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Future Developments in Brain/Neural–
Computer Interface Technology
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David Haslacher, Christoph Bublitz, Marcello Ienca, 
Jennifer A. Chandler, and Benjamin Blankertz

1	� Introduction

Mind-reading devices were already conceptualized in the late nineteenth century 
and have, since then, inspired numerous science fiction authors and filmmakers. 
After the invention of devices that turned the invisible, e.g., sound, into something 
measurable, it seemed plausible that thoughts too could be measured and translated 
into something visible. Although the biological substrates of thought remained elu-
sive, effects of direct electric stimulation of the brain suggested that thought, memo-
ries, and emotions have an electric manifestation in the brain that could influence 
electrical properties of the body. Using a galvanometer, the first attempts to measure 
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these influences, e.g., for lie detection, seemed promising [1] but remained rather 
unspecific and inaccurate.

In the early twentieth century, Hans Berger, who self-reportedly searched for the 
substrate of telepathy, successfully invented electroencephalography (EEG), turn-
ing the brain’s invisible electric oscillations directly into curves and patterns painted 
on long tapes of paper [2]. Using such an apparatus, it was found that brain responses 
evoked by external stimuli, e.g., a flash, tone, or touch, could allow inferences about 
mental states or cognitive processes. The finding that modulations of EEG activity, 
e.g., alpha oscillations (9–15 Hz), were state- or task-dependent and apparently con-
fined to circumscribed brain regions (e.g., occipital alpha oscillations related to 
visual function or central alpha oscillations related to sensory and motor function) 
raised the expectation that it would be possible to decipher the mental processes 
underlying perception and action. After initial enthusiasm, it turned out, however, 
that mapping these EEG patterns to specific thoughts was exceptionally difficult. 
Nonetheless and despite its variability and non-stationarity, EEG provided useful 
information about a person’s level of alertness and proved very helpful in the char-
acterization of brain disorders, such as epilepsy [3].

With the advent of computers in the 1950s, it was hoped that the automatic inter-
pretation of electric brain signals would lead to new insights into the workings of the 
brain. Thus, in 1961, the National Institutes of Health (NIH) funded the first com-
puter facility for this purpose at the Brain Research Institute of the University of 
California in Los Angeles (UCLA) [4]. Here, Thelma Estrin, a pioneer in biomedical 
engineering, successfully established the first analog-to-digital converter to realize 
an online EEG digital computing system. Previously, Grey Walter developed the first 
automatic EEG frequency analyzer [5], which was later used to provide online feed-
back of brain activity. In this context, it was soon discovered that operant condition-
ing, i.e., increasing or decreasing the probability of a specific behavior depending on 
the presence or absence of a contingent reward or punishment, was also valid for the 
behavior of brain signals [6]. Such operant conditioning of neural events (OCNE) 
soon became the subject of broad interest. It was not only demonstrated for wide-
spread synchronized activity of neuronal cell ensembles in the sensorimotor cortex 
of cats [7] but also for single cells in the motor cortex of macaques [8].

Building on these developments, the first brain–computer interface (BCI) project 
that aimed at direct brain–computer communication using EEG signals was started 
at UCLA in the early 1970s. This project was born of the conviction that EEG does 
not only consist of random noise, but contains “concomitances of conscious and 
unconscious experiences” resulting in a complex mixture of neural events [9]. 
Building on well-characterized evoked responses, e.g., those in the visual domain 
and other phenomena such as OCNE or the contingent negative variation (CNV), 
the proposed BCI system was geared toward the use of both spontaneous EEG and 
specific evoked responses to establish a direct “brain-computer dialogue.”

Today, 50 years later, we may still not have achieved precise and accurate mind-
reading as envisioned in the nineteenth century, but the feasibility, utility, and limits 
of BCI-enabled human–computer interaction have been increasingly well charted. 
Besides active or directed control of external devices [10], additional generally 
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unanticipated forms of BCI applications were established, e.g., BCIs designed to 
trigger neural recovery (also termed restorative BCIs) [11] or BCIs conveying infor-
mation regarding the user state to improve the ergonomics of human–computer 
interaction (also termed passive BCIs) [12, 13].

Increasing digitalization of processes and interactions, ubiquitous computing, and 
wireless connectivity have paved the way for so-called immersive technologies [14] 
that are now increasingly blurring the boundaries between the human mind and body 
and digital tools [15]. The ambitions and collective efforts to merge the human mind 
and machines have never been higher. But how could state-of-the-art BCIs contribute 
to this endeavor? Where are the limits on this path? And where should these limits be?

In this chapter, we aim to provide an overview of the most well-established BCI 
concepts and will introduce current state-of-the-art medical and non-medical use 
cases that involve BCI technology. We will then describe current efforts to extend 
the scope of BCI applications and map out the prospects of merging BCIs with arti-
ficial intelligence (AI) and other emerging technologies, such as quantum sensors. 
At the end of this chapter, we will shortly outline the possible impact of future BCI 
technology on society and human self-conception.

