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Dedicated to Sir Syed Ahmad Khan, the 
Founder of Aligarh Muslim University, 
Aligarh, India. Sir Syed Ahmad Khan, born 
on 17 October 1817, in Delhi, has played a 
critical role in shaping the modern India. Sir 
Syed was a great social reformer, 
educationist, philosopher, and a pioneer in 
emphasizing the vital role of education in the 
empowerment of Muslim community. He 
worked selflessly in educating and igniting 
the minds of Muslims. He was the first to 
realize the need of imparting formal 
education to Muslims and acquiring 
proficiency in the English language and 
modern sciences. He established Scientific 
Society in 1863 to inculcate a scientific 
temperament into the Muslims and to make 
the Western knowledge accessible to Indians. 
Dr. Sir Mohammad Iqbal observes: “The 
real greatness of Sir Syed consists in the fact 
that he was the first Indian Muslim who felt 
the need of a fresh orientation of Islam and 
worked for it – his sensitive nature was the 
first to react to modern age.”
On 24 May 1875, Sir Syed established the 
Madarsatul Uloom in Aligarh following the 



patterns of Oxford and Cambridge 
universities. His aim was to shape a college 
in line with the British education system but 
without compromising its Islamic values.
During Sir Syed’s own lifetime, The 
Englishman, a renowned British magazine of 
the nineteenth century, remarked in a 
commentary on 17 November 1885: “Sir 
Syed’s life strikingly illustrated one of the 
best phases of modern history.” He died on 
27 March 1898, and lies buried next to the 
main mosque at AMU.
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Preface

With the twin pressures of climate change and burgeoning population, achieving 
sustainable development goals in general and food security in particular is a daunt-
ing task. The human population is increasing at a faster rate in developing nations, 
and food and nutrition available to feed the sky-high population is challenging task 
to scientists. As expanding arable land is not possible, the viable approach to 
enhance the food production is to create varieties with higher yielding potential and 
wide adaptability. So far, both conventional and new plant breeding approaches 
have contributed in terms of developing plant varieties with high yield and better 
resistance to biotic and abiotic stresses and in enhancing the food production. In 
both approaches, genetic variation is a prerequisite for improving yield and yield-
attributing traits in crops. The major drawback of conventional plant breeding 
approaches is that more time is required for achieving the goals. However, new plant 
breeding technologies such as molecular breeding complement the conventional 
breeding approaches to obtain the desired food production. Recently developed 
tools and techniques such as molecular markers, genome wide association studies, 
Omics, TILLING, Eco-TILLING, and gene editing have made significant contribu-
tions in the crop improvement programs. These approaches have brought preferred 
set of traits in the varieties particularly high yielding potential, stress tolerance, 
nutrient quality and adaptability. 

This book provides insights into the concept, limitations, and role of conven-
tional breeding approaches as well as latest developments in the modern plant 
breeding field. This book consists of two volumes: Volume 1 subtitled Theory and 
Practice and Volume 2 subtitled Case Studies of Economically Important Crops. 
This first volume comprises 18 chapters and the range of topics covered encom-
passes mutation breeding, molecular breeding, nanotechnology, transgenics, crop 
biofortification, forward and reverse genetics, RNA interference technology, dou-
bled haploid production, TILLING and ECO-TILLING, genome-wide association 
study, genome editing, CRISPR/CAS, and Next-Generation Sequencing. The sec-
ond volume consists of 19 chapters and covers detailed aspects of different crops 
such as capsicum, potato, carrot, buckwheat, cowpea, mung bean, lentil, chickpea, 
faba bean, maize, sunflower, and sorghum in addition to several techniques such as 
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Raman spectroscopy, molecular markers, in vitro embryo rescue techniques, 
genome-wide association study, and CRISPR/CAS. Each chapter contains different 
sections such as introduction providing background, present progress, and a detailed 
discussion and explanations. Each chapter ends with a conclusion and future direc-
tions and a comprehensive list of references to facilitate further reading. In addition, 
each chapter is supported by good-quality figures and tables. This book shall prove 
useful to researchers who intend to expand their plant breeding techniques. Besides, 
it will help practicing plant breeders working in government and private sectors. 
Moreover, the book shall be helpful for undergraduate and postgraduate students 
pursuing specialization of plant breeding, plant genetics, and plant biotechnology.

Chapters were drafted by internationally recognized scientists, and each chapter 
was reviewed multiple times to ensure high-quality content and scientific integrity 
and accuracy. In this book, the experienced writers have put in a lot of effort in con-
verting their vast experience and knowledge into useful guidelines for students, 
teachers, plant breeders, geneticists, policymakers, and other stakeholders. We are 
thankful to our contributors for nicely drafting the chapters and facilitating the pub-
lication of this two-volume book representing about 144 scientists from 19 coun-
tries. Despite our careful editing and reviewing, we might have missed some errors 
for which we seek reader’s indulgence and feedback. We the editors are proud in 
completing this book by working day and night amid tough times of Covid-19 pan-
demic. Lastly, we are thankful to Springer for providing us an opportunity to com-
pile this book. Moreover, we are grateful to all the other staff members of Springer, 
particularly Kenneth Teng, Arun Siva Shanmugam, Alicia Richard,  Vinesh 
Velayudham and Kate Lazaro for helping us in accomplishing the publication of 
two volumes of this book. 

Aligarh, Uttar Pradesh, India Aamir Raina  
Srinagar, Jammu and Kashmir, India  Mohammad Rafiq Wani  
Karimganj, Assam, India  Rafiul Amin Laskar  
Plovdiv, Bulgaria  Nasya Tomlekova  
Aligarh, Uttar Pradesh, India  Samiullah Khan   
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About the Book

In the current scenario of an increased rate of urbanization and expanding cities, 
urban food security  and nutrition is a great challenge. The human population 
is  growing at a faster rate in developing nations, and that puts a lot of pressure on 
food systems. Besides sky high human population, food production is reduced due 
to climate change, dwindling arable lands, exhausting water resources, nar-
row genetic diversity, and shift in agriculture toward cultivation of few food crops.
Food and Agriculture Organization predicted that the human population will 
exceed 9.6 billion by 2050 and this means 70% more food would be required to feed 
the burgeoning population. As the expansion of land is not possible, the food pro-
duction can be increased by developing crop varieties with more yielding potential. 
In this context, breeding approaches have played a pivotal role in developing crops 
with desired traits.  Conventional breeding approaches are arduous  and tedious; 
therefore, newer plant breeding techniques like omics and gene editing should be 
used to supplement the already existing breeding strategies in achieving the desired 
food production. New plant breeding strategies should be designed and imple-
mented to accelerate the crop development and to bring preferred set of traits in 
crops of economic importance.   In any breeding approach for crop improvement 
programs, genetic variability is an important prerequisite. The book entitled 
Advanced Crop Improvement is divided into two volumes with emphasis on role of 
breeding approaches in enhancing genetic variability in important crops. The first 
volume of the book covers topics such as mutation breeding, molecular breeding, 
nanotechnology, transgenics, crop biofortification, forward and reverse genetics, 
RNA interference technology, doubled haploid production, TILLING and ECO-
TILLING, genome-wide association study, genome editing, CRISPR/CAS, and 
Next-Generation Sequencing. The second volume covers detailed aspects of differ-
ent crops such as capsicum, potato, carrot, buckwheat, cowpea, mung bean, lentil, 
chickpea, faba bean, maize, sunflower, and sorghum.

The basic concept of this book is to provide a broader view of collective role of 
breeding approaches (both conventional and modern) in advancing the crop 
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improvement programs. The book provides a detailed background of breeding 
approaches and recent advancements as well as the role and land mark achieve-
ments in accelerating the crop development. This book may prove as a complete 
guide for plant breeders, geneticists, researchers engaged in plant breeding pro-
grams in addition to post- and undergraduate students specializing in the field of 
mutation breeding.

About the Book



xiii

Contents

  Plant Genetic Resources: Conservation, Evaluation and Utilization  
in Plant Breeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    1
Parmeshwar K. Sahu, Richa Sao, Ishu Kumar Khute, Samrath Baghel, 
Ravi Raj Singh Patel, Antra Thada, Deepika Parte,  
Yenkhom Linthoingambi Devi, Sunil Nair, Vinay Kumar,  
Suvendu Mondal, B. K. Das, and Deepak Sharma

  SINE Markers as a Powerful Tool for Assessing Genetic Diversity  
to Improve Potato . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   47
Nasya Tomlekova, Sibel Aziz, Emiliya Nacheva, Beatrice Weber,  
Aamir Raina, and Kathrin M. Seibt

  Applicability of ISAP and RAPD Techniques for Capsicum  
Collection Genotyping  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   77
Nasya Tomlekova, Velichka Spasova-Apostolova, Nikolay Panayotov, 
Ivelin Panchev, Fatma Sarsu, Mohammad Rafiq Wani,  
and Kathrin M. Seibt

  Improved Breeding of High-Carotene Carrots Through  
Marker-Assisted Paternity Selection and Raman Spectroscopy  . . . . . . . .  115
Sabine K. Clausen, Steffen Dahlke, Bjarne Jørnsgård,  
and Søren K. Rasmussen

  Traditional and Modern Molecular Cytogenetic Approaches  
to the Study of Mutagen-Induced DNA Damage:  
A Case of Fagopyrum Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129
J. Kwasniewska and A. Betekhtin

  Improvement of Yield in Cowpea Varieties Using Different  
Breeding Approaches  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145
Aamir Raina, Rafiul Amin Laskar, Mohammad Rafiq Wani,  
and Samiullah Khan



xiv

  Germplasm Diversity and Breeding Approaches for Genetic  
Improvement of Mungbean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173
Rafiul Amin Laskar, Bhaskar Dowarah, and Nilofer Sheikh

  Mutation Breeding for Adaptation to Climate Change in Seed  
Propagated Crops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197
J. G. Manjaya and S. K. Gupta

  Induced Mutagenesis-A Reliable Technology to Overcome  
the Limitations of Low Genetic Variability in Lentils . . . . . . . . . . . . . . . . .  231
Mohammad Rafiq Wani, Aamir Raina, Nasya Tomlekova,  
Rafiul Amin Laskar, Mohammad Feroz, and Samiullah Khan

  Abiotic Stress Tolerance and Nutritional Improvement in Chickpeas  
Through Recombination, Mutation, and Molecular Breeding . . . . . . . . . .  257
G. Misra and Archana Joshi-Saha

  Application of Molecular Markers on Assessing Genetic Diversity  
in Faba Bean  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  305
Nurmansyah, Salem S. Alghamdi, Hussein M. Migdadi, and M. Afzal

  Conventional and Molecular Breeding for Genetic Improvement  
of Maize (Zea mays L.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  317
Mukesh Choudhary, Jeetram Choudhary, Pawan Kumar, Pardeep Kumar, 
Bahadur Singh Jat, Vishal Singh, and Manoj Choudhary

  Conventional and Molecular Breeding for Sunflower Nutrition  
Quality Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  351
Aleksandra Radanović, Sandra Cvejić, Milan Jocković, Boško Dedić, 
Siniša Jocić, and Dragana Miladinović

  Mendelian to Genomics and Bioinformatics Approaches  
in Cytoplasmic Male Sterility and Fertility Restoration in Sorghum 
Breeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  393
Krishnananda P. Ingle, Mangesh P. Moharil, Santosh J. Gahukar,  
Pravin V. Jadhav, Rameshwar Ghorade, Gholamareza Abdi,  
Gopal W. Narkhede, and Atul Singh

  In Vitro Embryo Rescue Techniques and Applications in Hybrid  
Plant Development  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  419
Samuel Amiteye

  Proteomic and Biochemical Research for Exploring the Role  
of Plant-Derived Smoke in Food Crops. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  457
Shafiq Ur Rehman, Amana Khatoon, Muhammad Mudasar Aslam, 
Muhammad Jamil, and Setsuko Komatsu

  Genome-Wide Association Study (GWAS): Concept and Methodology  
for Gene Mapping in Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  477
Tanmaya Kumar Sahu, Monika Singh, Sanjay Kalia,  
and Amit Kumar Singh

Contents



xv

  Tweaking CRISPR/Cas for Developing Salt and Drought Tolerant  
Crop Plants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  513
Mahrukh, Khazin Hussain, Jafar K. Lone, Ragini Bhardwaj,  
and Muntazir Mushtaq

  CRISPR/Cas in Improvement of Food Crops for Feeding the World  
into the Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  529
Suraiya Akhtar, Raja Ahmed, Khaleda Begum, Ankur Das,  
and Sofia Banu

  Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  567

Contents



xvii

About the Editors

Aamir  Raina is currently working as Assistant 
Professor in the Department of Botany, at Aligarh 
Muslim University, Aligarh, India. Dr. Raina obtained 
his Masters in Botany in 2013 with specialization in 
“Genetics and Plant Breeding” from the University of 
Kashmir, Srinagar, Jammu and Kashmir, India. Dr. 
Raina earned the Degree of Doctorate in 2018 for his 
research work on “Induced Mutagenesis in Cowpea” 
from the Aligarh Muslim University, Aligarh, India. 
His current research interests are the selection for 
novel mutations induced by mutagens  in pulses, 
medicinal and aromatic plants and elucidation of 
physiological and molecular mechanisms in response 
to radiations and looking for suitable germplasm 
donors for breeding purpose. Working on the muta-
genesis of plants, Dr. Raina has found a significant 
role of mutagens in the regulation of plant growth and 
development and has suggested that radiations could 
play an important role in improving the yield and 
yield attributing traits of crops. Recognizing the con-
tribution of Dr. Raina in the field of mutation breed-
ing, International Atomic Energy Agency (IAEA), 
Vienna, Austria, appointed   Dr. Raina as Technical 
Corporation Expert and Lecturer to conduct national-
level mutation breeding training in Sudan. The suc-
cessful conduct of Dr. Raina in different IAEA 
projects as an expert supported his research in muta-
tion breeding of pulse crops and proved his ability to 
work in a multicultural environment.  Considering all 
his achievements and outstanding contributions in the 
field of Plant Science, he has been conferred with 



xviii

various research fellowships including CSIR JRF, 
DBT-SRF, GATE, ICAR NET, JKSET  and Nuffic 
OKP  (from Dutch Ministry of foriegn Affairs, The 
Netherlands) and awards including National 
Environmental Science Academy (NESA) Young sci-
entist and Bharat Vikas Award. He has been recog-
nized as Young Scientist of the Year 2018, receiving 
the award from President of NESA, India. Dr. Raina 
has published more than 40 journal articles and 25 
book chapters. Dr. Raina has edited special issue on 
research topic entitled “Legume Breeding in 
Transition: Innovation and Outlook” in Frontiers in 
Genetics   and “Emerging Talents in Horticulture 
Breeding and Genetics 2022” in Frontiers in 
Horticulture. He is among the editorial board mem-
bers of many scientific journals such as Frontiers in 
Plant Science, Frontiers in Genetics, Plos One 
Scientific Reports, and BMC Plant Biology. Dr. Raina 
has participated and presented several research papers 
in different national and international conferences. 
Dr. Raina has also attended many workshops, train-
ing, and short courses under scholarships from 
national and international funding agencies.

Mohammad  Rafiq  Wani is currently working as 
Assistant Professor (Selection Grade) in the 
Department of Botany at Abdul Ahad Azad Memorial 
Degree College Bemina, Cluster University Srinagar, 
Jammu and Kashmir, India. Dr. Wani did his Masters’ 
degree in Botany in 2003 with a specialization in 
“Genetics and Plant Breeding” from Aligarh Muslim 
University (AMU), Aligarh, Uttar Pradesh, India. 
After obtaining the Degree of Doctorate in 2008 for 
his research work on “Chemical Mutagenesis in 
Mungbean” from the same university, he joined the 
Department of Higher Education, Jammu and 
Kashmir Government in 2009. He teaches a range of 
bioscience-related subjects at undergraduate and 
postgraduate levels. Dr. Wani’s research interests are 
primarily focused on induced mutagenesis and 
molecular biology in food crops more particularly in 
pulse crops. As a part of his research endeavor, Dr. 
Wani has extensively researched and written on the 
issues of induced mutagenesis in food crops, with 
special reference to pulses. He has published more 

About the Editors



xix

than 65 research papers in peer-reviewed journals and 
20 book chapters in various research-oriented vol-
umes. Dr. Wani, while constantly working for his aca-
demic and research interests, has so far edited six 
volumes of books on the subjects of Plant Stress 
Physiology, Induced Plant Mutagenesis, and Crop 
Improvement with reputed international publishers 
like Springer and Wageningen Academic Publishers, 
the Netherlands.

Rafiul  Amin  Laskar is an Assistant Professor of 
Plant Sciences affiliated with the Department of 
Botany,   Pandit Deendayal Upadhyaya Adarsha 
Mahavidyalaya (PDUAM), Eraligool, Karimganj, 
Assam, India. He received his M.Sc. in Botany with 
specialization in Genetics and Plant Breeding in 2012 
and DBT-PDTC in Plant Tissue Culture and 
Micropropagation in 2013 from the Aligarh Muslim 
University, Aligarh, India. Dr. Laskar has obtained 
his Ph.D. in 2018 from the Faculty of Life Sciences, 
Aligarh Muslim University, Aligarh, India, for his 
work on Induced Mutagenesis. After completing his 
Ph.D., he worked as a Guest Faculty at Nagaland 
University, Lumami for over 1 year and as an Assistant 
Professor at Bahona College, Jorhat for over 3 
year.  Dr. Laskar is actively engaged in research on 
mutation breeding in grain legumes for genetic 
improvement of qualitative and quantitative traits. He 
is a life member of the various educative societies and 
associations and had been active member of the inter-
disciplinary societies. To his credit are edited book, 
10 book chapters published by reputed publishing 
companies like Springer and more than 50 other pub-
lications as research papers, editorials, popular sci-
ence articles, review papers, and other reports. He has 
edited a special issue entitled “Legume Breeding in 
Transition: Innovation and Outlook” in Frontiers in 
Genetics and is serving as Editorial Board Member of 
many journals. He has presented a number of research 
papers in various national and international confer-
ences and symposiums. He has attended many work-
shops and short courses under scholarship from 
national and international bodies. He has acted as the 
co-coordinator of the Institutional Biotech Hub, 
Bahona College funded by Department of 

About the Editors



xx

Biotechnology, India. Dr. Laskar has served as the 
Co-Principal Investigator for the project titled “DBT-
NER Institutional Biotech Hubs at Bahona College, 
Jorhat, Assam with a Focused Area of ‘Development 
of Infrastructure and Skilled Human Resources 
Through Science & Technology Intervention”. 
Currently he is maintaining an active student research 
program on induced mutagenesis of food crops, 
cytogenetics, and in vitro tissue culture of economi-
cally important plants focusing on plant genetic 
resources of North East India.

Nasya Tomlekova is a Professor and Head of 
Molecular Biology Laboratory in the Department of 
Breeding at the Maritsa Vegetable Crops Research 
Institute, Plovdiv, Bulgaria. She graduated from 
Sofia University “St. Kliment Ohridski” in Biology 
and did her Masters with specialization in genetics 
and biochemistry. She has been employed in the 
Institute in 1990; trained in the area of her research 
interests by 12 international fellowships; and she has 
a long postgraduate experience in research on the 
application of induced mutagenesis, molecular and 
in vitro techniques, and other relevant biotechnolo-
gies related to crop improvement. Mrs. Tomlekova 
obtained the Degree of Doctorate at the Commission 
on Plant-Growing and Biotechnologies and her 
Habilitation was at the Commission on Breeding and 
Seed Production. She has published 5 books, includ-
ing a methodological recommendation, and 11 book 
chapters, 121 scientific papers in peer reviewed jour-
nals, and participated in 43 international conference 
proceedings. Prof. Tomlekova teaches on several 
topics related to biotechnology and she has trained 
many students and fellows from different countries 
at Ph.D. and post- and undergraduate levels. She 
conducted dozens expert missions as a lecturer in 
different countries from Asia and Africa. Dr. 
Tomlekova acted as lead editor of two books by 
Wageningen Publisher, and she is a member of three 
journal editorial boards, a reviewer of more than 30 
international bioscience-related journals and proj-
ects, and a member of 5 professional scientific soci-
eties, like EUCARPIA, International Carotenoid 
Society, and International Pepper Network. The 

About the Editors



xxi

successful participation of Prof. Tomlekova in nine 
different IAEA and an EU projects as coordinator/
scientific holder supported her research in mutation 
breeding of vegetable crops and potato and proved 
her ability for a work in a multicultural and multilan-
guage environment from and outside Europe. Apart 
from that, she has managed projects and participated 
in many research teams of national and international 
projects. Her research focuses on the field of molecu-
lar biology with applications in agriculture, induced 
mutagenesis, genetics, biochemistry, and molecular 
marker selection.

Samiullah Khan is currently working as a Professor 
and Head of Genetics and Plant Breeding, and Plant 
Biotechnology sections in the Department of Botany 
at the Aligarh Muslim University, Aligarh, India. Dr. 
Khan obtained his Ph.D. in 1990 from Aligarh 
Muslim University, specializing in Crop Genetics and 
Plant Breeding. He has 29 years of teaching experi-
ence in Embryology of Angiosperms, Genetics, and 
Plant Breeding and supervised a number of Ph.D., 
M.  Phil., and M.Sc. projects. He has edited several 
books and published more than 100 research papers 
in journals of national and international repute. He 
has attended many conferences in India and abroad 
including XVIth International Congress of Genetics 
at Toronto, Canada. He is a member of editorial board 
of many scientific journals. He is a fellow of the 
Indian Society of Genetics and Plant Breeding.

About the Editors



1

Plant Genetic Resources: Conservation, 
Evaluation and Utilization in Plant 
Breeding

Parmeshwar K. Sahu, Richa Sao, Ishu Kumar Khute, Samrath Baghel, 
Ravi Raj Singh Patel, Antra Thada, Deepika Parte, 
Yenkhom Linthoingambi Devi, Sunil Nair, Vinay Kumar, Suvendu Mondal, 
B. K. Das, and Deepak Sharma

Abstract Conservation, evaluation and utilization of plant genetic resources 
(PGRs) in plant breeding are crucial for sustaining the ecology among living organ-
isms of the planet and for being self-sufficient in crop production and improvement 
programmes. PGRs comprise an important component of agro-biodiversity, which 
sustains humankind by meeting its demands for food, fodder, fibre and fuel. Besides 
food security, more PGR-related activities, environmental protection and revival of 
local and distinct resources are also fuelling the development of new industrial 
products as well as new research breakthroughs. Currently, threat to biodiversity has 
been increased due to continuous degradation on global land resources, and within 
agricultural systems, production pressures continue to drive out traditional varieties, 
landraces and other genetic resources. In situ conservation of PGRs alone cannot 
assure long-term security in the genetic reserve due to chances of losing the germ-
plasm through environmental hazards. The genetic materials can be preserved as 
gene banks for long-term storage under suitable conditions using in vitro cultures 
(plant cells, tissues or organs). Furthermore, advances in biotechnology, in in vitro 
culture techniques and molecular biology marked out as an appropriate alternative 
for genetic conservation by cryopreservation where seed banking was not achiev-
able. Moreover, evaluation of PGRs with traditional and advanced breeding and 
biotechnological approaches is necessary to identify the suitable germplasm with a 
target trait for their further utilization in crop improvement programmes. Till now, 
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immense efforts have been made for collection; conservation and evaluation of 
PGRs pay off only with their efficient utilization for enhanced crop productivity and 
profitability. Utilization of PGRs varies from direct release of potential germplasm, 
development of new improved varieties, improving the breeding materials through 
pre-breeding, development of new novel crops (climate-resilient, biotic and abiotic 
stress-tolerant, biofortified crops), new gene discovery and allele mining studies. 
Furthermore, there is a concerted global need to be made to streamline and regulate 
the accessibility of PGRs at international level. In this chapter, holistic efforts have 
been made to review the status of collection, conservation, evaluation and utiliza-
tion of PGRs with the help of conventional and advanced breeding approaches.

Keywords Biodiversity · Plant genetic resources · Genetic diversity · Crop 
improvement · Breeding

1  Introduction

Plant genetic resources (PGRs) comprise a whole spectrum of genetic resources 
including modern cultivars, obsolete cultivars, mutants, indigenous landraces, wild 
and weedy relatives along with the diversity of agro-ecosystems which may be 
exploited in several ways for agriculture and forestry and the complex set of human 
interactions. It forms the foundation of agricultural research and development. 
PGRs are a hope for the future of global food and nutritional security as these 
diverse germplasms are the storehouse of valuable traits, viz., yield-attributing, 
biotic and abiotic stress-tolerant, nutritional traits, entailed by the researchers and 
breeders to swiftly respond to new types or enhanced levels of biotic and/or abiotic 
stresses induced by climate changes and malnutrition as well (Lee et  al., 2020; 
Halewood et al., 2018).

With the increased pressure of burgeoning human population, degraded land 
resources and industrial modernization, the loss of precious PGRs and biodiversity 
is being the most urgent and crucial issue which prompted an international action. 
Therefore, the conservation and sustainable use of PGRs for food and agriculture 
has evolved as a scientific discipline and several gene banks and other conservation 
utilities have been established in many countries (Kaviani, 2011). In this way, sci-
entists have made huge efforts on the collection, conservation, maintenance and 
evaluation of the PGRs for its sustainable utilization for the welfare of human civi-
lization. At the moment, the International Treaty on Plant Genetic Resources for 
Food and Agriculture (ITPGRFA) has made great contribution by providing the 
mechanism for germplasm sharing and effective ex situ conservation of 760,467 
accessions for a range of plants through international gene banks of the Consultative 
Group on International Agricultural Research (CGIAR) (Lee et al., 2020). In India, 
the ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, 
encompasses the National Gene Bank Network which conserves more than 
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0.40 million accessions of various crops. NBPGR works in service mode for effec-
tive utilization of PGR in crop improvement programmes which depends mainly on 
its systematic characterization and evaluation and identification of potentially use-
ful germplasm (Singh et al., 2020). Management of PGR comprises various activi-
ties, viz., ensuring the representation of maximum diversity in ex situ collections; 
pest- free conservation; seed increase/regeneration; characterization, evaluation and 
maintenance of active collections; and documentation (Wambugu et al., 2018).

Due to raising concern of conservation, the scope of characterization and evalu-
ation of genetic resources has been widened. Characterization, evaluation and 
regeneration are considered as the most important and essential activities for better 
management of PGRs. Moreover, characterization is the process of describing the 
genotypes with a certain group of descriptors and highly heritable characters which 
may be used in establishing taxonomic identity. However, in the process of evalua-
tion, potentials for yield parameters, quality parameters and resistance to various 
biotic and abiotic stresses of a genotypes are being accessed or observed with the 
help of certain biostatical methods (Gollin, 2020). In this way, the process of char-
acterization and evaluation make possible the exploitation of PGRs in further breed-
ing programmes. Regeneration/maintenance of PGRs without losing genetic 
integrity at clonal repositories, field gene banks, herbal gardens, etc. also played a 
critical role in conserving PGRs (Singh et al., 2020).

The evaluation of PGRs for identification of donor genotypes for specific traits is 
essential for their further utilization. Evaluation should be undertaken in germplasm 
accessions which are already characterized and where enough quantity of planting 
material is available. It is a multidisciplinary approach to be done in collaboration 
with the plant breeder, germplasm curator, biochemist, physiologist, entomologist, 
pathologist and other experts (Rao, 2004; Jaramillo & Baena, 2000). It will be fruit-
ful when germplasm lines might be evaluated in the area of their adaptation or under 
similar environmental conditions considering the breeding behaviour and biological 
status of the germplasm. The evaluation of PGRs is the primary step towards ‘pre- 
breeding’ or ‘germplasm enhancement’ in which attempts are made by scientists, to 
eliminate undesirable traits or unfavourable gene(s) through backcrossing and 
selection for various generations with the cultivated parent (Singh et  al., 2020). 
Furthermore, PGRs having useful genes for pest and pathogen resistance, nutritive 
traits, quality traits and yield-attributing traits may also be transferred through vari-
ous breeding approaches to a new genotype for developing a new variety.

In recent years, new challenges have arisen for the conservation, utilization and 
exploitation of useful genes for crop improvement. Currently, threat to biodiversity 
has been increased due to continuous degradation on global land resources, indus-
trialization and high production pressures made out of the PGRs from the channel. 
For this concern, traditional as well as modern technologies including biotechno-
logical tools have been proven beneficial. With the aforementioned views, this chap-
ter deals more about the plant genetic resources and its potential, utilization, 
conservations and enhancement and modern tools applicable for better preservation 
and maintenance of genetic resources.

Plant Genetic Resources: Conservation, Evaluation and Utilization in Plant Breeding
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2  Genetic Diversity and Plant Genetic Resources

The sum total of the genetic variability present in a population or in a species which 
is a combination of all the genes and their alleles represents the genetic diversity of 
that population. Genetic resources include all the variability which is present in the 
form of cultivars, wild relatives, breeding lines, races, etc. These resources are the 
ultimate source of variability for any plant breeding programme (Rao, 2004).

Genetic diversity available within the PGRs is very important for survival of any 
species as they play a major role in the process of evolution. The diversity present 
in the genetic constitution allows the species to adapt to the changing environmental 
conditions. Mutations, natural selection, genetic drift, sexual reproduction, etc. lead 
to various combinations of genes which generate diversity among a population 
(Singh, 2017; Raina et al., 2020a, b, ; 2022a, b, c, d; Khursheed et al., 2018a, b, c; 
Laskar et al., 2018a, b; Goyal et al., 2021a, b; Rasik et al., 2022; Sellapillai et al., 
2022). The interaction of a genotype with the environment results in a phenotype of 
an individual. Only some individuals in a population will be able to cope up with the 
changing environments, outbreaks of pests and diseases, deficiency or toxicity of 
mineral elements, etc. The rest of the genotypes will get eliminated in the process of 
evolution (Rao, 2004). Thus, the diversity present in a population helps in the sur-
vival of the species and prevents them from extinction.

In the present scenario, global warming, pollution and use of chemicals have led 
to an increment in potential threats of insects, pests and diseases among the agricul-
tural crops. Changing climatic conditions has forced us to work on climate-smart 
agriculture (CSA) in order to cope up with the upcoming situations. In any crop 
improvement programme, the first and the most important step is to identify the trait 
of interest which may be present in the population or in wild relatives (Singh, 2017; 
Ramya et al., 2014). Plant genetic resources can be used to create different gene 
combinations which meet the required objective. The aim can be improvement in 
qualitative traits or resistance against biotic or abiotic stresses.

In conventional plant breeding programmes, the existing diversity and plant 
genetic resources were utilized to create crops which carry desirable genes and 
characteristics. The advancement in science and technology has provided scientists 
with ample opportunities to generate genetic diversity according to the requirement. 
The lack or absence of diversity can be overcome by creating novel genes or trans-
genic crops with the use of tools of biotechnology (Singh et al., 2020).

To conclude, plant genetic resources are an imperative component to maintain a 
healthy ecosystem and to cope up with the negative modifications of our surround-
ings. PGRs are the irreplaceable assets of nature which should be conserved and 
utilized in a sustainable manner.
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3  Conservation, Evaluation and Enhancement of PGRs

Plant genetic resource is considered to be the pillar of world food security and the 
agriculture system. A rich plant genetic resource can be used in the fields of evolu-
tionary biology, cytogenetic, physiological, phylogenetic, biochemical, ecological, 
pathological and breeding researches (Ulukan, 2011). The ability of a particular 
species to withstand a changing environment depends on the richness of the genetic 
resources of that particular species. So, PGR provides the plant genetic pool of a 
particular species. Genetic erosion has a negative impact on genetic diversity pres-
ent in the gene pool, so to avoid it, conservation of PGR is necessary for the protec-
tion of genetic material loss from genetic erosion (Sharma, 2007). Care must be 
taken while conserving the PGR and also it needs to be performed wisely as it is 
being threatened by several factors (Ramya et al., 2014). In the early days, only 
natural forces are being threatened in the conservation and food security like 
changes in the weather and climate system, even now the natural forces are there, 
but along with it, more threats are from artificial activities like habitat destruction, 
replacement of diverse and landrace cultivars by more genetically uniform ones, 
deforestation, pollution, urbanization, globalization, overgrazing, fragmentation 
and degradation (Kaviani, 2011).

So, conservation of genetic variability is essential and can be done through in situ 
and ex situ conservation. In situ conservation conserves the plant germplasm in its 
natural habitat like on-farm conservation, reserves and protected areas, while ex situ 
conservation deals with the movement of plant genetic resource from their habitat 
and shifting to the artificial storage condition. Farmers need to actively participate 
in the conservation of traditional and landrace cultivars. All the research work stud-
ies can be done on the ex situ collection germplasm through which the nature, prop-
erty and characteristics of the germplasm can be understood through those studies 
(Ramya et al., 2014). Seed storage methods like seed banks, botanical garden and 
field gene bank are part of ex situ conservation. But there are some plant parts which 
cannot be conserved and stored by either in situ and ex situ method, so for those 
plants another conservation practice called cryopreservation helps in its storage. 
Furthermore, biological materials like plant organs and seeds like recalcitrant are 
used in this conservation method. In vitro conservation provides medium-term stor-
age facility along with reducing the risk of germplasm loss from insect attack, dis-
ease attack, nematode attack or any other natural disasters. It is also commonly used 
in vegetatively propagated plants (Ogbu et al., 2010). Cryopreservation refers to the 
storage at ultra-low temperature with liquid nitrogen at the temperature of 
−196 °C. Living biological tissues can be stored through this method as the storage 
system can arrest the metabolic activity and cell division of the live cell. In cryo-
preservation, no change in genetic make-up, vigourness and viability of the con-
served material is obtained (Cruz-Cruz et  al., 2013). Crop evolution study along 
with taxonomic study, as well as genetic diversity study, helps in understanding 
more of what to conserve in the genetic population.

Plant Genetic Resources: Conservation, Evaluation and Utilization in Plant Breeding
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The collected accessions need to be evaluated for its characterization and proper-
ties. Therefore, a thorough evaluation should be done for all the genotypes with 
different properties. But sometimes the genotypic collection is large enough that the 
evaluation methods became difficult to handle. Evaluation is a complex process and 
they present a serious backlog in most collections. A large number of samples to be 
handled and a large number of traits to be studied make evaluation a difficult task. 
Thus, nowadays, improved evaluation methods are being started (Ramya et  al., 
2014). One utilized methodology was the use of core collection for evaluation. Core 
collection provides the breeders a manageable number of accessions to evaluate the 
whole collection or to search for a new character or character combinations. But still 
in some cases even the core collection was too large as the germplasm collection 
was quite large, so to tackle such situation, the concept of mini-core collection was 
again started. A mini-core collection has only 1% of the entire collection and 10% 
accessions in the core collection which represent the diversity of the entire core col-
lection (Wambugu et al., 2018).

Enhancement in the PGR is required through proper collection and efficient eval-
uation methods (Hajjar & Hodgkin, 2007; Bains et al., 2012). Enhancement in the 
utilization of PGRs can be done through introgression and incorporation of desir-
able genes or traits in the agronomically superior genotype (Spoor & Simmonds, 
2001). Introgression and incorporation mainly focused on freely recombining 
donors from the primary gene pool, while pre-breeding mainly focused on utilizing 
the crop wild relatives. Recent biotechnological approaches are being used for these 
methods. By using these processes, Kuraparthy et al. (2007a) introgressed a new 
major gene (Yr40/Lr57) into bread wheat for resistance to stripe rust as well as leaf 
rust using Ph locus manipulation from Ae. ovata. Furthermore, a novel major gene 
(Lr58) for leaf rust resistance was introgressed from Ae. triuncialis to elite wheat 
lines using cytogenetic and molecular techniques (Kuraparthy et  al., 2007b). 
Moreover, Rawat et al. (2009) identified the few lines of Aegilops kotschyi and Ae. 
tauschii with high iron and zinc content in the grain which are being used as donors. 
Similarly, Pal et al. (2010) identified a major gene for high protein and enhanced 
micronutrient content (DpcB1) in T. dicoccoides which were transferred to a wide 
range of wheat genotypes through marker-assisted selection.

4  Conservation of Plant Genetic Resources Through 
Various Techniques

The conservation of plant genetic resources is a crucial assertion concerning the 
human population worldwide. In the current situations, the fast growth in human 
populations with increased needs caused severe threat to biodiversity. The expand-
ing agricultural frontier has contributed towards the genetic erosion of valuable bio-
diversity. Such reductions have serious implications for food and nutritional security 
in the long term (Rao, 2004). The conservation of PGRs is extremely important to 
meet the present and future needs of various crop improvement programmes and to 
build reserves of breeding materials that have nutritional or industrial potential.
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The genetic diversity present in the PGRs provides opportunities to the plant 
breeders and farmers as well for developing new and more productive crop varieties 
which are resistant to biological and environmental stresses through selection and 
breeding (Rao, 2004; Singh, 2017). However, it would be worthwhile to preserve all 
the diversity in nature rather than move it into an artificial environment for conser-
vation, because of the peril of genetic erosion in the original location and the need 
for easy access for exploitation in ex situ conservation approaches which are signifi-
cant for crop species. In situ conservation alone cannot assure long-term security in 
the genetic reserve or on-farm for a specific species. One important advantage of ex 
situ conservation is the easy availability of genetic material to the plant breeder 
(Hawkes et al., 2012).

Generally, germplasms that are conserved in the germplasm banks are kept as 
seeds but the major risk of in situ conservation is losing germplasm due to environ-
mental hazards (Singh, 2017). Therefore, the genetic materials may be preserved in 
gene banks using in vitro cultures (plant cells, tissues or organs) for long duration 
with suitable conditions. However, fair knowledge of the genetic structure of plant 
species and the techniques associated in sampling, regeneration, preservation of 
gene pools, etc. are essential for the successful establishment of gene banks. 
Advancement and expansion in the field of biotechnology marked out as an appro-
priate alternative for conservation of PGRs by cryopreservation where seed banking 
was not achievable. The most commonly used cryopreservation technique is 
employing liquid nitrogen (−196 °C) where the cells remain in a completely inac-
tive state so that they can be conserved for long periods (Kaviani, 2011).

There are two approaches for conservation of PGRs as mentioned in Article 2 of 
the Convention on Biological Diversity: (1) in situ conservation and (2) ex situ 
conservation.

4.1  In Situ Conservation (Natural Ecosystem)

It is defined as the conservation of plant genetic resources at their natural habitat by 
establishing reserves. These approaches comprise maintenance and recovery of 
genetic variation at the location where it is found and, in case of cultivated species, 
where they have developed their peculiar properties in their habitat, either in the 
wild or in conventional farming strategies. The two major strategies of in situ con-
servation are discussed briefly in subsequent paragraphs.

4.1.1  Genetic Reserve Conservation

The genetic reserves are the protected areas that have been set aside to preserve the 
genetic diversity of target species with certain protocols (Maxted et  al., 1997; 
Heywood, 2005). This technique is the most applicable for conservation of the bulk 
of wild species, enables multiple taxon conservation in a single reserve and favours 
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continued evolution of the species (Edagbo et al., 2011). It is usually referred to as 
the cornerstone of in situ conservation.

4.1.2  On-Farm Conservation

On-farm conservation of plant species is carried out by the farmers. In on-farm, 
they often adopt conservation to grow, use and conserve landraces, native variet-
ies and other local materials, within their original landscapes and traditional 
farming systems. Under this conservation system, the diversity is always sub-
jected to evolutionary changes and adaptations (Edagbo et al., 2011). The roles 
of the farmers in understanding and managing the crop diversity in their field 
have been considered as indispensable for the on-farm maintenance of PGRs. 
The landrace and farmers’ varieties that are adapted to the local environment 
and having locally adapted alleles may be significantly effective for specific 
breeding programmes.

4.2  Ex Situ Conservation

It is defined as the conservation of plant genetic resources outside their natural habi-
tats. It involves seed storage, in vitro storage, DNA storage, pollen storage, field 
gene banks and botanical gardens.

This method became a choice for scientists and breeders due to easy access 
to the materials conserved in the ex situ facilities. Ex situ conservation of PGRs 
has various approaches which may be selected based on the biology of plant 
species, their method of reproduction, the purpose of conservation and the 
future usage of the conserved materials (Dulloo et  al., 2017; FAO, 2013). 
Standard protocols have been developed for collection of germplasm under the 
ex situ environment.

4.2.1  Seed Storage Conservation

Usually, seeds are the most suitable and widely used form for the conservation of 
PGRs. This approach is only confined to seed propagating plants especially for 
‘orthodox seeds’ that can be dried to low moisture content and can tolerate low 
temperatures (between −20  °C and +4  °C). In this method, seeds are stored at 
refrigerators, freezers or cold rooms with suitable conditions depending on how 
long the seeds need to be conserved (Rao et al., 2006). Therefore, seed bank collec-
tions are classified into three groups which are given in Table 1.
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Table 1 Types of seed storage conservations and features

Measures Base collection Active collection Working collection

Conservation 
duration

Long term (50–100 years) Short to medium duration 
(10–15 years)

Short duration 
(3–5 years)

Storage 
temperature

about −20 °C About 0 °C 5–10 °C

Use Normally restricted in 
distribution and acts as a 
backup to an active 
collection

Generally used for 
evaluation, multiplication 
and distribution of the PGRs

Frequently used in 
crop breeding 
programme

Seed moisture 
content

5% 5–8% ~10%

4.2.2  In Vitro Conservation

This conservation technique involves the maintenance of explants in a sterile, 
pathogen- free environment and is best suited for recalcitrant or short-lived seed and 
clonally propagated crops. Depending on species, the explants need to be re- cultured 
every 6 months to 2 years. This poses a dreadful risk of genetic changes and may 
cause genetic erosion because in  vitro conservation can only be considered for 
short- to medium-term conservation (Reed, 2004). It involves the establishment of 
tissue cultures of accessions and their storage under controlled conditions for short 
periods. However, cryopreservation offers long-term conservation, where plant 
material is stored in liquid nitrogen at −196 °C. Therefore, plants can also be con-
served as tissues, embryos or cells in vitro. Furthermore, there are certain disadvan-
tages of in vitro conservation techniques including the risk of somaclonal variations, 
need to develop individual maintenance protocols for most species and the rela-
tively high-level technology and cost required which should be addressed carefully 
or effective conservation of recalcitrant or short-lived seed and clonally propagated 
crops (Maxted et al., 1997). In vitro conservation offers an alternative to field gene 
banks in a non-viable form.

4.2.3  Slow Growth

Slow growth procedures allow clonal plant material to be conserved for 1–15 years 
under tissue culture conditions with periodic sub-culturing, depending on species 
(Rao, 2004). Mostly, to limit the growth, a combination of low temperature with low 
light intensity or even darkness is used under the storage chamber. Generally, a 
temperature of 0–5  °C is being maintained for cold-tolerant species, whereas 
15–20 °C is maintained for conservation of tropical plant species. In some cases, 
plant growth may be limited by modifying the culture media (Withers & Engelmann, 
1997). Shoots are the best part for storage under sow growth and successfully 
employed in potato (Muthoni et  al., 2019), Musa species, yam, Allium species, 
sweet potato, cassava, temperate tree species (Rao, 2004) and malanga (Colocasia 
esculenta L. Schott) (Mancilla-Álvarez et al., 2019).

Plant Genetic Resources: Conservation, Evaluation and Utilization in Plant Breeding
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4.2.4  Cryopreservation

It is a highly reliable method for long-term preservation of PGRs for those crop spe-
cies which are normally unable to produce seed, viz., tuber crops and roots. Plant 
tissues and organs can be frozen and stored in liquid nitrogen at −196 °C, since at 
this temperature, cell division and all metabolic activities remain suspended and the 
material can be preserved with no morphological, biochemical, genetic and karyo-
typic changes. Also for international exchange of genetic materials, cryopreserved 
tissues are preferred because they are safe, clean and disease-free (Feng et al., 2011).

4.2.5  Pollen Conservation

Initially, the concept of pollen storage started with controlling the pollination of 
asynchronous flowering genotypes, especially in fruit tree species. However, nowa-
days, it is also used for the conservation of PGRs. Pollen can be easily collected and 
cryopreserved in large quantities in a relatively small space. Likewise, it may be 
worthwhile in the ultimate future to regenerate haploid plants from pollen cultures, 
but still no generalized schedules have been established. It has the advantage that it 
is a relatively low-cost option, but the disadvantage is that only paternal material 
would be conserved and regenerated (Maxted et al., 1997).

4.2.6  Field Gene Bank Conservation

This technique is traditionally useful for recalcitrant species or the type of plants 
which does not easily produce seeds, or seed is highly heterozygous and preferable 
to store clonal material. Plant species like rubber, cassava, cocoa, banana, coconut, 
mango, coffee, yam, sweet potato, sugarcane (Rao, 2004) and taro (Mancilla- 
Álvarez et al., 2019) belong to this category. However, field gene banks are easily 
accessible for utilizing and evaluating the material being conserved but restricted in 
terms of genetic diversity because of their susceptibility to pests, disease and van-
dalism and involves extensive areas of land. It cannot reflect genetic diversity in a 
field gene bank.

4.2.7  Botanical Garden Conservation

Conservation on botanical gardens has the freedom to focus on wild species that 
may not be given sufficient priority for conservation. These gardens do not have the 
same constraints as institutes to focus on their activities on crop or crop-related 
species.
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4.2.8  Plant Herbarium

Herbariums also can preserve variability of crop plants, their wild relatives and 
other important species represented as dried plant specimens and seed samples.

5  Role of Biotechnology in the Conservation of Plant 
Genetic Resources

Biotechnology has flared up with a new technique at the molecular level. 
Biotechnological methods are reliable and can provide continuously safe, higher- 
quality natural products similarly (Nalawade et  al., 2003; Julsing et  al., 2007). 
Biotechnological approaches have been applied for better conservation and utiliza-
tion of genetic resources thorough in vitro clonal propagation, analysis of genetic 
diversity to identify the promising parents and genetic fingerprinting for removal of 
duplicates, elimination of pathogens for safe distribution and conservation of germ-
plasm and speeding up of breeding through identification and selection of potential 
progenies and searching of new sources of genes in germplasm. Application of bio-
technological tools have made it possible to conserve PGR using in vitro culture and 
cryopreservation, especially of species that are difficult to conserve as seeds (Rao, 
2004). The following approaches are used for conservation and utilization of plant 
genetic resources using biotechnological approaches.

5.1  Cryopreservation

The basics of the cryopreservation approach have already been discussed earlier in 
this chapter. Cryopreservation is performed for the preservation of recalcitrant seed 
and vegetatively propagated plants. It has also an added advantage of storage of a 
higher number of genetic resources in very little space, protection of material from 
external contaminations and cost-effective storage option for maintenance of germ-
plasm. There are various approaches of cryopreservation; some are based on the 
classic methods involving freeze-induced dehydration of cells as well as newer 
methods based on vitrification (Engelmann, 2000).

The vitrification process involves the treatment of material/samples with cryo-
protective agents, dehydration with highly concentrated solutions, rapid freezing 
and thawing, removal of cryoprotectants and recovery. The cryoprotectant mole-
cules provide the optimum cellular cryoprotection environment of plant cells.

Cryoprotectants ethylene glycol, propylene glycol and glycerol and DMSO are 
added to the freezing mixtures to increase osmotic potential and maintain mem-
brane integrity in the external medium. Using cryopreservation approaches, the 
germplasm of various crops has been preserved and this approach is widely used to 

Plant Genetic Resources: Conservation, Evaluation and Utilization in Plant Breeding



12

conserve the germplasm of other species as well. In mulberry the ideal plant part for 
cryopreservation was found to be winter buds, though embryonic axes, pollen and 
synthetic seeds have also been used (Niino & Sakai, 1992; Niino et  al., 1993; 
Vijayan, 2020) and globe artichoke using vitrification (Bekheet et al., 2020).

5.2  Development of Pathogen-Free Planting Material

Pathogen-free stock plants and plant material is essentially required as propagation 
material in nurseries and pathogen-free/healthy material is an essential criterion for 
germplasm exchange between countries or region through quarantine programmes. 
Several biotechnological approaches have been developed and widely used to elimi-
nate viruses from infected plants, namely, meristem culture, chemotherapy, thermo-
therapy or cryotherapy and cryopreservation (Kaya, 2021). Cryopreservation has 
also been used for eradication of viruses from affected plants by cryotherapy and 
cryopreservation of obligate plant pathogens (Bettoni et al., 2016; Bettoni et al., 2021).

5.3  Removal of Sexual Barrier for Germplasm Uses

A number of techniques have been developed to overcome problems of sexual 
incompatibility that lead to hybrid sterility or lack of genetic recombination in wide 
crosses involving distant wild relatives and cultivated species: (a) Embryo rescue: In 
vitro culture techniques that are used to assist in the development of plant embryos 
that might not survive to become viable plants. In embryo rescue, an immature 
hybrid embryo is shifted to a medium where viable plants may be regenerated and 
then backcrossed to the cultivated species to introduce the desired trait. Embryo 
rescue has been successful in wide crosses, and obtaining plants from inherently 
weak embryos (Sharma et al., 1996). (b) Somatic hybridization: The traits can also 
be transferred from one species to another using the fusion of protoplast This 
approach has been successful in overcoming the pre-zygotic sexual incompatibili-
ties and facilitate plant regeneration from the heterokaryons (Fahelson et al., 1994). 
This technique is highly useful for transferring beneficial characteristics/genes from 
wild crops to the cultivated crop species, breaking the sexual barrier for gene trans-
fer and accelerating plant breeding programmes.

5.4  Characterization of Genetic Diversity

Molecular markers are increasingly used for the screening of germplasm to study 
genetic diversity, identify redundancies in the collections, test accession stability 
and integrity and resolve taxonomic relationships. Exploring geographic or 
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ecological patterns of distribution of diversity in many different crops and their wild 
relatives that include banana (Pillay et al., 2001) and sweet potato (Gichuki et al., 
2003) is useful. Molecular markers have been used to analyse the genetic diversity 
of medicinal plants like ashwagandha (Kumar et al., 2018). Molecular markers are 
also used for genetic fingerprinting in germplasm to provide unique identity as well 
as remove duplicate entry.

5.5  DNA Bank or Preservation of DNA

DNA banks are meant for conservation of genomic DNA/tissue samples for the 
purpose of DNA extraction. The main aim of DNA bank is to accelerate down-
stream research using advanced molecular biology tools and facilitate strategic con-
servation, characterization and enhanced utilization of germplasm. It involved 
preservation of isolated DNA or direct storage of cells and tissues under low tem-
perature (−80 °C). Preserved DNA can be used for the molecular marker analysis 
and genetic fingerprinting of PGRs (de Vicente & Andersson, 2006).

6  Major Centres for Conservation and Maintenance of Plant 
Genetic Resources of Various Crops in India 
and the World

With the rise in urbanization, more and more land are acquired each day for the 
purpose of farming or for infrastructure. This has led to a sharp decline in biodiver-
sity and loss of valuable genetic resources. This is a great threat to our biodiversity 
which may lead to unbearable consequences in the future. To avoid this, many 
national and international organizations have been established in order to collect, 
maintain and utilize these genetic resources. In India, the main activities of germ-
plasm collection, exploration, introduction and maintenance are performed by the 
ICAR-National Bureau of Plant Genetic Resources, New Delhi, and at the interna-
tional level, it has been carried out by Bioversity International, Rome, Italy. 
Furthermore, a list of some major national and international centres for conserva-
tion and maintenance of PGRs is given in Tables 2, 3, 4 and 5.

7  Status of Germplasm of Different Crops at Indira Gandhi 
Krishi Vishwavidyalaya, (IGKV), Raipur, India

Indira Gandhi Krishi Vishwavidyalaya (IGKV), Raipur 492012 (Chhattisgarh), is 
well known for its biodiversity conservation in agricultural fraternity, mainly for 
conserving 23,250 rice germplasm accessions followed by 1964 grass pea (Lathyrus 
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Table 2 Institutions involved in the conservation, maintenance and utilization PGRs in India

S. 
no. Organization Objectives

1. ICAR-National Bureau of Plant 
Genetic Resources, New Delhi

The major objective is ex situ conservation of PGRs in 
gene banks comprising of long-term seed storage, in vitro 
repository and clonal field gene banks

2. Department of Environment, 
Forests and Climate Change, 
New Delhi

The major objective is in situ conservation of wild 
species, wild relatives, endangered plant species, rare 
plants and forest resources

Table 3 List of major places where in situ conservation of PGRs is ongoing in India

S. 
no. Place/region

Name of categorized 
biosphere reserve

Total area 
(km2) State

1. Bengalian rainforest Sundarban Biosphere 9630 West Bengal
2. Malabar rainforest Nilgiri 5520 Karnataka, Kerala and 

Tamil Nadu
3. Bengalian rainforest Manas 2837 Assam
4. Himalayan valley Nanda Devi 1560 Uttarakhand
5. Andaman and 

Nicobar Islands
Great Nicobar 885 Andaman and Nicobar

6. Coromandel coast 
region

Gulf of Mannar 555 Tamil Nadu

7. Burma monsoon 
forests

Nokrek 80 Meghalaya

Table 4 National active germplasm sites (NAGS) of different crops in India

S. 
no. Crop Name of sites/institutions

No. of 
accessions 
conserved

1. Wheat ICAR-Indian Institute of Wheat and Barley 
Research (IIWBR), Karnal (Haryana) 132001

17,000

2. Rice ICAR-National Rice Research Institute (NRRI), 
Cuttack (Orissa) 753006

20,000

3. Maize ICAR-Indian Institute of Maize Research 
(ICAR-IIMR), Ludhiana (Punjab) 141004

25,000

4. Barley ICAR-Indian Institute of Wheat and Barley 
Research (IIWBR), Karnal (Haryana) 132001

–

5. Sorghum ICAR-Indian Institute of Millets Research, 
Rajendranagar, Hyderabad (AP) 500030

2767

6. Pearl millet ICAR-Indian Institute of Millets Research, 
Rajendranagar, Hyderabad (AP) 500030

–

7. Minor Millets ICAR-Indian Institute of Millets Research, 
Rajendranagar, Hyderabad (AP) 500030

8572

8. Pulses ICAR-Indian Institute of Pulses Research, Kanpur 
(UP) 208024

9310

9. Soybean ICAR-Indian Institute of Soybean Research, 
Indore (MP) 452001

2500

(continued)
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Table 4 (continued)

S. 
no. Crop Name of sites/institutions

No. of 
accessions 
conserved

10. Oilseeds ICAR-Indian Institute of Oilseeds Research, 
(ICAR-IIOR), Hyderabad (AP) 500030

15,629

11. Rapeseed and 
mustard

ICAR-Directorate of Rapeseed-Mustard Research, 
Bharatpur (Rajasthan) 321303

15,082

12. Groundnut ICAR-Directorate of Groundnut Research, 
Junagadh (Gujarat) 362105

6432

13. Sugarcane ICAR-Sugarcane Breeding Institute, Coimbatore 
(TN) 641007

3979

14. Cotton ICAR-Central Institute for Cotton Research, 
Nagpur (Maharashtra) 440001

6896

15. Jute and allied 
fibres

ICAR-Central Institute for Jute and Allied Fibres, 
Barrackpore (WB) 743101

3226

16. Vegetables ICAR-National Bureau of Plant Genetic 
Resources, Pusa Campus, New Delhi 110012

16,139

17. Potato ICAR-Central Potato Research Institute, Shimla 
(HP) 171001

2375

18. Forages ICAR-Indian Grassland and Fodder Research 
Institute (Forage Crops), Jhansi (UP) 284003

6267

19. Spices ICAR-Indian Institute of Spices Research, Calicut 
(Kerala) 673012

2847

20. Tobacco ICAR-Central Tobacco Research Institute 
Rajahmundry (AP) 533105

1500

21. Plantation crops ICAR-Central Plantation Crops Research Institute, 
Kasaragod (Kerala) 673024

307

22. Medicinal and 
aromatic plants

All India Coordinated Research Project on 
Medicinal and Aromatic Plants, NBPGR, Pusa 
Campus, New Delhi 110012

375

23. Agroforestry plants ICAR-Indian Grassland and Fodder Research 
Institute, Jhansi (UP) 284003

40

24. Fruits (semi-arid) All India Coordinated Project (Semi-Arid Fruits), 
Hisar (Haryana) 125004

541

25. Fruits (subtropical 
and temperate)

NBPGR Regional Station, Phagli, Shimla (HP) 
171004

454

26. Fruits ICAR-Indian Institute of Horticultural Research, 
Bangalore (Karnataka) 560080

13,118

27. Citrus ICAR-Central Citrus Research Institute, Nagpur 
(Maharashtra) 440006

51

28. Mango ICAR-Central Institute for Subtropical 
Horticulture, Lucknow (UP) 226016

587

29. Tuber crops ICAR-Central Tuber Crops Research Institute, 
Sreekariyam, Trivandrum (Kerala) 695017

3586

30. Pseudo-cereals NBPGR Regional Station, Shimla (HP) 171004 3682
Total holdings 188,262

Source: https://www.bioversityinternational.org/fileadmin/bioversity/publications/Web_version/ 
174/ch18.htm with minor modifications
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Table 5 International Agricultural Research Centers (IARCs) associated with CGIAR

Acronym Centre
Year 
est. Research programmes Location

IRRI International Rice Research 
Institute

1960 Rice Philippines

CIMMYT International Maize and 
Wheat Improvement Center

1964 Maize, wheat, triticale, barley Mexico

IITA International Institute of 
Tropical Agriculture

1965 Maize, rice, cowpea, sweet 
potato, yams, cassava

Nigeria

CIAT International Center for 
Tropical Agriculture

1968 Cassava, beans, rice, pastures Colombia

WARDA West Africa Rice 
Development Association

1971 Rice Ivory Coast

CIP International Potato Center 1972 Potato Peru
ICRISAT International Crops Research 

Institute for the Semi-Arid 
Tropics

1972 Chickpea, pigeonpea, pearl 
millet, sorghum, groundnut

India

ILRAD International Laboratory for 
Research on Animal Diseases

1974 Trypanosomiasis, theileriosis Kenya

IBPGR International Board for Plant 
Genetic Resources

1974 Plant genetic resources Italy

ILCA International Livestock 
Centre for Africa

1974 Livestock production systems Ethiopia

IFPRI International Food Policy 
Research Institute

1975 Food policy USA

ICARDA International Centre for 
Agricultural Research in the 
Dry Areas

1976 Wheat, barley, triticale, faba 
bean, lentil, chickpea, forages

Syria

ISNAR International Service for 
National Agricultural 
Research

1980 National agricultural research Netherlands

Source: https://www.bioversityinternational.org/fileadmin/bioversity/publications/Web_version/ 
174/ch19.htm with minor modifications

sativus L.) and 2050 linseed (Linum usitatissimum L.) germplasm accessions 
(Table 6). Chhattisgarh is popularly known as the ‘Rice Bowl of India’ due to its 
rich heritage of rice biodiversity and maximum rice cropping area. Apart from 
research on the crops, IGKV, Raipur, has given prime importance to the collection, 
conservation and evaluation of the germplasm of various crops. It has very well 
understood that countries having rice as a staple food are risk-prone which means 
that apart from a high yield, tolerance to biotic and abiotic stresses like insects, 
diseases, weeds, drought, water logging and salinity is one of the issues that would 
dominate research agenda in the future. Old cultivars, landraces and wild relatives 
of crop plants are the repository of those essential genes.
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Table 6 Status of germplasm of various crops conserved at IGKV, Raipur, India

S. no. Crops No. of accessions Place of maintenance

1. Rice (Oryza sativa L.) 23,250 Raipur, India
2. Lathyrus (Lathyrus sativus L.) 1964 Raipur, India
3. Linseed (Linum usitatissimum) 2025 Raipur, India
4. Pigeonpea (Cajanus cajan L.) 210 Raipur, India
5. Chickpea (Cicer arietinum L.) 189 Raipur, India
6. Medicinal plants 504 Raipur, India

Total 28,142

7.1  Status of Rice Germplasm at IGKV, Raipur

After the formation of the new state of Chhattisgarh, renewed emphasis has been 
laid on enhancing the pace of agricultural research in various fields. Chhattisgarh is 
predominantly a rice-growing state. The rice research work at Raipur has a long 
history which started on 1903 with the establishment of the seed production farm at 
Labhandi, Raipur, by the British Government. Since then, rice research work con-
tinues as the main focus of this station. However, the collection of rice germplasm 
was initiated by late Dr. R.H. Richariya during 1970–1980 who has collected about 
18000 rice accessions from Chhattisgarh and nearby places and maintained at 
IGKV, Raipur, India.

Later on, few more scientists have collected about 5000 rice accessions and total 
collections were reached up to 23,250 accessions. Presently, the germplasm is being 
maintained at the Centre for Biodiversity Research Development (CBRD), IGKV, 
Raipur. The resource persons from the Department of Genetics and Plant Breeding, 
College of Agriculture, IGKV, Raipur, are working together to maintain the germ-
plasm collections of various crops. The present status of rice germplasm being 
maintained by the unit is presented in Table 7.

7.2  Status of Grass Pea Germplasm at IGKV, Raipur, India

Chhattisgarh state is a tribal state rich in grass pea biodiversity. IGKV, Raipur (CG), 
has maintained a total of 1963 grass pea germplasm accessions. Detailed screening 
of genetic resources in relation to low BOAA (β-N-oxalyl-amino-l-alanine) and 
also with multiple traits related to biotic and abiotic stresses is in progress. The flour 
of grass pea is richly used with the flour of chickpea to make crispy food products. 
Apart from this, grass pea is also consumed as green leafy vegetables and green 
pods and for dal. Henceforth, under crop improvement, focus on this crop is manda-
tory to screen and identify the potential donors on a need basis and area-specific.

Plant Genetic Resources: Conservation, Evaluation and Utilization in Plant Breeding
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Table 7 Status of indigenous rice germplasm conserved at IGKV, Raipur, India

S. 
no. Groups Duration

Number of 
accession

A. Indigenous lines
   (a) Old collections

    1. Extra early Up to 
95 days

480

    2. Very early 96–110 days 1197
    3. Early 111–

125 days
3880

    4. Medium 126–
140 days

5069

    5. Late Above 
140 days

7915

   (b) New collections

    1. On-Farm Conservation Project 
(IRRI-IGKV-NBPGR)

– 705

    2. NATP on Plant Biodiversity Project – 1025
Subtotal 20,298

B. Selected lines (from indigenous) 938
C. Breeding lines (designated as Labhandi numbers and DT 

numbers)
849

D. Wild rice (number of species – 3): Oryza nivara, O. 
officinalis, O. latifolia and O. sativa f. spontanea

210

E. Upland rice, special rice and others 955
Subtotal 2952
Grand total 23,250

7.3  Status of Linseed Germplasm at IGKV, Raipur, India

IGKV, Raipur, has been working for enhanced production and value addition of 
linseed crop for the past several years. A total of 16 varieties of linseed have been 
released, out of which 8 are recent (released after 2020). These varieties have differ-
ent characteristics and have been released for different environmental conditions 
and biotic stresses. It holds around 2025 linseed germplasm accessions till date. 
These accessions have variability for all the important characters like seed colour, 
plant height, yield, resistance to diseases and pest, etc. We have yellow seeded 
accessions as well which are known for its golden yellow seed colour and buttery 
taste for edible market. Flax-type germplasm accessions with plant height more 
than 95 cm are being utilized for fibre extraction and spinning to boost linseed in the 
textile and handloom market of the state.
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7.4  Pigeonpea

The top consumed pulses in India are pigeonpea which is rich in protein, and Indira 
Gandhi Krishi Vishwavidyalaya has 210 accessions of pigeonpea maintained and 
multiplied every year at Raipur.

7.5  Chickpea

In Chhattisgarh, during rabi season, the top coverage of pulses areawise is of chick-
pea crop due to its suitability of cultivation in the rainfed region. Indira Gandhi 
Krishi Vishwavidyalaya, Raipur, maintains 189 accessions of this crop at Raipur.

7.6  Medicinal Plants

The Chhattisgarh state is also known as the medicinal state since the year 2000 from 
its inception as a new state separating from Madhya Pradesh. In IGKV, Raipur, 
India, a total of 504 accessions of 12 medicinal crops is being maintained (Table 8).

Table 8 List of medicinal plants maintained at IGKV, Raipur, India

S. no. Crops No. of accessions Place of maintenance

1. Kalmegh (Andrographis paniculata) 295 Raipur, India
2. Ashwagandha (Withania somnifera) 95 Raipur, India
3. Aloe vera (Aloe barbadensis miller.) 13 Raipur, India
4. Kewanch (Mucuna spp.) 8 Raipur, India
5. Lemongrass (Cymbopogon citratus) 4 Raipur, India
6. Betel vine (Piper betle L.) 15 Raipur, India
7. Butch (Betula spp.) 3 Raipur, India
8. Sarpagandha (Rauvolfia serpentina) 5 Raipur, India
9. Satawar (Asparagus racemosus) 8 Raipur, India
10. Khus (Chrysopogon zizanioides) 1 Raipur, India
11. Charota (Cassia tora) 50 Raipur, India
12. Tulsi (Ocimum spp.) 07 Raipur, India

Total 504
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8  Strategies for Conservation of Huge Rice Germplasm 
Collection at IGKV, Raipur, India

8.1  On-Farm Conservation of Rice Germplasm 
at IGKV, Raipur

The on-farm conservation unit at Indira Gandhi Krishi Vishwavidyalaya, Raipur, is 
a secured area fenced with iron angles permanently by surrounding the germplasm 
field. There are two separate fields of about 4 ha each for regeneration and multipli-
cation of early-, medium- and late-duration rice germplasm. The entire 23,250 rice 
accessions are not multiplied each year. Approximately 8000 rice accessions are 
multiplied along with previous seasons’ non-germinated or less yielded accessions 
in each year. After three years, again the same accessions are multiplied and stored 
in a medium-term storage module available at IGKV, Raipur.

8.2  Package of Practices Followed for Obtaining a Healthy 
Crop in On-Farm Conservation

• Bed size – One-meter-width beds are prepared and two rows of each accession 
are sown by the direct seeded method.

• Fertilizer application – Nitrogen, phosphorus and potassium at 50 kg, 35 kg and 
20 kg, respectively, per hectare are applied. Whole phosphorus and potash and 
50% nitrogen are applied as basal dose at the time of sowing. The remaining 25% 
nitrogen is applied at the time of tiller initiation and the rest of the 25% nitrogen 
at the panicle initiation stage.

• Irrigation – Usually a water level of 5–10 cm is maintained in the rice field.
• Intercultural operations – Hand thinning is an important intercultural operation 

usually practiced 20–25 days after germination. The dense population is uprooted 
which facilitates proper action and proper grafting the plants.

• Weeding – Usually hand weeding is practiced, but these days, chemical herbi-
cides are also being used. Some herbicides used at the IGKV farm are weed 
Super + Orbix and Ricestar + Sunrise. Herbicides are usually used at 3–5 leaf 
stages (post-emergence).

• Roughing – Roughing is the practice of uprooting the off types as per visual 
appearance. This is one of the most important activities in germplasm purity 
maintenance and needs to be done very carefully.

• Threshing – The harvested plants are left in sunlight for 3–4 days for proper dry-
ing to avoid pest and diseases due to higher moisture content. After proper dry-
ing, the panicles are harvested and threshed. Wild accessions are harvested after 
bagging the panicle of the whole plant due to the highly shattering nature of 
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panicles and lodging of plant. Very carefully the panicles are covered and har-
vested in a cotton bag.

• Packing and storage of seeds – Two packets are made using brown paper enve-
lopes: a small seed packet for sowing in the next season and another medium 
packet also known as reserve seed sample. The reserve seed sample is used in 
case of distribution of the original crop for seed supply to various institutes and 
scientists for research purposes.

8.3  Medium-Term Storage Facilities at IGKV, Raipur

Medium-term storage facilities are also available at IGKV, Raipur, for conservation 
of 23,250 rice accessions. The seeds of each entry are kept in brown paper bags/
envelopes and stored inside drawers of the medium-term cabinets. Nowadays, alu-
minium foil bags are also being used in few samples for testing purposes to test the 
viability of seeds. Usually, 150 samples or envelopes are kept in one drawer. In 
these chambers, seeds can be stored for a short duration up to 1–2 years. In general, 
7–8  °C temperature with relative humidity of 35–40% is maintained inside the 
chamber which is ideal for the medium-term storage of seeds.

9  Characterization, Evaluation, Cataloguing 
and Documentation of PGRs

In the solar system, only planet earth is blessed with life on it. The flora and fauna 
of the planet are diverse due to spatial distribution; this diversity is collectively 
termed biodiversity, and agricultural diversity is called agro-biodiversity. After 
entering the sixth extinction phase, species are vanishing at a faster pace. So conser-
vation of biodiversity with proper care is the only option to save this treasure of life 
on earth. PGRs are the base materials for any breeding programme related to yield 
augmentation; development of climate-resilient, bio-fortified, disease-resistant and 
insect-pest-resistant varieties; development of cytoplasmic male sterile lines for 
hybrid breeding; etc. (Dhillon & Agrawal, 2004). Therefore, exploration of PGRs in 
a quantitative manner is essential to exploit them for societal benefits.

9.1  Characterization

It is the identification of heritable quasi-quantitative characters present and exhib-
ited by a genotype in a particular environment due to the variability present in them. 
The ideal characterization shall discriminate genotypes within and between species 
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and genera (Hidalgo, 2003; Jaramillo & Baena, 2000; Ligarreto, 2003). 
Characterization may be done through agro-morphological traits, biochemical traits 
and molecular/DNA markers based on the need, type and nature of the plant/mate-
rial available, and when used together, they increase the efficiency and precision of 
characterization.

9.1.1  Morphological Characterization

The entries under characterization are raised and maintained under the same envi-
ronment and agronomic practices and characterized using descriptors. The advan-
tages of this method are as follows: it does not consume a sample, and seed 
multiplication is carried out simultaneously. It is carried out in a representative 
population, which is expected to contain 95% of the accession’s alleles. This is the 
most commonly used method of PGR characterization; however, they are influ-
enced with environmental factors, which is a major drawback. The morphological 
characterization should be performed just after collecting or getting the germplasm 
and may be finished in a suitable environment, preferably in the area of their adapta-
tion or under a similar environmental condition considering the breeding behaviour 
and biological status of the germplasm. The internationally/nationally accepted 
descriptors and descriptor states should be used to record observation such as those 
developed by UPOV, USDA, Bioversity International (formerly known as IPGRI/
IBPGR) or NBPGR Minimal Descriptors for Characterization and Evaluation of 
Field Crops (Mahajan et al., 2000). Wherever, appropriate descriptors are not avail-
able for any crop species; then it should be developed by germplasm curators in 
consultation with the crop advisory committee and crop experts (Bioversity 
International, 2007). The field experiment should be conducted with statistically 
sound experimental design depending upon the quantity and number of germplasm 
accessions under trial.

9.1.2  Biochemical Characterization

It involves the use of biochemical markers (iso-enzymes) and total seed storage 
proteins for characterization of PGRs. These traits have advantages being that these 
markers have natural occurrence and no effect on epistasis and the environment 
(Simpson & Withers, 1986). However, it is quite difficult to perform such process 
for huge collections of PGRs.

9.1.3  Molecular Characterization

The use of molecular markers complements the above two systems and completes 
the characterization by revealing the polymorphism among variable genotypes, 
which could not be worked out through morphological characterization. The 
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molecular markers are not influenced by the environment and do not depend on the 
developmental stage of the plant. They provide precise information about the vari-
ability among genotypes. Common examples of markers used for the purpose 
include SSRs, SNPs, SCoTs, STMS, AFLP, etc.

Data obtained through characterization may be used in establishing the taxo-
nomic identity of each PGR. In case of more number of accessions in the collec-
tions, the core set (comprising 10% of the total collection representing the total 
variability in PGR) is used for characterization to bring them to a manageable level 
(Frankel, 1984). Furthermore, if the core set still has a large population, then a mini 
core set (comprising 10% of the core set) is used for characterization (Upadhyay & 
Ortiz, 2001).

9.2  Evaluation

It is the process of taking observation of various characters which are under strong 
influence of the environment and are of agronomic importance such as grain quality 
and nutritional traits and biotic and abiotic stresses. Evaluation of PGRs is essential 
to identify the appropriate line with desired traits for their further exploitation in 
crop breeding. It is preferable to perform evaluation of PGRs which are already 
characterized and there is enough quantity of seeds/planting materials available. It 
is a multidisciplinary approach involving the plant breeder, seed technologist, phys-
iologist, germplasm curator, pathologist, entomologist, biochemist and other experts 
(Rao, 2004). Particular entries are evaluated at multiple sites through network/coor-
dinated approaches and again characterized to reduce the genotype × environment 
interaction for economically important traits (Jaramillo & Baena, 2000). The acces-
sions should be evaluated in a suitable environment. Evaluation experiments should 
be conducted with proper experimental design, depending upon the number of 
accessions to be evaluated. Although characterization and evaluation terms are used 
interchangeably, they mark a difference in terms of traits under study using the same 
set of descriptors.

9.3  Descriptors

Descriptors are the traits that are scorable, heritable, morphologically expressed at 
every stage of the crop and least influenced by the environment. Hence, they are 
used to differentiate germplasm accessions, as they are the common link between 
the process of characterization and evaluation and score qualitative and quantitative 
traits, respectively. Descriptors can be scored easily by the naked eye, with the help 
of instruments like scales and vernier callipers, RHS colour charts, balances, chemi-
cal reagents, etc. They help to identify the hidden potential of the germplasm and its 
usefulness for cultivar improvement and variety/hybrid development (Hidalgo, 

Plant Genetic Resources: Conservation, Evaluation and Utilization in Plant Breeding



24

Fig. 1 Different types of descriptors used for PGR conservation and management

2003). Descriptors are species-specific and are a standardized characterization sys-
tem which provides an international format for plant genetic resources, descriptors 
are internationally developed by Bioversity International in collaboration with 
many other institutes, and they are available online. There are four categories of 
descriptors that are used in cataloguing the germplasm which are discussed below 
and summarized in Fig. 1.

9.3.1  Characterization Descriptors

These morphological traits differentiate between phenotypes by visual observations 
only and find expression in all the environments. They are characterized into two 
categories, viz., botanical taxonomic and morpho-agronomic descriptors.

9.3.2  Botanical Taxonomic Descriptors

These are the morphological characters which identify between species but not 
within species, such as the shape of leaves, seeds, fruits, etc. They have high herita-
bility and little variation.
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9.3.3  Morpho-Agronomic Descriptors

These are the morphological characters which differentiate the genotypes of the 
same species into various groups on the basis of qualitative characters like presence 
or absence of pigmentation on stem or leaves; presence or absence of pubescence on 
leaves, etc.; stem thickness; presence or absence of aroma, etc. They are measured 
by colour charts, vernier callipers, etc. They are heritable and less affected by the 
environment.

9.3.4  Evaluation Descriptors

The agronomic characters like plant height, number of tillers, yield, response to 
biotic and abiotic stresses are evaluation descriptors, as they are governed by poly-
genes and show a range of variation and hence are usually evaluated on a scale of 
0–9 (IPGRI, 1996). Most of these descriptors depend on the environment for expres-
sion; therefore, sometimes, evaluation is clubbed with molecular characterization.

9.4  Documentation and Cataloguing of PGRs

Documentation and cataloguing are integral and inseparable parts of germplasm 
banks and helps humankind to come up with better crop varieties and ensure food 
security. The role of documentation and cataloguing in PGR management can be 
understood like multi-cuisine restaurants having so many dishes to serve, but with 
the help of a menu card, one gets help to decide what to order. The dishes are docu-
mented germplasm, and the menu card is a catalogue of documented germplasm 
which helps breeders to select as per the objective of the breeding programme 
(Weise et al., 2017). The germplasm banks follow the step-by-step activities sum-
marized in Fig. 2; among them, the sample registration and collection data activities 
along with descriptors are needful for documentation (Pineda & Hidalgo, 2007).

Accessions are registered to germplasm banks by assigning a unique identifica-
tion number. The preliminary data including accession number, other code numbers 
for collector and donors, scientific name (genus, species, sub-taxa), common name 
of cultivated species, cultivar name/pedigree, date of submission of sample and date 
of last regeneration of sample is recorded for registering the accessions.

The data generated at the time of collection of any accession also refers to pass-
port data. For the uniform coding system of various crops, FAO and Bioversity 
International together prepared a detailed passport data format known as MCPD 
(Multi-Crop Passport Descriptors) (Alercia et al., 2001), while a basic passport data 
documented on registered accessions contains the date of collection; collector’s 
name; number and institute; country and state of collection; locality; longitude, lati-
tude and altitude of collection site; origin of sample; state of sample (wild, landrace, 
advance cultivar); and number of sampled plants.
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Fig. 2 Systematic representation of activities performed by germplasm banks to conserve PGRs

The seed saving and exchange between botanical gardens are being practiced 
since the sixteenth century. The belief that ‘sharing is keeping’ as if the plant is dead 
in one garden can be recollected from other gardens. In the eighteenth century, the 
seed catalogue Index Seminum system on the basis of taxonomic classification was 
established to integrate the botanical gardens and germplasm conservation origina-
tions for seed sharing (Havinga et al., 2016). The limited availability and use of elec-
tronic systems and non-uniformity among the descriptor for characterization limit 
the exploitation of the catalogue. So to overcome the non-uniformity of data and less 
integration between the conservation bodies, the Convention on Biological Diversity 
1993 (CBD, https://www.cbd.int/) and Nagoya Protocol of 2014 aimed at fair, equi-
table access and benefit-sharing through the utilization of plant genetic resources.

In the present era, various PGR conserving institutes made the documentation of 
accessions and their catalogues available online. All the institutes have a common 
goal of conservation and utilization by sharing the PGRs, but they operate differ-
ently (Bettencourt, 2011). Genis (GENetic Resource Information Management 
System by Center for Genetic Resources) in the Netherlands (www.cgn.wur.nl/UK/
CGN+Plant+Genetic+Resources); The Leibniz Institute of Plant Genetics and Crop 
Plant Research (IPK), Germany (www.ipk- gatersleben.de/Internet); N.I.  Vavilov 
All-Russian Scientific Research Institute of Plant Industry (VIR), Russian Federation 
(http://www.vir.nw.ru/); Kew’s Millennium Seed Bank, United Kingdom (http://
data.kew.org/sid/about.html); and many more institutes work at the gene bank level, 
by establishing their own online information systems which help users to browse, 
search, view and sometimes download the information of their germplasm collec-
tion. Through proper material transfer agreements, they provide material for 
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research too. While some regional/sub-regional banks like EURISCO, EAPGREN, 
GRIN Global, etc. collect, conserve, document and catalogue germplasm acces-
sions to make them available to national holdings, ECPGR maintains a list of PGR 
regional networks, which can be consulted and accessed through the following link: 
www.ecpgr.cgiar.org/networks/inter_regional_coop/pgr_regional_nw_coordina-
tors.html. Some of them are highlighted below.

9.4.1  EURISCO (European Search Catalogue for Plant 
Genetic Resources)

It was developed between 2001 and 2003 by collaboration between the European 
Plant Genetic Resources Information Infrastructure (EPGRIS) and the Centre for 
Genetic Resources, the Netherland CGN, with the participation of the Czech 
Republic, France, Germany, Portugal, Bioversity International and the Nordic Gene 
Bank (NGB, now NordGen). Initially, online hosting of EURISCO was done by 
Bioversity International; later on (15 April 2014), the responsibilities were taken 
over by Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 
Gatersleben, Germany. The database provides data of characterization and primary 
evaluation data of various crops. The accessions registered with EURISCO are 
maintained by its approximately 400 institutes within the member countries. These 
institutes provide data to National Focal Points who comply with National 
Inventories of their respective countries and upload to EURISCO. Data is exchanged 
as per the Multi-Crop Passport Descriptors for passport data and EURISCO-specific 
format for phenotypic data (Weise et al., 2017).

9.4.2  EAPGREN (The Eastern Africa Plant Genetic Resources Network)

It is a regional project of the national agricultural research systems of Burundi, 
Eritrea, Ethiopia, Kenya, Madagascar, Rwanda, Sudan and Uganda, which mainly 
focuses on publishing passport data of all the documented accessions of EAPGREN 
countries as per the list of Multi-Crop Passport Descriptors (MCPD). EAPGREN is 
strengthening collaboration and networking between the conservation and utiliza-
tion of plant genetic resources at both the national and sub-regional levels (www.
nordgen.org/portal/index.php?scope=eapgrenPHPSESSID=4pa906im0ghl5ll2il
8u80l5d1).

9.4.3  GRIN Global (Germplasm Resource Information Network Global)

It is a public domain, freely available software developed by the USDA (United 
States Department of Agriculture) for Agricultural Research Services with the pur-
pose of open access to germplasm information required for research. Since 2011 
with joint efforts of the Global Crop Diversity Trust, Bioversity International and 
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USDA, GRIN Global became freely accessible and benefiting the small organiza-
tions with small collections of various crops (Barata et  al., 2016). GRIN Global 
stores, availability of accessions, germplasm health, regeneration, distribution, 
accession acquisition, phenotypic data, and genotypic data of the stored germplasm 
(https://www.grin- global.org/).

9.5  Cataloguing of PGRs at Various National 
and International Organizations

9.5.1  National Organizations

Around the world, many countries have their own organizations working on conser-
vation, evaluation, documentation and cataloguing of PGRs which are available 
online. Their objective is mainly to bring together all region-specific germplasm 
collections under one roof and act as a gateway to the PGR exchange of a particular 
country. Some of the leading national organizations are as follows:

 (i) ICAR-National Bureau of Plant Genetic Resources (NBPGR) (www.nbpgr.
ernet.in)

 (ii) Centre for Genetic Resources, Plant Genetic Resources (CGN-PGR), the 
Netherlands (www.cgn.wur.nl/UK/CGN+Plant+Genetic+Resources)

 (iii) National Inventory of Plant Genetic Resources for Food and Agriculture, 
Austria, (www.genbank.at)

 (iv) Nordic Countries (Denmark, Finland, Iceland, Norway, Sweden) (www.nord-
gen.org/ngb)

 (v) N. I. Vavilov All-Russian Scientific Research Institute of Plant Industry (VIR) 
(www.vir.nw.ru/data/dbf.html)

9.5.2  International Collaborations

Article 17 of the International Treaty on Plant Genetic Resources for Food and 
Agriculture (ITPGRFA) states, ‘Contracting Parties shall cooperate in developing 
and strengthening a global information system to facilitate the exchange of informa-
tion, based on existing information systems, on scientific, technical and environ-
mental matters related to plant genetic resources for food and agriculture’. In the 
sixth session in 2015, the governing body emphasises inter alia (Fig. 3): strengthen-
ing of existing systems, developing new systems and encouraging the interconnec-
tivity among the systems. This integration is called Global Information System 
(GLIS), with seven objectives and work plan from 2016 to 2022.

In 2017, the governing body of ITPGRFA welcomed the Digital Object Identifiers 
(DOI) for PGRFA, which signifies as the most appropriate, web-resolvable, 
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Fig. 3 Inter alia of institutes and Global Information System (GLIS) to facilitate the exchange of 
information related to plant genetic resources

permanent unique identifier. It provides detailed information related to a particular 
DOI either in publication or in documented form; it also tracks the gene bank in 
which it is maintained to provide easy and efficient standard material transfer agree-
ment (SMTA) for material exchange and identify duplicates and interoperability 
between gene banks (Alercia et al., 2018).

The collaborations of the Global Information System started in 2017 with the 
World Information and Early Warning System (WIEWS), Genesys, GRIN- Global 
and the European Search Catalogue for Plant Genetic Resources (EURISCO). 
Meanwhile in 2020–2021, the Secretariat is looking for a partnership with the 
SPGRC Documentation and Information System (Web-SDIS), as well as the 
Convention on Biological Diversity’s Clearing House Mechanism, the DivSeek 
International Network, the Global Open Data for Agriculture and Nutrition 
(GODAN), the CGIAR Platform and the Global Biodiversity Information Facility 
(GBIF) (Manzella, 2016). GLIS is being established to link the existing systems 
without replacing them. It is a central platform, facilitating the registration of DOIs 
for all PGRFA and their identification and tracking with precision and permanence 
(Alercia et al., 2018).
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10  Utilization of PGRs in Crop Improvement

Immense efforts have been made for collection; conservation and evaluation of 
plant genetic resources pay off only with their efficient utilization for enhanced 
productivity and profitability. Utilization of plant genetic resources varies from 
direct release of potential germplasm, development of new improved varieties, 
improving the breeding materials through pre-breeding, development of new novel 
crops (climate-resilient, biotic and abiotic stress- tolerant, biofortified crops), new 
gene discovery and allele mining studies. These will be described individually in 
subsequent paragraphs.

10.1  Development of Core Set, Mini-core and Reference Sets

The characterization, evaluation, utilization and maintenance of huge collections of 
ex situ conservation of PGRs may be very difficult for the breeders/scientists 
involved in these processes (Rao & Hodgkin, 2002). Therefore, the concept of core 
collections has been adapted for easy and efficient characterization, evaluation and 
utilization of conserved PGRs, by maintaining the genetic diversity of the entire 
collection (Frankel, 1984; Brown, 1989). According to Frankel (1984), the core col-
lections should have at least 10% of the collection or 2000–3000 accessions (which-
ever is smaller), which showed the genetic diversity of entire collections. These core 
collections may be used as base materials for crop improvement programmes. Till 
now, more than 60 core collections have been recorded in different crops and wild 
relatives (Rao & Hodgkin, 2002). Furthermore, if the core set still have a large 
population, then a mini-core set (comprising 10% of the core set) is used for char-
acterization (Upadhyay & Ortiz, 2001). It is worth to note that ICAR-NBPGR has 
the core sets of brinjal, chickpea, wheat, mung bean, sesame, okra, wild lens sp., etc. 
for further breeding programmes (Upadhyay & Ortiz, 2001).

10.2  Development of Improved Varieties

A great majority of exotic or indigenous plant genetic resources cannot be directly 
used for cultivation but they do possess some desirable traits which can be useful to 
improve the overall production, quality and adaptation of the high-yielding superior 
genotypes. Nowadays, plant breeders are using molecular marker technology and 
advanced genomic approaches for the development of improved cultivars in various 
crops by exploiting the potential of PGRs (Fig. 4). In addition, three possible ways 
in which available plant genetic resources can be utilized in plant breeding pro-
grammes are (a) introgression, (b) incorporation and (c) pre-breeding 
(Simmonds, 1993).
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Fig. 4 Exploitation of plant genetic resources for the development of improved cultivars through 
advanced genomic approaches
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10.2.1  Introgression

Introgression basically aims at transferring superior qualitative traits with high heri-
tability from germplasm stocks to advanced breeding materials or popular released 
varieties. Usually, the backcross method is employed for introgression which suf-
fers from certain issues, for example, linkage drag and longer breeding cycle (Brown 
& Caligari, 2008). But with the information about the associated markers, it is pos-
sible to transfer the trait of interest with the minimum recipient genomic region in a 
much smaller period of time using marker-assisted backcross (MABC).

There are several occasions where specific genes from genetic resources have 
created a major impact on varietal development. For instance, a landrace from Japan 
‘Shiro Daruma’ contributed Rht1 and Rht2, which were transferred by Norman E 
Borlaug to develop high-yielding, lodging-resistant, dwarf wheat which led to the 
‘Green Revolution’ (Sakamoto, 1983). Sr2 and Lr34 genes from the genetic 
resources in combination have been a durable source of resistance against rust dis-
ease of wheat (Hoisington et  al., 1999). Introgression of accessions from Cicer 
reticulatum and Cicer echinospermum in the cultivated varieties was successful in 
generating high-yielding recombinant lines (Singh & Ocampo, 1997). Valkoun 
(2001) was able to transfer genes for spike productivity and yellow rust resistance 
from Triticum baeoticum, T. urartu and Aegilops tauschii to locally adapted land-
race ‘Haurani’ and improved variety ‘Cham 5’ of wheat within 4–5 years with lim-
ited backcrossing.

10.2.2  Incorporation

Another way to exploit potential germplasm is their incorporation for genetic 
enhancement and increasing the overall genetic variation for various traits in the 
breeding materials. Different population improvement methods can be employed 
for this depending on the mode of reproduction (cross-pollinated and self- 
pollinated). Selection during the initial phase of incorporation is avoided so as to 
accumulate sufficient diversity by providing ample scope for recombination. The 
end product may differ according to the breeding goal. A short-term objective can 
be simply an immediate enhancement of the potential of the breeding materials; a 
medium-term goal can be to genetic enhancement focusing on the accumulation of 
various favourable genes to reduce the historical bottleneck effects during the life 
cycle of the variety, while in the long term, synthetics and composites must be 
developed (Cooper et al., 2001).

10.2.3  Pre-breeding

The success of any breeding programme majorly depends on the choice of potential 
parents with a desirable trait from various sources which includes landraces, wild 
species or relatives, obsolete varieties, cultivated varieties and advanced breeding 
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materials. Hybridization barriers and negative genetic load with the wild relatives, 
species and landraces sometimes make their direct use in breeding programmes 
very difficult. Therefore, desirable genes from all such germplasms are first trans-
ferred to easy-to-breed advanced breeding materials through a germplasm enhance-
ment programme called pre-breeding.

Pre-breeding, although a tiresome and time-consuming approach, has become an 
initial phase of every breeding programme involving genetic resources wherein the 
germplasms are selectively evaluated for both qualitative and quantitative traits fol-
lowed by the transfer of desirable genes to bridging germplasm with a long-term 
aim of varietal development using these new populations (Haussmann et al., 2004; 
Gorjanc et  al., 2016; Dempewolf et  al., 2017a, b). Bridging germplasm can be 
developed through three approaches, i.e. selected landraces, doubled haploids of the 
selected landraces and testcross progenies of landraces and elite germplasm (culti-
vated variety, obsolete varieties, inbred lines and advanced breeding materials) 
(Gorjanc et al., 2016). Singh et al. (2018) made three-way crosses of exotic lines 
(exotic × elite1) × elite2 directly with the elite germplasm without any initial evalu-
ation to obtain pre-breeding lines with exotic and elite genome of 25% and 75%, 
respectively. This method enabled them to attain greater genetic variation in lesser 
time. Direct introgression to the elite germplasm from the bridging germplasm is 
only successful for traits governed by oligogenes. While in the case of polygeneti-
cally controlled traits, the genomic selection must be performed to increase the 
frequency of the favourable genes in the bridging germplasm (Gorjanc et al., 2016).

CIMMYT under its germplasm infusion project ‘Seeds of Discovery’ has 
exploited about 1000 exotic accessions from its gene bank to generate nearly 
400,000 segregating pre-breeding lines. Singh et al. (2018) were able to identify 
pre-breeding lines with a high level of Zn content in grain. IPC71 is the pre- breeding 
line derived from the crosses between Cicer arietinum × Cicer judaicum which had 
a high number of primary branches and pods per plant (Chaturvedi & Nadarajan, 
2010). Advance generation form of the one-way cross between Cajanus acutifolius 
(an accession from Australia) and C. cajan has shown significant resistance to the 
pod borer (Mallikarjuna & Saxena, 2002). ICRISAT under its groundnut improve-
ment programme has been using several diploid wild relatives to develop amphi-
ploid and autotetraploid pre-breeding materials for introducing several useful traits 
(Mallikarjuna et al., 2011).

10.3  Development of Novel Crop

The estimated number of species of higher plants present worldwide is 270,000 of 
which only 0.04% has been domesticated by humans to fulfil various needs. But as 
time passes, the need of humans changes so that what seems to be once a non- 
important plant may achieve greater value in future. Genetic diversity stored in plant 
genetic resources not only offers scope for improving crop varieties but also to 
develop an altogether new crop. Numerous potential woody plant species are still 
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being domesticated by the indigenous people all around the world to fulfil their 
basic needs. A successful story of recent domestication is of macaw palm (Acrocomia 
aculeata) with wider adaptation to various ecological niches that has a tremendous 
oil yield potential of approximately 2.5–10.9  tonnes/hectare. The vast genetic 
resource of macaw palm in Brazilian cerrados is said to exhibit high variability for 
biomass and oil production (Ciconini et al., 2013). The ability to produce biodiesel 
from the seed oil of Jatropha (Jatropha curcas L.) has popularized its cultivation not 
only as an alternate source of biofuel but also for the rehabilitation of the degraded 
land (Montes & Melchinger, 2016).

10.4  Climate Resilience

In recent years, climate change has emerged as a major challenge for sustainable 
agriculture and food security. It has increased the onset and intensity of abiotic 
stress during the various growth stages of the crop. Development of climate- resilient 
crop varieties will help cope with the limited resource scenario during stress with a 
faster recovery once stress is relieved for high production potential. Such resilience 
is multigenic as biochemicals from several physiological processes may be required 
to achieve an acceptable resilience in the plant. Breeding for climate-resilient variet-
ies begins with the search for genes for various abiotic stresses. The genetic resource 
of the crops especially landraces, wild relatives and related wild species has been 
evolving and survived under various environmental stresses. These germplasms 
may not be higher yielding but do possess novel genes required for surviving such 
extreme environmental conditions. These novel genes can be used in the breeding 
programmes to integrate into the modern varieties.

10.5  Resistance to Biotic Stress

Stress to crops caused by various living organisms like fungi, bacteria, viruses, 
insects, etc. is called biotic stress. These agents restrict the normal growth and 
development of their host causing loss in plant vigour and yield and in extreme 
cases can cause death. Use of varieties with inherent ability to resist major disease 
and insect pests is economical and eco-friendly as it saves the expenses of chemical 
controls. But these biotic agents, especially microbial pathogens due to their high 
rate of reproduction and recombination, are therefore able to break this resistance. 
Therefore, a plant breeder needs to continuously seek for novel genes for resistance 
and replace older genes for the new ones. Plant genetic resources being the ultimate 
source of all genetic variation have always been a potential source for novel resis-
tance genes. Resistance genes of southern corn leaf blight have been successfully 
transferred from Tripsacum dactyloides into the cultivated varieties of corn.
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10.6  Apomixis

Apomixis is an alternative path of plant reproduction wherein seeds are produced 
from maternal embryo without any sexual reproduction. The individual derived from 
such seeds are genetically identical to the mother plant. Apomixis is a revolutionary 
tool which can increase crop productivity significantly by allowing any breeder to 
propagate their best genotype indefinitely regardless of their genetic constitution 
while keeping a low cost of seed production. If it is incorporated into the hybrids, it 
would be possible to fix the heterosis without any need of replacing the seeds year 
after year. Several attempts have been made to produce apomictic lines for various 
cereals but a commercial variety is still far from reality. Among cereals, especially 
pearl millet and maize are the likely candidates for apomixis breeding since apomic-
tic wild species has already been reported for these crops. Apomixis genes from 
Paspalum squamulatum (2n = 6x = 54) have been successfully transferred into a tet-
raploid pearl millet using P. purpureum (2n = 4x = 28) as a bridge species (Dujardin 
& Hanna, 1989). From an attempt to transfer obligate apomixis from Paspalum squa-
mulatum (2n = 6x = 54) into the cultivated pearl millet variety, several backcross lines 
with a low number of wild species have been recovered (Ozias-Akins et al., 1993). 
This shows possibility for transmission of apomixis genes by a single chromosome.

10.7  Biofortification

Crop improvement so far has been focused on improving grain yield and crop produc-
tivity neglecting the overall nutrient status of the crops. The food grains hence pro-
duced are micronutrient. It creates a state of ‘hidden hunger’ or micronutrient 
malnutrition especially in the poor population of developing countries who depend on 
few staple foods to fill their stomach (Garg et al., 2018). Therefore, biofortified variet-
ies of different crops may help us to win the fight against malnutrition. Breeding for 
biofortified varieties can be accelerated by harnessing all available genetic variation for 
micronutrient content among landraces, traditional varieties, related wild species and 
wild relatives. Screening germplasm is the initial step for such breeding programme of 
any crop. Accessions with a high level of Zn and Fe have been reported from the 
Triticum spelta and T. dicoccum (Velu et al., 2020). A larger variation in the rice germ-
plasms for Fe and Zn content in grain ranging from 9.6 to 44.0 and 9.9 to 39.4 mg/kg, 
respectively, has been reported by Anuradha et al. (2012). Utilization of wild-related 
species as a source can increase the possibility of developing nutrient-dense varieties.

10.8  Pharmaceutical Industries

Humans have been using a wide range of organisms in the treatment of many dis-
eases. Among them plants are the easy-to-access and harmless source for improving 
human health. Active compounds isolated from all such plants with medicinal 
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properties can be used to make drugs for specific illnesses. Alternatively, chemical 
compounds isolated from plants can be modified to produce bioactive molecules. 
Plant-derived pharmaceuticals offer a low-cost drug and vaccine source for devel-
oping countries (Ma et al., 2005). Various indigenous traditional knowledge for the 
medicinal use of plant genetic resources have been documented by several 
researches. The testing and validation of all such genetic resources can lead to the 
discovery of bioactive compounds and other potential raw materials for manufactur-
ing herbal medicines (da Silva et al., 2021).

11  Major Problems Associated with the Conservation, 
Evaluation and Enhancement of PGRs

Recent reports indicate that the pressure imposed by both biotic and abiotic agents 
has caused us massive loss of genetic diversity present in the form of landraces, 
weedy and wild relatives of crops (Gupta, 2014). All breeding programmes are 
driven by genetic variability for improving yield, disease or pest resistance and 
product quality of the crop, forage or ornamental plants. Conservation of plant 
genetic resources involves active efforts towards retaining the intrinsic diversity 
present in the gene pool of any plant species of potential value for future use. A brief 
account on the major problems associated during the conservation, evaluation and 
utilization of plant genetic resources are discussed in this section.

11.1  Population Growth and Deforestation

With the increasing population of the world, the food grain demands by the year 
2030 and 2050 are anticipated to be around 10,094  million and 14,886  million 
tonnes, respectively, which will impose an extra pressure to increase the food grain 
production to meet the future demand (Islam & Karim, 2019). This pressure could 
lead to overexploitation of plant genetic resources. Increasing human population 
without development will increase the pressure on forests to meet their basic needs. 
Most of the valuable plant genetic resources in the form of wild relatives and wild 
forms of several crop plants reside in the forest. Reports suggest that the high rate 
of population growth followed by the low human development index resulted in 
increased deforestation, while a high population rate along with a high human 
development index led to a comparatively lower rate of deforestation.
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11.2  Varietal Modernization

Landraces are a dynamic population with a broad genetic base and local adaptation. 
Most often they are poor yielding and susceptible to lodging, making them unfit for 
commercial cultivation. The current breeding programmes are focused on develop-
ing high-yielding varieties for commercial agriculture. The extensive use of the 
high-yielding varieties has made landraces go out of cultivation. This has resulted in 
loss of potential landraces of various crop plants to a magnitude which is 
irreversible.

11.3  Climate Change

Change in climate has a significant negative effect on plant genetic resources often 
leading to perturbations such as drought, flood and disease. The significant change 
in the environment and/or climate may severely affect the vigour and viability of 
PGRs conserved at the on-farm site. Furthermore, natural calamities or disaster may 
destroy all the on-farm conservation PGRs within a short period of time. These 
activities may lead to the ‘extinction’ of PGRs in those agro-ecosystems (Ogwu 
et al., 2014). However, at the same time the available diversity and variability in the 
PGR may give opportunities to withstand adverse environmental conditions by 
adapting those situations that can provide options to farmers and society to adapt to 
climate change.

11.4  Genetic Erosion

Genetic erosion, the decrease in population variation due to random genetic drift 
and inbreeding, is both a symptom and a cause of endangerment of small isolated 
populations (Woodruff, 2001). The hybrids, HYVs and modern varieties have sig-
nificantly greater yield over the landraces and farmer varieties which restricted the 
cultivation of those traditional varieties. Gradually, those landraces are lost unless 
they are conserved (Wilkes, 1992). In this way, several traditional varieties of vari-
ous crops have been restricted from the farmers’ field.

11.5  Genetic Vulnerability

Genetic vulnerability refers to the inherited characteristics passed on from parents 
to progenies that make it more likely that a person will develop an addiction. When 
the whole scientific community may start working on a similar aspect to develop a 
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similar type of varieties, i.e. resistance to any specific race of pathogen and pest, 
then the genetic structure of the genotypes may be narrowed towards the specific 
gene. These activities may enhance the chances of the potential damage from unsus-
pected pathogens and pests. Since most of the genotypes have similar traits or genes, 
then they will not have resistance to novel races of pathogens or pests. These may 
cause a significant impact on genetic vulnerability to that species (Wilkes, 1992). 
Prolonged spread of the Ug99 race of wheat stem rust to most of the existing wheat 
varieties is the best example of genetic vulnerability (Pretorius et al., 2000).

11.6  Lack of Technical Knowledge

During the collection of genetic resources, a highly technical person is required who 
has basic knowledge about collected materials like their nature, biology and other 
characteristic features which provide us a useful information regarding collected 
genetic resources. However, sometimes the person who collects the genetic 
resources does not have basic knowledge and continues the collection which causes 
repetition of the same type of genetic resources at a time. Moreover, the PGRs are 
generally collected from the farmers’ field, and if farmers do not have precise infor-
mation about the PGRs, then the person involved in the collection may not compile 
enough information. These basic information are very important for further breed-
ing activities and their utilization in crop improvement.

12  Way Ahead

To maintain national food security, we need to maintain and conserve the available 
plant genetic resources. Effective and sustainable utilization of the plant genetic 
resources will ensure future developments in the crop improvement programmes 
and industrialization as well. A collaborative approach involving the countries, 
institutes and organizations must be a matter of primary commitment to discover, 
collect and conserve the potentially valuable genetic resources. To make the rich 
genetic diversity easily accessible to breeders, farmers and local communities, it is 
important to provide a better and more accessible documentation system. The threat 
of climate change resulting in biodiversity habitat loss has pressed the alarming 
need of re-examining the strategies of collection and conservation. Efficient survey, 
monitoring and inventory field studies involving the Geographical Information 
System (GIS) and remote sensing need to be deployed to supplement the proper 
understanding/identification of the extent and distribution of agro-biodiversity par-
ticularly in inaccessible areas. Also, there is a need to take up harmonizing conser-
vation strategies involving both in situ and ex situ approaches. For in situ 
conservation, more natural reserved areas should be maintained and due attention is 
required to be given to genetically rich hotspots including tribal belts and an effec-
tive enforcement of laws guarding them. Most of the ex situ collection is 
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endangered so securing and providing a financial support system should be a prior-
ity. Promotion towards identification and increase and share fairly and equitably the 
benefits derived from the conservation of plant genetic resources should be done. 
The genetic diversity held at gene banks contains useful genes and alleles to poten-
tially address all kinds of constraints in crop production, but it is difficult to select 
the most appropriate set of accessions without sufficient information such as pheno-
typic and genotypic data. For this, the rich resources, when coupled with multi- 
omics tools including genomics, proteomics and metabolomics on selected 
materials, will allow selection of genotypes, novel alleles and haplotypes for any 
trait. Acceleration of these approaches is expected to enhance the breeding process 
while using the rich conserved diversity. Pre-breeding is needed to incorporate new 
kinds of pest resistance, to bring in new levels of productivity and stability of per-
formance and to provide quality traits for food and feed products. Public awareness 
generation at various levels about the value of PGR wealth through training, semi-
nar and media is essential. Also integration of the conservation priorities into the 
educational curriculum should be encouraged. New useful PGR management alter-
natives, scientific innovations and advanced technologies promoting the use of PGR 
have to be achieved. Access and sharing of genetic resources and technologies 
worldwide are essential to ensure world food security and it must be facilitated 
under fair terms with the adequate and effective protection of plant intellectual rights.

13  Conclusion

Plant genetic resources have great potential in the context of climate change, organic 
agriculture, food diversity and stability of agricultural production systems, while the 
need for their conservation and sustainable use worldwide is growing and represents a 
huge challenge. The germplasm exploration and collection have resulted in the accumu-
lation of enormous genetic diversity of crop plants in gene banks. Therefore, concerted 
efforts need to be made for its characterization, evaluation and identification of trait-
specific accessions especially from unexplored/exotic germplasm using field phenotyp-
ing coupled with modern genomic tools to trace the underlying gene. The advances in 
genotyping and biotechnology tools in recent years are making genetic resources and 
their variation more accessible for breeders. New breeding tools may also facilitate 
applications for efficient crop improvement through the removal of deleterious muta-
tions or enrichment of cultivated sequences with alleles from wild relatives.
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SINE Markers as a Powerful Tool 
for Assessing Genetic Diversity to Improve 
Potato

Nasya Tomlekova, Sibel Aziz, Emiliya Nacheva, Beatrice Weber, 
Aamir Raina, and Kathrin M. Seibt

Abstract Potato is an important global food source. The tetraploid potato is a geneti-
cally complex and heterozygous crop, which makes it difficult to introgress desirable 
traits from wild relatives. Therefore, in order to increase the genetic variability of the 
breeding material, mutagenesis is effectively used, for instance, by chemical agents.

This chapter summarizes the results obtained at the Maritsa Vegetable Crops 
Research Institute in Plovdiv, Bulgaria, with regard to the evaluation of the genetic 
diversity of local potato varieties and 16 advanced mutant lines (M1V8) and the cor-
responding parental components which were divided into four groups according the 
origin on the initial genotypes, using the retrotransposon-based molecular technique 
of inter-SINE amplified polymorphism (ISAP).

ISAP reactions with the two SINE families (SolS-IIIa and SolS-IV) proved to be 
the most efficient for the molecular identification. Of all the three reactions (SolS- 
IIIa- F/R, SolS-IV-F/R, SolS-IIIa-F/SolS-IV-R) performed on the 16 mutant lines, 
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including parents and control lines, three mutant lines (M-I-8, M-IV-17, M-VII-27), 
two control lines (K-IV-3, K-VII-4), and all parent lines (PC428, PC490, PC707, 
PC538, PC757) were characterized by unique profiles.

The present study can be used as a basis for future research in potato breeding. The 
selection of mutant lines with high-productivity morphological and molecular data and 
their combination are of great importance for breeding new valuable mutant varieties.

Keywords ISAP · Induced mutagenesis · Solanum tuberosum L. · Transposable 
elements

Abbreviations
BSA Bovine Serum Albumin
CTAB Hexadecyltrimethylammonium Bromide [(C16H33)N(CH3)3]Br
EDTA Ethylenediaminetetraacetic Acid [CH2N(CH2CO2H)2]2

ISAP Inter-SINE Amplified Polymorphism
M Multiplex reaction
SINE Short Interspersed Nuclear Element
Sol Solanaceae
TE Transposable Elements

1  Introduction

Potato belongs to the Solanaceae, a large plant family with more than 3000 species, 
which also includes several other economically important species such as tomatoes, 
eggplants, petunias, tobacco, and peppers. Potato (Solanum tuberosum L.) is a valu-
able global food source and the fourth most important crop in the world after wheat, 
rice, and maize (Zhang et al., 2017). The most commonly cultivated potatoes are 
tetraploid (2n = 4x = 48), whereas wild species vary in ploidy from diploid to hexa-
ploid (Lara-Cabrera and Spooner, 2004). This complicates both breeding improve-
ment of cultivated potato and elucidation of genetic traits (De Boer et al., 2011). The 
utility and economic importance of potato derives from the tuber, of which approxi-
mately 82% of its dry matter is starchy carbohydrates. The quality of the tuber is 
determined by a combination of structural, physiological, biochemical, and chemi-
cal properties, which are affected both genetically and by developmental and post-
harvest conditions (Flinn et al., 2005).

Today’s potato breeders are facing the challenge of producing varieties that are 
widely adaptive to increasing biotic and abiotic stress factors while at the same time 
exhibiting higher productivity and quality. The tetraploid potato is a genetically 
complex and heterozygous crop, which makes the introgression of desirable traits 
from related wild species difficult. Therefore, in order to enlarge the genetic vari-
ability of the breeding material, mutagenesis by chemical agents is frequently 
used (Tomlekova, 2010). Ethyl methanesulfonate (EMS) treatment is very effective 
in this case, as it induces high-frequency point mutations that can lead to a large 
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variation in numerous traits in EMS-treated plants compared to their untreated 
counterparts of the initial genotypes (Tomlekova et al., 2014a, b).

Genotyping DNA sequence variants in highly heterozygous polyploid species, 
such as potato (Solanum tuberosum L.), is more challenging than in diploid species, 
because a given gene may be represented by more than two different alleles per locus 
per genotype (Uitdewilligen et al., 2013). Molecular genetic markers have therefore 
become useful tools for estimating genetic diversity and phylogeny in plants in the 
most unbiased manner possible (Barone, 2004; Clegg, 1989; El-Fiki et al., 2018).

The application of molecular techniques using DNA sequence homologies and 
DNA polymorphisms has become a reliable approach toward the identification and 
establishment of genetic relatedness (Khadhair et al., 1997). This has made the main 
objective of crop breeding more feasible: obtaining new varieties with improved 
yields, quality traits, and resistance to biotic and abiotic stresses. For most domesti-
cated crop species, various genetic resources are available, such as related species 
and crop wild relatives (Callow et al., 1997).

No two plants are exactly alike. They’re all different, and as a consequence, you have to 
know that difference.

This short quote from Barbara McClintock, a famous plant geneticist, impressively 
illustrates how important the individual level is when considering genetic diversity 
within a species or a population. To ensure their adaptation to certain environmental 
factors and thus preserve their ability to evolve, broad biological variety is essential. 
It offers plant breeders the opportunity to develop new and improved varieties with 
desirable characteristics. However, the ongoing genetic erosion caused by the large- 
scale replacement of local varieties by improved varieties increases the susceptibil-
ity of crops to diseases and thus risks global food security. Therefore, plant breeders 
today face the challenge of improving varieties while preserving the diversity of 
different traits within a species.

To address this important issue, molecular markers have become standard tools 
in a wide variety of plant genetic applications. The detection of polymorphisms 
between individuals not only allows them to be clearly distinguished, but also pro-
vides information on the degree of genetic variation within a population, which is 
essential for the maintenance and monitoring of genetic diversity as well. In some 
cases, molecular markers can also be linked to desirable traits, allowing the targeted 
selection of suitable individuals in breeding programs (Andersen and Lubberstedt, 
2003; Philips and Vasil, 2013; Dou et  al., 2021). This marker-assisted selection 
(MAS) increases the effectiveness in breeding and have the potential to significantly 
speed up the breeding process.

The development of massively parallel sequencing technologies has accelerated 
genome sequencing while decreasing sequencing costs. Thus, virtually any organ-
ism can be studied on a genomic scale. In the course of this, recent research has 
shown that it is advantageous to analyze multiple genome assemblies for one spe-
cies (Della Coletta et al., 2021). Such pan-genome projects help to capture the entire 
diversity of a species, to link phenotypic traits to genomic positions, and to identify 
gene variants. Moreover, high-throughput single nucleotide polymorphism (SNP) 
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discovery and simultaneous genotyping in multiple DNA samples, known as geno-
typing by sequencing (GBS), is possible for an increasing number of organisms. 
Nevertheless, such innovative techniques, while important for crop improvement, 
are still far from practical application. Breeders primarily need simple, reliable, and 
robust marker systems for the unambiguous identification of varieties for cultiva-
tion, the selection of most genetically diverse crossing parents possible, and the 
protection of plant varieties.

Consequently, marker methods developed earlier still have their relevance. While 
the first molecular marker system was based on the detection of restriction fragment 
length polymorphisms (RFLPs) by hybridization (Botstein et al., 1980), the use of 
the polymerase chain reaction (PCR) quickly expanded the technological spectrum. 
DNA fingerprints could thus be generated by either random amplification of poly-
morphic DNA (RAPD; Williams et al., 1990), selective amplification of restriction 
fragments (amplified fragment length polymorphisms, AFLPs; Vos et al., 1995), or 
amplification of microsatellite loci (simple sequence repeats, SSRs; Chung and 
Staub, 2003). Besides the improvements that these applications bring to breeding, 
they also have individual disadvantages, such as the fact that some of them are 
unable to distinguish between homozygosity and heterozygosity, that they incur 
high development costs, and that their application is often time-consuming and 
laborious. Therefore, it is obvious to also consider genomic sequences, which are 
conserved and accumulated in almost all eukaryotic organisms.

2  Retrotransposon-Based Marker Systems Are Well Suited 
to Assess Genetic Diversity

With the increase in sequence data, it is becoming clear that transposable elements 
(TEs) are an integral part of eukaryotic genomes, sometimes constituting the major-
ity of plant genomes (SanMiguel et al., 1996; Bennetzen et al., 2005). Originally 
considered as junk DNA (Ohno, 1972) that is passively accumulated and does not 
code for any proteins, it is now accepted that TEs make a significant contribution to 
genetic diversity (Feschotte et al., 2002; Biémont and Vieira, 2006).

Their ability to move within the genome generates mutations and genetic poly-
morphisms (McClintock, 1956; Bourque et al. 2018). They drive the evolution of 
genomes by facilitating the translocation of genomic sequences, the shuffling of 
exons, and the repair of double-strand breaks (Stapley et al., 2015). Insertions and 
transposition can also alter gene regulatory regions and their inactivation by host 
silencing mechanisms contributes to different layers of epigenetic genome regula-
tion (Slotkin and Martienssen, 2007). Therefore, it is not surprising that rapid TE 
turnover and waves of TE amplification during plant evolution massively altered 
genomic regions through insertion and deletion of TEs (Wicker et al., 2018).

The direct link between TEs and genetic polymorphisms makes these mobile 
DNAs an ideal source for molecular markers. The integration of retrotransposons is 
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assumed to be irreversible because, unlike DNA transposons, they cannot excise 
themselves from their insertion sites (Finnegan, 1989). This makes them well suited 
as cladistic markers for phylogenetic studies based on their presence or absence, 
since the empty site represents the known ancestral state (Batzer et  al., 1994; 
Nikaido et al., 1999).

Retrotransposons are the most abundant and widespread class of TEs, and due to 
their copy-and-paste replication mode, they are widely distributed across the plant 
genome. This contributes to insertion polymorphisms both within and between spe-
cies (Waugh et al., 1997). The relatively high copy number of retrotransposons com-
bined with their high mobility results in a considerable number of polymorphisms, 
which are a common source of genomic diversity and consequently an excellent 
basis for genotyping. With the sequence-specific amplification polymorphism 
(S-SAP), the inter-retrotransposon amplified polymorphism (IRAP), and the 
retrotransposon- microsatellite amplified polymorphism (REMAP), new DNA fin-
gerprinting techniques have been developed that allow the discrimination of indi-
viduals without prior treatment of genomic DNA (Waugh et  al., 1997; Kalendar 
et al., 1999). These marker systems rely on PCR amplification between retrotrans-
posons or a component of flanking genomic DNA, such as microsatellites, to gener-
ate marker bands. Considering that these jumping genes are ubiquitously found in 
almost all eukaryotic genomes (Feschotte et  al., 2002; Huang et  al., 2012), 
retrotransposon- based marker systems are universally applicable.

3  SINE Retrotransposons Are Informative Molecular 
Markers for Plant Breeding

Due to their genome-specific distribution, short interspersed nuclear elements 
(SINEs) can also be used as appropriate genomic components for the detection of 
polymorphisms. These retrotransposons are ubiquitous in plants, where their ran-
dom insertion behavior and different activity levels have led to considerable varia-
tion in amplified interspaces between individuals (Shedlock & Okada, 2000; Seibt 
et al., 2016; Meng et al., 2020). Several studies revealed that they are frequently 
observed in regions adjacent to genes (Medstrand et  al., 2002; Ben-David et  al., 
2013; Seibt et al., 2016). SINEs are short and noncoding retrotransposons with a 
length of about 80–700 base pairs. They are a heterogeneous group of elements 
derived from noncoding RNAs, such as tRNA, 7SL RNA, and 5S RNA (Kapitonov 
and Jurka, 2003); while primates contain mostly 7SL RNA-like SINEs, other 
eukaryotes, especially plants, primarily harbor tRNA-like SINEs (Kramerov and 
Vassetzky, 2011).

As nonautonomous retrotransposons, their transposition is dependent on proteins 
encoded by an autonomous partner long interspersed nuclear elements (LINEs) and/
or host components (Boeke, 1997; Okada et  al., 1997; Ogiwara et  al., 1999; 
Kajikawa & Okada, 2002; Dewannieux et  al., 2003). For this reason, they are 
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Fig. 1 A SINE and two TSDs

usually terminated by a poly(A) stretch, a poly(T) stretch, or a simple sequence 
repeat at the 3′ end, as is the case for LINEs. Their descent from tRNA genes is 
reflected by the presence of an internal RNA polymerase III promoter within the 
5′-terminus, which ensures transcriptional activity and thus their transpositional 
activity. The central body is tRNA-unrelated and exhibits high family specificity. In 
some cases, a short region within the body can be conserved in a wide range of 
SINEs, with otherwise unrelated tRNA- and LINE-derived parts (Luchetti and 
Mantovani, 2016; Seibt et  al., 2020). A mechanism called target primed reverse 
transcription (TPRT) is responsible for the synthesis and proper integration of a new 
SINE copy, which is then flanked by target site duplications (TSDs) (Fig. 1).

SINEs are typically characterized by a tRNA-derived 5′-region containing the 
RNA polymerase III promoter motif (box A and box B), a non-tRNA-related region 
of mostly unknown origin, and an A/T-rich 3′-tail or simple sequence repeat. The 
flanking target site duplication (TSD) results from the integration of new copy.

4  SINEs Can Be Identified from Available Sequence Data

Through this small quantity of characteristic features, which are in most cases 
genome specific, SINEs were discovered rather by chance in the past. However, 
their systematic and targeted identification in genome data became possible through 
the development of a sequence-based algorithm. In the SINE-Finder program, com-
mon characteristics of known eukaryotic tRNA-derived SINEs are used to identify 
SINE candidates from sequence data in FASTA format (Wenke et al., 2011).

The central search pattern consists of two degenerate consensus motifs for the 
polymerase III promoter boxes (box A, RVTGG, and box B, GTTCRA) separated 
by a variable distance between 25 and 50 nucleotides. In addition, the termination 
site is accounted for by a poly(A) or poly(T) stretch 2 up to 500 nucleotides down-
stream from the box B motif as well as a target site duplication (TSD) of variable 
length and sequence flanking the SINE copy (reviewed in Kramenov and Vassetzky, 
2005). The search algorithm of the SINE-Finder is based on a Python script that 
uses the following expression: pattern  =  ((‘TSD_region_1’, “{,40}”), (‘a_box’, 
“[GA][CGA]TGG”), (‘spacer_1’, “{25,50}”), (‘b_box’, “GTTC[AG] A”), 
(‘spacer_2’, “{20,500}”), (‘polyA’, “A{6,}|T{6,}”), (‘TSD_region_2’, “{,40}”)). 
Depending on the analyzed organism, a manual modification of the algorithm might 
be appropriate.
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After running the SINE-Finder on the target sequence data, the retrieved hits 
must be filtered to identify high-confidence SINE candidates. The first step is the 
pairwise comparison of all SINE candidate hits with BLAST (Altschul et al., 1990). 
Subsequently, families of homologous sequences can be defined, e.g., using SiLiX- 
based clustering (Miele et  al., 2011) experimenting with different thresholds for 
sequence identity and length. Clusters with less than three genomic hits are usually 
excluded from further analysis, as no repetitive character is recognizable. After 
aligning all sequences belonging to a cluster, the corresponding alignment has to be 
evaluated with respect to further SINE-typical features in order to exclude false- 
positive repetitive but SINE-unrelated sequences. This can be achieved by taking 
advantage of the fact that the integration of a SINE copy is accompanied by the 
formation of a unique TSD. While members of a SINE family exhibit high sequence 
conservation in the SINE body, their flanking regions are characterized by high vari-
ability (Fig. 2). In addition, the lengths of tail and TSD also vary between individ-
ual copies.

The sequence alignment of multiple SINE copies clearly shows the high identity 
of SINE members, while the flanking regions differ significantly with variation in 
tail length and individual TSDs (Fig. 2). Point mutations and indels highlight the 
variability within SINE sequences.

The SINE-Finder only detects those genomic sequences that match the search 
pattern, while others with mutations in the promoter motifs, the tail, or TSDs are not 
retrieved. Thus, it is essential in a further step to identify further family members 
that could not be detected so far due to deviations. For this purpose, after manual 
refinement of the alignment, a consensus sequence should be derived as query to 
perform a genomic search for all family members, including diversified SINE cop-
ies. Candidates are then filtered based on a minimum identity of 60% (Wenke et al., 

Fig. 2 Sequence alignment of multiple SINE copies belonging to the same family
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2011). For further characterization of the SINE family, only full-length copies 
should be considered to ensure unambiguous assignment to a SINE family and to 
allow comparability with other species.

5  Genetic Fingerprinting Applying the Inter-SINE Amplified 
Polymorphism (ISAP) Marker System

The principle of the ISAP method is the amplification of genomic regions between 
SINE copies that are close to each other. The genotype-specific SINE distribution 
can thus lead to fingerprint patterns that allow differentiation at the individual level. 
Outward-facing primers have to derive from suitable SINE families to amplify 
inter-SINE regions (Fig. 3). Here, the most conserved regions are suitable, and pro-
moter box motifs should be excluded to prevent cross-hybridization between differ-
ent families.

For the development of the ISAP marker system, the comprehensive character-
ization of the SINE landscape is indispensable. Both the number of full-length 
members and their conservation to the in silico consensus sequence provide infor-
mation about the extent and history of transposition. On this basis, a decision can be 
made to select those SINE families for PCR primer derivation, which (i) have at 
least a moderate number of copies for good genome coverage and (ii) show sequence 
regions with high identity values to ensure primer annealing. In addition, the distri-
bution pattern of the particular SINE family and the homologies within and between 
SINE families are crucial parameters that should be considered when designing 
primers.

In addition to the use of family-specific primer sets, the combination of primers 
from different SINE families as well as single primer reactions can enable the gen-
eration of numerous polymorphic ISAP patterns. The resulting PCR products can be 
separated according to their size by standard agarose gel electrophoresis or capillary 
electrophoresis on an automated sequencer.

The principle of the inter-SINE amplified polymorphism (ISAP) method is based 
on the amplification of genomic DNA between neighboring SINEs by PCR with 
outward-facing SINE reverse (R) and forward primers (F). PCR amplicons are sepa-
rated by electrophoresis according to their size (Seibt et al., 2012).

To determine the marker information content (number of polymorphic bands), 
the primers have to be applied to a diverse set of genotypes. Moreover, the extension 
of the primer at the 5′ end by a 20mer of an arbitrary GC-rich sequence (e.g., CTG 

Fig. 3 Schematic representation of ISAP reaction
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ACG GGC CTA ACG GAG CG; Seibt et al., 2012) allows the application of high 
annealing temperature to develop more robust markers.

To analyze the resulting polymorphisms, either gel images of the ISAP patterns 
or electrophoregrams of capillary electrophoresis have to be processed by software 
that enables the handling of fingerprints. Using BioNumerics (Applied Maths NV, 
Belgium), a large number of samples from several ISAP experiments can be pro-
cessed and stored in a database. For this purpose, the images have to be normalized 
in order to detect and classify the bands according to their size and count them. This 
enables the comparison and combination of ISAP runs and hence the calculation of 
pairwise similarities based on band presence and absence. Furthermore, cluster 
analysis could be performed for calculating dendrograms from pairwise similar-
ity values.

The ISAP reaction has been applied to potatoes to distinguish closely related 
representatives, such as varieties. We assume that it can serve to distinguish the 
molecular profiles of EMS mutants, which were obtained from the treatment of F1 
hybrids obtained by crossing genotypes belonging to the crop species Solanum 
tuberosum L.

6  Phenotyping Bulgarian Potato Variety and Mutant Lines 
from the MVCRI Collection

The morphological characteristics of the analyzed varieties possessed a diverse 
wide range of phenotypic variation shown in Table 1 and Fig. 4.

The study reported by Tomlekova et al. (2017) included eight Bulgarian potato 
varieties; six of them (“Perun”, “Rozhen”, “Iverce”, “Nadezhda”, “Orfei”, 
“Pavelsko”) were bred in the Maritsa Vegetable Crops Research Institute (MVCRI) 
and two of them in the Experimental Potato Station, Samokov (“Kalina”, “Bor”).

