover to live with his grandmother and attend the 
lyceum. His teachers were amazed by his mathematical ability, and the principal 
allowed him to borrow some books on the subject. He quickly mastered Legendre’s 
monumental treatment of number theory and Euler’s calculus texts. Nevertheless, 
he planned at the time to pursue a career as a missionary. 

Riemann enrolled at the University of Göttingen when he was 19 in order to 
study theology and philosophy, but his attention was diverted almost immediately 
by lectures in mathematics delivered by Gauss, and he quickly changed his major to
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Fig. 7.19 Riemann’s home 
in Göttingen; photograph by 
the author 

mathematics. His father approved of the change, and Riemann eventually transferred 
to the University of Berlin, where he had the opportunity to study under Carl Jacobi 
and Peter Gustav Lejeune Dirichlet (1805–1859). Riemann stayed in Berlin for 2 
years to study mechanics, algebra, number theory, and analysis before he returned 
to Göttingen and completed his degree. He was 23 by that time and stayed on at 
Göttingen to pursue doctoral research with Gauss as advisor. He would quickly 
prove to be Gauss’s greatest student, and his doctoral thesis on the theory of 
functions of a complex variable earned him his teacher’s highest praise. 

In 1859, following the death of Dirichlet, Riemann became the head of mathe-
matics at Göttingen. Following his promotion, he married, and he and his wife had 
a daughter. Not long afterward, he contracted pleurisy and tuberculosis and died at 
the age of 40 in the course of a journey to Italy in Selasca on Lake Maggiore, where 
he was buried. In his short life, Riemann made deep and radical contributions to 
many areas of mathematics which exerted a profound influence on the subsequent 
directions of geometry and analysis. His bold ideas about space have since found 
a place among the mathematical cornerstones of modern theoretical physics and 
paved the way for the development of relativity theory in the twentieth century. Of 
the many mathematical statements and concepts named after Riemann, the most 
famous and challenging is the famous Riemann hypothesis.
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The Riemann hypothesis concerns the distribution of zeros of the so-called 
Riemann zeta function, defined by 

. ζ(s) =
∞∑

n=1

1

ns

for complex numbers s such that the series converges, and by analytic continuation 
for all other complex numbers. It is not too difficult to prove that the Riemann zeta 
function satisfies .ζ(s) = 0 for negative even integers .s = −2,−4,−6, . . .. These 
are called its trivial zeros. Riemann conjectured in 1859 that the nontrivial zeros 
all lie on the line .x = 1

2 in the complex plane. The implications of this conjecture 
extend like a thread across all of number theory and the theory of functions. Already 
Euler had discovered identities that relate the Riemann zeta function to prime 
numbers. Today, it is universally regarded as the deepest and most challenging 
open problem in mathematics, and it seems that no one believes its resolution is 
yet close at hand. According to mathematical folklore, someone once asked the 
German mathematician David Hilbert what his first question would be if he went to 
sleep and woke up 500 years in the future. He replied, “has the Riemann hypothesis 
been proven?”. 

A New  Era of Art  

Edgar Allan Poe 

In the first month of 1809, when Hamilton was still 3 years old, learning to read 
English and carry out a little basic arithmetic, and preparing to embark upon his 
studies in Latin, Greek, and Hebrew, when Abel and Bolyai were each 6 years old 
and already showing the first signs of their prodigious mathematical talents, the 
American poet Edgar Allen Poe was born in Boston. At that time, America was still 
a young nation of immigrants and had not yet produced any mathematicians, but 
already several poets of note had been born there, including Ralph Waldo Emerson 
(1803–1882) and Henry Wadsworth Longfellow (1807–1882). Poe’s parents were 
both actors. His father was prone to drinking and gambling and abandoned the 
family not long after Poe was born. His mother died the following year. Poe was 
an orphan by the age of 3. He was taken in and raised by a childless couple living in 
Virginia, from whom he received the name Allan. In this respect, his life bears some 
early similarities to that of Hamilton, who was also raised far from home from an 
early age (Fig. 7.20). 

The Allan family moved to Britain when Poe was 6, and he stayed with them 
there and attended school for 4 years before they all returned to Virginia. The Allans 
argued frequently, and Poe was a melancholic child. His performance in school was
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Fig. 7.20 Edgar Allan Poe, 
father of modernist literature 

not altogether bad, although he fell in love with the mother of a classmate, to whom 
in 1831 dedicated the poem To Helen: 

Helen, thy beauty is to me 
Like those Nicean barks of yore, 
That gently, o’er a perfum’d sea, 
The weary way-worn wanderer bore 
To his own native shore. 

Although this poem is not representative of the best of his mature style, it 
explores already an ideal of feminine beauty to which Poe would return again and 
again. He would later write in his essay The Philosophy of Composition: 

. . . I  asked  myself  —‘Of  all  melancholy  topics  what,  according to the universal understand-
ing of mankind, is the most melancholy?’ Death, was the obvious reply. ‘And when,’ I said, 
‘is this most melancholy of topics most poetical?’ From what I have already explained at 
some length the answer here also is obvious —‘When it most closely allies itself to Beauty: 
the death then of a beautiful woman is unquestionably the most poetical topic in the world’ 
. . .  

Although this melancholic way of thinking would perhaps not be out of place 
among the words of a twentieth-century film director, in the early years of the 
nineteenth century, they expressed a radical view of art. Consider as a point of 
comparison the transcendentalism of Emerson and Longfellow, born only a few 
years earlier than Poe. The former also admitted a certain negativity into his art, but 
it was always a positive negativity. His guiding principle was faithfulness to oneself. 
The latter was a sensational narrative poet whose name was given to a bridge 
spanning the Charles River in Boston. His poetry expresses a certain yearning for 
traditional beauty and myth, and he has sometimes since been criticized as derivative 
and moralistic (Fig. 7.21).
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Fig. 7.21 Illustration for The 
Raven by Édouard Manet 

Poe himself felt little love for the ideas of Emerson and the transcendentalist 
school, who promoted a fundamentally positive and stoic vision of humanity and 
nature. He also had no patience for extended narrative forms and indeed expressed 
in writing his opinion that a poem ought never to exceed 50 lines in length. Finally, 
Poe steadfastly denied that it is the business of poetry to cultivate moral sentiment 
or preserve received legend. He believed rather that art necessarily justifies its own 
independent existence. When Poe was 36, he published The Raven and became 
famous almost immediately. In this poem, Poe gave free and full expression to his 
symbolist aesthetic conception. In this poem, the mournful and repeated imagery of 
a raven, a statue, a chamber door gives voice to that melancholy beauty associated 
in Poe’s poetical philosophy with the death of a beautiful woman. Unfortunately, 
his reputation was subsequently tarnished by public disputes with Longfellow and 
other poets and a perhaps somewhat less than upstanding lifestyle that took its toll 
on his reputation and health. 

When he was 17, Poe had fallen in love with a young woman named Sarah 
Elmira Royster, and his feelings were finally reciprocated. After he had enrolled 
at the University of Virginia, her father intervened, however, and she eventually 
married another man. Poe spent less than a year at the University of Virginia before 
abandoning his studies, perhaps due to his disappointment in love or perhaps simply 
on account of irregular behavior and lifestyle. His time at the school is memorialized 
through the present day in the maintenance of his dormitory room No. 13 on the
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West Range. Subsequently, he served for a period of time in the army and eventually 
matriculated to West Point academy. He again failed to complete his studies. Many 
years later, when Poe was 39, he briefly resumed a relationship with Royster, whose 
husband had died, although they never married. The following year, Poe collapsed 
delirious in the streets of Baltimore. He died in a hospital nearby the same night. 

After his death, Poe’s poems, short stories, and literary commentaries exerted 
a tremendous influence in France. The poets Baudelaire and Mallarmé among 
others held him in the greatest esteem. His life resembles in this respect the 
similarly tragic lives of Abel, Bolyai, and Galois in mathematics. The differences 
are also interesting. Poetry after all is invented, while mathematics is discovered. 
According to the poets, it is necessary to tear down the works of the past in order 
to build up new works in their place. According to the mathematicians on the 
other hand, each generation adds a new story to the vast edifice built up by past 
generations. This perhaps is why so many poets have doubled as literary critics, 
whereas mathematicians are more than anything else apprehensive of great clashes 
of personality and priority disputes. 

Baudelaire 

In the spring of 1821, a year after Poe had returned with his foster family to America 
from England, the poet Charles Baudelaire was born in Paris. His father, who was 
already 62 at the time, had been born to a family of means in a small village 
and received an excellent education. He cultivated a lifelong love of literature and 
the arts, and worked variously as a teacher and a private tutor at the house of a 
duke, and eventually held an administrative post in the Senate after the French 
Revolution, where he could have encountered Laplace and Lagrange and Louis 
François Cauchy (Fig. 7.22). 

Baudelaire’s mother was born in London to French emigrés. Her parents died 
when she was young, and she returned to Paris with her relatives at the age of 21. 

Fig. 7.22 Portrait of 
Baudelaire as a young man, 
by Gustave Courbet
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Five years later, she married Joseph François Baudelaire, 34 years her senior. But he 
died when their son was 6, and she remarried a year later. According to an analysis 
by the French philosopher and author Jean-Paul Sartre (1905–1980), this was a 
critical moment in the life of Baudelaire, whose life and work were spurred by a 
deep-seated desire to recover the fervent love of his mother that he believed himself 
to have enjoyed before her husband died and she remarried. His new stepfather 
was a military officer whose brilliantly successful career ensured for Baudelaire a 
prestigious education; Baudelaire was a melancholic, lonely, and rebellious child. 

When he was 15, Baudelaire began to read seriously the notable French poets and 
literary critics of the time, including Victor Hugo (1802–1885), Charles Augustin 
Sainte-Beuve (1804–1869), and Théophile Gautier (1811–1872), who coined the 
slogan l’art pour l’art. Baudelaire began to teach himself the craft of poetry from 
these texts, but he was not so critical of his predecessors as Poe. The next year, 
he was awarded special recognition at school for his examination results in Latin 
poetry. When he was 19, Baudelaire took his first mistress, a prostitute named Sara, 
who inspired several poems, and began to lead an increasingly dissolute life. His 
stepfather arranged for Baudelaire to travel by sea to India in an effort to reform 
him. In the summer of 1841, as China was suffering through the First Opium War, 
Baudelaire embarked in Bordeaux on the Paquebot des Mers du Sud, headed for 
Calcutta. 

After it had rounded the Cape of Good Hope at the southern extremity of Africa, 
the ship bypassed Madagascar and the Mozambique Straight and proceeded directly 
to Mauritius. Baudelaire does not seem to have caught the spirit of travel and viewed 
the journey rather as an exile. In his famous poem The Albatross from Les Fleurs 
du mal, Baudelaire sets up a metaphorical comparison between solitary travel at sea 
and the sense of displacement the poet feels among the people of the world. The last 
stanza reads as follows: 

Le Poète est semblable au prince des nuées 
Qui hante la tempête et se rit de l’archer; 
Exilé sur le sol au milieu des huées, 
Ses ailes de géant l’empêchent de marcher. 

The Poet is like this monarch of the clouds 
riding the storm above the marksman’s range; 
exiled on the ground, hooted and jeered, 
he cannot walk because of his great wings.1 

Baudelaire wrote The Albatross when he was 20 years old in course of his travels. 
The Paquebot des Mers du Sud remained in Port Louis, the capital of Mauritius, 

for 3 weeks and then set sail for the nearby island of Réunion, where Baudelaire hes-
itated for 26 days before he decided to abandon his voyage and made arrangements 
to board a different ship en route to Paris. His complete indifference to travel may 
seem strange from the perspective of the modern backpacker youth, but Baudelaire

1 Tr. Richard Howard 
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was determined by this point to become a poet and impatient to return to his home 
country and make his beginning. 

Two months after his return to Paris, Baudelaire came into the sizable inheritance 
left to him by the death of his father many years earlier. He returned immediately 
to his old lifestyle and squandered most of it within the course of several years, at 
which point his family arranged to have what remained placed in trust, providing 
him with a monthly allowance of 200 francs. When he was 27, Baudelaire 
encountered the writings of Edgar Allan Poe for the first time, just 1 year before 
Poe himself died. For the next 17 years, Baudelaire was an active advocate for Poe 
in France and provided translations of his poems and short stories. The influence of 
Poe on Baudelaire can be seen in his third essay on Poe, New Notes on Edgar Poe: 

For him, imagination is queen of faculties; but by this word he understands something 
greater than that which is understood by the average reader . . . Imagination  is  an  almost  
divine faculty which perceives immediately and without philosophical methods the inner 
and secret relations of things, the correspondences and analogies.2 

In 1857, as Riemann was completing work in the theory of complex variables 
that would eventually give rise to the discipline of topology, Baudelaire published a 
collection of poems called Les Fleurs du mal (Flowers of Evil). Within 20 days of its 
appearance, the celebrated author Gustave Flaubert (1821–1880), born in the same 
year as Baudelaire, and who had published Madame Bovary just the year before, 
sent him a letter expressing his deepest admiration. The French government was 
less impressed, and both author and publisher were prosecuted for outrage aux 
bonnes mœurs (insult to public decency). Baudelaire was fined 300 francs, and 
six of the poems contained in Les Fleurs du mal were suppressed in France until 
1949. Naturally, the scandal catapulted Baudelaire to notoriety and fame. Today, the 
influence of Les Fleurs du mal is undisputed, and Baudelaire is recognized as a great 
pioneer in the then yet nascent symbolist and modernist movements in European arts 
and letters. 

In his preface to the revised edition of Les Fleurs du mal, Baudelaire wrote 
“What is poetry? What is its aim? What is the difference between the beautiful 
and good? What is the beauty of evil?”. He elaborated, “It seemed pleasing to 
me, a task altogether more agreeable than difficult, to extract beauty from evil.” 
Naturally, Baudelaire is not referring here to formal beauty but rather to a kind of 
inner or mystic beauty. Baudelaire inaugurated with his ideas a new conception of 
poetry. He used whatever artistic means were best suited to bring the world within 
to the surface, without reference to established formal requirements. His poems 
simultaneously invent and express new and altogether modern forms of anxiety and 
melancholy.

2 Tr. Lois Boe Hyslop and Francis E. Hyslop, Jr. 
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We can see in the following lines from Le Vin des Chiffonniers (The Rag-Picker’s 
Wine) how Baudelaire extracted new imagery and materials from contemporary life: 

In the muddy maze of some old neighborhood, 
Often, where the street lamp gleams like blood, 
As the wind whips the flame, rattles the glass, 
Where human beings ferment in a stormy mass, 

One sees a ragpicker knocking against the walls, 
Paying no heed to the spies of the cops, his thralls, 
But stumbling like a poet lost in dreams; 
He pours his heart out in stupendous schemes.3 

There is a certain common universality in these lines that suggest a horizon of 
new possibilities for poetry. We can see the fruit of this style, for example, in some 
lines from Morning at the Window by T.S. Eliot (1888–1965), who was deeply 
influenced by Baudelaire: 

The brown waves of fog toss up to me 
Twisted faces from the bottom of the street. 

Baudelaire adhered to a certain maxim: “Whatever mud you give me, I can turn 
it into gold.” It is interesting to compare this with a comment Bolyai made as he 
was beginning to realize the extent of his discoveries in non-Euclidean geometry: 
“Out of nothing I have created a strange new universe.” Along these lines, the critic 
Sainte-Beuve, to whom Les Fleurs du mal was dedicated, suggested to Baudelaire 
the following defense in the face of its prosecution: 

In the domain of poetry everything has already been taken. Lamartine took the heavens, 
Hugo took the earth—no, more than the earth, Laprade took the forests, Musset took passion 
and  its  dazzling  orgy,  still  others  took  the  hearth  and  the  rustic  life  . . . and  so  what  remained  
to Baudelaire? 

There are many similarities to draw between birth of modernism in poetry 
and the revolutions in mathematics in the nineteenth century. The innovations of 
Gauss, Bolyai, Lobachevsky, and Riemann in non-Euclidean geometry in particular 
upended a tradition and system of mathematical thinking that had stood for 
two millennia. And just as the future history of mathematics and physics was 
permanently altered by these innovations, the poetry of Baudelaire had a lasting 
influence on subsequent generations of poets and artists, notably the poets Stéphane 
Mallarmé (1841–1898), Paul Verlaine (1844–1896), and Arthur Rimbaud (1854– 
1891); the Belgian painters Gustave Moreau (1826–1898), who taught Matisse and 
Rouault, and Felicien Rops (1833–1898); and the sculptor Auguste Rodin (1840– 
1917). Perhaps the most famous of his acolytes in the English-speaking world was 
T.S. Eliot, who received the Nobel Prize for Literature in 1948 and was voted 
Britain’s favorite poet in a survey conducted by the BBC in 2009 (Fig. 7.23).

3 Tr. C.F. Macintyre 
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Fig. 7.23 The tomb of 
Baudelaire; photograph by 
the author, Paris 

From Imitation to Wit 

Prior to the birth of the modern art, all creative work was inseparably tied to 
imitation. Aristotle had said that imitation is the origin of art and supported his 
claim with the argument that humanity naturally takes pleasure in imitation. Even 
such objects as normally cause discomfort to the viewer, a corpse, for example, 
can become a source of pleasure when they are reproduced by artistic imitation. He 
links this pleasure to the human drive for knowledge. In considering an imitation, 
the viewer compares it to the original and experiences recognition and realization 
at once. Although there were many revolutions throughout the history of art in 
technique and style, the basic instinct for imitation was ever present (Fig. 7.24). 

For example, the most basic problem in painting has always been the representa-
tion of objects in space on the flat surface of the canvas. Already in the earliest fresco 
paintings of Ancient Egypt depicting scenes of hunting and fishing, there appear 
some efforts at perspective and projective effects. In the early part of the fifteenth 
century, the discovery of the method of the vanishing point was a critical point in art 
history. Afterward, the techniques of linear and spatial perspective dominated four 
centuries of European art. Through the end of the nineteenth century, artists were 
accustomed to use darkness to represent shadow, bending trees and flowing hair to 
represent wind, and unstable contortions to represent the movement of the body. 
Even the early impressionist painters who introduced subtle confusions of nature 
and transformations of color retained a basically representative or imitative attitude 
toward art. 

