
Practical Multi-party Private Set
Intersection Cardinality

and Intersection-Sum Under Arbitrary
Collusion

You Chen1, Ning Ding1(B), Dawu Gu1(B), and Yang Bian2

1 School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

{chenyou99,dingning,dwgu}@sjtu.edu.cn
2 Fudata Technology, Room 1003, T7, Lane 100,

Pingjiaqiao Road, Shanghai 200126, China
douheng@fudata.cn

Abstract. Private set intersection cardinality (PSI-CA) and private
intersection-sum with cardinality (PSI-CA-sum) are two primitives that
enable data owners to learn the intersection cardinality of their data set,
with the difference that PSI-CA-sum additionally outputs the sum of the
associated integer values of all the data that belongs to the intersection
(i.e., intersection-sum). In this paper, we investigate the practical con-
structions of these two primitives, focusing on the multi-party setting.
To our knowledge, all existing multi-party PSI-CA (MPSI-CA) proto-
cols are either impractical or vulnerable to arbitrary collusion (i.e., the
adversary can corrupt any proper subset of all parties), and as for multi-
party PSI-CA-sum (MPSI-CA-sum), there is even no formalization for
this notion at present, not to mention secure constructions for it.

So in this paper, we first propose the first MPSI-CA protocol that
achieves simultaneous practicality and security against arbitrary collu-
sion (in the semi-honest adversary model). We also conduct implementa-
tion to verify its practicality (while the previous results under arbitrary
collusion only present theoretical analysis of performance, lacking real
implementation). Numeric results show that it only takes 12.805 s to fin-
ish the online computation by shifting expensive operations to an offline
phase, even in the dishonest majority setting with 15 parties each hold-
ing 216 data. Among all parties, the cost of clients is especially lower
compared to that of the known results, which is only 0.3 s in finishing
their tasks.

Second, we formalize the notion of MPSI-CA-sum and give the first
realization which admits simultaneous practicality and security against
arbitrary collusion as well. The computational complexity of it is roughly
double that of our MPSI-CA protocol.

Besides the main results, we introduce the notions and provide efficient
constructions of two new building blocks: multi-party secret-shared shuffle
and oblivious zero-sum check, which may be of independent interest.

The original version of this chapter was revised: this chapter contained errors on page
8, 9, 10 & 11 in chapter 9 which is indicated in our final book. The correction to this
chapter is available at https://doi.org/10.1007/978-3-031-26553-2 27

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023, corrected publication 2023

Y. Deng and M. Yung (Eds.): Inscrypt 2022, LNCS 13837, pp. 169–191, 2023.

https://doi.org/10.1007/978-3-031-26553-2 9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26553-2_9&domain=pdf
https://doi.org/10.1007/978-3-031-26553-2_27
https://doi.org/10.1007/978-3-031-26553-2_9

170 Y. Chen et al.

Keywords: Multi-party PSI-CA · Multi-party PSI-CA-sum · Secure
multiparty computation

1 Introduction

Motivation. Private set intersection cardinality (PSI-CA) is a cryptographic
primitive that enables multiple parties to learn the intersection cardinality of
their private data sets without leaking other information beyond the intersec-
tion cardinality. PSI-CA can be applied to real-world applications like measuring
advertisement conversion rates [10] and so on. Despite its broad usage, never-
theless, PSI-CA is still not sufficient for some applications where each data is
associated with an integer value (e.g. payload), like measuring advertisement
conversion rates when one person contributes multiple purchases [10]. Thus a
variant of PSI-CA is proposed, known as private intersection-sum with cardinal-
ity (PSI-CA-sum) [10], which is specified to output the intersection cardinality,
as well as the sum of associated payloads for all the elements that belong to the
intersection (i.e., intersection-sum).

Besides measuring advertisement conversion rates, we come up with the fol-
lowing possible application of PSI-CA-sum. Consider a score-based voting sce-
nario with multiple voters, where voter Pi can vote for any candidate s ∈ {0, 1}∗

that he prefers, and the ballot of him is associated with a score for candidate
s (s is the candidate’s ID). If Pi does not vote for candidate s, then there is
no need for him to give s a score. Pi’s voting result is represented using a set
Si = {(si,1, vi(si,1), ..., (si,m, vi(si,m)} of size m, where si,k, k ∈ [m] are the IDs
of his chosen candidates and vi(si,k) is his score of candidate si,k. Given the set
Si, i ∈ [n] of n voters, the set of common candidates supported by all voters
is denoted as set intersection IS. The total score of a common candidate s is∑n

i=1 vi(s), which can be used to calculate the average score of every common
candidate. In this problem setting, the required information consists of the inter-
section cardinality |IS| and the sum of common candidates’ scores SumIS (i.e.,
SumIS =

∑n
i=1

∑
x∈IS vi(x)), so that the average score of a common candi-

date is SumIS/|IS|. Here, PSI-CA-sum can be employed to securely obtain the
average score without additional information leakage.

However, most existing PSI-CA protocols work in the two-party setting, while
the results of multi-party PSI-CA (MPSI-CA) are either limited by massive
computational overhead, or vulnerable to arbitrary collusion (i.e., the adversary
can corrupt any proper subset of all parties [15]). Meanwhile, to the best of
our knowledge, there has been no work for multi-party PSI-CA-sum (MPSI-CA-
sum). Therefore, we will address the problems and aim at formalizing the notion
of MPSI-CA-sum, proposing protocols for MPSI-CA and MPSI-CA-sum that
can achieve simultaneous practicality and security against arbitrary collusion.
1.1 State of the Art of MPSI-CA

Although there have been some effective two-party PSI-CA schemes [5,7,13],
only a small number of works can deal with the multi-party setting [1,2,11,17].

Existing constructions of PSI-CA protocols can be generally classified into
three categories, depending on whether the protocol is based on circuits, pub-
lic key operations, or oblivious transfer (OT) and its extensions, say oblivious

Practical MPSI-CA and MPSI-CA-Sum Under Arbitrary Collusion 171

programmable pseudorandom function (OPPRF). Previous MPSI-CA schemes
secure against arbitrary collusion typically follow public-key-based paradigm,
and their computational complexities are determined by the number of expen-
sive public key operations. Kissner and Song [11] proposed the first MPSI-CA
protocol in the semi-honest model. This protocol relies on polynomial evaluation
and homomorphic encryption (HE), and the overall computational complexity of
it is O

(
n2m2

max

)
, where n is the number of parties and mmax is the maximum set

size. Debnath et al. [2] presented an MPSI-CA protocol based on inverse bloom
filter (IBF) and HE. The protocols in [2,11] are both proven secure against
arbitrary collusion. Despite their good properties in privacy preserving, it is
impractical for resource-limited devices with large data sets to carry out these
protocols due to the massive computational overhead.

To tackle with this problem, two practical schemes have been proposed.
Chandran et al. [1] introduced a circuit-based generic multi-party computation
protocol, which can be extended to realize MPSI-CA by modifying the circuit.
However, this protocol is only proven secure with honest majority in semi-honest
model. Besides, a concurrent work of [17] presented two OPPRF-based MPSI-CA
protocols under the additional assumption that specific parties are non-colluding,
which deviate from the well-known “threshold security”. Although assuming the
existence of some specific non-colluding parties can improve the performance,
it is believed that the “threshold security” is closer to real life applications for
the following reasons: (1) There may not always exist such well-established non-
colluding parties to participate in the protocol; (2) The identities of corrupted
parties may be kept secret to honest parties, so it is unrealistic to assume that
specific parties are non-colluding and to appoint them to perform special tasks.

Therefore, how to design and implement a practical semi-honest secure MPSI-
CA scheme under arbitrary collusion is still worth studying.

1.2 State of the Art of Two-Party PSI-CA-Sum

(Since there is no result of PSI-CA-sum in the multi-party setting) we sketch
some known results on the two-party PSI-CA-sum [7,9,10]. Motivated by the
business problem of online-to-offline advertisement conversions, Ion et al. [10]
introduced the first two-party PSI-CA-sum protocol by applying the classic
Diffie-Hellman style construction into this new scenario. The protocol then was
further polished in [9] and developed into two new constructions, built on mod-
ern techniques like random OT, which nevertheless rely on expensive HE as a
building block for aggregating intersection-sum. Garimella et al. [7] put forward a
lightweight two-party PSI-CA protocol by adopting oblivious switching network
and OT to successfully avoid the reliance on HE.

1.3 Our Contributions

In this paper we formalize the notion of MPSI-CA-sum and propose the first
MPSI-CA protocol and MPSI-CA-sum protocol that can achieve simultaneous
practicality and security against arbitrary collusion. Details are as follows.

