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Abstract. Boomerang connectivity table (BCT), an essential tool in
boomerang attack, gives a unified description of the probability in the
middle round of a boomerang distinguisher. However, it suffers the draw-
back that the asymmetric relationship between the upper and lower dif-
ferentials in the middle round is ignored. To make up for this deficiency,
we propose the generalized boomerang connectivity table (GBCT), which
characterizes all combinations of upper and lower differentials to provide
a more precise probability in the middle round. We first study the cryp-
tographic properties of GBCT and introduce its variants applied in mul-
tiple rounds and Feistel structure. Then, we provide an automatic search
algorithm to increase the probability of the boomerang distinguisher by
adding thorough considerations that more trails can be included, which
is applicable to all S-box based ciphers. Finally, we increase the probabil-
ities of the 20-round GIFT-64 distinguisher from 2−58.557 to 2−57.43 and
the 19-round GIFT-128 distinguisher from 2−109.626 to 2−108.349, both of
which are the highest so far. Applying the key recovery attack proposed
by Dong et al. at Eurocrypt 2022 on the new distinguisher, we achieve
the lowest complexities of the attack on GIFT-64 and the best rectangle
attack on GIFT-128.

Keywords: Rectangle attack · Automatic search algorithm · BCT ·
GIFT

1 Introduction

Differential cryptanalysis, proposed by Biham and Shamir [4] in 1990, is one
of the most effective and widely used methods to attack many cryptographic
primitives. However, it is often hard to find differential characteristics with high
probabilities as the rounds of a cipher increase. In 1999, Wagner [21] proposed
boomerang attack to replace one bad long differential trail with two good short
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Fig. 1. The boomerang attack Fig. 2. The sandwich attack

differential trails. This attack makes it possible to conquer more rounds, and
indicates that the security of a cipher cannot be guaranteed only by the non-
existence of differentials with high probability.

In a boomerang attack, the target cipher E is decomposed into two parts
as E = E1 ◦ E0, where E0 has a differential trail α → β and E1 has a differ-
ential trail γ → δ. Compositing the two sub-ciphers in a swerving way admits
a boomerang distinguisher as long as β �= γ, see Fig. 1. Under the indepen-
dence assumption of E0 and E1, the probability of this distinguisher should
be p2q2. However, it requires an adaptive chosen-plaintext/ciphertext scenario,
which is not applicable to most key recovery settings. Then, the rectangle attack
[3], a chosen-plaintext attack, is proposed to not only overcome this issue but
also increase the probability of the distinguisher. It actually covers all possi-
ble differential trails α → βi for E0 and γj → δ for E1 in the framework of a
boomerang attack, thus increases the probability of the distinguisher to 2−np̂2q̂2,

where p̂ =
√∑

i Pr2(α → βi) and q̂ =
√∑

j Pr2(γj → δ). To perform a rectan-
gle attack, one needs to sieve right quarters (x, y, z, w) with x ⊕ y = z ⊕ w = α
according to this probability.

It was noticed later that the independence assumption was invalid. To
reveal this phenomenon, Biryukov and Khovratovich [5] proposed the boomerang
switch to connect two differentials with a strong dependency. The observations
were depicted in the framework of sandwich attack [13], which decomposes the
cipher as E = E1 ◦ Em ◦ E0, where the middle part Em is the connection of
the upper trail α → β and the lower trail γ → δ, see Fig. 2. Then, Em can be
regarded as a small boomerang distinguisher with probability r, where

r = Pr[E−1
m (Em(x) ⊕ γ) ⊕ E−1

m (E(x ⊕ β) ⊕ γ) = β].

Thus, the probability of the whole boomerang distinguisher is p̂2q̂2r. Besides,
Murphy [18] has pointed out that there may be incompatibility when connect-
ing two independently chosen differential trails, which will result in an invalid
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boomerang distinguisher. Since the dependency between these two differential
trails has a great impact on the probability of a boomerang distinguisher, at
Eurocrypt 2018, Cid et al. [10] captured the above observations in a unified
table called boomerang connectivity table (BCT) when Em is a single S-box
layer. A new switch method named generalized switch was also depicted by the
BCT.

As automatic tools has been widely used in searching for cryptographic dis-
tinguishers, it is natural to consider integrating BCTs with automatic tools to
search for good distinguishers. There are mainly three automatic search tools
in cryptanalysis, namely MILP (mixed integer linear programming), SAT/SMT
(satisfiabality module theory) and Matsui’s algorithm. Liu and Sasaki [17] gave
the first generic model of BCT to search for related-key boomerang distinguish-
ers with SMT. Later, Ji et al. [16] proposed an automatic search algorithm by
improving Matsui’s algorithm to search for the clustering of related-key differen-
tial trails utilized in the related-key boomerang distinguisher for GIFT-64 and
GIFT-128, obtaining the best result up to now.

GIFT [2] is a lightweight block cipher with SPN structure. Because of its
excellent performance in both hardware and software implementations, GIFT
has been chosen as primitives in the design of many ciphers, such as GIFT-
COFB [1], HYENA [8], LOCTUS-AEAD and LOCUS-AEAD [7], all of which
are submitted to NIST’s Lightweight Cryptography Project, with GIFT-COFB
being selected as one of the ten finalists. Studying the security of GIFT is there-
fore crucial and imperative.

Our Contributions. The main contributions of this paper are summarized
below.

1. We propose a generalized boomerang connectivity table (GBCT).
The GBCT, which can be viewed as a generalized version of BCT, receives
four distinct differences as input to determine the number of quartets that
meet these four differences. Additionally, we study the cryptographic prop-
erties of GBCT and give some variants of GBCT applied in multiple rounds
and Feistel structure.

2. We provide a new search algorithm for boomerang distinguishers
with considerations that more trails can be included, and increase
the probability of distinguishers for GIFT.
By adding three additional factors to the algorithm in [16], a better automatic
search algorithm for boomerang distinguishers is obtained. Firstly, we relax
the condition of input/output differences from optimal to suboptimal to get
a better clustering effect. Secondly, we modify their method of searching for
differential trails to search for differentials within a probability range. Lastly,
we incorporate GBCT to ensure the compatibility of E0 and E1. Using the
new algorithm, we improved the probabilities of distinguishers for GIFT-64
and GIFT-128, which increase from 2−58.557 to 2−57.43 and from 2−109.626 to
2−108.349 respectively.