2	� Modes of Operation and Applications of Brain/Neural–
Computer Interfaces

The original ambition of the first BCI project at UCLA was to establish electrical 
brain signals as carriers of information in human–computer interaction or for the 
purpose of controlling external devices, such as prosthetics or even spaceships [9]. 
To implement such BCI, three distinct components are required: (1) a brain signal 
recording unit translating analogue electric, magnetic, or metabolic measures into 
digital data streams, (2) a real-time signal processing unit for interpretation of this 
incoming data, and (3) an actuator, output generator, or basically any device that 
uses this information in a purposeful way [16].

While first conceptions of BCIs were mainly designed to convey information 
(specifically control commands) from the brain to the computer, e.g., to restore 
movement or communication in paralysis [17], subsequent concepts extended from 
unidirectional toward bidirectional BCIs, i.e., systems that not only read-out brain 
activity but also write into it, e.g., via brain stimulation of the central nervous sys-
tem (CNS) [18, 19]. Here, the stimulator acts as a BCI output creating a direct 
feedback loop between brain states and brain stimulation that does not involve or 
depend on the user’s sensory system.

However, since it is not entirely clear how information is represented and stored 
in the brain, the ability to transfer information into the brain using brain stimulation 
is still very limited. Thus, the notion of “read and write” may be misleading in the 
context of current bidirectional BCIs, to the extent that it implies an analogy between 
the brain and a hard disk or magnetic tape. In contrast to conventional computers that 
use a two-symbol system to represent information (i.e., zeros and ones), the symbol 
system underlying information processing and its physiological representation in the 
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brain is not well understood [20, 21]. As long as this relationship remains an enigma, 
information transfer from the computer to the brain will be very limited.

Before outlining more specific BCI applications, the following section intro-
duces the established modes of operation and categories of BCIs that influence the 
range and scope of applications across various possible use cases.

From the user’s perspective, three different modes of operation can be distin-
guished: active, reactive, and passive. Active BCIs are designed for the voluntary 
control of external devices, and typically translate brain activity linked to goal-
directed behavior into control commands directed at tools that assist in achieving 
the intended goal [22, 23]. Reactive BCIs, in contrast, infer their output from the 
brain’s reaction to external sensory or direct stimulation [24–26]. Due to the rela-
tively high signal-to-noise ratio of evoked brain responses, such paradigms achieved 
the highest information transfer rate (ITR) in noninvasive BCIs, e.g., in a speller 
task [27]. Finally, passive BCIs derive their output from automatic or spontaneous 
brain activity serving as implicit input to support an ongoing task [12]. Here, 
depending on the level of interactivity, four categories can be distinguished: (1) 
Mental state assessment to replace or support other data (e.g., from questionnaires 
or behavioral observations) without direct feedback to the user [28], (2) online state 
assessment (e.g., of fatigue or mental workload) with feedback to the user (e.g., 
indicated by a warning light), (3) state assessment with the purpose of directly influ-
encing the assessed state in a closed control loop manner (e.g., reducing workload 
of an air traffic controller by limiting irrelevant sensory input in critical situations) 
[29, 30], and (4) automated adaptation, where the BCI system continuously learns 
and adapts according to the user state [31]. Here, the system builds a model to rep-
resent aspects of the user’s affective or cognitive responses that serve as a basis for 
the system’s autonomous behavior. For example, in case of the air traffic controller, 
the system would have learned which situations will most likely provoke a mental 
overload and automatically call for assistance ahead of time.

Besides these different modes of operation, BCI systems are generally catego-
rized according to the invasiveness or location of the brain signal recordings, as well 
as the purpose of use. When brain signals are recorded from inside the skull, a sys-
tem is referred to as an invasive or implantable BCI. Here, a variety of signals have 
been established for BCI applications ranging from synaptic or local field potentials 
(LFP) using electrocorticography (ECoG) [32] to action potential spike trains [33]. 
Noninvasive BCIs typically use brain signals recorded from the surface of or at 
some distance from the scalp. Here, mainly six types of brain signals are used for 
BCI applications so far. Four were established primarily for use in active BCIs: (1) 
Slow cortical potentials (SCP) [34], (2) sensorimotor or mu rhythms (9–15 Hz) [35, 
36], (3) blood-oxygen-level-dependent (BOLD) signals in functional magnetic res-
onance imaging (fMRI) [37, 38], and (4) concentration changes of oxy/deoxy 
hemoglobin using near-infrared spectroscopy (NIRS) [39, 40]. Two other types 
were established primarily in reactive BCIs: (5) event-related potentials (ERPs) and 
(6) steady-state visual or auditory evoked potentials (SSVEP/SSAEP) [41, 42]. 
SCPs, i.e., slow potential drifts with a duration of 500 ms to several seconds, were 
among the first signals used for noninvasive control of a BCI [43]. When related to 
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motor activity, SCPs were specified as motor-related cortical potentials (MRCP) 
and can be further sub-categorized into the self-initiated Bereitschaftspotential (BP) 
[44], also termed the readiness potential (RP), and the externally triggered contin-
gent negative variation (CNV) [45]. Since the BP builds up 2 s before voluntary 
movements, it was mainly explored in the context of controlling motor prosthetics 
or exoskeletons [46, 47]. BP-based BCIs were also used in ways beyond such medi-
cal applications, e.g., as a research tool [48] or in the context of detecting emer-
gency braking intention [49].