172 Y. Chen et al.

MPSI-CA Under Arbitrary Collusion. Our MPSI-CA protocol admits the
following properties and advantages.
• It is the first practical realization of MPSI-CA under arbitrary collusion to our

knowledge, and we also conduct an implementation to verify its practicality
(while the previous results under arbitrary collusion only present theoretical
analysis of performance without real implementation).

• The cost of clients is especially lower than the existing schemes with the same
security.

• Its computational efficiency is attributed to the element sharing technique
and underlying lightweight primitives, which do not require any public key
operations besides a set of base OTs.

• In our implementation, most of the expensive operations can be shifted to
an offline phase to significantly reduce the running time of online computa-
tion. Numeric results show that even in the dishonest majority setting with
15 parties each holding 216 data, it only takes 12.805 s to finish the online
computation, which is about one fourth of the original running time.

Table 1 compares our MPSI-CA protocol with current MPSI-CA schemes
with respect to security and computational complexity. On one hand, when
compared to the existing practical schemes [1,17], our protocol is more secure,
since the existing schemes are not resistant to arbitrary collusion (remark that
our protocol is also of practicality which is incomparable to the schemes in [1,17]
due to different running frameworks). On the other hand, when compared to the
existing schemes secure against arbitrary collusion [2,11], our protocol is much
more practical, since it adopts a set of base OTs and symmetric key operations
to reduce the number of expensive public key operations.

Table 1. Comparison between MPSI-CA schemes

Comparison Between MPSI-CA Schemes

MPSI-CA Schemes Techniques Security Model

[1] OT+symmetric key operations Honest majority

Server-aided [17] OT+symmetric key operations Two specific parties are non-colluding

Server-less [17] OT+symmetric key operations Three specific parties are non-colluding

[11] HE Arbitrary collusion

[2] HE Arbitrary collusion

Our Protocol 4.2 OT+symmetric key operations Arbitrary collusion

Computational Complexities of MPSI-CA Schemes Under Arbitrary Collusion

(Number of Public Key Operations)

MPSI-CA Schemes Primary Leader Secondary Leader Client Total

[11] / / O(nm2
max) O(n2m2

max)

[2] O(m1) / O(kmmax) O(knmmax)

Our Protocol 4.2 O(tκ) O(tκ) / O(t2κ)

MPSI-CA-sum Under Arbitrary Collusion. We formalize the notion of
MPSI-CA-sum and propose the first MPSI-CA-sum protocol that achieves simul-
taneous practicality and security against arbitrary collusion. Its computational

Practical MPSI-CA and MPSI-CA-Sum Under Arbitrary Collusion 173

complexity is roughly double that of our MPSI-CA protocol. Compared with
most two-party PSI-CA-sum schemes, our protocol avoids the usage of expen-
sive HE in aggregating intersection-sum, thus greatly reducing the computational
cost.

Additional Contributions. Besides the main contributions, we also introduce
the new notions and efficient constructions of two new building blocks of our
MPSI-CA and MPSI-CA-sum protocols: multi-party secret-shared shuffle and
oblivious zero-sum check.

• Multi-party secret-shared shuffle helps multiple parties jointly shuffle the sum
of their input data in an unknown permutation π and obtain additive secret
shares of the result. It is an advancement of the multi-party Permute+Share
[14] because it can hide π even when confronted with arbitrary collusion. Our
construction is practical since its costly operations can be shifted to an offline
phase.

• Oblivious zero-sum check is a primitive that can securely determine whether
the sum of multiple parties’ inputs is 0 without revealing anything else. Our
construction of oblivious zero-sum check employs Beaver triples to reduce
online computational overhead.

1.4 High-Level Description

In this part, we present a high-level overview of our MPSI-CA and MPSI-CA-sum
protocols. Our protocols involve n parties, including T = t+1 leaders L1, ..., LT

and n−T clients P1, ..., Pn−T , where t is the corruption threshold (t can be up to
n − 1). In order to differentiate between leaders, leader L1 is called the primary
leader, and the rest of the leaders are called secondary leaders. Each party holds
a private set with size m. The data set of the i-th leader Li is Xi, i ∈ [T], and
that of the j-th client Pj is Sj , j ∈ [n − T].

Fig. 1. The overview of our MPSI-CA and MPSI-CA-sum protocols

As shown in Fig. 1, in the setting of MPSI-CA, clients first share their encoded
data sets to leaders through element sharing, so that the original n-party MPSI-
CA problem can be reduced to T -party MPSI-CA of T leaders, where T = t+1.

174 Y. Chen et al.

Then, primary leader L1 invokes OPPRFs with all secondary leaders Li, i ∈ [2, T]
on each element x1,k ∈ X1. If x1,k belongs to the intersection, then the sum of
all leaders’ outputs and L1’s element sharing on x1,k equals 0, which is denoted
as tk. After participating in T -party secret-shared shuffle, each leader Li obtains
a random additive share of shuffled set {tπ(k)}k∈[m], where the shuffle order π
is kept secret to all parties. Finally, leaders perform oblivious zero-sum check
to securely calculate the number of elements that satisfy γktπ(k) = 0, where the
random value γk is unknown to any leader. If γktπ(k) = 0, then L1 adds one to
intersection cardinality, otherwise the value of tπ(k) will not be revealed.

In the setting of MPSI-CA-sum, parties need to perform element sharing
(payload sharing), OPPRF and secret-shared shuffle on both elements and their
associated payloads. After running oblivious zero-sum check on elements, L1 can
obtain a binary vector �e, which indicates the shuffled indices of elements that
belong to the intersection. As for those elements, L1 invokes OTs with all other
leaders using choice string �e to aggregate the sum of their associated payloads.

1.5 Organizations

Section 2 introduces the preliminaries. In Sect. 3, the notions and constructions
of two new building blocks are presented. We propose the practical MPSI-CA
and MPSI-CA-sum protocols in Sect. 4 and 5, respectively. The computational
complexity of MPSI-CA-sum protocol is roughly double that of our MPSI-CA
protocol, therefore we focus on implementing and analyzing the performance of
our MPSI-CA protocol in Sect. 6.

2 Preliminaries

Notations. We use κ and λ to denote the computational and statistical security
parameters. The set {1, 2, . . . , x} is denoted as [x] (thus

∑T
i=1 is equivalent to∑

i∈[T]). If the elements of a set {x1, . . . , xm} are arranged in order, then this set
can be expressed in the form of a vector �x = (x1, . . . , xm). Therefore, �x+�y means
performing addition on corresponding elements in two sets x and y to obtain
{x1 + y1, . . . , xm + ym}. Given a permutation π and a set �x = (x1, . . . , xm), we
represent the operation of shuffling the positions of elements in this set using
permutation π with π(�x) = (xπ(1), . . . , xπ(m)). The set intersection is denoted as
IS, and the intersection cardinality is |IS|.

Security Definitions. The parties corrupted by a semi-honest adversary A
will faithfully follow the protocol, while attempting to learn about other parties’
inputs. Moreover, those corrupted parties will collude with each other. By “non-
colluding parties”, we mean that at most one of those parties can be corrupted
by A; while “arbitrary collusion” means that A may corrupt any proper subset of
all parties, which is the most challenging case. The coalition of corrupted parties
is denoted as C. Let Π be a protocol and f be a deterministic functionality.

Practical MPSI-CA and MPSI-CA-Sum Under Arbitrary Collusion 175

We define the following distributions of random variables and use the real-ideal
simulation paradigm to formally define the semi-honest security of Π [6]. In this
paper, we prove the security of all the protocols based on Definition 1.

• RealΠ (κ, C;x1, . . . , xn): Each party Pi runs the protocol honestly using pri-
vate input xi and security parameter κ. Output {Vi | i ∈ C} , (y1, . . . , yn),
where Vi and yi denote the final view and output of party Pi.

• Idealf,S (κ, C;x1, . . . , xn): Compute (y1, . . . , yn) ← f (x1, . . . , xn). Output
S (C, {(xi, yi) | i ∈ C}) , (y1, . . . , yn), where S is a probabilistic polynomial
time (PPT) simulator.

Definition 1. [6] We say that protocol Π securely computes f in the pres-
ence of a semi-honest adversary, if there exists a PPT simulator S such that
for C and all inputs x1, . . . , xn, the distributions RealΠ (κ, C;x1, . . . , xn) and
Idealf,S (κ, C;x1, . . . , xn) are computationally indistinguishable in κ.

Oblivious Key-Value Store (OKVS). The definitions of key-value store
(KVS) and OKVS were first given in [8]. An OKVS is a generalized data structure
that stores the mapping from keys to their values, and it can be instantiated with
polynomial, garbled bloom filter (GBF) [4] and so on.

