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Abstract

In this paper, we try to obtain a numerical solution for finite
element which is formulated for steady-state groundwater
flow discretized by using triangular element grid. Then, a
MATLAB program is deveoped for this purpose to get
primarily the unknown potential function at the triangular
elements nodes. The Simulation of Finite element Field
problems MATLAB Program was developed and imple-
mented, as a check and test of nodal potential value.
The program SFFP was applied for solution of a
two-dimensional porous medium problem, fluid flow
problem, and body exposure to a heat source problem. In
the meantime, results obtained when compared with
published data, found very closewithmaximumpercentage
difference of 0.22%. Thus, SFFP was applied to ground-
water flow beneath a coffer dam problem of known results
as a case study; for verification, a comparison of the results
was obtained with a maximum percentage difference of
1.32%. This verifies the accuracy of SFFP results.
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1 Introduction

As stated by Hinton and Owen (1979) finite element field
problem is the situation in which only one degree of freedom
exists at each nodal point. In particular, the so-called

quasi-harmonic equation which has wide applicability in
many branches of engineering and physics is considered. In
this way, a finite element program which is developed to
solve the two-dimensional quasi-harmonic equation system
can be employed to analyze several problems of engineering
interest. According to Zienkiewicz et al. (2013) examples
of field problems, such as heat conduction, groundwater
potential, torsion of shafts, seepage, lubrication of bearings
and irrotational fluid flow can be solved when using
quasi-harmonic equation. As had been shown by Moaveni
(2008) based on time, there are two modes of groundwater
flow: steady-state and transient groundwater flow. As had
been stated by Bathe (1996) the main characteristic of
steady-state problem is that the system response does not
change with time. As had been presented by Hinton and
Owen (1979) and Wang and Anderson (1982) Galerkin’s
method and the finite element technique are so frequently
combined in computer solution of groundwater flow pro-
grams that the two have become particularly synonymous.
Galerkin’s method is based on a particular principle of
weighted residual which is determined directly by governing
partial differential equation without need to the physical
quantity resort.

Reilly (1984) developed a computer program to evaluate
radial flows. Adeboye et al. (2013) presented 2D flow
non-homogenous Laplace equation hydorolic conductivity
and piezometric head. Kulkani (2018) developed a Eulerian–
Lagrangian formulation using numerical models to evaluate
groundwater pollution which considered as a challenge of
obtaining precise and stable numerical solution. Igboekwe
(2014) in his paper finite element method of modeling solute
transmit in groundwater flow studied movement of water
solute from the surface to aquifer using finite element
analysis and reviewed of analytical methods and numerical
methods (finite deference and finite element). Jansser and
Hemker (2004) presented regional models for large or
long-term projects, analytical and numerical models,
restrictions of analytical models and advantages of
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numerical models, and advantages of finite elements with
triangular grid. Rouhani (2007) presented a finite element
numerical solution for groundwater models discretized by
triangular element grid using an object-oriented approach.
Kalantari et al. (2018) modeled Birjand aquifer in two
dimensions by the isogeometric analysis using four-point
Gauss integration method.

In this paper, a numerical solution for finite element is
formulated for steady state groundwater flow evaluated
by grid of triangular element. Then, a MATLAB program
is deveoped for this purpose to get firstly the unknown
potential function at the triangular elements nodes. The
Simulation of Finite element Field problems MATLAB
Program (SFFP) was developed and implemented, as a
check and test of nodal potential value.

2 Methodology

In this part, all the indispensable numerical solution and
theoretical expressions stages for solution of quasi-harmonic
equation are presented. Then, these steps were coded, and
the simulation of SFFP was developed and implemented.

The fluid flow through a soil in two dimensions is gov-
erned by the equation:

@

@x
kx
@;
@x

� �
þ @

@y
ky
@;
@y

� �
þQ ¼ 0 ð1Þ

Present the biharmonic equation and its solution.
Where:
; � The potential function.
kx; ky � Permeability coefficients.
The boundary conditions (B.Cs):

(A) Specified at nodal point

; ¼ ;p ð2aÞ

(B) Loading boundary
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which is the quasi-harmonic equation with:

Q ¼ S� dV
dt

a ¼ q ¼ 0

and B.Cs. ; ¼ ;p ¼ 0.
S � Rate of fluid injection per unit volume.
dV
dt � Rate of volume change per unit volume.