216 C. Li et al.

Table 1. Summary of the cryptanalytic results on GIFT

Rounds Approach Setting Time Data Memory Ref.

GIFT-64

23 Boomerang RK 2126.60 263.3 – [17]

25 Rectangle RK 2120.92 263.78 264.10 [16]

26 Differential RK 2123.23 260.96 2120.86 [20]

26 Rectangle RK 2122.78 263.78 263.78 [12]

26 Rectangle RK 2121.75 262.715 262.715 Section 5

GIFT-128

22 Boomerang RK 2112.63 2112.63 252 [16]

23 Rectangle RK 2126.89 2121.31 2121.63 [16]

23 Rectangle RK 2125.175 2120.175 2120.175 Section 5

23 Differential SK 2120 2120 286 [23]

26 Differential SK 2125.75 2120.25 2120.25 [16]

3. We decrease the complexity of the attack on GIFT-64/GIFT-128
under the key recovery framework proposed by Dong et al.
We apply the key recovery attack proposed by Dong et al. on the distinguish-
ers and achieve a lower complexity than previous attacks. The data and time
complexity drop from 263.78 to 262.72 and from 2122.78 to 2121.75 when attack-
ing the 26-round GIFT-64. When attacking 23-round GIFT-128, the data and
time complexity decrease from 2121.31 to 2120.175 and from 2126.89 to 2124.25

respectively. The current cryptanalytic results on GIFT are summarized in
Table 1.

Outline. The rest of the paper is organized as follows. In Sect. 2, we give a
brief overview of some previous work. In Sect. 3, we introduce the generalized
boomerang connectivity table and study properties and variants of it. In Sect. 4,
we outline the strategies for searching for a rectangle distinguisher, and give
a new search algorithm. In Sect. 5, we provide the complexity analysis of the
26/23-round attacks on GIFT-64/GIFT-128. Section 6 concludes the paper.

2 Background and Previous Work

In this section, we give some preliminaries. First, we introduce some tables used
to connect two sub-ciphers, such as BCT, BDT, EBCT (Figs. 3 and 4). Secondly,
we give a brief introduction of some concepts necessary to search for a rectan-
gle distinguisher, including the automatic search tool and the clustering effect.
Finally, we recall the latest advances in key recovery attacks given in [12].
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Fig. 4. Structures of BDT and EBCT

2.1 BCT, BDT, EBCT

BCT is the first unified tool for evaluating dependencies between E0 and E1,
but only applicable when Em is a single S-box layer. For β, γ ∈ F

n
2 , define

BCT (β, γ) = #{x ∈ F
n
2 | S−1(S(x) ⊕ γ) ⊕ S−1(S(x ⊕ β) ⊕ γ) = β}.

Song et al. [19] noticed that dependencies could affect more rounds. Meanwhile,
some practical experiments [9,17] showed that a higher probability could be
achieved when Em contained two rounds. It is reasonable to believe that the
more rounds Em contains, the more accurate the probability will be. Then, how
to employ BCT in more rounds received much attention in the following research.
Wang et al. [22] proposed a systematic analysis of the boomerang switching effect
in multiple rounds and gave the boomerang difference table (BDT), renamed as
UBCT in [11]. And its variant called BDT’ is also denoted by DBCT in [19] and
renamed as LBCT in [11]. Its entry for (β, β′, γ) ∈ (Fn

2 )3 is computed by

BDT (β, β′, γ) = #

{
x ∈ F

n
2

∣∣∣∣
S(x) ⊕ S(x ⊕ β) = β′,

S−1(S(x) ⊕ γ) ⊕ S−1(S(x ⊕ β) ⊕ γ) = β

}
.

After that, Delaune et al. [11] provided a new table to connect two differ-
entials in more than two rounds, called extended boomerang connectivity table
(EBCT), where for (β, β′, γ, γ′) ∈ (Fn

2 )4,

EBCT (β, β′, γ′, γ) = #

{
x ∈ F

n
2

∣∣∣∣ S(x) ⊕ S(x ⊕ β) = β′, S(x) ⊕ S(x ⊕ γ′) = γ,

S−1(S(x) ⊕ γ) ⊕ S−1(S(x ⊕ β) ⊕ γ) = β

}
.

Besides, Hadipour et al. [14] introduced a new tool to model the dependency
in more rounds called double boomerang connectivity table (DBCT) and used
it for automatic searching for boomerang distinguishers.

2.2 Automatic Tools Modeling BCT

Because of its efficiency and simplicity, automatic tools have become crucial
techniques for cryptanalysis in recent years. The effect of many commonly used
attacks can be improved with the help of automatic tools, not only in searching
for distinguishers but also in key recovery attacks. In this paper, we propose an
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algorithm to search for boomerang distinguishers with the automatic tool SMT.
Here we give a brief introduction to it.

SMT is refereed to the problem of determining whether a mathematical for-
mula is satisfiable. In cryptanalysis, one can use languages (e.g., SMTLIB2, CVC
or BTOR) to model the property of components of a cipher, such as propagation
of a differential and its probability, as an SMT problem, and obtain a desired
solution (e.g., a differential trail with high probability) by SMT solvers. For
example, in [17] the authors modelled the DDT and BCT with boolean con-
straints of an S-box. Following is an example of the description of BCT.

Example 1. Given boomerang propagations (2 → 5) and (2 → 6) of a 4×4 S-box
with BCT (2, 5) = BCT (2, 6) = 4, we can model them with the logic expression
(x = 2) ∧ ((y = 5) ∨ (y = 6)). It is true when x = 2 and y = 5 or 6. Meanwhile,
the probability is depicted by w4 = ((x = 2)∧ (y = 5)∨ (x = 2)∧ (y = 6)), which
means w4 = 1 when the expression in the RHS is true, and the probability is
obviously 4 · w4/16.

2.3 Clustering Effect in Boomerang Distinguishers

When utilizing a boomerang distinguisher, two essential factors are the input
and output differences and the probability of the boomerang trail. Except for the
input and output differences, the specific value of the differentials in the middle
rounds is no longer important. We use r̂ to denote the probability of getting
a right quartet that follows an exact boomerang trail. The actual probability
r is composed of the probabilities r̂ corresponding to all possible intermediate
differences and hence r is always greater than or equal to any single r̂. Ji et al.
gave a definition of the clustering of the related-key differential trails utilized
in an R-round related-key boomerang distinguisher and proposed an automatic
search algorithm for boomerang distinguishers, which exploits the concept of
clustering effect to make the probability improved [16].