As for the subject matter itself, the classicists naturally inclined toward the 
ancient, while the romantics preferred medieval or oriental themes. In literature, the
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Fig. 7.24 English poet T.S. 
Eliot 

Fig. 7.25 Bull’s Head, 
Picasso (1942) 

realists and fantasists alike of course modelled their materials on the experiences of 
human life. In his criticism of Emma by Jane Austen (1775–1887), the Scottish 
writer Sir Walter Scott (1771–1832) wrote that the art which really and truly 
imitates nature itself is not that which presents the reader with splendid scenes of an 
imaginary world but rather the daily realities of life itself (Fig. 7.25).
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Fig. 7.26 Commemorative 
stamp featuring the French 
poet Guillaume Apollinaire 

But imitation is not without limitations. Pascal in his Pensées observes that two 
faces that resemble each other make us laugh by their juxtaposition, though neither 
of themmakes us laugh on its own. This suggests the rudimentary nature of imitation 
as a creative force. Moreover, the apprehension of beauty calls necessarily upon 
new and novel presentations. Modern artists began to feel that there was something 
vulgar in the direct representation of ordinary experience. This compelled them 
to find methods more resourceful than imitation—the first such new resources is 
wit. As the French poet Guillaume Apollinaire (1880–1918) put it: “When men 
resolved to imitate walking, he invented the wheel, which in no way resembles a 
leg (Fig. 7.26).” 

Wit is the products of human intelligence at an already advanced stage of 
development. It consists of a certain unexpected accuracy, and its invention lies in 
the capacity for quick and clever association between ideas and things. The Spanish 
philosopher George Santayana (1863–1952) writes in The Sense of Beauty: “It  is  
characteristic of wit to penetrate into hidden depths of things, to pick out there 
some telling circumstance or relation, by noting which the whole object appears 
in a new and clearer light.” The charm of wit lies exactly in this—it is an experience 
of things obtained only through thought. Wit produces in an intelligent mind the 
feeling of a riddle, a sparkle, a lightness. The American philosopher and writer 
Susanne Langer (1895–1982) has observed that whenever an emotion is expressed 
indirectly, it signifies a height of artistic expression (Fig. 7.27). 

Some examples are as follows: in 1943, Pablo Picasso (1881–1973) welded 
together the seat and handlebars of an abandoned bicycle and turned the contraption 
on its side to create a sculpture of a bull’s head. When I was young, I remember 
seeing a painting by Chagall (1887–1985) in which the hip of a girl and the body 
of a violin were fused together. Finally, there is The Promenades of Euclid by the 
Belgian Surrealist artist René Magritte, which depicts a city view through a window, 
with a straight line subjected to strong perspective and deformation such that it 
resembles the conic shape of the adjacent tower (Fig. 7.28).
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Fig. 7.27 The Birthday, 
Marc Chagall (1915) 

Fig. 7.28 The Promenades of 
Euclid, Magritte (1955) 

Conclusion 

Just as the development from classical art to modern art followed the progression 
established in poetry, the revolutions in science were prefigured by innovations in 
mathematics, in particular the developments in geometry in the nineteenth century. 
In both cases, there is a passage from imitation to invention, from representation 
to abstraction. This shared evolution is no doubt the product of the development of 
human thought in accordance with natural law. In any case, it is easy to imagine 
the tremendous difficulties inherent to innovation. Non-Euclidean geometry, for 
example, was met with the same initial incredulity as the heliocentric revolution of 
Copernicus, the law of universal gravitation first proposed by Newton, or Darwin’s 
theory of evolution and similarly instigated revolutions in science, religion, and 
philosophy.
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Fig. 7.29 Carl Friedrich 
Gauss, “Prince of 
Mathematics” 

Aristotle regarded imitation as the paradigmatic form of art. In the other sphere 
of human creativity activity, so has natural science and in particular mathematics 
always been regarded as the standard of truth. Ancient mathematics in the Western 
world occupied a cultural position as sacred and unimpeachable as religion, and 
Euclid was its patron saint. 

The universality and validity of Euclidean geometry remained sufficiently 
beyond doubt for so long that the German philosopher Kant, who died in 1804, 
set up the vast machinery of his rich and esoteric philosophy atop its foundations. 
But by 1830 there had appeared among the rarefied airs of quantitative reasoning 
and spatial forms a fog of new and mutually contradictory geometries, each of them 
with equal claim to the legitimacy of internal consistency (Fig. 7.29). 

In fact, the basic ideas of non-Euclidean geometry had been within eyesight 
for thousands of years already, just as the source materials of modern poetry had 
always been available. But even the greatest mathematicians had never considered 
to take the geometry on the surface of a sphere as a geometrical system in its own 
right. Many of them endeavored rather to prove the parallel postulate by way of 
quadrilateral arguments and never noticed that even the planet is a model for a 
different kind of geometry. Such is the power of custom and inertia when it comes 
to human thought. It is no wonder that Gauss was reluctant to reveal his discoveries 
in non-Euclidean geometry. In any case, his prudence paved the way for the younger 
generation. 

The age of Euclidean geometry came at last to an end, and its end posed a serious 
challenge to the cherished idea of absolute truth. Similarly, the works of Edgar Allan 
Poe and Baudelaire heralded the end of the romantic era in poetry. And in each case, 
the dissolution of certainty was accompanied by a concomitant gain in freedom. The
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mathematician Georg Cantor expressed the new attitude as follows: “The essence of 
mathematics lies in its freedom.” The situation of mathematics prior to 1830 can be 
compared to that of an artist with a deep love for pure beauty confined to the task 
of producing a stream of magazine covers. Its change in status and attitude is no 
doubt primarily the product of the discovery of non-Euclidean geometry, one of the 
great achievements of human ingenuity. The innovations in geometry and algebra 
in the nineteenth century are not at all like the earlier revolutions brought about by 
the invention of the calculus. They were not developed to satisfy the demands of 
science or socioeconomic development but rather by the internal development of 
pure mathematics itself. 

As for utility, the situation is roughly captured by the following schematic 
description: the ordinary circumstances of daily life are best described by Euclidean 
geometry; at the scale of the cosmos at one end, and the scale of fundamental 
particles at the other, Lobachevskian geometry has proved most useful; for questions 
related to navigation, aviation, and the representation of the earth, Riemann 
geometry is most suitable. But of course there are many subtleties involved in the 
relationships between geometry and physics, and there remain to this day open 
questions concerning the geometry of physical space. Moreover, it is possible 
to describe identical physical situations with respect to different geometrical 
systems via suitable modifications in the physical hypotheses. In any case, the 
development of non-Euclidean geometry necessitates a stricter division than had 
ever been necessary before between pure mathematics and the natural sciences, in 
the same way that the natural sciences had split off from philosophy, and before 
that philosophy from religion. Mathematicians were now free to explore the vast 
universe of possible systems of geometry, algebra, etc. with only consistency as 
prerequisite. And the discoveries of the mathematicians in this new and fertile 
territory promised to prompt new ideas and possibilities in the natural sciences in 
turn. We shall see in the next chapter that Einstein struck upon general theory of 
relativity by way of non-Euclidean geometry. 

I would like to close this chapter with an anecdote. In early 1830, 2 years 
after Lobachevsky had published his paper on non-Euclidean geometry in distant 
Kazan, the Cambridge mathematician George Peacock (1791–1858) published his 
A Treatise on Algebra, in which he sought to place algebra on solid logical 
foundations analogous to the axiomatic structure of Euclid’s Elements. He stipulated 
five basic algebraic principles: the commutative laws for addition and multiplication, 
the associative laws for addition and multiplication, and the distributive law 
relating multiplication to addition. These five laws comprise a generalization of 
the arithmetic of integers. But just as Peacock and his colleagues were preparing 
to publicize and extend his results, Hamilton and Grassmann introduced the theory 
of quaternions. Peacock’s theories disappeared somewhat from view, and Peacock 
left his job at Cambridge in 1839 to become the Dean of Ely Cathedral in 
Cambridgeshire.



Chapter 8 
Abstraction: Mathematics Since 
the Twentieth Century 

Number is the ultimate abstract expression of all forms of art. 

Wassily Kandinsky 

Philosophy must be of some use and we must take it seriously 

Frank Ramsey 

The Road to Abstraction 

Set Theory and Axiomatic Systems 

The revolutions in mathematics in the nineteenth century paved the way for rapid 
development and unprecedented expansion in mathematics in the twentieth. Modern 
mathematics no longer comprises only geometry, algebra, and analysis. Rather, 
mathematics today is a vast web of interconnected and evolving disciplines and 
concepts, characterized not only by rigorous logic but also by high abstraction 
and wide applicability. This indicates the basic division of modern mathematical 
research into pure mathematics and applied mathematics. The latter classification 
has expanded in recent decades to include computer science, the importance 
of which in the modern world goes without saying: from the perspective of 
employment opportunities alone, it has already exceeded every other branch of 
mathematics (Fig. 8.1). 
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Fig. 8.1 Georg Cantor, 
founder of set theory 

The modernization of pure mathematics was driven primarily by two innovations: 
the invention of set theory and the introduction of axiomatic methods. Set theory 
was created in the nineteenth century by Georg Cantor. Its invention was initially 
ill received by the mathematics community, notably Kronecker, but eventually 
achieved widespread success. Sets were originally conceived as collections of 
numbers or points, but the definition of a set quickly expanded to include collections 
of arbitrary elements, for example, sets of functions, sets of shapes satisfying a 
given property, and so forth. Today, it is the universal language of mathematics 
in which the basic concepts of mathematics, say integrals, functions, and spaces 
of various kinds, are all expressed. The introduction of set theory has also had 
a profound influence on the machinery of mathematical logic and motivated the 
debate between mathematical intuitionism and formalism, which is the subject of 
the present chapter. 

Georg Cantor was born in 1845 in Saint Petersburg into a family of second-
generation German emigrants. His father was a businessman with connections 
in Hamburg, London, and even New York. When Cantor was 11 years old, his 
father became ill, and the family returned to Germany. He completed his secondary 
education in Amsterdam and attended universities in both Zurich, Switzerland, and 
Berlin. He had a talent for painting which was a source of considerable pride for his 
family, but settled eventually upon a career in mathematics. 

As Cantor saw it, a set consists of any abstract collection of well-distinguished 
objects. He introduced the notion of the cardinality of a set in order to compare the 
sizes of different sets, whether finite or infinite. His definition relies on the notion of
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a one-to-one correspondence between sets, which is illustrated by a surprising and 
beautiful demonstration: Cantor discovered and proved that it is possible to set up a 
one-to-one correspondence between the rational numbers and the natural numbers. 
The proof is encapsulated by the following diagram. 

Such infinite sets that can be put into a one-to-one correspondence in this way with 
the natural numbers are called countable. Infinite sets that cannot be put into any 
one-to-one correspondence with the natural numbers are called uncountable. Cantor 
proved that the set of real numbers is uncountable. 

Moreover, Cantor was able to use set theoretical arguments to provide a simple 
nonconstructive proof for the existence of transcendental numbers: since it is not 
difficult to see that the set of algebraic numbers, which includes as a subset the set 
of rational numbers, is countable. Since every real number is either algebraic or tran-
scendental, and the set of real numbers is uncountable, it follows that the majority of 
real numbers must be transcendental. The study of transcendental numbers became 
a deep and active area of research in twentieth-century mathematics. 

The philosophical assumptions and implications at the heart of Cantor’s research 
were not uncontroversial. In particular, the successful and influential mathematician 
Leopold Kronecker opposed the introduction of actual infinities into mathematics. 
Kronecker was head of mathematics at the University of Berlin and a successful 
businessman, and his vigorous public opposition to Cantor may have prevented 
Cantor from ever obtaining a post there, and Cantor spent the entirety of his career 
at the less prestigious University of Halle. 

Cantor borrowed from Hebrew the notation .ℵ0 (aleph null) to stand for the 
cardinality of the natural numbers and showed that it is possible to construct an 
increasing sequence .ℵ0 < ℵ1 < ℵ2 < · · · of transfinite cardinalities. Since
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the cardinality of the real numbers is strictly larger than the cardinality . ℵ0 of the 
natural numbers, Cantor proposed a natural conjecture, referred to today as the 
continuum hypothesis: there exists no cardinal number lying strictly between the 
two. When David Hilbert presented his famous list of open problems at the turn of 
the twentieth century at the International Congress of Mathematicians in Paris in 
1900, the problem of the continuum hypothesis was first among them (a problem 
related to transcendental numbers was seventh). 

Cantor corrected a serious defect in the foundations of mathematics that had 
persisted since the time of Zeno in Ancient Greece. The philosopher Bertrand 
Russell discusses the historical significance of his work in his Mathematics and 
the Metaphysicians, published in 1901: 

Zeno was concerned, as a matter of fact, with three problems, each presented by motion, but 
each more abstract than motion, and capable of a purely arithmetical treatment. These are 
the  problems  of  the  infinitesimal, the  infinite,  and  continuity  . . . From  him  to  our  own  day,  
the finest intellects of each generation in turn attacked the problems, but achieved, broadly 
speaking, nothing. In our own time, however, three men—Weierstrass, Dedekind, and 
Cantor—have not merely advanced the three problems, but have completely solved them. 
The solutions, for those acquainted with mathematics, are so clear as to leave no longer the 
slightest doubt or difficulty. This achievement is probably the greatest of which our age has 
to  boast  . . . Of  the  three  problems,  that  of  the  infinitesimal  was  solved  by  Weierstrass;  the  
solution of the other two was begun by Dedekind, and definitively accomplished by Cantor. 

Unfortunately, Cantor’s Promethean efforts and many personal insecurities and 
misfortunes led to his own mental breakdown at the age of 40, and he spent much 
of his later life in and out of sanatoriums, in one of which he died some many years 
later (Fig. 8.2). 

The story of axiomatization in mathematics also begins in Ancient Greece, with 
Euclid and his Elements of Geometry. In it, he introduced the five axioms discussed 
at length in the previous chapter. His system however was incomplete and imperfect. 
The mathematician David Hilbert introduced a new system of axioms for geometry 

Fig. 8.2 A commemorative stamp issued by the Democratic Republic of the Congo featuring 
David Hilbert
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in order to clear up its ambiguities. He is reported to have described the objective of 
his axiomatic system with the words: “One must be able to say at all times—instead 
of points, straight lines, and planes—tables, chairs, and beer mugs.” 

In Euclid, points, lines, and planes have descriptive definitions in terms of 
their spatial properties. Hilbert endeavored to replace these descriptive definitions 
with purely formal definitions. Points, lines, and planes become purely abstract 
objects with no specific content, and the axioms define formal relations between 
them. Hilbert established three legitimacy requirements for an axiomatic system: 
consistency, independence, and completeness. Of course, axiomatization at this 
stage was only a methodological question and does not possess as rich a content as 
set theory. Nevertheless, Hilbert provided with his method a rigorous foundation for 
geometry, and since then, the method of axiomatization has gradually seeped into 
other branches of mathematics and become a powerful tool for refining mathematics 
and a specific topic of mathematical research in its own right. 

David Hilbert was born in 1862 in the outskirts of Königsberg, a Prussian city 
that today is part of Russia and known as Kaliningrad. Probably the most famous 
resident in the history of Königsberg was Kant, who spent his entire life there. The 
city is also associated with a famous problem in mathematics. There are seven 
bridges across the river Pregel running through it, some of them connecting the 
mainland to one or the other of two large islands at its center, one of them joining 
the two islands to one another (Fig. 8.3). 

The problem was to find a walk through the city that would cross each of the 
bridges once and only once, and it was resolved by Euler in the eighteenth century, 
who proved that no such walk exists. This seemingly simple mathematical problem 
eventually gave rise to the modern theory of topology. Another mathematically 
famous resident of Königsberg was Christian Goldbach (1690–1764), responsible 
for a famous eponymous open conjecture in mathematics, that every even integer 
larger than 2 admits a presentation as a sum of two primes. Perhaps the greatest 
progress toward the resolution of this problem was provided by the Chinese 
mathematician Chen Jingrun, who proved in 1966 that every sufficiently large even 

Fig. 8.3 Abstract illustration of the Seven Bridges of Königsberg problem
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number can be written as a sum of either two primes or the sum a prime and the 
product of two primes. In 2013, Zhang Yitang (1955–), another mathematician born 
and raised in China, made a breakthrough in the study of the twin prime conjecture, 
which states that there exist infinitely many pairs of prime numbers with a difference 
of two, such as, for example, 5 and 7, 11 and 13. His result was subsequently 
improved by a new method created by the British mathematician James Maynard 
(1987–), who was awarded the Fields Medal in 2022. 

During Hilbert’s lifetime, the Königsberg mathematician who played the largest 
role in his mathematical career was his colleague Hermann Minkowski (1864– 
1909) who was born 2 years after Hilbert in the Russian town of Aleksotas, now 
part of Kaunas in Lithuania, and moved with his family when he was 8 years 
old to Königsberg, where they lived across the river from Hilbert. This talented 
mathematician earned the prestigious Mathematics Prize of the French Academy 
of Sciences when he was 18 years old for a manuscript on the theory of quadratic 
forms. His brother Oskar Minkowski (1858–1931) was also a successful medical 
researcher, who discovered the relationship between the pancreas and diabetes, 
which led to the discovery of insulin as a treatment of the disease. 

Hilbert’s talent was in no way outshone by the remarkable talent of Minkowski, 
but rather he was impelled to hone and accumulate his skills and quietly endeavor 
to build for himself an even more solid foundation. The two of them developed a 
remarkable friendship that spanned more than a quarter century until Minkowski’s 
sudden death due to appendicitis in 1909. Hilbert lived to see his eighties and 
became one of the most accomplished and respected elder statesman of mathematics 
in his time. The famous list of open questions and research projects that he 
introduced at the turn of the century remain to this day an influential guidepost 
for the entire discipline. 

We say a bit here about Hilbert’s ninth problem, which was partially resolved by 
the work of the Austrian mathematician Emil Artin (1898–1962) and the Japanese 
mathematician Teiji Takagi (1875–1960) with the creation of class field theory. 
Takagi pursued his doctorate at the University of Göttingen under the supervision 
of Hilbert and later returned to his country where he trained a generation of 
outstanding Japanese mathematicians: indeed, following the end of World War II, 
Japan produced three Fields Medalists, the first of them being Kunihiko Kodaira 
(1915–1997). 