7  Morphological Characteristics of Potato Mutant Lines 
in the Maritsa VCRI Collection

Induced mutations are a proven tool for creating desirable genetic variability in 
plants that leads to increased accumulation of essential minerals, synthesis of pre-
cursors of vitamins, and modified quantities and qualities of starch, proteins, and 
oils as well as secondary plant metabolites that play critical roles in improving 
human health and nutrition (Tomlekova, 2014).

In their study, Nacheva et al. (2012) reported an EMS treatment for potato geno-
types performed in 2010 on a total of 534 seeds, with 100 seeds set aside as controls. 
The number of control seeds was 10% of the total number of treated seeds.
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Fig. 4 Bulgarian potato variety of Maritsa VCRI, Plovdiv, and Experimental Potato Station, 
Samokov. 1, “Perun”; 2, “Nadezhda”; 3, “Rozhen”; 4, “Ivertse”; 5, “Kalina”; 6, “Bor”; 7, “Orfei”; 
8, “Pavelsko”
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The mutant lines, controls, and parental components included in the study to 
describe the mutant population developed differed significantly in their morpho-
logical and economic characters (Nacheva, 2004a, b; Nacheva et  al., 2012). The 
four groups are formed according to the origin of the genotypes.

The plant height of mutants ranged from 8 cm (M-III-1) to 72 cm (M-III-17, 
M-III-50, M-IV-6) and from 15 to 81 cm in the untreated controls. As compared to 
the parental forms, an average of 40% of the resulting mutants exhibited a positive 
heterosis effect for the plant height character. The average number of stems in the 
parental lines was 3. In mutant forms, the amplitude variation was from 1 to 7 stems.

The data showing maximum values for this character were recorded in hybrid 
combination I (PС 428 × PС 490) for mutants M-I-6 and M-I-9. The majority of 
mutant lines were late ripening, compared to the parental forms. Of the four hybrids, 
hybrid combination ІІІ (PС 692 × PС 490) was the earliest ripening, with an average 
duration of the vegetation period of 80 days, followed by hybrid combination VII 
(PС 757  ×  PС 538) at 81  days. The shortest vegetation period was recorded in 
mutant lines M-VII-22 (64 days), M-III-29, and M-III-32 with 65 days. The number 
of standard-size tubers per plant in the mutant lines of hybrid combination I ranged 
from 1 (M-I-20) to 14 (M-I-22), with an average number of 8.5 for the parental 
forms. A positive heterosis effect for this character is reported for M-I-2, M-I-9, 
M-I-14, M-I-16, M-I-18, M-I-21, and M-I-22, in which the number of standard 
tubers per plant exceeded 10. In mutants of hybrid combination III, the highest 
value for the character of the number of standard-size tubers per plant was recorded 
in M-III-17 (24 tubers), followed by M-III-25 (20 tubers). Mutant lines M-IV-6 of 
hybrid combination IV (PС 707 × PС 428) and M-VII-20 of hybrid combination VII 
(PС 757  ×  PС 538) were characterized by 24 standard tubers per plant. Of all 
mutants obtained, the highest number of standard-size tubers per plant was recorded 
in M-VII-9–29 tubers. The amplitude of variation of this character studied in the 
untreated controls in the four hybrid combinations was from 0 to 13. The number of 
nonstandard tubers ranged from 6 to 8 in the parental forms, from 1 to 18 in the 
controls, and from 0 to 30  in the mutants. The smallest number of nonstandard 
tubers was formed in the mutants of hybrid combination IV (six tubers on average).

The total number of tubers per plant was a minimum of 2 and a maximum of 56. 
In five of the mutant lines of hybrid combination I (M-I-6, M-I-14, M-I-18, M-I-21, 
and M-I-2, M-I-22), a greater number of tubers were recorded (over 17) in compari-
son with the parent with a higher value of this character (PС 428). The mutants in 
the other hybrid combinations were characterized by even greater variability: in 
hybrid combination III, from 2 (M-III-1) to 41 (M-III-1, M-III-17); in hybrid com-
bination IV, from 3 (M-IV-2) to 27 (M-IV-10); and in hybrid combination VII, from 
4 (M-VII-13) to 56 tubers (M-VII-9). The variation in the controls had a minimum 
value of 2 (K-I-1) and a maximum of 28 (K-III-2). The weight of standard-size 
tubers in a single plant in the mutant lines of hybrid combination I was 447 g on 
average, compared to 332 g in the parental forms, and 72 g in the control. In 60% of 
the mutants in this hybrid combination, there was a positive heterosis effect for the 
studied character. M-I-2 was characterized by a maximum value (930 g). Three of 
the mutant lines in hybrid combination III formed standard-size tubers of over 
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1000 g per plant – M-III-1, M-III-17, M-III-25, and M-III-50. A maximum value for 
this character was recorded in mutant М-ІV-14 in hybrid combination IV (1000 g). 
The highest average productivity characterized the mutant lines in hybrid combina-
tion VII (596 g). In this hybrid combination, 31.3% of the mutants formed standard- 
size tubers of over 1000 g per plant – М-VІІ-7, М-VІІ-9, М-VІІ-16, М-VІІ-20, and 
М-VІІ-26.

As a whole, the total weight of tubers per plant followed the trend outlined in the 
analysis of tuber standard weight in the sense that the mutant lines with the highest 
standard weight of tubers are characterized by the highest value of the character 
total tuber weight in a single plant. The mutant lines with a total yield of more than 
1000 g per plant were М-ІІІ-17, М-ІІІ-25, М-ІІІ-50, М-ІV-14, М-VІІ-7, М-VІІ-9, 
М-VІІ-16, М-VІІ-16, and М-VІІ-26.

The weight of a standard tuber in mutant lines had an amplitude of variation from 
20 g (M-IV-7) to 125 g (M-III-50) and in the untreated controls from 42 g (K-III-2) 
to 102 g (K-IV-1). The average weight of 80 g of a standard-size tuber was formed 
by the mutants М-І-2, М-І-27, М-ІІI-50, М-VІІ-7, and М-VІІ-10 (Nacheva 
et al., 2012).

8  Genotyping of Bulgarian Potato Variety by Using ISAP 
Molecular Reactions

A study by Tomlekova et al. (2017) reported ISAP banding patterns identified with 
SINE reactions at Bulgarian potato varieties showing exhibited genotype variation 
as expected. The results of ISAP reactions with different primer combinations 
enable their genotyping using primer pairs SolS-IIIa-F/SolS-IIIa-R, SolS-IIIa-F/
SolS-IV-F, and SolS-IIIa-F/SolS-IV-R, as revealed by distinct polymorphic profiles.

The summarized results for the number of monomorphic and pol-ymorphic frag-
ments, as well as generated polymorphic profiles be-tween the studied Bulgarian 
varieties with each SINE reaction are presented in Table 2, and the electrophoretic 
separation results are shown in Fig. 5 with the permission of the author’s team.

The profiles of the varieties were generated by the following primer pairs for the 
ISAP reaction: lanes 1–8 by SolS-IIIa-F/SolS-IIIa-R, lanes 10–17 by SolS-IIIa-F/
SolS-IV-F, lanes 19–26 by SolS-IIIa-F/SolS-IV-R, and lanes 9, 18, and 27, 
DNA ladder.

Table 2 Profiles of eight Bulgarian potato varieties by three ISAP reactions

Primers G TM PA Fragment size of template MB PB

SolS-IIIa-F/SolS-IIIa-R 8 13 6 2000/200 3 10
SolS-IIIa-F/SolS-IV-F 8 10 5 3000/500 4 6
SolS-IIIa-F/SolS-IV-R 8 15 6 2000/200 2 13

Tomlekova et al. (2017)
G, number of analyzed genotypes; TM, total number of amplified fragments; PA, polymorphic 
profiles; MB, number of monomorphic bands; PB, number of polymorphic bands
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Fig. 5 ISAP profiles of potato varieties obtained by the three primer pairs SolS-IIIa-F/SolS-IIIa-R 
(1–8), SolS-IIIa-F/SolS-IV-F (10–17), and SolS-IIIa-F/SolS-IV-R (19–26). Lanes on the gel: 
“Iverce” (1, 10, 19), “Orfei” (2, 11, 20), “Nadezhda” (3, 12, 21), “Perun” (4, 13, 22), “Pavelsko” 
(5, 14, 23), “Rozhen” (6, 15, 24), “Kalina” (7, 16, 25), “Bor” (8, 17, 26), ladders (9, 18, 27) (modi-
fied by Tomlekova et al., 2017)

Table 3 Profiles of Bulgarian potato varieties generated by ISAP reactions with primer pairs 
which showed the best results

Primer 
combinations

ISAP profiles
Iverce Orfei Nadezhda Perun Pavelsko Rozhen Kalina Bor

SolS-IIIa-F/
SolS-IIIa-R

1 2 3 4 2 3 5 6

SolS-IIIa-F/
SolS-IV-F

1 1 2 3 1 4 1 5

SolS-IIIa-F/
SolS-IV-R

1 2 3 4 2 5 2 6

Modified by Tomlekova et al. (2017)
Different numbers in this table from 1 to 6 correspond to the six different profiles generated by the 
three reactions with the most efficient primers

Three ISAP reactions presenting the best results have generated a total of 38 
fragments, of which 9 were monomorphic and 29 polymorphic (Table 2) (Tomlekova 
et al., 2017).

Table 3 presents a distribution of the generated amplification profiles in the 
eight Bulgarian potato varieties, with the three most informative reactions, as the 
authors reported six identified varieties with unique profiles, but two of them have 
monomorphic profiles and were studied with other SINE reactions (SolS-II-F/
SolS- II- R), while also amplified monomorphic profiles in others, but polymor-
phic with other varieties (Tomlekova et al., 2017). The variety “Orfei” was bred 
by individual clone selection in the hybrid progeny of the line ML 83.508/4 and 
the variety “Koretta”. The variety “Pavelsko” was bred by individual clone selec-
tion in the hybrid progeny of “Britta” and line ML 75.25/18yN. The two varieties 
did not have the same origin.

N. Tomlekova et al.
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The reactions carried out by the ISAP reaction with the primer pair SolS-IV-F/
SolS-IV-R amplified monomorphic profiles of the eight studied Bulgarian potato 
varieties.

These results were presented by part of the author’s team (Tomlekova et  al., 
2017) and served as a basis for the study of M1V8 mutant potato lines.

9  Genotyping Bulgarian Mutant Lines Using ISAP 
Molecular Technique: Case Study

The objective of this chapter is to demonstrate the discriminatory power of ISAP 
markers by genotyping EMS advanced (M1V8) mutant potato lines developed at the 
Maritsa Vegetable Crops Research Institute in Bulgaria.

9.1  Material and Methods

Based on the above-described morphological indicators, productivity of mutant 
lines (Nacheva et  al., 2012), and biochemical analysis (Tomlekova, unpublished 
data), a selection of the most promising mutants was made. The most reliable geno-
types were only preserved and grown, which is the subject of the genotyping by the 
ISAP technique. The genotypes’ origin of the parents, controls, and M1V8 mutant 
lines included in this study are demonstrated in Table 4.

Table 4 Parental genotypes, mutant lines, and controls (F1 hybrids): origin, groups, and number 
of mutants

Mutant 
group 
(family no)

Hybrid 
combination Origin

M1V8 
mutant 
lines no) M1V8 mutant lines Controls

M-I PС 428 × PС 
490

“Nadezhda” × І 
75.127 N

3 М-I-3, M-I-8, 
M-I-17

M-III PС 692 × PС 
490

“Orlik” × І 75.127 N 6 M-III-8, M-III-9, 
M-III-25, M-III-30, 
M-III-48, M-III-50

K-III-2

M-IV PС 707 × PС 
428

“Olza” × “Nadezhda” 3 М-IV-14, М-IV-15, 
М-IV-17

K-IV-3

M-VII PС 757 × PС 
538

Е 402 × “Karlena” 4 М-VII-7, М-VII-9, 
М-VII-19, 
М-VII-27

K-VII-4

Modified by Nacheva et al. (2012)
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9.2  Molecular Method

Genomic DNA was isolated from young leaves by using the CTAB protocol, includ-
ing RNaseA treatment. DNA quality was determined by Lambda DNA (Thermo 
Scientific Life Sciences, cat. no. SD0011, Lithuania), on a 1% LE agarose gels 
(Lonza, cat. no. 50004, USA) with ethidium bromide (VWR International, cat. no. 
4007–07, Austria). Buffers (TAE and TBE) were prepared by Tris base (Sigma- 
Aldrich, cat. no. RDD008, USA), acetic acid (VWR International, cat. no. 
20104.298, Germany), and boric acid (Sigma Aldrich, cat. no. B0252, Germany), 
respectively, and EDTA (Sigma Aldrich, cat. no. E-5134, Germany). The 20  μL 
reaction mixture consisted of 10  ng DNA template, 1× Green PCR buffer (10× 
Green buffer, Thermo Scientific, cat. no. B71, Lithuania), 0.2 mM dNTPs (Thermo 
Scientific, cat. no. R0192, Lithuania), 0.15 μL each primer (Table 2), 0.1 mg/mL 
BSA (Sigma-Aldrich, cat. no. A6003, USA), and 0.5 U DreamTaq DNA polymerase 
(Thermo Scientific, cat. no. EP0702, Lithuania) (Seibt et  al., 2012; Tomlekova 
et al., 2017).

ISAP amplification reactions with primers from SolS-IIIa and SolS-IV families 
were performed using the following conditions: initial denaturation for 5 min at 
93 °C, followed by 30 cycles with 20 s at 93 °C, 30 s at 52 °C, and 120 s at 72 °C, 
and a final elongation of 5 min at 72 °C. The primers and PCR program were accord-
ing to Seibt et al. (2012). The resulting amplicons were separated on 2% LE agarose 
gels, prestained with ethidium bromide, in standard 1× TAE buffer. The comparison 
of the length of the fragments was done with DNA Ladder Gene Ruler 100 bp Plus 
DNA (Thermo Scientific, cat. no. SM0321, Lithuania).

The visualization of the ISAP banding patterns was performed using the gel 
documentation system AZURE Biosystem C600.

To compile matrices (the total number of amplified fragments in all the studied 
genotypes), only reproducible fragments with defined lengths were taken into 
account, e.g., for primer combinations SolS-IIIa-F/SolS-IIIa-R of 3200 to 300 bp, 
SolS-IV-F/SolS-IV-R of 2500 bp to 280 bp, and multiplex reactions with lengths, 
SolS-IIIa-F/SolS-IV-R, of 3000 to 480 bp.

The profiles amplified by each of the reactions included the lengths of the ampli-
fied fragments in all analyzed genotypes compared to the DNA marker used. The 
different intensity of the fragments was not taken into account. The intensity was 
involved only in the selection of fragments and assessment of their reproducibility. 
Only reproducible fragments of certain lengths for each reaction were taken into 
account for the compilation of the profiles.

9.3  Statistical Method

The amplified fragments were scored as present (1) or absent (0) for the three most 
informative reactions to generate a binary data matrix, which was analyzed using 
SPSS Statistics software (IBM Corp. Released, 2019). This is a graphical method 
for visualizing the proximity and difference between the units.
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The graphics show the distribution of the mutant lines in each group, including 
their parental genotypes and controls based on the three SINE reactions. These data 
complement the information obtained from the molecular profiles and confirm the 
clear differentiation between the groups.

9.4  Results and Discussion

The results from the analyses of mutant lines from the collection of the MVCRI 
with the two most informative families (SolS-IIIa and SolS-IV) conducted as single 
and multiplex reactions demonstrated a high level of polymorphism in the analyzed 
mutant potato lines. Three representative combinations of primers proposed by 
Seibt et al. (2012) were selected in the analyzed mutant potato lines, due to their 
high proportion of polymorphic bands: SolS-IIIa-F/SolS IIIa-R, SolS-IV-F/SolS- 
IV- R, and SolS-IIIa-F/SolS-IV-R (Table 5). Reaction with SolS-IIIa-F/SolS-IIIa-R 
resulted in the generation of 20 fragments representing a matrix of all templates, of 
which 17 were polymorphic. The reaction SolS-IV-F/SolS-IV-R generated a total of 
12 fragments – 7 polymorphic and 5 monomorphic. The reaction SolS-IIIa-F/SolS- 
IV- R generated a total of 18 fragments. These results are shown in Table 5.

The three reactions presenting the best results of the applied ISAP method in the 
mutant potato collection amplified a total of 50 fragments, of which 11 were mono-
morphic and 39 were polymorphic. The monomorphic and polymorphic ISAP pro-
files composed by the amplified fragments were assessed. All the parent components 
of each group available for the present study were distinguished between them 
accordingly. Some of the mutant genotypes and controls were also distinguished in 
the groups (Table 6).

The ISAP reaction with the primer pair SolS-IV-F/SolS-IV-R provided the best 
resolution and generated 12 profiles. Genotypes PC428, PC490, PC538, PC757, 
M-I-8, K-III-2, and K-VII-4 amplified unique profiles, different from all the others. 
The rest of the profiles included the studied genotypes grouped by two and three 
representatives per profile.

Single-family ISAP assays SolS-IIIa and SolS-IV in the studied potato collection 
amplified different patterns with a different number of bands. Primer pairs from 
SolS-SINE families IIIa and IV led to amplification of a number of fragments with 

Table 5 ISAP amplifications of potato mutant lines

ISAP primers G TM PA Fragment size of template MB PB

SolS-IIIa-F/SolS-IIIa-R 24 20 15 300/3200 3 17
SolS-IV-F/SolS-IV-R 24 12 12 280/2500 5 7
SolS-IIIa-F/SolS-IV-R 24 18 9 480/3000 3 15

G, number of analyzed genotypes; TM, total number of matrix bands; PA, polymorphic profiles; 
MB, number of monomorphic bands; PB, number of polymorphic bands
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suitable length and were included in multiplex reaction combining forward and 
reverse primers from these families.

With all the three selected ISAP reactions, the parental genotypes, available for 
this study, generated polymorphic profiles when compared to each other within the 
groups as well as between groups (Table 6).

The amplified fragments by ISAP reaction with primer pair SolS-IIIa-F/SolS- 
IIIa- R led to the construction of a matrix including 20 fragments of the matrix with 
lengths from 300 bp to 3200 bp. The ISAP with the SolS-IIIa family conducted in the 
parent genotypes of the first mutant group, PC 428 and PC 490, led to distinction of 
their amplification profiles by seven polymorphic fragments. The same PC 428, one 
of the parent components also of the fourth group, compared to PC 707, the other 
parent genotype of this group, differed by eight polymorphic fragments. The parental 
genotypes of the seventh mutant group, PC 538 and PC 757, also generated different 
profiles between them, amplifying five different polymorphic fragments (Fig. 6).

The matrix of ISAP with SolS-IV was composed of 12 amplified fragments with 
length from 280 bp to 2500 bp. With the SolS-IV-F/SolS-IV-R reaction, the profiles 
of PC 428 and PC 490 differed by three fragments. PC 538 and PC 757 were com-
posed of the same number of amplified fragments, and two of them differed by 
fragment lengths. The parental genotype of the fourth mutant group, PC 707, dif-
fered from the amplification profiles of the other parental genotypes by generating 
a smaller number of fragments that were amplified at different lengths in the tem-
plate (Fig. 6).

Fig. 6 Amplified profiles of parental genotypes by ISAP reactions 
Lanes 1–5 (SolS-IIIa-F/SolS- IIIa- R); lanes 8–12 (SolS-IV-F/SolS-IV-R), lanes 14–18 (SolS-
IIIa-F/SolS-IV-R), lanes 6, 7, and 13, DNA ladder (100 bp Gene Ruler)
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The matrix of ISAP with representatives of two SolS-IIIa and SolS-IV was com-
posed of 18 amplified fragments with lengths from 480 bp to 3000 bp. The profile 
of the parent variety PC 428 was polymorphic with PC 490 and also with PC 707. 
They differed by six amplified fragments. Parental components PC 757 and PC 538 
differed by five fragments with length in the range of 500–800 bp (Fig. 6).

The amplified ISAP profiles of the other studied genotypes, mutants, and con-
trols are shown in Fig. 7.

The SolS-IIIa-F/SolS-IIIa-R reaction generated ten polymorphic profiles in the 
19 analyzed mutant lines and controls. According to the number of amplified frag-
ments and their lengths with this reaction, the five parental genotypes were also 
amplified with polymorphic profiles that differed from the mutants and controls.

The profiles described below correspond to the number of lanes in Fig. 7. The 
results obtained through generating the amplification profiles of the mutant lines 
with the three reactions performed are shown in Table 6.

The profile in Fig. 7, lane 1, included three mutant lines from the first group 
(M-I-3, M-I-8, M-I-17), the lane 2 profile included two mutant lines (M-III-8, 
M-III-30) (Fig.  7), and the profile on lane 3 included three mutants (M-III-48, 
M-III-50, K-III-2) (Fig. 7, lane 3). The profile in Fig. 7, lane 4, included two geno-
types (M-III-9, M-III-25) from the third group. The profile in Fig. 7, lane 5, included 
one genotype (M-IV-17) that was polymorphic with all the others studied with this 
reaction. The profile of three mutant lines of the seventh group (M-VII-7, M-VII-9, 
M-VII-19), which was monomorphic to each other, was polymorphic with the other 
mutant and parental lines (Fig. 6, lane 6). Two genotypes generated unique profiles 
(M-VII-27) (K-VII-4) (Fig.  7, lanes 7 and 8). The profile included the control 

Fig. 7 Amplified polymorphic profiles in mutant potato lines by ISAP reactions 
SolS-IIIa-F/SolS- IIIa- R (lanes 1–10), SolS-IV-F/SolS-IV-R (lanes 11–18), SolS-IIIa-F/SolS-
IV-R (lanes 19–23)

N. Tomlekova et al.



67

(K-IV-3) of the fourth group with a SolS-IIIa-F/SolS-IIIa-R reaction (Fig. 7, lane 9). 
This reaction identified the controls of the fourth and seventh mutant groups with 
different polymorphic profiles (Fig. 7, lanes 8 and 9), and the control of the third 
mutant group amplified an identical profile with two of the mutant lines from the 
same group (M-III-48, M-III-50) (Fig. 7, lane 3). Among the mutant lines, a unique 
profile was amplified in genotype M-VII-27, polymorphic with the rest of the 
mutants, and a control (Fig. 7, lane 10). The parental genotypes in this group also 
amplified unique profiles (Fig. 6). Another mutant line M-IV-17 generated a unique 
profile, and the ISAP amplification profile of the other genotypes of this group 
(M-IV-14, M-IV-15) was represented by lane 10 in Fig. 7, and their profiles differed 
from the two parental genotypes of this group (Fig. 6).

The profiles in Fig.  7, lanes 11 to 18, showed the characteristic polymorphic 
profiles of mutant lines amplified with the SolS-IV-F/SolS-IV-R ISAP reaction. A 
total of seven profiles were generated among the mutant lines, and similar to the first 
reaction (SolS-IIIa-F/SolS-IIIa-R), the control of the seventh group (K-VII-4) 
amplified an individual profile (Fig. 7, lane 17), which differed with their parental 
genotypes (PC 538 and PC 757) (Fig. 6). The other genotypes studied (M-VII-7, 
M-VII-9, M-VII-19, M-VII-27) from this group have a common monomorphic 
amplification profile (Fig. 7, lane 16), but polymorphic compared to the others. The 
profiles of the two parental genotypes also differed (Fig. 6). Profile no. 11 shown in 
Fig. 7 is typical for M-I-3, M-III-8, and M-III-30. A different profile was generated 
in the mutant lines M-I-17, M-III-9, M-III-25 (Fig. 7, lane 13). The parental geno-
types differed both from each other and compared to mutant lines in the group. A 
profile included one representative from the first group (M-I-8) (Fig. 7, lane 12) and 
generated an individual profile. An amplified profile included two mutant lines of 
the third group (M-III-48, M-III-50) (Fig. 7, lane 14), and the ISAP profile of the 
control line of the group (K-III-2) was shown (Fig. 7, lane 18). All mutant lines of 
the fourth group of genotypes amplified a common profile shown in Fig. 7, lane 15. 
The profile was monomorphic with the control from this group and one parent geno-
type (PC707) but polymorphic with another parental line (PC428).

With the third informative ISAP reaction SolS-IIIa-F/SolS-IV-R, five polymor-
phic profiles were amplified among the studied genotypes, and the profile in Fig. 7, 
lane 19, included mutant lines (M-I-3, M-III-8, M-IV-15, M-IV-17, K-IV-3), all 
with different origins. Some profiles of mutants from different groups, shown with 
the same numbers in Table 6, were monomorphic, which we attribute to a random 
coincidence of amplicons of the same length, constituting profiles of different 
mutant groups. This is a random resemblance of a profile obtained from a reaction. 
To avoid such random similarities, we conducted a mathematical analysis with 
SPSS Statistics, a program that, based on a matrix of three highly polymorphic reac-
tions, comprising the information for monomorphic and polymorphic profiles from 
all conducted reactions in the study gives the distribution of genotypes within each 
group (see Fig. 8).

More ISAP reactions performed in this study can differentiate all the five mutants 
included in profile no. 19.
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Two mutant lines of the first group (M-I-8 and M-I-17) were shown in Fig. 7, 
lane 20. They amplified seven different length fragments compared to parental gen-
otypes. The profile of the parental genotype PC490 was polymorphic and compared 
to the representatives of the third mutant group, shown in lanes 21 and 22. The 
grouping is demonstrated in Fig. 8b.

The other parental genotype of third group was the PC692 line. During the repro-
duction of the plant material, it was lost and is not available in the collection, respec-
tively for the study. The origin of this genotype is “Orlik” – a Poland variety who 
has valuable economic qualities, including resistances to bacterial, fungal, and viral 
diseases (https://www.europotato.org/varieties/view/Orlik%20%281989%29- E).

Fig. 8 Result of multidimensional scaling of mutant potato groups
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The origin of the parental genotypes of the fourth mutant group is the Bulgarian 
variety “Nadezhda” (PC428) and the Poland variety “Olza” (PC707). Morphological 
characteristics on “Nadezhda” are presented in Table 1, and the Poland genotype 
“Olza” is characterized by a high yield potential and other important economical 
qualities, including resistance to fungal, bacterial, viral, and pest diseases (https://
www.europotato.org/varieties/view/Olza- E). The amplified profiles of the mutant 
lines of the seventh group generated mainly long fragments with a length of 
1200 bp to 3000 bp. The parental genotypes amplified different profiles. The origin 
of one of the parents was related to a German variety “Karlena”, which character-
ized early maturity, medium yield potential, high to very high dry matter content, 
and other economically important traits, including resistance to fungal, bacterial, 
viral, and pest diseases (https://www.europotato.org/varieties/view/Karlena- E). 

Fig. 8 (continued)
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The information presented for the varieties “Orlik”, “Olza”, and “Karlena” is taken 
from the European cultivated potato database (https://www.europotato.org/).

Cluster analysis of the profiles obtained from the four primers of the ISAP reac-
tion confirmed the expected genealogy of these potato genotypes according to the 
reported origin of the germplasm (Fig. 8). From the graphics the relative position of 
the genotypes to each other in a group and the number and composition of clusters 
can be assessed.

Nowadays, classic breeding is proving to be an insufficient model in breeding 
programs. In order to classify valuable accessions, the use of modern biotechnologi-
cal methods is inevitable. When identifying varieties and mutant lines, molecular 
markers prove to be a valuable resource in combination with phenotypic traits. 
Existing molecular marker systems, especially those affecting highly variable 
regions – microsatellites and retrotransposons in the genome – can lead to genotyp-
ing with specific DNA profiles and further identification.

Their use in the present study of ISAP genotyping is based on the detection of 
SINE presence/absence at a particular locus (Schmidt et al., 1998).

SINEs are not only components of the eukaryotic genome, but also have an 
important role in genomic organization and gene evolution. According to Seibt et al. 
(2012), SINE SolS-IIIa and SolS-IV are the most common in the potato genome, 
indicating that ISAP reactions with these primers will have the greatest potential for 
genotyping and identifying potato genotypes. The study by Tomlekova et al. (2017) 
conducted in the Bulgarian varieties and the mutant potato lines confirms this state-
ment, as only two genotypes could not identify among the analyzed eight varieties. 
We reported polymorphism for 16 mutant lines compared to their parental geno-
types, their controls, and between them – a mutant with mutant. According to Seibt 
et al. (2012), a large number of amplifying fragments were identified with primer 
combinations SolS-II, IIIa, and IV, but only a small number with SolS-VI and VII.

Diekmann et al. (2017) analyzed 185 cultivated potato (S. tuberosum L.) acces-
sions with the three most informative reactions reported by Seibt et al. (2012) and 
determined 115 distinguishable ISAP fragments.

In studies by Sormin et al. (2021) in 22 Cucumis melo L. accessions, ISAP prim-
ers described by Seibt et al. (2012) from potatoes were used in the study and showed 
a high level of polymorphism. SolS-IIIa-F generated five fragments and showed 
60% polymorphism. SolS-IV-R resulted in the generation of eight fragments and 
showed a 100% polymorphism, which did not coincide with this polymorphism that 
reported 100% in the constructed melon primers.

In a study using the ISAP technique performed by Tomlekova et  al. (2017) 
(unpublished result) on mutant pepper lines, the most successful profiles were 
amplified with SolS-II-F/SolS-II-R and SolS-V-F/SolS-V-R primer pairs.

Aziz et al. (2020) reported three pairs of primers – SolS-Ib-F/R, SolS-IIIb-F/R, 
and SolS-IIIa-F/R – used in tomato, as single-family and multiplex combinations 
among them and with other informative reactions such as SolS-Ia-F/R and SolS-II- -
F/R.  These families showed the best results from the ISAP reactions in tomato 
 varieties. The primer pairs SolS-IIIa-F/SolS-IIIa-R, SolS-IV-F/SolS-IV-R, and 
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SolS-IIIa-F/SolS-IV-R used for ISAP amplifications in our study allowed the gen-
eration of profiles with the most polymorphic fragments. The richest profiles were 
generated with SolS-IIIa-F/SolS-IV-F.  The most easily distinguishable were the 
profiles generated by the pair SolS-IV-F/SolS-IV-R.  The results obtained in the 
present study were consistent with the research studies of German genotypes pub-
lished by Seibt et al. (2012).

The amplification of specific polymorphic profiles and the genotyping of potato 
accessions to be applied at an early stage of plant development allow accelerating 
the selection process. Induced mutagenesis leads to the activation of mobile genetic 
elements in plants, which makes them a suitable tool for the study of newly gener-
ated mutant forms. The DNA sequence of a gene could include a transposable ele-
ment, in particular a SINE(s) (Schmidt et al., 1998). With this property, they are a 
suitable tool for the study of induced mutants.

10  Conclusions

The study underlines the potential and accuracy of the ISAP technique to perform 
precise genotyping of representatives of Solanum tuberosum L. and identify closely 
related potato genotypes.

The best resolution was obtained by the ISAP method with the SINE family 
SolS-IV.

Of all the reactions performed, five mutant/control lines (M-I-8, M-IV-17, 
M-VII-27, K-IV-3, K-VII-4) were molecularly identified by unique profiles. 
Polymorphism between parental genotypes was proven with the three SINE reac-
tions performed.

The present study can serve as a basis for further research on potato breeding. 
The combination of morphological with molecular studies data, high productivity 
of genotypes, is of great importance in order to register new mutant variety/varieties.
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Applicability of ISAP and RAPD 
Techniques for Capsicum Collection 
Genotyping

Nasya Tomlekova, Velichka Spasova-Apostolova, Nikolay Panayotov, 
Ivelin Panchev, Fatma Sarsu, Mohammad Rafiq Wani, and Kathrin M. Seibt

Abstract Bulgaria was the secondary gene pool for many crops, and one of the first 
was pepper. However, during the political transforming and economic crises, the 
lands for growing pepper (Capsicum spp.) were reduced, and thereafter, the genetic 
diversity was lost. With pepper, Bulgaria still has priority providing on European 
scale valuable pepper germplasm, and this priority should be evaluated and pre-
served. We present our efforts to characterize pepper accessions using RAPD as 
well as the retroelement-based Inter-SINE Amplified Polymorphism (ISAP) method 
initially developed for potatoes. Several short interspersed nuclear element (SINE) 
families were active within the common ancestor of potato and pepper. We studied 
the degree of polymorphisms in a collection of 73 pepper genotypes, divided into 
six groups, using ISAP with primers derived from seven Solanaceae SINE families 
as well as two subfamilies. Two primer pairs from the families SolS-II and SolS-V 
generated the most fragments and most informative banding patterns. These 
 SINE- based ISAP reactions are best suited for identifying species of the Capsicum 
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genus. The most polymorphic profiles within all studied were generated by C. bac-
catum accessions. In contrast, intraspecific application of the SINE-based markers 
yielded a high percentage of conserved ISAP fragments. From a total of 56 C. ann-
uum accessions, only three of them with two different profiles were identified. Our 
results demonstrate that potato-based SolS-SINE primers can be adapted for molec-
ular genotyping in peppers. The low intraspecies polymorphism generated by ISAP 
forced us to investigate RAPD as an alternative low-cost genotyping approach. 
RAPD was successfully applied on a group of mutant lines and corresponding 
source lines, carrying valuable breeding traits. Despite the low polymorphic levels, 
we have identified four RAPD primers, capable to discriminate among several 
genotypes.

Keywords Capsicum spp. · SINE · Transposable elements · ISAP · RAPD

Abbreviations

BSA Bovin serum albumin
CTAB Hexadecyltrimethylammonium bromide [(C16H33)N(CH3)3]Br
EDTA Ethylenediaminetetraacetic acid [CH2N(CH2CO2H)2]2

M Multiplex reaction
Sol Solanaceae

1  Introduction

In Bulgarian agriculture, most of the pepper varieties belong to Capsicum annuum 
L. (Todorova et al., 2014). Bulgaria is a secondary breeding center where sweet pep-
per varieties dominate the production, complemented with limited genetic diversity 
available to the breeders (Poryazov et al., 2013).

1.1  Molecular Marker Systems

Detailed genetic characterization in pepper spp. started in mid-twentieth century. 
Initially, it was based on phenotype assays, gradually supplemented with physiolog-
ical and biochemical methods. The development in molecular biology led to intro-
duction of powerful DNA-based methods like RFLP, RAPD, AFLP, SSRs, CAPS, 
SCAR, and SNP (Paran, 2013).

RFLP, while first introduced in the 1980s (Livingstone et  al., 1999; Tanksley 
et al., 1988) and still in use today (Paran, 2013), was quickly replaced by AFLP – a 
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“hybrid” between RFLP and PCR. AFLP generates a vast amount of data allowing 
to detect polymorphism at intraspecies level and even within the progeny of a single 
parent (Vos et al., 1995). AFLP was used in pepper for QTL analyses of different 
traits (Ogundiwin et al., 2005) not only in C. annuum L. but also on other species 
like C. chinense Jacq., C. baccatum L., and C. frutescens L. Despite the high infor-
mativity of the method, low levels of polymorphism were obtained (Ht 0.119) 
resulting in a low index of genetic diversity (GST 0.331). These results demon-
strated that the modern varieties had a very narrow genetic base (Toquica et al., 2003).

1.2  RAPD for Pepper Genotyping

RAPD is an anonymous PCR-based method for the detection of polymorphism. The 
method employs a single decamer primer to amplify regions where this primer 
anneals in opposite direction at a distance of 50–2000 bp. The method is simple and 
inexpensive but had problems with reproducibility. Also, it requires preliminary 
screening of a large primer set to identify primers that generate informative patterns 
(usually 5–20 bands) (Welsh & McClelland, 1990; Williams et al., 1990).

Despite the limitations, RAPD was successfully applied in pepper genetic 
research. Rodriguez et  al. (1999) screened 134 accessions with 110 primers and 
determined that three accessions previously classified as Capsicum annuum on mor-
phology base actually belong to other species.

Analysis of 22 accessions of C. annuum, C. baccatum, C. chinense, C. eximium, 
C. frutescens, and C. luteum with 27 RAPD and eight ISSR primers revealed genetic 
similarity between 23% and 96% (Thul et  al., 2012). Combining RAPD with 
UPGMA analysis allowed Adetula (2005) to separate 40 accessions of C. annuum 
and C. frutescens into four groups. At population level, RAPD allowed for identifi-
cation of novel genetic variation (Votava et al., 2002).

RAPD was also used for genetic characterization of disease resistance loci. 
Analysis of 800 primers identified one RAPD marker (UBC191432) related to Pvr4 
gene, conferring resistance to PVY (Arnedo-Andrés et al., 2002). The marker was 
converted into SCAR and successfully used in a breeding program (Moodley et al., 
2014). RAPD can also be applied for characterization of source material for hybrid 
production (Ilbi, 2003), hybrid identification (Jang et al., 2004), and hybrid quality 
tests (Ballester & Carmen de Vicente, 1998). Baoxi et al. (2000) and Kumar et al. 
(2007) successfully applied RAPD for identification of genetic bases of fertility 
restoration.

Despite its limitations RAPD can be successfully used for the primary screening 
of genetic material and further serving as a base for SCAR markers for more sus-
tainable analysis.
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1.3  Application of RAPD for Pepper Characterization

RAPD analyzes were performed using 40 decamer primers (Fig. 1a, b) (Tomlekova 
et  al., 2016). Sixteen from all 40 analyzed primers have been found to generate 
profiles suitable for genotype identification. Selected primers generated 162 bands 
in total with size ranging from 300 bp to 3000 bp (Fig. 1 and Table 1).

RAPD reactions with 12 of the selected primers generated monomorphic profiles 
in all investigated pepper genotypes within all 113 scored bands (Fig. 2). Details of 
these primers are shown in Table 1.

Four primers generated polymorphic patterns in some of the analyzed lines. 
Three of them (A13, A18, and B01) produced polymorphism in line 1928, while 
primer B10 generated polymorphism in genotypes 1928 and 1966 (Fig.  3 and 
Table 2).

RAPD reactions with primers A13, A18, and B01 generate monomorphic pat-
terns in genotypes 1966, 1917, 1931, 1933, and 1935. The primer A13 amplifies ten 

Fig. 1 RAPD amplification patterns from pepper genotype 1934(of, al)

Table 1 Primer sequences and band score for the monomorphic RAPD reactions in pepper initial 
and mutant genotypes

Random primer Sequence of primers (5′ → 3′) A T Fragment size (bp)

A01 CAG GCC CTT C 7 19 250–2200
A02 TGC CGA GCT G 12 15 250–2900
A04 AAT CGG GCT G 12 12 450–3000
A05 AGG GGT CTT G 12 8 450–1800
A08 GTG ACG TAG G 7 7 550–2200
A09 GGG TAA CGC C 7 17 390–3000
B02 TGA TCC CTG G 7 13 700–2900
B03 CAT CCC CCT G 7 15 310–3000
B05 TGC GCC CTT C 7 12 500–2800
B06 TGC TCT GCC C 7 9 550–2800
B08 GTC CAC ACG G 7 6 850–2700
B17 AGG GAA CGA G 7 12 350–2800

A = number of analyzed genotypes, T = total number of bands
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Fig. 2 Monomorphic pattern assessed by RAPD amplification in all analyzed pepper genotypes. 
Lane 7 (L) – 100 bp Plus DNA Ladder

Fig. 3 Polymorphic band patterns (or RAPD amplification profile) found in three pepper geno-
types (1966, 1917, and 1928). The white arrow shows additional polymorphic bands and the black 
arrow shows polymorphic bands absent in the patterns

Applicability of ISAP and RAPD Techniques for Capsicum Collection Genotyping
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Table 2 Primer sequences and band score for polymorphic RAPD reactions in pepper genotypes

Random 
primers

Sequence of primers 
(5′ → 3′) A PA % PA T

Fragment size 
(bp) P % P

A13 CAG CAC CCA C 7 1 14.29 10 300–1900 1 10
A18 AGG TGA CCG T 7 1 14.29 13 400–2800 1 7.69
B01 GTT TCG CTC C 7 1 14.29 12 410–3000 1 8.33
B10 CTG CTG GGA C 7 2 28.57 14 550–2900 3 21.43

A = number of analyzed genotypes, PA = polymorphic genotypes, % PA = percent polymorphic 
genotypes, T = total number of bands, P = polymorphic bands, % P = percent polymorphic bands

fragments in genotypes 1930, 1966, 1917, 1931, 1933, and 1935 (length of 1900 bp, 
1600 bp, 1190 bp, 1000 bp, 900 bp, 800 bp, 700 bp, 600 bp, 450 bp, and 300 bp) and 
nine fragments in line 1928, whereas the fragment with length 700 bp is not ampli-
fied (Fig. 3 and Table 2).

The primer A18 amplifies patterns consisting of 12 fragments in accessions 
1966, 1917, 1931, 1933, and 1935 and 13 fragments in mutant line 1928, where an 
additional fragment with length 1500 bp was amplified.

The amplification with primer B01 results in lack of amplification of a fragment 
with length 1200 bp in line 1928 (11 fragments) as compared to the pattern gener-
ated in genotypes 1966, 1917, 1931, 1933, and 1935 where 12 fragments are 
amplified.

The primer B10 amplifies monomorphic profiles containing 12 fragments in 
mutant genotypes 1930, 1917, 1931, 1933, and 1935, while it generates polymor-
phic patterns in variety 1966 and line 1928. The pattern of line 1928 (13 amplified 
fragments) contains two additional fragments with lengths 850 bp and 600 bp, and 
it does not contain fragment with length 1050 bp. The pattern of variety 1966 (11 
amplified fragments) lacks the fragment of length 1050 bp.

The RAPD reaction with primers A13, A18, B01, and B10 generates a total of 6 
polymorphic bands from all 49 amplified fragments, thus resulting in average poly-
morphic content of 12.24% and polymorphic band size ranging from 300  bp to 
2900 bp (Table 2).

Varieties 1966 (initial) and 1917 (mutant) can be distinguished by an amplifica-
tion using primer B10. Eleven fragments of genotype 1966 and 12 fragments of 
genotype 1917 were amplified by RAPD with primer B10. The additional fragment 
of 1917 amplified by the RAPD reaction with primer B10 was with 1050 bp length. 
Mutant lines 1928 and 1930 can be distinguished with all four selected primers. 
Primer A13 amplifies 10 fragments of the genome of line 1930 and 9 fragments of 
line 1928 where a 700-bp fragment is not amplified. The primer A18 amplifies pat-
terns consisting of 13 fragments of genome of line 1928 and 12 fragments of line 
1930. Line 1930 is characterized with an additional amplified fragment with length 
1500 bp.

The amplification with primer B01 results in lack of amplification of a fragment 
with length 1200 bp of line 1928 (11 fragments) as compared to the pattern gener-
ated from lines 1930 (12 fragments). The profile of line 1928 consists of 13 frag-
ments amplified by primer B10 and of line 1930 – of 12 fragments. The differences 
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are more complicated since primer B10 generates two additional fragments with 
lengths 850 bp and 600 bp of line 1928 and does not amplify the fragment with 
length 1050 bp in the RAPD-B10 profile of line 1930. Polymorphism is not detected 
in the comparison of mutant lines 1931, 1933, and 1935 by the RAPD reactions 
with primers used in this study.

RAPD is a well-known technique for genetic analyses in pepper (Bahurupe et al., 
2013; Pradeepkumar et  al., 2001). In the present work, we have identified four 
RAPD primers capable of differentiating between the analyzed pepper genotypes. 
Three of these primers generate polymorphic fragments in line 1928, while the 
fourth one – B10 – generates polymorphism also in variety 1966. The established 
level of polymorphism is 12.2% calculated only for these primers. A recalculation 
including all tested primers will result in polymorphic levels below 1–2%. These 
RAPD primers (А13, А18, В01, and В10) successfully discriminate between 
‘Zlaten medal ms 8’ from its mutant derivative 1929(of, al, ms8). Moreover, primer В10 
discriminates between initial variety ‘Pazardzhishka kapia 794’ and its mutant 
progeny ‘Oranzheva kapia’ (Tomlekova et al., 2016). These results are interesting 
since we were not able to discriminate these genotypes using the potato-based 
ISAP. Another important outcome is the demonstration of the applicability of RAPD 
as a useful and affordable tool in pepper molecular breeding. Despite several known 
drawbacks of this method, it allows quick and cheap generation of polymorphic 
bands suitable for further conversion into more reproducible markers.

1.4  Microsatellite Analysis in Pepper

Microsatellites are short DNA sequences containing tandemly repeated motifs of 
2–15 bp, i.e., (CA)n or (GATA)n (Lijun & Xuexiao, 2012; Min et al., 2008). Each 
motif is represented several hundred times in eukaryotic genome, and for some of 
them, a high level of polymorphism is observed. The polymorphism is due to 
changes in the number of repeated motifs and the mechanisms of such change are 
largely unknown. It is also unknown why in some loci no polymorphism is observed, 
while for others change might occur even after a single cell division. The use of 
microsatellites as markers is possible in two ways. The first one is similar to RAPD 
when the motif sequence is used as single primer. In this case, primers amplify the 
region between two adjacent loci of oppositely oriented sequences divided by less 
than 2000 bp. This technique is known as ISSR and has similar requirements like 
RAPD and generates similar amplification patterns.

The second approach needs preliminary isolation of individual locus, its sequenc-
ing and design of locus-specific primer pair. Further, each primer pair needs to be 
checked in order to confirm whether the locus is polymorphic or not. This SSR 
technique requires extensive time-consuming and expensive work without guaran-
tee that all characterized loci will be useful for genetic research.

Nevertheless, when such work was performed, SSR markers were successfully 
applied for gene mapping and for QTL analyses in pepper (Minamiyama et  al., 
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2006; Paran, 2013). Combing SSR with NGS in two pepper varieties identified 
2067 and 2494 promising microsatellite loci. Most represented motifs were trinu-
cleotides (49%) followed by di- (39.7%), hexa- (5.3%), tetra- (2.9%), and penta-
nucleotide (2.8%). Among them, AGC/СAG/GCA (17.7%) are the most frequent, 
followed by GGТ/GTG/TGG (16%), AAG/AGA/GAA (14.3%), ATC/CAT/TCA 
(11.9%), and AAC/АСА/CAA (7.5%) (Ahn et al., 2014).

ISSR and SSR were applied for variety identification of C. annuum and C. pube-
scens. Moreover, primers designed for C. annuum were amplifying similar loci in 
C. pubescens (Ibarra-Torresa et al., 2015). ISSR was used for analysis of genetic 
diversity in C. chinense (Gozukirmizi et al., 2015; Hazarika & Neog, 2014). ISSR 
was also used for revealing genetic variations upon in vitro regeneration of pepper 
variety ‘Habanero’ (Bello-Bello et al., 2014).

A variation of SSR targeting ORFs and known as SRAP was developed in 2001 
for genetic analysis in Brassica (Li & Quiros, 2001). This technique was success-
fully applied for analysis of loci determining resistance to Phytophthora capsici in 
pepper (Xu et al., 2014). Also, similar application of COSII markers developed for 
other species can be used in pepper (Wu et al., 2009). Combining available markers 
allows for better and more complete germplasm characterization worldwide (Geleta 
et al., 2005).

1.5  Mobile Genetic Elements as a Base for Molecular 
Marker Systems

Achievements in genetics allowed for the development of novel marker systems 
based on mobile genetic elements (MGEs). Mobile genetic elements are complex 
systems allowing a nucleotide sequence to change its position within genome. For 
the first time, mobile elements were described by Barbara McClintock (1950). 
Further research had revealed that MGEs are diverse groups forming a substantial 
part of eukaryotic genomes and their activities supplement the classic genetic para-
digm (Ravindran, 2012). The current view of MGE roles suggests that they might 
participate in the regulation of gene expression as “promoter donors” (Hedges & 
Batzer, 2005) or providing places for binding of regulatory factors (Lee et al., 2015; 
Sundaram et al., 2014; Wang et al., 2007). MGEs might serve as donors of novel 
exons or entire protein-coding genes (Ferguson et al., 2013). MGEs can also affect 
the chromosome structures and stability (Lippman et al., 2004).

MGEs are widely distributed within chromosomes and their number can change 
not only during evolution but also during stress conditions (Schulman, 2007). Since 
the last effect can occur in short periods of time, it might serve as a basis for the 
search of novel MGE-based molecular markers. MGEs can be separated in two 
groups depending on their propagation cycle. Type I involves an RNA intermediate 
along with the DNA form (retrotransposons), while Type II involves only a DNA 
form (transposons) (Xiong & Eickbush, 1990; Wessler, 2006; Wicker et al., 2007; 
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Munoz-Lopez et al., 2010). Depending of the replication mechanism, Type II MGEs 
are divided to replicative and non-replicative transposons (Feschotte et al., 2002).

Type I retrotransposons can be divided into two groups – retroelements with long 
terminal repeats (LTR) and non-LTR retroelements (Schmidt, 1999; Wessler 
et al., 2006).

LTR retrotransposons like Ty1 or gypsy can be represented in approximately a 
million copies in some plant genomes (Kumar et al., 1997). In pepper, MGEs com-
prise 76%–79.6% of genome in C. annuum CM334 and С. chinense, respectively, 
and 70% of them are LTR retrotransposons (Kim et al., 2014).

The main non-LTR retroelements are LINE and SINE (Deragon & Zhang, 2006; 
Wessler, 2006). LINE comprises a single bicistronic RNA encoding an RNA- 
binding protein and a protein with endonuclease and reverse transcriptase activities. 
Thus, LINEs are self-sufficient for propagation (Cost & Boeke, 1998) but their inte-
gration depends on cellular DNA repair mechanisms (Moore & Haber, 1996).

LINEs are widely distributed among eukaryotes and can be divided in several 
main families – R2, L1, RTE, I, and Jockey (Eickbush & Malik, 2002; Xiong & 
Eickbush, 1990). In plants, most represented are members of the L1 clade and RTE 
(Biedler & Tu, 2003; Wicker et al., 2007). There is a hypothesis that LINEs are the 
oldest retroelements and evolutionary predecessors of LTR retrotransposons (Xiong 
& Eickbush, 1990).

SINEs are a heterologous group derived from different RNA types (i.e., tRNA, 
7S RNA, 5S RNA) and do not encode proteins necessary for their own propagation 
(Park et al., 2011; Wicker et al., 2007). All known SINEs are transcribed by RNA 
polymerase III but their propagation depends on enzymes produced by active LINEs 
or retrotransposons (Kajikawa et  al., 2005; Schmidt, 1999). SINE organization 
resembles that of pseudogenes (Weiner et al., 1986; Winkfein et al., 1988).

SINEs are also a widely spread group of MGEs in eukaryotic genomes with 
several hundred thousand to several million copies per genome. Recently, SINE 
activity was demonstrated in potato (Seibt et al., 2016). Along with their high copy 
number, this information pointed on the possibility to use SINEs in a novel marker 
system. Such a system was developed for potato and is known as ISAP (Alzohairy 
et al., 2015; Seibt et al., 2012; Wenke et al., 2011).

In potato genome, seven SolS-SINE families and two subfamilies have been 
identified (Seibt et al., 2016; Wenke et al., 2011). These SolS-SINEs were detected 
in a number of Solanaceae crops such as potato, tomato, and pepper (Seibt et al., 
2016). Interestingly, SINEs were frequently observed in and near genes (Seibt et al., 
2016). The Solanaceae SINE families differed in their copy numbers and the esti-
mated age of these copies and were successfully used to ISAP markers for potato 
genotyping (Seibt et  al., 2012, 2016). Although initially developed for potatoes, 
sequence similarities between SINEs across Solanaceae species indicate that these 
ISAP markers could be adapted for related species (Seibt et al., 2016).

The robustness and ease of application make ISAP a suitable alternative to more 
advanced techniques like AFLP or SNP. ISAP may not replace these standard meth-
ods in molecular genetics, but can be a powerful tool for quick preliminary charac-
terization of the available germplasm and the identification of markers for particular 
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traits (Tam et al., 2005). Hence, it could be easily incorporated into breeding pro-
grams. Since all SolS-SINE families appeared to be active during evolution of the 
Solanaceae family, it can be expected that SINE-derived primers can be exploited 
for genetic analyses within this family (Seibt et  al., 2016). Solanaceae family 
encloses several economically important crops like pepper, tobacco, tomato, and 
potato to name a few (Wu et al., 2010). According to the C value database, the pep-
per genome is similar in size compared to tobacco, but twice that of the genomes of 
potato and tomato. The genome of the tomato is most closely related to the potato 
(Wu et al., 2010). The accumulation of repeated elements that led to genome size 
enlargement in pepper during evolution outlines the possibility of successful 
employment of potato-based ISAP primers on pepper (Kim et al., 2014).

The advantages of the ISAP method are the simplicity of the experimental 
design, reproducibility, and sufficient levels of polymorphism. ISAP is similar to 
RAPD in terms of time and labor requirements, but ISAP is more reproducible and 
generates more complex amplification patterns (Wenke et al., 2011). The three most 
informative ISAP reactions in potato were based on the SINE families SolS-IIIa and 
SolS-IV (primer pairs SolS-IIIa-F/SolS-IIIa-R, SolS-IIIa-F/SolS-IV-F, and SolS- 
IIIa- F/SolS-IV-R). Of all, this is SolS-IIIa-F/SolS-IV-R, which generates the most 
polymorphic banding patterns in potato (Seibt et al., 2012; Tomlekova et al., 2017b). 
Retrotransposons can be used as markers because their integration creates new 
joints between genomic DNA and their conserved ends. Apart from the ISAP 
 technique under consideration to detect polymorphisms for retrotransposon inser-
tion, in 2006 Kalendar and Schulman developed two methods, retrotransposon- 
microsatellite amplified polymorphism (REMAP) analysis and inter-retrotransposon 
amplified polymorphism (IRAP) analysis, that require neither restriction enzyme 
digestion nor ligation to generate the marker bands for PCR amplification with a 
single primer or with two primers and applied in different crops (Kalendar et al., 
2004; Kalendar et al., 2011).

1.6  Applicability of Potato-Derived ISAP for Pepper 
Genome Characterization

1.6.1  Materials and Methods

Plant Material

Seventy-three pepper accessions used in genotyping experiments are described in 
Tables 3, 4, 5, 6, 7 and 8. X-Rays were applied to the initial (parent) ‘Pasardzhishka 
kapia 794’ pepper variety during the 1980s. Later, the orange-fruit variety 
‘Oranzheva kapia’ was developed through the mutation breeding process. The 
mutant variety had more β-carotene and other beneficial mutations were induced as 
well (Tomlekova et  al., 2021). Evaluating and increasing genetic diversity has 
always been one of the most important targets in Bulgarian pepper breeding 
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Table 3 Group I. Seventeen accessions belonging to Capsicum fasciculatum Sturtev., C. frutescens 
L., C. baccatum L., and C. pubescens Ruiz & Pav. species

Number of 
accession Classification Origin Photos

100 C. fasciculatum 
Sturtev.

Introduction 
from Greece

98 C. frutescens L. Local 
accession 
from Bulgaria

101 C. baccatum L. Local 
accession 
from Bulgaria

106 C. baccatum L. Local 
accession 
from Bulgaria

110 C. frutescens L. Introduction 
from Crete

(continued)
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Table 3 (continued)

Number of 
accession Classification Origin Photos

CBU C. baccatum L. 
var. umbilicatum

Argentina

CBP C. baccatum L. 
var. pendulum

Argentina

Peru 1 C. frutescens L. Introduction 
from Peru

Peru 2 C. frutescens L. Introduction 
from Peru

Peru 4 C. frutescens L. Introduction 
from Peru

Peru 5 C. frutescens L. Introduction 
from Peru

(continued)
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Table 3 (continued)

Number of 
accession Classification Origin Photos

Peru 6 C. baccatum L. Introduction 
from Peru

Peru 7 C. frutescens L. Introduction 
from Peru

Peru 8 C. frutescens L. Introduction 
from Peru

Peru 9 C. baccatum L. Introduction 
from Peru

(continued)
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Table 3 (continued)

Number of 
accession Classification Origin Photos

Peru 10 C. frutescens L. Introduction 
from Peru

Peru 11 C. pubescence 
Ruiz & Pav.

Introduction 
from Peru

Introductions and local accessions from different countries belong to the collection of the Maritsa 
Vegetable Crops Research Institute and Agricultural University, Plovdiv
The photos are copyright and taken in the course of the research of the plant material grown. 
Kindly provided by Prof. Eduardo Moscone from the collection of the University of Cordoba, 
Argentina for analyses

Table 4 Group II. Twelve foreign accessions belonging to C. annuum

Number of accession Type Origin

China 1 F1 hybrid China
China 2 F1 hybrid China
China 3 F1 hybrid China
China 4 F1 hybrid China
China 5 F1 hybrid China
England 1 F1 hybrid England
England 2 F1 hybrid England
47 Local accession Egypt
108 F1 hybrid Poland
114 F1 hybrid Poland
23 Local accession Egypt
60 F1 hybrid Spain
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Table 5 Group III. Seven local accessions and breeding lines, belonging to C. annuum

Number of accessions and breeding lines Origin

73 – Breeding line Selected from breeding line (DMR × ‘Kapia 1300’)
123 – Local accession Plovdiv, Bulgaria
43 – Local accession Svishtov, Bulgaria
85 – Local accession Svishtov, Bulgaria
86 – Local accession Svishtov, Bulgaria
90 – Local accession Svishtov, Bulgaria
18 – Breeding line Selected from variety ‘Osmarsko Kambe’

DMR – Doux Marconi Rouge

Table 6 Group IV. Eleven breeding lines belonging to C. annuum

Number of 
accession Phenotype and origin

34 Cone-like, slightly curved at the tip, red color; breeding line from (DMSS × 
‘Kalinkov’ 807/5)

5 Cone-like, rounded tip, orange color; breeding line from (DMG × ‘Zlaten 
Medal 7’)

2 Cone-like, pointed tip, light beige; breeding line from (DMG × ‘Zlaten Medal 
7’)

13 Oval, conic tip, orange color; breeding line from local accession from 
Bulgaria

27 Cone-like, dual wall, orange color; breeding line from local accession from 
Greece

29 Cone-like, dual wall, orange color, breeding line from (DMG × ‘Kurtovska 
Kapia 1619’)

32 Short conical with rounded tip, yellow-orange color; breeding line from 
(DMG × ‘Kurtovska Kapia 1619’)

37 Cone-like, dual-wall, yellow-orange color; breeding line from (DMSS × 
‘Kalinkov’ 807/5)

51 Cone-like, dual wall, rounded tip intense orange color; breeding line from 
local accession from Egypt

53 Cone-like, dual wall, rounded tip, light orange to yellow color; breeding line 
from local accession from Egypt

91 Cone-like, dual wall, orange color; breeding line from local accession from 
Bulgaria

DMSS Doux Marconi San Semences, DMG Doux Marconi Geonet the corresponding
*Breeding lines belonging to the collection of the Agricultural University
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Table 7 Group V.  Eleven accessions of C. annuum  – local varieties (initial) and advanced 
mutant lines

No Description Photos

1966 ‘Pazardzhishka 
Kapia 794’. 
Traditional 
local variety 
from the 
Pazardzhik 
region.

1917 ‘Oranzheva 
Kapia’. High 
β-carotene 
concentration. 
Mutation – 
Orange fruits 
(of). Mutant 
variety 
obtained upon 
X-ray 
irradiation with 
120 Gy of 
parent variety 
‘Pazardzhishka 
Kapia 794’.

1928 Zlaten medal 
ms8 (Mms8). 
Male sterile 
advanced 
mutant (ms8) 
line. Obtained 
from ‘Zlaten 
medal 7’ (red 
fruits) obtained 
upon X-ray 
irradiation with 
120 Gy.

1929 Advanced 
mutant line 
obtained by 
successive 
backcrosses 
[1928 х 
Okal(of,al)] and 
self- 
pollinations. It 
contains of, al, 
and ms8 
mutations in a 
single 
genotype.

Photos of plant and fruit similar to 1930

(continued)
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Table 7 (continued)

No Description Photos

1930 Advanced 
mutant line 
obtained by 
successive 
backcrosses 
[1928 х 
Okal(of,al)] and 
self- 
pollinations. It 
contains of, al, 
and ms8 
mutations in a 
single 
genotype. A 
new registered 
variety 
‘Desislava’ 
with orange 
fruits obtained 
from 1930.

1931 ‘Albena’(al) free 
of 
anthocyanins. 
Mutant variety 
obtained from 
‘Zlaten medal 
7’ upon X-ray 
irradiation with 
120 Gy. It 
contains red 
fruits.

1932 Advanced 
Okal(of,al) 
mutant line 
obtained by 
successive 
backcrosses 
between 
‘Oranzheva 
Kapia’ and 
‘Albena’. 
Orange fruit 
(of) in 
anthocyaninless 
(al) genotype.

(continued)
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Table 7 (continued)

(continued)

No Description Photos

1933 Advanced 
Okal(of, al) 
(inbred) mutant 
line obtained 
by successive 
backcrosses 
between 
‘Oranzheva 
Kapia’ and 
‘Albena’. 
Orange fruit 
(of) in 
anthocyaninless 
(al) genotype.

1934 Advanced 
Okal(of, al) 
(inbred) mutant 
line obtained 
by successive 
backcrosses 
between 
‘Oranzheva 
Kapia’ and 
‘Albena’. 
Orange fruit 
(of) in 
anthocyaninless 
(al) genotype.

Photos of plant and fruit similar to 1933

1935 Advanced 
Okal(of, al) 
(inbred) mutant 
line obtained 
by successive 
backcrosses 
between 
‘Oranzheva 
Kapia’ and 
‘Albena’. 
Orange fruit 
(of) in 
anthocyaninless 
(al) genotype.

Photos of plant and fruit similar to 1933
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Table 7 (continued)

No Description Photos

1936 Advanced 
Okal(of, al) 
(inbred) mutant 
line obtained 
by successive 
backcrosses 
between 
‘Oranzheva 
Kapia’ and 
‘Albena’. 
Orange fruit 
(of) in 
anthocyaninless 
(al) genotype.

Photos of plant and fruit similar to 1933

The photos are copyright and taken in the course of the research

Table 8 Group VI. Fifteen Bulgarian local varieties of C. annuum

No. Description Photos

‘Bouquet 50’ ‘Gorogled 6’ × C. fasciculatum

‘Bulgarski Ratund’ Traditional local variety type Ratund

‘Byala Shipka’ Traditional local variety
‘Dzhulunska Shipka 
1021’

Obtained from traditional local variety

‘Zlaten medal 7’ Obtained from traditional local variety ‘Bjala 
Kapia’

‘IZK Delikates’ Obtained from variety ‘Chorbadzhijski’
‘IZK Kalin’ New high-yield variety
‘IZK Rubin’ Obtained from local varieties
‘Kapia UV’ Medium-early variety. Obtained from ‘Kurtovska 

Kapia 1619’

(continued)
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Table 8 (continued)

No. Description Photos

‘Kurtovska Kapia 1’ Obtained from local variety ‘Kurtovska Kapia 
1619’

‘Kurtovska Kapia 
1619’

Local variety obtained by individual selection

‘Sivria 600’ Local variety obtained by individual selection

‘Sofiiska Kapia’ Obtained from local variety ‘Bjala Kapia’

‘Stryama’ High-yield variety; (‘Sivria 600’ × no. 12) × 
C156 F8 × ‘Podarok Moldavii’

‘Hebar’ No. 786 × ‘Bjala Kapia 1’

The photos are copyright and taken in the course of the research

programs, and germplasms of different Capsicum species, local varieties, local 
accessions, and induced and spontaneous mutations were generated and genotypi-
cally characterized (Tomlekova et al., 2017a).

Introductions of group II belong to the collection of the Maritsa Vegetable Crops 
Research Institute and of the Agricultural University, Plovdiv.

*Local accessions from different Bulgarian regions and breeding lines belong to 
the collection of the Agricultural University, Plovdiv and to the collection of the 
Maritsa Vegetable Crops Research Institute.

*Breeding lines and local accessions belong to the collection of the Agricultural 
University located in Plovdiv.

All the advanced mutant lines are inbred/homogeneous and varieties were devel-
oped in the ancient  Institute of Genetics, Sofia, and the Maritsa Vegetable Crops 
Research Institute, Plovdiv, and currently maintained in the Maritsa Institute  in 
Plovdiv.
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 All the advanced mutant lines are in M8 generation and were induced and devel-
oped in the ancient Institute of Genetics, Sofia and currently maintained in the 
working collection of the Maritsa Vegetable Crops Research Institute, Plovdiv.

1.6.2  Molecular Methods

Genomic DNA was prepared from young pepper leaves according to the CTAB 
protocol (Murray & Thompson, 1980; Saghai-Maroof et  al., 1984) or by using 
Nucleon PhytoPure Kit (Amersham, Cat. RPN 8510, Austria) following company’s 
protocols including an RNase A treatment. Agarose Lambda DNA (Thermo 
Scientific Life Sciences, Cat. SD0011, Lithuania) was used to determine DNA 
quantity on 1% LE agarose gels (Lonza, Cat. 50,004, USA) with ethidium bromide 
(VWR International, Cat. 4007-07, Austria). Buffers (TAE and TBE) were prepared 
with a Tris base (Sigma-Aldrich, Cat. RDD008, USA), acetic acid (VWR 
International, Cat. 20104.298, Germany), and boric acid (Sigma Aldrich, Cat. 
B0252, Germany), respectively, and EDTA (Sigma Aldrich, Cat. E-5134, Germany).

For the ISAP method, the 20 μL PCR mixture consisted of 10 ng template DNA, 
1× Green PCR buffer (10× Green buffer, Thermo Scientifiс, Cat. No. B71, 
Lithuania), 0.2 mM dNTPs (Thermo Scientific, Cat. No. R0192, Lithuania), 0.15 μL 
each primer (Seibt et al., 2012) (Table 1), 0.1 mg/mL BSA (Sigma-Аldrich, Cat. No. 
А6003, USA), and 0.5 U DreamTaq DNA polymerase (Thermo Scientific, Cat. No. 
EP0702, Lithuania) (Seibt et  al., 2012). Amplification reactions were performed 
using the following conditions: initial denaturation for 5 min at 93 °C, followed by 
30 cycles with 20 s at 94 °C, 30 s at 52 °C, 120 s at 72 °C, and a final elongation of 
5 min at 72 °C.

The result products were separated on 2% LE agarose gels in 1x TAE buffer 
containing fluorescent dye 0.1 μg.mL−1 ethidium bromide (Sigma-Aldrich, E1510, 
Austria). The fragment lengths were estimated by comparing with DNA Ladder 
Gene Ruler 100 bp Plus DNA (Thermo Scientific, Cat. No.SM0321, Lithuania).

Data Analysis

Images were captured by the Gel Doc 2000 Gel Documentation System (GenoMini, 
VWR, Belgium) and analyzed with GenoSoft Imaging software (VWR Int.). To 
compile matrices, only reproducible fragments with defined lengths were taken into 
account. Data analysis was performed using SPSS Statistics for Windows version 
17.0 (SPSS Inc., released 2008, Chicago: SPSS Inc.).
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The monomorphic and polymorphic profiles were grouped according to the 
degree of similarity and difference between them in the number of amplified frag-
ments and the distances between the samples were determined. The Statistical 
Package for the Social Sciences (SPSS) program was applied for grouping and visu-
alization of the different distances of the amplified polymorphic profiles, depending 
on the number of polymorphic fragments.

1.6.3  Results

The first stage was to identify primers capable of amplification on pepper genomic 
DNA. It included primer pairs arising from a single SINE family (two primers F and 
R from two different SINE families, as well as primer combinations from the same 
SolS-SINE family). The selected reactions were performed with only one pepper 
genotype. This allowed us to assess the effectiveness of the marker system.

Results of ISAPInter-SINE Amplified Polymorphism (ISAP) Reactions 
Performed with a Forward and a Reverse Primer Designed from Different 
Sol-SINE Families

The effectiveness of the ISAP reactions with individual forward and reverse primers 
from different Sol-SINE families was assessed with two representative pepper gen-
otypes. Thus, the application of the selected efficient primers was further used to 
assess polymorphism between closely related genotypes such as the traditional 
Bulgarian pepper variety ‘Pazardzhishka Kapia 794’ – parent of the mutant one, 
‘Oranzheva Kapia’. In the performed test design to adapt ISAP for pepper germ-
plasm, a total of 24 ISAP assays with primer pairs from different families were 
tested on both genotypes. After no different profiles were found between the parent 
and mutant genotypes, in the next stage of the analyses, the obtained promising 
reactions were conducted on a larger number of accessions.

The results from the ISAP reactions with different primer combinations diversed 
in the number of generated ISAP amplifications and in the fragments’ size (Table 9). 
In general, the selected SINE families and the resulting primer combination strongly 
affected the ISAP banding pattern and the primer combinations differed in the 
degree of informativeness. Five primer pairs (SolS-Iа-R/SolS-IIIb-R, SolS-Iа-R/
SolS-IIIb-F, SolS-Iа-R/SolS-Ib-F, SolS-II-F/SolS-IIIb-R, and SolS-Ib-R/SolS- 
IIIb- R) did not generate reliable amplification products (Table 9).
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Table 9 ISAP profiles in the pepper accessions obtained by reactions carried out with two primers 
of different Sol-SINE families

Primers Number of amplified fragments Reproducible fragments (bp)

SolS-Ib-F/ SolS-II-F 5 2500–690
SolS-Ib-F/ SolS-II-R 6 2500–250
SoSolS-Ib-R/ SolS-II-F 10 3000–310
SolS-Ib-F/ SolS-IIIb-F 5 1900–400
SolS-Ib-F/ SolS-IIIb-R 3 1600–1000
SolS-Ib-R/ SolS-II-R 3 750–300
SolS-Ib-R/ SolS-IIIb-F 5 1700–400
SolS-Ib-R/ SolS-IIIb-R 0 n.a.
SolS-II-F/ SolS-IIIb-F 7 2500–210
SolS-II-R/ SolS-IIIb-F 4 1990–590
SolS-II-R/ SolS-IIIb-R 3 1300–650
SolS-II-F/ SolS-IIIb-R 0 n.a.
SolS-Iа-F/ SolS-Ib-F 2 800–600
SolS-Iа-F/ SolS-Ib-R 5 2200–550
SolS-Iа-F/ SolS-II-F 1 2000
SolS-Iа-F/ SolS-II-R 6 1600–490
SolS-Iа-F/ SolS-IIIb-F 3 1200–1000
SolS-Iа-F/ SolS-IIIb-R 5 1900–950
SolS-Iа-R/ SolS-Ib-R 2 790–350
SolS-Iа-R/ SolS-II-F 4 1200–320
SolS-Iа-R/ SolS-II-R 1 1000
SolS-Iа-R/ SolS-Ib-F 0 n.a.
SolS-Iа-R/ SolS-IIIb-F 0 n.a.
SolS-Iа-R/ SolS-IIIb-R 0 n.a.

ISAP Reactions Performed with Primers Designed from Three and More 
Sol-SINE Families

Other primer combinations included primer pairs from three SINE families, for 
instance, SolS-Ib-R/F, SolS-II-R/F, and SolS-IIIb-R/F, and the ISAP reactions pro-
duced 10 amplified fragments tested in 14 accessions of the two different groups – 
C. annuum local varieties (initial lines) and advanced mutant lines and Bulgarian 
varieties group of C. annuum (Table 8) with 1300-100-bp reproducible fragment 
length, and the estimated product lengths were 1300, 1050, 850, 750, 480, 400, 300, 
250, 180, and 100.
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Fig. 4 Amplification patterns obtained with single-family primer pairs in C. annuum variety 
‘Oranzheva Kapia’. Lanes 1 and 8: 100-bp DNA ladder (500 bp is the first intensive band). Lanes 
2–7: SINE families SolS-Iа-F/R, SolS-Ib-F/R, SolS-II-F/R, SolS-IIIa-F/R, SolS-IIIb-F/R, and 
SolS-V-F/R

ISAP Single-Family Reactions Performed with Primers Designed 
from the Same Sol-SINE Family

The next stage of the study involves single-family reactions conducted with two 
primers F and R from one SolS-SINE family.

We conducted ISAP analyses of multiple Capsicum species including C. ann-
uum, C. baccatum, C. fasciculatum, C. frutescens, and C. pubescens in order to 
establish the informativeness of the single-family ISAP reactions (SolS-Ib-F/R, 
SolS-II-F/R, and SolS-V-F/R). The selected informative reactions were further per-
formed with all samples. Single-family ISAP assays amplified different patterns. 
Primer pairs from SolS-SINE families IV, VI, and VII led to the amplification of 
high-molecular bands and were included in multiplex reactions.

The six single-family reactions (SolS-Iа-F/R, SolS-Ib-F/R, SolS-II-F/R, SolS- 
IIIa- F/R, SolS-IIIb-F/R, and SolS-V-F/R) generated 43 fragments in total at 
150–3000-bp range of lengths (Fig. 4). The three reactions with SolS-Ia-F/R, SolS- 
IIIa- F/R, and SolS-IIIb-F/R generated few fragments with low intensity (Fig.  4, 
lanes 2, 5, and 6).

Amplification with single-family primers in several genotypes generated repro-
ducible patterns but with few polymorphisms. However, the single-family reaction 
with SolS-Ib-F/R (Figs. 5 and 6) led to polymorphic patterns between the represen-
tatives of the Capsicum species, with the exception of C. baccatum (Fig. 5, lanes 5, 
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Fig. 5 Amplification patterns obtained with primers SolS-Ib-SINE in C. annuum (lane 2, 
‘Pazardzhishka Kapia 794’), C. frutescens (lane 3, no 110, and lane 7, no 98), C. fasciculatum 
(lane 4, no 100), and C. baccatum (lane 5, no 106; lane 6, no 101; lane 8, CBP; and lane 9, CBU)

Fig. 6 ISAP results, obtained with single-family primer pairs. (6a) (Left) Fragments differing by 
the length between accessions; (6b) (right) polymorphic patterns of pepper accessions

8, and 9), which showed no reliable amplification. The observed polymorphisms 
were reproducible.

The selected informative reactions (SolS-II-F/R and SolS-V-F/R) were per-
formed with all the samples.

Generally, the application of single-family SINE primers demonstrates the appli-
cability of potato-based ISAP to peppers. Single-family ISAP reactions with SolS-II 
and SolS-V primers generated the most polymorphic patterns and amplified the 
highest number of fragments (Fig. 7).
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Fig. 7 Amplification patterns with both primers of SolS-II SINE (panel A amplified with a primer 
pair SolS-II-F/R; lanes 1–3, C. annuum; lanes 5–11, C. frutescens from Peru; lanes 13 and 14, 
C. annuum ‘Anglia 1’; lanes 16 and 17, C. baccatum; lane 19, C. pubescens) and of SolS-V SINE 
(panel B lanes 1–3, C. annuum; lane 5, ‘Kurtovska Kapia 1619’ and 6 ‘IZK Delicates’; lanes 8–14, 
C. frutescens from Peru; lanes 16–18, C. baccatum and C. pubescens) on different pepper geno-
types. Polymorphic bands are indicated with arrows

Next, we analyzed different pepper genotypes with two ISAP primer combina-
tions and observed recurrent profiles. Single-family reactions with primer pair SolS- 
II- F/R amplified 18 fragments; five were monomorphic and thirteen polymorphic, 
resulting in five profiles. The first profile was amplified on most specimens includ-
ing C. fasciculatum and C. annuum (Fig. 7a, lanes 1, 2, and 3) with the exception of 
‘Anglia 1’ (Fig. 7a, lanes 13 and 14). The second profile was amplified on speci-
mens from Peru – ‘Peru 1’, ‘Peru 2’, ‘Peru 4’, ‘Peru 5’, ‘Peru 7’, ‘Peru 8’, and ‘Peru 
10’ (Fig. 7a, lanes 5 to 11). The third profile was amplified on genotype ‘Anglia 1’. 
The fourth profile was amplified on specimens from C. baccatum (‘Peru 6’, ‘Peru 
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Fig. 8 Dendrogram of polymorphic ISAP profiles amplified in pepper genotypes with primer pair 
SolS-II-F/R. PR: profiles

9’, no. 106, CBP, and CBU) (Fig. 7a – lanes 16 and 17). The fifth profile was ampli-
fied on C. pubescens specimen (Fig. 7a – lane 19). Single-family reactions with 
primer pair SolS-V-F/R amplified seven fragments; two were monomorphic and five 
polymorphic, resulting in four profiles (Fig. 7b, Table 9). Profiles 1 (Fig. 7b, lanes 
1–3) and 2 (variety ‘Kurtovska Kapia 1619’ and ‘IZK Delicates’; Fig. 7b, lanes 5 
and 6) were generated in C. annuum and C. fasciculatum. Profile 3 was amplified in 
some specimens from Peru (‘Peru 1’, ‘Peru 2’, ‘Peru 4’, ‘Peru 5’, ‘Peru 7’, ‘Peru 8’, 
‘Peru 10’) (Fig. 7b, lanes 8–14). Profile 4 was amplified in C. baccatum specimens 
(‘Peru 6’, ‘Peru 9’, no. 106, no. 100, CBP, and CBU) and C. pubescens specimens 
(Fig. 7b, lanes 16–18).

According to cluster analysis, profiles 1, 2, and 3 include accessions of represen-
tatives of C. annuum, C. frutescens from Peru) amplified with primer pair SolS-II- -
F/R that were the most similar (Figs.  7a and 8). Profile 5 was generated on 
C. pubescens specimen (occupied an intermediate position) and the most different 
was profile 4 generated on C. baccatum specimens (Fig. 7a and 8).

Comparison of the patterns obtained by SolS-V family primers revealed that 
profiles 1 and 2 were the most similar. Profile 3 occupies an intermediate position, 
and the most distant is profile 4 (Figs. 7b and 9). According to amplified profiles, 
cluster analysis with primer pair SolS-V-F/R profiles 1 and 2 including accessions 
of C. annuum were the most similar. Profile 3 amplified in accessions from C. fru-
tescens from Peru (occupied an intermediate position) and the most different was 
profile 4 amplified in C. baccatum and C. pubescens genotypes (Figs. 7b and 9).
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Fig. 9 Dendrogram of polymorphic ISAP profiles amplified in pepper genotypes with primer pair 
SolS-V-F/R. PR: profiles

Table 10 ISAP profiles, obtained with single-family primer pairs in the six groups of plant 
specimens

Plant specimen group no. 1 2 3 4 5 6

Primer pair Polymorphic profiles amplified
SolS-II-F/SolS-II-R 1, 2, 4, 5 1 and 3 1 1 1 1
SolS-V-F/SolS-V-R 1, 3, 4 1 1 1 1 1 and 2

Reactions with primer pairs SolS-II-F/R and SolS-V-F/R generated distinctive 
profiles on C. baccatum specimens shown in Table 10.

Thus, the best results from pepper collection genotyping came from using prim-
ers from the families SolS-II and SolS-V. Our data suggest that SolS-IV, SolS-VI, 
and SolS-VII are not suitable for pepper genomic characterization by ISAP profil-
ing since they amplify very long and irreproducible fragments.

Next, the applicability of four primers from different SolS families in different 
combinations in one PCR reaction was investigated (Fig. 10, Table 11).

Since single-family reactions with single-family primer pairs SolS-Ia, SolS-IIIa, 
and SolS-IIIb did not demonstrate potential for pepper genotyping, we performed 
multiplex (combinatorial between SINE families) reactions М1 (IaF  +  IbF), М3 
(Ia + IIIa), М4 (Ia + IIIb), and М22 (IIIa+IIIb) on selected accessions from all six 
specimen groups (Fig. 10). These reactions produced polymorphic patterns mainly 
within different Capsicum species; however, they were weak and unclear, especially 
for М4 reaction (Fig. 10).
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Fig. 10 Amplification patterns of multifamily primer pairs SolS-Ia, SolS-IIIa, and SolS-IIIb with 
selected representatives of all six specimen groups. M1 (lanes 1, 4, and 5, C. baccatum; lane 2, 
C. fasiculatum; lanes 3, 6, and 7, C. frutescens; lane 8, C. pubescens; lanes 10–15, C. annuum), M3 
(lanes 1, 4, and 5, C. baccatum; lane 2, C. fasiculatum; lanes 3, 6, and 7, C. frutescens; lane 8, 
C. pubescens; lanes 10, 11, and 12, C. annuum), M4 (lanes 2, 5, and 6, C. baccatum; lane 3, 
C. fasiculatum; lanes 4, 7, and 8, C. frutescens; lane 9, C. pubescens; and lanes 10, 11, and 12, 
C. annuum), M22 (lanes 1 and 4, C. baccatum; lane 2, C. fasiculatum; lanes 3, 5, and 6, C. frutes-
cens; lanes 9–18, C. annuum)

For that reason, we performed 22 more combinatorial reactions (М5, М7, М8, 
М10–12, М14, М15, М18, М21, М23, М25–27, and М29–36) on two specimens – 
‘Pazardzhishka Kapia 794’ and ‘Oranzheva Kapia’ varieties (Fig.  11). All those 
reactions produced monomorphic patterns in the two studied genotypes, and Fig. 11 
shows only one of the two similar profiles. Performed multiplex combinatorial reac-
tions amplified different numbers of fragments from 1 in reaction M32 and M33 to 
18 fragments in reactions M2, M 9, M16, M17, M18, M20, and M21 (Table 11).

Combinatorial reactions that included one member of the primer pair SolS-II- -
R/F (М2, М9, М16–18, М20, and М21) generated patterns that are identical to 
those generated by single-family amplification with this pair. One exception is 
‘Anglia 1’. Patterns from reactions М2 and М20 lack 1100-bp and 1070-bp frag-
ments (Fig. 7a, lane 14). The pattern generated by the М9 reaction is identical to 
profile 1 in C. annuum (Fig. 7a, lanes 1–3). М16 and М17 generated patterns identi-
cal to those in profile 2 from the single-family amplification using primer pair SolS- 
II- F/R (Fig. 7a, lane 13).
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Table 11 ISAP profiles of four multifamily SolS-SINE primers

Primer set Number of screened accessions Number of amplified fragments

М1 – SolS-Iа/SolS-Ib 26 5
М2 – SolS-Iа/SolS-II 73 18
М3 – SolS-Ia/SolS-IIIa 19 5
М4 – SolS-Ia/SolS-IIIb 14 8
M5 – SolS-Ia/SolS-IV 2 4
М6 – SolS-Ia/SolS-V 6 7
М7 – SolS-Ia/SolS-VI 2 4
M8 – SolS-Ia/SolS-VII 2 4
M9 – SolS-Ib/SolS-II 73 18
M10 – SolS-Ib/SolS-IIIa 2 6
M11 – SolS-Ib/SolS-IIIb 2 0
M12 – SolS-Ib/SolS-IV 2 4
M13 – SolS-Ib/SolS-V 6 7
M14 – SolS-Ib/SolS-VI 2 6
M15 – SolS-Ib/SolS-VII 2 4
M16 – SolS-II/SolS-IIIa 73 18
M17 – SolS-II/SolS-IIIb 73 18
M18 – SolS-II/SolS-IV 2 18
M19 – SolS-II/SolS-V 6 8
M20 – SolS-II/SolS-VI 73 18
M21 – SolS-II/SolS-VII 2 18
M22 – SolS-IIIa/SolS-IIIb 19 15
M23 – SolS-IIIa/SolS-IV 2 8
M24 – SolS-IIIa/SolS-V 73 7
M25 – SolS-IIIa/SolS-VI 2 3
M26 – SolS-IIIa/SolS-VII 2 0
M27 – SolS-IIIb/SolS-IV 2 8
M28 – SolS-IIIb/SolS-V 73 7
M29 – SolS-IIIb/SolS-VI 2 8
M30 – SolS-IIIb/SolS-VII 2 8
M31 – SolS-IV/SolS-V 2 7
M32 – SolS-IV/SolS-VI 2 1
M33 – SolS-IV/SolS-VII 2 1
M34 – SolS-V/SolS-VI 2 7
M35 – SolS-V/SolS-VII 2 7
M36 – SolS-VI/SolS-VII 2 7

Our data suggest that SolS-IV, SolS-VI, and SolS-VII were not suitable for pep-
per ISAP profiling since they amplified very long and irreproducible fragments. 
The same can be said for the SolS-IIIa reaction, which results in the amplification 
of a small number of fragments (three fragments) and is, therefore, inappropriate. 
Multiplex combinatorial reactions performed by participation of one member of 
the primer pair SolS-V-F/R (М6, М13, М31, and М34–36) also amplified patterns, 
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Fig. 11 Amplification patterns obtained with multifamily primer pairs for the pepper variety 
‘Pazardzhishka Kapia 794’ with primer sets listed in Table 11. Lanes 1, 10, 24, 30, and 38, DNA 
ladder; lanes 2–9, primer sets М1–8; lanes 11–23, primer sets М9–21; lanes 25–29, primer sets 
M22–26; lanes 31–37, primer sets М27–33; lanes 39–41, primer sets М34–36

which were identical to single-family amplifications by primers from this pair. In 
‘Kurtovska Kapia 1619’, sets М28 (primer pair SolS-V/SolS-IIIb) and М24 
(primer pair SolS-V/SolS-IIIa) generated a weak fragment with length of 900 bp 
and the patterns were identical to profile 1 of all Bulgarian C. annuum varieties. 
The best results were obtained with primer pairs SolS-II-F/R and SolS-V-
F/R. SolS-II-F/R generated patterns that are clear, reproducible, and most poly-
morphic (Fig.  7). Combinatorial reactions with representative of these pairs 
generate similar patterns.

1.6.4  Discussion

Nowadays, efficient breeding programs have evolved into marker-assisted breeding 
programs. There are a number of requirement criteria for molecular marker meth-
ods: informativeness, reproducibility, and experimental requirements regarding 
time and equipment. One way to respond to breeders’ needs is to adapt novel meth-
ods to a particular species. ISAP was developed for potatoes, but has potential for 
the related pepper as it is evident from the results obtained.

Markers, based on SINE or other mobile elements, are often designated as the 
“two-in-one” type and can be used not only for “simple” genotyping but also for 
more detailed research (Schmidt & Heslop-Harrison, 1998). When implemented in 
breeding programs, these markers make it possible to genetically characterize 
plants, regardless of environmental conditions and development stage (Ray, 2007). 
ISAP genotyping is based on the detection of SINE presence/absence at a particular 
locus (Tomlekova et al., 2017).

Annotation of 8.5 Gbp revealed 82,983 SINE copies related to all known 
Solanaceae SINE families. Thirty percent of SINEs is associated with genes (mostly 
in introns and non-translated regions). Some 10% of annotated genes contain at 
least one SINE insertion and one gene contained up to 16 SINE copies. In potato, 
SINEs contribute 0.32% to the genome, whereas in other species and varieties, 
SINEs account for approximately 0.15% (Seibt et al., 2016).
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Seven SolS-SINE families and two subfamilies were identified in potato and nine 
SINE-specific primer pairs were designed (Seibt et al., 2016; Wenke et al., 2011). 
When applied on pepper, almost all SINE-based ISAP reactions with specific prim-
ers generated amplification products, but few pairs were generating clear polymor-
phic patterns. The results obtained, in the present study, demonstrate that three 
Sol-SINE families (SolS-IV, SolS-VI, and SolS-VII) are not useful in pepper 
because they amplify long unreproducible fragments. The single-family primer 
pairs with the most potential in pepper are SolS-V-F/SolS-V-R and SolS-II-F/SolS- 
II- R. This is different from potato, in which the most informative patterns are from 
SolS-IIIa-F/SolS-IIIa-R, SolS-IIIa-F/SolS-IV-F, and SolS-IIIa-F/SolS-IV-R (Seibt 
et al., 2012; Tomlekova et al., 2017b). The bioinformatic analysis of the genomes of 
four representatives of the Solanaceae family of potato (S. tuberosum), tomato 
(S. lycopersicum), wild tomato (S. pennellii), and pepper (C. annuum variety 
‘Zunla-1’ and variety ‘CM334’) showed the presence of 82,983 SINE copies 
belonging to families SolS-I to SolS-VII and Au. The highest number of copies 
(21,398 SINEs) were found in Capsicum in variety ‘CM334’ and 26,204 in variety 
‘Zunla-1’. In all investigated Solanaceae species, the SolS-II family is represented 
with the highest copy number. Their number of copies varies from 2479 (tomatoes) 
to 7044 (for variety ‘Zunla-1’). The maximum number of SINE elements averaged 
per 5 Mbp of the genome is about 180  in tomato, 270  in potato, and more than 
340 in pepper. The highest number of SINEs associated with genes were found in 
pepper ‘Zunla-1’ – 15.0%. The highest number of SINEs (16 copies) accumulated 
in a single gene was observed in gene Capana12g002506. The two most abundant 
families are SolS-IIIa and SolS-IV in potato in comparison with their distribution in 
the wild potato species, tomato, pepper, and tobacco established by southern hybrid-
ization (Seibt et al., 2012; Wenke et al., 2011). In the cultivated potato, these two 
SINE families have had recent activity. ISAP-derived molecular markers are there-
fore highly polymorphic (Seibt et al., 2012). The obtained results showed that, in 
pepper, three of the SolS-SINE families – SolS-IV, SolS-VI, and SolS-VII – were 
not suitable for genotyping pepper because they lead to the amplification of exces-
sively long fragments that are not reproducible. The SolS-IIIa reaction resulted in 
the amplification of a small number of fragments (three fragments). Families SolS- 
IIIa, SolS-IV, and SolS-VI burst in potato. Family SolS-V is promising and abun-
dant in pepper from our results as well as in potato from the results obtained by 
Seibt et al. (2016).

Sol-SINE application on 17 pepper specimens that do not belong to C. annuum 
generated polymorphic patterns suitable for genotyping purposes. For C. annuum 
specimens, the primer pairs SolS-II-F/SolS-II-R and SolS-V-F/SolS-V-R appear to 
be the most appropriate for genetic characterization.

We believe that potato-derived SINE-based ISAP primers can be used to identify 
pepper species but not for intraspecies discrimination for identification. Primer 
pairs SolS-II-F/SolS-II-R and SolS-V-F/SolS-V-R generate distinctive patterns for 
C. baccatum. These primer pairs also generate the most informative patterns for 
C. annuum. In particular, primer pair SolS-II-F/SolS-II-R generates five distinctive 
amplification profiles and 13 polymorphic fragments in Capsicum spp. In 
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investigated Solanaceae species, the SolS-II family is represented with the highest 
copy number that ranges from 2479 (tomato) to 7044 in pepper (Wenke et al., 2011).

These results agree with bioinformatic data showing that the SolS-II family has 
the highest copy number in Solanaceae. Most likely, members of the SolS-II family 
were active during the genus’ evolution and especially after species divergence. 
Furthermore, such activity appears to be linked to species-specific genome rear-
rangements (Seibt et al., 2016).

ISAP-based genotyping depends on the SINE presence at a particular locus. The 
biology of SINE, as well as other mobile elements, makes it possible to genotype 
and track evolutionary connections (Schmidt & Heslop-Harrison, 1998). In pepper, 
the adapted potato SINE-based ISAP reactions generate less polymorphism than in 
the source organism. This limits the method’s applicability for a more detailed com-
parison between breeding lines. To overcome this limitation, pepper-specific ISAP 
primers need to be designed based on available pepper genome sequences (Kim 
et al., 2014; Tomlekova et al., 2016). Here, the SINE family Au might be included, 
as it is both highly abundant in the pepper genome and frequently associated with 
genes. Thus, pepper-specific ISAP could become an important tool in breeding pro-
grams in the future.

1.6.5  Conclusions

The potato-based ISAP method can be applied to pepper, but with limitations. The 
direct use of potato-specific primers generates polymorphism mainly at interspe-
cies, but not at the intraspecies level. One could expect that development of primers 
based on pepper SINE elements might greatly improve the applicability of this 
robust method in pepper breeding programs.
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Abstract Polycross is a functional and low-cost breeding method but the missing 
paternal pedigree data is a disadvantage for the use of polycross breeding in 
Apiaceae including carrot (Daucus carota L.). The present study describes a pater-
nity test for carrot breeding using 14 previously described SSR markers. Phenotyping 
of harvested roots was done using a non-destructive and fast screening method to 
determine total carotenoid concentration by Raman spectroscopy. Genetic relation-
ship between the parent cultivars was estimated using Nei’s genetic distance and 
cluster analysis by POPGENE software. Cluster analysis divided the parent culti-
vars into two major groups according to geographic origin. The mean pairwise 
genetic distance between the cultivars was 0.096, an indication of very great genetic 
difference. The software program CERVUS was used for parentage analysis. A total 
of 82 progenies from a polycross of nine cultivars were genotyped with simple 
sequence repeat (SSR) markers and paternity was assigned successfully for 81.7% 
of the offspring at a 99% confidence level, with 58.2% being the result of self- 
fertilization. These results show that application of a marker-assisted paternity test 
in carrot polycross breeding allows the rapid assessment of genetic diversity and 
targeted selection of desired individuals for the next generation of breeding. This 
was shown by an increase in average carotenoid concentration of 200 ppm (range of 
104–441 ppm) in the parent genotypes to an average of 245 ppm in the progeny 
ranging from 97 to as high as 553 ppm.
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1  Introduction

Food colouring is widely used in order to influence the perceived flavour of food 
and make it more attractive to consumers. However, due to concerns about food 
safety, there is an increasing interest among both consumers and manufacturers in 
replacing synthetic dyes with natural colours (Coultate & Blackburn, 2018), and 
carotenoids are the most widely used natural pigments in industrial food production 
(Mortensen, 2006). The development of crop cultivars with a high concentration of 
pigments such as beta-carotene therefore has huge economic potential as raw mate-
rial in the production of natural food colourants.

Carrot taproots are an attractive source of phytochemicals in general (Ahmad 
et al., 2019) and in particular considered for providing pro-vitamin A with the diets 
(Giuliano, 2017). Carrots belong to the Apiaceae botanical family, they are alloga-
mous and biennial, requiring vernalization to induce flowering, and the edible tap-
root produced the first year can be white or coloured due to accumulation of either 
anthocyanins or beta-carotene. Carrots has been cultivated for centuries but the first 
carrot breeding efforts have been dated to France in the 1930s (Stein & Nothnagel, 
1995). The outcrossing carrots are pollinated by wind or flies and synthetic lines can 
be produced by hand pollination. Modern varieties of carrots are in general hybrids 
involving several crosses (Stein & Nothnagel, 1995; Que et  al., 2019) and self- 
pollination leads to inbreeding depression. Carrots can be vegetatively propagated 
from the green top. They may require adaptation to local agro-climatic conditions 
due to day length sensitivity, and chilling may initiate flowering at early sowing.

1.1  Breeding for Pigments in Carrots

In order to develop new cultivars of carrot with a high concentration of pigments 
(beta-carotene and anthocyanin) in the taproots, a wide screen of carrot lines was 
initiated. Carrots were developed through selection between and within existing 
cultivars over several generations, as we initially observed a significant difference in 
carotenoid concentration within roots of the same cultivar. Carotenoids are fat solu-
ble, which often makes determination of their concentration in plant tissue both 
difficult and time-consuming and involves the use of hazardous chemicals. Raman 
spectroscopy is an attractive method for the analysis of phytochemicals in many 
crops (de Oliveira et al., 2010; Baranska et al., 2013) and it has been widely used to 
determine carotenoids in carrots (Quilitzsch et  al., 2005; Withnall et  al., 2003; 
Schulz et al., 2005). Raman spectroscopy differs from traditional quantitation meth-
ods, such as HPLC and capillary electrophoresis, by being extremely fast, simple, 
and non-destructive. Following these studies, a new colour screening method has 
been developed for the rapid determination of carotenoid concentration in orange 
carrots (Lawaetz et al., 2016). This method allows the detection of single plants hav-
ing a significantly increased content of dyes based on Raman spectroscopy (Lawaetz 

S. K. Clausen et al.



117

et al., 2016). Furthermore, it is possible to regenerate the specific taproot by plant-
ing the green top, and therefore, this Raman screening method is considered to be 
non-destructive. Following flower initiation and hybridization, seeds can be pro-
duced for further selection as carrots are not vegetatively propagated.

1.2  Polycrossing

The success of a breeding program is largely dependent on the extent of genetic 
diversity present in the population. Polycrossing is widely used in the breeding of 
outcrossing species such as forage crops, vegetables and trees (Varghese et  al., 
2015; Bohanec et al., 2020). In outcrossing species, pollination is done by insects or 
by wind and a recent example of polycross breeding is the spice caraway, which like 
carrots belongs to the Apiaceae plant family (von Maydell et al., 2021). However, 
one of the major limitations to this strategy is the lack of genetic control, with a 
complete loss of paternity information among the progeny. In this study, the poly-
cross approach was used to maximize the number of hybrid combinations that can 
be represented within the progeny. Selected taproots with a high concentration of 
carotenoid were polycrossed by open pollination, and the progeny grown and com-
pared in order to identify new cultivars with improved colour concentration.

Simple sequence repeat (SSR) marker-based paternity analysis is a cost-effective 
molecular tool for identifying paternity (Varshney et  al., 2005). Previous studies 
have indicated that SSR markers are helpful in evaluating genetic diversity between 
cultivars and landraces in carrot and separating them into distinct groups (Clotault 
et al., 2010; Baranski et al., 2012). Since Niemann (2001) initiated the identification 
of SSR loci in carrot for linkage mapping, the availability of large amounts of SSRs 
in carrots has been reported. A set of 23 SSR markers has been used to study histori-
cal and contemporary gene dispersal in wild carrot populations (Rong et al., 2010; 
Cavagnaro et al., 2011), which in particular have contributed to the number of SSR 
markers that are publicly available by developing 300 SSR markers for the car-
rot genome.

The objective of this study was first to create a carrot breeding nursery for 
improving carotenoid concentration, by polycrossing a wide range of genebank 
accession, to create new variation. The second objective was to demonstrate that the 
genetic diversity and paternity of individual progeny of carrots from a polycross can 
be determined using polymorphic SSR markers. The ability to identify paternity 
information allows a rapid assessment of diversity at the genome level and a tar-
geted selection of parental plants in carrot breeding programs. The third objective 
was to demonstrate that significant improvements in beta-carotene concentrations 
could be obtained by selection in a polycross population.
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2  Materials and Methods

2.1  Plant Material

A carrot (Daucus carota L.) field trial with 132 different cultivars was carried out 
during 2014 on the Højbakkegård experimental farm of the University of Copenhagen 
in Taastrup (55.6717°N; 12.3003°E), Denmark. Carrot seed samples were obtained 
from the Nordic Genetic Resource Centre (NordGen) and small populations (OP) 
from the Daucus collection of the United States Department of Agriculture (USDA) 
(see Table  1b). The selected cultivars from NordGen originated from Denmark. 
Approximately, 100 seeds from each cultivar were sown in the field and five roots 
were harvested from each cultivar for further investigation. Harvested roots, paren-
tal and progeny, were measured using Raman spectroscopy (Lawaetz et al., 2016). 
Raman spectra were measured on carrot discs from a cross section of the taproot 
5–10 cm from the top using a RamanRxn1 instrument (Kaiser Optical Systems Inc., 
MI, USA). The probe had a 3-mm spot size and Raman spectra were measured on 
three different spots in the secondary phloem of the disc. Reference values were 
obtained by UV–visible spectrophotometry from extracts of the same taproot 
(Lawaetz et al., 2016). Cultivars were only selected based on the amount of pigmen-
tation at this stage of evaluation. Carrot cultivars with high amounts of pigments 
were selected for the establishment of a nine-parent polycross in March 2016 in a 
greenhouse at the University of Copenhagen in Frederiksberg, Denmark. All roots 
from the selected parent cultivars were harvested and stored for vernalization. Not 
all roots could be propagated after storage, hence the different amount of clones 
from the parent cultivars. A total of 96 parent plants from the nine cultivars were 
pollinated with bluebottle flies (Table  1a). Upon seed ripening, seeds from each 

Table 1a Paternal material from Daucus carota L. used in polycross. Per cultivar: origin, DNA 
sampled maternal clones and progeny counts, paternity success rate (%), outcrossing and selfed 
progeny counts and self-fertilization rate (%)

Cultivars 
(parents)

Origin 
country 
ISO 
3166

Maternal 
clone 
count

Progeny 
sampled 
count

Progeny 
paternity 
count

Paternity 
success 
rate (%)

Outcrossing 
progeny 
count

Selfed 
progeny 
count

Self- 
fertilization 
rate (%)

Cultivar 1 DNK 13 32 28 87.5 15 13 46.4

Cultivar 2 DNK 26 20 16 80.0 6 10 62.5

Cultivar 3 NLD 3 10 7 70.0 4 3 42.9

Cultivar 4 USA 8 11 10 90.9 2 8 80.0

Cultivar 5 USA 9 9 6 66.7 1 5 83.3

Cultivar 6 DNK 6 0 – – – – –

Cultivar 7 DNK 10 0 – – – – –

Cultivar 8 DNK 11 0 – – – – –

Cultivar 9 DNK 10 0 – – – – –

Total – 96 82 67 81.7 28 39 58.2

See also Table 1b for cultivar details
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Table 1b Paternal material from Daucus carota L. used in polycross

Cultivars
(parents)

Origin country 
ISO 3166 Name Accession no Source

Cultivar 1 DNK Nina NGB11856 NordGen
Cultivar 2 DNK Flaron NGB11867 NordGen
Cultivar 3 NLD High Carotene 

Carrot
HRI:13:010316 Warwick University, Genetic 

Resources Unit
Cultivar 4 USA USDA Ped, 2327B Phil Simon, University of 

Wisconsin
Cultivar 5 USA USDA Ped, 3363B Phil Simon, University of 

Wisconsin
Cultivar 6 DNK Nicco NGB13527 NordGen
Cultivar 7 DNK Ninet NGB13534 NordGen
Cultivar 8 DNK Nimbus NGB15873 NordGen
Cultivar 9 DNK Cortez NGB18126 NordGen

individual parent plant were harvested in August 2016. An equal number of progeny 
seeds from the parent plants were then sown in the fields. A sample of the harvested 
roots was analysed by Raman spectroscopy, and progeny roots with the highest 
amounts of carotenoid were selected for further propagation in the greenhouse (a 
total of 82 progeny roots). Leaf tissue from parents and progeny plants in the green-
house was collected for DNA analysis (a total of 178 plants).

2.2  DNA Extraction

Total genomic DNA was isolated from 200 mg of freeze-dried leaf material using 
an SDS-based extraction protocol with minor modifications (Sreelakshmi et  al., 
2010). DNA concentration and purity (A260/A280 ratios) were determined using a 
Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific).

2.3  Microsatellite Assay

Genotyping was performed with 14 previously described primer pairs (Table 2). 
Tails containing a portion of the plasmid M13 were added to forward primers 
(CACGACGTTGTAAAACGACC) for detection of amplicons by fluorescence with 
one of three dyes: FAM/NED/VIC (Oetting et al., 1995). PCR amplification was 
conducted in a final reaction volume of 10 μL containing 20 ng template DNA, 10× 
Key Buffer (VWR Chemicals), 25 mM MgCl2, 2 mM dNTPs, 10 μM each of for-
ward and reverse primers, 10 μM M13 primer with label and 0.5 U Taq DNA poly-
merase (VWR Chemicals). PCR reactions were amplified with an Applied 
Biosystems 2720 Thermal Cycler with an initial denaturation step at 94  °C for 
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4 min, followed by 18 cycles of 94 °C for 1 min, 64 °C for 1 min (−0.5 °C per 
cycle), and 72 °C for 1 min, followed by 20 cycles of 94 °C for 1 min, 55 °C for 
30 s, and 72 °C for 1 min, with a final extension of 10 min at 72 °C. PCR products 
labelled with one of each of the three dyes (FAM/NED/VIC) were pooled before the 
products were separated by capillary electrophoresis on an ABI PRISM® 3130xl 
Genetic Analyzer (Applied Biosystems, USA).

2.4  Data Treatment and Paternity Analysis

Data were analysed using the software GeneMarker (SoftGenetics, State College, 
PA, USA). The SSR alleles were named in accordance with their specific size in 
base pairs for the paternity analysis. SSR fragments were also scored and entered 
into a binary data matrix, with ‘1’ indicating the presence and ‘0’ indicating the 
absence of peaks. The resulting presence/absence data matrix was analysed using 
POPGENE version 1.32 (Francis & Yang, 2019) to examine the genetic relationship 
between populations of parent cultivars, and a dendrogram was constructed from 
Nei’s (1978) genetic distances.

The software program CERVUS 3.0.7 (Kalinowski et  al., 2007) was used for 
parentage analysis. The allele frequency module of the program was used to calcu-
late allele frequency, observed heterozygosity (HO), expected heterozygosity (HE) 
and polymorphic information content (PIC) for each locus. These data were then 
used to run the simulation module and estimate the threshold log-likelihood scores 
for paternity analysis. The simulation was conducted using the default genotype 
error rate of 1% and the default levels of confidence (strict confidence 95% and 
relaxed confidence 80%). The proportion of loci genotyped was derived from the 
output of allele frequency analysis. Finally, based on the genotype data of offspring 
and candidate parents, the parentage assignment module was used to run the pater-
nity analysis using the generated allele frequency and simulation results.

3  Results

3.1  Single Sequence Repeat (SSR) Markers

The 14 primers used for the analysis of 178 plants generated a total of 81 alleles, 
which ranged from 5 to 8 (Table 3). The PIC value reflecting the genetic diversity of 
the 14 microsatellite loci ranged from 0.49 to 0.73 with an average of 0.61, indicat-
ing that the least informative primer was SSR-2-7A and the most informative was 
DCM-2 (Table 3). Except for primer SSR-2-7A, all the primers were highly poly-
morphic, with PIC values greater than 0.50. The 178 genotypes of parent cultivars 
and their polycross offspring were clearly distinguished by the 14 SSR primers, 
confirming that the selected SSR markers have good discriminatory power for geno-
typing carrot germplasm in polycross populations.
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Table 3 Locus name, chromosome location (Cavagnaro et al., 2011), observed size range, number 
of alleles and polymorphism information content (PIC) of 14 SSR markers analysed in the 
polycross population with a total of 178 parent and progeny genotypes

Locus Linkage group Fragment size range Number of alleles Individuals typed PIC

DCM-2 LG-9 181–212 6 178 0.73
SSR-2-7A – 219–270 6 178 0.49
SSR-2-10H – 202–214 5 176 0.64
GSSR-4 LG-6 254–287 5 175 0.65
GSSR-6 LG-4 282–310 5 172 0.59
GSSR-14 LG-1 211–232 5 176 0.68
GSSR-16 LG-9 229–253 5 177 0.56
GSSR-107 LG-8 272–322 5 177 0.57
GSSR-134 – 274–326 5 175 0.58
GSSR-19 LG-5 221–332 8 166 0.61
GSSR-35 LG-8 183–210 7 175 0.66
GSSR-42 LG-2 303–331 8 164 0.54
GSSR-85 LG-7 216–261 5 177 0.67
GSSR-91 LG-3 258–344 6 171 0.60

3.2  Genetic Relationship Between Parent Cultivars

The generated UPGMA dendrogram based on Nei’s unbiased genetic distances 
grouped the populations of the parent cultivars into two major clusters (Fig.  1) 
according to geographic origin, with the first cluster consisting of cultivars 1, 2, 6, 
7, 8 and 9, which all originated from Denmark, and cultivar 3 from the Netherlands. 
The second cluster contained cultivars 4 and 5, which were genotypes from the 
Daucus collection of the USDA.

Population pairwise FST values varied from 0.134 to 0.785, and Nei’s genetic 
distance varied from 0.026 to 0.199 (Table 4). Most of the cultivars could be distin-
guished by a great or very great genetic difference (0.15–0.25 or >0.25, respec-
tively), as classified by Hartl and Clark (1997). The FST values between cultivar 1 
and cultivars 2, 7 and 9 were classified with little genetic difference (<0.05) and 
were therefore co-clustered in the dendrogram, also indicating that cultivar 1 was 
interbreeding freely with those four cultivars. The potential for overlap between 
these cultivars was highly possible because of their similar origins. The inclusion of 
more markers would probably resolve this problem.

3.3  Parent Assignment

SSR markers were successfully scored on 96 maternal clones and 82 progenies from 
the polycross. Some of the cultivars (cultivars 6–9) did not give seeds after pollina-
tion, and hence, no DNA samples from these progenies could be obtained. The 
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Fig. 1 UPGMA dendrogram based on Nei’s unbiased genetic distances between polycross breed-
ing cultivars generated from SSR markers. Country of origin: cultivars 1, 2, 7, 8 and 9 DNK; cul-
tivar 3, NLD; cultivar 4 and 5, USA. The numerical scale indicates genetic similarity

Table 4 Unbiased measures of identity and genetic distance (Nei, 1978) among populations of 
carrot parent cultivars. Estimated FST is shown above the diagonal and Nei’s genetic distance 
below the diagonal

Cultivar
Origin country ISO 
3166 1 2 3 4 5 6 7 8 9

1 DNK – 0.134 0.289 0.365 0.456 0.294 0.134 0.147 0.134
2 DNK 0.026 – 0.279 0.371 0.461 0.394 0.260 0.228 0.184
3 NLD 0.070 0.061 – 0.357 0.528 0.640 0.345 0.386 0.257
4 USA 0.099 0.104 0.073 – 0.452 0.674 0.420 0.483 0.355
5 USA 0.129 0.133 0.137 0.083 – 0.785 0.490 0.537 0.495
6 DNK 0.063 0.100 0.179 0.199 0.199 – 0.443 0.386 0.449
7 DNK 0.038 0.060 0.093 0.129 0.145 0.092 – 0.217 0.152
8 DNK 0.044 0.069 0.106 0.145 0.140 0.055 0.046 – 0.212
9 DNK 0.040 0.039 0.053 0.092 0.161 0.119 0.048 0.074 –

paternity success rate is the percentage of offspring, which were successfully 
assigned to a parent in the parentage analysis. Progeny where the parents were 
found to be the same as the progeny was counted as a selfed progeny and the self- 
fertilization rate was hence the percentage of progeny, which were the result of 
self-fertilization. Of the 82 progenies, a strict exclusion analysis classified 67 prog-
enies (81.7%) with a paternal assignment, of which 39 progenies were classified as 
possible self-fertilizations (58.2%). The paternal assignment success rate varied 
from 66.7% to 90.9% among maternal clones (Table 1a).
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Fig. 2 Total content of carotenoid (ppm) measured by Raman spectroscopy in a polycross popula-
tion with a total of 96 parents and 82 progeny genotypes (sd not shown for clarity)

Table 5 Average content of carotenoid (ppm) measured by Raman spectroscopy in the paternal 
material

Cultivar Total no. of roots Avg. content of carotenoid (ppm) SEM

Cultivar 1 13 173 31
Cultivar 2 26 181 27
Cultivar 3 3 341 86
Cultivar 4 8 226 25
Cultivar 5 9 201 45
Cultivar 6 6 205 34
Cultivar 7 10 184 71
Cultivar 8 11 218 18
Cultivar 9 10 215 41

Harvested roots were measured by fast screening of total carotenoids using 
Raman spectroscopy (Lawaetz et  al., 2016). The measurements showed that the 
polycross experiment resulted in progenies with a generally higher content of carot-
enoid compared to the parents (Fig. 2). The nine parent genotypes had an average 
carotenoid content of 200 ppm (Table 5), ranging from 173 ppm (cultivar 1, ‘Nina’) 
to 341 (cultivar 3, ‘High Carotene Carrot’), and the progeny had an average of 
245 ppm, with a range of 97–553 ppm.

The origin of the progeny with the greatest increase in total carotenoid (above 
300  ppm) was distributed between all of the parent genotypes in the polycross 
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Fig. 3 Parental information of selected progenies with a high content of carotenoid (above 
300 ppm)

(Fig. 3). In general, some of the cultivars performed better than others with regards 
to pigment content. However, the carotenoid data suggest that it would be wise not 
to exclude entire cultivars based on general assumptions, as there would be a risk of 
valuable high-performing plant material being discarded.

Out of the 21 selected high-carotenoid progenies, the paternity analysis classi-
fied 16 progenies with a paternal assignment, of which 12 progenies were classified 
as possible self-fertilizations (57%). Paternity could not be determined in 24% of 
the progeny (Table 1a). These data indicate that there is a general tendency for self- 
fertilized plants to produce a higher carotenoid content in the progeny.

4  Discussion

This study investigated the utility of molecular markers to determine the genetic 
diversity and paternity of individual progeny of carrots from a polycross population. 
Fourteen previously described pairs of primers were used for the analysis (Niemann, 
2001; Rong et al., 2010; Cavagnaro et al., 2011). All the SSR loci were polymorphic 
and there were no duplicates in the collection. The effective number of 81 alleles 
was identified with a mean of 5.8 per locus (Table 3), which is very similar to the 
data obtained for the carrot collection by Baranski et al. (2012). The marker devel-
oped by Niemann (2001) was the most discriminating, with the highest mean poly-
morphic information content (PIC).
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Clustering accessions in a UPGMA dendrogram based on Nei’s unbiased genetic 
distances were applied to investigate the genetic relationship in the parent material. 
The results revealed that the nine cultivars could be separated into two major clus-
ters (Fig. 1). The first pool comprised the cultivars originating from Denmark, while 
the second cluster comprised one cultivar each from America and the Netherlands. 
This close genetic connection is not surprising as American carrots for human con-
sumption originate from Europe.

A total of 82 progenies from the nine-cultivar polycross was genotyped with SSR 
markers and paternity was assigned successfully for 81.7% of the offspring at a 99% 
confidence level, while 58.2% were the result of self-fertilization. This study dem-
onstrated that the 14 SSR markers were useful for identifying paternity among poly-
cross progeny in carrots. However, when using a limited number of SSR loci, the 
choice of markers is very important and several factors should be considered to 
improve assignment accuracy such as marker diversity, population size, and gene 
frequency.

Selection of carrot phenotypes of interest has been going on for centuries and the 
first recording of breeding for beta-carotene content might be from Germany 1942 
by Schuphan (1942). Since the 1980s, a large carrot breeding program was led by 
P. W. Simon, Wisconsin, to improve beta-carotene (Ellison et al., 2017) by using 
visual assessment of orange pigment in taproot for ranking offspring carrots. The 
overall target for our breeding efforts is to produce natural food colourants being 
anthocyanin (Meng et al., 2020) or beta-carotene (Lawaetz et al., 2016), which can 
be extracted from taproots. This exclude selection for sweetness and non- 
carbohydrate fibres such as lignin, which is important for consumption but requires 
adaptation to Danish agro-climatic conditions. The main goal of the present breed-
ing investigation is to develop carrots with a high carotenoid content and to investi-
gate the possibility of improving the breeding strategy by utilizing molecular 
markers. After only a single generation of breeding, it was possible to obtain an 
increase of carotenoids in the roots (Fig. 2), showing that colour content can be 
improved by using strain breeding in a polycross experiment. Comparing the pater-
nity results and the Raman measurements from the roots with the highest carotenoid 
content (Fig. 3), most of the high-carotenoid roots were found to be the result of 
self-pollination. The offspring from the polycross with a carotenoid content above 
400 ppm were all the result of selfing according to the SSR data, suggesting that 
further breeding with bulked selections of plants from the same cultivar would prob-
ably be the best way forward to further increase the colour content of carrot roots in 
the breeding program.

5  Conclusion

This study demonstrated that molecular markers are a cost-effective method for 
conducting paternity testing in carrots and a useful tool for selecting against self- 
pollination in breeding programs, while polycrossing increases the genetic 
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variation. The data reported here suggest that a relatively small number of carefully 
chosen markers may be adequate to meet most breeding needs for determining par-
ents with high breeding value and candidate individuals for the next generation of 
breeding.
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Traditional and Modern Molecular 
Cytogenetic Approaches to the Study 
of Mutagen-Induced DNA Damage:  
A Case of Fagopyrum Species

J. Kwasniewska and A. Betekhtin

Abstract This chapter summarises the optimisation experiments of the mutagenic 
treatment applied to two buckwheat species: Fagopyrum esculentum (common 
buckwheat) cv. Kora and Panda and Fagopyrum tataricum (Tartary buckwheat). 
Chemical mutagen-maleic acid hydrazide (MH) was used for mutagenic treatment. 
Based on the responses of buckwheat species to MH, the genome sensitivities were 
compared and discussed. Traditional and modern molecular cytogenetic approaches 
to study MH-induced damage on chromosome and DNA levels were applied.

Keywords Buckwheat · DNA damage · Maleic acid hydrazide · Micronuclei · 
TUNEL assay

1  Introduction

Buckwheat is a dicotyledonous grain crop plant of the family Polygonaceae. Most 
of the 26 buckwheat species are wild. Among them, Fagopyrum esculentum (com-
mon buckwheat) and Fagopyrum tataricum (L.) Gaertn. (Tartary buckwheat) are the 
most cultivated ones (Sytar et al., 2018). These species, categorised as pseudocere-
als, are essential for food production and are valuable for medicine purposes (Zhang 
et al., 2012; Kreft et al., 2020). Buckwheat seeds are also valuable because they do 
not contain gluten (Skerritt, 1986). The protein in buckwheat is of better quantity 
and quality than in wheat, rice and maize (Fabian & Ju, 2011; Khan & Shewry, 2009).

F. esculentum (2n = 16) is more widely distributed than Tartary buckwheat. It is 
cultivated in Asia and central and eastern Europe (Wijngaard & Arendt, 2006). 
Common buckwheat is the traditional crop with a short vegetation period of 
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90–100 days. This insecticidal plant, highly dependent on bees, is also a good honey 
plant. Its groats contain protein, saccharides, lipids, and vitamins and thus have 
health benefits. The preventive action of common buckwheat groats to different 
diseases is connected with the content of dietary fibre.

F. tataricum (2n = 16) is a wild buckwheat species, which is cultivated in East 
Asia for consumption purposes (Brian et al., 2004). It contains a large number of 
flavonoids, especially rutin, which has a known beneficial medicinal effect (Kreft, 
2016). The rutin content in the groats of Tartary buckwheat is 100-fold higher than 
that in common buckwheat (Steadman et al., 2001). Interestingly, no rutin in cereals 
and pseudocereals except buckwheat was found (Hagels, 1999).

Because of the importance of buckwheat species, the improvement of some 
nutritional status and resistance features is desirable. Few examples of buckwheat 
mutagenesis are known (Tang et al., 2002). Recently, common buckwheat cultivars 
with high antioxidative activity using gamma ray irradiations were developed 
(Morishita et al., 2019). Also, the high rutin cultivars of common buckwheat using 
physical mutagen were previously demonstrated (Minami et  al., 2001; Ito et  al., 
2005). A Tartary buckwheat dwarf mutant line (ftdm) by large-scale screening of an 
ethyl methanesulfonate (EMS)-mutagenised population was obtained recently (Sun 
et al., 2021).

One of the methods for genetic improvement is chemical mutagenesis. The char-
acterisation of the cytogenetic effects of chemical treatment is the most important 
for optimising the appropriate mutagenic treatment conditions. Among the factors 
that determine the cytogenetic effects of mutagenic treatments are the conditions of 
mutagenic treatment: the concentration of the mutagen and treatment time. Also, the 
physiological stage of the plant material is crucial for the cytogenetic effect of muta-
genic treatment. It would have to be especially emphasised that different plant spe-
cies or even varieties are characterised by different sensitivities to various chemical 
and physical agents. The final cytogenetic effect seems to be related to genome size 
(Underbrink et al., 1968).

Maleic acid hydrazide is one of the most frequently used chemical agents in 
plant mutagenesis. This clastogenic agent efficiently induced DNA fragmentation, 
which leads to chromosome aberrations (CA), observed as changes in chromosome 
structure. They can be detected both in mitotic cells and in the interphase cells, as 
micronuclei formed from a whole chromosome or its fragment. MH is also described 
as a cytotoxic-type mutagen, which leads to disturbances of the cell cycle, such as 
reducing the mitotic activity of the cells and delaying the cell division (Marcano 
et al., 2004).

The analysis of the meristematic cells of M1 generation by using cytogenetic 
tests serves as a fast evaluation of genetic effect after mutagenic treatment. The non- 
dividing cells and mitotic ones are convenient for the analyses of the cytogenetic 
effects of mutagens (Kwasniewska, 2014). The damage can be analysed on both 
DNA and chromosome levels. It must be underlined that chromosome aberrations 
arise from DNA breakage, which are not repaired or repaired improperly. Recent 
advances in DNA damage analysis made it possible to assign the direct effect 
observed as DNA fragmentation in a single nucleus. One method to analyse DNA 
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breakage after mutagenic treatment is the TUNEL test (terminal deoxynucleotidyl 
transferase-mediated dUTP nick end labelling). It quickly and precisely enables the 
detection of the single and double DNA breakage in the non-dividing cell. TUNEL 
test has been used to estimate DNA breakage in various species in response to muta-
genic treatment; however, it still is not widely applied in plant mutagenesis. 
Identifying the DNA double-strand breaks (DSBs), which are key DNA damage 
that leads to chromosomal aberrations, enables TUNEL to serve as a predictive test 
for the formation of chromosome aberrations (Kwasniewska, 2014).

This chapter aims to optimise the procedure of mutagenic treatment with maleic 
acid hydrazide (MH) by using different experimental designs for buckwheat spe-
cies: F. esculentum, cv. Kora and cv. Panda, and F. tataricum. The traditional cyto-
genetics for the analysis of the mitotic activity and chromosomal aberrations were 
accompanied by the modern molecular cytogenetic techniques – TUNEL test – to 
quantify the damage on the DNA level. The results of the cytogenetic characterisa-
tion of the effects of MH treatment will enable us to compare and discuss the sensi-
tivities of buckwheat genomes to mutagenic treatment. The results will be helpful in 
future breeding programmes for Fagopyrum species.

2  Material and Methods

2.1  Material

The seeds of the Fagopyrum esculentum cv. Kora and Panda were sourced from the 
Malopolska Plant Breeding Company, Cracow, Poland. The seeds of Fagopyrum 
tataricum (L.) Gaertn (Tartary buckwheat), sample k-17, were gained from the col-
lection of the N.I.  Vavilov Institute of Plant Genetic Resources, Saint 
Petersburg, Russia.

2.2  Mutagenic Treatment

Before mutagenic treatment with MH (maleic acid hydrazide), the seeds were pre-
soaked with distilled water for 8 h, 24 h or 48 h. Also, the F. esculentum embryos, 
isolated from seeds previously presoaked with distilled water for 24 h, were used for 
treatment with MH. This procedure was not performed for Tartary buckwheat due 
to the small size of the seeds. For mutagenic treatment, the following concentrations 
of MH (Sigma, CAS 123-3301) were used: 1, 2, 3 and 4 mM. For the control, the 
water was used for the incubation. The seeds and isolated embryos were treated 
with MH for 2 h. The mutagenic treatment procedure was repeated twice. The plants 
for cytogenetic analyses were grown in the dark at 21 ± 1 °C in Petri dishes and 
collected after 72  h, in both control and following MH treatment. Fagopyrum 
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esculentum cv. Kora and Panda and Fagopyrum tataricum seeds, control and treated 
with MH, were also sown in the soil for the analysis of plant growth.

2.3  Analyses of the Mitotic Index and the Micronuclei

Roots of M1 buckwheat seedlings, not treated and treated with MH, were fixed for 
cytogenetic analyses. The mitotic indexes and the frequency of nuclei with micro-
nuclei in the meristematic root cells of the Fagopyrum esculentum cv. Kora and cv. 
Panda seeds and Fagopyrum tataricum were analysed. Roots were fixed in AA – 
methanol: acetic acid (3:1 v/v) – for 4 h at room temperature (RT). Two biological 
repetitions were performed, with ten plants per each one. One meristem was used to 
make one preparation. Cytogenetic preparations were made using the enzymatic 
technique. The preparations were stained with DAPI. The mitotic indexes and the 
frequencies of nuclei with micronuclei were estimated for 1000 meristematic root 
cells on each slide. ANOVA (p < 0.05) and Tukey’s test (Tukey HSD test, p < 0.05) 
were used for statistical analyses.

