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Preface

The 18th International Conference on Information Security and Cryptology (Inscrypt
2022) was held on-line on December 11–13, 2002. It was organized by the State Key
Laboratory of Information Security, Chinese Academy of Sciences, in cooperation with
the IACR.

Inscrypt is an annual international conference held in China, covering all research
areas of information security, cryptology, and their applications. The program committee
of Inscrypt 2022was composed of 51members, and received 69 submissions fromChina,
Japan, the UK, Australia, Romania, Belgium, and the USA, from which 23 submissions
were selected as regular papers and 3 papers as short papers. All anonymous submissions
were reviewed by at least three PC members each, or aided by external reviewers in the
relevant areas. Papers were selected to the program based on their rankings, discussions,
and technical remarks.

The program of Inscrypt 2022 included four excellent invited keynote talks by Huax-
iong Wang (Singapore), Juan Garay (USA), Yu Yu (China), and Yilei Chen (China).
Furthermore, the program included 9 regular sessions on the subjects of block ciphers,
public-key encryption and signature, quantum cryptography, multi-party computations,
cryptanalysis, mathematical aspects of cryptography, stream ciphers, malware, and
lattices.

Many people helped in making the conference a reality. We would like to take this
opportunity to thank the Program Committee members and the external reviewers for
their invaluable help in producing the conference program. We would like to further
thank the honorary chairs, Xiaofeng Wang and Dongdai Lin, for their helpful advice,
and the general chairs, Wenhao Wang and Guozhu Meng, for their excellent help in
organizing the conference and the proceedings. Finally, we wish to thank all the authors
who submitted papers to the conference, the invited speakers, the session chairs, and all
the conference attendees.

November 2022 Yi Deng
Moti Yung
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How Fast Can SM4 be in Software?

Xin Miao1, Chun Guo1,2,3, Meiqin Wang1,2,4, and Weijia Wang1,2,4(B)

1 School of Cyber Science and Technology, Shandong University,
Qingdao 266237, Shandong, China

xin.miao@mail.sdu.edu.cn, {chun.guo,mqwang,wjwang}@sdu.edu.cn
2 Key Laboratory of Cryptologic Technology and Information Security of Ministry

of Education, Shandong University, Qingdao 266237, Shandong, China
3 Shandong Research Institute of Industrial Technology,

Jinan 250102, Shandong, China
4 Quancheng Laboratory, Jinan 250103, China

Abstract. SM4 is a popular block cipher issued by the Office of State
Commercial Cryptography Administration (OSCCA) of China. In this
paper, we use the bitslicing technique that has been shown as a power-
ful strategy to achieve very fast software implementations of SM4. We
investigate optimizations on multiple frontiers. First, we present an effi-
cient bitsliced representation for SM4, which enables running 64 blocks
in parallel with 256-bit registers. Second, we adopt Boyar’s combinational
logic optimization method for a more optimal SM4 S-box. The above opti-
mizations contribute to an ≈6 times performance gain on one core com-
pared with the state-of-the-art result. As the bitsliced implementation
requires a non-standard input/output data form compatible with exist-
ing parallel modes of operation, we present the algorithms for data form
transformations in different cases, allowing efficient implementations of
SM4 under Counter (CTR) mode and Galois/Counter Mode (GCM). Fur-
thermore, since the overhead on (even optimized) data form transforma-
tions is non-negligible, we suggest some adjustments of CTR mode and
GCM with respect to the bitsliced implementation, resulting in bitslicing-
friendly variants thereof.

Keywords: SM4 · Bitsliced implementation · CTR mode · GCM

1 Introduction

The SM4 block cipher is a symmetric-key cryptographic algorithm issued by the
Office of State Commercial Cryptography Administration (OSCCA) of China
and was identified as the national cryptographic industry-standard in March
2012 [1,2]. It was incorporated into the ISO/IEC 18033-3 international standard
in June 2021 [3]. As the only OSCCA-approved symmetric encryption algorithm
for use in China, SM4 has been applied to many industries such as protection
for wireless network data transmission.

An appropriate implementation is a very important requirement for crypto-
graphic algorithms. In this paper, we focus on investigating the fast implemen-
tation of SM4 on high-end platforms. To speed up SM4 block cipher, a natural
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Y. Deng and M. Yung (Eds.): Inscrypt 2022, LNCS 13837, pp. 3–22, 2023.
https://doi.org/10.1007/978-3-031-26553-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26553-2_1&domain=pdf
https://doi.org/10.1007/978-3-031-26553-2_1
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thought is to use the instruction set extension. A typical example is the Advanced
Encryption Standard New Instructions (AES-NI) [4], which has been integrated
into many processors and has significantly improved the speed and security of
applications with AES. However, few processors integrate instructions specially
for SM4, which largely restricts the speed of applications collocating with it and
then naturally raises a question: how fast can SM4 be in software?

1.1 Contributions

In this paper, we describe a fine-grained bitsliced implementation of SM4 based
on an enhanced single instruction multiple data (SIMD) instruction set AVX2
(a.k.a, Haswell New Instructions) [5], which runs at a speed of ≈2.48 cycles per
byte (cpb) and ≈15.26 Gbits per second (Gbps) on one core with disabled hyper-
threading and enabled turbo boost. To the best of our knowledge, it is a new
speed record and outperforms state-of-the-art software implementation [6] by a
factor of more than 6, and also it operates in constant time. Indeed, the bitsliced
SM4 can be further improved using AVX-512 with ultra-wide 512-bit vector
operations capabilities to back up higher performance computing in theory. We
still choose to consider AVX2 now since it is much more widely deployed (than
AVX-512). To get a remarkable performance gain, we investigate optimizations
on the following frontiers.

– First of all, we propose a bitsliced representation (that is the way to pack
internal states of multiple blocks within the YMM registers) allowing to pro-
cess 64 SM4 blocks efficiently with 256-bit registers.

– As the nonlinear layer S-box is the toughest part to handle that affects the
entire performance when implementing in bitsliced style, we use the decom-
position by tower field architecture and adopt Boyar’s logic minimization
technique [7] to find a highly optimized implementation of S-box.

Finally, by analyzing the performance of current bitsliced implementations,
we note that the overhead on transforming data from the block-wise form to the
bitslicing-compatible form is non-negligible. Hence, we present the algorithms for
data form transformations in different cases, and then wrap them up to give com-
plete implementations of SM4 under Counter (CTR) mode and Galois/Counter
Mode (GCM). Besides, in order to reduce the impact of data form transforma-
tions, we suggest adjusting CTR mode and GCM to the bitsliced style, resulting
in more efficient and bitslicing-friendly variants of these two modes.

1.2 Related Works

The fast software implementations of SM4 have been investigated for several
years, due to the wide applications such as networking software and operating
system modules. Zhang et al. [6] presented a fast software implementation of SM4
by exploiting bitslicing technique with AVX2, where 256 blocks are processed in
parallel. Their bitsliced SM4 code ran at the throughput of 2580 Mbps on an
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Intel 2.80 GHz processor. Lang et al. [8] presented an enhanced software imple-
mentation of SM4 with the performance of 1795 Mbps and 2437 Mbps on differ-
ent Intel processors respectively. Zhang et al. [9] proposed a bitsliced software
implementation of SM4 and detailed how to implement efficient transformation
from original storage form to bitsliced storage form on a 64-bit machine and
carry out parallel encryption of multiple blocks. A brief comparison between our
bitsliced implementation and state-of-the-art works on Intel platforms is shown
in Table 1 where we do not mark the cost of transformations, and more details
will be given in Sect. 6. Last but not least, compared with the known bitsliced
implementations [6,9], ours (in addition to the significantly faster speed) is the
first design able to run n blocks in parallel by using 4n-bit registers.

Table 1. Comparison results of software implementations on Intel platforms.

Platform Throughput [Gbps] Method

Intel Xeon E5-2620 @2.40 GHz [9] 0.054 Bitslicing

Intel Core i3-4160 @3.60 GHz [8] 1.67 Look-up table

Intel Core i7-5500U @2.40 GHz [8] 1.75 Look-up table

Intel Core i7-6700 @3.40 GHz [8] 2.38 Look-up table

Intel Core i7-7700HQ @2.80 GHz [6] 2.52 Bitslicing

Ours (Intel Core i7-8700 @3.20 GHz) 15.26 Bitslicing

Liu et al. [10] cracked the algebraic structure of the SM4 S-box, and published
its logical expression and specific parameter settings. We recall the state-of-
the-art results of logical operations towards the SM4 S-box. Abbasi et al. [11]
proposed a compact design for S-box which contained 134 XOR and 36 AND
operations. Saarinen et al. [12] also proposed an optimized implementation with
81 XOR, 14 XNOR, and 34 AND operations. The best case of logical gates used
by S-box from Gong et al. [13] was 115, including XOR, OR, AND and NOT. By
contrast, our SM4 S-box costs a total of 120 bit operations (75 XOR, 13 XNOR,
and 32 AND operations).

1.3 Limitations

As our bitsliced implementation runs many (e.g., 64) SM4 blocks in parallel,
it benefits the applications encrypting a relatively large amount of bits using
SM4, but not quite suitable for the encryption of short messages. The limitation
concerning the short messages is due to the nature of the bitsliced implementa-
tion. Nevertheless, we believe that, in the case of encrypting a relatively large
amount of bits, a fast implementation of encryption is usually significant for the
performance of the application as well.

1.4 Organizations

Below we first present backgrounds in Sect. 2. We then present our strategy
of bitslicing SM4 in Sect. 3. The implementation of the SM4 S-box is given in
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Sect. 4. In Sect. 5, we describe the implementations of modes. The results and
comparisons are shown in Sect. 6. Finally, Sect. 7 concludes the whole paper.

2 Backgrounds

2.1 Notations

In the following, we agree on the conventions used throughout the rest of this
paper, mainly focussing on the block cipher encryption and its modes of opera-
tion. All operations of SM4 are defined over 8-bit, 32-bit, or 128-bit quantities
so that 8-bit values can simply be called bytes, 32-bit values words and 128-bit
values blocks. The symbol ⊕ denotes the bitwise exclusive-or operation and ≪
means a left circular rotation by bits in a 32-bit word vector which is different
from its specific definitions in Sect. 3. The block cipher encryption with the key
k is denoted as Enck. The multiplication of two elements X,Y ∈ GF (2128) is
denoted as X · Y , and the field multiplication operation is defined in Sect. 2.4.
The expression {0, 1}m denotes the bits string with length m and 0128 repre-
sents a string of 128 zero bits. The concatenation of two bit strings A and B is
represented as A‖B.

2.2 The SM4 Block Cipher

SM4 is a block cipher algorithm whose block size and key length are both 128
bits. It adopts an unbalanced Feistel structure and iterates its round function 32
times during the encryption phase, where Xi ∈ Z32

2 , i = 0, 1, . . . , 35 represents a
bit string of length 32 bits respectively. Finally, SM4 applies the reverse trans-
formation to produce the corresponding output ciphertext. The 32 round keys
are generated in turn by the key expansion algorithm with the original 128-bit
key. The decryption phase has a similar structure except that the order of round
keys needs to be reversed [2].

Round Function F : Suppose the input to the round function is
(X0,X1,X2,X3) ∈ (Z32

2 )4, and the round key is rk ∈ Z32
2 , then the round

function F can be expressed as:

F (X0,X1,X2,X3) = (X1,X2,X3,X0 ⊕ T (X1 ⊕ X2 ⊕ X3 ⊕ rk)). (1)

Mixed Substitution T : Z32
2 → Z32

2 is an invertible transformation, composed
of a nonlinear transformation τ and a linear transformation L. That is, T (·) =
L(τ(·)).
Nonlinear Transformation τ : τ is composed of 4 S-boxes in parallel. Suppose
A = (a0, a1, a2, a3) ∈ (Z8

2 )4 is the input to τ , and B = (b0, b1, b2, b3) ∈ (Z8
2 )4 is

the corresponding output, then

(b0, b1, b2, b3) = τ(A) = (Sbox(a0), Sbox(a1), Sbox(a2), Sbox(a3)).
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Linear Transformation L: The 32-bit output from the nonlinear transforma-
tion τ is the input to the linear transformation L. Suppose the input to L is
B ∈ Z32

2 , and the corresponding output is C ∈ Z32
2 , then

C = L(B) = B ⊕ (B ≪ 2) ⊕ (B ≪ 10) ⊕ (B ≪ 18) ⊕ (B ≪ 24).

2.3 The Counter (CTR) Mode

The Counter (CTR) mode is a confidentiality mode of operation that features the
application of the forward cipher to a set of input blocks, called counter blocks,
to produce a sequence of output blocks that are XORed with the plaintext
to produce the ciphertext, and vice versa [14]. The “nonce” portion and the
“counter” portion should be concatenated together to constitute counter blocks
(e.g., storing the nonce in the upper 96 bits and the counter in the lower 32
bits of a 128-bit counter block). The sequence of counter block values must be
different from every other one of them. This condition is not restricted to a
single message, but all of the counter blocks should be distinct. Given a range of
counter blocks T0, T1, . . . , Tn−1 and plaintext P0, P1, . . . , Pn−1, CTR encryption
leaving out padding can be defined as follows:

1. Forward cipher Oj = Enck(Tj), for j = 0, 1, . . . , n − 1.
2. Ciphertext Cj = Pj ⊕ Oj , for j = 0, 1, . . . , n − 1.

In CTR encryption, the forward cipher functions can be performed in parallel.
Moreover, the forward cipher functions can be applied to the counter block values
prior to the availability of the plaintext data.

2.4 The Galois/Counter Mode (GCM)

Galois/Counter Mode (GCM) is one of the most widely used authenticated
encryption schemes designed by McGrew and Viega [15]. It is constructed from a
block cipher with a block size of 128 bits, such as the Advanced Encryption Stan-
dard (AES) algorithm. It combines the Counter mode with a block cipher-based
Wegman-Carter MAC in an Encrypt-then-MAC manner. The MAC employs a
universal hash function defined over a binary Galois field [16]. However, GCM
does not follow generic composition, and the establishment of its provable secu-
rity is the outcome of an intricate line of works [17–19].

We focus on the (authenticated) encryption function of GCM. In addition,
we mainly focus on the GCM variant with (fixed-length) 96-bit nonces.1 In this
respect, the encryption function GCM.Enck(N,M) takes a nonce N ∈ {0, 1}96
and a message M ∈ {0, 1}∗ as the inputs. It first encrypts M to C with CTR
mode GCTRk(N,M), where the initial counter block value is the concatenation
of N and the integer 2. Then, it invokes hash function GHASHH(C) to have

1 It is mandated (e.g., RFC 4106 or IPsec [20], RFC 5647 or SSH [21], RFC 5288 or
SSL [21]) or recommended (e.g., RFC 5084 [22] and 5116 [23]) in many standards to
use fixed-length nonces with 96 bits.
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the digest of C, where H := Enck(0128) is the secret hash key generated by
encrypting the zero block.

Write C as multiple 128-bit blocks C = (C1, C2, . . . , Cn). Then,

GHASHH(C) =
n∑

j=1

CjH
n−j+1 = C1 · Hn ⊕ C2 · Hn−1 ⊕ . . . ⊕ Cn · H, (2)

where · stands for multiplications over the field GF (2128) constructed by the
irreducible polynomial P = x128 + x7 + x2 + x + 1 [24]. Also in [24], appropriate
methods are provided for us to directly invoke and calculate GHASHH of GCM.