The Abstraction of Mathematics 

Set theory and the axiomatic method became the paradigms for mathematical 
abstraction in the twentieth century, even more so after they were integrated into 
a singular foundational approach to all of modern mathematics. Eventually, four 
central disciplines emerged: real analysis, functional analysis, topology, and modern 
(or abstract) algebra. It is interesting to note that all the mathematicians mentioned 
in the previous section in connection with this development hailed from Germany,
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a country which has always nurtured a talent for the abstract, whether in art, music, 
or the humanities and social sciences. 

The introduction of set theory brought about a revolution in integral calculus 
which led to development of the modern theory of functions of a real variable. The 
rigorous treatment of analysis in the nineteenth century had forced into the light 
a variety of pathological functions such as the Weierstrass’s function, discussed in 
the previous chapter. Another example is Dirichlet function, named after another of 
Gauss’s students, who discovered it: 

. f (x) =
{

1 if x is a rational number

0 otherwise
.

This function has the interesting property of being discontinuous at every real 
number. Such examples forced mathematicians to study a more general class of 
functions than that which had typically been admitted into calculus (Fig. 8.4). 

The first significant success in this d irection was achieved by the French 
mathematician Henri Lebesgue (1875–1941). He adopted a set theoretical approach 
to invent a new mathematical discipline called measure theory. In measure theory, 
certain familiar geometrical concepts including length and area are generalized 
and made abstract by the introduction of a measure on a given space. Similarly, 
Lebesgue extended the integral of classical calculus by defining the Lebesgue 
integral. On the basis of these foundations, it is possible to recover the fundamental 
theorem of calculus relating the differential operation and the integral operation 
and the other familiar theorems in calculus due to Leibniz and Newton. The 
contributions of Lebesgue became the building blocks of modern real analysis. 
However, his work received a hostile reception from classical analysts, and he 
struggled to find consistent work for a period of time after its publication. Its 
importance is recognized today by the division in analysis between classical analysis 

Fig. 8.4 Henri Lebesgue, 
father of modern analysis
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and modern analysis, the latter of which refers to any topic in analysis which makes 
use of his innovations. 

Another deep development in analysis in the twentieth century was the devel-
opment of modern functional analysis. The word functional was coined by Jacques 
Hadamard (1865–1963) to describe a function whose argument is another function. 
We have had occasion already to discuss examples of such functions in our treatment 
of the calculus of variations. The list of mathematicians who contributed important 
results in functional analysis is a long one. Hilbert, for example, studied the space 
of square-summable sequences: sequences .(a1, a2, . . . , an, . . .) of real numbers 

subject to the requirement that the series .
∞∑

n=0
a2
n converges. He defined the notion 

of an inner product on such a space, as well as its various operations, and provided 
in this way the first example of an infinite-dimensional vector space. This space is 
referred to today as a Hilbert space. 

Ten years later, the Polish mathematician Stefan Banach (1892–1945) presented 
a more general class of vector spaces, the so-called Banach spaces. He replaced the 
inner product of Hilbert with a real valued function called a norm by means of which 
it is possible to provide general definitions of the length of a vector, the convergence 
of a sequence of vectors, and so on. The study of general Banach spaces marked 
a considerable expansion and abstraction in the scope of functional analysis as a 
discipline. Around the same time, considerable progress was made toward a more 
abstract and general concept of a function. We present here only an example of this 
work: the so-called Dirac delta function .δ(x), invented by the British physicist Paul 
Dirac (1902–1984)1 and defined by the properties 

. δ(x) = 0 for all x �= 0, and

+∞∫
−∞

δ(x)dx = 1.

Of course, there exists no function in the classical sense satisfying these properties, 
but the Dirac delta function proved extremely useful for physics, and eventually, 
a mathematical formalism was discovered to handle such cases. Today, functional 
analysis is among the areas of mathematics that has proved most useful to physics 
and the other sciences, in particular engineering technology (Fig. 8.5). 

At the same time that set theoretical methods were facilitating revolutions in 
real analysis and functional analysis, the axiomatic method was also extending 
its reach into every area of mathematics. The most significant developments were 
in abstract algebra. Ever since Galois had first introduced the group concept into 
mathematics, mathematicians had expanded the class of groups to include finite 
groups, discrete groups, infinite groups, and continuous groups. A host of other

1 In 1928, Dirac introduced the theory of relativity into quantum mechanics and established the 
relativistic version of the Schrödinger equation, known as the Dirac equation. That year, he and 
Schroödinger both won the Nobel Prize in Physics. 
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Fig. 8.5 Emmy Noether, a 
founding figure in abstract 
algebra 

Fig. 8.6 The witch of Agnesi curve 

algebraic systems also appear, including rings, fields, lattices, ideals, etc. The focus 
of algebraic research began to shift toward abstract algebraic structures; such a 
structure consists of a set equipped with some number of finitary operations subject 
to a list of prescribed axioms (Fig. 8.6). 

It is generally believed that the first mathematician to formally set down the 
idea of modern abstract algebra was the German mathematician Emmy Noether 
(1882–1935) in her 1921 paper Idealtheorie in Ringbereichen (Theory of Ideals 
in Ring Domains). She was one of the finest mathematicians of her age or any 
age and contributed to the axiomatic treatment of the general theory of ideals and 
noncommutative algebra. At the time of her death, she was memorialized as the 
greatest woman mathematician of all time, having surpassed in accomplishment 
the mathematicians Hypatia (c. 350–415) of Ancient Gaetana Agnesi (1718–1799) 
of Italy, Sophie Germain (1776–1831) of France, and Kovalevskaya of Russia.
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Sex discrimination prevented her for many years from obtaining a regular post at 
Göttingen despite the fervent recommendations of David Hilbert, and she often 
worked for no pay. After the rise of Hitler the Nazi party, she was removed from her 
position and eventually moved to America where she spent her final years lecturing 
at Bryn Mawr College. 

In addition to abstract algebra, probability theory also benefited from axiomatiza-
tion. The main work in this area was carried out by the Soviet mathematician Andrey 
Kolmogorov (1903–1987). Kolmogorov graduated from Moscow State University 
in 1925 and immediately began to carry out research at the same institution. 
Four years later, he published his General Theory of Measure and Probability 
Theory, in which he proposed six axioms as a foundation for probability. He also 
contributed to the practical development of probability theory through his work 
on continuous-time Markov process. Leaving probability aside, Kolmogorov also 
carried out important work in functional analysis, topology, the theory of turbulence, 
information theory, dynamic systems, and classical mechanics. 

In 1980, Kolmogorov shared the Wolf Prize in Mathematics with the French 
mathematician Henri Cartan (1904–2008). Two years earlier, his student Israel 
Gelfand (1913–2009) had received the first ever Wolf Prize in Mathematics for 
his work on functional analysis, group theory, and representation theory; Gelfand 
shared this award with the German mathematician Carl Ludwig Siegel (1896–1981). 
Israel Gelfand was born into a poor Jewish family in the Odessa Oblast (province) of 
Ukraine, where he was expelled from high school, according to his own account for 
political reasons related to his father’s status as a mill owner. At the age of 17, he and 
his father made his way to Moscow to live with some distant relatives. Two years 
later, without having received a high school diploma or university degree, Gelfand 
begin postgraduate studies at Moscow State University under the supervision of 
Kolmogorov. His doctoral dissertation introduced the theory of normed rings; he 
also proved an important theorem concerning the space of maximal ideals in rings 
of continuous functions and established the general spectral theory of .C∗-algebras. 

We turn finally to topology. The great German-born American mathematician 
Hermann Weyl (1885–1955) famously said, “In these days the angel of topology 
and the devil of abstract algebra fight for the soul of every individual discipline 
of mathematics.” This indicates something of the great importance of these two 
disciplines. The premodern origins of topology however appear much earlier than 
those of abstract algebra, and its motivating examples are more immediately 
accessible. These include the problem of the bridges of Königsberg (1736), the 
four-color problem for maps (1852), and the famous Möbius strip (1858). The 
basic objects of interest in topology are abstractions of geometric shapes subject 
to continuous processes – two topological structures are considered to be equivalent 
to one another if one can be obtained from the other by an invertible continuous 
transformation (intuitively, transformations that can be achieved by stretching or 
distorting, but without introducing any cuts or joins). The word topology seems to 
have first been coined by a student of Gauss in 1847. In Greek, it means the study 
of position.
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Modern topology is subdivided into point-set topology, also called general 
topology, and algebraic topology. In point-set topology, the basic structure is that 
of a set equipped with a collection of distinguished subsets referred to as open 
sets or neighborhoods. The entire ensemble is known as a topological space. In 
this way, it is possible to give abstract definitions for various properties of interest 
to mathematicians, including continuity, connectedness, and dimension, and also 
some more specialized concepts such as compactness and separability. The theory 
has some interesting and surprising applications. For example, it follows from the 
famous fixed point theorem of topology that at any given time there is always some 
point on the surface of the earth at which there is no wind (like the eye of a hurricane) 
and that there is some point on the surface of the earth from which every direction 
points southward, specifically the North Pole. The fixed point theorem states: every 
continuous map from an n-dimensional object (satisfying certain conditions) to 
itself has a fixed point. 

Algebraic topology was founded by the French mathematician Henri Poincaré 
(‘854–1912). Just as a wall is made up of bricks, Poincaré began by partitioning geo-
metric spaces into finitely many little regions. He defined in terms of these regions 
the topological concepts of higher-dimensional manifolds, homeomorphisms, and 
homology. Subsequent mathematicians also developed such related concepts as 
homotopy and homology. This procures a translation of topological problems into 
the domain of abstract algebra. One of the earliest results in what is now referred to 
as algebraic topology was first discovered by Descartes in 1635 and independently 
rediscovered by Euler in 1752. This is the famous Descartes-Euler polyhedral 
formula which says that for any simply connected convex polyhedron, the sum of 
the number of vertices and the number of faces minus the number of edges is always 
equal to 2. Another famous result in algebraic topology is the Poincaré conjecture, 
which states that every simply connected closed 3-manifold is homeomorphic to the 
3-sphere. Poincaré first proposed his conjecture in 1904, and it was proved by the 
Russian mathematician Grigori Perelman (b. 1966) in 2006 (Fig. 8.7). 

Henri Poincaré was born in Nancy, Meurthe-et-Moselle, in 1854, the same year 
in which Riemann developed his theory of non-Euclidean geometry. He exhibited a 
prodigious intelligence from an early age, although he became seriously ill with 

Fig. 8.7 French 
mathematician Henri 
Poincaré
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Fig. 8.8 Grigori Perelman, 
who proved Poincaré’s 
conjecture 

diphtheria when he was 5 and sometimes had trouble expressing his thoughts 
fluently for a period afterward. Nevertheless, he enjoyed all manner of games 
and dancing as a child and developed a reputation as a remarkably quick and 
attentive reader. In school, he excelled in all his subjects and especially in written 
composition. His interest in mathematics flowered somewhat late, probably when 
he was about 15, but his talent quickly revealed itself. He enrolled at the École 
Polytechnique when he was 19 (Fig. 8.8). 

Poincaré never stayed too long in one area of research – one of his contem-
poraries described him as more a conqueror than a colonizer. To some extent, he 
planted his flag in every discipline in mathematics, and several disciplines outside 
it, but his most important contributions were certainly in topology. Research into 
the Poincaré conjecture and its generalizations and eventual proof produced three 
separate Fields Medalists at intervals separated by 20 years: first in 1966 and then 
again in 1986 and 2006 (Fig. 8.9). 

Poincaré was also an exceptional popularizer of mathematics. His popular works 
were translated into many languages and read with interest by people from all walks 
of life with an influence not unlike that of A Brief History of Time by Stephen 
Hawking (1942–2018) in the present day. Finally, Poincaré sustained an active 
interest in philosophy throughout his life and published three influential works 
on the philosophy of science: Science and Hypothesis, The Value of Science, and 
Science and Method. He famously argued for the position of conventionalism in 
physics, which holds that the laws that govern physics and physical space are subject 
to competing equivalent formulations and that the choice of one or another particular 
system of formulations is a question of convention and convenience. At the same 
time, he was opposed to the use of infinite sets in mathematics and believed instead 
that the most basic concept in mathematics is the concept of the natural numbers.
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Fig. 8.9 Les Demoiselles d’Avignon, Picasso (1907) 

In this respect, he was one of the earliest proponents of intuitionism. In connection 
with this belief, Poincaré always emphasized the role of creativity in mathematics 
and its relation to the arts. He wrote in The Value of Science that “it is only through 
science and art that civilization is of value.” 

At a time when people were still actively debating the legitimacy of non-
Euclidean geometry, Poincaré presented in powerful intuitive guides to the geometry 
of space in four dimensions. In Science and Hypothesis, he argues “consider a purely 
visual impression, due to an image formed on the back of the retina. A cursory 
analysis shows us this image as continuous, but as possessing only two dimensions. 
However, sight enables us to appreciate distance, and therefore to perceive a third 
dimension.” Just as information in three spatial dimensions can be translated onto 
the two dimensions of the retina, it is possible to imagine that the three dimensions 
of physical space are projections onto a surface in four-dimensional space not 
unlike the artistic choice of perspective on a canvas. This argument had a profound 
influence on Pablo Picasso, who was inspired by it to begin his experiments in 
cubism with the painting Les Demoiselles d’Avignon in 1907. 

Science and Hypothesis also had a profound effect on another member of 
Picasso’s circle, the Paris actuary Maurice Princet (1875–1973), who is generally 
credited with introducing its ideas to the cubists who lived and met at the 
Bateau-Lavoir building in the Montmartre district. The writer and critic Guillaume
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Fig. 8.10 Self Portrait 1875, 
Cézanne 

Apollinaire (1880–1918), who moved in the same circles and invented the term 
cubism, observes in his book The Cubist Painters (1913) that “geometry, the science 
of space, its dimensions and relations, has always determined the norms and rules 
of painting.” He likened the idea of a fourth spatial dimension to the “immensity 
of space eternalizing itself in all directions at any given moment,” a great metaphor 
containing the seeds of an entirely new art. He further pointed out that “geometric 
figure is as essential to painting, and geometry is as important to the plastic arts, as 
grammar is to writing.” We can perhaps regard Cubism as a second great encounter 
between painting and geometry after the Renaissance (Fig. 8.10). 

Abstraction in Art 

The word “abstract” as a noun occurs frequently at the beginning of mathematical 
and other scientific papers, just beneath the title, author, and institution, where it has 
the meaning of “summary.” In this section, we discuss its more usual descriptive 
meaning in the context of art and mathematics (Fig. 8.11). 

Just as the introduction of set theory and the tendency toward abstraction in 
mathematics in the early part of the twentieth century was not met without a certain 
amount of resistance and controversy, the abstract movement in art has also been 
cause for significant dispute. Ever since Aristotle, the ultimate aim of painting and 
sculpture had always been the imitation of nature.
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Fig. 8.11 The Card Players, Cézanne (1893) 

Fig. 8.12 La Nuit étoilée (Starry Night), van Gogh (1889) 

It was only in the mid-nineteenth century that artists began to view their project 
differently and regard painting as an end in itself without reference to verisimilitude. 
Over time, a new style emerged: specific forms increasingly were exaggerated and 
deformed and transformed for expressive effect. The pioneer of this new style was 
Paul Cézanne (1839–1906). Cézanne took inspiration from his own idiosyncratic 
optical theories according to which the eyes perceive a scene continuously in time 
and from a variety of perspectives. His innovative ideas concerning nature, people, 
and painting are all on display in his paintings of mountains, rivers, and still 
life compositions in his native Provence. For Cézanne, abstraction was a tool for 
restoring to painting its natural beauty and independence (Fig. 8.12). 

Cézanne is known as the father of modern art, and his guidance initiated a great 
wave of modernism in art in the late nineteenth and early twentieth century. His
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Fig. 8.13 Landscape at Murnau, Kandinsky (1908) 

immediate heirs were the Fauvists, represented by Henri Matisse (1869–1964), and 
the Cubists, represented by Picasso. All of these artists however retained in their 
work some connection to the representation of natural forms. Their work cannot yet 
be called abstract art, but rather only abstracted art, or perhaps half-abstract. The 
word abstract here is merely descriptive and does not have the status of a proper 
noun, as in “abstract art” and the mathematical term “abstract algebra.” Rather the 
phrase abstract art in its fullest sense refers to works with no identifiable subject 
matter (Fig. 8.13). 

The first truly abstract artist was probably the Russian painter Wassily Kandinsky 
(1866–1944). Since the eighteenth century, Russia under Peter the Great and Cather-
ine II had engaged in large-scale patronage in the arts and sciences. Beneficiaries 
of this patronage in mathematics alone included Euler and the Bernoulli brothers. 
Russians at that time travelled often to France, Italy, Germany, and other countries, 
and by the nineteenth century, Russian literature, music, drama, and ballet had all 
developed to an extraordinarily high degree of refinement. 

It was in this context that Kandinsky was born in Moscow in the same year 
that Riemann died in Germany and only a few months before Baudelaire died in 
Paris. His father was a tea merchant from Siberia, and his grandmother a princess 
of Chinese Mongolian descent. His mother was a Moscow local. When he was still 
young, Kandinsky travelled with his parents to Italy. After his parents divorced, he 
lived with an aunt in Odessa on the shores of the Black Sea in modern Ukraine 
and completed his education there. He took up piano and cello and began to teach 
himself painting (Fig. 8.14). 

When he was 20, Kandinsky enrolled at the University of Moscow to study law 
and economics and eventually obtained a degree equivalent to a modern doctorate. 
He maintained a strong interest in painting however and was especially influenced 
by the colorful folk art he experienced as part of an ethnographic research expedition



The Road to Abstraction 287

Fig. 8.14 Abstract painting 
by Kandinsky 

Fig. 8.15 On the Spiritual in 
Art, German edition (1912) 

to the Vologda region north of Moscow. In 1896, when he was already 30 years old, 
Kandinsky decided once and for all to become a painter. He abandoned a promising 
teaching career and took the train for Germany, where he studied privately at first 
and later enrolled as an art student at Munich Academy. Among his classmates was 
a young Swiss artist named Paul Klee (1879–1940) who later became one of the 
great painters of the early twentieth century alongside Kandinsky (Fig. 8.15).
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Fig. 8.16 Progression from 
representation to abstraction: 
Flowering Trees by Mondrian 

It was during his time in Munich that Kandinsky began to develop his mature 
ideas about nonobjective and nonrepresentational art. After a period of exploration, 
he struck upon his purpose in art: the creation of decisive spiritual and emotional 
reaction by way of line and color, space and movement, without reference to 
the representation of natural objects. In his tract Concerning the Spiritual in Art, 
Kandinsky discusses his first encounter with the impressionist paintings of Édouard 
Manet (1832–1883) and the attraction he felt toward an art in which the material 
reality of its objects was deemphasized. Revolutionary advances in the natural 
sciences in his lifetime further corroded his commit to the world of direct sense 
perception (Fig. 8.16). 