2.4  TUNEL Test

TUNEL test was carried for Fagopyrum esculentum cv. Kora and cv. Panda and 
Fagopyrum tataricum (L.) Gaertn. The root tips, after the root cap removal, were 
used in the TUNEL reaction. The samples were fixed with 4% paraformaldehyde 
(Fluka) in PBS for 1 h at RT. The material was washed three times for 5 min in 
PBS. The enzymatic digestion was not applied to make nuclei preparations. The 
preparations were made by squashing the root meristems in PBS. After freezing at 
−70 °C, preparations were stored at 4 °C. Cell permeabilisation was done by incu-
bating the preparations in 0.1% Triton X-100 (Sigma) in 0.1% sodium citrate for 
2 min at 4 °C. Then slides were washed with PBS. The nuclei with DNA breaks 
were detected with the TUNEL reaction mixture (in situ Cell Death Detection Kit, 
Fluorescein, Roche). A 50  μL TUNEL reaction mixture (enzyme solution/label 
solution, 1:9 v/v) was used for each slide and incubated for 1 h at 37 °C in a humid 
chamber in the dark. The positive control was a preparation of nuclei treated with 
DNase (1 U) for 30 min at 37 °C. Then the TUNEL reaction mixture was applied. 
For the negative control, a TUNEL mixture without enzyme was applied. Slides 
were washed three times with PBS and stained with DAPI (2 μg/mL), air-dried and 
then mounted in Vectashield.

We used a Zeiss AxioImager.Z.2 wide-field fluorescence microscope, equipped 
with filters for FITC and DAPI for the examination of preparations. One thousand 
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cells on three slides for each treatment group and species/cultivar were analysed for 
the estimation of the frequencies of TUNEL-positive nuclei. Student’s t-test, with 
p < 0.05 indicating significance, was used for the assessment of the significant dif-
ferences between experimental groups.

3  Results

3.1  Plant Growth and Morphology

The analyses of the germination capacity and the root length of seedlings of 
Fagopyrum esculentum cv. Panda and cv. Kora and F. tataricum that were grown in 
Petri dishes were made. No reduction in the germination capacity was observed fol-
lowing the mutagenic treatment with 1, 2, 3 or 4 mM MH for all buckwheat species 
and cultivars (data not presented on the figures). However, all applied concentra-
tions of MH caused a substantial, MH-dose dependent reduction of the root growth 
(Figs. 1, 2, and 3).

However, all concentrations of MH have reduced the Fagopyrum plant growth 
(Figs. 4, 5, and 6).

This reduction was dependent on the dose of MH used in the experiments. The 
growth reduction was observed on 10th day and 20th day after treatment.

The weakest growth reduction as a result of MH treatment was observed for 
F. tataricum plants. Only slight differences in plant height were observed after MH 
treatment for F. esculentum cultivars Panda and Kora.

Fig. 1 Fagopyrum esculentum cv. Kora seedlings: control and treated with maleic acid hydrazide 
(MH). The bar represents 1 cm
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Fig. 2 Fagopyrum esculentum cv. Panda seedlings: control and treated with maleic acid hydrazide 
(MH). The bar represents 1 cm

Fig. 3 Fagopyrum tataricum seedlings: control and treated with maleic acid hydrazide (MH). The 
bar represents 1 cm
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Fig. 4 The comparison of the growth of Fagopyrum esculentum cv. Kora seedlings: 10 days (a) 
and 20 days (b) after the treatment with maleic acid hydrazide (MH)

Fig. 5 The comparison of the growth of Fagopyrum esculentum cv. Panda seedlings 10 days (a) 
and 20 days (b) after the treatment with maleic acid hydrazide (MH)
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Fig. 6 The comparison of the growth of Fagopyrum tataricum seedlings 10 days (a) and 20 days 
(b) after the treatment with maleic acid hydrazide (MH)

4  Cytological Analyses

4.1  Mitotic Activity

The differences in the responses of F. esculentum and F. tataricum as a reduction of 
MI were observed. The mitotic activity in control, non-treated meristematic root 
cells was 8.98–10.1% for F. esculentum, depending on the time and the method of 
soaking the seeds prior to the mutagenic treatment. The mitotic index value after 
MH treatment was also dependent on these conditions. A significant dependence of 
the mitotic index on the concentration of MH was observed. No differences were 
observed in the mitotic index for the Panda and Kora cultivars tested, in both control 
and MH-treated ones; therefore, the results were polled (Fig.  7a). MH caused a 
significant reduction of even the total inhibition of the mitotic index. The complete 
blockage of the mitotic activity of the root cells was observed after application of 
4 mM MH, after soaking the seeds for 48 h and 24 h followed by the isolation of 
embryos.

The mitotic activity for the control F. tataricum root meristematic cells was 
9.9–10.53%. The reduction of MI after 1, 2 and 3 mM MH was not as statistically 
significant as in F. esculentum. Similarly, 4 mM MH had the strongest effect on the 
reduction of MI; however, it did not stop it completely (Fig. 7b).
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Fig. 7 Mitotic index in F. esculentum cv. Panda and Kora (a) and F. tataricum (b) root meriste-
matic cells: control and MH treated. In different experimental conditions: seeds were presoaked for 
8  h, or 24  h, or 48  h, or presoaked for 24  h, and isolated embryos were used for treatment. 
Statistically significant differences are indicated by different letters (ANOVA followed by the 
Tukey HSD test, p < 0.05; mean ± SD)

4.2  Micronuclei

Treatment with MH led to the formation of micronuclei (MN) in Fagopyrum escul-
entum (Fig. 8a) and F. tataricum (Fig. 8b). The micronuclei in buckwheat cells are 
extremely small. The number of micronuclei in one cell ranged from 0 to 2.

The frequencies of root meristematic cells with micronuclei, both in control and 
after MH treatment, were analysed (Fig. 9). No micronuclei were observed in con-
trol cells. No differences were observed in the frequency of micronuclei for the 
F. esculentum cultivars used, both control and MH-treated ones; therefore, the 
results were polled (Fig. 9a).

The response to MH was significantly dependent on the dose of MH. Interestingly, 
only 2 and 3 mM MH induced formation of MN in F. esculentum, while for F. tatari-
cum only 3 and 4 mM MH were effective in MN induction. The highest frequency 
of F. esculentum cells with MN was 2.9% followed by the treatment of isolated 
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Fig. 8 The nuclei of Fagopyrum esculentum cv. Kora (a) and Fagopyrum tataricum (b) after treat-
ment with MH; micronuclei are indicated by arrows. Enlarged nucleus with micronuclei is shown 
on the left below. DAPI staining. Bars represent 10 μm
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Fig. 9 The frequency of root meristematic cells with micronuclei in F. esculentum cv. Panda and 
Kora (a) and F. tataricum (b) root meristematic cells: control and MH treated. In different experi-
mental conditions: seeds were presoaked for 8 h, or 24 h, or 48 h, or presoaked for 24 h and isolated 
embryos were used for treatment. Statistically significant differences are indicated by different 
letters (ANOVA followed by the Tukey HSD test, p < 0.05; mean ± SD)
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embryos with 3 mM MH, whereas it was 5.6% in F. tataricum after 48 h of soaking. 
For both buckwheat species, the time of soaking the seeds did not affect the fre-
quency of cells with micronuclei.

4.3  DNA Damage

To detect the nuclei with DNA damage in roots, control and following MH treat-
ment, the TUNEL test was used. To analyse the frequency of TUNEL-positive 
nuclei, DAPI stainings were used (Fig. 10A–D). The same nuclei, showing green 
fluorescence, were observed in the FITC channel that are characterised by DNA 
breaks (Fig. 10A′–D′).

In control F. esculentum and F. tataricum cells, TUNEL-specific nuclei with rela-
tively weak fluorescence (Fig. 10A, A′, C, C′), were observed with the very low 
frequency of maximum 1% (Fig. 11). The material that had been treated with DNase 
showed TUNEL-positive signals in 92% of the nuclei for the positive control. No 
FITC-labelled nuclei were observed in the negative control. The conditions of 
F. esculentum seeds soaked prior to treatment with MH, except the 2 mM dose, did 
not affect the frequency of cells with DNA damage. Only statistically significant 
differences were found for 2 mM MH. In F. esculentum TUNEL-positive nuclei 
were observed with the highest frequency after treatment with 2 mM MH, from 
24.3% to 32.4%, depending on the presoaking conditions. The use of lower doses of 
MH, 3 and 4 mM, resulted in the lower frequency of TUNEL-positive nuclei. In 
F. tataricum the similar frequency of TUNEL-positive nuclei of about 30% was 
induced by 3 mM MH. In case of F. tataricum damaged nuclei were induced with 
the highest frequency by 3 mM MH, and the use of a higher dose, 4 mM, even tends 
to lower this frequency. No dependence of the TUNEL-positive frequency on the 
seeds’ soaking conditions was found. Only a significant increase in the frequency of 
nuclei detected by the TUNEL test was demonstrated for 3 mM MH when 48 h of 
soaking was applied.

5  Discussion

Currently, there is an increased focus on pseudocereals, including buckwheats, to 
improve their diversity in response to climate changes (Zhang et al., 2017). It has to 
be underlined that knowledge in the field of the buckwheat mutagenesis is not wide 
at present. Here, we report on the characterisation of the cytogenetic responses of 
Fagopyrum esculentum and F. tataricum to maleic acid hydrazide (MH). For the 
common buckwheat we compare the effect of treatment with MH in two cultivars of 
F. esculentum – Kora and Panda. MH is widely applied in plant mutagenesis; hence, 
we used it as a model mutagen for comparative studies of different buckwheat spe-
cies and cultivars (Swietlinska & Zuk, 1978).
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Fig. 10 The results of TUNEL assay – in situ detection of DNA fragmentation in the F. esculen-
tum cv. Panda (A, A′–B, B′) and F. tataricum (C, C′–D, D′) root tips: control and treated with 
3  mM MH.  Blue fluorescence, DAPI staining (A–D); green fluorescence, FITC showing the 
TUNEL-positive nuclei (A′–D′), control (A, A′, C, C′), 3 mM MH (B, B′, D, D′). Scale bars: 20 μm
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Fig. 11 The frequency of TUNEL-positive F. esculentum cv. Panda and Kora (a) and F. tataricum 
(b) root meristematic cells: control and MH treated. In different experimental conditions: seeds 
were presoaked for 8 h, or 24 h, or 48 h, or presoaked for 24 h and isolated embryos were used for 
treatment. Statistically significant differences are indicated by different letters (ANOVA followed 
by the Tukey HSD test, p < 0.05; mean ± SD)

For the first time, the significant differences in the response of genomes of 
F. esculentum and F. tataricum to mutagenic treatment were demonstrated. All cyto-
genetic parameters used for describing the genotoxic effect of MH showed that 
F. tataricum genome is less sensitive to MH than F. esculentum. Interestingly, we 
did not notice the difference on the sensitivities of F. esculentum cv. Panda and Kora 
to mutagenic treatment with MH. A number of factors influence the cytogenetic 
effect of mutagens. It is well known that the somatic and genetic effects of mutagens 
are not the same in different species and their varieties. The reasons for these differ-
ences may be nuclear volume and DNA content (Underbrink et al., 1968). However, 
data on the genome size of buckwheat species indicates that the genome of F. escu-
lentum is 2.5 times larger than that of F. tataricum (1.2 Gb vs. 489.3 Mb) (Yasui 
et al., 2016; Zhang et al., 2017). Available data on the identification of various genes 
potentially involved in the biosynthesis of rutin, resistance to aluminium and stresses 
associated with drought and cold indicate that F. tataricum tolerates high levels of 
abiotic stresses (Zhang et al., 2017).
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It is possible that the harsh conditions in which the Tartary buckwheat grows 
have an impact on its sensitivity to mutagens. Dose-dependent responses to MH 
were observed on both the common buckwheat and Tartary buckwheat; however, 
interestingly, the reduction of growth was not correlated to the dose of MH for 
Tartary buckwheat.

Among the many factors important for the final mutagenic effect, the ability of 
mutagens to penetrate plant tissue and nucleus is important. The concentration of 
the mutagen and the treatment time determine the mutagenic effect – a stronger 
genetic and somatic effect is observed after the use of higher doses of the mutagen 
(Shu, 2009). The final mutagenic effect is also determined by the physiological state 
of the plants and the conditions of mutagenic treatment. Moreover, the efficiency of 
DNA repair processes influences the final response to the mutagen (Maluszynski 
et al., 2003).

Nuclear breaks are the crucial DNA damage that is induced by numerous muta-
gens (Kumari et  al., 2008; Juchimiuk-Kwasniewska et  al., 2011). DNA double- 
strand breaks (DSBs) are required lesions for the production of chromosome 
rearrangements (Pfeiffer et  al., 1996; Schubert et  al., 2004). We evaluated DNA 
damage in a buckwheat nucleus using the TUNEL test. The advantage of the 
TUNEL test is its possibility to detect DNA breaks in non-dividing cells. Dose 
dependencies and presoaking condition dependencies were observed for the fre-
quencies of micronuclei and DNA-damaged nuclei, detected by the TUNEL test. 
Thus, we postulate that in case of Fagopyrum species, using the TUNEL test for the 
estimation of cytogenetic effect is faster and easier than time-consuming analysis of 
the dot-like micronuclei.

The ability of mutagens to penetrate plant tissue, cells and nucleus is crucial for 
the final mutagenic effect. The time of seed presoaking has no significant influence 
on the genotoxic effects of F. esculentum and F. tataricum. However, the application 
of MH to isolated embryos increased the cytogenetic effect. The most effective 
mutagenic treatment in common buckwheat was observed if the MH has been 
applied to isolated embryos, isolated from previously presoaked seeds for 24 h.

6  Conclusion and Future Perspective

Our study demonstrated the differences in the cytogenetic effects caused by MH for 
F. esculentum and F. tataricum. No differences regarding the sensitivities of anal-
ysed cultivars to MH – F. esculentum Kora and Panda – were demonstrated.

Future studies, using other chemical and physical mutagens, will be applied to 
determine the sensitivity of the genome of buckwheat species. Looking to the future, 
this knowledge will greatly contribute to the applied improvement of Fagopyrum 
breeding programmes as efficient biological tools for food production.

Our data will provide valuable resources that can have an impact on successfully 
modulating yield productivity and yield stability for future buckwheat breeding 
programmes.
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Abstract Cowpea is an important warm-season legume growing in arid and semi- 
arid regions. The cowpea productivity is low compared to other legumes such as 
chickpea, lentil, faba bean and mung bean. The low productivity is attributed to 
different abiotic and biotic stresses, therefore,  different breeding strategies have 
been introduced and implemented to alleviate the negative impact of environmental 
stresses. In this chapter, we reviewed the contributions of conventional approaches 
and modern breeding strategies and their role in the improvement of cowpea geno-
types.  This chapter discusses in detail challenges and landmark achievements 
of hybridization, tissue culture, mutation breeding and molecular breeding and its 
role in mitigating the abiotic and biotic stresses, improving yield and nutritional 
traits, mining of QTLs associated with economically important traits, development 
and fine tuning of genetic maps in cowpea.
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1  Introduction

Cowpea (Vigna unguiculata (L) Walp.) is a diploid warm season legume with 22 
chromosomes (2n = 2x = 22), grown in the semi-arid tropics, belonging to family 
Fabaceae, subfamily Faboideae (syn. Papillionoideae), tribe Phaseoleae, subtribe 
Phaseolinae, genus Vigna, and section Catiang (Maréchal et al., 1978; Verdcourt, 
1970). In Asia, Africa, Southern Europe, the Southern United States and Central and 
South America, cowpea is a major food and forage legume (Singh, 2005; Timko 
et al., 2007a). It is a multipurpose crop used as human food and cattle feed and is a 
source of revenue for millions of resource-poor farmers (Langyintuo et al., 2003; 
Singh, 2002). The origin of cowpea is debatable and opinions vary in terms of its 
African and Asian origin. Padulosi and Ng (1997) proposed that cowpea originated 
in southern Africa and Baudoin and Maréchal (1985) considered east and southern 
Africa as the major region of diversity, with west and central Africa as the secondary 
centre of diversity. Cowpea seeds are rich in dietary proteins (23% to 32%; high in 
lysine and tryptophan), minerals, folic acid and vitamins B, consumed in a variety 
of forms such as cooked dishes or flour products (Nielsen et al., 1997; Ahenkora 
et al., 1998; Hall et al., 2003a, b). In addition to seeds and fresh green leaves, unripe 
pods are eaten as a dish in many regions of Africa and Asia (Tarawali et al., 1997, 
2002). In many regions of West Africa, cowpea is also used as a source of protein- 
rich fodder for cattle (Singh & Tarawali, 1997; Tarawali et  al., 1997, 2002). 
According to the FAO, 89,03,329 tonnes of dry cowpea grain is produced yearly on 
about 14,447,336 hectares of land across the world (Table 1).

Among the regions Africa produces more than 90% of total cowpea production 
(Fig. 1). However, the cowpea production is greater than FAO estimates as the FAO 
does not include the production statistics in Brazil, India and other countries (Singh 
et  al., 2002). Nigeria is the world’s leading producer of cowpea, with an annual 
production of 27,31,344.31 tonnes on 4,303,005 hectares of land (Table 2).

In Asia, Myanmar recorded 108,021 tonnes of cowpea in 2019 (Table 3). The 
production of cowpea is restricted by a wide range of biotic and abiotic factors 
(Singh, 2005; Timko et al., 2007a, b). Among the abiotic factors, water availability 
is one of the most critical abiotic limitations to development and output, even though 
cowpea is intrinsically more drought-tolerant than other crops. Among biotic fac-
tors, cowpea is vulnerable to a number of bacterial, fungal, and viral diseases, as 
well as a wide range of insect pests (Singh, 2005; Timko et al., 2007a, b). There 
exists a broad scope for cowpea breeders to generate cultivars with agronomic 

Table 1 Cowpea (dry) area harvested (ha), yield (hg/ha) and production (tonnes) by regions (2019)

Region Area harvested Yield Production

Africa 14,205,204 6066 8,616,443
Americas 63,699 10,210 65,039
Asia 170,755 11,594 197,970
Europe 7678 31,098 23,877
World 14,447,336 6163 8,903,329

Source: FAOSTAT (2021)
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Fig. 1 Production share of cowpeas (dry) by region (average 1994–2019). (Source: 
FAOSTAT, 2021)

Table 2 Top ten producers of cowpeas (dry) (average 1994–2019)

Country Production (tonnes)

Nigeria 27,31,344.31
Niger 10,60,251.77
Burkina Faso 4,23,806.5
Ethiopia 3,24,046.77
Ghana 2,11,205.33
United Republic of Tanzania 1,37,684.35
Myanmar 1,28,907.42
Mali 1,21,820.65
Cameroon 1,16,515.54
Sudan 1,13,862.5

Source: FAOSTAT (2021)

Table 3 Major cowpea (dry) producers of Asia

Country Area harvested (ha) Yield (hg/ha) Production (tonnes)

China, mainland 14,503 10,133 14,696
Iraq 64 53,594 343
Myanmar 122,637 8808 108,021
Palestine 46 37,826 174
Philippines 248 19,315 479
Sri Lanka 7195 11,212 8067
Yemen 26,062 25,397 66,190

Source: FAOSTAT (2021)
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characteristics such as high yielding potential and resistance to abiotic and biotic 
stresses. Different breeding strategies have been employed to improve the agron-
omy of cowpea. In this chapter, we reviewed the conventional and modern breeding 
approaches used for improving the cowpea cultivars.

2  Hybridization

Hybridization is a process in which desirable traits such as high yield, better nutrient 
quality and tolerance to biotic and abiotic stresses are transferred from one or 
multiple parent crops into a single hybrid cultivar. In the process of hybridization, 
selection of parents plays a critical role in determining the success or failure of 
achieving the desired goals. For instance, parents that are tolerant to a particular 
stress are employed to transfer the tolerance traits into a susceptible variety with 
good yielding potential. In contrast, parents adapted to diverse environmental con-
ditions are employed to develop hybrid varieties with enhanced genetic variability. 
Therefore, it is important to get the preliminary data on agronomically important 
traits of parents for a crossing programme. The source of desirable traits is impor-
tant to screen and usually wild relatives of any crop are tolerant to diverse environ-
mental stresses (Stalker, 1980). Therefore, wild relatives of cowpea that 
independently evolved within specific environments are valuable genetic resources 
and source of important traits that could be used for producing of climate-smart 
cowpea varieties in the context of climate change (Chheda & Fatokun, 1982). The 
production of existing cowpea varieties is severely hampered by some insect pests, 
particularly the pod borer (Maruca vitrata), and pod-sucking bugs (Clavigralla 
tomentoscollis Germ, and C. shadabi). However, the tolerance in these cultivated 
cowpea varieties could be improved by using wild relatives as parents in cross- 
breeding programmes. For instance, wild Vigna species, such as V. oblongifolia and 
V. vexillata, are tolerant to the legume pod borer and pod-sucking bugs and efforts 
are put together to transfer the stress tolerance traits from these species to cultivated 
cowpea (IITA, 1972; Singh et al., 1990). Several crosses were carried out between 
Vigna unguiculata and V. vexillata with the objective of transferring the desirable 
genes for resistance to insect pests from the wild to the cultivated species. Such wild 
relatives act as an important source of environmental stress tolerance and have con-
tributed immensely in developing elite crop varieties. Till now cowpea has been 
successfully crossed only to genotypes belonging in section Catiang. Fatokun and 
Singh (1987) were successful in developing partially sterile but vigorously growing 
F1 hybrids by crossing Vigna unguiculata with Vigna pubescence (a hairy wild rela-
tive). Even though V. vexillata from the Plectrotropis section is the most phyloge-
netically close to cowpea yet failed to produce any interspecific hybrid (Barone & 
Ng, 1990; Fatokun, 2002), the failure had been attributed to a lack of fertilization 
and degeneration of 7-day-old fertilized ovules.
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2.1  Interspecific Hybridization in the Subgenus Vigna

Interspecific hybridization involving non-cultivated but insect-resistant Vigna 
species (Vigna oblongifolia x V. luteola) resulted into a partially fertile F1 interspecific 
hybrid. The F hybrids were advanced to F2 plants which were crossed with culti-
vated cowpea. However, no hybrids were produced and interspecific hybridization 
attempts were not successful in transferring insect resistance genes from any of 
Vigna species to cultivated cowpea. The successful crossing of V. luteola and 
V. oblongifolia produced hybrid plants, which can be employed as bridges for 
crosses to cowpea (Schnapp et al., 1990). Several workers have made effort to over-
come the cross-incompatibility between Vigna unguiculata and V. vexillata (Fatokun, 
2002) These efforts include the following: (a) cross-breeding among accessions of 
both species and none of crosses succeeded to produce interspecific hybrids. (b) 
Spraying of growth hormones such as 2,4-D and NAA on the flowers of V. vexillata 
before and after pollination; however, pod retention was improved but no hybrid 
seeds were produced (Fatokun, 2002). (c) Embryos extracted from ovules and placed 
in the MS culture media revealed no development after the globular stage (Fatokun, 
1991; Fatokun, 2002). (d) Polyploidization of both species was carried out in both 
the species. However, polyploid lines were produced only in the accessions of culti-
vated cowpea and even these lines failed to produce any hybrid when crossed with 
V. vexillata in both directions (Fatokun, 2002). The author also crossed parthenocar-
pic cowpea line (R1 36) with accessions of V. vexillata with no success in the hybrid 
production. Based on these attempts, it can be concluded that cultivated cowpea are 
incompatible with its wild relatives outside the section Catiang that prevented the 
transfer of useful genes in V. vexillata to cultivated cowpea. Moreover, crosses 
between V. vexillata with various cultivated and non- cultivated cowpeas were not 
feasible (Fatokun, 1991). A cross between members of section Catiang, viz., cow-
pea variety (IT84S-2246-4) and a genotype of V. unguiculata ssp. dekindtiana var. 
pubescens (TVNu IlO-3A), resulted into partially fertile F1 hybrids. This was 
another attempt of transferring insect resistance or hairiness from var. pubescens to 
cowpea. Another cross was made between V. unguiculata and V. unguiculata ssp. 
Rhomboidea that resulted into partially F1 fertile plants. The cytological analysis of 
pollen mother cells of F1 plants revealed an unequal distribution of chromosomes to 
the microspores at late telophase II and this may be attributed to the increasing steril-
ity of pollens. Another cross between yard-long bean (V. unguiculata ssp. sesquipe-
dalis) and V. unguiculata ssp. tenuis resulted in F1 plants that were robust in growth. 
However, pollen fertility was low and that has been attributed to a lack of complete 
homology between chromosomes. Considering the higher rate of failure of interspe-
cific or even intraspecific hybridization in cowpea, it is important to research the 
environmental factors that could influence the success of hybridization. Among the 
environmental factors, temperature and humidity are important that affect flower 
initiation, pollen fertility and pod set in the hybrids. Amusa et al. (2022) reported 
that a moderate temperature and high humidity are appropriate to achieve the suc-
cess of hybridization in cowpea. The low temperature and high humidity improve 
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the stigma reception and activity of the pollen down to the receptive style, thus pro-
ducing viable hybrids from the cross. Hybridization has been employed to develop 
F1 hybrids with improved drought tolerance (Sherif et al., 1991). Previous workers 
have reported that cowpea hybrids exhibit significant heterosis for a number of pods 
per plant, seeds per pod seed yield per plant (Adu-Dapaah et al., 1988; Patil & Shete, 
1987; Teofilo et al., 1984), pod length, number of clusters per plant, seed length and 
seed weight (Patil & Shete, 1987), green fodder (Lodhi et al., 1990) and yield pro-
tein content of seed (Emebiri, 1991).

3  Tissue Culture

The development of varieties using traditional breeding approaches are tedious, 
laborious and expensive. This necessitates the implementation of new modern 
breeding tools such as plant tissue culture, as most pulse crops are self-pollinated 
and possess a narrow genetic base that further hinders the variety development 
(Raina et al., 2016). Genetic variability is one of the main prerequisite in any crop 
improvement programme. Existing cowpea cultivars have been reported to possess 
a narrow genetic base due to monoculture farming by farmers and cross- 
incompatibility between wild Vigna species and cultivated cowpea. This has greatly 
hindered the transfer of desirable traits from wild cowpea to cultivated cowpea 
(Abdu Sani et al., 2015; Fang et al., 2007; Gomathinayagam et al., 1998; Latunde- 
Dada, 1990; Wamalwa et al., 2016). Therefore, it is very important to introduce new 
breeding strategies for widening the genetic base by the introgression of useful 
genes from CWR into cultivated species. Among the new breeding tools, plant tis-
sue culture is a promising technique to overcome those constraints and play a cen-
tral role in improving agronomic traits and developing varieties with higher yield 
and stress tolerance (Zaidi et al., 2005). The recalcitrant nature of cowpea necessi-
tates the creation of reproducible tissue culture protocols to increase genetic vari-
ability and selection of improved plant varieties (Ochatt et al., 2010). Using plant 
tissue culture techniques, several attempts have been made to develop whole cow-
pea plants from various genotypes (Brar et al., 1999). Like other legumes, very little 
progress has been achieved in cowpea improvement using tissue culture techniques. 
Several workers had used different explants to regenerate whole cowpea plants, for 
instance, primary leaves (Muthukumar et  al., 1995; Prem Anand et  al., 2000; 
Ramakrishna et al., 2005), mature cotyledon (Brar et al., 1999; Muthukumar et al., 
1995), cotyledonary node (Van Le et al., 2002; Chaudhury et al., 2007), embryonic 
axis (Popelka et  al., 2006), epicotyl (Pellegrineschi, 1997) and mature embryo 
(Odutayo et al., 2005; Popelka et al., 2006). Aasim et al. (2008) employed shoot 
meristem excised from 3–4-day-old in vitro-grown seedlings on MS medium and 
succeeded in developing a reliable micropropagation system for Turkish cowpea cv. 
Akkiz. In another study, Aasim et al. (2010) employed preconditioned embryonic 
axes of the Turkish cowpea cultivar Akkiz and succeeded in developing a viable and 
reproducible approach for shoot regeneration in the cowpea in vitro multiplication 
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and shoot regeneration protocols. The same research group also developed a reli-
able, efficient and reproducible micropropagation system for multiplication of 
in  vitro genetically transformed cowpea. Monti et  al. (1997) reported 33% of 
explants (primary leaves and hypocotyl) developed some shoots cultured on a modi-
fied B5 medium containing fresh coconut water and high cytokinin concentration. 
The authors also subjected explants to histology analysis that depicted a strong cel-
lular proliferation on the epidermis explant, where callus was formed. Other experi-
ments involving in  vitro culture of Italian local cowpea cultivar "Cornetto” in a 
medium containing natural Nigerian coconut water, commercial coconut water 
(Sigma C5915, deproteinized) and local coconut water revealed that Nigerian coco-
nut water induced maximum healthy shoot production. In addition, it was concluded 
that only the basal part of immature leaflets produced shoots. Ganapathi and Anand 
(1998) employed cowpea seedling leaf explants and were successful in developing 
somatic embryos. After successful shoot differentiation from explants, scientists at 
Purdue University attempted to produce multiple bud proliferation from highly 
morphogenic cowpea tissues. They studied the effect of a low concentration of 
auxin and high concentration of benzyl amino purine (3–6 mg/L) on the regenera-
tion capacity of cotyledon segments and embryonic axes from embryos of different 
stages of several cowpea species. The explants grown in a medium containing a low 
concentration of cytokinin under light conditions produced shoots from regenerated 
buds. After 21 days of in vitro culture, shoots developed at 50% frequency from the 
cotyledon explants (Monti et al., 1997). Scientists at the University of Naples stud-
ied the effect of different concentrations of thidiazuron, viz., 5 mM, 10 mM and 
20 mM, on apical and lateral bud proliferation of cowpea cv Cornetto and other 
three lines, viz., TVu 9062, VITA3 and VITA4. The results revealed that the maxi-
mum average frequency of multiple bud proliferation was observed in Cornetto 
(87%) and the line TVu 9062 (85%). However, rooting was observed on transferring 
these buds into a basal medium lacking thidiazuron (Malik & Saxena, 1992). 
Therefore, it was concluded that thidiazuron is a growth regulator for induction of 
multiple bud proliferation from cotyledonary and apex nodes. Machuka et al. (2000) 
also attempted the induction of multiple shoot formation using different explants 
such as roots, leaves and stem apices. They were successful in inducing organogen-
esis of different cowpea genotypes. Popelka et al. (2006) developed the most effec-
tive genetic transformation of cowpea using regeneration by organogenesis of 
several explants grown on culture media containing moderate levels of cytokinin. 
The authors concluded that the best explants for multiple shoot formation are longi-
tudinally bisecting seeds through their embryonic axes with removed shoot and root 
apices. By virtue of its recalcitrant nature, several protocols have been put forward 
for in vitro regeneration in cowpea using different explants (Kartha et  al., 1981; 
Nagl et al., 1997; Le et al., 2002). Muthukumar et al. (1995) were able to induce 
somatic shoots from leaflet callus and Ramakrishnan et al. (2005) recommended 
somatic embryos for plantlet regeneration. However, little progress has been made 
in reporting a reproducible protocol for in  vitro regeneration in cowpea (Prem 
Anand et al., 2000).
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4  Mutation Breeding

Hugo de Vries (1901) first introduced the concept of using induced mutations for 
creating novel varieties and the first experimental proof that X-rays are mutagenic 
in Drosophila and maize was reported by Muller (1927) and Stadler (1928), respec-
tively. Then several workers experimented and concluded that rays are mutagenic, 
Ganger and Blakeslee (1927) in Datura stramonium and Goodspeed (1929) in 
Nicotiana. The first mutant was developed in Nicotiana tobacum called “Chlorina” 
by treating flower buds with X-rays in the 1930s (Tollenaar, 1934; Konzak, 1957). 
Gustafsson (1947) is the pioneer to advocate the applicability of mutations in crop 
improvement programmes. This encouraged other workers to experiment with dif-
ferent mutagens and led to a broader understanding of induced mutations for the 
genetic improvement of crops (Brock, 1965; Gaul, 1965; Ilbas et  al., 2005; 
Kharkwal, 1996; Nakagawa et  al., 2011; Raina et  al., 2017). Unlike other crop 
improvement means, mutation breeding offers a possibility of enhancing one or two 
traits without altering the genetic setup (Khan et  al., 2009; Shu et  al., 2012). 
Thousands of economically important varieties have been developed using mutation 
breeding techniques (Ahloowalia et al., 2004; Khan et al., 2009; Raina et al., 2016). 
Induced mutagenesis is the most efficient technique to greatly increase genetic vari-
ation in a short period of time and has been employed in various crops such as 
cowpea (Raina et al., 2020a; Rasik et al., 2022), lentil (Laskar et al., 2018a, b; Wani 
et al., 2021), faba bean (Khursheed et al., 2015), fenugreek (Hasan et al., 2018), 
mung bean (Wani et al., 2017), urdbean (Goyal et al., 2019a, b), chickpea (Laskar 
et al., 2015; Raina et al., 2019), black cumin (Tantray et al., 2017; Amin et al., 2019) 
and finger millet (Sellapillaibanumathi et  al., 2022). Because natural mutations 
occur sporadically, artificial mutations are generated, and genetic gain is best 
achieved by using mutagens (Raina & Khan, 2020; Raina et al., 2018a, 2022a, b, c, 
d; Rasik et al., 2022; Sellapillai et al., 2022).

Among the physical mutagens, gamma rays are the most favoured in the crop 
improvement programmes (Celik & Atak, 2017; Khursheed et al., 2019) due to its 
superb penetration power that enables it to create ionization of atoms and excitation 
of electrons that react and influence the DNA structure and properties. This often 
leads to rupture of chemical bonds of the bases and the backbone of DNA mole-
cules. Gamma rays are known to cause hydrolysis of water molecules in a process 
called radiolysis that leads to generation of free radicals, viz., H and OH. These free 
radicals are highly reactive and attack the DNA constituents, more vigorously in the 
presence of oxygen and induce alterations in structural and functional properties of 
DNA molecules. In addition, chemical mutagens are more advantageous than physi-
cal mutagens (Auerbach, 1965; Goyal et al., 2021a, b; Khursheed et al., 2016; Wani 
et al., 2014a). Among chemical mutagens, alkylating agents such as ethyl methane-
sulphonate, methyl methanesulphonate and sodium azide are most potent. By virtue 
of their properties, chemical mutagens have emerged as most preferable method of 
mutagenesis (Jain, 2002; Greene et al., 2003; Perry et al., 2003; Goyal et al., 2020a, 
b). Several workers also reported that chemical mutagenesis was more effective and 
efficient than physical mutagenesis in cowpea and other legumes (Ajayi et al., 2017; 
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Dhanavel et  al., 2008; Gnanamurthy & Dhanavel, 2014; Khursheed et  al., 2017; 
Ojomo & Cheda, 1975; Raina et al., 2022a, b). There are various reports available 
that support the effectiveness of combined mutagens over individual mutagens for 
the improvement of cowpea (Bind et  al., 2016; Deepalakshmi & Anandakumar, 
2003; Girija & Dhanavel, 2009; Singh et al., 2013). In mutagenesis experiments, it 
is important to evaluate the mutagenic potency; chlorophyll mutation is one of the 
reliable index to make this assessment. Several workers have reported chlorophyll 
mutations in cowpea (Girija & Dhanavel, 2009; John, 1999; Mohanasundaram 
et al., 2001). Further, mutagenic effectiveness and efficiency play a critical role in 
the success of crop improvement programmes and it is very imperative to assess this 
property of mutagens prior to experimentation. Mutagenic effectiveness and effi-
ciency are two unique properties that determine the success of any mutagen. The 
effectiveness and efficiency of various mutagens were reported to vary to a greater 
extent in pulses such as cowpea (Dhanavel et al., 2008). Girija and Dhanavel (2009) 
treated seeds of Vigna unguiculata with different doses of gamma rays such as 15, 
20, 25, 30 and 35 kR; EMS such as 5, 10, 15, 20 and 25 mM; and combined treat-
ments of gamma rays and EMS such as 15 kR  +  15  mM, 20 kR  +  15  mM, 25 
kR + 15 mM, 30 kR + 15 mM and 35 kR + 15 mM. Mutagenic effectiveness and 
efficiency were estimated on the basis of seedling injury, seed lethality in M1 and 
frequency of chlorophyll and viable mutations in M2 generation. They reported that 
mutagenic effectiveness and efficiency were higher at lower doses of both single 
and combination treatments of mutagens. EMS was found to be more effective and 
efficient compared to gamma rays and combined treatments. Nair et  al. (2014) 
treated Pusa Komal and Arka Garima varieties of Vigna unguiculata with different 
doses of gamma rays such as 100, 200, 300, 400 and 500 Gy and EMS at 0.25%, 
0.30%, 0.35%, 0.40% and 0.45%. Variety Arka Garima showed less sensitivity than 
Pusa Komal. With the increasing doses of mutagens, mutagenic effectiveness and 
efficiency decreased in the two varieties.

Plant breeders are usually interested in agronomic traits that happen to quantitative 
in nature controlled by multiple genes (Kalapchieva & Tomlekova, 2016; Laskar 
et al., 2015; Raina et al., 2021; Wani et al., 2014b). Gaul (1965) emphasized the 
worth of micromutations in plant breeding by reporting that micro mutations occur 
at higher frequency and affect morpho-physiological traits. Since mutagen- induced 
variability for quantitative traits in plants is heritable and the response of the 
selection seems fine, many workers such as Khan and Siddiqui (1992), Wani et al. 
(2011, 2014b), Raina et al. (2016), Javed et al. (2016) and Laskar and Khan (2017) 
have advocated that in quantitatively inherited traits, induced mutations can be 
exploited to create useful variations, where appropriate selection could be employed 
for further improvement. Homozygosity is a prerequisite for the expression of a 
mutated gene because induced mutations occur randomly in the genome and 
inheritance is almost always recessive (Micke, 1999).

The practical value of induced mutagenesis, in creating successful genetic 
variability for several desired traits in plant improvement programmes, has been 
well established and has been demonstrated by many workers in various pulse 
crops (Raina et  al., 2021). In mutation breeding research programmes, 
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quantitative traits are considered as the most important attributes. These traits 
are governed by several genes with additive effects. After the studies of Brock 
(1965, 1967), it became a common practice to exert selection in M2 generation 
onwards and advance only healthy plants from M2 to M3 generation. Selection 
for quantitative traits, is effective in early generation as the combinations of 
favourable alleles may be lost in subsequent generations due to rigorous or even 
no selection for other traits (Raina et al., 2020b). Many researchers have recom-
mended early generation selection for quantitative traits and some of the note-
worthy are Sneep (1977), Micke (1999), and Clement et al. (2015). Kharkwal 
(1983) also hold the same opinion that the efficacy of early generation selection 
for isolating elite for polygenetically inherited traits. The efficiency of early 
generation selection in mutation breeding experiments has been reported in 
many crop species such as cowpea (Bhadru & Navale, 2012; Padi & Ehlers, 
2008; Raina et al., 2022c).

Food insecurity and malnutrition are the most striking global threat, particularly 
in developing countries including India, where the population grows at an alarming 
rate. Thus, plant breeders are aiming to develop high-yielding crop varieties with 
improved mineral density. Since the beginning of agriculture, legumes have been 
part of the human diet. Many grain legume crops are still an irreplaceable source 
of dietary proteins, fibres, vitamins and minerals (Mitchell et  al., 2009; Wang 
et al., 2003a) mostly in the vegetarian diets of Indian people. Cowpeas are the 
highest source of proteins, very palatable, very nutritious and comparatively free 
from metabolites or other toxins (Quass, 1995). Several environmental factors 
such as rainfall, light intensity, length of the day, length of growing season and 
temperature affect the protein content of the cowpea (Oluwatosin, 1997). Cowpeas 
contain a considerable amount of protein and mineral density. Chemical and 
nutritional compositions of cowpea, as well as its cooking properties, vary 
significantly according to environmental and genetic factors (Giami, 2005). 
Adekola and Oluleye (2007) observed that gamma ray-induced cowpea mutants 
possess a higher protein content in comparison to the control. The amino acid 
composition of cowpea protein revealed that similar to most legume proteins, 
cowpea protein is rich in arginine, leucine and lysine but poor in sulphur amino 
acids methionine and cysteine (Bressani, 1985; Farinu & Ingrao, 1991). The rela-
tively high lysine content makes cowpea an excellent improver of the protein 
quality of cereal (Bressani, 1985). Wang et al. (2003b) suggested that the induced 
mutagenesis can be a potent methodology for a balanced increase in mineral ele-
ments in addition to yield and its attributing characters. The impact of mutagens 
on the genetics of trace element availability in the cell has not been extensively 
studied; thus, work on mineral elements like iron (Fe), zinc (Zn) and copper (Cu) 
for their enhancement in pulses needs to be undertaken. The Consultative Group 
on International Agriculture Research Micronutrient Project (CGIARMP) 
reported that combining the high micronutrient trait such as Fe, Zn and Cu con-
tent, with a high yield is possible, unlike the protein content and yield that are 
mostly negatively correlated, through breeding strategies (Gregoria, 2002). It is 
an established fact that the availability of adequate nutrition is essential for the 
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optimum quantitative and qualitative growth of crop and cowpea is not an excep-
tion to that. Mutants with altered seed mineral profiles have been identified in pea 
(Wang et al., 2003b), chickpea (Raina et al., 2017), faba bean (Khursheed et al., 
2018a, b, c) and lentil (Laskar et al., 2019). Even though mutation breeding has 
contributed immensely in the development of thousands of elite mutant varieties. 
However, this breeding strategy has major drawbacks such as it is an extremely 
time-consuming process. This led scientists to adopt  a much  faster and more 
effective breeding strategy, that is molecular breeding.  

5  Molecular Breeding

Plant breeders are interested in pyramiding desirable agronomic traits such as 
maturity time, photoperiod sensitivity, seed quality, insect pests and disease 
resistance into a single cultivar (Timko et  al., 2007a, b; Timko & Singh, 2008). 
Conventional breeding has contributed a lot in improving the agronomy of cowpea. 
Several national and international research programmes implemented conventional 
breeding approaches to develop crops with high yielding potentials and enhanced 
tolerance to biotic and abiotic stresses. Nevertheless, such a process is cumbersome, 
time-consuming and expensive. The limitations of conventional breeding approaches 
necessitated the introduction and implementation of new breeding technologies 
such as DNA marker-based molecular plant breeding (Moose & Mumm, 2008; Xu 
& Crouch, 2008). DNA markers play a pivotal role in the screening of elite geno-
types in less time and a cost-effective way and could accelerate the crop develop-
ment process (Foolad, 2007). In cowpea development of genomic resources began 
almost one decade earlier compared to other crops. Earlier workers emphasized on 
molecular diversity and genetic linkage mapping using different markers such as 
Panella and Gepts (1992), Pasquet (1999, 2000) (allozymes), Fotso et  al. (1994) 
(seed storage proteins), Vaillancourt and Weeden (1992) (chloroplast DNA poly-
morphism), Fatokun et al. (1993) (RFLP), Fatokun et al. (1997), Fang et al. (2007) 
(AFLP), Spencer et al. (2000), Simon et al. (2007) (DNA amplification fingerprint-
ing), Mignouna et al. (1998), Fall et al. (2003), Nkongolo (2003), Ba et al. (2004), 
Diouf and Hilu (2005), Xavier et  al. (2005), Zannou et  al. (2008) (RAPD), 
Ogunkanmi et al. (2008), Uma et al. (2009), Xu et al. (2010) (SSR), Sawadogo et al. 
(2010) (cross-species SSRs from Medicago), Ghalmi et al. (2010) (ISSR), Li et al. 
(2001), He et al. (2003) (STMS) and Huynh et al. (2013) (SNP). Among the DNA 
markers, SNPs have gained popularity due to their abundance in the genomes and 
their amenability for high-throughput detection formats and platforms (Mammadov 
et al., 2012). SNP markers play a vital role in studies of genetic diversities in crops 
such as cowpea (Huynh et al., 2013; Egbadzor et al., 2014a, b). Teyiou et al. (2018) 
used 181 SNP markers for diversity analysis of 50 cowpea lines (collected from the 
University of California Riverside and IITA/Nigeria, Burkina Faso) and succeeded 
in the separation of the core collection of 20 elite lines that could be used in future 
breeding programmes. They also reported a panel of 20 genotypes that showed 
maximum variability of the germplasm.
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5.1  Biotic Stress Resistance

Moreover, SNPs were also employed to screen disease-resistant cowpea genotypes. 
For instance, Muchero et al. (2011) identified strong sources of host resistance to 
Macrophomina phaseolina, a devastating fungal pathogen that causes substantial 
losses in crop productivity. They also mapped putative resistance loci on a cowpea 
genetic map comprising of SNPs and amplified fragment length polymorphisms 
(AFLPs). The cowpea mosaic virus (CPMV) causes a severe production loss in 
many cowpea-producing areas. Bhattarai et  al. (2017) conducted GWAS on 333 
cowpea germplasm accessions, collected from 39 different countries, and identified 
SNPs associated with CPMV resistance. Six SNP markers were found linked with 
CPMV resistance, viz., C35069548_1883, scaffold65342_6794, scaf-
fold66293_6549, scaffold95805_2175, C350 81948_540 and scaffold17319_4417. 
These SNP markers would play a pivotal role in developing CPMV-resistant culti-
vars through MAS. Shi et  al. (2016) used 1031 SNP markers on a panel of 400 
cowpea accessions and reported SNP markers, viz., C35046071_ 1260, scaf-
fold96328_ 3387, C35084634_455 and scaffold96765_4430, were found linked 
with bacterial blight resistance in cowpea. Cowpea aphid incurs a substantial loss in 
cowpea productivity (Nair et al., 2003). Proper strategies are required to mitigate 
the production loss and the best way to do this is the development of pest-resistant 
cultivars. Qin et al. (2017) conducted a genetic diversity analysis for aphid-resistant 
resources on 338 cowpea accessions collected from 40 countries using 1047 SNP 
markers. GWAS revealed SNP markers, viz., Scaffold30061_3363 and 
C35011941_894, were found linked with aphid resistance. In another study, CPA- 
resistant cowpea genotypes were identified in Africa (Hall et al., 2003a, b; Pathak, 
1988) and India (Chari et  al., 1976). Ombakho et  al. (1987) reported two major 
genes, viz., Ac1 and Ac2 for controlling aphid resistance.

5.2  Abiotic Stress Resistance

Increasing salinity causes a substantial loss in cowpea productivity and alleviation 
of negative impacts of salinity stress requires a broad understanding of genetics of 
salt tolerance and susceptibility. Ravelombola et al. (2018) conducted association 
mapping for salt tolerance at germination and seedling stages to identify SNP mark-
ers linked with salt tolerance in cowpea. Ravelombola et al. (2018) analysed the salt 
tolerance index of 271 cowpea genotypes using 1049 SNPs. The study revealed 
significant variation in the salt tolerance index for the germination rate, and SNP 
markers, viz., Scaffold87490_622, Scaffold87490_630 and C35017374_128, were 
found to be linked with salt tolerance at the germination stage and seven SNPs, viz., 
Scaffold93827_270, Scaffold87490_ 633, Scaffold68489_600, Scaffold87490_640, 
Scaffold82042_3387, Scaffold93942_1089 and C35069468_1916, were highly 
linked with salt tolerance at the seedling stage. These SNP markers could be used in 
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future breeding programmes aimed at developing salt-tolerant cowpea cultivars. 
Ashebir et al. (2013) reported genetic variations in 19 cowpea genotypes evaluated 
for salt tolerance at the germination stage. Similarly, Win and Oo (2015) also 
reported genetic variations while assessing 21 cowpea genotypes for salt tolerance 
at the seedling stage.

Another factor that impacts the market value of cowpea is the high-temperature- 
induced browning (Hbs) of seed coats. The brown discoloration reduces the 
consumer acceptance and affects its commercial value. Pottorff et  al. (2014a, b) 
identified three QTL linked with seed browning, viz., Hbs-1, Hbs-2 and Hbs-3. 
These QTLs could facilitate the development of cultivars resistant to heat-induced 
seed browning. In addition larger seed size is also crucial trait for yield with a high 
commercial value in Africa and other cowpea-producing regions (Mishili et  al., 
2009). A substantial studies are required to map the QTLs associated with the larger 
seed size in cowpea. 

5.3  Cowpea Genetic Maps and Trait-Linked Markers

Fatokun et  al. (1993) developed the first cowpea linkage map using a mapping 
population of 58 F2 plants derived from a cross between TVNu 1963 and 
IT84S-2246-4. The map revealed 89 loci comprising 79 RFLP, 5 RAPD and 4 
cDNA markers and 1 simply inherited morphological trait was assigned to 10 
linkage groups spanning 680 cM of the cowpea genome. The second linkage map 
was developed by Menendez et al. (1997) using 94 F8 RILs derived from a cross 
between IT84S-2049 and 524B.  This map revealed 181 loci, comprising 133 
RAPDs, 19 RFLPs and 25 AFLPs. A third genetic map was created using 94 F8 
RILs derived from the cross between IT84S-2246-4 and TVNu 110-3A (Ubi et al., 
2000). This map revealed 80 loci comprising of 77 RAPD and three morphological 
loci were assigned to 12 LGs spanning 669.8 cM of the genome making an average 
distance of 9.9 cM between marker loci. In 2009, the first SNP consensus map was 
developed based on the genotyping of 741 members of six bi-parental RIL 
populations that revealed 928 SNP markers distributed over 11 LGs, covering a total 
genetic distance of 680 cM (Muchero et al., 2009a). Updated versions of cowpea 
consensus maps are accessible via HarvEST:Cowpea (http://harvest.ucr.edu/). 
These maps have been useful to screen QTLs for desirable traits in cowpea such as 
tolerance to flower bud thrips (Omo-Ikerodah et  al., 2008), yellow mosaic virus 
(Gioi et al., 2012), race-specific Striga gesnerioides (Ouédraogo et al., 2001, 2002b; 
Boukar et al., 2004), root-knot nematode (Ouédraogo et al., 2002a; Huynh et al., 
2016), bacterial blight (Agbicodo et al., 2010) and Macrophomina (Muchero et al., 
2010). In addition, QTLs were also identified for agronomic traits such as days to 
flower and maturity; pod length; seeds per pod; leaf length and width and leaf area 
(Ubi et al., 2000); leaf shape (Pottorff et al., 2012a); seed weight (Fatokun et al., 
1992); tolerance to seedling- stage drought (Muchero et  al., 2009b); delayed 
senescence, biomass and grain yield (Muchero et al., 2013); heat-induced browning 
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of seed coats (Pottorff et al., 2014a, b); aphid resistance (Huynh et al., 2015); and 
Fusarium oxysporum f. sp. tracheiphilum (Pottorff et al., 2012b).

The combined efforts of all working for the Tropical Legumes I project, 
Generation Challenge Program team and LGC Genomics resulted in the conversion 
of SNP assays to the KASP system while working on the marker-assisted recurrent 
selection (MARS) and marker-assisted backcrossing (MABC) populations. The 
team mapped 1022 SNPs. With the advancement in molecular marker techniques 
and softwares such as “SNP Selector”, “KBioConverter” and “Backcross Selector” 
(http://breedit.org/), and several improved cowpea consensus genetic maps have 
been developed such as version 4 (Lucas et  al., 2012) and version 6  in 
HarvEST:Cowpea at http://harvest.ucr.edu/. The Breeding Management System 
(BMS) of the Integrated Breeding Platform (IBP) (https://www.integratedbreeding.
net/) working with MARS lines is aiming at developing cowpea lines carrying all 
the desired traits such as grain yield, drought tolerance and Striga and Macrophomina 
resistance. At present, efforts are streamlined to improve the effectiveness of the 
genotyping and the applicability of the genetic map through a “Feed the Future” 
project entitled, “Innovation Lab for Climate Resilient Cowpea”. The project is 
aimed at fingerprinting diverse cowpea accessions using 50,000 SNPs to facilitate 
mapping of trait-linked markers.

5.4  Quality and Nutritional Traits

The genetic upgradation of existing cultivars is important for improving grain 
quantity and quality and tolerance to abiotic and biotic stresses. A minicore (the 
“UCR Minicore”) composed of 368 domesticated cowpeas selected from a larger 
set of ~5000 accessions comprising the UC Riverside collection has been assembled 
(Muñoz-Amatriaín et al., 2021). High-density genotyping of minicore using 51,128 
SNPs led to the identification of six subpopulations, mainly differentiated by culti-
var group and geographic origin. This study also reported the identification of SNPs 
associated with important agronomic traits including flowering time. A cluster of 
four genes (Vigun05g004000, Vigun05g004100, Vigun05g004200 and 
Vigun05g004300) annotated as FLOWERING LOCUS T (FT) are in flowering time 
regions termed as Vu05. Moreover, authors also reported one major QTL associated 
with pod load score, dry pod weight and dry fodder weight. High pod load reflects 
a high number of pods per plant, which is an indication of a low rate of flower abor-
tion. The QTL comprised of genes such as Vigun04g039300, Vigun04g039400, 
Vigun04g039800, Vigun04g039900 Vigun04g039500, Vigun04g039600 and 
Vigun04g039700.

A broad understanding of the genetic basis of cowpea seed size could equip 
breeders in developing varieties with larger seeds. To better understand the 
underlying genetic factors of seed size, Lo et al. (2019) conducted a genome-wide 
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association study (GWAS) and meta-analysis on a panel of 368 cowpea diverse 
accessions from 51 countries and identified 17 loci linked with seed weight, length, 
width and density using 51,128 SNPs. By integrating synteny-based analysis with 
common bean, six candidate genes were associated with seed weight, viz., 
Vigun05g036000, Vigun05g039600, Vigun05g204200, Vigun08g217000, 
Vigun11g187000 and Vigun11g191300. Vigun05g036000 encodes seed size (Cheng 
et al., 1996; Jin et al., 2009; Weber et al., 1996), while Vigun05g039600 encodes a 
phosphate transporter PHO1 (a positive regulator of seed development) (Zhou et al., 
2009). Vigun05g204200 encodes the polycomb group protein FERTILIZATION-
INDEPENDENT ENDOSPERM (FIE) that is associated with endosperm develop-
ment and regulates seed size (Folsom et al., 2014; Ohad et al., 1996). Vigun08g217000 
encodes a histidine kinase 2 associated with increased organ size (Lonardi et al., 
2019). Using GWAS, QTLs associated with root architecture (Burridge et al., 2017), 
pod length (Xu et al., 2017) and black seed coat colour (Herniter et al., 2018) have 
also been reported in cowpea. Egbadzor et al. (2013) evaluated 78 cowpea acces-
sions and reported 18 SNP makers linked with seed size in cowpea.

In the improvement programmes, cowpea growth habit is an important trait with 
a wide variation such as erect, semi-prostrate and prostrate types. Therefore, under-
standing the genetics of plant growth habit in cowpea is gaining importance and 
helping breeders in developing suitable cowpea cultivars with desirable growth hab-
its. Ravelombola et al. (2017) used 1031 SNPs for performing an association map-
ping study for plant habit in 487 cowpea genotypes. The study revealed ten SNP 
markers associated with growth habit, viz., C35060651_729, C35061339_799, 
C35062457_1855, C35072764_1384, C35080248_2355, Scaffold2771_4351, 
Scaffold29522_3213, Scaffold35913_2678, Scaffold53560_188 and 
Scaffold58098_4297. These makers could be employed for increasing marker- 
assisted selection (MAS) aimed at developing cowpea cultivars with a desired 
growth habit.

6  Conclusion

Different conventional and modern breeding approaches have contributed to the 
development of desired cowpea genotypes. However, conventional breeding 
approaches are laborious and cost-ineffective and could not meet the needs of the 
present era. On the other hand, modern breeding approaches are quick and cost-
effective and are preferred in developing varieties that harbour a desired trait. 
However, further improvement in modern breeding approaches is required to over-
come the drawbacks.
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Germplasm Diversity and Breeding 
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Abstract In Asia, the mungbean [Vigna radiata (L.) R. Wilczek var. radiata] has 
been known to be an excellent source of nutritious food and income for the people. 
Mungbean growth in other locations, including Africa proper and South America, 
has been aided by the development of short-duration variants. Mungbean cultivation 
and production are limited by both biotic and abiotic causes. The main insect pests 
include aphids, bruchids, Helicoverpa, leafhopper, mirid, pod borers, stem fly, 
thrips, and whitefly. Halo blight, anthracnose, tan spot, yellow mosaic, and powdery 
mildew bacterial leaf spot and tan spot are the most common mungbean diseases. 
Drought, waterlogging, salt, and heat stress are among abiotic factors that impact 
mungbean productivity. Mungbean improvement through breeding techniques has 
indeed been crucial in generating resistant varieties against biotic and abiotic stress-
ors. There are still numerous challenges to overcome, including the detection of 
consistent and reliable sources of resistance for specific features and qualities 
imparted by several genes. Understanding interactions of plants with the insect, 
pathogen, environment, and the essential factors conferring resistance to biotic and 
abiotic stressors might be greatly aided by the recent advancements in genetic 
improvement technologies. In this chapter, the present biotic and abiotic restrictions 
in cultivation and production of mungbean, as well as barriers to its genetic modifi-
cation, and potential breeding approaches are examined.
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1  Introduction

1.1  Taxonomic Classification and Geographic Distribution

Mungbean, commonly called green gram or simply gram, is a dicotyledonous 
angiosperm belonging to the family Fabaceae. The cultivated mungbean was given 
the name Phaseolus radiatus L. by Carl Linnaeus (1753), and the wild mungbean 
was given the name Phaseolus sublobatus Roxb. by William Roxburgh (1832). 
Hara (1955) accepted the name for domesticated mungbean, but he called P. radia-
tus var. setulosus (Dalz.) Hara comb. nov. as a new combination to taxonomic biol-
ogy aimed at the wild mungbean variety, keeping P. sublobatus Roxb. nom. nud. as 
synonym for the same in his publication. Ohwi and Ohashi (1969) designated Vigna 
radiata (L.) Wilczek var. setulosa (Dalz.) Ohwi et Ohashi comb. nov. by citing 
P. sublobatus in Roxburgh (1832) and P. setulosus Roxb. as its synonyms. Later, in 
1970, Verdcourt described V. radiata (L.) Wilczek var. sublobata (Roxb.) Verdc. 
comb. & stat. nov. as a new combination with a new taxonomic rank based on 
P. sublobatus Roxb. This naming of Verdcourt was accepted by Takahashi et  al. 
(2018). However, most taxonomists have recently had difficulties separating wild 
mungbean from V. grandiflora and/or V. trinervia, which Bairiganjan et al. (1985) 
considered being separate species. Therefore, Takahashi et  al. (2018) in their 
description considered it appropriate to distinguish domesticated and wild mung-
bean as varieties. Because of these factors, V. radiata (L.) Wilczek var. radiata and 
V. radiata (L.) Wilczek var. sublobata (Roxb.) Verdc are the accepted nomenclature 
for domesticated and wild mungbean, respectively.

Mungbean is considered to have first evolved in India and has been developed 
from the variety sublobata, which grows wild in India and Burma (Purseglove, 
1977). Afterwards, it is thought to have spread to various regions across Asia, 
Africa, the West Indies, and the USA. Mungbean is a type of low-altitude, short-
term grain legume that typically thrives as a dryland crop at around 2000 meters 
above sea level (Akpapunam, 1996). Mungbean is cultivated across the globe, span-
ning over 7 million hectares, with a primary focus on Asia, though it’s also grown 
in other regions (Nair et al. 2019).  Its popularity stems from its ability to withstand 
drought conditions, its minimal prerequisites, and its fast-growing cycle. As a result, 
mungbean is widely cultivated across many Asian countries, as well as in dry parts 
of southern Europe and warmer regions of Canada and the United States (Hou 
et al., 2019).

1.2  History, Origin, and Domestication

Archaeological evidence and domesticated mungbean diversity data are suggestive 
of the fact that the domestication of mungbean has started in its origin in India, 
approximately 3500 years ago (Fuller & Harvey, 2006). Crop domestication and 
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improvement, according to Dempewolf et al. (2017), is a process of multiple rounds 
of selection that leads to the separation of genetic diversity important to agriculture 
from progenitor wild species. During the early stages of domestication, the cultiva-
tion practice of mungbean migrated from its origin to other regions of Asia and 
gradually to the countries of African continent. The mungbean we cultivate today is 
the result of multiple rounds of domestication and have undergone many selections. 
The wild relative of the cultivated mungbean, i.e., V. radiata var. sublobata, is con-
sidered the putative progenitor. This putative progenitor is native to northern and 
eastern Australia’s subtropical and tropical areas (Lawn & Cottrell, 1988). This 
weedy plant can be found in the wild. Luckily, the wild relatives of a domesticated 
plant are a source of beneficial genes, which is of no difference in the case of mung-
bean also. These useful genes get lost from the domesticated cultivars due to selec-
tion pressure and the domestication bottleneck effect. In recent decades, significant 
advancements have been achieved in integrating characteristics from wild plants 
into cultivated crops, primarily aimed at addressing biotic stress factors. Plant 
breeders have been successful in making use of the useful genes present in the wild 
relatives of domesticated mungbean in the breeding programs. The mungbean cul-
tivar TC1966, for example, is entirely immune to two bruchid beetle species, 
Callosobruchus chinensis (adzuki bean weevil) and Callosobruchus maculatus 
(cowpea weevil), that otherwise prove to be detrimental to the mungbean in stores 
(Somta et al., 2007; Talekar, 1988). Plant breeders have taken advantage of this for 
developing mungbean varieties resistant towards bruchid (Tomooka et al., 1992). 
Apart from just breeding success, genetic linkage map construction using wild and 
domesticated mungbean accessions have provided valuable information regarding 
commercially important traits (Lambrides et al., 2000). So, one cannot deny the fact 
that the germplasm of the wild relatives of domesticated mungbean will be needed 
in the future to improve productivity.

1.3  Cytogenetics

Mungbean is a diploid plant with 2n = 22 somatic chromosomes. Bhatnagar (1974) 
devised the karyotype formula for mungbean as “4Lsm + 4 Msm + 3Mm” “[L = 
long (2.7–3.5 μm), M = medium (1.9–2.6 μm, sm = sub median centromere and m 
= median centromere)].”

1.4  Nutritional Values and Importance

Many health organizations have suggested increasing plant-based food intake to 
enhance chronic disease prevention and general human health, leading to the inclu-
sion of a range of plant-based foods in healthcare programs. Among such crops 
exhibiting tremendous health benefits is the mungbean. Studies of the biochemical 
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Fig. 1 Amino acid compositions of mungbean seed protein isolates

composition of mungbean have shown that it is a plentiful source of protein, dietary 
fiber, vitamins, and various other nutrients. Due to its high nutrient-rich seeds, 
mungbean has been cultivated as an important food and feed crop for humans and 
animals for centuries. Compared to soy and kidney beans, mungbean seeds have a 
significantly higher protein content ranging from 20.97% to 31.32%, which is 
approximately twice as much as that found in maize, a cereal seed (Anwar et al., 
2007). The proteins and peptides of mungbean have been shown to have antibacte-
rial and angiotensin-converting enzyme (ACE)-inhibiting properties (Tang et  al., 
2014). According to FAO/WHO, mungbean is a decent protein and amino acid 
source except for sulfur-containing amino acids, methionine, and cysteine. But with 
the help of genetic engineering techniques, 8S globulin was being inserted with 
methionine and cysteine sequences (Yi-Shen et al., 2018). Proximate compositions 
of amino acids in mungbean protein isolates are given in Fig. 1. Total amino acid 
content of mungbean is 800.2 mg/g, where the total essential amino acids share is 
348.2 mg/g, the total aromatic amino acid is 96.7 mg/g, and the total sulfur amino 
acids is 13 mg/g (Kudre et al., 2013). Apart from its nutritional value, mungbean 
improves the yield of other crops by minimizing the need for synthetic nitrogen 
fertilizers in the soil (Fernandez et al., 1988).

1.5  Adaptation and Cultivation

Mungbean is an excellent food legume crop widely grown in South, East, and 
Southeast Asia, accounting for 90% of global output. Mungbean is a drought- 
tolerant, low-input crop that can offer both green manure and animal feed, making 
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it a popular choice among smallholder farmers. Mungbean thrives in a variety of 
agroclimatic environments. According to the World Vegetable Center, a warmer and 
humid climate with temperatures ranging from 250 °C to 350 °C and 400–550 mm 
of rainfall evenly dispersed throughout a growth period of 60 to 90 days is ideal for 
production. Mungbean exhibits drought tolerance to a reasonable extent but it is 
susceptible to waterlogging or overwater stress (Mehandi et al., 2019). Mungbean 
has the ability to be grown in different soil types, but it thrives the most in well-
drained loamy to sandy loam soils. To ensure effective atmospheric nitrogen fixa-
tion by the bacteria living in the root nodules during the growing stage, proper 
drainage and adequate aeration in the field are necessary. Soil is readied for sowing 
by preparing ridges and furrows in the field. Pretreatment of the soil with well- 
decomposed farmyard manure enhances the quality of the soil. NPK fertilizers are 
applied as per soil nutrient status. Moreover, the application of the biofungicide 
Trichoderma viride along with farmyard manure before sowing can protect the 
mungbean plants from several fungal pathogens. Seeds can be pretreated with anti-
fungal captan, thiram, and symbiotic diazotroph Rhizobium. Weed removal during 
the growing period is necessary for better grain yield. Mungbean cultivation needs 
attention for a wide range of diseases and pests such as seed and seedling rot, yellow 
mosaic, Cercospora leaf spot, powdery mildew, tobacco caterpillar, whitefly, bean 
pod borer, thrips, cowpea aphid, etc. When the pods are ripe and dried but not yet 
breaking, they are harvested using both manual and mechanized techniques.

2  Production Statistics

Mungbean is considerably an underused legume that is not individually classified 
by the Food and Agriculture Organization’s (FAO) statistics database but is known 
as a “future smart food” for Asia (FAO, 2018). Mungbean is often used to make 
bean sprouts, translucent noodles, and mungbean paste in Eastern and Southeastern 
Asia, whereas in Eastern Africa, it is most typically served as a bean stew (Nair & 
Schreinemachers, 2020). Because there are no commercial hybrids and farmers can 
easily preserve their own seed, the private seed market is uninterested in the crop. 
As a result, the public sector is heavily involved in variety creation and scaling. The 
Asian mungbean research nations cultivated mungbean on around 10 lakh hectares, 
yielding roughly 0.77 megaton of dry grain, or around 16% of world mungbean 
production (Nair & Schreinemachers, 2020). Myanmar, India, Bangladesh, and 
Pakistan (Schreinemachers et al., 2019), which account for 66% of the world out-
put, were the subjects of a previous research. According to secondary statistics, 
mungbean cultivation in Southeast Asia decreased by 100,000 hectares (18%) 
between 2008 and 2017. The majority of this drop was due to Indonesia, whose 
mungbean acreage declined by nearly 25% (Agriculture Mo, 2018). One possible 
cause is that mungbean yields are lower than those of other crops. In East Africa, on 
the other hand, the area under mungbean appears to be expanding, despite the fact 
that the available statistics indicate a large year-to-year variance. In Asia, the typical 
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mungbean farmer planted 0.5–1.0 ha, with Thailand (6.2 ha/farmer) having a greater 
average area and Vietnam (0.2 ha/farmer) having a smaller average area. The aver-
age area per producer in East Africa is 0.4–1.4 hectares.

Although mungbean has a yield potential of 2.5-3.0 t/ha, its actual average yield 
is significantly lower at 0.5 t/ha. This low production is attributed to various factors, 
including abiotic and biotic stresses, inadequate crop management techniques, and 
the absence of high-quality seeds of superior varieties (Chauhan et al., 2010; Pratap 
et al., 2019). Some of the most significant biotic factors affecting mungbean pro-
duction include yellow mosaic, anthracnose, powdery mildew, Cercospora leaf spot 
(CLS), dry root rot, halo blight, and tan spot, as well as insect pests such as bru-
chids, whitefly, thrips, aphids, and pod borers (War et al., 2017; Pandey et al., 2018). 
Drought, waterlogging, heat, and salinity stress are all abiotic factors that impact 
mungbean productivity (HanumanthaRao et al., 2016). Owing to breeding attempts 
that were confined to only a handful of inbred lines, genetic diversity in cultivated 
mungbeans is limited, necessitating the broadening of the genetic basis of mung-
beans under cultivations. Mungbean has been expanded to multiple intercropping 
systems with rice, wheat, and maize for production worldwide, including South 
America and Sub-Saharan Africa, thanks to the development of short-duration vari-
ants (Moghadam et al., 2011). To improve crop yield and stabilize agricultural out-
put, it is important to develop varieties that can withstand both biotic and abiotic 
stress factors. Identifying the sources of tolerance traits displayed at the relevant 
growth stages requires crucial breeding information on stressors affecting mung-
bean, as well as the influence of environmental pressures on plant growth. The 
genetic foundation of symbioses with pests, pathogens, and the environment may be 
analyzed using advanced breeding approaches to build efficient crop improvement 
techniques.

3  Biotic and Abiotic Stress

In South Asia, Southeast Asia, and Sub-Saharan Africa, viral, bacterial, and fungal 
infections are economically significant (Mbeyagala et  al., 2017; Pandey et  al., 
2018). Mungbean yellow mosaic disease (MYMD) is a serious viral mungbean dis-
ease (Noble et  al., 2019). The whitefly Bemisia tabaci (Gennadius) (Hemiptera: 
Aleyrodidae) transmits numerous begomoviruses that cause MYMD (Nair et  al., 
2017). MYMD-related economic losses in India amount to an 85% drop in yield 
(Karthikeyan et al., 2014). In India and Pakistan, dry root rot caused output losses 
of 10–44% in mungbean production (Bashir & Malik, 1988). According to Singh 
et al., (2013), crop losses ranging from 33% to 44% were attributed to Rhizoctonia 
root rot in India. Additionally, Shukla et al., (2014) reported that anthracnose caused 
crop losses ranging from 30% to 70%. CLS caused 97% of yield losses in Pakistan 
and other Indian states (Bhat et al., 2014), whereas powdery mildew caused 40% of 
yield losses (Khajudparn et al., 2007). Fusarium wilt caused 20% production loss 
(Anderson, 1985), while Alternaria leaf spot caused 10% yield loss among minor 
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fungal infections (Maheshwari & Krishna, 2013). Between 2009 and 2014, a survey 
of mungbean farms across China found average output decreases of 30–50% caused 
by halo blight-led cropping disaster (Sun et al., 2017). Halo blight is a newly identi-
fied disease in China (Sun et al., 2017) and Australia (Noble et al., 2019). Pandey 
et al. (2018) investigated the influence of cultural practices on mungbean infections 
and assessed the efficacy of bactericides, fungicides, bio-fungicides, and botanicals 
for seed treatment and foliar spray. The most efficient and long-lasting technique for 
integrated disease control is to deploy genetically resistant cultivars.

Insect pests attack mungbean throughout the agricultural cycle, from seeding to 
storage, wreaking havoc on output. Some insect pests cause direct harm to crops, 
while others serve as disease carriers. Mungbean is susceptible to several pests, with 
the stem fly (bean fly), Ophiomyia phaseoli, being one of the most severe. 
Additionally, Melanagromyza sojae and Ophiomyia centrosematis are two other 
stem fly species that can attack mungbean crops (Talekar, 1990). The stem fly infests 
the crop within a week of germination, and under epidemic conditions, it can lead 
to complete crop loss (Chiang & Talekar, 1980). Another widespread mungbean 
pest is B. tabaci, which feeds on the plant’s phloem sap, excreting honeydew or 
indirectly spreading MYMD, which causes black sooty mould on the plant. In addi-
tion to pests, abiotic stressors pose a significant threat to mungbean crops’ growth 
and yield, resulting in significant agricultural losses worldwide (Ye et al., 2017). 
Crop production reduction owing to environmental variables has progressively 
grown throughout the decades (Boyer et al., 2013). Crops develop by using resources 
from their surrounding environment (light, water, carbon, and mineral nutrients). 
The growth and development of crops are influenced by both the microenvironment 
and the management practices used in cultivation. Due to climate change, the inter-
actions between plants and their environment are becoming increasingly complex 
(Goyary, 2009). To understand how these factors impact crop growth and develop-
ment, researchers use eco-physiological features and comprehensive phenotyping-
based insights into crop physiology and external signals (Biswas et al., 2018). This 
information can help predict harvests and develop measures to control growth. 
When plants experience abiotic stress, such as changes in temperature or water 
availability, they often undergo molecular, biochemical, physiological, and morpho-
logical changes that affect their productivity (Ahmad & Prasad, 2012). Some crop 
production models predict a decrease in key agricultural crop yields due to changing 
climatic conditions, which can create unfavorable conditions for crop development 
due to abiotic factors (Rosenzweig et al., 2014). Such attempts in mungbean are 
uncommon and need extra care. Environmental pressures constitute a threat to 
global agriculture in the contemporary period and provide production consistency 
across geographies and crop seasons. New methods are being developed to better 
understand probable stress tolerance processes and to identify stress tolerance char-
acteristics in order to promote sustainable agriculture (Fiorani & Schurr, 2013). The 
activation of several stress-regulated genes is required for basic tolerance mecha-
nisms to be put into action, as they work together through coordinated cellular and 
molecular responses (Latif et al., 2016). Many factors that contribute to stress toler-
ance are neglected when breeding lines are phenotyped for plainly apparent 
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qualities such as growth and yield components. This might be owing to the ease 
with which these features can be measured precisely and quickly. As a result, mod-
ern plant phenotyping platforms include picture capture and automation in contem-
porary phenotyping technologies. These latest initiatives are projected to improve 
efforts to transform the fundamental physiology of agricultural plants for outputs 
with real-world standards to help breeding programs in severe settings (such as 
salinity, soil moisture, high temperatures, and so on).

4  Breeding Strategies and Constraints

It is crucial to identify sources of resistance for introducing resistance into cultivars 
through breeding. The primary gene pool is the initial choice for resistance sources, 
while the secondary and tertiary gene pools offer additional options for incorporat-
ing variation into the crop. To effectively breed for fungal stressors, easily accessi-
ble resistant germplasm and markers linked to QTL regions or critical genes are 
necessary for marker-assisted selection (MAS). In mungbean, molecular markers 
for Cercospora leaf spot and powdery mildew have been identified for use in breed-
ing efforts. Both qualitative and quantitative inheritance routes have been observed 
for powdery mildew resistance (Kasettranan et al., 2009). Seeds can carry bacterial 
diseases that are capable of surviving in agricultural waste. Integrated disease man-
agement often involves varietal resistance, which has been recognized as a crucial 
element (Noble et al., 2019). However, little attention has been paid to the screening 
of mungbean genotypes for bacterial infections or the detection of genetic markers 
linked to bacterial illnesses. Identifying genetic markers/QTLs associated with 
resistance to bacterial leaf spot, halo blight, and tan spot in mungbean can accelerate 
the development of resistant commercial cultivars. Genome-wide association analy-
sis of large and diverse mungbean mapping populations representative of global 
germplasm can be used to identify these markers (Noble et al., 2019). Additionally, 
the effectiveness of breeding programs that confer MYMD resistance has been 
improved by investigating genotypic diversity, identifying linked markers for the R 
gene, and constructing QTL maps using molecular markers (Sudha et al., 2013).

A marker related to resistance against yellow mosaic virus in mungbean, called 
“VMYR1,” was identified by Basak et al. (2004). Linked marker-assisted genotyp-
ing can be used by plant breeders to perform repeat genotyping when disease inci-
dence is absent during the growing season, as phenotyping for begomoviruses is 
challenging and requires significant labor. Interspecific sources have also been dis-
covered as new MYMD resistance donors (Nair et al., 2017). Although various 
screening technologies have been developed, screening plants for insect resistance 
remains a particularly challenging task. This is due to the non-uniform insect infec-
tion patterns observed across seasons and locations for certain key pests, which also 
face difficulties in rearing and reproducing on feedstuffs. To achieve success in 
insect resistance breeding, it is essential to comprehend the nature of the pest, the 
infestation stage, and the bio-molecular aspects of the plant-insect relationship. It is 
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crucial to have the ideal population of insect pests at their most susceptible stage of 
the crop. This enables the identification of resistant genotypes against insects and 
prevents or eradicates escapes through uniform infestation during relevant phases of 
plant growth (Maxwell & Jennings, 1980). One of the most important strategies in 
insect resistance breeding involves identifying resistance coding genes from wild/
cultivated species and transferring them into improved lines through recombination, 
hybridization, and selection. Conventional plant breeding, despite its limitations, 
has resulted in significant progress in mungbean output as well as disease and insect 
resistance (Fernandez & Shanmugasundaram, 1988). Physical and chemical muta-
gens have been utilized to develop insect and disease-resistant mungbean cultivars, 
as well as other desirable characteristics (Watanasit et al., 2001). Details of 39 
mungbean varieties improved through induced mutagenesis are recorded in Table 1. 
One of the conditions for crop improvement is genetic heterogeneity (Laskar & 
Khan, 2017). There is a limited ability to select improved genotypes in mungbean 
due to insufficient diversity. To rapidly increase genetic diversity, induced mutagen-
esis has proven to be the most effective technique and has been utilized in several 
crops such as cowpea (Raina et al., 2018a, 2020a, 2022a, b; Rasik et al., 2022), 

(continued)

Table 1 Details of mutant cultivars of mungbean released

Variety 
name Country

Registration 
year

Mutagen 
type

Mutant development 
type

Characters 
improved

AEM-96 Pakistan 1998 Physical Direct use of an 
induced mutant
CV.6601 with 200 Gy

1246–1298 kg/ha 
grain yield, short 
stature combined 
with short duration 
and synchrony in 
maturity

Binamoog-1 Bangladesh 1992 – – Resistance to 
powdery mildew 
and suitable for 
rice fallows

Binamoog-2 Bangladesh 1994 Physical Crossing with one 
mutant
Mutant 
MB-55(4) × D-2773

Larger seed size, 
early and 
synchronous 
maturity 
(7–10 days 
earlier), high yield 
(16%), tolerant to 
leaf MYMV and 
Cercospora leaf 
spot

Binamoog-3 Bangladesh 1997 Physical Mutagenic treatment 
of breeding material 
(F1, F2, seeds, etc.)
(mutant 
MB55-4 × AURDC 
line V1560D) with 
200 Gy

Seed yield, 
synchronous pod 
maturity, tolerant 
to yellow mosaic 
virus and 
Cercospora leaf 
spot
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Table 1 (continued)

Variety 
name Country

Registration 
year

Mutagen 
type

Mutant development 
type

Characters 
improved

Binamoog-4 Bangladesh 1997 Physical Mutagenic treatment 
of breeding material 
(F1, F2, seeds, etc.)
(mutant 
MB55-4 × AURDC 
line V1560D) with 
200 Gy

Seed yield, 
synchronous pod 
maturity, early 
maturing, dwarf 
plant type, tolerant 
to yellow mosaic 
virus and 
Cercospora leaf 
spot

Binamoog-5 Bangladesh 1998 Physical Mutagenic treatment 
of breeding material 
(F1, F2, seeds, etc.)
(mutant 
MB55-4 × AURDC 
line V1560D) with 
200 Gy

Higher seed yield, 
synchronize pod 
maturity, tolerance 
to leaf MYMV 
and Cercospora 
leaf spot

Binamoog-6 Bangladesh 2005 Physical Direct use of an 
induced mutant
VC-6173-10 with 
400 Gy

Purple hypocotyl 
and stem, high 
number of pods 
and clusters, 
resistance to 
diseases

Binamoog-7 Bangladesh 2005 Chemical Direct use of an 
induced mutant
Binamoog-2 with 
0.75% EMS

Increased pod, 
reduced seed size, 
increased seed, 
tolerant to MYMV 
and Cercospora 
leaf spot

Binamoog-8 Bangladesh 2010 Physical Direct use of an 
induced mutant
MB-149 with 400 Gy

Medium plant 
height (35–
40 cm), early 
maturing 
(64–67 days), 
deep green leaf 
color, shiny green 
seed coat color, 
22–23% protein 
content, average 
seed yield of 1.80 
tons ha−1, and 
tolerant to MYMV

(continued)
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Table 1 (continued)

Variety 
name Country

Registration 
year

Mutagen 
type

Mutant development 
type

Characters 
improved

Binamoog-9 Bangladesh 2017 Physical Direct use of an 
induced mutant
BARI Mung-6 with 
400 Gy

The distinct 
features of the 
selected mutant 
MBM-07 
(Binamoog-8) are 
medium plant 
height (35–
40 cm), early 
maturing 
(64–67 days), 
deep green leaf 
color, shiny green 
seed coat color, 
22–23% protein 
content, average 
seed yield of 
1.74 t/ha and 
potential 1.95 t/ha, 
and tolerant to 
MYMV

BM 4 India 1992 Chemical Direct use of an 
induced mutant
T-44 with 0.15% EMS

Resistant to 
Macrophomina 
blight and tolerant 
to MYMV

Camar Indonesia 1991 Physical Direct use of an 
induced mutant
Manyar with 100 Gy

Resistance to 
Cercospora leaf 
spot, resistance to 
Uromyces sp., 
medium resistance 
to scrab diseases, 
high yield, and 
tolerance to 
salinity and acid 
soil

Chai Nat 72 Thailand 1999 Physical Direct use of an 
induced mutant
Kamphangsaen 2 with 
600Gy

High yield, larger 
grain size, and 
resistance to 
fungal diseases

Chai Nut 
84-1

Thailand 2012 Physical Direct use of an 
induced mutant
Chai Nut 36 with 
500Gy

High yield and 
starch, large seeds

Co 4 India 1982 Physical Direct use of an 
induced mutant
Co 1 with 200Gy

High yield, early 
maturity and 
resistance to 
drought

(continued)
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Table 1 (continued)

Variety 
name Country

Registration 
year

Mutagen 
type

Mutant development 
type

Characters 
improved

Dhauli 
(TT9E)

India 1979 – Crossing with one 
mutant
T-51 × local type

High yield, early 
maturity with 
tolerance or 
resistance to 
MYMV

LGG 450 India 1993 Physical Direct use of an 
induced mutant
Pant Mung-2 with 40 
kR gamma rays

High yield, early 
maturity with 
tolerance or 
resistance to 
MYMV

LGG-407 India 1993 Physical Direct use of an 
induced mutant
Pant Mung-2 with 40 
kR gamma rays

High yield, early 
maturity with 
tolerance or 
resistance to 
MYMV

ML 26-10-3 India 1983 Physical Direct use of an 
induced mutant
ML-26 with gamma 
rays

Resistance to 
MYMV and high 
yield

MUM-2 India 1992 Chemical Direct use of an 
induced mutant
K-851 with 0.2% EMS

High yield and 
resistance to 
diseases

NIAB 
Mung 
121-25

Pakistan 1985 Physical Direct use of an 
induced mutant
RC 71-27 with 200 Gy

Early maturity 
(60–65 days), 
determinate type, 
high yield (44%), 
recommended as 
spring and 
summer crop

NIAB 
Mung 13-1

Pakistan 1986 Physical Direct use of an 
induced mutant
6601 with 100 Gy

Early maturity, 
shortness, more 
pods, harvest 
index (28%), 
TGW (40.5 g), 
and higher yield 
(44%)

NIAB 
Mung 19-19

Pakistan 1985 Physical Direct use of an 
induced mutant
Pak 22 with 400 Gy

Early maturity 
(60–65 days), 
determinate type, 
high yield (35%), 
recommended as 
spring and 
summer crop, high 
tolerance to 
mungbean yellow 
mosaic virus

(continued)
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Table 1 (continued)

Variety 
name Country

Registration 
year

Mutagen 
type

Mutant development 
type

Characters 
improved

NIAB 
MUNG 
2006

Pakistan 2006 – Crossing with one 
mutant variety
NIAB Mung 
92 × VC-1560D

Yellow mosaic 
virus resistance, 
resistance to 
powdery mildew, 
Rhizoctonia 
root-rot disease 
resistance, early 
maturity, and large 
seeds

NIAB 
Mung 20-21

Pakistan 1986 Physical Direct use of an 
induced mutant
Pak 22 with 400 Gy

Early maturity, 
shortness, harvest 
index (31%), high 
yield (65%), 
tolerance to 
yellow mosaic 
virus, resistance to 
Cercospora leaf 
spot, suitable as 
catch crop

NIAB 
Mung 51

Pakistan 1990 Physical Mutagenic treatment 
of breeding material 
(F1, F2, seeds, etc.)
(6601x1973A) with 
100 Gy

Early and 
synchronous 
maturity, 
non-shattering 
pods, profuse 
hairiness, tolerant 
to MYMV and 
CLS diseases, 
larger seed size, 
higher yield 
potential, crop 
vegetation: 
Summer (66 days) 
and spring 
(67 days)

NIAB 
Mung 54

Pakistan 1990 Physical Mutagenic treatment 
of breeding material 
(F1, F2, seeds, etc.)
(6601x1973A) with 
100 Gy

Early and 
synchronous 
maturity, 
non-shattering 
pods, tolerant to 
MYMV and CLS 
diseases, larger 
seed size, higher 
yield potential, 
crop vegetation: 
summer (71 days) 
and spring 
(73 days)

(continued)
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Table 1 (continued)

Variety 
name Country

Registration 
year

Mutagen 
type

Mutant development 
type

Characters 
improved

NIAB 
Mung 92

Pakistan 1992 – Crossing with one 
mutant
NIAB Mung 36 × VC 
2768B

Resistance to 
MYMV, early 
maturity, 
resistance to grain 
shattering, and 
large seed size

NIAB 
Mung 98

Pakistan 1998 Physical Crossing with one 
mutant
NIAB Mung 
20–21 × VC 1482E

Resistance to 
diseases (yellow 
mosaic virus and 
Cercospora leaf 
spot), high yield, 
and medium seed 
size

NIAB 
Mung-28

Pakistan 1983 Physical Direct use of an 
induced mutant
Pak 17 with 200 Gy

Early and uniform 
maturity and high 
yield

Pant 
Moong 2

India 1982 Physical Direct use of an 
induced mutant
ML-26 with 100 Gy

Resistance to 
MYMV, more 
pods, and high 
yield

TAP-7 India 1983 Physical Direct use of an 
induced mutant
S-8 with 30 kR gamma 
rays

Early maturity 
(5–7 days), 
resistance to 
mildew and leaf 
spot, higher yield 
(23%)

TARM-1 India 1997 Physical Direct use of an 
induced mutant
RUM 5 with 30 kR 
gamma rays

High yield, 
resistance to 
powdery mildew 
disease, and 
medium maturity

TARM-18 India 1996 Physical Crossing with one 
mutant
TARM-2 × PDM-54

High yield and 
resistance to 
powdery mildew 
disease

TARM-2 India 1994 Physical Direct use of an 
induced mutant
RUM 5 with 30 kR 
gamma rays

High yield, 
medium–late 
maturity, and 
resistance to 
powdery mildew 
disease

TJM-3 India 2007 Physical Crossing with one 
mutant
TARM-1 × Kopargaon

Early maturity, 
large seeds, and 
resistance to 
powdery mildew, 
Rhizoctonia 
root-rot disease

(continued)
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Variety 
name Country

Registration 
year

Mutagen 
type

Mutant development 
type

Characters 
improved

TM 2000-2 India 2010 Physical Crossing with one 
mutant
TARM-1 × JL-781

Higher seed yield 
and synchronous 
pod maturity, 
tolerance to leaf 
MYMV and 
Cercospora leaf 
spot

TM-96-2 India 2007 Physical Crossing with one 
mutant
TARM-2 × Kopargaon

Resistance to 
powdery mildew 
and Corynespora 
leaf spot

TMB-37 India 2005 Physical Crossing with one 
mutant
TARM-2 × Kopargaon

High yield, early 
maturity with 
tolerance or 
resistance to 
MYMV

Source: The Joint FAO/IAEA Mutant Variety Database (https://mvd.iaea.org)

Table 1 (continued)

lentil (Laskar et al., 2018a, b, 2019; Wani et al., 2021), faba bean (Khursheed et al., 
2015, 2016, 2018a, b, c, 2019), fenugreek (Hasan et al., 2018), mungbean (Wani 
et al., 2017), urdbean (Goyal et al., 2019a, b, 2020a, b, 2021a, b), chickpea (Laskar 
et al., 2015; Raina et al., 2017, 2019), black cumin (Tantray et al., 2017; Amin et al., 
2020), and finger millet (Sellapillaibanumathi et al., 2022). Because natural muta-
tions occur sporadically, artificial mutations are generated, and genetic gain is best 
achieved by using mutagens (Raina & Khan, 2020; Raina et al., 2016, 2018b, 2020b, 
2021, 2022c). Auti (2012) stressed that mutation breeding or induced mutation has 
a lot of promise for improving mungbean. Traditional breeding methods for produc-
ing pest-resistant cultivars include pure line, mass, and recurrent selection (Burton 
& Widstorm, 2001). Insect resistance and enhanced agronomic features are being 
developed in mungbean using techniques such as pedigree, backcross, and bulk 
selection breeding.

Sehgal et al. (2018) reported on various successful projects related to mungbean, 
aimed at screening and developing cultivars that are resistant to high temperature, 
salt, waterlogging, and water stress. These projects considered the physiological, 
biochemical, and molecular aspects of the crop. To facilitate future crop develop-
ment with specific traits, a panel of donor resources would consist of breeding lines 
that have been identified and chosen for the aforementioned circumstances. By 
selecting a few genotypes that are well-suited to the region in the initial stages of 
mungbean breeding, certain genotypes were identified as being particularly resis-
tant to biotic stresses and high yield. Indirect selection was made for yield, plant 
type, and adaptation-related features, though no direct selection was done for abi-
otic stress tolerance. The selection of improved cultivars with increased resilience to 
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drought has been proven successful. Fernandez and Kuo (1993) used a stress toler-
ance measure to choose genotypes with high resilience to temperature and water 
shocks and yield in mungbean (STI). Singh (1997) reported mungbean plant types 
suitable for Kharif (rainy) and dry (spring/summer) seasons. Pratap et al. (2013) 
recommended the development of short-duration cultivars for Spring/Summer 
farming to minimize heat and drought stress toward the end of the growing season. 
Cultivars that are well adapted to the summer season have a crop cycle of 60–65 
days, a determinate growth habit, a high harvest index, reduced photoperiod sensi-
tivity, quick initial development, longer pods with more than 10 seeds per pod, and 
large seeds. In light of this, numerous early maturing mungbean lines have been 
selected and released as commercial cultivars.

Whenever wild resources are used as donors for disease or pest-resistant culti-
vars, linkage drag becomes a significant concern. In resistance breeding, the use of 
wild germplasm is a dominant contributor to resistance introgression into commer-
cial cultivars, but unwanted hereditary linkages frequently hamper this process 
(Keneni et al., 2011). Undesirable traits such as leaf area index, seed structure, and 
color can be passed along with beneficial traits due to low dominance multigenic 
disease and insect resistance. To overcome linkage drag, crossing over between 
homologous chromosomes during meiosis is critical for transferring genes that gov-
ern desirable characteristics (Edwards & Singh, 2006). However, the inheritance of 
undesirable and desirable traits together can impact seed quality, germination, and 
other traits. Generating a high number of F2 populations is necessary to increase the 
recovery of novel recombinants due to crossing-over. The emergence and dissemi-
nation of whitefly-transmitted viruses are influenced by factors such as the evolu-
tion of viral strains, the creation of aggressive biotypes, and a rise in the whitefly 
population (Chiel et al., 2007). Insect biotypes reflect the genetic variety of a pest 
population, and although they may appear identical, their biological characteristics 
differ. Breeding for disease resistance is hindered by the creation of multiple strains 
by a pathogen, as well as biotypic variety in insect pests, as plant varieties resistant 
through one disease strain or pest biotype could be sensitive to a different pathogen 
or insect biotype of the same pathogen.

Although there were multiple ongoing efforts to develop plant cultivars for a 
particular biotic and abiotic stress on a wider level, achievements were limited due 
to the cumulative effect of many stresses and unforeseen increases in pest and 
pathogen episodes throughout the plant’s growth stages, resulting in only a few 
calculable achievements in legumes. A comprehensive examination is necessary for 
various stages of the breeding process, including seed germination, early growth, 
vegetative phase, flowering, early pod development, as well as the reproductive and 
final maturity stages. With such a diverse range of developing phases, pinpointing a 
precise phase inducing a characteristic for breeding appears to be difficult; however, 
many approaches have focused on the flowering and reproductive phases in order to 
develop progenies that can sustain stress and result in better pod and seed yields.
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5  Conclusion

The objective of high-yielding mungbean varieties is conceivable by utilizing a 
wider range of genetic diversity. Mungbean has typically been farmed in less pro-
ductive vulnerable areas’ minimal resources because of which the selection pres-
sure has been focused on stress adaptability rather than yield. Thus, improving the 
genetics of such crops in order to increase output necessitates genetic restoration in 
order to generate diverse genotypes. Induced mutations can aid in the regeneration 
and restoration of diversity that has been vanished over time as a result of adaptation 
to various stressors. Although disease resistance genotypes were established for 
powdery mildew, yellow mosaic, and CLS, to accelerate the establishment of resis-
tant breeding lines, molecular markers for anthracnose and dry root rot further 
required to be developed and identified markers must be employed in the breeding 
effort. Introduction of undesirable characteristics into the cultivars from insect-
resistant origins for bruchids and whiteflies is challenging. To achieve stable resis-
tance against diseases and insects in mungbeans, a combination of conventional 
breeding methods and molecular techniques is required. The identification of 
molecular markers has facilitated the evaluation of pest and disease resistance, min-
imizing our dependence on time-consuming phenotypic data, particularly in exten-
sive trials. Insect resistance can also be transferred from related legumes like black 
gram to green gram using molecular markers. However, identifying and combining 
numerous resistance genes into the same cultivar are critical. In order to generate 
mungbean with disease and insect pest resistance while avoiding strain/biotype for-
mation, breeders should focus on gene pyramiding. In order to understand the ways 
in which herbivores and pathogens function, it is important to explore the mecha-
nisms of disease and insect resistance, as well as the specific signal molecules 
involved in these processes. In addition, RNAi technology could be employed to 
increase mungbean stress tolerance against biological  factors. Though, Large-scale 
field experiments are necessary to prove the effectiveness of RNAi as a potential 
pest control method in plant breeding.
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Mutation Breeding for Adaptation 
to Climate Change in Seed Propagated 
Crops
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Abstract The expected world population by 2050 will be 9.9 billion, and therefore, 
agricultural research efforts need to be concentrated on increasing agriculture pro-
ductivity. Climate change is directly or indirectly responsible for many biotic and 
abiotic stresses. The biotic stresses include infestations of pests, diseases, and 
weeds, as well as abiotic stresses like drought, flooding, temperature variation, 
salinity, and metal toxicity, which limit crop growth and productivity. Developing 
new crop varieties with high yields coupled with improved plant architecture, a 
short maturity period, resistance to biotic and abiotic stresses, and better adaptabil-
ity to climate change is the need of the hour. It means multi-objective breeding 
strategies need to be followed for developing crop varieties with better adaptability 
to climate change. The induced mutation experiments have contributed immensely 
to increasing crop productivity globally. The release of 3332 mutant cultivars in 228 
crop species has played an important role in increasing cultivation area and thereby 
improving crop yields. All the mutant varieties are improved for increased yield and 
yield components, and resistance or tolerance to biotic and abiotic stress. A large 
majority of released mutant varieties have traits suitable to face the challenges of 
climate change and have contributed positively to sustaining crop yields, resulting 
in positive economic impacts.
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1  Introduction

The improved productivity, stability, and sustainability of major cropping systems 
are responsible for sustained food and health security. The expected world popula-
tion by 2050 will be 9.9 billion (UNFPA, 2012), and therefore agricultural research 
efforts need to be concentrated on increasing agriculture productivity (Conway, 
1999). However, alteration in climate and weather conditions strongly affects agri-
culture, leading to heavy losses for farmers and the nation’s economy. Temperature 
and rainfall play an important role in agriculture, and drastic changes in both com-
ponents affect crop growth and productivity. The climatic variations include the 
total distribution of climate across the region, seasonal changes within the climate, 
and global climate changes, which have an impact on cropping systems throughout 
the globe (UNEP, 2002). Due to climatic variations, changes in cropping time and 
season, the maturity period, more infestations of diseases and pests, poor food and 
feed quality, and a tremendous reduction in agriculture productivity are being 
observed throughout the globe. Food production utilizes 70% of water and is also 
considered to be responsible for 30% of global greenhouse gas emissions causing 
climate change (Parry et al., 2005). The overuse of fossil fuels and deforestation are 
also responsible for the greenhouse effect and increase in global warming arising as 
a result of the emission of dangerous gases, especially CO2 (Vaughan et al., 2018). 
Gas emissions, UV-B, and various factors are responsible for abiotic stresses. Plant 
growth and crop productivity are highly affected by abiotic stresses like heat, cold, 
drought, floods, and salinity (Ronald, 2011; Tester & Langridge, 2010). The changes 
in temperature and rainfall also enhance the growth, and survival of crop pathogens 
(Rosenzweig et al., 2001). The menace of weeds spreading and the evolution of 
herbicide- resistant weeds arising due to climate change also pose detrimental effects 
on agriculture productivity (Matzrafi et al., 2016). The crop varieties developed for 
a particular region will lose their identity because of decreased productivity due to 
shifts in rainfall patterns, rising temperatures, and increased infestations of diseases 
and pests. The development of new crop varieties having high yields coupled with 
improved plant architecture, a shorter maturity period, and resistance to biotic and 
abiotic stresses with better adaptability to climate change is the need of the hour. It 
means multi-objective breeding strategies need to be followed for developing crop 
varieties with better adaptability to climate change (Akdemir et al., 2019). The 
approach of Climate-Smart Agriculture (CSA) needs to be implemented to increase 
productivity, enhance resilience, and reduce emissions to overcome problems aris-
ing because of climate change (Lipper et al., 2018). Different cultural approaches, 
like changes in agronomic practices (crop rotation, irrigation, planting dates, fertil-
izer application), cultivation of short duration crops, and biotic and abiotic tolerant 
varieties, have been adapted to combat climate change (Raza et al., 2019). However, 
the best approach to overcoming the complexity of climate change is to generate 
diversity by using different plant breeding methods (Ceccarelli & Grando, 2020). In 
the past, different plant breeding methods have helped to increase the diversity of 
crop germplasm by developing genetically better varieties for cultivation. However, 
to meet the global food demand, existing germplasm resources may not be adequate 
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(Tester & Langridge, 2010; Shiferaw et al., 2013). Genetic improvement of crop 
plants is a continuous endeavor, and the success of a crop improvement program 
depends on the availability of large genetic variability, which a plant breeder can 
combine to generate new varieties (Holme et al., 2019). There are large numbers of 
instances in the past, where naturally occurring mutations served an important role 
in crop improvement. The introduction of spontaneous or natural mutants into 
breeding programs was the success behind the Green Revolution. However, sponta-
neous mutations are not adequate for their use in intensive breeding programs, and 
the same can be enhanced severalfolds by using ionizing radiation or chemical 
mutagens (Muller, 1928; Stadler, 1928). After the discovery of the mutagenic effects 
of X-rays on plants by Stadler, mutation breeding techniques gained popularity 
among plant breeders throughout the world. The role of induced mutations is well 
proven in creating genetic variability for a specific genetic trait that is not immedi-
ately available for breeding programs (Jankowicz-Cieslak et al., 2017; Roychowdhury 
& Tah, 2013; Khursheed et al., 2019; Raina et al., 2020). The widespread use of 
mutation breeding techniques in 228 crop species has resulted in the development 
and release of more than 3332 mutant cultivars around the globe [Mutant Variety 
Database (MVD) (http://mvd.iaea.org)]. Induced mutagenesis is the most efficient 
technique to greatly increase genetic variation in a short period of time and has been 
employed in various crops such as cowpea (Rasik et al., 2022), lentil (Laskar et al., 
2018a; Wani et  al., 2021), faba bean (Khursheed et  al., 2016, 2017), fenugreek 
(Hasan et al., 2018), mungbean (Wani et al., 2017), urdbean (Goyal et al., 2019a, b), 
chickpea (Laskar et al., 2015; Raina et al., 2019), black cumin (Tantray et al., 2017, 
Amin et al., 2019), and finger millet (Sellapillai et al., 2022; Sellapillaibanumathi 
et al., 2022). Because natural mutations occur sporadically, artificial mutations are 
generated, and genetic gain is best achieved by using mutagens (Raina & Khan, 
2020). The mutant varieties are known for improved plant architecture, better qual-
ity, increased yield, and resistance/tolerance to biotic and abiotic stresses (Raina 
et  al., 2018a, b). The detailed review of the contribution and global impact of 
mutation- derived varieties is well documented (Ahloowalia et al., 2004; Kharkwal 
& Shu, 2009; Mba et al., 2012; Raina et al., 2016; Sarsu et al., 2020). Most of the 
mutant varieties are well adapted to climate change and have helped to improve the 
socioeconomic status of the farmers and the national economy by generating addi-
tional revenue (Sarsu et al., 2020). In this review, the worldwide achievements and 
contributions of induced mutations for adaptation to climate change in seed propa-
gated crops for sustainable agriculture and food security are presented.

2  Impact of Climate Change on the Productivity of Seed 
Propagated Crops

Changes in weather conditions and increases in the occurrence of extreme events 
are being felt more often. The Earth’s climate continues to warm, and all the simula-
tion models predict a global trend toward warmer temperatures (Lean & Rind, 2009). 
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A change in climate poses significant risks to future crop productivity due to global 
change in atmospheric CO2 or ozone level, variations in average temperature, heat 
waves, annual rainfall, fluctuations in sea level, and alterations in pests and weeds. 
The excessive utilization of fossil fuels and deforestation resulted in an increase in 
CO2 in the atmosphere, and a two-fold increase is predicted by the end of this cen-
tury. The increase in CO2 concentration in the atmosphere is the main factor respon-
sible for the greenhouse effect and increased global temperatures (Vaughan et al., 
2018). The factors responsible for abiotic stresses are gas emissions (CO2, O3, and 
CH4), light intensities, UV-B, which cause drought, water logging, extreme heat and 
cold, and salinity, which greatly influences plant growth and yield (Ashraf et al., 
2018). The moisture stress caused by low rainfall or a delay for a longer period of 
time may lead to a drought situation, whereas high rainfall will cause flooding. The 
different kinds of crop cultivation and methods of farming generally depend upon 
the climatic conditions and the availability of inputs prevailing in that particular 
region. Climate change is directly or indirectly responsible for many abiotic stresses 
like drought, flooding, temperature variation, salinity, and metal toxicity. These abi-
otic stresses are the major limiting factors for crop growth and productivity. The rate 
of photosynthesis increases because of the higher concentrations of CO2 in C3 plants 
such as wheat, rice, and soybean (Deryng et al., 2016). However, the additive effect 
of the increased CO2 concentration will have a negative impact on plant growth and 
yield (Senapati et al., 2019). The increase in highly reactive oxidants O3 in the cli-
mate affects crop yield by causing decreased photosynthesis and accelerated senes-
cence and cell death (Vandermeiren et al., 2009). All areas of cropland are projected 
to experience some degree of warming, but the largest change in warming is pro-
jected in the northern hemisphere as compared to the southern hemisphere (Foster 
& Rahmstorf, 2011). Low and high temperatures both affect crop growth by disturb-
ing various physiological and biochemical processes in plants (Paulsen, 1994).

The crop productivity is expected to increase for cereals and temperate crops at 
mid- and high altitudes (Olesen et al., 2007). Higher temperatures reduce the pho-
tosynthesis and maturity period, leading to reduced biomass and grain yield. 
Increased temperatures also cause a higher rate of evapotranspiration, thereby 
reducing the moisture content of the soil (Liu et  al., 2019). In cereals like rice, 
wheat, and sorghum, increased temperatures cause a reduction in the number of 
spikes, grain per spike, and seed size (Fahad et al., 2017). High temperatures also 
affect the quality of starch in cereals, oil in oilseeds, and protein in pulse crops. The 
crops respond differently to the temperature fluctuations, and a correlation is 
observed between climate change and yield losses. Global warming has resulted in 
annual combined losses of 40 million tonnes or US$5 billion since 1981 (Lobell & 
Field, 2007). Drought and high temperatures are key stress factors with a high 
impact on yields, and in a warmer climate, the demand for water by plants is more 
due to excess water loss by evapotranspiration, creating an overall soil water deficit 
and reducing water absorption (Heckathorn et  al., 2013). Climate change is also 
responsible for the excess and sporadic events of flooding in the last few years. The 
instances of floods have increased by 50% in the last ten years, as reported by 
European Academies’ Science Advisory Council (EASAC). Excess floods resulted 
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in rising sea levels, which will ultimately lead to a decline in agricultural lands in 
coastal regions and also cause salinity of soils and decreased respiration, photosyn-
thesis, and transpiration in plants. Drought and salinity cause cellular dehydration, 
resulting in poor crop yields (Tester & Bacic, 2005). In seed propagated crops, 
approximately 59% of the crop production generally results from organs that are 
meant for sexual reproduction. The moisture stress at flowering causes a decrease in 
photosynthesis per plant and affects the grain yield and production. A cereal crop 
like rice is highly sensitive to water stress at flowering. Reduction in yield of up to 
2–3 times as compared to average yield is reported in maize because of water stress 
at the flowering stage. Grain legumes are also sensitive to moisture stress at flower-
ing (soybean) and early reproductive stages (common bean). Flooding is another 
abiotic stress that causes anoxia or hypoxia, CO2 deficiency, and the accumulation 
of toxins in soils. In irrigated soils, salinity is another major limitation for crop 
growth and productivity, and many crops are susceptible to salinity. High rainfall 
during the winter season causes more infection of diseases in rapeseeds (Sharif 
et al., 2017). In China and Bangladesh, high rainfall during the harvest period causes 
crop damage and economic losses to the farmers. Flooding increases soil moisture 
content and ultimately disturbs the sowing season (Xu et al., 2013). Another impor-
tant abiotic stress is heavy metal toxicity, which inhibits crop growth and productiv-
ity. All these stresses affect plant growth in different ways but are interrelated, and 
their severity is directly or indirectly controlled by climate change. Pests, diseases, 
and vectors of crops are likely to be altered by climate change, and it can also affect 
the distribution, population size, and impacts of pests and diseases on food produc-
tion (Pangga et al., 2011) by changing the biology of pests and diseases (Latham et 
al., 2015). Climate change and increased CO2 concentration also indirectly impact 
crops through the effects of biotic stresses. The severity of diseases may also be 
affected by a changing climate. An elevated level of CO2 also causes an increase in 
the population of aphids (Newman, 2003) and weevil larvae (Staley & Johnson, 
2008). The migration patterns of locusts in sub-Saharan Africa were supposed to be 
influenced by rainfall patterns (Cheke & Tratalos, 2007). To tackle the menace of 
these stresses, crop management is one of the solutions, which requires proper 
knowledge and guidance. The best way is to develop plants’ resistance to biotic and 
abiotic stresses.

3  Mutation Breeding for Adaptation to Climate Change

3.1  Mutations for Quantitative Traits

The fluctuations in global temperature, low and high rainfall, insect pest infesta-
tions, salinity (Dhankher & Foyer, 2018), and heavy metal toxicity will affect plant 
growth and production. The foremost objective of any crop improvement program 
is to increase crop yields, which ultimately depend on other quantitative 
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characteristics like plant height, number of branches, number of pods per plant, 
number of seeds per pod, 100/1000 seed weight, and harvest index. The induced 
mutation experiments have contributed immensely to increasing crop productivity 
globally (Khursheed et al., 2018a, b, c; Laskar et al., 2019; Raina et al., 2022a, b, c). 
The release of 3332 mutant cultivars in 228 crop species has played an important 
role in increasing cultivation area and thereby improving crop yields. These mutant 
varieties are improved for different traits such as agronomic and botanic traits 
(2981), quality and nutrition traits (1173), increased yield and yield components 
(1029), resistance to biotic stress (557), and tolerance to abiotic stress (248) (Sarsu 
et al., 2020). The mutation breeding technique is a powerful tool in the hands of the 
plant breeder to generate variability and has created variability for traits like 
improved plant architecture, increased yield, improved quality, and resistance to 
biotic and abiotic stress (Table 1). The mutant varieties are well adapted to the dras-
tic effects of climate change and have immensely helped to increase productivity 
and the economy worldwide (Goyal et al., 2021a, b; Khursheed et al., 2015; Laskar 
et al., 2018b; Raina et al., 2017).

3.1.1  Yield and Yield Components

Asia

Climate change has also threatened agriculture and food security in Asia. Agricultural 
production in China is highly influenced by extreme weather conditions. To over-
come the problem of climate change, many mutant varieties are released in Asia, 
which account for more than 60% of induced mutations and mutation-derived vari-
eties. The Asian countries that are pioneers in commercializing a maximum number 
of mutant varieties are China, Japan, India, Bangladesh, Pakistan, Vietnam, Republic 
of Korea, and Indonesia (Sarsu et  al., 2020). All cropping regions in China are 
highly affected by different types of abiotic stresses due to their wide latitude. In 
China, changes in the phenology and productivity of winter wheat (Tester & 
Langridge, 2010) and spring cotton (Paulsen, 1994) were observed due to climate 
change. The days of reproductive growth and maturity in spring and winter wheat 
increased in Northwest China (Pangga et al., 2011). However, an increase in area 
and yield was observed in rice in spite of warming (1.43 °C) in the last century 
(Latham et al., 2015). In China, the wheat mutant varieties Luyuan 502, Taikong 5, 
Zhengmai 3596, Fumai 2008, Yufeng 11, Zhengpinmai 8, Yutong 843, and Fumai 
2008 are known for their wide adaptability, high productivity, and stable yield. In 
Japan, 479 mutant varieties have been developed and registered and some of the rice 
mutant varieties Akihikari, Reimei, Kinuhikari, Haenuki, and Tsugaru-roman, are 
known for their high yield and are widely cultivated (Nakagawa, 2018). Indian agri-
culture is solely dependent on the climate, and drastic changes in the climate will 
have a negative impact on crop production. The effects of climate change, like 
warmer temperatures, may have an advantage for some crops, but the disadvantages 
will likely be greater. It is expected that by 2080, agriculture productivity in India 

J. G. Manjaya and S. K. Gupta



203

Table 1 Popular mutant varieties of seed propagated crops suitable for climate change

Country Crop Mutants Characters References

Asia
China Rice Yuanfengzao Early maturity Wang (1991)

Zhefu 802 Resistance to rice blast and 
tolerance to cold

Christov et al. 
(2014)

Wheat H6756 Salt tolerance Liu et al. (2019)
Luyuan 502 Sprouting-resistant, 

lodging-resistant, more 
tolerant of drought and main 
diseases

Liu (2021)

Japan Rice Reimei Semidwarf Nakagawa (2021)
Kinuhikari Semidwarf

Soybean Ryuhou Early maturing
India Rice PNR-381 and 

PNR-102
Early maturing Chakrabarti (1995)

CRM 2007–1 Semidwarf Patnaik et al. 
(2006)

Wheat Sharbati Early maturity Chopra (2005)
HW 1095 Non-lodging habit and non 

shattering resistance to black 
(stem), yellow, and brown 
(leaf) rusts

Nirmalakumari 
et al. (2010)

Groundnut TAG 24 Semidwarf, small, dark green 
thick leaves, earliness, high 
harvest index, high 
partitioning %, wider 
adaptability

Badigannavar 
et al. (2020a, b)

Vietnam Rice TNDB100 Early maturity Do (2009)
Soybean DT84 Resistance to rust, tolerance 

to high and winter low 
temperature

Le & Pham (2021)

DT90 Tolerance to canopy, 
resistance to powdery winter 
mildew, lodging

DT99 Resistance to rust, tolerance 
to high and winter low 
temperature

DT2008 Drought tolerance and 
resistance to rust, downy 
mildew, powdery mildew, 
and bacterial pustule

Malaysia Rice MR219-4 Blast and drought resistant Ibrahim (2018)
MR219-9) Blast and drought resistant

Groundnut KARISMA 
sweet

Resistant to Cercospora leaf 
spot disease

KARISMA 
serene

Resistant to Cercospora leaf 
spot disease

(continued)
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Table 1 (continued)

Country Crop Mutants Characters References

Thailand Rice RD 6 Early maturity Ahloowalia et al. 
(2004)RD 15 Early maturity

Myanmar Rice Shwe war Tun Rainfed lowland area Khin (2006)
Sri Lanka Rice MI 273 Drought tolerant Parasuraman and 

Weerasinghe 
(2021)

BW 372 Moderately tolerant to blast, 
bacterial leaf blight, brown 
planthopper, gall midge, and 
iron toxicity

Sesame Malee Resistant to Phytophthora 
blight

Indonesia Sorghum Pahat Early maturing, semidwarf 
resistant to lodging in a 
strong wind

Human & 
Indriatama (2020)

Europe
Czechoslovakia Barley Diamant Short stature, lodging 

resistance
Kharkwal and Shu 
(2009)

France Barley Betina Mildew resistance Ahloowalia et al. 
(2004)

Bulgaria Maize Kneja 509 Drought tolerant Christov et al. 
(2014)

Brazil Rice SCS118 
marques

Herbicide resistant Livore et al. 
(2018)

Italy Wheat Creso Resistance to lodging and 
resistance to leaf rust,

Ahloowalia et al. 
(2004)

USA Rice Calrose 76 Semidwarf Van Harten (1998)
Barley Luther Short stature, lodging 

resistance
Wheat Stadler Early maturity, resistant to 

loose smut and leaf rust
Latin America
Bulgaria Maize Kneja 509 Drought tolerant Sarsu et al. (2020)
Peru Amaranth Centenario Cultivated at high altitude 

(3000 m above sea level)
Ahloowalia et al. 
(2004)

Barley UNA La 
Molina 95

Early maturing, suitable for 
high altitude (5000 m above 
sea level)

Gomez-Pando 
et al. (2009)

Centenario Cultivated at high altitude 
(5000 m above sea level)

Ahloowalia et al. 
(2004)

Cuba Rice LP7 Salt tolerant Croughan et al. 
(1996)

Africa
Egypt Rice Giza 176 Semidwarf Badawi (2001)

Rice Sakha 101 Semidwarf
Sudan Groundnut Tafra-1 Drought tolerant Abdalla et al. 

(2018)
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will be reduced by 40% (IPCC, 2007). The rise of 2.5 °C to 4.9 °C in temperature 
will reduce yield by 32%–40% in rice and 41%–52% in wheat (GOI 2011). The 
warmer climate also affects the rainfall pattern, causing drought situations if pre-
cipitation is less or causing floods if rainfall is in excess. India has developed about 
386 mutant varieties in 62 crops through induced mutagenesis. In cereals, the mutant 
rice varieties of the PNR series, IIT-48, IIT-60, K-84, Jagannath, Keshari, Sattari 
(Chakrabarti, 1995), TCDM-1, TKR Kolam, Vikram-TCR (Trombay Chhattisgarh), 
and CG Jawaphool Trombay are popular among the farmers for their high yield. A 
high- yielding dicoccum wheat mutant variety, ‘HW 1095’ having semidwarf stat-
ure, being disease resistant, and being nutritionally rich is becoming popular among 
the farmer’s community (Nirmalakumari et al., 2010). In legumes, popular high- 
yielding mutant varieties are of mungbean (TAP-7, TARM-1, 2, 18, TMB-37, 
TJM-3, TM-96-2, TM-2000-2), black gram (TAU-1, TAU-2, TPU-4, TU94-2, and 
TU-40), pigeonpea (TT-6, TAT-10, TT-401, TJT-501, PKV-TARA), cowpea 
(Khalleshwari (TRC-77-4), TC 901), and groundnut (TG 1, 3, 17, 22, 26, 37A, 38, 
47, 51, TGS 1, TAG 24, TKG 19A, TPG 41, TLG 45, TBG 39), are widely grown in 
different states of India (Badigannavar et  al., 2020a, b). The black gram variety 
TAU-1 and groundnut variety TAG-24 is extensively cultivated and command a 
major share of the national breeder seed indent. The maturity periods of spring and 
autumn maize were increased as a result of climate change in Pakistan (Abbas et al., 
2017). In Pakistan, 59 high-yielding mutant varieties were found in different crops, 
and the cotton mutant variety “NIAB 78” covered 80% of the cotton area in the 
Punjab and Sindh provinces (Haq, 2009). In Bangladesh, 40% of cultivable land is 
prone to abiotic stresses like salinity, drought, flooding, and temperature fluctua-
tions, and 40% of yield losses is reported due to drought. The rice crop, which is the 
staple food of Bangladesh, is also susceptible to various biotic stresses (Islam et al., 
2021). Bangladesh has released more than 60 plant mutant varieties and mutant 
varieties of rice, wheat, lentils, chickpeas, peanuts, mustard, sesame, soybean, jute, 
and tomato, which account for about 8% of its total crop area. The high-yielding 
rice mutant varieties Binasail, Iratom-24, Binadhan-6, and Binadhan-7 are exten-
sively grown in the country (Azad & Imtiaz, 2012; Jawerth, 2017). The other Asian 
countries are also under threat from food security due to climate change. In Vietnam, 
mutant varieties of rice (DT10, VND95–20, TNDB-100, VND95–19, VND99–3, 
VN212, VN214, OM2717) are known for higher yields, lodging resistance, toler-
ance to acid soils, salinity, tolerance to biotic stress, short duration, and better nutri-
tional quality (Vinh et al., 2009; Do, 2009; Ham & Xuan, 2018; Khanh et al., 2021). 
The popular soybean mutant varieties known for higher yield are DT84, DT90, and 
DT2008 (Le & Pham, 2021). The mutation breeding program in Malaysia resulted 
in the development of 53 mutant varieties, which include 19 varieties of rice and 2 
varieties of groundnuts. The high-yielding mutant varieties of rice (MR219-4 and 
MR2199, MRQ74) and groundnut (KARISMA Sweet and KARISMA Serene) are 
grown in a large area by the farmers (Ibrahim, 2018). In Thailand, two aromatic 
indica glutinous rice varieties, RD6 and non-glutinous early maturing variety RD15, 
are grown extensively in the north and northeastern regions of Thailand. (Ahloowalia 
et  al., 2004; Kharkwal & Shu, 2009). In Myanmar, four mutant rice varieties 
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ShweThwe Tun, Shwe War Tun, Thukayin, and Yezin Lone Thwe are known for 
higher yield stability. In Sri Lanka, mutant varieties of rice (MI 273, BW 372), 
groundnut (Tissa), and sesame (Malee) are popular among the farmers because of 
their high yield (Parasuraman & Weerasinghe, 2021). In Indonesia, three high-
yielding sorghum mutant varieties Pahat, Samurai-1, and Samurai-2, are extensively 
cultivated on an estimated area of about 800,000 ha (Human & Indriatama, 2020).

Europe

The rise in greenhouse gas emissions may enhance the crop yield in North-Western 
Europe and decrease the crop yield in the Mediterranean area (Olesen & Bindi, 
2002). The crop productivity will decrease in southern Europe and the Pannonia 
zone, which includes Hungary, Serbia, Bulgaria, and Romania, because of low rain-
fall and extreme temperatures (Olesen et al., 2011). In Europe, the drastic changes 
in climatic conditions resulted in a reduction of wheat and barley yields by 2.5% 
and 3.8%, respectively (Moore & Lobell, 2015). The increase in average rainfall 
was recorded in cooler regions of the UK and Ireland due to warming. The impact 
of climate changes on yields of cereals like barley and wheat was also observed in 
Italy, Greece (Mavromatis, 2015), the Czech Republic (Potopova et al., 2017), and 
Hungary (Pinke & Lovei, 2017). In Europe, the mutation breeding technique has 
become one of the most important breeding methods since its initiation in the year 
1920. The entire 959 mutant varieties released in Europe, especially wheat and bar-
ley, are well adapted to climate change (Saxena et al., 2016). To tackle the effect of 
climate change on crop production, the farmer community of Bolivia modified 
agronomical practices (Iizumi & Ramankutty, 2016). In maize and soybeans, yield 
variability has been observed due to climatic changes (Ketiem et  al., 2017). In 
Europe, extensive use of the mutation breeding technique resulted in the release of 
959 mutant varieties, particularly in wheat and barley. In Bulgaria, 76 mutant culti-
vars in different crops like maize, durum wheat, tomato, barley, wheat, soybean, 
lentil, pepper, sunflower, bean, tobacco, chickpea, vetch, cotton, and pea are released 
for commercial cultivation. The most widely cultivated maize mutant hybrid variet-
ies are Kneja 509 and Kneja 683A. The high protein mutant hybrids Kneja 556, 
Kneja HP 633, Kneja HP 556, and Kneja HP 556 occupies about 40%–50% of the 
maize growing area in Bulgaria and are well-known for silage making. High- 
yielding durum mutant varieties have significantly increased productivity in 
Bulgaria. In Bulgarian agriculture, all the mutant varieties have attained a special 
status because of their high productivity, resistance to biotic stresses, and better 
quality (Tomlekova, 2010). Italy is well-known for durum wheat research and pro-
duction among the European Union (EU) countries and has released 22 mutant 
varieties (Xynias et al., 2020). One of the mutant varieties, Creso, was cultivated in 
one- third of the total area of durum wheat cultivation in Italy. The barley mutants 
“Diamant” and “Golden Promise” released in Czechoslovakia have made a major 
impact on the brewing industry in Europe and were used as parents in the crossing 
program, where more than 150 cultivars were developed (Kharkwal & Shu, 2009).
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North America

In the USA, the average yields of crops like corn, soybeans, wheat, rice, sorghum, 
cotton, and oats have decreased due to temperature fluctuations. On the other side, 
because of the warmer climate, the yields of crops such as wheat and barley are 
expected to increase as a result of increased rainfall and C fertilization (NSAC, 
2019). In the USA, 139 mutant varieties have been developed, and the first semi-
dwarf rice mutant variety, Calrose, was used in the crossbreeding program, and 25 
semidwarf varieties were developed in California, Australia, and Egypt. A high- 
yielding wheat mutant Stadler having early maturity, resistant to loose smut and leaf 
rust, was cultivated on two million acres annually in the USA. The high-yielding 
barley mutant varieties, Luther and Pennard, were released in Pennsylvania and was 
grown in a larger area (Ahloowalia et al., 2004).

Latin America

The mutation breeding program in 18 Latin American countries developed 53 
mutant varieties in different crops for cultivation (Sarsu et al., 2020). In Argentina, 
the high-yielding rice mutant variety Puita INTA-CL was also successfully grown 
in other Latin American countries, such as Uruguay, Colombia, Chile, Costa Rica, 
Panama, the Dominican Republic, Nicaragua, and Honduras. In Brazil, the high- 
yielding herbicide-resistant rice mutant varieties, SCS118 Marques and Clearfield 
rice, were successfully grown in a large area (Livore et al., 2018).

Africa

In total, 82 mutant varieties are released in different countries in Africa (Sarsu et al., 
2020). In Egypt, semidwarf mutant rice varieties, Giza 176 and Sakha 101, were 
released during the 1990s, which increased yield levels from 3.8 t ha−1 to 8.9 t ha−1. 
The mutant variety Giza 176 is cultivated as the most popular and promising variety, 
having a yield of 10 t ha−1. Five sesame varieties and two safflower varieties were 
developed with high yield and good quality, contributing to higher income for farm-
ers in Egypt (Badwai, 2001). Application of induced mutation techniques toward 
crop improvement in Ghana for the last two decades has helped develop a cassava 
mutant variety with high dry matter content (40%), Tekbankye. This mutant variety 
is tolerant of the Africa Cassava Mosaic Virus (ACMV), and it is used to prepare 
fufu, the nation’s most popular cassava-based food (Kharkwal & Shu, 2009). The 
Ministry of Agriculture, Water and Forestry of Namibia developed four sorghum 
and seven cowpea varieties with 10–20% higher yields than local cultivars under 
drought conditions and pre-released them to farmers (Abdalla et al., 2018). In 
Sudan, successful breeding programs using nuclear techniques and plant biotech-
nologies were started to enhance the productivity of cereal crops, bananas, toma-
toes, and groundnuts in stressful environments to ensure sustainable food security. 
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The research resulted in the release of the banana variety “Albeely,” which has a 
high yield and is widely cultivated by farmers in banana production areas along the 
Blue Nile in the south of Wad Medani. A drought-tolerant peanut mutant variety, 
“Tafra-1,” was released for Sudanese farmers in drought-prone areas, which 
improved their livelihoods and led to an increase in the country’s exports (Sarsu 
et al., 2020; Abdalla et al., 2018).