Alternatively, GHASHH(C) can be computed by repeating

Yi = [(Ci ⊕ Yi−1) · H] mod P (P = x128 + x7 + x2 + x + 1), (3)

for i = 1, . . . , n, where Yi, i = 1, . . . , n are outputs of the function GHASHH ,
and modular is taken over the aforementioned field GF (2128). Eventually,
the authentication tag T with the length of t bits is derived by truncating
Enck(N‖1) ⊕ GHASHH(C) to t bits.

3 Bitslicing SM4

The concept of bitsliced implementation is to convert the algorithm into a series
of logical bit operations (e.g., XOR and AND gates) and process multiple encryp-
tion blocks in parallel. In this section, we attempt to enhance the software per-
formance of SM4 when implemented in a bitsliced style on 256-bit platforms. We
consider a new bitsliced representation of the SM4 state (i.e. block), start with
discussing the simple application of SM4 round functions to one single block,
and then move to the applications to multiple bitsliced blocks.

3.1 A New Bitliced Representation of SM4

Before introducing the new bitsliced representation, we consider one SM4 state
(128-bit) as a bit cuboid, just as shown in Fig. 1(a). We term the yellow edge
as “column”, the blue edge as “row”, and the red edge as “line”, where we also
mark numbers for locating different small cubes (i.e. bits) and describing the
application of round functions. As a result, each column is placed in one slice for
our bitsliced representation and each line can represent one byte involved in the
classic S-box computation. They are indicated with four small cubes filled with
yellow and red frame lines respectively for example. As for any 32-bit vector
appearing in Sect. 2.2, it can be defined as column × line.

Different bits of one byte could be rarely placed within the same slice (i.e.
register) so that the round function with logical operations can be easily calcu-
lated. Therefore, we separate the bits of the same line. Besides, we construct the
slices of our new bitsliced representation by separating the bits of the same row
as well as packing the bits of the same column. This kind of design is mainly
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based on the unbalanced Feistel structure of SM4, which has decided that a
Mixed Substitution T only works on a part of the data. We do not refer to the
so-called conventional bitsliced representation, in which a single N -bit proces-
sor can handle N parallel encryptions [25]. There is no doubt that this kind
of bitsliced representation needs a large number of registers or plenty of mem-
ory accesses since the bits just at the absolutely same position of all blocks are
set in the same register. However, our new bitsliced representation prefers to
use general-purpose registers available as few as possible with paying necessary
memory accesses.

Then, according to our new bitsliced representation, we explain the applica-
tion of the round function with the pre-computed (and stored in the memory)
round keys, which firstly considers one single block for the sake of simplicity. The
round encryption function F as shown in Fig. 1(b) comprises XOR operations
and Mixed Substitution T made up of a nonlinear layer τ (4 S-boxes in parallel)
and a linear transformation L.

Fig. 1. The State of one block (a) and the round function of SM4 (b).

The former XOR operations with the round keys are properly aligned with
regard to the SubBytes operations [26]. That is, the XOR operations get ready
for four parallel 8-bit S-boxes with the fixed 8-bit input and 8-bit output. With
the help of the assisted numbers marked beside the edges, for each byte of the
whole state, bit 0 is placed in line 0, bit 1 in line 1, bit 2 in line 2, and so on.
These two operations can be achieved in Fig. 2. We defer the optimization and
implementation of S-box as a bitsliced style in Sect. 4.

The linear transformation L in a bitsiced style after S-box is different from
the original one which contains left circular rotations within a 32-bit vector.
It needs to find corresponding bits and perform circular rotations sometimes.
Lastly, we consider the latter XOR operations between the output of the linear
transformation L and the part of the unencrypted bits. These two operations
are detailed in Fig. 3.
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R7 = Sbox (R1
7 ⊕ R2

7 ⊕ R3
7 ⊕ rk7)

R6 = Sbox (R1
6 ⊕ R2

6 ⊕ R3
6 ⊕ rk6)

R5 = Sbox (R1
5 ⊕ R2

5 ⊕ R3
5 ⊕ rk5)

R4 = Sbox (R1
4 ⊕ R2

4 ⊕ R3
4 ⊕ rk4)

R3 = Sbox (R1
3 ⊕ R2

3 ⊕ R3
3 ⊕ rk3)

R2 = Sbox (R1
2 ⊕ R2

2 ⊕ R3
2 ⊕ rk2)

R1 = Sbox (R1
1 ⊕ R2

1 ⊕ R3
1 ⊕ rk1)

R0 = Sbox (R1
0 ⊕ R2

0 ⊕ R3
0 ⊕ rk0)

Fig. 2. Calculations of key XORing and the SubBytes operations, where rki refers to
the bits located at position i of the bitsliced round keys and Rj

i refers to the column
corresponding to row j and line i, updated to Ri

R
′
7 = R0

7 ⊕ [ R7 ⊕ R5 ⊕ (R5 ≪ 1) ⊕ (R5 ≪ 2) ⊕ (R7 ≪ 3) ]
R

′
6 = R0

6 ⊕ [ R6 ⊕ R4 ⊕ (R4 ≪ 1) ⊕ (R4 ≪ 2) ⊕ (R6 ≪ 3) ]
R

′
5 = R0

5 ⊕ [ R5 ⊕ R3 ⊕ (R3 ≪ 1) ⊕ (R3 ≪ 2) ⊕ (R5 ≪ 3) ]
R

′
4 = R0

4 ⊕ [ R4 ⊕ R2 ⊕ (R2 ≪ 1) ⊕ (R2 ≪ 2) ⊕ (R4 ≪ 3) ]
R

′
3 = R0

3 ⊕ [ R3 ⊕ R1 ⊕ (R1 ≪ 1) ⊕ (R1 ≪ 2) ⊕ (R3 ≪ 3) ]
R

′
2 = R0

2 ⊕ [ R2 ⊕ R0 ⊕ (R0 ≪ 1) ⊕ (R0 ≪ 2) ⊕ (R2 ≪ 3) ]
R

′
1 = R0

1 ⊕ [ R1 ⊕ (R7 ≪ 1) ⊕ (R7 ≪ 2) ⊕ (R7 ≪ 3) ⊕ (R1 ≪ 3) ]
R

′
0 = R0

0 ⊕ [ R0 ⊕ (R6 ≪ 1) ⊕ (R6 ≪ 2) ⊕ (R6 ≪ 3) ⊕ (R0 ≪ 3) ]

Fig. 3. Calculations of the linear transformation L and the XOR operations at the end
of round function, where ≪ refers to the circular rotation within a slice, and R0

i refers
to the column corresponding to row 0 and line i, updated to R

′
i.

3.2 The Applications to Multiple SM4 Blocks

We then generalize the bitsliced representation for a single block to multiple
ones. As shown in Fig. 4, we do not put multiple blocks in tandem directly but
at regular intervals. We use this representation because most AVX2 instructions
are strict with the operations crossing lanes freely but can manipulate quadword
(64-bit) values as individual processing units. This arrangement is similar to the
barrel shifter design [26] enabling efficient circular rotations with PERMUTE
instruction instead of SHIFT instruction which is incapable of circular rotating
within the whole register.

Fig. 4. The bitsliced representation of two SM4 blocks, where we use numbers to mark
the bits just at position 0 of each byte from both two blocks.
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The round functions for multiple bitsliced blocks have not changed a lot,
except for the linear transformation L, where we should pay attention to the
bits of circular rotations. On the 256-bit platform which can process 64 blocks
in parallel, the operations of L are described in Fig. 5.

R
′
7 = R7 ⊕ R5 ⊕ (R5 ≪ 64) ⊕ (R5 ≪ 128) ⊕ (R7 ≪ 192)

R
′
6 = R6 ⊕ R4 ⊕ (R4 ≪ 64) ⊕ (R4 ≪ 128) ⊕ (R6 ≪ 192)

R
′
5 = R5 ⊕ R3 ⊕ (R3 ≪ 64) ⊕ (R3 ≪ 128) ⊕ (R5 ≪ 192)

R
′
4 = R4 ⊕ R2 ⊕ (R2 ≪ 64) ⊕ (R2 ≪ 128) ⊕ (R4 ≪ 192)

R
′
3 = R3 ⊕ R1 ⊕ (R1 ≪ 64) ⊕ (R1 ≪ 128) ⊕ (R3 ≪ 192)

R
′
2 = R2 ⊕ R0 ⊕ (R0 ≪ 64) ⊕ (R0 ≪ 128) ⊕ (R2 ≪ 192)

R
′
1 = R1 ⊕ (R7 ≪ 64) ⊕ (R7 ≪ 128) ⊕ (R7 ≪ 192) ⊕ (R1 ≪ 192)

R
′
0 = R0 ⊕ (R6 ≪ 64) ⊕ (R6 ≪ 128) ⊕ (R6 ≪ 192) ⊕ (R0 ≪ 192)

Fig. 5. The calculation of L for 64 SM4 blocks, where Ri ≪ j refers to a circular
rotation of j bits to the left for all bits within Ri, updated to Ri

′
.

4 The Implementation of S-Box

The section focuses on optimizing the implementation of nonlinear layer τ with
its algebraic structure which drops out of the use of the look-up table.

4.1 Decomposing the SM4 S-Box

We give the algebraic structure of the SM4 S-box suggested by Erickson et al. [27]
as shown in the expression S(X) = A2 · (A1 ·X +C1)−1 +C2. X is an 8-bit input
of S-box,

A1 = A2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 0 1 1
1 1 1 0 1 0 0 1
1 1 1 1 0 1 0 0
0 1 1 1 1 0 1 0
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0
0 1 0 0 1 1 1 1
1 0 1 0 0 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

C1 = C2 =
[
1 1 0 1 0 0 1 1

]
. (5)

The irreducible primitive polynomial in GF (28) is f(x) = x8 + x7 + x6 + x5 +
x4 + x2 + 1. It is obvious that there are both the nonlinear component in charge
of computing an inverse in GF (28) and the linear components responsible for
affine transformations.

We first put the emphasis on the nonlinear component and we would simplify
the inverse operation using the tower field architecture GF (28) → GF (((22)2)2)
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by consulting the normal inverter from Canright et al. [28]. The nonlinear com-
ponent actually, has nonlinear connected portions as well as linear connected
portions. To facilitate the discussion of the next subsection, we would keep non-
linear connected portions and linear connected portions apart, and meanwhile,
we should identify linear connected portions as large as possible while still being
linear. As a consequence, we constitute the nonlinear component of the SM4 S-
box with an initial linear expansion L1 from 8 to 22 bits, a nonlinear contraction
F from 22 to 18 bits, and a final linear contraction L2 from 18 to 8 bits [7]. So far,
we have gotten a new expression of S-box S(X) = A2·L2·F [L1·(A1·X+C1)]+C2.

For the initial linear expansion L1, in consideration of decomposing GF (28)
into GF (((22)2)2), we choose one set of normal basis [Y 16, Y ] = [0x94, 0x95],
[X4,X] = [0x50, 0x51], and [W 2,W ] = [0x5D, 0x5C] presented by Fu et al. [29]
from only eight sets of normal bases which can achieve the right encryption.
The isomorphic matrix M mapping from the composite field GF (((22)2)2) to
the standard polynomial representation based on this set of normal basis can be
constructed easily, as shown below.

M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 1
1 1 0 0 0 1 0 1
1 1 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1
1 0 1 1 0 1 1 1
1 0 0 1 0 1 1 0
0 1 0 1 1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

Both the isomorphic matrix M−1 calculated by the matrix reverse method
(modulo 2) and the former linear connected portions of the normal inverter are
used to build the initial linear layer L1. For the nonlinear contraction F , SM4
shares the same nonlinear middle layer with AES [12] so that we omit a full
explanation of it. It is inevitable that XOR operations still occur in F here and
there. For the final linear contraction L2, it includes the isomorphic matrix M
to accomplish the basis conversion as well as the latter linear connected portions
of the normal inverter.

Moreover, when we take the affine transformations (i.e. the linear compo-
nents) into consideration, we could combine L1 with A1, the same with L1 and
C1, L2 and A2, for reasons of further optimizing the linear components of the
whole S-box. Although L1 ·C1 is a 22-bit constant vector longer than the original
8-bit constant vector C1, it will not hit the result at all. What’s more, performing
XOR operations with a constant 0 can also be omitted directly. At this point,
the latest expression of the SM4 S-box is S(X) = B · F (U · X + C) + C2, where
U is equal to L1 · A1, C equal to L1 · C1, and B equal to L2 · A2. The matrix U ,
the 22-bit constant vector C, and the matrix B are given in Appendix A. Last
but not least, we should be aware of the bit order every time we input or output.



How Fast Can SM4 be in Software? 13

4.2 Optimizing the Linear Components

As the structure of S-box has been decomposed into fresh linear and nonlin-
ear components, it is necessary to find an implementation of linear components
with the smallest number of XOR operations. The above optimization can be
formulated as a problem of finding the smallest number of linear operations
necessary to compute a set of linear forms, which is called the Shortest Linear
Program (SLP) problem and is essentially NP-hard [30]. In this subsection, we
adopt the heuristic optimization by Boyar et al. [7] to achieve an efficient imple-
mentation of the linear components (corresponding to matrices U and B). The
concrete steps of this new technique for combinational logic optimization can be
found in Sect. 3.2 “A New Heuristic” of [7].

Eventually, the resulted implementations using the Boyar et al.’s heuristic are
given in Fig. 6(a) and Fig. 6(b). The middle nonlinear transformation F is iden-
tical with AES, where inputs are y0, y1, . . . , y21 and outputs are z0, z1, . . . , z17.
Therefore, we omit the specific bit operations of the shared nonlinear mapping
from 22 bits to 18 bits, but they can be easily found in Sect. 4 “A Circuit for
the S-Box of AES” Fig. 11 of [7]. In a nutshell, the total number of logical gates
for our S-box is 75 XOR gates, 13 XNOR gates, and 32 AND gates, which has
also taken the XOR operations with constant vectors into consideration.

n1 = x4 + x2 n2 = x3 + x0 n3 = n2 + x1
y10 = n1 + x7 y3 = n3 + x5 n4 = y10 + x5
y5 = x6 + x2 n5 = x7 + x4 y21 = y3 + n1
y14 = n4 + x6 n6 = n5 + x6 n7 = x1 + x0
y6 = y21 + n7 y17 = n3 + x7 y0 = y17 + x0
y1 = y10 + y6 y2 = y5 + x1 y7 = y10 + x0
y8 = y5 + y3 y9 = n5 + n3 y4 = y9 + y2
y11 = n3 + n1 y12 = y14 + x1 y15 = n4 + x1
y16 = y21 + x1 y18 = n7 + n6 y19 = y3 + n6
y20 = x7 + x2

(a) Top linear transformation U
with inputs x0, x1, . . . , x7 and out-
puts y0, y1, . . . , y21. y13 = x1, which
does not need to consider any other
operation.

g1 = z9 + z15 g2 = z6 + z10 g3 = z13 + z14
g4 = g2 + g3 g5 = z0 + z1 g6 = g1 + z17
g7 = g4 + z7 g8 = z4 + z5 g9 = g5 + z8
g10 = g6 + g7 g11 = g8 + z11 g12 = g1 + z16
g13 = g9 + g12 g14 = g8 + g13 g15 = z3 + z4
g16 = z12 + z13 g17 = z15 + z16 g18 = z0 + z2
g19 = z7 + z10 S7 = g16 + g17 g20 = g11 + g18
S6 = g7 + g20 S5 = g5 + g10 S4 = g2 + g14
S3 = g6 + z11 S2 = g10 + g15 g21 = g9 + g11
S1 = g4 + g21 g22 = g14 + g15 S0 = g19 + g22

(b) Bottom linear transformation B
with inputs z0, z1, . . . , z17 and out-
puts S0, S1, . . . , S7.