To increase classification accuracy, BCI control paradigms were designed that 
use pre-defined time windows during which the presence or absence of a particular 
signal feature is evaluated. Reactive BCIs commonly use this approach by design 
because the external stimulus determines the relevant time window in which brain 
responses are evaluated. Active BCIs can be either operated with such pre-defined 
time windows, which is called a synchronous mode of operation, or in a self-paced 
or self-initiated mode, which is then called an asynchronous mode of operation 
[50]. The synchronous mode of operation vastly limits the applicability and practi-
cality of active BCI control in daily life contexts since users must wait for the pre-
defined time windows before active control is possible. Moreover, since time 
windows are indicated by external stimuli or triggers, such a paradigm requires an 
intact (afferent) sensory domain as well as the user’s attention (like reactive BCIs). 
Thus, this type of BCI has been mainly established in the auditory [51] or visual 
[52] domain since these two sensory domains are typically less affected in many 
neurological disorders (e.g., stroke, spinal cord injury or motor neuron diseases). In 
contrast, the asynchronous mode of operation allows for self-initiated or self-paced 
BCI control providing more autonomy, flexibility, and intuitiveness to the user. 
However, classification accuracies of self-paced BCIs are typically lower compared 
to BCIs operating in a synchronous mode.

To increase control accuracy, BCI paradigms were established that combine dif-
ferent types of brain signals, e.g., MRCP or ERP with mu rhythms [53, 54]. Such 
hybrid BCIs also include error-related potentials (ErrPs), i.e., stimulus-triggered 
negative and positive EEG deflections that are related to error processing, reward 
prediction, and conscious error perception [55]. Such signals can be used to correct 
false classifications or to improve classification algorithms. In addition, other bio-
signals, e.g., related to eye movements or peripheral muscle activity, were imple-
mented to improve the applicability of brain-controlled devices in real-life scenarios. 
When brain-controlled systems also infer mental states, including intentions, from 
such peripheral signals, these systems are typically referred to as brain/neural–com-
puter or –machine interfaces [10, 56].

Given that the physiological representations of the symbol system underlying 
information processing in the brain is largely unknown, how can classification accu-
racies of BCIs be further improved?

A very important strategy to increase the classification accuracies of active BCIs 
is operant conditioning of neural events (OCNE) which was mentioned before [57]. 
These neural events are typically measures of electrical, magnetic, or metabolic 
brain activity and their derivatives.

Future Developments in Brain/Neural–Computer Interface Technology



70

Behavior of single cells or larger neuronal cell ensembles (e.g., increased firing 
rates or desynchronization/synchronization of sensorimotor EEG activity) are con-
tingently rewarded (e.g., by delivery of a banana-flavored pellet in the case of a 
monkey, or monetary incentive in the case of humans) to increase the likelihood of 
the behavior’s recurrence. It was found that the intactness of the cortical-basal 
ganglia-thalamic feedback loop plays an important role for OCNE [58] and might 
explain why people with brain lesions or neurodegenerative disorders struggle in 
acquiring BCI control. Still, depending on the brain signal and signal-to-noise ratio, 
BCI learning based on operant conditioning can require days to weeks in healthy 
volunteers, or even months of training in patients. Another strategy to increase BCI 
control accuracy is feedback learning. Being independent of external reward, feed-
back learning depends, however, on the user’s intrinsic motivation and the involve-
ment of internal reward mechanisms ascribed to intact cortico-striatal circuitry 
including the ventromedial prefrontal cortex (VMPFC) [59]. Using such an 
approach, more complex measures of brain activity, e.g., cortico-thalamic BOLD 
connectivity, could be trained [38]. With the advent of novel machine learning 
approaches, including convolutional neural networks (CNN), new and more com-
plex derivatives of brain activity have been proposed for BCI applications [60, 61]. 
The main challenge with these more complex derivatives is to ensure that meaning-
ful brain activity and not (systematic) signal artifacts are decoded, and that the 
underlying algorithms are real-time compatible.

In contrast to active BCIs, reactive BCIs based on evoked responses do not 
require any learning. This increases their applicability, e.g., in BCI naïve users, but 
comes with other disadvantages mentioned before (e.g., dependence on the sensory 
system and user attention, or possible distraction from and interference with 
other tasks).

An aspect of OCNE and feedback learning that was rather neglected in the early 
history of BCIs is the impact of BCI learning on brain physiological processes and, 
thus, brain function. After automatic EEG frequency analyzers became available in 
the early 1960s, M. Barry Sterman discovered that operant conditioning of SMR 
can reduce seizure frequency in cats exposed to seizure-inducing agents or persons 
diagnosed with epilepsy [7]. Later it was found that such conditioning of brain 
activity, commonly termed neurofeedback, can also improve symptoms of attention 
deficit and hyperactivity disorder (ADHD) in children [62]. These first successes 
raised great hopes that EEG neurofeedback could improve symptoms of a multitude 
of brain disorders. While some positive effects, e.g., in ADHD, could be replicated 
in larger controlled and double-blinded studies [63, 64], others could not be con-
firmed. Although it became widely accepted that OCNE can influence brain func-
tion and behavior, the underlying mechanisms remained incompletely understood, 
and the specificity and effect size of neurofeedback seemed to depend on a variety 
of factors [65]. Thus, the initial enthusiasm gradually abated over the ensuing 
decades but became later revived in the context of BCI research.