Definition 2. [8] A KVS is parameterized by a set K of keys and a set V of
values, and consists of two algorithms: (1) Encode takes as input a set of (ki, vi)
key-value pairs and outputs an object S (or, with statistically small probability,
an error indicator ⊥); (2) Decode takes as input the object S, a key k and
outputs a value v. A KVS is correct if, for all A ⊆ K × V with distinct keys:
(k, v) ∈ A and ⊥�= S ← Encode(A) =⇒ Decode(S, k) = v
A KVS is an OKVS if, for any two sets K0,K1 of m distinct keys, the output of
R (K1

)
is computationally indistinguishable to that of R (K0

)
, where:

R (K = (k1, . . . , km))
1. For i ∈ [m] : choose uniform vi ← V; 2. Return Encode ({(k1, v1) , . . . (km, vm)}).

Oblivious Programmable Pseudorandom Function (OPPRF, FF,m,u
opprf).

The formal definition of OPPRF was first given in [12], which also provided a
semi-honest secure realization. An OPPRF takes as input the queries (q1, . . . , qu)
from receiver and a programmed set P = {〈xi, yi〉}i∈[m] from sender. Then, the
receiver’s OPPRF outputs satisfy the following property: if the query qj = xi ∈
P, then its OPPRF output equals yi, otherwise the output is pseudorandom.
Generally speaking, receiver’s OPPRF outputs are fixed at some selected points.

176 Y. Chen et al.

Functionality 1: OPPRF FF,m,u
opprf

Parameters: A pseudorandom function (PRF) F ; upper bound m on the number
of points to be programmed, and bound u on the number of queries.
Behaviour: On input P from the sender and u queries (q1, . . . , qu) from the receiver,
where P = {〈x1, y1〉, . . . , 〈xm, ym〉} is a set of points:
•Run KeyGen ((1κ, P)) → (k, hint) and give (k, hint) to the sender, where k is the
PRF key and hint stores the information of the set P.
•Give (hint, F (k, hint, q1) , . . . , F (k, hint, qu)) to the receiver.

Multi-party Pemute+Share (FT ,m,i
mPS). FT,m,i

mPS takes as input the vectors �xj

from all parties Pj , j ∈ [T] and a permutation πi from sender Pi, then outputs
additive shares of shuffled sum πi(

∑T
j=1 �xj) to every party. The functionality

of FT,m,i
mPS was given in [14], along with an realization of FT,m,i

mPS based on OT
and switching network, which is proven secure against a semi-honest adversary
which may corrupt up to T − 1 parties. FT,m,i

mPS is an essential building block of
our multi-party secret-shared shuffle primitive proposed in Sect. 3.

Functionality 2: Multi-party Pemute+Share FT,m,i
mPS

Parameters: T parties Pj , j ∈ [T]; the dimension of vector is m; the sender is Pi.
Behaviour: On input permutation πi and vector �xi = (xi,1, . . . , xi,m) from sender
Pi, and input vector �xj = (xj,1, . . . , xj,m) from each receiver Pj , j ∈ [T]\{i}:
•Give shuffled share �x′

j = (x′
j,1, . . . , x

′
j,m) to all parties Pj , j ∈ [T], where

∑

j∈[T]

x′
j,k =

∑

j∈[T]

xj,πi(k), k ∈ [m], namely
∑

j∈[T]

�x′
j = πi(

∑

j∈[T]

�xj).

3 Two New Primitives and Constructions

In this section, we present the notions and constructions of two new building
blocks for our MPSI-CA and MPSI-CA-sum protocols, namely the multi-party
secret-shared shuffle and oblivious zero-sum check.

3.1 Multi-party Secret-Shared Shuffle

We formalize the new notion of multi-party secret-shared shuffle, and give a
realization of it. It can help parties shuffle the sum of their inputs in an unknown
permutation order π, and obtain additive shares of the result.

Functionality (FT ,m
mSS). FT,m

mSS can be regarded as an advancement of the original
FT,m,i

mPS , since it ensures that none of the parties gets to know the permutation
π. FT,m

mSS receives permutations πi and vectors �xi from all parties Pi, i ∈ [T], and
gives them the additive shares of shuffled sum of inputs π(

∑
i∈[T] �xi) as outputs.

Practical MPSI-CA and MPSI-CA-Sum Under Arbitrary Collusion 177

Functionality 3: Multi-party Secret-Shared Shuffle FT,m
mSS

Parameters: T parties Pi, i ∈ [T]; the dimension of vector is m.
Behaviour: On input permutation πi and vector �xi = (xi,1, . . . , xi,m) from all par-
ties Pi, i ∈ [T]:
• Give each party Pi, i ∈ [T] an additive share �x′

i = (x′
i,1, . . . , x

′
i,m), where∑

i∈[T] x
′
i,k =

∑
i∈[T] xi,π(k), k ∈ [m], namely

∑
i∈[T] �x

′
i = π(

∑
i∈[T] �xi). Here, per-

mutation π = πT ◦ . . . π2 ◦ π1 is the composition of T permutations.

Protocol. We propose a protocol to realize FT,m
mSS as follows. This protocol

invokes T rounds of T -party Permute+Share [14] in an iterative way. During the
i-th round, Pi acts as the sender who provides permutation πi and vector �x

(i−1)
i ,

others act as receivers with vectors �x
(i−1)
j , j ∈ [T]\{i} (Here, �x

(0)
j = �xj , j ∈ [T]).

Then, Pj receives an output �x
′(i−1)
j , where

∑
j∈[T] �x

′(i−1)
j = πi(

∑
j∈[T] �xj

(i−1)),

and treats �x
′(i−1)
j as his input vector during the next round. Finally, each party

Pj obtains an additive share �x
′(T−1)
j of the shuffled sum π(

∑
j∈[T] �x

(0)
j) with per-

mutation π = πT ◦ · · · ◦ π1. If we adopt the Permute+Share scheme proposed in
[14], then our realization of FT,m

mSS requires O(T (T − 1)m log m) OTs in total.

Correctness. By the definition of FT,m,i
mPS , the sum of all parties’ outputs equals

πT (
∑

j∈[T] �x
(T−1)
j) = πT (πT−1(

∑
j∈[T] �x

(T−2)
j)) = · · · = π(

∑
j∈[T] �x

(0)
j).

Theorem 1. This protocol securely computes FT,m
mSS under a semi-honest adver-

sary which may corrupt up to T −1 parties, if FT,m
mPS is secure against semi-honest

adversaries.

Proof. The views of corrupted parties (i.e., C) consist of their inputs and views
during T invocations of FT,m

mPS. As for the first round, simulator S chooses random
vectors as corrupted parties’ outputs by the definition of FT,m

mPS, then treats them
as inputs into the next round. By following the above strategies for each round of
T -party Permuta+Share and leveraging the simulator of subroutine functionality
FT,m

mPS in turn, the view of C during FT,m
mSS can be ideally simulated by S.

3.2 Oblivious Zero-Sum Check

We present the notion and construction of the new primitive of oblivious zero-
sum check. It can help parties securely determine whether the sum of their
inputs is 0 without revealing anything else. It can be employed in the last step
of MPSI-CA to obtain the intersection cardinality of shuffled data.

Functionality (FT ,m
OZK). FT,m

OZK receives input additive shares 〈�x〉i, i ∈ [T] from
all parties, then outputs a binary vector �e = (e1, . . . , em) to P1. If the k-th
position of the sum of input vectors �x =

∑T
i=1〈�x〉i equals 0, then ek = 1;

otherwise ek = 0 (i.e., ek = 1 only when xk = 0). That is to say, FT,m
OZK ensures

that P1 can not get to know the value of xk unless it is equal to 0.

178 Y. Chen et al.

Functionality 4: Oblivious Zero-Sum Check FT,m
OZK

Parameters: The number of parties is T ; the dimension of input vector is m.
Behaviour: On input vector 〈�x〉i from Pi, i ∈ [T], where

∑T
i=1〈�x〉i = �x =

(x1, . . . , xm):
• Give a binary vector �e = (e1, . . . , em) to P1, where ek = 1 if the k-th position of
�x equals 0 (i.e., xk = 0), otherwise ek = 0.

Protocol. As presented in Protocol 3.2, FT,m
OZK can be realized using secret

sharing mechanism. Since each party holds an additive share of secret �x, parties
can obtain their additive shares of the product �γ · �x using Beaver multiplica-
tion triples, where �γ is a “negotiated” random value and notation · denotes
component-wise multiplication of two vectors. �γ is kept secret to everyone, since
each party Pi only knows an additive share 〈�γ〉i of �γ. If xk = 0, it is obvious
that the k-th position of �γ · �x equals 0 (i.e., γkxk = 0); if xk �= 0, P1 can not
infer anything about xk from γkxk due to the random value γk.