2.4 Key-Recovery Algorithms for Rectangle Attacks

Much research has been done on the key recovery algorithm for the rectangle
attacks. The first rectangle attack [3] was proposed by Biham et al. in 2001, and
was applied to Serpent in the single-key setting. Later, numerous research have
been done to reduce the complexity of the attacks. For ciphers with linear key
schedules, Dong et al. recently built a new key recovery attack model, with which
the ratio of right quartets greatly soared. They found the right quartets must
satisfy some nonlinear relations, which could be exploited to filter the wrong
ones, so as to increase the proportion of the right quartets and decrease the
attack complexity. The key recovery attack on GIFT-64 with their algorithm is
the best so far. Afterwards, Dong et al. [12] made some modifications on their
algorithm to give a unified and generic key recovery algorithm, which achieved
the optimal complexity by selecting different parameters. In order to better
illustrate the advantage of the new distinguisher, we use the same attack in [12]
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Fig. 5. Structure of GBCT

to launch on GIFT. Symbols used in the complexity analysis in Sect. 5 of our
attack are the same to theirs as well.

3 Generalized Boomerang Connectivity Table

In this section, we give a generalized boomerang connectivity table (GBCT),
which looses the limitation of the symmetric connections to be arbitrary. After
that, some cryptographic properties of GBCT are exhibited. In addition, we
present some variants of GBCT for multiple rounds and Feistel structure. Finally,
the benefits of GBCT are illustrated by some applications.

3.1 Introduction to GBCT

The idea for generalizing the BCT is natural, that is, instead of considering sym-
metric differences in two directions of the connection part of two sub-ciphers, we
take all possible values in four directions in to consideration, see Fig. 5. When
loosing the limitation of the symmetric input and output differences to be arbi-
trary, all possible connections of two sub-ciphers E0 and E1 are covered. Thus,
a more precise probability of a boomerang distinguisher can be obtained with
GBCT. This idea was mentioned in the [14] with no formal description given.

Definition 1. Let S be a permutation over F
n
2 and β1, β2, γ1, γ2 ∈ F

n
2 . The gen-

eralized boomerang connectivity table of S is a four-dimensional table, in which
the entry for (β1, β2; γ1, γ2) is computed by

GBCT (β1, β2; γ1, γ2) = #{x ∈ F
n
2 |S−1(S(x) ⊕ γ1) ⊕ S−1(S(x ⊕ β1) ⊕ γ2) = β2}.

It is easy to see that GBCT can also be represented as

GBCT (β1, β2; γ1, γ2) = #

{
(x, y) ∈ F

n
2 × F

n
2

∣∣∣∣
S(x) ⊕ S(y) = γ1,

S(x ⊕ β1) ⊕ S(y ⊕ β2) = γ2

}
.

The probability for an S-box with a given quarter of differences (β1, β2; γ1, γ2)
is p = 1

2n ×GBCT (β1, β2; γ1, γ2). The time complexity for generating the GBCT
for an n-bit S-box is O(24n).
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In the following, we explain why GBCT can gain more solutions than BCT
with the S-box of GIFT as an example.

Example 2. Given an input difference β = 8, and two output differences γ1 =
8, γ2 = c, the value of GBCT, DDT, and BCT are GBCT (8, 8; 8, c) = 16,
DDT (8, 8) = DDT (8, c) = 0, BCT (8, 8) = BCT (8, c) = 0, respectively.

By looking up the DDT, we can find {γ′
1 : DDT (γ′

1, 8) = 2} = {γ′
2 :

DDT (γ′
2, c) = 2} = {1, 3, 5, 7, 9, b, c, e}, and the solution for each input difference

is shown in the following table.

γ′
1 1 3 5 7 9 b c e

(x1, x
′
1) (2, 3) (d, e) (9, c) (0, 7) (1, 8) (4, f) (6, a) (5, b)

γ′
2 1 3 5 7 9 b c e

(x2, x
′
2) (a, b) (5, 6) (1, 4) (8, f) (9, 0) (c, 7) (2, e) (3, d)

It is clear that (x1, x
′
1) ⊕ (x2, x

′
2) = (8, 8) always holds when γ′

1 = γ′
2. That

means if (x1, x
′
1) and (x2, x

′
2) are the solutions of two faces of a boomerang

structure, we can use a difference β1 = β2 = 8 to connect the differential trails
on both sides to get a boomerang trail. Due to the symmetry of solutions, we
can obtain 16 solutions in total.

Example 3. Given two input differences β1 = 1, β2 = 7 and an output dif-
ference γ = 5, the value of GBCT, DDT, and BCT are GBCT (1, 7; 5, 5) =
10, DDT (1, 5) = DDT (7, 5) = 2, BCT (1, 5) = BCT (7, 5) = 2, respectively. By
looking up the DDT, we can find {γ′ : DDT (γ′, 5) = 2 or 4} = {1, 2, 3, 4, 5, 7}.
Solutions of DDT (γ′, 5) > 0 are given below.

γ′ 1 2 3 4 5 7

(x, x′) (c, d) (0, 2) (8, b) (1, 5) (a, f) (9, e)

(4,6) (3,7)

Let β1 = 1 and β2 = 7, we can get (x ⊕ β1, x
′ ⊕ β2) as follows.

(x, x′) (c, d)(d, c) (0, 2)(2, 0) (4, 6)(6, 4) (8, b)(b, 8) (1, 5)(5, 1) (3, 7)(7, 3) (a, f)(f, a) (9, e)(e, 9)

(x ⊕ β1, x
′ ⊕ β2) (d, a)(c, b) (1, 5)(3, 7) (5, 1)(7, 3) (9, c)(a, f) (0, 2)(4, 6) (2, 0)(6, 4) (b, 8)(e, d) (8, 9)(f, e)

When x and x′ are shifted by β1 = 1 and β2 = 7 respectively, there are 10
solutions whose output differences are 5. A boomerang trail can be obtained by
connecting the differential trails on both sides of a boomerang structure with
differences β1 = 1 and β2 = 7.
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It can be concluded from the above examples that for a boomerang structure,
(x1, x

′
1) and (x2, x

′
2) are solutions to differential trails γ′

1 → γ1 and γ′
2 → γ2

respectively on both sides of the structure, then GBCT (β1, β2; γ1, γ2) > 0 as long
as there exists two differences β1 and β2 such that (x2 ⊕ β1, x

′
2 ⊕ β2) = (x1, x

′
1).