While the first BCI paradigms used OCNE to improve BCI control, e.g., to oper-
ate a prosthesis, it was found that repeated use of such BCI can also have restorative 
effects on the brain. For instance, it was shown that repeated use of a BCI-controlled 
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exoskeleton can trigger motor recovery, even in chronic paralysis after stroke [35, 
66] or cervical spinal cord injury [67]. Thus, assistive and restorative BCIs came to 
be distinguished on the purpose of the application [11, 68]. In this sense, restorative 
BCIs build on the old research tradition of neurofeedback and may now—with the 
technological advances implemented in the BCI field—elucidate some of the 
unknown mechanisms underlying neurofeedback. Although first conceptions of 
BCIs mainly focused on the external effects (i.e., a BCI conceptualized as a tool to 
act on the environment), it becomes increasingly clear that any form of BCI interac-
tion also impacts the brain itself, to a larger (restorative BCIs) or lesser extent (reac-
tive or passive BCIs). This aspect is even more apparent in bidirectional BCIs that 
involve direct stimulation of the CNS.

Building on the described modes of operation, various medical and non-medical 
BCI applications have been realized so far. These include versatile control of multi-
joint prosthetics, robotic arms, or functional electric stimulation (FES) that assist in 
grasping and manipulating objects of daily living [69, 70]. By using a bidirectional 
interface to restore sensory capacity during prosthesis control, manipulation could 
be substantially improved [71]. Here, a simple linear relationship between external 
force sensors and applied stimulation intensities could induce the feeling of touch. 
Using a combination of noninvasive EEG/EOG signals enabled patients with com-
plete hand paralysis after a high spinal cord injury to independently eat and drink in 
a restaurant [10]. In this study, closing motions were initiated using modulations in 
EEG, and hand opening motions were controlled by EOG. Such a paradigm was 
also successfully implemented for whole-arm exoskeleton control [72]. In the con-
text of robot or exoskeleton control, also error-related potentials (ErrP) were used to 
optimize brain control of robotic devices [73].

Another important medical application aims at the restoration of communica-
tion. Here, early demonstrations of SCP-based systems allowed patients who were 
diagnosed with locked-in syndrome (LIS), i.e., the inability to speak or move, to 
spell full sentences by selecting letters on a display [34]. Different modalities were 
applied, including electrocorticography (ECoG) and functional NIRS, with variable 
success [74, 75]. The main limitation of these approaches was that once patients 
entered a complete locked-in state (CLIS), BCI-enabled communication failed. The 
reason for this is still not well understood, but fragmentation of sleep patterns [76] 
and progressive neurodegenerative processes affecting cell metabolism may play a 
role. Since, by definition, LIS patients can still communicate with eye movements 
or subtle muscle twitches, the necessity of developing BCIs for this clinical popula-
tion was, thus, quite controversially discussed [77]. By providing an alternative 
communication channel, BCIs in LIS were nonetheless positively received and 
regularly used by the patients [78]. Only recently, successful communication in 
CLIS was reported using two microelectrode arrays. By modulating neural firing 
rates based on auditory feedback, a 35yo patient diagnosed with amyotrophic lateral 
sclerosis (ALS), an often rapidly progressing neurodegenerative disorder, could 
sustain communication despite CLIS [79]. Interestingly, the communication rates 
the patient could achieve with the implanted device were comparable to those of 
noninvasive BCIs used in healthy volunteers. Communication often dealt with 
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requests related to body position, health status, food, personal care, and social activ-
ities. Since all attempts to restore communication using noninvasive BCIs in CLIS 
have failed before, this first successful use case may now increase the willingness of 
ALS patients to undergo implantation. However, this implantation is costly and not 
broadly available, yet. Furthermore, its use still requires a team of experts to main-
tain the functionality of the system. It is unclear whether health insurance will cover 
the associated costs. Nevertheless, the prospect of successfully overcoming the pro-
found communication impairment of CLIS marks an important milestone in the 
history of BCIs and provides important reasons to use this technology in the medi-
cal field.

Beyond these examples, the use of active BCIs in non-medical applications is 
still confined to research environments. While it has been shown that active BCIs 
can be also used to steer an airplane or drone [80, 81], or to play video games [82], 
acquiring the necessary BCI control is cumbersome and time consuming. Although 
BCI learning itself could be part of a game, this would necessitate that BCI hard-
ware be inexpensive and accessible and BCI control be of sufficient reliability. To 
date, despite extensive investment into technology development, this has not been 
achieved [83]. It can be anticipated, though, that inexpensive and accessible hard-
ware will become available, and this will facilitate the implementation of BCI tech-
nology as part of video games or other forms of entertainment. Especially reactive 
and passive BCIs may find future applications beyond entertainment. For instance, 
reactive BCIs, e.g., based on SSVEP, are currently explored in autonomous driving 
[84, 85]. Passive BCIs have been mainly tested in the context of the ergonomics of 
human–computer or human–machine interaction, but they may incorporate other 
bio- or neuroadaptive approaches that take peripheral measures such as muscle 
tone, dynamic posture, pupillometry, or skin conductance into account [86].