Parties need to interact with each other in order to obtain their additive
shares of the product �γ · �x. We note that �γ · �x =

∑
i,j∈[T]〈�γ〉i〈�x〉j can be

divided into
∑

i∈[T]〈�γ〉i〈�x〉i and (T 2 − T)/2 components 〈�γ〉i〈�x〉j + 〈�γ〉j〈�x〉i,
where i < j ∈ [T]. For each component 〈�γ〉i〈�x〉j + 〈�γ〉j〈�x〉i, it is feasible for
Pi and Pj to securely obtain their additive shares shi,j

0 and shi,j
1 using Beaver

triples by following Protocol 3.2. The online pairwise share-based multiplication
will be greatly accelerated by consuming the Beaver triples, which have already
been prepared in the setup stage. Finally, Pi sends the sum of 〈�γ〉i〈�x〉i and his
T −1 shares of

∑
j∈[T]\{i}(〈�γ〉i〈�x〉j + 〈�γ〉j〈�x〉i) to P1. So that P1 can reconstruct

�γ · �x. If the k-th position of �γ · �x equals 0, P1 sets ek to 1, otherwise ek = 0.

Correctness. It can be verified that shi,j
0 + shi,j

1 = 〈�γ〉i〈�x〉j + 〈�γ〉j〈�x〉i based on
the property of Beaver triples. Therefore, the sum of all parties’ shares equals∑

i∈[T]〈�γ〉i〈�x〉i +
∑

1≤i<j≤T (〈�γ〉i〈�x〉j + 〈�γ〉j〈�x〉i) = �γ · �x.

Theorem 2. Protocol 3.2 securely computes FT,m
OZK under a semi-honest adver-

sary which may corrupt up to T − 1 parties.

Proof. In the trivial case that P1 /∈ C, the views of corrupted parties C can be
simulated by substituting all shares with random vectors. If P1 ∈ C, for those
positions where ek = 0, all generated and received shares of randomized γkxk

are indistinguishable from uniformly random values; for positions where ek = 1,
shares can be simulated by choosing random values that sum to zero.

Practical MPSI-CA and MPSI-CA-Sum Under Arbitrary Collusion 179

Protocol 3.2: Oblivious Zero-Sum Check
Parameters: The number of parties is T ; the dimension of input vector is m.
Initialization: For every two parties Pi and Pj , i, j ∈ [T], i < j, they prepare

enough Beaver triples 〈�a〉0,〈�b〉0,〈�c〉0 and 〈�a〉1,〈�b〉1,〈�c〉1 for online share-based multi-

plication, where �c = �a ·�b, �c = 〈�c〉0 + 〈�c〉1, �a = 〈�a〉0 + 〈�a〉1 and �b = 〈�b〉0 + 〈�b〉1. Note

that Pi holds 〈�a〉0,〈�b〉0,〈�c〉0, and Pj holds 〈�a〉1,〈�b〉1,〈�c〉1. �a and �b are kept secret to
both parties.
Input: Additive share 〈�x〉i from party Pi, where �x = (x1, . . . , xm) =

∑T
i=1〈�x〉i.

Output: P1 outputs a binary vector �e = (e1, . . . , em): if xk = 0, then ek = 1, oth-
erwise ek = 0.
Protocol:

1 For i ∈ [T], each party Pi randomizes his share 〈�x〉i as follows:
(a) (Negotiating Randomness) Pi locally generates a random vector 〈�γ〉i,

so that the random vector �γ =
∑T

i=1〈�γ〉i is unknown to everyone.
(b) (Pairwise Multiplication) Pi computes his additive share of �γ · �x =∑

u,l∈[T]〈�γ〉u〈�x〉l. For each component 〈�γ〉i〈�x〉j + 〈�γ〉j〈�x〉i, j ∈ [T]\{i}, Pi

needs to interact with Pj as follows:
• Pi locally computes 〈�α〉0 = 〈�x〉i − 〈�a〉0 and 〈�β〉0 = 〈�γ〉i − 〈�b〉0, then

announces them to Pj ; Pj also locally computes 〈�α〉1 = 〈�x〉j −〈�a〉1 and

〈�β〉1 = 〈�γ〉j − 〈�b〉1, then announces them to Pi.

• Pi reconstructs �α and �β, computes his additive share of 〈�γ〉i〈�x〉j +

〈�γ〉j〈�x〉i as shi,j
0 = 〈�c〉0 + �α · 〈�b〉0 + �β · 〈�a〉0 + �α · �β − 〈�γ〉i〈�x〉i. Pj also

obtains his additive share of 〈�γ〉i〈�x〉j + 〈�γ〉j〈�x〉i as shi,j
1 = 〈�c〉1 + �α ·

〈�b〉1 + �β · 〈�a〉1 +�α · �β −〈�γ〉j〈�x〉j , where shi,j
0 +shi,j

1 = 〈�γ〉i〈�x〉j +〈�γ〉j〈�x〉i.
2 (Reconstruction) Each Pi, i ∈ [2, T] computes the sum of 〈�γ〉i〈�x〉i and all his

shares of
∑T

j=1,j �=i (〈�γ〉i〈�x〉j + 〈�γ〉j〈�x〉i) (obtained in step 1(a)), and then sends
the result to P1, so that P1 can reconstruct �γ · �x. If the k-th position of �γ · �x
equals 0, P1 sets ek to 1, otherwise ek = 0.

4 MPSI-CA Protocol Under Arbitrary Collusion

In this section, we recall the functionality of MPSI-CA and propose a semi-
honest secure MPSI-CA protocol under arbitrary collusion. First, we introduce
a technique called element sharing to reduce the original n-party MPSI-CA to
T -party MPSI-CA of T leaders. Then, a detailed description of our MPSI-CA
protocol is presented.

Functionality (FMPSI−CA). MPSI-CA allows n parties with m items to learn
the intersection cardinality of their private sets without revealing anything else.

Functionality 5: MPSI-CA FMPSI-CA

Parameters: T leaders L1, . . . , LT ; n − T clients P1, . . . , Pn−T ; the set size is m.
Behaviour: On input data sets Xi from all leaders Li, i ∈ [T], and data sets Sj

from all clients Pj , j ∈ [n − T]:
• Give leader L1 the intersection cardinality |IS| = |(⋂T

i=1 Xi) ∩ (
⋂n−T

j=1 Sj)|.

High-Level Description. The fundamental idea of our MPSI-CA protocol is
to let all clients share their PRF-encoded data sets to T leaders Li, i ∈ [T],

180 Y. Chen et al.

and then delegate leaders to complete the task of T -party PSI-CA. T is set
to be t + 1, otherwise the T -party MPSI-CA computation will be vulnerable to
collusion attack in the worst case that all leaders are corrupted. Then, L1 invokes
OPPRFs with all secondary leaders. After that, all leaders treat their modified
outputs �ti, i ∈ [T] as inputs to the following multi-party secret-shared shuffle
and oblivious zero-sum check, so that L1 can obtain the intersection cardinality.

4.1 Element Sharing

Considering that the overhead of MPSI-CA protocol tends to increase with the
number of parties, it is a natural idea to delegate only a small number of parties
to engage in expensive interactive procedures by sharing other parties’ PRF-
encoded data sets to them in the first step. This trick was first adopted by [15]
and is called element sharing for short in this paper.

Sub-protocol 4.1: Element Sharing in MPSI-CA
Parameters: The number of parties is n, number of leaders is T ; set size is m.
Input: Xi = {xi,1, . . . , xi,m} from leader Li, i ∈ [T]; Sj = {sj,1, . . . , sj,m} from
client Pj , j ∈ [n − T].
Protocol:

1. (Client) For client Pj , j ∈ [n − T],
(a) He sends a random PRF key Kj,i to each secondary leader Li, i ∈ [2, T].
(b) For each element sj,k ∈ Sj , k ∈ [m], Pj computes the PRF-encoded

value of si,j as
∑T

i=2 PRF (Kj,i, sj,k). Then, Pj encodes key-value pairs

{〈sj,k,
∑T

i=2 PRF (Kj,i, sj,k)〉}k∈[m] into an OKVS Dj and sends Dj to pri-
mary leader L1.