3.1.2  Mutations for Early Maturity

Drought can affect the vegetative, pre-anthesis, and post-anthesis stages of plant 
growth with varying degrees of severity. The development of varieties with an early 
flowering time and early maturity traits can escape drought conditions at the termi-
nal stage by completing their life cycle faster (Dolferus, 2014). Several early matur-
ing mutants have been identified and released as direct varieties or used in a breeding 
program. The high-yielding, early-maturing mutant rice variety, Zhefu 802, was 
developed by the Institute of Nuclear Agricultural Sciences at Zhejiang Agricultural 
University in 1981. It was widely cultivated in an area of about 10.6 million ha. In 
Japan, the early maturity soybean mutant variety Raikou was developed by gamma- 
ray irradiation in 1960. It was the third ruling variety in Japan and was cultivated on 
10,548  ha. The early maturing, aromatic mutant rice varieties, PNR-381 and 
PNR-102 developed in India were very popular among farmers. The mutant variety 
Sharbati, because of its earliness coupled with the desirable grain color is reported 
to have been cultivated on large acreage in India (Chopra, 2005). The mutant variety 
TNDB-100 from Vietnam was developed for improved characteristics like early 
maturity, reduced height, resistance to pests and diseases, and good cooking quality. 
The variety was grown on a larger scale and was most preferred by the farmers since 
they could take three crops because of its early maturity. In Thailand, the gamma- 
ray- induced early maturing mutant variety, RD-15, was extensively cultivated.

3.1.3  Mutations for Improved Plant Architecture

Crop cultivars with high yield potential are also affected by climate change, result-
ing in decreased crop productivity. One of the approaches to tackling the negative 
effects of climate vagaries is the modification of plant architecture for increasing 
crop productivity (Goyal et al., 2020a, b; Raina et al., 2021). For example, tall geno-
types are susceptible to lodging, which results in crop damage and a loss of crop 
yield. The development of reduced plant height varieties by incorporating a reces-
sive gene (SD-1) for reduced height has resulted in an increase in crop production 
in rice. These semidwarf genotypes possess morphological traits that are responsi-
ble for proper light interception and assimilate portioning resulting in higher yield 
(Donald, 1968). Numerous mutant varieties of seed propagated crops like cereals, 
pulses, oilseeds, and industrial crops registered globally have modified plant archi-
tecture and are well adapted to the challenges of climate change (Table 1). The first 
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gamma ray-induced semidwarf rice mutant variety, Reimei, developed in Japan, 
recorded the highest yield (Futsuhara, 1968). The contribution of the semidwarf rice 
mutant variety Reimei to increasing rice production in Japan is significant. More 
than 99 mutant rice varieties have been developed using the mutant variety Reimei, 
and these varieties occupied 12.4% of total rice cultivation in Japan. In India, 
recently released thigh-yielding mutant rice varieties, TCDM-1, TKR Kolam, and 
Vikram-TCR, were released for cultivation and are having dwarf plant stature and 
tolerance to lodging. The other important semidwarf rice mutant variety, CRM 
2007-1, is early and recorded a high yield of up to 6.2 t/ha (Chakrabarti, 1995). The 
groundnut variety TAG 24 from India has wider adaptability due to its semidwarf 
habit, high harvest index, tolerance to late leaf spots and bud necrosis (Patil et al., 
1995), acid soils (Basu, 1997), and better water-use efficiency (AC1AR 1995). The 
sorghum mutant variety Pahat from Indonesia is semidwarf (148 cm) and resistant 
to lodging in strong winds and can be used to overcome the adverse effects of cli-
mate change. The mutant variety Giza 176 from Egypt has high yield potential, a 
short stature, and a medium growth duration best suited for cultivation to avoid 
lodging. The spring barley gamma-ray mutant Diamant possesses reduced stalk 
length, higher tillering, and high yield, and was developed in Czechoslovakia. It was 
used as a parent in the crossing program due to its yield stability and short stature, 
and more than 113 cultivars were developed in different parts of the world. In the 
USA, the first semidwarf gamma-ray induced mutant rice variety, Calrose 76, was 
developed in 1976 and was used in crossbreeding, and a number of varieties were 
developed in California, Australia, and Egypt. The dwarf gene was integrated into 
the tall Japonica types, and the resulting varieties gave 14% more yield than the tall 
varieties. The first USA barley mutant, Luther, a six-row, reduced height, and lodg-
ing resistant winter barley, was developed from chemical mutagenesis (Diethyl sul-
fate), which gave a 20% higher yield.

3.2  Mutations for Abiotic Stresses

Climate change is directly or indirectly responsible for many abiotic stresses like 
drought, flooding, temperature variation, salinity, and metal toxicity. All these abi-
otic stresses affect plant growth in different ways but are interrelated to one another, 
and their severity is directly or indirectly controlled by climate change. To tackle the 
menace of these abiotic stresses, crop management is one of the solutions, which 
requires proper knowledge and guidance. The best way is to develop the plant’s 
resistance to abiotic stresses. The mutation technique was successfully used to 
develop several mutant varieties resistant to various abiotic stresses (Table 1). The 
cold-tolerant mutant varieties of rice, Zhefu 802 (China), soybean DT 84, and DT 
99 (Vietnam) were released for commercial cultivation. The salt-tolerant mutant 
(H6756) variety of wheat was developed in China. Several drought-tolerant mutant 
varieties of wheat, maize, and groundnut have been released globally. The barley 
mutant variety Centenario is grown at altitudes of about 5000 m above sea level 
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(Gomez-Pando et al., 2009), and similarly, the amaranth mutant variety Centenario 
is also cultivated at higher altitudes (Gomez-Pando et al., 2009).

In addition to the above popular mutant varieties, the identification of several 
new mutant lines resistant or tolerant to various abiotic stresses like drought, heat, 
and cold, salt, cadmium, aluminum, arsenic, and herbicide have been reported 
(Table  2). These mutants were developed using various physical (gamma rays, 
nitrogen ion beams, fast neutrons, heavy ion beams) and chemical (EMS, MNH, 
ENU, SA) mutagens. All these mutant lines can be valuable genetic stock for the 
improvement of seed propagated crops to overcome the situation arising because of 
climate change.

Zahra et  al. (2021) reported the identification of five drought-resistant wheat 
mutants after treating the cultivated wheat variety NN-Gandum-1 by EMS.  The 
selected mutants under drought stress increased the accumulation of proline con-
tent, total soluble sugars, and total free amino acids, while decreasing total chloro-
phyll content, carotenoids, and total soluble protein. The identification of moisture 
stress-tolerant wheat mutant RYNO3936 derived after treating a red hard winter 
wheat cultivar, Tugela DN, by chemical mutagen sodium azide was reported by Le 
Roux et al. (2020). Another mutant BIG8–1 was also isolated from the parental line 
(WT) BIG8 by chemical mutagenesis (EMS) (Le Roux et al., 2021). Heat stress at 
the flowering and grain-filling stages seriously affects spikelet fertility and grain 
quality in rice. Heat-tolerant mutants M9962, M3181, and M7988 were isolated 
from the variety Jao Hom Nil (JHN) after irradiating with 33 Gy fast neutrons. The 
mutants had high spikelet fertility of 70%–78% under heat stress (Cheabu et al., 
2019). Drought stress also negatively affects the yield of the maize crops. Zhang 
et  al. (2020) isolated the drought-tolerant maize mutant C7–2t by irradiating the 
seeds of the maize inbred line ChangC7–2 with gamma rays. The mutant showed 
higher drought tolerance, delayed wilting, and high water-holding capacity under 
both controlled and field conditions. In sorghum, ten putative mutant lines were 
isolated from the cultivar Durra and treated with gamma rays. Out of the ten lines, 
mutant B-68, B-72, B-95, and B-100 were tolerant to drought and gave yields (4.0 
ton/ha) significantly higher than the parent Durra and check varieties (Human & 
Sihono, 2010). In cowpea, drought-resistant mutant lines 447, 217, MA 2, and 346 
were identified after irradiating line IT93K129-4 by gamma rays. The yield perfor-
mance of the mutant lines 447 and 217 proved to be outstanding under well-watered 
conditions, whereas lines 447, 217, and 346 performed well under drought stress 
conditions (Ronde & Spreeth, 2007). Three cowpea mutant lines (MoussaM51-4P10 
and MoussaM43-20P14) tolerant to water stress were identified. These gamma-ray- 
induced mutants showed better stress tolerance and produced a higher yield under 
water stress conditions (Gnankambary et al., 2020). Ronde and Spreeth (2007) iso-
lated six gamma-ray-induced mutant lines of cowpea tolerant to drought; one of the 
mutant lines, 217, performed very well in terms of relative water content, free pro-
line concentration, and yield. Mutant lines 447, 217, and 346 performed well under 
drought stress conditions. In groundnut cultivars from Sodari and Barberton, lCGV 
89,104, lCGV 86,744, lCGV 8674 and lCG 221 were irradiated with different doses 
of gamma rays, and nine promising mutants showing tolerance to terminal drought 
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Table 2 Mutant lines developed for abiotic stress tolerance in seed propagated crops

Abiotic stress Crop Parent Mutant Mutagen Reference

Water stress
Drought 
tolerance

Rice IAPAR9 idr1–1 Gamma Zu et al. (2021)
Rice Khao Dawk

Mali 105
HyKOS22 Nitrogen 

ion beam
Khitka et al. 
(2021)

Rice Nagina 22 N22-PDT-17 and 
N22-PDT-64

EMS Manonmani 
et al. (2020)

Wheat NN
Gandum-1

– EMS Zahra et al. 
(2021)

Wheat Pasa KM14 Gamma Naju et al. 
(2005)

Wheat BIG8 BIG8-1 EMS Le Roux et al. 
(2021)

Sorghum Durra B-68, B-72, B-94, 
and B-100

Gamma Human and 
Sihono (2010)

Maize Chang C7-2 C7-2t Gamma Zhang et al. 
(2020)

Maize DR18 DR18.8 and DR18.5 Gamma Ruswandi et al. 
(2014)

Soybean Dering 1 – EMS Savitri and 
Fauziah (2018)

Cowpea Moussa
Local

MoussaM51-4P10 
and 
MoussaM43-20P14

Gamma Gnankambary 
et al. (2020)

Temperature stress
Heat tolerance Rice Nagina 22 NH219 EMS Poli et al. 

(2013)
Rice Jao Hom nil M9962 Fast 

neutrons
Cheabu et al. 
(2019)

Wheat Guardian Tht EMS Mullarkey & 
Jones (2000)

Cold tolerance Rice ZY66 ltt1 SA Xu et al. (2020)
Salinity stress
Salt tolerance Rice Wuyunjing7 Sdbc Heavy-ion 

beam
Ye et al. (2021)

Rice TH899 M89 Heavy-ion 
beam

Zhang et al. 
(2022)

Rice Bahia SaT20, SaS62,and 
SaT58

Gamma 
and fast 
neutron

Domingo et al. 
(2016)

Rice Nagina 22 – EMS Mohapatra et al. 
(2014)

Rice Dongan ST-495 and ST-532 Gamma Kim et al. 
(2010)

Rice Hitomebore hst1 EMS Takagi et al. 
(2015)

Wheat BARI Gom
25

OA42 and OA70 EMS Lethin et al. 
(2020)

(continued)
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Table 2 (continued)

Abiotic stress Crop Parent Mutant Mutagen Reference

Metal toxicity
Cadmium
Tolerance

Rice Zhongjiazao
17

cadt1 EMS Chen et al. 
(2020)

Brasica 
rapa

R-o-18 BraA.hma4a-3 EMS Navarro-León 
et al. (2019)

Brasica 
rapa

R-o-18 BraA.cax1a-12 EMS Navarro-León 
et al. (2020)

Pea SGE SGECdt EMS Tsyganov et al. 
(2007)

Aluminium
Tolerance

Soybean Muria H218 Gamma Yuliasti and 
Sudarsono 
(2011)

Wheat IAC-24 and
IAC-60

– Gamma Neto et al. 
(2001)

Barley Roland RL819/2 and 
RL820/6

MNH and 
SA

Nawrot et al. 
(2001)

Arsenic 
tolerance

Rice Nipponbare phf1 EMS Chen et al. 
(2011)

Herbicide resistance
Imidazolinone 
tolerance

Chickpea WT F01 M2033 EMS Galili et al. 
(2021)

Rice 9311 JD164 EMS Piao et al. 
(2018)

Wheat Fidel FS4 SA Newhouse et al. 
(1992)

Imazethapyr 
tolerance

Rice Nagina 22 HTM-N22 EMS Shoba et al. 
(2017)

Sulfonylurea 
tolerance

Soybean Williams 1–184A ENU Sebastian and 
Chaleff (1987).

stress were identified (Sundra, 2006). Four rice mutants with dark green leaves, 
N22-H-dgl56, N22-H-dgl101, N22-H-dgl219, and N22-H-dgl162, induced by EMS 
in Nagina22 (N22), maintained higher chlorophyll and carotenoid contents under 
prolonged drought and heat conditions in the field. It was also observed that these 
mutants accumulated fewer reactive oxygen species and maintained a higher chlo-
rophyll content than their parents (Panigrahy et al., 2011). In Thailand, rice mutants 
tolerant to submergence were isolated from the cultivar RD31 after irradiation of 
seeds with a 0.44 kGy electron beam (Promnart et al., 2017). In Malaysia, three 
gamma-ray-induced mutant rice lines tolerant to submergence were identified 
(Ahmad et al., 2020).

Among the abiotic stresses, acid soil and associated aluminum toxicity (Al) 
affect crop production. In Poland, thirteen barley mutants showing tolerance to Al 
toxicity were selected after treating the seeds of four barley varieties with N-methyl- 
N-nitroso urea (MNH) and sodium azide (Nawrot et al., 2001). Similarly, in soy-
bean, AL tolerant mutant lines have been identified (Yuliasti and Sudarsono, 2011). 
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The heavy metal (HM) cadmium (Cd) is one of the abiotic stresses present in the 
soil, toxic to plants. It inhibits root and shoot growth, water and nutrient uptake, and 
it affects photosynthesis. In the pea, a mutant line, SGECdt, with increased Cd toler-
ance and accumulation, was isolated and characterized after treating seeds of the 
pea line SGE by EMS. The roots and shoots of the mutant plant showed accumula-
tion of increased Cd concentrations and normal plant growth. The inheritance stud-
ies indicated that tolerance to Cd is controlled by the monogenic recessive gene 
(Tsyganov et al., 2007). Similarly, in soybean (Hirata et al., 2019) and Brassica rapa 
(Navarro-León et al., 2020), mutant lines tolerant to Cd have been identified.

Andrade et al. (2018) reported the development of rice mutants tolerant to ary-
loxyphenoxypropionate (APP) herbicides. The mutants were isolated from the 
gamma rays irradiated population of the cultivar Sabbore and showed normal plant 
growth. In soybean, four mutant lines were selected as being tolerant to sulfonyl-
urea (SU) herbicides from the population treated with ethylnitrosourea (ENU) 
(Sebastian & Chaleff, 1987). In wheat, mutants tolerant to imidazolinone are derived 
from the population through seed mutagenesis of the variety with sodium azide. The 
mutants showed normal plant growth and yield (Newhouse et  al., 1992). Shoba 
et  al. (2017) reported the identification of Imazethapyr herbicide-tolerant rice 
mutant HTM-N22 (HTM) after treating seeds of an upland rice variety, Nagina 22 
(N22) by EMS. In chickpea, mutant line M2033, resistant to imidazolinone herbi-
cides, was obtained from the EMS mutagenized population (Galili et al., 2021).

Kim et al. (2010) reported the identification of two salt-tolerant rice mutant lines, 
ST-495 and ST-532, from the variety Dongan irradiated with gamma rays. Under 
salt stress, the mutants had lower malonaldehyde (MDA) contents and normal chlo-
rophyll and carotenoid contents. Two salt-tolerant rice mutants, ST-87 and ST-301, 
induced by gamma-irradiation were also selected in rice (Song et al., 2012). In 
wheat, 70 lines were identified showing tolerance to salt stress after treating the seed 
of BARI Gom-25 by EMS. The selected lines showed a 70% germination rate in 
200 mM NaCl and also showed a better salt tolerance phenotype than both BARI 
Gom-25 and other local wheat varieties.

3.3  Mutations for Biotic Stresses

Climate change can affect the distribution, population size, and impacts of pests and 
diseases on crops (Paulsen, 1994). Interactions between climate change, crop devel-
opment, and biotic stresses (Heeb et al., 2019) are well-known. The elevated level 
of CO2 increases the susceptibility of soybean (Zavala et al., 2008), rice, maize, and 
wheat (Deutsch et al., 2018) to insect attack. Climate change also affects the adapta-
tion and spread of weeds (Ziska & Dukes, 2010). Development of crop varieties’ 
resistance to pests and diseases and sustainable integrated pest management sys-
tems can help to overcome the negative effect of climate change on crop production. 
A large number of mutant lines resistant to various biotic stresses have been devel-
oped in different seed propagated crops (Table 1). In Vietnam, a series of soybean 
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mutant varieties were developed that had resistance to various diseases. Some of 
these soybean mutant varieties, like DT84 (resistant to rust), DT90 (resistant to 
powdery mildew), DT2008 (resistant to rust, downy mildew, and bacterial blight), 
and DT2008DB (tolerant to rust and downy mildew), have wider adaptability and 
cover 70% of the cultivated area in different climatic zones of Vietnam. The 
Phytophthora blight disease- resistant mutant variety of sesame was released in Sri 
Lanka for commercial cultivation and is grown on around a 268-ha area there. The 
mutant rice variety BW 372, having resistance to blast, bacterial leaf blight, brown 
planthopper, and gall midge, is widely cultivated in Sri Lanka. The other advanced, 
high yielding mutant lines, BW 03-1198 and BW 12-574, having resistance to blast 
and gall midge and moderate resistance to brown planthopper are some of the 
important lines ready to combat the menace of various pests and diseases arising 
due to climate change. In Bangladesh, a new chickpea mutant variety, Binasola-9, 
tolerant to root rot, and Botrytis gray mold, and pod borer, was released for com-
mercial cultivation. It matures in 115 days, gives a yield up to 1.7 t/ha, and is well 
adapted for Bangladesh’s drought-affected areas. In India, several mutant crop vari-
eties resistant to biotic stresses have been released for commercial cultivation 
(Table 3) (Kharkwal et al., 2004; Jagadeesan & Ganapathi, 2021). In cereals, rice 
mutant varieties are resistant to diseases like Helminthosporium, Bacterial Leaf 
Blight (BLB), Bacterial Leaf Streak (BLS), blast, sheath blight, neck blast, and 
insects like the brown planthopper (BPH) and stem borer, wheat mutant varieties are 
resistant to leaf and stem rust diseases; sorghum mutant varieties are resistant to 
charcoal rot, Downey mildew, head moulds, and stem borer; and barley mutant 
varieties are resistant to yellow rust, smut, Molya disease, and Cereal Cyst Nematode 
(CCN), were released for commercial cultivation. In pulse crops, resistant mutant 
lines in mungbean (Yellow mosaic virus, powdery mildew, Rhizoctonia root rot 
diseases, Corynespora leaf spot; black gram (Yellow mosaic virus, powdery mil-
dew); pigeon pea (Phytophthora blight, Fusarium wilt disease); cowpea (cowpea 
mosaic virus) were released. In wheat, stripe rust, also known as yellow rust, is a 
serious disease detrimental to wheat production. Mutant lines resistant to yellow 
rust were isolated from the wheat cultivars, PBW343 and HD2967, using gamma 
ray and electron beam irradiation (Bakshi et al., 2021). The downy mildew disease 
is one of the diseases that affects the grain yield of the Quinoa crop in Peru. Mutant 
lines tolerant to downy mildew disease were isolated from the gamma rays irradi-
ated population of the cultivar Amarilla Marangani (Gomez-Pando et al., 2021). In 
Bulgaria, mutation breeding using chemical mutagenesis (EMS) was undertaken to 
identify mutants in beans resistant to bacterial blight and halo blight diseases. From 
two parents, 50 putative mutant lines showing resistance to the above diseases were 
identified. In Bangladesh, Chickpea mutant, CPM-Kabuli, tolerant to root rot and 
Botrytis grey mould disease, and greater tolerance to pod borer insect-pest infesta-
tion, were isolated from gamma rays irradiated chickpea variety Desi Binasola-2 
(Begum et al., 2021). The other important biotic stress is weeds, which compete 
with crops for space, water, sunlight, and nutrients, ultimately compromising the 
crop yields. It also chokes up irrigation and drainage channels and acts as a host for 
various insects and diseases. Manual hand weeding and spraying of herbicide are 
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Table 3 Indian mutant crop varieties resistant to biotic and abiotic stresses

Mutant 
variety Mutagen Important traits

Cereals
Rice (Oryza saliva L.)
A U -1 Gamma rays Tolerant to alkalinity and salinity
Biraj X-rays Tolerant to submergence and moderately resistant to 

Helminthosporium

CNM-20 X-rays Resistant to Bacterial Leaf Blight (BLB), bacterial leaf 
streak (BLS), and brown planthopper (BPH)

CNM-25 X-rays Resistant to thrips and early maturity
CNM-31 X-rays Resistant to BLB, BLS, BPH, brown spot, and early 

maturity
CRM 49 NaN3 Resistant to blast
CRM 51 NaN3 Resistant to blast
CRM 53 EMS Resistant to blast
Hari Fast neutrons/mutant 

derivative
Tolerant to bacterial leaf blight and blast

HM 95 Gamma rays/ mutant 
derivative

Photo and thermo insensitive, early maturity, and dwarf

IIT 48 Ethylene oxide (EO) Earliness
IIT 60 EMS Earliness
Indira EMS Tolerant to blast, BLB, and stem borer
Jagannath X-rays Earliness
Lakshmi X-rays Drought tolerant and early maturity
Mohan Gamma rays Resistant to lodging, salinity, and semidwarf
PNR-162 Mutant derivative Early maturity and semidwarf
Prabhavati EMS Resistant to lodging and tolerant to iron chlorosis
Rasmi Gamma rays Tolerant to salinity
Savitri Mutant derivative Tolerant to blast and sheath blight
TCDM-1 Gamma rays Tolerant to bacterial leaf blight, neck blast and stem 

borer, and semidwarf
TKR Kolam Gamma rays/ mutant 

derivative
Resistant to lodging

Vikram- 
TCR

Gamma rays Lodging resistant, drought tolerant, and early maturing

Wheat
NP 836 X-rays Resistant to rust
HW 1095 Gamma rays Resistant to leaf and stem rust diseases
Sorghum
SPV-80 X-rays Tolerant to Striga
SPV-126 Mutant derivative Resistant to charcoal rot, Downey mildew, head moulds, 

and stem borer
Barley
BH-75 Mutant derivative Resistant to yellow rust and cereal cyst nematode (CCN)

(continued)
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Table 3 (continued)

Mutant 
variety Mutagen Important traits

DL-253 Gamma rays +EMS Resistant to smut and yellow rust diseases
Karan-3 Mutant derivative Resistant to lodging and dwarf
Karan-4 Mutant derivative Resistant to lodging and semidwarf
Karan-265 Mutant derivative Resistant to lodging and dwarf
RD-2035 RD-137 x PL-IOI Resistant to CNN and early maturity
Rajkiran Mutant derivative Resistant to Molya disease
Pulses
French bean
Pusa Parvati X-rays, wax podded Early and resistant to mosaic and powdery mildew
Mungbean
TJM-3 Gamma rays/ mutant 

derivative
Resistant to yellow mosaic virus, powdery mildew, and 
Rhizoctonia root rot diseases

TM-96-2 Gamma rays/ mutant 
derivative

Resistant to Corynespora leaf spot, powdery mildew

TM-2000-2 Gamma rays/ mutant 
derivative

Resistant to powdery mildew

Urdbean or blackgram
TU 94-2 Gamma rays/ mutant 

derivative
Resistant to yellow mosaic virus

TU-40 Gamma rays/ mutant 
derivative

Resistance to powdery mildew

Pigeonpea
TT-401 Fast neutrons/ mutant 

derivative
Tolerant to pod borer and pod fly damage

TJT-501 Fast neutrons/ mutant 
derivative

Tolerant to Phytophthora blight

PKV-TARA Fast neutrons/ mutant 
derivative

Resistant to fusarium wilt disease

Cowpea
TC 901 Gamma rays Resistant to cowpea mosaic virus
Oilseeds
Groundnut
TAG 24 Gamma rays, x rays/ / 

mutant derivative
Salinity and drought tolerance

TG-26 Gamma rays/ mutant 
derivative

Iron chlorosis tolerance, salinity tolerance

TG 37A Gamma rays/ mutant 
derivative

Drought tolerance

Soybean
TAMS 
98–21

Gamma rays Resistant to Myrothecium leaf spot, bacterial pustules, 
and soybean mosaic virus diseases

Mustard
TPM 1 Beta Tolerant to powdery mildew
Linseed
TL 99 Mutant derivative Moderately resistant to powdery mildew, Alternaria 

blight, and resistant to rust
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the methods used to control weeds but are not profitable because of labor charges, 
which increase production costs. Secondly, the use of herbicides causes soil, air, and 
water pollution. The development of herbicide-tolerant crops will help to overcome 
the problems of labor shortage and cost, as well as the negative effect of herbicides 
on the ecosystem. Several mutant lines tolerant to imazethapyr herbicide (rice and 
lentil), sulfonylurea herbicides (soybean, wheat), imidazolinines, and sulfonylurea 
(sunflower) were developed using chemical mutagens (Tan & Bowe, 2012).

4  Strategies to Overcome the Negative Impact 
of Climate Change

Climate change hampers agricultural productivity by disturbing the agro-ecological 
environment. The rise in global temperatures, variation in rainfall patterns, and 
increased pressure from biotic and abiotic stresses pose significant risks to agricul-
ture. The various stresses encountered by plants in the field affect crop production. 
The various biochemical and physiological processes in plant cells are disturbed by 
stress. The negative impact of climate change can only be managed by climate- 
smart agriculture. Approaches to tackle situations arising due to climate will have a 
long-lasting effect on agriculture and food security. Genetic improvement for toler-
ance of temperature and drought stress is an important component in stabilizing 
food crop production in the tropics. This will require a combination of agronomy 
and plant breeding solutions, like altering the time of planting, seedbed preparation, 
mulching, and irrigation, the development of new ideotypes and early maturing 
plants, and development of efficient screening techniques. Crops grown in saline 
and heavy metal toxic soils should be able to use all the available water in the soil 
and have high water use efficiency. Therefore, the development of genotypes 
requires high early vigor, a large leaf area canopy to prevent excess evaporation 
from the soil surface, a deep root system, and good salt excluders. In the present 
situation of climate change, plant roots play an important role in protecting plant 
growth through self-modifications. During drought situations, there is inhibition of 
lateral root growth and an increase in primary and secondary root growth is observed. 
The characteristics, like deep rooting or root angle, help to improve vegetative 
growth and subsequent increase in plant yield (El Hassouni et al., 2018). The role of 
roots in enhancing crop yield is well-known (Jia et al., 2019), and therefore more 
emphasis should be given to improving root architecture (Koevoets et al., 2016).

The strategies adopted by the farmers to tackle the situation arising from climate 
change include modified cultural practices like growing early maturing crops, alter-
ing sowing and harvesting dates, and crop rotations. The development and cultiva-
tion of varieties tolerant to various biotic and abiotic stresses are one of the best 
policies to sustain productivity in these unavoidable circumstances arising due to 
climate change. The best solution is to develop tolerant varieties resistant to biotic 
and abiotic stresses by conventional breeding methods like introduction, selection, 
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germplasm collection, and hybridization. Each environment poses a different set of 
problems, and in marginal environments where the climate is highly variable, it is 
often difficult to define precisely the causes of crop failure or yield reduction. 
Therefore, the adverse effect of climate change challenges the breeder to set the 
breeding objective for each component of biotic and abiotic stresses. Therefore, 
multi-trait breeding schemes such as tandem selection, independent culling, and 
index selection (Falconer, 1960) need to be chalked out.

Molecular marker technology offers another powerful tool to combat complex 
genetic systems controlling abiotic stress resistance in plants. The other new bio-
technology methods like Genome-wide association studies (GWAS), Genomic 
Selection (GS) with high throughput phenotyping and genotyping for identifying 
the different genes, Genetic Engineering and Genome Editing (CRISPR/Cas9) 
strategies can also be applied to tackle the problem of climate change (Karavolias 
et al., 2021). Genetic modification through biotechnology is another modern tool 
for developing transgenic plants to tackle climate change. Genome editing (GE) is 
one of the latest biotechnology methods to modify the plant genome by means of 
sequence-specific nucleases. To find out novel variation patterns and determine if 
the genes have functions in significant ecological traits, molecular marker studies 
are carried out in the population genomics (Keurentjes et al., 2008). Modern bio-
technology methods are currently available to deal with the consequences of climate 
change; however, each method has its own limitations. However, a large number of 
breeding traits are complex quantitative traits, and therefore, gene editing or molec-
ular breeding techniques based on one or a few genes are not ideal for the improve-
ment of quantitative traits (Holme et al., 2019).

In the past, different plant breeding methods have helped to increase the diversity 
of crop germplasm by developing genetically better varieties for cultivation. Step by 
step improvements in traditional plant breeding techniques like distant hybridiza-
tion, mutagenesis, tissue culture-based approaches, and molecular breeding have 
been applied to increase crop production. Development of crop varieties tolerant to 
rapidly changing environmental conditions using genetic resources will be an 
important part of agricultural adaptation to climate change. The genetic resources 
need to be built up by creating new genetic variability in seed propagated crop 
plants. Genetic improvement of crop plants is a continuous endeavor, and the suc-
cess of a crop improvement program depends on the availability of large genetic 
variability, which a plant breeder can combine to generate new varieties (Oladosu et 
al., 2016). While some plant species of cultivated crops have rich genetic diversity, 
others have very limited genetic variation. There are large numbers of instances in 
the past where naturally occurring mutations served an important role in crop 
improvement. Plant breeders depend on genetic diversity to develop new and 
improved cultivars with desirable traits by means of hybridization, recombination, 
and mutation (spontaneous and induced). Therefore, conventional breeding meth-
ods, including mutation breeding, are the answer for combating the negative effects 
of climate change. The main objective of induced mutations is to create genetic 
variability and rectify the lacunae in the well-adapted variety. Mutation breeding 
has been universally accepted as one of the plant breeding methods, and a large 
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amount of genetic variability has been induced by various mutagens (Sarsu et al., 
2020). Crop improvement through mutation breeding has resulted in the develop-
ment of improved varieties that are directly used for commercial cultivation or in 
recombination breeding. Genetic variability for almost all the quantitative and qual-
itative characters has been created using induced mutations. In the future, the objec-
tive of plant breeding needs to be focused on creating mutants for improved plant 
architecture, early maturity, better nodulation, photo insensitiveness, and resistance 
to biotic and abiotic stresses.

5  Conclusion

Climate variability increases the susceptibility of seed propagated crops to various 
types of stresses. The crop yield and productivity are hampered because of different 
biotic and abiotic stresses. Rapid changes in environmental conditions increase the 
chances of disease epidemics. Drought, flooding, salinity, and heavy metal toxicity 
are the abiotic stresses that inhibit crop growth and productivity. In the future, the 
objectives of plant breeding should give more emphasis to improving the root sys-
tem since it manages the plant system during various stresses. Development of vari-
eties with improved plant architecture, early maturity, better nodulation, photo 
insensitiveness, and resistance to biotic and abiotic stresses will help in times of 
drastic climate change and sustain crop productivity. The use of induced mutations 
over the past five decades has played a major role in the development of superior 
plant varieties having resistance to biotic and abiotic stresses in the entire world, 
and the majority are seed propagated crops. Most of the existing mutant varieties of 
seed propagated crops are well adapted to adverse climatic conditions. In the cur-
rent era of modern biotechnology, mutation breeding will still play an important 
role in the development of elite mutant varieties for the drastic climate change.
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Abstract Practices of agriculture and plant breeding approaches are indispensable 
for feeding the populaces of the world. In agriculture, the grain legumes occupy a 
unique position for their value as food and fodder, their role in biological nitrogen 
fixation, and as industrial raw materials. There are several reasons for the low pro-
ductivity of pulses, which include a lack of high yielding genotypes, the vagaries of 
the monsoon, sowing on marginal lands under rain-fed conditions, negligence of 
plant protection, and imbalances of plant nutrients. Lack of genetic variability limits 
the scope of selection for better genotypes. For improvement in seed yield, genetic 
reconstitution of such crops is required to evolve better plant types. Mutation breed-
ing has proven beneficial to upsurge the existing germplasm variability for improv-
ing certain specific traits of the varieties. By integrating molecular high throughput 
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mutation screening techniques, induced mutations could increase the required 
genetic diversity for the improvement of pulses, particularly lentils.

Keywords Food security · Mutagenesis · Mutagens · In vitro technologies · Soma 
clonal variation · Tissue culture

1  Introduction

Pulses, or grain legumes, are important crops that provide high-quality proteins in 
developing countries, including India. Pulses, designated as the chief components 
of agricultural food crops, are consumed by the predominantly substantial vegetar-
ian population of India. In dietetic terms, pulses match cereals in terms of protein 
and minerals, besides serving as a rotation crop with cereals, thereby lessening the 
soil pathogens and improving the physical properties of the soil. Pulses build up a 
mechanism for fixing atmospheric nitrogen to meet their nitrogen requirements 
(Wani et al., 2021; Raina et al., 2022a). In India, pulses are generally grown with 
minimum resource inputs, so they are less pricey than animal proteins.

Cultivated in rain-fed environments, pulses usually do not require rigorous 
irrigation facilities which qualifies them to grow even in such soils that are not 
favorable for the cultivation of cereals and cash crops. Moreover, pulses possess 
several other useful qualities, such as improving soil fertility, fitting in mixed and 
intercropping systems, and providing green pods as vegetables for humans and 
feedstuff for livestock. Despite limitations like an unfavorable environment, a dearth 
of superior seeds, a lack of proper post-harvest management, and deficient 
marketability, India has been successful to raise the annual pulse production from 
8.41 to 23.02 million tonnes owing to an area expansion from 19.09 million hectares 
in 1950–51 to 27.87 million hectares in 2019–20 and filling a yield gap from 441 to 
826 kg/ha (Table 1). In world agriculture, legumes are specially cultivated for food 
proteins (Khadke & Kothekar, 2011; Raina et al., 2022b; Rasik et al., 2022).

A large number of legume species, hitherto unexplored, have great potential for 
not only contributing as a major source of dietary protein for humans but also pro-
viding excellent fodder for livestock. The Food and Agriculture Organization (FAO) 
of the United Nations recognizes 10 primary and 5 minor pulse crops cultivated 
globally in over 105 countries. From the production perspective, dry beans (26.8 mt), 
dry pea (14.3 mt), chickpea (12.0 mt), cowpea (7.69 mt), lentil (6.3 mt), and pigeon 
pea (4.4 mt) are of utmost importance (FAO, 2017). Among the ten primary pulse 
crops recognized by the FAO, lentil is indispensable. In 1950–51, the percent share 
of pulses in the total food-grain basket in India, vis-à-vis area, production, and pro-
ductivity, was 19.62, 16.55, and 84.48, respectively. This trend continued till 
1960–61 and started dwindling from 1970–71 due to non-advancement in the pro-
duction technologies of pulses as compared to other food grains. In 2019–20, the 
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Table 1 Share of pulses to total food grains in India

Year
Pulses Food grains Pulses % to food grains
A P Y A P Y A P Y

1950–51 19.09 8.41 441 97.32 50.82 522 19.62 16.55 84.48
1960–61 23.56 12.70 539 115.58 82.02 710 20.38 15.48 75.92
1970–71 22.54 11.82 524 124.32 108.42 872 18.13 10.90 60.09
1980–81 22.46 10.63 473 126.67 129.59 1023 17.73 8.20 46.24
1990–91 24.66 14.26 578 127.84 176.39 1380 19.29 8.08 41.88
1995–96 22.28 12.31 552 121.01 180.42 1491 18.41 6.82 37.02
2000–01 20.35 11.08 544 121.05 196.81 1626 16.81 5.63 33.46
2001–02 22.01 13.37 607 122.78 212.85 1734 17.93 6.28 35.01
2002–03 20.50 11.13 543 113.86 174.77 1535 18.00 6.37 35.37
2003–04 23.46 14.91 635 123.45 213.19 1727 19.00 6.99 36.77
2004–05 22.76 13.13 577 120.00 198.36 1652 18.97 6.62 34.93
2005–06 23.39 13.39 598 121.60 208.60 1715 18.41 6.42 34.87
2006–07 23.76 14.11 594 124.07 211.78 1707 19.15 6.66 34.80
2007–08 23.63 14.76 625 124.07 230.78 1860 19.05 6.40 33.58
2008–09 22.09 14.57 660 122.83 234.47 1909 17.98 6.21 34.55
2009–10 23.28 14.66 630 121.33 218.11 1798 19.19 6.72 35.03
2010–11 26.40 18.24 691 126.67 244.49 1930 20.84 7.46 35.80
2011–12 24.46 17.09 699 124.76 259.32 2079 19.61 6.59 33.61
2012–13 23.25 18.34 789 120.77 257.12 2129 19.25 7.13 37.06
2013–14 25.21 19.25 764 125.04 265.04 2120 20.16 7.26 36.03
2014–15 23.10 17.16 743 122.07 252.67 2069 18.92 6.79 35.91
2015–16 24.91 16.35 656 123.22 251.57 2042 20 7 32
2016–17 29.45 23.13 786 129.23 275.11 2129 23 8 –
2017–18 29.81 25.42 853 127.52 285.01 2234 23 9 –
2018–19 29.16 22.08 757 124.78 285.21 2286 23 8 –
2019–20* 27.87 23.02 826 124.77 291.95 2340 22 8 –

Source: http://dpd.dacnet.nic.in; DES, Ministry of Agri. & FW (DAC&FW), Govt. of India
*III Advance Estimate
A million hectares, P million tonnes, Y kg/ha

production has gone down to 8% as compared to other food grains (Table 1). Even 
though this crop group is imperative from a nutritional perspective, there has been 
no significant rise in area and production recorded from 1950–51 to 2009–10. 
Nevertheless, substantial progress in area and production was recorded from 
2010–11 to 2018–19. Due to the progression in infrastructural and irrigation ameni-
ties, the pulse crops get sidelined treatment, which pushes them to nutrient deficient 
and marginal land pieces (http://dpd.dacnet.nic.in), thereby leading to the emer-
gence of poor crops with deficient productivity and poor seed quality.
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2  Origin, Area, Production, and Productivity of Lentil

Lentil (Lens culinaris Medik) is an annual herb, erect in growth, light green in color, 
freely branched, with a slender stem and soft, hairy foliage (Fig. 1). Being one of 
the oldest cultivated legume crops, lentil originated in the Fertile Crescent of the 
Near East and then spread to Europe, the Middle East, Northern Africa, and the 
Indo-Gangetic plains (Ford et al., 2007); and it was domesticated in the Near East 
arc in early Neolithic times (Ladizinsky, 1979a). Lentil is an important crop of dry-
land agriculture and a valuable human food, mostly consumed as dry seeds. The 
straw and pod walls have a high food value, and the husk is used as livestock feed.

India stood first in the area and second in production of lentils with 43% and 23% 
of the global area and production, respectively. New Zealand recorded the highest 
yield of 2667 kg/ha followed by China with a yield of 2239 kg/ha. Canada ranked 
first in production (38%) producing a yield of 1971 kg/ha followed by India (23%) 
producing a yield of 600  kg/ha (Table  2). However, as per the average data of 
2014–18 (Table 3), India ranked second in area and production, with 30% and 20% 
of world area and production, respectively.

Lentil (2n  =  14), having a large genome of 41,063  Mbp (Arumuganathan & 
Earle, 1991), is an important pulse crop of the winter season and grows in nearly all 
parts of India as an intercrop or pure crop. The large chromosome size and small 
chromosome number make lentils suitable material for cytogenetic studies. In India, 
the area, production, and productivity of lentils during 2019–20* were 1.32 million 
hectares, 1.18 million tonnes, and 894 kg/ha, respectively (Table 4). Being a cool- 
season crop, lentil production is mostly narrowed to northern and central India. 
Uttar Pradesh, Madhya Pradesh, West Bengal, Bihar, and Jharkhand are the major 
lentil-producing states of India on the basis of their percentage share of production 
during 2019–20* (Table 5; Fig. 2).

Fig. 1 Lentil sprout buds. (Source: pixabay.com)
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Table 2 Global ranking in area, production, and yield of lentil: major countries

Rank

Area (Lakh ha) Production (Lakh tonnes) Yield (kg/ha)

Country Area
% to 
world Country Production

% to 
world Country Yield

1 India 18.90 43.50 Canada 18.805 37.98 New 
Zealand

2667

2 Canada 9.542 21.96 India 11.340 22.90 China 2239
3 Turkey 2.812 6.47 Turkey 4.170 8.42 Australia 2237
4 Nepal 2.065 4.75 Australia 3.241 6.55 Egypt 2167
5 Australia 1.449 3.34 USA 2.277 4.60 Canada 1971
6 USA 1.404 3.23 Nepal 2.269 4.58 USA 1621
7 Syrian 

Arab
1.280 2.95 China 1.500 3.03 France 1613

8 Iran 1.200 2.76 Ethiopia 1.298 2.62 Turkey 1483
9 Ethiopia 1.081 2.49 Syrian 

Arab
1.250 2.52 Armenia 1308

10 Bangladesh 0.898 2.07 Bangladesh 0.930 1.88 Argentina 1250
11 Australia 1.449 3.34 USA 2.277 4.60 Canada 1971

India 600
World 43.447 World 49.517 World 1140

Source: FAO Statistics 2013

Table 3 Area (lakh hectares), production (lakh tonnes), and yield (kg/ha) of lentils in major 
countries (Average: 2014–18)

Country Area % Contribution Production % Contribution Yield

Canada 17.98 34 27.03 46 1503
India 15.92 30 11.50 20 722
Turkey 2.53 5 3.65 6 1441
USA 2.74 5 3.33 6 1218
Nepal 2.04 4 2.31 4 1131
All above 41.21 (79%) 47.82 (81%) 1160
World 52.23 58.84 1127

Source: Lentil.cdr (dacnet.nic.in); Ministry of Agriculture and Farmers Welfare, Department of 
Agriculture, Cooperation and Farmers Welfare, Directorate of Pulses Development, Vindhyachal 
Bhavan, Bhopal, Madhya Pradesh

The country’s area under lentil cultivation was 13.90  lakh hectares, with a 
production of 10.93 lakh tonnes (twelfth plan 2012–15; Fig. 3, Table 6). Madhya 
Pradesh was ranked first with respect to acreage at 39.59% (5.50  lakh hectares), 
followed by Uttar Pradesh at 33.95% and Bihar at 11.29%. Regarding production, 
Uttar Pradesh stood first with 34.36% (3.76  lakh tonnes) followed by Madhya 
Pradesh with 30.73% (3.36 lakh tonnes) and Bihar with 17.35% (1.90 lakh tonnes). 
The state of Bihar recorded the highest yield of 1209 kg/ha followed by Rajasthan 
and West Bengal with 962 kg/ha and 960 kg/ha, respectively. The national yield 
average was 786 kg/ha. The lowest yield of 327 kg/ha was recorded in the state of 
Chhattisgarh, followed by Maharashtra (400  kg/ha) and Madhya Pradesh 
(610 kg/ha).
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Table 4 All-India area, production, and yield of lentil

Year Area Production Yield

2000–01 1.48 0.92 619
2001–02 1.47 0.97 664
2002–03 1.38 0.87 634
2003–04 1.40 1.04 743
2004–05 1.47 0.99 675
2005–06 1.51 0.95 629
2006–07 1.47 0.91 621
2007–08 1.31 0.81 622
2008–09 1.38 0.95 693
2009–10 1.48 1.03 697
2010–11 1.60 0.94 591
2011–12 1.56 1.06 678
2012–13 1.42 1.13 797
2013–14 1.34 1.02 761
2014–15 1.47 1.04 705
2015–16 1.28 0.98 765
2016–17 1.46 1.22 838
2017–18 1.55 1.62 1047
2018–19 1.36 1.23 901
2019–20* 1.32 1.18 894

Source: Directorate of Economics & Statistics, DAC&FW; Agricultural Statistics at a Glance – 
2020 (English version).pdf (dacnet.nic.in)
*4th Advance Estimates
Area – million hectares, Production – million tonnes, Yield – kg/ha

3  Nutrient Composition and Growth Habit of Lentil

Lentil is a valuable protein-rich human food. The protein content ranges from 24 to 
100 g. It is an excellent dietary supplement due to its high protein content and 
nutrient density, which stabilize the nutritive insufficiencies of a cereal-based diet. 
The pulse plants, during their cultivation, augment nutrient status by accumulating 
nitrogen, carbon, and organic matter in the soil besides increasing the farmer’s rev-
enue with high market returns. It also has high levels of dietary fiber, vitamins, and 
carbohydrates (Erskine et al., 1990). The young pods are eaten as vegetables and 
ground into flour to make a variety of preparations. In the Indian subcontinent, lentil 
is commonly consumed as “dal.” Moreover, bold and attractive-looking lentil grains 
have a high demand for exportation at premium prices. Lentils are supposed to pre-
vent constipation and represent a major source of lectins, which are used for treating 
the prophylaxis of retroviral infections, including HIV.  Also, lentils have anti- 
carcinogenic, blood pressure-lowering, hypocholesterolemic and hypoglycemic 
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Fig. 2 Comparative area (million hectares), production (million tonnes), and yield (tonnes/ha) in 
major lentil producing states of India during 2018–19 and 2019–20*. (Source: Directorate of 
Economics & Statistics, DAC&FW; *4th Advance Estimate)

Fig. 3 Plan wise national scenario of lentil. (Source: http://dpd.dacnet.nic.in)

effects (Faris et al., 2012). The comprehensive nutritional composition of lentils is 
given in Tables 7 and 8.

Lentil plants are slender, semi-erect, with compound leaves (4–7 pairs of leaflets) 
that terminate at apices with a tendril. Plants normally range from 20–30 cm tall. 
Flowering begins from lower to upper branches and continues till harvest. Pods are 
oblong and smooth, about 1.3 cm long, and contain one or two lens-shaped seeds. 
Flowers are self-pollinated and are white or pale blue in color. Plants tend to lodge 
at maturity due to their weak stems. Germination is hypogeal.

M. R. Wani et al.
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Table 6 Plan-wise lentil scenario – states

State Xth Plan % to AI XIth Plan % to AI XIIth Plan % to AI State

Assam A 0.20 1.39 0.22 1.50 0.29 2.12
P 0.11 1.15 0.11 1.15 0.20 1.80
Y 548 511 668

Bihar A 1.72 11.91 1.81 12.36 1.57 11.29
P 1.35 14.17 1.59 16.56 1.90 17.35
Y 787 878 1209

Chhattisgarh A 0.17 1.18 0.16 1.09 0.14 1.00
P 0.05 0.52 0.05 0.52 0.05 0.42
Y 212 322 327

Haryana A 0.06 0.42 0.04 0.27 0.05 0.39
P 0.05 0.52 0.03 0.31 0.05 0.46
Y 900 783 935

Madhya Pradesh A 5.06 35.04 5.5 37.57 5.50 39.59
P 2.43 25.50 2.33 24.27 3.36 30.73
Y 481 424 610

Maharashtra A 0.07 0.48 0.07 0.48 0.04 0.26
P 0.03 0.31 0.03 0.31 0.01 0.13
Y 368 431 400

Punjab A 0.03 0.21 0.01 0.07 0.01 0.061
P 0.02 0.21 0.01 0.10 0.01 0.050
Y 560 673 647

Rajasthan A 0.19 1.32 0.28 1.91 0.31 2.23
P 0.19 1.99 0.25 2.60 0.30 2.72
Y 995 917 962

Uttar Pradesh A 5.96 41.27 5.56 37.98 4.72 33.95
P 4.65 48.79 4.44 46.25 3.76 34.36
Y 781 799 796

Uttarakhand A 0.16 1.11 0.15 1.02 0.11 0.82
P 0.08 0.84 0.09 0.94 0.10 0.89
Y 494 605 847

West Bengal A 0.65 4.50 0.55 3.76 0.65 4.66
P 0.45 4.72 0.44 4.58 0.62 5.68
Y 686 791 960

All-India A 14.44 14.64 13.90
P 9.53 9.60 10.93
Y 660 656 786

Source: http://dpd.dacnet.nic.in
AI All-India, A lakh hectares, P lakh tonnes, Y kg/ha
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Table 7 Nutrient composition of lentil (raw seeds)

Nutrient Unit Value per 100 g

Proximates
Water g 8.26
Energy kcal 352
Total lipid (fat) g 1.06
Carbohydrate g 63.35
Fiber, total dietary g 10.7
Sugars, total g 2.03
Minerals
Calcium, Ca mg 35
Iron, Fe mg 6.51
Magnesium, Mg mg 47
Phosphorus, P mg 281
Potassium, K mg 677
Sodium, Na mg 6
Zinc, Zn mg 3.27
Vitamins
Vitamin C, total ascorbic acid mg 4.5
Thiamin mg 0.873
Riboflavin mg 0.211
Niacin mg 2.605
Vitamin B-6 mg 0.540
Folate, DFE μg 479
Vitamin B-12 μg 0.00
Vitamin A, RAE μg 2
Vitamin A, IU IU 39
Vitamin E (alpha-tocopherol) mg 0.49
Vitamin D (D2 + D3) μg 0.0
Vitamin D IU 0
Vitamin K (phylloquinone) μg 5.0
Lipids
Fatty acids, total saturated g 0.154
Fatty acids, total 
monounsaturated

g 0.193

Fatty acids, total 
polyunsaturated

g 0.526

Fatty acids, total trans g 0.000
Cholesterol mg 0
Others
Caffeine mg 0

Nutrient values and weights are for edible portions
Source: https://www.nutritionvalue.org/Lentils%2C_raw_nutritional_value.html

M. R. Wani et al.

https://www.nutritionvalue.org/Lentils,_raw_nutritional_value.html


241

Table 8 Amino acid composition of lentil (g/100-g protein)

Amino acid Value per 100 g

Protein 24.63 g
Alanine 1.029 g
Arginine 1.903 g
Aspartic acid 2.725 g
Cysteine 0.322 g
Glutamic acid 3.819 g
Glycine 1.002 g
Histidine 0.693 g
Isoleucine 1.065 g
Leucine 1.786 g
Lysine 1.720 g
Methionine 0.210 g
Phenylalanine 1.215 g
Proline 1.029 g
Serine 1.136 g
Threonine 0.882 g
Tryptophan 0.221 g
Tyrosine 0.658 g
Valine 1.223 g

Source: https://www.nutritionvalue.org/Lentils%2C_raw_nutritional_value.html

4  Varieties, Climatic Conditions, Insect Pests, and Diseases 
of Lentil

The varieties of lentils are broadly classified as microsperma and macrosperma 
types. Microsperma is small, with round seeds about 2–6 mm in diameter, cotyle-
dons are yellow or orange, and the testa ranges from pale yellow to black in color. 
Macrosperma, on the other hand, has large, flattened seeds, 6–9 mm in diameter, 
having yellow cotyledons and pale green testa. In India, large seeded (macrosperma) 
types are mostly cultivated in the central zone, such as the Bundelkhand regions of 
Uttar Pradesh, Madhya Pradesh, and Maharashtra, whereas small seeded (micro-
sperma) types are grown in Indo-Gangetic plains such as Bihar, Eastern Uttar 
Pradesh, West Bengal, and Assam. Bold seeded types are generally poor yielders.

Lentil is adapted to cool growing conditions. It is a resilient crop, tolerating frost 
and severe winters to a greater extent. Well-drained loam soils are best suited for 
lentil cultivation. Extreme drought and high temperatures during the flowering and 
pod-filling stages reduce the yield. The world is expecting 30% population growth 
by 2050, which puts an unprecedented demand on already climate threatened agri-
cultural production. Pulses, especially lentils, have great potential to solve global 
food insecurity in changing climates. Lentil is infected by many insect pests and 
aphids. Aphis craccivora is dominant among aphid species that attack and damage 
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the crop. Spiny pod borer (Etiella zinckenella) causes minor to moderate damage to 
lentil pods. The major diseases of lentils are wilt (Fusarium oxysporum) and rust 
(Uromyces fabae). However, the occasional incidence of stem root rot, powdery 
mildew, and Alternaria blight are also reported, particularly under humid climatic 
conditions.

5  Limitations and Scope of Traditional and Modern 
Plant Breeding

In the late ’70 s and early ’80 s, inheritance studies of several morphological and 
agronomical traits, viz., seed coat, epicotyl and flower color, dehiscence of the pod, 
etc., showed that most of the traits are monogenic and useful as morphological mark-
ers (Haddad et al., 1978; Ladizinsky, 1979b; Muehlbauer & Slinkard, 1981). In len-
til, Zamir and Ladizinsky (1984) reported the first genetic linkage analysis. The first 
use of recombinant inbred lines (RILs) for mapping lentil markers was reported by 
Tahir et al. (1994), who determined six linkage groups in which they mapped four 
morphological and 17 isozyme markers. The use of intraspecific crosses was rare in 
the past for the development of linkage maps due to the limited availability of varia-
tion in cultivated species. However, segregating populations of lentils from intraspe-
cific crosses has been utilized in several classical mapping experiments to establish 
linkage groups among the morphological markers. Linkage relationships among 
seed coat pattern, pod pubescence, and flowering time (Sarker et  al., 1999), leaf 
color, and plant pubescence (Hoque et al., 2002) were demonstrated in lentil. Kumar 
et al. (2004, a, b) found two linkage groups among different morphological markers 
in lentils, namely, leaf pigmentation, stem pigmentation, pod pigmentation, erect 
growth habit and color of the leaf, pubescence of the plant, number of leaflets per 
leaf, and plant height.

Breeding objectives of lentils usually differ depending on the difficulties and 
primacies of farmers and consumers of the specific regions. Higher stable seed 
yield, disease resistance, and better seed quality are the main breeding goals of the 
key exporting countries; however, for import-dependent countries like India, 
increased yield per hectare remains the key resolve (Muehlbauer et al., 1995). Local 
factors and several biotic and abiotic stresses are the main impediments toward the 
global yield improvement of lentils, particularly in resource-deprived countries 
(Tivoli et al., 2006; Muehlbauer et al., 2006; Sinclair & Vadez, 2012). Though in 
lentils, traditional breeding has been efficacious over the past in addressing main 
production constraints and developing varieties resistant to major biotic or abiotic 
stresses (Muehlbauer et al., 2006; Materne & McNeil, 2007), its scope is limited 
attributable to low genetic variability, scarceness of genetic information, and accu-
rate selection methods.

Molecular breeding has provided plant breeders with a reliable means to 
overcome these limitations for rapidly improving the crop. PCR-based markers 
have been proven to be a useful tool for indirect selection of desirable traits with 
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high accuracy that would otherwise be difficult or time-consuming using 
conventional methods. Currently, the regular use of markers in lentil breeding 
programs is very limited. In the near future, the sustainable implementation of 
advanced molecular techniques to develop novel markers for highly sought-after 
traits would accelerate the lentil improvement programs.

Being a self-pollinated crop, lentil predominantly has a low rate of outcrossing, 
which results in low genetic variability and restricts the trait improvement pro-
grams. Due to the dearth of sufficient natural variability, conventional methods of 
plant breeding had a limited scope for the improvement of lentils. In these circum-
stances, mutation breeding, a well-functioning branch of plant breeding, supple-
ments the conventional methods in a favorable manner (Gottschalk, 1986). Mutation 
breeding is widely exploited to modify one or a few traits in an otherwise outstand-
ing variety without altering its original genetic makeup and other phenotypic traits 
(Raina & Khan, 2020; Raina & Danish, 2018). In that sense, it provides a rapid 
method to improve indigenous crop varieties without going through exhaustive 
procedures of hybridization and backcrossing (Raina et  al., 2019; 
Sellapillaibanumathi et al., 2022). Induced mutagenesis is a powerful tool to gener-
ate new genetic variability in the traits of interest for boosting the breeding pro-
grams has already been established in different crop plants (Sharma, 1990; Reddy 
& Annadurai, 1992; Wani & Khan, 2003; Solanki, 2005; Wani et al., 2017; 2021; 
Wani, 2018, 2020, 2021; Amin et al., 2016, 2019; Goyal et al., 2019a, b, 2020a, b, 
2021a, b; Raina et al., 2020a, b, 2021, 2022d) and with the advent of marker-based 
selection techniques; the possibilities of improving the crop plants in general, and 
lentils in particular, have tremendously increased.

6  Mutagenesis in Lentil

6.1  Mutagenesis and Biological Damage

In biological material, mutagens induce biological damage, gene mutations, and 
chromosomal aberrations in the M1 generation. Out of these, gene and chromosomal 
mutations may pass on to the subsequent generations, while biological damage may 
remain confined to only the M1 generation. The study of biological damage in the 
M1 generation is normally used to appraise the mutagenic potency and sensitivity of 
the biological material. Biological effects represent injuries that can be determined 
cytologically and measured by growth reduction and death of the plant. The induc-
tion of mutations and their use in the development of mutant varieties in lentils are 
well documented by Sharma (1997) with different doses of gamma rays and NMU 
in microsperma and macrosperma lentils. A progressive reduction in seed germina-
tion, pollen fertility, seedling growth, and plant survival was reported with increas-
ing doses of mutagens in the M1 generation. Root length was more affected than 
shoot length concerning mutagenic treatments.

Based on M1 biological parameters, Sinha and Godward (1972) found 
macrosperma lentils to be more sensitive to mutagens than microsperma lentils. 
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Sarker and Sharma (1989) reported that mutagenic treatment induced significant 
biological damage in M1 parameters. However, the trend of mutagenic damage 
varied with different doses and durations of mutagenic treatments. Gamma rays 
drastically affected fertility and seedling height, while EMS and NEU severely 
impacted fertility, germination, and plant survival.

Different mutagenic treatments revealed differential trends vis-à-vis plant 
survival, plant height, and seeds per pod in variety K-85 of lentils (Tripathi & 
Dubey, 1992). Tufail et al. (1998) reported that the proportion of plant emergence 
and plant survival at maturity in varieties Pant L406, Masoor 85, Precoz, and L605 
decreased with a corresponding increase in radiation doses. Variety L605 appeared 
to be the most sensitive, followed by Pant L406, Masoor 85, and Precoz. Sharma 
and Sharma (1986), Sinha and Chaudhary (1987), and Kalia and Gupta (1988) 
reported greater radiosensitivity of macrosperma lentil, whereas Singh et al. (1989) 
reported that the microsperma variety Pant L639 was more sensitive than the 
macrosperma variety RAU101 to 5 to 25 kR doses of gamma rays. The difference 
in the radiosensitivity of varieties from both groups was attributed to the difference 
in their genetic backgrounds (Rajput & Siddiqui, 1981; Malik et al., 1988). Tyagi 
and Sharma (1981) reported that differences in radiosensitivity exist within and 
between microsperma and macrosperma groups and concluded that the varietal 
differences were more conspicuous than the inter-group ones.

6.2  Cytological Effects

The diploid chromosome number of lentils is 2n = 2× = 14. Two pairs of chromosomes 
are metacentric, two pairs are submetacentric, and three pairs are acrocentric. 
Cytological effects of physical and chemical mutagens were studied by Dixit (1985) 
in a variety of T-36 of lentils and reported direct linking of mitotic abnormalities 
with mutagenic dose. In comparison to gamma rays, NMU induced a lesser propor-
tion of anomalous cells. Combination treatments of gamma rays and NMU showed 
the direct additive effect. Similarly, NMU induced the highest percentage of abnor-
mal cells, as reported by Dixit and Dubey (1984). There was a direct association 
between the anomalies induced and the concentrations of mutagens applied. This 
statement agrees with Sinha and Godward’s (1968) observation of lentils. Mitotic 
anomalies were directly proportional with increasing mutagen doses in variety 
K-333 (Tripathi, 1995). The anomalies detected included clumping, fragmentation, 
bridges, laggards, and an unequal distribution of chromosomes at anaphase. 
Chromosomal aberrations play an important role in inducing sterility, thereby influ-
encing the recovery of mutations. Meiotic anomalies increased with increasing irra-
diation doses of gamma rays in variety T-36 of lentils. However, gamma rays and 
NMU in combination did not exhibit a synergistic effect on inducing meiotic abnor-
malities (Dixit & Dubey, 1983a).
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6.3  Chlorophyll and Morphological Mutations

The proficiency of different mutagens in bringing genetic variability for crop 
improvement is evaluated with the help of chlorophyll mutations, which are utilized 
as genetic markers in elementary and applied research. In NEU treatments, the inci-
dence of chlorophyll mutants such as viridis, xantha, and chlorina was reported to 
be higher as compared to EI and gamma rays (Solanki & Sharma, 2001; Sarker & 
Sharma, 1989). Gamma rays at a dose of 15 kR, induced xantha, albo-xantha, and 
tigrina types of chlorophyll mutants (Paul & Singh, 2002). Chemical mutagens 
induced a higher frequency of chlorophyll mutations than radiation (Sharma & 
Sharma, 1981b; Tripathi & Dubey, 1992; Reddy et al., 1993; Vandana et al., 1994). 
Varied effectiveness and efficiency of mutagens in inducing chlorophyll mutations 
were reported by Dixit and Dubey (1986) in lentils. Sharma and Sharma (1979) 
compared the effectiveness and efficiency of NMU using microsperma genotypes as 
test symbols. In all the varieties, the mutation rate per unit dose of NMU was 
approximately three times higher than that of gamma rays.

Singh and Singh (1989) confirmed three categories of chlorophyll mutations, 
viz., albina, xantha, and viridis, in microsperma and macrosperma varieties of len-
tils following mutagenic treatments with gamma rays, EMS, and hydroxylamine 
(HA). As compared to gamma rays and HA, EMS was found to be the most efficient 
mutagen. Moreover, microsperma variety appeared more sensitive toward muta-
genic agents than macrosperma variety indicating a possible role of seed size in the 
mutagenesis. Laskar and Khan (2017) studied the mutagenic effects of gamma rays 
and HZ in DPL-62 and Pant L-406 varieties of lentils, which resulted in the isola-
tion of several kinds of mutants with altered phenotypes. Gamma rays and HZ at 
moderate doses showed higher effectiveness and efficiency, whereas, for combina-
tion treatments with some inter-varietal exceptions, lower doses were found to be 
most effective and efficient. The frequency of induced mutations in the M2 genera-
tion appeared to have a direct association with mutagen-sensitive parameters in the 
M1 generation (Dixit, 1985; Tripathi, 1995). Hence, the extent of induced mutagen 
damage through the reduction in germination, seedling growth, plant survival, chro-
mosomal anomalies, and pollen and ovule sterility could be interconnected with 
mutational efficiency.

Induction of morphological mutations by physical or chemical mutagens in 
lentils was reported by various workers (Ramesh & Dhananjay, 1996; Solanki & 
Sharma, 1999; Laskar et  al., 2018a, b; Wani et  al., 2021). Sharma and Sharma 
(1979) studied the leaf mutation by treating the dry seeds of lentil with NMU and 
gamma rays. Leaf mutants isolated in M2 included the boat leaf mutant (3–4 boat- 
shaped leaflets per leaf) and the crinkled leaf mutant (short leaf having 6–8 small, 
overlapping, and irregularly shaped leaflets). The segregation pattern showed that 
the crinkled leaf mutation was controlled by a single recessive gene designated as 
“crl.” Sarker and Sharma (1986) studied the chlorophyll and morphological muta-
tions in lentils after treatments with gamma rays, EMS, NEU, and SA. Of all the 
four mutagens, NEU was found to be more effective in inducing chlorophyll as well 
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as morphological mutations. Among the morphological mutations, narrow leaf and 
tendrilled mutations were induced more frequently by NEU and EMS, whereas 
broadleaf and bushy dwarf mutants were higher in gamma rays and SA treatments.

As compared to gamma rays in the M2 and M3 generations, the frequency of 
macromutations was higher in EMS treatments (Tyagi & Gupta, 1991). Mutants for 
growth habit and foliage types were induced by EMS treatments, whereas mutants 
for flowering behavior, maturity, duration, and plant height were induced by SA 
treatments (Solanki et al., 2004; Khan et al., 2006; Solanki, 2005; Solanki & Phogat, 
2005). NMU induced sterile mutants and the mutants with tendrils instead of termi-
nal two to three leaflets (Sharma & Sharma, 1978a). Sterile plants with elongated 
peduncles and multi-floret inflorescences were also reported by Sharma and Sharma 
(1981a).

In lentil, mutations for plant height, growth habit, branching, stem structure, leaf 
morphology, inflorescence, calyx, flower, pod, fertility, and seed colour were 
reported by different workers (Sharma & Sharma, 1983; Sinha et al., 1987; Tyagi & 
Gupta, 1991; Ashutosh & Dubey, 1992; Vandana et al., 1994; Ramesh & Dhananjay, 
1996; Tyagi & Ramesh, 1998; Solanki & Sharma, 1999; Jeena & Singh, 2000). 
Based on the extent of height reduction, plant mutants were classified into dwarf, 
semidwarf, and bushy-dwarf types (Sharma & Sharma, 1982; Dixit & Dubey, 
1983b; Vandana et al., 1994). At places of emergence, the branches were fused with 
the main stem, and the plant looked like a bunch of closely merged branches, giving 
it a “bunchy top” appearance. The mutation was controlled by a single recessive 
gene, “fa,” besides inducing disease resistance in mutant lines (Bravo, 1983).

6.4  Induced Variability for Quantitative Traits

Due to the absence of adequate natural variability, conventional methods of plant 
breeding, i.e., introduction, selection, and hybridization, had a limited scope for 
crop improvement, particularly in pulses. New genetic variability demands could be 
achieved by crossing landraces with exotic material and/or through mutation breed-
ing. Mutation breeding is a potent tool for creating genetic variability, particularly 
in species where hybridization is difficult or naturally existing variability has been 
exhausted (Raina et al., 2016, 2022c; Khursheed et al., 2016; Laskar et al., 2015; 
Tantray et al., 2017; Sellapillai et al., 2022). It is a sustainable technique available 
with plant breeders to broaden the genetic bases of crop plants and to create a gene 
pool of numerous desirable agro-economic traits (Raina et al., 2017) and is rela-
tively cheaper to perform at a large scale (Siddiqui & Khan, 1999). The conven-
tional mutagenesis technique for crop improvement is undergoing a renaissance due 
to progressions in contemporary cutting-edge technologies. Under a changing cli-
mate, mutation induction is a recognized technique to create diversity in existing 
crop varieties to expand the degree of adaptability for crop biomass enhancement 
(Laskar et al., 2019).

The mutation technique is considered better than other methods of crop 
improvement because it requires the least investment of land and labor (Gustaffson, 
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1947). In recent times, a lot of work has been done on induced mutagenesis in 
various crop plants. In these experimental crops, the mutational effect varied with 
varying mutagens and mutagenic doses. Thus, selecting an optimum dose of a 
mutagen for a genotype is an important step in mutation breeding programs 
(Khursheed et al., 2015, 2018a, b, c). Improvement of high yielding varieties is the 
basic necessity of the time. Plant breeders over and across the country have adopted 
various crop improvement strategies for generating variability and designing 
genotypes with high yield potential. Among the various breeding methodologies 
adopted, mutation has been considered a potent tool in the generation of requisite 
variability. The use of mutations resulting from irradiation or chemical mutagens 
has not received much attention as a breeding method in lentils. However, genetic 
variability has been created for many qualitative and quantitative characters such as 
pod and seed size, plant height, number of branches per plant, number of pods per 
plant, number of seeds per pod, dwarfing, early maturity, seed yield, days to 
flowering, and plant type (Sharma & Sharma, 1978b, 1981c; Dixit & Dubey, 1986).

Complex traits such as yield or seed size may be influenced by several genes, 
each with a very small effect, as suggested by classical quantitative genetic theory. 
These genes are commonly known as polygenes (Mather & Jinks, 1971). The muta-
tion in polygenes is known as micromutation, and its usefulness in crop breeding 
has been emphasized by several workers (Lawrence, 1965; Scossiroli, 1966; Sindhu 
& Slinkard, 1983; Sinha & Chowdhary, 1984; Sarker & Sharma, 1988; Kalia & 
Gupta, 1989; Swarup et  al., 1991; Ashutosh & Dubey, 1992; Khan et  al., 2004; 
Khan & Wani, 2005; Khan & Wani, 2006; Khursheed et al., 2019). Experiments 
demonstrated that random mutations in quantitative traits could be induced in both 
positive and negative directions with the increase in variances. Such changes are 
due to increased genetic variation in the population (Yamaguchi, 2005). There are, 
however, conflicting reports as to whether mutations are induced equally in plus and 
minus directions or are unidirectional. Jalil and Yamaguchi (1964) observed in 
gamma-irradiated progenies of rice that, without selection, the mean values for seed 
size decreased due to successive irradiation. Moreover, subsequent irradiation with 
selection shifted the mean values toward the desired direction.

Physical and chemical mutagens in lentils have been used in the past, and as a 
result, varietal development has come up. Globally, up to the thirtieth of January 
2022 (https://mvd.iaea.org accessed on 30 January 2022), mutation breeding has 
been successful in developing 3348 mutant varieties of crop plants (Fig. 4), includ-
ing 466 varieties of pulses and 18 varieties of lentil. The principal contribution is 
from cereals (1596), followed by ornamental flowers (666), pulses (466), and edible 
oil crops (103). Among the 18 released mutant varieties of lentils, two varieties, 
namely, Ranjan and Rajendra Masoor 1 have been developed in India for various 
improved traits, particularly high yield, resistance to diseases, early maturity, and 
tolerance to cold. The description of lentil varieties released globally through muta-
genesis is depicted in Table 9.

This study concludes that although there are numerous ways of improving the 
varieties of lentil and other pulse crops through conventional and contemporary 
breeding methods, the methods need to be improved in such directions to accom-
plish better success in breeding programs for these nutritionally important crops.
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Table 9 Details of lentil varieties developed through mutation breeding

Mutant variety 
name Country

Year of 
registration

Developed 
by Main improved attributes

S-256 
(Ranjan)

India 1981 Irradiation High yield, spreading type

Rajendra 
Masoor 1

India 1996 100 Gy 
gamma 
rays

Low-temperature tolerance, early 
maturity, good for late sowing

Mutant 17 
MM

Bulgaria 1999 40 Gy 
gamma 
rays

Vigorous growth habit, large leaflet, 
pods, and seeds, resistance to 
anthracnose, Stemohylium, and 
viruses, high yield, drought tolerance, 
improved cooking quality

Zornitsa Bulgaria 2000 0.1% EMS High yield, high protein content 
(28.7%), good culinary and 
organoleptic quality, and resistance to 
anthracnose, viruses, and Ascochyta 
blight

Djudje Bulgaria 2000 30 Gy 
gamma 
rays

High yield, dwarf bushy habit, 
non-shattering, resistance to 
Fusarium and Botrytis, high protein 
content (27.9%), good culinary and 
organoleptic quality, suitable for 
mechanized harvesting

Binamasur-1 Bangladesh 2001 Chemical 
mutagen

High yield, tolerant to rust and blight, 
black seed coat

Elitsa Bulgaria 2001 40 Gy 
gamma 
rays

High yield (34.4%), resistance to 
major disease

(continued)

1596

466

666

103 21
65

68
363

Cereals Pulses Flowers Edible oil crops

Medicinal plants Fibre crops Fodder Others

Fig. 4 Number of mutant varieties of crop plants released in the world (Source: Joint FAO/IAEA, 
Vienna Mutant Variety Database (MVD); http://mvgs.iaea.org accessed on 30 January 2022)
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Table 9 (continued)

Mutant variety 
name Country

Year of 
registration

Developed 
by Main improved attributes

NIAB 
Masoor-2002

Pakistan 2002 Irradiation Erect growth habit, early maturity 
(120 days), black seed coat color, 
high grain yield, disease resistance, 
synchronous pod maturity

Verzuie Moldova, 
Republic

2004 250 Gy 
gamma 
rays

The main improved attributes are 
drought resistance, vegetative period, 
proteins, oils, fructose, glucose, 
starch, and cellulose.

Aurie Moldova, 
Republic

2005 250 Gy 
gamma 
rays

Drought resistance, high yield, early 
maturity, high protein content

Binamasur-2 Bangladesh 2005 200 Gy 
gamma 
rays

High yield, early maturity, and 
tolerance to rust and blight

Binamasur-3 Bangladesh 2005 0.5% EMS High yield, early maturity, rust, and 
blight tolerance

NIAB 
Masoor-2006

Pakistan 2006 200 Gy 
gamma 
rays

A higher number of pods, resistance 
to lodging, blight, and rust, and 
20–60% higher seed yield

Binamasur-5 Bangladesh 2011 200 Gy 
gamma 
rays

Early maturity, high yield

Binamasur-6 Bangladesh 2011 250 Gy 
gamma 
rays

Early maturity, high yield

Binamasur-8 Bangladesh 2014 200 Gy 
gamma 
rays

Early maturity, high yield

Binamasur-9 Bangladesh 2014 200 Gy 
gamma 
rays

Early maturity, high yield

Binamasur-11 Bangladesh 2017 200 Gy 
gamma 
rays

Early maturity, high yield, and plant 
architecture

Source: Joint FAO/IAEA, Vienna Mutant Variety Database (MVD); https://mvd.iaea.org accessed 
on 30 January 2022
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Abiotic Stress Tolerance and Nutritional 
Improvement in Chickpeas Through 
Recombination, Mutation, and Molecular 
Breeding
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Abstract The chickpea (Cicer areitinum L.), an old domesticated crop, is presently 
one of the top three legumes cultivated and consumed globally. It is a rich protein 
source for vegetarians and/or economically poor populations that cannot afford to 
buy meat or meat products on a daily basis. Chickpeas are cultivated in more than 
55 countries with varied climatic conditions. Depending on the area of cultivation, 
the crop faces varying abiotic stresses. The cultivation areas, specific abiotic 
stresses, adaptive mechanisms of chickpea plants, selection of relevant traits and 
their screening, as well as the conventional and molecular breeding strategies to 
develop climate-smart chickpeas and some success stories, are discussed in the 
present chapter.

Zinc (Zn) and iron (Fe) deficiency majorly contribute to “hidden hunger” in over 
two billion people worldwide. Due to the wider cultivation and affordability of 
chickpeas, it is a staple crop in many countries and hence a good candidate for nutri-
tional enhancement through “biofortification” programs. It is a newer area in chick-
pea breeding. Biofortification through agronomic as well as genetic methods is 
being tried. The state of the art, research strategies, and future prospects in chickpea 
biofortification are highlighted. Molecular insights into the mechanisms for abiotic 
stress tolerance and nutritional quality improvement have also identified links 
between the two. We discuss these aspects and the future strategic research needed 
to develop more robust plant types along with better grain quality.
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1  Introducing Chickpeas

One of the oldest domesticated legumes, chickpeas, needs no introduction. Many 
ancient manuscripts mention this grain, supporting its early origin and importance 
in many civilizations (Van der Maesen, 1987). Cicer arietinum L. is the only culti-
vated species from the genus Cicer and tribe, Cicereae (Lucas & Fuller, 2014). 
Three wild annual Cicer species, C. reticulatum Lad, C. echinospermum P.H. Davis, 
and C. bijugum K.H.  Rech, were found in present-day Syria and southeastern 
Turkey and are considered to be the places where chickpeas originated (Van der 
Maesen, 1987). Very recently, another new species, C. turcicum Toker, Berger, & 
Goktur, endemic to East Anatolia, Turkey, was identified, which, based on the inter-
nal transcribed spacer (ITS) region sequencing, was found to be closely related to 
C. reticulatum and C. echinospermum. Thus, there are now 10 annual and 36 peren-
nial species in the genus Cicer that can be divided into three gene pools (Toker 
et al., 2021). C. reticulatum, present in the primary gene pool along with C. arieti-
num, is thought to be its progenitor (Van der Maesen, 1987; Toker, 2009). C. echi-
nospermum belongs to the secondary gene pool. This species can also be crossed 
with C. arietinum to obtain some fertile progeny, while most of the other species are 
in the tertiary gene pool, and it is not easy to cross successfully with domesticated 
C. arietinum (Toker et al., 2021). The cultivated chickpeas have two subtypes: mac-
rosperma (also called kabuli, a term of Indian origin, derived from Kabul, possibly 
as an indication of its arrival in India apparently through Afghanistan) and micro-
sperma (also called desi, another term of Indian origin, implying ‘local’) types. 
While, Kabuli chickpeas are beige to whitish in color, large in size, have a typical 
owl’s head shape, desi are often small seeded, angular, and have varying seed coat 
colors. In addition, pea-shaped chickpeas are also available in the germplasm; they 
also often result from desi X kabuli or vice-versa crosses (Fig. 1).

These subtypes not only differ in seed morphology but also differ with respect to 
the plant architecture, flower color and conditions of cultivation (Wood et al., 2011; 
Purushothaman et al., 2014). The chickpea has not lost its importance since ancient 
times, as indicated by present-day chickpea cultivation. Together with dry beans and 
peas, it is among the three major pulses produced worldwide and ranks second and 
third in terms of area under cultivation and production, respectively. Globally, it is 
cultivated in an area of around 13.7 Mha with a production of 13.6 Mt (averaged 
values from 2015 to 2019, FAOSTAT, 2021). Although it is cultivated in more than 
50 countries, India contributes the most both in the point of area (9.27 Mha, 67.6% 
of total area: averaged values from 2015 to 2019) and production (9.01 Mt, 66.2% 
of global production; averaged values from 2015 to 2019). Australia, Myanmar, and 
Ethiopia contribute around 14%, 4%, and 4% of global chickpea production, respec-
tively, while Turkey and Russia account for around 3% share in global production 
(Merga & Haji, 2019).

Chickpeas, generally termed as the “poor man’s meat,” are highly protein-rich 
and a primary protein source for a large vegetarian population as well as an eco-
nomically poor population that cannot afford to buy meat or meat products on a 
daily basis. Moreover, it contains significant amounts of carbohydrates, minerals, 
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Fig. 1 Variation for: (a) seed coat color and (b) seed shape in chickpea germplasm and breeding 
lines. The pea-shaped lines are derived from a cross between ICCV2 (kabuli) and a white flower 
mutant of cv. Vijay (desi)

and dietary fiber contributing toward low fat meals with health benefits (Jukanti 
et al., 2012). Because chickpea is affordable and cultivated in many places across 
the globe, it is a staple crop in many countries and hence a good candidate for devel-
oping nutritionally improved genotypes either through classical or molecular breed-
ing approaches. These aspects are covered in detail in this chapter.

The chickpea belongs to the “Hologalegina/galegoid clade” that contains the 
“cool season” temperate legumes, which are often vernalized, requiring long-day 
plants (Summerfield & Roberts, 1985; Lee et al., 2017). Being cultivated world-
wide, the crop also faces various abiotic stresses depending on the area under culti-
vation. The cultivation areas and the specific abiotic stresses, as well as the strategies 
to develop climate- smart chickpeas, are also discussed in depth.

As we understand more and more about the molecular mechanisms that govern 
abiotic stress tolerance and nutritional quality improvement, we have also started to 
decipher the links between the two. We explore these links in a separate section, as 
well as the future strategic research needed to develop more robust plant types, 
along with better grain quality.

2  Abiotic Stresses and Impact on Chickpea Cultivation

The chickpea is cultivated worldwide in varied climatic conditions (Fig.  2). 
Therefore, depending on the area of cultivation, the crop faces varying abiotic 
stresses (Table 1).

Being a winter crop, low temperature, chilling, or frost is a major stress. In many 
parts of North Asia and southern Australia, it is encountered during the reproductive 
phase, while, in other regions of the Mediterranean, seedling and the early 
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Fig. 2 Worldwide regions cultivating chickpeas and their production share. Values are the average 
of 5 years (2015–2019). (Data Source: FAOSTAT (May 6, 2021))

Table 1 Major environmental stresses encountered by chickpeas

Sr. 
no. Stress Area/climate Season sown

Stage of growth 
when stress is 
encountered References

1. Chilling 
temperature

South Australia, North India Winter Reproductive 
phase

Berger et al. 
(2011)

2. Freezing 
temperature

Higher elevations of 
Mediterranean countries 
and temperate regions such 
as northern Iraq, Iran, 
Russia, North America, 
Turkey, and north India

Winter Early seedling 
stage, vegetative 
phase
Isolated frost 
events can 
damage other 
stages as well

Singh et al. 
(1984)

3. Terminal 
drought

South Asia
Mediterranean and 
temperate regions,
West Asia and North Africa 
(WANA) regions

Winter (post 
monsoon 
rain)
Spring (in 
season rain, 
that declines 
toward 
autumn)

Reproductive 
phase

Johansen 
et al. (1996)

4. Terminal 
Heat

Mediterranean regions 
receiving rainfall during 
crop season, south Asia, and 
regions where sowing is 
done in springs of low 
latitude areas of WANA 
regions

Reproductive 
phase

Berger et al. 
(2011)
and 
Johansen 
et al. (1996)

5. Erratic 
rainfall

USA Spring Extension of 
vegetative phase, 
failure to timely 
maturation

McVay 
et al. (2013)
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vegetative period encounter this stress (Berger et al., 2005, 2012). Since chickpea 
has an indeterminate growth habit, rain toward the end of the crop cycle may exceed 
the crop duration, which may lead to the failure of the crop to mature (McVay et al., 
2013). Chickpea cultivation is primarily rainfed, and therefore, it encounters water 
deficits toward the reproductive or pod filling stages – often termed as “terminal 
drought.” This terminal drought is often accompanied by an increase in temperature 
(terminal heat stress), which can cause major yield losses of up to 50% 
(Devasirvatham & Tan, 2018). India, which contributes the most in terms of area 
under cultivation and production, encounters all the above abiotic stresses depend-
ing on the area of cultivation. In the northern parts of the country, chilling or frost is 
the major abiotic stress, while in the northeast, excessive rainfall, especially at 
maturity can be devastating. Majority of chickpea growing areas in India are in 
central and southern states, which inherently have arid/semiarid climates with very 
short winters. Hence, two major stresses chickpeas face in these areas are heat stress 
and terminal drought.

In addition, the arid and semiarid regions are also prone to salinity, which can 
limit chickpea growth and development, causing yield losses of around 8–10% 
(Flowers et  al., 2010), which might increase further considering the increasing 
demands for food and expanding the cultivation areas to saline lands (Ladeiro, 
2012). Collectively, the abiotic stresses are estimated to cause higher yield losses as 
compared to the biotic stresses (Ryan, 1997).

In order to breed plants that are resilient to various abiotic stresses, it is impera-
tive to understand the basic adaptive mechanisms of the plants against those stresses. 
Understanding these mechanisms allows us to choose the traits that can be selected 
for or against for crop improvement. Broadly, the adaptive mechanisms are classi-
fied into three categories: escape, avoidance, and tolerance strategies. In the “escape” 
strategies, plants regulate their phenology such that the stress scenario is not encoun-
tered by the plants; “avoidance mechanisms” imply that the strategies are such that 
though the stress is encountered, its effects are countered, while in “tolerance mech-
anisms” the plant tries to minimize the damage caused by the stress scenario (Joshi-
Saha & Reddy, 2018). In the following section, these adaptive mechanisms and thus 
the target traits for breeding are discussed for each of the major stresses encountered 
by chickpeas. In addition, screening for these target traits, breeding approaches, and 
some of the recent success stories are also described in the following sections.

3  Abiotic Stresses, Adaptive Mechanisms, and Target Traits 
in Chickpea

3.1  Low-Temperature Stress

Although chickpeas are a cool season legume of temperate regions, sub-optimal low 
temperatures can be detrimental. For chickpeas, sub-optimal temperatures are cat-
egorized in two ranges: freezing temperature (<−1.5  °C, based on the average 
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freezing point of plant tissue) and, chilling temperature (between −1.5  °C and 
−15  °C) (Croser et  al., 2003). Freezing temperature stress is encountered in the 
early seedling/vegetative stages of the crop as well as any stage of growth due to 
occasional falls in temperatures, while chilling stress is more severe in the 
 reproductive/flowering and pod filling stages (Srinivasan et al., 1998; Clarke, 2001; 
Berger et al., 2006; Kumar et al., 2011) (Table 1). Under different sowing condi-
tions, grain yield losses due to freezing/chilling temperatures have been reported 
ranging from 15–20% (Chaturvedi et al., 2009) to 30–40% (Rani et al., 2020).

Frost damages the crop by forming ice crystals extracellularly in the plant tissue, 
which dehydrates the cells and causes injury (Snyder & de Melo-Abreu, 2005). 
Freezing temperatures can affect chickpea germination and seedling vigor, and if 
encountered at a later stage, can also cause flower drop and pod abortion. Moreover, 
it also affects the seed size and harvest index, possibly due to its effect on metabo-
lism and the translocation of metabolites from source to sink (Saxena, 1990; Croser 
et al., 2003). In general, chickpeas can survive at a minimum temperature of −8 °C; 
however, it is seen that post germination, some lines can tolerate up to −12  °C 
(Wery, 1990; Croser et  al., 2003). Cold temperatures can advance the vegetative 
period and delay the commencement of the reproductive phase. Under controlled 
conditions, treatment of chickpea cultivars with freezing temperatures (−3 and 
−5 °C) decreased shoot length, leaf number, fresh and dry mass, and relative water 
content (RWC). The plants could not survive when treated at −7 °C. Freezing treat-
ment also reduced the chlorophyll and carotenoid content, which led to a reduction 
in photosynthetic efficiency (Arslan et al., 2018).

In chickpea, most of the work pertaining to cold tolerance has been focused on 
chilling stress. An extreme temperature mainly affects the reproductive phase. 
Microsporogenesis and the development and growth of male gametophytes are more 
sensitive than female gametophytes in cold-sensitive chickpea genotypes at a tem-
perature <10 °C (Clarke & Siddique, 2004; Sharma & Nayyar, 2014; Kiran et al., 
2019). Based on field screening, the wild Cicer species, C. arietinum, is less tolerant 
than C. echinospermum, C. bijugum, and C. judaicum. Moreover, C. arietinum 
showed a delay in pod setting at temperatures of around 14 °C. In addition, no dif-
ference in cold sensitivity between desi and kabuli types was reported (Berger et al., 
2012). Seedling germination, establishment, and vigor are also affected by chilling 
temperature, and the variation for these traits has been observed (Bakht et al., 2006). 
The effect of cold stress also varies within the reproductive growth stage. For exam-
ple, cold exposure at the late pod filling stage affects different properties of seeds 
like their number, growth rate, fill duration, and average weight and size. Additionally, 
a decrease in content of proteins, fat, starch, soluble sugars, crude fiber, and storage 
protein fractions was also observed, which was thought to be associated with a 
decrease in sucrose content, sucrose synthase activity, as well as activities of inver-
tase and starch synthase. Whereas, exposure to cold at the early pod filling stage 
showed inhibition in germination and growth potential (Kaur et al., 2008).

At the cellular level, damages caused by cold stress include a decrease in mem-
brane stability, a change in rate of respiration and photosynthesis, changes in the 
conformations of proteins and lipids, reduced enzyme activity, and oxidative stress, 
which ultimately causes plant wilting (Croser et  al., 2003). This was majorly 
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attributed to the accumulation of ROS (Nayyar et al., 2005a; Awasthi et al., 2015). 
Moreover, increases in abscisic acid (ABA) and reductions in bioactive gibberellic 
acid (GA) are also implicated in distorting the carbohydrate pools in the anther, 
affecting pollen development and consequent flower abortion (Nayyar et al., 2005b; 
Thakur et al., 2010; Sharma & Nayyar, 2016).

The adaptive mechanism for cold tolerance in chickpea plants includes enhanced 
activities and regulation of anti-oxidative enzymes (Kumar et al., 2011; Turan & 
Ekmekci, 2011; Farooq et al., 2017; Karami-Moalem et al., 2018) and in the pod 
wall and developing seeds (Kaur et al., 2009). Moreover, accumulation of nonenzy-
matic metabolites like proline, soluble phenolics, polyamines, and gamma-amino-
butyric acid (GABA) was also observed under cold stress in chickpea. Higher levels 
of GABA were correlated with increased activity of the polyamine catabolic 
enzymes diamine oxidase and polyamine oxidase, which provide the raw material 
for the synthesis of GABA (Saghfi & Eivazi, 2014; Amini et al., 2021). The role of 
carbohydrate metabolism in the cold tolerance of chickpea is also elucidated through 
gene expression as well as biochemical analysis (Saghfi & Eivazi 2014; Sharma & 
Nayyar, 2014). Most of the screening for cold stress has been done under field con-
ditions with visual rating scales based on leaf necrosis (Table 2).

Table 2 Examples of rating scales developed for screening of various abiotic stress in chickpea 
under field conditions

Abiotic 
stress Rating scale References

Cold 1–9 Visual (evaluated after 100% mortality of susceptible check)
Where, 1 = no visible symptoms; 2 = highly tolerant (≤10% leaflets 
with withering & drying but no killing); 3 = tolerant (11–20% leaflets 
with withering; ≤20% branches show withering and drying but no 
killing); 4 = moderately tolerant (21–40% leaflets and ≤20% branches 
with withering and drying but no killing); 5 = intermediate (41–60% 
leaflets and 21–40% branches with withering and drying and ≤5% plant 
killing); 6 = moderately susceptible (61–80% leaflets & 41–60% 
branches with withering and drying and 6–25% plant killing); 
7 = susceptible (81–99% leaflets and 61–80% branches with withering 
and drying and 26–50% plant killing); 8 = highly susceptible (100% 
leaflets and 81–99% branches with withering and drying and 51–99% 
plant killing); 9 = 100% plant killing

Singh et al. 
(1989)

Drought 
and heat

1–9 Visual (evaluated after 100% mortality of susceptible check)
Where, 1 = very highly resistance (no effect of drought and high 
temperature with early flowering, very good plant vigor, 100% pod 
setting), 2 = highly resistance (with early flowering, good plant vigor, 
96–99% pod setting), 3 = resistance (with early flowering, good plant 
vigor, 86–95% pod setting), 4 = moderately resistance (with early 
flowering, moderate plant vigor, 76–85% pod setting), 5 = tolerant 
(with medium flowering, poor plant vigor, 51–75% pod setting), 
6 = moderately susceptible (with medium flowering, no plant vigor, 
26–50% pod setting), 7 = susceptible (with late flowering, no plant 
vigor, 11–25% pod setting), 8 = highly susceptible (with late flowering, 
no plant vigor, 1–10% pod setting), and 9 = very highly susceptible 
(with no flowering, no pod setting, 100% plant killed)

Singh et al. 
(1997)

(continued)
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Abiotic 
stress Rating scale References

Salinity 1–10 Visual (1 = green & healthy plant with no symptoms; 
2 = Beginning of yellowing or necrotic bottom leaves, 3 = necrosis on 
25% of bottom leaves and yellowing on the rest of the bottom half of 
the plant, 4 = necrosis on 50% (bottom half) of plant, 5 = necrosis on 
bottom half and yellowing to the top half of the plant, 6 = necrosis on > 
50% < 75% of the plant, 7 = necrosis on 75% of plant, 8 = necrosis on 
whole plant with still green or yellowing apical leaves, 9 = only stem 
and the shoot tips green, 10 = plant is dead

Maliro 
et al. 
(2008)

Table 2 (continued)

In addition to field screening, an artificial “freeze test” on excised plantlets has 
been designed for high precision and high throughput screening of large popula-
tions (Nezami et al., 2012).

3.2  High-Temperature (Heat) Stress

In warmer climates or in late sown conditions, chickpea growth and development, 
as well as grain yield, can be severely affected by high temperature stress. 
Particularly, the reproductive phase is very sensitive to high temperatures of 
>30/35 °C (Summerfield et al., 1984; Gaur et al., 2013; Devasirvatham et al., 2015). 
During this phase, heat stress (≥32/20 °C as day/night temperatures) causes severe 
yield losses ranging from 39% (Devasirvatham et al., 2015) to almost 100% (Canci 
& Toker, 2009a) depending on the genotype and intensity of stress. Yield losses of 
about 10–15% per degree rise in temperature above optimum are estimated to occur 
in southern India, where the crop faces terminal heat stress (Upadhyaya et al., 2011). 
Different physiological stages in the reproductive phase of chickpea are very sensi-
tive to high temperature stress (Table 3).

High temperature also affects growth and development in chickpeas by targeting 
various physiological and metabolic processes like nutrient and water uptake, mem-
brane mobility, sucrose metabolism, photosynthesis, photosynthetic assimilate par-
titioning, pigment degradation, transpiration, respiration, induction of oxidative 
damage, and disturbing source-to-sink relationships (Kaushal et al., 2013; Fahad 
et al., 2017).

Humidity in the air is greatly reduced by extreme heat stress, which in turn raises 
the vapour pressure deficit (VPD) at the leaf-air interface, an important parameter 
that determines photosynthetic efficiency as well as its effect on vegetative growth 
(Yuan et al., 2019). Due to the VPD, water is transpired by plants through stomata. 
In response to increased VPD, as an adaptive mechanism, plants close their stomata 
to reduce the rate of transpiration. Consequently, the entry of carbon dioxide, which 
also happens through stomata, is affected, which in turn reduces photosynthesis and 
causes a consequent reduction in plant productivity and yield (Grossiord et al., 2020).
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The activity of various photosynthetic complexes is highly sensitive to tempera-
ture, and, therefore, is directly affected by heat stress (Moore et al., 2021). An ele-
vated temperature negatively impacts ribulose bisphosphate (RuBP) regeneration 
by damaging the photosynthetic pigments that are important for the functioning of 
photosystem II (PSII), thereby reducing plant growth and productivity (Moore 
et al., 2021). A comparative study based on membrane stability and PSII function in 
leaves, showed that chickpea exhibits high sensitivity to high atmospheric tempera-
tures (Srinivasan et al., 1996). In addition, increased degradation of chlorophyll and 
its reduced biosynthesis are also observed in heat- sensitive chickpea genotypes 
(Parankusum et al., 2017; Makonya et al., 2019).

An increase in temperature leads to an increased rate of respiration. This causes 
carbon starvation because even a high photosynthetic rate cannot compensate for 
this carbon loss (Levitt, 1980). Not much is known about the rate of respiration in 
chickpeas at high temperatures. Cellular respiration in chickpea seedlings increases 
with increasing temperatures, from 30/25 °C (day/night, control) to 35/30 °C and 
40/35  °C (day/night, heat stress conditions). Higher temperature stress 45/40  °C 
reduced the cellular respiration in these plants (Kumar et al., 2012a). Moreover, at 
the reproductive stage, high-temperature stress also reduced the cellular oxidizing 
ability of chickpea plants (Kumar et al., 2013).

Heat stress leads to oxidative damage to proteins, DNA, RNA, and membrane 
lipids. Generation of reactive oxygen species (ROS) like hydroxyl (OH˙), superox-
ide (O2

−) and alkoxyl radicals as well as hydrogen peroxide (H2O2) and singlet oxy-
gen (1O2) (Suzuki & Mittler, 2006; Wahid et al., 2007). The redox state in chickpea 
is affected by heat stress during seed germination and seedling formation (Kumar 
et al., 2012a), as well as at the time of flowering (Kaushal et al., 2011; Kumar et al., 
2013; Awasthi et al., 2015). In heat-sensitive chickpea genotypes, oxidative injury 
through an increase in lipid peroxidation and H2O2 levels in the leaves was more of 
than in tolerant genotypes (Kaushal et al., 2011; Kumar et al., 2012a, 2013; Awasthi 
et al., 2015).

Table 3 Physiological stages in reproductive phase of chickpea affected by heat stress

Physiological stage Effect References

Flowering Reduction in the vegetative 
phase and acceleration of 
flowering
Flower drop

Devasirvatham et al. (2015), Clarke and 
Siddique (1998), and Devasirvatham and 
Tan (2018)

Anther and pollen 
development

Anther epidermis thickening, 
change in locule number
Reduced viability, germination, 
and load in pollen

Devasirvatham et al. (2013) and Kaushal 
et al. (2013)

Stigma function Reduced receptivity of the 
stigma

Kaushal et al. (2013)

Ovary and ovule 
development

structural abnormalities Devasirvatham et al. (2013)

Fertilization and 
seed setting

Reduced fertilization, abnormal 
pod development, and reduced 
seed set

Wang et al. (2006) and Devasirvatham 
et al. (2013)
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In chickpea, sucrose metabolism is also affected by heat stress (Kaushal et al., 
2013). Starch and sucrose biosynthetic enzymes like invertase, sucrose phosphate 
synthase, and adenosine diphosphate-glucose pyrophosphorylase are also greatly 
affected by high temperatures (Kaushal et al., 2013; Fahad et al., 2017). According 
to Awasthi and co-workers (2017), this reduction caused by the inactivation of 
enzymes is correlated with a decrease in seed weight. In addition to sucrose metabo-
lism, phloem-mediated photosynthate translocation from the source (photosynthetic 
tissues) to the sink (non-photosynthetic tissues) is also affected by heat stress 
(Prasad et al., 2017). Compared to the tolerant genotypes, the sucrose content in the 
heat-sensitive genotypes of chickpea was significantly lower in anthers and pollen 
grains under late sown conditions. This was also correlated with lower pollen viabil-
ity and, finally, reduced yields due to heat stress (Kaushal et al., 2013).

Heat-stress-induced adaptive mechanisms, can be broadly classified into three 
types: escape, avoidance, and tolerance. Among the “escape” mechanisms, early 
flowering and maturity is an important phenological mechanism in chickpea, par-
ticularly in spring sown Mediterranean or winter sown southern Indian conditions 
where the crop faces terminal heat (Toker et al., 2007a; Gaur et al., 2010). Other 
than escape mechanisms, emphasis should be given to relatively less studied pro-
cesses like the mechanisms controlling heat avoidance in chickpea. These mecha-
nisms include leaf reflectance, canopy, and transpiration-mediated interception and 
reduction of non-photosynthetic energy (Devasirvatham et  al., 2012). Oxidative 
damage is caused by ROS generated during heat stress. Therefore, several “toler-
ance” mechanisms that preserve the integrity of the membranes, chlorophyll, and 
other biomolecules also play an important role in chickpea. Proline is known to 
impart partial tolerance to heat by elevating the activities of anti-oxidative enzymes 
and molecules such as superoxide dismutase (SOD), catalase (CAT), ascorbate per-
oxidase (APX), and the antioxidants ascorbate (ASC) and glutathione (GSH) 
(Kaushal et al., 2011). The amino acid proline has multifaceted roles. It can act as 
an osmolyte as well as a molecular chaperon to stabilize protein structures and pre-
vent their unfolding. Proline acts as a storehouse of carbon and nitrogen, maintains 
cytosolic pH. and communicates stress signals (Verbruggen & Hermans, 2008). 
Additionally, phytohormones like abscisic acid (ABA) and salicylic acid (SA) also 
contribute toward the heat tolerance in chickpea. Exogenously applied ABA reduced 
the effect of heat stress on the growth of chickpea seedlings and showed an increase 
in endogenous ABA and osmolytes (Kumar et al., 2012b). Chakraborty and Tongden 
(2005) showed that application of SA reduced membrane damage induced by heat 
stress in chickpeas and induced peroxidase, ascorbate peroxidase, and catalase. 
Several heat-shock proteins, metabolites, and other heat-shock responsive transcrip-
tion factors have also been identified for which detailed molecular analysis is in 
progress (Parankusum et  al., 2017; Chidambaranathan et  al., 2018; Pareek 
et al., 2019).
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3.3  Drought Stress

Being a rainfed crop, in most chickpea-growing areas, particularly in the semiarid 
tropics, high evapotranspiration demands lead to the depletion of stored soil mois-
ture toward the reproductive/maturation phase of plant growth. This causes a water 
deficit or terminal drought stress to the crop. Apart from terminal drought, transient 
drought stress can also occur at any stage of crop growth, including germination, 
seedling establishment, or the vegetative phase (Maqbool et al., 2017). However, the 
reproductive phase (flowering and pod development) is more sensitive than the veg-
etative phase (Pushpavalli et al., 2015a). Moreover, in many cases, the genotypes 
that showed drought tolerance at early seedling stages did not later reflect tolerance 
to terminal drought and were not good yielders (Shah et al., 2020). Drought stress 
affects the morphology and physiology as well as biochemical and molecular 
parameters in chickpea (Leport et al., 1999; Maqbool et al., 2017; Pang et al., 2017).

The morphological effects include early seedling establishment and reduction in 
seed germination (Vessal et  al., 2012), reduction in biomass accumulation and 
stunted growth (Siddique et al., 1999), reduction in plant height, decrease in the 
number of primary and secondary branches (Arif et  al., 2021), reduction in leaf 
length, leaflet length, and width (Maqbool et al., 2017), and effects on root length 
and biomass depending on the age of plants (Randhawa et  al., 2014; Kashiwagi 
et al., 2015). Terminal drought may have drastic effects on reproductive biology and 
can affect the anthesis, pollination, pollen germination viability, fertility, growth of 
the pollen tube, pistil function, reduced number of flowers and pod formation, and 
increased flower and pod abortion (Siddique et al., 1999; Fang et al., 2009; Pang 
et al., 2017). Depending on the severity, various physiological and biochemical pro-
cesses affected by drought stress include stomatal conductance, rate of transpira-
tion, CO2 assimilation, electrolyte leakage, lipid peroxidation and membrane injury, 
chlorophyll and carotenoids synthesis, nutrient and water uptake, ABA concentra-
tion, water use efficiency (WUE), loss of turgor due to reduced water potential, rela-
tive water content (RWC), and finally overall plant growth. Rate of CO2 assimilation 
is reduced in drought-susceptible chickpea genotypes due to closure of stomata, 
decline in CO2 level inside leaf, inhibition of RUBISCO, and ATP synthase activity 
(Mafakheri et al., 2010, 2011; Rahbarian et al., 2011; Devasirvatham & Tan, 2018; 
Kaloki et al., 2019). Additionally, water-deficiency can also lead to adverse effects 
on nodule development and symbiotic N2 fixation (Nasr Esfahani et al., 2014).

Escape, avoidance, and tolerance are the three broad classes of adaptive mecha-
nisms for drought stress (Upadhyaya et al., 2012). Similar to heat stress, early phe-
nology (early flowering and maturity) is an important and very successful breeding 
strategy for escaping terminal drought (Gaur et al., 2008a; Devasirvatham & Tan, 
2018). Early phenology should be accompanied by a shorter vegetative phase and a 
longer grain filling period to produce a higher grain yield (Soltani & Sinclair, 2012). 
Moreover, high initial growth vigor associated with early flowering and a faster rate 
of partitioning are suggested to be useful contributing traits toward drought escape 
(Krishnamurthy et  al., 1999; Sabaghpour et  al., 2003). Among the drought 
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“avoidance” mechanisms, where plants try to maintain their hydration state, are 
broadly two types: water saving and water spending mechanisms. Stomatal conduc-
tance, root traits, and water use efficiency are some of the important traits to con-
sider in this regard. To maintain a high water potential, plants either reduce 
transpiration or increase water uptake. Stomatal conductance regulates transpiration 
to minimize water loss. An infrared thermal camera or thermometer can easily mon-
itor canopy temperature depression (CTD), which is a surrogate trait for stomatal 
conductance (Purushothaman et al., 2016). Many root traits are part of the drought 
avoidance mechanism, including higher root biomass in the early growth stages and 
rooting depth (Kashiwagi et al., 2015). Mechanisms for drought tolerance include 
the sustenance of growth with the least injury by activating physiological and 
molecular responses such as the synthesis of osmoprotectants, soluble sugars, 
osmotic adjustment, activating antioxidative system and defense mechanisms, cell 
membrane stability, the synthesis of stress proteins, and hormonal signaling. 
However, such mechanisms, though useful for plant survival under stress, are not 
often correlated with crop performance in terms of grain yield (Upadhyaya 
et al., 2012).

3.4  Salinity Stress

Chickpea is highly sensitive to salinity. All the stages of chickpea growth and devel-
opment, from seed germination to seedling and plant establishment, vegetative 
growth, the reproductive phase, as well as nitrogen fixation, are affected due to 
salinity. Different genotypes differ with respect to both the rate and extent of germi-
nation in response to salinity; however, the reasons for these differences are not 
known (Flowers et al., 2010). Also, emergence from soil (salinized versus control) 
is slower and with a lower final germination percentage as compared to experiments 
done in petri plates with the same salt concentrations, indicating that early seedling 
growth regulating shoot emergence from soil is more sensitive than radicle emer-
gence, that is, usually easily observed in petri plates (Esechie et al., 2002; Flowers 
et al., 2010). Vegetative growth is severely reduced in chickpea under saline condi-
tions, with sensitive genotypes not surviving even 25 mM NaCl under hydroponic 
conditions with 55% relative humidity (Lauter & Munns, 1987). However, it is also 
noteworthy that the soil type and conditions affect the relative growth of different 
genotypes under salt stress, while the relative ranking of sensitivity of those geno-
types might not be affected (Krishnamurthy et al., 2011a).

Salt stress imposes a typical biphasic response in plants, which includes early 
occurring osmotic stress followed by accumulation of Na+ and Cl−, causing ion 
toxicity (Munns & Tester, 2008; Teakle & Tyerman, 2010). The osmotic stress is 
due to the salt present outside the root zone that disturbs the water-balance, which 
in turn affects physiological processes such as stomatal conductance and photosyn-
thesis (Munns & Tester, 2008; Yang & Guo, 2017). Stress induced by Na+ and Cl− 
ion hyper accumulation of mainly in older leaves, causes premature senescence, 
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which affects the development of young leaves due to a limited supply of carbohy-
drates that ultimately reduces plant yield and can also lead to plant death (Munns & 
Tester, 2008). In glycophytes, hyper-accumulated Na+ competes with the uptake of 
K+ and disturbs the stomatal regulation that eventually causes water loss, while the 
Cl− ions basically inhibit chlorophyll production that leads to chlorosis and leaf 
senescence (Wakeel, 2013; Geilfus, 2018). However, experiments where sensitive 
and tolerant chickpea genotypes were exposed to an osmotic potential iso-osmotic 
to 60 mM NaCl showed that such a solution had no detrimental effects on chickpea 
growth, while plant dry mass was reduced by NaCl treatments. Growth was not 
affected by Cl− salts, which suggests that in chickpea genotypes salt sensitivity is 
mainly caused by Na+ ion toxicity (Khan et al., 2016a). Measurement of seed yield 
under high salt concentration in a chickpea minicore collection and its comparison 
with seed yield under nonsaline conditions showed a relation between the two, indi-
cating that seed yield under salt stress can be explained partly by the yield potential 
and by salinity tolerance. Moreover, shoot dry weight ratio did not show any signifi-
cant correlation with yield ratio under saline versus nonsaline conditions, and there-
fore, these parameters at the vegetative phase indicated that there was no difference 
in the salinity tolerance among genotypes. The ability to maintain a large number of 
filled pods was found to be the major trait related to salinity tolerance. Moreover, 
salinity tolerance and shoot Na+ or K+ accumulation were not related (Vadez et al., 
2007). In contrast, in other studies, both the vegetative and reproductive phases 
were found to be sensitive to salinity. The pod formation was particularly sensitive 
(Samineni et al., 2011). Salt sensitive genotypes also showed higher pod abortion. 
Yield under salt stress as an indication of salt tolerance exhibited a positive associa-
tion with higher shoot biomass as well as higher pod and seed numbers. Moreover, 
the sensitive genotypes accumulated more Na+ and K+ in the seeds as compared to 
the tolerant ones (Turner et al., 2013). A low assimilate supply at flowering due to 
sub-optimal photosynthesis and reduced shoot growth reduces leaf area and branch-
ing, and, therefore, these parameters contribute to reproductive failure in chickpeas 
under salt stress (Khan et al., 2017).

Plants have broadly three mechanisms to deal with salinity stress: (a) osmotic 
adjustment of cells, (b) avoidance by Na+ and Cl− exclusion; and (c) “tissue toler-
ance,” which means the tissues maintain their physiological function even in rela-
tively high internal concentrations of Na+ and Cl− (Munns & Tester, 2008). Chickpea 
plants show substantial osmotic adjustments, so that the osmotic component of salt 
stress has limited effect on vegetative growth (Khan et al., 2016a). Recently, it has 
been shown that “exclusion” of Na, particularly from photosynthetically active 
mesophyll cells, and its compartmentalization in epidermal cells reduces structural 
damage to chloroplast, maintain photosynthesis and hence contribute to salinity tol-
erance in chickpea (Kotula et al., 2019). Selection for salinity tolerance is largely 
based on the performance of chickpea plants for yield under salt stress conditions. 
However, depending on the soil type and salinity levels, early seedling establish-
ment and vegetative growth should also be given importance during selection.

Abiotic Stress Tolerance and Nutritional Improvement in Chickpeas…



270

3.5  Selection and Screening of Traits: Conventional Methods 
to Modern Tools

The ease of screening a large number of germplasm and/or populations for the tar-
get traits or traits that can serve as “proxies” for the target traits is an important 
consideration in breeding for various abiotic stress tolerances. Several traits have 
been targeted depending on the type of stress. They are listed in Table 4.

Many contributing characters regulate abiotic stress tolerance. Traits like days-
to-flowering and maturity are easy to screen and select in large populations. Several 
chickpea cultivars with early phenology have been developed. For example, the 
breeding line ICCV 92944, is a heat tolerant early maturing line and has been 
released in many countries, including India, as JG14. This variety is suitable for late 
sown conditions, particularly in cereal-based cropping systems (Gaur et al., 2019).

There should be a good correlation of the trait with grain yield under stress con-
ditions. For example, grain yield under drought was closely associated with the rate 
of partitioning, phenology, crop growth rate, shoot biomass at reproductive stage, 
canopy temperature depression, leaf area index at mid-pod fill stage, and pod num-
ber m−2 at maturity (Purushothaman et al., 2016). Among the root traits, a combina-
tion of profuse root length density at surface soil depth and total root dry weight was 
considered a good selection strategy for efficient water use and enhanced terminal 
drought tolerance (Purushothaman et al., 2017). Also, these traits should have high 
heritability and a lower yield penalty under non-stress conditions (Blum, 2011).

In many environments, drought is often accompanied by high temperature; 
therefore, the two should also be evaluated simultaneously. A rating scale for such 
evaluations has also been formulated (Table 2). Also, many of the contributing traits 
can be used for selection; however, it is important to set up the right stress scenario 
(Tardieu, 2012).

3.6  Breeding Approaches for Abiotic Stresses Tolerance 
and Some Success Stories

Methodologies of breeding for “climate resilient crops” include conventional, muta-
tional, and molecular breeding. In addition, genetic engineering approaches have 
also been found useful in some cases.

Conventional breeding that involves introduction, selection, and hybridization has 
been extensively used in chickpea breeding programs around the globe. Examples of 
some of the successes are taken from Indian chickpea breeding programs. Some of 
the early success stories in chickpea breeding were through selection from germ-
plasm or genetic stocks. Some of the notable abiotic stress tolerant varieties devel-
oped through this method include: JG315 (resistant to Fusarium wilt: Jha et al., 2020; 
tolerant to drought stress: Maheswari et al., 2019); karnal Chana 1 (tolerant to salin-
ity: Flowers et al., 2010), Annigeri 1 (tolerant to drought: Purushothaman et al., 2016).
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Although rich germplasm collections are available for a crop, a lack of compre-
hensive information on the variability of economically important traits often restricts 
their utilization. This is often limited due to the introduction of the concept of “core” 
and “mini-core” collections, which have helped circumvent this problem. The core 
collection consists of about 10% of the entire collection and represents at least 70% 
of the genetic variability of the entire collection, while the mini-core collection 
consists of 10% of the core and 1% of the entire germplasm (Upadhyaya et  al., 
2012). In chickpea, such collections have extensively been screened for a number of 
characters such as root traits (Kashiwagi et al., 2005; Lalitha et al., 2015), SPAD 
chlorophyll content (Kashiwagi et  al., 2006c), early maturity (Upadhyaya et  al., 
2007), salinity stress (Serraj et  al., 2004; Vadez et  al., 2007), and heat stress 
(Krishnamurthy et al., 2011b; Upadhyaya et al., 2011) that are important in breed-
ing for abiotic stress tolerance. After assessing the genetic diversity for the required 
trait, parental lines are chosen for hybridization. Various types of populations can be 
developed, of which the majority of cultivars released for commercial cultivation in 
self-pollinated crops like chickpea are developed through the pedigree method. This 
method consists of developing segregating populations of desirable parents, fol-
lowed by advancing the generation through selfing and selection till the advanced 
lines with characters from both parents are obtained (Breseghello & Coelho, 2013). 
Additionally, three-way crosses and multiparent crosses have resulted in the devel-
opment of abiotic stress tolerant cultivars in chickpea (Table 5). Also, multiparent 
advanced generation intercross (MAGIC) populations and lines have also been 
developed in chickpea breeding to make use of diverse founder parents and combine 
useful genes, including those for abiotic stress tolerance. A MAGIC population 
using 8 founder parents is developed by ICRISAT, and another using 12 founder 
parents has been developed by ICARDA (Gaur et al., 2019; Roorkiwal et al., 2020).

In addition to the pedigree method, ideotype breeding is another strategy to breed 
for abiotic stress tolerance. In this method, desirable traits that are correlated with 
or associated with complex traits are incorporated, which often involves the usage 
of wild/exotic germplasm/landraces. This requires backcrossing toward elite 

Table 5 List of Indian varieties of chickpea with tolerance to multiple stresses developed through 
hybridization

Sr. No. Cultivara Stressa Pedigreeb

1 JG 14 Heat and drought [(GW 5/7 X P327) X ICCL 83149]
2 Indira Chana Heat and drought JG 74 X ICCL 83105
3 JG 11 Heat and drought [(Phule G5 X Narsinghpur bold) X ICCC 37]
4 JAKI 9218 Heat and drought [(ICCV37X GW 5/7) X ICCV 107]
5 JG 6 Heat and drought [(ICCV10 X K850) x (H 208 X RS11)]
6 RSG 888 Heat and drought RSG 44 X E 100Y
7 GNG 663 Heat and drought GNG 16 X GNG 146
8 PDG 4 Drought and Cold [(GL 769 X GF 88421) X GF 8976]

aSource: Maheswari et al. (2019)
bSource: Project Coordinator’s Report 2018–2019, All India Coordinated Research project on 
Chickpea, ICAR-Indian Institute of Pulses research, Kanpur-208024
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parents or pre-breeding so that the linkages between undesirable traits and traits of 
interest can be broken (Breseghello & Coelho, 2013). Several positive alleles con-
tributing toward yield attributing traits from C. reticulatum were transferred to cul-
tivated C. arietinum cv. GPF2 by backcrossing. As compared to the backcrossed 
progenies, F2 and F3 were inferior due to linkage drag on undesirable traits like 
prostrate growth habit, seed shape, and dull seed color. Two-to-three backcrosses 
reduced the linkage drag (Bhavyasree et al., 2018). Screening among wild species 
of chickpea has led to the identification of several potential sources of tolerance to 
different abiotic stresses that are useful for the introgression of desirable traits in the 
elite background (Table 6). Breeding strategies like advanced backcross QTL can be 
used wherein, the QTL analysis is done in advanced backcross generation (BC2 
onwards) to reduce linkage drag (Tanksley & Nelson, 1996).

Domesticated chickpea has a narrow genetic base due to the repeated use of a 
few parental lineages over the years (Srivastava et al., 2017). Induced mutagenesis 
to create genetic variability in the existing gene pool or to develop characters 
unavailable or lost in the existing gene pool is an important supplementary breeding 
methodology. Mutation breeding, where the mutants can be directly evaluated or 
can be used in hybridization programs, is particularly advantageous where improve-
ment is needed in only one or two traits in cultivars that are otherwise very well 
adapted (Joshua, 2000; Raina et al., 2016, 2017). Induced mutagenesis is the most 

Table 6 Wild chickpea species showing abiotic stress tolerance

Stress Accessions screened/location

Species (no. of 
accessions with 
resistance/
tolerance) References

Heat and drought at 
reproductive phase

68 lines of eight wild annual Cicer 
species at the Antalya location 
(approximately 30°44′E, 36°52′N, 
51 m above sea level), Turkey, were 
sown 2 months later than normal 
sowing time so that the plants get 
exposed to heat and drought during the 
reproductive phase

C. reticulatum (4)
C. pinnatifidum 
(1)

Canci and 
Toker 
(2009b)

Heat stress at 
reproductive phase

10 Cicer species, Akdeniz University 
campus, Antalya, Turkey (30°44′E, 
36°52′N, 51 m asl)

C. turtium (1) Toker et al. 
(2021)

Cold: Chilling 
tolerance at 
vegetative phase

137 lines of eight wild annual Cicer 
species 1987–1988 and 1988–1989 
seasons at the International Center for 
Agricultural Research in the Dry Areas 
(ICARDA), Syria

C. bijugum
C. echinospermum
C. reticulatum

Singh et al. 
(1990)

857 breeding lines, 4284 kabuli and 
2137 desi germplasm lines, and 59 lines 
of seven annual wild Cicer species 
were evaluated during the winter 
seasons of 1987–1992, at ICARDA 
sites at Tel Hadya and Breda in Syria

C. reticulatum (26)
C. bijugum (10)
C. echinospermum 
(4)
C. pinnatifidum (2)
C. judaicum (1)

Singh et al. 
(1995)

(continued)
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Stress Accessions screened/location

Species (no. of 
accessions with 
resistance/
tolerance) References

Cold: Chilling 
tolerance at 
reproductive phase

Wide range of domesticated (n = 1762) 
and wild Cicer (n = 200) germplasm, 
field trials over a wide range of sites 
(n = 26) in southwest Australia, 
northern India, and northern Syria over 
years and/or sowing dates to maximize 
the likelihood of encountering a wide 
temperature range during the 
reproductive phase

C. echinospermum 
(1)
C. bijugum
C. judaicum

Berger et al. 
(2012)

Cold: Freezing 
tolerance at young 
plant stage
Seedlings were 
covered by snow for 
25 days in the 
season. The number 
of days with freezing 
temperatures was 69

43 accessions of eight annual wild 
Cicer species at the Urkutlu location 
(30E, 37N and 860 m from sea level) 
in Bucak city of Burdur province in the 
west Mediterranean region of Turkey

C. bijugum (3)
C. reticulatum (2)
C. echinospermum 
(2)

Toker 
(2005)

Drought 7 perennial wild species, 3 annual wild 
species, at Antalya (approximately 
30°44′E, 36°52N, 51 m from sea 
level), Turkey, pots, Drought stress was 
applied three times consecutively, and 
seedlings were wilted as dried out.

Perennials:
C. anatolicum
C. microphyllum
C. songaricum
Annuals:
C. pinnatifidum
C. reticulatum

Toker et al. 
(2007b)

Salinity Total 600 accession of which, 43 
annual wild species, pot level, green 
house, salt treatment (NaCl: 6 dSm−1) 
commenced at 21 days after sowing 
and were scored on the basis of 
necrosis at 42 days after sowing

C. reticulatum (6) Maliro et al. 
(2008)

Table 6 (continued)

efficient technique to greatly increase genetic variation in a short period of time and 
has been employed in various crops such as cowpea (Raina et  al., 2020a, Rasik 
et al., 2022); lentil (Laskar et al., 2018a, b; Wani et al., 2021) faba bean (Khursheed 
et al., 2018), mungbean (Wani et al., 2017), urdbean (Goyal et al., 2019a, b), chick-
pea (Laskar et al., 2015; Raina et al., 2019), black cumin (Tantray et al., 2017, Amin 
et al., 2019), and finger millet (Sellapillaibanumathi et al., 2022). Because natural 
mutations occur sporadically, artificial mutations are generated, and genetic gain is 
best achieved by using mutagens (Raina & Khan, 2020, Raina et al., 2020b, 2022a, 
b, c, d; Sellapillai et al., 2022). Various physical and chemical mutagens have been 
used both individually and in combination to introduce mutation in various crop 
plants. The success of mutation breeding is evident from “mutant variety database” 
created by FAO & International Atomic Energy Agency (IAEA) that enlists over 
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Fig. 3 (a) Development of early maturing chickpea mutant lines through mutation breeding using 
electron beam irradiation. (b) Single plants of parent and mutant. Parent matures in 100–110 days, 
while mutant matures in 85–90 days at Trombay, Mumbai, India

>3000 mutant varieties in more than 175 crop plants (https://mvd.iaea.org/#!Search). 
The application of mutation breeding in chickpea is still underexploited, as so far 
only a handful of chickpea varieties (27 listed in mutant variety database) have been 
developed through mutation breeding. A number of chickpea mutants have been 
reported (Kharkwal, 1998, 1999; Khan et al., 2005; Wani, 2009; Kamble & Patil, 
2014), of which many have been isolated with unique agro-morphological traits 
such as variations in leaf shape, size, and type (Kozgar, 2014; Joshi-Saha et  al., 
2015), stem fasciation (Gaur & Gour, 1999), disease resistance (Shah et al., 2009), 
broad few leaflets, compact growth habit (Gaur et  al., 2008b), outwardly curved 
wings (Gaur & Gour, 2003),variegated leaf and apical chlorosis (Gaur et al., 2004), 
iron deficiency chlorosis resistant mutant (Toker et  al., 2012), and determinate 
growth habit (Yildirim et al., 2013). “Escape traits” of early phenology (early flow-
ering, early maturity) can be an easy target to achieve using mutation breeding in an 
otherwise elite, high yielding background (Fig. 3).

The advent of molecular techniques, especially the development of molecular 
markers, has facilitated faster and better selection, particularly for the transfer of 
quantitative trait loci (QTLs). The first genetic map of chickpea was developed in 
1997 by combining the mapping results from three interspecific (C. arietinum X 
C. reticulatum) mapping populations. This map consisted of 9 morphological, 27 
isozyme, 10 RFLP, and 45 RAPD markers covering 550 cM (Simon & Muehlbauer, 
1997). Since then, there has been a tremendous development in the identification of 
newer marker types and their numbers (Fig. 4).

Early generation markers (like RAPD, AFLP) were based on scanning the whole 
genome randomly, while, major milestones were achieved when large-scale devel-
opment of both nongenic as well as genic SSRs and SNPs were developed. The 
marker development was boosted by advancements in next generation sequencing 
(NGS) and whole genome sequencing and resequencing of chickpea genomes. 
Various quantitative trait loci and linked or associated markers have been identified 
in chickpea that are useful for marker assisted breeding (Table 7).