While state assessment with feedback in passive BCIs resembles classical neuro-
feedback paradigms, the aim of such systems is mainly to improve human–com-
puter interaction and not to normalize or alter brain states [12]. However, it can be 
argued that passive BCIs may also exert such an effect when used over longer peri-
ods of time. More systematic studies are needed to address this question.

3	� Next-Generation Brain/Neural–Computer 
and Machine Interfaces

Current BCI technology mainly covers the motor domain (e.g., to re-establish 
movement and communication) and seeks to improve human–computer or human–
machine interaction by integrating measures related to error processing, attention, 
cognitive workload, or fatigue. The next-generation B/NCIs will extend toward 
other domains, e.g., emotion regulation, memory formation, cognitive control, and 
perception. These brain functions are often affected across various brain disorders, 
such as depression, ADHD, obsessive-compulsive or anxiety disorder, addiction, or 
dementia [87]. With the development and clinical application of these next-
generation interfaces, it is hoped that it will be possible to alleviate the burden of 
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brain disorders and to better understand the relationship between brain functions 
and clinical symptoms.

To establish such BCI system, the so-called brain–behavior relationship, i.e., the 
link between specific individual neurophysiological measures and domain-specific 
brain function or behaviors and symptoms, must be revealed [88]. Despite tremen-
dous progress in neuroscience over the last decades, this has not been achieved yet. 
Although various correlations between certain brain physiological measures and 
brain functions have been found, their causal relationships have remained largely 
unclear. Moreover, attempts to reveal these causal relationships often included the 
averaging of brain physiological measures over tens to hundreds of trials (i.e., rep-
etitions of experimental tests) to reduce variability and noise. Such averaging may, 
however, also reduce relevant information for precise mapping to brain functions or 
behavioral outcome measures.

A possible approach to overcome this challenge is to use brain stimulation target-
ing specific physiological measures, e.g., brain oscillations at certain frequencies, 
and assess the impact on brain function and behavior at millisecond-to-millisecond 
precision [89–91]. To achieve this, several technical challenges must be mastered: 
(1) Brain physiological measures must be recorded and analyzed in real-time, (2) 
stimulation must be delivered at high temporal and spatial precision, (3) stimulation 
artifacts must be sufficiently eliminated to assess the online stimulation effects.

The first two points are equally necessary to establish bidirectional BCIs, and thus, 
share the same technological framework. Typically, implantable bidirectional BCIs 
that deliver electric stimulation to the brain do so at some distance from the recording 
electrodes to reduce interference of stimulation with BCI classification [71]. Currently, 
as previously mentioned, it is unclear which stimulation parameters are most effective 
to interact with the human brain. In this context, novel approaches have been intro-
duced that use deep learning to derive effective stimulation patterns, e.g., for optic 
nerve stimulation to restore normal vision in disorders affecting the retina [92].

In the noninvasive field, a few important milestones toward bidirectional BCIs 
have been reached, e.g., in vivo assessment of brain oscillations during transcranial 
direct current stimulation using magnetoencephalography (MEG) [89] and, recently, 
recovery of targeted brain oscillations during transcranial alternating current stimu-
lation (tACS) using EEG [90]. The MEG has the advantage that neuromagnetic 
activity passes through transcranial stimulation electrodes undistorted, so that brain 
activity immediately underneath the stimulation electrodes can be reconstructed. 
This is not the case in EEG, and due to the variable path of the electric currents 
through the skull, precise and focal stimulation using transcranial electric stimula-
tion (tES) remains a challenge. Brain oscillations can be also targeted with transcra-
nial magnetic stimulation (TMS) [93], but due to the magnitude of artifacts that are 
associated with magnetic fields at 2–3 Tesla, sufficient artifact elimination is diffi-
cult to achieve. Moreover, TMS commonly uses short magnetic pulses of 160–250 μs 
duration that do not resemble the targeted neural activity. Nevertheless, successful 
implementation of the first EEG-based closed-loop TMS targeting brain oscillations 
at millisecond-precision represented an important milestone on the path toward 
effective neurostimulation.
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Recent advances in brain stimulation methods using temporal interference of 
electric [94] or magnetic [95] fields or ultrasound [96] may overcome some of the 
current limitations in noninvasive brain stimulation and neuromodulation by offer-
ing higher focality and penetration depth. Both temporal interference and ultra-
sound stimulation can reach deeper brain areas and provide higher focality than 
other established methods like TMS or tES. Currently, stimulation effects of these 
new methods and their underlying mechanisms have not yet been well explored, and 
it is unclear whether closed-loop operation is feasible, since stimulation artifacts 
have not been well characterized yet. Consequently, these new stimulation methods 
have not been implemented in the context of bidirectional BCI but promise to fur-
ther advance the field.