2. (Primary Leader) For each element x1,k ∈ X1, k ∈ [m], L1 decodes all
received Dj , j ∈ [n − T] on x1,k to get Dj(x1,k), and then obtains his element
sharing of x1,k as q1(x1,k) = − ∑n−T

j=1 Dj(x1,k).
3. (Secondary Leader) Each secondary leader Li, i ∈ [2, T] computes the PRF

outputs of all his elements xi,k ∈ Xi, k ∈ [m] using n−T received keys Kj,i, j ∈
[n−T], then adds the n−T PRF outputs of xi,k together to obtain his element
sharing of xi,k as qi(xi,k) =

∑n−T
j=1 PRF (Kj,i, xi,k).

The functionality Fn,T,m
ElemSh of element sharing is that: for an element x, if

x ∈ IS, then each leader Li, i ∈ [T] holds a random additive share qi(x) of
0 corresponding to x. The detailed process is shown in Sub-protocol 4.1, its
correctness is obvious because if x ∈ IS, then each PRF key Ki,j is used twice
by both client Pj and leader Li on the same item x, so that the two PRF outputs
cancel out each other and

∑T
i=1 qi(x) = 0.

We show that Sub-protocol 4.1 can securely compute Fn,T,m
ElemSh under a semi-

honest adversary which may corrupt up to t parties (t < n) by giving a sketch
of how to simulate the views of corrupted parties in the ideal world. The ideal
views of corrupted clients are easy to simulate since they receive no messages.
For corrupted Li, i ∈ [2, T], his received PRF keys can be simulated using ran-
dom values. For the corrupted L1, the OKVS Dj (from an honest party Pj)

Practical MPSI-CA and MPSI-CA-Sum Under Arbitrary Collusion 181

appears random to him, since all the values encoded in Dj are encrypted using
Pj ’s T − 1 PRF keys. Therefore, S can easily simulate the OKVS by generat-
ing an OKVS that encode m random key-value pairs, which is computationally
indistinguishable from his real view by the obliviousness property of OKVS.

4.2 Detailed Description

Protocol 4.2: MPSI-CA Under Arbitrary Collusion
Parameters: The set size is m; the number of leaders is T = t + 1; hash functions
h1, h2, h3; the number of bins is b.
Input: Xi = {xi,1, . . . , xi,m} from leader Li; Sj = {sj,1, . . . , sj,m} from client Pj .
Protocol:
1. (Element sharing) Run Sub-protocol 4.1 (Fn,T,m

ElemSh). For each element xi,k ∈
Xi, leader Li obtains his element sharing of xi,k as qi(xi,k).

2. (T -party MPSI-CA) Leaders Li, i ∈ [T] act as follows:
(a) (Bucketing) L1 does Table1 ← CuckooHashb

h1,h2,h3(X1), Li, i ∈ [2, T]

does Tablei ← SimpleHashb
h1,h2,h3

(Xi).

(b) (OPPRF) L1 invokes FF,3m,b
opprf with every Li, i ∈ [2, T],

• Sender Li provides a programmed set P = {Pk}k∈[b], where subset
Pk = {〈x, qi(x) − ti,k〉}x∈Tablei[k]

stores key-value pairs for the k-th
bin Tablei[k], and ti,k is a random value.

• Receiver L1 provides b queries {Table1[k]}k∈[b], and outputs �ri =
(ri,1, . . . , ri,b), where ri,k is the OPPRF output on Table1[k].

(c) For each bin k ∈ [b], L1 computes t1,k = q1(Table1[k]) +
∑T

i=2 ri,k.

(d) (T -party Shuffle) All leaders Li, i ∈ [T] jointly invoke FT,b
mSS.

• Each Li inputs the vector �ti = (ti,1, . . . , ti,b) and a permutation

πi, then outputs an additive share �t′
i of the shuffled sum π(�t) (i.e.,∑T

i=1
�t′
i = π(�t)), where �t =

∑T
i=1

�ti = (t1, . . . , tb) and π = πT ◦ · · · ◦π1.

(e) (OZK) All leaders Li, i ∈ [T] engage in FT,b
OZK to securely obtain the

number of zeros in the b-dimensional vector
∑T

i=1
�t′
i.

• Each leader Li, i ∈ [T] inputs his share �t′
i (obtained in step 2(d)).

• L1 outputs a binary vector �e indicating which positions of
∑T

i=1
�t′
i

equal 0. If the k-th position is 0, then ek = 1, otherwise ek = 0.
L1 outputs the number of 1s in �e as the intersection cardinality |IS|.

As shown in Protocol 4.2, leader Li utilizes the bucketing technique [12] to hash
his elements into a hash table Tablei with b bins using simple hashing (or cuckoo
hashing when i = 1) with hash functions h1, h2, h3. For cuckoo hash table Table1,
each element x ∈ X1 will be inserted into only one bin, say Table1[hu(x)] = x
for some u ∈ [3]. Finally, each empty bin will be padded with a dummy element.
As for the simple hash table Tablei, i ∈ [2, T], each x ∈ Xi will be inserted into
three bins Tablei[h1(x)], Tablei[h2(x)] and Tablei[h3(x)]. When the number of
hash functions is 3, the stash size can be reduced to 0 by setting b = 1.28m while
achieving a hashing failure probability of 2−40 [16].

After invoking FF,3m,b
opprf on b queries Table1[k], k ∈ [b], if Table1[k] ∈ IS, then

leaders hold additive shares of 0 (i.e., tk =
∑

i∈[T] ti,k = 0). In order to obtain

182 Y. Chen et al.

the number of k that satisfies tk = 0 without revealing the index k, leaders
invoke FT,m

mSS to obtain additive shares of shuffled tπ(k), where π is unknown to
anyone. Then they engage in FT,m

OZK to securely aggregate and rerandomize the
value of tπ(k). By the definition of FT,m

OZK, the output γktπ(k) equals 0 only when
tπ(k) = 0, therefore L1 adds one to intersection cardinality |IS|.

Correctness. If element Table1[k] ∈ IS, then from the property of element shar-
ing and OPPRF, we have

∑
i∈[T] qi(Table1[k]) = 0 and ri,k = qi(Table1[k])−ti,k,

and thus tk = 0. By the correctness of multi-party secret-shared shuffle and
oblivious zero-sum check, L1 successfully reconstructs γktπ(k) = 0, and knows
there exists one more element that belongs to IS. Otherwise, if Table1[k] does
not belong to some Xi or Sj , then either the OPPRF output ri,k or the OKVS
decode output q1(Table1[k]) is a random value. Therefore, the probability that
there exists an element Table1[k] /∈ IS s.t. γktπ(k) = 0 is negligible.

Theorem 3. Protocol 4.2 securely computes FMPSI−CA under a semi-honest
adversary which may corrupt up to t parties (t < n), if Fn,T,m

ElemSh, FF,3m,b
opprf , FT,b

mSS

and FT,b
OZK are secure against semi-honest adversaries.

Proof. We divide the proof into three cases.
Case1: (Li /∈ C, i ∈ [T]). In this trival case, the views of corrupted parties (i.e.,
C) can be easily simulated since they receive no messages.
Case2: (L1 /∈ C). In this case, C receives no final output. The views of corrupted
clients can be simulated in a way similar to Case 1. As for those corrupted
Li, i ∈ [2, T], simulator S first chooses a random key k to simulate Li’s output of
FF,3m,b

opprf since C only sees the senders’ views. Then, by the definition of FT,b
mSS, S

chooses a random vector �t′i as his output of FT,b
mSS, and leverages the simulators

of subroutine functionalities Fn,T,m
ElemSh, FT,b

mSS, FF,3m,b
opprf and FT,b

OZK to simulate the
view of corrupted Li. The view output by S is indistinguishable from C’s real
view, which is obtained by the underlying simulators’ indistinguishability.
Case3: (L1 ∈ C). In this case, C receives |IS| as final output. S can sim-
ulate C’s view as follows. In step 2(b), it simulates L1’s OPPRF outputs
�ri, i ∈ [2, T] using uniformly random values while ensuring that: if Li ∈ C, then
ri,k = qi(Table1[k]) − ti,k for every element Table1[k] that belongs to X1 ∩ Xi,
otherwise ri,k and ti,k are independent; if Li /∈ C, then L1’s ri,k is picked at
random. In step 2(d), by the definition of FT,b

mSS, it simulates corrupted parties’
outputs of FT,b

mSS using uniformly random vectors. In step 2(e), it simulates L1’s
output �e of FT,b

OZK by uniformly sampling a binary vector with |IS| ones due to the
uniformly distributed permutation adopted in FT,b

mSS. After that, S can leverage
the simulators of subroutine functionalities Fn,T,m

ElemSh, FT,b
mSS, FF,3m,b

opprf and FT,b
OZK

to simulate the view of C. The view output by S is indistinguishable from C’s
real view, which is obtained by the underlying simulators’ indistinguishability.