Advancements in NGS technologies and the complete genome sequence avail-
ability of cultivated as well as wild chickpea (Varshney et al., 2013; Jain et al., 2013; 
Gupta et al., 2017) have great promises for “genomics assisted breeding” (GAB). 
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Fig. 4 Development, usage, and major milestones for molecular breeding in chickpea. (a) Simon 
and Muehlbauer (1997); (b) Winter et  al. (1999); (c) Nguyen et  al. (2004), Lichtenzveig et  al. 
(2005), Sethy et al. (2003, 2006); (d) Varshney et al. (2009); (e) Hiremath et al. (2011), Garg et al. 
(2011), Deokar et al. (2011); (f) Varshney et al. (2013), Jain et al. (2013); (g) Deokar et al. (2014), 
Parida et  al. (2015), Gupta et  al. (2017), Varshney et  al. (2019); (h) https://icar.org.in/content/
development- two- superior- chickpea- varieties- genomics- assisted- breeding. RFLP: Restriction 
Fragment Length, RAPD: Random amplified fragment length polymorphism, AFLP: Amplified 
fragment length polymorphism, SSRs: simple sequence repeats, STMS: sequence tagged micro-
satellites, EST-SSR: Expressed sequence tag- simple sequence repeat, SNPs: single nucleotide 
polymorphisms, NGS: next generation sequencing, MAS: marker assisted selection

Two main approaches can be taken for genomic-assisted breeding: (a) genomic 
selection (GS) and (b) marker assisted selection (MAS). For MAS, markers that are 
strongly associated with the trait of interest are needed to be found. Identified mark-
ers can then be used for selection in breeding programs. MAS can be employed in 
marker assisted back crossing (MABC) and marker assisted recurrent selection 
(MARS) (Thudi et al., 2014b; Khan et al., 2016b). In genomic selection (GS), selec-
tion models are developed based on dense genetic markers that are spread across the 
whole genome as well as the phenotyping of a training population that helps select 
individuals with high genome-estimated breeding values (GEBVs) in the breeding 
population (Khan et al., 2016b). It is an advanced breeding approach; unlike MABC 
and MARS, it predicts the genomic assisted breeding values of a line by analyzing 
historical genotyping as well as phenotyping data and thus selecting lines using 
genotyping data before carrying out phenotyping analysis of the line in the field. 
The rate of genetic gains can potentially be augmented using this method (Roorkiwal 
et al., 2018).

Very recently, two chickpea varieties developed through marker assisted breed-
ing have been released for commercial cultivation in India (https://icar.org.in/

G. Misra and A. Joshi-Saha

https://icar.org.in/content/development-two-superior-chickpea-varieties-genomics-assisted-breeding
https://icar.org.in/content/development-two-superior-chickpea-varieties-genomics-assisted-breeding
https://icar.org.in/content/development-two-superior-chickpea-varieties-genomics-assisted-breeding
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content/development- two- superior- chickpea- varieties- genomics- assisted- 
breeding). The first variety, “Pusa Chickpea 10216,” is a drought-tolerant variety 
developed after introgression of “QTL-hotspot” using molecular markers in the 
genetic background of Pusa-372. On the other hand, another variety, “Super 
Annigeri 1,” is developed by the introgression of a resistance segment for Fusarium 
wilt from the WR 315 genotype of chickpea in the genetic background of Annigeri-1.

Moreover, recent developments in CRISPR-Cas based genome editing tools can 
be very useful and expedite precision breeding (Veillet et al., 2020). In chickpea, 
very recently, using this technology, the first report of gene-knockouts for two genes 
associated with drought tolerance, namely, 4-caumarate ligase (4-CL, a gene of the 
phenylpropanoid pathway controlling lignin biosynthesis) and Reveille 7 (RVE7, a 
Myb transcription factor regulating circadian rhythms in plants) has been reported 
(Badhan et al., 2021). Presently, the work has been done in chickpea protoplast; 
further work is needed at the plant level, and the effect of such knockouts in terms 
of drought stress response is yet to be explored.

4  Developing Nutritionally Improved Chickpeas

“Hidden hunger” denoting micronutrient malnutrition, particularly iron (Fe), zinc 
(Zn), and vitamin A, affects more than 2 billion people globally (Saltzman et al., 
2017; Gödecke et  al., 2018). Several measures have been proposed to tackle the 
problem of hidden hunger, including food fortification, supplementation of the diet 
with micronutrients, and diet diversification (Bamji et al., 2020). In addition, biofor-
tification, i.e., enhancing the nutrients in the grain or other edible part of the plant, 
either with agronomic practices (agronomic biofortification) or through conven-
tional plant breeding or transgenic means (genetic biofortification), seems a more 
viable approach to reaching a larger population that cannot afford fortified foods. 
Genetic biofortification through conventional breeding is considered the most 
acceptable, cost-effective, and sustainable strategy (Bouis et  al., 2011; Saltzman 
et al., 2013; Garg et al., 2018). Being staple crops, rice, wheat, maize, potato, and 
cassava are preferred targets for genetic biofortification (Saltzman et  al., 2017). 
Pulses (grain legumes), including chickpea are also staple food crops in many Asian 
and African countries. Often called “poor man’s meat,” they serve as a cheap and 
rich source of proteins for a large population. Moreover, pulses and cereals comple-
ment each other with respect to the essential amino acids viz., lysine and methio-
nine, respectively (Singh, 2017). The biofortification programs for nutritionally 
improved pulses, including chickpea, are relatively recent. Most of the agronomic 
biofortification strategies for chickpea are in the research stage. The type of applica-
tion (soil versus foliar), nature of inorganic fertilizer, and time of application are 
being standardized. Soil or foliar application of Zn, Fe, and/or urea showed increased 
Fe and Zn content in the grains (Hidoto et al., 2017; Pal et al., 2019a, b). Zinc–eth-
ylenediaminetetraacetic acid (Zn-EDTA) was found to be better than zinc sulfate 
heptahydrate. Also, foliar application of Zn was proved to be better than soil 
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application. When foliar sprays of Zn-EDTA at three stages (active vegetative, flow-
ering, and grain-filling) were given, the following positive changes were observed 
in chickpea: highest grain and straw yields, greatest Zn biofortification of grains, 
and highest Zn uptake. Agronomic efficiency was greatest (kg grain increased kg–1 
Zn applied) following two sprays of Zn-EDTA at vegetative and flowering stages) 
(Shivay et  al., 2015). Recently, a tank mix application of ZnSO4 (0.5%), FeSO4 
(0.5%), and urea (2%) at flowering and pod formation stages of chickpea showed 
improvement in the Zn and Fe contents of chickpea seeds (Pal et  al., 2021). 
Agronomic biofortification is labor- intensive and less cost-effective due to the 
requirement that the chemicals need to be applied at particular stages of plant 
growth, although some cost can be reduced by combining foliar sprays with pesti-
cide applications (Wang et al., 2016). However, the extensive use of chemicals is a 
cause for concern due to the environmental pollution attributed to their indiscrimi-
nate use and consequent leaching into groundwater. Moreover, soil quality param-
eters and crop physiology also influence the success of agronomic biofortification 
strategies. In addition, the interaction of various chemical species with each other 
can also influence their uptake and nutritional status in crops (Prasad et al., 2016).

Mineral micronutrient deficiency in humans is a global challenge. Several strate-
gies have been developed to combat this menace. Although transgenic- and agro-
nomic-based strategies of biofortification are being used, biofortification through 
conventional breeding is considered to be more acceptable than the other strategies 
(Garg et al., 2018). As a first step toward nutritionally improved chickpeas, there is 
a need to establish a baseline status for Fe and Zn in the crop. This requires studies 
ascertaining the diversity of this trait in the available germplasm and cultivars. Such 
studies have been conducted in chickpeas, and a wide variation for both Fe and Zn 
content has been observed (Thavarajah & Thavarajah, 2012; Diapari et al., 2014; 
Upadhyaya et al., 2016; Tan et al., 2018; Joshi-Saha et al., 2018; Misra et al., 2020; 
Joshi-Saha et al., 2021). The studies have also shown a strong genotype X environ-
ment (G X E). The overall contribution toward variation was highest for the location 
(environment) effect, followed by genotype, and least for genotype X location in 19 
chickpea genotypes grown in four locations belonging to three different agrocli-
matic zones of chickpea cultivation in India (Misra et al., 2020). Moreover, a posi-
tive correlation between Fe and Zn content in chickpea was observed, suggesting 
that the two traits can be co-selected (Tan et al., 2018; Vandemark et al., 2018; Misra 
et  al., 2020). Another important aspect to consider in breeding for high mineral 
micronutrient traits is their correlation with yield. In chickpea, many studies have 
reported a negative correlation of Zn with yield (Diapari et al., 2014; Vandemark 
et al., 2018; Misra et al., 2020). Therefore, in breeding for high Zn combined with 
high yield, such deleterious linkages should be broken by either the appropriate 
selection of parents for hybridization programs or the use of induced mutagenesis 
and mutation breeding. Use of tightly linked molecular markers with high zinc con-
tent is also important in selecting for high mineral content in a high yielding genetic 
background.

There is immense scope for using molecular tools, particularly marker assisted 
selection (MAS), genome-wide association studies (GWAS), and genomic selection 
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Table 8 Markers linked/associated with high iron/zinc content in chickpea

Population Method Identified markers and locations References

94 accessions Association 
mapping

8 SNPs loci, Chr 1 (1, Fe and Zn), 
Chr 4 (3 Zn, 2 Fe), Chr 6 (1 Fe), 
Chr 7 (1, Zn)

Diapari et al. 
(2014)

ICC 4958 X ICC 8261 
(RIL, 277 individuals), 92 
accessions

Linkage 
and 
Association 
mapping

8 QTLs
16 SNPs, of which, 11 trait- 
associated SNPs linked tightly with 
8 QTLs validated by QTL mapping 
and expression analysis

Upadhyaya et al. 
(2016)

MNK-1 X Annigeri 1 
(185, F2:3 individuals)

Linkage 
mapping

11 QTLs in CaLG03, CaLG04, and 
CaLG05

Sab et al. (2020)

SNPs Single nucleotide polymorphisms, RIL recombinant inbred line

(GS), in chickpea breeding for improvement in mineral micronutrient content. 
However, there are only a few studies so far that have identified markers linked to or 
associated with high grain Fe and/or Zn content in chickpea (Table 8).

5  Co-improving Stress Tolerance and Quality Parameters-
Paradox or Possibility?

Many quality improvement programs emphasize breeding for reduced antinutri-
tional factors such as phytic acid (PA) and the raffinose family of oligosaccharides 
in pulse crops. However, these compounds play an important role in general plant 
physiology and performance under various stress conditions (Joshi-Saha & Reddy, 
2016; Salvi et al., 2016, 2018). In cereals and pulses, including chickpea, increased 
PA content reduces the bioavailability of mineral micronutrients by chelation owing 
to its negatively charged phosphate groups and lack of phytase enzyme in non- 
ruminant animals, including humans (Schlemmer et al., 2009). Therefore, breeding 
for low phytic acid is an important consideration in improving of nutritional quality. 
However, PA seems to play a role in biotic and abiotic stress tolerance (Murphy 
et  al., 2008; Joshi-Saha and Reddy, 2015), and perturbations in its biosynthetic 
pathways seem to affect the stress signaling pathways and responses (Lemtiri-
Chlieh et al., 2000, 2003; Doria et al., 2009; Raboy, 2009). Many breeding lines 
with reduced phytic acid content show reduced seed germination and vigor, espe-
cially in tropical environments that are prone to abiotic stresses (Meis et al., 2003; 
Oltmans et al., 2005; Naidoo et al., 2012; Raboy et al., 2015). Therefore, depending 
on the crop, a threshold value of PA content should be decided so that plant perfor-
mance under stress is not affected. A recent multi- environment study in chickpea 
indicates that some of the popular cultivars of India have naturally been selected for 
low PA during their development (Misra et al., 2020).
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6  Conclusion and Future Prospects

Modern breeding approaches require accelerated breeding programs. This can be 
achieved through multifaceted approaches that not only save time but also can handle 
large-sized breeding populations. A “speed breeding” approach in a long-day plant 
like chickpea, can markedly reduce the breeding cycle time by increasing the number 
of generations from only one generation per year to up to seven generations per year 
(Samineni et al., 2020). In addition, “phenomics,” involving large-scale high-through-
put phenotyping (HTP) methods, can help in the screening of a large number of popu-
lations. Many of the imaging-based systems can provide a nondestructive means 
coupled with a quicker screening. Such HTP methods have been used in chickpea for 
root traits in a mini rhizotron (Pratap et al., 2019), 3D leaf area, projected leaf area, 
plant height (Kar et al., 2020), canopy temperature, plant vigor under water stress 
(Sivasakthi et al., 2017), and image-based analysis under salinity stress (Atieno et al., 
2017). However, such large-scale phenotyping methods for nutritional traits, particu-
larly for estimation of micronutrients like Fe and Zn, are lacking and are a major 
bottleneck in breeding for nutritionally enhanced chickpeas. Presently, atomic absorp-
tion spectrometry (AAS) and inductively coupled plasma optical emission spectrom-
etry (ICP-OES) are used for estimation. Although these techniques are very sensitive, 
they are labor-intensive, expensive, and time consuming. There is a need to explore 
nondestructive energy dispersive X-ray fluorescence (EDXRF) in a high throughput 
mode for rapid screening of Fe and Zn. In addition, to quantifying the nutrient levels 
in the crop, there is also a need to develop robust methods to assess their bioavailabil-
ity. Such methods will not only be useful for setting up a reliable baseline for nutri-
tional enhancement but also will be useful for assessing biofortified crops once they 
are developed. Combining these with genomics-assisted breeding will also help in the 
rapid and efficient incorporation of novel/useful alleles in chickpea breeding programs.
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Application of Molecular Markers 
on Assessing Genetic Diversity in Faba 
Bean

Nurmansyah, Salem S. Alghamdi, Hussein M. Migdadi, and M. Afzal

Abstract With the advancement of sequencing technologies, the identification of 
molecular approaches has been used for the preservation of gene pool sources and for 
improving breeding programs in recent years. At the molecular level, diversity within 
and between genotypes or accessions is commonly assessed using various labora-
tory-based techniques, such as allozyme or DNA analysis, which directly determine 
diversity levels. Population size, heterozygosity, and quantification of genetic diver-
sity are employed as fitness indicators and positively correlated with population fit-
ness. The current study provides an overview and application of the molecular marker 
techniques used for the analysis of genetic diversity in faba beans (Vicia faba L.). 
Different markers were used to identify specific genes, gene actions and construct 
gene maps that helped in the development of gene transfer. Furthermore, these mark-
ers have also played a significant role to determine the species evolution and phylog-
eny analysis and help to a better understanding of the distribution and breadth of the 
genetic diversity within and among the species. The current chapter discussed the 
application of different molecular markers, i.e., non- PCR- based markers (RFLP), 
PCR-based markers (RAPD, ISSR, SSR, SSAP, AFLP, SRAP), and sequence-based 
markers (SNP) that were used for the improvement of faba bean. The advanced 
marker technique has an advantage over the basic technique and enhanced resolution 
and sensitivity to detect the genetic gap and differences among the genotypes.

Keywords Genetic mutation · Mutation detection techniques · Restriction 
fragment length polymorphism · Denaturing high-performance liquid 
chromatography · Targeting induced local lesion in genomes
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1  Introduction

Genetic diversity can be assessed by using three types of markers: (i) morphologi-
cal, (ii) biochemical, and (iii) molecular markers. The simplicity and relatively low 
cost of the morphological marker make it a widely used tool to study the genetic 
variation of germplasm. However, a limited number of traits that can be evaluated 
and most of the economical traits influenced by the environment became drawbacks 
of this technique. While the biochemical marker has some negatives due to the lim-
ited number of markers and is influenced by the developmental stages of plants, the 
molecular or DNA-based marker has unlimited markers and is not affected by the 
developmental stages and the environment. Therefore, DNA-based markers provide 
a strong tool for the characterization of diversity in various crop plants (Alghamdi 
et al., 2012a). Furthermore, molecular markers can be utilized to figure out the gen-
erated mutants in pedigree and tag significant mutations. In addition, closely con-
nected markers can also be employed for marker-assisted selection (MAS), 
mutation, and gene pyramiding used in cloning (Suprasanna et al., 2015). The vari-
ous applications of molecular markers are shown in Fig. 1.

This chapter will focus on the use of molecular markers for analyzing genetic 
diversity in faba beans. Genetic diversity assessment using molecular markers is a 
critical step in most plant breeding programs to improve the efficiency and efficacy 

Fig. 1 The application of molecular markers
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Fig. 2 Classification of different molecular markers

of the program. Therefore, it is crucial to select a molecular marker that is suitable 
for a particular use. Many types of molecular markers were utilized to analyze the 
diversity in faba bean including Restriction Fragment Length Polymorphism 
(RFLP) (Van de Ven et al., 1990), Random Amplified Polymorphic DNA (RAPD) 
(Alghamdi, 2009), Amplified Fragment Length (AFLP) (Zeid et  al., 2003; Zong 
et  al., 2010; Ammar et  al., 2015; Nurmansyah et  al., 2020), Sequence-Specific 
Amplification Polymorphism (SSAP) (Sanz et  al., 2007), Target Region 
Amplification Polymorphism (TRAP) (Kwon et al., 2010), Inter Simple Sequence 
Repeats (ISSRs) (Alghamdi et al., 2011), Sequence-related Amplified Polymorphism 
(SRAP) (Alghamdi et al., 2012b), Single Nucleotide Polymorphism (SNP) (Kaur 
et al., 2014) and Simple Sequence Repeats (SSRs) (Rebaa et al., 2017; Raina et al., 
2020; Laskar et al., 2018). The molecular markers could be classified according to 
the technology used (Fig. 2). The application of numerous molecular markers to 
evaluate differences based on molecular analysis among and within the faba bean 
population is discussed in Table 1.

2  Non-PCR-Based Markers

2.1  Restriction Fragment Length Polymorphism (RFLP)

Van de Ven et al. (1990) used RFLP markers on 16 faba bean accessions and its four 
wild relatives, namely, V. narbonensis, V. johannis, V. galilaea, and V. hyaeniscya-
mus, to evaluate the degree of polymorphism at the DNA level as well as the identi-
fication of appropriate faba bean parents in order to create a physical map. Most of 
the polymorphisms discovered were related to wild species; however, since inter-
specific crosses of faba bean and its wild relatives cannot be produced, they devel-
oped a three-way hybrid, A ×  B  ×  C, which was responsible for most of the 
polymorphisms detected in the V. faba gene pool sampled. Knowledge of no suc-
cessful interspecific crosses between V. faba and other Vicia species led researchers 
to exploit heterosis to develop a better faba bean cultivar. However, genetic structure 
and identification of germplasm groups are required for optimizing the crossing 
plans and selection procedures (Link et al., 1995).
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Table 1 Application of molecular markers in the genetic diversity assessment of faba bean

No.
Marker 
type

No. of 
samples Sample origin Objective Reference

1. RFLP 20 16 modern cultivar accessions of 
faba bean and 4 wild relatives of 
Vicia species

Identification of 
suitable faba bean 
parents for creating a 
linkage map

Van de Ven 
et al. 
(1990)

2. RAPD 28 13 European minor, 6 European 
major, and 9 Mediterranean 
accessions

Genetic diversity 
analysis within and 
between European 
and Mediterranean 
accessions

Link et al. 
(1995)

26 Palestinian faba bean landraces Genetic diversity and 
relatedness 
assessment among 
Palestinian landraces

Basheer- 
Salimia 
et al. 
(2013)

3. SSAP 9 Accessions from Tunisia with two 
subspecies (minor and major)

Genetic relationship 
assessment among 
Tunisian faba bean 
accessions

Ouji et al. 
(2012)

76 56 V. narbonensis accessions and 
20 V. faba accessions

Genetic diversity 
assessment within the 
Vicia species

Sanz et al. 
(2007)

4. TRAP 151 137 accessions (107 from China, 
15 from Afghanistan, 7 from 
Germany, 6 from Bulgaria, 4 from 
Nepal, 3 from France, 2 from 
each of Finland, Hungary, and the 
United Kingdom, and 1 from 
Poland), 12 cultivars from 
Germany, and 2 commercial 
varieties.

Genetic diversity and 
relationship 
assessment among 
faba bean accessions

Kwon et al. 
(2010)

5. ISSR 34 8 from ICARDA, 9 from Saudi 
Arabia, 10 from Egypt, 2 from 
Sudan, 3 from Spain, and 1 from 
Pakistan and Yemen accessions

Genetic diversity 
assessment among 
faba bean accessions

Alghamdi 
et al. 
(2011)

802 538 accessions from China and 
264 from outside China

Assessment of 
diversity among faba 
bean genotypes 
collected from 
different areas of 
China and outside 
China

Wang et al. 
(2012)

39 39 Mexican faba bean accessions Genetic diversity and 
relatedness 
assessment among 
Mexican genotypes

Salazar- 
Laureles 
et al. 
(2015)

(continued)
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Table 1 (continued)

No.
Marker 
type

No. of 
samples Sample origin Objective Reference

6. SRAP 58 18 accessions from Saudi Arabia, 
25 from Egypt, 6 from ICARDA, 
4 from Sudan, 3 from Spain, and 
1 from Pakistan and Yemen 
accessions

Genetic diversity 
assessment among 
faba bean accessions

Alghamdi 
et al. 
(2012b)

40 5 accessions from the United 
Kingdom, 28 from ICARDA, 2 
from each of Saudi Arabia, Egypt, 
and Sudan, and 1 from Spain

Genetic diversity 
assessment among 
faba bean accessions

Ammar 
et al. 
(2015)

7. SNP 45 45 accessions from several 
different geographical regions 
(North Africa, China, Ecuador, 
Europe, and Australia)

Genetic diversity and 
pedigree relationship 
assessment among 
faba bean accessions 
from diverse localities

Kaur et al. 
(2014)

8. AFLP 79 63 cultivars from Europe, 8 from 
Asia, and 8 from North Africa

Genetic structure 
assessment among 
faba bean cultivars

Zeid et al. 
(2003)

243 204 Chinese landraces and 39 
faba bean winter accessions from 
outside of China

The genetic diversity 
of the Chinese and 
their association with 
the global winter faba 
bean

Zong et al. 
(2009)

175 39 Chinese spring faba bean 
landraces and 136 non-Chinese 
spring faba bean accessions

Genetic diversity and 
relationship between 
Chinese and global 
spring faba bean 
accessions

Zong et al. 
(2010)

40 5 accessions from the United 
Kingdom, 28 from ICARDA, 2 
from each of Saudi Arabia, Egypt, 
and Sudan, and 1 from Spain

Genetic diversity 
assessment among 
faba bean accessions

Ammar 
et al. 
(2015)

9. SSR 35 15 accessions from Northern 
Africa, 12 from Eastern Africa, 
and 8 from the Near East

Assessment of genetic 
diversity and 
population 
organization in three 
different geographical 
locations

El-Esawi 
(2017)

21 21 Tunisian faba bean accessions 
from five geographical areas

Genetic variability 
assessment of 
Tunisian faba bean 
accessions

Rebaa et al. 
(2017)

255 151 landraces and 104 cultivars 
from 30 different countries

Genetic diversity and 
relationship 
assessment among 
different geographical 
origins and seed sizes

Göl et al. 
(2017)
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3  PCR-Based Markers

3.1  Random Amplified Polymorphic DNA (RAPD)

Link et al. (1995) evaluated the diversity among three different regions of faba bean 
inbred lines (European small- and large-seeded and Mediterranean germplasms) 
using RAPD markers. The RAPD results revealed that European small-seeded and 
Mediterranean lines are distinct groups, with European large-seeded lines located in 
between. Their RAPD results were also consistent with field data, which showed 
that the crosses (heterosis) between dissimilar lines were greater than those of simi-
lar lines. Therefore, they concluded that RAPD markers effectively classify germ-
plasm and identify different heterotic groups in faba beans. Similarly, Basheer-Salimia 
et  al. (2013) tested 26 Palestinian faba bean landraces for genetic diversity and 
relatedness. Genetic distances (GD) based on the Jaccard similarity index ranged 
from 0.069 to 0.358 with a mean of 0.213, which were lower than those obtained by 
Link et al. (1995), where GD ranged from 0.306 to 0.646. It indicated that Palestinian 
landraces are less diverse than European and Mediterranean germplasms. This con-
sistency of RAPD markers in assessing the genetic diversity makes it suitable for 
faba bean fingerprinting.

3.2  Sequence-Specific Amplification Polymorphism (SSAP)

Sanz et al. (2007) have successfully developed long terminal repeat retrotransposon- 
based SSAP markers to construct a phylogenetic tree within a collection of 56 
V. narbonensis and 20 V. faba accessions. The SSAP results demonstrated extremely 
limited diversity based on geographical origin and clustering among accessions, and 
no evident link was recorded between diversity and morphology-based taxonomy 
groups. Ouji et  al. (2012) also used SSAP to study the nine Tunisian faba bean 
populations for population structure and genetic diversity between local genotypes 
and commercial varieties with different botanical classes (large- and small-seeded). 
The study found high genetic variation within the population due to the high out-
crossing rate. The unweighted pair group method with arithmetic averaging 
(UPGMA) revealed no clear separation based on botanical class, as is in line with 
Sanz et al. (2007).

3.3  Amplified Fragment Length (AFLP)

Although in some crops, the SSAP markers were chosen over AFLP markers due to 
the diverse nature of polymorphism (Waugh et  al., 1997; Ellis et  al., 1998; Tam 
et al., 2005), no comparative study has been done between these markers in faba 
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bean. However, it seems that the AFLP marker was preferred over SSAP in assess-
ing the genetic diversity in faba beans because an unlimited number of AFLP prim-
ers can be generated by simply varying the restriction enzymes and altering 
supplementary bases. Moreover, AFLP markers have the capacity of generating 
strong polymorphism bands or high repeatability without prior knowledge of the 
DNA sequence. Additionally, using the sequencer (fragment analysis) along with 
the software to analyze the comparison among banding patterns facilitates faster 
analysis (Sorkheh et al., 2007).

Zeid et al. (2003) reported the genetic diversity of 79 faba bean genotypes con-
sisting of six different groups (Asian, North African, South European, European 
winter bean, European spring minor, and European spring major) using AFLP 
markers. The UPGMA clustering group of 79 genotypes is  based on the mean 
of genetic similarity and their results revealed that there was no distinct grouping, 
neither based on seed size (European minor and major) nor geographic origin. Only 
six of the eight Asian cultivars clustered together. However, cluster analysis of the 
six groups convincingly separated Asian cultivars from the other groups. Moreover, 
their findings revealed a higher level of similarity (genetic) among the European 
winter bean, European spring minor, and European spring major.

Zong et al. (2009) assessed the genetic diversity of 243 Chinese and worldwide 
winter faba bean germplasms with varying seed sizes (major, equina, and minor 
types) using ten AFLP primer combinations. The results suggested that 204 Chinese 
faba bean accessions were segregated from 39 accessions from outside China. They 
came to the conclusion that the Chinese winter faba bean germplasm was distinct 
from the rest of the world's faba bean germplasm. The results were also in line with 
Kwon et al. (2010) who studied genetic diversity among 151 accessions consisting of 
107 accessions from China, 15 from Afghanistan, 4 from Nepal, 23 from European 
countries, and 2 vegetable-type commercial varieties. Using TRAP markers, they 
divided the 151 entries into five clusters. The findings revealed a strong link between 
geographic origin and molecular diversity among the entries studied. The striking 
example is that 101 out of 107 China accessions were grouped in one cluster.

3.4  Sequence-Related Amplified Polymorphism (SRAP)

Ammar et al. (2015) evaluated 40 accessions consisting of 33 ICARDA accessions 
and 7 local and exotic faba bean accessions using four AFLP and six SRAP primer 
combinations. Four AFLP primers generated 202 alleles with a mean of 50.5 alleles, 
while six SRAP primers generated 183 alleles with a mean of 30.5 alleles per primer 
combination. Seven native and exotic faba bean accessions were isolated from 33 
ICARDA accessions based on the UPGMA cluster analysis constructed using the 
AFLP marker. The SRAP marker also separated six out of seven local and exotic 
faba bean accessions from the ICARDA accessions. These results revealed that 
AFLP generated more polymorphic alleles or had higher reproducibility than 
SRAP markers.
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3.5  Inter Simple Sequence Repeats (ISSRs)

ISSR primers were used by Alghamdi et al. (2011) to evaluate the diversity of 34 
newly introduced local faba beans in Saudi Arabia. Twelve of the 24 ISSR primers 
showed an unambiguous band pattern that generated 71 polymorphic alleles 
throughout the samples. The cluster analysis revealed a high number of subclusters 
that indicated high genetic variability in the sample tested and should be utilized in 
faba bean improvement. Wang et  al. (2012) used ISSR to determine the genetic 
diversity and interrelationships using 802 faba bean accessions and genotypes col-
lected from different origins, i.e., China (n = 538) and globally (n = 264). Eleven 
ISSR primers were used and produced 209 diverse bands. The results revealed that 
the faba bean was present in the same group of origins from North Africa and 
Europe, and the genotypes were grouped according to the origin. Furthermore, it 
was also suggested that China has the second-highest genetic diversity of the faba 
bean due to being more reproductively isolated from the rest of the Asian, African, 
and European gene pools.

3.6  Simple Sequence Repeat (SSR)

Large numbers of SSR markers with expressed sequence tags (ESTs) (Gong et al., 
2010; Ma et al., 2011) and cDNA (Pozarkova et al., 2002; Suresh et al., 2013) have 
been produced and described from the faba bean genomes. Rebaa et al. (2017) used 
eight EST-SSR primers to evaluate 21 Tunisian faba beans. There were 53 alleles, 
with an average of 6.62 alleles per locus. The UPGMA cluster analysis based on Nei 
& Li’s similarity coefficients divided the genotypes into clusters and subdivided 
them into three subclusters based on localities. Furthermore, AMOVA results 
revealed that more genetic variation was recorded within populations, which they 
suggested was most likely due to the partially allogamous reproductive system of 
the faba bean. El-Esawi (2017) used 15 cDNA-SSR primers to estimate the genetic 
diversity of 35 accessions of faba beans representing three geographical regions 
(Northern Africa, East Africa, and the Near East). A total of 100 alleles with an 
average of 6.67 were obtained. The faba bean genotypes were grouped into two 
clusters based on Nei genetic distance and population structure. The cluster (I) was 
composed of faba bean accession from the Near East region; however, the cluster 
(II) was composed of Northern and Eastern African faba bean genotypes and sug-
gested that Eastern and Northern African genotypes were closely related.

Gӧl et al. (2017) also used SSR markers to determine the diversity among 255 
faba bean accessions that originated from 30 different countries with different seed 
sizes (large-, medium-, and small-seeded). A total of 305 polymorphic loci and an 
average of eight alleles per locus were obtained from 32 SSR primers. Based on 
unweighted neighbor-joining and population structure analyses, the 255 genotypes 
were divided into two groups; however, the genotypes were also subgrouped based 
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on geographic origins as well as seed size. Interestingly, with a large coverage of 
different countries, the AMOVA analysis revealed that the majority of genetic varia-
tion (90%) was obtained within the population, while 10% diversity was present 
among the populations.

4  Sequence-Based Marker

4.1  Single Nucleotide Polymorphism (SNP)

Recent technological advancements in genotyping and sequencing allow for the 
generation of a large set of single nucleotide polymorphism (SNP) markers for 
many crops, including faba beans. Kaur et al. (2014) used a subset of 768 SNPs to 
determine the genetic diversity of 45 faba bean accessions collected from China, 
Europe, Ecuador, North Africa, and Australia. According to pedigree analysis and 
geographical origin, faba bean lines displayed a clear clustering pattern based on the 
neighbor-joining (NJ) dendrogram and principal coordinate analysis (PCoA). Most 
of the studied faba bean lines have a high amount of heterozygosity, which is likely 
related to the species' largely allogamous character. They concluded that SNP mark-
ers are considered a useful technique to find out the genetic variation among and 
within the faba bean genotypes and for varietal identification and discrimination due 
to the sufficient number of varietal-specific alleles. Moreover, Mulugeta et al. (2021) 
used 37 SNPs based on Kompetitive Allele-Specific PCR (KASP) SNP markers in 
48 Ethiopian faba bean genotypes. Out of 37 SNPs, 36 SNPs recorded polymorphic 
alleles among the total faba bean genotypes and recorded a 95.6 PIC value. The 
diversity was 0.16–0.50 with an average of 0.42 was recorded.

4.2  Expressed Sequence Tags (EST)-SSR

The creation of simple sequence repeat (SSR) markers from expressed sequence 
tags (EST) provided a good technique for investigating Vicia species genetic diver-
sity. Gong et  al. (2011) utilized 5031 faba bean EST sequences from the NCBI 
database and identified 107 SSR primers. Eleven of them were used to evaluate the 
genetic diversity of 29 faba bean accessions from China and Europe. With an aver-
age PIC of 0.29, it indicated that European accessions had wider genetic diversity 
than China accessions. A similar study conducted by Akash and Myers (2012) was 
designed to determine the diversity among 20 Jordanian faba bean genotypes. 
Thirty-one out of 349 SSR primers successfully amplified 20 Jordanian faba bean 
accessions with a PIC value of 0.54. Moreover, EST-SSR markers could also be 
used to generate a linkage map in faba beans. A total of 128 SSR markers generated 
from 5090 faba bean nonredundant EST sequences were developed to study the 
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linkage map of 109 F2 plants. A dense linkage map developed in this study, repre-
senting a total length of 684.7 cM with 552 loci, is expected to accelerate marker- 
assisted selection in faba bean breeding (El-Rodeny et al., 2014).

5  Conclusions

Molecular markers correspond to a significant tool that is susceptible to new 
genome-based discoveries and technological breakthroughs and, hence, is con-
stantly evolving. In the assessment of genetic diversity and the development of 
physical and genetic maps, most molecular marker techniques are used. The results 
of DNA fingerprinting from the results of wild ancestors revealed a long-term evo-
lutionary alteration among the allelic interactions. The information presently acces-
sible is also critical in developing appropriate conservation plans. However, it is 
exceedingly doubtful that these data and DNA sample collections will be able to 
replace the preservation of whole organisms' germplasm. Polygenes code for the 
majority of agronomically essential traits, and it would be very difficult to recon-
struct all the implied gene blocks with their regulatory components based on exist-
ing knowledge.

References

Akash, M., & Myers, G. (2012). The development of faba bean expressed sequence tag-simple 
sequence repeats (EST-SSRs) and their validity in diversity analysis. Plant Breeding, 131, 
522–530. https://doi.org/10.1111/j.1439- 0523.2012.01969.x

Alghamdi, S. S. (2009). Varietal identification and genetic purity assessment of F1 hybrid seeds 
using RAPD markers in faba bean (Vicia faba L.). Acta Horticulturae, 829, 269–274. https://
doi.org/10.17660/ActaHortic.2009.829.39

Alghamdi, S. S., Al-Faifi, S. A., Migdadi, H. M., Ammar, M. H., & Siddique, K. M. (2011). Inter- 
simple sequence repeat (ISSR)-based diversity assessment among faba bean genotypes. Crop 
& Pasture Science, 62(9), 755–760. https://doi.org/10.1071/CP11045

Alghamdi, S. S., Migdadi, H. M., Ammar, M. H., Paull, J. G., & Siddique, K. H. M. (2012a). Faba 
bean genomics, current status and future prospects. Euphytica, 186(3), 609–624. https://doi.
org/10.1007/s10681- 012- 0658- 4

Alghamdi, S.  S., Al-Faifi, S.  A., Migdadi, H.  M., Khan, M.  A., El-Harty, E.  H., & Ammar, 
M.  H. (2012b). Molecular diversity assessment using Sequence Related Amplified 
Polymorphism (SRAP) markers in Vicia faba L. International Journal of Molecular Sciences, 
1(12)3, 16457–16471. https://doi.org/10.3390/ijms131216457

Ammar, M.  H., Alghamdi, S.  S., Migdadi, H.  M., Khan, M.  A., El-Harty, E.  H., & Al-Faifi, 
S.  A. (2015). Assessment of genetic diversity among faba bean genotypes using agro- 
morphological and molecular markers. Saudi Journal of Biological Sciences, 22(3), 340–350. 
https://doi.org/10.1016/j.sjbs.2015.02.005

Basheer-Salimia, R., Shtaya, M., Awad, M., Abdallah, J., & Hamdan, Y. (2013). Genetic diver-
sity of Palestine landraces of faba bean (Vicia faba) based on RAPD markers. Genetics and 
Molecular Research, 12(3), 3314–3323.

Nurmansyah et al.

https://doi.org/10.1111/j.1439-0523.2012.01969.x
https://doi.org/10.17660/ActaHortic.2009.829.39
https://doi.org/10.17660/ActaHortic.2009.829.39
https://doi.org/10.1071/CP11045
https://doi.org/10.1007/s10681-012-0658-4
https://doi.org/10.1007/s10681-012-0658-4
https://doi.org/10.3390/ijms131216457
https://doi.org/10.1016/j.sjbs.2015.02.005


315

El-Esawi, M. A. (2017). SSR analysis of genetic diversity and structure of the germplasm of faba 
bean (Vicia faba L.). Comptes Rendus Biologies, 340, 474–480. https://doi.org/10.1016/j.
crvi.2017.09.008

Ellis, T. H. N., Poyser, S. J., Knox, M. R., Vershinin, A. V., & Ambrose, M. J. (1998). Polymorphism 
of the insertion site of Ty1-copia class retrotransposon and its use for linkage and diversity anal-
ysis in pea. Molecular and General Genetics, 260, 9–19. https://doi.org/10.1007/PL00008630

El-Rodeny, W., Kimura, M., Hirakawa, H., Sabah, A., Shirasawa, K., Sato, S., Tabata, S., Sasamoto, 
S., Watanabe, A., Kawashima, K., Kato, M., Wada, T., Tsuruoka, H., Takahashi, C., Minami, 
C., Nanri, K., Nakayama, S., Kohara, M., Yamada, M., & Isobe, S. (2014). Development of 
EST-SSR markers and construction of a linkage map in faba bean (Vicia faba). Breeding 
Science, 64, 252–263.

Gӧl, S., Doganlar, S., & Frary, A. (2017). Relationship between geographical origin, seed size and 
genetic diversity in faba bean (Vicia faba L.) as revealed by SSR markers. Molecular Genetics 
and Genomics, 292(5), 991–999. https://doi.org/10.1007/s00438- 017- 1326- 0

Gong, Y.  M., Xu, S.  C., Mao, W.  H., Hu, Q.  Z., Zhang, G.  W., Ding, J., & Li, Z.  Y. (2010). 
Generation and characterization of 11 novel EST derived microsatellites from Vicia faba 
(Fabaceae). American Journal of Botany, 97, 69–71. https://doi.org/10.3732/ajb.1000166

Gong, Y. M., Xu, S. C., Mao, W. H., Li, Z. Y., Hu, Q. Z., Zhang, G. W., & Ju, D. (2011). Genetic 
diversity analysis of faba bean (Vicia faba L.) based on EST-SSR markers. Agricultural 
Sciences in China, 10(6), 838–844.

Kaur, S., Cogan, N. O. I., Forster, J. W., & Paull, J. G. (2014). Assessment of genetic diversity 
in faba bean based on single nucleotide polymorphism. Diversity, 6(1), 88–101. https://doi.
org/10.3390/d6010088

Kwon, S. J., Hu, J., & Coyne, C. J. (2010). Genetic diversity and relationship among faba bean 
(Vicia faba L.) germplasm entries as revealed by TRAP markers. Plant Genetic Resources: 
Characterization and Utilization, 8(3), 204–213. https://doi.org/10.1017/S1479262110000201

Laskar, R. A., Laskar, A. A., Raina, A., & Amin, R. (2018). Induced mutation analysis with bio-
chemical and molecular characterization of high yielding lentil mutant lines. International 
Journal of Biological Macromolecules, 109, 167–179.

Link, W., Dixkens, C., Singh, M., Schwall, M., & Melchinger, A. E. (1995). Genetic diversity in 
European and Mediterranean faba bean germplasm revealed by RAPD markers. Theoretical 
and Applied Genetics, 90(1), 27–32. https://doi.org/10.1007/BF00220992

Ma, Y., Yang, T., Guan, J., Wang, S., Wang, H., Sun, X., & Zong, X. (2011). Development and 
characterization of 21 EST-derived microsatellite markers in Vicia faba (faba bean). American 
Journal of Botany, 98, 22–24. https://doi.org/10.3732/ajb.1000407

Mulugeta, B., Tesfaye, K., Keneni, G., & Ahmed, S. (2021). Genetic diversity in spring faba 
bean (Vicia faba L.) genotypes as revealed by high-throughput KASP SNP markers. Genetic 
Resources and Crop Evolution, 68(5), 1971–1986.

Nurmansyah, Alghamdi, S. S., Migdadi, H. M., Khan, M. A., & Afzal, M. (2020). AFLP-based 
analysis of variation and population structure in mutagenesis induced faba bean. Diversity, 
12(8), 1–14.

Ouji, A., El Bok, S., Syed, N.  H., Abdellaoui, R., Rouaissi, M., Flavell, A.  J., & El Gazzah, 
M. (2012). Genetic diversity of faba bean (Vicia faba L.) populations revealed by sequence 
specific amplified polymorphism (SSAP) markers. African Journal of Biotechnology, 11(9), 
2162–2168. https://doi.org/10.5897/AJB11.2991

Pozarkova, D., Koblizkova, A., Roman, B., Torres, A. M., Lucretti, S., Lysak, M., Dolezel, J., & 
Macas, J. (2002). Development and characterization of microsatellite markers from chromo-
some 1-specifi cDNA libraries of Vicia faba. Biologia Plantarum, 45, 337–345. https://doi.
org/10.1023/A:1016253214182

Raina, A., Laskar, R.  A., Tantray, Y.  R., Khursheed, S., Wani, M.  R., & Khan, S. (2020). 
Characterization of induced high yielding cowpea mutant lines using physiological, biochemi-
cal and molecular markers. Scientific Reports, 10(1), 1–22.

Application of Molecular Markers on Assessing Genetic Diversity in Faba Bean

https://doi.org/10.1016/j.crvi.2017.09.008
https://doi.org/10.1016/j.crvi.2017.09.008
https://doi.org/10.1007/PL00008630
https://doi.org/10.1007/s00438-017-1326-0
https://doi.org/10.3732/ajb.1000166
https://doi.org/10.3390/d6010088
https://doi.org/10.3390/d6010088
https://doi.org/10.1017/S1479262110000201
https://doi.org/10.1007/BF00220992
https://doi.org/10.3732/ajb.1000407
https://doi.org/10.5897/AJB11.2991
https://doi.org/10.1023/A:1016253214182
https://doi.org/10.1023/A:1016253214182


316

Rebaa, F., Abid, G., Aouida, M., Abdelkarim, S., Aroua, I., Muhovski, Y., Baudoin, J., M’hamdi, 
M., Sassi, K., & Jebara, M. (2017). Genetic variability in Tunisian populations of faba bean 
(Vicia faba L. var. major) assessed by morphological and SSR markers. Physiology and 
Molecular Biology of Plants, 23(2), 397–409. https://doi.org/10.1007/s12298- 017- 0419- x

Salazar-Laureles, M.  E., Pérez-López, D.  J., González-Huerta, A., Vázquez-García, L.  M., & 
Valadez-Moctezuma, E. (2015). Genetic variability analysis of faba bean accessions using 
inter-simple sequence repeat (ISSR) markers. Chilean Journal of Agricultural Research, 75(1), 
122–130. https://doi.org/10.4067/S0718- 58392015000100017

Sanz, A. M., Gonzalez, S. G., Syed, N. H., Suso, M. J., Saldaña, C. C., & Flavell, A. J. (2007). 
Genetic diversity analysis in Vicia species using retrotransposon-based SSAP mark-
ers. Molecular Genetics and Genomics, 278(4), 433–441. https://doi.org/10.1007/
s00438- 007- 0261- x

Sorkheh, K., Shiran, B., Aranzana, M.  J., Mohammadi, S.  A., & Martinez-Gomez, P. (2007). 
Application of amplified fragment length polymorphism (AFLPs) analysis to plant breed-
ing and genetics, procedures, applications and prospects. Journal of Food, Agriculture and 
Environment, 5(1), 197–204.

Suprasanna, P., Mirajkar, S. J., & Bhagwat, S. G. (2015). Induced mutations and crop improve-
ment. In B. Bahadur, R. M. Venkat, L. Sahijram, & K. Krishnamurthy (Eds.), Plant biology and 
biotechnology (pp. 593–617). Springer. https://doi.org/10.1007/978- 81- 322- 2286- 6_23

Suresh, S., Park, J. H., Cho, G. T., Lee, H. S., Baek, H. J., Lee, S. Y., & Chung, J. W. (2013). 
Development and molecular characterization of 55 novel polymorphic cDNA-SSR markers in 
faba bean (Vicia faba L.) using 454 pyrosequencing. Molecules, 18(2), 1844–1856. https://doi.
org/10.3390/molecules18021844

Tam, S. M., Mhiri, C., Vogelaar, A., Kerkveld, M., Pearce, S. R., & Grandbastien, M. A. (2005). 
Comparative analyses of genetic diversities within tomato and pepper collections detected by 
retrotransposon-based SSAP, AFLP and SSR. Theoretical and Applied Genetics, 110, 819–831. 
https://doi.org/10.1007/s00122- 004- 1837- z

Van de Ven, M., Powell, W., Ramsay, G., & Waugh, R. (1990). Restriction fragment length 
polymorphisms as genetic markers in Vicia. Heredity, 65, 329–342. https://doi.org/10.1038/
hdy.1990.102

Wang, H., Zong, X., Guan, J., Yang, T., Sun, X., Ma, Y., & Redden, R. (2012). Genetic diver-
sity and relationship of global faba bean (Vicia faba L.) germplasm revealed by ISSR 
markers. Theoretical and Applied Genetics, 124(5), 789–797. https://doi.org/10.1007/
s00122- 011- 1750- 1

Waugh, R., McLean, K., Flavell, A.  J., Pearce, S.  R., Kumar, A., Thomas, B.  B., & Powell, 
W. (1997). Genetic distribution of Bare-1-like retrotransposable elements in the barley genome 
revealed by sequence-specific amplification polymorphisms (S-SAP). Molecular and General 
Genetics, 253, 687–694. https://doi.org/10.1007/s004380050372

Zeid, M., Schon, C. C., & Link, W. (2003). Genetic diversity in recent elite faba bean lines using 
AFLP markers. Theoretical and Applied Genetics, 107(7), 1304–1314. https://doi.org/10.1007/
s00122- 003- 1350- 9

Zong, X., Liu, X., Guan, J., Wang, S., Liu, Q., Paull, J.  G., & Redden, R. (2009). Molecular 
variation among Chinese and global winter faba bean germplasm. Theoretical and Applied 
Genetics, 118(5), 971–978. https://doi.org/10.1007/s00122- 008- 0954- 5

Zong, X., Ren, J., Guan, J., Wang, S., Liu, Q., Paull, J. G., & Redden, R. (2010). Molecular varia-
tion among Chinese and global germplasm in spring faba bean areas. Plant Breeding, 129(5), 
508–513. https://doi.org/10.1111/j.1439- 0523.2009.01718.x

Nurmansyah et al.

https://doi.org/10.1007/s12298-017-0419-x
https://doi.org/10.4067/S0718-58392015000100017
https://doi.org/10.1007/s00438-007-0261-x
https://doi.org/10.1007/s00438-007-0261-x
https://doi.org/10.1007/978-81-322-2286-6_23
https://doi.org/10.3390/molecules18021844
https://doi.org/10.3390/molecules18021844
https://doi.org/10.1007/s00122-004-1837-z
https://doi.org/10.1038/hdy.1990.102
https://doi.org/10.1038/hdy.1990.102
https://doi.org/10.1007/s00122-011-1750-1
https://doi.org/10.1007/s00122-011-1750-1
https://doi.org/10.1007/s004380050372
https://doi.org/10.1007/s00122-003-1350-9
https://doi.org/10.1007/s00122-003-1350-9
https://doi.org/10.1007/s00122-008-0954-5
https://doi.org/10.1111/j.1439-0523.2009.01718.x


317

Conventional and Molecular Breeding 
for Genetic Improvement of Maize  
(Zea mays L.)

Mukesh Choudhary , Jeetram Choudhary, Pawan Kumar, Pardeep Kumar, 
Bahadur Singh Jat, Vishal Singh, and Manoj Choudhary

Abstract After rice and wheat, maize is the third most important cereal crop 
globally. It has diversified uses in the form of food, feed, fodder, fuel, and industrial 
raw materials. Maize has witnessed great success in terms of evolution and 
improvement and is the most explored crop for which most breeding strategies have 
been devised. Maize, being a cross-pollinated crop, explores the phenomenon of 
heterosis. The yield improvement in maize has been achieved mainly due to the 
adoption of single-cross hybrids through conventional breeding. Conventional 
breeding approaches like hybrid development and population improvement 
contributed immensely to maize improvement, mainly yield and oil content. 
However, considering the huge time and resource investment in conventional 
breeding and the availability of molecular markers, breeders gradually started to 
shift to molecular breeding. In addition, the complex nature of abiotic and biotic 
stresses also made breeders integrate conventional breeding approaches with 
genomics to give rise to genomics-assisted breeding. Genomics-assisted breeding 
helped identify important major quantitative trait loci (QTLs) for yield, quality, and 
biotic and abiotic stresses via QTL mapping and genome-wide association studies. 
Hence, genomics-assisted breeding offers an excellent opportunity to speed up 
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maize improvement programs globally. This chapter focuses on the conventional 
and molecular breeding-based approaches to maize improvement for various 
important traits.

Keywords Maize · Conventional · Quantitative trait loci · Heterosis · Genomics

1  Introduction

Maize is a cereal crop with wide adaptability to diverse climatic conditions 
(Choudhary et al., 2019). Maize is globally cultivated on 197 million hectares with 
1148 million tonnes of annual production (FAOSTAT, 2019). It is utilized in diverse 
forms like food, feed, industrial products, fodder, and biofuel (Choudhary et  al., 
2020; Yadav et al., 2015). In addition to being a rich source of calories, maize is a 
good source of micronutrients and other phytochemicals, such as carotenoids, phe-
nolics, and anthocyanins. Therefore, the maize history witnessed a greater emphasis 
on grain yield in the early stages but later also emphasized quality improvement and 
biotic and abiotic stress resilience. The breeding efforts resulted in improvements of 
all the traits, like continuous improvement in yields, but in the last few decades, 
quality improvement has been remarkable. The reason for the greater success with 
quality improvement is due to the fact that qualitative traits are governed by fewer 
genes and hence easier to improve upon as compared to quantitative traits (governed 
by many genes), but the most economically important traits are quantitative in 
nature (Kearsey & Pooni, 1998).

Conventional breeding relies mainly on the extensive screening or characterization 
of the germplasm for target traits and the selection of the best lines, followed by 
crossing to look at genetic gain over repeated cycles of selection. Maize holds spe-
cial importance in shaping the breeding methods over the years, as witnessed by the 
historical importance of concepts such as single cross hybrids, double cross hybrids, 
synthetics, and composites. Being a cross-pollinated crop, exploitation of heterosis 
remained the most effective approach for yield improvement in maize (Reif et al., 
2005). However, for wide adaptation and complex traits (biotic and abiotic stresses), 
the population improvement approach via recurrent selection (RS) proved effective 
and is still practiced (Tomlekova et al., 2014a, b). The wild relatives are the best 
source to mine for abiotic and biotic stress tolerance in maize (Choudhary et al., 
2017). The inbred line development via repeated selfing followed by a heterotic 
grouping of the lines tested for per se performance is the basic platform of hybrid 
breeding programs. Although, maize witnessed success for different traits like yield 
improvement, biotic and abiotic stress tolerance, and quality improvement, it did so 
at a slower pace. However, with the availability of molecular markers, the pace of 
improvement for these traits improved significantly. This resulted from the inte-
grated approach of conventional breeding and molecular markers, known as molec-
ular breeding.
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Several quantitative trait loci (QTLs) were identified during the last decade for 
different traits in maize, and as a resultant molecular breeding boosted the 
improvement of maize for different traits, however, quality improvement witnessed 
greater success relative to others. The reason is that quality traits are characterized 
by less complexity and high heritability (Kumar et al., 2019). This chapter is aimed 
at covering the contribution of conventional breeding approaches, recent progress in 
QTL mapping, and molecular breeding for different traits in maize, however, with 
special emphasis on quality traits, which most benefited from molecular breeding.

2  Conventional Breeding Approaches: Success 
and Limitations

The conventional methods of maize breeding majorly involve selection, population 
improvement (synthetics and composites), and hybrid breeding. RS schemes were 
used to enhance the frequency of desirable alleles in the population, mainly for 
quantitative traits. For example, historical oil improvement experiments in Illinois 
improved the oil content by up to 30% over existing lines (Jugenheimer, 1961). The 
hybrids were developed to exploit the heterosis (superiority of the offspring over its 
parents) at its fullest; however, it depends upon the genetic diversity of parental 
lines, the more divergent the parents, the better the heterosis (Reif et  al., 2005). 
However, initially, the breeders involved in hybrid breeding programs faced two 
major challenges: improving at least two populations for adaptation while maintain-
ing the genetic diversity among them, and establishing an efficient seed production 
system for hybrids. The former was addressed by the concept of heterotic grouping 
(a process of maintaining the genetic diversity and identity of populations by clas-
sifying the elite gene pool into subsets followed by separate breeding in each sub-
set). The latter problem was addressed by the development of elite parental lines for 
attaining better yields (seed production); in addition, the use of male sterility genes 
proved effective (Kauffmann et al., 1982).

2.1  Grain Yield

Yield holds the utmost importance for improvement for the plant breeders. 
Conventional breeding has resulted in the release of many varieties annually to 
improve food and nutritional security (Evenson & Gollin, 2002; Glenn et al., 2017). 
Landraces and wild relatives contribute to the foundation of maize improvement 
through introduction or as source material for developing populations or inbred 
lines (Choudhary et  al., 2017). For example, introductions, namely, Laxmi and 
Suwan 1, were released directly as cultivars (composites) in India, whereas Tuxpeno, 
Antigua Gr 1, Suwan 2, Eto, Stiff Stalk Synthetic, and Lancaster Surecrop were 
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used as sources to derive the inbred lines and establish heterotic groups (Dhillon & 
Prasanna, 2001). Ganga 1, Ganga 101, Ranjit, and Deccan were the first double- 
cross hybrids released in India in 1961. Later, composite cultivars, Amber, Jawahar, 
Kisan, Vijay, Vikram, and Sona were released in 1967, of which Vijay and Kisan 
were widely adopted. Later, shifting back to hybrids, Trishulata (first three-way 
hybrid) and Paras (first single cross hybrid) were released in India. The availability 
and adoption of high-yielding hybrids resulted in a rapid increase in maize cultivation 
under single cross hybrids. More than 20% more yield was obtained over the OPVs 
with the adoption of CIMMYT-based hybrids under optimal conditions, while an 
increase of 30–60% was observed under abiotic and biotic stress conditions (Masuka 
et  al., 2017). Furthermore, the genetic gain increased from 0.5 to 1.94 quintal/
hectare by adopting the single cross hybrids of eight countries yield data (Smith 
et al., 2014). International Institute of Tropical Agriculture (IITA) researchers have 
also utilized the conventional methods successfully for improving quantitative 
traits, such as yield, biotic and abiotic stresses (Badu-Apraku et al., 2018; Menkir & 
Meseka, 2019).

2.2  Biotic and Abiotic Stresses

High-yielding cultivars contributed immensely to achieving higher production over 
time, but various biotic and abiotic stresses affected the progress significantly 
(Choudhary et al., 2019). For abiotic stresses, conventional breeding through selec-
tion resulted in achieving tangible disease resistance and genetic gains. Maize is 
affected by various diseases like maize lethal necrosis (MLN), Maize ear rot 
(Fusarium spp.), Maize southern leaf blight (MLSB), Turcicum or Northern corn leaf 
blight (TLB or NCLB), Maize streak virus, gray leaf spot (GLS), Maize rough dwarf 
disease and fungal aflatoxin. Menkir et  al. (2008) used aflatoxin-resistant tropical 
elite to develop the resistant line TZAR101–106 (in the background of temperate 
inbred lines) through backcrossing. Hung and Holland (2012) used diallel crossing to 
develop hybrids that exhibited a reduction of ear rot and fumonisin content by 27% 
and 30%, respectively, over the parental lines. Similarly, half-diallel approach-based 
F1 hybrid “CKLTI0227 × CML550,” “CKDHL120918 × CKLTI0138,” and 
“CKDHL120918 × CKLTI0136 exhibited better resistance against MLN in Africa 
(Beyene et al., 2017). The resistant line (CML191) is a good product of conventional 
breeding that exhibits partial resistance against NCLB in Africa (Welz & Geiger, 
2000). Furthermore, Longe1 and Longe4 (MSV resistant varieties) have also been 
developed through conventional breeding in sub- Saharan Africa.

Stem borers are major pests that reduce maize yields by damaging the leaves, 
stems, ears, and kernels. However, stem borer resistance, being governed by poly-
genes with low heritability, is difficult to breed (Sharma et al., 2007). But Mihm 
(1985) and Mugo et al. (2001) used population improvement approaches to develop 
multiple borer resistance populations. Similarly, Klenke et al. (1986) used BSSCO 
(Iowa Stiff Stalk Synthetic) as the base population and employed RS to develop the 
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European corn borer (ECB) resistant synthetic variety, BS9. Sandoya et al. (2008) 
also employed RS to develop Mediterranean corn borer (MCB) and ECB-resistant 
inbred lines. Maize weevil (Sitophilus zeamais) resistance breeding is also impor-
tant to avoid storage losses (Zunjare et  al., 2015). Garcia-Lara and Bergvinson 
(2014) employed 3 cycles of intrapopulation RS to increase the resistance against 
S. zeamais by three-fold. Sometimes, hybrids exhibit tolerance to insect-pests, as is 
evident from the tolerance of Basto/Enano levantixo (stem resistance) × Longfellow 
(positive variety effects for grain yield) heterotic pattern against S. nonagrioides 
infestation (Soengas et al., 2004).

Conventional breeding has not much progressed in developing the abiotic stress- 
tolerant genotype due to the variable and complex intensity of abiotic stress, linkage 
of undesirable genes with desirable traits, and limited gene pool barriers to transfer-
ring the desired gene from various sources (Gazal et  al., 2018). Maize breeders 
select for the best genotypes under favorable conditions, followed by extensive 
multi-environment testing for different abiotic stresses; however, managed stress 
screening is the best approach to keep the heritability high by reducing chances of 
experimental errors (Bänziger et al., 2006). The abiotic stress tolerance attributing 
traits include anthesis-silking interval (ASI), cell membrane thermostability, leaf 
firing, kernels per ear, 100-grain weight, and grain yield (Choudhary et al., 2019). 
Low ASI helps in better synchronization of male and female flowering for better 
seed set under drought, waterlogging, and heat stress (Choudhary et  al., 2019). 
Further, reduced kernel abortion under high temperatures is also a good selection 
trait (Rattalino & Otegui, 2012). The reproductive stages are the most sensitive 
stages for drought and heat stress, whereas the early seedling (V2) and knee-high 
(V7) stages are the most sensitive stages for waterlogging stress (Zaidi et al., 2004; 
Anjos e Silva et al., 2007). Zaidi et al. (2007) identified Pop 3121 and Pop 3118 as 
relatively better yielders under waterlogged conditions. Maize hybrids have been 
found to exhibit better stress tolerance than parental lines (Dass et  al., 1997; 
Tollenaar et al., 1994; Zaidi et al., 2010). Sometimes, selection for tolerance can 
confer tolerance against other abiotic stresses as is evident from the performance of 
tropical maize selected for drought tolerance, which exhibited tolerance to low 
nitrogen as well (Bänziger et al., 2002). Considering the additive and nonadditive 
nature of most abiotic stress-associated traits, reciprocal RS selection can be 
employed to develop tolerant synthetics and hybrids (Zaidi et al., 2010). Although, 
conventional approaches resulted in significant yield improvement under drought 
and heat (Meseka et al., 2014), repeatability was found to be low for yields under 
drought stress (Meseka et al., 2018).

2.3  Quality Traits

The quality trait improvement through indirect selections proved ineffective due to 
the lack of correlation between quality traits (biochemical) and morphological char-
acteristics. Most of the quality traits in maize are governed by recessive genes 
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(Mertz et al., 1964). In the case of quality traits, the strict control over pollination 
and need to self after every backcross to obtain desirable segregants (homozygous 
state) makes breeding difficult. However, remarkable success has been achieved by 
conventional and molecular maize breeders in improving maize quality (Fig.  1). 
Maize scientists succeeded in developing quality enriched maize like lysine and 
tryptophan-rich quality protein maize (QPM) (Atlin et al., 2011; Prasanna et al., 
2001), provitamin A-enriched orange colored maize (Pixley et al., 2013), and high- 
Zn- maize (Andersson et al., 2017).

QPM can be defined as nutritionally superior to normal maize with higher lysine 
and tryptophan contents (Maqbool et al., 2021). The concept of QPM given by Vasal 
and Villegas resulted in the adoption of QPM breeding and the release of QPM 
varieties (composites and hybrids). In Asia, conventional breeding efforts have 
resulted in the release of >40 QPM varieties. Initially, QPM breeding relied on phe-
notypic selection and biochemical analysis (Pixley et  al., 2013). QPM breeding 
involves the tweaking of three distinct genetic systems: the simple recessive allele 

Fig. 1 Illustration of successful examples of the utilization of conventional or molecular breeding 
for development of biofortified maize for different quality traits
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of the opaque2 (o2) gene in homozygous condition; modifiers/enhancers of the 
o2o2-containing endosperm conferring higher lysine and tryptophan; and genes 
modifying opaque2-induced soft endosperm to hard endosperm (Bjarnason & 
Vasal, 1992; Prasanna et al., 2001). Several commercial varieties have been devel-
oped and released for QPM in different countries through conventional breeding 
(Chaudhary et al., 2014). For example, India (Composites-Protina, Shakti, Ratan; 
Hybrids-Shaktiman 1, HQPM-1, HQPM-4, HQPM-5, and HQPM-7), Nicaragua 
(Composite-NB-Nutrinta; Hybrid-Hg INTA-993), Guatemala (Hybrid-HB- 
PROTIOTA), China (Hybrids-Zhongdan 9409, Zhongdan 385D, QUIAN2@9), 
Mali (Composite-Obatampa) and Uganda (Composite-Obangaina).

Yellow maize can synthesize provitamin A (PVA) carotenoids naturally, 
especially β-carotene (BC) and β-cryptoxanthin (BCX), but only contains <2 mg/g 
of provitamin A (Ortiz-Monasterio et al., 2007; Pixley et al., 2013). Therefore, a 
target level of 15  ppm of β-carotene equivalents was set for PVA improvement 
(through conventional breeding) in maize (Hotz & McClafferty, 2007; Menkir et al., 
2017; Pixley et al., 2013). The profiling of carotenoids in large germplasm (tropical 
and temperate) led to the identification of a few temperate lines with PVA ≥15 ppm 
(Menkir et al., 2008; Ortiz-Monasterio et al., 2007). The high heritability and addi-
tive gene action of PVA, along with the lack of correlation between PVA and agro-
nomic performance, indicated the possibility to improve the PVA content without 
any compensatory effect on yield (Menkir et  al., 2018; Ortiz-Covarrubias et  al., 
2019; Suwarno et al., 2014). Temperate lines (with high PVA) were used to enhance 
the PVA content in tropical maize inbred lines at CIMMYT. Initially, BC was tar-
geted for PVA content improvement (Muthusamy et al., 2014), but later realizing 
the lower stability and bioavailability of BC, the focus shifted to BCX improvement 
(Dhliwayo et al., 2014; Ortiz et al., 2016; Sowa et al., 2017).

Tropical maize germplasm (landraces, inbreds, hybrids, and open-pollinated 
varieties) exhibits enormous genetic variation for kernel-Zn (up to 96  ppm) 
(Bänziger & Long, 2000; Hindu et al., 2018; Ortiz-Monasterio et al., 2007). Unlike 
wheat and rice (Guzmán et al., 2014), maize does not have a significant correlation 
between Zn and Fe content, as evident from high Zn maize (which contain 
18–20 ppm Fe, equivalent to the average content in maize kernels). The target level 
of 33 ppm kernel-Zn on a dry weight basis was set for the breeding programs initi-
ated by IITA and CIMMYT, especially for white maize and QPM (Bouis et  al., 
2011). CIMMYT employed intrapopulations RS (using Population 62-white flint 
QPM and Population 63-white dent QPM), to develop high Zn tropical maize lines, 
CML176, CML491, and CML492, that have been utilized to a greater extent as 
parental lines in pedigree-based selection (CIMMYT, 1998). Zn rich varieties and 
hybrids (ICTA HB-18, ICTA B-15, and BIO-MZN01) have been released in 
Guatemala and Colombia with the efforts of CIMMYT collaborations. Mallikarjuna 
et al. (2014) identified two lines, SKV616 (83.4 ppm Fe) and SKV343 (53.3 ppm 
Zn) that can be utilized as potential donors in breeding high Fe and Zn rich maize. 
Although QPM germplasm was found to contain an above-average concentration of 
Zn relative to normal maize, this was not true for all QPM varieties (Chakraborti 
et al., 2011). The availability of Zn is also affected by the presence of phytic acid/
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phytate due to the chelation of Zn by the negatively charged phytate (Raboy, 2001). 
The screening of maize germplasm led to the identification of low phytic acid (lpa) 
mutants (normal amount of total phosphorus but reduced phytic acid phosphorus) in 
maize (Pilu et al., 2003; Raboy et al., 2000). Mutants, lpa1–1 and lpa2–1, reduce 
phytic acid up to 55–65% and 50%, respectively (Raboy et al., 2000). Further efforts 
have been made to develop low phytate genotypes and populations by the backcross 
method (Ertl et al., 1998) and RS (Beavers et al., 2015).

Maize kernels generally constitutes 4–5% oil (Boyer & Hannah, 2001). Oil and 
protein improvement in maize is the classic example of conventional breeding, as 
evident from the Illinois long-term selection experiment with Burr’s White Variety 
(Hopkins, 1899). The resultant of selection, Illinois High Oil (oil concentration 
>6%) lines, were also found to have higher protein concentrations, indicating a cor-
related response (Dudley & Lambert, 2004). Later in 1982, a similar long-term 
selection experiment in China resulted in the development of high-oil maize popula-
tions, such as Beijing High Oil (BHO), with an enhancement of oil content from 
4.71–15.5% through cycle-0 to cycle-18 (Song et al., 1999; Song & Chen, 2004). 
RS (27 selection cycles) resulted in 21.2% oil in an improved population (Alexender, 
1988). Similarly, Song et al. (2004) applied 18 cycles of RS to the synthetic variety 
Zhongzong No. 2 (4.71%) and developed high-oil maize (15.55%). However, the 
negative correlation of oil yield has been found to hamper the grain yield potential 
of high-oil lines (yield of high-oil hybrids is 5–10% lower than normal maize), as 
oil synthesis consumes a lot of energy (Moose et al., 2004). But, the University of 
Illinois succeeded in developing high oil populations IHO, SHO, DHO, ALHO, 
ASK, ALEX synthetic, and KYHO, through cyclic selection in high-oil lines 
(Hopkins, 1899) and three maize hybrids, Illinois 6021, Illinois 6052, and Illinois 
6001 (30% more oil, and 10% more protein than existing commercial hybrids) with-
out grain yield penalty (Jugenheimer, 1961).

However, conventional breeding has many limitations. First is the linkage drag, 
for example, the use of intrapopulation RS by Carena et al. (1998) for greater pro-
lificacy and Hallauer et al. (2004) for increased ear lengths resulted in decreased 
grain yields. Similarly, with interpopulation RS, it is difficult to decide on an opti-
mum number of individuals for intermating to maintain genetic variation for contin-
ued response to selection (Rawlings, 1970). In addition, the conventional breeding 
approach is relatively constrained by the cost, time involved, and throughput of 
phenotyping for quality traits.

3  Molecular Breeding

The limitations of conventional breeding can be addressed through the utilization of 
molecular markers. Molecular breeding is molecular marker-based rapid crop 
improvement. QTL mapping is the first step of molecular breeding and provides the 
major and minor QTLs. The next step in molecular breeding is to introgress the 
major QTLs. Several QTLs have been reported during the last decade for different 
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traits in maize. Molecular breeding relies on the availability of major QTLs for tar-
get traits. In this section, the information on the mapped QTLs for different traits 
will be discussed, followed by the success studies of trait improvement via intro-
gression of major QTLs.

3.1  QTL Mapping for Different Traits

QTL mapping is carried out using the mapping population derived from parents that 
are contrasting for target traits. This helps to map the genomic regions governing the 
target traits through the establishment of linkage using molecular markers.

3.1.1  Grain Yield

Yield improvement is the primary target of improvement in any crop, however, it is 
a complex trait, highly influenced by the environment. Yield can be improved by 
increasing the grain weight and grain number or kernel row number (KRN) per ear. 
Lu et al. (2011) used F2:3 families (Ye478 × Dan340) to map a consistent major QTL 
for KRN. Later, a major QTL, KRN4, was mapped on chromosome 4 using linkage 
and association mapping (Brown et al., 2011) and later, cloned by Liu et al. (2015). 
Yang et  al. (2015) mapped three consistent QTLs (qERN2–1, qERN8–1, and 
qERN8–2) using B73 and SICAU1212-based RILs. Chen et  al. (2016) identified 
two QTL for kernel length (qKL3–1 and qKL7–1) and one QTL for kernel width 
(qKW5–1), which can be utilized to increase the kernel size. Calderón et al. (2016) 
used W22 and teosinte (Zea mays ssp. parviglumis)-based population to map a 
major QTL with ~50% phenotypic variance. Later, Liu et al., 2016 used abe2- and 
B73-based F2 populations to map four QTLs, namely, qKRN1, qKRN2, qKRN5, and 
qKRN8–1. In the recent past, Wang et al. (2019) used a Brazilian landrace and tropi-
cal inbred line-based population to map a major QTL, KRN1.

3.1.2  Biotic and Abiotic Stress

Disease resistance in maize is qualitative (R gene and R gene analogs (RGA)) and 
quantitative in nature. The qualitative nature was easy to explore and impart biotic 
stress resistance through conventional breeding; however, identification and better 
exploitation of QTL required the use of molecular breeding. In maize, over 50 R 
genes and 228 RGA have been identified (Wisser et al., 2006). Some of the impor-
tant genes like Hm1, Htn1, Pan1, qMCMV3–108/qMLN3–108 have been well char-
acterized in maize (Table 1). Balint-Kurti et al. (2007) mapped a major QTL for 
MLSB (Cochliobolus heterostrophus race O) in B73- and Mo17-based RILs. Later, 
a major QTL, Ht2, was mapped on chromosome 8 for NCLB resistance in maize 
(Poland et  al., 2011). For GLS resistance, Zhang et  al. (2012) mapped qRgls1 
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Table 1 List of some major disease resistance genes in maize

Gene name Disease
Predicted 
features

Gene 
identification 
method

Chromosomal 
Location References

Hm1 Maize leaf 
blight and ear 
mold

NADPH- 
dependent 
HC-toxin 
reductase

Transposon 
tagging

1 Johal and 
Briggs 
(1992)

Rp1-D Common rust NB-LRR Transposon 
tagging

10 Collins 
et al. (1999)

Htn1 Northern leaf 
blight

Wall- 
associated 
receptor-like 
protein

Fine-mapping 
followed by 
analysis of 
mutants generated 
using TILLING

8 Hurni et al. 
(2015)

pan1 Northern leaf 
blight and 
Stewart’s wilt

Receptor-like 
kinase

Fine-mapping and 
mutant analysis

1 Jamann 
et al. (2014)

GST Northern leaf 
blight, 
southern leaf 
blight, and 
grey leaf spot

Glutathione 
S-transferase

Association 
analysis

7 Wisser et al. 
(2011)

qMCMV3–
108/
qMLN3–108

Maize lethal 
necrosis virus

Genome-wide 
association study

3 Sitonik 
et al. (2019)

(chromosome 8) and qRgls2 (chromosome 5) in Q11 × Y32-based F2:3 population, 
whereas Zhang et al. (2017) mapped Qgls8 on chromosome 8. Liu et al. (2016) also 
mapped a major QTL, qMrdd8 on chromosome 8 for maize rough dwarf disease 
resistance. Hence, chromosome 8 can be a putative chromosome for multiple dis-
ease resistance in maize (Table 2).

For insect resistance in maize, Bohn et  al. (2000) first mapped six and five 
QTLs for tunnel length and stalk damage resistance against the ECB in the D06 
and D408 derived F3 population. Later, Cardinal et al. (2001) and Krakowsky et al. 
(2004) mapped nine and 10 QTLs for ECB stalk tunneling (resistance) using 
B73 × B52 and B73× De8-based RIL populations, respectively. A total of 21 QTLs 
for maize weevil resistance were identified using CML290- and 
Muneng-8128C0HC1-18-2-1-1-based F2:3 population (García-Lara et  al., 2009). 
Meihls et al. (2013) mapped a major QTL, HDMBOAGlc, for corn leaf aphid resis-
tance on chromosome 1  in B73- and CML322-based RILs. Later, Betsiashvili 
et  al. (2015) also mapped a major QTL for corn leaf aphid resistance using 
B73 × Mo17-based RILs. Hessel (2014) and Bohn et  al. (2018) mapped major 
QTLs for western corn rootworms on different chromosomes. The list of mapped 
QTLs on resistance against different insect pests is provided in Table  2. For 
detailed insights for genetic resistance and transgenic approaches for insect resis-
tance breeding, an excellent article by Karjagi et al. (2017) can be referred.
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Almeida et  al. (2013) mapped six constitutively expressed meta-QTLs on 
chromosomes 1, 4, 5, and 10 for grain yield under well-watered and drought 
conditions. Two mQTLs, one on chromosome 7 for GY and another on chromosome 
3 for ASI, were found to be “adaptive” to drought conditions. Later, Almeida et al. 
(2014) identified 203 QTLs for different drought-related morpho-physiological 
traits. Li et  al. (2016) conducted SNP markers-based association mapping and 
identified 354 candidate genes, of which 52 genes exhibited significant differential 
expression in B73 under optimum and drought stress (Li et al., 2016). Zaidi et al. 
(2015) mapped 18 QTLs in RILs derived from a waterlogging-tolerant line 
(CAWL-46-3-1) and a sensitive line (CML311-2-1-3) for brace roots, chlorophyll 
content, % stem, and root lodging. Allam et al. (2016) mapped 27 QTLs on different 
chromosomes for germination and early growth under field conditions in two RILs 
derived from independent crosses, B73 × P39 and B73 × IL14h. Hoque et al. (2015) 
mapped 15 QTLs for salt tolerance associated traits in B73- and CZ-7-based F2:3 
population.

3.1.3  Quality Traits

The molecular markers have been most successful in mapping the key quality traits 
associated with genes in maize. For example, protein quality (high lysine content) 
associated genes, namely, o2 (gene-specific markers: umc1066, Phi057, and Phi112) 
and o16, were mapped using molecular markers by Babu et al. (2005) and Yang 
et  al. (2005), respectively. The markers for o16-umc1141 and umc1149 were 
mapped in the F2 mapping population derived from a cross of QCL3024 (o16) and 
QCL3010 (wild type). Later, Liu et al. (2016) developed the functional marker qg27 
for endosperm modification. The quality traits have been well explored for the iden-
tification of key genes involved in the pathways of particular traits like carotenoids 
biosynthesis pathways. The provitamin A biosynthesis pathway has been well- 
characterized, and markers have been developed for the favorable alleles. The main 
two genes contributing to high levels of provitamin A are β-carotene hydroxylase1 
(crtRB1) and lycopene epsilon cyclase (lcyE) (Harjes et al., 2008; Yan et al., 2010). 
The favorable allele of the former gene (crtRB1–3′TE) was found to be more effec-
tive than the later (Babu et al., 2013). Similarly, the vitamin-E biosynthesis pathway 
is also well-characterized (DellaPenna & Pogson, 2006). Several earlier studies 
(Diepenbrock et al., 2017; Feng et al., 2013; Lipka et al., 2013; Shutu et al., 2012) 
reported QTLs for higher levels of tocopherols in maize. Among the major genes for 
tocopherol biosynthesis such as homogentisate phytyltransferase (VTE2), homo-
gentisate geranylgeranyl transferase (HGGT), methyltransferase (VTE3), tocoph-
erol cyclase (VTE1), phytol kinase (VTE5), and γ-tocopherol methyltransferase 
(VTE4), VTE4 was identified as most important for enhancing the α-tocopherol con-
tent (Li et  al., 2012; Lipka et  al., 2013). The markers (SNPs and InDels) have 
already been developed for the VTE4 that facilitates the selection of desirable geno-
types. CIMMYT is focused on developing a low-cost trait-specific-SNP marker 
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panel (automated high-throughput assay) for the selection of favorable crtRB1–3′TE 
and MSV1 in sub-Saharan African maize breeding programs (Nair et al., 2015).

Extensive efforts have been made in the last decade to map the regions for Fe and 
Zn concentrations through QTL mapping in maize. Qin et al. (2012) mapped three 
stable QTLs for kernel-Zn concentration in multiple populations and different envi-
ronments. Similarly, Šimić et al. (2012) mapped two minor QTLs on chromosomes 
3 and 4. Lunga’ho et al. (2011) mapped 3 and 10 QTLs for kernel Fe concentration 
and bioavailability, respectively, on three different chromosomes. Later, Jin et al. 
(2013) executed a meta-QTL approach to identify nine meta-QTLs across the dif-
ferent chromosomes with a potential role in enhancing Zn content. Hindu et  al. 
(2018) first conducted a multilocation GWAS study using a panel of 923 CIMMYT 
inbreds and identified 20 SNPs to be associated with kernel-Zn. Of these, 11 SNPs 
were found to be confirmed in independent biparental populations. These SNPs 
have also been utilized for developing SNP haplotypes for high Zn content.

Many QTLs have been identified for oil synthesis and content in maize (Table 3). 
Berke and Rocheford (1995) first used 80 markers in an IHO × ILO-based popula-
tion to detect 16, 31, and 28 markers for association with protein, oil, and starch 
concentrations, respectively. Later, Song et al. (2004) mapped 20 QTLs for oil con-
centration in By804  ×  B73-based F2 and F3 populations. Similarly, Laurie et  al. 
(2004) mapped over 50 QTLs for oil content in IHO and ILO-based populations 
using SNP markers. Several QTLs have been mapped for oil and protein content in 
the recent past (Li et al., 2012; Yang et al., 2012; Yang et al., 2014; Yang et al., 2016).

3.2  Molecular Breeding-Based Trait 
Improvement: Achievements

The effectiveness of molecular breeding over conventional breeding is well 
documented. Abalo et al. (2009) observed superior resistance (79%) for MSV with 
MAS than conventional breeding (62%). Samayoa et al. (2015) and Foiada et al. 
(2015) also reported MAS as a feasible strategy for imparting insect resistance 
without any yield penalty. As per recent updates, breeding programs at CIMMYT 
and IITA are already undertaking marker-assisted backcrossing (MABC) and 
forward breeding to develop high-yielding MLN resistance hybrids (Prasanna et al., 
2020b). Zhao et  al. (2012) introgressed the head smut resistance QTL, qHSR1 
(ZmWAK gene), through MABC into 10 diverse inbred lines that exhibited improved 
head smut resistance and yield (Zuo et al., 2015). The introgression of ZmWAK into 
the Chinese maize line Tongsipingtou led to the development of the head smut 
resistant variety, Jidan558. Marker-assisted gene pyramiding of two genes, Scmv1 
and Scmv2, into the background of the maize line, F7 resulted in a completely 
tolerant line (nearly isogenic line) against the sugarcane mosaic virus (Xing et al., 
2006). Yang et al. (2017) also developed a multiple disease resistant line (against 
SCLB and GLS) by introgression of qMdr9.02. Genomic selection (GS) for MLN 
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disease severity and MLN area under the disease progress curve exhibited prediction 
accuracy in the range of 0.46–0.86 and 0.46–0.87, respectively (Sitonik et al., 2019). 
Similarly, Holland et al. (2020) obtained moderate-to-high prediction accuracy for 
Fusarium ear rot (0.46), and fumonisin (0.67). Marker-assisted recurrent selection 
for grain yield improvement under well-watered and drought-stress conditions in 
biparental mapping populations resulted in higher grain yield than traditional breed-
ing alone, with greater differences observed under drought stress (Beyene et  al., 
2016). Similarly, GS also exhibited superiority over traditional breeding through 
comparatively higher yield gains (two to four folds) in drought-stress environments 
(Beyene et al., 2015). Zhang et al. (2015) also employed the GS to reveal low to 
medium prediction accuracy under drought stress, advocating the use of high- 
density SNP markers for better prediction accuracy of complex traits.

Quality traits, being majorly governed by major genes in biosynthesis pathways, 
have witnessed greater success in quality improvement via MABC or marker- 
assisted gene pyramiding (Table 4). For quality traits, introgression of o2 was car-
ried out through MABC to develop India’s first MAS-based single-cross QPM 
hybrid, “Vivek QPM-9” in 2008, which had 41% more tryptophan and 30% more 
lysine than the original hybrid, Vivek Hybrid-9 (Gupta et al., 2012). Later, Hossain 
et al. (2018) also developed lysine- and tryptophan-rich “Pusa HM-8 Improved,” 
“Pusa HM-4 Improved,” and “Pusa HM-9 Improved” by introgressing the o2 allele 
into the respective parental genes. Interestingly, these hybrids (with a flint back-
ground), did not exhibit any yield penalty. Similarly, the inbreds introgressed with 
the o2 allele at CIMMYT, namely, CML244Q, CML246Q, CML349Q, and 
CML354Q, did not exhibit any yield penalty (Hossain et  al., 2019). MABC has 
been utilized to a large extent to develop diverse QPM inbred lines (Jiang et al., 
2005; Tian et al., 2004). Later after the discovery of o16, Zhang et al. (2010) pyra-
mided o2 and o16 to develop double mutant inbred (o2o2/o16o16) with 23% more 
lysine than o2o2 inbred alone. Similarly, o2 and o16 were pyramided by Zhang 
et  al. (2013) in a waxy genetic background, and higher accumulation of lysine 
(0.616% in flour) was reported in the pyramided lines. Yang et  al. (2013) intro-
gressed o16 in waxy inbreds to develop o16o16-based waxy inbreds with 16–28% 
higher lysine content than parental lines. Later, Sarika et al. (2018) transferred o16 
through MABC into the parental lines of four popular QPM hybrids (HQPM-1, 
HQPM-4, HQPM-5, and HQPM-7). Reconstituted hybrids exhibited an average 
increase of 49 and 60% for lysine and tryptophan, respectively, over the original 
hybrids.

MABC has also been successfully utilized for the introgression of favorable 
alleles for carotenoid synthesis. Muthusamy et  al. (2014) developed India’s first 
provitamin A maize hybrid, Pusa Vivek QPM9 Improved (APQH9), with pro- 
vitamin A ~8.15ppm through introgression of crtRB1 in the parental lines of Vivek 
QPM 9. Recently, Maqbool et  al. (2021) introgressed the crtRB1 gene from 
UMI285β + into the NEHR maize landrace, Yairipok Chujak (CAUM66) to develop 
four β-carotene-rich maize lines (7.5–8.7  ppm), i.e., CAUM66-54-9-12-2, 
CAUM66-54-9-12-11, CAUM66-54-9-12–13, and CAUM66-54-9-12–24. Later, 
Zunjare et al. (2018) pyramided two favorable alleles, crtRB1 and lcyE, to develop 
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provitamin A enriched versions of QPM hybrids, HQPM-1, HQPM-4, HQPM-5, 
and HQPM-7. For provitamin E enrichment in maize, Feng et  al. (2015) first 
employed MABC and introgressed the favorable allele of VTE4 from SY999 to four 
Chinese shrunken2-based sweet corn lines (M01, M14, K140, and K185) to develop 
α-tocopherol rich lines (up to 15.99 ppm). Similarly, Das et al. (2019) also used the 
MABC approach to develop α-tocopherol rich hybrids like MHVTE-2, MHVTE-18, 
MHVTE-28, MHVTE-10, and MHVTE-3 (possessed ≥50% α-tocopherol of the 
total tocopherol). Furthermore, VTE4 has also been introgressed into provitamin-A- 
rich QPM elite inbreds to develop multi-nutrient maize hybrids (Prasanna 
et al., 2020a).

To reduce the phytic acid content for better bioavailability of Zn, the lpa2–2 
allele has been introgressed through MABC into inbreds, viz., UMI-285 and 
UMI-395 (Sureshkumar et al., 2014; TamilKumar et al., 2014). Furthermore, efforts 
have also been made to stack lpa1–1 and lpa2–1 with high provitamin-A and QPM 
traits (Bhatt et al., 2018). Hindu et al. (2018) conducted GWAS using 923 lines and 
identified 31 to be of QPM type, of which 33.3% were Zn rich (>30 μg /g). Of the 
remaining 892 non-QPM lines, 19.9% were found to be Zn rich (>30 μg /g). Of 
these identified high Zn lines, only 6% met the breeding target for Zn (33 μg /g). 
Genomic selection is advocated as an effective approach to achieve better genetic 
gains for complex traits (Cao et al., 2017; Yuan et al., 2019). Guo et al. (2020) stud-
ied the genomic prediction accuracy for kernel Zn content in maize and reported 
low to moderate prediction accuracy across different populations. Furthermore, the 
study revealed the superiority of genomic selection over MAS in predicting the 
kernel Zn content.

4  Conclusion and Future Perspectives

Conventional breeding approaches contributed immensely to maize improvement 
for all traits, especially yield as it is the prime target of the maize breeding program. 
However, considering the huge time and resource investment in the conventional 
breeding approach and the increasing affordability of molecular markers, breeders 
gradually started to shift to molecular breeding. In addition, the complex nature of 
abiotic and biotic stresses also made breeders integrate conventional breeding 
approaches with genomics to give rise to genomics-assisted breeding. Genomics- 
assisted breeding helped to map major QTLs for yield, quality, and biotic and abi-
otic stresses. Hence, genomics-assisted breeding offers an excellent opportunity to 
speed up maize improvement programs globally. However, conventional breeding is 
still and will surely be an integral part of any crop breeding program. For example, 
CIMMYT and IITA have employed conventional breeding and molecular tools with 
national partners in developing countries to develop and release a number of maize 
varieties for different ecologies. Furthermore, the availability and use of phenomics 
approaches, genome editing approaches, and bioinformatics will further augment 
the pace of molecular breeding programs in maize (Choudhary et  al., 2019; 
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Choudhary et al., 2020; Kumar et al., 2020; Kumar et al., 2022). The future is also 
likely to witness the better understanding and exploitation of stress memory genes 
for developing multiple stress resilient maize hybrids (Choudhary et  al., 2021). 
Although, maize witnessed remarkable success in quality improvement, the adop-
tion of multi-nutrient rich maize can become big success with the support of better 
extension approaches and the better formulation and execution of policies ensuring 
the profitability of the farmers.
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Abstract Sunflower is the fourth most important oil plant worldwide and the sec-
ond most important oil crop in Europe, along with rapeseed. Due to its high content 
of mono- and polyunsaturated fatty acids as well as vitamin E, sunflower oil is the 
preferred type of oil in human nutrition in Europe. That is why, as opposed to other 
different vegetable oils, circa 90% of the total sunflower oil produced is used for 
food, while 10% is exploited for biodiesel production and other industrial purposes. 
In human nutrition, sunflower oil is used for cooking, frying, and preparing salads, 
while in industry, it is used in the frying process and for margarine production. 
Maintaining secure and sustainable sunflower production is, therefore, of utmost 
importance. Sunflower breeding led to a significant increase in oil content and 
change in oil composition, thus increasing both oil quantity and quality. Nowadays, 
different biotechnological techniques are used to accelerate the creation of superior 
sunflower genotypes that will be productive in climate changing environments and 
still be of high quality. The conventional and molecular methods used in sunflower 
breeding for improved nutrition quality will be addressed in this chapter.

Keywords Helianthus annuus L. · Oil · Breeding · Marker-assisted selection · 
Genomic selection · New techniques

1  Introduction

Now recognized as one of the most important sources of edible oil for human con-
sumption, sunflower (Helianthus annuus L.) has served different purposes for cen-
turies. Native Americans were the first to grow sunflower, with the intention of 
using it as food, for healing, and for religious purposes. After being introduced to 
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Europe by Spanish explorers in the sixteenth century, it was grown as an ornamental 
flower for more than two centuries. Sunflower use as an industrial crop dates from 
the eighteenth century and the registration of a patent for oil extraction by Arthur 
Bunyan in England (Vanozzi, 2006). Probably the most important moment in the 
evolution of the sunflower as a food and oil crop took place in Russia at the end of 
seventeenth century, when Russian Tsar Peter Alexeyevich (Peter the Great) brought 
sunflower seeds to Russia. The Russian Tsar was delighted by the beauty of the 
flower after seeing it in the Netherlands, where he was on his studies. Soon after 
sunflower introduction in Russia, academician Severegin suggested that seeds be 
used for oil extraction. In 1829, Russian farmer Daniil Semenovich Bokarev from 
the village Alekseevka invented the way to extract oil from seeds and initiated the 
use of sunflower as an oil crop (Pustovoit, 1990). Also, regulations of the Russian 
Orthodox Church, which prohibited the consumption of numerous oily foods, 
encouraged the use of sunflower oil because it was not on the prohibited list.

However, it required substantial effort and time to create the modern sunflower. 
In recent history, one of the initial “sunflower breeders” were Russian farmers who 
selected individual plants taking into the account some important phenotypic traits 
such as stay-green property and head and seed size. Many local varieties were cre-
ated using the “mass selection” method, among which were the famous Fuksinka, 
Chernyanka, Puzanok, and Zelenka (Pustovoit, 1967). Expansion of sunflower pro-
duction facilitated the establishment of oil factories and the development of a num-
ber of local varieties, which Russian immigrants brought to the United States, 
Canada, and Argentina, with Russian Mammoth and Giant of Russia being the most 
famous. Sunflower breeding began in the early twentieth century, when Russian 
scientists made significant efforts to improve this oil crop.

An important period in sunflower breeding is the first half of the twentieth cen-
tury, when Pustovoit succeeded to increase oil content from 33% up to 43% by 
applying modified recurrent selection called seed reserve (Rauf, 2019). The method 
is based on individual selection of plants, where one part of the seeds of each plant 
is used for sowing and the other part is kept as a reserve. By the end of 1960s open, 
pollinated varieties had reached an oil content higher than 50%. Well-known high- 
yielding open-pollinated varieties, such as Peredovik, VNIIMK 6540, VNIIMK 
8883, Armavirkskii 3497, and others, were adopted worldwide and had high influ-
ence on the popularization of sunflower as an industrial crop (Jocić et al., 2015; 
Gavrilova & Anisimova, 2017).

Unrau and White were the first to grow sunflower hybrids in 1944. The idea was 
further developed by Putt (Vear, 2016). A favorable characteristic of open- pollinated 
varieties was self-sterility. Because sunflower is cross-pollinated and exhibits het-
erosis, it was the best way to obtain the highest yields. This resulted in an increase 
in seed yield of up to 60% and the development of the first hybrid sunflower variet-
ies, such as Advance. These “hybrids” were not uniform, especially not in flowering 
time, as they were created by crossing heterogeneous genotypes, and their self- 
sterility was incomplete. Revolutionary changes in sunflower hybrid production 
were facilitated by the discovery of cytoplasmic male sterility (CMS) in the 
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interspecific hybrid H. annuus × H. petiolaris by French scientist Leclercq (1969) 
and the subsequent discovery of fertility restorer genes (Kinman, 1970). Comparing 
to open-pollinated varieties, sunflower hybrids have higher yields, higher oil con-
tent, uniformity, and improved disease resistance (Škorić et al., 2012). Sunflower 
single- cross hybrids have been predominant in production for the past 40 years, and 
sunflower breeders have achieved significant results in increasing seed yield com-
pared to the previously grown open-pollinated varieties.

A step forward in breeding methods was the use of molecular markers, which 
had been widely used to accelerate the breeding process and make it more efficient. 
Compared to conventional breeding, where plants were chosen based on their phe-
notype, marker-assisted selection (MAS) helps breeders select plants with desirable 
genes based on genetic linkage between the marker and the targeted gene. Since the 
first sunflower molecular map was made available in 1995, many gene-controlling 
traits of interest have been mapped. They represent an invaluable tool for overcom-
ing the numerous obstacles encountered by breeders. Over the years, different 
molecular markers (from restriction fragment length polymorphism (RFLP) to the 
more specific such as single nucleotide polymorphism (SNP)) have been used for 
mapping desirable genes. Combining different genes in one genotype (pyramiding) 
can be very complicated as genes can mask one another; the SNP molecular marker 
technique can therefore be successfully used for overcoming that issue, as previ-
ously described by Qi et al. (2017). Molecular markers are a commonly applied tool 
in recurrent selection, when it is necessary to incorporate genes for disease and 
broomrape resistance, change oil quality (high-oleic), and herbicide tolerance, as 
well as for the recent development and validation of markers for the purpose of 
fertility restoration gene detection (Imerovski et  al., 2014; Louarn et  al., 2016; 
Dimitrijević et  al., 2017; Horn et  al., 2019). Differences between genotypes in 
alleles present at quantitative trait loci (QTL) for various traits are particularly 
important for breeders, considering that the majority of breeding traits are deter-
mined by minor genes. The effectiveness of the comparison between QTL positions 
depends on the proximity of the marker. However, the development of high-density 
maps will enable more efficient identification of genes for relevant traits. So far, 
QTL analysis in sunflower using molecular techniques has enabled the identifica-
tion of gene positions associated with domestication as well as resistance to dis-
eases and many important traits (Burke et al., 2005; Wills & Burke, 2007; Baack 
et al., 2008; Mandel et al., 2013; Zubrzycki et al., 2017; Imerovski et al., 2019).

Today, sunflower is a significant source of edible oil in both the world and 
European markets, along with palm trees, soybeans, and rapeseed. The main sun-
flower seed producers are Ukraine, Russia, the European Union, and Argentina, 
accounting for 76% of global sunflower production (Martínez-Force et al., 2015). 
Almost all sunflower oil production is used for food, while only a small part is used 
for industrial purposes such as biodiesel production (Fig. 1). Due to its high content 
of mono- and polyunsaturated fatty acids, as well as vitamin E, sunflower oil is the 
preferred type of oil in human nutrition in Europe. Refined sunflower oil is light- 
yellow in color and mild in flavor, so it is most commonly used for cooking, frying, 
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Fig. 1 Sunflower oil use and its contribution to human nutrition compared to other uses

and preparing salads. It also has a low melting point, making it suitable for prepar-
ing sauces and emulsions that need to be refrigerated (Salas et al., 2015). In indus-
try, sunflower oil is used in the frying process and margarine production. During 
frying, the composition of the oil is altered, so finding the most stable oil type is 
very important in food preparation. Different types of sunflower oil can be used for 
frying; although regular oil is widely used, sunflower oil with an altered fatty acid 
composition proved to be even more suitable for this purpose. Dobarganes et al. 
(1993) reported that oil stability during frying is strongly dependent on oleic acid 
content (OAC); sunflower oils with OAC higher than 80% were the most stable. 
Moreover, Dubinsky and Garces Mancheño (2011) compared the oxidative stability 
of various oils (including: palm and cotton oils, high-oleic sunflower and canola oil, 
mid-oleic and regular sunflower oil) and concluded that high-oleic-high- stearic oil 
type had the highest values. High-stearic oils are, due to their increased content of 
saturated fats compared to regular sunflower oil, in a semisolid state at room tem-
perature. Thus, this type of oil can be directly used for margarine production, as it 
helps avoid the use of harmful chemical processes such as transesterification and 
hydrogenation (Kritchevsky et al., 1995; Fernández-Moya et al., 2002). However, 
the stability and shelf life of oil also depend on the tocopherol content, which are 
antioxidants. For example, oils enriched with γ-tocopherol have higher stability and 
better performance in frying (Lampi & Kamal-Eldin, 1998; García- Moreno 
et al., 2006).

Besides, confectionery sunflower is gaining in importance as a healthy diet in 
human nutrition (Hladni & Miladinović, 2019). An integrative approach, combining 
breeding, -omic technologies, and bioinformatic tools, can be used to improve the 
sunflower crop to meet future market demands and increasingly pronounced climate 
change (Miladinović et al., 2019).

This chapter aims to present a review of traditional and molecular breeding 
approaches used for the improvement of sunflower oil quality and its adaptation to 
suit different market demands.
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2  Specificities in Sunflower Breeding

Modern sunflower breeding programs are oriented toward hybrid development by 
exploiting heterosis achieved by crossing genetically diverse sunflower inbred lines 
(Jocić et al., 2015). On the genetic level, heterosis is a result of both intra-allelic 
(domination and super domination) and inter-allelic (epistasis) interactions and is 
defined as superiority of F1 progeny over its parents. The nature of bi-gender flow-
ers is the main reason why the use of heterosis in sunflowers is only possible through 
the existence of suitable sources of male sterility and fertility restoration traits. 
Sunflower hybrids have to show good agronomic performance in different environ-
ments and wide adaptation to productive systems to accomplish the requirements of 
the market and consumer preferences. The breeding of sunflowers needs to deal 
with the following specific issues:

• Narrow Genetic Variability of Cultivated Sunflower Genetic variability of breed-
ing material is essential to successful breeding. Given the narrow genetic base of 
sunflower, development of new genetic variability is one of the most important 
aims. Starting material for the development of new sunflower genotypes is usu-
ally open-pollinated varieties (Russian, Ukrainian, Argentinian, etc.), land races, 
public lines, synthetic populations, wild species of the Helianthus genus, inter-
species hybrids, and other sources (Kaya et al., 2012). Wild Helianthus spp. are 
a significant source of genetic diversity for further improving the cultivated sun-
flower, including essencial traits such as agronomic and seed-oil characteristics, 
protein content, fatty acid composition, disease and pest resistance, drought tol-
erance, cytoplasmic male sterility, and fertility-restoration (Seiler & Rieseberg, 
1997; Sukno et al., 1999).

• Difficulties of Interspecies Hybridization in the Process of Variability 
Enhancement Interspecific hybridization is usually applied to transfer genes 
from wild to cultivated sunflowers, for disease resistance, insect resistance, and 
resistance to abiotic and biotic stresses. The wild sunflower is frequently used as 
a male parent (Seiler et al., 2017). Conventional crossing methods have sufficed 
to produce interspecific hybrids between cultivated sunflower and some wild 
species of annual diploids. However, most wild diploid species remain in the 
group of expendable germplasm due to the abortion of embryos at an early devel-
opmental stage (Seiler & Rieseberg, 1997).

• Self-Incompatibility, Self-Fertility, and Inbreeding Depression of Cultivated 
Inbred Lines Sunflower is a highly cross-pollinated plant that can tolerate a cer-
tain level of self-pollination (Škorić, 2012). The degree of floral self- compatibility 
and self-fertility depends on genetic factors, environment, and the morphology 
of floral structure (Miller & Fick, 1997). Self-pollinated plants are uniform in 
terms of genotype and phenotype, but the occurrence of inbreeding depression 
causes reductions in productivity, survival, and reproductive ability of genotypes. 
According to Schuster (1980), after 25 generations of self-pollination, yield 
decreased by 40% compared to the initial population, while plant height, head 
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diameter, and 1000-seed weight decreased by an average of around 20%. The 
significance of inbreeding is in the creation of inbred lines and desirable charac-
teristics that can be used as components in hybrid development. The initial 
results of crossing two inbred lines of sunflower showed significant heterosis in 
plant height, head diameter, size, and seed yield.

• Sunflower Diseases are a Limiting Production Factor and Cause Severe Yield 
Losses Over 30 different pathogens can infest sunflowers. Breeding for resis-
tance to these diseases is considered the most effective way to control disease. 
Sources of resistance or tolerance to most diseases can be found in wild species 
of the genus Helianthus.

• Long Duration of Breeding Sunflower breeding is a time-consuming activity that 
is influenced by numerous factors. Duration can range from a few years 
(4–6 years), in the case of male line development, to over 15 years when creating 
CMS lines (Poehlman & Sleper, 1995; Acquaah, 2015). The development of a 
sunflower hybrid involves: (a) the selection of plants from various germplasm 
pools for initial breeding crosses; (b) selfing of the selected plants from the 
breeding crosses for several generations to produce a series of inbred lines (6–8 
generations); (c) introduction of CMS into the female line (A-line) using a series 
of back-crosses (6 generations); (d) crossing the selected female lines with male 
lines to produce hybrid progeny (F1); (e) the evaluation of hybrid combinations. 
The selection cycle, from crossing to hybrid release, therefore requires approxi-
mately 12–15 years. Time reduction can be achieved by using off-season nurser-
ies at lower latitudes or in the opposite hemisphere and using greenhouses where 
two more growing seasons can be obtained in order to accelerate the breeding 
process.

• Specific Hybrid Sunflower Seed Production is Accomplished by Using 
Cytoplasmic- Genetic Male Sterility and Maintenance of Male-Sterile (A-) Line 
The system encompasses a female parent line (two isogenic lines, A-sterile line 
and B-fertile line), and a male parent line (restorer or R-line of Rf-line). For 
hybrid seed production, the female A-line is crossed with the male R-line. The 
A-line, does not produce pollen since it has CMS and is therefore referred to as 
“female,” R-line restorer plants are self-fertile and produce seeds; they are 
referred to as “male” as their purpose in hybrid production is to provide pollen to 
the female lines in the field. The female line cannot be self-pollinated because it 
is male-sterile. To maintain parental seed stocks of the female line, the A-line is 
crossed with a B-line, also known as the “maintainer” line.

The objectives of breeding modern sunflower hybrids are primarily focused on 
seed and oil yield, combined with tolerance to abiotic and biotic stress, with an 
emphasis on disease resistance and a high adaptability requirement. Moreover, high 
demand is needed to improve quality traits, such as oil quality traits, which are 
essential to consumer preferences.
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3  Main Directions in Sunflower Breeding Related 
to Nutrition Quality

Basic directions in sunflower breeding programs concerning oil nutrition can be 
divided into three subcategories: breeding classical oil hybrids, hybrids with altered 
oil quality, and confectionery sunflower.

3.1  Classical Oil Type

The main direction in sunflower breeding is the development of hybrids with high 
seed and oil yield. To achieve these goals, sunflower breeders are challenged by 
limiting factors such as diseases, insects, broomrape, and drought. In order to 
achieve high and stable yields, sunflower hybrids should be adaptable to different 
environments, resistant to lodging, and attractive to pollinators. Also, reduced plant 
height and shorter cycle length (earliness) are considered advantages by many sun-
flower growers today, as shorter plants are more tolerant to lodging and shorter 
vegetation enables growing sunflower as a second crop or in environments with a 
limited number of sunny days.

The productivity of sunflower as an industrial crop is reflected in its oil yield. 
The main reason for growing sunflowers is the production of sunflower vegetable 
oil. The development of lines and hybrids with improved oil yield is therefore the 
most important goal of sunflower breeders. The oil content depends on both the 
genetic basis and environmental factors such as average daily temperatures and 
moisture levels during the grain filling period. In an effort to maximize its economic 
viability as an oily plant species, sunflower breeders have significantly increased the 
oil content. It is a highly heritable character, and parental lines express a highly 
significant positive correlation with their hybrids. The highest oil content is 60–65% 
(Vear, 2010), which is almost double the content that open-pollinated varieties had 
at the beginning of sunflower breeding. Modified recurrent selection, called “seed 
reserve” that Pustovoit used for improving sunflower oil content in the first half of 
the twentieth century is still considered an effective method in breeding for high oil 
content. Although the genetic variability of sunflower provides the possibility for 
the development of high-yielding hybrids, progress in breeding for oil content is 
difficult and slow due to the negative correlation between very high oil content and 
high seed yield (Škorić, 2012; Jocić et al., 2015).

Defining a breeding goal is of utmost importance for successful hybrid develop-
ment. Knowledge about the starting material, its selection values in terms of pos-
sessing desirable genes, and the genetic basis of important traits (number of genes 
and mode of inheritance) is of great importance for the development of productive 
hybrids. Seed yield is characterized by low heritability due to quantitative behavior 
and high environmental impact, so both additive and nonadditive, or dominant, 
components of genetic variance have significance in the inheritance process. With 
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that in mind, sunflower hybrids are tested in multilocation trials in order to evaluate 
their productivity.

3.2  Altered Oil Quality

Apart from high oil content, great attention is given in sunflower breeding to the 
alteration in oil quality, such as development of high-oleic genotypes. The constitu-
ents of sunflower seed (achene) are oil (44% in average), proteins (18%), cellulose 
(15%), water (9%), carbohydrates, and minerals (14%) (Andrianasolo et al., 2016). 
Regular sunflower oil mainly consists of polyunsaturated linoleic fatty acids (18:2) 
around 70%, and monosaturated oleic acid (18:1) around 20%, while saturated pal-
mitic and stearic fatty acids are found in lower percentages. Moreover, tocopherols 
(vitamin E) and phytosterols found in sunflower oil have numerous positive effects 
on human health (Bramley et  al., 2000; Patel & Thompson, 2006; Gotar et  al., 
2008). Besides vitamin E, sunflower oil contains vitamins A, D, and K, in addition 
to phosphatides, stearin, phenolics, carotenoids, and other compounds. The main 
parameter on which the fatty acid composition of sunflower oil depends is the final 
use; it can be used in salads, cooking, for margarine production, biodiesel produc-
tion, lubricants, and for different purposes in the cosmetic industry. Because of its 
beneficial effect, sunflower oil is considered to be of premium quality for human 
consumption. There are two main types of sunflower oil intended for human con-
sumption: classic (linoleic) and high-oleic (>80% oleic acid). The high-oleic type 
was developed by Soldatov, who used chemical mutagens to induce mutations on 
variety VNIMK 8931, and created variety Pervenets (Soldatov, 1976). Variety 
Pervenets with OAC above 80% and other mutant lines with oleic acid above 60% 
were used as a source for the creation of mid (>60%) and high-oleic (>80%) types 
of sunflower oil worldwide (Jocić et al., 2015; Rauf, 2019). Besides high-oleic sun-
flower oil, induced mutations and mutant lines can also be used to develop new 
types of sunflower oil, such as those with different concentrations of palmitic and 
stearic fatty acids, among others (Fernández-Martínez et al., 2007; Velasco et al., 
2008). As the content of a specific fatty acid can be affected by altering the content 
of another fatty acid, breeders need to have knowledge of fatty acid synthetic path-
ways and common steps. Moreover, it is important to get acquainted with the mode 
of inheritance of an oil quality trait that will be improved by breeding.

In addition to the composition of fatty acids, the quality of sunflower oil also 
depends on the content of tocopherols and phytosterols. The total content of tocoph-
erols (vitamin E) in standard sunflower oil is approximately 700 mg/kg, and can 
reach up to 1000  mg/kg. There are four derivatives of tocopherol: α-tocopherol, 
β-tocopherol, γ-tocopherol, and δ-tocopherol (Demurin et al., 1996). Regular sun-
flower oil contains mostly α-tocopherol (>90%), but it is possible to obtain different 
quantities of tocopherols and thus different quality of sunflower oil with combina-
tions of tph genes. Škorić (2008) reported that tph1 produces 50% α and 50% 
β-tocopherol, and tph2 produces 0–5% α and 95–100% γ-tocopherol, while their 
combination (tph1tph2) produces 8–40% α, 0–25% β, 25–84% γ, and 8–50% of 
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δ-tocopherol. Combining genes for high-oleic (Ol) acid and genes for different 
tocopherol (tph) content, it is possible to obtain sunflower oil of different quality 
(Škorić et al., 2008; Škorić, 2012). So far, different mutants have been developed 
with alterations in saturated fatty acid levels, as well as differences in oleic acid and 
tocopherol levels than in any other oilseed crop (Fernández-Martínez et al., 2009).

3.3  Confectionery Sunflower

Although sunflower is mostly used to obtain edible oil, non-oil, or confectionery, it 
has found its place in production in many countries worldwide. Unlike in oil type 
sunflower, the seeds of confectionery sunflower are usually large, black with white 
stripes, or colorful with a thick hull loosely attached to the kernel (Jocić et  al., 
2015). The hull is easily separated from the kernel, which is used in the baking 
industry as an addition to salads and other foods. Regarding its use as a snack food, 
one of the main characteristics related to market requirements is achene color and 
seed size. Black achene color is mainly popular in Russia and some Balkan coun-
tries, consumers in Turkey prefer white achene with gray stripes, while in the United 
States, Spain, and China achene should be gray colored with stripes. One of the 
main goals regarding confectionery sunflower is high protein content, as it is of 
interest for human and animal consumption. Partially or completely dehulled 
achenes are used as a meal for feeding swine and poultry, while whole achenes are 
used for small animals and birds (Seiler & Jan, 2010). Protein content is determined 
by multiple genes and is also negatively correlated with oil content. Besides high 
protein content, other important traits are also amino acid content (lysine), 1000 
seed weight, kernel content and low oil content and oil stability, uniformity in seed 
size and color and easy dehulling (Jocić et  al., 2015; Kaya, 2016). In order to 
develop tasty confectionery sunflower with high quality, higher oleic acid and 
tocopherol content are also needed, as are different protein qualities like albumin, 
globulin, and gluten (Kaya, 2016). In addition to the specific goals of confectionery 
sunflower breeding, its general breeding goals are similar to those of breeding clas-
sic oil types: high seed yield, adaptability and stability, high level of tolerance and 
resistance to main diseases; resistance to parasitic weed broomrape, drought toler-
ance, and tolerance to herbicides. Due to its positive effects on human nutrition, the 
production of confectionery sunflower has an increasing trend (Hladni et al., 2017).

4  Genetic Resources for Oil Quality Improvement

The sunflower is one of the most adaptable field crops, characterized by a deep root 
system and moderate water consumption. Taking into account the global trend of 
climate change, as well as the increasing needs of the growing population for edible 
oil, there is a constant need for the development of hybrids that will meet current 
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global demands. Considering that the genetic basis of cultivated sunflower is rela-
tively narrow, the existing genetic resources are an indispensable source of genetic 
diversity that can be used for the exploitation of valuable genes (Anđelković 
et al., 2020).

4.1  Helianthus Genus – Crop Wild Relatives (CWR)

Native to North America, Helianthus genus, with 37 perennial and 14 annual spe-
cies, is an important source of valuable genes for many desirable traits. Greater 
diversity of wild relatives enables better adaptation to the changing environmental 
conditions ensuring maintenance of the economic viability of cultivated sunflower. 
The largest and most important collection of wild sunflower species is located in the 
USDA-ARS National Plant Germplasm System (NPGS), which is maintained at the 
North Central Regional Plant Introduction Station (NCRPIS) in Ames, Iowa, USA 
(Kaya, 2016; Seiler & Jan, 2010). For more than 30 years, accessions from this col-
lection were distributed all around the world as the basis for the development of 
wild species gene banks and research programs in Argentina, France, Italy, Spain, 
Germany, Bulgaria, Romania, the Czech Republic, Hungary, Russia, Serbia, India, 
China, and Mexico (Seiler & Jan, 2010). Thanks to that, important bigger and 
smaller collections of wild sunflower species are now maintained in other countries 
like Serbia (Institute of Field and Vegetable Crops, Novi Sad), Bulgaria (Dobroudja 
Agricultural Institute, General Toshevo), France (National Institute for Agricultural 
Research, Montpellier), Argentina (Instituto Nacional de Tecnología Agropecuaria, 
Pergamino), Spain (Institudo de Agricultura Sostenible, Cordoba), Ukraine (Institute 
of Oilseed Crops, Zaporozhie), and Russia (Vavilov All-Russian Institute of Plant 
Genetic Resources, Saint Peterburg and Institute of Sunflower, Veidelevka). The 
usefulness of wild relatives depends to a large extent on the success of crosses with 
cultivated sunflower and the possibility to transfer genes of interest. Success rates in 
obtaining interspecies hybrids have been increased by exploiting in vitro techniques. 
Probably the greatest importance of using wild species is deriving PET1 CMS cyto-
plasm and fertility restoration genes (Rf), which significantly increased the eco-
nomic viability of growing sunflowers through hybrid cultivation. Moreover, wild 
sunflower species contain considerable variability regarding oil content and quality. 
High concentrations of linoleic fatty acid suitable for the production of soft marga-
rine are found in H. porteri, H. debilis subsp. Tardiflorus, and H. exilis (Seiler, 
2007). Different concentrations of oleic fatty acid have also been found in some 
annual and perennial wild species, while lower concentrations of saturated palmitic 
and stearic fatty acids have been documented in H. annuus and H. giganteus (Seiler, 
1998, 2007). Regarding the tocopherol content, Demurin et al. (1996) found little 
variation in the trait, with α-tocopherol as the predominant form of the ten wild 
sunflower species maintained in the collection of the Institute of Field and 
Vegetable Crops.
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4.2  Local Populations, Open Pollinated Varieties, 
and Public Lines

Local populations are a valuable source of genetic variability as they are well 
adapted to specific pedoclimatic conditions and possess tolerance for and resistance 
to certain constraints. By selecting plants based on their phenotype, Russian farmers 
were able to develop quite some number of different cultivars, including ones with 
improved traits like sunflower moth and broomrape resistence (Seiler & Jan, 2010). 
During the first half of the twentieth century, open-pollinated varieties with improved 
oil content such as the well-known Kruglik A-41, were introduced into sunflower 
production. Applying the method of individual selection, popular open-pollinated 
varieties were developed at the Saratov experimental station, such as Saratovsky 
169, 206, 1915, 420, and others (Kaya, 2016). The great importance of open- 
pollinated sunflower varieties can be attributed to the extensive work of 
V.S. Pustovoit, who managed to combine resistance to broomrape race B and high 
productivity with high oil content (>50%), resulting in Peredovik as one of the most 
famous varieties. The level of oil content achieved in Peredovik by Pustovoit has 
more or less remained in sunflower hybrids today.

4.3  Mutations

Ever since 1930s, plant mutation breeding, based on random genetic variation 
induction, has successfully been applied in creating new variability (Raina et al., 
2016, 2017; Khursheed et al., 2018a, b, c; Laskar et al., 2018a, b). Mutagens have 
the potential to induce inheritable changes in the genome of plants and thus increase 
the frequency of obtaining desired individuals (Raina et al., 2020a, b; Goyal et al., 
2019a, b). Different types of mutagens have successfully been applied in induced 
mutation breeding (Laskar et al., 2015, 2019; Khursheed et al., 2019). In general, 
changes that have been exploited in breeding are the obtained dominant traits, while 
recessive traits were mainly lost in the process of selection (Wani et al., 2017, 2021; 
Goyal et  al., 2021a, b). Using the Targeting Induced Local Lesion in Genome 
(TILLING) method, it is possible to detect single polymorphisms in plants and thus 
create and discover new traits (Sabetta et al., 2011). This method was exploited by 
Kumar et al. (2013), who developed an ethyl methane sulfonate (EMS) mutant pop-
ulation and identified 26 induced mutations while investigating sunflower seed oil 
quality.

Induced mutations in sunflower provided many important traits by changing 
plant characteristics and productivity (Miller & Vick, 1999; Kalaydzhyan et  al., 
2007; Cvejić et al., 2009, 2011). Alteration in fatty acid content is the most common 
trait to be changed in sunflower by induced mutation (Cvejić et al., 2014). The first 
high-oleic sunflower variety, Pervenets, was obtained by exposing seeds of the 
VNIIMK 8931 variety to a solution of dimethyl sulfate (DMS) and selecting for an 
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elevated content of oleic acid over 840 g/kg (Soldatov, 1976). Worldwide, Pervenets 
is used as a high-oleic trait donor in breeding programs. There are publications 
about other sources of high-oleic mutants with 800 g/kg of oleic acid (Ivanov & 
Ivanov, 1992) and with 900 g/kg of oleic acid (Andrich et al., 1992). Recently, new 
genotype with ultra-high-oleic content was developed in which oleic acid content is 
not affected by temperature during grain filling compared to high-oleic Pervenets 
and traditional genotypes (León et al., 2013; Alberio et al., 2016). The enhanced 
oxidative stability of oil containing a higher content of saturated fatty acids makes 
it more desirable for use. Physical and chemical mutagens were used to develop 
mutants with different levels of palmitic and stearic acid concentrations (Ivanov 
et al., 1988; Osorio et al., 1995).

Apart from fatty acid content, significant accomplishments were made in altering 
tocopherol (vitamin E) content. A spontaneuos mutation raised β-tocopherol con-
tent by 50%, approximately, in the self-pollinated variety VNIIMK in Krasnodar in 
1983 (Demurin, 1986). This source was used for the development of line LG15 with 
elevated β-tocopherol content. Soon after, another sunflower line containing 5% α- 
and 95% γ-tocopherol, LG17, was created (Popov & Demurin, 1987). Chemical 
mutagen EMS was used to develop the inbred line IAST-1 with more than 90% of 
γ-tocopherol (Velasco et al., 2004).

4.4  Genetic Stocks of Public Breeding Sector

Genetic stocks developed and maintained in various research institutes in the diverse 
pedoclimatic conditions are also a valuable source of genetic diversity. One of the 
greatest sunflower collections is developed at the Institute of Field and Vegetable 
Crops in Novi Sad, with over 7000 inbred sunflower lines (Atlagić & Terzić, 2014). 
A part of the collection has been characterized in terms of oil quality, including both 
fatty acid and tocopherol content (Cvejić et al., 2016; Dimitrijević et al., 2016) and 
used in crop improvement. Another notable collection of the cultivated sunflower is 
maintained at the USDA-ARS NPGS in Ames (Marek, 2016). This collection con-
tains an association mapping population consisting of 288 accessions and over 300 
pre-breeding sunflower lines that contain introgressions from 11 wild species. 
Accessions of the NPGS collection are publicly available for research and educa-
tional purposes, contrary to some other proprietary collections. A momentous col-
lection is also kept at the Vavilov All-Russian Institute of Plant Genetic Resources 
from Saint Petersburg, Russia, which significantly contributed to sunflower oil qual-
ity improvement, as described above (Gavrilova et al., 2014). The French National 
Institute for Agricultural Research in Montpellier (INRA) assembled a significant 
collection of 400 landraces, open-pollinated varieties, and breeding pools (Mangin 
et  al., 2017a). Important research institutes, especially in the Balkan region, are 
Trakya University from Edirne in Turkey, the Dobroudja Agricultural Institute from 
General Toshevo, Bulgaria, and the National Agricultural Research and Development 
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Institute from Fundulea, Romania (NARDI Fundulea), while in South America is 
the Active Germplasm Bank of the National Institute of Agricultural Technology, 
(INTA) Manfredi (AGB-IM), Argentina. These Institutes gave considerable contri-
bution and broadened sunflower genetics with multitude of numerous important 
traits. The collections differ in the level of oil content and composition. Demurin 
and Borisenko (2011) found great variation in OAC in sunflower inbred lines from 
VNIIMK, VIR, USDA, and INRA. Moreover, Velasco et al. (2010) found a great 
variability in vitamin E content (between 119 and 491 mg/kg) in sunflower collec-
tion comprising 952 genotypes, of which 631 were different sunflower accessions 
from the USDA and 321 were sunflower lines and cultivars in the scope of the 
research program of the Institute for Sustainable Agriculture at Cordoba, Spain.

5  Main Objectives in Sunflower Breeding 
for Nutritional Quality

5.1  Yield and Yield Related Traits

The main objective of developing oilseed sunflower hybrids is to obtain maximum 
oil yield per unit area. This can be achieved by creating productive F1 hybrids that 
are high yielding (genetic potential over 5 t/ha), stable, and tolerant to abiotic and 
biotic stresses. Seed yield is a quantitative trait significantly affected by the environ-
ment (Kaya et  al., 2012). For improving sunflower productivity, selection of the 
high yielding plant has been used most often, but genetic gains from such selection 
were often hampered by the complex nature of the trait and significant G × E inter-
action effects. By enhancing combining ability and selecting genotypes adapted to 
particular conditions, e.g., enduring stems, high self-fertility, defined head inclina-
tion to improve resistance to stress such as sunburn and bird damage, significant 
improvements were made concerning seed yield (Fernandez et  al., 2009). 
Particularly, in areas with limited pollinator populations, sowing sunflower geno-
types with a high degree of self-fertility is imperative for achieving a high yield (Jan 
& Seiler, 2007). Moreover, breeders consider the seed number per head an impor-
tant trait when selecting inbred lines. During the selection process, it is important to 
choose combinations with a high heterotic effect for a high number of seeds per 
head (more than 1500). Other relevant traits, significant for sunflower breeding are: 
the number of plants per hectare (55–60 thousand), hectoliter test weight (50 kg per 
hl), thousand seed weight (over 80 g), low shell content (20–24%), and high oil 
content in seed (over 50%). The targeted traits are essential to improve yield and 
satisfy producers, processors, and market demands. In addition to the above, when 
creating an ideal model plant, breeders pay special attention to adapting the archi-
tecture of the plants to specific environmental conditions. Those traits would include 
plant height, head shape, size, and position on the stem, leaf size, and number, as 
well as their duration and position. All of the traits are associated with high yield 
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and well-developed vegetative plant growth (Jan & Seiler, 2007). Another trait asso-
ciated with seed yield is the earliness of the hybrids, with an earlier flowering period 
and physiological maturity duration shorter than 107 days (Kaya et al., 2009).

5.1.1  Molecular Tools

Numerous types of molecular markers have been associated with yield and yield- 
related QTLs. Mestries et al. (1998) examined QTLs associated with seed weight 
across three generations (F2–F4) of a cross GH × PAC2 by using isoenzyme loci and 
RFLP markers and detected associations only in F3 generation. Two QTLs were 
associated with the trait, one major on linkage group (LG) A and an additional one 
on LG C, explaining 28.5% of the phenotypic variation in total. The authors 
observed the greatest seed weights in unbranched families. A few years later, 
Mokrani et al. (2002) identified two QTLs for seed yield per plant on chromosome 
9 and one QTL for 1000-seed weight on chromosome 16, explaining 50.7% and 
5.4% of the phenotypic variation, respectively, by use of Amplified Fragment 
Length Polymorphism (AFLP) and Simple Sequence Repeat (SSR) markers. Two 
QTLs detected on chromosome 9 were common for seed yield per plant and oil 
percentage. Rachid Al-Chaarani et al. (2004) also used AFLP and SSR markers for 
mapping four QTLs for seed weight per plant on chromosomes 4, 6, 9, and 21 and 
three QTLs associated with 1000-seed weight on chromosomes 4, 6, and 9. The 
QTLs detected explained 43% and 53% of the phenotypic variation, respectively. 
Chromosome 9 contained a major QTL for 1000-seed weight, explaining 37% of 
the phenotypic variation.

Tang et al. (2006) exploited SSR markers for a comprehensive study of QTLs 
associated with different seed traits: seed length, width, and depth, 100-seed weight, 
10-kernel weight, 10-pericarp weight, and kernel to pericarp weight ratio. The 
authors associated between four and six QTLs per examined seed trait, with three 
quarters of the mapped QTLs clustered on four chromosomes (5, 10, 16, and 17). 
The authors reported that detected QTLs for tested seed traits on chromosomes 10 
and 17 were also tightly linked to apical branching and phytomelanin pigment. 
Similar findings concerning the association of seed traits with branching were for-
merly reported by Mestries et al. (1998). Yue et al. (2009) exploited Target Region 
Amplification Polymorphism (TRAP) and SSR markers and identified 51 QTLs 
associated with 10 seed morphological traits (including 100-kernel weight, 100- 
seed weight, kernel-to-seed weight ratio, seed width, length, etc.) in F2 and F3 gen-
erations obtained by crossing oilseed and confectionery sunflower. Out of 51 QTLs, 
32 were identified in both generations examined. Individually, the identified QTLs 
explained between 5.1% and 29.3% of the phenotypic variation. Concerning the 
100-seed weight trait, four and three QTLs were mapped in the F2 and F3 genera-
tions, respectively. Common QTLs for both generations were mapped on chromo-
somes 1, 10, and 13. Vanitha et al. (2014) associated between two and five SSR 
markers to seed yield, hull percentage, and 100-seed weight, as well as kernel and 
hull weight.
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As heterosis is an important trait in hybrid breeding, so far there has been no cor-
relation found between SSR-based genetic distances and heterosis in sunflower 
(Gvozdenović et al., 2009; Kaur et al., 2019).