Fig. 6. The resulted logical bit operations for matrices U and B.

5 Implementations of SM4-CTR, SM4-GCM, and More

The bitslicing technique can benefit modes that support the parallel implemen-
tation of block ciphers such as CTR mode and GCM, moreover, this bitsliced
implementation needs a non-standard data form. Hence, additional transforma-
tions of the data between the block-wise form and the bitslicing-compatible form
are required and considered to be expensive [31], which we call the data form
transformation in the rest of this paper. For example, as shown in Fig. 7(a), the
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128-bit counter block values are first transformed (by the short-cut data form
transformation detailed in Sect. 5.1) to fully comply with the bitsliced encryp-
tion and then transformed (by the general data form transformation detailed in
Sect. 5.1) back. GCM with the bitsliced encryption is similar. In this respect,
we present our algorithms for data form transformations, where we term the
block-wise data into the bitsliced representations as forward transformation and
its inverse as backward transformation. Besides, considering that the overheads
of data form transformations are non-negligible, we also propose the variants of
CTR and GCM that do not require the backward transformation. For instance,
the variant CTR+ is shown in Fig. 7(b).

Fig. 7. The implementations of the SM4-CTR mode and its variant.

5.1 Data Form Transformation Algorithms

In this subsection, we first present the general algorithm that performs the trans-
formation of any 128-bit block and also its inverse. Then, we consider the com-
mon setting under CTR mode for single use, where the 96-bit “nonce” portions
of 128-bit counter block values are fixed, and meanwhile, the 32-bit “counter”
portions are incremented (block-by-block) from 0 or 1. Hence, we present a much
more efficient short-cut transformation algorithm employing the look-up table
specific to the above setting.

The General Data Form Transformation Algorithm. We present the
forward transformation algorithm that transforms any block-wise (with 128-bit
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blocks) data into the bitsliced representations. This transformation firstly relies
on an in-place transpose of the bit matrix as shown in Fig. 8. Then, with the
help of SHIFT instruction which performs within four individual lanes and AND
instruction, we perform an extract operation of the most significant bits from
four individual quadword values on 256-bit platforms. As a result, the full form
transformation for any 128-bit block (also suitable for any 128-bit counter block)
can be done by repeating the foregoing extract operation 32 times, where the 4
bits from each of these extractions should be placed in different 256-bit variables
and stored for future use. Combined with SHIFT instruction and also XOR
instruction, we put extracted bits of 64 different blocks into the appropriate
positions of 256-bit variables as detailed in Sect. 3.

Fig. 8. Steps to transpose a bit matrix, where AND, SHIFT, SHUFFLE, PERMUTE
and XOR represent the AVX2 instructions that are mainly used for different operations.
The gray area is filled up with zeroes.

Noting that, the general backward transformation is important as well. For
example, in CTR mode, the bitsliced representations that have been encrypted
should transform back into the initial data form of 128-bit blocks and then
perform XOR operations with the plaintext to generate the final ciphertext. The
only difference between the two directions of transformation is just to reverse
the order of the bit-wise transpose process and the extract operations.

The Short-Cut Data Form Transformation Algorithm. For the short-cut
algorithm, we only consider the forward transformation. It is because the inputs
of the backward transformation are usually the outputs of parallel block ciphers
and thus do not have the pattern of the fixed nonce and incremented counters.

To improve the efficiency of the forward transformation, we build a look-up
table about an extension on account of only one form of the 96-bit nonce for CTR



16 X. Miao et al.

mode. This look-up table is an array of one 256-bit data type whose subscripts
vary from 0 to 15. The striking feature of all array elements is that there are only
two cases for each 64-bit quadword value, either all ones or all zeroes. That is to
say, when we extract four bits respectively from random but the same position
of four various quadword values within one 256-bit array element, the decimal
result of these four bits exactly corresponds to the array subscript of that 256-bit
array element. Therefore, in fact, we do not need to execute the general data
form transformation algorithm for all counter block values but to use the look-
up table after applying the general data form transformation algorithm to only
one counter block. Moreover, as the 256-bit general-purpose registers process
64 blocks in parallel, the value of counters could be denoted by 0, 1, . . . , 63 or
1, 2, . . . , 64 in decimal form. Hence, as for the remaining fixed 32-bit counters, it
is easy to transform them into bitsliced representations directly.

So far, we have constituted the inputs of bitslicing SM4. However, the out-
puts of the forward cipher must be too irregular to predict so that we are not
permitted to use the similar short-cut data form transformation algorithm to
transform back.

5.2 Bitslicing-Friendly Variants of CTR Mode and GCM

As the general data form transformation has a large overhead, we propose a vari-
ant of CTR mode shown in Fig. 7(b) that omits the data form transformation at
the outputs of parallel block ciphers, namely the backward transformation. The
outputs of the parallel block ciphers, whether the bitsliced representation or the
block-wise representation, are uniformly distributed. Therefore, the security of
the variant should be the same as the original CTR mode. We adopt the same
strategy to GCM, resulting in a variant called GCM+, for which we elaborate
more formal details and its security proof in Appendix B. As for the implemen-
tation of the GHASH step of GCM, namely the polynomial operations of GCM,
we mainly refer to the code samples given by [24] which have already detailed
the computation of Galois Hash.

6 Implementation Results and Comparisons

6.1 The Implementation of S-Box for SM4

We present an improved design of the SM4 S-box with a small number of log-
ical operations based on the composite field GF (((22)2)2) and the pair normal
basis [Y 16, Y ] = [0x94, 0x95], [X4,X] = [0x50, 0x51], [W 2,W ] = [0x5D, 0x5C]
respectively. Specifically, our most compact S-box of SM4 comprises 75 XOR,
13 XNOR, and 32 AND gates, as illustrated in Table 2.
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Table 2. Logical gates for our designed S-box of SM4.

Mathematical operation XOR XNOR AND

Affine Trans. (A1 · X + C1)
Map GF (28) → GF (((22)2)2)

20 8 –

Inversion algorithm 30 – 32

Map inv. GF (((22)2)2) → GF (28)
Affine Trans. (A2 · X + C2)

25 5 –

Total 75 13 32

6.2 The Comparison of SM4 Software Implementations

Evaluations are conducted separately for different modes as shown in Table 3.
The criteria of these performances are clock cycles per byte (cpb) and 230 bits
per second (Gbps). Our bitsliced SM4 enabled running in constant time and pro-
cessing 64 blocks (1 KB) in parallel achieves 15.26 Gbps for throughput and 2.48
cpb for timing without considering any data form transformations. Additionally,
our software performances are obtained when we disable the hyper-threading
but enable the turbo boost. Moreover, we can see that the performances of
SM4-CTR+ and SM4-GCM+ with only forward transformation are significantly
faster than those of SM4-CTR and SM4-GCM with both forward and backward
transformation.

Table 3. Our results of different modes for software implementations.

Mode Timing [cpb] Throughput [Gbps]

SM4 2.48 15.26

SM4-CTR 8.14 3.81

SM4-CTR+ 2.70 11.44

SM4-GCM 10.35 2.29

SM4-GCM+ 5.10 5.72

7 Conclusions and Future Works

In this paper, we push the software implementation of SM4 to its limits with
AVX2 instructions by investigating optimizations on multiple frontiers. First, we
present a new bitsliced representation for SM4 that enables running 64 blocks in
parallel with 256-bit registers efficiently. Second, by adopting Boyar’s combina-
tional logic optimization method, we obtain the lower number of bit operations
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(75 XOR, 13 XNOR, and 32 AND) constructed for the SM4 S-box. Thanks
to those optimizations, we can report our new bitsliced SM4 to reach at the
speed of ≈2.48 cpb for timing and ≈15.26 Gbps for throughput (by assuming
pre-computed round keys and omitting data form transformations), becoming
the performance record of SM4 ever made on Intel platforms. These significant
improvements also demonstrate that the bitslicing technique is actually promis-
ing on platforms with the enhanced SIMD architecture from practical points of
view.

We also propose the data form transformation algorithms in different cases
for complete and efficient bitsliced implementations of SM4, keeping full com-
patibility with existing parellel modes of operation, for example, the CTR mode
and GCM. Furthermore, the expensive overhead on transforming data from the
bitslicing-compatible form to the block-wise form motivates us to adjust CTR
mode and GCM to the bitsliced implementation, resulting in bitslicing-friendly
variants of these two modes with an essential security proof.

Whilst our work only concentrates on the platform with AVX2 instructions,
we believe our optimizations for SM4 could bring about improvements on other
architectures as well. Also, the number of general-purpose registers is limited (16
general-purpose registers available on our target platform), and thus numerous
memory accesses dominate the entire SM4 processing. In this respect, we deem
optimizing the number of memory accesses for the bitsliced implementation as a
valuable future study. We are also fired up about the implementation of SM4 on
different platforms such as ARMv8/v9 for wider applicability of these techniques,
and we will incorporate this throughout our following works. Another interesting
topic might be the power analysis of our implementation, i.e., investigating the
impact of the bitsliced structure to the known attacking methods such as the
chosen plaintext differential power analysis [32].
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Appendix

A The Matrices U , C and B in S-Box Decomposition

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 1 0
1 0 1 0 1 0 0 0
0 1 0 0 0 1 1 0
0 0 1 0 1 0 1 1
1 1 0 1 1 1 0 1
0 1 0 0 0 1 0 0
0 0 1 1 1 1 0 0
1 0 0 1 0 1 0 1
0 1 1 0 1 1 1 1
1 0 0 1 1 0 1 1
1 0 0 1 0 1 0 0
0 0 0 1 1 1 1 1
1 1 1 1 0 1 1 0
0 0 0 0 0 0 1 0
1 1 1 1 0 1 0 0
1 0 1 1 0 1 1 0
0 0 1 1 1 1 0 1
1 0 0 0 1 0 1 1
1 1 0 1 0 0 1 1
1 1 1 1 1 0 1 1
1 0 0 0 0 1 0 0
0 0 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0
0
1
1
0
0
0
1
0
0
0
1
0
1
1
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0
1 1 0 0 0 0 1 1 0 1 1 0 0 1 1 1 0 1
1 1 0 0 1 1 1 0 1 1 1 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1
0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1
1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 0 0
1 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

B The AEAD Scheme GCM+ and Its Security Proof

B.1 Security Definitions

We follow [33] and consider the all-in-one security definition for nonce-based
AEAD. In detail, the advantage of an adversary A against the AEAD security
of GCM+E

is

Advaead

GCM+E (A) := Pr
[
k

$←− K : AEncK(·,·,·),DecK(·,·,·,·) = 1
]

− Pr
[
A$(·,·,·),⊥(·,·,·,·) = 1

]
,

where EncK and DecK are the GCM+ encryption and decryption oracles
respectively, $ is the random-bits oracle taking (N,A,M) as input and returns

(C, T ) $←− {0, 1}|M |+τ , and ⊥ is the rejection oracle taking (N,A,C, T ) as input
and (always) returns ⊥. If A makes a query (N,A,M) to EncK and receives
(C, T ), then we assume that A does not subsequently make a query (N,A,C, T )
to DecK . The adversary must be nonce-respecting with respect to encryption
queries, i.e., the nonces N1, . . . , Nq used in the q encryption queries must be
pairwise distinct. On the other hand, decryption queries can reuse nonces that
have appeared in earlier encryption or decryption queries.
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Meanwhile, the advantage of an adversary A against the PRP security of a
block cipher E is

Advprp
E (A) := Pr

[
k

$←− K : AEk = 1
]

− Pr
[
AP = 1

]
,

where P is a truly random n-bit permutation.

B.2 GCM+ and Its Security

We refer to Sect. 2.4 for the definition of the standard GCM scheme. This
section considers a variant GCM+π

parameterized by a public, efficient, variable-
input-length permutation π : {0, 1}∗ → {0, 1}∗. In detail, the encryption
GCM+π

k .Enc(N,M) returns (C, T ) with C = π
(
GCTRk(N,M)

)
and T =

msbτ

(
Ek(N‖1) ⊕ GHASHH(C)

)
, where msbτ (X) returns the most signifi-

cant τ bits of X. Namely, GCM+π
k .Enc(N,M) can be viewed as the standard

GCMπ
k .Enc(N,M) augmented with π.

Theorem 1. Let τ be the parameters of GCM+. Then for any A that runs in
time t and makes at most q encryption queries and q′ decryption queries, where
the total plaintext length is at most σ blocks, the maximum nonce length is at
most �N blocks, and the maximum input length is at most �A blocks, there exists
an adversary A′ against the PRP security of the block cipher E, such that A′

makes at most q + σ queries and runs in time O(t + σ + q�A), and

Advaead
GCM+E,π (A) ≤ Advprp

E (A) +
(σ + q + q′)2

2n+1
+

q′(�A + 1)
2τ

. (8)

Let GCM+E
be the GCM+ scheme built upon a block cipher E, and let

GCM+F
be the idealized GCM+ in which calls to EK is replaced by a truly

random function F. By [18, Eq. (23)] (which is somewhat standard), it holds

Advpriv

GCM+E (A) ≤ Advprp
E (A′) +

(σ + q + q′)2

2n+1
+ Advaead

GCM+F(A). (9)

Then, since nonces N1, . . . , Nq used in the q encryption queries are distinct,
the derived counter block values N1‖2, N1‖3, . . . , Nq‖2, . . . are also distinct, giv-
ing rise to σ distinct random function evaluations. Thus, the produced key stream
blocks F(N1‖2), . . . ,F(Nq‖2), . . . are random and independent. This means the
ciphertexts obtained by XORing these key stream blocks with the message blocks
are truly random, and the outputs of EncK (in the real world) and $ (in the ideal
world) have the same distribution.

To bound the gap between the second oracles DecK and ⊥, we consider
the probability that a query to DecK(N ′, A′, C ′, T ′) returns M ′ 
= ⊥ in the
real world. If so, then it holds msbτ

(
F(N ′‖1) ⊕ GHASHL(A′, C ′)

)
= T ′: this is

essentially the event bad2 defined in [18, Appendix E]. By [18, Eq. (35)], it holds

Pr
[
bad2

] ≤ q′(�A + 1)
2τ

. (10)

Gathering Eq. (9) and (10) yields Eq. (8).