Practical MPSI-CA and MPSI-CA-Sum Under Arbitrary Collusion 183

5 MPSI-CA-Sum Protocol Under Arbitrary Collusion

In this section, we first introduce a technique called payload sharing to share the
payloads of clients to leaders. Then we smoothly extend Protocol 4.2 to provide
a practical MPSI-CA-sum protocol that is secure under arbitrary collusion.

Functionality (FMPSI−CA−sum). To the best of our knowledge, we are the
first to formalize the notion of MPSI-CA-sum. The functionality of MPSI-CA-
sum is a generalization of the two-party PSI-CA-sum proposed in [10], with some
modifications as to the number of parties that hold the payloads. The associated
payload of element x is denoted as vi(x) at leader Li’s side and wj(x) at client
Pj ’s side, respectively. The purpose of MPSI-CA-sum is to securely output the
|IS| and intersection-sum SumIS , which is shown in Functionality 6.

Functionality 6: MPSI-CA-sum FMPSI−CA−sum

Parameters: T leaders L1, . . . , LT ; n − T clients P1, . . . , Pn−T ; the set size is m.
Behaviour: On input data set Xi = {xi,1, . . . , xi,m} and payload set Vi =
{vi(xi,1), ...vi(xi,m)} from leader Li, i ∈ [T]; data set Sj = {sj,1, ...sj,m} and payload
set Wj = {wj(sj,1), ...wj(sj,m)} from client Pj , j ∈ [n − T]:
• Give output (|IS|, SumIS) to leader L1, where the intersection cardinality is |IS| =
|(⋂T

i=1 Xi)∩ (
⋂n−T

j=1 Sj)|, and the intersection-sum is SumIS =
∑T

i=1

∑
x∈IS vi(x)+

∑n−T
j=1

∑
x∈IS wj(x).

High-Level Description. The procedures of our MPSI-CA-sum protocol are
similar to those of Protocol 4.2. Parties perform payload sharing, OPPRF and
shuffle on their associated payloads of each element, and run Protocol 4.2 in
parallel to obtain a binary vector �e, which shows the shuffled indices of elements
that belong to IS. As for those shuffled elements that belong to IS, L1 invokes
OTs with all other leaders using choice string �e, in order to aggregate the sum
of their associated payloads (i.e., intersection-sum).

184 Y. Chen et al.

5.1 Payload Sharing

Sub-protocol 5.1: Payload Sharing in MPSI-CA-sum
Input: Set Xi = {xi,1, . . . , xi,m} and payload Vi = {vi(xi,1), ...vi(xi,m)} of leader
Li; Set Sj = {sj,1, . . . , sj,m} and payload Wj = {wj(sj,1), ...wj(sj,m)} of client Pj .
Protocol:
1. (Client) For client Pj , j ∈ [n − T],

(a) He sends a random PRF key K′
j,i to each leader Li, i ∈ [T].

(b) For each element sj,k ∈ Sj , k ∈ [m],
• Pj computes its random mask

∑T
i=1 PRF (K′

j,i, sj,k). So his masked

payload of sj,k is ŵj(sj,k) = wj(sj,k) +
∑T

i=1 PRF (K′
j,i, sj,k).

• Pj performs (T, T) additive secret sharing on ŵj(sj,k), where the i-th

share is denoted as ŵ
(i)
j (sj,k) (i.e.,

∑T
i=1 ŵ

(i)
j (sj,k) = ŵj(sj,k)).

(c) For i ∈ [T], Pj encodes the i-th set of key-value pairs

{〈sj,k, ŵ
(i)
j (sj,k)〉}k∈[m] into the i-th OKVS DW

(i)
j , and sends it to

Li.
2. (Leader) For each element xi,k ∈ Xi, k ∈ [m], Li, i ∈ [T] decodes all received

DW
(i)
j , j ∈ [n − T] on xi,k to obtain DW

(i)
j (xi,k), and computes PRF outputs

using all n − T received PRF keys to obtain his payload sharing of xi,k as

v̂i(xi,k) = vi(xi,k) − ∑n−T
j=1 PRF (K′

j,i, xi,k) +
∑n−T

j=1 DW
(i)
j (xi,k).

Sub-protocol 5.1 presents the steps of payload sharing, which aims to share the
payloads of clients to T leaders. The functionality Fn,T,m

PaySh of payload sharing
is that: for an element x, if x ∈ IS, then each leader Li, i ∈ [T] holds an
additive share v̂i(x) of the sum of payloads corresponding to x (i.e.,

∑T
i=1 vi(x)+

∑n−T
j=1 wj(x)). The procedures of payload sharing are similar to those of element

sharing. The correctness of Sub-protocol 5.1 relies on the correctness of (T, T)
additive secret sharing scheme and the property that the PRF output of input
x with a fixed PRF key K ′

i,j is deterministic.
We show that Sub-protocol 5.1 can securely compute Fn,T,m

PaySh under a semi-
honest adversary which may corrupt up to t parties (t < n) by briefly simulating
the view of C. The views of corrupted clients can be easily simulated since they
receive no messages from the others. For corrupted Li, i ∈ [T], his received PRF
key and OKVS from an honest party can be simulated using a random value and
an OKVS that encodes m random key-value pairs, which are computationally
indistinguishable from the real view by the obliviousness property of OKVS.

5.2 Detailed Description

The MPSI-CA-sum protocol under arbitrary collusion is presented in Protocol
5.2. Step 3 and step 4 can be executed in parallel by concatenating each element
with its associated payload to avoid the cost of repeatedly invoking FF,3m,b

opprf and
FT,b

mSS. But note that there is no need to perform FT,b
OZK on additive shares of the

shuffled sum of payloads π(�g) (i.e., �g′
i, i ∈ [T]). The hash table Tablei, i ∈ [T]

used in step 4 is generated in step 3 by following step 2(a) of Protocol 4.2.

Practical MPSI-CA and MPSI-CA-Sum Under Arbitrary Collusion 185

After invoking FT,b
OZK during step 3, leader L1 outputs a vector �e =

(e1, . . . , eb). If ek = 1, it means that the element in the π−1(k)-th bin of Table1
belongs to the intersection IS. Although L1 can not infer the original index
of this element (i.e., π−1(k)) from k, he knows the existence of such an ele-
ment. Therefore, he can still aggregate its associated payloads by invoking b
OTs with each secondary leader Li, i ∈ [2, T]. In the k-th OT with Li, L1

acts as a receiver with choice bit ek, Li acts as a sender who provides two
strings (mki,k,mki,k + g′

i,k), where the random masks mki,k, i ∈ [2, T], k ∈ [b]
satisfy

∑T
i=2

∑b
k=1 mki,k = 0. Those masks can be generated through additive

secret sharing within secondary leaders. First, each secondary leader Li, i ∈
[2, T] locally generates a random vector �mk′

i = (mk′
i,1, . . . ,mk′

i,b) that ensures
∑b

k=1 mk′
i,k = 0. Then, Li, i ∈ [2, T] performs (T −1, T −1) additive secret shar-

ing on vector �mk
′
i, and sends T − 2 shares to other secondary leaders. Finally,

Li, i ∈ [2, T] sums all his received shares and his local share together to obtain
the new random mask vector �mki.

Correctness. Since the correctness of |IS| (obtained in step 3) has
already been proven in Section 4.2, here we only prove the correct-
ness of SumIS . If ek = 1, then we have Table1[π−1(k)] ∈ IS and
∑T

i=1 g′
i,k =

∑T
i=1 v̂i(Table1[π−1(k)]). After invoking OTs with each sec-

ondary leader, L1 adds the b(T − 1) OT outputs together to obtain
∑T

i=2

∑b
k=1 mki,k +

∑
ek=1,k∈[b]

∑T
i=2 g′

i,k =
∑

ek=1,k∈[b]

∑T
i=2 g′

i,k. Therefore,

we have
∑

ek=1,k∈[b]

∑T
i=2 g′

i,k +
∑

ek=1,k∈[b] g
′
1,k =

∑
x∈IS

∑T
i=1 v̂i(x) =

∑
x∈IS

(∑T
i=1 vi(x) +

∑n−T
j=1 wj(x)

)
= SumIS .

Theorem 4. Protocol 5.2 securely computes FMPSI−CA−sum under a semi-
honest adversary which may corrupt up to t parties (t < n), if Fn,T,m

ElemSh, Fn,T,m
PaySh

FF,3m,b
opprf , FT,b

mSS and FT,b
OZK and OT are secure against semi-honest adversaries.