Kandinsky endeavored in his art to give spiritual expression to mystic inner expe-
rience independent from external reality on the one hand and technical refinement 
on the other. He believed that the harmony of color and form must always take as
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Fig. 8.17 Painting by Kazimir Malevich 

its primary objective the task of reaching the human soul. In middle age, Kandinsky 
wrote an autobiography in which he described his experience of colors: 

The colors which made the greatest impression on me were bright green, white, magenta, 
black, yellow. Even now I have memories of them from when I was three years old. I noticed 
them again and again in a variety of shapes and objects, and over time the objects became 
less clear in my eyes than the colors themselves. 

In his later years, Kandinsky began to develop a more geometric style of 
abstraction built in circles and in triangles. His ideas are reflected in the titles 
of some of his works: Concentric Circles; A Center; Yellow, Red and Blue; and 
Sounds. In another important treatise, Point and Line to Plane, Kandinsky analyzed 
the specific emotional effect of formal elements in painting, claiming, for example, 
that a horizontal line has a coldness to it, while a vertical line is hot. In any case, his 
works are characterized by an immediately recognizable feeling for color and form 
that suggest the new horizons of expression facilitated in art by the turn toward the 
abstract, in much the same way that non-Euclidean geometry had conjured up a 
broader space of possibilities in mathematics (Fig. 8.17). 

After Kandinsky, the prominent representatives of abstraction in art have 
included the Russian painter Kazimir Malevich (1879–1935), the Dutch paint Piet 
Mondrian (1872–1944), and the American painter Jackson Pollock (1912–1956). 
Malevich brought geometric abstract to its ultimate and simplest form of expression, 
for example, in such Black Square. Both Malevich and his contemporary Mondrian 
had also deeply influenced by the Cubist movement (Fig. 8.18). 

Pollock, inspired by the Surrealists, worked in a very different style, sometimes 
called action painting, which involved subconscious and bodily techniques such as 
the dripping and pouring of paint onto the surface of the canvas or even the hood of
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Fig. 8.18 Action painting by Jackson Pollock 

a car. The success that he and his fellow traveller Willem de Kooning (1904–1997) 
enjoyed (de Kooning was born in Holland and came to America as a stowaway) 
suggests the shift in the center of gravity of the art world from Europe to America 
in the second half of the twentieth century. 

Applications of Mathematics 

Theoretical Physics 

At the beginning of this chapter, we mentioned that research in modern mathematics 
split into two major directions, pure mathematics and applied mathematics. The 
previous section introduced briefly the four main branches of modern abstract 
mathematics; the interactions between these branches also contributed to the birth 
of further branches, such as algebraic geometry, differential topology, and so on. 
Given the limitations space and scope of this book, we will not discuss these in 
any further detail. Instead, we turn now to the penetration of mathematics into the 
other intellectual crystallizations of human civilization, that is, the sciences, starting 
with physics. The eighteenth century had been the golden age for the synthesis of 
mathematics with classical mechanics, and in the nineteenth century, the greatest 
mathematical applications to physics occurred in the theory of electricity and 
magnetism, and its best representative was James Clerk Maxwell (1831–1879), 
associated with the mathematical physics school at Cambridge University. Maxwell 
established a complete system of electromagnetic theory consisting of four concise 
partial differential equations. He seems to have first developed a more complicated 
formulation, but started over on the basis of his belief that the mathematics 
representing the physical world should be beautiful (Fig. 8.19).
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Fig. 8.19 Maxwell at 
Cambridge 

Maxwell joined a long line of Scottish thinkers and inventors; indeed, this small 
country has contributed the largest number of inventors relative to its population 
of any in the world. Prior to Maxwell, there was James Watt (1736–1819), who 
contributed one of the early practical steam engines, and afterward, there appeared 
also Alexander Graham Bell (1847–1922), inventor of the telephone; John Macleod 
(1876–1935), a coauthor in the discovery and isolation of insulin; Alexander 
Fleming (1881–1955), who discovered penicillin; and John Logie Baird (1888– 
1946), who contributed to the invention of television and demonstrated the first 
true working television in London in 1927. Scotland was also home to Adam 
Smith (1723–1790), who presented the first complete and systematic theory of 
economics. The central concept of his masterpiece The Wealth of Nations is that the 
apparent chaos of the free market consists in fact of the workings of a self-regulating 
mechanism that tends as if automatically to the production of those products that are 
most desired and needed by society (Fig. 8.20). 

After the advent of the twentieth century, mathematics has occupied the center 
of such disciplines in theoretical physics as relativity, quantum mechanics, and ele-
mentary particle theory. In 1908, the German mathematician Hermann Minkowski 
(1864–1909) proposed his four-dimensional spacetime model .R3,1 equipped with 
the metric relation 

. ds2 = c2dt2 − dx2 − dy2 − dz2

where c is the speed of light. This provided the most suitable mathematical model 
for the special theory of relativity introduced only a few years early in 1905 by 
Albert Einstein (1879–1955); this model is now referred to as Minkowski space. 
Incidentally, Minkowski had been among the teachers of Einstein, although he was 
unimpressed by the mathematical ability of his early student. 

Afterward, Einstein sought to expand his theory to account for the gravitational 
field; he achieved a basic outline of his new theory by summer of 1912, but he 
lacked sufficiently sophisticated mathematical tools to develop it completely. But
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Fig. 8.20 Einstein’s 
mathematics teacher, 
Hermann Minkowski 

during this time, he reacquainted with an old classmate in Zurich who had since 
become a professor of mathematics, who introduced him to Riemannian geometry 
and more generally to differential geometry, which Einstein referred to as tensor 
calculus. After more than 3 years of hard work, in a paper completed on November 
25, 1915, Einstein derived the gravitational field equations 

. Rμν = kTμν + 1

2
Rgμν

where .Rμν is the Ricci tensor, .Tμν is the stress-energy tensor, R is the scalar 
curvature, .gμν is the metric tensor, and k is a constant related to the gravitational 
constant and the speed of light. With these equations in hand, Einstein remarked that 
the logical construction of general relativity was now complete. 

Although Einstein had completed his derivation of the general theory of relativity 
in 1915, his work was published only the next year. It is fascinating that at almost 
the exact same time, the German mathematician David Hilbert obtained the same 
gravitational field equations from along a different line of thought. Hilbert took 
an axiomatic approach based on the theory of invariants for continuous groups 
developed by Emmy Noether. He submitted this paper to the Göttingen Academy 
of Sciences on November 20, 1915; it was published 5 days earlier than Einstein’s 
paper. 

On the basis of his theory of general relativity, Einstein predicted the existence 
of gravitational waves and black holes, which were confirmed experimentally in 
2017 and 2019, respectively; more precisely, in 2017, scientists directly detected
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gravitational waves produced by a collision of binary neutron stars, and in 2019, the 
first photograph of a black hole was produced. These remarkable achievements were 
the result of a collaboration between many scientists from many different countries. 
Another consequence of general relativity is that spacetime taken as a whole is not 
uniform; it is uniform only across tiny regions. Mathematically, this nonuniformity 
can be expressed via the Riemannian metric 

. ds2 =
2∑

μ, ν=1

gμνdxμdxν.

The mathematical description of general relativity revealed for the first time the 
practical significance of non-Euclidean geometry and stands as one of the greatest 
achievements of applied mathematics in history. This perhaps does not quite place 
its realization on a level with the establishment by Newton of the law of universal 
gravitation, since Newton unlike Einstein also developed the entire mathematical 
basis for his new mechanics (Fig. 8.21). 

In contrast with the theory of relativity, the development of quantum mechanics 
is not associated with the name of any single physicist but rather with an ensemble 
of scientists working around the same time. The pioneers were Max Planck (1855– 
1947), Einstein, and Niels Bohr (1855–1962) and subsequently Erwin Schrödinger 
(1887–1961), Werner Heisenberg (1901–1976), and Paul Dirac (1902–1984); they 
established formulations of quantum mechanics in terms of wave mechanics, matrix 
mechanics, and operator theory, respectively. The integration of these various theo-

Fig. 8.21 Einstein’s home; photograph by the author, Bern
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ries into a unified system called for new mathematical theories. Hilbert introduced 
analytical tools such as integral equations for this purpose, and John von Neumann 
(1903–1957) further extended what is known as the theory of Hilbert spaces to solve 
the eigenvalue problem in quantum mechanics. He also finally extended the spectral 
theory introduced by Hilbert to address the situation of unbounded operators 
that frequently arise in quantum mechanics. This laid the rigorous mathematical 
foundations for the discipline. 

In the second half of the twentieth century, there were further developments 
in theoretical physics that required applications from the abstract branches of 
pure mathematics; two well-known examples are gauge theory and superstring 
theory. In 1954, the Chinese physicist Yang Chen-Ning (1922-), who shared a 
Nobel Prize in 1957 with another Chinese physicist Tsung-Dao Lee (1926-), and 
the American physicist Robert Mills (1927–1999) introduced Yang-Mills theory, 
which proposes gauge invariance as the common feature of the four fundamental 
forces of nature (electromagnetic force, gravitational force, and the strong and 
weak forces), bringing back into the spotlight the theory of gauge fields which by 
that time had already been long established. They attempted to achieve through 
this theory a unification of the interactions between known forces. Mathematicians 
quickly observed that the necessary mathematical tools were already available in the 
form of the fiber bundles of differential geometry. The Yang-Mills equations were 
recognized as a set of partial differential equations, and research into these equations 
has promoted the further development of mathematics. Another bridge between 
pure mathematics and theoretical physics by way of Yang-Mills theory came from 
the Atiyah-Singer index theorem, proved in 1963 and subsequently determined 
to have important applications in Yang-Mills theory. The research areas involved 
in this topic include analysis, topology, algebraic geometry, partial differential 
equations, functions of several complex variables, and other core disciplines in pure 
mathematics, a remarkable instance of the unity of modern mathematics. 

Superstring theory, and string theory more generally, emerged in the 1980s. This 
theory views the elementary particles as a kind of stretch one-dimensional stringlike 
massless forms, about .10−33 centimeters in length (i.e., on the order of the Planck 
length), in place of the dimensionless points in spacetime that feature in other 
theories. This theory takes aim at a unified mathematical description of gravitation, 
quantum mechanics, and elementary particle interactions and has become one of 
the most active areas of collaboration between mathematicians and physicists. In 
particular, the mathematics involved includes differential topology, algebraic geom-
etry, differential geometry, group theory, infinite-dimensional algebra, complex 
analysis, the moduli spaces of Riemann surfaces, and so on; countless physicists 
and mathematicians have now associated themselves with this research.
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Biology and Economics 

Outside of physics, mathematics has also played an important role in other 
disciplines in the natural sciences and social sciences. For reasons of space, we 
limit our discussion here to a treatment of mathematics in biology and mathematical 
economics as representative examples. Modern biology is a younger discipline than 
physics, which took off in earnest only after the invention of the microscope in 
the seventeenth century, but alongside physics these are the two most important 
disciplines within natural science. The introduction of mathematical methods to 
research in biology was also relatively slow to get off the ground, and the story 
begins at the start of the twentieth century, when the versatile British mathematician 
Karl Pearson (1857–1936) began to apply statistics to the study of problems in 
genetics and the theory of evolution. In 1901, he founded the journal Biometrika, 
the first journal in the discipline of biomathematics. 

In 1926, Italian mathematician Vito Volterra (1860–1940) proposed the system 
of differential equations 

. 

{
dx
dt

= ax − bxy
dy
dt

= cxy − dy

as a successful model of the dynamics of fish populations in the Mediterranean Sea. 
Here, x represents the number of small fish eaten as prey and y the number of large 
carnivorous fish. These equations, known also as the Lotka-Volterra equation, set a 
precedent for the use of differential equations in biological modelling (Fig. 8.22). 

In 1953, 2 years after Hartline and Ratliff introduced their model, the American 
biochemist James Watson (1928-) and the British biophysicist Francis Crick (1916– 
2004) discovered the double helix structure of DNA (deoxyribonucleic acid); this 
not only marked the birth of molecular biology as a discipline but also introduced 
abstract topology as a tool in biology. Since the double helix strands exhibit winding 

Fig. 8.22 Biologist Sir 
Andrew Huxley, grandson of 
the physiologist Thomas 
Henry Huxley and brother to 
novelist Aldous Huxley
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Fig. 8.23 Watson and Crick 
display their DNA model 

and kinking under the gaze of the electron microscope, a sub-branch of algebraic 
topology known as knot theory came into play, fulfilling a prediction made by Gauss 
more than a century earlier. In 1984, the New Zealand mathematician Vaughan 
Jones (1952–2020) established the Jones polynomial as an invariant of an ordered 
knot, which has proved useful to biologists for the classification of knots observed 
in the structure of DNA. Jones himself received the Fields Medal in 1990 for his 
work (Fig. 8.23). 

Watson and Crick were awarded the Nobel Prize in Physiology or Medicine 
in 1962, and the significance of their discovery has still not been fully unraveled, 
and I would like to say here a bit more about it. We contrast the scope of 
various disciplines: physics and classical mechanics takes as its object primarily 
the macroscopic world, and the importance of the internal structure of atoms is 
seen also at the level of the large via the tremendous energy of nuclear fusion and 
fission; the objects of biology such as cells and genes on the other hand are mainly 
microscopic. Darwin’s theory of evolution can be compared to Galileo’s law of free 
fall insofar they express the external life, motion, and development of things. On 
the other hand, Newton’s law of universal gravitation introduced the internal laws 
and causes governing the motions of objects, even the universe. The corresponding 
achievement to this in biology is precisely the discovery of the double helix structure 
of DNA, which reveals the internal mysteries of life. Watson and Crick announced 
this monumental result at the Eagle Pub in Cambridge, where they were frequent 
patrons alongside their various colleagues. 

We discuss finally another pair of recipients of the Nobel Prize in Physiology or 
Medicine; in 1979, it was awarded to the South African-born American physicist 
Allan M. Cormack (1924–1998) and the British electrical engineer Sir Godfrey 
N. Hounsfield (1919–2004), both of them nonspecialists in biology. While he was 
working part-time in the radiology department at a hospital in Cape Town alongside
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Fig. 8.24 Thomas Nash, 
mathematician and 
protagonist of the film A 
Beautiful Mind 

his regular job as a physics lecturer, Cormack became interested in X-ray imaging of 
human soft tissue and tissue layers of different densities. After he began teaching in 
the United States, he established the mathematical basis for computerized scanning, 
specifically a formula for determining the amount of X-ray absorption in different 
human tissues. This formula was rooted in integral geometry and lay the theoretical 
foundations for digital tomography, which prompted Hounsfield to invent the first 
computerized tomography scanner (CT scanner), which achieved profound success 
in clinical trials (Fig. 8.24). 

Leaving biology aside, we turn next to mathematical economics. This discipline 
was introduced by the Hungarian mathematician John von Neumann, who coau-
thored a book entitled Theory of Games and Economic Behavior in 1944, in which 
he proposed a mathematical model of competition and its application to problems in 
economics. A full half-century later, the American mathematician John Nash (1928– 
2015) and the German economist Reinhard Selten (1930–2016) shared the Nobel 
Prize in Economics for achievements in game theory. Nash was the subject of the 
successful film A Beautiful Mind, and he developed the concept of Nash equilibrium 
as an attempt to explain the dynamics of conflict and action between competitors. 
In the last year of his life, Nash was awarded the highest honor in mathematics, 
the Abel Prize, for his contributions to the theory of nonlinear partial differential 
equations. 

Two relatively simple further contributions came from the Soviet mathematician 
and economist Leonid Kantorovich (1912–1986), who created the discipline of 
linear programming, and the Dutch-American mathematician Tjalling Koopmans 
(1910–1985), who studied in particular the relationship between inputs and outputs 
in production. They shared the Nobel Prize in Economics in 1975 for their contri-
butions to the theory of optimal resource allocation. More profound mathematics
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also began to appear in economic applications as well: the French-born American 
economist Gerard Debreu (1921–2004) and the American economist Kenneth 
Arrow (1921–2017) introduced tools from topology into economics, in particular 
the theories of convex sets and fixed points. Following upon their research on 
equilibrium price theory, others added additional abstract mathematical concepts 
to the toolkit, including differential topology, algebraic topology, the theory of 
dynamical systems, and global analysis. These two also received Nobel Prizes in 
Economics, but many years apart from one another: Arrow in 1972 and Debreu in 
1983. 

Since the 1970s, stochastic analysis has emerged as a fundamental tool in 
economics. In particular, the American economist Fischer Black (1938–1995) 
and Canadian-American economist Myron Scholes (1941-) developed the Black-
Scholes model, which reduces options pricing in the stock exchange to the solution 
of a stochastic differential equation to obtain the Black-Scholes formula, an option 
pricing formula that is consistent with real market behavior. Previously, investors 
struggled to precisely determine the value of future options, but with the introduc-
tion of this formula and its inclusion in the risk premium in the price of the stock, the 
complexity risk of investing in stocks was diminished significantly. Following upon 
their work, the American economist Robert C. Merton (1944-) removed many of the 
restrictions on this model, expanding the scope of its application to other areas of 
financial activity, such as residential mortgages. The Nobel Prize in Economics was 
jointly awarded to Merton and Scholes in 1997 for this work. 