How Fast Can SM4 be in Software? 21

References

1. GM/T 0002-2012: SM4 block cipher algorithm. State Cryptography Administra-
tion of the People’s Republic of China (2012)

2. Tse, R.H., Wong, W.K., Saarinen, M.J.O.: The SM4 blockcipher algorithm and its
modes of operations (2018). https://datatracker.ietf.org/doc/html/draft-ribose-
cfrg-sm4-10. Internet Engineering Task Force (IETF)

3. ISO/IEC 18033-3:2010/AMD1: 2021 Information Technology - Security techniques
- Encryption Algorithms - Part3: Block Ciphers - Amendment1: SM4 (2021).
https://www.iso.org/standard/81564.html

4. Gueron, S.: Intel advanced encryption standard (AES) new instructions set. Intel
White Paper Rev. 3, 1–81 (2010)

5. Intel Corporation: Intel C++ Compiler Classic Developer Guide and Reference.
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

6. Zhang, X., Guo, H., Zhang, X., Wang, C., Liu, J.: Fast software implementation
of SM4. J. Cryptol. Res. 7(6), 799–811 (2020)

7. Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with applica-
tions to cryptology. J. Cryptol. 26(2), 280–312 (2013). https://doi.org/10.1007/
s00145-012-9124-7

8. Lang, H., Zhang, L., Wu, W.: Fast software implementation of SM4. J. Univ. Chin.
Acad. Sci. 35(2), 180 (2018)

9. Zhang, J., Ma, M., Wang, P.: Fast implementation for SM4 cipher algorithm based
on bit-slice technology. In: Qiu, M. (ed.) SmartCom 2018. LNCS, vol. 11344, pp.
104–113. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05755-8 11

10. Liu, F., Ji, W., Hu, L., Ding, J., Lv, S., Pyshkin, A., Weinmann, R.-P.: Analysis
of the SMS4 block cipher. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP
2007. LNCS, vol. 4586, pp. 158–170. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73458-1 13

11. Abbasi, I., Afzal, M.: A compact S-Box design for SMS4 block cipher. IACR Cryp-
tology ePrint Archive, p. 522 (2011). http://eprint.iacr.org/2011/522

12. Saarinen, M.O.: A lightweight ISA extension for AES and SM4. CoRR
abs/2002.07041 (2020). https://arxiv.org/abs/2002.07041

13. Gong, Z., et al.: Parallel implementation of SM4 based on optimized S-box under
tower field. CN 114244496 A, China National Intellectual Property Administration,
CNIPA (2022)

14. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Methods
and Techniques. National Institute of Standards and Technology (2001)

15. Bogdanov, A., Lauridsen, M.M., Tischhauser, E.: AES-based authenticated encryp-
tion modes in parallel high-performance software. IACR Cryptology ePrint
Archive, p. 186 (2014). http://eprint.iacr.org/2014/186

16. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Galois/-
Counter Mode (GCM) and GMAC. National Institute of Standards and Technol-
ogy (2007)

17. McGrew, D.A., Viega, J.: The security and performance of the Galois/counter
mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30556-9 27

18. Iwata, T., Ohashi, K., Minematsu, K.: Breaking and repairing GCM security
proofs. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 31–49. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 3

https://datatracker.ietf.org/doc/html/draft-ribose-cfrg-sm4-10
https://datatracker.ietf.org/doc/html/draft-ribose-cfrg-sm4-10
https://www.iso.org/standard/81564.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://doi.org/10.1007/s00145-012-9124-7
https://doi.org/10.1007/s00145-012-9124-7
https://doi.org/10.1007/978-3-030-05755-8_11
https://doi.org/10.1007/978-3-540-73458-1_13
https://doi.org/10.1007/978-3-540-73458-1_13
http://eprint.iacr.org/2011/522
https://arxiv.org/abs/2002.07041
http://eprint.iacr.org/2014/186
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-642-32009-5_3
https://doi.org/10.1007/978-3-642-32009-5_3


22 X. Miao et al.

19. Niwa, Y., Ohashi, K., Minematsu, K., Iwata, T.: GCM security bounds reconsid-
ered. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 385–407. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5 19

20. Viega, J., McGrew, D.: The use of Galois/counter mode (GCM) in IPsec encapsu-
lating security payload (ESP). Technical report, RFC 4106 (2005)

21. Igoe, K., Solinas, J.: AES Galois counter mode for the secure shell transport layer
protocol. IETF Request for Comments 5647 (2009)

22. Housley, R.: Using AES-CCM and AES-GCM authenticated encryption in the
cryptographic message syntax (CMS). Technical report, RFC 5084 (2007)

23. McGrew, D.: An interface and algorithms for authenticated encryption. Technical
report, RFC 5116 (2008)

24. Gueron, S., Kounavis, M.E.: Intel Carry-Less Multiplication Instruction and its
Usage for Computing the GCM Mode. Intel Corporation (2010)

25. Rebeiro, C., Selvakumar, D., Devi, A.S.L.: Bitslice implementation of AES. In:
Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 203–
212. Springer, Heidelberg (2006). https://doi.org/10.1007/11935070 14

26. Adomnicai, A., Peyrin, T.: Fixslicing AES-like ciphers new bitsliced AES speed
records on arm-cortex M and RISC-V. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2021(1), 402–425 (2021). https://doi.org/10.46586/tches.v2021.i1.402-425

27. Erickson, J., Ding, J., Christensen, C.: Algebraic cryptanalysis of SMS4: Gröbner
basis attack and SAT attack compared. In: Lee, D., Hong, S. (eds.) ICISC 2009.
LNCS, vol. 5984, pp. 73–86. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14423-3 6

28. Canright, D.: A very compact Rijndael S-box. Technical report, Naval Postgraduate
School Monterey, CA Department of Mathematics (2004)

29. Fu, H., Bai, G., Wu, X.: Low-cost hardware implementation of SM4 based on
composite field. In: 2016 IEEE Information Technology, Networking, Electronic
and Automation Control Conference, pp. 260–264 (2016). https://doi.org/10.1109/
ITNEC.2016.7560361

30. Boyar, J., Matthews, P., Peralta, R.: On the shortest linear straight-line program
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Abstract. Lightweight cipher suitable for resource constrained environ-
ment is crucial to the security of applications such as RFID, Internet
of Things, etc. Moreover, in recent years low-latency is becoming more
important and highly desirable by some specific applications which need
instant response and real-time security. In this paper, we propose a new
low-latency block cipher named LLLWBC. Similar to other known low-
latency block ciphers, LLLWBC preserves the important α-reflection prop-
erty, namely the decryption for a key K is equal to encryption with a
key K ⊕ α where α is a fixed constant. However, instead of the normally
used SP-type construction, the core cipher employs a variant of general-
ized Feistel structure called extended GFS. It has 8 branches and employs
byte-wise round function and nibble-wise round permutation iterated for
21 rounds. We choose the round permutations carefully together with a
novel key schedule to guarantee the α-reflection property. This allows
an efficient fully unrolled implementation of LLLWBC in hardware and
the overhead of decryption on top of encryption is negligible. Moreover,
because of the involutory property of extended GFS, the inverse round
function is not needed, which makes it possible to be implemented in
round-based architecture with a competitive area cost. Furthermore, our
security evaluation shows that LLLWBC can achieve enough security mar-
gin within the constraints of security claims. Finally, we evaluate the
hardware and software performances of LLLWBC on various platforms and
a brief comparison with other low-latency ciphers is also presented.

Keywords: Block cipher · Low-latency · Lightweight · Extended GFS

1 Introduction

Lightweight cryptography has drawn a lot of attention since it was proposed
and has become one of the hotspots in symmetric-key cryptography. A vari-
ety of lightweight ciphers aiming at various goals have been proposed in the
last few years. The earliest lightweight block ciphers such as RRESENT [5] and
KATAN [8], mainly focused on hardware implementation performance such as
area cost. Then software-oriented designs such as LBlock [17], TWINE [16] and
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bit-slice cipher RECTANGLE [18] have emerged, which take into account not only
hardware platform but also 8/16/32-bit software platforms. Furthermore, there
are lightweight ciphers capable of serialized implementation such as Piccolo [13]
and SIMON [3], which can achieve ultra lightweight with a very small hardware
footprint compared to the standard round-based implementations but at the cost
of more cycles. On the other hand, lightweight block ciphers aiming at other goals
such as low-latency and low-energy, have also been studied.

Low-latency block cipher is aiming at the need of real-time security. For
some special applications, such as instant authentication, memory encryption,
and automatic drive, low-latency and instant response are highly desirable. For
these cases, the cipher should be optimized for latency and the entire encryp-
tion and decryption should be completed within the shortest delay. Moreover,
for embedded applications where lightweight block ciphers are implemented in
traditional round-based architecture, the needed high clock rates are usually
not supported by the system. Therefore, a fully unrolled implementation which
allows encryption of data within one clock cycle with competitive area costs
will be a possible solution. However, this may be a huge challenge for tradi-
tional lightweight block ciphers, in particular if encryption and decryption should
both be available on a given platform. Several new designs optimized for low-
latency have been proposed recently, including PRINCE [6], MANTIS [4], QARMA [1],
PRINCEv2 [7], Orthros [2], and SPEEDY [11].

PRINCE [6] is the first low-latency block cipher proposed by Borghoff et al.
at ASIACRYPT 2012. It is a 64-bit block cipher with a 128-bit key and its
overall structure is based on the FX construction. Its core cipher is a 12-round
block cipher named PRINCEcore whose round function basically follows the AES
structure and the main difference is symmetric around an involutory linear layer
in the middle. This special construction together with carefully chosen round
constants makes PRINCEcore satisfy an interesting property called α-reflection,
namely the decryption for a key K is equal to encryption with a key K⊕α where
α is a fixed constant. This is the main feature for low-latency design and is crucial
for efficient unrolled implementation. As the first low-latency encryption scheme,
PRINCE has already been deployed in a number of products including LPC55S
of NXP Semiconductors. Recently, Bozilov et al. improved the design of PRINCE
to increase its security with almost no overhead and proposed the version of
PRINCEv2 [7]. The main difference is a new key schedule with a single XOR in the
middle round instead of the unkeyed middle round of PRINCE. Without changing
the number of rounds or round functions they try to improve the security level
and reach the required security claim set by NIST [12].

Inspired by the design of PRINCE, Beierle et al. proposed a low-latency tweak-
able block cipher named MANTIS in [4]. It is a 64-bit block cipher with 128-bit
key and 64-bit tweak. MANTIS basically employs the same structure of PRINCE
together with a suitable tweak-scheduling. It simply replaces the PRINCE-round
function with the MIDORI-round function while keeping the entire design sym-
metric around the middle to keep the α-reflection property. The MIDORI-round
function consists of involutory S-box specially optimized for small area and low
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circuit depth, cell permutation of internal state, and multiplication by a binary
matrix. These choices result in improved latency and security.

Qualcomm company also proposed a low-latency block cipher family called
QARMA [1] which targets at applications such as memory encryption and pointer
authentication. It employs a three-round Even-Mansour scheme instead of the
FX-construction. QARMA supports 64-bit and 128-bit block sizes, where block
and tweak sizes are equal, and key size is twice as long as the block size. The
round function of QARMA is also SP-type construction. Two central rounds use
the whitening key instead of the core key and the middle permutation is non-
involutory and keyed. QARMA only satisfies a property similar to α-reflection where
the central permutation is Pseudo-Reflector which can be inverted by means of
a simple transformation of the key. QARMA is used in the pointer authentication
deployed in the products of ARMv8.3. In these applications, a very short keyed
and tweaked tag of the pointer is computed by truncating QARMA’s output. It
can achieve control flow integrity (CFI) by verifying the tagged pointer before
use for hardware-assisted prevention of software exploitation.

On the other hand, there are also a few schemes which ignore the support of
decryption to achieve ultra low-latency. Orthros [2] is a low-latency pseudoran-
dom function (PRF) proposed by Banik et al. at FSE 2021. It is a 128-bit block
PRF with a 128-bit key. The overall structure is a sum of two parallel SPN-type
keyed permutations. Since it does not support decryption, there is no need to
use involutory components and ultra low-latency S-box can be used. SPEEDY [11]
is another ultra low-latency block cipher family proposed at CHES 2021. It
primarily targets at secure process architectures embedded in high-end CPUs,
where area and energy restrictions are secondary. It achieves ultra low-latency
in single-cycle encryption speed, while the decryption is less efficient.

It is noteworthy that nearly all of the low-latency block ciphers proposed
so far utilize similar structures and preserve the α-reflection property. For the
core cipher they all employ SP-type round function which are relatively complex
compared to traditional lightweight block ciphers. Moreover, a special middle
round and its inverse should also be implemented. Therefore, they only focus
on fully unrolled implementation in hardware. However, this will be un-friendly
and sometimes difficult for round-based hardware implementation and software
implementations on platforms such as 8-bit AVR, etc. Moreover, the number of
rounds for low-latency block cipher should be as small as possible to decrease the
delay, which brings in more risk in the security aspect. For example, there exists
an effective reflection attack [14] on full-round core cipher of PRINCE. In [10]
a practical clustering differential attack on full-round MANTIS5 was reported.
Therefore, new design of low-latency block cipher with enough security margin
against known attacks will be important and desirable. Moreover, in addition to
the fully unrolled hardware implementation optimized for latency, the capability
of being implemented efficiently on various platforms should also be interesting
and valuable.
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Our Contribution. We propose a new low-latency block cipher named LLLWBC.
Its block size is 64-bit and key size is 128-bit. Similar to other known low-latency
block ciphers, LLLWBC preserves the α-reflection property. However, instead of
the normally used SP-type construction, its core cipher employs a variant of
generalized Feistel structure (GFS) which can be called extended GFS. It is
basically a Type-2 GFS with 8 branches, and it employs byte-wise round func-
tion and nibble-wise round permutation which will be iterated for 21 rounds. We
choose the round permutations carefully together with a novel key schedule to
guarantee the α-reflection property. Specifically, LLLWBC consists of odd number
of rounds with a nibble-wise permutation P used in the first half rounds and its
inverse P−1 used in the last half rounds. Moreover, for even rounds, some special
constants are XORed to the subkey so as to construct the α-reflection property.
This allows an efficient fully unrolled implementation of LLLWBC and the over-
head for decryption on top of encryption is negligible. Moreover, because of the
involutory property of extended GFS, the inverse of round function is needless,
which makes LLLWBC can also be implemented in round-based architecture with
competitive area costs. We explicitly state that we do not have security claims
in related-key, known-key and chosen-key models, and the time complexity for
an adversary with 2n data should be less than 2127−n. Our security evaluation
shows that LLLWBC can achieve enough security margin within the constraints of
security claims. Moreover, in the middle round (namely Round-11), the addition
of subkey helps to prevent the reflection attack. The round function and per-
mutations are carefully chosen to achieve a good tradeoff between security and
performance on various platforms (including ASIC, x86/64, 8-bit AVR, etc.). In
the end, we provide detailed implementation results on various platforms and
give a brief comparison with other known low-latency block ciphers.

Organization of the Paper. We present the specification of LLLWBC in Sect. 2.
Design rationales are explained in Sect. 3. We provide a brief security evaluation
of LLLWBC against known attacks in Sect. 4. Implementation results including
hardware and software performances and comparisons with other low-latency
block ciphers are given in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Specification of LLLWBC

LLLWBC is a 64-bit block cipher with a 128-bit key. Its structure is a special kind of
extended GFS and it consists of 21 rounds. The specification of LLLWBC consists
of three parts: key schedule, encryption algorithm, and decryption algorithm.