Proof. (sketch) The view of C during step 1–4 can be simulated by following sim-
ilar strategies given in Theorem 3 of Protocol 4.2. Given |IS|, L1’s input choice
string �e can be simulated with a uniform binary vector with |IS| ones. Since �mki

is a random mask, S can simulate corrupted Li’s OT inputs (mki,k,mki,k +g′
i,k)

using random values, and simulate corrupted L1’s OT outputs from honest par-
ties using random values, while ensuring that all b(T − 1) OT outputs sum to
SumIS − ∑

ek=1,k∈b g′
1,k. Then, C’s view can be simulated by leveraging the

simulator of underlying OT.

186 Y. Chen et al.

Protocol 5.2: MPSI-CA-sum Under Arbitrary Collusion
Parameters: The set size is m; the number of leaders is T = t + 1; hash functions
h1, h2, h3; the number of bins is b.
Input: Set Xi = {xi,1, . . . , xi,m} and payload Vi = {vi(xi,1), ...vi(xi,m)} of leader
Li; Set Sj = {sj,1, . . . , sj,m} and payload Wj = {wj(sj,1), ...wj(sj,m)} of client Pj .
Protocol:
1-2 (Element/Payload Sharing) Run Sub-protocol 4.1 (Fn,T,m

ElemSh) and Sub-
protocol 5.1 (Fn,T,m

PaySh) in parallel. For each element xi,k ∈ Xi, Li obtains his
element sharing and payload sharing of xi,k as qi(xi,k) and v̂i(xi,k).

3 (T -party PSI-CA) Run step 2 of Protocol 4.2, then L1 will obtain a binary
vector �e, where the number of 1s in �e equals the intersection cardinality |IS|.

4 (T -party MPSI-CA-sum)
(a) In step 3, each leader Li has already obtained his hash table Tablei, so

there is no need to repeat the bucketing step here.
(b) (OPPRF) L1 invokes FF,3m,b

opprf with every Li, i ∈ [2, T],
• Sender Li provides a programmed set P = {Pk}k∈[b], where subset

Pk = {〈x, v̂i(x) − gi,k〉}x∈Tablei[k]
stores key-value pairs for the k-th

bin Tablei[k], and gi,k is a random value, k ∈ [b].
• Receiver L1 provides b queries {Table1[k]}k∈[b], and outputs �pi =

(pi,1, . . . , pi,b), where pi,k is the OPPRF output on Table1[k],k ∈ [b].
(c) For each bin k ∈ [b], L1 computes g1,k = v̂1(Table1[k]) +

∑T
i=2 pi,k.

(d) (T -party Shuffle) All leaders Li, i ∈ [T] jointly invoke FT,b
mSS.

• Each Li inputs the permutation πi (adopted in step 3) and a vector

�gi = (gi,1, . . . , gi,b), then outputs an additive share �g′
i of the shuffled

sum π(�g) = π
(∑T

i=1 �gi

)
, where

∑T
i=1

�g′
i = π(�g) and π = πT ◦ · · · ◦ π1.

5 (Intersection-sum Computation)
(a) L1 locally computes

∑
ek=1,k∈[b] g

′
1,k.

(b) L2, ..., LT jointly generate T − 1 random mask vectors �mki =
(mki,1, . . . , mki,b), i ∈ [2, T], which satisfy that

∑T
i=2

∑b
k=1 mki,k = 0.

(c) For i ∈ [2, T], L1 invokes OTs with each secondary leader Li.
• Sender Li inputs a set of strings {(mki,k, mki,k + g′

i,k)}k∈[b].
• Receiver L1 inputs the choice string �e and obtains b outputs. If ek = 0,

then the k-th output is mki,k, otherwise the k-th output is mki,k +g′
i,k.

6 L1 adds
∑

ek=1,k∈[b] g
′
1,k and all b(T−1) OT outputs (received in step 5) together

to obtain the intersection-sum SumIS .

6 Experimental Evaluation

Since the operations of computing intersection-sum is similar to those of comput-
ing intersection cardinality, the computational complexity of our MPSI-CA-sum
protocol is roughly double that of our MPSI-CA protocol. So in this section, we
only focus on evaluating the performance of our MPSI-CA protocol.

Practical MPSI-CA and MPSI-CA-Sum Under Arbitrary Collusion 187

Parameters and Settings. We set statistical security parameter λ = 40 and
computational security parameter κ = 128. We run our experiments on a laptop
with an Intel i7-12700H 2.30 GHz CPU, 28 GB RAM, and Ubuntu-20.04 system
in LAN setting. We instantiate the OPPRF using the realization provided in [12].
In the setup stage, it takes every two parties about 32 s to generate 218 Beaver
triples [3]. Each party adopts separated threads to communicate with others
to ensure parallelism. Besides, we divide our protocol into offline and online
phases in the experiment. The offline phase consists of all base OT operations
in secret-shared shuffle, which can be carried out in advance because they are
independent of the input sets. The online phase consists of all the remaining
operations: element sharing, OPPRF, secret-shared shuffle (without base OT)
and oblivious zero-sum check (without Beaver triples generation).

Running Time and Communication Cost of MPSI-CA (Protocol 4.2).
Table 2 shows the running time of our MPSI-CA protocol in both online and
offline phases, as well as its communication cost, which includes both sent and
received messages.

We present the performance of clients and primary leader under three differ-
ent corruption conditions, namely when t = 1, n/2 and n − 1. Assuming t = 1,
it takes our MPSI-CA protocol only 27.174 s to compute the multi-party inter-
section cardinality of 15 parties, each with a large set size of 218. In the honest
majority situation where t = n/2, the running time of leaders increases with the
number of parties participating in multi-party secret-shared shuffle, and thus the
running time is linear in t. When n = 15 and m = 212, the total running time is
about 4.576 s with the online phase taking only 0.926 s. In the most challenging
dishonest majority setting where t = n−1, parties are not allowed to share their
sets to leaders for fear of collusion attack, therefore, the number of leaders has
to be n. However, since most of the expensive operations of multi-party secret-
shared shuffle can be shifted to an offline phase, the total online running time
can be reduced to only one fourth of the original time.

With respect to the communication performance of different parties, the cost
of client is nearly independent of n and t. Whereas the cost of primary leader
not only depends on n, but is also linear in the number of leaders T = t + 1.
Concretely, when the set size is large (i.e., m = 218), our protocol takes roughly
7KB communication cost per item at each leader’s side when n = 5, t = 4, which
includes both sent and received messages. This cost increases to about 25 KB
per item in the most challeging case that n = 15, t = 14 and m = 218.

Running Time of Different Steps in Protocol 4.2. Table 2 lists the running
time of different steps in Protocol 4.2 when t = n − 2. As shown in the table,
the two steps OPPRF and shuffle take a large percentage of the total running
time. When n grows, the change in the running time of OPPRF is slight since
each party adopts separated threads to communicate with others to ensure par-
allelism. In the case that m = 216, n = 15 and t = 13, it only takes 7.881 s to
finish the online task of MPSI-CA computation with this simple optimization.

188 Y. Chen et al.

Table 2. The total running time, total communication cost, and the running time of
different steps in our MPSI-CA protocol (Protocol 4.2).

n t Roles
Total Running Time (Seconds) Total Communication Cost (MB)

m = 212 m = 214 m = 216 m = 218 m = 212 m = 214 m = 216 m = 218

5

1
Client 0.109 0.204 0.272 5.919 0.156265 0.625015 2.50002 10

Leader 0.718 1.657 5.015 26.620 5.64464 25.4972 113.907 503.547

Online 0.467 1.354 4.433 24.110

2
Client 0.110 0.221 2.77 5.921 0.156281 0.625031 2.50003 10

Leader 1.022 2.339 6.867 36.352 10.6642 48.4943 217.814 967.094

Online 0.543 1.542 5.067 26.894

4
Leader 2.650 4.025 12.165 52.312 20.7034 94.4886 425.628 1894.19

Online 0.670 1.789 6.289 31.236

10

1
Client 0.122 0.224 0.293 5.96 0.156265 0.625015 2.50002 10

Leader 0.723 1.668 5.126 26.871 6.42595 28.6222 126.407 553.547

Online 0.497 1.360 4.567 24.516

5
Client 0.111 2.37 0.309 5.994 0.156326 0.625076 2.50008 10.0001

Leader 3.302 5.284 15.264 72.882 26.5044 120.611 542.036 2407.74

Online 0.844 1.890 5.733 32.764

9
Leader 7.531 10.796 30.254 150.109 46.5828 212.599 957.664 4261.92

Online 1.004 2.690 10.415 58.485

15

1
Client 0.128 0.245 0.310 5.978 0.156265 0.625015 2.50002 10

Leader 0.726 1.676 5.177 27.174 7.20725 31.7473 138.907 603.547

Online 0.505 1.383 4.598 25.115

7
Client 0.111 0.239 0.349 6.183 0.156357 0.625107 2.50011 10.0001

Leader 4.576 7.766 21.536 107.927 37.3249 169.73 762.35 3384.83

Online 0.926 2.257 5.955 36.913

14
Leader 13.955 22.676 63.061 365.722 72.4621 313.97 1489.7 6629.66

Online 1.477 4.503 12.805 95.228

Running Time of Different Steps (Seconds)