However, the development of the world economy in the twenty-first century has 
been significantly affected by the subprime mortgage crisis in the United States 
and the global financial crisis precipitated by it in 2008. In particular, people had 
become reluctant to apply for bank loans as they would under normal circumstances 
in such circumstances as poor credit conditions. As a result, many leading lending 
institutions began to issue loans under looser credit requirements but with higher 
interest. Such subprime loans involve a greater risk of default, mainly due to 
the derivative products based on them. The relevant departments were generally 
reluctant to take on risk on their own and instead sold package deals to investment 
banks or even insurance or hedging institutions. The derivative products became 
invisible and intangible, and their prices and packaging schemes were in accessible 
to estimation by ordinary human judgment; all of this required and encouraged the 
development of a new branch of mathematics, which became financial mathematics 
or quantitative finance. 

The pricing process of derivatives involves two especially important parameters, 
the discount rate and the default probability. The former is a stochastic differential 
equation, and the latter is given as a Poisson probability density function. The global 
financial crisis made it clear that these and other methods related to pricing and 
estimation were in need of refinement. In the 1990s, the Chinese mathematician 
Peng Shige (1947-) and French mathematician Étienne Pardoux (1947-), who were 
born in the same year, collaborated to develop the theory of backward stochastic 
differential equations, which has become an important tool for the study of pricing 
of financial products. In the eighteenth century, Jacob Bernoulli had remarked that
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anyone who carries out research physics without understanding mathematics is 
actually investigating without sense. In the twenty-first century, this has also proven 
to hold for the financial and banking industries. Citibank, based in New York City, 
has claimed that some 70% of their business depends on mathematics, emphasizing 
that they could not survive without this dependence on mathematics. 

Finally, we return to the linear programming theory of Kantorovich to remark 
that it was one of the earliest mature research branches of operations research, 
which is the study of analytic methods based in mathematics and logic for decision-
making and organization management in order to obtain optimal results. This 
was born as a scientific discipline in the flames of World War II, alongside the 
applied mathematical disciplines of cybernetics and information theory, founded by 
the American mathematicians Norbert Wiener (1894–1964) and Claude Shannon 
(1916–2004), respectively. Both Wiener and Shannon were professors at MIT until 
their retirements and served as influential public figures. Wiener had received his 
doctorate from Harvard at the age of 18 and later published two autobiographies, 
Ex-Prodigy: My Childhood and Youth and I am a Mathematician. Shannon is widely 
considered the preeminent founding figure of the age of digital communication. 

As formulated by Wiener, cybernetics takes as the object of its study laws of 
control and communication that govern both machines and living things, and the 
maintenance in such a dynamic system of stability or equilibrium under changing 
environmental conditions. He coined the name cybernetics for his new research 
program, borrowing from the Greek word .κυβερνητική, meaning governance 
and derived in turn from the word for navigation or steering. Plato used this 
word often in his writings to describe the art of managing and governing human 
affairs. Information theory refers to the use of mathematical statistics to study 
the measurement, transmission, and transformation of information. It is important 
to point out however that information in this context has a specialized meaning 
and refers to a specific hierarchy order or degree of non-randomness that can be 
measured and quantified as precisely as mass, energy, and other such physical 
quantities. 

Computers and Chaos Theory 

As a definition, the word computer refers to any automated electronic device 
capable of storing and processing data according to programmatic instructions 
and returning the results of its operations as output. Throughout the history of 
computing, the most important figures contributing to its innovations have almost all 
been mathematicians. In China, computer science majors were for the most enrolled 
in mathematics departments through to the end of the 1970s, just as in the past, say 
in the time of Kant, mathematics was considered a part of philosophy departments. 
Today, most universities have one or two schools dedicated to computer science. 
It has long been a human desire to replace manual computation with automated 
machines; perhaps the best early example is the abacus, which may not have
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first been used by the Chinese people, but enjoyed the widest use for the longest 
period of time in China. In a book published in 1371, during the Ming dynasty, 
there appear illustrations showing the ten-speed abacus. In fact, its invention was 
much earlier. Later, the mathematician Cheng Dawei (1533–1606) published his 
Suanfa Tongzong (算法統宗, General Source of Computation Methods), in which 
he detailed the system and use methods of the abacus, marking its technological 
maturity. This book spread to Korea and Japan, where the abacus also gained 
widespread popularity. 

The first to propose a mechanical calculating machine was the German scientist 
Wilhelm Schickard (1592–1635), who described his idea in a letter to Johannes 
Kepler. The first working mechanical calculator, capable of addition and subtraction, 
was invented by Pascal in 1642, and 30 years later, Leibniz created a calculator 
further capable of multiplication, division, and root extraction. A key step in the 
transition toward modern computing was achieved by the English mathematician 
Charles Babbage (1791–1871) who had the bold insight to make the arithmetic 
operations of his device programmable. In number theory, there is also a congruence 
relation related to the binomial coefficients named after Babbage. The Analytical 
Engine that Babbage proposed in 1837 as a successor to his earlier Difference 
Engine was divided into a storage component and a processing component, as well 
as a special mechanism for the operation of its programming. He envisaged for it 
the possibility of various arithmetical operations according to the instructions given 
in zeros and ones on punch cards; this was the prototype for the modern electronic 
computer (Fig. 8.25). 

In a tragic turn, Babbage devoted the remainder of his life and most of his 
property to the promulgation of his ideas and inventions, to the extent that eventually 
he was compelled to turn his resignation as a Lucasian professor at Cambridge, 
but few people could understand his thinking. He seems to have had only three 
true supporters: his son, Major General Henry Prevost Babbage (1824–1918), who 
continued the struggle to promote the Difference Engine and Analytical Engine even 
after the death of his father; Luigi Menabrea (1809–1896), a professor of mechanics 
and construction at the University of Turin who later became Prime Minister of 
Italy; and Ada Lovelace (1815–1852), daughter of the poet Lord Byron. Ada was 
the only daughter of Byron and his wife, who separated a month after her birth. She 
compiled calculation programs for various functions and can therefore be regarded 
as the first modern programmer. Due however to the limitations of the times, there 
were huge technical obstacles to the implementation of the Analytical Engine, 
and the ingenious and forward-looking idea that Babbage dreamed up to control 
digital computers by general-purpose programs would not be realized for more 
than a century. From the beginning of the twentieth century, the rapid development 
of science and technology brought with it a mountain of new problems for data 
analysis. In particular, the computing needs of the military during World War II 
brought urgency to the requirement for improved computing speed. The first steps 
were the replacement of mechanical gears with electrical components. In 1944, 
the American physicist and mathematician Howard Aiken (1900–1973), working at 
Harvard University, designed and manufactured the first practical general-purpose
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Fig. 8.25 Charles Babbage 
on a British postage stamp 

programmable computer, which occupied a space of 170 square meters. The first 
of these made only partial use of electronic components, but he quickly followed 
up with another computer containing entirely electronic components, specifically 
relays. Meanwhile, at the University of Pennsylvania, computers were produced 
using vacuum tubes in place of relays. The first programmable, electronic, general-
purpose, digital computer was the ENIAC (Electronic Numerical Integrator and 
Computer), produced the following year in 1945, a thousand times faster than the 
computer made by Aiken (Fig. 8.26). 

In 1947, von Neumann arrived at the idea of replacing the external programs 
used by the ENIAC with internally stored programs. Computers made after this 
model operate according to stored instructions, and the programs can be modified by 
making changes to these instructions. A year earlier, von Neumann had coauthored 
a paper proposing a comprehensive structure for parallel programming and stored-
program computers, which ideas had a profound impact on the design of later digital 
computers. John von Neumann was born in Budapest, Hungary, and became an 
extraordinarily prolific and versatile thinker; he made remarkable contributions to 
mathematics, physics, economics, meteorology, explosion theory, and computing. 
He is said to have met the designer of ENIAC while they were both waiting at a 
station for the train to arrive. The latter caught his attention and asked him to explain 
some technical problems related to computing (Fig. 8.27).
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Fig. 8.26 John von Neumann with his computer 

Fig. 8.27 Bronze statue of Alan Turing; photograph by the author, in Manchester 

Another outstanding contribution to the concept and development of computer 
design came from the British mathematician Alan Turing (1912–1954). In order 
to solve theoretical problems in mathematical logic, in particular compatibility 
and the problem of mechanical determination of solvability or computability in 
mathematics, Turing introduced the concept of an abstract automatic machine (now 
referred to as a universal machine), an idealized model of the computer from which 
they have not departed to this day. This model comprises: 

• Input and output (infinite memory tape divided into cells and a machine head 
capable of reading and writing)
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• Memory (a table) 
• Central processing unit (or control mechanism) 

Turing also investigated the question of an artificial thinking machine, making 
him an early pioneer in the field of artificial intelligence. He proposed a famous 
standard for machine intelligence known as the Turing test, which requires that at 
least 30% of a team of human interrogators could not correctly identify the test 
subject as human or machine. His life had a tragic end, unfortunately: he had been 
persecuted and eventually prosecuted for his sexuality and died of poisoning after 
having eat an apple laced with cyanide shortly before his 42nd birthday. In 1966, 
Intel Corporation established the Turing Award, to this day the highest distinction 
in computer science. His death seems also to have inspired the logo of Apple Inc., 
founded in 1976 and famous around the world today for its computers and iPhones. 
The logo suggests also that only imperfection can lead to progress and the pursuit 
of perfection. Since 2019, Turing has appeared on the $50 banknote. 

An interesting influence on Turing during his time at Cambridge was the math-
ematician G.H. Hardy (1877–1947), who was a natural leader in the mathematics 
department at Cambridge who is credited with establishing the Cambridge school 
of number theory. Hardy was obsessed with the Riemann conjecture and proved 
that there are infinitely many zeros along the critical line (the line in the complex 
plane with real part equal to . 12 ). Turing wrote the last research paper of his life on 
the Riemann hypothesis, in which he proposed a numerical method for verifying it 
and its implementation on an early computer. He seems to have believed that the 
Riemann hypothesis is false and hoped to find a nontrivial zero off the critical line 
through his method. Of course, he did not succeed; perhaps if he had, it would have 
furnished him with some encouragement and prevented him from succumbing to 
despair at the end of his life. 

Through four successive generations of digital computers, from tubes and 
transistors to integrated circuits and eventually very massive integrated circuits, 
binary switches have remained a constant, and this will not change even if someday 
electronic computers are replaced, for example, by quantum computers (a recently 
developing kind of physical device that uses the laws of quantum mechanics to 
perform mathematical and logical operations at high speed and store and process 
quantum information; this discipline is called quantum computing). This is a natural 
extension of the system of symbolic logic developed by the British mathematician 
George Boole (1815–1864) in the nineteenth century. Boole completed work 
dreamed of by Leibniz two centuries earlier, the creation of ideographic symbols 
standard for simple or atomic concepts and their combination into complex ideas. He 
was born into a poor family, the son of a cobbler, and his knowledge of mathematics 
came mainly through self-study, eventually enabling him to earn a post as professor 
of mathematics at Queen’s College, Cork, in Ireland and an election as a Fellow of 
the Royal Society. His life was cut short at the age of 49 by pneumonia brought on 
by a walk in heavy rain. Earlier in the same year, his youngest daughter Ethel Lilian 
Voynich (née Boole, 1864–1960), who went on to write the novel The Gadfly, was  
born.
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Fig. 8.28 Illustration of the 
four-color theorem of maps 

As a shining example of the applicability of abstract mathematics, the computer 
has also become a powerful tool for mathematical research and even a source of 
new problems for mathematical inquiry, leading to the birth of the new branch 
of mathematics, computational mathematics. This branch is concerned with the 
design and improvement of various numerical methods, as well as problems of 
error analysis, convergence, and stability related to these calculations. von Neumann 
appears again here as an important early founder of this research area. He introduced 
a new method for numerical calculation known as the Monte Carlo method and led 
a team of researchers to use ENIAC to accomplish numerical weather prediction 
for the first time. The centerpiece of this effort was the solution of the relevant 
hydrodynamical equations. In the 1960s, the Chinese mathematician Feng Kang 
(1920–1993) created another method for numerical analysis known as the finite 
element method, independent of simultaneous research efforts in the Western world. 
The finite element method has found applications in the calculations involved in 
aviation, the study of electromagnetic fields, and the design of bridges (Fig. 8.28). 

In the fall of 1976, two mathematicians at the University of Illinois named 
Kenneth Appel (1932–2013) and Wolfgang Haken (1928–) proved with the aid of 
computers a result known as the four-color theorem for maps, a problem with a 
history stretching back more than a century, perhaps the most inspiring example of 
the use of computers to solve a big problem in mathematics. The four-color theorem 
was proposed as a conjecture in 1852 by the British mathematician Francis Guthrie 
(1831–1899), who had just earned a double bachelor’s degree at University College 
London. As part of his research, he undertook to color a map of the counties of 
England and noticed that four colors were sufficient to complete the task such that 
no two neighboring counties shared the same color. But neither he nor his younger 
brother, at that time still a student, could prove that this is always sufficient, and 
his well-established teachers, De Morgan and Hamilton, were also defeated by the
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problem. Arthur Cayley heard of the problem and presented it as a report to the 
London Mathematical Society, and it became a famous problem in mathematics. 

Since that time, computers have become a powerful tool for the study of pure 
mathematics. Perhaps the most outstanding example of this is the discovery of 
solitons and chaos theory, the two core problems of nonlinear dynamics, which can 
be described as the two beautiful flowers of mathematical physics. The history of 
solitons predates the formulation of the four-color theorem. In 1834, the British 
engineer John Scott Russell (1808–1882) followed the water waves caused by 
sudden stops of ships in the canal on horseback and observed that they mostly 
maintain their shape and speed in the course of their propagation. He reproduced this 
effect in a water tank and named such waves of translation; today, they are referred to 
as solitons or solitary waves. More than a century later, mathematicians discovered 
that two solitons remain solitons upon collision, which explains the etymology of 
their name. Such waves occur in large numbers in optical fiber communication, 
activity at the Great Red Spot on Jupiter, nerve impulse conduction, and other fields. 
Chaos theory is another powerful tool for the description of irregular phenomena in 
nature and considered one of the major revolutions in modern physics following 
relativity and quantum mechanics. 

The rapid development of computer science has not only been inseparable from 
mathematical logic but also promoted the transformation and even creation of other 
related branches of mathematics. A characteristic example of the former comes 
from combinatorics, while a field of the latter type is fuzzy logic. The origins of 
combinatorics can be traced by to the ancient Chinese legend of the Luo Shu. The  
term combinatorics was first proposed by Leibniz in his Dissertation on the Art 
of Combinations (Dissertatio de arte combinatoria). Over time, mathematicians 
resolved some substantial problems in this field, such as the Seven Bridges of 
Königsberg problem (which gave birth to graph theory, the main branch of combina-
torial mathematics), the 36 officers problem, Kirkman’s schoolgirl problem, and the 
problem of Hamiltonian cycles. But since the second half of the twentieth century, 
problems of computer system design and information storage and recovery have 
injected the study of combinatorics with a new and powerful impetus. 

In contrast with the long history of combinatorics, fuzzy mathematics is a truly 
young discipline: it was introduced only in 1965. Fuzzy mathematics is established 
as an alternative to classical set theory, in which every set is defined as composed 
of its elements, and membership in the set is a clear and binary proposition, for 
example, given by the characteristic function 

. μA(x) =
{

1 if x ∈ A
0 if x /∈ A

.

In fuzzy logic, the characteristic function is replaced by a membership function 
satisfying .0 ≤ μA(x) ≤ 1. In this case, . A is called a fuzzy set, and .μA(x) the 
degree of membership of x in . A. The values .μA(x) = 1 and .μA(x) = 0 of 
classical theory correspond to .100% and .0% membership in . A, but such situations



306 8 Abstraction: Mathematics Since the Twentieth Century

Fig. 8.29 Lee Sedol does battle against AlphaGo in 2016 

as .μA(x) = 0.2 corresponding to .20% membership in . A or . μA(x) = 0.8
corresponding to .80% inclusion in . A have no place in classical set theory. 

Fuzzy mathematics was created in a paper by the mathematician Lotfi A. Zadeh 
(1921–2017), born in Azerbaijan but later based in Iran and eventually the United 
States. Since human thought encompasses both precise and fuzzy aspects, fuzzy 
mathematics has played an important role in the simulation process of artificial 
intelligences and related aspects of modern computer design. As a branch of 
mathematics, however, fuzzy mathematics is not yet fully mature (Fig. 8.29). 

We now discuss artificial intelligence in more detail. The name and concept of 
artificial intelligence was first formally proposed at a research seminar hosted at 
the Dartmouth Institute in 1956. Its main practical goal is enable machines to carry 
out complex tasks that ordinarily require human intelligence, including language 
and image recognition and processing, robotics, and so forth, which involve tools 
from machine learning, computer vision, and other recent fields. The mathemat-
ical foundations of machine learning include statistics, information theory, and 
cybernetics, and the mathematical tools involved in computer vision also include 
projective geometry, matrix and tensor algebra, and model estimation. Artificial 
intelligence was considered alongside space technology and energy technology as 
one of the three most cutting-edge technological areas of the twentieth century, 
starting especially in the 1970s, and developments in artificial intelligence were 
rapid and plentiful in the past half-century, as were its applications in various fields 
with outstanding results. In the twenty-first century, artificial intelligence remains 
at the forefront, but the other two most cutting-edge technologies of our times are 
probably genetic engineering and nanoscience. 

Artificial intelligence does not exhibit the same contours as human intelligence, 
but machines can think as a human does and may eventually surpass general



Applications of Mathematics 307

human intelligence. One striking example of this was the 1997 defeat of the 
Azerbaijan-born Russian chess master Garry Kasparov (1963-) by the Deep Blue 
chess supercomputer developed by IBM. In 2016 and 2017, AlphaGo, developed 
by the subsidiary DeepMind Technologies of Google, also defeated two world 
champions of Go, Lee Sedol (1983-) of South Korea and Ke Jie (1997-) of China. 
Advances in this area have benefited from the development of cloud computing, big 
data, neural network technology, and the progression of Moore’s law. At present, 
artificial intelligence has already surpassed human thought in terms of mechanical 
or logical reasoning, but achievements in cognitive emotion and decision-making 
remain very limited. Experts believe that artificial intelligence remains for the time 
being a mathematical problem and has not yet reach a stage of sufficiently advanced 
development to require ethical discussions as, for example, is the case for cloning 
technology. 