2.1 Key Schedule

The master key of LLLWBC is 128-bit and it is used to generate two 64-bit whiten-
ing keys and twenty-one 32-bit round subkeys. First of all, the 128-bit master
key K is split into two parts of 64-bit each,

K = kw||ke.
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The pre-whitening key kb
w and post-whitening key ke

w are defined as follows:

kb
w = kw, ke

w = (kw >>> 1) ⊕ (kw � 63)

For the odd rounds r = 1, 3, . . . , 21, the higher 32-bit of ke is used as the
round subkey. While for the even rounds r = 2, 4, . . . , 20, the lower 32-bit of ke

is XORed with some constants ckr to produce the round subkey. The procedure
can be expressed as the following equations.

– Denote ke = K1||K2:
– For r = 1, 3, . . . , 21, kr−1 = K1 ⊕ ckr.
– For r = 2, 4, . . . , 20, kr−1 = K2 ⊕ ckr.

The 32-bit constants ckr = (cr
0||cr

1||cr
2||cr

3) used in LLLWBC are listed in Table 1.
In order to preserve the α-reflection property of LLLWBC, it satisfies that ckr =
ck22−r for (r = 1, 3, . . . , 9) and ckr ⊕ ck22−r = α for (r = 2, 4, . . . , 10). Similar
to the other low-latency block ciphers such as PRINCE, the constants α and
ckr(r = 1, 2, . . . , 11) are derived from the fraction part of π = 3.141 . . . .

Table 1. Constants used in LLLWBC (in hexadecimal).

α = c0ac29b7 ck11 = c97c50dd

ck1 = ck21 = 13198a2e ck2 = 03707344
ck20 = ck2 ⊕ α = c3dc5af3

ck3 = ck19 = a4093822 ck4 = 299f31d0
ck18 = ck4 ⊕ α = e9331867

ck5 = ck17 = 082efa98 ck6 = ec4e6c89
ck16 = ck6 ⊕ α = 2ce2453e

ck7 = ck15 =452821e6 ck8 = 38d01377
ck14 = ck8 ⊕ α = f87c3ac0

ck9 = ck13 =be5466cf ck10 = 34e90c6c
ck12 = ck10 ⊕ α = f44525db

2.2 Encryption Algorithm

The block size and key size of LLLWBC are 64-bit and 128-bit respectively, which
can be denoted as LLLWBC-64/128. First of all, the 64-bit plaintext is XORed
with a 64-bit pre-whitening key kb

w. Then, a special kind of extended generalized
Feistel structure (GFS) is iterated 21 rounds. For the r-th round, the 64-bit input
is split into 16 nibbles and the 32-bit round subkey is split into 4 bytes, and then
after going through a traditional type-2 GFS transformation with round function
F , the 16 nibbles are permuted according to a nibble-wise permutation P to
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produce the round output. Note that as usual the last nibble-wise permutation
in Round-21 is omitted. Moreover, in order to preserve the reflection property,
the nibble-wise permutation P is used in the first 10 rounds and P−1 is used in
the last 10 rounds. At last, a 64-bit post-whitening key ke

w is XORed to get the
ciphertext.

Denote M and C as the 64-bit plaintext and ciphertext, (xr−1
0 ||xr−1

1 ||
. . . ||xr−1

15 ) as the 64-bit round input, and (kr−1
0 ||kr−1

1 ||kr−1
2 ||kr−1

3 ) as the 32-bit
round subkey. The encryption procedure of LLLWBC can be expressed as follows.

1. M ⊕ kb
w = x0

0||x0
1|| . . . ||x0

15.
2. For r = 1, 2, . . . , 10:

xr
0, x

r
1, . . . , x

r
15 = P (xr−1

0 , xr−1
1 , F ((xr−1

0 ||xr−1
1 ) ⊕ kr−1

0 ) ⊕ (xr−1
2 ||xr−1

3 ), . . . ,
xr−1
12 , xr−1

13 , F ((xr−1
12 ||xr−1

13 ) ⊕ kr−1
3 ) ⊕ (xr−1

14 ||xr−1
15 )).

3. For r = 11, 12, . . . , 20:

xr
0, x

r
1, . . . , x

r
15 = P −1(xr−1

0 , xr−1
1 , F ((xr−1

0 ||xr−1
1 ) ⊕ kr−1

0 ) ⊕ (xr−1
2 ||xr−1

3 ), . . . ,
xr−1
12 , xr−1

13 , F ((xr−1
12 ||xr−1

13 ) ⊕ kr−1
3 ) ⊕ (xr−1

14 ||xr−1
15 )).

4. For r = 21:

xr
0, x

r
1, . . . , x

r
15 = xr−1

0 , xr−1
1 , F ((xr−1

0 ||xr−1
1 ) ⊕ kr−1

0 ) ⊕ (xr−1
2 ||xr−1

3 ), . . . ,
xr−1
12 , xr−1

13 , F ((xr−1
12 ||xr−1

13 ) ⊕ kr−1
3 ) ⊕ (xr−1

14 ||xr−1
15 ).

5. C = (x21
0 ||x21

1 || . . . ||x21
15) ⊕ ke

w.

Specifically, the components used in each round are defined as follows.

Round Function F . The non-linear function F operates on 8-bit which consists
of an S-box layer S, a linear layer A and a second S-box layer S. It can be
expressed as the following equation, and Fig. 1 illustrates the structure of round
function F in detail.

F : {0, 1}8 → {0, 1}8
(u0, u1) → S(A(S(u0, u1)))

Fig. 1. Round function F .

The S-box layer S consists of two 4-bit S-boxes s in parallel, and the contents
of 4-bit S-box are listed in Table 2. Note that for a fair comparison, here we apply
the same 4-bit S-box used in PRINCE [6].
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Table 2. Contents of the 4-bit S-box.

u 0 1 2 3 4 5 6 7 8 9 A B C D E F

s(u) B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

The linear layer A consists of matrix multiplication with 2 × 2 MDS matrix
over GF (24), and the irreducible polynomial used is x4 + x + 1. The linear
function can be expressed as the following equation.

A : {0, 1}8 → {0, 1}8

(u0, u1) →
(
0x2 0x3
0x1 0x1

)
·
(

u0
u1

)

Note that the round function F can also be considered as an 8-bit non-linear
S-box. Its contents can be precomputed and stored in a table.

Permutation P . Permute all the 16 nibbles according to the nibble-wise permu-
tation P , and it can be expressed as follows.

P : {0, 1}64 → {0, 1}64
Y = (y0, y1, . . . y15) → Z = (z0, z1, . . . z15)

z0 = y6, z1 = y11, z2 = y0, z3 = y12, z4 = y10, z5 = y7, z6 = y13, z7 = y1,
z8 = y3, z9 = y15, z10 = y4, z11 = y9, z12 = y2, z13 = y14, z14 = y5, z15 = y8.

Inverse Permutation P−1. Permute all the 16 nibbles according to the nibble-
wise permutation P−1, which is the inverse of permutation P . It can also be
expressed as the following equations.

P−1 : {0, 1}64 → {0, 1}64
Z = (z0, z1, . . . z15) → Y = (y0, y1, . . . y15)

y0 = z2, y1 = z7, y2 = z12, y3 = z8, y4 = z10, y5 = z14, y6 = z0, y7 = z5,
y8 = z15, y9 = z11, y10 = z4, y11 = z1, y12 = z3, y13 = z6, y14 = z13, y15 = z9.

2.3 The Decryption Algorithm

From the fact that LLLWBC employs a novel construction of extended GFS with
permutations P , P−1 and the special subkey settings, we can deduce that LLLWBC
satisfies the α-reflection property. Namely, the decryption algorithm parameter-
ized with (kb

w||K1||K2||ke
w) is equal to the encryption algorithm parameterized

with (ke
w||K1||K2 ⊕ α||kb

w), which can be expressed as the following equation.

D(kb
w||K1||K2||ke

w)(·) = E(ke
w||K1||K2⊕α||kb

w)(·)

where α is the 32-bit constant α = C0 AC 29 B7. Thus, decryption only has to
change the master key slightly and reuse the exact same encryption algorithm.
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3 Design Rationale

3.1 Cipher Structure

LLLWBC employs a special kind of extended generalized Feistel structure (GFS).
Usually in the standard Type-2 GFS structure with k branches, a single round
can be described as the following equation:

GFS: (Xr+1
0 , . . . , Xr+1

k−1) = F (Xr
0 ) ⊕ Xr

1 ,Xr
2 , . . . , F (Xr

k−2) ⊕ Xr
k−1,X

r
0

where F is a non-linear function applied on even-number branches.
Later in FSE 2010, Suzaki et al. [15] proposed a kind of improved GFS. Their

main idea was to replace the cyclic shift of branches with a different permutation,
which could improve the diffusion and security strength efficiently. A single round
of improved GFS can be described as the following equation:

GFSimp : (Xi+1
0 , . . . , Xi+1

k−1) = π(Xi
0, F (Xi

0) ⊕ Xi
1, . . . , X

i
k−2, F (Xi

k−2) ⊕ Xi
k−1)

where π : ({0, 1}t)k → ({0, 1}t)k is a deterministic permutation, i.e., a shuffle of
k branches and each branch t-bit (corresponding to the size of round function F ).
Furthermore, their analysis showed that optimum permutation had the property
that any even-number input branch should be mapped to an odd-number output
branch, and vice versa, which they referred as even-odd permutation.

Extended GFS Structure. Notice that in the analysis of these structures,
the round function F is usually considered as a whole and its internal property
is ignored. Then it is a direct idea to propose an extended GFS structure with
permutation operating on smaller unit, which can further enhance the diffusion
effect and obtain more accurate security evaluation by utilizing the internal
property of round function F . For the extended GFS structure used in LLLWBC,
a single round can be described as the following equation:

(xr+1
0 , xr+1

1 , . . . , xr+1
15 ) = P (xr

0, x
r
1, . . . , F (xr

12||xr
13) ⊕ (xr

14||xr
15))

where P is a permutation applied on 4-bit nibbles and F is a non-linear function
applied on 8-bit bytes. The sizes of F and P are carefully chosen so as to achieve
good tradeoff between security and implementation costs on various platforms
(including ASIC, x86/64, 8-bit AVR, etc.).

Permutation Choices. The choice of nibble-wise permutation P is essen-
tial for the security of extended GFS structure used in LLLWBC. In this
part we explain several criterions of the permutation choices. First of all,
following the observation of even-odd shuffle in [15], we also restrict the
permutation P to be an active-passive shuffle, namely it maps an active
input nibble to a passive output nibble and vice versa, where active nib-
ble means a nibble going through F and passive nibble means the oppo-
site case. This can make sure that every nibble will go through F once in
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two rounds. Secondly, divide the input nibbles into four groups as follows
(x0, x1, x2, x3)||(x4, x5, x6, x7)||(x8, x9, x10, x11)||(x12, x13, x14, x15), and the per-
mutation P satisfies that it maps four nibbles from one group into four different
groups respectively. Thirdly, the permutation P should achieve best full dif-
fusion, namely each output bit is influenced by all the input bits in shortest
rounds. We have searched all the possible permutations and obtained 1609728
candidates satisfying all the above requirements. On this basis, we further fil-
ter the candidate permutations based on the minimum number of active F in
truncated differential/linear characteristics using MILP method. The nibble-wise
permutation P used is one of the optimal permutations we found.

At last, we give a brief comparison of extended GFS with improved GFS
and Type-2 GFS structures. For the sake of fairness, all the structures are under
the same parameters of 8-branch GFS and 8-bit round function F . In Table 3,
we list the security evaluation results including full diffusion round (DRmax),
minimum number of active F for 20-round differential and linear trails (AFD

and AFL), and the impossible differential and integral distinguishers (IDC and
SC). We can see that extended GFS tends to achieve better diffusion and security
appearances with a carefully chosen F (S ◦MDS◦S) at the expense of more costs.

Table 3. Comparison of security evaluation results.

GFS with k = 8 branches Source DRmax AFD AFL IDC SC

Type-2 GFS [19] 8 27 27 17 16
Improved GFS (No.1∗) [15] 6 30 30 11 11
Improved GFS (No.2+) [15] 6 26 26 10 11
Extended GFS This paper 5 32 32 9 8

∗: sub-block-wise shuffle τ = (3, 0, 1, 4, 7, 2, 5, 6)
+: sub-block-wise shuffle τ = (3, 0, 7, 4, 5, 6, 1, 2)

Moreover, in the implementation aspect, extended GFS shares the advan-
tages of GFS-type structure. For example, the same procedure can be used in
both encryption and decryption and there is no need to implement the inverse
round function F−1. The round function F is applied on small branch which
is much easier to construct and cheaper to implement. Based on the active-
passive property of nibble-wise permutation P , we can separate the active and
passive nibbles to left and right half branches respectively, and get an equiva-
lent structure which can be implemented efficiently in software. Furthermore, in
order to preserve the α-reflection property of LLLWBC, we employ permutations
P and P−1 instead of an involutory permutation which can not achieve optimal
diffusion and security properties.
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3.2 Round Function F

The round function F can be considered as an 8-bit non-linear S-box constructed
by SPS structure. It consists of an S-box layer S, a linear layer A and a second
S-box layer S. The S-box layer consists of two 4-bit S-boxes s in parallel and the
linear layer A consists of matrix multiplication with a 2 × 2 MDS matrix over
GF (24). This is a commonly used method to generate 8-bit S-box with smaller
4-bit S-boxes, which can achieve good cryptographic properties and relatively
low implementation costs.

The 4-Bit S-Box. Since two layers of 4-bit S-boxes are used in round function
F , its area and critical path is a substantial part of the overall cost. However, as
the cost of an S-box depends on various parameters, such as the technology, the
synthesis tool, and the library used, it is very difficult to construct an optimal
4-bit S-box for all environments. Therefore, for a fair comparison, we apply the
same 4-bit S-box used in PRINCE, which can achieve low-latency and small area
cost. It also fulfills the optimal cryptographic properties such that its maximal
differential probability is 1/4 and its maximal absolute linear bias is 1/4.

Linear Layer A. For the matrix multiplication in linear layer A, the 2×2 MDS
matrix is carefully chosen so that its elements can be implemented efficiently
by SHIFT and XOR operations. Moreover, the MDS matrix guarantees that the
nibble-wise branch number of round function F is 3, namely except the zero
difference there should be at least 3 non-zero nibbles for the input and output
differences of F . This is crucial for the security analysis. Based on this prop-
erty, the lower bound for minimum number of active F in nibble-wise truncated
differential/linear characteristics can be improved significantly.

Overall speaking, the round function F provides a good tradeoff between
security and implementation cost. It can be considered as an 8-bit S-box with
maximal differential probability of 14/256 ≈ 2−4.2, maximal absolute linear bias
of 2−4, algebraic degree of 6, and nibble-wise branch number of 3. In the imple-
mentation aspect, it can be decomposed to smaller 4-bit S-boxes based on the
SPS construction. All the components can be implemented efficiently in hard-
ware and in software the SIMD Vector Permutation Instruction ((v)pshufb)
can be directly applied. It can also be precomputed and stored as an 8-bit S-box
for 8-bit AVR implementation. Moreover, LLLWBC employs a kind of GFS-type
structure where its inverse function F−1 is not needed.