3.2 Properties of GBCT

In the following we give some basic properties of GBCT and its links with other
tables, most of which can be deduced directly from the definition, so some proofs
are omitted here.

Proposition 1. (Symmetry of GBCT)

GBCT (β1, β2; γ1, γ2)
= GBCT (β2, β1; γ1, γ2) = GBCT (β1, β2; γ2, γ1) = GBCT (β2, β1; γ2, γ1).

Proposition 2. (Telations with DDT and BCT)

GBCT (β, β; γ, γ) = BCT (β; γ), GBCT (β2, β1; 0, γ2) = DDT (β1 ⊕ β2; γ2),
GBCT (0, β2; γ1, γ2) = DDT (β2; γ1 ⊕ γ2).

Proposition 3. (Summation formula I)
∑
β1

GBCT (β1, β2; γ1, γ2) =
∑
β2

GBCT (β1, β2; γ1, γ2) = 2n,

∑
γ1

GBCT (β1, β2; γ1, γ2) =
∑
γ2

GBCT (β1, β2; γ1, γ2) = 2n.

Proposition 4. (Summation formula II)
∑

β1,β2

GBCT (β1, β2; γ1, γ2) =
∑
γ1,γ2

GBCT (β1, β2; γ1, γ2) = 22n.

Proposition 5.

GBCTS−1(γ1, γ2;β1, β2) = GBCTS(β1, β2; γ1, γ2).

Proposition 6.

GBCT (β1, β2; γ1, γ2)

= CDDT (β1, γ2;β2, γ1) +
∑

α�=0,β2

#

( ⋃
α,γ1

∩
( ⋃

α⊕γ1⊕γ2,γ2

⊕β1

))
,

where
⋃

a,b := {x ∈ F
n
2 |S(x) ⊕ S(x ⊕ a) = b} and the cross-DDT of S is

CDDT (β1, γ2;β2, γ1) = #

{
x ∈ F

n
2

∣∣∣∣∣
S(x) ⊕ S(x ⊕ β1) = γ2,

S(x) ⊕ S(x ⊕ β2) = γ1

}
.
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Proposition 7.

GBCT (β1, β2; γ1, γ2)

=
1

24n
·

∑
a,b,c,d

(−1)a·γ1⊕b·γ2⊕c·β1⊕d·β2 · WF (c, a) · WF (c, b) · WF (d, a) · WF (d, b).

where WF (u, v) :=
∑

x(−1)ux⊕vF (x).

Proof. We have

GBCT (β1, β2; γ1, γ2)
= #{(x, y) ∈ F

n
2 × F

n
2 |F (x) ⊕ F (y) = γ1, F (x ⊕ β1) ⊕ F (y ⊕ β2) = γ2}

=
1

22n

∑
x,y

∑
a,b

(−1)a(F (x)⊕F (y)⊕γ1)(−1)b(F (x⊕β1)⊕F (y⊕β2)⊕γ2)

=
1

22n

∑
a,b

(−1)aγ1⊕bγ2
∑
x,y

(−1)a·F (x)⊕b·F (x⊕β1)(−1)a·F (y)⊕b·F (y⊕β2)

=
1

22n

∑
a,b

(−1)aγ1⊕bγ2Cβ1(a, b)Cβ2(a, b),

where

Cβ(a, b) =
∑

x

(−1)a·F (x)⊕b·F (x⊕β)

=
1
2n

∑
w

(−1)w(x⊕y)
∑
x,y

(−1)a·F (x)⊕F (y⊕β)

=
1
2n

∑
w

(−1)w·z ∑
x,z

(−1)a·F (x)⊕b·F (x⊕z⊕β)

=
1
2n

∑
w,x,z

(−1)[a·F (x)⊕w·x]⊕[b·F (x⊕z⊕β)⊕w(x⊕z⊕β)]⊕w·β

=
1
2n

∑
w

(−1)w·βWF (w, a) · WF (w, b).

Proposition 8. Let F,G be two permutations of F
n
2 with G = F ◦ L for an

invertible affine transformation L of Fn
2 . Then we have

gG(a1, a2; b1, b2) = gF (L1(a1), L1(a2), L−1
2 (b1), L−1

2 (b2)).

for all a, b ∈ F
n
2 , where gF (a1, a2; b1, b2) = GBCT (a1, a2; b1, b2) for F .

3.3 Variants of GBCT

GBCT in Multi-rounds. Just as how Wang et al. extend BCT to be used in
two-round Em, GBCT can also be converted with the same idea to be applied in
two rounds. We introduce the generalized boomerang differential table (GBDT)
(Fig. 6).
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Fig. 6. Structures of GBDT (left) and GBET (right)

Definition 2. Let S be a permutation over F
n
2 and β1, β2, γ1, γ2, β

′
1, β

′
2 ∈ F

n
2 .

The generalized boomerang differential table (GBDT) of S is a 6-dimensional
table, in which the entry for (β1, β2; γ1, γ2;β′

1, β
′
2) is computed by

GBDT (β1, β2; γ1, γ2;β′
1, β

′
2)

= #

{
(x, y) ∈ F

n
2 × F

n
2

∣∣∣∣∣
S(x) ⊕ S(y) = γ1, S(x ⊕ β1) ⊕ S(y ⊕ β2) = γ2,

S(x) ⊕ S(x ⊕ β1) = β′
1, S(x) ⊕ S(x ⊕ β2) = β′

2

}
.

GBDT and BDT shares some properties, most of which can be easily obtained
from the definition, so it is not proved here. Refer interested readers to [22] for
more details.

Next, we use the same notations as in [22] to show how to calculate the
probability with GBDT. The probability of a two-round Em is the product of
the two probabilities r = p1p2, where

p1 =
∏

(Δ1,Δ2;∇′′
1 ,∇′′

2 ;Δ
′
1,Δ′

2)∈L1

GBDT (Δ1,Δ2;∇′′
1 ,∇′′

2 ;Δ′
1,Δ

′
2)/2n,

p2 =
∏

(∇1,∇2;Δ′′
1 ,Δ′′

2 ;∇′
1,∇′

2)∈L2

GBDT (∇1,∇2;Δ′′
1 ,Δ′′

2 ;∇′
1,∇′

2)/2n.