We consider next cloud computing and big data. The cloud is a metaphor for 
the internet, and cloud computing refers to shared computing across a large number 
of servers distributed through the cloud. The user sends instructions to the service 
provider through his or her personal computer, and the service provider returns the 
result to the user via a calculation that can be compared to a nuclear explosion of 
computing activity. Since the era of cloud computing, big data has received more 
and more attention as a mode of thought. The explosion of data and its analysis 
have replaced the traditional cognitive tools of experience and intuition with an 
influence on decision-making in business, economics, and beyond. In 2013, the Aus-
trian researcher Viktor Mayer-Schönberger (1966-) and the editor Kenneth Cukier 
(1968-) of The Economist published a book entitled Big Data: A. Revolution That 
Will Transform How We Live, Work and Think that has proved a pioneering work 
in the development of big data. The authors pointed out as their title suggests that 
big data and the resulting storm of information associated with it are transforming 
every aspect of our lives, thought, and work. Mayer-Schönberger believes that the 
core feature of big data is its predictive power, which suggests three subversive 
conceptual shifts: first, everything is data, and not random sampling; second, big 
data provides general direction rather than precise guidance; and third, correlation 
takes precedence over causality. The latter is equivalent to replacing the question 
why? with the question what?, which recalls also the traditional mode of thought of 
the Chinese people (Fig. 8.30). 

As we have seen, every leap forward in computer technology has been insepara-
ble from the work of mathematicians, but at the same time, advances in computing 
have promoted new directions in mathematical research. We introduce here a final 
example of a wonderful interaction between computer science and geometry. In the 
twentieth century, there occurred two great developments in geometry: in the first 
half of the century, the study of finite-dimensional spaces was extended to infinite-
dimensional spaces, and in the second half of the century, integer-dimensional 
spaces were expanded to fractional-dimensional spaces. The latter refers to fractal 
geometry, which provides mathematical foundations for the emerging scientific 
discipline of chaos theory. The geometry of fractals was established through a 
study of self-similarity carried out by a Polish-born Lithuanian mathematician with
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Fig. 8.30 The Mandelbrot 
set 

dual French and American nationality named Benoit Mandelbrot (1924–2010). The 
new features uncovered by this geometry include spots, pits, broken, twisted, and 
winding and kinking spaces, which feature a kind of dimensionality not necessarily 
measured in integers. 

In 1967, Mandelbrot published How Long is the Coast of Britain?. He had con-
sulted the encyclopedias of Spain and Portugal, and Belgium and the Netherlands, 
and found that the estimates of these neighboring counties of their shared borders 
differed by up to 20%. It turns out that the length of a coastline or national border 
depends on the length of the scale used to measure it; for example, an observer 
attempting to estimate the length of a coastline from aboard a satellite will arrive at 
a smaller number than surveyor working directly on its bays and beaches. The latter 
in turn will provide a smaller number than say an erudite snail crawling across its 
every pebble. 

Common sense suggests that while each of these successive estimates is larger 
than the last, they should converge toward a certain value that represents the true 
length of the coastline. But Mandelbrot proved that this is not so, and in fact every 
coastline is in a certain sense infinite, as its bays and peninsulas give way to smaller 
and smaller sub-bays and sub-peninsulas. This is a kind of self-similarity, a special 
type of symmetry with respect to scale that is associated with recursion and patterns 
within patterns. It is not a new concept, and in fact, it has ancient roots in Western 
culture. As early as the seventeenth century, Leibniz had imagined that a single drop 
of water includes within itself an entire variegated universe. Later, the English poet 
and painter William Blake (1757–1827) wrote in his Auguries of Innocence: 

To see a World in a Grain of Sand 
And a Heaven in a Wild Flower 
Hold Infinity in the palm of your hand 
And Eternity in an hour. 

Mandelbrot considered the simple function .f (z) = z2 + c where z is a complex 
variable and c an arbitrary complex parameter. Starting from an initial point . x0 and 
iterating this function generates a set of points .x1, x2, x3, . . . where .xn+1 = f (xn). 
In 1980, Mandelbrot noticed that for some values of the parameter c, the values . xn

would fall into a cyclical repetition or at least remain bounded in value, while for
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Fig. 8.31 The Lorenz attractor and chaos butterfly 

other values of c, the values of . xn would explode without bound. Parameters of the 
former kind are called attractors, and the latter type chaotic; the set of all attractors 
in the complex plane is known now as the Mandelbrot set (Fig. 8.31). 

Since the complex iterative process requires a huge number of calculations 
even for relatively simple equations (or dynamical systems), research into fractal 
geometry and chaos theory can only be carried out with the aid of high-speed 
computers. The visuals associated with this subject have proved popular as book 
illustrations and even wall calendars, but the practical applications are many: 
fractal geometry and chaos theory have been used to describe and explore many 
irregularities in nature, such as the shape of coastlines, atmospheric movements, 
ocean turbulence, wildlife, and even the fluctuations of stocks and funds. 

In its aesthetics, this new geometry also brings the hard sciences in line with 
the particularities of modern taste, in particular the return to wild, uncivilized, 
and natural forms that became popular with postmodern artists since the 1970s. 
Mandelbrot expressed the view that satisfying art should not be fixed to any specific 
scale, or rather that it should contain attractive elements in every dimension. As 
an antithesis to the boxy skyscraper, he points to the Palais des Beaux-Arts in Paris, 
with its sculptures and gargoyles, horns and jambs, and swirls of arches and cornices 
with gutter dents, all of which present some pleasing detail to an observer situation 
at any distance away. As you approach it, the construction itself changes, revealing 
new structural elements.



310 8 Abstraction: Mathematics Since the Twentieth Century

Mathematics and Logic 

Russell’s Paradox 

Since the twentieth century, the turn toward abstraction in mathematics has not 
only brought it into closer alignment with science and art but has also facilitated 
a resurgence in dialogue between mathematics and philosophy, for the third time 
considering the earlier periods of their sympathetic harmony, first in Ancient 
Greece and later in seventeenth-century Europe. It is perhaps no coincidence that 
mathematics has also struggled through three periods of crisis, corresponding to 
these moments in history. The first was the discovery of irrational numbers or 
incommensurable quantities in Ancient Greece, in contradiction with the doctrine 
that all numbers are represented by integers or ratios of integers. The second 
occurred in the seventeenth century, when calculus ran up against serious theoretical 
obstacles, and in particular the question whether an infinitesimal or vanishing 
quantity was identical with zero or in fact has some nonzero value. The problem 
is apparent: if it is zero, how can it appear as a divisor?; but if it is not zero, how is 
it permissible to eliminate terms involving infinitesimal quantities? 

Recall that it was the Pythagoreans who first discovered that the diagonal of 
a square with unit sides is neither an integer nor can it be written as a ratio of 
integers. This triggered the first crisis, and one legend has it that the response 
was so severe that a disciple of Pythagoras named Hippasus who is credited either 
with revealing the existence of irrational numbers was thrown overboard into the 
Mediterranean Sea to drown for his offenses. In a strange coincidence, the birthplace 
Metapontum of Hippasus was also the site of the murder of Pythagoras. In any 
case, the crisis was resolved some two centuries later by Eudoxus, who introduced 
a geometrical formulation of incommensurable quantities. According to Eudoxus, 
two line segments are said to be commensurable if there is some third segment 
that can simultaneously measure each of them and otherwise incommensurable. For 
the sides and diagonal of a square, there is no such third line segment, and they 
are therefore incommensurable with one another. But as long as the existence of 
incommensurable quantities is admitted in geometry, the crisis is dissolved. 

More than two millennia later, the birth of calculus introduced the second 
crisis of basic theoretical contradictions, sowing chaos within the foundations 
of mathematics. This crisis involved the definition of infinitesimal quantities, 
among the most basic concepts involved in calculus. In the course of very typical 
derivations, Newton would introduce the infinitesimal as a denominator by which 
to divide a quantity or expression; afterward, he would treat the infinitesimal as 
though it were zero and eliminate any terms still containing infinitesimal terms 
once the division is carried through. Although their application to mechanics and 
geometry allowed for no doubt that the formulas obtained by this process were 
correct, the process itself is logically self-contradictory, and this problem was not 
clarified until the first half of the nineteenth century, when Cauchy developed his
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Fig. 8.32 The versatile 
Bertrand Russell 

theory of limits. Cauchy treated the infinitesimal as an arbitrarily small but positive 
quantity quantified in such a way as to permit it to behave as a vanishing variable. 

After the advances in analytical rigor at the end the nineteenth century and 
in particular its crowning achievement in the birth of set theory, mathematicians 
believed that it should be possible to eliminate all crises and even the possibility 
of crisis from the foundations of mathematics once and for all. In 1900, Henri 
Poincaré even declared to the International Congress of Mathematicians in Paris 
that complete rigor had at last been achieved. But a new paradox in set theory, which 
seemed the simplest and most clear of theories, provoked a new debate concerning 
the foundations of mathematics and triggered its third crisis. In order to resolve this 
crisis, mathematicians turned to a deeper consideration of the basis of mathematics 
and undertook the development of mathematical logic, another important trend in 
pure mathematics in the twentieth century (Fig. 8.32). 

A key figure in this story is Bertrand Russell (1872–1970), who was born in 
1872 into an aristocratic family in England. His grandfather had twice served as 
Prime Minister of the United Kingdom. Russell lost both his parents by the age of 
3, and the strict puritanical bent of his subsequent education made him suspicious 
of religion as early as the age of 11. Rather, he began to consider the world always 
through a skeptical eye, inclined to consider how much we know and do not know 
and with what degrees of certainty and uncertainty. Starting around the onset of 
puberty, loneliness and despair began to take hold in his thoughts, and Russell 
struggled with suicidal thoughts. In the end, it was an obsession with mathematics 
than enable to him to break free of his darker impulses, and at the age of 18, he was 
admitted to Cambridge University after having spent the entirety of his previous
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Fig. 8.33 Russell’s teacher, 
Alfred North Whitehead 

schooling at home. He continued to search for perfect and definite goals for his 
mathematical ambitions, but during his final year became attracted to the writings 
of Hegel and turned to philosophy (Fig. 8.33). 

It seems obvious that the most natural area of research for Russell was in 
mathematical logic and philosophy of mathematics, which had been established not 
long earlier as a unified discipline by the German philosopher and mathematician 
Gottlob Frege (1848–1925). Fortunately, Cambridge University offered both fertile 
grounds and admirable colleagues for this pursuit. These included Alfred North 
Whitehead (1861–1947), a teacher and a friend; George Edward Moore (1873– 
1958), 1 year Russell’s junior; and later his brilliant student Ludwig Wittgenstein 
(1889–1951). Russell was proficient early on in mathematics and a passionate 
believer in the basic correctness of the scientific worldview, and on this basis, he 
identified for himself three major goals as a philosopher. The first was to reduce the 
vanity and pretense to which human cognition is by nature subject to an absolute 
minimum and express himself as simply as possible, the second was to establish a 
link between logic and mathematics, and the third was to find a path of inference 
from language to the world it describes. These three goals were each of them 
eventually achieved with more or less success by Russell and his colleagues, setting 
the stage for analytic philosophy. 

A significant factor in the wide reach of Russell’s influence was also his natural 
ability as a popularizer. His philosophical prose is clear and beautiful, and many
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philosophers have been first drawn to the subject by way of his popular works, 
Introduction to Western Philosophy, Wisdom of the West: A Historical Survey 
of Western Philosophy, and even the somewhat more specialist work Human 
Knowledge: Its Scope and Limits. Russell was also prone to venture beyond the 
ivory tower in his writings and touch upon social, political, and moral issues, never 
shirking from addressing sensitive issues with passion. He was twice imprisoned, 
fined, and at one point dismissed from his position at Trinity College, Cambridge, 
for his controversial views and activities as a conscientious objector. Nevertheless, 
he was awarded the Nobel Prize in Literature in 1950. Later recipients of this award 
have also included writers with a background in mathematics: the Russian novelist 
Aleksandr Solzhenitsyn (1918–2008), who won the Nobel Prize in Literature in 
1970, and the South African-Australian writer J.M. Coetzee (1940-) who won it in 
2003 both studied mathematics as undergraduate students. 

The paradox in set theory known as Russell’s paradox goes like this: consider the 
menagerie of sets as divided into two categories. The first kind consists of sets that 
do not contain themselves as elements; most ordinary sets are like this. The second 
kind consists of sets . A satisfying .A ∈ A. An example of a set of this kind would 
be the set of all sets, if such a thing exists. It is obvious that every set . A belongs 
to one of these kinds. Let .M be the set of all sets of the first kind, that is, the set 
containing every set that does not contain itself. Then the natural question is, does 
. M belong to the first kind or the second kind? Suppose it belongs to the first kind; 
then .M does not contain itself, and it follows then from the definition of .M that 
.M ∈ M, a contradiction. But suppose instead that it belongs to the second kind. 
Then .M ∈ M, from which it follows again by the definition of . M that . M is not 
an element of . M, another contradiction (Fig. 8.34). 

Fig. 8.34 The village barber challenges the mathematicians
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In 1919, Russell presented a colloquial version of this paradox known as the 
barber paradox: 

Consider a village barber who shaves all those and only those who do not shave themselves. 
Does this barber shave himself? 

In both the formal and informal case, it is apparent that the construction leads to 
an unresolvable contradiction, and this pointed to a flaw in the very foundations of 
set theory as it had been formulated up to that point. Recall that the second crisis 
in mathematics, the crisis of calculus, had been resolved through the development 
of the theory of limits. But the theory of limits was in turn based on set theory. 
Therefore, the appearance of Russell’s paradox in set theory formed an even deeper 
crisis for the foundations of mathematics. 

In order to remove this paradox, mathematical logicians began to work toward 
an axiomatization of set theory. The first attempt was made by the German mathe-
matician Ernst Zermelo (1873–1953), who put forward seven axioms that support a 
set theory free from paradoxes. This system was further refined by the German-born 
Israeli mathematician Abraham Fraenkel (1891–1965), resulting in ZF set theory, 
which remains the most widely used axiomatic foundation for mathematics in use 
today (commonly with the somewhat controversial axiom of choice append to it to 
form ZFC set theory). This eased the severity of the mathematical crisis, although 
nobody can prove that this system itself is consistent, and indeed it follows from 
Gödel’s second incompleteness theorem that it cannot prove its consistency; few 
mathematicians however suspect that there are hidden inconsistencies lurking with 
ZFC, but there are nevertheless mysteries still to be unraveled in the foundations of 
mathematics. One particularly noteworthy example: the American mathematician 
Paul Cohen (1934–2007) proved in 1963 that the continuum hypothesis cannot be 
proved within the Zermelo-Fraenkel system, which taken in conjunction with an 
earlier result due to Kurt Gödel shows that in fact it is independent of the Zermelo-
Fraenkel axioms, a resolution of sorts to Hilbert’s first problem, and perhaps that 
most complete resolution of it that can be expected. Cohen received a Fields Medal 
in 1966 (Fig. 8.35). 

Further efforts to find a logical solution to the paradox of sets led to the formation 
of three major philosophies of mathematics. The first is logicism, represented by 
Frege and Russell. The second was called intuitionism, introduced by the Dutch 
mathematician L.E.J. Brouwer (1881–1966), and the third was formalism, repre-
sented by Hilbert. The formation and activity of these competing schools of thoughts 
elevated the question of the foundations of mathematics to an unprecedented height. 
Although these efforts failed to achieve a completely satisfactory resolution to the 
situation, they contributed substantially to the formation and development of the 
program of mathematical logic first initiated by Leibniz. Due to space limitations, 
we present only a few of the arguments associated with each school below. 

The first position is logicism, as promoted by Russell and his school. According 
to logicism, mathematics is simply an extension of logic, and there is no need 
to introduce any special axioms to demarcate the two. Rather, all of mathematics 
can be written in language of logic, mathematical concepts are simply a certain 
family of logical concepts, and mathematical theorems can be derived entirely
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Fig. 8.35 L.E.J. Brouwer, 
one of the founders of 
topology, who introduced and 
proved the fixed-point 
theorem 

from the axioms of logical and logical rules of deduction. As for the development 
of logic itself, the proceedings are entirely axiomatic. For the reconstruction of 
mathematics, the logicists first defined the theory of propositional functions and 
classes; proceeded to the construction of cardinal and ordinal numbers, and in 
particular the natural numbers; and on this basis established the real and complex 
number systems, functions, and analysis; the contents of geometry can also be 
fully reproduced atop these foundations. In this way, mathematics became the 
mathematics of philosophers, with no special content of its own, only a special form 
of logical thought. 

Intuitionism stands in direct contrast with logicism and holds that mathematics 
exists independent of logic in the mental activity of humans. The essence of 
intuitionism is its insistence on purely constructive approaches to mathematical 
objects. Brouwer in particular held that the proof that this or that mathematical 
object exists is valid if and only if it as accompanied by a construction or proof 
of construction that can be carried out in finitely many steps. In set theory, for 
example, the intuitionists admit only the existence of finite constructible sets, in this 
way easily avoiding the paradoxes associated with infinite sets such as the set of all 
sets. One striking consequence of this perspective is that it necessitates the denial of 
the so-called law of the excluded middle, which states that either every proposition 
is true or its negation is true. It is also necessary to throw out the general theory 
of irrational numbers, and even the well-ordering principle of the natural numbers, 
which states that every subset of the natural numbers, including of course infinite 
subsets, has a smallest element. 

Hilbert replied: “Taking the principle of excluded middle from the mathematician 
would be the same, say, as proscribing the telescope to the astronomer or to the boxer 
the use of his fists2 .” As part of his criticism against intuitionism, Hilbert brought out

2 Tr. Jean van Heijenoort 
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his long incubating Hilbert program for the foundations of mathematics, referred to 
later as formalism. The main idea is that the basic objects of mathematical thinking 
are mathematical symbols themselves, rather than any meaning attached to them 
say as geometrical or physical objects, and therefore that all of mathematics can and 
should be reduced to the laws governing the use of symbols in formulas, without any 
reference to their interpretation. Formalism absorbed some ideas from intuitionism, 
but retains the law of the excluded middle, and permits the fundamental transfinite 
axiom that goes a certain way toward proving the consistency of the theory of natural 
numbers, with some restrictions. Any hopes for a more complete realization of this 
program, however, were dashed by the work of a young logician named Kurt Gödel, 
as we will discuss in more detail below. 