5.2  Oil Content and Quality Traits

Oil content is a quantitative trait; thus, the expression of the trait is dependent on 
cultivation methods, environmental conditions, and the genotype. The most com-
mon mode of inheritance of oil content in F1 is dominance of the better parent 
(Pustavojt, 1966; Fick, 1975). However, there were cases of dominance of the par-
ent with lower oil content (Schuster, 1964; Fernández-Martínez et al., 1979), het-
erosis (Morozov, 1947; Schuster, 1964; Voljf & Dumačeva, 1973) and negative 
heterosis (Gill & Punia, 1996). The existence of a strong additive effect in the inher-
itance of oil content in sunflower was reported by numerous authors (Fick, 1975; 
Škorić, 1976; Rao & Singh, 1977; Rojas & Fernández-Martínez, 1998), while a 
stronger impact of the dominant component of the genetic variance was reported by 
Schuster (1964), Kovacik and Skaloud (1972), Petrov (1992), etc. Obtaining hybrids 
with high oil content is performed by crossing chosen cultivated sunflower geno-
types within the existing genetic variability. The breeders choose parental lines that 
contain a greater number of minor genes that are involved in increasing oil content 
and combine them to obtain F1 progeny with higher oil content.

Qualitative traits, like tocopherol and fatty acid content, are opposite to oil con-
tent and qualitatively inherited, i.e., governed by one or few genes. The phenotypic 
expression of such traits is thus to a lesser extent affected by environmental condi-
tions compared to quantitative traits (Velasco et al., 2002).

Novel variation within germplasm is necessary for creating hybrids with a modi-
fied fatty acid content of oil. In the absence of naturally existing variation, an alter-
native strategy generates new diversity. These strategies would include the 
examination of existing germplasm as well as performing interspecific crossing or 
using somatic hybridization, induced mutagenesis, or gene transfer (Velasco et al., 
2002). As was shown previously, induced mutations are commonly exploited for 
increasing genetic variability in sunflower and have enabled the creation of numer-
ous mutants with altered fatty acid content (Soldatov, 1976; Fernandez-Martinez & 
Dominguez-Gimenez, 1988; Ivanov et al., 1988; Ivanov & Ivanov, 1992; Andrich 
et al., 1992; Osorio et al., 1995; Miller & Fick, 1997; Velasco et al., 2004). However, 
mutant genotypes that refer to novel oil qualities most often demand the use of 
additional breeding efforts in order to eliminate undesirable seed quality or agro-
nomical traits before becoming suitable for commercial exploitation. Therefore, 
several selection cycles are recommended before the breakthrough of high-yielding 
and high-quality hybrid development (Velasco et al., 2002).

Primarily, the advantage of sunflower seeds is for oil usage. However, meal resi-
dues after oil extraction are a valuable product due to their high protein content, as 
with other oilseeds (González-Pérez, 2015). Depending on the process used for oil 
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extraction, sunflower meal contains nearly 40% protein when mechanical extraction 
of hulled seeds is exploited, around 50% if an organic solvent is utilized (Robertson 
et al., 1972), and 53–66% if defatted meal is prepared from dehulled seeds (Bau 
et al., 1983). Sunflower proteins have been appraised as a suitable food ingredient 
but are not frequently used in human consumption. Instead, they enrich the food 
with sunflower flour, especially dairy and meat products, baby formulas, pasta, and 
bakery products (González-Pérez & Vereijken, 2007). There is a huge and growing 
demand for the use of plant proteins worldwide. Plant proteins as functional ingre-
dients in food production are an economical and viable alternative to animal pro-
teins. Oil crops are a supreme source of protein production. So far, proteins obtained 
from soybean grain have been mainly exploited for this purpose. However, other 
crops such as peas, chickpeas, husks, sunflowers, rapeseed, etc. could be appropri-
ate for protein use. Sunflower seeds are notably attractive due to their widespread 
production and availability in areas where soybeans are not or rarely grown. 
Moreover, sunflower is an acclaimed crop to both farmers and processors because 
of its extensive oil extraction use. González-Pérez and Vereijken (2007) reported 
that sunflower seeds contain small amounts of anti-nutritional factors (such as 
cyanogens, protease inhibitors, and glycosylates), while their amino acid composi-
tions (except lysine) are consistent with the FAO pattern. However, the development 
of sunflower seeds as a source of dietary protein is generally prevented by two fac-
tors: the presence of phenolic compounds, chlorogenic acid (CGA- dark coloration 
of sunflower protein products), and protein denaturation during oil processing and 
extraction. Therefore, sunflower breeding can be focused on increased protein func-
tionality and the development of genotypes with low chlorogenic acid. Such sun-
flowers will broaden the range of livestock feed, aquaculture, and human food 
production applications.

5.2.1  Molecular Tools

As breeding for oil quantity is a major breeding trait, it is no surprise that the initia-
tion of molecular marker application in sunflower studies initiated an immediate 
examination of the oil quantity-marker connection. Nowadays, great efforts have 
been put into developing markers for high OAC, a highly demanded trait.

Oil Content

Molecular studies on associating markers with oil traits were initiated with the con-
struction of one of the first sunflower linkage maps, when Leon et al. (1995) mapped 
six OTLs that explained 57% of the genetic variability of seed oil percentage by use 
of RFLP markers, with additive gene action as a predominant mode of inheritance 
(Table 1). As quantitative traits are both genetically and environmentally dependent, 
the same mapping population was assessed at four locations in the USA and 
Argentina (Leon et  al., 2003). In total, eight QTLs were detected on seven 
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chromosomes, explaining 88% of the genetic variability for seed oil concentration, 
with the majority of QTLs having an additive effect and some being dominant or 
overdominant. All QTLs associated with high oil content originated from the paren-
tal line with higher seed oil content (HA 89). Mestries et  al. (1998) identified 
between two and three QTLs that are associated with oil content in each generation: 
F2, F3, and F4 of a cross GH × PAC2, accounting for 19.4%, 53.8%, and 26.1% of 
phenotypic variability, respectively. The identified QTLs originated from both 
parental lines.

Mokrani et al. (2002) mapped six QTLs on chromosomes 9, 11–13 using AFLPs 
and SSRs, thereby explaining 90.4% of the phenotypic variance for oil percentage. 
The QTL pog-13-1 mapped on chromosome 13, with an epistatic effect, was char-
acterized as the most important one, accounting for 47% of phenotypic variance. 
Henceforth, Bert et al. (2003) mapped five QTLs for oil content in both F2 and F3 
populations, obtained by crossing XRQ × PSC8, which in total explained 68.1% 
and 70.1% of the phenotypic variation, respectively. Contrary to these studies, 
Rachid Al-Chaarani et al. (2004) identified four QTLs with a moderate phenotypic 
effect, explaining in total 39% of the phenotypic variance (R2 ranging between 8 
and 13% per QTL) in RILs obtained from a cross of PAC2 × RHA266. All identified 
alleles with a positive effect on the percentage of seed oil originated from RHA266.

Tang et al. (2006) exploited SSR and insertion-deletion (INDEL) markers for the 
identification of QTLs associated with seed oil concentration in RILs obtained from 
a cross of RHA280 × RHA801, in which RHA801 is an oilseed parental line. In 
total, six QTLs were detected on chromosomes 1, 4.9, 10, 16, and 17, explaining 
55.7% of the phenotypic variation. Alleles with the positive effect of the increased 
oil trait originated from RHA801.

Premnath et al. (2016) identified two QTLs associated with oil content on chro-
mosomes 7 and 8, explaining 12.8% and 14.9% of the phenotypic variance, respec-
tively, in the F2 population obtained by crossing COSF 7A 9 (high oil content) and 
HO 5–13 (moderate oil content).

Increased Oleic Acid Content

As mentioned previously, the complexity of the increased high-oleic trait lies in the 
nature of the trait, as OAC can vary in different genetic backgrounds of the recipient 
line as well as different environmental conditions. A lot of molecular studies were 
conducted on examining high-oleic genotypes of sunflower, in which the high OAC 
trait originates from cultivar Pervenets (Soldatov, 1976). Increased OAC is a conse-
quence of gene silencing caused by a partial duplication of the FAD2-1 (oleoyl- 
phosphatidyl choline desaturase) gene (Lacombe et  al., 2002; Schuppert et  al., 
2006). This duplication is termed the “Ol mutation/locus” (Dimitrijevic et al., 2017) 
or sometimes “Ol1,” as the different inheritance patterns have been reported. Dehmer 
and Friedt (1998) examined several F2 combinations. However, only 
HA89 × HA-OL9 displayed a 3:1 segregation ratio for high OAC. Two Random 
Amplified Polymorphic DNA (RAPD) Polymerase Chain Reaction (PCR) 
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fragments, AC10-765 and F15-690, were mapped in the HA89 × HA-OL 9 F2 popu-
lation, 7.2 cM and 7.0 cM from the Ol1 locus, respectively. Pérez-Vich et al. (2002) 
crossed HAOL-9 with the high-stearic acid mutant CAS-3 and mapped three QTLs 
on chromosomes 1, 8, and 14 using RFLP and AFLP markers. Of the three QTLs, 
the one on chromosome 14 was marked as the most important, explaining 56.5% of 
the phenotypic variation. Significant epistatic interaction was observed between 
QTL on chromosome 14 originating from HAOL-9 and QTL on chromosome 8 
originating from CAS-3. The authors reported that an oleoyl-PC desaturase locus 
(OLD7) co-segregated with the Ol gene on chromosome 14. Similar findings, 
reporting that the Ol gene was located on chromosome 14, were obtained by 
Schuppert et al. (2006), who developed diagnostic dominant INDEL markers for 
detection of the tandem FAD2-1 repeats and identified different SNPs, SSRs, and 
INDELs in downstream sequences of FAD1-2 and the 3’UTR of FAD2-1. As the 
authors developed the dominant markers, they suggested combining the dominant 
INDEL marker with flanking codominant markers for the identification of potential 
heterozygous plants (Table 1). Furthermore, Lacombe et al. (2009) used a codomi-
nant SSR marker for amplification of the intron of the oleate desaturase allele, 
closely linked to the mutation, as well as mutation-specific dominant markers. As 
the background of the recipient of the Ol mutation is important in creating high- 
oleic sunflower genotypes, identification of the appropriate markers is also crucial. 
Several studies dealt with the validation of different types of markers across diverse 
genetic backgrounds (Nagarathna et  al., 2011; Bilgen, 2016; Dimitrijević et  al., 
2016, 2017). However, further development of markers and their validation is still 
required.

Premnath et  al. (2016) recently examined OAC and identified three QTLs on 
chromosomes 8, 9, and 14. The QTLs have previously been reported, and the authors 
singled out the potential use of markers ORS 762 and HO_Fsp_b (designed by 
Schuppert et al. (2006)) linked to QTLs on chromosomes 8 and 14, respectively, in 
MAS. Furthermore, Zhou et al. (2018) exploited specific-locus amplified fragment 
sequencing (SLAF-seq) for mapping three QTLs, two on chromosome 6 and one on 
chromosome 9, associated with high OAC in the cross L-1-OL-1 × 86-1. The authors 
created a map of 2221.86 cM, while the average genetic distance between SLAFs 
was 0.36 cM.

Increased Stearic Acid Content

Pérez-Vich et al. (1999) identified two partially recessive genes, es1 and es2, control-
ling high SAC. Out of the two, es1 has the greater effect on stearic acid content 
(SAC) compared to es2, and it co-segregates to a stearoyl-ACP desaturase locus 
(SAD17A) on chromosome 1, explaining approximately 80% of the phenotypic 
variation (Pérez-Vich et  al., 2002). In addition to this QTL, the authors mapped 
several minor QTLs in two F2 mapping populations (Table 1). Later, Pérez-Vich 
et al. (2004) identified three QTLs affecting SAC on chromosomes 3, 11, and 13 in 
a cross of HA89  ×  CAS-20. The sunflower line CAS-20 (Es1 Es1es2es2) was 
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developed from the previously mentioned CAS-3 (es1es1es2es2) mutant line. 
Compared to CAS-3 with 25% stearic acid, CAS-20 exhibited decreased SAC 
(8.6% in its seed oil). However, the SAC is still increased when compared to regular 
sunflower oil which has less than 6% (Pérez-Vich et al., 2004, 2006). All of the 
reported QTLs for increased SAC originated from CAS-20 and were attributed to 
segregating for the recessive gene es2. Contrary to CAS-3, in the CAS-14 mutant 
line, SAC was found to be controlled by the es3 gene located on the distal part of 
chromosome 8 and strongly affected by temperature during seed maturation (Pérez- 
Vich et al., 2006). Also, the expression of the trait is not uniform along the seed. 
CAS-14 had a SAC more than 35%, significantly higher than in regular sunflower 
oil. The flanking, linked SSR markers to the es3 were discovered using bulk- 
segregant analysis: ORS243 and ORS1161, located 0.5, and 3.9 cM from the gene, 
respectively. Moreover, during the analysis of the CAS-3 × CAS-14 F2:F3 popula-
tion, two QTLs were identified on chromosomes 1 and 8, representing Es1 and Es3 
loci from CAS-3 and CAS-14, respectively. The authors reported a significant epi-
static interaction between the two detected QTLs.

Tocopherols

Tocopherol content was not the subject of many molecular studies, despite its con-
tribution to increasing the nutritional and technological properties of sunflower oil. 
As there are four naturally occurring tocopherols (α-, β-, γ-. and δ-tocopherol), 
designing oils with appropriate tocopherol content can be very beneficial for con-
sumers. As the most prevalent type of tocopherol in regular sunflower oil, 
α-tocopherol has some advantages, as it has great vitamin E value but low in vitro 
activity (Vera-Ruiz et al., 2006). Contrary to α-tocopherol, β-tocopherol has a better 
balance of in vivo and in vitro antioxidant properties, making it desirable for a par-
ticular oil use. Vera-Ruiz et al. (2006) thus mapped the Tph1 gene responsible for 
increased β-tocopherol content (more than 30%) in sunflower line T589. The Tph1 
gene co-segregated with three SSR markers, ORS222, ORS598 and ORS1093 and 
was located on the upper end of chromosome 1. The same year, García-Moreno 
et al. (2006) mapped the Thp2 gene from a high γ-tocopherol source. Four lines with 
high γ-tocopherol content were developed, and it was determined that this trait is 
controlled by recessive alleles at the Tph2 locus. This locus was located on chromo-
some 8, flanked by ORS312 and ORS599, 3.6  cM proximal and 1.9  cM distal, 
respectively.

Genetic control of tocopherol content was analyzed on a molecular level by 
Haddadi et al. (2012), who mapped five QTLs on chromosomes 1, 8, 10, and 14, 
explaining in total 45% of the phenotypic variation. Using a candidate gene 
approach, the authors identified four candidate genes co-localizing with mapped 
QTLs: VTE4 (tocopherol methyl-transferase), HPPD (p-hydroxyphenylpyruvate 
dioxygenase), GST (glutathione S-transferase), and Droug1.
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5.3  Abiotic Stress Tolerance and Nutrition Quality Traits

Environmental constraints, including abiotic stress factors such as drought, salinity, 
and low and high temperatures, severely limit crop productivity. Improvement of 
traits conferring tolerance to these stresses is a complex issue that could be accom-
plished using traditional and modern breeding methods (Sreenivasulu et al., 2007). 
Abiotic stress tolerance has been less studied in sunflower than biotic stress toler-
ance since it has polygenic inheritance and may be conditioned by multiple interact-
ing mechanisms (Miklas et al., 2006). These and other factors make abiotic stress 
tolerance especially difficult to study, both physiologically and genetically. 
According to Škorić (2009), drought is the main abiotic constraint in sunflower 
production, as it affects 26% of arable land. Drought stress can cause decreases in 
fertility, yield, and product quality. Moreover, drought stress occurring at vegetative 
and reproductive stages can affect sunflower oil quantity and quality as well as pro-
tein quantity (Nel et al., 2002; Rauf, 2008; Ali et al., 2009; Hussain et al., 2015). 
Second in line according to their importance are mineral toxicities/deficiencies, 
while frost stands as the third most important abiotic stress.

Unfavorable conditions, especially drought, can influence the composition of 
sunflower seeds. A major seed growth-limiting factor that also affects oil and pro-
tein content is water deficiency during all growth and developmental stages. Both 
have medium-high heritability and depend on stress conditions. In sunflower, water 
stress leads to a significant decrease in oil content (Muriel & Downes, 1974; Nel 
et al., 2002) and an increase in protein content at maturity (Ebrahimi et al., 2009).

Even though oil quality traits are governed by one or a few genes, the traits are 
still affected by the environment. The content of fatty acids, especially the oleic/
linoleic acid ratio, can therefore vary among the same type of sunflower, depending 
on the cultivation area and climatic factors (precipitation, temperature, sunlight, 
relative humidity, etc.). Temperature during seed formation is an important factor 
affecting oil quality traits (Canvin, 1965).

Higher temperatures during seed maturation produced oil high in oleic and low 
in linoleic acid compared to production during low-temperature periods (Kovacik 
et al., 1998). Implementation of drought stress from the flowering stage to physio-
logical maturity (in comparison to the control group) has also been reported to 
increase oleic acid and reduce linoleic acid (Flagella et al., 2000). High-temperature 
regimes can influence the ratio of oleic and linoleic acids in sunflower (Trémoliéres 
et al., 1982). Moreover, oleic acid content increases when night temperatures are 
high, regardless of the daily minimum temperatures (Izquierdo et al., 2002). Besides 
temperature, other factors such as total solar radiation can lead to a significant 
decrease in linoleic acid content, while the impact of day length remains unclear 
(Seiler, 1983). As mentioned above, even though tocopherol composition shows 
genetic and phenotypic variability (Demurin et al., 1996), there is no information in 
the current literature on whether drought stress can influence changes in tocopherol 
content (Ali et al., 2009).

Conventional and Molecular Breeding for Sunflower Nutrition Quality Improvement



374

Numerous strategies are utilized in breeding for drought stress in crop species 
through the modification and introduction of plant traits related to drought tolerance 
and associated with high yield (Rauf, 2008). Generally, sunflower shows more 
drought tolerance than other field crops due to its specific plant architecture, better 
adaptation, and ability to grow in different agro-ecological conditions. Sunflower 
breeders made significant efforts in changing morphological traits and developmen-
tal phenophases, e.g., shorter genotypes with lower leaf mass, deeper root system, 
earliness, etc., which ensured sunflower as a well-adapted crop to existing climate 
changes. Moreover, a good strategy for avoiding drought stress could lie in arrang-
ing sowing depending on the onset of the dry period in summer seasons (Miladinović 
et al., 2019). Success in breeding for abiotic stress tolerance has been accomplished 
by using the stay-green effect, which delays leaf senescence during the grain-filling 
phase. Exploitation of this effect can lead to achieving a higher yield potential 
through increments in the biomass production or yield stability under conditions of 
water shortage, high plant population density, or late sowings (Sala et al., 2012). 
According to the same authors, more target traits in sunflower can confer yield 
advantages in stress-prone environments, such as tolerance to stem-logging, reduced 
height, and herbicide-resistant hybrids.

Sunflower and other wild relatives represent a great source of tolerance for 
drought stress. They are adapted to different types of habitats (grasslands, deserts, 
swamps, mountains, forests, roads, and fields) and possess a significant variability 
in terms of resistance or tolerance to most abiotic and biotic stresses (Seiler et al., 
2017). As an example, H. deserticola and H. anomalus present a potentially good 
source of drought tolerance traits as they are native to drought-prone environments 
(Seiler & Marek, 2016).

5.3.1  Molecular Tools

As drought tolerance is a quantitative trait independent from yield properties, the 
use of molecular markers for the introduction of tolerant QTLs in high-yielding 
sunflower genotypes would lead to further crop improvement and ensure stable sun-
flower oil yields (Chiementi et al., 2002).

Some of the relatively recent works addressed the mining of QTLs associated 
with oil quantity and quality parameters under different water regimes. Ebrahimi 
et al. (2008) identified 62 QTLs associated with seed quality traits in water-stressed 
conditions, and 56 QTLs in well-watered conditions in greenhouses or field trials. 
The authors examined oil content, palmitic acid content (PAC), SAC, OAC, and 
linoleic acid content (LAC) in RILs obtained from PAC2 × RHA266. Of the detected 
QTLs, 12 were common under both water-stressed and well-watered conditions. 
Also, the authors identified overlapping QTL regions associated with several exam-
ined traits and/or water regimes. Overlapping QTLs for oil content were found in 
regions on chromosomes 2, 10, 12, and 16, of which the region on chromosome 16 
was identified as the most important. In total, it contained three QTLs associated 
with water-stressed conditions and two QTLs associated with well-watered 
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conditions. Some of the QTLs also overlapped with QTLs for OAC and LAC, indi-
cating a common genetic base for the traits. The authors found a negative correla-
tion between SAC and OAC and oil content, and a positive correlation between PAC 
and LAC and oil content. Moreover, an important overlap was discovered on chro-
mosome 8 among QTLs for OAC, SAC, and LAC, which were also associated with 
the SSR marker SSU217. A year later, Ebrahimi et al. (2009) used the same map-
ping population to examine QTLs associated with seed protein content and other 
seed properties, such as kernel and hull weight, and seed density in greenhouse or 
field conditions under water stress compared to the non-stressed conditions. Similar 
to the previous experiment, a great deal of variation was found on the phenotypic 
level among the analyzed plants, while nonspecific and specific QTLs were identi-
fied. QTLs associated with protein content were found on the majority of chromo-
somes, while chromosome 14 was reported to be the most important as it contained 
five QTLs associated with the trait in all examined conditions. The authors also 
detected four regions on chromosomes 1, 8, 10, and 16, in which QTLs associated 
with protein content were overlaid with QTLs for oil content reported by Tang et al. 
(2006) and Ebrahimi et al. (2008). Ebrahimi et al. (2009) suggested that the regions 
may contain genes that are involved in the synthesis of proteins that have an indirect 
effect on oil content or they may contain genes that control substrate partitioning 
between protein and oil synthesis. Haddadi et al. (2010) examined QTLs associated 
with not only protein and oil content but also fatty acid content in the RILs 
(PAC2  ×  RHA266) subjected to well-, partial-irrigated system, and late-sowing 
conditions. Similar to the previous study, common regions for several traits were 
found. For example, chromosomes 10 and 15 contained common regions for per-
centage of seed oil and SAC; also, seven QTLs associated with PAC, OAC, SAC, 
and LAC were detected on chromosome 14. Identification of QTLs and QTL- 
associated markers can lead to increased efficiency of MAS for creating sunflower 
genotypes tolerant to water-stressed conditions and providing a sustainable oil 
source for consumption or other specific purposes.

Recently, Gezeljeh et al. (2018) associated two SSRs and three retrotransposon 
markers to the oil content trait in natural and water-limited conditions. The authors 
performed an association study on 100 inbred lines from Europe, the USA, and Iran. 
Overlapping QTLs in both conditions may be very useful in MAS for creating sun-
flower genotypes adapted to different environmental conditions and ensuring poten-
tially stable oil content.

According to Debeake et al. (2017), in future cropping systems, sunflower could 
be recognized as an oil-protein and environmentally friendly crop suited for low- 
input production. As a climate-smart model crop, adapted to the conditions in which 
irrigation water is available to a lesser extent, sunflower can be used as a (moder-
ately) drought-tolerant crop and grown in conditions with no systematic irrigation. 
Sunflower adaptations could be developed through breeding, crop management, and 
shifting of the growing areas. Consequently, in the future, sunflower can be the oil 
crop of preference thanks to its ability to grow in diverse agro-ecological conditions 
as well as its moderate drought tolerance, especially bearing in mind the global 
environmental changes.
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5.3.2  Genomic Selection for Sunflower Improvement

Genomic selection (GS), as a potentially powerful tool in breeding, is introduced 
modestly in sunflower breeding. Genomic selection is applied for the prediction of 
performance through the use of a model. In other words, it is used for selecting 
individuals based on their genomic breeding values (Meuwissen et  al., 2001). 
Contrary to MAS, where only a few markers linked to a trait of interest are used, a 
larger number of markers are exploited in GS, covering both major and minor genes 
throughout the genome. Moreover, the development, availability, and, most impor-
tantly, reduction in the price of using high-throughput genotyping platforms have 
made them more attractive in recent years (Dimitrijević & Horn, 2018). Genomic 
selection was used for predicting sunflower hybrid performance (associated with 
phenotyping data of flowering time and leaf senescence), oil content in hybrid sun-
flower, as well as Sclerotinia resistance (Livaja et al., 2016; Bonnafous et al., 2016; 
Mangin et al., 2017b). Livaja et al. (2016) assessed the performance of the genome- 
based best linear unbiased prediction (GBLUP) model for the prediction of resis-
tance to Sclerotinia mid-stalk rot in a biparental population that was genotyped with 
the 25 K SNP array. The authors obtained highly predictive abilities for the stem 
lesion length resistance trait, while lower predictive abilities were obtained for the 
speed of fungal growth and leaf lesion length, which expressed lower heritability. 
For the prediction of seed oil content, Mangin et al. (2017b) compared the predic-
tion accuracy of classical general combining aptitude (GCA) to that of whole 
genome sequencing. An incomplete factorial design was used for this purpose, in 
which 36 CMS lines were crossed with 36 restorer lines. The characterization of 
452 hybrids concerning oil content (additive trait with high heritability) was per-
formed in a multi-environment trial. Genomic selection and GCA were equally 
accurate in predicting hybrid performance if all parental lines were well character-
ized. However, GS proved to be more accurate compared to GCA in cases where at 
least one parental line was uncharacterized. Initial experimental trials for GS 
showed the potential and limitations of using GS in sunflower breeding (Dimitrijevic 
& Horn, 2018).

6  Future Breeding Challenges

As mentioned in this chapter, sunflower is one of the main oil sources worldwide, 
while in some regions it is the main source. Maintaining and increasing its yield is 
therefore important for securing sustainable oil production. Growing sunflower has 
several advantages, including its wide distribution in different agroecological condi-
tions and moderate drought tolerance. Considering the current and expected climate 
changes, as well as the increasing human population, sunflower breeders have a 
demanding task: designing sunflower genotypes able to keep the current and 
increase future productivity under the changing and unpredictable environment. 
What is notable is that each growing season is different from the other; we are 
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witnessing fast environmental changes, such as rain showers followed by drought 
periods or extensive drought periods accompanied by high temperatures. In order to 
obtain a sustainable sunflower yield for ensuring oil security, breeders need to 
develop sunflower genotypes, that will be high oil yielding and resistant to abiotic 
and biotic stress.

This chapter outlines the major conventional and molecular breeding efforts 
made so far, with the aim of improving sunflowers. However, how will the breeders 
face future challenges?

They will need to utilize all available tools and develop new low-cost, high- 
throughput tools for sunflower breeding. These tools will most likely be involved in 
aided high-throughput phenotyping and remote sensing, molecular tools, as well as 
developing reliable prediction models and methods/software for dealing with and 
integrating large amounts of data.

High-throughput phenotyping is considered the bottleneck of breeding advance-
ment (Araus et al., 2018). Precise phenotyping is the basis for classical breeding and 
the development of molecular markers (GWAS and GS). High-throughput pheno-
typing platforms can be very expensive, which is why they are mainly utilized in 
developed countries and the private sector. Different phenotyping networks are 
established in order to enable the sharing of such platforms, both on the national and 
international level, such as the EPPN (European Plant Phenotyping Network), the 
NAPPN (North American Plant Phenotyping Network), and the IPPN (International 
Plant Phenotyping Network). So far, only a few platforms have been established and 
tested for sunflower phenotyping. “Heliaphen” is an outdoor high-throughput phe-
notyping platform designed for analysis of drought scenarios as well as monitoring 
sunflowers throughout its lifecycle (Gosseau et al., 2018). Phenotyping platforms 
can also be very useful in phenotyping traits invisible to the naked eye, such as the 
root system. GROWSCREEN-Rhizo was thus successfully used for root phenotyp-
ing of cultivated and wild sunflower genotypes (Dimitrijević et al., 2018). Moreover, 
3D reconstruction can be very useful in sunflower phenotyping (Nguyen et  al., 
2016; Gélard et al., 2017). Nguyen et al. (2016) reported that their custom stereo- 
vision system outperformed the structure-from-motion approach in 3D reconstruc-
tion of small details and leaf edges of sunflower plants. Furthermore, appropriate 
software and approaches are required for providing as accurate an evaluation of the 
plant as possible. Zorić et  al. (2020) used a new Flower Color Image Analysis 
(FloCIA) software for digital image segmentation of sunflower ray florets and auto-
matic color class classification.

Remote sensing techniques and crop models have been utilized for crop yield 
estimation. Obtaining accurate and timely estimation of crop yields prior to harvest 
allows proper crop yield management decision-making at a regional scale, which is 
imperative for national food policy and security assessment (Jin et al., 2018). In 
sunflower, Litvischenko et al. (2017) used microwave radiation for remote sensing 
of seed moisture content diagnosis for sunflower seed ripeness in field conditions, 
providing farmers with information about the optimal time for harvest. Furthermore, 
remote sensing in sunflower was used for yield and leaf area index estimations 
(Tunca et al., 2018; Zeng et al., 2018), biomass estimation (Claverie et al., 2012), 
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nitrogen status measurement (Agüera et al., 2011), evaluation of vegetation stage 
(Herbei & Sala, 2015), estimation of chlorophyll and water status in leaves (Neto 
et al., 2017), estimation of crop height and leaf area index (Fieuzal & Baup, 2016), 
retrieval of bio-physical parameters (Routh et al., 2019), and weed mapping in the 
early season that can help herbicide savings in sunflower crop production (López- 
Granados et  al., 2016). As it can be seen, remote sensing can help breeders and 
farmers in sunflower crop production in numerous ways. However, appropriate 
sensing methods combined with suitable data management methods are imperative 
for obtaining the most precise results possible.

Besides phenotyping, genotyping is currently performed on larger scales. The 
use of high-throughput genotyping platforms helps generate a lot of data and ana-
lyze quantitative traits in more detail. Genome wide association study (GWAS), 
besides the already mentioned GS, has been used in examining Sclerotinia head rot 
resistance by Fusari et al. (2012), flowering time (Cadic et al., 2013; Bonnafous 
et al., 2018), and branching (Nambeesan et al., 2015). At the moment, GWAS is still 
unavailable to many breeders due to the high cost of the analysis (Dimitrijevic & 
Horn, 2018). With the advancement of technology, the development of powerful 
and accurate prediction models has become imperative. As sunflower breeding is 
based on hybridization, prediction models should include dominant and epistatic 
effects in addition to the already included additive effect. The addition of domi-
nance to the model and testing several models have been performed in sunflower 
(Bonnafous et al., 2016, 2018).

Public availability of the sunflower genome sequence has also opened doors for 
expanding molecular research in sunflower (Badouin et al., 2017). The researchers 
provided the sunflower community with not only the sequence but also insight into 
oil metabolism and flowering, as well as asterid evolution. Sequence data is at its 
beginning because the examination of quantitative traits requires analysis of gene 
expression at the genome level. Examining the transcriptome, proteome, metabo-
lome, and epigenome should give the “whole” molecular picture of sunflower 
behavior in certain environmental conditions, as well as detailed mechanisms 
involved in its response to stress, which could lead to identifying “weak spots” and 
exploiting different breeding methods for sunflower improvement. These could 
include the conventional, but also genome editing techniques. But how far are we 
from applying all the mentioned techniques to sunflower breeding?

Concerning the use of modern “omics” techniques in sunflower breeding, initial 
studies were conducted on disease resistance (Guo et al., 2017; Yang et al., 2017), 
as well as abiotic stress resistance to drought (Liang et al., 2017; Ghaffari et al., 
2017; Sarazin et  al., 2017; Moschen et  al., 2017), and leaf senescence, which 
strongly affects sunflower yield (Moschen et  al., 2016a, b). Contrary to “omics” 
techniques, genome editing techniques have not been used to change any properties 
in sunflower. Chantry-Darmon et al. (2018) reported improvement and adaptation of 
the first steps of the CATCH method (Cas9-Assisted Targeting of Chromosomal 
Segments as described by Jiang et al., 2015) for cutting a specific locus in Medicago 
truncatula and use of this approach on a more complex and larger genome region in 
sunflower. Major obstacles to the successful application of modern genome editing 
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in sunflower include difficulties that arise during plant regeneration as well as the 
low number of obtained transgenic regenerants per assay (Miladinović et al., 2021). 
Therefore, further improvement needs to be made in the transformation protocols.

Appropriate evaluation of the performance of the newly-developed sunflower 
genotypes in particular environmental conditions can lead to better exploitation of 
the genotypes and obtaining higher yields. Casadebaig et  al. (2011) developed a 
model, SUNFLO, for assisting the improvement of genotyping assessment in sun-
flower crops. The obtained results suggested that SUNFLO seems to be sufficiently 
robust for the estimation of the influence of breeding traits on yield or for exploring 
new management practices. However, the model does not take into account biotic 
stress or biomass allocation, and SUNFLO was further improved. According to 
Mangin et al. (2017c), the model simulates major plant and soil processes, namely, 
nitrogen content and soil water, root growth, plant nitrogen uptake and transpira-
tion, leaf expansion and senescence, and biomass accumulation, as a function of 
dominant environmental constraints (temperature, radiation, water, and nitrogen 
deficit). SUNFLO was further used by Picheny et al. (2017) for designing sunflower 
ideotypes for certain environments.

All the mentioned techniques imply gathering plenty of data, which needs to be 
appropriately stored and analyzed. Moreover, the accessibility of data can be benefi-
cial not only for researchers but also for farmers. In research, it would allow deposi-
tion of the new research data and avoid multiplication of results, while helping 
sunflower producers make proper sowing choices and optimizing crop manage-
ment. As suggested by Kamilaris et al. (2017), if developed and made more acces-
sible, farmers would benefit from several key points, such as tools for yield and 
demand prediction, guidance provided to farmers based on the responsiveness of 
their crops to fertilizers, herbicides and pesticides for more appropriate crop man-
agement, etc.

Numerous breeding aspects can be improved thanks to technological advance-
ment. However, will all these techniques be enough to initiate a new “green evolu-
tion” or are more needed? Technology advancements are very quick, thereby making 
the prices of previously developed technology affordable to poor countries, which 
frequently have abundant genetic resources that are, in most cases, insufficiently 
examined. Utilization of these tools may be promising in mining for traits and help-
ing create new sunflower ideotypes of tomorrow, thereby allowing secure food 
sources for future generations. It may also enable expansion of the sunflower culti-
vation area beyond the current 25 million ha and production of more than the cur-
rent 36 Mt/year. Moreover, one of the advantages of growing sunflower is their low 
growing demands, while sunflower oil has always been the oil of preference for 
domestic consumption. At present, not only regular sunflower oil is in high demand 
but also specific oils such as highly stable high-oleic or relatively recently devel-
oped high-oleic-high-stearic. Future advancements may allow for the creation of 
sunflower oil with specific fatty acid and tocopherol content for greater health value 
and stability.
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Mendelian to Genomics and Bioinformatics 
Approaches in Cytoplasmic Male Sterility 
and Fertility Restoration in Sorghum 
Breeding

Krishnananda P. Ingle, Mangesh P. Moharil, Santosh J. Gahukar, 
Pravin V. Jadhav, Rameshwar Ghorade, Gholamareza Abdi, 
Gopal W. Narkhede, and Atul Singh

Abstract Sorghum bicolor L.  Moench is a fodder crop and annual cereal grain 
belonging to Poaceae family and is popularly known as ‘King of Millet.’ Sorghum 
breeders have been harnessing yield-associated heterosis to facilitate hybrid seed 
production. In this regard, cytoplasmic-nuclear interaction majorly contributes to 
cytoplasmic genetic male sterility. The A1 (milo) source of cytoplasm in sorghum is 
used extensively to commercialize hybrid seed production. Nuclear genes, the 
restorers of fertility (Rf), counteract the male-sterile phenotype and hence can 
restore the pollen fertility in plants and overcome the deleterious interaction in the 
genome of the mitochondrion. Cytoplasmic male sterility (CMS) Rf systems signifi-
cantly boost the production of hybrid seed, and these Rf genes are shown to encode 
pentatricopeptide repeat (PPR) containing proteins. These proteins mainly target 
chloroplasts and mitochondria and are involved in RNA processing, site-specific 
endonucleolytic cleavage, and RNA degradation. The development of candidate 
genes responsible for fertility restoration is now considered significant in using 
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them functional markers. The present review gives an account of the genetic and 
molecular perspectives of the CMS and fertility restoration in post-rainy sorghum.

Keywords Cytoplasmic male sterility · Fertility restoration · In silico analysis · 
Pentatricopeptide repeat protein · Programmed cell death

1  Introduction

After wheat, rice, corn, and barley, Sorghum bicolor (L.) Moench is the most widely 
farmed cereal grain in the world, feeding around 500 million people in Africa 
(Morris et al., 2013). As food and fodder, it is primarily farmed in semi-arid tropical 
climates (Food and Nations 2019). Sorghum yields are nearly three times higher in 
developed countries than in the rest of the world (Upadhyaya et al., 2019). It is a C4 
Panicoideae crop with a diploid genome (~730  Mb) with ten chromosomes 
(2n = 20). As a C4 crop, it has excellent tolerance to biotic stresses such as drought 
and temperature (Xin et al., 2017). Sorghum is often considered a cross-pollinated 
crop, although it is self-pollinated because of stigma receptivity before the anthesis 
(Celarier, 1958). It is a resilient and dependable crop that grows in dry climates and 
hence contributes significantly to raising food production in the semi-arid tropics 
(Pattanashetti, 2014). To meet the ever-increasing need for food and feed in devel-
oping countries, climate-resilient and high-yielding crop types are required (Muleta 
et al., 2019).

2  Sorghum Area and Production

The world sorghum area under cultivation is around 40.53 million ha with a 
production of 58.28 million mt and 1.44 mt per ha productivity, whereas the United 
States has productivity of 4.58  mt per ha. As compared to the total foreign 
productivity to the United States, there is a considerable gap of 3.48 mt per ha of 
difference that can be observed. The countries like India, Pakistan, Uganda, Niger, 
and Sudan, have productivity of <1 mt per ha (https://apps.fas.usda.gov/psdonline/
circulars/production.pdf). According to comparative research, the area under kharif 
sorghum was 0.621 million ha, and the area under post-rainy (rabi) sorghum was 
2.597 million ha, with 0.368 and 0.837 million tonnes produced, respectively. 
Productivity in a kharif was 594 kg ha−1 and in post-rainy 322 kg ha−1 (Ingle, 2020). 
In the Vidarbha region, the area under kharif sorghum was 0.119 million ha, and 
production was 0.70 million mt with productivity 859 kg ha−1, whereas post-rainy 
Sorghum occupied area of 0.273 million ha, and production was 0.136 million 
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Fig. 1 Post-rainy (rabi) and kharif sorghum cultivated area, production, and productivity in (a) 
Vidarbha region and (b) Maharashtra region of India source

tonnes with productivity 684 kg ha−1 (https://www.districtsofindia.com/maharashtra/
alldistricts/agriculture/index.aspx) (Fig. 1).

Male cytoplasmic sterility (CMS) is a maternally inherited condition that comes 
from the plant’s inability to generate pollen. Mitochondrial abnormalities have been 
identified as the cause of all CMS cases so far. CMS-associated regions contain 
unique ORFs, which are frequently chimeric in form and transcribed alongside tra-
ditional mitochondrial genes. Nuclear genes (called fertility inhibitors (Rf)) can 
suppress the male sterile phenotype, allowing plants with damaging mitochondrial 
genomes to produce pollen again. CMS Rf system will make hybrid seed production 
easier by removing the need for tedious manual labour and assuring that each seed 
is the result of cross-pollination (Schnable & Wise, 1998). In sorghum, two repro-
ductive repair genes for cytoplasm A1 have been found, with the operational genes 
being members of the pentatricopeptide repeat gene (PPR) family (Jordan et al., 
2010; Klein et al., 2005). Genes that code for PPR proteins are frequently linked to 
reproductive recovery. Successive repeats of a degenerate 35 amino acid motif are 
the main character of PPR proteins. The PPR family is hypothesized to be involved 
in RNA processing, site-specific endonucleolytic cleavage, and degradation in mito-
chondria and chloroplasts. The capacity to restore fertility and maintain sterility is 
segregated in most landraces, demonstrating the necessity to select for this ability. 
Post-rainy season sorghum is a major import sorghum variety cultivated in dryland 
crops across India, including Maharashtra, Gujarat, Karnataka, Andhra Pradesh, 
and Telangana, necessitating the creation of varieties particularly suited for the post- 
rainy season to boost yields and productivity. However, there is lack of appropriate 
hybrids with acceptable seed setting and grain quality as many factors responsible 
for this temperature, photoperiod, and fertility restoration. To develop hybrids with 
high ability to restore fertility, it is necessary to exploit the candidate genes respon-
sible for fertility restoration that could be used as a functional marker against the 
parental lines and restorers to choose the best restorer (s) with the best fertility with 
the other CMS lines.

The capacity to restore fertility and maintain sterility is segregated in most 
indigenous breeders, showing the necessity to select for this ability. Sorghum is an 
important dryland crop in Maharashtra, Karnataka, Gujarat, Telangana, and Andhra 
Pradesh; hence, varieties that are especially suited for the post-rainy season are 
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needed to boost production and productivity. Many variables responsible for this 
restoration of photoperiod, temperature, and fertility, however, include a shortage of 
appropriate hybrids with acceptable seed and grain quality. Therefore, it is neces-
sary to exploit the candidate genes responsible for the restoration of fertility that 
could be used as a functional marker against the parental and restorer lines to choose 
the good restorers that have the best fertility with the other CMS lines to develop 
hybrids with high ability to restore fertility. To speed up the creation of sorghum 
varieties with high genetic yield potential, modern breeding concepts and technol-
ogy are urgently needed (Hao et al., 2021). Therefore, developing the hybrids for 
the post-rainy season is required to increase the yield and performance by incorpo-
rating high-yielding combinations using marker-assisted selection. This chapter 
describes the exploration of genes in the sorghum restorers and in landraces respon-
sible for the fertility restoration to develop high-yielding post-rainy season hybrids 
and depicts the model responsible for the CMS.

3  Constraints in Post-rainy Sorghum Hybrid Breeding

Despite proving its importance, post-rainy sorghum has not attained prime 
importance to date. Despite the large areas under cultivation, the continuing marginal 
production of post-rainy sorghum indicates a low impact of crop improvement 
efforts on productivity (Reddy et al., 2012). Several constraints need to be addressed 
to make post-rainy sorghum more remunerative for the breeders, including the 
following:

 (a) Growing in a large area of medium to shallow soils where drought occurrence 
is much faster than in deep soils.

 (b) Charcoal rot and shoot fly susceptibility infestation is a major constraint for 
higher productivity in post-rainy season.

 (c) Low temperature (Mukri et al., 2010) is critical to success of post-rainy season 
hybrids which significantly affects the pollen fertility and seed setting 
percentage.

 (d) Lack of appropriate hybrids with improper fertility restoration leads significant 
reduction in the yield and, therefore, a need of selection of landraces having 
post-rainy adaptations (Ganapathy et al., 2012).

 (e) Fertility restoration assessment, especially under low temperatures, normally 
observed in post-rainy season (Praveen et al., 2015).

Among all the constraints, the most significant one is fertility restoration. It is 
necessary to derive a system that will facilitate the transfer of restorer genes to 
different nuclear backgrounds and exploit the candidate genes responsible for the 
fertility restoration, which can be utilized as functional markers against the parental 
lines and restorer lines to select the best restorer(s) with the best fertility with the 
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other CMS lines. Identifying these genes aids in the development of hybrids with 
high fertility restoration capabilities as well as the knowledge of the molecular 
process of fertility restoration.

Cytoplasmic male sterility (CMS) is predominantly used for the exploitation of 
the hybrid vigour owing to its heritable nature to transfer the desired gametophyte 
to induce sterility or fertility, which remains a cost-effective system to promote 
efficient hybrid production as compared to the Mendelian fashion and restoration of 
fertility and its maintenance (Budar & Pelletier, 2001). The phenomenon of male 
sterility was firstly reported in India (Ayyangar & Ponnaiya, 1937) and in America 
(Stephens, 1937). Cytoplasmic male sterility refers to the production of non- 
functional pollen grains, anther dehiscence, and non-viable male gametes (Mayr, 
1986). Male sterility provides an essential breeding tool to harness heterosis in 
hybrid crops and offers valuable insight to study the cytoplasmic-nuclear genomic 
interactions (Kaul, 1988; Schnable & Wise, 1998; Hanson & Bentolila, 2004). 
Fertility restoration is often governed by nuclear-encoded genes known as fertility 
restoration genes (Rf) (Kofuji et al., 2012). These Rf genes encode a protein called 
pentatricopeptide repeat (PPR). These restorers PPR proteins rectify the nuclear- 
mitochondrial interaction and restore fertility by reducing the accumulation of their 
cognate CMS-associated mitochondrial proteins (Barkan & Small, 2014). 
Mitochondrial-nuclear interaction can also encode fertility restorer genes (Rf), 
which mostly counteract the effect of sterilizing factors of the mitochondria (Touzet 
& Budar, 2004). Hence, it is essential to investigate male sterility and identify genes 
responsible for fertility restoration and gain insight into molecular mechanisms for 
fertility restoration in post-rainy sorghum to facilitate crop improvement.

4  Cytoplasm Diversity in Sorghum

After maize, sorghum is the second cereal crop where the CMS approach has been 
effectively used to mass-produce F1 hybrids to enhance the productivity (Praveen 
et al., 2015). CMS in sorghum was first discovered through the introduction of the 
‘kafir’ nuclear genome into ‘milo,’ having an incompatible cytoplasmic background 
(Reddy & Stenhouse, 1994; Reddy et al., 2008). Sorghum F1 hybrids are superior 
by 50–60% in their grain yield than the traditional landraces. The discovery of A1 
(milo) CMS in sorghum (Stephens & Holland, 1954) has revolutionized sorghum 
production worldwide and subsequently exploited for mass production of hybrid 
seeds Reddy (et al., 2007). Almost all commercially released post-rainy sorghum 
hybrids are based on the A1 (milo) CMS system. The utilization of CMS in a breed-
ing programme made it feasible to incorporate the specific character into hybrid 
parents (Garcia et al., 2019). Hybrid seeds enhance crop production as they harness 
hybrid vigour (Singh et al., 2015). In addition to source A1, several other cytoplas-
mic sources have been found such as A2 (Schertz & Ritchey, 1978), A4 (Worstell 
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Fig. 2 A fertile panicle and CMS systems in sorghum: Milo (A1) and non-milo (A2, A3 & A4). 
(Source: Reddy et al. 2008)

et al., 1984), A3 (Quinby, 1981), Indian A4 (A4M, A4VZM, A4G) (Rao et al., 1984), 
KS cytoplasm’s (Ross & Hackerott, 1972), and A5, A6, 9E (Webster & Singh, 1964). 
The A1 (milo) CMS system is predominantly used in the development of the com-
mercial hybrids in India, China, America, and Australia. Prominently, A1, A2, A3, 
and A4 cytoplasm are used extensively (Fig. 2). The majority of breeding lines act as 
restorers on A1 (milo) cytoplasm, making restoration relatively easy. Commercial 
sorghum hybrids all over the world employ A1 cytoplasm (Reddy & Stenhouse, 1994).

The A1 (milo) CMS method has been utilized to successfully commercialize 
sorghum hybrids and develop male parent lines (R-lines or restorers that carry the 
dominant genes that restore male fertility in hybrid crops). Restoration of fertility in 
A1 (milo) cytoplasm is challenging, according to traditional genetics research, with 
modifier genes and primary genes accounting for most of the genotypic diversity 
(Maunder & Pickett, 1959; Erichsen & Ross, 1963; Miller & Pickett, 1964). Non- 
milo cytoplasm repair is difficult, and research in this area is restricted. It was 
reported that restoration on A1 (milo) cytoplasm is easy because most of the breed-
ing lines act as restorers, whereas A2, A3, and A4 cytoplasm appear difficult for fer-
tility restoration (Kante et al., 2018). Apart from high restoration frequency on A1 
(milo) cytoplasm, the hybrids developed on this cytoplasm showed resistance to 
grain mould infection (Reddy et al., 2011). Some restorers are available for A2 and 
other cytoplasm but are not acceptable agronomically because of stability (Jilani 
et al., 2000). Therefore, there is a need to upgrade the restorers for diverse cytoplas-
mic male sterile lines and identify the fertility restoration genes in the sorghum 
restorers and hybrids through marker-aided selection/marker-assisted breeding 
approaches.
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5  Cytoplasmic Male Sterility: Rf (Fertility 
Restoration) System

Cytoplasmic male sterility is inherited maternally, enabling plants to produce non- 
functional pollen (Schnable & Wise, 1998). CMS provides insight into nuclear- 
mitochondrial interaction because aberrant mitochondrial genome organization 
causes dysfunction in pollen development (Chase, 2007; Hanson & Bentolila, 
2004). Mostly sporophytic male sterility primarily affects tapeta and meiocytes and 
leads to abortion of pollen (Guo & Liu, 2012), whereas gametophytic male sterility 
mainly affects the microspores or pollen grains development (Chen & Liu, 2014). 
Thus, male sterility in CMS is expressed under the presence of dominant allele pres-
ent in S-cytoplasm, whereas the recessive allele of restorer is located in the nuclear 
genome, which is conditioned by the nuclear and mitochondrial interaction but nei-
ther the cytoplasmic factor nor the genetic factors alone can regulate sterility 
(Mishra & Kumari, 2018). Nuclear restorer (Rf or Fr) genes suppress male-sterile 
phenotype and mitochondrial abnormalities by diverse mechanisms (Schnable & 
Wise, 1998). To create reliable male-fertility-restoring lines for 9E type CMS, the 
progeny of test crosses of fertile revertant lines in 9E cytoplasm, which were 
obtained because of reversions in sterile F1 hybrids induced by conditions of high- 
water availability, with CMS lines in this cytoplasm were grown in selective back-
grounds (Elkonin & Sarsenova, 2020). The possible mechanisms responsible for 
fertility restoration through nuclear genes that occur in CMS/Rf systems are postu-
lated in this review.

6  Molecular Basis: The Mitochondrial Route

Restorers of fertility (Rf) are nuclear genes that suppress the male-sterile phenotype 
in plants with a deleterious mitochondrial genome and restore pollen production 
(Chase, 2007). CMS Rf systems make hybrid seed production much easier and 
eliminate the need for hand emasculation (Schnable & Wise, 1998). CMS/Rf sys-
tems play a significant role in elucidating mitochondrial and nuclear genetic interac-
tions and cooperative functions in plants (Fujii & Toriyama, 2008). Mitochondrial 
defects are responsible for cytoplasmic male sterility. The regions whose expression 
is associated with CMS are often chimeric in structure and contain unusual open 
reading frames and are frequently co-transcribed with conventional mitochondrial 
genes (Chen & Liu, 2014). Many CMS genes arise from mitochondrial genomic 
rearrangements. It has been shown that ten mitochondrial genes are actively involved 
in the formation of CMS genes through the mitochondrial electron transfer chain 
(mtETC) pathway. Among these mitochondrial genes, atp8, atp6, and cox1 are fre-
quently involved in the CMS genes origination. In sorghum, mitochondrial gene 
orf107 encodes a protein with a segment of atp9 on the A3 cytoplasm at the N 
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terminus, and the remaining portion is similar to ORF79 (Tang et al., 1996). The 
mitochondrial gene coxI has been reported for the cytoplasm 9E in a CMS line of 
sorghum.

Respiratory chain enzyme complexes (NADH dehydrogenase, cytochrome oxidase, 
and cytochrome reductase) play a pivotal role in the electron transfer system in 
plants and play an important role in linking electron transfer to proton transport 
outside the mitochondria and generating proton stimulus, membrane that induces 
ATP synthesis by the H+-ATPase enzyme (Luo et al., 2013; Kim et al., 2007). The 
overproduction of reactive oxygen species (ROS) and release of cytochrome c from 
mitochondria to cytosol have been reported to cause programmed cell death (PCD) 
or plant apoptosis (Greenberg & Yao, 2004; Liu et al., 1996; Yao et al., 2002), the 
coding region of coxI gene in an extension of 303 nucleotides (Bailey-Serres et al., 
1986). COXI is an assembly factor for cytochrome c oxidase, which plays a crucial 
role in mitochondrial respiration. In rice, COXII has another role in the degradation 
of hydrogen peroxide, thereby reducing the free radicals and overcoming pro-
grammed cell death (Luo et  al., 2013). Sorghum hybrid breeding consists of a 
three- line system, male-sterile (CMS), male fertile (maintainer), and restorer line 
(restorer). In the male fertile line (maintainer), the fertile cytoplasm is responsible 
for its self-fertility due to Rf genes’ absence. In male sterile lines, CMS mitochon-
drial genomic rearrangement results in the accumulation of CMS proteins preferen-
tially in another tapetum, thereby inhibiting COXI function through physical 
interaction. This deleterious interaction inhibits the function of COXI in hydrogen 
peroxide metabolism; thus, there is an early release of cytochrome c and triggers the 
ROS (reactive oxygen species), which forcibly leads to premature tapetal death at 
the meiotic stage. These abnormal molecular events significantly show the pollen 
abortion and tapetal degeneration responsible for male sterility. As a result of a 
negative interaction between modifier genes (mitochondrial genes) and conserved 
genes (essential nuclear genes), cytoplasmic-nuclear incompatibility occurs (Luo 
et al., 2013; Van et al., 2008).

The nucleus-encoded Rf1, Rf2, Rf5, and Rf6 genes (these RF genes are targeted 
to mitochondria and interact with cytoplasmic male sterile genes with a view to 
restore fertility by suppressing the CMS genes expressions) of encodes PPR pro-
teins. This protein binds to CMS proteins and rectifies the nuclear-mitochondrial 
defects through RNA editing, splicing, transcriptionally, or post-transcriptionally or 
through translationally or post-translationally to reduce CMS protein accumulation 
and CMS-RNA level and, thus, restore fertility (Chen & Liu, 2014). It was reported 
that the CMS line synthesized a unique nucleotide chain (Pring et al., 1982) a vari-
ant of COXI mitochondrial gene leading to the replacement of 38 KDa polypeptide 
in the male fertile line sorghum (Dixon et al., 1982). This mitochondrial genomic 
rearrangement leads to the synthesis of the variant enzyme, which results in forming 
a novel-mitochondrial open reading frame (ORF) (Bailey-Serres et al., 1986). Thus, 
it has been suggested that mitochondrial biogenesis or function impaired by the 
presence of variant enzyme could interfere with pollen fertility, and this pollen fer-
tility restore by the PPR protein through rectification of mitochondrial-nuclear 
genomic rearrangement. Therefore, cytoplasm male sterility is due to the chimeric 
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association of ORFs, and fertility restoration is often associated with nuclear- 
encoded Rf (fertility restoration) genes encoding PPR proteins (Hanson & 
Bentolila, 2004).

7  Molecular Basis: The Nuclear Route

Selection for full sterility in female parents and complete fertility recovery in CMS 
hybrids by male parents reveal that breeding genes and reproductive repair genes in 
hybrid breeding programmes are significantly characterized by classical genetics 
(Jordan et al., 2011). Thus, a negative interaction between modifier genes (mito-
chondrial genes) and conserved genes (essential nuclear genes) causes cytoplasmic- 
nuclear incompatibility (Luo et al., 2013; Van et al., 2008). Restoration frequency is 
higher in the A1 cytoplasm (65%) compared to A2 (56%) female parents. Fertility 
restoration by dominant nuclear gene(s) is essential to mass-produce F1 hybrid seed 
as it is produced on a male sterile seed parent (Praveen et al., 2015). Different num-
bers of nuclear genes responsible for fertility recovery have been cloned in differ-
ent crops.

The majority of these genes encode and target pentatricopeptide replication 
proteins (PPRs), which work by specifically reducing the expression of sterility- 
causing mitochondrial transcripts (Chen & Liu, 2014; Hu et al., 2012; Klein et al., 
2005; Koizuka et al., 2003; Wang et al., 2006; Dahan & Mireau, 2013).

Till date, five reproductive repair (Rf) genes encoding the pentatricopeptide 
repeat protein (PPR) have been mapped, and potential candidate genes have been 
identified as part of the PPR gene family (Klein et al., 2001; Jordan et al., 2010; 
Praveen et al., 2015) listed in Table 1.

PPR proteins (characterized by a 35-amino-acid motif in tandem arrays of 2-27 
repeats per peptide) bind RNA proteins that target the mitochondria or chloroplast 
and restore fertility in the CMS line through post-transcriptional, transcriptional, 
translational, post-translational, and metabolic modification (Chen & Liu, 2014; 
Schmitz-Linneweber & Small, 2008).

PPR genes are involved in fertility restoration in Rf1 sorghum (Klein et al., 2001, 
2005), Rf2 (Jordan et al., 2010), Rf5 (Jordan et al., 2011), and Rf6 (Praveen et al., 
2015). Rf1 can significantly reduce the level of the sterilizing factor (Liu et  al., 
2001), whereas Rf2 has been recognized for putative aldehyde dehydrogenase, an 
enzyme involved in metabolic functions and reactions. Rf5 and Rf6 are the mitochon-
drial precursor that rectifies the mitochondrial, nuclear interaction and encodes for 
PPR protein family that restore fertility in CMS line, which yields high-yielding 
hybrids. Rf proteins are transcribed in the mitochondria after being encoded in the 
nucleus (Melonek et al., 2021).
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Fig. 3 Coding sequences sequence of gene Sb08g020970 targeted protein pentatricopeptide 
repeat-containing protein (putative mitochondrial protein). (Source: https://www.ncbi.nlm.nih.
gov/Structure/cdd/wrpsb.cgi)

8  In Silico Analysis of Candidate Genes Encoding 
PPR Protein

Our in silico analysis of sorghum gene Sb08g020970 (Table 1) revealed the targeted 
protein PPR family. The cds sequence of gene Sb08g020970 was searched in con-
served domain databases (Fig. 3).

The predicted alignment indicated a highly conserved amino acid sequence of 
PPR protein (Fig. 4), whereas expression analysis using phytozome of the respec-
tive gene revealed that gene encoding PPR protein showed high expression during 
anthesis/initiation of the flowering period (Fig.  5). Similarly, all the listed genes 
(Table 1) showed that these encode for PPR protein.

9  Pentatricopeptide Repeat Protein (PPR) Family

The restoration in the CMS phenotype is done via nuclear-derived RNA-binding 
proteins that encode for pentatricopeptide repeat protein (Barkan & Small, 2014). 
PPR proteins are made up of tandem arrays of a degenerate 35 amino acid motif that 
binds to RNA in a sequence-specific way (Schmitz-Linneweber & Small, 2008). A 
typical PPR protein targets the mitochondria, chloroplasts, and other organelle tran-
scripts, thereby altering the expression of RNA sequence or translation and restor-
ing fertility. The primary function of PPR is the restoration of pollen fertility (Akagi 
et al., 2004; Brown et al., 2003; Desloire et al., 2003; Hu et al., 2012; Kazama & 
Toriyama, 2003; Koizuka et al., 2003; Klein et al., 2005), suggesting that PPR has 
two prominent families, P and PLS (Fig. 6). P subfamily consisted only P motif, 
whereas PLS is termed as plant combinatorial modular proteins (Aubourg et al., 
2000). P motif which is made up of 35 amino acids, L motif (35–36 amino acids) 
and S motif 31 amino acids) plays an important role in RNA editing (Rivals et al., 
2006). Most P class motif consists of one or more tracts of PPR and an additional 
conserved domain named small MutS-related (SMR) domain (Fig. 6).

This domain works for RNA or DNA endonuclease activity in other proteins, but 
in the case of PPR protein, they have an unknown function (Fukui & Kuramitsu, 
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Fig. 4 Predicted sequence alignment of gene Sb08g020970 encoding protein PPR, colour 
indicates amino acid sequence conservation across the PPR protein: highly conserved (blue), semi- 
conserved (black), and poorly conserved (red). An asterisk (*) indicates places where there is just 
one fully conserved residue
PSSM ID: The location-specific scoring matrix (PSSM) was used for protein BLAST searches 
in which amino acid substitution scores were given independently for each position in a mul-
tiple sequence alignment. A positive score means that amino acid replacement is more com-
mon. Bit- score S’ is a normalized score given in bits that helps you to estimate how much 
search space you should be looking for in order to find a decent or better score at random
E value: The Expectation value is dependent on the database size and the length of the query 
sequence. The lower the E value, the better the hits; dots are used for semi-conserved substi-
tutions (similar residues); dash indicates gap. (Source: https://www.ncbi.nlm.nih.gov/
Structure/cdd/wrpsb.cgi)

2011). PLS comprises three motifs, P, L, and S, at C terminal domains, denoted by 
E or DYW (Fig. 6). PLS domain explicitly involved in RNA editing in plant (Okuda 
et al., 2007, 2009). DYW is the conserved domain and has the active-site signature 
of known cytidine deaminases (Salone et al., 2007). PPR interacting proteins that 
could severely affect the PPR protein effects (Wang et al., 2021).

Pentatricopeptide repeat-containing protein has two subfamilies, P and PLS. P 
family comprises of one or more P motif, whereas PLS family consisted of P, L, and 
S combinatorial modular protein in plants. The P class family sometimes contains 
additional motif named PPR-small MutS-related (SMR) protein, whereas PLS 

K. P. Ingle et al.
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Fig. 5 Expression of the gene Sb08g020970-targeted protein PPR (putative mitochondrial 
protein) during anthesis/floral initiation is high. Fragments Per Kb (Kilobase) of transcript per M 
(Million) mapped reads is abbreviated as FPKM. The amount of cDNA fragments generated by a 
transcript determines its relative expression in RNA-Seq. (Source: https://phytozome- next.jgi.
doe.gov/)

Fig. 6 Structure of pentatricopeptide repeat-containing protein. (Source: Modified from Barkan & 
Small, 2014)

family consisted of E domain, and, in many cases, it may also contain DYW domain 
having conserved signature of nucleotide deaminases. Therefore, a need to identify 
the candidate genes is associated with fertility restoration under the influence of this 
conserved family. Up to now, six fertility restoration genes, namely, Rf1, Rf2, Rf3, Rf5, 
and Rf6, have been identified in sorghum, most of which showed good restoration 
for A1 cytoplasm and encoded for PPR gene family members (Klein et al., 2005; 
Jordan et al., 2010; Praveen et al., 2015). Several identified putative genes encoding 
PPR protein in other crops and sorghum associated with fertility restoration are 
mentioned in Table 2.

10  Molecular Models for Mitochondrial-Nuclear Gene 
Interaction and Fertility Restoration

Fertility restoration occurs through the expression of dominant genes resulting in 
fertile plants. However, it is mandatory for successful exploitation of male sterility 
and therefore needs to understand the underneath of the molecular mechanism that 
restores fertility. Studies in CMS systems have shown the phenomena through four 
models, which are described below.
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Table 2 Several identified characterized genes encoding PPR proteins (Rf-PPR) associated with 
fertility restoration

PPR 
gene Plant Target RNA Possible function Loss of function References

CRR2 Arabidopsis Chloroplast Controlling ndhD 
expression by 
transcript 
processing

Reduced 
chloroplast NA (P) 
DH dehydrogenase 
activity

Hashimoto 
et al. (2003)

GUN1 Arabidopsis Chloroplast Chloroplast 
development

Does not repress 
photosynthesis- 
related nuclear 
genes

Koussevitzky 
et al. (2007)

PPR2 Maize Chloroplast Required for 
chloroplast 
translation 
machinery

Chloroplast lack 
ribosomes, albino 
seedlings

Williams and 
Barkan (2003)

PPR4 Maize Chloroplast Regulate splicing 
and chloroplast 
ribosome biogenesis

Chloroplast lack 
ribosomes, albino 
seedlings

Hattori et al. 
(2007)

Rf1a, 
PPR- 
791, 
PPR8-1

Rice Mitochondria Reduces level of 
aberrant CMS- 
associated proteins, 
RNA editing

Male sterility Wang et al. 
(2006)

Rfo Radish Mitochondria Decrease 
accumulation of 
CMS-associated 
protein ORF 138 
but do not decrease 
transcript level

Male sterility, 
accumulation of 
ORF 138 protein 
product

Brown et al. 
(2003)

Rf-1 Sorghum Mitochondria RNA editing? Male sterility Klein et al. 
(2005)

Rf-2 Sorghum Mitochondria Unknown Male sterility Jordan et al. 
(2010)

Rf-3 Sorghum Mitochondria Unknown Male sterility Jordan et al. 
(2010)

Rf-4 Sorghum Mitochondria Unknown Male sterility Jordan et al. 
(2011)

Rf-5 Sorghum Mitochondria Unknown Male sterility Jordan et al. 
(2011)

Rf-6 Sorghum Mitochondria Unknown Male sterility Praveen et al. 
(2015)

11  Cytotoxicity Model

In the cytotoxicity model, mitochondrial genomic rearrangement gives rise to 
10–35 kDa CMS protein, a transmembrane protein with a hydrophobic region that 
directly kills the cells. This CMS protein hampers mitochondrial function leading to 
male abortion (Levings, 1993) (Fig. 7). Cytotoxic peptide and its C terminus encode 
by orf79, which is necessary for cytotoxicity (Wang et al., 2006).

K. P. Ingle et al.
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Fig. 7 Molecular mechanism/model for fertility restoration. (Source: This figure was constructed 
by K. P. Ingle and modified from Chen & Liu, 2014). (a) Schematic representation of nuclear- 
mitochondrial interaction interpreted by different molecular models, (b) PCD signals in micro-
spores, (c) PCD signals in tapetum, (d) PPR protein structure and Rf-PPR interaction restore 
fertility via retrograde and anterograde regulation model. The mitochondrial sorting genes (MSGs) 
codes for tissue-specific regulatory factors (TSRfs) and encode for Rf protein (fertility restoration 
protein). Mitochondrial genomic rearrangement developed cytotoxic CMS protein, which directly 
kills the cells (cytotoxicity model) or interacts with the mitochondrial electron transfer chain com-
plexes (mtETC). This detrimental interaction fails to meet the cellular energy (ATP) for the devel-
opment of male organ, leading to male abortion (energy deficiency model); this complex releases 
cytochrome c into cytosol, triggers the overproduction of ROS, and leads to apoptosis (programmed 
cell death) and nuclear genes (Rf1, Rf2, Rf5, and Rf6) encode pentatricopeptide repeat-containing 
protein (PPR), and this Rf-PPR through endonucleolytic cleavage, RNA editing and processing, 
and at post-transcriptional and translational level rectifies the detrimental effect of CMS protein 
and thus restore fertility

12  Energy Deficiency Model

CMS proteins lead the mitochondrial dysfunction, and therefore, the cells become 
unable to meet the substantial demand of energy required for the development of 
male reproductive organs. The mitochondrion is the cell’s powerhouse and plays a 
vital role in producing ATP via mtETC of the respiratory complexes. Compared to 
other organs, the development of the sporophytic and gametophytic cells requires 
more cellular energy. In such a situation, cells may produce more energy (ATP) 
either through enhancing the metabolic activity of mitochondria or via increasing 
the number of mitochondria. The mitochondrion fails to meet the demand of cellu-
lar energy to develop male gametophyte, leading to male abortion or pollen sterility 
(Lee & Warmke, 1979; Chen & Liu, 2014) (Fig. 7).

13  Programmed Cell Death Model (PCD)

Programmed cell death is a cellular process that involves plasma membrane 
blistering (zygosity), cell density, cytoplasmic contraction, nuclear DNA 
fragmentation, pollen sterilization, male gamete abortion, and release of cytochrome 
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c into the cytosol. Plant PCD has been shown to play an important role in growth 
processes such as limb growth, ageing, xylem and aerosol formation, seed 
germination, root tip elongation, and disease resistance (Reape & McCabe, 2010). 
The reactive oxygen species (ROS) is triggered due to the release of cytochrome c 
from mitochondria to cytosol (Yao et  al., 2002). This overproduction of ROS 
primarily affects the development of the normal tapetum; the tapetum gets 
degenerated and leads progression of PCD. The early or delayed tapetum 
development is resulting male sterility (Ji et  al., 2013; Kawanabe et  al., 2006) 
(Fig. 7). RBPs (RNA-binding proteins) regulate messenger RNA (mRNA) at each 
stage of its life cycle (Kramer et al., 2018; Muller-McNicoll et al., 2019).

14  Retrograde Regulation Model

In the retrograde regulation model, CMS genes (mitochondrial or chloroplast genes) 
regulate the expression of nuclear genes, whereas nuclear genes, so-called Rf genes, 
primarily hamper the function of chloroplast (plastid) genes in the case of antero-
grade regulation (Chen & Liu, 2014). The nuclear genes called Rf genes encode 
PPR protein, and Rf-PPR proteins targeted to mitochondria and interact with CMS 
genes where they suppress the expression of CMS gens or through the elimination 
of detrimental effects of CMS proteins via a post-transcriptional mechanism, such 
as RNA cleavage and editing, degradation of target mRNA, and restore fertility 
(Fig. 7). The nucleus-encoded Rf1, Rf2, Rf5, and Rf6 genes code for PPR protein, 
and, thus, these Rf-PPR were shown to target mitochondria and responsible for the 
considerable reduction in the accumulation of CMS-associated mtRNA/proteins. 
These PPR proteins specifically bind to mitochondrial transit peptide (mtRNA) and 
thus prevent from interacting with other proteins or RNA. These PPR proteins play 
a vital role in RNA stabilization and eventually define the position of processed 
RNA terminus by blocking exoribonucleases (Ingle et al., 2019).

15  Marker-Assisted Selections for Fertility Restoration Trait

In plants, cytoplasmic male sterility (CMS) is because of nuclear-mitochondrial 
interaction, whereas genic male sterility (GMS) is because of nuclear genes alone. 
Both the cytoplasmic male sterile and genetic male sterile systems significantly 
facilitate the hybrid seed production and allow the breeders to develop high- yielding 
hybrids with high heterotic values. Understanding the genetic relationships between 
parental lines is critical in heterosis breeding, and DNA markers such as simple 
sequence repeat (SSR), amplified fragment length polymorphism (AFLP), restric-
tion fragment length polymorphism (RFLP), and random amplified polymorphic 
DNA (RAPD) are useful in identifying genomic regions with desired traits. Because 
of its co-dominant and multi-allelic nature, an SSR marker could be useful in the 

K. P. Ingle et al.
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future for molecular mapping of the gene(s)/QTL(s) responsible for fertility restora-
tion using quantitative genomics approaches (Rakshit et al., 2012) and thus contrib-
uted significantly to the commercial success of CGMS-hybrids. There is a strong 
correlation between molecular markers and rf loci, which allows us to identify 
genetically different lines for heterotic crossings in sorghum hybrid breeding 
(Rakshit et  al., 2012). A, B, and R-lines are involved in a three-line traditional 
breeding method for hybrid creation. A male sterile line (A-line). Cognate mainte-
nance line (B-line) and restorer line (R-line). By crossing A-line with its maintainer 
B-line, the sterile line is maintained. The B-line is carried by selfing or crossing 
with another B-line, while the F1 hybrid seed is produced by crossing an A-line with 
a specific R-line. As a result, maintaining the genetic purity of these lines is critical 
for commercial hybrid seed production success. Conventionally, the genetic purity 
is maintained by conducting a grow-out test (GOT) based on the evaluation of phe-
notypic characters or defined morphological descriptors but is subjective as envi-
ronmental effects influence GOT. The DNA markers were then advocated for the 
genetic purity testing and the assessment of different hybrid seed lots (Fig. 8) and 
allow the identification of real hybrids and study of the variation of hybrids and 
lines/cultivars in sorghum (Madhusudhana et al., 2015).

Several molecular markers that are tightly linked to fertility restoration traits are 
enlisted in Table 3. Similarly, the linkage analysis indicated that Rf1 locus is flanked 
by Xtxp250 and Xtxp18 and defined a position at a genetic distance of 10.8 cM and 
12 cM, respectively, and associated with fertility restoration and could be incorpo-
rated in the hybrid breeding programme as candidate markers in the screening of 
putative restorer lines having fertility restoration genes (Klein et al., 2001). It was 
reported that pentatricopeptide repeat-containing protein (PPR) gene 
(Sobic.002G057000) tightly linked to Xtxp616 and Xtxp304 loci and found similar 
to Rf1 loci in Rice (Praveen et al., 2015). It was suggested in sorghum that primers 
TS050 and TS304T have close association with fertility restorer genes. They stated 
that these primers helped to identify different lines for improving the breeding pro-
gramme (Kushalappa et  al., 2015). Recently, the SSR marker MS-SB02-37912, 
which encodes the PPR protein, has been widely used in marker-assisted breeding 
for Rf2 fertility restoration in sorghum breeding (Madugula et al., 2018). The avail-
ability of these genic SSR markers (Table 3) allows for effective germplasm line 
(milo) CMS system screening as well as marker-assisted Rf gene pyramiding into 
diverse restorer parents to generate high-yielding hybrids with high fertility 
restoration.

16  Conclusions and Prospects

SSR markers may be widely used in the future for molecular mapping of the 
gene(s)/QTL(s) responsible for fertility recovery traits. SSR markers that are tightly 
bound to Rf loci can be used to routinely screen parental lines to select the best 
restorers that have the best fertility against sterile lines to show post-rainy sorghum 
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Fig. 8 Molecular hybridity profiling utilizing Rf-linked SSR markers AxR (AKMS 30A × AKRB 
335-3, AKMS 30A × AKRB 431, and AKMS 30A × AKRB 428), A (AKMS 30A), and R (AKMS 
30A) (AKRB 335-3, AKRB 431, and AKRB 428). On the side of each gel picture, the name of 
each SSR marker is provided. M marker (100 bp) and 1 kb DNA ladder on extreme left. (Source: 
Ingle et al., 2019)

hybrids with high heterotic values. Knowing the position of the Rf genes and their 
defined position in the genome enables more effective strategies for the growth of 
male and female parents by allowing breeders to identify the best alleles based on 
marker selection. Marker-assisted selection can prove helpful to the breeders in 
screening different restoration factors in restorers and provide documentation for 
breeding/selection of high restoration ability restorers having the good combining 
ability with CMS lines to develop high-yielding post-rainy sorghum hybrids. The 
identified fertility restoration (Rf) genes will assist in the establishment of func-
tional indicators linked with fertility restoration features, allowing for more effec-
tive hybrid breeding for commercial hybrid seed production. Rf will make it easier 
to design functional markers for restoring fertility in the future, allowing CMS to be 
used more effectively as a pollination control tool in hybrid breeding. The high- 
throughput technology will be useful in identifying haplotypes that target fertility/
sterility features, which can then be used in marker-assisted breeding to generate 
high fertility and high-yielding hybrids during the rabi season.

Declarations Conflict of Interest The authors certify that they have no financial or personal 
conflicts of interest.

K. P. Ingle et al.



411

Ta
bl

e 
3 

D
et

ai
ls

 o
f 

R
f l

oc
i l

in
ke

d 
SS

R
 m

ar
ke

rs
 a

ss
oc

ia
te

d 
w

ith
 f

er
til

ity
 r

es
to

ra
tio

n 
tr

ai
t

M
ar

ke
r

G
en

e
Fo

rw
ar

d 
se

qu
en

ce
R

ev
er

se
 s

eq
ue

nc
e

T
m

 
(F

)
T

m
 

(R
)

Si
ze

 
(b

p)
R

ef
er

en
ce

s

X
tx

p1
8

R
f1

A
C

T
G

T
C

TA
G

A
A

C
A

A
G

C
T

G
C

G
T

T
G

C
T

C
TA

G
C

TA
G

G
C

A
T

T
T

C
57

.3
55

.3
23

1
K

on
g 

et
 a

l. 
(2

00
0)

X
tx

p2
50

R
f1

G
C

A
C

A
T

C
C

T
C

TA
A

A
A

C
TA

C
T

TA
G

T
G

A
A

C
A

G
G

A
C

G
A

T
G

T
G

A
TA

G
A

T
57

.6
55

.9
28

3
B

ha
ttr

am
ak

ki
 e

t a
l. 

(2
00

0)
X

tx
p4

06
R

f1
G

G
C

C
T

G
A

A
T

C
T

C
A

G
T

G
T

TA
A

G
A

G
T

T
G

C
C

T
G

C
T

T
C

G
A

C
A

C
T

T
57

.9
57

.3
28

7
K

le
in

 e
t a

l. 
(2

00
5)

 a
nd

 
K

le
in

 e
t a

l. 
(2

00
1)

X
tx

p2
97

R
f2

G
A

C
C

C
A

TA
T

G
T

G
G

T
T

TA
G

T
C

G
C

A
A

A
G

G
C

A
C

A
A

T
C

T
T

C
G

C
C

TA
A

A
T

C
A

A
C

A
A

T
63

.2
60

.1
22

0
Ta

ra
m

in
o 

et
 a

l. 
(1

99
7)

X
tx

p2
11

R
f2

T
C

A
A

C
G

G
C

C
A

A
T

G
A

T
T

T
C

TA
A

C
A

G
G

T
T

G
C

G
A

A
TA

A
A

A
G

G
TA

A
T

G
T

G
56

.5
57

.6
22

1
B

ha
ttr

am
ak

ki
 e

t a
l. 

(2
00

0)
X

tx
p5

0
R

f2
T

G
A

T
G

T
T

G
T

TA
C

C
C

T
T

C
T

G
G

A
G

C
C

TA
T

G
TA

T
G

T
G

T
T

C
G

T
C

C
55

.3
57

.9
31

0
B

ha
ttr

am
ak

ki
 e

t a
l. 

(2
00

0)
X

tx
p6

16
R

f2
G

C
A

T
T

T
C

T
T

T
C

C
T

G
C

A
A

T
G

A
C

G
C

A
G

A
C

A
A

G
A

T
C

T
C

A
C

C
C

A
A

G
55

.9
59

.8
28

0
Jo

rd
an

 e
t a

l. 
(2

01
0)

X
tx

p3
04

R
f2

A
C

A
TA

A
A

A
G

C
C

C
C

T
C

T
T

C
C

T
T

T
C

A
C

A
C

C
C

T
T

TA
T

T
C

A
51

.4
50

.2
20

6
Jo

rd
an

 e
t a

l. 
(2

01
0)

X
tx

p3
1

R
f3

T
G

C
G

A
G

G
C

T
G

C
C

C
TA

C
TA

G
T

G
G

A
C

G
TA

C
C

TA
T

T
G

G
T

G
C

61
.0

56
.7

22
2

K
on

g 
et

 a
l. 

(2
00

0)
X

tx
p3

8
R

f3
A

C
A

A
A

C
C

G
C

G
A

C
G

A
A

G
TA

A
C

A
C

A
A

G
G

C
A

A
A

G
C

A
C

A
A

A
G

C
57

.3
54

.5
43

7
K

on
g 

et
 a

l. 
(2

00
0)

X
tx

p3
4

R
f3

T
G

G
T

T
C

G
TA

T
C

C
T

T
C

T
C

TA
C

A
G

C
A

TA
TA

C
C

T
C

C
T

C
G

T
C

G
C

T
C

58
.4

59
.4

36
0

K
on

g 
et

 a
l. 

(2
00

0)
X

nh
sb

m
10

83
R

f5
T

G
A

C
T

G
G

T
C

A
A

C
A

A
C

G
A

G
G

A
C

T
C

T
C

C
C

G
T

G
C

A
T

G
TA

C
T

C
A

57
.3

59
.4

21
9

Jo
rd

an
 e

t a
l. 

(2
01

1)
X

nh
sb

m
10

84
R

f5
C

A
T

T
T

C
A

C
A

T
T

C
A

A
G

G
T

C
A

T
G

G
A

C
A

T
T

TA
T

G
G

G
T

G
C

G
T

G
C

T
T

56
.5

55
.3

28
0

Jo
rd

an
 e

t a
l. 

(2
01

1)
X

nh
sb

m
10

85
R

f5
C

G
T

G
A

A
T

G
A

A
T

G
A

A
C

G
A

A
C

G
G

A
G

A
G

C
A

G
A

G
G

G
G

TA
A

C
T

G
C

55
.3

61
.4

24
8

Jo
rd

an
 e

t a
l. 

(2
01

1)
SB

23
86

R
f6

G
G

C
G

G
TA

G
G

T
G

TA
A

A
A

A
G

G
A

A
G

G
A

G
C

A
T

G
C

C
C

TA
C

G
A

C
T

C
T

T
G

T
G

T
C

T
62

.7
64

.4
16

9
Pr

av
ee

n 
et

 a
l. 

(2
01

5)
X

nh
sb

m
11

95
R

f6
C

TA
A

A
G

G
A

A
C

T
C

G
G

C
G

A
T

T
G

G
T

C
G

T
G

T
C

C
T

T
C

G
G

C
A

T
TA

T
57

.3
57

.3
25

5
Pr

av
ee

n 
et

 a
l. 

(2
01

5)
X

nh
sb

m
11

97
R

f6
C

T
G

C
A

G
A

G
G

T
C

C
TA

G
T

G
A

C
A

A
A

G
A

A
C

G
A

C
T

TA
TA

A
T

T
T

G
A

G
C

C
A

G
A

60
.3

57
.6

26
2

Pr
av

ee
n 

et
 a

l. 
(2

01
5)

R
f f

er
til

ity
 r

es
to

ra
tio

n 
ge

ne
s,

 T
m

 m
el

tin
g 

te
m

pe
ra

tu
re

, b
p 

ba
se

 p
ai

rs

Mendelian to Genomics and Bioinformatics Approaches in Cytoplasmic Male Sterility…



412

References

Akagi, H., Nakamura, A., Yokozeki-Misono, Y., Inagaki, A., Takahashi, H., Mori, K., & Fujimura, 
T. (2004). Positional cloning of the rice Rf1 gene, a restorer of BT-type cytoplasmic male 
sterility that encodes a mitochondria-targeting PPR protein. Theoretical and Applied Genetics, 
108(8), 1449–1457.

Aubourg, S., Boudet, N., Kreis, M., & Lecharny, A. (2000). In Arabidopsis thaliana, 1% of the 
genome codes for a novel protein family unique to plants. Plant Molecular Biology, 42(4), 
603–613.

Ayyangar, G. N. R., & Ponnaiya, B. W. X. (1937). The occurrence and inheritance of ear heads 
with empty anther sacs in sorghum. Current Science, 5, 309.

Bailey-Serres, J., Hanson, D.  K., Fox, T.  D., & Leaver, C.  J. (1986). Mitochondrial genome 
rearrangement leads to extension and relocation of the cytochrome c oxidase subunit I gene in 
sorghum. Cell, 47(4), 567–576.

Barkan, A., & Small, I. (2014). Pentatricopeptide repeat proteins in plants. Annual Review of Plant 
Biology, 65, 415–442.

Bhattramakki, D., Dong, J., Chhabra, A. K., & Hart, G. E. (2000). An integrated SSR and RFLP 
linkage map of Sorghum bicolor (L.) Moench. Genome, 43, 988–1002.

Brown, G. G., Formanová, N., Jin, H., Wargachuk, R., Dendy, C., Patil, P., Laforest, M., Zhang, 
J., Cheung, W. Y., & Landry, B. S. (2003). The radish Rfo restorer gene of Ogura cytoplasmic 
male sterility encodes protein with multiple pentatricopeptide repeats. The Plant Journal, 
35(2), 262–272.

Budar, F., & Pelletier, G. (2001). Male sterility in plants: Occurrence, determinism, significance 
and use. Comptes Rendus de l’Academie des Sciences. Serie III, Sciences de la Vie, 324(6), 
543–550.

Celarier, R.  P. (1958). Cytotaxonomy of the Andropogoneae III.  Subtribe Sorgheae, genus 
Sorghum. Cytologia, 23(4), 395–418.

Chase, C. D. (2007). Cytoplasmic male sterility: A window to the world of plant mitochondrial–
nuclear interactions. Trends in Genetics, 23(2), 81–90.

Chen, L., & Liu, Y.-G. (2014). Male sterility and fertility restoration in crops. Annual Review of 
Plant Biology, 65, 579–606.

Dahan, J., & Mireau, H. (2013). The Rf and Rf-like PPR in higher plants, a fast-evolving subclass 
of PPR genes. RNA Biology, 10(9), 1469–1476.

Desloire, S., Gherbi, H., Laloui, W., Marhadour, S., Clouet, V., Cattolico, L., Falentin, C., 
Giancola, S., Renard, M., & Budar, F. (2003). Identification of the fertility restoration locus, 
Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Reports, 
4(6), 588–594.

Dixon, L., Leaver, C., Brettell, R., & Gengenbach, B. (1982). Mitochondrial sensitivity to 
Drechslera maydis T-toxin and the synthesis of a variant mitochondrial polypeptide in plants 
derived from maize tissue cultures with Texas male-sterile cytoplasm. Theoretical and Applied 
Genetics, 63(1), 75–80.

Elkonin, L., & Sarsenova, S. K. (2020). Development of fertility-restoring lines for 9E type CMS 
of sorghum using environmentally induced fertility revertants. Russian Agricultural Sciences, 
46(6), 560–565.

Erichsen, A., & Ross, J. (1963). Irregularities at microsporogenesis in colchicine-induced male 
sterile mutants in Sorghum vulgare Pers. 1. Crop Science, 3(6), 481–483.

Food, Nations AOotU. (2019). The State of Food Security and Nutrition in the World: Safeguarding 
against economic slowdowns and downturns. Food and Agriculture Organization of the United 
Nations.

Fujii, S., & Toriyama, K. (2008). Genome barriers between nuclei and mitochondria exemplified 
by cytoplasmic male sterility. Plant and Cell Physiology, 49(10), 1484–1494.

K. P. Ingle et al.



413

Fukui, K., & Kuramitsu, S. (2011). Structure and function of the small MutS-related domain. 
Molecular Biology International, 691735. https://doi.org/10.4061/2011/691735. Epub 2011 
Jul 19. PMID: 22091410; PMCID: PMC3200294.

Ganapathy, K., Gomashe, S., Rakshit, S., Prabhakar, B., Ambekar, S., Ghorade, R., Biradar, B., & 
Saxena, U. J. (2012). Genetic diversity revealed utility of SSR markers in classifying parental 
lines and elite genotypes of sorghum (‘Sorghum bicolor’ L. Moench). Australian Journal of 
Crop Science, 6(11), 1486–1493.

Garcia, L.  E., Edera, A., Marfil, C.  F., & Sánchez Puerta, M.  V. (2019). Male sterility and 
somatic Hybridization in plant breeding. Preprint 2019070330. https://doi.org/10.20944/
preprints201907.0330.v1

Greenberg, J. T., & Yao, N. (2004). The role and regulation of programmed cell death in plant–
pathogen interactions. Cellular Microbiology, 6(3), 201–211.

Guo, J. X., & Liu, Y. G. (2012). Molecular control of male reproductive development and pollen 
fertility in rice F. Journal of Integrative Plant Biology, 54(12), 967–978.

Hanson, M. R., & Bentolila, S. (2004). Interactions of mitochondrial and nuclear genes that affect 
male gametophyte development. The Plant Cell, 16(suppl_1), S154–S169.

Hao, H., Li, Z., Leng, C., Lu, C., Luo, H., Liu, Y., Wu, X., Liu, Z., Shang, L., & Jing, H.-C. (2021). 
Sorghum breeding in the genomic era: Opportunities and challenges. Theoretical and Applied 
Genetics, 134 (7), 1899–1924.

Hashimoto, M., Endo, T., Peltier, G., Tasaka, M., & Shikanai, T. (2003). A nucleus-encoded factor, 
CRR2, is essential for the expression of chloroplast ndhBin Arabidopsis. Plant Journal, 36, 
541–549.

Hattori, M., Miyake, H., & Sugita, M. (2007). A pentatricopeptide repeat protein is required for 
RNA processing of clpPpre-mRNA in moss chloroplasts. Journal of Biological Chemistry, 
282, 10773–10782.

https://apps.fas.usda.gov/psdonline/circulars/production.pdf
https://phytozome- next.jgi.doe.gov/
https://www.districtsofindia.com/maharashtra/alldistricts/agriculture/index.aspx
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
Hu, J., Wang, K., Huang, W., Liu, G., Gao, Y., Wang, J., Huang, Q., Ji, Y., Qin, X., & Wan, 

L. (2012). The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian 
cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. The Plant 
Cell, 24(1), 109–122.

Ingle, K., Gahukar, S., Moharil, M., Jadhav, P., Ghorade, R., Narkhede, G., & Penna, S. (2019). 
Validation of cytoplasmic genetic male sterility in rabi sorghum hybrids and their parents using 
diagnostic set of microsatellite markers. Research Journal of Biotechnology.14(7), 67–73.

Ingle, K. P. (2020). Molecular studies on fertility restoration mechanism in rabi sorghum (Sorghum 
bicolor (L.) Moench). Dr. PDKV, Thesis unpublished, pp. 1–135.

Ingle, K.  P., Santosh, G., Mangesh, M., Pravin, J., Rameshwar, G., Gopal, N., & Suprasanna, 
P. (2019). Validation of cytoplasmic genetic male sterility in rabi sorghum hybrids and their 
parents using diagnostic set of microsatellite markers. Research Journal of Biotechnology, 
14(7), 67–73.

Ji, C., Li, H., Chen, L., Xie, M., Wang, F., Chen, Y., & Liu, Y.-G. (2013). A novel rice bHLH 
transcription factor, DTD, acts coordinately with TDR in controlling tapetum function and 
pollen development. Molecular Plant, 6(5), 1715–1718.

Jilani, S. K., Atale, S. B., & Wadhokar, R. S. (2000). Heterosis in cytoplasmically diversed male 
sterile lines in sorghum (Sorghum bicolor (L.) Moench). In Vasantrao Naik Memorial National 
Agriculture Seminar Jan. College of Agriculture, Nagpur, 8:8.

Jordan, D., Mace, E. S., Henzell, R., Klein, P., & Klein, R. (2010). Molecular mapping and candidate 
gene identification of the Rf2 gene for pollen fertility restoration in sorghum (Sorghum bicolor 
(L.) Moench). Theoretical and Applied Genetics, 120(7), 1279–1287.

Jordan, D., Klein, R., Sakrewski, K., Henzell, R., Klein, P., & Mace, E. (2011). Mapping and 
characterization of Rf5: A new gene conditioning pollen fertility restoration in A1 and A2 

Mendelian to Genomics and Bioinformatics Approaches in Cytoplasmic Male Sterility…

https://doi.org/10.4061/2011/691735
https://doi.org/10.20944/preprints201907.0330.v1
https://doi.org/10.20944/preprints201907.0330.v1
https://apps.fas.usda.gov/psdonline/circulars/production.pdf
https://phytozome-next.jgi.doe.gov/
https://www.districtsofindia.com/maharashtra/alldistricts/agriculture/index.aspx
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi


414

cytoplasm in sorghum (Sorghum bicolor (L.) Moench). Theoretical and Applied Genetics, 
123(3), 383–396.

Kante, M., Rattunde, H. F. W., Nébié, B., Weltzien, E., Haussmann, B. I., & Leiser, W. L. (2018). 
QTL mapping and validation of fertility restoration in West African sorghum A1 cytoplasm 
and identification of a potential causative mutation for Rf2. Theoretical and Applied Genetics, 
131(11), 2397–2412.

Kaul, M. (1988). Male sterility in higher plants. Springer.
Kawanabe, T., Ariizumi, T., Kawai-Yamada, M., Uchimiya, H., & Toriyama, K. (2006). Abolition 

of the tapetum suicide program ruins microsporogenesis. Plant and Cell Physiology, 47(6), 
784–787.

Kazama, T., & Toriyama, K. (2003). A pentatricopeptide repeat-containing gene that promotes 
the processing of aberrant atp6 RNA of cytoplasmic male-sterile rice. FEBS Letters, 
544(1-3), 99–102.

Kim, D. H., Kang, J. G., & Kim, B.-D. (2007). Isolation and characterization of the cytoplasmic 
male sterility-associated orf456 gene of chili pepper (Capsicum annuum L.). Plant Molecular 
Biology, 63(4), 519–532.

Klein, R., Klein, P., Chhabra, A., Dong, J., Pammi, S., Childs, K., Mullet, J., Rooney, W., & 
Schertz, K. (2001). Molecular mapping of the rf1 gene for pollen fertility restoration in sorghum 
(Sorghum bicolor L.). Theoretical and Applied Genetics, 102(8), 1206–1212.

Klein, R., Klein, P., Mullet, J., Minx, P., Rooney, W., & Schertz, K. (2005). Fertility restorer locus 
Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present 
in the colinear region of rice chromosome 12. Theoretical and Applied Genetics, 111(6), 
994–1012.

Kofuji, K., Aoki, A., Tsubaki, K., Konishi, M., Isobe, T., & Murata, Y. (2012). Antioxidant activity 
of β-glucan. International Scholarly Research Notices, 2012, 1–5.

Koizuka, N., Imai, R., Fujimoto, H., Hayakawa, T., Kimura, Y., Kohno-Murase, J., Sakai, T., 
Kawasaki, S., & Imamura, J. (2003). Genetic characterization of a pentatricopeptide repeat 
protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. The 
Plant Journal, 34(4), 407–415.

Kong, L., Dong, J., & Hart, G.  E. (2000). Characteristics, linkage-map positions, and allelic 
differentiation of Sorghum bicolor (L.) Moench DNA simple sequence repeats (SSRs). 
Theoretical and Applied Genetics, 101, 438–448.

Koussevitzky, S., Nott, A., Mockler, T. C., Hong, F., & Sachetto-Martins, G. (2007). Signals from 
chloroplasts converge to regulate nuclear gene expression. Science, 316, 715–719.

Kramer, M. C., Anderson, S. J., & Gregory, B. D. (2018). The nucleotides they are a-changin’: 
Function of RNA binding proteins in post-transcriptional messenger RNA editing and 
modification in Arabidopsis. Current Opinion in Plant Biology, 45, 88–95.

Kushalappa, K., Primomo, V., Tulsieram, L., Li, Z., Porter, K., Kebede, Y., Monk, R., & DeLong, 
R. (2015). Sorghum fertility restorer genotypes and methods of marker-assisted selection. 
Google Patents.

Lee, S. L. J., & Warmke, H. (1979). Organelle size and number in fertile and T-cytoplasmic male- 
sterile corn. American Journal of Botany, 66(2), 141–148.

Levings, C. (1993). Thoughts on cytoplasmic male sterility in cms-T maize. The Plant Cell, 
5(10), 1285.

Liu, X., Kim, C. N., Yang, J., Jemmerson, R., & Wang, X. (1996). Induction of apoptotic program 
in cell-free extracts: Requirement for dATP and cytochrome c. Cell, 86(1), 147–157.

Liu, F., Cui, X., Horner, H.  T., Weiner, H., & Schnable, P.  S. (2001). Mitochondrial aldehyde 
dehydrogenase activity is required for male fertility in maize. The Plant Cell, 13(5), 1063–1078.

Luo, D., Xu, H., Liu, Z., Guo, J., Li, H., Chen, L., Fang, C., Zhang, Q., Bai, M., & Yao, N. (2013). 
A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. 
Nature Genetics, 45(5), 573–577.

Madhusudhana, R., Rajendrakumar, P., & Patil, J. (2015). Sorghum molecular breeding (1st ed. 
ISBN 978-81-322-2421-1, p. 226). Springer.

K. P. Ingle et al.



415

Madugula, P., Uttam, A. G., Tonapi, V. A., & Ragimasalawada, M. (2018). Fine mapping of Rf2, 
a major locus controlling pollen fertility restoration in sorghum A1 cytoplasm, encodes a PPR 
gene and its validation through expression analysis. Plant Breeding, 137(2), 148–161.

Maunder, A., & Pickett, R. (1959). The genetic inheritance of cytoplasmic-genetic male sterility in 
grain sorghum 1. Agronomy Journal, 51(1), 47–49.

Mayr, E. (1986). Joseph Gottlieb Kolreuter’s contributions to biology. Osiris, 2, 135–176.
Melonek, J., Duarte, J., Martin, J., Beuf, L., Murigneux, A., Varenne, P., Comadran, J., Specel, S., 

Levadoux, S., & Bernath-Levin, K. (2021). The genetic basis of cytoplasmic male sterility and 
fertility restoration in wheat. Nature Communications, 12(1), 1–14.

Miller, D., & Pickett, R. (1964). Inheritance of partial male-fertility in Sorghum vulgare Pers 1. 
Crop Science, 4(1), 1–4.

Mishra, S., & Kumari, V. (2018). A review on male sterility-concepts and utilization in vegetable 
crops. International Journal of Current Microbiology and Applied Sciences, 7(2), 3016–3034.

Morris, G. P., Ramu, P., Deshpande, S. P., Hash, C. T., Shah, T., Upadhyaya, H. D., Riera-Lizarazu, 
O., Brown, P. J., Acharya, C. B., & Mitchell, S. E. (2013). Population genomic and genome- 
wide association studies of agroclimatic traits in sorghum. Proceedings of the National 
Academy of Sciences, 110(2), 453–458.

Mukri, G., Biradar, B., & Sajjanar, G. (2010). Effect of temperature on seed setting behaviour 
in rabi sorghum (Sorghum bicolor (L). Moench). Electronic Journal of Plant Breeding, 1(4), 
776–782.

Muleta, K. T., Pressoir, G., & Morris, G. P. (2019). Optimizing genomic selection for a sorghum 
breeding program in Haiti: A simulation study. G3: Genes, Genomes, Genetics, 9(2), 391–401.

Muller-McNicoll, M., Rossbach, O., Hui, J., & Medenbach, J. (2019). Auto-regulatory feedback 
by RNA- binding proteins. Journal of Molecular Cell Biology, 11(10), 930–939.

Okuda, K., Myouga, F., Motohashi, R., Shinozaki, K., & Shikanai, T. (2007). Conserved domain 
structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing. Proceedings 
of the National Academy of Sciences, 104(19), 8178–8183.

Okuda, K., Chateigner-Boutin, A.-L., Nakamura, T., Delannoy, E., Sugita, M., Myouga, F., 
Motohashi, R., Shinozaki, K., Small, I., & Shikanai, T. (2009). Pentatricopeptide repeat 
proteins with the DYW motif have distinct molecular functions in RNA editing and RNA 
cleavage in Arabidopsis chloroplasts. The Plant Cell, 21(1), 146–156.

Pattanashetti, S. (2014). Inheritance pattern of fertility restoration on maldandi cytoplasm in rabi 
sorghum (Sorghum bicolor (L.) Moench). Karnataka Journal of Agricultural Sciences, 27(4), 
522–523.

Praveen, M., Madhusudhana, R., & Anuraguttam, G. (2015). Selective genotyping for determining 
the linkage between SSR markers and a fertility restoration locus in Sorghum bicolor (L.) 
Moench. International Journal of Current Research, 7, 20459–20461.

Pring, D., Conde, M., & Schertz, K. (1982). Organelle genome diversity in sorghum: Male-sterile 
cytoplasms 1. Crop Science, 22(2), 414–421.

Quinby, J. (1981). Interaction of genes and cytoplasms in male sterility in sorghum. In Proceedings 
of the annual corn and sorghum industry research conference American Seed Trade Association, 
Corn and Sorghum Division, Corn and Sorghum Research Conference.

Rakshit, S., Gomashe, S. S., Ganapathy, K., Elangovan, M., Ratnavathi, C., Seetharama, N., & 
Patil, J. (2012). Morphological and molecular diversity reveal wide variability among sorghum 
Maldandi landraces from India. Journal of Plant Biochemistry and Biotechnology, 21(2), 
145–156.

Rao, N., Tripathi, D., & Rana, B. (1984). Genetic analysis of cytoplasmic systems in sorghum. 
Indian Journal of Genetics and Plant Breeding, 44(3), 480–496.

Reape, T. J., & McCabe, P. F. (2010). Apoptotic-like regulation of programmed cell death in plants. 
Apoptosis, 15(3), 249–256.

Reddy, B. V., & Stenhouse, J. (1994). Sorghum improvement for semi-arid tropics region: Past 
current and future research thrusts in Asia. PKV Research Journal, 18(2), 155–169.

Mendelian to Genomics and Bioinformatics Approaches in Cytoplasmic Male Sterility…



416

Reddy, B. V., Ramesh, S., Reddy, P. S., & Ramaiah, B. (2007). Combining ability and heterosis as 
influenced by male-sterility inducing cytoplasms in sorghum [Sorghum bicolor (L.) Moench]. 
Euphytica, 154(1), 153–164.

Reddy, B., Ashok Kumar, A., & Kaul, S. (2008). Alternative cytoplasmic male sterility systems 
in sorghum and their utilization. In Sorghum improvement in the new millennium: ICRISAT, 
Patancheru, Andhra Pradesh, India (pp. 132–144). ISBN 978-92-9066-512-0.

Reddy, P. S., Rao, D. M., Reddy, B., Kumar, A. A., Thakur, R., & Rao, V. (2011). Evaluation of 
A1, A2, A3, A4(M), A4(G) and A4(VZM) cytoplasms in iso-nuclear backgrounds for grain mold 
resistance. Crop Protection, 30(6), 658–662.

Reddy, P. S., Patil, J., Nirmal, S., & Gadakh, S. (2012). Improving post-rainy season sorghum 
productivity in medium soils: Does ideotype breeding hold a clue? Current Science, 102(6), 
904–908.

Rivals, E., Bruyere, C., Toffano-Nioche, C., & Lecharny, A. (2006). Formation of the Arabidopsis 
pentatricopeptide repeat family. Plant Physiology, 141(3), 825–839.

Ross, W., & Hackerott, H. (1972). Registration of seven isocytoplasmic sorghum germplasm lines 
1 (Reg. Nos. GP 9 to GP 15). Crop Science, 12(5), 720–772.

Salone, V., Rudinger, M., Polsakiewicz, M., Hoffmann, B., Groth-Malonek, M., Szurek, B., Small, 
I., Knoop, V., & Lurin, C. (2007). A hypothesis on the identification of the editing enzyme in 
plant organelles. FEBS Letters, 581(22), 4132–4138.

Schertz, K., & Ritchey, J. (1978). Cytoplasmic-genic male-sterility systems in sorghum 1. Crop 
Science, 18(5), 890–893.

Schmitz-Linneweber, C., & Small, I. (2008). Pentatricopeptide repeat proteins: A socket set for 
organelle gene expression. Trends in Plant Science, 13(12), 663–670.

Schnable, P. S., & Wise, R. P. (1998). The molecular basis of cytoplasmic male sterility and fertility 
restoration. Trends in Plant Science, 3(5), 175–180.

Singh, S. P., Singh, S. P., Pandey, T., Singh, R. R., & Sawant, S. V. (2015). A novel male sterility- 
fertility restoration system in plants for hybrid seed production. Scientific Reports, 5(1), 1–14.

Stephens, J. (1937). Male sterility in sorghum: Its possible utilization in production of hybrid seed. 
Journal of the American Society of Agronomy, 29(8), 690–696.

Stephens, J.  C., & Holland, R.  F. (1954). Cytoplasmic male sterility for hybrid sorghum seed 
production. Agronomy Journal, 46, 20–23.

Tang, H. V., Pring, D. R., Shaw, L. C., Salazar, R. A., Muza, F. R., Yan, B., & Schertz, K. F. (1996). 
Transcript processing internal to a mitochondrial open reading frame is correlated with fertility 
restoration in male-sterile sorghum. The Plant Journal, 10(1), 123–133.

Taramino, G., Tarchini, R., Ferrario, S., & Enrico Pè, M. (1997). Characterization and mapping 
of simple sequence repeats (SSRS) in Sorghum bicolor. Theoretical and Applied Genetics, 
95(1), 66–72.

Touzet, P., & Budar, F. (2004). Unveiling the molecular arms race between two conflicting genomes 
in cytoplasmic male sterility? Trends in Plant Science, 9(12), 568–570.

Upadhyaya, H. D., Vetriventhan, M., Asiri, A. M., Azevedo, V. C. R., Sharma, H. C., Sharma, R., 
Sharma, S. P., & Wang, Y.-H. (2019). Multi-trait diverse germplasm sources from mini core 
collection for sorghum improvement. Agriculture, 9(6), 121.

Van, K., Onoda, S., Kim, M., Kim, K., & Lee, S.-H. (2008). Allelic variation of the Waxy gene in 
foxtail millet [Setaria italica (L.) P. Beauv.] by single nucleotide polymorphisms. Molecular 
Genetics and Genomics, 279(3), 255–266.

Wang, Z., Zou, Y., Li, X., Zhang, Q., Chen, L., Wu, H., Su, D., Chen, Y., Guo, J., & Luo, D. (2006). 
Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and 
is restored by two related PPR motif genes via distinct modes of mRNA silencing. The Plant 
Cell, 18(3), 676–687.

Wang, X., An, Y., Xu, P., & Xiao, J. (2021). Functioning of PPR Proteins in organelle RNA 
metabolism and chloroplast biogenesis. Frontiers in Plant Science, 12(1), 1-8 article ID 
627501. https://doi.org/10.3389/fpls.2021.627501

K. P. Ingle et al.

https://doi.org/10.3389/fpls.2021.627501


417

Webster, O., & Singh, S. (1964). Breeding behavior and histological structure of a nondehiscent 
anther character in Sorghum vulgare Pers. 1. Crop Science, 4(6), 656–658.

Williams, P., & Barkan, A. (2003). A chloroplast-localized PPR protein required for plastid 
ribosome accumulation. Plant Journal, 36, 675–686.

Worstell, J., Kidd, H., & Schertz, K. (1984). Relationships among male-sterility inducing 
cytoplasms of sorghum 1. Crop Science, 24(1), 186–189.

Xin, Z., Huang, J., Smith, A. R., Chen, J., Burke, J., Sattler, S. E., & Zhao, D. (2017). Morphological 
characterization of a new and easily recognizable nuclear male sterile mutant of sorghum 
(Sorghum bicolor). PLoS One, 12(1), e0165195.

Yao, N., Tada, Y., Sakamoto, M., Nakayashiki, H., Park, P., Tosa, Y., & Mayama, S. (2002). 
Mitochondrial oxidative burst involved in apoptotic response in oats. The Plant Journal, 30(5), 
567–579.

Mendelian to Genomics and Bioinformatics Approaches in Cytoplasmic Male Sterility…



419

In Vitro Embryo Rescue Techniques 
and Applications in Hybrid Plant 
Development

Samuel Amiteye

Abstract Embryo rescue is a tissue culture tool that is greatly used to facilitate 
breeding in plants. Embryo rescue provides an effective means for recovering hybrid 
embryos resulting from wide hybridizations, which often fail to develop in vivo into 
plants. Embryo rescue is mainly used to develop interspecific or intergeneric distant 
hybrids. This review elucidates the salient aspects of wide hybridizations toward 
plant improvement. The main causes of hybrid embryo failures in wide crosses that 
have been discussed are precocious seed germination, nutritional starvation of 
developing embryo, cytological aberrations in embryogenesis, endosperm balance 
number discrepancy, polar-nuclei activation hypothesis deviations, and post-zygotic 
barrier limitations in endosperm and embryo development. Wide hybridizations 
related to frequent embryo failures arising from pre-fertilization or postfertilization 
barriers are usually overcome through embryo rescue. In this chapter, various limi-
tations of pre-fertilization and postfertilization barriers that are encountered in wide 
hybridizations have been reviewed. In addition, some significant factors that influ-
ence the success of embryo culture, such as embryo genotypic background, embryo 
developmental stage, nutrient media composition and growth temperature, and light 
conditions, have been elaborated. Furthermore, considerations such as the determi-
nation of appropriate embryo stage for rescue, nature of the embryo excision tech-
niques, and media manipulations for efficient embryo culture are noteworthy for 
success in embryo rescuing. Discussed also are the following very useful embryo 
rescue techniques: embryo-nurse endosperm transplant method, in vitro ovary and 
ovule culture techniques, as well as the ovary and ovule slice or perforation proce-
dure. Some important applications of the embryo rescue technique that have been 
mentioned include overcoming seed dormancy and embryo abortion, plants devel-
opment in seedless varieties, germplasm conservation, and homozygous monoploid 
production. The most recent uses of embryo rescue in successful wide hybridiza-
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tions and the achieved improved agronomic traits in various plant genera or species 
have been highlighted.

Keywords Wide hybridization · Interspecific and intergeneric · Pre- and 
postfertilization barriers · Embryo rescue · Hybrid plant development

1  Introduction

Crop improvement is successfully achieved by the introduction of wide genetic 
variability through various plant breeding techniques. In this regard, the enhance-
ment in the quality and yield of virtually all major crops has been realized through 
interspecific and intergeneric hybridizations, followed by selection (Araujo et al., 
2021; Hristova-Cherbadzhi, 2020; Mahoney & Brand, 2021). Interspecific and 
intergeneric hybridization enables the transfer of desirable genes or traits from wild 
relatives to the respective domesticated plants through wide crosses between or 
among species. Unfortunately, in wide sexual crosses, most often than not, the 
endosperm fails to properly develop and causes majority of the embryos to abort 
in vivo or switch into dormancy for prolonged periods (Sahijram et al., 2013). It has 
been established that low fertility or poor survival of endosperm or hybrid embryos 
is largely due to the effects of pre-fertilization (pre-zygotic) and postfertilization 
(post-zygotic) physiological barriers (Okamoto & Ureshino, 2015; Sun et al., 2018). 
Quite frequently, zygotic development barriers prevent distant hybridizations from 
going through the normal sexual reproductive physiological processes to yield via-
ble plants. Notably, inherent physiological incompatibility in wide hybridizations 
causes abortion of embryos at virtually any developmental stages (Okamoto & 
Ureshino, 2015; Sun et al., 2018). The achievement of successful wide hybridiza-
tions in various species or genera is, therefore, arduous due to hindering physiologi-
cal barriers.

The most useful approach and widely employed method for overcoming 
postfertilization barriers has been the application of the technology of embryo 
rescue or culture (Hristova-Cherbadzhi, 2020). This in vitro tissue culture approach 
involves the removal of immature, mature, or defective hybrid embryo from ovule 
and nurturing it in culture into a whole plant. This practice releases the hybrid 
embryo obtained through wide crosses from the hindering influence of hybridization 
barriers and enables the embryo that hitherto would have aborted or degenerated to 
instead develop into a viable plant. The essence of embryo rescue is, therefore, to 
enable the limitations imposed by post-zygotic or fertilization barriers to be circum-
vented. The embryo rescue approach facilitates the development of interspecific and 
intergeneric plant hybrids.

The rescue and culture of embryos are relatively quite an easy technique to carry 
out and requires basically a simple agar-based nutrient medium incorporated with 
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sugar and minerals. Furthermore, using embryo rescue, embryonic development in 
relation to the physical and nutritional requirements has been elucidated through the 
study of the physiological processes involved in the growth of rescued young hybrid 
embryos. To a great extent, successful embryo rescue depends largely upon explant 
maturation, medium nutrient content, as well as the genotype (Okamoto & Ureshino, 
2015; Sun et  al., 2018). The embryo rescue technology aids effective rescue of 
hybrid embryos from wide hybridizations (Hu & Wang, 1986). The technique also 
enables haploid plant production and reduction in the duration of the breeding cycle, 
in cases of prolonged dormancy. Embryos from ripened seeds could be isolated and 
cultured to eliminate the influence of seed germination inhibitors in instances where 
dormancy is the identified constraint to hybrid embryo development. In addition, 
embryo culture presents a reliable means for testing seed viability and provides 
material for micro-propagation.

Using embryo rescue, young immature, mature, or weak defective embryos have 
been effectively rescued in a number of crops, forests, ornamentals, and wild plant 
species (Araujo et al., 2021; Buteme et al., 2021; Kuang et al., 2021; Mahoney & 
Brand, 2021). For example, embryo rescue and interspecific pollination techniques 
were combined in an attempt to produce doubled haploids in castor bean (Ricinus 
communis) (Baguma et al., 2019). In this instance, embryo rescue was used to save 
the resulting embryos that would have otherwise aborted. The procedure of embryo 
rescue has been extensively applied to achieve varied objectives for successful plant 
improvement. This review presents an update on the current knowledge and achieve-
ments made in the improvement of useful traits in plants through wide hybridiza-
tions mediated by embryo rescue.

2  Interspecific and Intergeneric Hybridization: 
Associated Constraints

Plant genetic hybridization is a breeding procedure in which parents derived from 
different species belonging to a genus (interspecific) or parents from different gen-
era of a family (intergeneric) are crossed to combine their genomes through pollina-
tion, either naturally or by induction (Table 1). Hybridization in plant improvement 
also involves crosses between diploid and tetraploid species (Mwangangi et  al., 
2019). Furthermore, through backcrossing, successful gene transfer has been per-
formed between two species of different genetic constitution leading to the develop-
ment of cytoplasmic sterile male plants (Premjet et al., 2019). Wide hybridization is, 
therefore, a powerful approach used to facilitate gene transfer by overcoming the 
species barrier (Huylenbroeck et al., 2020). A summary of the main steps involved 
in hybrid plant generation through wide hybridizations and the validation processes 
commonly carried out for verifying the hybrid state is presented in Fig. 1a, b. The 
main target of such wide hybridization procedures is usually to successfully obtain 
interspecific or intergeneric gene transfer, with the aim of creating more variation in 
plants for desirable traits. Unfortunately, such crosses that involve distant genetic 
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Table 1 Embryo rescue mediated wide hybridizations in various plants

Interspecific and intergeneric 
hybridization Outcome of hybridization References

Aronia melanocarpa × Pyrus 
communis

Hybrid showed early-stage hybrid necrosis Mahoney and 
Brand (2021)

Sorbaronia dippelii × Pyrus 
communis

Hybrids exhibited a late-stage hybrid 
necrosis

Mahoney and 
Brand (2021)

Goyazia petraea × Mandirola 
hirsuta

Structural abnormalities (monads, dyads, 
triads, and micronuclei) were observed at the 
final of the hybrid’s meiosis

Araujo et al. 
(2021)

Helianthus annuus × Carduus 
acanthoides

F1 plants strongly resembled the cultivated 
sunflower but had an intermediate type of 
heritability

Hristova- 
Cherbadzhi 
(2020)

Jatropha curcas × Ricinus 
communis

F1 hybrid plant seeds were shrunken with 
slimmed embryos.

Premjet et al. 
(2019)

Saccharum spp. × Erianthus 
arundinaceus

F1 hybrids were relatively weak had lower 
dry matter yield and lower millable stalk 
weight

Pachakkil 
et al. (2019)

Manihot esculenta × Ricinus 
communis

Haploids were induction of in cassava Baguma et al. 
(2019)

Oryza sativa × Leersia perrieri Plant height of the F1 hybrids was very short Ballesfin et al. 
(2018)

Brassica oleracea × Sinapis alba Majority of F3 plants obtained sufficient 
resistance to Alternaria brassicae

Li et al. 
(2017)

Brassica napus × brassica rapa Pollen grains of B. rapa germinated well on 
the stigmas in crosses with B. napus as a 
maternal parent; crossability was relatively 
higher in crosses with B. rapa ssp. chinensis 
as the pistillate parent.

Niemannet al. 
(2015)

[Capsicum baccatum (♀) × C. 
chinense (♂)] (♀) x C. annuum 
(♂); [Capsicum annuum (♀) × C. 
baccatum (♂)] (♀) x C. annuum 
(♂)

Virus-like-syndrome or dwarfism was 
observed in F1 hybrids when both C. 
chinense and C. frutescens were used as 
female parents

Manzur et al. 
(2015)

backgrounds more often than not fail and do not produce viable plants (Premjet 
et  al., 2019). There are several physiological barriers that cause endosperm and 
embryo development to fail at the pre- and postfertilization phases and, thus, hinder 
the introgression of genes from wild relatives to crops (Mahoney & Brand, 2021).

Pre-fertilization barriers comprise impediments that prevent successful 
fertilization. For instance, ineffective fertilization is usually caused by the prevention 
of proper pollen germination, tube growth and guidance, due to low pollen quality 
or lack of stigma receptivity (Buteme et  al., 2021). Other factors that have been 
implicated to cause pre-fertilization limitations in wide crosses include dissimilarities 
in flower morphology, failure of pollen capture, adhesion or hydration, impaired 
pollen- pistil or pollen-ovule interactions, and fertilization failure (Köhler et  al., 
2021). Table 2 contains some recently identified pre-fertilization barriers encoun-
tered in wide hybridizations in various plants. Postfertilization barriers on the other 
hand arise due to ploidy differences, chromosome elimination, and seed dormancy 
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Fig. 1 (a) Schematic presentation of the main steps involved in hybrid plant generation through 
wide hybridizations. (b) Validation processes for verifying the hybrid state of obtained putative 
hybrids from wide hybridizations
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Table 2 Identified pre-fertilization barriers in plant hybridizations

Plant hybridization Pre-fertilization barriers References

Kalanchoe garambiensis × other long 
stem Kalanchoe species

Failure of pollen release from anther, 
pollen aggregation, and absence of 
pollen germination

Kuang et al. 
(2021)

Cross compatibility in Solanum 
aethiopicum

Pollen-pistil incompatibility occurred on 
the stigma, upper style, and lower style

Buteme 
et al. (2021)

Brassica carinata × Brassica nigra; 
Brassica carinata × Brassica napus; 
Brassica napus × Brassica carinata; 
Brassica nigra × Brassica carinata; 
Brassica rapa × Brassica carinata

Defect in pollen tubes, for example, 
coiling and bending of pollen tube, 
hairpin-shaped pollen tube, swelling of 
tube tip, tube bifurcation, more than one 
tube emerging from pollen, tubes 
growing in wrong direction

Pant et al. 
(2021)

Nymphaea odorata “Peter 
Slocum” × nymphaea gigantea

Impaired pollen grains germination on 
the sigma

Sun et al. 
(2018)

Crosses among single-, double-, and 
multi-petal jasmine cultivars (Jasminum 
sambac)

Variation in pollen viability and stigma 
receptivity or incompatibilities; poor 
pollen quality caused defective pollen 
germination and growth and pollen 
tubes arrest in pistils

Deng et al. 
(2017)

Crosses with Kalanchoë nyikae as 
maternal plant × K. blossfeldiana, K. 
blossfeldiana, K. marnieriana

Inhibition of pollen germination on the 
stigma; abnormal growth of pollen tubes

Kuligowska 
et al. (2015)

Evergreen azalea species × 
rhododendron uwaense

Many pollen tubes stopped elongating in 
the style in crosses with azalea species 
as a seed parent; reverse crosses 
exhibited inhibition of pollen tube 
penetration into ovules

Okamoto 
and 
Ureshino 
(2015)

Abelmoschus manihot subsp. 
Tetraphyllus var. pungens × 
Abelmoschus esculentus

Delayed pollen tube; coupled with 
structural abnormalities such as 
twisting, swelling, high branching, 
bifurcated tip

Patil et al. 
(2013)

Nelumbo nucifera cross 
“Qinhuaihuadeng” × “Jinsenianhua”

Low pistil receptivity caused low seed 
set in 
“Qinhuaihuadeng” × “Jinsenianhua”

Wang et al. 
(2012)

Juglans nigra × Juglans regia Disjunction in flowering time; 
differences in floral size; conspecific 
pollen advance

Pollegioni 
et al. (2013)

(Premjet et al., 2019). Postfertilization barriers also occur as mitotic mismatch of 
parental genomes, defective endosperm growth and embryo malnutrition, as well as 
hybrid weakness or sterility, arising from ploidy or parental incompatibilities 
(Köhler et al., 2021).

Post-zygotic barriers inhibit zygote growth after fertilization has occurred, 
leading to abnormal seed formation. Seed malformation often emanates from 
physiologically defective hybrid endosperm, which causes acute failure in nutrient 
supply to the hybrid embryo (Okamoto & Ureshino, 2015; Sun et  al., 2018). 
Moreover, endosperm or embryo failure could also be due to embryo-endosperm 
physiological mismatch induced by the exudation of lethal toxins from the 
endosperm to poison the embryo (Okamoto & Ureshino, 2015; Sun et al., 2018). In 
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principle, embryos of nonviable hybrids have an innate competence to transform 
into plantlets, but their development is hindered by failure to undergo normal 
differentiation.

2.1  Interspecific and Intergeneric Hybrid Failures: 
Main Causes

2.1.1  Effects of Precocious Seed Germination

Precocious seed germination is characterized by the germination of seeds on the 
parent plant before the crop is harvested. In this abnormal form of seed germination, 
embryos initiate germination prior to full normal embryo development and maturity 
(Cota-Sanchez, 2018). Generally, precocious germination arises due to the elimina-
tion of the influence of endogenous germination inhibitors through the removal of 
the seed testa. Precocious germination is also induced by higher negative osmotic 
potential in vivo. Usually, precocious seed germination produces weak developing 
plantlets. This phenomenon has been observed to be generally widespread in plants 
that lack seed dormancy (Cota-Sanchez, 2018). This seed dormancy trait is gener-
ally characteristic of many wild plant species. Similarly, some crops inherently 
undergo short-duration seed dormancy. In some crops, the wild ancestors possessed 
seed dormancy traits; however, such plants lost the dormancy trait through the 
period of adaptation from the wild (Nakamura et al., 2017; Subburaj et al., 2016).

The absence of dormancy sometimes causes precocious seed germination 
particularly, in the form of preharvest sprouting of grains on the maternal plants 
when conditions of high humidity prevail (Cota-Sanchez, 2018; Subburaj et  al., 
2016). The culture or rescue of embryos could be employed to resolve and guide 
proper growth of embryos. The rescue and nurture of embryos can be achieved 
under different established culture conditions to stimulate embryological 
transformation into healthy plants. Ramming (1985) reported that the precocious 
germination of seeds can be circumvented through ovule rescue and culture in 
appropriate media. In Prunus, Ramming (1985) successfully used ovule culture to 
overcome the limitations posed by the integuments and, thus, prevent precocious 
germination.

2.1.2  Influence of Nutritional Starvation on Embryo Development

In making a transition to become a mature plant, the embryo first forms multiple 
tissues that subsequently result into a whole plant. Initially, an asymmetric zygotic 
differentiation produces the embryo and a suspensor, with both localized in the 
endosperm (Hristova-Cherbadzhi, 2020). The embryo is nourished with nutrients 
through the suspensor at the early developmental stages. It is known that the embryo 
and endosperm undergo parallel as well as interconnected developmental processes. 
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The hybrid embryo size, for example, is regulated by the endosperm enveloping it. 
Similarly, the embryo also influences the developmental faith of the endosperm. 
This interdependence is an indication that there might be an exchange or sharing of 
some metabolic factors between endosperm and embryo that tune their develop-
mental processes. In instances of embryo development failure, therefore, nutritional 
starvation of the embryo has been implicated as the main cause of the failure, which 
then hinders the efficient development of both the endosperm and embryo in par-
ticularly interspecific hybrids (Dziasek et al., 2021). In Capsella, crosses of Capsella 
rubella and C. grandiflora produce unviable hybrids linked to chromatin abnormali-
ties in the endosperm, which subsequently led to abortion (Dziasek et al., 2021). 
Hybrid seed collapse could also be due to nutrient starvation of the embryo arising 
from early retardation and disintegration of the endosperm as a result of overgrowth 
of the endothelium.

2.1.3  Implications of Cytological Aberrations in Embryogenesis

In eukaryotic organisms, it is essential that gene dosage exists in the right balance 
to enable normal physiological, biochemical, or gene function. Factors including 
ploidy level differences, chromosome structural changes that cause gene dosage 
disproportion in organisms, eventually lead to phenotypic abnormalities. Irregular 
cell divisions during mitosis are comparatively common and result in an increase or 
decrease in chromosomes during meiosis (Heslop-Harrison & Schwarzacher, 2011). 
Commonly, the phenomena of nondisjunction, aberrant spindles, lagging chromo-
somes, or chromosome breakages create mitotic abnormalities in in vitro culture 
that bring about the incidence of chromosomal variations and genome alterations. 
During in vitro culture, major genome changes produce karyotypic instability and 
cytogenetic irregularities such as ploidy level variation and chromosomal structure 
alterations due to chromosomal breakages that are often created in the course of 
in vitro multiplication (Neelakandan & Wang, 2012). Chromosome breakages cause 
rearrangements that induce direct mutational alterations in gene expression. In oat 
and maize, it was found that chromosome breakage occurred more frequently than 
ploidy variations (Kaeppler et al., 1998).