When Em covers more rounds, we can borrow the idea of EBCT [11] to give the
definition of GBET.

Definition 3. Let S be a permutation over F
n
2 and β1, β2, γ1, γ2, β

′
1, β

′
2, γ

′
1, γ

′
2 ∈

F
n
2 . The generalized boomerang extended table (GBET) of S is a 8-dimensional

table, in which the entry for (β1, β2; γ1, γ2;β′
1, β

′
2; γ

′
1, γ

′
2) is computed by

GBET (β1, β2; γ1, γ2;β′
1, β

′
2; γ

′
1, γ

′
2)

= #

⎧⎪⎨
⎪⎩

(x, y) ∈ F
n
2 × F

n
2

∣∣∣∣∣∣∣

x ⊕ y = γ′
1, (x ⊕ β1) ⊕ (y ⊕ β2) = γ′

2,

S(x) ⊕ S(x ⊕ β1) = β′
1, S(y) ⊕ S(y ⊕ β2) = β′

2,

S(x) ⊕ S(y) = γ1, S(x ⊕ β1) ⊕ S(y ⊕ β2) = γ2

⎫⎪⎬
⎪⎭

.

When Em covers more rounds, the probability is r =
∏

i pi, where

pi =
∏

(Δ1,Δ2;∇1,∇2;∇′
1,∇′

2;Δ
′
1,Δ′

2)∈Li

GBDT (Δ1,Δ2;∇1,∇2;∇′
1,∇′

2;Δ
′
1,Δ

′
2)/2n,

and Li has the same meaning as the previous one.
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Fig. 7. The GBCT in a Feistel structure

Put GBCT into a Feistel Structure. The FBCT was proposed as a coun-
terpart of BCT for Feistel structures and its properties have also been studied in
[6,15]. Similar to BCT, GBCT is also applicable into Feistel structures. Here we
take a generic Feistel structure as example, as shown in Fig. 7. Denote the out-
put after one round of Xi = Li||Ri, i = 1, ..., 4 as Y i = Gi||Li, i = 1, ..., 4.
Assume that X1 ⊕ X2 = β1 = βL

1 ||βR
1 , Y 1 ⊕ Y 3 = γ1 = γL

1 ||γR
1 and

Y 2 ⊕ Y 4 = γ2 = γL
2 ||γR

2 . Now, we check whether X3 ⊕ X4 = β2 = βL
2 ||βR

2 :

βL
2 = L3 ⊕ L4 = L1 ⊕ γR

1 ⊕ L2 ⊕ γR
2 = βL

1 ⊕ γR
1 ⊕ γR

2 ,

βR
2 = R3 ⊕ R4 = F (L3) ⊕ G3 ⊕ F (L4) ⊕ G4

= R1 ⊕ R2 ⊕ γL
1 ⊕ γL

2 ⊕ F (L1) ⊕ F (L1 ⊕ γR
1 ) ⊕ F (L2) ⊕ F (L2 ⊕ γR

2 )

= βR
1 ⊕ γL

1 ⊕ γL
2 ⊕ F (L1) ⊕ F (L1 ⊕ γR

1 ) ⊕ F (L1 ⊕ βL
1 ) ⊕ F (L1 ⊕ βL

1 ⊕ γR
2 ).

If X3 ⊕ X4 = β2, then β2 should satisfy βL
2 = βL

1 ⊕ γR
1 ⊕ γR

2 and βR
2 = βR

1 ⊕
γL
1 ⊕ γL

2 ⊕ F (L1) ⊕ F (L1 ⊕ γR
1 ) ⊕ F (L1 ⊕ βL

1 ) ⊕ F (L1 ⊕ βL
1 ⊕ γR

2 ).
We degenerate the F function to the S-box layer. For each S-box, the input

difference deduced from βL
i , i = 1, 2 and γR

i , i = 1, 2 are denoted as ΔL
i , i = 1, 2

and ΔR
i , i = 1, 2. The output differences are denoted as ∇i, i = 1, 2 which are

deduced from βR
i ⊕ γL

i . Then, the definition of FGBCT for each S-box is given
below:

Definition 4. Let S : Fn
2 → F

m
2 , ΔL

1 ,ΔR
1 ,ΔL

2 ,ΔR
2 ,∇1,∇2 ∈ F

n
2 . The FGBCT

of S is given by a 6-dimensional table, in which the entry for the (ΔL
1 ,ΔR

1 ;ΔL
2 ,

ΔR
2 ;∇1,∇2) position is given by

FGBCT (ΔL
1 , ΔR

1 ;ΔL
2 , ΔR

2 ;∇1, ∇2)

= #

{
x ∈ F

n
2

∣∣∣∣ S(x) ⊕ S(x ⊕ ΔL
1 ) ⊕ S(x ⊕ ΔR

1 ) ⊕ S(x ⊕ ΔL
1 ⊕ ΔR

2 ) ⊕ ∇1 ⊕ ∇2 = 0,

ΔL
1 ⊕ ΔL

2 ⊕ ΔR
1 ⊕ ΔR

2 = 0

}
.

Then, the probability of a boomerang for a Feistel structure with an S-box
is given by 2−n · FGBCT (ΔL

1 ,ΔR
1 ;ΔL

2 ,ΔR
2 ;∇1,∇2).

Similarly, we give the definition of FGBDT and FGBET used in multi-round
Em. Symbols in the definitions are shown in the Fig. 8.
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Fig. 8. Structures of FGBDT and FGBET

Definition 5. Let S : Fn
2 → F

m
2 , and the differences ΔL

1 ,ΔR
1 ,ΔL

2 ,ΔR
2 ,∇1,∇2,

Δ′
1
L
,Δ′

2
L ∈ F

n
2 . The FGBDT of S is given by a 8-dimensional table, in which

the entry for the (ΔL
1 ,ΔR

1 ;ΔL
2 ,ΔR

2 ;∇1,∇2;Δ′
1
L
,Δ′

2
L) position is given by

FGBDT (ΔL
1 , ΔR

1 ;ΔL
2 , ΔR

2 ;∇1, ∇2;Δ
′
1
L

, Δ′
2
L
)

= #

⎧⎪⎪⎨
⎪⎪⎩x ∈ F

n
2

∣∣∣∣∣∣∣∣
S(x) ⊕ S(x ⊕ ΔL

1 ) ⊕ S(x ⊕ ΔR
1 ) ⊕ S(x ⊕ ΔL

1 ⊕ ΔR
2 ) ⊕ ∇1 ⊕ ∇2 = 0,

ΔL
1 ⊕ ΔL

2 ⊕ ΔR
1 ⊕ ΔR

2 = 0,

S(x) ⊕ S(x ⊕ ΔL
1 ) = Δ′

1
L

, S(x) ⊕ S(x ⊕ ΔL
2 ) = Δ′

2
L

⎫⎪⎪⎬
⎪⎪⎭ .