Wittgenstein 

But before we discuss Gódel’s incompleteness theorems, we turn to one of Bertrand 
Russell’s most brilliant students and collaborators, Ludwig Wittgenstein (1889– 
1951), who elevated in his works the abstract discipline of logic to the heights 
of pure philosophy. Wittgenstein was born in Vienna in 1889 in a wealthy Jewish 
entrepreneurial family, the youngest of eight children. He was educated at home 
until the age of 14 and only afterward underwent formal schooling with some 
hardship. After a study of engineering in Berlin, Wittgenstein enrolled at Victoria 
University of Manchester in 1908 to pursue a doctorate. His focus was on aeronau-
tical projects and patented the design of a propeller jet with small engines in 1911. 
All this fostered in him an interest in applied mathematics. His preference soon 
turned toward pure mathematics, and he became eager to understand more deeply 
the foundations of mathematics and eventually mathematical philosophy (Fig. 8.36). 

In 1912, the 23-year-old engineering student made his way to Cambridge, where 
he spent five semesters at Trinity College and quickly caught the attention of the 
philosophers Russell and Moore, both of whom regarded him as an intellectual 
equal. The outbreak of World War I however led Wittgenstein to volunteer in the 
Austrian army as an artilleryman on the eastern front; he wound up in Turkey, 

Fig. 8.36 Philosopher 
Ludwig Wittgenstein
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where he was captured by Italian soldiers in winter of 1918. He lost contact with his 
connections at Cambridge, and Russell wrote in his Introduction to Mathematical 
Philosophy, published the following year, that it was not clear whether or not he was 
even still alive. 

But in the same year, Wittgenstein wrote a letter to Russell from the prisoner-of-
war camp where he was being held. He had read his former teacher’s book while 
in prison and believed that he had answered successfully several of the questions 
raised within it. Both teacher and student hoped to meet as soon as possible after 
his release for a discussion of philosophy. By this time, however, Wittgenstein was 
destitute, having been persuaded by the writings of the great Russian author Leo 
Tolstoy to renounce his wealth and leave his considerable inheritance divided among 
his siblings under the condition that they not leave it in trust to him. Russell resorted 
to the sale of some of his furniture left behind in Cambridge in order to cover his 
travel expenses, and the two were able to meet at last in Amsterdam. 

Wittgenstein is rare even among philosophers of genius for having developed 
two brilliant and highly original systems of thought at two completely different 
periods in his life, the two of them also very different from one another. The 
first of these is represented by his classic, the Tractatus Logico-Philosophicus, 
published in 1921, and the second by his Philosophical Investigations, published 
posthumously in 1953. Both of these works exhibit a refined and bold style of 
writing and thinking and exerted a profound influence on the course of subsequent 
philosophy. Apart from a short essay entitled Some Remarks on Logical Form, the  
Tractatus Logico-Philosophicus was the only work published by its author during 
his lifetime (Fig. 8.37). 

This short book is an undisputed philosophical masterpiece, constructed from out 
of its central premise that philosophy in the final analysis is nothing other than the 
study of language. The central question of the book is how is it that language can be 
language?, prompted by a thoroughly familiar fact with which every living person 
is thoroughly familiar, but which surprised and amazed Wittgenstein: a person can 
understand a sentence that he or she has never heard before. He explains this fact 
as follows: a sentence or a proposition that describes something creates a picture of 
the world being a certain way. Propositions have a certain meaning, and the world 
has a certain state, and these are phenomena of the same kind. Wittgenstein argued 
that all proposition schemes and all possible states of the world are committed to 
the same logical form, which is simultaneously a form of representation and a form 
of reality. 

The nature of this logical form itself however cannot be discussed; rather, it is 
meaningless in a very literal sense of this word. Wittgenstein makes this claim by 
way of a very famous analogy: 

My propositions serve as elucidations in the following way: anyone who understands me 
eventually recognizes them as nonsensical, when he has used them— as steps— to climb 
beyond them. (He must, so to speak, throw away the ladder after he has climbed up it.)3 

3 Tr. David Pears and Brian McGuinness
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Fig. 8.37 The Tractatus 
Logico-Philosophicus 

There are certain things that simply cannot be spoken in language: the necessary 
existence of the simple elements of reality, the existence of the self of thought and 
will, and the existence of absolute values. These inexplicable things cannot even be 
imagined, because the limits of language are identical with the limits of thought. The 
last sentence of the book is associated with its author as a kind of motto: whereof 
we cannot speak, thereof we must be silent. 

Language had become the central topic in philosophy starting from the work 
of Gottlob Frege, mentioned above as the founder of modern philosophy of 
mathematics and who introduced the important distinction in language between 
sense and reference. Wittgenstein admired Frege deeply and visited him at the 
University of Jena in 1911 to show him some work on philosophy of mathematics 
and logic. In fact, he hoped to study under Frege, who recommended instead that 
he attend the University of Cambridge to learn from Russell. Wittgenstein later 
credited these two figures, Frege and Russell, as the source of his best ideas in 
philosophy. Frege was also an important influence upon the works of Russell and 
also Edmund Husserl; the former once communicated his deep admiration in a letter. 
Frege himself famously remarked, “Every good mathematician is at least half a 
philosopher, and every good philosopher is at least half a mathematician.” 

Wittgenstein believed sincerely that philosophy is not a merely theory or body 
of doctrine, but rather an activity whose goal is to clarify the propositions of
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Fig. 8.38 Wittgenstein’s 
tomb; photograph by the 
author, Cambridge 

natural science and expose the emptiness of metaphysics.4 Since he believed that 
his work in this direction was completed in the Tractatus Logico-Philosophicus, he  
disappeared from philosophy after its publication and spent the next several years 
work as a primary school teacher in mountain villages in southern Austria, having 
also previously built for himself an isolated log cabin in the remote Norwegian 
countryside. Eventually, he returned however to England and submitted the Trac-
tatus Logico-Philosophicus as his doctoral dissertation to Cambridge University. 
Naturally, he earned his degree, and he was elected shortly afterward as a Fellow at 
Trinity College (Fig. 8.38). 

Wittgenstein remained there as a lecturer for a further 6 years, during which 
time he became increasingly dissatisfied with the contents of the Tractatus Logico-
Philosophicus. He began to dictate some new and original developments in his 
thought to two of his students. He paid a visit to the Soviet Union and considered 
settling there before spending a year in his cabin in Norway. He made his way again 
to Cambridge and succeeded the chair in philosophy vacated by Moore. After World 
War II broke out, he became disgusted with professional philosophy and worked 
instead a volunteer at Guy’s Hospital in London and then as a laboratory assistant at 
the Royal Victoria Infirmary in Newcastle upon Tyne. It was during this time that he 
began the writing of Philosophical Investigations. After the conclusion of the war, 
he returned to Cambridge as a professor for a further 2 years before resigning finally 
and making his way to Ireland, where he spent 2 years finishing the book. 

As for the Philosophical Investigations, although it is not so inextricably devoted 
to logic as the Tractatus Logico-Philosophicus, all the same it retains some 
connection with mathematics. In this masterpiece, Wittgenstein abandoned the idea 
of a unified nature underlying the endless varieties of language. He compares 
language to games, observing that there is no property common to all games, only 
a certain family resemblance. When we consider all the various activities that make

4 cf. Tractatus Logico-Philosophicus 4.112 
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up games, there emerges a complex web of overlaps and intersecting similarities, 
sometimes broad, sometimes in specific details. 

In the course of his elucidation of this argument, Wittgenstein introduces as 
examples several integer sequences, since in his view numbers also constitute such a 
family of resemblances. His question is: what does it mean to grasp a mathematical 
pattern? One example is as follows. Suppose one person sees another write down 
the numbers 

. 1, 5, 11, 19, 29, . . . ,

concluding with the notorious phrase, “and so on.” Of course, there are various 
ways to continue the sequence, and the observer endeavors to write down various 
formulas to describe it, for example, .an = n2 + n − 1. Or even without identifying 
this formula, he or she recognizes that the first number is .12 + 0, the second number 
.22 + 1, and the third .33 + 2 and therefore obtains the next number as . 62 + 5 = 41
or notices instead that the differences between pairs of successive numbers make up 
the arithmetic sequence 

. 4, 6, 8, 10, . . .

and on this basis concludes that the next number should be .29 + 12 = 41. In any  
case, it requires little effort to continue. 

His point is that it is not necessary to derive an explicit formula to have success-
fully grasped the pattern governing the sequence. On the other hand, it is imaginable 
that the viewer equipped with the formula may experience a comprehension of the 
sequence that extends no further than the contents of the formula, unaccompanied by 
any intuitive epiphany or other special experience. The lesson of it all is that a pattern 
is not the same thing as a straitjacket; at all times, we are free to accept or reject 
the dictates of the pattern. He also insisted that the outcome of the mathematical 
process is not predetermined: although we follow a procedure that seems clear to 
us, we cannot predict exactly where it will lead. 

Gödel’s Theorems 

At the end of the last century, the American magazine Time published its list of the 
hundred most influential people of the previous hundred years, one-fifth of which 
consisted of leading scientists and technological and academic figures. Among these 
20, one of them was a philosopher and the other a mathematician. The philosopher 
was Wittgenstein, and the mathematician was Kurt Gödel, to whom we turn now. 
In fact, these two have much in common: both occupied an intellectual position at 
the intersection of mathematics and philosophy, and both were Austrian but wrote 
in English as a second language. But one made his way to England and Cambridge 
University to pass the latter part of his life, and the other to the United States and
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Fig. 8.39 Kurt Gödel 

Princeton University. And of course, neither of them remained Austrian citizens by 
the time of his death (Fig. 8.39). 

In 1906, Gödel was born in Brünn in Austria-Hungary, known now as Brno 
in the Czech Republic. It was in a monastery in this city that the nineteenth-
century Austrian geneticist Gregor Mendel (1822–1844) discovered the principles 
of genetics, and it was also home to the Czech composer Leoš Janáček (1854–1928). 
As for the broader Moravia region, both the father of psychoanalysis Sigmund Freud 
(1856–1939) and the father of phenomenology Edmund Husserl (1859–1938) were 
born there. Husserl had a background in mathematics and earned his doctorate 
from the University of Vienna for a thesis entitled Contributions to the Calculus of 
Variations. Gödel also ended up at the University of Vienna, after spending his youth 
entirely in his hometown, and he studied theoretical physics there before developing 
a keen interest in mathematics and philosophy and teaching himself mathematics to 
a more advanced level (Fig. 8.40). 

By his third year at university, Gödel was entirely preoccupied with mathematics, 
and his library card for this period showed that in particular he read a number 
of works devoted to number theory. He also began to participate in some of the 
proceedings of the famous Vienna Circle, having been introduced to him by his 
mathematics teacher. The Vienna Circle comprised an assortment of philosophers, 
mathematicians, and scientists who met to discuss primarily the linguistic nature 
and methodology of science; this group came to occupy an important position 
in the history of twentieth-century philosophy. At the age of 23, Gödel was the 
youngest of 14 members to attach his name to the manifesto of the Vienna Circle, 
Wissenschaftliche Weltauffassung: Der Wiener Kreis or The Scientific Conception of 
the World: The Vienna Circle. The following year, he completed his doctorate on the
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Fig. 8.40 Gödel and Einstein 

basis of a remarkable thesis On the Completeness of the Logical Calculus. Not long 
afterward, he obtained his world-shatter first and second incompleteness theorems. 

In January of 1931, when he had not yet reached the age of 25, Gödel published 
his Über formal unentscheidbare Sätze der Principia Mathematica und verwandter 
Systeme I or On Formally Undecidable Propositions of Principia Mathematica 
and Related Systems I in the Monthly Journal of Mathematics and Physics of 
Vienna. Within a few years, it was already considered among the most monumental 
milestones in the history of mathematics. The results of this paper are of their nature 
first and foremost negative results, overturning the belief among mathematicians 
of every stripe that mathematics as a whole could be subject to axiomatization 
and eradicating any hope of proving the internal consistency of mathematics as 
envisioned by Hilbert. But at the same time, this negative result eventually led 
to an epochal change in basic mathematics research, introducing a fundamental 
distinction between the concepts true and provable and also introducing analytic 
logic to the basic toolkit of mathematical thought. 

Gödel’s first incompleteness theorem states: 

Any consistent formal system F that is strong enough to carry out the basic arithmetic 
of numbers contains statements S such that both S and its negation are both not provable 
within F . 

In brief, any consistent axiomatization of the natural number system is incom-
plete. It follows immediately that no formal system completely describes all 
of mathematical theory. A few years later, the American mathematician Alonzo 
Church (1903–1995) proved an even stronger result along the same lines: (Church’s 
theorem) given any consistent formal system strong enough to contain the natural
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number system, there is no algorithmic decision process to determine whether a 
given arbitrary proposition is or is not a theorem of the system. 

On the basis of his first incompleteness theorem, Gödel also proved the second 
incompleteness theorem: 

If F is a consistent formal system strong enough to contain the natural number system, then 
the consistency of F cannot be proven within F . 

In other words, among the propositions of the system that are true but unprovable, 
within it occurs the proposition that the system itself is consistent. This put a 
full stop to the hopes of Hilbert and his program. It appeared now that the 
internal consistency of classical mathematics cannot be obtained except by way of 
sophisticate principles of reasoning that are subject to questions of consistency no 
less worthy of suspicion as the question of the consistency of classical mathematics 
itself. 

Taken together, the two incompleteness theorems show that basic mathematics 
is as a whole out of the reach of axiomatization and furthermore that it is 
impossible to guarantee that mathematics harbors no hidden inconsistencies. These 
are strict limitations of the axiomatic approach and suggest that the procedure 
of mathematical proof cannot and does not conform to the procedure of formal 
axiomatization. Taken in a positive light, they suggest also that the role of human 
intuition and insight in mathematics cannot be fully formalized. In formal systems, 
it is possible to mechanically reproduce the provable content, but this is guaranteed 
not to exhaust the full spectrum of true statements within the system. Or in other 
words, all provable statements are true in the system, but not all true statements are 
provable within it (Fig. 8.41). 

Gödel’s two incompleteness theorems are indisputably among the most important 
theorems in the history of mathematics; we do not prove it here, since the proof is 
more technical than the general tenor of this book. It is worth mentioning however 
that the concept of a recursive function that appears in the proof was proposed to 
Gödel in a letter from a friend, who died suddenly and unexpectedly 3 months after 
writing it. After the appearance of the incompleteness theorem, recursive functions 

Fig. 8.41 Gödel’s tomb; 
photograph by the author, 
Princeton
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became widely known and used and eventually formed the basic starting point for 
the theory of algorithms. It was also this idea that led Turing to develop his idea of 
Turing machines and universal Turing machines, another foundational moment in 
the history of the electronic computer. Since that time, the controversy surrounding 
paradoxes and mathematical foundations has settled a bit, and concerns about such 
questions do not much intrude upon the daily work of ordinary mathematics; they 
did however contribute to a resurgence of interest and energy in mathematical logic, 
leading to a flurry of development within this discipline. 

Conclusion 

In modern times, the natural progression toward increased division of labor has led 
to an extension of the period of time dedicated to studies among aspiring scholars 
in various fields, and the content of their studies has become more complex and 
abstract. This is the case not only in mathematics but in every area of human 
civilization. In poetry, it is no longer possible to compose clear and simple poems 
such as Climbing Stork Tower by Wang Zhihuan (688–742); in mathematics, such 
easily derived low hanging fruit as Fermat’s little theorem seems to have been 
exhausted. Simultaneously, in mathematics, in the natural sciences, and in the 
arts and humanities, there have also been great changes in aesthetic preferences 
and conceptions, and complexity, abstraction, and depth have become completely 
standard measures of judgment (Fig. 8.42). 

This is not to say that abstraction has not relegated pure mathematics to the 
back shelf; if anything, its application is wider today than ever before, further 
confirming that the process of abstraction in mathematics is altogether in line with 
the developments and changes in social trends more broadly. With the birth of 
calculus, mathematics had emerged as a powerful tool in the course of the scientific 
and technological revolutions of the seventeenth and eighteenth centuries, with 
mechanical motion as the main protagonist. After 1860, the new stars of the tech-

Fig. 8.42 Notre-Dame du 
Haut Chapel by Le Corbusier 
(1953), in Ronchamp, France
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Fig. 8.43 The Guggenheim Museum in New York City, by Frank Lloyd Wright (1959). Photo-
graph by the author 

nological revolution appeared: generators, motors, and electronic communications. 
Finally, since the 1940s, electronic computers, atomic energy technology, space 
technology, the automation of production, and communications technology have 
all been inseparably linked to mathematics. The branches of mathematics called 
upon by newer fields of science such as relativity, quantum mechanics, superstring 
theory, molecular biology, mathematical economics, and chaos theory in particular 
are esoteric, abstract, and modern (Fig. 8.43). 

With the progression of science and technology and the increasingly complex 
developmental needs of human society, new mathematical theories and disciplines 
are constantly appearing. Here, we present two examples: catastrophe theory and 
wavelet analysis. Catastrophe theory was introduced in 1972 by the French topol-
ogist and Fields Medalist René Thom (1923–2002) in his book Structural Stability 
and Morphogenesis; its object of study is the methodology and classification 
of system control variables subject to sudden massive shifts in behavior. As a 
mathematical discipline, it is a branch of geometry, and the behavior and trajectories 
of its variables occur as curves or surfaces. An example of its application is the arch 
bridge, which deforms at first more or less uniformly under pressure until the load 
reaches a certain critical point, after which the shape of the bridge undergoes an 
instantaneous change and it collapses. Concepts from catastrophe theory were later 
used by sociologists to study such phenomena as gang warfare. 

Turning next to wavelet theory, it has sometimes been referred to as the 
microscope of mathematics, and it represents a milestone in the development of 
harmonic analysis. Around the year 1975, the French geophysicist Jean Morlet 
(1931–2007) invented the word wavelet to describe functions he was using to 
study signal processing problems for oil prospecting. Wavelet analysis or wavelet 
transform refers to the use of wavelike oscillations with finite length and fast decay 
to represent signals. As with the Fourier transform, these oscillations can be written 
as a sum of sinusoidal functions, but wavelets are local with respect to both time 
and frequency, whereas the Fourier transform in general is local only with respect
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to frequency. The computational complexity of the wavelet transform is also small: 
it is of .O(N), in comparison with the time .O(N log N) required for the fast Fourier 
transform. In addition to signal analysis, wavelet analysis has been used for military 
intelligence, computer classification and recognition problems, music and language 
synthesis, mechanical fault diagnosis, data processing for seismology, and so on. In 
medical imaging in particular, the wavelet transform allows for fast imaging times 
and improved resolution in B-scan ultrasonography, CT, and MRI. 