Steps
n = 5, t = 3 n = 10, t = 8 n = 15, t = 13

212 214 216 212 214 216 212 214 216

Element Sharing 0.119 0.250 0.319 0.109 0.237 0.341 0.103 0.263 0.337

OPPRF 0.473 1.261 5.113 0.566 1.407 4.697 0.942 1.821 5.691

Shuffle (Offline) 1.296 1.432 3.723 4.689 7.467 19.278 10.964 17.459 47.680

Shuffle (Online) 0.024 0.069 0.219 0.041 0.177 0.704 0.065 0.279 1.189

Oblivious Zero-Sum
Check

0.006 0.009 0.017 0.013 0.021 0.036 0.019 0.034 0.065

Total 1.938 3.062 9.560 5.485 9.425 25.368 12.269 20.115 55.561

Online 0.642 1.630 5.837 0.796 1.958 6.090 1.305 2.656 7.881

Comparison with Other Works. There are only two MPSI-CA schemes [2,11]
secure against arbitrary collusion in the semi-honest adversary model, but they
only give theoretic analysis of performance without experimental results. Table 3
compares the performance of them and our MPSI-CA protocol (Protocol 4.2) in
terms of computational and communication complexities.

Practical MPSI-CA and MPSI-CA-Sum Under Arbitrary Collusion 189

As shown in Table 3, [2,11] both rely on a large number of expensive public
key operations, which is linear in the maximal set size mmax or even m2

max.
Therefore, it is impractical for resource-limited devices with large data sets to
carry out these protocols due to the massive computational overhead. More-
over, the efficiency of those schemes remains to be improved in the unbalanced
data setting (i.e., the minimal set size mmin � mmax), or when the number of
corrupted parties t only accounts for a small percentage of n.

By adopting lightweight primitives which do not require any public key oper-
ations besides a set of base OTs, the number of public key operations in our
MPSI-CA protocols is independent of set size, which is significantly lower than
that of [2,11]. At the same time, clients only need to send their PRF-encoded
data to leaders instead of participating in expensive cryptographic interactive
protocols for themselves, so that the total computational complexity can be sig-
nificantly reduced especially when t/n is small. Besides, all the OTs required in
multi-party secret-shared shuffle can be carried out in an offline phase, thus fur-
ther decreasing the online computational complexity of our MPSI-CA protocol.

With respect to communication and round complexities, [2,11] both involve
O(n) rounds due to the operation of passing on randomized ciphertexts to the
next party in a circle. Whereas we only need to perform T -party shuffle within
T = t+1 leaders, and the round complexity is O(t). Although utilizing expensive
HE can save the communication cost during the stage of multi-party shuffle
in [2], we reckon that the gap between [2] and our MPSI-CA scheme can be
narrowed in an unbalanced setting, for we can designate the party with the
smallest data set to be leader L1 to ensure that m1 � m < mmax. In this case,
the additional communication overhead brought by multi-party secret-shared
shuffle and oblivious zero-sum check can be reduced, so that the communication
performance of our MPSI-CA scheme is comparable to that of [2].

Table 3. The computational and communication complexities of MPSI-CA schemes,
where m is the average set size, mmax is the largest set size and m1 is L1’s set size; k
is the ratio of OKVS size to its encoded set size m. In our Protocol 4.2, most of the
public key operations can be shifted to the offline phase.

Computational Complexity (Number of Public Key Operations)

MPSI-CA Scheme Primary Leader Secondary Leader Client Total

[11] / / O(nm2
max) O(n2m2

max)

[2] O(m1) / O(kmmax) O(knmmax)

Our Protocol 4.2 O(tκ) O(tκ) / O(t2κ)

Computational Complexity (Number of Symmetric Key Operations)

MPSI-CA Scheme Primary Leader Secondary Leader Client Total

Our Protocol 4.2 O(tm1 log(m1)) O((n − t)m + tm1 log(m1)) O(tm) O((n − t)tm + t2m1 log(m1))

Communication Complexity (Bits)

MPSI-CA Scheme Primary Leader Secondary Leader Client Total

[11] / / O(nmmax) O(n2mmax)

[2] O(m1) / O(kmmax) O(knmmax)

Our Protocol 4.2 O(tm1 log(m1)) O(km + tm1 log(m1)) O(km) O(k(n − 1)m + t2m1 log(m1))

190 Y. Chen et al.

Acknowledgement. We are very grateful to the reviewers for their valuable com-
ments. This work was supported in part by the National Key Research and Develop-
ment Project 2020YFA0712300.

References

1. Chandran, N., Dasgupta, N., Gupta, D., Obbattu, S.L.B., Sekar, S., Shah, A.: Effi-
cient linear multiparty psi and extensions to circuit/quorum PSI. In: Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1182–1204 (2021)

2. Debnath, S.K., Stǎnicǎ, P., Kundu, N., Choudhury, T.: Secure and efficient multi-
party private set intersection cardinality. Adv. Math. Commun. 15(2), 365 (2021)

3. Demmler, D., Schneider, T., Zohner, M.: Aby-a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

4. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol

5. Egert, R., Fischlin, M., Gens, D., Jacob, S., Senker, M., Tillmanns, J.: Privately
computing set-union and set-intersection cardinality via bloom filters. In: Foo, E.,
Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 413–430. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19962-7 24

6. Evans, D., Kolesnikov, V., Rosulek, M., et al.: A pragmatic introduction to secure
multi-party computation. Found. Trends R© Priv. Secur. 2(2–3), 70–246 (2018)

7. Garimella, G., Mohassel, P., Rosulek, M., Sadeghian, S., Singh, J.: Private set
operations from oblivious switching. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol.
12711, pp. 591–617. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
75248-4 21

8. Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Oblivious key-value
stores and amplification for private set intersection. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 395–425. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84245-1 14

9. Ion, M., et al.: On deploying secure computing: private intersection-sum-with-
cardinality. In: 2020 IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 370–389. IEEE (2020)

10. Ion, M., et al.: Private intersection-sum protocol with applications to attributing
aggregate ad conversions. Cryptology ePrint Archive (2017)

11. Kissner, L., Song, D.: Private and threshold set-intersection. Carnegie-mellon univ
pittsburgh pa dept of computer science. Technical report (2004)

12. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1257–1272 (2017)

13. Lv, S., et al.: Unbalanced private set intersection cardinality protocol with low
communication cost. Futur. Gener. Comput. Syst. 102, 1054–1061 (2020)

14. Mohassel, P., Sadeghian, S.: How to hide circuits in MPC an efficient framework for
private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 557–574. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9 33

https://doi.org/10.1007/978-3-319-19962-7_24
https://doi.org/10.1007/978-3-030-75248-4_21
https://doi.org/10.1007/978-3-030-75248-4_21
https://doi.org/10.1007/978-3-030-84245-1_14
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-642-38348-9_33

Practical MPSI-CA and MPSI-CA-Sum Under Arbitrary Collusion 191

15. Nevo, O., Trieu, N., Yanai, A.: Simple, fast malicious multiparty private set inter-
section. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1151–1165 (2021)

16. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on
OT extension. ACM Trans. Priv. Secur. (TOPS) 21(2), 1–35 (2018)

17. Trieu, N., Yanai, A., Gao, J.: Multiparty private set intersection cardinality and
its applications. Cryptology ePrint Archive (2022)

	Practical Multi-party Private Set Intersection Cardinality and Intersection-Sum Under Arbitrary Collusion
	1 Introduction
	1.1 State of the Art of MPSI-CA
	1.2 State of the Art of Two-Party PSI-CA-Sum
	1.3 Our Contributions
	1.4 High-Level Description
	1.5 Organizations

	2 Preliminaries
	3 Two New Primitives and Constructions
	3.1 Multi-party Secret-Shared Shuffle
	3.2 Oblivious Zero-Sum Check

	4 MPSI-CA Protocol Under Arbitrary Collusion
	4.1 Element Sharing
	4.2 Detailed Description

	5 MPSI-CA-Sum Protocol Under Arbitrary Collusion
	5.1 Payload Sharing
	5.2 Detailed Description

	6 Experimental Evaluation
	References