Definition 6. Let S : Fn
2 → F

m
2 , and the differences ΔL

1 ,ΔR
1 ,ΔL

2 , ΔR
2 ,∇1,∇2,

Δ′
1
L
,Δ′

2
L
,Δ′

1
R
,Δ′

2
R ∈ F

n
2 . The FGBET of S is given by a 10-dimensional table,

in which the entry for the (ΔL
1 ,ΔR

1 ;ΔL
2 ,ΔR

2 ;∇1,∇2;Δ′
1
L
,Δ′

2
L;Δ′

1
R
,Δ′

2
R) posi-

tion is given by

FGBET (ΔL
1 , ΔR

1 ;ΔL
2 , ΔR

2 ;∇1, ∇2;Δ
′
1
L

, Δ′
2
L
;Δ′

1
R

, Δ′
2
R
)

= #

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ F
n
2

∣∣∣∣∣∣∣∣∣∣∣

S(x) ⊕ S(x ⊕ ΔL
1 ) ⊕ S(x ⊕ ΔR

1 ) ⊕ S(x ⊕ ΔL
1 ⊕ ΔR

2 ) ⊕ ∇1 ⊕ ∇2 = 0,

ΔL
1 ⊕ ΔL

2 ⊕ ΔR
1 ⊕ ΔR

2 = 0,

S(x) ⊕ S(x ⊕ ΔL
1 ) = Δ′

1
L

, S(x) ⊕ S(x ⊕ ΔL
2 ) = Δ′

2
L

,

S(x) ⊕ S(x ⊕ ∇R
1 ) = ∇′

1
R

, S(x) ⊕ S(x ⊕ ∇R
2 ) = ∇′

2
R

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

3.4 The Advantages of GBCT

The probability of a boomerang distinguisher with BCT in one-round Em is
calculated in [16] as

p̂2q̂2 =
1
2n

∑
i,j

p2i · q2j · BCT (βi, γj).

For each boomerang trail α → βi → γj → δ, if the value of BCT (βi, γj) is 0,
even if the value of p2i · q2j is high enough, the trail is still in vain. Yet, BCT is
limited to connecting β and γ that are symmetric in two faces of Em, leaving out
a large number of asymmetric combinations, which can be completed by GBCT.
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In order to illustrate that GBCT can completely describe all combinations of
β and γ, we list the distribution of GBCTs of some 4-bit S-boxes used in crypto-
graphic primitives in Table 2, where the blue font represents the corresponding
value of BCT. It turns out that GBCT can provide some probabilities that BCT
cannot. The following example illustrates a boomerang trail that is incompatible
when connecting E0 and E1 via BCT but effective with GBCT.

Table 2. GBCTs of 4-bit S-boxes from Sage’s Cryptography package; see
https://doc.sagemath.org/html/en/reference/cryptography/sage/crypto/sboxes.html

S-boxs Prob.

1 0.63 0.5 0.44 0.38 0.31 0.25 0.19 0.13 0.06

GIFT 34(32) 6(2) 48(12) 0 278(6) 24 2426(30) 0 16212(72) 15424

PRESENT 33(33) 0 108(8) 0 60(12) 40 2856(36) 0 16172(60) 16096

SKINNY 4 37(33) 0 116(16) 0 64(0) 96 3028(32) 0 16040(72) 16440

Elephant 35(33) 0 112(12) 0 64(8) 64 2900(32) 0 16140(64) 16184

KNOT 33(33) 0 108(8) 0 60(6) 40 2856(36) 1240 16172(60) 16096

Spook 37(33) 0 116(16) 0 64(0) 96 3028(32) 840 16040(72) 16440

GOST 1 34(32) 6(2) 48(12) 0 278(6) 24 2426(30) 1736 16212(72) 15424

LBlock 0 37(33) 10(0) 116(16) 0 64(0) 96 3028(32) 840 16040(72) 16440

SERPENT S0 35(33) 0 112(12) 0 64(8) 64 2900(32) 1128 16104(64) 16184

KLEIN 31(31) 4(4) 0 16 62(14) 0 1807(23) 2512 16184(72) 17384

Midori Sb0 33(33) 0 108(8) 0 60(12) 40 2856(36) 1240 16172(60) 16096

Piccolo 37(33) 0 116(16) 0 64(0) 96 3028(32) 840 16040(72) 16440

Pride 37(33) 0 116(16) 0 64(0) 96 3028(32) 840 16040(72) 16440

PRINCE 31(31) 1(1) 2(2) 0 75(11) 60 1824(28) 2380 15970(78) 17888

Rectangle 33(33) 0 108(8) 0 60(12) 40 2856(36) 1240 16172(60) 16096

TWINE 31(31) 0 0 0 30(30) 0 1455(15) 2280 17940(60) 16320

BLAKE 1 31(31) 0 75(7) 4 90(14) 114 2056(40) 2756 14990(66) 16680

Iceberg S0 31(31) 4(4) 0 16 62(14) 0 1807(23) 2512 16184(72) 17384

Kuznyechik nu0 31(31) 0 0 0 166(14) 80 1275(27) 2608 16732(84) 17256

Serpent type S0 33(33) 0 108(8) 0 60(12) 40 2856(36) 1240 16172(60) 16096

Golden S0 31(31) 1(1) 13(5) 0 58(14) 148 1980(28) 2508 15525(69) 17344
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Fig. 9. 20-round boomerang trail with GBCT

Example 4. A 20-round boomerang trail of GIFT-64 with GBCT is shown in
Fig. 9. The trail is obtained by connecting two 10-round related-key differential
trails in E0 and two 9-round related-key differential trails in E1 with GBCT.
And two key differences are

ΔiniK = 0x00040000000008000000000000000010,
∇iniK = 0x20000000000000000800000002000800

https://doc.sagemath.org/html/en/reference/cryptography/sage/crypto/sboxes.html
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The probability of this distinguisher is p2q2r = 2−21·2 · 2−15·2 · 2−1 = 2−73 when
connected with GBCT, but 0 when connected with BCT.