3.3 Key Schedule

The key schedule of LLLWBC should be carefully designed in order to satisfy the α-
reflection property. Similar to other low-latency ciphers such as PRINCE, MANTIS
and QARMA, we simply employ the same method to generate the whitening keys
used outside the core function. For round subkeys used in the core function,
we alternately choose the upper and lower half of the 64-bit key K1||K2 in odd
and even rounds. Since LLLWBC utilizes an extended GFS structure with odd
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number of rounds (resp. 21 rounds), together with a nibble-wise permutation P
used in the first half rounds and P−1 used in the last half rounds, it can pre-
serve the encryption and decryption symmetry property completely. Moreover,
for even rounds, some special constants ckr are XORed to the subkey K2 so as to
construct the α-reflection property. According to the construction of constants
ckr defined in Sect. 2.1, it can be seen that for the core function the decryp-
tion parameterized with (K1||K2) is equal to the encryption parameterized with
(K1||K2 ⊕ α). Moreover, for the middle round (namely Round-11), the addi-
tion of subkey K1 serves to prevent the reflection attacks which are particularly
efficient against PRINCE-like ciphers [14].

From the aspect of implementation, the simple key schedule of LLLWBC is
particularly beneficial to unified Enc and Dec circuits, because additional hard-
ware is not required to construct the inverse key schedule. Moreover, the order
of upper/lower half of keys used in successive rounds is exactly the same for
encryption and decryption, thus no additional overhead is needed to implement
decryption alongside the encryption. In addition, all the subkeys are directly
obtained from the master key requiring no additional register to store and update
the key, which is costly in terms of area and energy consumption.

4 Security Analysis

4.1 Differential Cryptanalysis

For differential cryptanalysis, the minimum number of active S-boxes for the
differential trail is usually used to evaluate the security against differential attack.
For LLLWBC, the round function F can be considered as an 8-bit S-box. Moreover,
considering the extended GFS structure of LLLWBC, the non-linear round function
F operates on 8-bit while the nibble-wise permutation P operates on 4-bit.
Therefore, we have to search the minimum number of active F for the nibble-
wise truncated differential characteristics.

In order to model the truncated differential characteristic more concisely, we
analyze the difference propagation property of F . Based on the construction of
F specified in Sect. 2.2, the linear layer A employs an MDS matrix whose branch
number is 3. Therefore, if the input difference of F is non-zero, there should be
at least 3 nibbles with non-zero difference for the input and output of F . Table 4
illustrates this propagation property in detail, where ‘0’ denotes zero difference
nibble and ‘1’ denotes non-zero difference nibble.

In our nibble-wise truncated differential characteristics search program the
above property is utilized. We have searched the lower bound of the number
of active F with an MILP-aided search method. Table 5 shows the minimum
number of active F (denoted as AFD) for up to 21 rounds in the single-key
setting. It can be observed that LLLWBC has more than 16 active F after 11
rounds. Since the maximum differential probability of F is 14/256 ≈ 2−4.2,
then the maximum probability of differential characteristics satisfies DCP 11r

max ≤
216×(−4.2) = 2−67.2.
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Table 4. Difference propagation property of round function F .

Input difference (ΔX0, ΔX1) Output difference (ΔY0, ΔY1)

(0, 0) (0, 0)
(0, 1) (1, 1)
(1, 0) (1, 1)
(1, 1) (0, 1), (1, 0), (1, 1)

Table 5. The minimum number of active F for the differential trail.

Rounds AFD Rounds AFD Rounds AFD

1 0 8 12 15 23
2 1 9 13 16 25
3 2 10 14 17 27
4 4 11 16 18 29
5 6 12 18 19 30
6 8 13 20 20 32
7 10 14 22 21 33

Moreover, since LLLWBC employs permutation P in the first 10 rounds and
P−1 in the last 10 Rounds, we have also searched reduced rounds of LLLWBC
starting from middle round with different combinations of permutations P and
P−1. Results of the minimum number of active F for all kinds of reduced 11-
round LLLWBC are listed in Table 6. It can be seen that there are at least 16 active
F and hence there is no useful differential characteristic for more than 11-round
LLLWBC. Considering that LLLWBC requires 5-round to achieve full diffusion, we
expect that there is no effective key-recovery attack and the full 21-round LLLWBC
is secure against differential cryptanalysis.

4.2 Linear Cryptanalysis

Similar to the differential cryptanalysis, we have also evaluated the minimum
number of active F by searching for nibble-wise truncated linear characteristics
using MILP method. The linear approximation propagation property also holds
for round function F , namely if the input linear mask of F is non-zero, there
should be at least 3 nibbles with non-zero linear mask. The results show that the
minimum number of active F are exactly the same for the linear and differential
trails, and hence for all kinds of reduced rounds of LLLWBC there are at least 16
active F for the linear trail after 11 rounds. Since the maximum linear bias of F
is 2−4, the maximum bias of linear approximations for 11-round LLLWBC satisfies
LCP 11r

max ≤ 216×(−4) = 2−64. As a result, there is no useful linear characteristic
for more than 11-round and we expect that the full 21-round LLLWBC is secure
against linear cryptanalysis.
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Table 6. The minimum number of active F for all kinds of 11-round LLLWBC.

Starting round # of P # of P −1 AFD

1 10 – 16
2 9 1 16
3 8 2 16
4 7 3 17
5 6 4 17
6 5 5 17
7 4 6 17
8 3 7 17
9 2 8 16
10 1 9 16
11 – 10 16

4.3 Impossible Differential Cryptanalysis

Impossible differential cryptanalysis is one of the most powerful techniques and
its key point is to find an impossible differential distinguisher as long as possible.
We have searched the longest impossible differential distinguisher of LLLWBC
using MILP method. Specifically, we evaluate the search space such that the
input difference and output difference are active only in one nibble, respectively.
As a result, we find the best impossible differential distinguisher can reach up
to 9 rounds and there are 14 different distinguishers. Take the following 9-round
impossible differential as example, where zero difference is denoted as ‘0’, non-
zero difference as ‘∗’ and unknown difference as ‘?’.

(0, 0, ∗, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) → (∗, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Choose the input difference ΔX0 as (0, 0, ∗, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
with only the third nibble is active. Then after 4-round encryptions
the output difference ΔX4 should be (?, ?, 0, 0, ?, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 0, ∗)
with probability 1. On the other hand, set the output difference as
(∗, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), and then after 4-round decryptions the out-
put difference of P−1(ΔX5) should be (∗, ?, 0, 0, ∗, ∗, 0, ∗, ∗, ∗, ∗, ∗, ?, ?, ∗, ∗) with
probability 1. Therefore, considering the first F in Round-5, there is a contra-
diction since its input difference is non-zero and its output difference is zero.

Similarly, since LLLWBC employs permutation P in the first 10 rounds and
P−1 in the last 10 Rounds, we have also evaluated reduced rounds of LLLWBC
starting from middle round with different combinations of P and P−1. The
best impossible differential distinguishers found are all 9-round. Therefore, con-
sidering that LLLWBC requires 5 rounds to achieve full diffusion, based on the
above 9-round impossible differential distinguisher we expect that an effective
key-recovery attack cannot reach up to full 21-round.
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4.4 Integral Attack

Since LLLWBC is a nibble oriented block cipher, integral attack may also be one
of the most powerful cryptanalytic methods. We define the notations of four
integral states as follows: for a set of 2n n-bit cell, C denoting a constant set (if
∀i, j, i 
= j ⇔ xi = xj), A denoting an active set (if ∀i, j, i 
= j ⇔ xi 
= xj), B
denoting a balance set (⊕2n−1

i xi = 0), and U denoting the other cases. Note that
the integral attack was further generalized to the division property by Todo,
which can exploit some hidden features and find better integral distinguisher
especially for ciphers with low algebraic degree. Considering that LLLWBC employs
an 8-bit non-linear round function F with algebraic degree of 6, the division
property search may be consuming and achieving limited benefit. Therefore, we
search the traditional nibble-based integral property to evaluate the security of
LLLWBC against integral attack roughly.

The nibble-based integral property propagation of LLLWBC are as follows.

C ⊕ S = S, A ⊕ A = B, A ⊕ B = B, B ⊕ B = B, U ⊕ S = U,

F (C||C) = C||C, F (C||A) = A||A, F (A||C) = A||A,
F (A||A) = U||U, F (B||S) = U||U, F (U||S) = U||U

where S denotes an arbitrary state. In this way, we give an 8-round integral
distinguisher (CAAAACAACAAAAAAA) −→ (UUBUUUBBUUBBUUBU). Namely, the set of
plaintexts are chosen to be C in j = (0, 5, 8)-th nibble and A in all the other
nibbles. Then after 8-round encryption, the set of ciphertexts should be B in
j = (2, 6, 7, 10, 11, 14)-th nibble. Similarly, by traversing the positions of C in
plaintexts, we can obtain other 8-round integral distinguisher and there are 16
different distinguishers in all.

Moreover, we have also evaluated reduced rounds of LLLWBC starting from
middle round with different combinations of P and P−1. The best integral dis-
tinguishers found are all 8-round. Therefore, considering that LLLWBC requires 5
rounds to achieve full diffusion, based on the above 8-round integral distinguisher
we expect that a key-recovery attack cannot reach up to full 21-round.

4.5 Meet-in-the-Middle Attack

We evaluate the security of LLLWBC against δ-set meet-in-the-middle attack and
the best distinguisher found is 6-round. Denote the input of j-th nibble as
xr

j(j = 0, 1, . . . , 15) and the input of k-th round function F as yr
k(k = 0, 1, . . . , 3)

for the r-th round. Choose a set of plaintexts active at nibble x0
3, namely the

δ-set contains 16 plaintexts (M [0],M [1], . . . ,M [15]) which traverse all the pos-
sible values at nibble x0

3 and stay constants at all the other nibbles. Then after 6
rounds encryption, the difference sequence of the output sets at nibble x6

2 can be
fully determined by 6 bytes (y1

2 [0], y
2
0 [0], y

2
1 [0], y

3
1 [0], y

3
2 [0], y

4
1 [0]). It means that

there are 248 possible values of (x6
2[0] ⊕ x6

2[1], x
6
2[0] ⊕ x6

2[2], ..., x
6
2[0] ⊕ x6

2[15]),
while for the random case there should be 260 possible values. Therefore, we
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can construct a 6-round δ-set meet-in-the-middle distinguisher with filter prob-
ability of 2−12. Based on this distinguisher, we can mount at most an 11-round
meet-in-the-middle attack by adding two rounds before and three rounds after
the distinguisher. Hence we can expect that the full 21-round LLLWBC is secure
against meet-in-the-middle attack.

4.6 Other Attacks

Similar to other low-latency ciphers, we do not have security claims in related-
key or known-key and chosen-key models. Therefore, related-key attacks should
be out of consideration. Since differential attack seems to be the most effective
technique according to the above evaluation results, we also evaluate some vari-
ants of differential attack such as boomerang attack. The result shows that the
best boomerang distinguisher for LLLWBC should not exceed 10 rounds. At last,
for the reflection attack, the main step is to find some fix points of the unkeyed
central rounds. In the design of LLLWBC, extended GFS structure with special
round permutations together with a novel key schedule are used to guarantee the
α-reflection property, meanwhile the middle round also contains a round subkey
addition. The keyed middle round helps to prevent this type of reflection attack
because of the difficulty to find fix points and the impossibility to control the
self-differentials when round subkey used in middle round is unknown.

5 Implementations

5.1 Hardware Implementation

Similar to other low-latency block ciphers, the fully unrolled hardware imple-
mentation performance should be considered as a major result. We use Xilinx
ISE 14.7 for simulation and Synopsys Design Compiler for synthesis. The per-
formance of LLLWBC in ENC/DEC mode has been synthesized in NanGate 45 nm
Open Cell Library technology. The unrolled implementation of LLLWBC is a direct
mapping to hardware based on the specification in Sect. 2.

The performance results of LLLWBC together with other low-latency block
ciphers are listed in Table 7. All the ciphers are analyzed in ENC/DEC mode and
the results of PRINCE, MANTIS and QARMA are provided by previous works. Obvi-
ously, the comparison is difficult since gate count and delay parameters are
heavily technology dependent.

On the other hand, we also analyze the traditional round-based hardware
implementation of LLLWBC and the performance results are listed in Table 8. We
compare the results with available existing designs with the same parameter.
Note that in the round-based version of PRINCE, symmetry around the middle
should be kept and rounds are added in an inside-out fashion, i.e. its inverse is
also added.
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Table 7. Performance results of fully unrolled version of LLLWBC and other ciphers.

Cipher Technology Latency(ns) Area(GE) Source

LLLWBC NanGate 45 nm Generic 11.76 8226.85 This paper
PRINCE NanGate 45 nm Generic – 8263 [6]
MANTIS7 UMC L180 0.18 μm 1P6M 20.50 11209 [4]
QARMA7 FinFet 7 nm 6.04 17109 [1]

Table 8. Performance results of round-based version of LLLWBC and PRINCE.

Cipher Technology Latency(ns) Area(GE) Source

LLLWBC NanGate 45 nm Generic 0.64 1024.10 This paper
PRINCE NanGate 45 nm Generic – 3779 [6]

5.2 Software Implementation

On High-End Processors. LLLWBC can be implemented efficiently by the
Single Instruction Multiple Data (SIMD) instruction commonly provided on
modern high-end processors. For example, Intel and AMD CPUs both provide
SSE/AVX2 instruction sets, which can support 128/256-bit registers and corre-
sponding instructions. Specifically, the SIMD instruction Vector Permutation
Instruction (VPI) (named (v)pshufb for Intel CPUs) can perform a vector
permutation providing a look-up table representation of the permutation off-
sets. Therefore, both the 4-bit S-box and the nibble-wise permutations used in
LLLWBC can be implemented directly using (v)pshufb instruction. Moreover, for
the matrix multiplication used in the linear layer, the multiplication by 0 × 2
over GF (24) can be pre-computed as a 4-bit look-up table and implemented by
the (v)pshufb instruction too. Therefore, LLLWBC can be implemented efficiently
in software by using only a few (v)pxor and (v)pshufb instructions.

We explain the software implementation of LLLWBC briefly as follows. First
of all, an equivalent structure of LLLWBC is introduced. The input is rearranged
into two branches, and the even (resp. odd) bytes are separated to the left (resp.
right) half branch. Accordingly, the nibble-wise permutations P and P−1 are
transformed into nibble-wise permutations PL, PR, PL−1 and PR−1 operating
on left and right branches respectively. The contents of the equivalent nibble-wise
permutations are listed in Table 9. The left (resp. right) branch is stored within
one 128/256-bit register separately. Because of the byte-orientate character of
the (v)pshufb instruction, in each byte of the register, only the lower 4 bits are
used. Therefore, the plaintext and ciphertext should be packed and unpacked
accordingly. Moreover, in order to make full use of the 128/256-bit register, for
some parallelizable operating modes such as ECB and CTR, we can process double
and even quadruple blocks in parallel using SSE/AVX2 instructions so as to
achieve more performance benefit.
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Table 9. Nibble-wise permutations used in equivalent structure of LLLWBC.