The Galerkin’s Method

Employing Galerkin’s weighted residual process, assuming
a solution ; results in residuals as:
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From the D.E.
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From the B.Cs, the weighted residuals:R
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Integrating each term by parts, choosing weight

w ¼ wA ¼ wS, and arranging results in week integral form as:
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Finite Element Representation of Weak Form

Approximately, the function ; and weight using shape
function Ni for a finite element discretization with n nodes
substituting in week form gives:
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Rearranging gives:
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i; j � from 1 to n

In which:
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That represents constrains (reactions).
Equation (7) can be written as:
OR:

kef g ;ef g ¼ f ef g ð8Þ
where:

The element stiffness matrix is:
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The element nodal load vector is:

f ef g ¼
Z
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NiQdA�

Z
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Ni q� a;a þ½ �dSþ xi ð9bÞ

Evaluation of the Triangular Element Properties

Finite element grid using simple triangular element (Fig. 1)
is convenient to approximate arbitrary-shaped regions with
small deviations. Based on Eq. (8), the triangular element is
formulated as follows:

• The potential function within any point at triangle is
given in terms of the shape functions and nodal potential
values as follows:

;ef g ¼
X3
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Ni;ei ¼ N1N2N3f g ;e1;e2;e3
� � ð10Þ

where the shape functions N1;N2 and N3 are:
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and A is the element area.

• The element stiffness matrix is then given from Eqs. (9a),
(10), and (11) by:

kef g ¼ kef gI þ kef g12 þ kef g23 þ kef g31 ð12Þ

In which:
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• Element nodal load vector, neglecting xi, is given from
(9b) and (11) as:

f ef g ¼ f ef gQ þ f ef gc12 þ f ef gc23 þ f ef gc31 ð15Þ

(xj, yj)

(xk, yk)

(xj, yi)

ɸj

ɸk

ɸ

ɸj

y

x

Fig. 1 Nodal values of the potential function for a triangular element
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where:

f ef gQ¼
QA

3
111f g ð16aÞ

f ef gc12¼ � q� a;að ÞSe12
2

110f g ð16bÞ

f ef gc23¼ � q� a;að ÞSe23
2

011f g ð16cÞ

f ef gc31¼ � q� a;að ÞSe31
2

101f g ð16dÞ

Groundwater flow:

The fluid flow:
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h � Pressure head.
In case of steady-state groundwater flow:

Q ¼ S� dV
dt

ð18Þ

a ¼ q ¼ 0

Based on the above formulation and B.Cs, an adopted
modular process with a separate subroutine will be utilized
to perform the main operation. These subroutines are then
called in sequence by a main or master program.

3 Results

The program SFFP was applied for solution of a
two-dimensional porous medium problem, fluid flow prob-
lem, and body exposure to a heat source problem. In the
meantime, the results obtained were compared with pub-
lished data as follows:

3.1 Case One: Two-Dimensional Porous Medium

Sandy soil region with two-dimensional shown in the
adapted Fig. 2 (Logan 2007), it is required to measure the
potential distribution. The tension (fluid head) on the left
part is a constant equal to 10:0m, and that on the right part
is 0.0. The upper and lower sides are impervious. The
impervious are kxx ¼ kyy ¼ 25� 10�5 m

s . Unit thickness is
assumed. The results obtained using SFFP are presented in

Table 1 and compared with solution presented by Logan
(2007).

As can be seen from Table 1, the nodal potential obtained
using SFFP completely agrees with the known published
result with no difference.

3.2 Case Two: Two-Dimensional Fluid Flow
Problem

The fluid flow problem shown discretized in Fig. 3—which
is adapted from Logan (2007)—has the top and bottom parts
impervious, whereas the right side has a constant head of
3cm and the left side has a constant head of 4cm. The nodal
potential result obtained using SFFP is presented in Table 2
and compared with solution presented by Logan (2007).

The compression shows complete agreement between the
two results.

As can be seen from Table 2, the result obtained using
SFFP completely agrees with the known published result
with no difference.

22 m

3

1

y

x

2 m

4
5

(1)

(2)

Fig. 2 Two-dimensional porous
medium

Table 1 Two-dimensional porous medium results

Node number Nodal potential value(cm) Difference %

Logan (2007) SFFP solution

1 10.0000 10.0000 0.00

2 0.0000 0.0000 0.00

3 0.0000 0.0000 0.00

4 10.0000 10.0000 0.00

5 5.0000 5.0000 0.00

32

8

1

z

y

p = 3 cm
6

5
(1)

(2)

(3) (5)

(6)(4)

4

7

1 cm 

2 cm 2 cm 

1 cm p = 4 cm

kyy = kzz = 1 cm/s

Fig. 3 Two-dimensional fluid flow problem
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3.3 Case Three: Body with Two-Dimensional
Exposure to a Heat Source

For the body with two-dimensional shown in in the adapted
Fig. 4 (Logan 2007), it is required to measure the distribu-
tion of temperature. The temperature of the upper part of the
body is maintained at 100 °C. The body is isolated on the
other sides. A uniform heat source of Q = 1000 W

m3 acts over
the whole plate, as shown in the figure. A constant thickness
of 1 m is assumed. Let kxx ¼ kyy ¼ 25 W/(m °C).