Another frontier in the development of next-generation B/NCIs relates to the 
precise recording of neural activity at high temporal and spatial resolution. In this 
context, new high-density microelectrodes were developed [97]. However, these 
necessitate implantation with the risk of bleedings or infections [98]. Moreover, 
replacement or repair of implanted device components requires another surgical 
procedure. Other approaches include semi-invasive methods such as intravascular 
[99] or sub-scalp recordings to assess LFP or EEG. It is most likely that all these 
approaches will remain in the experimental, medical domain for the foreseeable 
future because the cost-benefit-ratio across users and applications has yet to be 
determined. It is unclear whether recording from more neurons will automatically 
result in higher decoding accuracy, precision in the assessment of brain states, or, 
using OCNE, in more degrees of freedom for active BCI control, or whether there 
are some inherent boundaries for implantable BCIs [100]. To further advance our 
understanding of brain–behavior relationships and to possibly elucidate the symbol 
system underlying information processing in the brain, these methods are, however, 
of critical importance.

In analogy to BCI-triggered motor recovery after stroke, it is conceivable that 
next-generation B/NCIs may be only used for a defined time or intermittently to 
facilitate or maintain recovery of brain function, e.g., to recover from depression or 
to maintain memory function in neurodegenerative disorders. This is another reason 
for the assumption that rather noninvasive BCIs will be more prevalent than implant-
able solutions. Nevertheless, there might be cases in which recovery of brain func-
tions is not possible so that continuous use of such a neuroprosthesis is necessary. 
The main challenge with noninvasive means to record brain activity is their suscep-
tibility to noise and their lack of spatial resolution compared to implanted electrodes 
or sensors [101]. Moreover, when using EEG, brain signals are dampened and dis-
torted by various tissues. This reduces signal quality, particularly in the upper fre-
quency bands above 25 Hz. Recently, quantum sensors were introduced that promise 
to increase precision of brain recordings. These quantum sensors, e.g., optically 
pumped magnetometers (OPM), can measure neuromagnetic fields passing the 
skull undistorted [102]. Provided proper calibration, OPMs could reach much 
higher spatial resolution than any other established noninvasive neuroimaging tool, 
e.g., conventional helium-cooled magnetometry using super-conducting quantum 
interference devices (SQUID). Moreover, they allow for the assessment of brain 
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signal frequencies up to the kilohertz range, i.e., they might make physiological 
information in higher frequencies, e.g., the gamma range, more accessible. The 
main drawback with these highly sensitive magnetometers is that they require sub-
stantial magnetic shielding from environmental fields. Magnetometers based on 
synthetic diamonds or polymers that can be operated in the earth’s magnetic field 
may overcome this limitation, however [103].

Taken together, important advances in sensor technology, stimulation techniques, 
real-time signal processing, and machine learning have been made that now allow 
the study of brain–behavior relationships with unprecedented precision. Although 
many unsolved questions remain (e.g., the link between brain functions and specific 
clinical symptoms, the cause for reoccurring episodes of mental illness), the pros-
pects for extending the scope of B/NCIs toward domains such as emotion regula-
tion, memory formation, cognitive control or perception have never been better. 
Particularly, the combination of BCI technology with other emerging technologies, 
such as AI and quantum computing, may catalyze the feasibility of new applications 
outlined in the next section.

4	� Merging Brain/Neural–Computer Interfaces 
with Artificial Intelligence

For many decades, machine learning has been used as part of BCI technology to 
improve the accuracy of brain signal classification [104]. In recent years, new 
machine learning-enabled tools and applications have been developed outside of the 
BCI field, e.g., image or speech recognition using neural networks, subsumed under 
the term artificial intelligence (AI) technology, and they are now increasingly being 
merged with BCI technology [105]. Overall, there are three main areas in which the 
implementation of AI components is being explored in the development of new BCI 
applications: 1. improving classification of brain/neural activity patterns, 2. identi-
fying effective stimulation parameters for bidirectional BCIs, 3. implementing 
shared control of brain/neural-controlled external devices, e.g., robots or 
exoskeletons.

While the most established and broadly used BCI algorithms use linear classifi-
cation because of their robustness (in the presence of noise or signal outliers and a 
comparably small amount of training data) and low computational cost, kernel-
based, e.g., support vector machines (SVM), and other non-linear methods have 
also been implemented [106]. These methods reach slightly higher classification 
accuracies but at the cost of higher computation time and memory. Since this is 
nowadays less of a problem due to broader availability of computational power and 
memory, non-linear classifiers, e.g., convolutional neural networks (CNN), are 
being increasingly explored in the context of BCI feature classification [107]. Here, 
it should be underlined that the use of non-linear methods requires good under-
standing of the data, because several parameters and network design decisions must 
be chosen in an informed way. For example, signal artifacts (e.g., related to heart-
beat, pulse waves, breathing, voluntary movements, eye blinks, increased muscle 
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tone, eye movements, or other artifacts from the environment) may unintentionally 
influence classification. Consequently, with non-linear methods it is more difficult 
to verify what kind of information (e.g., neural vs. artifactual sources) is being 
exploited by a particular model although concepts for explainable AI exist [108, 
109]. In the case of implantable BCIs, this might be less of a challenge, but caution 
needs to be taken. Nevertheless, neural networks may be superior under certain 
conditions and paradigms compared to other approaches. With the advent of quan-
tum sensors, non-linear classifiers might also prove particularly useful in noninva-
sive or minimally invasive BCIs.