4 New Search Algorithm for a Boomerang Distinguisher

The instance in Example 4 illustrates the effectiveness of using GBCT as the
connection in a boomerang trail. Then, we consider to construct a generic model
of the GBCT with automatic the search tool SMT, and search for boomerang
distinguishers.

4.1 Strategies in the Search Algorithm

In [16], Ji et al. proposed an automatic search algorithm to boost the proba-
bility of a related-key boomerang distinguisher by taking the cluster effect into
account, which has the best performance in searching for boomerang distinguish-
ers. Making some improvements on the base of the algorithm, we obtain a new
search algorithm performing better. With the new algorithm, we get boomerang
distinguishers with higher probabilities for GIFT-64 and GIFT-128. The details
of the distinguishers will be given in the next subsection.

Here gives the strategy to search for a rectangle distinguisher. Firstly, we find
that when searching for the 10-round differential trails the optimal probability
is 2−19.83, rather than 2−20.415 searched in [16]. The details of the optimal differ-
entials are listed in Table 6 in Appendix A. Taking the probability range bw = 4,
and choosing the optimal α, we discover that it has only 263 output differences
βi and a total of 308 trails can be obtained, which is smaller than the quantity of
that with the suboptimal α, who has 2944 distinct βi and a total of 5728 trails.
Thus, to get a better cluster effect, we should select α and δ with more β and γ
in the first phase. In addition, replacing the probability of each differential trail
with the probability of differential is a better way to approximate the real prob-
ability. Thirdly, the completeness of the connections in Em should be ensured to
form more valid boomerang trails. Finally, an improved boomerang distinguisher
search Algorithm 1 is proposed in light of the aforementioned factors. And the
search algorithm in single-key setting can be obtained likewise. Symbols used in
Algorithm 1 is explained in Table 3.

Table 3. Symbols in Algorithm 1

P (·), K(·) PermBits operation, AddRoundKey operation

ΔXi, ΔYi the differential value of Xi, Yi in round i

ΔiniKi, ∇iniKj the master key difference of differential trails in E0, E1

W (l) the weight of the differential trail l

BR, B̄R the weight of the R-round optimal, sub-optimal trails

BcR the upper bound of BR

bw, b̄w bw = BcR − BR, b̄w ≥ bw
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Algorithm 1: The search algorithm for related-key boomerang distinguish-
ers
Input: R0, R1; bw, b̄w
Output: Pd; ΔY i

1 , ΔiniKi; ΔXj
R1−1, ∇iniKj

1 Phase 1: Determine all the distinct ΔY i
1 , ΔiniKi and ΔXj

R1−1, ∇iniKj

with minimal and sub minimal weight
2 Search for the R0-round related-key differential trails with BR0 and B̄R0 for E0

with SMT.
3 ΔY i

1 , ΔiniKi and Bi
R0 , 1 ≤ i ≤ m ← first-round output difference, the master

key difference and weight of each R0-round trail.
4 Search for the R1-round related-key differential trails with BR1 and B̄R1 for E1

with SMT.
5 ΔXj

R1−1, ∇iniKj and Bj
R1

, 1 ≤ j ≤ n ← last-round input difference, the master
key difference and weight of each R1-round trail.

6 Phase 2: Search for all the clusters in E0 and E1

7 for each ΔY i
1 , ΔiniKi, B

i
R0 , 1 ≤ i ≤ m do

8 βu
i = K ◦ P (ΔY i

R0), 1 ≤ u ≤ s ← all distinct output differences of E0 within

the probability range (Bi
R0 + bw) searched with SMT.

9 for each βu
i , 1 ≤ u ≤ s do

10 lu1
i , ..., l

ug

i ← all the trails under the probability range (Bi
R0 + b̄w)

searched with SMT.
11 B

iud
R0

← W (l
ud
i ), 1 ≤ d ≤ g

12 pu
i =

∑
1≤d≤g 2

−B
iud
R0 ← the approximate probability of (ΔY i

1 , βu
i ).

13 end

14 end

15 for each ΔXj
R1−1, ∇iniKj , B̄R1 , 1 ≤ j ≤ n do

16 γv
j = P −1 ◦ K−1(ΔX1), 1 ≤ v ≤ t ← all distinct input differences of E1

within the probability range (Bj
R1

+ bw) searched with SMT.

17 for each γv
j , 1 ≤ v ≤ t do

18 lv1j , ..., l
vh
j ← all the trails under the probability range (Bj

R1
+ b̄w).

19 B
ive
R1

← W (lvej ), 1 ≤ e ≤ h

20 qvj =
∑

1≤h≤e 2
−B

ive
R1 ← the approximate probability of (γv

j , ΔXj
R1−1).

21 end

22 end
23 Phase 3: Determine the boomerang distinguisher with highest

probability
24 for each (ΔY i

1 , ΔXj
R1−1), and all βu

i , βu′
i , 1 ≤ u, u′ ≤ s, γv

j , γv′
j , 1 ≤ v, v′ ≤ t do

25 r(βu
i , βu′

i , γv
j , γv′

j ) = 1
2n

GBCT (βu
i , βu′

i , γv
j , γv′

j )

26 Pi,j ← ∑
u,u′,v,v′ pu

i · pu′
i · qvj · qv

′
j · r(βu

i , βu′
i , γv

j , γv′
j )

27 end
28 Pd ← maxi,j{Pi,j}
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4.2 The Improved Distinguisher with GBCT for GIFT

Here, we give the details of the new distinguisher of GIFT-64 and GIFT-128.
Choosing R0 = 10 for E0, R1 = 9 for E1, Rm = 1 for Em and bw = b̄w = 4 to

search for a 20-round GIFT-64 distinguisher. The experimental result indicates
that the probability of the new distinguisher is optimal with the α and δ used
in [16]. But, in Phase 2, we get 376 differentials trails with 376 distinct γj more
than 312 differentials trails searched in [16]. In phase 3, we found a total of
5520 boomerang trails that were left out as BCT could not connect. Finally, the
probability of the 20-round distinguisher found in [16] is increased to 2−57.43.