{0, 1}32 → {0, 1}32 : (y0, y1, . . . y7) → (z0, z1, . . . z7)

PL z0 = y0, z1 = y6, z2 = y7, z3 = y1, z4 = y2, z5 = y5, z6 = y3, z7 = y4

PR z0 = y2, z1 = y5, z2 = y4, z3 = y3, z4 = y1, z5 = y7, z6 = y0, z7 = y6

PL−1 z0 = y0, z1 = y3, z2 = y4, z3 = y6, z4 = y7, z5 = y5, z6 = y1, z7 = y2

PR−1 z0 = y6, z1 = y4, z2 = y0, z3 = y3, z4 = y2, z5 = y1, z6 = y7, z7 = y5

We evaluate the software performance of LLLWBC on Intel Core I7-10700
CPU@2.90GHz, 16.0 GB RAM, Windows 7 Pro 64-bit. We test the average
encryption time (ENC) and decryption time (DEC) using 10000 samples of mes-
sages of a particular length in ECB mode. We present the benchmark results of our
performance evaluation of LLLWBC with various length of messages in Table 10.

Table 10. Software performance of LLLWBC with various message length (Cycles/Byte).

|M| (Bytes) 2-block parallel SSE 4-block parallel AVX2
Enc Dec Enc Dec

32 10.44 10.99 5.93 7.24
64 9.89 10.10 5.37 5.97
128 9.15 9.26 5.02 5.36
256 9.02 9.11 4.86 5.02
512 8.81 8.92 4.79 4.86
1024 8.76 8.81 4.70 4.73
2048 8.73 8.74 4.64 4.66
4096 8.65 8.66 4.60 4.61

On 8-Bit AVR Microcontrollers. We also evaluate the performances of
LLLWBC on Atmel 8-bit AVR. Our test settings are similar to the commonly
used benchmarking framework FELICS [9]. The target device is ATmega128
and the scenario is encryption/decryption of 128 bytes of data in CBC mode.
The implementations are written in assembly and compiled in Atmel Studio 6.2.
The performance results include code size (ROM), RAM usage (RAM), execution
time (Cycles) and the speed (Cycles/Byte) of ENC (encryption including key
schedule), DEC (decryption including key schedule) and ENC+DEC (encryption and
decryption including key schedule).

The implementations can be directly obtained according to the cipher spec-
ification in Sect. 2. Note that, we can pre-compute and store the round function
F as an 8-bit S-box to reduce the execution time significantly. For the nibble-
wise permutation, it can be implemented efficiently by the assembly instructions
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swap and andi. For the low-latency design rationale, we first evaluate the fully
unrolled implementation of LLLWBC. Then, in order to trade-off between ROM
and Cycles, we evaluate a two-round unrolled implementation which consists of
odd-round and even-round. We compare the differences introduced by storing
the look-up table of 8-bit round function F and constants in RAM or ROM. We have
analyzed different trade-offs between ROM/RAM/Cycles, and Table 11 summarizes
the results in detail.

Table 11. Software performance results of LLLWBC on 8-bit AVR.

Unroll Features Function ROM
(Bytes)

RAM
(Bytes)

Time
(Cycles)

Speed
(C/B)

Fully
unrolled

8-bit Sbox
and Const.
in ROM

ENC 1820 0 34112 266.50
DEC 1864 0 34544 269.88
ENC+DEC 1990 0 68656 536.38

Fully
unrolled

8-bit Sbox
and Const.
in RAM

ENC 1520 320 32286 252.23
DEC 1564 320 32714 255.58
ENC+DEC 1690 320 65000 507.81

Two-
round

8-bit Sbox
and Const.
in ROM

ENC 1034 0 39812 311.03
DEC 1058 0 40224 314.25
ENC+DEC 1188 0 80036 625.28

Two-
round

8-bit Sbox
and Const.
in RAM

ENC 650 320 37102 289.86
DEC 674 320 37531 293.21
ENC+DEC 804 320 74633 583.07

Moreover, we compare the representative performance results of LLLWBC with
other low-latency block ciphers in Table 12. Available performance results of
PRINCE are from https://www.cryptolux.org/index.php/FELICS. Note that the
RAM required for storing the data to be processed, the master key, and the ini-
tialization vector are subtracted for consistence.

Table 12. Comparisons with other low-latency block cipher on 8-bit AVR.

Cipher Function ROM
(Bytes)

RAM
(Bytes)

Time
(Cycles)

LLLWBC ENC+DEC 1990 0 68656
LLLWBC ENC+DEC 1690 320 65000
PRINCE ENC+DEC 1930 205 300799

https://www.cryptolux.org/index.php/FELICS
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6 Conclusion

We have introduced a new low-latency block cipher called LLLWBC, whose block
size is 64-bit and key size is 128-bit. LLLWBC employs a variant of generalized
Feistel structure called extended GFS. It utilizes byte-wise round function and
nibble-wise round permutations. The round permutations are carefully chosen
together with a novel key schedule so as to satisfy the α-reflection property.
The keyed middle round helps to prevent the reflection attack. A brief security
evaluation of the cipher has been provided and we believe it can achieve enough
security margin with the recommended number of rounds under the constraints
of security claim. LLLWBC can achieve good performances on various platforms.
Results show that LLLWBC is not only competitive in fully unrolled low-latency
implementation, but also it can be implemented efficiently in traditional round-
based architecture with a relatively small area. The software performances of
LLLWBC on 8-bit microcontrollers and high-end processors are both very efficient.
Moreover, the overhead for decryption on top of encryption is negligible.
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Appendix

Test vectors of LLLWBC (in hexadecimal).

– Plaintext: 01 23 45 67 89 ab cd ef
– Key: 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
– Ciphertext: 4d ac 97 75 8b 96 f3 83
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Abstract. Impossible differential cryptanalysis is a powerful tool for
analyzing the security of symmetric-key primitives. At first, the attacker
must finds some impossible differentials as long as possible. There are
many tools to automatically search for the longest impossible differen-
tials. In all of these search tools, the input and output differences are fixed
before searching, which leads to some limitations. The first limitation is
that the number of impossible differentials that can be found is very
small. The second limitation is that the existing tools are ineffective in
searching for truncated impossible differentials. For some symmetric-key
primitives, these tools can only find short round truncated impossible
differentials, and for others they can’t even find truncated impossible
differentials. As we all know, the number of impossible differentials is
also very important because it can improve the data complexity and
time complexity of impossible differential cryptanalysis in some cases. In
addition, using truncated impossible differentials can usually get better
results when impossible differentials are of the same length. In this paper,
we propose a new automatic search tool that can overcome the above
two limitations. The tool can not only find a large number of impossi-
ble differentials in a short time, but also can get truncated impossible
differentials of bit-level primitives. It uses undisturbed differential bits,
that is, the differential bits with probability 1 in differential propagation,
and is based on mixed-integer linear programming (MILP) and meet-in-
the-middle technology. We applied the tool to ASCON, SIMON, LBlock
and LEA. For each of the four primitives, we found many new impos-
sible differentials. For SIMON and LBlock, we found some related-key
impossible differentials longer than the best-known results.

Keywords: Impossible differential · Undisturbed bits · MILP ·
ASCON · SIMON · LEA · LBlock · Automatic search tool

1 Introduction

Impossible differential cryptanalysis was first independently introduced by
Biham et al. [6] to attack Skipjack and Knudsen [15] to attack DEAL. As a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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variant of differential analysis, impossible differential cryptanalysis is not to use
the differentials that occur in high probability but to use the differentials never
occur. So one can use impossible differentials to discard some wrong keys because
the differentials never occur under the right key. In impossible differential crypt-
analysis, the first step is to find some impossible differentials as long as possible,
and then use a sieving method to filter some wrong keys.

There are many tools to automatically search for impossible differentials,
such as μ-Method [14], UID-Method [13] and WW-Method [24]. The above three
search tools can only be used to search for truncated impossible differentials. Any
input and output difference pairs of S-boxes are assumed to be possible in the
search tools. This leads to the fact that some impossible differences are possible
under these tools, so that the searched impossible differentials may be shorter
than they actually are. To overcome the above limitations, Sasaki et al. [18] and
Cui et al. [10] independently proposed a new tool based on the mixed-integer
linear programmer(MILP) for searching for impossible differentials, it can be
used to search for bit-level impossible differentials. The tool uses a MILP model
to characterize the differential propagation of linear layer and S-boxes at the bit
level, so longer impossible differentials can be found.

In the search tool of Sasaki et al. and Cui et al. [10,18], they firstly model
the differential propagation of a symmetric-key primitive, then fix the values of
input and output difference pair and then solve the model to test wether the
given input-output difference pair is an impossible differential. In theory, if we
can traverse all input-output difference pairs, we can find the longest impossible
differential that exists in a symmetric-key primitive. However, this is not possible
because it means that we need to solve 22n models, where n is the block size of the
cipher. This is a very huge number, so we can only traverse a few input-output
difference pairs. This leads to the following limitations.

The first limitation is that the number of impossible differentials that can be
searched is very small. The number of impossible differentials can significantly
improve impossible differential cryptanalysis in some cases. Take the impossible
differential cryptanalysis [2] of SIMON as an example, the time complexity and
data complexity of the attack are both inversely proportional to the number of
impossible differentials, or as in paper [9], multiple impossible differentials can be
used to reduce the amount of plaintext required. The second limitation is that the
truncated impossible differentials found by this tool are short, or the tool cannot
be used to search for truncated differentials for some symmetric primitives. Using
truncated impossible differentials can usually get a better attack result since the
probability of a plaintext(ciphertext) pair propagating to a truncated impossible
differential is usually higher than that of a non-truncated impossible differential.
Furthermore, in the search tools [10,18,24], it is hard to know whether it is the
model’s error or if there really is an impossible differential when the model is
infeasible. It will take a lot of effort to verify.

For the related-key setting, searching for impossible differentials is more com-
plex and time-consuming. Under the single-key setting, the difference of the key
is set to zero, so we don’t need to consider the key schedule. Under the related-
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key setting, we need to consider the key schedule, and the input and output
difference space of traversal will also become larger. Generally, only a single
active bit of input and output difference can be traversed. Also, if the key sched-
ule is too complex, then the search time will become infeasible. As in searching
for related-key impossible differentials of SIMON, Kondo et al. [16] concluded
that the tool [18] did not stop even for 13 rounds to search for the related-key
impossible differentials of SIMON32/64.

To overcome the above limitations, inspired by meet-in-the-middle technol-
ogy, we propose a new tool to search for impossible differentials. This tool
uses the MILP model to characterize the differential propagation with prob-
ability 1 of cipher primitives. The model of such differential propagation will be
much simpler and the search efficiency will be much higher. Compared with the
tool [10,18], a large number of impossible differentials can be searched in a short
time and truncated impossible differentials of the bit-level cipher primitives can
be searched by our tool.

Our Contributions. In the search of impossible differentials, meet-in-the-
middle technology is one of the most important method. Many impossible dif-
ferentials are found by this method. Based on the technology, we propose a new
impossible differential search tool by characterizing the undisturbed differential
bits in differential propagation with the MILP model in this paper. We first
introduce in detail how to use the MILP model to characterize the propagation
of undisturbed differential bits of XOR, S-box, modular addition and other oper-
ations. Then we use the tool to search for impossible differentials of ASCON [11],
SIMON [4], LBlock [25] and LEA [12]. Our works are summarized as follows:

– For ASCON. In the paper [21], Tezcan et al. found 263 5-round impossible
differentials of ASCON. However, we found that the impossible differentials
they found are actually wrong. In this paper, we found 2161 new 5-round
impossible differentials by using our tool.

– For SIMON. The current longest impossible differentials of SIMON32/48/
64 /96/128 are 11, 12, 13, 16 and 19 rounds, respectively. Only a few impos-
sible differentials can be found with tool [10,18]. Using our tool, although no
longer impossible differentials were found, we found a lot of new impossible
differentials and truncated impossible differentials. For the search of related-
key settings, the best results at present are only the search of SIMON32/64
and SIMON48/96 [23]. It is very difficult to search for large versions. Using
our tool, we found some new longer related-key impossible differentials of
SIMON48/96, SIMON64/128 and SIMON128/256.

– For LBlock. In [10], Cui et al. found six 16-round related-key impossible
differentials. Using our tool, we found a 17-round related-key impossible dif-
ferential. This new related-key impossible differential holds on 2−2 key space.

– For LEA. The longest impossible differential is 10 rounds, which was found
in [10] by Cui et al. They found only one impossible differential using the
tool [10,18], we found six new 10-round impossible differentials using our
tool.

All the search results obtained by our tool are shown in Table 1:
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Paper Outline. In Sect. 2, we firstly detail how to characterize the propagation
of undisturbed differential bits for operations such as XOR, S-box, AND, and
modulo addition, and then introduce the framework of our tool to search for
impossible differentials. In Sect. 3, we apply our tool to search for impossible
differentials and related-key impossible differentials of four symmetric-key prim-
itives ASCON, SIMON, LBlock and LEA. In Sect. 4, we conclude this paper.

Table 1. Summary of the results obtained by our tool

Type Cipher Round Num. of
Imp.diff.

Ref Improve

Imp.diff. ASCON 5 263 [21]

5 ≈ 2161(64
T.ID.)

Sect. 3.1 Truncated and
new Imp.diff.

SIMON32 11 48 [22]

11 352 Sect. 3.2 Truncated and
new Imp.diff.

SIMON48 12 360 [22]

12 3072 Sect. 3.2 Truncated and
new Imp.diff.

SIMON64 13 64 [9]

13 ≈ 224(64
T.ID.)

Sect. 3.2 Truncated and
new Imp.diff.

SIMON96 16 768 [9]

16 ≈ 237.585(96
T.ID.)

Sect. 3.2 Truncated and
new Imp.diff.

SIMON128 19 1024 [9]

19 ≈ 253(128
T.ID.)

Sect. 3.2 Truncated and
new Imp.diff.

LEA 10 1 [10]

10 6 Sect. 3.4 New Imp.diff.

RK
Imp.diff.

SIMON48/96 13 1 [23]

14 1 Sect. 3.2 Longer

SIMON64/128 14 1 Sect. 3.2 First Found

SIMON128/256 20 6 Sect. 3.2 First Found

LBlock 16 6 [10]

17 1 Sect. 3.3 Longer
a All the results can be obtained within few hours with Intel(R) Core(TM) i7-6700 CPU
@ 3.40 GHz.
b TID: Truncated impossible differential.
c (RK)Imp.diff.: (related-key) impossible differential.
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2 The New Tool to Search for Impossible Differentials

In this section, we briefly introduce the principle of impossible differential search
and clarify the search principle of our new search tool. Then we introduce and
extend the definition of undisturbed differential bits and detail the model char-
acterization of undisturbed differential bits for basic operations. Finally, we give
the overall framework of our impossible differential search tool.

The Principle of Searching for Impossible Differentials. For a symmetric-
key primitive, there is an input difference α and an output difference β of the
cipher. All possible output differences can be propagated to after Rf -round
encrypting for input α is a set A. All possible input differences that can propa-
gate to β after Rb-round encrypting is a set B. If A∩B = ∅, it means that the pair
(α, β) is an impossible differential. In the previous search tools [10,14,17,18,24],
the job of these tools is to search for the existence of A ∪ B = ∅. From another
point of view, the principle of searching for impossible differentials is if we already
know the set A and the set B with A ∩ B = ∅, all difference pairs that can only
propagate to sets A and B respectively constitute a set of impossible differentials.
The new search tool we proposed is based on the second principle.