The second area where the implementation of AI may play an increasing role for 
future BCI technology is the development of effective stimulation parameters to 
interact with the human brain. This would be a critical prerequisite to establish bidi-
rectional BCIs and sensory neuroprostheses, i.e., systems that substitute for motor, 
sensory, or cognitive functions. For instance, by using a convolutional neural net-
work (CNNs) as a model of the ventral visual stream, optic nerve stimulation pat-
terns could be derived to elicit static and dynamic visual scenes [92]. In other words, 
specific stimulation patterns were identified that could convey a certain visual image 
directly to the brain. While this has been only achieved in silico so far and not in real 
time, these results indicate that neural networks may play an important role for 
computer-to-brain communication, and may also help to gain better understanding 
of how information is represented in the brain [110]. Once it becomes feasible to 
convey rich sensory information to the brain, neuroadaptive algorithms could be 
implemented, e.g., to reduce or augment sensory information depending on the 
user’s state. It is very likely, though, that—in analogy to active BCIs used in paraly-
sis—this technology will first be used to restore compromised or lost sensory func-
tion in blind or deaf individuals. Besides improving function of a sensory system, 
such technology could be also used to provide information beyond accurate repre-
sentations of the environment, but it is unclear to what degree this would be possible 
due to top-down regulation of sensory input [111] and whether this would nega-
tively interfere with normal perception of the environment. Since the brain can also 
generate quasi-sensory experience in the absence of input from the sensory system 
(e.g., during dreaming), it is not entirely inconceivable that sensory experience 
could be influenced or induced in such state with a bidirectional BCI.

The third area where merging B/NCI technology and AI has been explored and 
successfully demonstrated is the so-called shared control of external devices, e.g., 
robots or exoskeletons [72, 112]. Controlling a multi-joint robotic arm or any other 
device or manipulator with many degrees of freedom requires high ITRs that cannot 
be achieved with noninvasive means. Currently, the boundaries for OCNE-based 
BCI control in terms of precision, reliability, and robustness are still unclear and are 
the subject of further exploration. Even implantable BCIs using several hundreds of 
electrodes are limited in their capacity to control such devices.

Thus, concepts of human-machine collaboration have been implemented in 
which the intended goal is inferred from brain activity, and the best solution to 
achieve the goal is computed and executed by the machine. To compute such a solu-
tion, the availability of a precise model of the environment is an important 
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prerequisite. Various AI-enabled tools, such as 3D-object recognition, have been 
successfully implemented to create such a model allowing for, e.g., brain/neural 
whole-arm exoskeleton control [72]. Using a shared-control paradigm, grasping and 
manipulating a bottle, then moving it to the mouth and drinking was feasible, for 
example [113].

To increase applicability and practicality, it is essential to implement a veto 
function in shared-control paradigms that include an AI-enabled autonomous 
machine [114]. Such a veto function is also critical for questions of accountability 
and liability. Since a BCI-triggered veto is subject to the same inaccuracies inher-
ent to all active BCI applications, other bio-signals providing higher control accu-
racy, e.g., related to eye movements, are currently used to trigger a veto [10, 115]. 
Independent of the machine’s precision or capabilities, it will be always the user’s 
responsibility to decide the contexts and situations in which to use shared-control 
systems.

Beyond these three main areas, machine learning methods are also contributing 
to the advancement of neuroadaptive technologies. For instance, real-time analysis 
of brain responses was used to create a continuously updated user model of expecta-
tions [116]. With such a model, a computer could learn to adapt to the user’s mind-
set to optimize goal congruency. Here, it is important to note that the model of 
expectation can be derived without user awareness, i.e., implicitly [110]. Whereas 
increasing applicability, this subconsciously informed brain–computer interaction 
raises important neuroethical questions, however.

5	� Neuroethical Perspective

The development of bidirectional BCIs relying on AI methods and coupled to the 
human brain marks an interesting new step in human–machine or –computer inter-
action. It generates a hybrid cognitive system that runs on, or is fed by inputs from, 
the organic hardware of the brain as well as the AI implementing BCI. This creates, 
as some say, hybrid minds [117]. Surely, many technologies have deeply influenced 
the workings and perhaps even the evolution of the human mind. Philosophers sub-
scribing to the Extended Mind Thesis may even go as far as saying that cognitive 
tools such as iPads or even pen and paper sometimes become part of the mind. 
Nonetheless, in those cases the interaction between the human brain and the cogni-
tive system is less direct; the input of the extended cognitive systems proceeds via 
external sensory perception. BCIs afford a direct coupling at the physiological level. 
Also, BCIs may be more deeply integrated in the operation of the brain, and future 
applications may well restore or replace mental functions today carried out by the 
brain. The novelty thus lies in the direct, internal coupling of computers, AI, and the 
human brain and their resulting functional integration [118]. First cases of such 
hybridminds are on the verge, e.g., in people engaging with adaptive DBS or closed-
loop BCIs. In the near future, closed-loop applications that affect and regulate emo-
tions or other mental functioning are to be expected raising a range of unanswered 
neuroethical questions.
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Apart from safety and side-effects, a central question concerns the user perspec-
tive, the experience of having-or being-a hybrid mind. Will users realize if part of 
their mental functioning is executed or influenced by a BCI, and how will that feel? 
A related question concerns the attitude people take toward their hybrid mind. There 
are indications that some users of DBS, for instance, feel alienated from themselves 
and ascribe this to the influence of the DBS on their mental life [119]. Others expe-
rience substantial changes in emotions and behavior, apparently resulting from the 
DBS, but welcome those changes [120]. More broadly, there is an open debate 
about whether brain stimulation with DBS causes personality changes, how fre-
quently this might occur, and whether there are other explanations for the apparent 
changes [121]. Thus, the subjective experience of users of BCIs is an intriguing 
aspect to be explored, e.g., via phenomenological methods.