The mainstream of mathematics in the twentieth century can be described as 
structural mathematics, promoted and developed by a major school of French 
mathematicians known pseudonymously as Nicolas Bourbaki. The research objects 
of structural mathematics are not the classical objects of numbers and shapes 
in any traditional sense, and mathematics is no longer split up into the clean 
disciplines of algebra, geometry, and analysis, but rather organized according to 
the occurrences within it of equivalent structures. For example, linear algebra 
and elementary geometry are isomorphic to one another in the sense that it 
is possible to carry out a complete translation of statements between the two, 
and in this sense, they are considered simultaneously. The mathematician and 
historian of mathematics André Weil (1906–1998), who was a major figure in 
the Bourbaki school and a recipient of the Wolf Prize in Mathematics, was close 
with the cultural anthropologist Claude Lévi-Strauss (1908–2009), who borrowed 
structuralist ideas to study the mythologies of various cultures. He identified various 
isomorphic correspondences between them, a striking example of the influence 
of the new mathematics on linguistics and anthropology. This inaugurated a new 
trend in French philosophy in the 1960s known as structuralism. Its most famous 
adherents were Jacques Lacan (1901–1981), Roland Barthes (1915–1980), Louis 
Althusser (1918–1990), and Michel Foucault (1926–1984), who used structuralist 
ideas to investigate psychoanalysis, literature, Marxism, and socio-historical topics, 
respectively. Jacques Derrida (1930–2004) introduced his influential theory of 
deconstruction as a critique of linguistic structuralism. 

Looking now to the future, the major question facing mathematics is whether 
or not it can achieve some kind of unification. This has long been a preoccupation 
among mathematicians: as early as 1872, in the second year of German reunifi-
cation, the young German mathematician Felix Klein (1849–1925) published his 
famous Erlangen program, an attempt to unify modern geometry and mathematics 
from the perspective of group theory. The Erlangen program developed from col-
laborations with the Norwegian mathematician Sophus Lie (1842–1899), inventor 
of Lie groups and Lie algebras, and took its name from the university at which 
Klein was employed at the time, now known as the University Erlangen-Nürnberg, 
in Bavaria. Lie groups also played a deep role for the Bourbaki school, who 
regarded them as a synthesis of group theory and topology. The group theoretical 
perspective has since become commonplace in every area of mathematics, but the 
full achievement of the goals set forth by the Erlangen program has remained out of 
reach. 

Nearly a century later, the Canadian mathematician Robert Langlands (1936-) 
set up the banner of his Langlands program. In a 1967 letter to Weil, and then in
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1970, Langlands proposed a series of conjectures entailing a web of relationships 
intertwining the Galois groups of number theory, automorphisms in analysis, 
and representation theory in algebra. Langlands was awarded the Abel Prize in 
2018. Meanwhile, André Weil, whose sister was the famous philosopher Simone 
Weil (1909–1943), proposed in 1948 an analogue to the Riemann hypothesis 
in algebraic geometry, which was later proved by the Belgian mathematician 
Pierre Deligne (1944-), using methods pioneered by his uniquely brilliant mentor 
and doctoral advisor, the stateless mathematician Alexander Grothendieck (1928– 
2014). Both Grothendieck and Deligne received Fields Medals, in 1966 and 1978, 
respectively (Fig. 8.44). 

On the other hand, although there has emerged since the nineteenth century a 
trend toward the interpenetration and integration of disparate subjects in mathemat-
ics, which has led to the formation of new disciplines, at present, mathematics as 
a whole is still a highly differentiated domain, characterized in modern times by 
abstraction and generalization, but also intense specialization. A very considerable 
portion of new mathematics is necessarily divorced from the natural world and 
scientific applications, perhaps a troubling phenomenon. It is reasonable to ask then 
if abstraction or structuralism can provide a framework for mathematical unification. 
Certainly it is possible, but it seems also likely that mathematics cannot become 
unified in a context of isolation within itself. 

There is an analogy to be drawn with art, where collage has gradually become a 
central technique and in some cases even the predominant conception of art. Modern 
philosophers have also embraced collage as a kind of ideal myth. In the past, collage 
was considered primarily as an artistic technique involving the random combination 
of unrelated pictures, words, sounds, and so on in order to produce a special effect. 
Today, it seems that the range of this word should be expanded to include the 
combination of disparate ideas. In this sense, collage has played a role in modern
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mathematics, even in the nature of modern civilizations. For example, many of the 
new interdisciplinary topics in mathematics could be considered as an instance 
of collage. To some extent, collage and abstraction are identical phenomenon, 
except that the use of one word is more common in the art world and the other 
in mathematics (Fig. 8.45). 

For reasons of space, we have only considered the medium of painting, but 
abstraction has also occurred in other forms of art. Architecture, for example, 
has undergone tremendous changes with respect to content, form, and decoration. 
In his classic De architectura, the Roman architect Vitruvius held up the three 
words strength, utility, and beauty as the cornerstone of architecture, and these 
three words became the basic criteria for quality of buildings or architectural plans. 
In the Renaissance, Alberti subdivided the category of beauty into the beautiful 
and the decorative, where the beautiful is defined by harmonious proportion and 
the decorative consists of mere auxiliary splendor. Since the twentieth century, 
architects have rejected the dismissal of ornament as auxiliary splendor and treated 
it rather as an indispensable and ubiquitous aesthetic component, not unlike 
collage for painting. Geometric figures, both classical and modern, have played a 
particularly important role here. 

Like music, painting, architecture, and the other arts, mathematics is without 
borders and suffers little from the limitations of language barriers. It has been an 
essential part of human civilization, and it seems not unreasonable to speculate 
that if there exists any alien civilization, mathematics has played just an important 
role there as it has here. Indeed, if extraterrestrial intelligences exist, it seems very 
possible that they can understand mathematics and may even be proficient in it, 
and many have suggested that mathematics is the most suitable arena for the first 
attempts at communication. As early as 1820, Gauss proposed to use a graphical 
proof of the Pythagorean theorem cut into the vast Siberian forest as a signal to space 
indicating the presence of human civilization. Some 20 years later, the Austrian 
astronomer Joseph Johann von Littrow (1781–1840) proposed instead to fill a large 
circular canal dug out in the Sahara desert with burning kerosene for the same 
purpose.
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In any case, they both agreed that signals containing such prominently mathe-
matical imagery should attract the attention of any intelligent alien life, although 
neither of these ideas was ever put into practice. Carl Devito, a mathematician at the 
University of Arizona, has argued that accurate communication with a civilization 
from another planet must start from an exchange of scientific information, with 
the first step being the establishment of units of measurement. In recent years, he 
has collaborated with a linguist in an attempt to construct a language derived from 
universal scientific concepts. For example, differences in the chemical composition 
of the atmosphere or the energy output of a planet may facilitate communication. 
The basic idea is that both civilizations should have arrived at mathematical methods 
and computations, discovered chemical elements and the periodic table, and carried 
out quantitative studies of the states of matter. 

But of course there remain many difficulties and obstacles in the way of 
communication with an alien civilization even in the case of contact. Perhaps they 
have derived their laws of motion along very different mathematical lines and 
arrived at formulations very different from the ones with which we are familiar. The 
mathematical basis for our study of motion is calculus; indeed, calculus is the basis 
for many fields of science. Should this also be true of an alien civilization? Or as 
another example, will the natural starting point in geometry for a distant civilization 
be Euclidean as it was for ours or some non-Euclidean geometry? Their physics 
may be so different from ours that they would not recognize the theory of our solar 
system introduced by Copernicus or our picture of the universe. And afterward, 
there is the equally challenging question: how to present other aspects of human 
civilization in terms of mathematics. It is exactly this question, which still stands 
in need of much intercultural research and further discussion, that this book has 
endeavored to explore.



Appendix A 
A Mathematical Chronology 

3000 BCE Hieroglyphic numbers appear in Egypt 
2400–1600 BCE Hexadecimal numbers and arithmetic appear in Babylonian texts; 

the Pythagorean theorem is already known 
1850–1650 BCE Decimal arithmetic in use in Egyptian papyrus books 
1400–1100 BCE Decimal digits in use on oracle bones in China; by the eleventh 

century, the Duke of Zhou and Shang Gao are familiar already with the 3–4–5 
Pythagorean triple 

Ca. 600 BCE Thales introduces the demonstration of propositions in Greece; in 
China, Rong Fang and Chen Zi are aware of the Pythagorean theorem 

Ca. 540 BCE The Pythagoreans prove the Pythagorean theorem; discovery of the 
incommensurability of . 

√
2

Ca. 500 BCE The Shulba Sutras in India provide an accurate value for . 
√

2; the  
Pythagorean theorem is already known in India 

Ca. 460 BCE Greek philosophers introduce the three classical problems of geomet-
ric construction 

Ca. 450 BCE Zeno and Eleatic philosophers in Greece propose Zeno’s paradoxes 
Ca. 380 BCE Plato establishes his Academy in Athens and advocates the cultivation 

of logical thinking through the study of geometry 
Ca. 335 BCE Eudemus of Rhodes writes History of Geometry; this establishes him 

as the first historian of mathematics 
Ca. 300 BCE Euclid writes his geometrical masterpieces, Elements; this marks the 

appearance of deductive mathematics with axiomatic foundations 
287–212 BCE Archimedes of Syracuse in Greece obtains the formula for the 

volume of the sphere and an approximation for . π , using methods that anticipate 
modern calculus 

230 BCE Eratosthenes invents a sieve method, known today as the sieve of 
Eratosthenes, to determine a table of prime numbers 

225 BCE Apollonius of Perga writes his treatise, Conics 
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Ca. 150 BCE The earliest mathematical text in China, the Book on Numbers and 
Computation, is written; afterward, there appear also the Zhoubi Suanjing and 
the Nine Chapters on the Mathematical Art 

Ca. 150 CE In Greece, Ptolemy writes the astronomical treatise Almagest, which 
introduces developments in the field of trigonometry 

Ca. 250 Diophantus in Greece writes Arithmetica, in which he introduces indefinite 
equations, the concept of unknown quantities, and equations containing symbols 
for known and unknown quantities 

Ca. 370 Hypatia is born in Alexandria, the first female mathematician known to 
history 

462 Zu Chongzhi of China calculates an approximation for . π accurate up to seven 
decimal places, given by the ration . 355

113
820 Al-Khwarizmi writes the treatise Algebra, from which the modern word for this 

subject was derived after its introduction to Europe in the twelfth century 
850 Mahavira in India writes his Compendium on the Gist of Mathematics, in which 

the familiar formula for the binomial coefficients appears for the first time 
Ca. 870 Decimal numerals appear in India, including the zero numeral; later, these 

spread to Arabia and become the Hindu-Arabic numerals in use today 
1100 Omar Khayyam in Iran uses the intersection of a circle and a parabola to solve 

geometrically a cubic polynomial equation 
1150 Bhaskara II recognizes negative numbers and admits the existence of irrational 

numbers 
1202 Fibonacci of Italy writes Liber Abaci, in which appears a famous rabbit 

problem from which derives the Fibonacci sequence 
1247 Qin Jiushao in China writes Mathematical Treatise in Nine Sections, contain-

ing the Da Yan Shu method and Qin Jiushao’s algorithm 
1482 The first Latin translation of Euclid’s Elements is published 
1545 Cardano of Italy writes Ars Magna, containing the general solutions of cubic 

and quartic polynomials 
1572 Bombelli of Italy writes L’Algebra, introducing the rudiments of the theory of 

imaginary numbers 
1591 Vieta of France identifies relations between the roots of a polynomial and its 

coefficients and inaugurates the use of modern symbolic algebra 
1614 Napier of Scotland invents logarithms 
1629 Dutch mathematician Albert Girard proposes the fundamental theorem of 

algebra 
1637 In France, Descartes invents analytic geometry, and Fermat proposes Fermat’s 

last theorem 
1642 Pascal invents in France the first mechanical calculator in the world, capable 

of addition and subtraction 
1657 Huygens of the Netherlands introduces the concept of mathematical expecta-

tion, building upon earlier discussions of probability in communications between 
Pascal and Fermat
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1665 Newton in England and Leibniz in Germany invent the calculus, the former 
using a geometric method of fluents and fluxions and the latter algebraically; 
Leibniz publishes first 

1666 Leibniz writes De Arte Combinatoria, the founding document of mathematical 
logic 

1680 Seki Takakazu of Japan develops wasan mathematics and develops the theory 
of determinants 

1736 Euler of Switzerland solves the problem of the seven bridges of Königsberg 
and establishes the disciplines of graph theory and geometric topology 

1777 Buffon in France introduces Buffon’s needle problem, promoting further 
development in probability theory 

1799 Monge of France creates descriptive geometry 
1801 In Germany, Gauss writes Disquisitiones Arithmeticae, laying the foundations 

of modern number theory 
1802 Jean-Étienne Montucla and Jérôme Lalande of France publish Histoire des 

Mathématiques in four volumes; this is the earliest work to systematically discuss 
the history of mathematics 

1810 The first specialized academic journal of mathematics appears in France, 
the Annales de Mathématiques Pures et Appliquées, published by Joseph Diez 
Gergonne 

1812 The first mathematical society is established at Cambridge, the Analytical 
Society of Cambridge 

1824 Norwegian mathematician Abel proves that there is no general solution in 
radicals for polynomials in degree five or higher 

1829 Russian mathematician Lobachevsky publishes the first treatise on non-
Euclidean geometry, On the principles of geometry 

1832 In France, Galois resolves completely the question of the solvability by 
radicals of polynomial equations; in the process, he invents group theory 

1843 Irish mathematician Hamilton discovers the quaternions and proposes for the 
first time the concept of noncommutative algebra 

1851 Riemann introduces the Riemann hypothesis; 3 years later, he introduces 
Riemannian geometry 

1864 The first dedicated research society in mathematics is established in Moscow, 
the Moscow Mathematical Society 

1868 Italian mathematician Beltrami proposes the pseudosphere as a model of 
hyperbolic geometry 

1871 German mathematician Cantor establishes set theory and introduces for the 
first time the concept of infinite sets 

1872 German mathematician Klein publishes his Erlangen program in an attempt 
to unify geometry on the basis of group theory and projective geometry 

1889 Italian mathematician Peano introduces the Peano axioms as an axiomatic 
foundation for the system of natural numbers 

1897 The first International Congress of Mathematicians is held in Zurich, Switzer-
land 

1898 Mathematical statistics is founded by the English mathematician Pearson
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1899 German mathematician Hilbert writes The Foundations of Geometry, a  
pioneering work in the axiomatic method in mathematics 

1900 Hilbert presents his famous 23 problems in mathematics to the International 
Congress of Mathematicians in Paris 

1903 English mathematician and philosopher Russell introduces Russell’s paradox 
in set theory, causing the third great crisis in mathematics 

1904 Poincaré proposes the Poincaré conjecture 
1907 German mathematician Minkowski proposes his four-dimensional spacetime 

model, which provided the most appropriate mathematical setting for special 
relativity 

1910 Hilbert introduces Hilbert spaces, advancing geometry from the study of finite-
dimensional spaces to include infinite-dimensional spaces 

1931 Austrian mathematician Gödel presents his two incompleteness theorems 
concerning formal systems of mathematics 

1933 In the Soviet Union, Kolmogorov establishes an axiom system for probability 
theory 

1936 The Oslo International Congress of Mathematicians awards the first Fields 
Medal 

1938 The pseudonymous collective Bourbaki publishes Éléments de mathématique 
1944 Hungarian-American mathematician von Neumann introduces game theory 
1948 In the United States, Wiener publishes Cybernetics: Or Control and Commu-

nication in the Animal and the Machine 
1949 The first electronic computer with stored programs is designed and manufac-

tured at Cambridge University: the EDSAC (Electronic Delay Storage Automatic 
Calculator) 

1967 Canadian mathematician Langlands introduces the Langlands program, an 
attempt at a grand unified theory of mathematics linking number theory, algebraic 
geometry, and the representation theory of groups 

1976 Appel and Haken in the United States use computer assistance to prove the 
four-color theorem for maps 

1977 French mathematician Mandelbrot introduces fractal geometry, expanding the 
range of dimensionality in geometry to include rational numbers 

1978 The Wolf Prize in Mathematics is awarded for the first time 
1995 British mathematician Wiles proves Fermat’s last theorem 
2003 The Abel Prize for outstanding contributions to mathematics is awarded for 

the first time 
2006 The mathematics community accepts after a long process of verification the 

proof of the Poincaré conjecture by Russian mathematician Perelman



Appendix B 
The Origin of Some Common 
Mathematical Symbols 

Symbol name Symbol Earliest usage Year 

Fraction symbol – Fibonacci (Italy) 1202 

Addition sign .+ Johannes Widmann (Germany) 1489 

Subtraction sign .− Widmann (Germany) 1489 

Parentheses . ( .) Christopher Clavius (Germany) Ca. mid-sixteenth 
century 

Equals sign .= Robert Recorde (England) 1557 

Multiplication sign .× William Oughtred (England) 1618 

Inequality symbol .�= Thomas Harriot (England) 1631 

Square root sign .
√

Descartes (France) 1637 

Known and unknown 
quantities 

.a, b, c, .x, y, z Descartes (France) 1637 

Percentage sign .% Anonymous Ca. 1650 

Infinity sign .∞ John Wallis ( England) 1655 

Division sign .÷ Johann Rahn (Switzerland) 1659 

Integration sign .
∫

Leibniz (Germany) 1675 

Circle constant .π William Jones (England) 1706 

Summation sign .
∑

Euler (Switzerland) 1755 

Congruence symbol .≡ Gauss (Germany) 1801 

Product sign .
∏

Gauss (Germany) 1812 

Absolute value sign .| | Karl Weierstrass (Germany) 1841 

Set membership .∈ Peano (Italy) 1889 
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