The introduction of polyploidy disparities during embryogenesis is more 
predominant compared to the occurrence of aneuploidy-chromosome karyotype 
deviation from the normal precise multiple of the haploid set (Kaeppler et al., 2000). 
Ploidy level variations in in vitro culture or embryogenesis are mostly associated 
with the phenomenon of endo-reduplication or nuclear fusion (Kaeppler et  al., 
2000). Lee et al. (2009) explained that endo-reduplication gives rise to polyploidy 
in instances where replication proceeds devoid of the successive cell division and 
eventually culminate in higher gene content in the nucleus. Aneuploidy manifests as 
monosomy or trisomy, which represents, respectively, the loss or gain of one or 
more specific chromosomes or, in some cases, large chromosomal fragments. 
Aneuploidy is generally observed during the initial stages of callus initiation and 
suspension cultures (Kaeppler et al., 1998, 2000). Aneuploidy is induced via nuclear 
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fragmentation occurring prior to mitosis or by irregular chromosome actions in the 
course of mitosis. In embryogenesis, long-term callus cultures are more frequently 
prone to cytogenetic abnormalities in especially regenerated plants of a variety of 
species (Rodriguez-López et al., 2010). Some cytological aberrations are usually 
checked at the initial phases of embryogenesis via the transfer of growth-regulating 
substances from the endosperm to the embryo.

2.1.4  Biological Significance of the Endosperm Balance Number

The entirety of the factors that drive successful seed development is still not fully 
understood and is very much speculative. Many different postulates or hypotheses 
have been put forward by some plant biologists to explain some likely factors 
responsible for the successful development of seeds in plants. One such hypothesis 
is the Endosperm Balance Number (Johnston et al., 1996). The Endosperm Balance 
Number hypothesis has been used to generally interpret and predict the success or 
failure of interspecific and interploidy hybridizations in plants (Carputo et  al., 
1999). Also, this hypothesis emphasizes the significance of a balanced parental 
genome mix that enables formation of physiologically normal endosperm. Some 
opinions state that a ploidy ratio of 2:3:2 of maternal tissue: endosperm: Embryo is 
an important consideration for viable seed formation. Others emphasize that the 
endosperm: embryo ratio is most important (Johnston et al., 1996; Katsiotis et al., 
1995). Another school of thought considers the maternal tissue: endosperm ratio as 
the most crucial cytological balance ideal for successful seed development. Some 
plant biologists, however, suggest that endosperm function is autonomous and has 
no significant dependence on the maternal tissue and the embryo (Shukla, 2016).

Furthermore, other views stress the effectiveness of the 2 maternal∶ 1 paternal 
ratio for maternal and paternal genomes in the endosperm (Lester & Kang, 1998; 
Johnston, et  al. 1996; Katsiotis et  al., 1995). It has been emphasized that the 
Endosperm Balance 2: 1 ratio of maternal: paternal is an important prerequisite for 
successful interspecific crossability (Katsiotis et  al., 1995). Despite the fact that 
such inconsistencies exist in opinion regarding the Endosperm Balance Number, the 
hypothesis has served as a useful measure toward the achievement of complex inter-
specific hybridizations involving various ploidy levels irrespective of the criterion 
relied on for selection (Hawkes & Jackson, 1992). Normal seeds have been obtained 
by some researchers without consideration for the Endosperm Balance Number 
(Katsiotis et al., 1995). The role of the histology of the endosperm in normal devel-
opment must, therefore, be further investigated and better established.

2.1.5  Importance of the Polar-Nuclei Activation Hypothesis

The polar-nuclei activation hypothesis establishes the linkage of endosperm 
development to the activation of the two polar nuclei by fusion with a compatible 
male nucleus. The hypothesis is, therefore, dependent on the intensity of the 
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activating influence of the male nucleus and the reactive response of the female 
nucleus (Nishiyama et al., 1991; Nishiyama & Yabuno, 1978). The activation effect 
of the male nucleus is expressed as the activating value, and the reactive action of 
the female nucleus is expressed as the response value. Successful endosperm 
development or failure is closely linked to the difference in the Activation Index 
defined as the ratio of the activating value (AV) to the response value (RV). The 
physiological capability of the male nuclei to appropriately undergo mitotic 
divisions in the primary endosperm nucleus is dependent on a 2∶ 1 ratio between the 
AV and the RV (i.e., AV/2RV) (Nishiyama et al., 1991). The degree of endosperm 
development or failure is closely related to this ratio. Nishiyama and Yabuno (1978) 
recounted the achievement of crosses between various species of Avena, Triticum, 
and Aegilops based on the polar-nuclei activation hypothesis. Furthermore, in 
Brassica species, Nishiyama et  al. (1991) estimated the relative activating value 
(AV) of diploid and tetraploid species to be, respectively, in the range 1.0–3.5 and 
2.7–5.2. In addition, Nishiyama et al. (1991) found that hybridization based on the 
polar nuclei activation index of between 15% and 87% was effective, whereas 
crosses at activation index of less than 15% or more than 87% were incompatible.

2.1.6  Effects of Pre- or Post-Zygotic Barriers 
on Endosperm Development

Fertilization or zygotic barriers to endosperm development are broadly described as 
pre-zygotic (pre-fertilization) or post-zygotic (postfertilization). These barriers 
include factors such as pollen interactions with the pistil, hybrid zygote abnormal-
ity, and low hybrid fertility or sterility (Table 3). Lester and Kang (1998) described 

Table 3 Postfertilization barriers identified in plant hybridizations

Plant hybridization Postfertilization barriers References

Wild diploid species × cultivated 
tetraploid cotton Gossypium hirsutum

Sterility of the triploid mainly due to 
ploidy

Konan et al. 
(2020)

Nymphaea odorata “Peter 
Slocum” × nymphaea colorata

Defective embryos were observed in 
embryo development

Sun et al. 
(2018)

Crosses with Kalanchoë nyikae as 
maternal plant × K. blossfeldiana, K. 
blossfeldiana, K. marnieriana

Endosperm degeneration Kuligowska 
et al. (2015)

Evergreen azalea species × 
rhododendron uwaense

Defective endosperm development; 
impaired photosynthetic activity of 
cotyledons due to chlorophyll 
deficiency; death of young seedlings

Okamoto 
and 
Ureshino 
(2015)

Capsicum annuum × capsicum 
baccatum

Embryo death; hybrid weakness 
(necrosis), lack of vigor; hybrid sterility

Martins 
et al. (2015)

Nelumbo nucifera cross 
“Jinsenianhua” × “Qinhuaihuadeng”

Low fecundity attributable to embryo 
abortion in 
“Jinsenianhua” × “Qinhuaihuadeng”

Wang et al. 
(2012)

Reciprocal crosses of Nierembergia 
ericoides × Nierembergia linariifolia

N. ericoides as pollen donor gave rise to 
normal gamete fusion but zygote 
abortions occurred

Soto et al. 
(2012)
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various postfertilization barriers to endosperm or seed development. Some of these 
barriers include embryo malformation or degeneration, endosperm and embryo 
death leading to abortion of ovules, early stage collapse of seeds during develop-
ment, failure of hybridization between diploids, and their own autotetraploids as a 
result of embryo abortion. These barriers can be bypassed with the application of 
embryo rescue techniques (Okamoto & Ureshino, 2015; Sun et  al., 2018). 
Appropriate pollinations or crosses within same species usually give rise to physi-
ologically normal endosperm and embryo and, thus, result in viable seeds. Similarly, 
in some instances, no post-zygotic barriers arise in crosses between individuals of 
different species. In such cases also, the formation of normal zygotes or hybrids is 
achieved.

Nonetheless, instances arise where post hybrid zygote development and 
reproduction turn out unsuccessful. Gametes from different species can in some 
instances hybridize to produce hybrid zygotes, most of which turn out abnormal and 
never reach sexual maturity (Okamoto & Ureshino, 2015). Moreover, cases exist 
where reproduction is successful, and the resulting hybrids reach sexual maturity 
but are usually unable to reproduce. The reason is because an appreciable proportion 
of hybrid embryos turn out sterile and fail to produce viable gametes. In these 
examples, the reproduction of the different species fails because the offspring 
obtained are incapable of passing on their genes to the next generation. It is probable 
that the parents engaged in the hybridization have expended the energy involved in 
pollination and for producing hybrid offspring and yet end up with no transfer of 
their genetic materials to subsequent generations. The fitness of the hybrids is, 
therefore, considered to be zero due to the effect of zygotic barriers in reproduction.

3  Embryo Rescue Techniques and Essence of Application

An embryo in plants is a part of the seed that is formed after double fertilization and 
contains the preform of the plant organs. Embryo rescue and culture involve the 
nurturing of isolated defective hybrid embryos, under suitable sterile in vitro culture 
conditions in order to surmount the inhibiting effects of post-zygotic barriers on 
embryo initiation, growth, and development. Embryo rescue is, therefore, used to 
obtain fertile hybrid plants (Sahijram et al., 2013). Usually, the improper develop-
ment of hybrid endosperm creates defective hybrid embryos from wide crosses. 
These failing embryos are saved from degenerating by isolating the embryo prior to 
its abortion and aseptically culturing the embryo under in  vitro conditions. This 
strategy helps to circumvent the barriers that induce hybridization abortion (Konan 
et al., 2020; Okamoto & Ureshino, 2015; Sun et al., 2018).

In normal seed development, good physiological functioning of the embryo- 
nourishing tissue, the endosperm enables proper embryo development, which 
subsequently culminates into viable seeds. On the other hand, defective 
malfunctioning endosperm causes nutritional starvation which hinders proper 
embryo development and, consequently, gives rise to nonviable plants (Premjet 
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et al., 2019; Sun et al., 2018; Okamotoan Ureshino, 2015). Frequently, endosperm 
resulting from crosses between two distant species or diploids and tetraploids 
hybridizations more often than not fail to properly develop and thus cause embryo 
abortion, degeneration, or nonviable embryos (Konan et al., 2020; Sun et al., 2018). 
Improper development of hybrid embryo usually causes flowers to abort and drop 
due to distinct physiological differences in the parental embryos (Konan et  al., 
2020; Sun et al., 2018; Okamotoan Ureshino, 2015). Furthermore, the release of 
toxic inhibitory metabolic substances from the hybrid endosperm is also known to 
hinder embryo growth (Okamoto & Ureshino, 2015; Sun et al., 2018). Physiologically, 
however, the otherwise defective hybrid embryos indeed have inherent ability to 
start growth and subsequently develop into viable seeds if aided. The embryo rescue 
and culture technique are, therefore, carried out to save and aid the recovery of 
defective hybrid embryos which hitherto would have aborted.

The embryo rescue and culture technique generally involves a careful aseptic 
isolation of immature or mature embryos without injuring the embryos. The isolated 
embryos are then cultured in an appropriate nutrient medium supplemented with 
suitable carbon and inorganic nitrogen sources. The embryo is subsequently nur-
tured under suitable in vitro temperature, light, humidity, and osmotic conditions to 
induce continued embryogenic growth and seedling development into viable plants 
(Fathi & Jahani, 2012) and, thereby, circumventing the hindering influence of 
hybridization barriers. The embryo culture approach has proven very useful in the 
rescue of embryos that would normally abort or fail to follow the normal progres-
sive sequence of ontogeny. The most valuable use of the embryo rescue technology 
has been the success in the development of interspecific and intergeneric hybrid 
plants (Pratap et al., 2021; Kaminski et al., 2020; Yin et al., 2020).

Through embryo rescue, it has been practicable to obtain viable seeds by 
circumventing most of the physiological barriers arising through wide crosses. 
Embryo rescue is used to successfully recover crosses between diploids and 
tetraploid species (Fathi & Jahani, 2012; Pachakkil et  al., 2019). Furthermore, 
embryo culture has also proven to be an effective technique for resynthesizing some 
plant hybrids. The technology has, therefore, been the most effective method of 
valuable gene transfer from wild species. In addition, zygotic or seed embryos from 
embryo rescue have often been used as explants to initiate, for instance, callus 
cultures for crop improvement (Debnath & Arigundam, 2020; Koltunow et  al., 
1996). Over the years, embryo rescue and culture have become an attractive and 
valuable in  vitro tool for plant tissue culture and breeding. Embryo culture has 
enabled the rescue of embryos from interspecific and intergeneric wide crosses as 
well as the achievement of seedless triploid embryos and haploids production. 
Embryo culture has also made it possible to circumvent the effect of germination 
inhibitors and thereby overcome seed dormancy and shortening the breeding cycle 
in some plant species (Fathi & Jahani, 2012). Embryo rescue has aided in bypassing 
germination inhibitions, for example, dormancy or sterility characteristics that are 
linked to the first filial or F1 crossing generation in crop breeding (Pachakkil et al., 
2019). The technique of embryo culture has also been effective in determining seed 
viability and development of plant variety from embryos that more often than not 
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fail to fully develop naturally or the embryo aborts under the inhibiting influence of 
physiological factors.

3.1  Historical Notes on the Embryo Rescue 
and Culture Technology

Embryo rescue application began as early as the eighteenth century. This landmark 
in plant tissue culture is credited to Charles Bonnet who successfully regenerated 
whole plants from hybrid embryos obtained from crosses between Phaseolus and 
Fagopyrum. The procedure he carried out produced plants that were characteristi-
cally dwarf (Sharma et al., 1996). After that success by Charles Bonnet, many other 
plant scientists followed suit by culturing embryos in varied types of nutrient cul-
ture media. The period between 1890 and 1904 saw tremendous advancements in 
the efficiency of embryo rescue and culture techniques. Embryo culture became 
more systematic with the use of precise protocols of nutrient solutions supple-
mented with inorganic salts and carbon energy sources in the form of sugars and 
enhanced by aseptic manipulations (Amanate-Bordeos et al., 1992).

In 1904, Hanning became one of the first to succeed in obtaining viable plants 
in  vitro from mature embryo culture (Hanning, 1904). He aseptically extracted 
mature embryos of two crucifers and cultured the embryos on a growth medium 
incorporated with minerals and sugar. Hanning (1904) described precocious germi-
nation tendencies in the embryos where he observed instantaneous initiation of 
growth in mature embryos, and thus, overcoming dormancy. The precocious germi-
nation characterized embryos developed into abnormal plantlets with small, weak 
architecture and nonviable (Mehetre & Aher, 2004). Subsequently, a successful cul-
ture of embryos of cherry by Tukey (1933) served as one of the very important 
advancements in the embryo rescue and culturing of fruit crops. Another authority 
in the applications of tissue culture whose work contributed greatly advanced the 
field was R. J. Gautheret. He was the first to obtain true plants from tissue cultures 
using cambial tissue of Acer pseudoplatanus (Gautheret, 1934, 1935). That feat at 
the time ushered in various different plant tissue culture procedures. Some of these 
culture methods include embryo culture, anther culture, pollen culture, shoot tip 
culture, root culture, and many others.

One of the early in vitro tissue culture methods that was effectively carried out to 
achieve efficient plant regeneration in crop improvement is embryo rescue. Yeung 
et al. (1981) indicated that embryo rescue is a useful tool for achieving a significant 
shortening in the breeding period by avoiding the delay that arises due to seed dor-
mancy. In addition, embryo rescue is an appropriate approach to apply when the 
investigation of the endosperm and embryo germination involves a destructive anal-
ysis. Hu and Wang (1986) described several crosses that failed due to embryo abor-
tion. Early embryo abortion is associated with failure of the endosperm to properly 
progress into physiological maturity or does not develop at all. The constraint of 
embryo failure or abortion is usually resolved by culturing the embryos in appropriate 
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nutrient medium to aid the embryo bypass post-zygotic barriers within the parental 
plant. Many successful examples of embryo rescue assisted interspecific and 
intergeneric generated hybrid plants have been described (Kaminski et al., 2020; 
Bridgen, 1994). Li et al. (2014) presented an exceedingly efficient procedure for 
hybrid embryo rescue from wide crosses that gave rise to important enhancement in 
effective breeding for disease-resistant trait in seedless grapes. During the past 
decades, embryo rescue or culture has enabled better appreciation of the physiology 
of embryonic development.

Furthermore, embryo rescue has been a very useful tool for bypassing seed 
dormancy to significantly reduce the duration of breeding, assessing seed viability, 
enhancing micro propagation efficiency, and rescuing undeveloped hybrid embryos 
from mismatched hybridizations (Caruso et al., 2020; Uma et al., 2011). To date, 
embryo rescue is extensively applied routinely in several fruit crops, for varied 
objectives, for example, breeding for seedless fruits, triploid plants, and interspe-
cific hybridization. Some of the fruit crops in which embryo rescue has been suc-
cessfully applied include banana (Uma et al., 2011), citrus (Caruso et al., 2020), 
persimmon (Hu et al., 2013), and watermelon (Taskın et al., 2013).

3.2  Types of Embryo Culture Technique

Depending on the histological source from where the embryo explants were 
extracted for culture, two broad classes of embryo rescue techniques termed zygotic 
and somatic embryo culture are practiced. The embryo rescue technique is also clas-
sified as mature embryo culture and immature embryo culture based on the maturity 
level of the isolated explants. The mature embryo culture is used to circumvent seed 
dormancy in order to decrease duration of germination. Immature embryo culture 
on the other hand is carried out to achieve early embryo rescue. Practically, all the 
four broad types of embryo rescue or culture somewhat interconnect.

3.2.1  Mature Embryo Culture

Mature embryo rescue basically involves nurturing in vitro, the growth of mature 
embryos that are isolated out of ripe seeds. Mature embryo rescue or culture is car-
ried out in instances where embryos fail to survive in vivo (Lentini et al., 2020). 
This in vitro procedure is also employed to remove restriction on seed germination, 
which causes seeds to stay dormant for protracted periods. In most plant species, 
seed dormancy is induced by chemical inhibitors in the embryonic tissue (Buteme 
et al., 2021). Another cause of seed dormancy is the effect of mechanical resistance 
created by structures casing the embryo. Some plant species also yield infertile 
seeds due to the defective physiological formation of embryos (Okamoto & 
Ureshino, 2015; Sun et al., 2018). Mature embryo rescue is done by surgically iso-
lating the embryos that are autotrophic, out of the testa of the dormant seed that is 
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at the stage of maturity. In seeds with hard coats, the seeds are first disinfected by 
sterilization and then soaked in sterile distilled water for an appropriate duration, 
which could be a few hours or even days. The soaked seeds are cut open and appro-
priately dissected to remove the embryos. The isolated embryos are then cultured 
using basal inorganic medium with sucrose incorporated as energy source in order 
to circumvent seed dormancy and enable germination (Lentini et al., 2020). Embryo 
rescue protocols may culminate in viable plants. Mature embryo culture is employed 
in instances where seed dormancy of the hybrids is protracted. In cases of poor 
survival of embryos in vivo, the mature embryo culture technique is a useful tool for 
deriving viable seedlings.

3.2.2  Immature Embryo Culture

Embryo culture involving immature explants is also referred to as embryo rescue. 
The embryo rescue approach is also carried out as pre- or post-germinal immature 
embryo culture. Pre-germinal embryo culture is usually performed to regenerate 
plantlets. On the other hand, post-germinal embryo culture is done to boost embryo 
growth and development after germination. The embryo rescue approach funda-
mentally involves in vitro nurturing of immature embryos in order to rescue hybrid 
embryos prone to failure that result from wide hybridizations (Ren et al., 2019). 
Immature embryo rescue also aids to regenerate plantlets, in instances where par-
ents are seedless, or in cases of heavy premature fruit fall during the initial stages of 
embryo development. In addition, the method of immature embryo rescue is applied 
to save seedless triploid embryos. The technique has also proven very valuable in 
the creation of haploids, bypassing of seed dormancy, and estimating of seed viabil-
ity (Lentini et al., 2020). Immature embryo rescue is frequently used to overcome 
embryo abortion in order to create viable hybrid plants. Improper functioning of the 
endosperm usually culminates in malnourishment of the failing embryo. Ren et al. 
(2019) established an efficient immature embryo rescue protocol for the improve-
ment of the plant Ziziphus jujuba.

3.3  Factors That Influence the Success of Embryo Culture

3.3.1  Genotypic Background of Embryo

The genotype of the plant species involved in embryo rescue or culture is a key 
factor that determines the success or otherwise of the technique. In closely related 
or distant cultivars, embryos of some genotypes respond to in vitro culture conditions 
far more effectively and are easier to grow in culture than other genotypes whose 
culture in vitro is more daunting (Rangan, 1984). The ease of achievement of regen-
eration of whole physiologically normal plantlets through embryo culture, there-
fore, differs from genotype to genotype. Vidhanaarachchi et  al. (2016) observed 
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significant differences in in vitro culture germination response in embryos of differ-
ent selected genotypes of coconut. Lu and Bridgen (1996) also reported significant 
effect of parental genotypes on embryo germination, callus, and shoot induction in 
interspecific hybridization of Alstroemeria.

3.3.2  Developmental Stage of the Isolated Embryo

The growth of immature embryos in culture is quite daunting in spite of the 
remarkable progress made and the successes attained in the application of embryo 
culture (Pen et al., 2018). In instances where the abortion or degeneration of the 
embryo sets in very early, embryo rescue turns out to be extremely difficult and 
most often unsuccessful. Practically, an important strategy used to achieve effective 
rescue of immature embryos has been to carry out a technique referred to as the 
embryo-nurse endosperm transplant (Sect. 15.5.2). In this procedure, the immature 
embryo of a species is isolated and placed in the endosperm of a different seed of 
the same species. For instance, a 30–40% survival rate was achieved with the 
implantation method in the hybridization of Hordeum x Secale, compared to one 
percent survival rate using the traditional approach of embryo rescue (Kruse, 1974). 
Invariably, the more mature the isolated embryo, the easier it is to culture in vitro 
and more likely to successfully achieve regeneration of physiologically normal plants.

3.3.3  Composition of the Nutrient Media

One of the essential prerequisites toward any successful embryo rescue undertaking 
is the choice of suitable in vitro culture medium to nurture orderly differentiation 
and development of cultured embryos. The formulation of the culture medium used 
is determined primarily by the nature of embryo culture which could be either pre- 
germinal or post-germinal (Kumari et al., 2018). Pre-germinal immature embryo 
culture is purposely for obtaining plantlets regeneration. In such instances, the 
embryos require a complex nutrient medium. On the other hand, the aim of post- 
germinal immature embryo culture is usually carried out to hasten the development 
of the embryo after germination. Comparatively, post-germinal embryo culture is 
attained with less complex medium which could be as simple as just sucrose or 
glucose solution. Nonetheless, for embryo rescue generally, the culture media com-
position of mineral salts, organic nutrients, or growth regulators may be an impor-
tant consideration and useful for the efficient culture of embryos (Lentini et  al., 
2020; Li et al., 2014). The formulation of the culture medium must take cognizance 
of the developmental phase of the isolated embryo to be cultured. Embryos at a 
heterotrophic phase of development depend on the endosperm and the surrounding 
maternal tissues for nutrients, whereas autotrophic stage embryos metabolically 
produce growth substances required for development (Lentini et  al., 2020; Li 
et al., 2014).
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3.3.4  Growth Temperature and Light Conditions

Light and temperature are environmental factors that have been identified to be very 
important for the efficient culture of embryos (Narayanaswamy and Norstog, 1964). 
Embryo rescue protocols usually have integrated in them a step of incubating 
cultures the in dark for the first 1 to 2 weeks until embryos or calluses appear. The 
embryos are subsequently transferred to appropriate light and temperature condi-
tions to enable the embryo to begin synthesizing chlorophyll (Kumari et al., 2018). 
Compared to intact seeds, it has been realized that isolated embryos frequently ger-
minate, grow, and develop better in a wider temperature range. Narayanaswamy and 
Norstog (1964) explained that the plant species from which the embryo explant was 
taken influences the optimum temperature depending on the plant species from 
which the embryo was obtained. Nonetheless, normally a temperature range as high 
as 25–30 °C is used (Brits et al., 2015). Cultured embryos usually germinate in a 
wider temperature range than whole seeds. Meanwhile, embryos from plant species 
such as Allium require a lower temperature of around 17 °C, whereas in some other 
plant species, cold treatment of 4 °C is usually essential for the establishment and 
growth of embryos in in vitro culture. For example, the growth and development of 
embryos of sweet cherry were significantly enhanced when immature and mature 
embryos were subjected to 40 and 60  days of cold treatment, respectively 
(Hajmansoor et al., 2009).

3.4  Salient Considerations Involved in Embryo Rescue 
and Culture

3.4.1  Determination of Appropriate Embryo Stage for Rescue

Prior to carrying out embryo rescue, it is very useful to determine the physiological 
maturity stage of the embryos to be cultured. It is also helpful to know when abor-
tion sets in for the particular plant species so that the dissection and isolation of the 
embryo can be carried out timely before the embryo degenerates or aborts. One of 
the recommended approaches for determining the stages of development of embryos 
is to make histological sections. Accurate establishment of the embryo development 
stage guides the appropriate medium formulation that is to be used (Haslam & 
Yeung, 2011). It is recommended that preliminary development of an efficient pro-
tocol for the selection of the right embryo development stage is very useful even 
though it could take appreciable time and some financial investment to achieve. 
However, such a tool, once in place, guides subsequent embryo isolation and collec-
tion at exactly the established most competent stage. This greatly enhances the suc-
cess of the embryo rescue.

Another essential consideration in embryo culture is the condition under which 
the mother plant was growing prior to the isolation of the explant for culture 
initiation. The endosperm and the cotyledons have been found to develop more 
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efficiently in cases where the mother plant was maintained under strictly controlled 
environments. Consequently, the embryo growth and development is well pro-
moted. It has been established that the younger the embryo chosen for rescue, the 
more complex the nutritional formulation that is used to sustain its culture and 
growth. Maturing embryos are subsequently transferred to less complex inorganic 
salt culture media (Yeung et al., 2001). Yan et al. (2014), for instance, intimated that 
in cassava, the rescue of embryos should be initiated at immature stages before 38 
DAP, the time when the highest proportion of embryos is at the cotyledonary stage 
with an already fully developed endosperm. At the cotyledonary stage, the embryos 
can be seen and are easier to dissect and isolate from pollinated ovules without any 
damage or injury to the embryos. After 38 DAP, the seeds become too hard, and 
high rate of injury is usually caused to the embryo during the excision and isolation 
procedure (Lentini et al., 2020; Yan et al., 2014).

3.4.2  Embryo Excision Techniques

More often than not embryos are found within the ovule which presents a sterile 
environment. For this reason, carrying out surface sterilization to make the isolated 
embryos aseptic is of no practical value. Instead, in most protocols, the more com-
mon practice is that the florets are removed and the ovules are isolated from the 
ovaries. This is followed by surface sterilization of whole ovules or ovaries. The 
embryo is normally effectively protected from the usually severe surface steriliza-
tion procedures, by the bordering tissues. In plant species such as corn (Zea mays 
L.), to assess the embryo, it is required that hard seed coats are broken. Furthermore, 
in some cases, endophytic pathogens may be present in the seed coats. For plants 
with such type of seeds, direct disinfection of embryos by sterilization is necessary 
in order to establish an aseptic culture. The surface sterilization procedure of the 
entire ovules or ovaries is followed by aseptic excision and isolation of embryos 
from the ovules or ovaries and surrounding tissues. The dissection and excision of 
large embryos pose little difficulty.

However, to isolate small embryos without injury, appropriate tools are used to 
carry out micro-excision and isolation procedure aided by a dissecting microscope. 
It is precautionary worthy to note that embryos are quite fragile when the seed coat 
is broken. In addition, another essential precaution is that isolated embryos must not 
be subjected to desiccation during in vitro culture (Rangan, 1984). The technique or 
protocol for efficient isolation of immature embryos is usually tailored specific for 
the particular plant species. However, quite often, incision of the immature ovule is 
targeted at the micropylar end, and with exertion of appropriate pressure at the other 
end, the embryo is released through the incision. In applying the pressure, caution 
must be exercised not to injure the delicate embryonic tissue. Hu and Wang (1986) 
indicated that in the isolation of heart-stage or immature embryos, it is essential that 
the suspensors are not damaged or impaired to boost the growth and development of 
the embryos in culture. For the rescue of mature embryo, usually isolated seeds that 
are physiologically mature are decontaminated or disinfected by surface steriliza-
tion prior to embryo isolation.
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3.4.3  Media Manipulations for Efficient Embryo Culture

Raghavan (1966) described the two main stages of embryo development as 
heterotrophic and autotrophic. In the heterotrophic phase, the immature embryo 
relies primarily on the endosperm and the neighboring maternal tissues. During this 
phase, the young embryo requires a medium with more complicated media 
composition and osmotic potential that is higher than required for mature embryos. 
As the initially immature embryo further grows in culture, its efficient development 
is promoted by culturing it on complex media augmented with appropriate 
combinations of amino acids, growth hormones or regulators, and vitamins. In 
addition, the incorporation of plant extracts, for example, coconut milk, also helps 
embryo development. At the autotrophic phase, the embryo is physiologically more 
mature. During this stage, the embryo is metabolically able to synthesize most 
essential biomolecules needed to support its growth and development using available 
salts and sugar. The embryos at this stage are now capable of germination and 
development on basic inorganic medium augmented with as sucrose a carbon source.

The choice of the appropriate culture medium and growth conditions is some of 
the most essential considerations for a successful embryo rescue procedure. The 
application of suitable culture conditions enables effective physiological growth of 
the embryo, its maturation, and regeneration into whole plants. A key factor in a 
successful embryo rescue is the optimal composition of the culture medium used. 
The optimal medium nutrient composition depends on the embryo stage, and the 
medium constituents vary during the development process of the embryo. The two 
extensively used basal media are the Murashige and Skoog (1962) and Gamborg’s 
B5 medium (Gamborg et al., 1968), usually applied with some appropriate modifi-
cations to enhance efficient embryo culture growth. The required complexity or 
stringency of the media composition or growth conditions used is influenced by the 
level of maturity of the target embryo for rescue. In this regard, it has been success-
ful to grow mature embryos using basal salt media with sucrose as an organic car-
bon source of energy. However, for immature embryos, in addition to the basal salt 
media and sucrose, different vitamins, amino acids, and growth regulators are incor-
porated in the culture medium. Varied compositions of mineral salts are incorpo-
rated in order to manipulate the growth of embryo cultures. In many protocols of 
embryo rescue and culture, amino acids and amino acid complexes such as casein 
hydrolysate as well as the vitamins, biotin, thiamine, pantothenic acid, and nicotinic 
have been widely used as additives in culture media to promote the development of 
the embryo. The various amino acids are also important components of culture 
media. Generally, the use of malic acid and trace amounts of organic nitrogen, for 
example, asparagine, glutamine, or casein hydrolysate, have often been observed to 
be useful. Pawar et al. (2015) reported that proline and glutamine improve in vitro 
callus induction and subsequent shooting in rice.

Sucrose is also a very important component in embryo culture media and serves 
two main purposes. The primary energy source in culture media is sucrose. Another 
important role of sucrose is that it stabilizes and maintains appropriate osmotic 
potential of the culture medium. Usually, mature embryos and immature embryos 
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are cultured on media with 2–3% sucrose concentration. Immature embryos are 
commonly cultured on media with high sucrose concentration between 8% and 
12%, which in principle mimics the high osmotic potential of the embryo sac’s 
intracellular environment and conditions. It has been found that generally, the more 
immature the isolated embryo, the higher the osmolarity condition required in the 
culture medium to promote growth and development of the embryo. Reinert et al. 
(1977) observed that high osmolarity inhibits precocious germination and prevents 
dividing cells from switching into a state of elongation. Moreover, the high osmotic 
environment together with the addition of hormones such as auxin and cytokinin in 
moderate amounts promotes the development of heart-stage embryos (Din et al., 
2016). Mature embryos have been found to grow well on semisolid medium supple-
mented with only Knop’s mineral salts and 2–5% sucrose. Generally, the most 
effective sources of inorganic N in media for embryo cultures have been ammonium 
nitrate and potassium nitrate. Essentially, ammonium boosts appropriate growth and 
differentiation of immature embryos in culture (Umbeck & Norstog, 1979). 
Ammonium is often incorporated together with mainly malate or citrate anions as a 
source of organic acid. The use of natural plant extracts as media constituents has 
also been found useful in attaining greater recovery of growth and development of 
embryos. The commonly used natural extract from plants is coconut milk. Similarly, 
tomato juice and extracts of banana are also useful in culture media.

The incorporation of plant growth regulators in embryo culture media generally 
plays significant role in boosting embryo growth and development (Ming et  al., 
2019). However, it must be noted that high concentrations of exogenous auxins 
appear to induce inhibitory effect on plant embryo growth in vitro (Din et al., 2016; 
Manzur et al., 2014). Therefore, the induction of somatic embryo is better stimu-
lated rather by low concentrations of exogenous auxin in the culture media. 
Exogenous use of growth regulators such as kinetin (Kin), benzyl-amino-purine 
(BAP), and naphthalene acetic acid (NAA) or thidiazuron (TDZ) improved regen-
eration frequency (Din et al., 2016). Similarly, high levels of cytokinins, for exam-
ple, zeatin, have been found to only slightly promote young embryo growth, when 
used as the sole media hormone additive (Manzur et al., 2014). Auxins and cytoki-
nins are, therefore, not generally used for embryo culture except in cases where the 
aim is to induce callus. However, some cytokinins and auxins combinations show 
better performance in boosting the growth and differentiation of embryos (Din 
et al., 2016). It has been found that hormones induce plant architectural abnormali-
ties when included in an embryo culture media. For example, gibberellins in some 
cases stimulate precocious germination (White et al., 2000). Therefore, the use of 
hormones in media for embryo cultures is generally avoided or used with precaution.

Commonly, in the preparation of embryo rescue media, agar at 0.5–1.5% is used 
as the main solidifying agent (Hu & Wang, 1986). Higher concentrations of agar 
hold less water and likely presence of higher contaminating salts. The use of higher 
concentrations of agar is, therefore, not recommended because that could inhibit 
growth. Alternatively, Pinto et al. (1994) successfully used a vermiculite support 
system for small embryos obtained at fruit maturity. As earlier explained in Sect. 
3.4, light and temperature conditions are very essential considerations in the 
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technique of embryo culture. Light regulates cell division and rate of ethylene 
emission, a factor that affects caulogenesis—shoot initiation and rhizogenesis—
root initiation. Timing and duration of exposure of explants to light play a vital role 
in the morphogenesis of embryos. In most species, the embryo stops growing 
between one and two weeks after inoculation. The embryos are then moved on to 
another medium with regular sucrose concentration as well as low levels of auxin 
and cytokinin in order to cause the embryo to regain growth and direct shoot 
initiation. In cases where the embryo fails to grow shoots directly, callus induction 
is performed followed by shoot induction and then eventually the development of 
plantlets in vitro. The plantlets are weaned on soil treated to become sterile and 
nurtured to develop under greenhouse conditions.

3.5  Major Embryo Rescue and Culture Procedures

3.5.1  Rescue and Culture of Embryos

Usually, hybrid embryos obtained from interspecific and intergeneric crosses turn 
out to be defective and more often abort at a point during development or yield 
nonviable seeds (Araujo et al., 2021; Hristova-Cherbadzhi, 2020). Embryo rescue is 
used to resolve this constraint of failure in embryo development or abortion follow-
ing hybridization. Embryo culture serves as a tool of great value to plant breeding, 
particularly in interspecific hybridization (Hristova-Cherbadzhi, 2020). The tech-
nique of embryo culture serves as a very effective and useful means of creating 
normal hybrid plants and producing viable seeds. Usually, seeds of fruits obtained 
from controlled pollination of plants are collected at an appropriate stage in order to 
avoid the period embryo abortion is known to set in. The embryo rescue procedure 
is achieved by the excision of the embryos from the harvested seeds and placing the 
embryos directly onto an appropriate culture medium (Buteme et al., 2021; Kuang 
et al., 2021).

Embryo culture is undertaken in various forms to achieve different objectives. 
The seeds of some plant species, for example, orchids, lack nutritious tissues and 
are without plumule and radicle. In such irregular type of seeds, the strategy has 
been to culture whole seeds with intact undifferentiated embryos. In a similar tech-
nique, intact mature embryo culture and manipulations are carried out to enhance 
embryonic growth and to track the metabolic and biochemical interactions involved 
in overcoming seed dormancy and inducing germination. Moreover, instead of 
directly culturing the intact mature embryo, the embryo could be surgically excised 
into various segments and cultured in vitro on suitable media to enable the monitor-
ing of the physiological processes that come to play as well as the growth of the 
different parts of the mature embryo (Buteme et al., 2021; Konan et al., 2020). In 
addition, the culture of immature embryos is also a common procedure that involves 
mainly in vitro culture of globular or heart-shaped embryo development phases in 
appropriate nutrient medium to enable the differentiation and progressive 
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development of embryos (Buteme et  al., 2021. Furthermore, in species such as 
lemons or oranges, embryos that result from nuclear tissue are more often defective 
and abortive. This challenge is overcome by culturing the embryos under artificial 
conditions and manipulated to attain clonal propagation. In such approach, 
adventitious embryos are in vitro cultured from polyembryonic seeds.

3.5.2  Embryo-Nurse Endosperm Transplant Method

It is often practically daunting to isolate defective immature or very tiny hybrid 
embryos that abort at the initial stages of growth. Besides, the initiation of such very 
small hybrid embryos for growth in vitro is quite challenging. Therefore, usually in 
handling very tiny or immature hybrid embryos, a specialized technique referred to 
as the embryo-nurse endosperm transplant method has often been used to improve 
success of the embryo culture (Shukla, 2016). In other instances, the hybrid embryo 
may be physiologically normal; however, the ovule may have a defective or imma-
ture endosperm which fails to serve as an important source of nutrition to the hybrid 
embryo. The embryo-nurse endosperm transplant technique involves a combination 
of a hybrid embryo resulting from a hybridization that is not compatible and a nor-
mal endosperm developed from a cross of related plant species that is compatible 
(Widiez et al., 2017). In this process, usually the small or very immature hybrid 
embryo is surgically inserted into an endosperm that has been extracted from a nor-
mal ovule of one of the parents crossed to produce the hybrid embryo, or alterna-
tively, the normal endosperm is obtained from a different species (Shukla, 2016). 
The endosperm transplant technique is used mainly for rescuing immature embryos.

Basically, a hybrid embryo is excised from an ovule that is enclosed by an 
endosperm whose development has failed and degenerating (Fig. 2a). Next, from a 
normally developed endosperm, the ovule is dissected, and the normal embryo is 
taken out. This procedure creates a normal endosperm with an exit hole. The hybrid 
embryo is passed through the exit and placed into the endosperm (Fig. 2b). This 
procedure results in embryo-endosperm transplant that is subsequently transferred 
together and cultured on an appropriate in vitro medium (Williams et al., 1982). 
Typically, the embryo of an interspecific hybridization can be transplanted by insert-
ing into an endosperm arising from an intraspecific hybridization that involves one 
of the parental species. Many interspecific and intergeneric plants have been 
obtained using the technique of embryo-endosperm transplant. Furthermore, modi-
fications of the nurse endosperm technique, for example, embryo implantation or 
embryo transplantation, are employed in many different plant species. Embryo res-
cue via embryo-nurse endosperm transplants could enable about 30% recovery in 
wide hybridizations, compared to instances where the technique is not deployed 
(Shukla, 2016).
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Fig. 2 Steps involved in the embryo-nurse endosperm transplant technique. (a) Isolation of hybrid 
embryo from ovule with defective endosperm resulting from wide hybridization as well the isola-
tion of normal embryo from normal ovule of foster plant species with physiologically functional 
endosperm. (b) Transplant of hybrid embryo into the normal ovule with physiologically normal 
endosperm and generation of hybrid plant through in vitro culture
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3.5.3  In Vitro Ovary Culture

Ovary culture entails culturing the entire ovary in a culture medium. In an ovary 
culture procedure, ovaries are collected by isolating the ovaries followed by the 
removal of any remaining flower parts (Li et  al., 2020). Pollinated ovaries are 
extracted by the removal of calyx, corolla, and stamens. The ovaries are then disin-
fested by surface sterilization to eliminate contaminants cautiously by avoiding 
damage to the ovaries. The ovaries are subsequently inoculated in culture medium 
and oriented such that the cut pedicle section is positioned direct contact with the 
culture nutrient medium (Ramming et al., 2003). The ovary culture is nurtured by 
varying in vitro conditions and monitoring the progress of culture growth toward 
eventually producing plants that will bear fully developed fruits with viable seeds. 
Typically, ovule culture involves surgically opening disinfected ovary to release the 
ovule. Comparatively, there is higher success rate of obtaining hybrid plants from 
the culture of ovary or ovule than from embryo culture (Lentini et al., 2020). The 
reason may likely be due to nutritional disparities and physical causes such as the 
protective influence of maternal or sporophytic tissues on the embryo.

3.5.4  Ovule Culture Technique

Ovule culture is an approach in which the entire ovule containing the ovaries is 
excised and placed onto an appropriate culture medium (Li et al., 2020). The advan-
tage of this approach is that the likely damage to the embryo that may arise during 
the excision of the embryo is avoided (Lentini et al., 2020). Generally, ovule culture 
is either supported on filter paper and vermiculite support systems. In the filter paper 
technique, the ovule is cultured using filter papers positioned over liquid medium 
(Ramming et al., 2003). On the other hand, the vermiculite support method is car-
ried out by placing in an orientation such that the micropylar section of the ovule is 
placed down making contact with a sterile vermiculite support.

3.5.5  Ovary and Ovule Slice or Perforation Procedure

In the ovary slice culture technique, transverse sections of ovaries are cut with a 
sterilized scalpel. The basal cut end of the sections is then placed in direct contact 
with the culture medium (Shukla, 2016). The ovary-slice culture technique is con-
sidered more efficient, less laborious, and takes less time than ovary culture or ovule 
culture. In the ovule perforation method, tiny holes are carefully created in the ovule 
using needles without damaging the embryos. The ovule perforation procedure is 
usually performed just before the ovule is placed on the culture medium. The tiny 
perforations enhance increased water and nutrient permeability and uptake by the 
ovule, thus stimulating embryo development (Pinto et  al., 1994). It has been 
observed that surgically slicing the ovule also boosts embryo growth, probably 
because such a procedure enables better culture medium and embryo nutrient 
exchange.
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3.6  Applications of the Embryo Rescue Technique

3.6.1  Overcoming Seed Dormancy

Embryo rescue and culture serves as a very important strategic approach for 
overcoming seed dormancy (Pramanik et al., 2021). Seeds of several plant types 
undergo conventional dormancy where seed germination is inhibited by some 
hormones in seeds containing the embryo. In some plant species, the seeds remain 
dormant for a very long period without initiating germination. Some seeds may, 
however, germinate extremely slowly, or in some cases, the seeds fail completely to 
germinate even in normal conditions. A number of factors have been implicated in 
diverse plant species to be responsible for inducing seed dormancy. Some of these 
seed dormancy- inducing factors include influence of endogenous inhibitors, specific 
temperature, humidity, or light requirements during seed storage and state of embryo 
maturity (Brits et al., 2015). Seed dormancy-causing factors particularly endogenous 
inhibitors of seed germination, for example, certain plant hormones, may be 
contained within the seed coat, the endosperm, or present in both locations.

The embryo rescue and culture strategy for bypassing dormancy, therefore, 
involves the exclusion of the dormant embryos from the effects of the germination 
inhibitors in order for the embryos to sprout and develop rapidly. The embryo res-
cue protocol for inducing germination of dormant embryos is usually formulated to 
provide the appropriate culture media composition, growth hormone combinations 
and culture temperature, and light or humidity environment to enable embryo ger-
mination and proper growth (Mohapatra & Rout, 2005). Burgos and Ledbetter 
(1993) employed embryo rescue and culture successfully in an apricot to obtain 
higher proportion of seedlings. Similar result was achieved by Balla and Brozik 
(1993) to circumvent seed dormancy in sweet cherry. Efficient protocols have been 
established for successful embryo rescue in several plant species.

3.6.2  Shortening of the Breeding Cycle in Plants

In some plant species, the embryo requires sufficient time to reach physiological 
maturity in order to break seed dormancy which in some species could be so long as 
to cause significant extension in the breeding cycle. Generally, seedlings fail to 
develop immediately after fruit ripening. Examples of crops in which the seeds do 
not germinate soon after fruit ripening include apples and oil palm. In such fruit 
crops, the embryo rescue approach has been used to reduce the breeding period by 
circumventing germination seed dormancy. Dormancy-induced delay in germina-
tion has been significantly reduced and shortened the breeding cycle from years to 
a few months by extracting the embryos out of the control of dormancy-inducing 
factors which are localized in the seed coat and endosperm, or both. Embryo rescue 
has been the most effective practical approach to freeing the embryos from 
dormancy- inducing factors in various horticultural crops. Removal and in  vitro 
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nurturing of immature embryos on appropriate culture medium enable germination 
in a short time and, therefore, reduce the breeding cycle (Fathi & Jahani, 2012). 
Shortening the breeding cycle enables the plant breeder to obtain many more gen-
erations of a crop per year.

Embryo rescue has been a very useful technique for shortening the breeding 
cycles in apple by achieving good germination via reduction in the duration of seed 
dormancy. The technology of rescuing embryos in culture has also aided a very 
effective and efficient increase in the germination rate of mature seeds in ripening 
fruits such as sweet cherry by between 30% and 60% (Fathi et al., 2002). Similarly, 
Tamaki et al. (2011) succeeded in shortening the duration of the breeding cycle of 
Carica papaya varieties by roughly three months, assisted by embryo rescue and 
culture breeding techniques.

3.6.3  Overcoming Embryo Abortion

Embryo abortion arises mainly through the malformation of the endosperm of the 
seed to properly develop into a physiologically normal nutritive tissue around the 
embryo (Berger et al., 2006). Embryo abortion is a major constraint that limits the 
effectiveness of conventional plant breeding and improvement in some plant spe-
cies. This challenge to conventional breeding work exists because, more often than 
not, interspecific and intergeneric hybridization of diploids versus tetraploids results 
in endosperms that usually develop defectively or not at all. In this regard, embryo 
abortion is prevented by the application of the embryo rescue and culture approach 
to generate whole plants using in vitro culture protocols (Reed, 2005). The embryo 
rescue method has been very valuable in conventional breeding and crop improve-
ment, in the effective rescue of young embryos resulting from intraspecific and 
intergeneric hybrids that usually yield seeds that are not viable (Table 4).

Generally, post-zygotic barriers such as developmental failure of defective 
endosperm are effectively circumvented by extracting the embryos out of the ovule 
and nursing them aseptically in culture on appropriate nutrient medium to develop 
and grow into whole physiologically normal plants. Yang et  al. (2007) rescued 
triploid hybrid embryos from intraspecific hybridization in grape varieties using 
in vitro culture. Similarly, Guo et al. (2011) also used rescue of hybrid embryos in 
obtaining triploid grapes from the hybridization of diploid and tetraploid varieties. 
Furthermore, via embryo rescue procedures and manipulations, Zhiwu et al. (2009) 
obtained plants from young triploid hybrid embryos developed from intraspecific 
hybridization involving diploid and tetraploid crosses in daylily (Hemerocallis). In 
seedless mandarin oranges, embryo rescue and culture techniques were used to 
achieve the production of triploid plants (Aleza et al., 2012). Peach, cherry, apricot, 
and plum commonly yield nonviable seeds, and particularly, the early ripening 
varieties have been found to often fail to germinate even when exposed to natural or 
favorable conditions. Seed sterility which is usually caused by incomplete embryo 
development in the seeds of these crop varieties is often resolved by employing the 
technique of embryo rescue and culture to assist in germination and plant 
regeneration (Bohra et al., 2016).
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Table 4 Achieved improvement in various plants through distant hybridization

Plants Achieved improvement Distant hybridization References

Common 
bean

Disease-resistant 
germplasm

Crop wild relatives crosses with 
Phaseolus vulgaris

Pratap et al. 
(2021)

Blueberry Marketable-related traits 
size, firmness, acidity, 
soluble solids, weight, 
and yield

Vaccinium elliottiii × commercial 
blueberry germplasm

Cabezas 
et al. (2021)

Chickpea Three superior cultivars 
have been developed

Cicer arietinum × Cicer reticulatum Pratap et al. 
(2021)

Brassica Good seed set Brassica oleracea × brassica napus Kaminski 
et al. (2020)

Cotton Tolerance resistance to 
the fungus, Verticillium 
wilt

Gossypium herbaceum × Gossypium 
nelsonii

Yin et al. 
(2020)

Mungbean 
and urdbean

Resistance to vagaries, 
biotic and abiotic, 
synchronous podding, 
non-shattering pods

Vigna radiata × Vigna mungo Pratap et al. 
(2019)

Lentil Short-duration 
biofortified pre-bred 
lines

Crop wild relatives crosses with Lens 
culinaris

Kumar et al. 
(2018)

Chickpea Higher pod numbers and 
earliness

Cicer reticulatum and Cicer 
echinospermum hybridized with 
cultivated varieties

Singh et al. 
(2018)

Brassica Black rot resistance Brassica carinata × brassica oleracea Sharma 
et al. (2017)

Rice Improved yield 
component traits

Crosses involving six “AA” rice genome 
species: Oryza glaberrima, Oryza 
barthii, Oryza nivara, Oryza rufipogon, 
Oryza longistaminata, and Oryza 
glumaepatula

Bhatia et al. 
(2017)

Rice Saline-tolerant Spartina 
rice crop

Rice♀ × Spartina ♂ Chen et al. 
(2016)

Wheat Enhanced the aluminum 
tolerance pentaploid 
hybrids

Triticum aestivum × Triticum turgidum 
spp. durum

Han et al. 
(2016)

Brassica High yield and short 
duration

Brassica oleracea × brassica rapa Karim et al. 
(2014)

Cowpea Photo- and thermo- 
period insensitive

Vigna umbellata × Vigna glabrescens Pratap et al. 
(2014)

Pigeon pea Different cytoplasmic 
male sterility genes 
transferred

Crop wild relatives crosses with Cajanus 
cajan

Saxena et al. 
(2010)

Pepper Anthracnose resistance Capsicum baccatum × capsicum 
annuum

Yoon et al. 
(2006)
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3.6.4  Development of Plants in Seedless Varieties

In many seedless varieties, for example, grapes, the embryo ceases to develop 
postfertilization leading to failure of physiologically normal seed formation, a 
phenomenon known as stenospermocarpy (Picarella & Mazzucato, 2019). The 
constraints associated with stenospermocarpy render conventional breeding 
methods inefficient in the improvement of seedless varieties (Costantini et al., 2021; 
Picarella & Mazzucato, 2019). The technique of in ovulo embryo rescue was, 
therefore, developed and widely applied to rescue naturally immature, weak, or 
defective aborting embryos, with the ultimate aim of producing progeny from the 
hybridization of seedless parents. Typically, in ovulo embryo rescue is carried out 
by aseptically isolating the defective embryos surgically from ovules and 
manipulating the in vitro culture media and conditions until eventually plantlets are 
formed. However, in some cases, it has been practically very difficult to isolate the 
embryos out of the ovules. In such instances, the whole ovule containing the embryo 
is cultured (Sharma et al., 1996).

Seedless varieties in some crops are developed mainly via parthenocarpy and 
stenospermocarpy (Costantini et  al., 2021; Picarella & Mazzucato, 2019; Pratt, 
1971). In grapes, the large berried seedless ones are developed more often by 
manipulating stenospermocarpy and less from parthenocarpy (Costantini et  al., 
2021; Picarella & Mazzucato, 2019; Stout, 1936). Cain et al. (1983) were the first to 
employ embryo rescue in seedless grapes development. Later, the efficiency of the 
method was optimized for application in other crops (Kumari et al., 2018; Singh 
et al., 2011). It is now quite routine to grow rescued embryos into whole plants. 
Improvement in seedless lime has also been achieved with embryo rescue and cul-
ture techniques (Prasad et al., 1996). Embryo rescue has also enabled the generation 
of plants from triploid embryos obtained from diploids crossed with tetraploids of 
the same plant species.

3.6.5  In Vitro Vegetative Propagation of Plants

Embryo culture has also proven very valuable in vegetative propagation of plants. 
The embryos of some plant genera exhibit both juvenile and mature physiological 
characteristics. The embryos of such genera are usually used as initiation explants 
for vegetative propagation (Naing et al., 2019). The juvenile state of these embryos 
is more practically exploited because the embryos in this state are most responsive 
to manipulations for efficient vegetative propagation (Debnath & Arigundam, 
2020). For instance, in the Poaceae, compared to mature callus tissue, juvenile cal-
lus gives rise to organogenesis easier. A similar observation was made in the propa-
gation of conifers using immature calli produced via young embryos (Bornman, 
2002). In this example also, comparatively, axillary shoot generation was found to 
be easier with juvenile calli. The major challenge associated with this approach, 
however, is that the resulting clones are more often not derived out of zygotic 
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materials. Nonetheless, in cases where embryos form from nucellar tissue, as 
observed in citrus, zygotic embryos could serve as the basis for generated clones 
(Koltunow et al., 1996).

3.6.6  Germplasm Conservation: Preservation of Embryos and Regrowth

Somatic embryos are a very convenient form of tissues for medium- and long-term 
in vitro conservation, preservation, and micropropagation (Danso & Elegba, 2017; 
Danso & Ford-Lloyd, 2002). Generally, in vitro conservation of embryos is achieved 
by inducing growth reduction in the tissues in order for the embryo to enter and stay 
in a dormant state for a period. Growth reduction for medium-term conservation is 
carried out via manipulating the growth temperature, humidity, and in vitro culture 
medium conditions (Cruz-Cruz et al., 2013). However, in long-term embryo preser-
vation and conservation, reduction in the rate of embryo growth is achieved at very 
low temperature by storing the embryos in liquid nitrogen at −196 °C, a technique 
termed cryopreservation (Danso & Ford-Lloyd, 2002; Jaisankar et al., 2018). The 
successive actions of the process of cryopreservation of embryos are carried out 
under precise conditions which are usually determined for each type of material to 
be preserved and conserved. For the practical use of preserved embryos, after the 
required medium- or long-term period of storage, the preserved embryos are 
regrown into whole plants (Shukla, 2016).

In direct regrowth of the stored embryos in a nursery or through direct planting, 
the culture medium is manipulated essentially to bypass any secondary callogenesis 
or embryogenesis or both. The ability of the preserved embryos to grow into physi-
ologically normal plants is dependent on the embryo size and the maturity of the 
mother plants that donated the preserved embryos (Tessereau et al., 1994). Protocols 
and procedures of cryopreservation have been established for many crops of food, 
medicinal, and industrial value (Cruz-Cruz et al., 2013; Reed, 2011). One of the 
pioneering extensive uses of cryopreservation involved the conservation of somatic 
embryos of oil palm (Palanyandy et al., 2020). In coconuts, it is very cumbersome 
to transport whole nuts due to the weight and requirement for huge cargo space on 
flights or ships. It is, therefore, mandatory to internationally exchange germplasm of 
coconut in the form of embryo cultures or embryos containing endosperm plugs 
(Lédo et al., 2017). Besides, embryos serve as disease free and safest materials for 
cryogenic storage and preservation. Development of seedlings from in vitro embryo 
culture prevents pests and diseases introduction and spread (Tegen, 2016). It has 
been possible to directly regrow frozen-thawed embryos into carrot and coffee 
plantlets. Large-sized cryopreserved embryos of some plants usually do not survive 
cryopreservation; however, Tessereau et al. (1994) found that large carrot embryos 
could survive cryopreservation. Utami et  al. (2017) reported an efficient embryo 
rescue or culture procedure for obtaining plantlets in the medicinal orchid 
(Dendrobium lasianthera) using mature seed culture.
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3.6.7  Homozygous Monoploid Production

Embryo culture is a useful tool for creating haploids via chromosome elimination 
after wide hybridization has been carried out. Usually, in some instances, fertiliza-
tion takes place, but the chromosomes of the pollen-donating parent are later in the 
process, removed by the seed parent (Dresselhaus et al., 2016). Such cases give rise 
largely to nonviable haploid embryos. Viable haploid embryos and haploid plants 
production are, therefore, achieved through the in vitro rescue of haploid maternal 
embryos that have the paternal chromosomes removed (Seguí-Simarro et al., 2021). 
Subsequently, the maternal chromosomes are doubled using colchicine treatment of 
the rescued embryos to create homozygous monoploid embryos which eventually 
develop into monoploid plants (Chase, 1969; Mehetre & Thombre, 1980). 
Monoploid embryo induction and plant regeneration serve as a very useful tool in 
plant breeding. Monoploids are more often than not obtained through the manipula-
tion of mainly embryo and anther cultures (Chaikam et al., 2019). Monoploids are 
considered to present valuable advantages and serve as one of the best materials for 
breeding-related studies and crop improvement (Hooghvorst et al., 2020).

4  Conclusion

The embryo rescue technology presents a huge potential for the generation of 
interspecific and intergeneric hybrids with desired traits. Various salient aspects of 
embryo rescue technique in plant breeding and improvement through wide hybrid-
izations have been elucidated. In addition, some of the current successful achieve-
ments in the improvement of agronomic traits using embryo rescue or culture 
emphasize the usefulness of the technique. This informative review will serve as a 
valuable resource that will enable a better understanding and more effective use of 
the embryo rescue technology to quicken the development of superior-performing 
plants and boost the sustenance of food and nutritional security.
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Abstract Smoke derived during fire is well known as a growth regulator, and com-
pounds derived from smoke solution have a role in plant physiological, biochemi-
cal, and molecular processes. The presence of karrikins in plant-derived smoke 
solution has established its positive effects on seed germination and seedling growth 
in different plant species. Plant-derived smoke positively triggers various growth 
characteristics such as photosynthesis, secondary metabolites, total soluble protein, 
and sugar content. Molecular processes in plants at the cellular level are regulated 
by plant-derived smoke under normal and stressed conditions, which highpoint the 
smoke as an effective growth regulator in optimal and suboptimal conditions. Plant- 
derived smoke is an important biological agent, likely to be used in weed control, 
crop improvement, habitat restoration, and establishment of new plant communities 
because of its eco-friendly nature. This review highlights the proteomic, biochemi-
cal, and molecular effects of plant-derived smoke on seed germination and 
plant growth.

Keywords Proteomics · Omics · Biochemical effect · Plant-derived smoke · Plant 
growth · Seed germination

S. U. Rehman 
Department of Biology, University of Haripur, Haripur, Pakistan 

A. Khatoon 
Department of Botany, Kohat University of Science & Technology, Kohat, Pakistan 

M. M. Aslam 
Department of Botany, University of Science & Technology Bannu, Bannu, Pakistan 

M. Jamil 
Department of Biotechnology & Genetic Engineering, Kohat University of Science & 
Technology,  
Kohat, Pakistan 

S. Komatsu (*) 
Department of Applied Chemistry and Food Science, Fukui University of Technology,  
Fukui, Japan
e-mail: skomatsu@fukui-ut.ac.jp

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Raina et al. (eds.), Advanced Crop Improvement, Volume 2, 
https://doi.org/10.1007/978-3-031-26669-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26669-0_16&domain=pdf
mailto:skomatsu@fukui-ut.ac.jp
https://doi.org/10.1007/978-3-031-26669-0_16


458

1  Introduction

Fire has long been reported to increase seed germination and the regrowth of vege-
tation thus preserving and promoting the species diversity (de Lange & Boucher, 
1990). There are many fire-related factors which are involved in the elicitation of 
seed germination process (van Staden et al., 2000). Of these, light, soil moisture, 
and nutrients availability in the soil are the indirect fire-related factors which 
enhanced see germination (van Staden et  al., 2000). Fire and fire-related cues 
including smoke were considered as germination stimulants in postfire environ-
ments (Paul et al., 2007; Baldwin & Morse, 1994). Plant species belonging to fire-
prone environment mostly showed positive responses to smoke, a postfire product 
(Todorovic et  al., 2005). Seeds of Audouinia capitate were reported to show a 
remarkable enhancement in germination under natural conditions only after expo-
sure to smoke in postfires (de Lange & Boucher, 1990). Seed germination process 
was also enhanced in various plant communities like the Mediterranean South 
Africa (Light et al., 2002; Brown et al., 2003) and Californian chaparral (Egerton-
Warburton, 1998; Keely & Fotheringham, 1998) in response to smoke. The com-
pounds in smoke were reported to be thermostable, water soluble, and active at low 
concentrations (Flematti et  al., 2004). These findings initiated a new prospect to 
consider the postfire products as the germination cue and provided a baseline to 
isolate compounds from plant-derived smoke and determine the nature of 
compounds.

The mechanism of plant-derived smoke action is not fully known; however, 
based on existing investigations, it is elucidated that the intense chemical scarifica-
tion at the seed surface may lead to the plasticization of external cuticle forming 
numerous small spheres thus altering the permeability of the internal cuticle 
(Egerton-Warburton, 1998). A significant increase in both the number and size of 
the channels in the sub-testa cuticle showed that these modifications are directly 
associated with the breaking of seed dormancy (Egerton-Warburton, 1998). Smoke 
mechanically influences the seed coat scarification, which facilitates imbibition pro-
cess (Light et al., 2009). Taking plant-derived smoke as a vital seed germination 
agent having thousands of active compounds positively effecting plant growth, the 
actual mechanism couldn’t be inferred at once. However, it is unanimously believed 
that plant-derived smoke enhance seed germination by (i) the compounds present in 
smoke solution soften seed coat, (ii) increase nutrients supply to seeds, and (iii) trig-
ger the signals related with stimulation of seed germination (Roche et al., 1997). 
Highly complex and diverse nature of active molecules in smoke makes the response 
mechanism of treated plants even more multifaceted to be traced and explored. 
Numerous genomic and post-genomic profiling approaches are thought to be 
required to trace how plants perceive smoke signals and initiate the series of germi-
nation and post- germination associated responses (Bose et al., 2020). Keeping in 
view above facts, the secret behind these responses requires a “multi-omics” appli-
cation and integrating the multi-omics datasets to understand KAR signaling associ-
ated with germination, post-germination, and stress tolerance responses of plants.
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In addition, plant-derived smoke is also known for its stimulatory role in post- 
germination plant growth by positively affecting various physiological processes. 
The seedling of kangaroo grass treated with smoke grew more vigorously without 
any abnormalities (Baxter et al., 1994). Plant-derived smoke has a positive influence 
on seedling growth of several plants (Khatoon et al., 2020). Plant-derived smoke 
solution increased photosynthetic pigments (Akeel et  al., 2019), ionic contents 
(Jamil et  al., 2014), CO2 concentration, and stomatal conductance (Zhou et  al., 
2013). Plant-derived smoke improved plant growth by mediating the total soluble 
sugar, nitrate, and flavonoid contents (Zhou et  al., 2011). Plant-derived smoke 
upregulated the flavonoids-related genes (Soós et al., 2010), which are correlated 
with adventitious root formation in Eucalyptus gunnii by axillary bud stimulation 
(Curir et al., 1990). Additionally, the balance of glycolysis and redox homeostasis is 
related to growth of chickpea under plant-derived smoke treatment (Rehman et al., 
2018). These results suggested that positive effects of plant-derived smoke are not 
limited to seed germination but can be observed at seedling stage also.

This review emphasizes the roles of plant-derived smoke in seed germination 
and plant growth by untying its involvement in physiological, biochemical, and 
molecular aspects of plants. The smoke derived from plant significantly enhanced 
germination and post-germination growth of plants by influencing various attributes 
at biochemical and molecular level. As plant-derived smoke is the mixture of thou-
sands of active compounds, therefore it is believed that these active compounds are 
playing key role in seed germination and plant growth. Due to complex nature of 
plant-derived smoke, plant responses at molecular level are not fully understood yet. 
Therefore, the current review emphasizes the roles of smoke in seed germination 
and plant growth with the focus on its role in plant physiological, biochemical, and 
molecular aspects.

2  Chemistry of Plant-Derived Smoke Solution

Plant-derived smoke solution is an aqueous extract obtained by slow burning of 
semidried plant material and bubbling the smoke through distilled water. This aque-
ous extract is a mixture of various compounds, and several researches have been 
dedicated to isolate these compounds. This isolation process of compounds from 
plant-derived smoke is complicated due to the large number of compounds and very 
low concentration of the active compounds relative to the other components present 
in the smoke (Ma et al., 2018). Until now, seven different compounds have been 
identified in plant-derived smoke (Flematti et al., 2004, 2011a; van Staden et al., 
2004; Light et al., 2010; Wang et al., 2017; Kamran et al., 2017; Burger et al., 2018) 
(Table 1 and Fig. 1). Among seven compounds, butenolide known as karrikins is the 
most active compound, which stimulates seed germination and plant growth 
(Commander et al., 2008; Dixon et al., 2009) (Fig. 1). Karrikins are water soluble, 
thermostable, long-lasting, and active at very low concentrations (van Staden et al., 
2000). Karrikins contain a five-membered butenolide ring and combine to a 
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Fig. 1 Different compound isolated from plant-derived smoke solution. Structure shows karrikins 
(1-6), 3,4,5-trimethylfuran-2(5H)-one (7), glyceronitrile (8), catechol (9), hydroquinone (10), 
5,5-dimethylfuran-2(5H) one (11), (5RS)-5-ethylfuran-2(5H)-one (12)

Table 1 Compounds isolated from plant-derived smoke solution (PDS) of different species 
of plant

PDS species Compound name References

Passerina vulgaris, 
Themeda triandra

3-Methyle-2H-Furo [2,3-C]
Pyran-2 One

Flematti et al. (2004)  
and van Staden et al. (2004)

Passerina vulgaris, 
Themeda triandra

3,4,5-trimethyl- 2(5H)-furanone Light et al. (2010)

Anigozanthos manglesii Glyceronitrile, Cyanohydrin Flematti et al. (2011a)
Nicotiana attenuata Catechol Wang et al. (2017)
Ginkgo biloba Hydroqunone Kamran et al. (2017)
Passerina vulgaris, 
Themeda triandra

5,5-dimethyl-2(5H)- furanone, 
(5RS)-5-ethyl-2(5H)- furanone

Burger et al. (2018)
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six-membered pyran ring. There are six analogs of karrikins (KAR1-KAR6) differ-
ing with respect to methyl substitutions, in which KAR1 and KAR3 are the most 
active as seed germination stimulant (Flematti et  al., 2007). KAR1 was isolated 
from cellulose or carbohydrates part of smoke-infused water prepared from the 
combustion of plant material (Flematti et al., 2011b). Based on combustion experi-
ments, KAR1 is derived from a pyranose sugar (Flematti et al., 2011b; Nelson et al., 
2012). KAR1 had a positive effect on root length (Waheed et al., 2016), number of 
leaves (Akeel et al., 2019), photosynthetic pigments, and phenolic compounds of 
banana seedlings (Aremu et  al., 2012). Plant height, net photosynthetic rate, 
β-carotene, and ascorbic acid were enhanced in carrot by KAR1 treatments (Akeel 
et al., 2019). The mystery that how karrikins affect the plant growth, mechanism of 
their action, and whether this effect is regulated exogenously or endogenously is yet 
to be explored; however, they have been firmly recognized as an important family of 
naturally occurring plant growth regulators (Chiwocha et al., 2009).

3  Morphological and Physiological Responses of Plants 
to Plant-Derived Smoke Solution

3.1  Seed Germination

Smoke solution positively affected seed germination of fire-free and fire-prone hab-
itats species (Pierce et al., 1995) and plant species of the different regions of the 
world. Plant-derived smoke broke seed dormancy of California chaparral plants 
(Keely & Fotheringham, 1998), Southwestern Australian species (Tieu et al., 2001), 
celery (Thomas & van Staden, 1995), lettuce (Strydom et al., 1996), and wild oat 
(Kepczynski et al., 2010). Karrikins elicit germination of many plant species from 
fire-prone environment (Dixon et al., 2009), non-fire-prone (Merritt et al., 2007), 
and crops (Maurya et al., 2014). Another major germination stimulant was isolated 
from plant-derived smoke, known as cyanohydrin. Several related cyanohydrins, 
which are mandelonitrile, acetone cyanohydrin, glycolonitrile, and 2, 3, 
4- trihydroxybutyronitrile, stimulated seed germination of different plant species 
(Flematti et al., 2013). The active nature of these compounds is due to the spontane-
ous release of cyanide, suggesting an ecological role of cyanide in the postfire 
revival of plant communities (Flematti et al., 2011a). These studies proved that cya-
nide is an important germination stimulant in postfire environments. 3, 4, 
5- trimethyl-2(5H)-furanone significantly reduced germination-promoting nature of 
smoke-derived karrikins (Light et al., 2010). Additionally, 5, 5-dimethylfuran- 2(5H)-
one and (5RS)-5-ethylfuran-2(5H)-o isolated from Passerina vulgaris and Themeda 
triandra smoke solutions inhibited seed germination (Burger et al., 2018). Smoke 
has both promotive and inhibitory compounds, but overall impact of plant- derived 
smoke is positive on seed germination.
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Fig. 2 Effect of different concentration of plant-derived smoke solution on seed germination and 
seedling length of maize. Maize seeds were germinated in Petri plates and treated with 10,000, 
2000, and 1000 ppm plant-derived smoke solution for 7 days

3.2  Plant Growth

Plant-derived smoke solution is mostly studied at morphological and physiological 
level of plant growth and development. The morphological growth parameters are 
significantly enhanced by application of smoke or the derived active compounds 
from smoke. Positive effect of smoke solution is not dependent on seed size, plant 
species, genera, and families belonging to gymnosperms and angiosperms (van 
Staden et al., 2004), commercial crops, and different medicinal plants (Abdollahi 
et al., 2011). Beside these, few compounds, which are present in higher concentra-
tion in smoke solution, have inhibitory effects on plant growth (Daws et al., 2007). 
Plant-derived smoke has a positive influence on seedling growth of several plants 
including capsicum, salvia (Demir et al., 2012), wheat (Aslam et al., 2015), maize 
(Waheed et al., 2016; Aslam et al., 2017), rice (Jamil et al., 2014; Malook et al., 
2017), chickpea (Rehman et al., 2018), sorghum (Pirzada et al., 2014), and soybean 
(Li et  al., 2018; Otori et  al.,  2021). High concentration of smoke had inhibitory 
effects on maize seedling length, while seeds treated with 2000 ppm smoke solution 
had promotive effect on seed germination and seedling growth as compared to 1000 
and 10,000 ppm (Fig. 2). These results highlight the positive role of plant-derived 
smoke solution on plant species belonging to different genera and families.

4  Biochemical Responses of Plants to Plant-Derived 
Smoke Solution

Smoke solution significantly enhanced biochemical characteristics of plants, which 
in turn increased vegetative and reproductive growth (Table 2).
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(continued)

Table 2 Positive response of different biochemical parameters of various plant species to plant-
derived smoke (PDS) solution

Application 
type Biochemical growth parameter studied References

Tomato
Butenolide Embryo, cotyledons, and seedling proteins Jain et al. (2008)
Smoke and 
butenolide

Improved nutritional composition Kulkarni et al. 
(2008)

PDS Reduced abscisic acid content, enhanced α-amylase 
activity, ion contents, photosynthetic pigments

Elsadek and Yousef 
(2019)

Wild garlic
PDS Stimulated secondary metabolites Aremu et al. (2014)
Rice
PDS Proline contents, photosynthetic pigments, zinc, lead, 

cadmium
Jamil et al. (2013)

PDS Na+ and K+ ions Malook et al. (2017)
PDS Ions uptake, cellular injury, stability of plasma 

membrane, total soluble protein (TSP), and nitrogen 
contents

Malook et al. (2014)

 PDS Electrolytes (Ca+2, Na+2, K+) uptakes, cell injury, 
protein and nitrogen (N) uptake, Pb uptake, TSP, total 
soluble sugar (TSS), proline analysis, antioxidant 
enzymes, glycine-betaine (GB), hydrogen peroxidase

Akhtar et al. (2017)

PDS Chlorophyll contents, ionic contents, nitrogen and 
protein contents,

Jamil et al. (2014)

PDS and 
PGPR-solution

Chlorophyll contents, electrolyte (Ca+2, Na+2, K+) 
uptake, TSP, proline content, TSS, peroxidases, and 
catalytic activities

Khan et al. (2017)

PDS Carbohydrates contents, lipid and protein study, micro 
and macro elemental concentration

Jamil et al. (2020)

Wheat
PDS Water potential, relative water content (RWC), osmotic 

potential, membrane stability index (MSI),  chlorophyll 
contents, proline, free amino acids, sugar

Iqbal et al. (2018)

Kikuyu plant (grasses)
PDS/ butenolide Uptake of Cd Okem et al. (2015)
Red sage
PDS/butenolide Accumulation of salvianolic acid and rosmarinic acid,  

biosynthesis of phenolic acids
Zhou et al. (2018a)

PDS/
karrikinolide

Tanshinone I, tanshinone IIA, cryptotanshinone, 
dihydrotanshinone I contents

Zhou et al. (2018b)

Dyer’s woad
PDS Amount of indigo Zhou et al. (2011)
PDS Photosynthate yield, photosynthetic pigment 

fluorescence
Zhou et al. (2014)
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Table 2 (continued)

(continued)

Application 
type Biochemical growth parameter studied References

Grapes
Pre- and 
post-smoke 
treatments

Photosynthesis rate, stomatal movement, rate of 
transpiration

Bell et al. (2013)

PDS/growth-
promoting 
bacteria

Chlorophyll relative content, movement of stomata 
conductance, breakdown of lipids, sesquiterpenes 
biosynthesis

Salomon et al. 
(2017)

Papaya
PDS Nitrogen, ion contents, iron, zinc, copper, chlorophyll 

content
Chumpookam et al. 
(2012)

Tree-aloe
PDS/ butenolide Phytochemicals including flavonoid and total phenolic 

contents
Kulkarni et al. 
(2013)

Bone seed
PDS spray Opening and closing of stomata, assimilation of CO2, 

CO2 levels in cellular spaces
Gilbert and Ripley 
(2002)

Banana
PDS/ karrikin Chlorophyll contents, total phenolic contents, total 

flavonoid contents, proanthocyanidins
Aremu et al. (2012)

Earleaf nightshade, Fameflower, Horseweed, Flatweed
PDS/butenolide/
trimethyl 
butenolide

Activity of α–amylase Papenfus et al. 
(2015a)

Okra
Smoke/
butenolide/
trimethyl 
butenolide

Bacterial abundance, α-amylase assay Papenfus et al. 
(2015b)

Maize
Priming in 
smoke

Ion uptakes, antioxidant enzymes, chlorophyll contents Waheed et al. (2016)

PDS Photosynthetic contents, TSP Aslam et al. (2017)
Lettuce
PDS TSS Jäger and van 

Staden (2002)
PDS/butenolide/
trimethyl 
butenolide

α-amylase assay, TSS, starch, TSP, lipase assay, lipid 
uptakes

Gupta et al. (2019)

Cockspur grass
PDS ABA uptakes, α-amylase Kamran et al. (2014)
Cucumber, Pot marigold, Hybrid gladiolus
PDS Photosynthetic pigments, activity of α-amylase, ABA 

content, N, P, and K ions
Elsadek and  Yousef 
(2019)
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Table 2 (continued)

Application 
type Biochemical growth parameter studied References

Oat
PDS α- and β-amylase assay, starch, β-tubulin concentration Cembrowska-Lech 

and Kepczynski 
(2017)

Blue lupin
PDS at different 
temperature

Percentage of ion leakage, dehydrogenase, amylolytic 
activity, gibberellin content, conjugated, free abscisic 
acid content

Płazek et al. (2018)

Chickpea
PDS TSP, TSS, number of rhizobial growth Rehman et al. 

(2018)
Soybean
Flooding and 
PDS

ATPase abundance, ATP contents, ascorbate 
peroxidase, peroxiredoxin, glutathione reductase, nitric 
oxide contents

Otori et al. (2021) 
and Zhong et al. 
(2020)

4.1  Photosynthesis

Photosynthetic pigments are the key elements in the process of photosynthesis. 
Plant-derived smoke has positive effects on the health and growth of plant seedling 
resulting better photosynthetic phenomena (Baxter & van Staden, 1994). Plant-
derived smoke increased the activities of enzymes related with photosynthesis pro-
cess. Smoke water increased transpiration rate, photosynthetic rate, and stomatal 
movements in dyer’s wood seedlings, suggesting that smoke-solution treatments 
could enhance the photosynthesis (Zhou et al., 2014). Plant-derived smoke treat-
ments increased chlorophyll a/b and total carotenoids activities in rice seedling 
which are primarily involved in the process of photosynthesis (Jamil et al., 2013; 
Malook et al., 2014). These results indicate that plant-derived smoke is positively 
regulating the process of photosynthesis in different plant species.

4.2  Phenol and Flavonoids

Phenolic compounds protect plants from the harmful effects of ultraviolet radiation 
(Bieza & Lois, 2001). Presence of flavonoids and phenolic compounds is necessary 
for plant protection against stresses (Pourmorad et al., 2006; De Klerk et al., 2011) 
and helpful in hormonal transport (Peer & Murphy, 2007). Flavonoids have impor-
tant role in the rhizobium legume development and different soil-plant microbe 
interactions (Taylor & Grotewold, 2005). Amount of secondary metabolites such as 
flavonoid and total phenolic content increased in plant after the application of smoke 
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solution (Aremu et al., 2014). Smoke solution stimulated phenyl propanoid pathway 
and flavonoid-related genes by enhancing phenolic biosynthesis (Soós et al., 2010; 
Rehman et al., 2018; Savio et al., 2011). Furthermore, compounds including indigo 
phenolic, flavonoids, and condensed tannins significantly increased by plant-derived 
smoke solution treatments in different plants including dyer’s wood (Zhou et al., 
2011; Aremu et al., 2012), krantz aloe (Kulkarni et al., 2013), and wild garlic (Jamil 
et al., 2013). Plant- derived smoke treatment increased phenolic and flavonoids con-
tents in wild garlic (Aremu et al., 2014). These results provide clear evidence about 
the involvement of plant-derived smoke treatment in enhancement of different sec-
ondary metabolites in plants.

4.3  Other Biochemical Changes

Smoke dilution significantly increased levels of nitrogen contents in seedling and 
magnesium in shoot (Chumpookam et al., 2012). Karrikins influenced the metabo-
lism and production of plant hormones (Flematti et al., 2004; van Staden et al., 
2004; Chiwocha et al., 2009). Burned soil has more nitrate than unburned soil, but 
nitrate is not sufficient to reproduce smoke solution effects (Thanos & Rundel, 
1995). Nitrite and nitrate are useful in breaking dormancy of whispering bells at 
acidic pH levels, and it is concluded that oxidizing gases in smoke and/or acids 
play a role in germination of postfire annuals in chaparral (Keeley & Fotheringham, 
1998). Smoke solution treatments did not change size, weight, and nutritional 
composition of ascorbic acid, lycopene, β-carotene, and total soluble solids in 
tomato fruit (Kulkurni et al., 2008). Furthermore, they are associated with devel-
opmental processes as pollen germination, auxin transport, root hair growth, and 
allelopathic responses (Taylor & Grotewold, 2005). Plant-derived smoke solution 
enhanced the absorption of growth nutrients (Jamil et  al., 2013), leading to an 
accelerated protein biosynthesis and other growth-related phenomena, which ulti-
mately resulted in a move on plant growth. Different plant species are tested for 
biochemical growth parameter and have shown positive responses to plant-derived 
smoke solution. The results provide a clear statement about the enhancement of 
biochemical growth parameters of different plant species in response to plant-
derived smoke solution.

5  Molecular Responses of Plants to Plant-Derived 
Smoke Solution

Plant growth processes are controlled by signaling molecules which in turn may act 
singly or in coordination with other molecules, both endogenously and exogenously, 
which resulted in variety of responses (Table 3).
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(continued)

Table 3 Molecular response of different plant species to plant-derived smoke solution (PDS) 
solution

Application type
Response of plants species to PDS solution at molecular 
level References

Tomato
Butenolide Butenolide has no negative effects on the structure 

configuration gene, DNA, RNA, and proteins profile
Jain et al. (2008)

Lettuce
PDS Genes associated to seed germination, metabolic 

reactions, and hormone (ABA) were altered by PDS
Soos et al. 
(2009a)

Karrikins Smoke-derived compound karrikins suppressed seed 
dormancy and ABA associated genes while expressed by 
trimethyle butenolide

Soos et al. 
(2012)

Maize
PDS PDS treatments increased growth and resistance against 

stresses in plants
Soos et al. 
(2009b)

PDS and 
karrikins

Genes related to aquaporins and proteins degradation 
were triggered by PDS solution

Soos et al. 
(2010)

PDS PDS has positive effects on genes associated with 
metabolic processes

Aslam et al. 
(2019)

Arabidopsis
Karrikin Karrikins have an exciting ecological role on post-

germination attributes of plants
Nelson et al. 
(2010)

Karrikin and 
strigolactone

Mechanistic and genetic links between karrikin and 
strigolactone signals

Nelson et al. 
(2011)

Karrikin and 
strigolactone

D14 and KAI2 proteins allow  plants  to  recognized/ 
karrikins and strigolactones to elicit appropriate/ 
developmental responses

Waters et al. 
(2012)

Karrikin Elucidation of the KAI2 structure, which is valuable 
insight into its involvement in different pathways; 
structure of karrikin insensitive protein KA12

Bythell-Douglas 
et al. (2013)

Karrikin KAI2c proteins recognize KAI2 ligand Conn and 
Nelson (2016)

Karrikins Structural basis for placing KAI2 within the signal 
transduction pathway associated with the perception of 
smoke-derived chemical signals such as KAR 1

Guo et al. (2013)

Karrikins and 
strigolactones

HY5 is not essential for the perception of strigolactones 
or karrikins. Different butenolides are functionally 
discriminated by KAI2 and AtD14.

Waters and 
Smith (2013)

Karrikins Deeper study of KAI2 function help to understand 
karrikin action and evolution

Waters et al. 
(2013)

Strigolactones/
karrikins

Signal transduction pathways and downstream targets Smith and Li 
(2014)

Karrikins Analysis provided novel indications of a chloroplast-
based signaling pathway that works in parallel to 
KAI2-mediated karrikin signaling

Baldrianova et 
al. (2015)

Red sage
PDS and karrikin PDS and KAR1 treatments have positive effects on 

secondary metabolites and help in the biosynthesis of 
liposoluble tanshinones

Zhou et al. 
(2018b)
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Table 3 (continued)

Application type
Response of plants species to PDS solution at molecular 
level References

Rice
Strigolactone and 
karrikins

D14 and D14L gene structure analyses Kagiyama et al. 
(2013)

Chickpea
PDS Activation of metabolic pathways by PDS to enhance 

growth
Rehman et al. 
(2018)

Soybean
PDS PDS reduces flooding stress by accumulating structural 

and metabolic proteins after flooding stress in soybean
Li et al. (2018)

PDS promotes soybean root growth by eliminating ROS 
and produces ATPs under flooding stress

Otori et al. 
(2021)

PDS normalizes nitrogen-carbon conversion by 
regulating ornithine synthesis pathway

Zhong et al. 
(2020)

5.1  Plant-Derived Smoke

Plant-derived smoke application altered cell wall expansion, seed germination, cell 
division, carbohydrates metabolism, translation regulation, and abscisic acid regu-
lation genes in lettuce seeds (Soos et al., 2009b). They concluded that smoke solu-
tion increase cell division and food mobilization (Soos et  al., 2009b). Inanother 
experiment, they observed that stress and abscisic acid responsive genes were over-
expressed in smoke solution-treated maize seedlings (Soos et al., 2009a). It is pos-
sible that higher concentration of abscisic acid may result in a better adaptation to 
abiotic stress factors during seed germination (Soos et al., 2009a).

The proteomic results depicted a significant increase in proteins related to signal-
ing and transport; however, protein metabolism, cell, and cell wall-related proteins 
decreased in chickpea (Rehman et al., 2018). Furthermore, fructose bisphosphate 
aldolase increased, and genes related to phosphor-glyceraldehyde 3 phosphate 
dehydrogenase and glutamine synthetase were upregulated. This increase in plant 
growth-related proteins and genes is strengthening the fact that plant-derived smoke 
improves early stage of growth in chickpea with the balance of many cascades such 
as glycolysis, redox homeostasis, and secondary metabolism (Rehman et al., 2018). 
Proteomic analyses confirm that signaling, and nucleotide binding proteins were 
decreased while sucrose synthase, glutathione, and nucleotides related proteins 
were significantly increased in chickpea by plant-derived smoke.  A decrease in cell 
wall, lipids, photosynthesis, and amino acid degradations related proteins was 
observed which supports the molecular-level involvement of plant- derived smoke in 
plants. Proteomic analyses confirmed that proteins related to sucrose synthase, 
nucleotides, signaling, and glutathione were significantly increased whereas lipids, 
photosynthetic, cell wall, and amino acid degradation proteins were decreased by 
plant-derived smoke treatments (Aslam et al., 2019). These results suggest that the 
key processes in plant life, including photosynthesis, protein synthesis, nucleotide 
synthesis, and food mobilization, are enhanced by plant-derived smoke, which may 
lead to better plant growth.
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Plant-derived smoke is known to alleviate the negative effects of different stresses 
(Malook et al., 2017). Soybean seedling growth was inhibited under flooding stress 
but recovered after treatment with plant-derived smoke (Li et al., 2018). Sucrose/
starch metabolism and glycolysis-related protein were suppressed, while proteins 
related to the cell wall and peptidyl-prolyl cis-trans isomerase were higher in smoke- 
treated flooded soybean (Li et al., 2018). These results suggest that plant-derived 
smoke enhances soybean growth during recovery from flooding stress through the 
balance of sucrose/starch metabolism, glycolysis, and cell wall-related protein (Li 
et al., 2018). Furthermore, plant-derived smoke altered metabolites related to amino 
acid, carboxylic acids, and sugars. It regulated nitrogen-carbon transformation 
through ornithine synthesis pathway and promoted soybean normal growth (Zhong 
et al., 2020). These changes in proteins and accumulation of metabolites enabled 
lateral root development during soybean recovery after flooding (Zhong et  al., 
2020). Additionally, plant-derived smoke treatment improves soybean root growth 
under flooding stress through energy production and reactive oxygen scavenging 
even under flooding stress (Otori et al., 2021). These results suggested that plant-
derived smoke has the potential to protect plant from stress condition.

5.2  Karrikins

In Arabidopsis seeds, KAR1 treatment enhanced the expression of light-responsive 
genes including ABRE-like promoter motif and putative HY5-binding targets 
(Nelson et al., 2010). These evidence clarify the role of KAR1 in light responses in 
a synergistic way so as to affect postfire ecology. The pattern of protein ubiquitina-
tion and gene expression was noted to be different in response to KAR1 and smoke 
treatment (Soós et  al., 2010). Protein ubiquitination was enhanced, and protein 
degradation-related genes were activated in smoke solution treatments, while KAR1 
significantly upregulated an aquaporin gene (Soós et al., 2010). Plant species have 
shown different growth responses to karrikins because karrikins required specific 
conditions for action such as continuous intensity of light and the presence of phy-
tochromes (Nelson et al., 2010). These results suggest that karrikins improved seed 
germination and seedling growth with varying level of response in different plants 
species.

Karrikins present in smoke derived from burned plant materials promoted seed 
germination, but the mechanism of karrikins action is still unclear (Nelson et al., 
2011; Waters et al., 2012). Proteomic approach was used to identify early karrikin- 
responsive proteins and presented clear model of karrikin action in Arabidopsis 
seedlings (Baldrianova et  al., 2015). All of the identified proteins were karrikin- 
responsive except HSP70-3, and most of the proteins were located in chloroplast 
(Baldrianova et al., 2015). These karrikin-response specific proteins were photosyn-
thetic, carbohydrate metabolism, redox homeostasis, transcription control, protein 
transport, and processing/protein degradation-related proteins (Baldrianova et al., 
2015). These findings strengthen the view point that karrikins affect the growth 
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processes in plant through regulation of various molecular level responses, which 
ultimately lead to quickening of plant growth.

6  Concluding Remarks

Plant-derived smoke induces various cellular and molecular level responses in 
plants. After the perception of karrikins by its receptors, the α/β-hydrolase KAI2 
(Karrikin Insensitive 2) results in a conformational change in KAI2. Subsequently, 
the activated KAI2 interacts with MAX2 (MORE AUXILIARY GROWTH2), which 
is an F-box protein, resulting in a Skp-Cullin-F-box (SCF) ubiquitin ligase complex 
containing SMAX1 (SUPPRESSOR OF MAX2 1). SMAX1 is considered as a 
putative substrate in the KAI2-SCFMAX2 complex, which is degraded in 26S pro-
teasome after polyubiquitination (Guo et  al., 2013). These changes lead to the 
enhancement of seed germination, hypocotyl elongation, and other growth pro-
cesses (Table 3 and Fig. 3). The cell membrane stability increased through decreased 
nutrient leakage from the cell membrane and increased hydraulic conductivity, fur-
ther equipping the cell against abiotic stress (Akhtar et al., 2017). Photosynthesis- 
related proteins increased (Rehman et al., 2018), resulting in increased growth of 

Fig. 3 A summary of physiological, biochemical, and molecular responses of various organs of 
plant toward plant-derived smoke solution. Various biochemical and molecular changes finally 
lead to increased growth and vigor of plant
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plants (Akeel et al., 2019; Iqbal et al., 2018). This research identifies that plant- 
derived smoke promotes the plant-growth processes. This is done by not only influ-
encing the growth itself but also strengthening defenses against abiotic stresses and 
by affecting the cell membrane and its hydraulic conductivity. These factors are 
enhanced in plants treated with plant-derived smoke.
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Genome-Wide Association Study (GWAS): 
Concept and Methodology for Gene 
Mapping in Plants

Tanmaya Kumar Sahu, Monika Singh, Sanjay Kalia, and Amit Kumar Singh

Abstract The concept of genome-wide association studies (GWAS) was originally 
developed in humans where it is very successful and has led to identification of key 
genes for disease and many other traits. With the advent of genotyping technologies 
and advancement in the field of high-throughput phenotyping, GWAS is becoming 
a popular approach to uncover the genomic regions/candidate genes governing 
desirable traits in plants. In the past 10 years, hundreds of association studies have 
been conducted for a number of economically useful and development related traits 
in plants. Contrary to the widely used conventional QTL mapping, GWAS can be 
conducted using natural populations, and thus, it has potential to greatly accelerate 
mainstreaming of genetic diversity in crop improvement. GWAS can also take 
advantages of genomic tools, especially the “Omics”-based tools, to accelerate 
candidate gene discovery in plants. We have described here the detailed procedures, 
such as preprocessing of genotype and phenotype data and marker-trait association 
analyses, along with the tools used for GWAS analysis. Finally, we have also dis-
cussed how the integration of GWAS with QTL mapping can enhance mapping 
resolution and accelerate discovery of candidate genes for quantitative traits.

Keywords GWAS · Association mapping · Candidate genes · Quantitative trait 
loci · Multi-locus multi-trait models
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1  Introduction

Understanding the genetic and molecular basis of a trait is important for its improve-
ment through conventional or modern breeding approaches. Most of the agriculturally 
important traits are complex, governed by a number of loci and also influenced by 
the genotype environment interactions (James et al., 2006; Chaurasia et al., 2020). 
Therefore, it is extremely important to dissect the genetic basis and identify the 
genes and alleles controlling complex traits in plants. The identification of 
genes/genomic regions/quantitative trait loci (QTLs) would not only facilitate preci-
sion breeding of such traits but it would also reduce the time involved in the devel-
opment of improved varieties. Conventionally, in plants, traits have been mapped 
using QTL mapping approach which uses biparental or multi-parent mapping popu-
lations. The QTL mapping approach has led to identification of many important 
genes/QTLs for various important traits in crops including biotic and abiotic stress 
tolerance, grain yield, grain and fruit quality, etc. (reviewed by Yang et al., 2017). 
However, this approach has many limitations: (1) requires generation of mapping 
population, which is a laborious, time-consuming process involving skilled person 
for attempting crosses and also to take care of generation advancement; (2) provides 
low-resolution mapping, i.e., to the order of 10–20 cM, as biparental populations are 
results of few crossover events; and (3) in case RIL population is used for the genetic 
mapping, it may take many years to identify genomic regions for the complex traits.

In the past decade, association mapping which exploits linkage disequilib-
rium  (LD) has emerged as a very powerful approach for trait mapping in plants 
(Ingvarsson & Street, 2011). Currently, it is becoming increasingly popular for 
genetic dissection of complex traits because of continuous improvement in single 
nucleotide polymorphism (SNP) genotyping technologies and availability of vari-
ous next-generation sequencing (NGS)-based genotyping approaches, such as 
genotyping by sequencing (GBS) and whole-genome re-sequencing (WGRS). 
Moreover, the increasing interest toward utilizing genetic diversity and improve-
ment in statistical methods has also contributed to wide-scale adoption of genome- 
wide association studies (GWAS) for genetic dissection of complex traits. Besides, 
GWAS approach has many advantages over conventional QTL mapping approach, 
such as the following: (1) provides higher mapping resolution even up to the gene 
level; (2) allows survey of large number of alleles present in the diversity panel; (3) 
does not involve generation of mapping population and, thus, saves time and 
resources; (4) uses historical phenotyping data of the genotypes to conduct GWAS; 
and (5) enables the use of genetically diverse panel, once genotyped, to map many 
traits (Korte & Farlow, 2013). The above said advantages make GWAS a method of 
choice for trait mapping in plants. Furthermore, GWAS can also be integrated with 
voluminous multidimensional data generated using other genomics technologies 
such as epigenomics, metabolomics, transcriptomics, proteomics, and ionomics to 
identify the true causal variant and accelerate the discovery of candidate genes 
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controlling various agronomically useful traits in plants. In this chapter, we have 
presented an overview of GWAS methodology, statistical models, tools used, data-
bases related to GWAS. Additionally, we have briefly described various limitations 
of GWAS and some important GWA studies in crop plants.

2  History of GWAS

Klein et al. (2005) introduced GWAS for the first time while working on age-related 
macular degeneration by identifying a variant of the Complement Factor H gene. 
Later on, GWAS was carried out for 7 common human diseases by the Wellcome 
Trust Case-Control Consortium (WTCCC), where approximately 2000 individuals 
were examined using Affymetrix GeneChip 500  K Mapping Array Set (The 
Wellcome Trust Case Control Consortium, 2007). Since then, the GWAS was 
employed in the area of understanding the genetics of several diseases.

In crop plants, the genetic architecture of complex traits can be well understood 
with references to the human diseases. The complex traits of agricultural and evolu-
tionary importance are generally influenced by multiple genetic loci and their inter-
action, diversified environmental conditions and the interaction between loci and 
the environment (Holland, 2007; Mackay et al., 2009). Linkage analysis and asso-
ciation mapping [LD mapping] are being commonly employed for dissecting com-
plex traits.

In comparison to linkage analysis, GWAS offers advantages of high mapping 
resolution, low research time, and higher allele number (Yu & Buckler, 2006). The 
advancement in high-throughput genomic technologies, methodology development, 
improvements in statistical tools, and the desire of identification of novel/superior 
alleles has enhanced the application of association mapping in model plant and crop 
species (Zhu et al., 2008). Further, the continued efforts in the sequencing technolo-
gies have made GWAS to be emerged as an important tool for such studies.

In the plants, GWAS was initially applied to the modal plant Arabidopsis, focus-
ing single feature polymorphism studies, recombination, and linkage disequilibrium 
(Borevitz et al., 2007; Kim et al., 2006). Later on, the GWAS research has been 
expanded to the studies on growth, metabolism, defense, and evolution of tolerance 
to abiotic stress in Arabidopsis (Chan et al., 2010b; Wu et al., 2016, 2018; Fusari 
et  al., 2017; Exposito-Alonso et  al., 2019). Further, GWAS has been adopted in 
cereal crops (rice, maize, wheat, and barley), legumes (soybean, peanut), horticul-
tural crops (cucumber, melon, peach, tomato), and other crops such as cotton, let-
tuce, tea, and sesame. A detailed review of these studies for biotic and abiotic stress 
tolerance, yield-associated traits, and metabolic composition has been reported 
recently by Alseekh et al. (2021). A pictorial representation showing the timeline of 
GWAS research in plant is well depicted in Fig. 1.

Genome-Wide Association Study (GWAS): Concept and Methodology for Gene…
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Fig. 1 Timeline for GWAS research in plants

3  Principle and Basic Procedure for Conducting GWAS 
in Plants

GWAS exploits the phenomenon of linkage disequilibrium (LD) to identify 
QTLs/genomic regions controlling a target trait. In this approach, QTLs and 
genomic regions controlling a target trait are identified based on the strength of cor-
relation between thousands of genome-wide markers and the targeted phenotype 
(Mackay & Powell, 2007). In fact, association mapping, like QTL mapping, also 
assumes that recombination breaks up the genome into pieces which can be corre-
lated with phenotype to detect genomic regions for complex traits. The main advan-
tage of LD mapping is that it can be applied on natural population and thus very 
helpful in accelerating the utilization of ex situ germplasm collection of crops main-
tained in genebanks around the word in crop breeding programs.

3.1  Linkage Disequilibrium

The concept of LD was first put forth about 100  years ago by Jennings (1917), 
which refers to nonrandom association of the alleles at different loci on the same 
chromosome. Since then, the topic has been well studied with a greater focus on 
quantification of LD. LD is now a widely used concept by population biologists and 
also used as the basis genetic mapping in animal, humans, as well as in plants. 
Lewontin and Kojima (1960) were among the first to give the measure of LD (D); 
thereafter, many other statistics for LD were developed, each having own advan-
tages and disadvantages. However, the most common statistics employed to mea-
sure LD are D′ and r2. LD is influenced by many factors including mutation, 
recombination, selection, position of loci on a chromosome, population structure, 
genetic drift, gene flow, etc. In plants, LD varies greatly, from few 100 bases to 
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kilobases and also between different regions of genomes and genes. Generally, self- 
pollinated crops have higher level of LD as compared to cross-pollinated crops.

LD is generally expressed as the coefficient of linkage disequilibrium (D), which 
measures a deviation of the observed haplotype frequencies from its corresponding 
expected allele frequencies on the assumption that the alleles at two loci are associ-
ating independently. For an example, we may consider two different loci where each 
locus has two alleles. Suppose one locus has M and m alleles with frequencies pM 
and 1-pM, respectively, and the other locus has alleles N and n with frequencies pN 
and 1-pN, respectively, then at the equilibrium, although the loci are linked, the 
expected haplotype frequencies will be the product of the constituent allele frequen-
cies. Thus, pMN being the frequency of the two locus haplotype containing alleles 
M and N for the MN haplotype can be calculated as:

 pMN pM pN� �  

Any deviation from this state is known as the coefficient of linkage disequilibrium 
(D), which is given by the following equation:

 D pMN pM pN� �-( )  

At equilibrium, D is 0 and always defined in context to a pair of alleles at two loci. 
This type of situation would be difficult to interpret as the range LD depends on 
allele frequency, and it is not symmetrical about zero. Therefore, it is generally 
rescaled to a value ranging between 0 and 1 (Mackay & Powell, 2007).

3.2  Linkage Disequilibrium Decay

LD is always in the context of a population and depends on recombination rate and 
times. If the recombination rate is higher, LD decay will be very faster in short time. 
In a random mating population, without any selection, mutation, random drift, and 
chance effects, LD value over the successive generations would be Dt + 1 = Dt (1−c). 
Hence, Dt (the LD decay at generation t) is calculated as D0 (1−c)t, where D is coef-
ficient of LD, c is the recombination frequency, and t is the number of generations 
of random mating. At higher recombination frequencies, LD decays rapidly and D 
decreases only by a factor of a half each generation for unlinked loci (c = 0.5).

3.3  Steps in GWAS Analysis

Various steps followed in GWAS analysis are represented in Fig.  2. However, 
detailed description on various steps is given in the following subsections.
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Fig. 2 Steps of GWAS analysis

3.3.1  Selection of Diverse Panel of Individuals

To achieve high-resolution mapping of a target trait, it is very important that asso-
ciation panel has genetically diverse set of individuals. The association panel for 
GWAS can be constituted by assembling individuals (landraces, varieties) from 
various geographical regions within a country or from various regions of the world. 
The core and mini-core sets constituted from the large germplasm collection of 
crops conserved in the national and international genebanks are also considered as 
very good association panels for GWAS. In addition, multi-parent populations such 
as nested association mapping (NAM), multi-parent advanced generation inter- 
cross (MAGIC), etc. can be also used for trait mapping using GWAS.

Furthermore, association panel size is a very important factor that determines 
mapping resolution. Generally, an association panel with around 300 individuals is 
considered good for trait mapping using GWAS, provided it has sufficient variabil-
ity for the trait under consideration. However, in case core or mini-core sets are used 
as association panel in any study, a smaller number than 300 may be also considered 
sufficient as these are genetically very diverse and capture total diversity available 
in collection of a crop species.

3.3.2  Phenotyping of the Association Panel for the Trait of Interest

Accurate phenotyping is critical for identification of reliable genomic regions/QTLs 
controlling a trait, using GWAS. Phenotyping methods should provide minimum 
scope for errors both in data generation and in data acquisition. Moreover, it is very 
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important that complex quantitative traits should be phenotyped over multiple loca-
tions and/or multiple years to get reliable data for association analysis. For reliabil-
ity of GWAS results, means estimates that have low variance such as best linear 
unbiased prediction (BLUP) and best linear unbiased estimates (BLUE), which 
consider fixed and random effects, respectively, should be derived for multilocation/
multiyear phenotypic evaluation data. As compared to field phenotyping, the dedi-
cated phenomics facility developed by various institutions across the world may be 
highly useful for complex traits including abiotic stresses, nutrient deficiency, etc.

3.3.3  Genotyping of the GWAS Association Panel

The association panel should be densely genotyped for high-resolution trait map-
ping. As a thumb rule, at least one marker should be present at every linkage decay 
distance for the reasonable mapping resolution using GWAS. In the last few years, 
with the advancement of SNP genotyping methods, it is feasible to generate geno-
typic information of the association panel at a low cost. High-density SNP arrays 
have been developed in many crops, such as wheat, rice, pigeon pea, chickpea, and 
soybean (Varshney et  al., 2021). Besides SNP arrays, next-generation-based 
approaches such as GBS and WGRS can also be used for the genotyping.

3.3.4  Population Structure Analysis Based 
on the Genotyping Information

The number of populations in association panel can be inferred based on the geno-
typing data using software tools. STRUCTURE v2.2.3 (Pritchard et al., 2000) is the 
most widely used program for population structure analysis and visualization. The 
structure results are then used to estimate most probable number of populations 
using the method of Evanno et al. (2005). Population structure results are integrated 
in GWAS analysis to help minimize chances of spurious associations.

3.3.5  Marker-Trait Association Analysis

The genotyping and respective phenotypic data is analyzed using appropriate statis-
tical model to detect QTLs/genomic regions for the target trait. Description of vari-
ous GWAS models and software programs is provided in the subsequent sections. 
Most of the GWAS analysis program generates a scatterplot popularly known as 
Manhattan plot which depicts chromosomal positions of markers on x-axis and the 
corresponding p-values on the y-axis. The lower p-value on the Manhattan plot 
shows that corresponding marker has strong association with the trait (Fig. 2).

Genome-Wide Association Study (GWAS): Concept and Methodology for Gene…



484

4  Data Generation and Quality Filtrating for GWAS

The collection of genotypic and phenotypic data and their quality check is an impor-
tant step in GWAS analysis. Analysis of low-quality data lead to biased or erroneous 
results that in turn draw a misleading inference. Thus, proper care has to be taken to 
collect or generate high-quality data, and appropriate filtration criteria have to be 
imposed on the data for quality improvement. Description of GWAS data along with 
quality parameters has been described in detail under this section.

4.1  Genotypic Data

The genotypic data is generated by genotyping of a DNA sample of interest. Through 
genotyping techniques, the alleles of an individual at different locus are uncovered. 
Genotyping is carried out using DNA microarrays, GBS, and other technologies 
based on restriction enzymes and polymerase chain reactions (PCR). Among the 
promising and widely used methods, genotyping by microarrays has gained consid-
erable reputation. Microarrays are preferred to identify common variants, whereas 
rare variants are identified using next-generation sequencing technologies.

Two common genotypic data formats, i.e., haplotype map (Hapmap) and Variant 
Call Format (VCF), are used for GWAS. Hapmap and VCF formats were created to 
manage and distribute the information on polymorphisms in the genomes of differ-
ent organisms. The Hapmap Project was taken up by International HapMap 
Consortium in 2001. As a product of this project, the dbSNP of NCBI was devel-
oped and made freely available to public (The International HapMap Consortium, 
2003). The Hapmap file format contains 11 columns followed by 1 column each for 
genotyped samples. Different column identifiers are described in Table 1.

Table 1 Description of Hapmap file format

Col. 
no. Column name Column description

1 rs# SNP identifier
2 alleles SNP alleles as per NCBI dbSNP
3 chrom Chromosome number where SNP is located
4 pos Chromosomal location of SNP
5 Strand Orientation of the SNP in the DNA strand, i.e., forward (+) or 

in the reverse (−) orientation
6 assembly# Version of reference sequence assembly
7 center Name of genotyping center
8 protLSID Identifier for HapMap protocol
9 assayLSID Identifier for HapMap assay
10 panelLSID Identifier for panel of individuals genotyped
11 QCcode Quality control code for all entries
12 Sample accessions/

names/IDs
The sample accession/name/ID that contain marker genotype 
in each row
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Table 2 Description of VCF file format

Attribute Description

Meta information

##INFO Information on variables, their type, and values
ID Name of the variable
Number Number of values
Type Type of variable
Description Description of the variable
Header

#CHROM Chromosome number
POS Position on the chromosome
ID Identifier
REF Reference nucleotide base(s)
ALT Alternate/non-reference nucleotide base(s)
QUAL Phred quality score for the statement made in 

ALT
FILTER PASS if it has passed in all filters, if not, 

contains a reason
INFO Additional information separated by 

semicolons
FORMAT Format IDs separated by colon
IDs Tab delimited list of sample identifiers

The VCF data format is a product of 1000 Genomes Project led by the 
International 1000 Genomes Consortium (Abecasis et al., 2010). This type of geno-
typic file format includes lines of meta-information, header lines, followed by the 
data lines. All the meta-data about the variable are provided under the meta- 
information lines. Header line contains tab limited columns where variant informa-
tion of each sample follows eight mandatory columns. The data line(s) contains the 
value of each variant under columns defined in the header line. A dot (.) represents 
missing data in the data line. A clear description of VCF file format is represented 
in Table 2.

4.2  Phenotypic Data

The process of determining the phenotype is called as phenotyping, which involves 
the measurement of complex traits related to biotic and abiotic stress tolerance, 
yield, growth, etc. (Fiorani & Schurr, 2013). Plant phenotyping is concerned, and 
basic measurement of quantitative properties associated with complex traits (Li 
et al., 2014a, b) is carried out, which may include quantification of plant biomass, 
root morphology, leaf characteristics, and fruit traits (Costa et al., 2019). The phe-
notypic information obtained from phenotyping contains the morphological charac-
teristics represented in columns for different individuals (as rows) of the sample in 
excel or tab delimited text format. The phenotypic data can be qualitative or 
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quantitative or both. As some of the morphological measurements are prone to data 
handling errors, the data should be collected carefully and processed properly based 
on all quality parameters before its use in GWAS analysis.

4.3  Quality Control

High-quality data always give accurate and reliable result. Hence, quality control 
for both phenotypic and genotypic data is highly essential before GWAS analysis. 
Various protocols and guidelines have been established for data quality control for 
GWAS analysis (Köttgen et al., 2010; Teslovich et al., 2010). These protocols or 
guidelines focus on data normality, outlier detection, imputation quality, missing 
data, minor allele frequency (MAF), Hardy-Weinberg’s equilibrium, etc. The major 
parameters for data quality control are discussed below:

4.3.1  Outlier Detection

In a dataset, an outlier is referred to an observation that is not in agreement with 
distribution of data points (Barnett & Lewis, 1994). An outlier is a biological repli-
cate in a plant dataset that deviates from the overall distribution of measured plant 
variables. Different methods exist for outlier detection from the datasets based on 
either single traits (Grubbs, 1950; Utz, 2003) or multiple traits (Reimann et  al., 
2008; Rousseeuw & Hubert, 2011). Grubbs test (Grubbs, 1950) and Bonferroni 
outlier tests are among the most commonly used methods for outlier detection 
(Camargo et al., 2014). To consider a QTL significant in GWAS, the values of the 
variable of interest should differ significantly between genotypes with different 
alleles for a marker of interest (Alvarez-Prado et al., 2019).

4.3.2  Data Normality

Normality of data is a common assumption that is considered in many statistical 
methods. If data is not normal, any comparison of the data to the population param-
eters may not be valid. Normality in the data allows the parametric statistical tests 
to be applied on the data. Therefore, data normality tests are required to enhance the 
quality of the data. Shapiro normality and Bonferroni outlier tests are very often 
used to ensure the data normality (Camargo et al., 2014).

4.3.3  Imputation Quality

Genotype imputation is a powerful tool for handling missing data. It estimates miss-
ing genotypes from the genotype reference panel and enhances the power of SNP 
detection in GWAS (Shi et  al., 2018). However, the performance of imputation 
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depends on reference selection, sample size, sequencing coverage, etc. Thus, care 
should be taken while selecting the method and reference for imputation. A high- 
quality imputation contributes to reliable results.

4.3.4  Missing Data

The missing genotype data refers to the genotypes where one or more marker infor-
mation is missing. The incidence of missing information in genotype data is due to 
unsuccessful assay of markers on genotyping platforms (Lin et al., 2008). Further, 
genotypes with missing information on high number of markers can often lead to a 
biased analysis. Thus, either the missing values are imputed computationally or 
genotypes/markers with missing values beyond a threshold (usually 5%) are 
removed from the analysis.

4.3.5  Minor Allele Frequency

Very often, errors in large genotypic datasets are reduced by eliminating the mark-
ers having an MAF below a predetermined threshold. The rare genetic variants have 
a low MAF, which is usually less than 5 or 1% (Lasky-Su, 2017). Therefore, the 
SNPs having MAF greater than 0.05 (5%) are considered in many GWA studies.

4.3.6  Linkage Disequilibrium (LD) Pruning

A marker subset can be chosen through LD pruning based on detectable linkage 
equilibrium (Joiret et  al., 2019). LD pruning filters genetic markers by selecting 
only markers that are representatives of the genetic haplotype blocks.

4.3.7  Hardy-Weinberg’s Equilibrium (HWE)

HWE law indicates whether the observed genotypic frequencies are significantly 
different expected frequencies or not (Wigginton et al., 2005; Marees et al., 2019). 
If the genotypic data in GWAS analysis deviates from HWE law, then it could be 
due to genotyping errors.

4.3.8  Marker Heterozygosity

The marker loci having high heterozygosity indicate technical artifact or paralo-
gous/repetitive regions, which could not be discriminated through genotyping 
(Glaubitz et  al., 2014). Natural populations of self-pollinating crops and inbred 
lines are highly homozygous, where a marker loci with modest heterozygosity rate 
is also doubtful (Pavan et al., 2020). Further, extremely heterozygous markers are 
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introduced when homeolog detecting probes fail to distinguish between two highly 
similar sub-genome sequences (Otyama et  al., 2019). So, highly heterozygous 
markers can be filtered out by using a suitable heterozygosity threshold.

5  Statistical Models for GWAS

Several statistical models exist for GWAS data analysis which are applied based on 
the nature of data and the method of data collection. The statistical models for GWAS 
are categorized into single locus models, multi-locus models, multi-trait models, and 
multi-locus multi-trait models, which are described in the subsequent subsections.

5.1  Single-Locus Models

Most of the GWAS analysis used earlier was based on single-locus single trait (SLST) 
approach. However, SLST is known to yield biased results plausibly because of con-
founding effect, multiple testing problem, inability to identify pleiotropic effects, and 
observed LD not due to linkage (Jaiswal et al., 2016). The single-locus mixed models 
consider both fixed and random effects (Yu et al., 2006) and deal fairly with the prob-
lem of false positives. The single-locus methods are categorized into exact and 
approximate methods. The exact methods provide exact estimates of marker effects 
but are comparatively more time-consuming (Zhou & Stephens, 2012; Lipka et al., 
2015), Whereas the approximate methods provide approximate estimates and faster 
than exact methods as population parameters are not estimated for every marker.

5.1.1  ANOVA: Analysis of Variance

ANOVA is a standard statistical for estimating the association between markers and 
phenotypes under study in a quantitative phenotype association study (Pagano & 
Gauvreau, 2000). ANOVA determines significant difference in the group means 
while considering within group variances. It partitions the total variance of data into 
within-group and between-group variances where the difference between the groups 
becomes significant if between-group variance is considerably higher than the 
within-group variance (Zhang et al., 2008).

5.1.2  GLM: General Linear Model

Generalized linear models (GLM) are based on the concept of linear regression 
model. In GLM, principal components are used as covariates to minimize the num-
ber of false positives that could be only because of population structure (Price 
et al., 2006).
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5.1.3  MLM: Mixed Linear Model

Mixed linear model (MLM; Yu et al., 2006) methods are advantageous, as these 
models are able to efficiently manage the population structure as well as relatedness 
within GWAS. In MLM, population structure is considered as fixed effect, whereas 
the random effect includes the kinship among individuals as variance-covariance 
structure (Zhang et al., 2010). The incorporation of these covariates in MLM con-
trols the number of false positives (Gupta et  al., 2019). However, these methods 
suffer from the problem of overfitting, leading to false negatives, and are computa-
tionally intensive for large datasets.

5.1.4  CMLM: Compressed MLM

Compressed MLM is the extreme cases of GLM and MLM (Zhang et al., 2010). MLM 
is comparable to CMLM while considering each individual as a single group. On the 
other hand, GLM becomes equivalent to CMLM when all individuals are in one group.

5.1.5  ECMLM: Enriched Compressed MLM

ECMLM is an extension of CMLM that calculates kinship using group kinship as 
well as clustering algorithms. Subsequently, best combination of kinship and clus-
tering algorithms is chosen. ECMLM includes an additional parameter to CMLM-
GWAS by exploring every alternative for computing the kinship between groups by 
averaging the pair-wise individual kinships (Li et al., 2014a, b).

5.1.6  SUPER: Settlement of MLM Under Progressively 
Exclusive Relationship

SUPER reduces number of genetic markers to a greater extent that characterize 
individual relationships as well as considerably enhances the statistical power. The 
whole genome is divided into smaller bins representing most significant markers, 
and subsequently, the most influential bin is selected. Further, optimization of the 
size and number of selected bins is carried out using maximum likelihood method 
(Wang et al., 2014). Further, relationship among the individuals is defined by using 
a small set of markers. This small marker set is obtained by eliminating the markers, 
which are in LD to test marker, independent of the local distance.

5.1.7  EMMA: Efficient Mixed-Model Association

EMMA is a mixed GWAS model that includes two variance components. EMMA 
corrects population structure and genetic relatedness via a kinship matrix generated 
from genome-wide markers. It greatly reduces the number of false positives under 
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a structured population. The model takes advantages of the nature of optimization 
problem that significantly increases the accuracy and reliability of the results as well 
as consumes low computational time (Kang et al., 2008).

5.1.8  GEMMA: Genome-Wide Efficient Mixed-Model Association

GEMMA is reported to tackle the issue of exact computation of the standard test 
statistics that are not feasible computationally even with a moderate-scaled GWAS 
(Zhou & Stephens, 2012). GEMMA is s times faster than EMMA, where s is the 
number of individuals in the sample.

5.1.9  FaST-LMM: Factored Spectrally Transformed Linear 
Mixed Models

FaST-LMM is a reformulation of linear mixed models where it produces precisely 
the same results like standard linear mixed models but scales linearly with the 
cohort size (number of SNPs to be tested) in both computational speed and memory 
use (Lippert et al., 2011). It assumes that the number of markers used to approxi-
mate the genetic similarity is smaller than size of the cohort, and the similarities 
have been determined using the realized relationship matrix.

5.2  Multi-locus Models

Multi-locus models are characterized by higher statistical power as well as lesser 
false-positive rate than single-locus models as these models are thought to be true 
representative of plant and animal genetic models (Wang et al., 2016a, b). These 
types of GWAS models help identify more marker-trait associations as they don’t 
require the Bonferroni correction. Further, multi-locus models also address the 
issues of pleiotropy and the background noise (Segura et  al., 2012; Korte et  al., 
2012). Multi-locus models involve polygenic effect and population structure addi-
tionally to reduce bias in the estimation of effects (Yu et al., 2006; Zhang et al., 
2005, 2010). However, undertaking the correction for population structure reduces 
confounding effects, which frequently generate false positives/false negatives 
(Klasen et al., 2016). Implementation of principal components analysis (PCA), mul-
tidimensional scaling (MDS), STRUCTURE, and/or other methods provides esti-
mates of global ancestry that are required for adjusting confounding due to 
population structure in linear models (Hellwege et  al., 2017). Considering the 
between-marker correlations, Klasen et al. (2016) developed the Quantitative Trait 
Cluster Association Test (QTCAT), which is capable of detecting multi-locus asso-
ciations concurrently and eliminates the need of correcting the population structure 
and genetic background.
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5.2.1  MLMM: Multiple Loci MLM

MLMM is used as a standard method to map complex traits in a structured popula-
tion (Segura et al., 2012). It handles the confounding effects of a scattered back-
ground of large numbers of loci of small effect as well as accounts for loci of larger 
effect. MLMM treats the genetic background comparable to composite interval 
mapping (Segura et al., 2012).

5.2.2  FarmCPU: Fixed and Random Model Circulating 
Probability Unification

In FarmCPU (Liu et al., 2016), the fixed effect model is used along with a random 
effect model iteratively to completely abolish the confounding effect. The fixed 
effect model tests markers one by one and considers multiple associated markers as 
covariates to control the rate of false positives. The random effect model avoids 
overfitting and estimates the associated markers by employing them in defining the 
kinship. The unification of p-values per iteration was done corresponding to the test-
ing and associated markers.

5.2.3  mrMLM: Multi-locus Random-SNP-Effect MLM

The mrMLM being a multi-locus model avoids Bonferroni correction for multiple 
tests. Further, it also includes markers selected from the random-SNP-effect MLM 
method with a less stringent selection criterion. SNP effect is treated as random in 
mrMLM, and this model is reported to be powerful in detecting the quantitative trait 
nucleotides (QTN) and estimating the QTN effects more accurately than EMMA 
(Wang et al., 2016a, b).

5.2.4  FASTmrMLM: Fast Multi-locus Random-SNP-Effect MLM

FASTmrMLM is more than 50% computationally faster than mrMLM. FASTmrMLM 
detects and estimates QTNs with high accuracy and less false positives than 
mrMLM, FarmCPU, and GEMMA. Among multi-locus GWAS, FASTmrMLM has 
considerable reliability as well as accuracy and low execution time (Tamba & 
Zhang, 2018).

5.2.5  FASTmrEMMA: Fast Multi-locus Random-SNP-Effect EMMA

FASTmrEMMA model is based on random SNP effects. Initially, putative QTNs 
with p-values less than equal to 0.005 are selected and subsequently included in a 
multi-locus model to detect the true QTNs. Here, a less stringent selection criterion 
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is employed instead of the Bonferroni correction. FASTmrEMMA is reported as 
more powerful in QTN detection as it estimates the QTN effect estimation with low 
bias and takes low computational time as compared to single-locus and other multi- 
locus methods like SUPER, empirical Bayes, EMMA, CMLM, and ECMLM (Wen 
et al., 2018).

5.3  Multi-trait Models

More than one trait can possibly be controlled by a single genomic region (QTLs/
genes) (Zhan et al., 2017). Based on this fact, the multi-trait MLM (MTMM) has 
been developed that accommodates pairs of correlated traits and increases the num-
ber of tests as compared to that of single-trait analysis (Gupta et al., 2019). MTMM 
also addresses the issues of background noise and pleiotropy (Segura et al., 2012; 
Korte et al., 2012). Multiple traits are often transformed into a group of pseudo- 
principal components based on a residual covariance matrix for improvement of 
accuracy and reliability. The matrix-variate linear mixed model (mvLMM; Furlotte 
& Eskin, 2015) is a variation of MTMM that reduces the execution time for 
maximum- likelihood inference by using data transformation in a multi-trait model. 
Multi-trait analysis of GWAS (MTAG; Turley et al., 2018) model can handle the 
sample overlap and can estimate the trait-specific effect for individual SNP rapidly. 
MTAG is benefited by the between-trait and between-error correlations.

5.4  Multi-locus, Multi-trait Models

If the multi-trait GWAS is carried out for multiple loci as a combined analysis, then 
it involves multi-locus multi-trait models which are computer intensive. However, 
these models are more advantageous than either multi-locus models or multi-trait 
models separately (Lippert et al., 2014) and have the ability to unravel the complex 
and significant associations. Recently, Igolkina et al. (2020) proposed a multi-trait 
multi-locus model based on structural equation modeling, i.e., mtmlSEM (Wright, 
1918, 1921), to illustrate the complex associations exist between SNPs and traits 
under investigation. This model is capable of distinguishing pleiotropic and single- 
trait SNPs having direct as well as indirect effects. Further, it appropriately deals 
with the variables which are not normally distributed. The mtmlSEM cannot work 
with artificial phenotypes represented as linear combinations of traits like PCA- 
based methods, but the phenotypes are regressed on the latent constructs to a certain 
extent (Igolkina et al., 2020).
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6  Multiple Hypothesis Testing in GWAS

Multiple hypothesis testing is a problem of decision-making based on results of a 
number of statistical tests. As GWAS involves a large number of statistical tests to 
be conducted concurrently, it faces the challenge of multiple hypothesis testing. A 
more stringent criteria often rejects true associations, whereas a less stringent crite-
ria introduces large number of false positives. Therefore, p-value threshold for sig-
nificance is adjusted appropriately with the aim to control overall false-positive rate. 
The p-value correction methods such as Bonferroni correction, permutation test, 
and false discovery rate (FDR) control are employed to achieve this adjustment. The 
Bonferroni correction (Sidák, 1967) divides the level of significance at each locus 
by the total number of tests. It assumes independence among the tests of associa-
tion, which is practically not true due to existence of LD among markers (Reich 
et  al., 2001). Thus, the correction is slightly stringent if tests are independent, 
whereas in case of correlated tests, it becomes highly stringent (Gao et al., 2010). 
Sequential Bonferroni correction (Holm, 1979) is an extension to standard 
Bonferroni correction that allows possible dependencies between association tests 
to some extent. However, the Bonferroni corrections are suitable, if a small number 
of null hypotheses among many are expected to be false.

The permutation test (Westfall & Young, 1993; Browning, 2008) generates the 
empirical distribution of test statistics under null hypothesis without disturbing the 
original correlation structure. It randomly permutes the phenotypes and computes 
the association statistics under each permutation. The test effectively breaks the 
genotype-phenotype relationship without affecting the existing LD structure of the 
dataset. The permutation test is regarded as the gold standard, as it reliably and cor-
rectly describes the genomic correlation structure. The p-value correction involving 
FDR was proposed by Benjamini and Hochberg (1995). FDR correction effectively 
minimizes the expected number of false discoveries and estimates the number of 
significant associations. An improvement over FDR by enforcing monotonicity was 
introduced by Benjamini and Yekutieli (2001), which is compatible with initial 
FDR definition.

7  Databases and Tools for GWAS

There exists many databases containing GWAS information on human, but for agri-
cultural crops, few information resources are available. Among them, some data-
bases are briefed in the subsequent subsections. However, plenty of tools for 
analyzing GWAs data are available in the public domain, including both online and 
offline tools.
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7.1  Databases for GWAS

7.1.1  GWAS Atlas

GWAS atlas is a curated compilation of genome-wide associations between variants 
and different traits for two animals and seven plants. It provides information on 
high-quality curated collection of 75,467 associations between the variants and 614 
traits of 2 domesticated animals (goat and pig) and 7 crops (rice, maize, soybean, 
sorghum, rapeseed, Japanese apricot, and cotton) collected from 254 research pub-
lications (Tian et  al., 2020). The GWAS atlas is accessible at https://bigd.big.
ac.cn/gwas/.