The blending of minds and machines raises further questions: Do BCIs become 
part of the person, in a strong sense; or at least, do the BCIs become part of their 
bodies—or do they remain tools, despite their functional and sometimes inseparable 
integration with the brain? Answers to these conceptual questions lead to a range of 
further moral and legal questions, from responsibility for negative outcomes of the 
actions of hybrid minds to manufacturer liability; from intellectual property in the 
code that might become part of the mind to issues of privacy. The range of practical 
problems that arise is broad and is already confronting society. Patients using the 
retinal implant Second Sight have encountered trouble accessing information about 
the device, patient support, and replacement parts following the company’s financial 
collapse [122]. Given the reliance of users, not just for sensory or motor functions 
but perhaps also for mental functions on these advanced devices, should we be 
approaching them as we would any normal medical device, or are different social 
and legal arrangements warranted?

The issues are complex and fascinating, and they will vary according to the 
application in question. The tendency with these technologies is to focus on the 
immediate replacement, support, or enhancement of a human function. For exam-
ple, the success of a motor BCI is largely a matter of how usable it is for the indi-
vidual. However, some human functions are inherently relational, i.e., they require 
two human beings. The example of communication neuroprostheses offers a good 
example. Routine communications about their basic daily needs and wishes are a 
first and important objective for paralyzed people. However, if these devices are to 
support high-stakes communications (e.g., requesting or refusing medical care with 
potentially fatal consequences, or testifying in court), the listener’s ability to judge 
the voluntariness and accuracy of communications will be critical [123]. The incor-
poration of layers of non-transparent machine learning within decoders of neural 
signals to produce communication will greatly complicate this effort, and the roles 
and needs of listeners must be built into the technology to maximize the utility of 
the technology.

Perhaps the most important question is how far the blending of minds and 
machines can and should go. The possibility of writing specific information to the 
brain—creating sensations, memories, and other mental states—while still far-off, 
is in view as an eventual possibility, as discussed above. These technologies need 
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not be sophisticated and fully successful to be ethically important. Even a relatively 
modest or partial restoration of lost sensory functions is evidently exciting and valu-
able, but the abilities to do so would open up a host of other possibilities from the 
non-therapeutic creation of desired sensations (e.g., possible risk of developing 
dependencies that interfere with daily functioning) to the infliction of undesired 
sensations or states (e.g., in interrogations). Together all of this raises the perennial 
question with all human technological invention—that of how to capture the bene-
fits while limiting the possible risks and unethical applications. Are there ethical 
lines that should not be crossed—or should technologies be developed but used only 
for alleviating severe disorders? These questions become pressing as BCI technol-
ogy advances; in the best case, following careful consideration of the ethical impli-
cations for individuals and society.

6	� Summary and Conclusions

Innovative neurotechnologies are rapidly evolving, rendering new medical and non-
medical applications possible that were previously not anticipated. However, imple-
mentation of brain-controlled technology into everyday life environments is 
challenging. Due to the limited reliability and robustness of control, the most prom-
ising areas of application for active BCI systems remain in the medical field, e.g., 
for restoration of movement and communication. Here, however, the availability of 
versatile, robust, and certified actuators, e.g., individually tailored prostheses or 
exoskeletons, represent an important bottleneck for further adoption. In contrast, 
reactive BCIs can achieve higher classification accuracies but seem primarily attrac-
tive in scenarios in which providing feedback to the computer by other means, e.g., 
voice, gestures, or touch, is either undesirable or not feasible. Since high classifica-
tion accuracy of passive BCI systems is less critical, such technology may become 
adopted faster in non-medical applications, e.g., to augment learning or to optimize 
ergonomics of human–computer interaction.

The implementation of brain state-informed or closed-loop stimulation of the 
brain marks an important milestone in BCI technology because it allows for inter-
acting with ongoing brain activity independently of the sensory system. Besides 
providing direct feedback to the brain during prosthesis control, it could also sustain 
communication in neurodegenerative brain disorders affecting the motor and sen-
sory system. Moreover, it could be used to suppress pathological brain activity to 
improve brain function. Importantly, combining neuromodulation with in  vivo 
assessment of brain physiology could contribute to elucidating brain–behavior rela-
tionships, e.g., in the domains of cognitive, emotional, and memory function. Here, 
machine learning could contribute to the development of artificial models of the 
brain that inform new and effective stimulation patterns. Combining BCIs with 
AI-enabled tools, e.g., 3D-object recognition or tracking, does not only enhance 
versatility and performance of brain-controlled systems, but may catalyze the emer-
gence of new applications beyond the medical field. The possibility to merge bio-
logical and artificial cognitive system gives rise to new entities that are referred to 
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as hybridminds. Feasibility of such an entity depends, however, on understanding 
and direct manipulation of the mind’s symbol system and its manifestation in 
the brain.
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