We need attention just for the left half of the body, because
we have a vertical plane of the symmetry passing through the
body 2 m from both the left and right portions. This vertical
plane can be considered as isolated boundary. The finite ele-
ment model is shown in the adapted Fig. 5 (Logan 2007). The
results obtained using SFFP are presented in Table 3 and
compared with solution presented by Logan (2007).

As can be seen from Table 3, the result obtained using
SFFP closely agrees with the known published result with a
maximum percentage difference of 0.22%.

4 Discussion

This case study focused on the flow of groundwater beneath
a coffer dam which had been solved by using a potential
formulation as done by Hinton and Owen (1979). The
geometry of the model is evident in Fig. 6 (Hinton and
Owen 1979). It is supposed that boundary ABC is imper-
vious (no leakage) as is the sheet pile wall EFG. The pres-
sure head in this case is the difference in height between AG
and DF which is 3 units. Arbitrarily setting ; ¼ 0:0 along
DF, since the flow speeds depend only on the gradient of ;,
then ; ¼ 3:0 along AG. Along ABC and on either side of the
sheet pile wall, it is required that @;

@n ¼ 0 also symmetry

conditions along CD require @;
@n ¼ 0 on this part. These

boundary conditions are shown in Fig. 6. The equi-potential
lines obtained by Hinton and Owen (1979) are also shown in
the same figure.

The finite element mesh employed for the case study
using SFFP is illustrated in Fig. 7. Figure 8 presents the
equi-potential lines obtained using SFFP.

Referring to Figs. 6 and 8, the results show very close
agreement. To confirm this, the values of nodal potential of
five randomly selected nodes are presented and compared
with the solution presented by Hinton and Owen (1979) in
Table 4.

Results shown in Table 4 are in very close agreement
with a maximum percentage difference of 1.32% (mainly
due to the interpolation of the reference results). If SFFP
results are approximated to two decimals as those of the
reference, the results are almost identical (maximum per-
centage difference = 0.36%). This verifies the accuracy
SFFP results.

Table 2 Two-dimensional fluid flow problem results

Node number Nodal potential values (cm) Difference %

Logan (2007) SFFP solution

1 4.0000 4.0000 0.00

2 3.5000 3.5000 0.00

3 3.0000 3.0000 0.00

4 4.0000 4.0000 0.00

5 3.0000 3.0000 0.00

6 4.0000 4.0000 0.00

7 3.5000 3.5000 0.00

8 3.0000 3.0000 0.00

4 m

2 mQ

T = 100 ⸰C

Fig. 4 Two-dimensional body subjected to a heat source

22 m

3

1

y

x

2 m

4
5

Fig. 5 Discretized body of Fig. 4

Table 3 Body with two-dimensional exposure to a heat source results

Node number Nodal temperature values (°C) Difference %

Logan (2007) SFFP solution

1 180.0000 180.0000 0.00

2 180.0000 180.0000 0.00

3 100.0000 100.0000 0.00

4 100.0000 100.0000 0.00

5 153.0000 153.3333 0.22
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Impermeable sheet pile 

x

y

Kx = Ky = 10-5 m/s = 0.864 m/day
Mesh: 112 Nodes, 183 Elements

Fig. 6 Groundwater flow beneath a coffer dam showing equi-potential lines

Fig. 7 Finite element mesh employed for the case study using SFFP
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5 Conclusions

From the result presented in this paper, the finite element
solution of quasi-harmonic equation was formulated for
steady-state groundwater flow. Then MATLAB was used to
develop SFFP for solution of quasi-harmonic equation.
SFFP was implemented, and its results accuracy verified by
comparing with known results. The comparison showed
very close agreement between results with a maximum dif-
ference of 0.22%. SFFP program was applied to a ground-
water flow beneath a coffer dam problem as a case study.
The results obtained using SFFP were in close agreement
with the published results with a maximum difference of
1.32%.
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