7.1.2  GrainGenes

GrainGenes is a database of genes, alleles, QTLs, genetic maps, mapping probes, 
and primers for crops like wheat, barley, rye, and oat, accessible at http://www.
graingenes.org (Matthews et al., 2003). It includes information on polymorphisms, 
genotypes, traits, disease symptoms, and mutant phenotypes. In addition, it pro-
vides information on mapping and QTL studies.

7.1.3  Triticeae Toolbox

The Triticeae Toolbox (T3; Blake et al., 2015) is the database for the phenotype and 
genotype data produced by the Triticeae Coordinated Agricultural Project. It enables 
the download of specific datasets in GWAS compatible formats for GWA and 
genomic prediction studies. Additionally, it includes various tools for data analysis.

7.1.4  Pea Marker Database (PMD)

The PMD is supplemented with information on 2484 genic markers with their corre-
sponding locations in linkage groups, gene names, and transcript sequences. PMD 
Version 2 contains 15944 pea markers in a similar fashion with additional features 
(Kulaeva et al., 2017). The PMD is available at http://www.peamarker.arriam.ru/ for 
public use.

7.1.5  NABIC Marker Database

This online molecular marker database has been developed at National Agricultural 
Biotechnology Information Center (NABIC), Korea. An individual molecular 
marker entry contains the information on gene definition, expressed sequence tag 
number, marker name, and general marker information (Kim et al., 2013). The data-
base is hosted at http://nabic.rda.go.kr/gere/rice/molecularMarkers/.
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7.2  Tools for GWAS Data Analysis

7.2.1  PLINK

PLINK is a GWAS toolset designed to analyze genotype/phenotype data. 
Visualization, annotation, and storage of PLINK results are made feasible through 
its integration with gPLINK and Haploview. PLINK can handle large datasets in 
their entirety having numerous markers genotyped for a large number of individu-
als. The broad functions of PLINK include summary statistics, population stratifica-
tion, identity-by-descent estimation, association analysis, and data management 
(Purcell et al., 2007). It determines population stratification based on identity-by- 
state as well as identity-by-descent information.

7.2.2  GAPIT

Genome Association and Prediction Integrated Tool (GAPIT) is an R-package that 
implements advanced statistical methods including the CMLM and CMLM-based 
genomic selection and prediction. This tool can efficiently handle large datasets 
(~10,000 individuals and ~ 1 million SNPs) in terms of computational time as well 
as can offer concise tables and graphs for result interpretations (Lipka et al., 2012). 
It is updated frequently to integrate the state-of-the-art methods for GWAS and 
Genomic Selection. GAPIT is available at http://www.maizegenetics.net/GAPIT.

7.2.3  STRUCTURE

The STRUCTURE software package is used for mainly analyzing the multi-locus 
genotype data to determine the population genetic structure by (i) deducing the 
existence of distinct populations, (ii) allotting individuals to populations, (iii) 
investigating hybrid zones, (iv) classifying migrants and admixed individuals, and 
(v) approximating allele frequencies in the population having several migrant or 
admixed individuals. The STRUCTURE package is compatible with most of the 
widely used genetic markers such as SNPS, microsatellites, RFLPs, and AFLPs 
(Pritchard et al., 2000; Kaeuffer et al., 2007).

7.2.4  TASSEL

Trait Analysis by aSSociation, Evolution and Linkage (TASSEL) is a widely used 
graphical user interface for GWAS data analysis. It implements GLM and MLM 
approaches for controlling the population and family structure (Bradbury et  al., 
2007). The software computes LD statistics, diversity statistics, and principal com-
ponents as well as supports graphical vitalizations. TASSEL also facilitates the 
analysis of indels, integration of phenotypic and genotypic data, and imputation of 
missing values.
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7.2.5  GWASpro

GWASpro is a web server for large-scale GWAS based on high-performance com-
puting. It supports the analyses of large-scale GWAS data with intricate replicated 
experimental designs and optimized to handle up to 10 million markers and 10,000 
samples (Kim et al., 2019). The web server is freely accessible at https://bioinfo.
noble.org/GWASPRO.

7.2.6  METAL

METAL is a proficient tool for GWAS meta-analysis for improving the power of 
analysis involving complex traits (Willer et  al., 2010). METAL includes a user- 
friendly scripting interface with memory management efficiency that supports anal-
yses of large datasets from a broad range of input file formats.

7.2.7  GWAMA: Genome-Wide Association Meta-analysis

The GWAMA supports the meta-analysis of summary statistics obtained from GWA 
studies on dichotomous phenotypes or quantitative traits (Mägi & Morris, 2010). 
The software is freely available online with documentations and examples at http://
www.well.ox.ac.uk/GWAMA.

7.3  R-Packages for GWAS

R is being used as a user-friendly scripting interface for almost all statistical analy-
sis. It involves many modules for GWAS data analysis. GAPIT (described earlier) is 
also an R-based GWAS tool that is being used reliably by the researchers across the 
globe. A list of R-packages for GWAS analysis along with brief description and 
availability is provided in Table 3.

8  Prioritization of Associated Genomic Regions/Prediction 
of Candidate Genes

Generally, GWAS provides a large number of significantly associated loci/associated 
regions for the target trait. Therefore, it is extremely important to narrow down to a 
few reliable SNPs/major true variants that might be actually controlling target trait 
that can be utilized in marker-assisted selection (MAS)-based crop improvement 
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Table 3 Widely used R-packages for GWAS data analysis

Packages Description Availability Reference

GAPIT Implements CMLM-based genomic 
prediction and selection

http://www.
maizegenetics.net/
GAPIT

Lipka et al. 
(2012)

statgenGWAS Fast single trait GWAS that supports 
analysis of typical plant breeding 
experiments

https://cran.r- project.
org/web/packages/
statgenGWAS/index.
html

Rossum et al. 
(2021)

GWASTools Includes classes for storing very large 
GWAS datasets, annotations, and 
functions for GWAS data cleaning 
and analysis

https://www.
bioconductor.org/
packages/release/bioc/
html/GWASTools.html

Gogarten 
et al. (2012)

rrBLUP Best linear unbiased predictor (BLUP) 
can be calculated based on an additive 
relationship matrix or a Gaussian 
kernel. It is used to estimate marker 
effects by ridge regression

https://cran.r- project.
org/web/packages/
rrBLUP/rrBLUP.pdf

Endelman 
(2019)

R/fGWAS2 The R/fGWAS2 (functional genome- 
wide association studies) is based on a 
single SNP analysis and provides 
three separate methods for data 
analysis

https://www.dept.psu.
edu/statgen/software/
fgwas- r2.html

Li et al. 
(2011)

GWAtoolbox Standardizes and accelerates the data 
handling from GWAS for large-scale 
GWAS meta-analyses

http://www.eurac.edu/
GWAtoolbox

Fuchsberger 
et al. (2012)

program. The important and consistent QTLs/genomic regions for the target traits can 
be filtered out based on the strength of associations, which can be determined using 
various statistical methods, such as multiple corrections (FDR, Bonferroni correction) 
and P-value. Moreover, the physical position of the SNPs can be localized on the 
genome provided the whole-genome sequence of species is available, and the genomic 
region flanking the associated SNPs up to LD decay distance can be screened for find-
ing candidate genes responsible for the target trait. However, sometimes there could 
be many genes present in LD decay distance region (significantly associated SNP ± LD 
decay distance region). In such cases, to pinpoint the exact causal variant responsible 
for a trait, firstly sequence polymorphisms in all the genes present in the LD decay 
distance can be discovered by sequencing a diverse panel of accessions. Then, the 
polymorphism effect of identified SNPs on the target trait can be estimated to find out 
the exact variant responsible for variation in trait. For the estimation of SNPs effect on 
phenotype, first of all, haplotypes for various genes falling in the genomic regions 
associated with the trait are identified; then effects of each haplotype on respective 
trait are determined by statistical analyses. Besides above-described analyses, expres-
sion pattern of genes located within the LD-decay distance of associated SNP can also 
help in narrowing down to causal variant responsible for the trait. The gene expression 
levels can be analyzed for correlation with the studied traits.
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9  Limitations of GWAS

The GWAS has been proved as a successful approach to map complex QTLs in crop 
plants. However, few limitations have been identified in the case of GWAS, which 
may be attributed to complex genetic architectures, genetic heterogeneity, unex-
pected LD, size of small effects, lower allelic frequency, or missing genotypes. The 
major limitations of GWAS have been reviewed (Korte & Farlow, 2013; Tam et al., 
2019), and few of these are presented as follows:

9.1  False-Negative/False-Positive Results During 
Multiple Testing

The interpretation of GWAS data involves false-positive and false-negative con-
cepts. Chances of false-negative results arise as a result of issues related to popula-
tion structure and low-frequency causal alleles. This limitation may be addressed by 
increasing the size of sample or reducing the number of tests.

9.2  Missing Heritability

In GWAS, all the phenotypic variations are sometimes not answered by the identified 
SNPs associated with phenotypes, leading to missing heritability (Manolio et  al., 
2009). These variations could be because of incomplete linkage between the causative 
variants and those genotyped or due to rare variants (Dickson et al., 2010). Epigenetic 
variation where sophisticated genotyping is required may also lead to missing herita-
bility (Johannes et al., 2009). The gene expression may be affected due to loss or gain 
of DNA methylation being inherited across the generations. Such epigenetic variations 
may be considered as a source of heritable phenotypic variation when there is no 
change in the sequence of DNA. In a special case of missing heritability, pseudo-heri-
tability may exceed the heritability estimated from the replicates for some of the traits, 
such as flowering time in Arabidopsis (Korte & Farlow, 2013). Missing inheritability 
is a major limitation of GWA studies in case of small heterogeneous sample, which 
may be overcome by including full sequence data and increasing the sample size.

9.3  Heritability of Complex Traits

All the components of complex traits cannot be identified by GWAS or any other 
method, which may be due to difficulty in detecting complex interactions, rare vari-
ants with small effects, common variants with very small effects, and genes possess-
ing ultrarare variants (Tam et al., 2019).
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9.4  Genetic Heterogeneity

Genetic heterogeneity refers to existence of same phenotypic effect in different indi-
viduals caused due to different loci, either within a single gene (allelic heterogene-
ity) or in different genes (genic/locus heterogeneity). Single-marker approaches 
generally undergo genetic heterogeneity in case of multiple major loci and LD with 
each other.

9.5  Synthetic Associations/Misleading Associations

This situation occurs when GWAS identifies noncausal SNPs as more significant 
than truly causal variants (Dickson et al., 2010). SNPs at a different location, which 
are associated with the presence or absence of all the alleles responsible, may be 
detected as synthetic associations (Tibbs-Cortes et al., 2021).

10  GWAS Studies in Plants

Genome-wide association study has emerged as a promising technology for study-
ing the complex traits in plants (Tibbs-Cortes et al., 2021). GWAS has been carried 
out for studying various agriculturally important traits including yield traits, mor-
phological characters, resistance to biotic and abiotic stresses, etc. in different crops 
including cereals, pulses, and horticultural crops besides the model plant Arabidopsis 
(Table 4). It has also been employed to investigate other types of phenotypes, such 
as identification of genes associated with geographical divergence and adaptation 
during domestication (Chen et al., 2019) and study of biochemical and molecular 
phenotypes including amino acid, fatty acid, flavonoid, and nucleic acid metabolites 
(Chen et  al., 2016b). GWAS is also used to identify novel associations with the 
important traits as well as to explore target genes for genetic engineering and 
genome editing for crop improvement (Owens et al., 2014; Wang et al. 2016a, b; 
Zhang et al., 2018).

11  Integration of GWAS and QTL Mapping for Fine 
Mapping and Candidate Gene Discovery 
of Complex Trait

The widely used QTL mapping approach has very low resolution, i.e., large inter-
vals between causal variant and the candidate gene controlling target trait, which 
limits utilization of the genomic regions/QTLs identified by this approach, in the 
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Table 4 Major GWA studies carried out in plants

Crop Trait Genotyping method Reference

Arabidopsis A total of 170 diverse phenotypes SNP genotyping (250 K 
SNP array)

Atwell et al. 
(2010)

Defense metabolites (43 
glucosinolates)

SNP genotyping (250 K 
SNP array)

Chan et al. 
(2010a)

Dark-induced senescence SNP genotyping (250 K 
SNP array)

Zhu et al. (2021)

Barley Resistance to Spot blotch SNP genotyping (9 K 
iSelect Illumina SNP 
array)

Gyawali et al. 
(2018)

Flowering traits, barley yellow 
mosaic virus, barley mild mosaic 
virus

GBS Milner et al. 
(2019)

Yield, quality, and disease 
resistance

SNP genotyping (9 K 
iSelect Illumina SNP 
array)

Tsai et al. (2020)

Citrus 
varieties

Fruit quality traits SNP array genotyping Minamikawa 
et al. (2017)

Maize Resistance to Fusarium ear rot SNP genotyping 
(Illumina MaizeSNP50 
BeadChip)

Chen et al. 
(2016a) and Wu 
et al. (2020)

GBS
Thermo-tolerance of seed-set GBS Gao et al. (2019)
Cold tolerance SNP genotyping 

(Illumina Maize SNP50 
BeadChip)

Zhang et al. 
(2020a, b)

Nitrogen use efficiency GBS Ertiro et al. 
(2020)

Peanut Yield-related traits GBS Wang et al. 
(2019)

Resistance to leaf spots (early leaf 
spot, late leaf spot)

SNP genotyping (48 K 
SNP array; Axiom 
Arachis2)

Zhang et al. 
(2020a, b)

Seed composition traits SNP genotyping (48 K 
SNP array; Axiom 
Arachis2)

Zhang et al. 
(2021a)

Pear (Pyrus 
pyrifolia)

Fruit quality and phenological 
traits

WGRS Zhang et al. 
(2021b)

Rice Agronomic traits WGRS Huang et al. 
(2010)

Agronomic traits WGRS Yano et al. 
(2016)

Panicle architecture WGRS Bai et al. (2016)
Mesocotyl elongation WGRS Wu et al. (2015) 

and Liu et al. 
(2019)

Flowering date, resistance to rice 
yellow mottle virus and panicle 
architecture

WGRS Cubry et al. 
(2020)

Fertility restoration WGRS Li et al. (2020)

(continued)
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Table 4 (continued)

Crop Trait Genotyping method Reference

Sesame Resistance to Phytophthora blight WGRS Asekova et al. 
(2021)

Seed coat color Specific-locus amplified 
fragment sequencing

Cui et al. (2021)

Soybean Seed protein and oil content SNP genotyping using 
Illumina Infinium and 
GoldenGate assays

Hwang et al. 
(2014)

Agronomic traits (hundred-seed 
weight, plant height, seed yield)

SNP genotyping 
(Illumina 
BARCSoySNP6K 
BeadChip)

Contreras-Soto 
et al. (2017)

Photosynthesis-related traits 
(intercellular carbon dioxide 
concentration, net photosynthetic 
rate, stomatal conductance, 
transpiration rate)

SNP genotyping (NJAU 
355K Soy SNP array)

Wang et al. 
(2020)

Grain yield and related traits (seed 
maturity, plant height, seed 
weight)

GBS Ravelombola 
et al. (2021)

Tomato Fruit traits SNP genotyping (51 K 
Axiom® tomato array)

Kim et al. (2021)

Genetic architecture of 27 
agronomic traits

WGRS Ye et al. (2021)

Wheat Grain yield and related traits SNP genotyping (90 K 
and 660 K SNP array)

Li et al. (2019)

Resistance to leaf rust, stem rust 
and stripe rust

SNP genotyping 
(Illumina iSelect 90 K 
SNP bead chip 
genotyping)

Joukhadar et al. 
(2020)

Resistance to powdery mildew, 
leaf rust, yellow rust, and cold 
tolerance

GBS Pang et al. 
(2021)

Vegetative stage salinity stress 
tolerance

35 K Axiom array Chaurasia et al. 
(2020)

MAS program. The low mapping resolution makes it very difficult to identify the 
candidate gene controlling the target trait. In such cases, integration of GWAS with 
QTL mapping can be helpful in improving mapping resolution of any locus and 
accelerate identification of associated candidate gene. While integration of the two 
approaches, it should be kept in mind that GWAS association panel possesses suf-
ficient variability for trait under consideration. Further, association panel should be 
densely genotyped and must have sufficient markers on the chromosome that carry 
the QTL with large marker intervals. Higher the marker density, greater would be 
the chance to find SNPs very close to causal variant, or sometimes the trait- 
associated SNP may even fall within the candidate gene itself. Recently, a number 
of studies have integrated GWAS with QTL mapping in order to fine map genomic 
regions for various traits (Basu et al., 2019; Guo et al., 2019; Asekova et al., 2021). 
A total of 16 reliable SNPs linked with photosynthesis efficiency traits have been 
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identified in chickpea, using an integrated approach combining GWAS and QTL 
mapping, candidate gene-based association mapping, and expression profiling of 
candidate genes falling within the associated regions (Basu et al., 2019). Guo et al. 
(2019) identified candidate genes for seed vigor in rice by integrating GWAS with 
QTL mapping and expression profiling. In another study, Asekova et  al. (2021) 
reported the fine mapping of one of the major Phytopthora blight (PB) resistance by 
applying GWAS. In this study, firstly a major genomic region for PB resistance was 
identified on chromosome 7 of Sesamum using a RIL population derived from the 
cross of Goenbaek × Milsung cross. Then, GWAS was conducted on a diverse panel 
of Sesamum genotypes for mapping of this trait, which revealed 10 SNPs associated 
with PB resistance. The identified SNPs were located within a 0.79 Mb region and 
co-located with the QTL intervals identified in RIL populations. The above study 
clearly suggests that integration of GWAS approach with QTL mapping can accel-
erate discovery of candidate genes for the target trait.

12  Integration of “Omics” Data in GWAS

The past decade saw revolution in the field “Omics,” as during this period many new 
approaches for high-throughput analyses of transcriptome as well as other biochem-
ical phenotypes were developed. It is now possible to generate transcriptome, pro-
teome, ionome and metabolome data from large number of genotypes in a very 
short period of time with a low cost. These parameters represent important pheno-
types and can be targeted for association analysis. Marker-trait association analysis 
that exploits transcriptomics or proteomics data has been accordingly redesignated 
as transcriptome wide association study (TWAS) or proteome-wide association 
analysis (PWAS), respectively. These approaches may help identification of eQTLs 
that can be directly linked to genes/pathways which may be important for variation 
in targeted phenotypes (Lee & Lee, 2021). Further integration of transcriptome, 
proteome, and metabolome data with conventional GWAS may represent a network- 
based augmentation for the identification of candidate genes/variants associated 
with complex traits. Therefore, currently in GWAS analysis, a greater emphasis is 
given on integrating multiple data associated with a target phenotype because this 
will not only minimize spurious associations but also would accelerate candidate 
gene discovery for complex traits.

13  Conclusion and Prospects

In summary, GWAS is a powerful approach for genetic mapping in plants that has a 
great potential to accelerate the utilization of genetic diversity in crop improvement. 
Over the past two decades, there has been refinement of association analysis meth-
odology, software tools, and approaches towards interpretation of results which has 
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catalyzed wide-scale adoption of GWAS in plants. GWAS has been reported in dif-
ferent crops and has led to identification of hundreds of genomic regions for various 
traits. However, there has been less follow-up work toward identification of candi-
date gene governing important traits from the associated genomic regions, limiting 
utilization of trait-associated genomic regions in the breeding programs. Therefore, 
future studies on GWAS should focus on integrating data generated using other 
omics tools such as transcriptomics, proteomics, ionomics, metabolomics, as well 
as gene editing to accelerate the discovery of candidate genes for various complex 
traits in plants.
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Tweaking CRISPR/Cas for Developing Salt 
and Drought Tolerant Crop Plants

Mahrukh, Khazin Hussain, Jafar K. Lone, Ragini Bhardwaj, 
and Muntazir Mushtaq

Abstract Drought and soil salinity stresses are major consequences of climate 
change and the main source of yield loss and diminishing crop productivity. Abiotic 
stress-tolerant crops are expected to ensure global food security under conditions of 
anthropogenic climate change. Various studies demonstrated the application of 
CRISPR/Cas system in developing crops with enhanced drought and salinity toler-
ance; those studies clearly show the potential and effective role of the CRISPR/Cas 
system for future applications to enhance abiotic stress tolerance. Here in this chap-
ter, we have tried to highlight all the recent work carried out regarding the applica-
tions of CRISPR-Cas-mediated gene editing in crop plants to combat drought and 
salinity stress.

Keywords CRISPR · Genome editing · Molecular breeding · Salinity · Drought · 
Abiotic stress · Crop improvement

1  Introduction

Climate change during the last three decades caused a serious yield loss and decrease 
production of many important agricultural crops globally. Among the major abiotic 
factors, drought and salinity hamper global agricultural productivity in most valu-
able crops (Kaushal & Wani, 2016; Singh et al., 2018). About 45% of agricultural 
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lands are estimated to be subjected to continuous or frequent drought conditions. In 
addition, about 52% of the world’s population is seriously affected by soil salinity, 
which represents around 4.03 billion people living in 13 countries. Soil salinization 
is a severe form of soil degradation that can be caused by both natural and human- 
mediated activities like irrigation in mostly arid and semiarid regions (Rengasamy 
et al., 2010). Physiological reactions in plant are very similar to drought and salinity 
stress. Both cause cellular dehydration, which ultimately causes osmotic stress, and 
water loss from the cytoplasm into the intercellular space results in stomatal closure 
and affects CO2 fixation (Flexas et al., 2004, 2007).

Salinity affect plant functions by means of two main mechanisms (i) by external 
osmotic pressure nearby the roots, which decreases assimilation of water, which 
leads to changes which are similar as caused by drought, and (ii) by negative effects 
of salt ions, especially Na+ and Cl−, which later accumulate in plant cell, mainly in 
the leaves so the consequence is seen at very low level of salinity and at the time of 
the first stages of salt exposure, while the ionic effect is observed during long-term 
exposure and increasing level of salinity (Arzani & Ashraf, 2016). One of the most 
common abiotic conditions is drought stress, which irreversibly affects plant growth 
and development, and it remains a serious concern for agricultural researchers, 
especially plant breeders, and ultimately causes water shortage in the root, resulting 
in osmotic unbalance and serious yield loss (Salekdeh et al., 2009). Adaptive mor-
phophysiological variations in plants’ biochemical processes enable them to with-
stand drought. Drought stress frequently causes stomatal closure, which inhibits 
CO2 diffusion into the leaf, or non-stomatal limitations, which result in a decrease 
in carbon absorption and other photosynthetic activities. Because salinity reduces 
water intake through the roots, a combination of water scarcity and saline condi-
tions could cause considerable stress.

Drought and salinity stress tolerance, as well as resource usage efficiency, are 
required to meet the goal of breaching yield limitations. Conventional breeding 
methods are time-consuming, tedious, and expensive but for so many years have 
been the most practical and lucidest strategy for improvement of crops and have 
aided their growth in abiotic stresses like drought and salinity. Apart from consider-
ing the contribution of traditional and molecular breeding approaches for improved 
crop production against abiotic stresses, inclusion of genome editing technologies 
is need of the hour. Genome editing is a technique which enables the scientists to 
make highly specific mutations for functional genomics and crop improvement. 
Because of its ease, variety, flexibility, and broad use, the clustered and regularly 
interspaced short palindromic repeat-Cas (CRISPR/Cas) technologies have emerged 
as a progressive genome editing approach. CRISPR-Cas technology is emerging at 
a rapid pace, and new molecular tools are readily accessible. The CRISPR-Cas 
genome editing is a flexible technology that allows precise genetic manipulation of 
crop species and has been used for the improvement of various abiotic and biotic 
stresses providing an opportunity to develop genotypes with desirable traits to 
achieve sustainable agricultural systems. The CRISPR/Cas genome editing method 
incorporates a single-guide RNA (sgRNA) with an endonuclease (Cas9) to induce a 
double-stranded break (DSB) at a specified place on the DNA.  These DSBs are 
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Fig. 1 Mechanistic insights into CRISPR/Cas-mediated genome editing toward enhancing 
drought and salinity tolerance in plants

amended by endogenous repair mechanisms of the cell giving rise to unique new 
mutants (Voytas & Gao, 2014). CRISPR/Cas technology has been proficiently uti-
lized at present times for the cognizance of improved resilience against stresses 
particularly abiotic such as drought and salinity in plants (Shi et al., 2017; Zhang 
et al., 2019a, b). This chapter will focus on the utilization of CRISPR/Cas9 genome 
editing technology toward drought and salinity tolerance in crops and foresight of 
this system toward the production of drought- and salinity-tolerant crops, which is 
also summarized in Fig. 1.

2  Molecular Breeding Approaches for Drought- 
and Salt- Tolerant Crop Plants

Quantitative trait locus (QTL) is a fragment of DNA linked with a specific trait in 
the genome of an organism. QTLs linked to salt and drought tolerance are complex 
playing an important part in acknowledging reaction against stress and producing 
tolerance in plants. Technological advancements has been made to analyze genes 
associated with QTLs by introducing novel methods such as microarray-based pro-
filing of differential gene expression or combo of genetic mapping, and transcrip-
tional profiling is utilized for recognizing genes linked with QTLs. Recently, 
numerous QTLs are reported pertaining to salinity and drought tolerance. Success 
achieved in genetic marker analysis made it possible to examine simply inherited 
along with the quantitative characters and identification of sole gene controlling the 
particular trait. Genetic markers can be utilized to speed up genetic advance by tag-
ging QTL and by evaluating their share toward the phenotype by selection of 
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favorable alleles at these loci. To investigate mapping donor introgression in the 
genetic background of an elite recurrent parent, advanced backcross QTL analysis 
is used. Conventional breeding approaches for drought and salt resilience are inef-
fective owing to the reproductive barrier and possibility of transfer of unwanted 
characters. To evade this issue, genome editing approaches are desirable and pre-
ferred over conventional approaches as the former is involved in transfer of specific 
genes only.

3  Genome Editing Strategies Crop Improvement

Genome editing technologies have facilitated researchers to perform precise genetic 
manipulations in target organisms. Golden Gate system like innovative cloning 
approaches made the construction of those tools effortless (Cermak et al., 2011); 
nevertheless, protocols for altering genome are still comparatively tedious and labo-
rious. Most researchers now have access to genome editing, thanks to the develop-
ment of CRISPR-associated protein 9 (CRISPR/Cas9) technologies for planned 
mutagenesis (Gasiunas et al., 2012). This technology for editing genome has par-
ticularity for the specific sequence conferred by an editable small fragment of RNA 
(guide RNA); hence, the structure of Cas9 doesn’t need any tempering to alter target 
recognition same as in case of ZFNs and TALENs (Cong et al., 2013). CRISPR/
Cas9 technology originated from the adaptive immune system of bacteria in 
response to invaders like phages observed first in E. coli where repeats of DNA were 
set apart by sequences known as spacers (Ishino et  al., 1987). The spacers are 
sequences of DNA from viruses which the bacteria save as a kind of immune memory.

These sequences are transcribed and processed into CRISPR RNAs (crRNAs), 
which are then coupled to a transactivating CRISPR RNA (tracrRNA). The Cas9, 
crRNA, and tracrRNA ribonucleoprotein complex is designed to invade the DNA 
adjacent to the spacer (Jansen et al., 2002; Bolotin et al., 2005; Pourcel et al., 2005). 
The guide RNA is made by combining crRNA and tracrRNA into a unique fragment 
(gRNA). The spacer can quickly be changed to lead Cas9 to a certain sequence 
(Cong et al., 2013). CRISPR’s application in agriculture has created new possibili-
ties for agricultural scientists, especially plant breeders (Shan et  al., 2013). The 
most basic application of CRISPR/Cas9 is the development of out-of-frame loss-of- 
function mutants. During the cultivation of crops, loss-of-function mutations are a 
common genetic alteration. From a genetic standpoint, crop domestication was 
achieved by stacking variants with loss of function for critical genes regulating fea-
tures including blooming time, seed breaking, seed size, and color (Meyer & 
Purugganan, 2013). By focusing on these key genes, researchers may follow crop 
improvement back to many years using a method called de novo domestication 
(Zsogon et al., 2017). Conceptually, this process could aid in speedy enhancement 
of highly tolerant, indigenously acclimatized species to attain new economically 
suitable crops that contain the unchanged stress tolerance traits of their wild ances-
tors. De novo domestication can be more effective than breeding for present-day 
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economic varieties as stress-tolerant characters controlled by various genes might 
be lost during crop domestication. Genome editing aids in acceleration of molecular 
breeding and improvement of crops which are essential for local food security but 
not important globally (orphan crops), e.g., chickpea, sorghum, and sweet potato 
(Lemmon et al., 2018). Genome editing is close to de novo domestication approach 
like improved resilience, locally suited, and extremely particularized crop may give 
satisfactory outcomes rather than aiming to bring back stress resistance in currently 
established varieties, during which complex polygenic characters are lost over crop 
domestication (Khan et al., 2019). Plant transformation efficiency is a drawback of 
genome editing in crops hampering the transfer of genome editing material into the 
specific cells. Genetic transformation is unattempted for many plant species, and 
existing protocols are structured for a little portion of the lab responsive varieties. In 
spite of that, genome editing has promising role in plant sciences which compels to 
develop more efficient crop transformation methods.

4  CRISPR for Developing Abiotic Stress Tolerance 
in Crop Plants

Breeders attempt to regulate a gene for analyzing its role as well as enhancing 
quantity, quality, and tolerance of crops toward abiotic stresses. CRISPR/Cas 
genome editing occurs naturally in bacteria and is used as a tool that helps in 
understanding role of gene and precision crop breeding by choosing a particular 
DNA and RNA sequence. It can be applied to select a sequence for gene knocking, 
knockout, and replacement. It can also be used to monitor and regulate gene 
expression at genomic and epigenomic levels by binding to a particular sequence.

CRISPR/Cas system combines endonuclease (Cas9) procured from bacteria 
Streptococcus pyogenes and a single-guide RNA (sgRNA) conferring precision for 
the target. This complex of Cas9-sgRNA binds to a specific location present on the 
DNA and induces breaks in the target genomic region depending on the sequence in 
the downstream known as protospacer adjacent motif (PAM). Hence, the use of dif-
ferent protospacer adjacent motif (PAM) sequence makes it an exceptionally basic, 
quick, cost-effective, and highly precise genome editing tool that has been incredi-
bly useful for improvement of crops (Zhang et al., 2018a, b). Almost all important 
crops, including maize and rice, have benefited from CRISPR/Cas technology. 
Barley, wheat, sorghum, watermelon, potato, cucumber, lettuce, grapes, and soy-
beans are some of the most common crops. Abiotic stresses like drought and salinity 
are notably conforming to be critical for crop growth and development due to global 
warming.

Multiple structural and regulatory genes, as well as noncoding RNAs, play a role 
in plant responses to varying environmental conditions (Zhang, 2015). These genes 
can be altered using traditional transgenic technologies and advanced genome edit-
ing tools to improve crop tolerance to abiotic stressors. As a sole abiotic stress may 
be controlled by many genes rather than an individual gene having a dominant effect 
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Table 1 Applications of CRISPR to develop crop plants tolerant to drought and salinity

Crop Delivery mode Target gene Function Reference(s)

Drought stress

Brassica 
napus

A. tumefaciens BnaA6.RGA Transcription 
factor

Wu et al. (2020)

Rice  
(O. sativa)

A. tumefaciens OsNAC006
OsmiR535
OsDST
OsPYL9
OsERA1
SRL (1 and 2)
NAC14
SAPK2
MYB5,DERF1, 
PMS3, 
SPPEPSPS, 
MSH1

Drought
Drought and 
salinity 
tolerance
Drought and salt 
tolerance
Drought 
tolerance
Drought 
tolerance
Leaf rolling
Transcription 
factor
Signalling 
(ABA)
Amino acid 
synthesis

Wang et al. (2020), Yue 
et al. (2020), Kumar 
et al. (2020), Usman 
et al. (2020), Ogata 
et al. (2020), Liao et al. 
(2019), Shim et al. 
(2018), Lou et al. 
(2017), and Zhang et al. 
(2014)

Tomato  
(S. 
lycopersicum 
L.)

A. tumifaciens
A. 
tumifaciensA. 
tumifaciens
A. tumefaciens

SlNPR1
NPR1
SIMAPK3
NPR1

Drought 
tolerance
Drought 
tolerance
Plant growth 
and 
development

Li et al. (2019) and 
Wang et al. (2017)

Wheat 
(Triticum 
aestivum)

PEG-mediated 
transformation

DREB2, DREB3, 
ERF3

Dehydration 
responsive 
element binding 
protein

Kim et al. (2018)

Maize (Zea 
mays)

Particle 
bombardment

ARGOS8 Gene family 
regulator of 
ethylene

Shi et al. (2017)

A. thaliana A. tumefaciens
A. tumefaciens
A. tumefaciens
A. tumefaciens
A. tumefaciens

Trehalase
AREB1
Vacuolar 
H+-
pyrophosphatase 
(AVP1)
OST2
miR169a

Drought 
tolerance
ABA signaling
As transcription 
factor
Stomatal 
movement
Acts in drought 
tolerance as 
negative factor

Nunez-Munoz et al. 
(2021), Roca-Paixao 
et al. (2019), and Park 
et al. (2017)

Glycine max A. tumefaciens GmMYB118 Drought and salt 
tolerance

Du et al. (2018)

Populus clone 
NE-19

A. tumefaciens PdNF-YB21 Drought 
tolerance

Zhou et al. (2020)

(continued)
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Table 1 (continued)

Crop Delivery mode Target gene Function Reference(s)

Salinity stress

Rice  
(O. sativa)

A. tumefaciens GTγ-2 Transcription 
factor

Liu et al. (2020)

PQT3 Ubiquitin ligase Alfatih et al. (2020)
PIL14 Transcription 

factor
Mo et al. (2020)

BGE3 Cytokinin 
transport

Yin et al. (2020)

DST Transcription 
factor (zinc 
finger)

Kumar et al. (2020)

FLN2 Sucrose 
metabolism

Chen et al. (2019)

RR9, RR10 Cytokinin 
signaling

Wang et al. (2019)

DOF15 Transcription 
factor

Qin et al. (2019)

NCA1a, NCA1b Catalase activity 
regulated by 
chaperones

Liu et al. (2019)

OsRR22 Transcription 
factor

Zhang et al. (2019a, b)

NAC041 Transcription 
factor

Bo et al. (2019)

OTS1 Response 
regulator for salt 
stress

Zhang et al. (2019a, b)

SAPK1, SAPK2 Pathway 
regulator for BA

Lou et al. (2018)

OsBBS1 Signaling 
mediated by 
chaperones

Zeng et al. (2018)

MIR528 Response 
regulator for salt 
stress

Zhou et al. (2017)

SAPK2 Signaling 
(ABA)

Lou et al. (2017)

RAV2 Transcription 
factor

Duan et al. (2016)

(continued)
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Table 1 (continued)

Crop Delivery mode Target gene Function Reference(s)

Solanum 
lycopersicum

A. tumefaciens
A. tumefaciens
A. tumefaciens
A. tumefaciens

SlARF4
CLV3
SP5G, SP
GGP1
WUS

Osmotic and salt 
stresses
Regulates floral 
meristem 
development
Regulates 
sensitivity for 
daylength
Regulates gene 
transcription 
process in shoot 
apical meristem

Bouzroud et al. (2020), 
Li et al. (2018), Van 
Eck et al. (2019), Li 
et al. (2018), and Zhang 
et al. (2018a, b)

Arabidopsis 
thaliana

A. tumefaciens SAUR41 Salinity stress Qiu et al. (2020)

as in case of biotic stress, a mild advancement is scored to generate genome editing 
mutants for enhancing plant tolerance to abiotic stresses by employing CRISPR/Cas 
system (Table 1). CRISPR/Cas9-mutated AGROS8 gene (negative regulator of eth-
ylene response) improved maize tolerance to drought recently (Shi, 2017). Recently, 
CRISPR/Cas-edited Arabidopsis mutants of dpa4-sod7-aitr256 improved tolerance 
to drought stress (Chen, 2019). In tomato, water usage efficiency was enhanced by 
knocking down and knocking out of ARF4 transcription factor gene thereby improv-
ing salinity and osmotic stress in mutated plants (Bouzroud, 2020). Mutants of G 
protein genes gs3 and dep1 in rice obtained from CRISPR/Cas genome editing 
improved tolerance to salinity stress (Cui, 2020). Removal of ppa6 gene improved 
tolerance to alkaline stress in rice (Wang, 2019). Expression of several genes can be 
mediated using CRISPR/Cas system. This implies the prospects of CRISPR/Cas 
genome editing technology on enhancing plant resilience to abiotic stresses 
(Mushtaq et al., 2018).

5  CRISPR/Cas Genome Editing for Plant Tolerance 
to Drought Stress

Drought tolerance is a complicated trait governed by multiple genes; therefore, 
understanding the underlying molecular and physiological mechanisms is crucial. 
Reactive oxygen species, abscisic acid, allied phytohormones, calcium, cross talk 
between various factors, and many other signaling molecules are known to be 
involved in signal transmission under drought condition (Hu & Xiong, 2014). The 
synthesis of plant hormones and their signaling regulates ion transporters, MAPKs, 
CDPKs, protein kinase (CIPK), CIPKs, and calcineur in Blike interacting and sucrose 
non-fermenting protein (SNF1)-related kinase 2 (SnF2) (Fang & Xiong, 2015). 
Drought stress in rice is modulated by increased expression of OsCIPK23 and 
OsCDPK7 (Yang et  al., 2008). In rice, OsMPK5 and MAP kinase kinase kinase 
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(M3K) gene DSM1 has been recognized as an essential molecule linked in improving 
tolerance toward drought (Sinha et  al., 2011). SnRK2C in Arabidopsis enables 
drought stress tolerance by regulating stress-related genes (Umezawa et al., 2004). 
Plants with transcription factors, such ZF-TFs, AP2/EREBF, MYB, NAC, and 
AREB/ABFs, should be able to withstand drought (Joshi et al., 2016). Master tran-
scription factors AREB1, AREB2, and AREB3  in Arabidopsis showed a linked 
ABA-mediated direct regulation for drought tolerance (Yoshida et  al., 2010). 
Similarly, by starting the biosynthesis of wax in Arabidopsis, AP2/EREBF TF SHN 
have shown improved drought tolerance (Aharoni et al., 2004). ABA is closely linked 
to drought stress among the phytohormones linked with signaling cues. The synchro-
nized interaction within three groups of proteins, the pyrabactin resistance 1 (PYR1) 
and/or regulatory component of the ABA receptor (RCAR), protein phosphatase 2C 
(PP2C), and SnRK2s, provides ABA-mediated drought tolerance in plants.

CRISPR/Cas9 system was utilized in Arabidopsis to introduce a plasma 
membrane H+ ATPase, OPEN STOMATA 2 (OST2) encoded by novel alleles 
accountable for stomatal response (Osakabe et al., 2016). CRISPR/Cas9 system has 
improved drought tolerance by using truncated sgRNA (tru-sgRNA) and Cas9 com-
bination which induced mutation at the OST2 locus by improving stomatal response. 
CRISPR/Cas9 system was also utilized to ensure the role of non-expresser of 
pathogenesis- related gene 1 (NPR1 gene) in tomato drought tolerance by generating 
mutant lines for NPR1 gene (Li et  al., 2019). Loss-of-function s1npr1 mutants 
induced by CRISPR/Cas9 system exhibited deteriorated drought characters in con-
trast to tomatoes of wild origin such as lowered tolerance to drought, broad higher 
electrolytic leakage, stomatal aperture, increased levels of hydrogen peroxide, and 
malondialdehyde and lower levels of antioxidant enzymes. Decrease in expression 
of the genes responsible for water stress tolerance such as SIGST, SIDHN, and 
SIDREB validated the vulnerability of s1npr1 variants toward drought. Hence, 
S1NPR1 could be committed to perform a vital function in regulating tolerance to 
drought, and various mutants of SlNPR1 can be achieved using genome editing 
tools for extended drought tolerance in tomato and various crops. CRISPR/Cas9 
system can also be modified to enhance drought tolerance in plants; for example, in 
Arabidopsis, drought tolerance was enhanced by using a defunct Cas9 including the 
catalytic domain of histone acetyltransferase and single-guide RNA (sgRNA) for 
targeting AREB1 gene promotor region (Roca-Paixaao et al., 2019). CRISPR/Cas9 
system has been utilized for developing mutants with loss of function of OsSAPK2 
to validate its function in the development of ABA-mediated tolerance against 
drought in rice (Lou et al., 2017). In recent times, CRISPR/Cas9 technology has 
been utilized to generate novel ARGOS8 mutants to incorporate valuable traits, 
including drought tolerance in maize (Shi et al., 2017). This genome editing tool is 
recently employed to generate variants with rolled leaves in rice genotypes by alter-
ing the genes (SRL1 and SRL2) (Liao et al., 2019). Lower stomatal number, vascular 
bundles, chlorophyll content, stomatal conductance, transpiration rate, and other 
related characters have been reported for homozygous mutant lines for SRL1 and 
SRL2. Overall, CRISPR/Cas system has been widely accepted for altering genes 
with precision and corresponding mechanisms for drought tolerance as needed for 
improvement of crops.
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6  CRISPR/Cas Genome Editing for Plant Tolerance 
to Salinity

Salinity affects productivity of economically important crops due to ion toxicity and 
osmotic stress as it reduces plant vigor. Plants tolerant to salinity balance the accre-
tion of organic solutes and inorganic ions to decrease osmotic stress. The presence 
of salinity in growth medium leads to increase in concentration of Na+, which takes 
part with K+ causing efflux of inorganic ions, leading to potassium ion shortage in 
the cytoplasm. As a result, increased proportion of Na+ in plant cells causes unbal-
ance in ion equilibrium. Photosynthesis is obstructed by both osmotic stress and ion 
toxicity in plant cells producing reactive oxygen species (ROS) in abundance which 
lead to reduction in growth and ultimately cell death. Plants counter salinity stress 
by morphophysiological adjustments, which are the consequences of changes in the 
regulation of genes and signaling pathways (Julkowska & Testerink, 2015). The 
initial changes at cellular level are quite recognizable including development of 
intracellular signal messengers like reactive oxygen species, instantaneous changes 
in Ca2+ levels, differential activity of Ca2+/calmodulin-dependent kinase activation, 
ABA synthesis, and activation of SOS homeostatic signaling pathways (Zeng 
et al., 2015).

CRISPR/Cas genome editing has confirmed a number of genes that improve salt 
tolerance. In rice, for example, the OsBBS1 gene has been linked to salinity suscep-
tibility and early leaf maturation. In addition, the gene OsMIR528 works as a posi-
tive salinity regulator (Sun et al., 2019; Ganie et al., 2021). The GT-1 element is 
required for stimulating the expression of the OsRAV2 gene, which confers salinity 
tolerance, according to the CRISPR/Cas directed variation (Duan et  al., 2016). 
Salinity tolerance was conferred by loss-of-function mutations of the SnRK2 and 
SAPK-1 and 2 genes in rice, which were mediated by CRISPR/Cas (Lou et  al., 
2017). Aside from that, rice’s OsRR22 and OsNAC041 genes have been shown to 
improve salinity tolerance (Sun et al., 2019; Ganie et al., 2021). In tomato plants, 
knocking down the SlMAP3 gene resulted in a considerable reduction in the expres-
sion of SlLOX, SlGST, and SlDREB, resulting in salt tolerance (Wang et al., 2017). 
With the use of targeted genome editing utilizing the CRISPR/Cas system, such 
case studies can be exploited to increase salinity tolerance in crops.

7  Conclusion and Future Directions

We still lack efficient ways to comprehend the potential applications of the different 
advanced gene editing tools such as base editing, prime editing, and chromosome 
engineering regarding tolerance to drought, temperature, and salinity stress, though 
existing reports mostly used CRISPR/Cas9 gene knockout technology. Very 
recently, the introduction of CRISPR-interference (CRISPRi) and CRISPR- 
mediated activation (CRISPRa) in the CRISPR toolkit, based on dCas9, as already 
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is utilized in maize (Gentzel et al., 2020), has tremendous potential for additional 
development of field plant genome editing. Targeting the core promoter of a gene by 
gene editing technology could be an unprecedented approach for modification of 
any desired trait, unraveling newer opportunities for breeding improved crop variet-
ies tolerant to drought and salinity stress. Furthermore, novel delivery methods uti-
lized in the recent approaches for genome editing will develop transgene-free 
products, therefore, surmounting the constraints of ethical, regulatory, and commer-
cialization concerns. Application gene editing tools in functional genomics together 
with other strategies could possibly help in combating global food crisis and will 
facilitate in accomplishing the zero-hunger goal, one of the sustainable develop-
ment goals set by the United Nations, by 2030.
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Abstract In the past few decades, hunger and undernourishment at national and 
global levels are the truths we deny owing to many variables involved, and among 
the variables, abrupt rise in global population and limited availability of quality 
food crops are the prominent ones. On top of that, climate change, urbanization, 
uprising sea level and COVID-19 pandemic have added more adverse and lasting 
effects on global food security. Therefore, steps should be taken to raise climate 
resilient, biotic and abiotic stress-resistant, high-yielding and quality food crops to 
meet the ongoing and upcoming food security and scarcity. On the other hand, con-
ventional breeding and genetic modification techniques are not only limited to few 
cultivable crops but also raise questions on food safety and security. This has initi-
ated the shift to new nuclease-based tools like CRISPR/Cas, which has recently 
gained popularity by virtue of its specificity and versatility. CRISPR/Cas technol-
ogy has been bestowed with precise and remarkable results in manipulating plant 
traits for sustainable agricultural production. In this chapter, we intended to sum-
marize the necessity for food crop improvement, its prevailing challenges and tech-
nologies adopted to overcome the same. The applicability of CRISPR/Cas in 
achieving zero hunger goals, its reliability to feed the world in the future and its 
current progress in food crops improvement are also discussed. CRISPR/Cas limita-
tions, its challenges and future perspectives were addressed as well.
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1  Introduction

The increase in global population and climate change brings a great threat to global 
food security (FAO, 2015). It was observed that due to climate change and urbaniza-
tion, both loss in biodiversity and decline in agricultural production occurred (UN 
Report, 2019). Recent reports reveal that approximately 811 million people around 
the globe are going to bed hungry each night, and 25,000 people, including 10,000 
children, die daily due to hunger (FAO, 2021). Besides, 99.1 million people in 23 
countries faced hunger in 2020, and an additional 78 and 30 million people would 
be projected to undernourishment and hunger in 2030 due to dispute, climate change 
and the outbreak of COVID-19 pandemic (Grebmer et  al., 2021). The Food and 
Agriculture Organization of the United Nations anticipated that the global popula-
tion will be going to reach 9.1 billion by 2050 that requires raise in food production 
by 70% (FAO, 2009). To solve the above-mentioned problems, several researchers 
nowadays are trying to develop different improved varieties using different tech-
niques to fight against hunger.

Presently, conventional breeding is the most frequently used technique for the 
improvement of different crop plants, but it is a very time-consuming technique 
which may require many years to develop improved plant variety (Ahmar et  al., 
2020). Therefore, to cut the time and labour during the process of crop improve-
ment, scientists shifted from conventional techniques to gene editing approach (e.g. 
clustered regularly interspaced short palindromic repeats/associated protein 9 
(CRISPR/Cas9), transcription activator-like effector nucleases (TALENs), zinc- 
finger nucleases (ZFNs), etc.) (Abdallah et al., 2015; Rashid et al., 2017; Wanga 
et al., 2021). CRISPR/Cas9 is less expensive with more efficient and user-friendly 
compared to other gene editing tools (Li et  al., 2020). Due to this, the use of 
CRISPR/Cas9  in the field of plant science has increased rapidly in recent years 
(Haque et al., 2018; El-Mounadi et al., 2020; Wada et al., 2020). Using CRISPR, 
scientists not only tried to increase the yield of crop plants but also raise varieties 
resistant against different stresses (Jaganathan et al., 2018). Scientists and food pro-
ducers are increasingly optimistic that CRISPR will be the instrument that may 
eliminate hunger around the globe in the near future (Ahmad et al., 2021).

2  Need for Crop Improvement

The growing global population may require up to 59–98% more food by 2050. 
Many agricultural development aspects must be addressed in order to meet the 
increasing food crop demand (Fig. 1). To feed the global population, farmers need 
to expand agricultural land or adopt new farming techniques on the existing agricul-
tural land (Islam & Karim, 2019). Rapid transitions of food system to meet the 
global food demands have many challenges. The nature of the produce from agri-
culture and food demand is affected by the increase in population, urbanization and 
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Fig. 1 Factors relating to crop improvement

individual income. Increasing food demand and stagnant improvement in crop yield 
encourage farmers to rigorously use chemicals, which are harmful to the environ-
ment. In order to address the aforementioned issues, it is vital to promote the imple-
mentation of a sustainable food system which might face a great challenge. In 
low-income countries, the agricultural land demand will increase, and hence, avail-
ability of land for agriculture in a confined area of the country may cause environ-
mental and social problems. Therefore, ensuring that natural resources like forests, 
water biodiversity and land suitable for agriculture will be another difficulty in food 
production and security on a long-term basis. Moreover, climate change has impacts 
on agricultural production, soil, forests, water and other natural resources and ulti-
mately affects the ecosystems. Crop yield and food stock are also affected by cli-
mate change, thereby jeopardizing the stability and availability of food supplies. 
Food and agricultural systems are under threat because of the rise in intensity and 
number of transboundary outbreaks of plant and animal pests and diseases, possibly 
resulting in food safety issues and radiation contamination. Agriculture can be made 
more productive by integrating management of pests because it prevents pests and 
diseases from spreading, minimizes yield loss and reduces pest infestations. 
Production of sustainable food entails eradicating severe poverty and eliminating 
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inequality in order to boost agricultural profitability and production, as well as link-
ing farmers to markets. Food that’s both sustainable and nutritious strengthens resil-
ience in the face of extended crises, wars and catastrophes; improves resilience, 
efficiency and the accessibility of the food system; expands income possibilities in 
rural areas; addresses the root reasons of migration; etc. (Calicioglu et al., 2019). 
With recent advancements in genome-editing technologies, particularly the 
CRISPR-Cas system, targeted and precise genetic alteration of crops can be accom-
plished with greater viability and an accelerated shift toward precise crop improve-
ment to increase food supply and highlight nutritious food sustainability and future 
agricultural growth potential (Ahmad et al., 2021).

3  Genome-Editing Technology Over Conventional Genetic 
Modification in Crop Improvement

Conventional crop breeding techniques involve marker-assisted selection (MAS), 
MAS-assisted gene pyramiding and marker-assisted recurrent selection. The ulti-
mate goal for the evolution of these technologies was to identify and propagate crop 
plants with desirable characters and produce high-quality food with minimum 
inputs (Fig. 2a) (Tester & Langridge, 2010). However, due to poor breeding capa-
bilities and lack of proper trained staff, communication from developers to users, 
especially in the developing countries, led to the clampdown of these ideas and 
emergence of an era of genetically modified (GM) crop. GM crops are generated by 
incorporating a gene (trait) of interest into a vector and delivering the same into the 
target plant to obtain a plant with a trait of interest (disease or pest resistance, high 
yield, abiotic and biotic tolerant, etc.) (Fig. 2b). The upstream or downstream pro-
moters of the transferred genes are identified and characterized for proper regula-
tion in the target plant (Moller et  al., 2009). Undoubtedly, GM crops can be 
considered as sustainable agriculture considering a few of its aspects, including less 
application of pesticides, less harmful gas emission, less utilization of fossil fuels 
and potential to solve hunger problem in the developing countries (Conner et al., 
2003; James, 2011). But certain aspects of it are still arguable, such as human health 
and environmental impact due to utilization of agrochemicals, engineered genes, 
gene transfer into wild and non-targeted population, expensive end products and 
difficulties in varieties production in consideration to the current needs (Buiatti 
et al., 2013). Additionally, due to limited public acknowledgement and persisting 
questions on food security and safety, GM crops were not accepted globally and 
strict global regulations were established (Turnbull et  al., 2021), which have not 
only resulted in restriction of GM crops to a minimum number of cultivable crops 
(Prado et al., 2014) but also have started a shift in the interest of the researchers and 
scientists towards new breeding and genome editing techniques for development 
and cultivation of novel verities of crops.
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Fig. 2 Comparison of advantages, schematic working pathway and limitations of prominent 
approaches for crop improvement. (a) Conventional plant breeding, (b) genetically modified crops 
and (c) CRISPR-based gene editing

The new breeding or genome editing involves utilization of modern and opti-
mized nuclease-based biological techniques for changes in the genome precisely at 
particular location (Gao, 2015). Nuclease-based editing tools specifically recog-
nized DNA sequences and introduce breaks, which were fixed by plant repair sys-
tems by nucleotide insertion or deletion resulting in gene replacements or insertions 
or knockouts (Symington & Gautier, 2011). For example, zinc-finger nucleases 
(ZFNs) (Kim et al., 1996) are developed by fusion of a DNA recognition domain 
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which recognizes a specific region in DNA, and cleavage domain (Fok1), where the 
latter acts as the restriction enzyme (Urnov et  al., 2010). In crop plants such as 
maize (trait stacking and herbicide resistance) (Shukla et al., 2009) and rice (trait 
stacking), ZFNs have been successfully employed (Cantos et  al., 2014). In rice, 
ZFNs have been reported in identification of specific loci in the DNA for future 
gene insertion (Cantos et al., 2014). Secondly, transcription activator-like effector 
nucleases (TALENs) (Christian et  al., 2010) are another example, which allows 
more flexible and efficient site detection where each endonuclease works on one 
nucleotide basis. Also, TALENs have been successfully employed in rice (bacterial 
resistance, fragrant rice) (Li et al., 2012; Shan et al., 2015), wheat (mildew resis-
tance) (Wang et al., 2014), maize (reduced wax in leaves, haploid induction) (Char 
et  al., 2015; Kelliher et  al., 2017), sugarcane (cell wall composition) (Jung & 
Altpeter, 2016), soybean (high oleic and low linoleic contents) (Haun et al., 2014; 
Demorest et al., 2016) and tomato (high anthocyanin content) (Cermak et al., 2015). 
Nevertheless, ZFNs and TALENs are not simple and often challenging due to off- 
target effects and low efficacy (Szczepek et  al., 2007). Thirdly, the Cas proteins 
integrated clustered regularly interspaced short palindromic repeats (CRISPR/Cas 
system) have advanced as an innovative tool for genome or gene editing and manip-
ulation (Fig. 2c) (Li et al., 2013). Compared to other nucleases, CRISPR/Cas9, also 
called type II CRISPR/SpCas9, has gained popularity due to its efficiency, low cost, 
simplicity and, most importantly, its contribution to many industrially valuable food 
crops, including maize, rice, tomato, wheat, cotton, potato and soybean (Chen et al., 
2019). Upgradation of Cas9 variants into type V CRISPR/Cpf1 has overcome cer-
tain limitations on detection of potential sites and restrictive protospacer adjacent 
motifs (PAM). Cpf1 and its orthologue have been in notice due to their capability to 
induce targeted mutations (Endo et al., 2016; Xu et al., 2017). Similar to earlier 
Cas9 variants, Cpf1 may also be coupled with base editing (Li et al. 2018a, b, c, d) 
and employed in the improvement of crop plants.

4  CRISPR/Cas as a Tool to Feed the World into the Future

CRISPR/Cas tool has gained popularity as a promising second-generation editing 
tool (Jaganathan et al., 2018). Naturally, CRISPR/Cas9 systems act as prokaryotic 
acquired immune system against the invading phages, and the system was first dis-
covered in E. coli (Mutezo et al., 2021). There exist 2 classes of CRISPR/Cas system 
with 5 types and 16 subtypes (Makarova et al., 2015) in diverse bacteria and archaea 
which differ in their components and working action, and the data of types and sub-
types expanded rapidly to 6 types and 33 subtypes (Makarova et al., 2020). In the 
updated classification of CRISPR/Cas system, four subtypes – III-E, III-F, IV-B and 
IV-C – were added in Class 1 (total of 3 types and 16 subtypes) and Class 2 included 
3 types and 17 subtypes (Table 1). Additionally, former subtype ‘I-U’ was reclassi-
fied as subtype ‘I-G’; former variant ‘V-U3’ was reclassified as ‘V-F1’ variant; and 
a former variant ‘V-U5’ was upgraded to subtype ‘V-K’ in 2020 classification 
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Table 1 Updated classification of CRISPR/Cas system

Type
Subtype and 
variant

Association of Cas 
protein variant with 
type and its function Organism, corresponding gene range

Class 1

I I-A Cas1 (DNA nuclease) Archaeoglobus fulgidus, AF1859, 
AF1870–AF1879

I-B Cas2 (RNA nuclease) Clostridium kluyveri, 
CKL_2758–CKL_2751

I-C Cas3 (DNA nuclease 
and helicase)

Bacillus halodurans, BH0336–BH0342

I-D Cas7 (RNA 
recognition, crRNA 
binding)

Cyanothece sp. 8802, 
Cyan8802_0527–Cyan8802_0520

I-E Escherichia coli K12, ygcB–ygbF
I-F I-F1 Yersinia pseudo-tuberculosis, 

YPK_1644–YPK-1649
I-F2 Shewanella putrefaciens CN-32, 

Sputcn32_1819–Sputcn32_1823
I-F3 Vibrio crassostreae J5 20, 

VCR20J5_310088–VCR20J5_310108
I-G (I-U)* Geobacter sulfurreducens, GSU0051–

GSU0054, GSU0057–GSU0058
III III-A Cas7 (RNA 

recognition, crRNA 
binding)

Staphylococcus epidermidis, 
SERP2463–SERP2455

III-B Cas11 (small subunit 
of effector complexes)

Pyrococcus furiosus, PF1131–PF1124
III-C Methanothermobacter thermautotrophicus, 

MTH328–MTH323
III-D Synechocystis sp. 6803, sll7067–sll7063
III-E Candidatus Scalindua brodae, 

SCABRO_02601, SCABRO_02597 
SCABRO_02593, SCABRO_02595

III-F Thermotoga lettingae TMO, 
Tlet_0097–Tlet_0100

IV IV-A Cas1 (DNA nuclease) Thioalkalivibrio sp. K90mix, 
(TK90_2699–TK90_2703)

IV-B Cas5 (pre-crRNA 
processing)

Rhodococcus jostii RHA1, 
RHA1_ro10069–RHA_ro10072

IV-C Cas7 (RNA 
recognition, crRNA 
binding)

Thermoflexia bacterium, 
D6793_05715–D6793_05700

Class 2

II II-A Cas1 (DNA nuclease) Streptococcus thermophilus, 
str0657–str0660

II-B Cas2 (RNA nuclease) Legionella pneumophila str. Paris, 
lpp0160–lpp0163

II-C II-C1 Cas4 (DNA nuclease) Neisseria lactamica 020-06, 
NLA_17660–NLA_17680

II-C2 Cas9 (DNA nuclease) Micrarchaeum acidiphilum ARMAN-1, 
BK997_03320–BK997_03335

(continued)

CRISPR/Cas in Improvement of Food Crops for Feeding the World into the Future



536

Table 1 (continued)

Type
Subtype and 
variant

Association of Cas 
protein variant with 
type and its function Organism, corresponding gene range

V V-A Cas2 (RNA nuclease) Francisella cf. Novicida Fx1, 
FNFX1_1431–FNFX1_1428

V-B V-B1 Cas4 (DNA nuclease) Alicyclobacillus acidoterrestris, 
N007_06525–N007_06535

V-B2 Cas12 (crRNA 
processing, DNA 
nuclease)

Planctomycetes bacterium RGB_13_46_10, 
A2167_01675–A2167_01685

V-C Oleiphilus sp., 
A3715_16885–A3715_16890

V-D Bacterium CG09_39_24, 
BK003_02070–BK003_02075

V-E Deltaproteobacteria bacterium, 
A2Z89_08250–A2Z89_08265

V-F V-F1 Uncultured archaeon, 
NDOCEIEL_00008–NDOCEIEL_00011

V-F1
(V-U3)**

Bacillus thuringiensis HD-771, BTG_31928

V-F2 Uncultured archaeon, 
ICDLJNLD_00049–ICDLJNLD_00052

V-F3 Candidatus Micrarchaeota archaeon, 
COU37_03050–COU37_03065

V-U1 Gordonia otitidis, GOOTI_RS19525
V-U2 Cyanothece sp. PCC 8801, PCC8801_4127
V-U4 Rothia dentocariosa M567, 

HMPREF0734_01291
V-G Hot springs metagenome, FLYL01000025.1 

(182949–185252)
V-H Hypersaline lake sediment metagenome 

(JGI), Ga0180438_100006283
V-I Freshwater metagenome (JGI), 

Ga0208225_100001036
V-K (V-U5)*** Cyanothece sp. PCC 8801, 

PCC8801_2993–PCC8801_2997
VI VI-A Cas13 (crRNA 

processing, RNA 
nuclease)

Leptotrichia shahii, B031_RS0110445
VI-B VI-B1 Prevotella buccae, 

HMPREF6485_RS00335–HMPREF6483_
RS00340

VI-B2 Bergeyella zoohelcum, 
HMPREF9699_02005–
HMPREF9699_02006

VI-C Fusobacterium perfoetens, 
T364_RS0105110

VI-D Ruminococcus bicirculans, RBI_RS12820

An ‘*’ and ‘**’ represent a former subtype (I-U) and variant (V-U3), reclassified as I-G subtype 
and V-F1 variant, respectively; ‘***’ represents a former variant (V-U5), upgraded to subtype 
V-K (Makarova et al., 2015, 2020)
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Fig. 3 (a) CRISPR/Cas: Mechanism of action, (b–f) its application in crop improvement

(Makarova et al., 2020). The principle of working mechanism of all CRISPR/Cas 
systems lies on the induction of site-specific double-strand breaks (DSBs) in the 
DNA of the invading virus or target DNA (Fig. 3a). In consequence to the generated 
DSBs, a cellular DNA repair mechanism is induced that includes either non- 
homologous end-joining (NHEJ) or homology-directed repair (HDR). Non-
homologous end-joining mechanism leads to imprecise repair, whereas 
homology- directed repair leads to precise repair. However, repair mechanism leads 
to dysfunctional viruses by creating insertions or deletions (indels) in the invading 
DNA of the virus, thus providing with a natural defence against the viruses (Zaidi 
et al., 2020).

The site-specific DSBs are facilitated by the CRISPR RNA (crRNA) in nature or 
the guide RNA (gRNA) in the experimental CRISPR/Cas system, which is used for 
guidance and site-specificity. The spacer region of the crRNA hybridizes to the 
complementary sequence within the target genome present near to protospacer adja-
cent motif (PAM) or protospacer flanking sequence (PFS) in type VI systems. 
Following hybridization, the Cas nuclease cleaves the targeted DNA sequence 
(Pickar-Oliver & Gersbach, 2019).

With Cas9 protein and tailored crRNA with proper spacer sequences, site- 
specific cleavage can be performed at any locus harbouring PAM or PFS in an engi-
neered system (Pickar-Oliver & Gersbach, 2019). Cas9 protein, namely, Cas9 of 
Streptococcus pyogenes (spCas9), was the first protein to be reprogrammed and 
employed outside of prokaryotic cells for genome editing (Jinek et al., 2012). The 
PAM – a trinucleotide sequence of 5′-NGG (N representing any nucleotide) and the 
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20 nucleotide long spacer – is used by the spCas9 for selective recognition and bind-
ing to the DNA of the target (Wright et al., 2016) and usually creates a blunt DSBs 
(Garneau et al., 2010). In experimental systems, a short crRNA is transcribed from 
a CRISPR locus which hybridizes with a target sequence near the PAM site fol-
lowed by the binding of a trans-activating RNA (tracr RNA) to the crRNA. The 
interaction of tracrRNA with crRNA aids in the processing of mature guide RNA 
(gRNA) which then forms the Cas9 complex with Cas9 and RNase III. The gRNA 
directs the Cas9 nuclease to create a DSB after the Cas9 complex binds to the target 
site. The DSB is generated three nucleotides upstream of the target DNA’s PAM site 
(O’Connell et al., 2014). The functionalities of crRNA and tracrRNA can be repli-
cated using a designed single gRNA. CRISPR/Cas9 can thereby produce precise, 
site-specific genome editing by causing Cas9-mediated DSBs at the target sites 
through the guidance of designed single gRNAs (Hanna & Doench, 2020).

The CRISPR/Cas system, in particular, has established itself as the dominant, 
ground-breaking site-specific nuclease (SSN), and despite the fact that its efficacy 
for plant genome editing was first shown in 2013 (Li et al., 2013; Nekrasov et al., 
2013; Shan et al., 2013), its plant applications have grown fast in recent years (Zaidi 
et al., 2020). With continuous upgradation and the development of newer variants of 
CRISPR/Cas timely and precisely with growing needs and obstacles, this novel 
gene-editing tool has become more utilizable and dependable than the conventional 
ones. Later, introduction of non-native DNA might affect the final product (He & 
Zhao, 2019), whereas the nucleases target precisely into the plant genome which also 
can be regulated (Liang et al. 2018a, b). Advances in technologies and procedures 
have resulted in efficient product development and easy market availability of crops 
for human consumption at reasonable prices. This makes CRISPR/Cas system an 
excellent tool for addressing questions associated with plants that have been geneti-
cally modified and produce food crops to meet hunger in the near future (Fig. 3b–f).

5  Progress of CRISPR in Crop Improvement

Many studies have concentrated on the usage of CRISPR/Cas9-based gene editing 
in enhancing resilience to stress, quality and agricultural output in crop plants 
(Table  2). CRISPR/Cas9 system has demonstrated gene knock-in and knockout, 
expression regulation and gene knock-down-like genome-editing capabilities in a 
variety of food crop plants. The following sections outline the progress of CRISPR/
Cas9 for gene editing in several food crop species based on literature retrieval.

5.1  Vegetables

Application of CRISPR/Cas system for improvement of vegetable crops has been 
well demonstrated. Susceptibility to various stresses, low yield, nutritional value 
and shelf life were some major concerns for vegetable crops, especially for 

S. Akhtar et al.



539

Ta
bl

e 
2 

L
is

t o
f 

C
R

IS
PR

/C
as

-m
ed

ia
te

d 
ge

ne
 e

di
tin

g 
in

 f
oo

d 
cr

op
s

Fo
od

 c
ro

p 
ty

pe
Fo

od
 c

ro
p

G
en

e 
ta

rg
et

ed
C

ha
ra

ct
er

T
ra

ns
fe

r 
m

et
ho

d
R

ef
er

en
ce

V
eg

et
ab

le
s

So
la

nu
m

 tu
be

ro
su

m
16

D
O

X
R

ed
uc

tio
n 

of
 s

te
ro

id
al

 
gl

yc
oa

lk
al

oi
d 

co
nt

en
t

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
  

(s
ho

ot
 tr

an
sf

or
m

at
io

n)

N
ak

ay
as

u 
et

 a
l. 

(2
01

8)

G
B

SS
In

cr
ea

se
 q

ua
lit

y 
of

 
st

ar
ch

C
R

IS
PR

/C
as

9,
 P

E
G

 
(p

ro
to

pl
as

t t
ra

ns
fe

ct
io

n)
A

nd
er

ss
on

 e
t a

l. 
(2

01
8)

SB
E

In
cr

ea
se

 q
ua

lit
y 

of
 s

ta
rc

h

C
R

IS
PR

/C
as

9,
 P

E
G

 
(p

ro
to

pl
as

t t
ra

ns
fe

ct
io

n)
T

un
ce

l e
t a

l. 
(2

01
9)

St
PP

O
2

R
ed

uc
e 

br
ow

ni
ng

C
R

IS
PR

/C
as

9,
 P

E
G

 
(p

ro
to

pl
as

t t
ra

ns
fe

ct
io

n)
G

on
za

le
z 

et
 a

l. 
(2

01
9)

A
L

S1
R

es
is

ta
nc

e 
to

 h
er

bi
ci

de

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
 (

sh
oo

t 
tr

an
sf

or
m

at
io

n)

B
ut

le
r 

et
 a

l. 
(2

01
5)

IA
A

2
Sh

oo
t m

or
ph

og
en

es
is

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
W

an
g 

et
 a

l. 
(2

01
5)

C
uc

um
is

 s
at

iv
us

R
B

O
H

D

To
le

ra
nc

e 
to

 s
al

in
ity

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
 (

ha
ir

y 
ro

ot
 

tr
an

sf
or

m
at

io
n)

H
ua

ng
 e

t a
l. 

(2
01

9a
, b

)
el

F4
E

R
es

is
ta

nc
e 

to
 v

ir
us

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
C

ha
nd

ra
se

ka
ra

n 
et

 a
l. 

(2
01

6)
W

IP
1

G
en

er
at

io
n 

of
 fl

ow
er

 w
ith

 
ca

rp
el

 o
nl

y
C

R
IS

PR
/C

as
9,

 
A

gr
ob

ac
te

ri
um

H
u 

et
 a

l. 
(2

01
7)

D
au

cu
s 

ca
ro

ta
PD

S

A
lb

in
o 

ph
en

ot
yp

e
C

R
IS

PR
/C

as
9,

 
A

gr
ob

ac
te

ri
um

X
u 

et
 a

l. 
(2

01
9)

B
ra

ss
ic

a 
ol

er
ac

ea
 v

ar
. 

ca
pi

ta
ta

PD
S

A
lb

in
o 

ph
en

ot
yp

e
C

R
IS

PR
/C

as
9,

 
A

gr
ob

ac
te

ri
um

M
a 

et
 a

l. 
(2

01
9)

C
er

ea
ls

Tr
it

ic
um

 a
es

ti
vu

m
Ta

G
W

2
In

cr
ea

se
 s

ee
d 

si
ze

C
R

IS
PR

/C
as

9
W

an
g 

et
 a

l. 
(2

01
8a

, b
, c

)

(c
on

tin
ue

d)

CRISPR/Cas in Improvement of Food Crops for Feeding the World into the Future



540

Fo
od

 c
ro

p 
ty

pe
Fo

od
 c

ro
p

G
en

e 
ta

rg
et

ed
C

ha
ra

ct
er

T
ra

ns
fe

r 
m

et
ho

d
R

ef
er

en
ce

Ta
M

L
O

R
es

is
ta

nc
e 

ag
ai

ns
t 

po
w

de
ry

 m
ild

ew
C

R
IS

PR
/C

as
9

W
an

g 
et

 a
l. 

(2
01

6a
, b

)
Ta

L
px

-1
E

nh
an

ce
 r

es
is

ta
nc

e 
ag

ai
ns

t 
F

us
ar

iu
m

 g
ra

m
in

ea
ru

m

C
R

IS
PR

/C
as

9
Z

ha
ng

 e
t a

l. 
(2

01
7)

Ta
L

O
X

2
R

es
is

ta
nc

e 
ag

ai
ns

t p
ow

de
ry

 
m

ild
ew

C
R

IS
PR

/C
as

9
B

ho
w

m
ik

 e
t a

l. 
(2

01
8)

Ta
E

D
R

1
R

es
is

ta
nc

e 
ag

ai
ns

t p
ow

de
ry

 
m

ild
ew

C
R

IS
PR

/C
as

9
Z

ha
ng

 e
t a

l. 
(2

01
7)

Ta
C

er
9

Im
pr

ov
e 

dr
ou

gh
t r

es
is

ta
nc

e
C

R
IS

PR
/C

as
9,

 P
ar

tic
le

 
bo

m
ba

rd
m

en
t

L
ia

ng
 e

t a
l. 

(2
01

8a
, b

)
Ta

A
L

S
E

nh
an

ce
 h

er
bi

ci
de

 
re

si
st

an
ce

C
R

IS
PR

/C
as

9
Z

on
g 

et
 a

l. 
(2

01
7)

O
ry

za
 s

at
iv

a
G

W
2,

 G
W

5 
an

d 
T

G
W

6
In

cr
ea

se
 w

ei
gh

t o
f 

gr
ai

n
C

R
IS

PR
/C

as
9

X
u 

et
 a

l. 
(2

01
6a

, b
)

H
d2

, H
d4

, a
nd

 H
d5

E
ar

ly
 m

at
ur

ity
C

R
IS

PR
/c

as
9

L
i e

t a
l. 

(2
01

7)
O

sV
P1

B
yp

as
s 

se
ed

 d
or

m
an

cy
C

R
IS

PR
/C

as
9

Ju
ng

 e
t a

l. 
(2

01
9)

O
sM

PK
5

E
nh

an
ce

 d
is

ea
se

 r
es

is
ta

nc
e

C
R

IS
PR

/C
as

9
Ju

n 
et

 a
l. 

(2
01

9)
O

s8
N

3
R

es
is

ta
nc

e 
ag

ai
ns

t 
X

an
th

om
on

as
 o

ry
za

e 
pv

. 
or

yz
ae

 s
tr

ai
ns

C
R

IS
PR

/C
as

9
Ju

n 
et

 a
l. 

(2
01

9)
O

sS
W

E
E

T
R

es
is

ta
nc

e 
ag

ai
ns

t 
X

an
th

om
on

as
 o

ry
za

e 
pv

. 
or

yz
ae

 s
tr

ai
ns

C
R

IS
PR

/C
as

9
Z

af
ar

 e
t a

l. 
(2

02
0)

O
sE

R
F9

22
E

nh
an

ce
 b

la
st

 r
es

is
ta

nc
e 

in
 

ri
ce

C
R

IS
PR

/C
as

9
W

an
g 

et
 a

l. 
(2

01
6a

, b
)

A
A

C
O

sm
ot

ic
 s

tr
es

s 
to

le
ra

nc
e

C
R

IS
PR

/C
as

9
R

om
er

o 
an

d 
G

at
ic

a-
A

ri
as

 
(2

01
9)

A
L

S
H

er
bi

ci
de

 r
es

is
ta

nc
e

C
R

IS
PR

/C
as

9
R

om
er

o 
an

d 
G

at
ic

a-
A

ri
as

 
(2

01
9)

D
ST

D
ro

ug
ht

 a
nd

 s
al

t t
ol

er
an

ce
C

R
IS

PR
/C

as
9

K
um

ar
 e

t a
l. 

(2
02

0)

Ta
bl

e 
2  

(c
on

tin
ue

d)

S. Akhtar et al.



541
Fo

od
 c

ro
p 

ty
pe

Fo
od

 c
ro

p
G

en
e 

ta
rg

et
ed

C
ha

ra
ct

er
T

ra
ns

fe
r 

m
et

ho
d

R
ef

er
en

ce

Z
ea

 m
ay

s
C

L
E

B
oo

st
 g

ra
in

 y
ie

ld
s

C
R

IS
PR

/C
as

9
L

ei
 e

t a
l. 

(2
02

1)
H

or
de

um
 v

ul
ga

re

β-
1,

3-
G

lu
ca

na
se

In
cr

ea
se

 c
el

lu
lo

se
 

fo
rm

at
io

n
C

R
IS

PR
/C

as
9

K
im

 e
t a

l. 
(2

02
0)

N
ud

Pr
od

uc
tio

n 
of

 
na

ke
d 

gr
ai

ns
C

R
IS

PR
/C

as
9

G
as

pa
ri

s 
et

 a
l. 

(2
01

8)
So

rg
hu

m
 b

ic
ol

or
k1

C
R

ed
uc

e 
ka

fir
in

 q
ua

nt
ity

C
R

IS
PR

/C
as

9
L

i e
t a

l. 
(2

01
8a

, b
, c

, d
)

Fr
ui

ts
So

la
nu

m
 

ly
co

pe
rs

ic
um

ph
yt

oe
ne

 s
yn

th
as

e 
1 

(P
SY

1
Y

el
lo

w
-c

ol
ou

re
d 

to
m

at
o

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
 

(C
ot

yl
ed

on
 

tr
an

sf
or

m
at

io
n)

W
an

g 
et

 a
l. 

(2
01

9a
, b

)

M
Y

B
 

tr
an

sc
ri

pt
io

n 
fa

ct
or

 1
2 

(M
Y

B
12

)

Pi
nk

-c
ol

ou
re

d 
to

m
at

o
C

R
IS

PR
/C

as
9,

 
A

gr
ob

ac
te

ri
um

W
an

g 
et

 a
l. 

(2
01

9a
, b

)
A

nt
ho

cy
an

in
 2

 (
A

N
T

2)
Pu

rp
le

-c
ol

ou
re

d 
to

m
at

o

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
W

an
g 

et
 a

l. 
(2

01
9a

, b
)

C
LV

-W
U

S
Fr

ui
ts

 lo
cu

le
 n

um
be

r 
in

cr
ea

se
C

R
IS

PR
/C

as
9,

 
A

gr
ob

ac
te

ri
um

M
a 

et
 a

l. 
(2

01
5)

PL
In

cr
ea

se
 s

he
lf

 li
fe

C
R

IS
PR

/C
as

9
U

lu
is

ik
 e

t a
l. 

(2
01

6)
A

L
C

In
cr

ea
se

 s
he

lf
 li

fe
C

R
IS

PR
/C

as
9,

 
A

gr
ob

ac
te

ri
um

Y
u 

et
 a

l. 
(2

01
7)

M
PK

20
Su

ga
r 

m
et

ab
ol

is
m

 
co

nt
ro

lli
ng

 g
en

e 
re

pr
es

si
on

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
C

he
n 

et
 a

l. 
(2

01
8)

A
L

M
T

9
D

ec
re

as
e 

m
al

at
e 

co
nt

en
t

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
 

(c
ot

yl
ed

on
 

tr
an

sf
or

m
at

io
n)

Y
e 

et
 a

l. 
(2

01
7)

A
G

L
6

Pr
od

uc
tio

n 
se

ed
le

ss
 

pa
rt

he
no

ca
rp

ic
 f

ru
it

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
K

la
p 

et
 a

l. 
(2

01
7)

IA
A

9
Pr

od
uc

tio
n 

se
ed

le
ss

 
pa

rt
he

no
ca

rp
ic

 f
ru

it
C

R
IS

PR
/C

as
9,

 
A

gr
ob

ac
te

ri
um

 
(c

ot
yl

ed
on

 
tr

an
sf

or
m

at
io

n)

U
et

a 
et

 a
l. 

(2
01

7)

(c
on

tin
ue

d)

CRISPR/Cas in Improvement of Food Crops for Feeding the World into the Future



542

Ta
bl

e 
2 

(c
on

tin
ue

d)

Fo
od

 c
ro

p 
ty

pe
Fo

od
 c

ro
p

G
en

e 
ta

rg
et

ed
C

ha
ra

ct
er

T
ra

ns
fe

r 
m

et
ho

d
R

ef
er

en
ce

A
R

F7
Pr

od
uc

tio
n 

se
ed

le
ss

 
pa

rt
he

no
ca

rp
ic

 f
ru

it
C

R
IS

PR
/C

as
9,

 
A

gr
ob

ac
te

ri
um

H
u 

et
 a

l. 
(2

01
8)

M
B

P2
1

G
en

er
at

io
n 

of
 ‘

jo
in

tle
ss

’ 
fr

ui
t s

te
m

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
So

yk
 e

t a
l. 

(2
01

7)
G

A
I

G
en

er
at

io
n 

of
 d

w
ar

f 
pl

an
t

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
To

m
lin

so
n 

et
 a

l. 
(2

01
9)

B
O

P1
, B

O
P2

, B
O

P3
Si

m
pl

ifi
ed

 in
flo

re
sc

en
ce

s 
an

d 
ea

rl
y 

flo
w

er
in

g
C

R
IS

PR
/C

as
9,

 
A

gr
ob

ac
te

ri
um

X
u 

et
 a

l. 
(2

01
6a

, b
)

SP
5G

G
en

er
at

io
n 

of
 r

es
is

ta
nt

 
to

m
at

o 
ag

ai
ns

t d
ur

at
io

n 
of

 
da

y 
le

ng
th

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
So

yk
 e

t a
l. 

(2
01

7)
C

B
F1

D
ec

re
as

e 
in

 c
hi

lli
ng

 s
tr

es
s 

to
le

ra
nc

e
C

R
IS

PR
/C

as
9,

 
A

gr
ob

ac
te

ri
um

L
i e

t a
l. 

(2
01

8a
, b

, c
, d

)
C

P 
an

d 
R

ep
 o

f 
vi

ru
s

R
es

is
ta

nc
e 

ag
ai

ns
t t

om
at

o 
ye

llo
w

 le
af

 c
ur

l v
ir

us
C

R
IS

PR
/C

as
9,

 
A

gr
ob

ac
te

ri
um

Ta
sh

ka
nd

i e
t a

l. 
(2

01
8)

D
C

L
R

es
is

ta
nc

e 
ag

ai
ns

t p
ot

at
o 

vi
ru

s 
X

, t
ob

ac
co

 m
os

ai
c 

vi
ru

s 
an

d 
to

m
at

om
os

ai
c 

vi
ru

s
C

R
IS

PR
/C

as
9,

 
A

gr
ob

ac
te

ri
um

W
an

g 
et

 a
l. 

(2
01

8a
, b

, c
)

D
M

R
6

R
es

is
ta

nc
e 

ag
ai

ns
t d

ow
ny

 
m

ild
ew

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
T

ho
m

az
el

la
 e

t a
l. 

(2
01

6)
M

L
O

1
R

es
is

ta
nc

e 
ag

ai
ns

t p
ow

de
ry

 
m

ild
ew

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
N

ek
ra

so
v 

et
 a

l. 
(2

01
7)

So
ly

c0
8g

07
57

70
re

si
st

an
t a

ga
in

st
 F

us
ar

iu
m

 
w

ilt
in

g 
di

se
as

e 
ca

us
ed

 b
y 

F
us

ar
iu

m
 o

xy
sp

or
um

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
Pr

ih
at

na
 e

t a
l. 

(2
01

8)

M
A

PK
3

Su
sc

ep
tib

ili
ty

 to
 g

re
y 

m
ou

ld
 

di
se

as
e

B
. c

in
er

ea
 s

po
re

 
su

sp
en

si
on

Z
ha

ng
 e

t a
l. 

(2
01

8)

S. Akhtar et al.



543

(c
on

tin
ue

d)

Fo
od

 c
ro

p 
ty

pe
Fo

od
 c

ro
p

G
en

e 
ta

rg
et

ed
C

ha
ra

ct
er

T
ra

ns
fe

r 
m

et
ho

d
R

ef
er

en
ce

JA
Z

2
R

es
is

ta
nc

e 
ag

ai
ns

t 
ba

ct
er

ia
l s

pe
ck

 
di

se
as

e

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
O

rt
ig

os
a 

et
 a

l. 
(2

01
9)

M
A

PK
3

D
ec

re
as

e 
in

 d
ro

ug
ht

 s
tr

es
s 

to
le

ra
nc

e
C

R
IS

PR
/C

as
9,

 
A

gr
ob

ac
te

ri
um

W
an

g 
et

 a
l. 

(2
01

7)
B

Z
R

1
D

ec
re

as
e 

in
 h

ea
t s

tr
es

s 
to

le
ra

nc
e

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
Y

in
 e

t a
l. 

(2
01

8)
M

us
a 

pa
ra

di
si

ac
a

L
C

Y
ε

Fl
ux

 f
or

 β
-c

ar
ot

en
e 

bi
os

yn
th

es
is

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
K

au
r 

et
 a

l. 
(2

02
0)

M
aA

C
O

1

In
cr

ea
se

 s
he

lf
 li

fe
C

R
IS

PR
/C

as
9,

 
em

br
yo

ge
ni

c 
ce

ll 
su

sp
en

si
on

H
u 

et
 a

l. 
(2

02
1)

F
ra

ga
ri

a 
an

an
as

sa
M

Y
B

10

M
ut

ag
en

es
is

 s
tu

dy
C

R
IS

PR
/C

as
9,

 
A

gr
ob

ac
te

ri
um

X
in

g 
et

 a
l. 

(2
01

8)
A

R
F8

In
cr

ea
se

 g
ro

w
th

 
ra

te
PE

G
 (

pr
ot

op
la

st
 

tr
an

sf
ec

tio
n)

Z
ho

u 
et

 a
l. 

(2
01

8)
T

M
6

C
on

fir
m

 r
ol

e 
of

 th
is

 g
en

e 
fo

r 
st

am
en

 d
ev

el
op

m
en

t
C

R
IS

PR
/C

as
9,

 
A

gr
ob

ac
te

ri
um

M
ar

tín
-P

iz
ar

ro
 e

t a
l. 

(2
01

9)
Vi

ti
s 

vi
ni

fe
ra

M
L

O
7

R
es

is
ta

nc
e 

ag
ai

ns
t 

po
w

de
ry

 m
ild

ew
Pr

ot
op

la
st

 tr
an

sf
ec

tio
n

M
al

no
y 

et
 a

l. 
(2

01
6)

 a
nd

 
W

an
g 

et
 a

l. 
(2

01
9a

, b
)

W
R

K
Y

52

R
es

is
ta

nc
e 

ag
ai

ns
t 

gr
ey

 m
ou

ld
 d

is
ea

se
C

R
IS

PR
/C

as
9,

 
A

gr
ob

ac
te

ri
um

C
it

ru
s 

pa
ra

di
si

L
O

B
1 

pr
om

ot
er

R
es

is
ta

nc
e 

ag
ai

ns
t c

itr
us

 
ca

nk
er

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
Pe

ng
 e

t a
l. 

(2
01

7)
M

al
us

 p
um

il
a

D
IP

M
1,

 2
, 4

R
es

is
ta

nc
e 

ag
ai

ns
t fi

re
 

bl
ig

ht
 d

is
ea

se
Pr

ot
op

la
st

 tr
an

sf
ec

tio
n

M
al

no
y 

et
 a

l. 
(2

01
6)

C
it

ru
ll

us
 la

na
tu

s
SW

E
E

T
3,

 A
G

A
2,

 T
ST

2
Su

ga
r 

ac
cu

m
ul

at
io

n
C

R
IS

PR
/C

as
9

R
en

 e
t a

l. 
(2

02
1)

CRISPR/Cas in Improvement of Food Crops for Feeding the World into the Future



544

Ta
bl

e 
2 

(c
on

tin
ue

d)

Fo
od

 c
ro

p 
ty

pe
Fo

od
 c

ro
p

G
en

e 
ta

rg
et

ed
C

ha
ra

ct
er

T
ra

ns
fe

r 
m

et
ho

d
R

ef
er

en
ce

A
L

S
R

es
is

ta
nc

e 
to

 
he

rb
ic

id
e

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
 (

sh
oo

t 
tr

an
sf

or
m

at
io

n)

T
ia

n 
et

 a
l. 

(2
01

8)
PS

K
1

R
es

is
ta

nc
e 

to
 F

. o
xy

sp
or

um

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
 (

sh
oo

t 
tr

an
sf

or
m

at
io

n)

Z
ha

ng
 e

t a
l. 

(2
02

0a
, b

)
PD

S
A

lb
in

o 
ph

en
ot

yp
e

C
R

IS
PR

/C
as

9,
 P

E
G

 
(p

ro
to

pl
as

t t
ra

ns
fe

ct
io

n)
T

ia
n 

et
 a

l. 
(2

01
7)

Pu
ls

es
M

ed
ic

ag
o 

tr
un

ca
tu

la

E
nh

an
ce

r1
, p

hy
to

en
e 

de
sa

tu
ra

se
 a

nd
 s

ym
bi

os
is

 
re

ce
pt

or
-l

ik
e 

ki
na

se

M
ut

ag
en

es
is

 s
tu

dy
C

R
IS

PR
/C

as
9,

 
A

gr
ob

ac
te

ri
um

 (
ha

ir
y 

ro
ot

 tr
an

sf
or

m
at

io
n)

C
ur

tin
 e

t a
l. 

(2
01

8)

Vi
gn

a 
un

gu
ic

ul
at

a
V

uS
PO

-1
1-

1
D

ev
el

op
m

en
t o

f 
hy

br
id

 o
f 

co
w

pe
a 

pl
an

t
C

R
IS

PR
/C

as
9,

 
A

gr
ob

ac
te

ri
um

C
he

 e
t a

l. 
(2

02
1)

G
ly

ci
ne

 m
ax

G
m

FA
D

2–
1A

 a
nd

 
G

m
FA

D
2–

1B
Im

pr
ov

e 
th

e 
pr

ofi
le

 o
f 

se
ed

 o
il

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
 (

ha
ir

y 
ro

ot
 

tr
an

sf
or

m
at

io
n)

D
o 

et
 a

l. 
(2

01
9)

G
m

F3
H

1,
 G

m
F3

H
2 

G
m

FN
SI

I-
1

In
cr

ea
se

 le
af

 
is

ofl
av

on
e 

co
nt

en
t 

pr
ov

id
in

g 
re

si
st

an
t 

ag
ai

ns
t s

oy
be

an
 

m
os

ai
c 

vi
ru

s 
(S

M
V

)

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
 (

ha
ir

y 
ro

ot
 tr

an
sf

or
m

at
io

n)

Z
ha

ng
 e

t a
l. 

(2
02

0a
, b

)
M

tS
U

P
C

on
fir

m
 o

rt
ho

lo
gu

e 
se

qu
en

ce
 o

f 
A

ra
bi

do
ps

is
 

pr
es

en
t i

n 
so

yb
ea

n
C

R
IS

PR
/C

as
9,

 
A

gr
ob

ac
te

ri
um

R
od

as
 e

t a
l. 

(2
02

1)
C

ic
er

 a
ri

et
in

um
4C

L
 a

nd
 R

V
E

7

E
di

tin
g 

of
 d

ro
ug

ht
-

to
le

ra
nt

 g
en

e
PE

G
 (

pr
ot

op
la

st
 tr

an
sf

ec
tio

n)
B

ad
ha

n 
et

 a
l. 

(2
02

1)
Se

ed
s 

an
d 

nu
ts

B
ra

ss
ic

a 
na

pu
s

FA
D

2-
2 

an
d 

B
N

FA
D

2
R

ed
uc

e 
lin

ol
ei

c 
ac

id
C

R
IS

PR
/c

as
9

O
ku

za
ki

 e
t a

l. 
(2

01
8)

 a
nd

 A
l 

A
m

in
 e

t a
l. 

(2
01

9)

S. Akhtar et al.



545
Fo

od
 c

ro
p 

ty
pe

Fo
od

 c
ro

p
G

en
e 

ta
rg

et
ed

C
ha

ra
ct

er
T

ra
ns

fe
r 

m
et

ho
d

R
ef

er
en

ce

G
m

FA
T

B
1

R
ed

uc
tio

n 
in

 f
at

ty
 

ac
id

 c
on

ce
nt

ra
tio

n
C

R
IS

PR
/c

as
9

M
a 

et
 a

l. 
(2

02
1)

B
nW

R
K

Y
70

R
es

is
ta

nc
e 

ag
ai

ns
t 

Sc
le

ro
ti

ni
a 

sc
le

ro
ti

or
um

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
Su

n 
et

 a
l. 

(2
01

8)
B

nD
14

D
ev

el
op

 v
ar

ie
ty

 w
ith

 p
ro

lifi
c 

br
an

ch
ed

 d
w

ar
f 

ph
en

ot
yp

e,
 

sh
or

t i
nt

er
no

de
 le

ng
th

 a
nd

 
in

cr
ea

se
 o

f 
th

e 
to

ta
l fl

ow
er

C
R

IS
PR

/c
as

9
St

an
ic

 e
t a

l. 
(2

02
1)

C
am

el
in

a 
sa

ti
va

C
sF

A
D

2
E

nh
an

ce
 f

at
ty

 a
ci

d 
co

nt
en

t
C

R
IS

PR
/c

as
9

Ji
an

g 
et

 a
l. 

(2
01

7)
C

sC
R

U
C

E
nh

an
ce

 f
at

ty
 a

ci
d 

co
nt

en
t

C
R

IS
PR

/c
as

9
Ly

ze
ng

a 
et

 a
l. 

(2
01

9)
C

sF
A

E
1

E
nh

an
ce

 f
at

ty
 a

ci
d 

co
nt

en
t

C
R

IS
PR

/c
as

9
O

zs
ey

ha
n 

et
 a

l. 
(2

01
8)

C
sD

G
A

T
1

E
nh

an
ce

 f
at

ty
 a

ci
d 

co
nt

en
t

C
R

IS
PR

/c
as

9
A

zn
ar

-M
or

en
o 

an
d 

D
ur

re
tt 

(2
01

7)
A

ra
ch

is
 h

yp
og

ae
a

A
hN

FR
5

H
ai

ry
 r

oo
t d

is
ea

se
 

to
le

ra
nc

e
C

R
IS

PR
/c

as
9

Sh
u 

et
 a

l. 
(2

02
0)

H
er

bs
 a

nd
 s

pe
ci

es

O
ci

m
um

 b
as

il
ic

um
D

M
R

1
R

es
is

ta
nc

e 
to

 
H

ya
lo

pe
ro

no
sp

or
a 

ar
ab

id
op

si
s

C
R

IS
PR

/C
as

9,
 

A
gr

ob
ac

te
ri

um
N

av
et

 a
nd

 T
ia

n 
(2

02
0)

C
ap

si
cu

m
 

an
nu

um
C

aE
R

F2
8

R
es

is
ta

nc
e 

to
 

C
ol

le
to

tr
ic

hu
m

 tr
un

ca
tu

m
C

R
IS

PR
/C

as
9,

 
A

gr
ob

ac
te

ri
um

M
is

hr
a 

et
 a

l. 
(2

02
1)

CRISPR/Cas in Improvement of Food Crops for Feeding the World into the Future



546

Cucurbitaceae, Brassica, Solanaceae, Apiaceae and Asteraceae family species. 
CRISPR/Cas9 has bought a revolution through its precise, specific genome editing 
and mutation-inducing nature to overcome such issues. In this part, we summarized 
the progress of CRISPR/Cas9 towards vegetable crops improvement to date.

5.1.1  Quality Improvement

Overall quality improvement relating to nutrition, size, life, colour, flavour and taste 
has been accomplished in a few fleshy vegetable crops through CRISPR/Cas9 sys-
tem. For instance, in cucumber, genes in carotenoid pathway have been edited to 
boost the lycopene content (5.1-fold) and also to inhibit α- and β-carotene formation 
from lycopene (Chandrasekaran et al., 2016). The technique of CRISPR/Cas has 
also been implemented to develop gynoecious lines of cucumber for fast develop-
ment of hybrids and concentrated fruit sets and to enhance productivity rate by 
turning off the carpel development inhibitory genes WIP domain containing protein 
1 (WIP1), and the resultant mutant cucumber displayed female flower only (Hu 
et al., 2017). In potato, steroid 16α-hydroxylase mutant was generated to reduce the 
content of steroidal glycoalkaloids, thus, eliminating the bitter taste that potato 
exhibits due to high α-solanine and α-chaconine (Nakayasu et  al., 2018). Potato 
starch quality was also induced by generating starch-branching enzyme (SBE) and 
granule-bound starch synthase (GBSS) mutant variety using CRISPR/Cas9 
(Andersson et al., 2018; Tuncel et al., 2019). Further mutation in the StPPO2 gene 
has resulted in downregulation of polyphenol oxidases and reduced browning 
(Gonzalez et  al., 2019). Hence, CRISPR/Cas has been successfully employed in 
certain leafy vegetables to overcome the harvest and post-harvest costing and obtain 
comparatively high returns in the market (Xu et al. 2016a, b).

5.1.2  Biotic and Abiotic Stress

The CRISPR/Cas9 system has been employed in vegetable crops either to detect 
crucial gene functions or impart resistance to abiotic or biotic factors including 
microbes, pests, herbicide, disease, etc. RBOHD through CRISPR/Cas9-mediated 
knockout was functionally characterized to be connected to salt resistance in pump-
kin (Huang et  al. 2019a, b). A potato variant with herbicide resistance was also 
generated through transformation mediated by Agrobacterium using CRISPR/Cas 
system (Butler et  al., 2015). Pathogenic fungi, Sclerotina sclerotiorum-resistant 
Brassica nupus and virus-resistant Cucumis sativus (cucumber), were generated by 
editing WRKY70 and elF4E gene, respectively, using CRISPR/Cas9 (Chandrasekaran 
et al., 2016; Sun et al., 2018).
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5.1.3  Others

High expression of phytoene desaturase (PDS) specifically in carrot (Xu et  al., 
2019) and Brassica crops (Ma et al., 2019) affects photosynthesis and leaf coloura-
tion. Therefore, using CRISPR/Cas9 the PDS gene of the plants was knocked out. 
Other aspects of CRISPR/Cas9 towards crop improvement include parthenocarpy 
and domestication of wild variety, which are successful mainly in tomato, and have 
not yet been applied in vegetable crops (Ueta et al., 2017; Li et al. 2018a, b, c, d), as 
these CRISPR/Cas9 system-induced mutations have no side effects, reliable and 
reproducible. Therefore, the same can be applied to vegetable crops as well in 
the future.

5.2  Cereals

As a staple food, cereals under the family Gramineae are rich in fibre, carbohydrate 
and proteins (Sarwar et al., 2013). Because of its nutritional value, it is consumed as 
food by a large population of the world (Laskowski et al., 2019). Although it is rich 
in nutritional value, crop loss to a larger extent, due to stress caused by biotic and 
abiotic factors, affects the productivity of these crops, due to which farmers suffer 
(Jun et al., 2019; Jeyasri et al., 2021). In recent times, scientists not only tried to 
boost its resistance against biotic and abiotic stresses but also attempted to raise its 
quality and yield to resolve the food problem in today’s world and the near future 
(Atkinson & Urwin, 2012). For this to accomplish, scientists use CRISPR technol-
ogy, an important gene-editing tool which has emerged in the recent past (Jaganathan 
et al., 2018).

5.2.1  Quality Improvement

CRISPR has been employed widely in recent years by different researchers to 
increase the quality and production of grains. In wheat, TaGW2 is a significant gene 
responsible for seed size which was mutated by Wang et al. to enhance the size of 
seeds (Wang et al. 2018a, b, c). Wheat, barley and rye are the source of gliadins and 
glutenins, which may lead to coeliac disease. To overcome this problem, researchers 
use CRISPR/Cas system mutated genes producing gliadins and glutenins, which 
could perhaps lower the exposure of individuals to coeliac disease epitopes (Jouanin 
et al., 2020). A huge percentage of global population depends upon rice directly or 
indirectly. Several researchers are now involved in methods to improve both qualita-
tive and quantitative qualities using CRISPR technology. For this, genes like Gnla, 
DEP1, GS3, CCD7, IPA1 and SBE are mutated using CRISPR to enhance the grain 
number, panicle architecture, productivity, grain size, starch biosynthesis, etc. (Li 
et al., 2016; Ricroch et al., 2017; Miao et al., 2018). In 2016, Xu et al. increased the 
weight of rice grain by targeting GW2, GW5 and TGW6 genes using CRISPR/Cas9 
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tool (Xu et al. 2016a, b). Genes like Hd2, Hd4 and Hd5, responsible for maturity of 
rice targeted by Li et al. to obtain rice variety with early maturity (Li et al., 2017). 
Rice seed dormancy was bypassed via targeted mutagenesis of OsVP1 gene using 
CRISPR/Cas9 tool (Jung et al., 2019). In maize, the CLE genes are edited using 
CRISPR/Cas9 tool to boost grain yields (Lei et  al., 2021). The β-1,3-Glucanase 
gene of barley was mutated using CRISPR to increase cellulose formation (Kim 
et al., 2020). Using CRISPR technology, the Nud gene, which is responsible for the 
production of a layer of cementation between the pericarp and both the palea and 
lemma in barley as a result of an ethylene response, was modified to produce naked 
grains (Gasparis et  al., 2018). Kafirins are the major storage protein of sorghum 
regulated by k1C gene. Since kafirins are devoid of essential amino acids and have 
poor digestibility, Li and his colleagues focused on the k1C gene to reduce the kafi-
rin quantity with increase in digestibility and quality of protein (Li et al. 2018a, 
b, c, d).

5.2.2  Biotic and Abiotic Stress

CRISPR has been used extensively in rice, wheat and maize to boost tolerance to 
biotic and abiotic stress. In rice, OsMPK5 gene (a counter-regulator of rice defence 
response) was mutated using CRISPR/Cas9 for the enhancement of disease- resistant 
quality (Jun et al., 2019). By the knock-down of Os8N3 gene using CRISPR tech-
nology, researchers developed a mutant variety which is resistant against 
Xanthomonas oryzae pv. oryzae strains (Jun et al., 2019). In 2020, Zafar et al. devel-
oped traits, where effector binding elements of AvrXa7 (transcription activator-like 
receptor) from OsSWEET gene family were deleted using CRISPR/Cas9 tool, which 
enhanceed the resistance against Xanthomonas oryzae pv. oryzae strains (Zafar 
et  al., 2020). Also, to improve blast resistance rice variety, scientists mutated 
OsERF922 gene using CRISPR/Cas9 tool (Wang et al. 2016a, b). In wheat, research-
ers mutated TaMLO gene by applying CRISPR/Cas9 tool in wheat protoplast to 
obtain a variety that is resistant to powdery mildew (Wang et  al. 2016a, b). 
Additionally, by editing TaLOX2 and TaEDR1 genes, researchers obtained powdery 
mildew-resistant variety of wheat (Zhang et al., 2017; Bhowmik et al., 2018). In 
2015, using CRISPR/Cas9 tool, Zhang et  al. silenced TaLpx-1 gene to boost the 
resistance of wheat against Fusarium graminearum by activating jasmonic acid- 
mediated defence response (Zhang et  al., 2017). A wheat homolog TaCer9 was 
edited by Liang et al. to create a variety with improved drought resistance and effi-
ciency with water use (Liang et al. 2018a, b). In 2018, TaALS gene was edited by 
Zong and his coworkers using CRISPR/Cas9 for the generation of herbicide- 
resistant wheat (Zong et al., 2017). In rice, AAC, ALS and DST genes are edited to 
develop herbicide, drought, osmotic stress as well as salt stress-tolerant variety 
(Romero & Gatica-Arias, 2019; Kumar et al., 2020).
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5.3  Fruits

For the purpose of improving fruit harvests with reference to consumer-desired 
traits, CRISPR/Cas technology was employed to edit genome of different fruit crops 
to bring about the change in desired traits, and this has been carried out, namely, in 
apple, tomato, banana, citrus, coconut, date palm, grapefruits, grape, kiwifruits, 
watermelon, pear and orange. Tomato acts as a model plant system for fruit biology 
research because of its short life cycle, simple diploid species with small genome, 
simple reproductive biology, insensitivity to the photoperiod length and ease to cul-
ture in any environmental condition (Foolad, 2007). In 2014, CRISPR/Cas technol-
ogy was applied for the first time on a tomato plant, with the gene Argonaute 7 
being targeted which resulted in wiry phenotype. Subsequently, CRISPR/Cas tech-
nology has been implemented to edit tomato plant genome to obtain virus, fungal 
and bacterial infection-resistant plants (Brooks et al., 2014). The utilization of the 
CRISPR/Cas technology for tomato and other fruits has been summarized in this 
part in terms of quality enhancement and tolerance to biotic and abiotic stress.

5.3.1  Quality Improvement

Researchers have successfully grown yellow, pink and purple colour tomato using 
CRISPR/Cas technology by editing the phytoene synthase 1 (PSY1), MYB tran-
scription factor 12 (MYB12) and Anthocyanin 2 (ANT2), respectively (Wang et al. 
2019a, b). Stem cell circuit CLAVATA-WUSCHEL (CLV-WUS) associated with fruit 
size was inactivated by applying CRISPR/Cas technology that resulted in larger 
tomato fruits as compared to the wild type (WT) (Ma et  al., 2015). Although 
CRISPR/Cas edited inactivation of DNA demethylase 2 (DML2) and ripening inhib-
itor (RIN) confers prolong shelf life and incomplete fruit ripening, these edited 
crops showed inferior characters, for which researchers mutated pectate lyase (PL) 
and alcobaca (ALC) gene of tomato (Uluisik et al., 2016; Yu et al., 2017). In sugar 
the carotenoid biosynthetic gene of tomato, mitogen-activated protein kinase 20 
(MPK20) functions were disrupted by CRISPR/Cas technology (Chen et al., 2018). 
Gene expressions related to biosynthesis pathway of compounds with bioactive 
properties of tomato such as anthocyanin, GABA and lycopene have been modu-
lated to enhance their content employing CRISPR/Cas technology (Wang et  al. 
2019a, b). Aluminium-activated malate transporter 9 (ALMT9) associated with 
malate content of tomato has been detected using CRISPR/Cas technology (Ye 
et al., 2017). Seedless tomato was produced by silencing the gene Agamous-like 6 
(AGL6) using CRISPR/Cas technology along with heat stress (Klap et al., 2017). 
The role of auxin signalling pathway genes – indole-3-acetic acid inducible9 (IAA9) 
and auxin response factor 7 (ARF7) in the parthenocarpic tomato development – 
was validated by inactivating these two genes using CRISPR/Cas technology (Ueta 
et al., 2017; Hu et al., 2018). ‘Stem jointless’ fruit has been produced by knockout 
MADS-box protein 21 (MBP21) gene for easy fruit plucking with picking 
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manipulators by the farmers (Soyk et al., 2017). Dwarf tomato plant generated by 
silencing gibberellic-acid insensitive (GAI) gene showed great survival rate in 
windy environment (Tomlinson et al., 2019). Arabidopsis homolog gene ‘blade-on-
petiole’ (BOP) associated with flower architecture in tomato, when knocked out, led 
to large plant productivity (Xu et  al. 2016a, b). Inactivation of self-pruning 5G 
(SP5G) in tomato showed a fast rush of flower blossoming that shorten the mature 
fruit development period (Soyk et al., 2017).

β-carotene-enriched Cavendish banana cultivar (cv.) Grand Naine (AAA genome) 
has been developed by targeting lycopene epsilon-cyclase (LCYε) gene with 
CRISPR/Cas technology (Kaur et al., 2020). Hu et al. (2021) edited ethylene bio-
synthesis gene ‘MaACO1’ (aminocyclopropane-1-carboxylate oxidase 1) to 
increase banana’s shelf life. Functional study of R2R3 MYB transcription factor 10 
(MYB10) of strawberry, a model plant, produced loss-of-coloration fruits using 
CRISPR/Cas technology (Xing et al., 2018). Strawberry seedling growth was faster 
in Auxin response factor 8 (ARF8) gene homozygous mutants than in WT plants 
(Zhou et al., 2018). The crucial role of tomato MADS-box gene 6 (TM6) during sta-
men development was confirmed by editing with CRISPR/Cas technology as TM6 
knockout strawberry developed defects in anther development (Martín-Pizarro 
et  al., 2019). Recently, CRISPR/Cas9 system has been employed as well to edit 
watermelon genome for better sugar accumulation (Ren et al., 2021). Knocking out 
of the PDS gene in watermelon whose high expression affects photosynthesis and 
leaf colouration was also achieved through CRISPR/Cas9 (Tian et al., 2017).

5.3.2  Biotic and Abiotic Stress

A virus-resistant tomato plant was developed by targeting the virus’s genes CP and 
Rep to confer virus resistance (Tashkandi et al., 2018). The Tomato Dicer-like 2 
(DCL2) gene was knocked out using CRISPR/Cas technology to confer virus resis-
tance against potato virus X, tobacco mosaic virus and tomato mosaic virus (Wang 
et al. 2018a, b, c). In tomato, CRISPR/Cas technology was used to mute the downy 
mildew resistant 6 (DMR6) orthologue gene which resulted in resistant tomato plant 
against Pseudomonas syringae, Phytophthora capsici, and Xanthomonas spp. 
(Thomazella et  al., 2016). Also, mildew-resistant locus O1 (Mlo1) coding for 
membrane- associated protein which provides susceptibility to powdery mildew dis-
ease causative agent Oidium neolycopersici was inactivated in tomato (Nekrasov 
et al., 2017). Knocking out of Solyc08g075770 gene of tomato with CRISPR/Cas 
has demonstrated resistance against Fusarium wilting disease (caused by Fusarium 
oxysporum) (Prihatna et al., 2018). Mitogen-activated protein kinase 3 (MAPK3) 
has been shown to be resistant against grey mould disease-causing airborne patho-
gen Botrytis cinerea which causes economic losses during post-harvesting period of 
tomato was delineated with CRISPR/Cas technology (Zhang et  al., 2018). 
Researchers developed tomato variant  – JAZ2 repressors lacking the C-terminal 
jasmonate-associated (Jas) domain (JAZ2) using CRISPR/Cas technology to impart 
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defence against bacterial speck disease caused by Pseudomonas syringae (Ortigosa 
et al., 2019).

Base editing of acetolactate synthase and knockout of PSK1 of watermelon 
through CRISPR/Cas9 has resulted in herbicide-resistant variant and resistance to 
F. oxysporum (Tian et  al., 2018; Zhang et  al. 2020a, b). In grapevine and grape 
berry, resistance against Erysiphe necator and Botrytis cinerea was conferred by 
mildew resistance locus O 7 (MLO7) and WRKY transcription factor 52 (WRKY52) 
genes, respectively, and loss of functions of these two genes was validated with 
CRISPR/Cas technology (Malnoy et al., 2016; Wang et al. 2018a, b, c). Resistant 
papaya and cacao against fungal pathogens Phytophthora palmivora and 
Phytophthora tropicalis have been produced using CRISPR/Cas technology. Lateral 
organ boundaries 1 (LOB1) genes promoter of citrus has been targeted for genera-
tion of resistant citrus plant against Xanthomonas citri, which causes serious loss of 
citrus crop (Peng et  al., 2017). Erwinia amylovora resistance protein DspA/E- -
interacting proteins (DIPM1, DIPM2 and DIPM4) were silenced using this technol-
ogy (Malnoy et al., 2016). Improvement of desert agriculture crop date palm with 
CRISPR is challenging task due to its complex genome and high occurrence of 
single-nucleotide polymorphism introduced basic procedure of theoretical applica-
tion of CRISPR/Cas technology for genetic improvement of date palm (Wang et al. 
2019a, b).

CRISPR/Cas technology is also applied to improve crop plant against abiotic 
stresses like drought, flooding, chilling and heat. Tomatoes are easily harmed by 
cold temperatures because of their chill-sensitive nature. Cold-protecting genes 
C-repeat binding factor 1 (CBF1) mutated tomato plant was developed using 
CRISPR/Cas technology, and it demonstrated more susceptibility to chilling injury 
(Li et al. 2018a, b, c, d). Grey mould-resistant gene MAPK3 also associated with 
protecting plasma membrane from oxidative damage and provided drought stress 
resistance (Wang et al., 2017). CRISPR-bzr1- and BZR1-overexpressing lines con-
firmed that phytohormone genes Brassinazole-resistant 1 (BZR1) are engaged in 
thermotolerance through regulating Feronia genes (FER) as well as regulating 
BR-mediated developmental processes (Yin et  al., 2018). Herbicide-resistant 
healthy growing watermelon was developed by editing high herbicide-resistant 
gene Acetolactate synthase (ALS) by employing CRISPR/Cas technology conferred 
resistant to herbicide tribenuron (Tian et al., 2018).

5.4  Pulses

Legumes belong to third largest Angiosperm family after Asteraceae and 
Orchidaceae and in second place relating to its economic importance after Gramineae 
(grasses). They are a rich source of plant-derived proteinand essential amino acids 
for vegetarians. One important ecological role played by leguminous crops is main-
taining soil health for sustainable farming with their symbiotic nitrogen fixation 
properties. Using the available annotated genome sequences and transformation 
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protocol, CRISPR/Cas technology has been implemented to edit Medicago trun-
catula and Lotus japonicus, and in soybean, cowpea genome to improve desired 
agronomic traits (Bhowmik et al., 2021). M. truncatula and L. japonicus are model 
species for physiological study of leguminous plant and are studied for features 
related to nitrogen fixation through root nodules owing to their short growth period, 
diploidy, self-fertility and ease of transformation method (Young & Udvardi, 2009). 
Development of CRSPPR/Cas technology allowed targeted mutagenesis in nodula-
tion gene of these plants. Curtin and his colleagues used CRISPR/Cas for functional 
study of nodulation-specific genes of M. truncatula (Curtin et al., 2017). Function 
of nodule-specific PLAT domain (NPD1–5) and nitrate peptide family (NPD) genes 
has been confirmed by silencing the genes with CRSPPR/Cas technology (Trujillo 
et al., 2019; Wang et al. 2020a, b). Hua enhancer1, phytoene desaturase and sym-
biosis receptor-like kinase genes of M. truncatula mutated using CRISPR/Cas tech-
nology (Michno et al., 2015; Meng et al., 2017; Curtin et al., 2018; Wolabu et al., 
2020). Rodas et al. (2021) confirmed true orthologue of Arabidopsis of SUPERMAN 
(AtSUP) in M. truncatula (MtSUP). Mutational analysis of three genes – symbiosis 
receptor-like kinase (LjSYMRK), leghaemoglobin (Ljlb1-3) and lotus histidine 
kinase 1 (LHK1) interacting with the protein (LjCZF1-2)  – has been done with 
L. japonicus genome using CRISPR/Cas technology (Wang et al. 2016a, b, 2019a, 
b; Cai et al., 2018). In L. japonicus, CYP716A51-1 gene associated with C28 oxida-
tion of triterpenes has been validated using this technology. Che et al. in 2021 over-
came the cowpea recalcitrant properties to transformation, and VuSPO-11-1 genes 
of meiosis were edited using CRSPPR/Cas tool for production of suitable hybrid of 
cowpea plant, which showed 68.8% of editing activity. In peas, CRISPR/Cas9- 
targeted lipoxygenase (LOX) mutations are likely to prevent the emission of VOC- 
related ‘off-flavours’. In addition, other contributors for the ‘off-flavour’, namely, 
saponin B and DDMP saponin, can be removed or altered in pea seeds through 
CRISPR/Cas9. This technology can also be used to eliminate key allergen proteins 
(vicilin and convicillin) found in peas (Bhowmik et al., 2021). Soybean is the first 
oil and protein-rich crop to be genetically improved with CRISPR/Cas technology. 
Hairy root transformation mediated by Agrobacterium rhizogenes has been utilized 
to modify agronomic features such as soybean architecture, flowering times, seed 
oil and storage protein. Arabidopsis PEAPOD gene orthologues in soybean, namely, 
GmPPD1 and GmPPD2, have been edited using this technology (Kanazashi et al., 
2018). Homologue GmFAD2–1A and GmFAD2–1B genes of soybean have been 
edited with CRISPR/Cas technology to improve the profile of seed oil (Do et al., 
2019). Mutant soybean was developed by silencing lipoxygenase gene responsible 
for beany flavour (Wang et al. 2020a, b), and GmF3H1, GmF3H2 and GmFNSII-1 
genes of soybean were targeted simultaneously with CRISPR/Cas9-mediated mul-
tiplex gene-editing technology, which has shown increase in leaf isoflavone content 
providing resistant against soyabean mosaic virus (SMV) (Zhang et al. 2020a, b).

By targeting a symbiosis receptor-like kinase gene with CRISPR/Cas technol-
ogy, Ji et  al. (2019) were able to disrupt nitrogen fixation, and the use of this 
approach in the Vigna system suggests that this editing technology might be applied 
to additional Vigna species, such as the mung bean. CRISPR/Cas-mediated gene 
editing of the genome of the second most important food legume, chickpea, has 

S. Akhtar et al.



553

been done for the first time in 2021 in which the knock-out drought-resistant genes 
4-coumarate ligase (4CL) and Reveille 7(RVE7) genes (Badhan et  al., 2021). 
Understanding the genes involved in the biosynthesis pathway of Faba bean anti- 
nutritional factors and increasing sulphur-containing amino acids by expressing 
Met- and Cys-rich seed storage proteins hold enormous promise, thanks to advances 
in genetic transformation technologies and CRISPR (Bhowmik et al., 2021).

5.5  Seeds and Nuts

In recent times, the demand for edible seeds and nuts is increasing owing to their 
nutrition richness and ease to consume (Zion Market Research 2018). But it was 
observed that farmers from around the globe face several problems regarding the 
development of edible seeds and nuts (Mullen, 2020). As a result, scientists around 
the globe are involved in the endeavour to develop more advance varieties with high 
stress-tolerant and nutritional properties (Huang et al., 2020; Shu et al., 2020). Of 
all the gene-editing technologies employed, the most notable of them is CRISPR, 
which has seen amazing success in recent times (Jaganathan et al., 2018).

5.5.1  Quality Improvement

Popular crops known for oil production, like rapeseed’s genome responsible for 
fatty acid metabolism, have been modified to generate better oil quality (Okuzaki 
et al., 2018; Al Amin et al., 2019). Also, the lowering of fatty acid concentration in 
rapeseed was obtained using CRISPR/Cas9 by targeting GmFATB1 gene (Ma et al., 
2021). In false flax CsFAD2 (Jiang et  al., 2017), CsDGAT1 (Aznar-Moreno & 
Durrett, 2017), CsFAE1 (Ozseyhan et al., 2018) and CsCRUC (Lyzenga et al., 2019) 
genes were knocked out using CRISPR/Cas9 to enhance fatty acid content of seeds.

5.5.2  Biotic and Abiotic Stress

CRISPR/Cas9 had been employed for the mutation or silencing different important 
genes which are responsible for different abiotic and biotic stresses. In peanut, 
AhNFR5 genes were mutated using CRISPR/Cas9 for the production of variety tol-
erant to hairy root disease caused by Rhizobium rhizogenes (Shu et  al., 2020). 
Sclerotinia, additionally known as white mould, is caused by the fungal pathogen 
Sclerotinia sclerotiorum in rapeseed, a severe problem faced by farmers nowadays. 
To solve this issue, Sun et al. targeted BnWRKY70 gene using CRISPR/Cas9 tool to 
improve the resistance against Sclerotinia sclerotiorum (Sun et al., 2018) and also 
to develop a rapeseed variety with prolific branched dwarf phenotype along with 
shortened internode length and increase of the total flower, Stanic et  al. edited 
BnD14 gene using CRISPR/Cas9 (Stanic et al., 2021).
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5.6  Herbs and Spices

Herbs associated with food and spices are comparatively less explored through 
CRISPR/Cas technology in contrast to other food plant species. CRISPR/Cas was 
utilized to modify DMR1 gene (downy mildew-resistant 1) in the sweet basil genome 
to impart resistance against a mildew pathogen Hyaloperonospora arabidopsis 
(Navet & Tian, 2020). In spices, to confer resistance in Capsicum annuum against 
Colletotrichum truncatum was enhanced to prevent yield loss. Transcript-mediated 
CRISPR/Cas9 with alterations in the CaERF28 locus was utilized to generate the 
resistant variant (Mishra et al., 2021). Moreover, a non-food traditional herb with 
medicinal value, Salvia miltiorrhiza, was edited by making knockout for terpene 
synthase gene (SmCPS1), proving the efficacy and simplicity of CRISPR/Cas9 in its 
genome editing (Li et al., 2017).

6  Limitations in CRISPR/Cas

6.1  Global Regulatory Bodies for CRISPR-Edited Crops

Given the growing use of the CRISPR/Cas9 technology for the production of better 
plant types, in different countries, concerns regarding its misuse and its impact in the 
present and future have been raised (Gonzalez-Avila et al., 2021). To address this 
concern, several countries have adopted different regulations for research and for the 
implementation of these regulations; several regulatory bodies are being framed in 
these countries (Entine et al., 2021). In 2018, the USDA announced that the genome-
modified crops are safe similar to those crops, which are obtained through conven-
tional breeding (Waltz, 2016). The Environmental Protection Agency, the Food and 
Drug Administration and the US Department of Agriculture (USDA) are the primary 
regulatory agencies in the USA which look after and evaluate the genetic engineer-
ing crops (FDA, 2020). In Canada, the plants developed with gene manipulation are 
required to be approved by the Canadian Food Inspection Agency (CFIA) (Ellens 
et  al., 2019). In India, the genetically modified crops are regulated by the Food 
Safety and Standards Authority of India (Chimata & Bharti, 2019). Apart from these, 
several other countries like China, Japan, Australia, the European Union, the United 
Kingdom, etc. have their own regulatory bodies which regulate genetically engi-
neered crop development and production (Entine et al., 2021).

6.2  Bioethics and Risk Assessment

CRISPR/Cas-mediated genome editing is most preferred among other genome edit-
ing tools due to its easy handling, cost-effectiveness and high accuracy for targeted 
gene alterations in a variety of organisms. Being the most important discovery of the 
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twenty-first century, CRISPR/Cas technology has many bioethical issues, apart 
from legal and social issues, regarding its application for modification of genetic 
background of plants, humans and animals (Ayanoglu et al., 2020). The editing of 
crop plants in association with environmental concerns is the fundamental ethical 
controversy surrounding CRISPR/Cas-mediated genome editing. The off-targeted 
mutation in a larger genome with identical sites for cleavage with CRISPR/Cas9 
can cut off sites of interest, and this will create threat to environmental integrity. 
Off-targeted genes can be transferred to other organisms by means of gene drive. 
Drought-tolerant food crops may become invasive weeds if the wrong gene target is 
used, and another major danger or ethical problem associated with this technology 
is that it may be used to produce bioweapons, such as creating contagious pathogens 
that infect food crops (Shinwari et al., 2017). This technology also has both advan-
tages and disadvantages as other technology, but adopting different strategies to 
reduce undesirable mutagenesis it can become most promising technology for crop 
enhancement in the near future.

7  Challenges and Future Prospect

Irrespective of the quantity of plant genome sequences available today, functional 
characterization of the bulk of genes, most importantly the multifamily genes like 
CP450, still remains unknown. Nevertheless, advances in next-generation sequenc-
ing, whole-genome sequencing technology and genome-wide identification and 
functional prediction of genes have helped to have insight into their possible func-
tional biology and regulatory components during stress or diseased condition. More 
information regarding the same are needed to utilize CRISPR/Cas tool to the fullest 
for food crop trait improvement. Optimization of certain factors like promoters, 
delivery methods, off-targets, plant regeneration capacity and delay standard regu-
latory process and understanding of CRISPR-edited crops versus GM crops are 
critical for efficient CRISPR/Cas-mediated genome editing and its routinely use 
(Globus & Qimron, 2017; Ran et al., 2017; Ahmad et al., 2020).

Despite the challenges and hiccups, utilization of CRISPR/Cas’s system to gen-
erate desirable traits has been growing. Numerous studies reporting success story of 
CRISPR-mediated gene editing either in obtaining resistance against multiple 
pathogens (Si et  al., 2020) or in increasing overall yield and quality (Ren et  al., 
2021) are available now. Besides, genome editing to improve photosynthetic effi-
ciency ultimately could enhance vegetable crop yields with rise in biomass. 
CRISPR/Cas may also be implemented to impart C4-plant-like characters with 
higher photosynthetic rate and faster CO2 fixation. De novo domestication using 
CRISPR/Cas9 was successfully put to use in tomato with excellent productivity and 
yield. The same may be applied for other economically important vegetable crops 
which would have a significant impact on food security and malnutrition. Two other 
aspects into which CRISPR/Cas can be optimized are firstly utilization of two-line 
hybrid rather than three-line in order to boost the yield per unit area. Secondly, 
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insertion of large segments of DNA (multiple genes) can be targeted, as in nature 
traits are controlled by multiple and linked genes. CRISPR/Cas system as a whole 
has proven to be an excellent tool, and considering its newer variants, potential and 
application for food crop improvement, the system should meet zero hunger in the 
coming decades.

8  Conclusion

To overcome the spontaneous mutations or physical/chemical mutagen effects on 
food crops caused by traditional breeding techniques, CRISPR system was success-
fully introduced and employed for precise editing, especially in temperate crops and 
in a few tropical crops genome. However, the system needs further optimization in 
terms of its accessibility and practicality and globally to handle emerging problems 
and challenges associated with food crops. In this chapter, we have discussed the 
applications and advantages of CRISPR/Cas9  in the improvement of major food 
crops through genome editing. Its challenges and future prospects have also been 
demonstrated in regards to the recent literature. The progress made so far in the 
development of better varieties, although in a few food crops, has played a major 
role in initiating the process of meeting global food demand and hunger. With flex-
ible government rules and public acceptance, the CRISPR system could be an 
answer to food security in the future.
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