For GIFT-128, we chose R0= 9 for E0, R1 =9 for E1, Rm = 1 for Em

and bw = b̄w = 4. In phase 1, we got 10184 distinct β. All the β and γ can
form (10184 × 2944)2 possible boomerang trails, which leads to an excessive
calculating complexity. So we select the top 200 β and 450 γ with high probability
to connect by GBCT(βi, βj ; γs, γt), and the remaining are still connected by
BCT(β, γ). Finally, 2782 trails ignored under BCT connection are obtained, and
the probabilities of these trails are accumulated to obtain the probability of the
distinguisher of 2−108.349.

All the parameters of the 20/19-round related-key rectangle distinguisher for
GIFT-64/128 are shown in Table 4 and Table 5.

Table 4. The specifications of the 20-round related-key rectangle distinguisher for
GIFT-64

R0 = 10, Rm = 1, R1 = 9; BcR0 = 24.415, BcR1 = 17.415; p̂2q̂2 = 2−57.43

E0 α1 ΔiniK0

0000 0000 0000 a000 0004 0000 0000 0800 0000 0000 0000 0010

E1 δ1 ∇iniK1

0400 0000 0120 1000 2000 0000 0000 0000 0800 0000 0200 0800

Table 5. The specifications of the 19-round related-key rectangle distinguisher for
GIFT-128

R0 = 9, Rm = 1, R1 = 9; BcR0 = 34, BcR1 = 34; p̂2q̂2 = 2108.349

E0 α1 ΔiniK0

0000 0000 0000 00a0 0000 0000 6000 0000; 8000 0000 0000 0000 0000 0000 0002 0000

E1 δ1 ∇iniK1

0020 0000 0000 0000 0000 0040 0000 2020; 000 0000 0000 0000 0002 0000 0002 0000

5 Rectangle Attacks on GIFT-64 and GIFT-128
with Reduced Complexities

Since the new distinguishers for GIFT-64 and GIFT-128 improve only the prob-
ability while using the same input-output differences as in [16], Dong’s key recov-
ery algorithm can be directly applied with it. Here, we only give the complexity
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analysis of the attack and will not dwell on the details of the key recovery process.
Interested readers are referred to [12,16].

Complexity Analysis of Key-Recovery Attack on GIFT-64

The target key bits are 68 with 30 bits in Eb and 38 bits in Ef . We first guess
mb + m′

f = 60 bits subkey to construct quartet candidates. Then eliminate the
wrong quartets in a guess and filter procedure to determine the remaining 8 bits.
Finally, guess the remaining 128 − h bit keys to check the full key.

- Data complexity: we need to prepare 4 · D = 4 · y · 2rb =
√

s · 2n/2+2/p̂q̂ =√
s · 262.715 data.

- Memory complexity: we need 4 · D + 268−x =
√

s · 262.715 + 268−x memory
to store the data and key counters.
- Time complexity: Firstly, we need T1 =

√
s·2mb+m′

f+n/2+1/p̂q̂ =
√

s·2121.715

to generate quartet candidates. Then, the time complexity of filtering wrong
quartets is T2 = (s · 2mb+m′

f−n+2rf−2hf /p̂2q̂2) · ε = s · 283.43 · ε. Finally, we need
T3 = 2128−h for an exhaustive search.

To balance the above complexity, we choose x = 8, h = 20 and s = 1 in order
to achieve a success probability of 69.45%. At last, we have a time complexity
of 2121.715 for 26-round encryptions, a data complexity of 262.715 and a memory
complexity of 262.715.

Complexity Analysis of Key-Recovery Attack on GIFT-128

The target key bits is 39 with 6 bits in Eb and 33 bits in Ef . We repeat the same
process as the attack on GIFT-64 for GIFT-128 with mb + m′

f = 6 + 0 = 6.

- Data complexity: we need to prepare 4 · D =
√

s · 2120.175 data.
- Memory complexity: we need 4 · D + 268−x =

√
s · 2120.175 + 239 memory to

store the data and key counters.
- Time complexity: Firstly, we need T1 =

√
s·2mb+m′

f+n/2+1/p̂q̂ =
√

s·2125.175

to generate quartet candidates. Then, the time complexity of filtering wrong
quartets is T2 = (s · 2mb+m′

f−n+2rf−2hf /p̂2q̂2) · ε = s · 290.5 · ε. Finally, we need
T3 = 2128−h for an exhaustive search.

To balance the above complexity, We choose h = 20 and s = 1 in order to
achieve a good success probability of 84.00%. At last, we have a time complexity
of 2125.175 23-round encryptions, a data complexity of 2120.175 and a memory
complexity of 2120.175.

6 Conclusion and Future Discussion

In this paper, we propose the GBCT to complement the leaky part that can not
be evaluated by BCT, so as to obtain a more accurate distinguisher probability.
Then, an automatic search algorithm applicable to all S-box-based block ciphers
is provided to obtain a rectangle distinguisher with higher probability. Utilizing
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the algorithm, we achieve the optimal probability of distinguishers for 20/19-
round GIFT-64/128, and therefore the lowest data and time complexities of the
related-key rectangle attacks on GIFT-64/128 up to now.

There are still some unfinished work to be investigated in the future. More
variables introduced by GBCT are very constrained for the MILP model when
Em > 1. In addition, the search algorithm is only applicable to ciphers with
S-boxes as the nonlinear layers. In the future, we will extend the research to
fully assess the probability in Em, not only when Em > 1, but also for ciphers
with nonlinear components like modular additions or bit-wise AND operations.
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A 10-Round Optimal (Related-Key) Differentials
for GIFT-64

Table 6. Input and Output differences of 10-round related-key differential trails with
weight 19.8 of GIFT-64

i input differences αi master key differences ΔiniK

1
0000 0000 0000 6002

000C 0000 0000 0000 0040 0000 0000 0011

0000 0000 0000 6004

2
0000 0000 6002 0000

00C0 0000 0000 0000 0004 0000 0000 0022

0000 0000 6004 0000

3
0000 6002 0000 0000

0C00 0000 0000 0000 4000 0000 0000 0044

0000 6004 0000 0000

4
6002 0000 0000 0000

C000 0000 0000 0000 0400 0000 0000 0088

6004 0000 0000 0000

i output differences δi master key differences ∇iniK

1 0800 0400 0220 0310 000C 0000 0000 0000 0040 0000 0000 0011

2 0310 0800 0400 0220 00C0 0000 0000 0000 0004 0000 0000 0022

3 0220 0310 0800 0400 0C00 0000 0000 0000 4000 0000 0000 0044

4 0400 0220 0310 0800 C000 0000 0000 0000 0400 0000 0000 0088
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