In [20], Tezcan introduced the concept of undisturbed differential bits: for an
S-box, when a specific difference is given to the input (resp. output), the bits
that can be guessed with probability 1 of output can be characterized (resp.
input) difference are called undisturbed differential bits. This is very important
in the search for impossible differentials. However, it is impossible to use this
definition to characterize the propagation of undisturbed differential bits with
the MILP model. So we extend the concept of undisturbed differential bits.

Definition 1 (Undisturbed differential bits). For a bit-oriented operation,
the bits whose value in the output (resp. input) difference are constant under a
certain input(resp. output) difference set are called undisturbed differential bits.

Different from [20], our definition of undisturbed differential bits contains
not only S-boxes but also all operation primitives. In addition, the undisturbed
output differential bits are not only the bits with the probability of 1 under a
specific input difference but also the bits with the probability of 1 in the output
difference under a group of input differences.

Undisturbed differential bits are useful for search for impossible differen-
tials. It is usually combined with meet-in-the-middle technology to search for
impossible differentials. In some previous security analysis of symmetric cipher,
the author designed a proprietary algorithm or used handwriting calculations
to search for impossible differentials using the meet-in-the-middle technology,
which makes the meet-in-the-middle technology not effective. So we proposed a
generalized tool that combines MILP, undisturbed differential bits and meet-in-
the-middle technology to search for impossible differentials.

When we consider undisturbed differential bits, one bit will have three values
0,1 and ? (unknown bit). So we use two variables to represent the value of a bit.
There we agree to use (0,0), (0,1) and (1,1) to represent 0,1 and ? respectively.
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In our MILP model, what is characterized is not the propagation of a single
differential characteristic but the propagation of a set of differential character-
istics. The propagation of the difference in a certain round can be expressed as
Δin → Δout. Assume that the actual set of output differences under the set of
input differences Δin is Δ′

out, according to the definition of undisturbed differ-
ential bits, there are Δ′

out ∈ Δout. If the value of a bit in Δout is a definite 0 or 1,
then the probability of all output differences under the input difference set Δin is
0 or 1 at the position of this bit is 1. Therefore, the principle of our MILP model
searching for impossible differentials is: first, we establish two independent mod-
els M0 and M1 to characterize the differential propagation of the undisturbed
differential bits of the encrypted part and the decrypted part, respectively. Then
we assign contradictory values to one bit at the same positions in the output of
the two models. According to the previous analysis, suppose that after assigning
contradictory values to these two models, the sets of input differences obtained
by solving are ΔX and ΔY . We have ΔX � ΔY . So we get a set of impossible
differentials ΔX � ΔY by solving these two models.

2.1 Modeling Undisturbed Differential Bits Propagation of Basic
Operations

For a symmetric-key primitive, the basic operations are usually XOR, AND,
Modular addition, Permutation and S-box. Next, we will introduce the propa-
gation of undisturbed differential bits of these operations one by one and the
inequalities used to characterize the propagation of undisturbed differential bits.

Modeling XOR: When both input differences bits are determined values, the
output difference is the exclusive OR of the input differences. When any bit
of input difference is unknown, the output difference is unknown. All of these
propagations hold with probability 1. Since each bit has three values, there are
a total of 9 possible input difference for 2 bits. The input and output difference
of the XOR operation is shown in Table 2.

Table 2. Undisturbed differential bits of XOR operation

Input difference Output difference

00 0

01 1

0? ?

10 1

11 0

1? ?

?0 ?

?1 ?

?? ?
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We use two variables to represent 1 bit value, which are 0(0,0), 1(0,1) and
?(1,1). So the input and output difference of XOR can be represented by 6
variables. According to Table 2, there are 9 possible values of these 6 variables,
which are (0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 1), (0, 0, 1, 1, 1, 1), (0, 1, 0, 0, 0, 1), (0,
1, 0, 1, 0, 0), (0, 1, 1, 1, 1, 1), (1, 1, 0, 0, 1, 1), (1, 1, 0, 1, 1, 1) and (1, 1, 1, 1, 1,
1). These points on F 6

2 can be represented by logical condition modeling in [1]
to convert these points into a set of inequalities with 6 variables (x0, x1, x2, x3,
x4, x5). Through the above steps, the input and output difference of XOR can
be represented by the following set of inequalities.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 1, 0,−1, 0, 1)x + 0 ≥ 0
(0,−1, 0, 1, 0, 1)x + 0 ≥ 0
(0, 0,−1, 0, 1, 0)x + 0 ≥ 0
(−1, 0, 0, 0, 1, 0)x + 0 ≥ 0
(0, 1, 0, 1, 0,−1)x + 0 ≥ 0
(−1, 1, 0, 0, 0, 0)x + 0 ≥ 0
(0, 0,−1, 1, 0, 0)x + 0 ≥ 0
(1, 0, 1, 0,−1, 0)x + 0 ≥ 0
(0, 0, 0, 0,−1, 1)x + 0 ≥ 0
(0,−1, 0,−1, 1,−1)x + 2 ≥ 0

(1)

where (0, 1, 0,−1, 0, 1)x + 0 ≥ 0 represents x1 − x3 + x5 + 0 ≥ 0.

Modeling AND: When the input difference is (0,0), the output difference is 0.
In other cases, the output differences are unknown (Table 3).

Table 3. Undisturbed differential bits of & operation

Input difference Output difference

00 0

Others ?

The input and output difference of AND can be characterized by inequali-
ties 2. ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1, 1, 0, 0, 0, 0)x + 0 ≥ 0
(0, 0,−1, 1, 0, 0)x + 0 ≥ 0
(0, 0, 0,−1, 0, 1)x + 0 ≥ 0
(0, 0, 0, 0, 1,−1)x + 0 ≥ 0
(0,−1, 0, 0, 0, 1)x + 0 ≥ 0
(0, 1, 0, 1,−1, 0)x + 0 ≥ 0

(2)

Modeling Modular Addition: For a modular addition operation Y = A�B,
where A = (an, . . . , a1), B = (bn, . . . , b1), Y = (yn, . . . , y1), an, bn, cn are MSB
respectively. The modulo addition operation can be written as follows:
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y1 = a1 ⊕ b1, c1 = f1(a1, b1)
y2 = a2 ⊕ b2 ⊕ c1, c2 = f2(a2, b2, c1)
...
yn−1 = an−1 ⊕ bn−1 ⊕ cn−2, cn−1 = f2(an−1, bn−1, cn−2)
yn = an ⊕ bn ⊕ cn−1

(3)

Here ci means carry, and f1 and f2 are non-linear functions. Their input and
output differences are shown in Table 4 and Table 5:

Table 4. Undisturbed differential bits of f1

Input difference Output difference

00 0

Others ?

Table 5. Undisturbed differential bits of f2

Input difference Output difference

000 0

111 1

Others ?

According to Eq. 3, we can decompose the modulo addition operation into
three small operations: XOR, f1 and f2. We can model these three operations
separately when modeling the modulo addition operation. In differential prop-
agation, since we regard these three operations as independent of each other
and do not consider the correlation among them, the model will lead to some
impossible differences that can be propagated in the model. This will cause us
to search for fewer impossible differentials, that is, Δ ∈ Δ′, where Δ is the
set of impossible differentials that the model can search for, and Δ′ is all the
impossible differentials of a block cipher with modulo addition. This ensures that
the impossible differentials searched by our model built in this way are always
correct.

Modeling S-box: Sun et al. [19] proposed the method of using Convex
Hulls(CH) to characterize the difference/linear propagation of S-box in 2014.
However, the method is not correct in some cases. In [3], the author finds there
can be points outside set which also satisfy all the inequalities of the CH are
generated from the set. We tested the model of undisturbed differential bits of
some S-box and found that the inequalities of the CH are incorrect in all of them.
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So we use the logical condition modeling proposed in [1] to model S-box. For
more details, please refer to [1]. Since we use two variables to represent one bit,
it means that we have to model a set of 4n-bit points for an n-bit S-box. When
n is larger than 4, it is hard to compute the minimum set of linear inequalities
of the logical condition modeling, such as the software Logic Friday supports up
to 16 input variables while the input variable number is 20 when n is 5. So we
use Property 1 to reduce the dimension of points.

Property 1. For a mapping X → Y , x ∈ X, y ∈ Y . The binary representations of
x and y are (xn−1, · · · , x0), (yn−1, · · · , y0) respectively. Then yi is independent
of each other because yi is only determined by xi, and this mapping can be
represented by fi((xn−1, · · · , x0), yi), Where fi is a set of inequalities.

In the case of undisturbed differential bits only being considered, the difference
distribution of an S-box is a mapping. This is to say, when the input difference
is determined, the output difference is determined and unique. According to
Property 1, we can model every output bit independently. This means that we
can use several sets of inequalities that can be at least 2n + 1 = 11 variables to
characterize the undisturbed differential bit’s propagation of a 5-bit S-box.

2.2 Framework for Impossible Differential Searches

Searching for the Longest Impossible Differentials. We firstly construct
two set of models (M0,M1)i, where M0 is the model characterizing the propaga-
tion of undisturbed differential bits of the encryption part and M1 is the model
of decryption part. We agree that the input and output difference variables cor-
responding to a couple of given models (M0,M1)i are (xi, yi) and (x′i, y′i)
respectively. The number of the longest rounds of (M0,M1) has undisturbed dif-
ferential bits are R0 and R1 respectively. constr1(a, x) represents the constraints
of assigning value a to variables x, constr2(a, x) represents the constraint that
exclude value a of variables x. We use Algorithm 1 to search for the longest
impossible differentials. The process of the Algorithm 1 is as follows:

Step 1. We use the variable “longestID” to store the number of rounds that
we are currently searching for whether there is an impossible differential. The
initial value of “longestID” is set to 2.

Step 2. Searching whether there is an impossible differential when the number
of rounds is “longestID”. Firstly, We fix the number of rounds r for M0 to
1; the number of rounds of M1 will be “longestID”-r. Then traverse the output
variables at the same position of M0 and M1 and fix their values to contradictory
values, respectively. If the two models have solutions simultaneously, it means
that there is an impossible differential; otherwise, we increase the value of r
until to “longestID”-1. Repeat the above steps; if M0 and M1 still do not have
solutions at the same time, it means that there is no impossible differential.

Step 3. Increasing the value of “longestID” until all the positions are traversed
and there is still no solution simultaneously, this indicates there is no impossible
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differential of “longestID”-round. So the longest impossible differential round
number is “longestID”-1. See Algorithm 1 for more details.

Algorithm 1: Searching for longest impossible differential
1 Flag←1
2 longestID←2
3 while Flag=1 do
4 Flag=0
5 for r=1 to longestID-1 do
6 for index=0 to blocksize-1 do
7 Create encryption model M0r and decryption model M1longestID−r

8 for value=0 to 1 do
9 Generate constraint constr10(yindex = value) and add it to M0r

10 Generate constraint constr11(yindex = value ⊕ 1) and add it to
M1longestID−r

11 if M0r and M1longestID−r both have solution then
12 Flag←1
13 longestID←longestID+1
14 Goto line 3

15 end
16 else
17 Remove constraint constr10 and constr11

18 end

19 end

20 end

21 end

22 end
23 return longestID-1

Searching for All Longest Impossible Differentials. In impossible differ-
ential cryptanalysis, the more impossible differentials, the more likely we are able
to reduce the data and time complexity of impossible differential attacks, and
the more likely to attack for longer rounds. So we can use Algorithm 2 to search
for as many impossible differentials as possible under a given number of rounds.
When we search for all r-round impossible differentials. We first generate a set
of models (M01,M1r−1), (M02,M1r−2), · · · , (M0r−1,M11), then traverse the
output variables yi and y′

r−i of M0i and M1r−i and assign contradictory values
to them. If M0i and M1r−i have solutions simultaneously and the corresponding
input difference of M0i is X, it means that there is an impossible differential of
r rounds under the input difference X. Then we use function AlloutputID(X)
to search for all impossible differentials of round r under the input difference X.
After we have searched out all the impossible output differences under the input
difference X, then add the constraints constr1 to all model M0 to exclude the
values we have searched in the following search.
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AlloutputID(X): We have known that the longest rounds of M0 and M1 have
undisturbed differential bits are R0 and R1 respectively. Impossible differentials
can only be existed in (M0r−R1, M1R1), (M0r−R1+1, M1R1−1), · · · , (M0R0,
M1r−R0). Firstly we generate a set of models (M0r−R1, M1R1), (M0r−R1+1,
M1R1−1), · · · , (M0R0, M1r−R0) and assign X to the input variables xi of M0i,
then we traverse and fix the same positional variables of the output variables
(yi, y′

r−i) of (M0i,M1r−i) to contradictory values and solve the two models at
the same time. If they both have solutions, the value of the input variables x′

r−i

of M1r−i is Xm1, then (X,Xm1) is a pair of impossible differences. Then add
the constraint constr2 to all model M1 to exclude Xm1. Repeat the above steps
until (M0i,M1r−i) does not have a solution simultaneously, which means that
we have found out all impossible output differences whose input difference is X.
See Algorithm 2 for more details.

The Technique for Searching for as Many as Possible Impossible Dif-
ferentials by Solving the Models Once. For many symmetric-key primitives,
the number of impossible differentials is very large. It is impossible to search
them all, so we can only search out part of them. Since we don’t need to fix
the value of the input and output differences, the input and output differences
can be ?. This means the more ?, the more impossible differentials. If we solve
the model once, the number of ? is b, it means that we can get 2b impossible
differentials at a time. We use an additional variable di to indicate whether a
bit of input(resp output) difference is ?, if yes, di = 1, else di = 0. Two variables
(x0, x1) representing a bit have the following relationship with di.

⎧
⎪⎨

⎪⎩

x0 � di

x1 � di

x0 + x1 − di � 1
(4)

To make the input and output differential bits have more ?, we only need to
set an objective function:

obj = d0 + d1+, · · · ,+d2n−1

Searching for Related-Key Impossible Differentials. Under the single
key settings, the models of the encryption part and the decryption part are
independent, so we build the models of these two parts separately. Under the
related-key settings, we need to build a model of key schedule, which connects
the encryption part and the decryption part together, so the models of the
encryption part and the decryption part are no longer independent, thus only
one model needs to be used to characterize the differential propagation. After the
differential propagation model is built, the output differences of the decryption
part and the encryption part are set to contradictory values. If the model has a
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solution, there are at least one related-key impossible differential; if there is no
solution, there are no related-key impossible differentials.

3 Applying the Tool to Four Primitives

In this section, we applied our search tool to four symmetric-key primitives
ASCON, SIMON, LEA and LBlock. Under the single key settings, we searched
for the impossible differentials of ASCON, SIMON, and LEA, and found many
new impossible differentials. Under the related-key settings, we searched for the
related-key impossible differentials of SIMON and LBlock, and found some longer
related-key impossible differentials.

3.1 ASCON

ASCON was proposed by Dobraunig et al. [11]. Its mode of operation is based
on duplex sponge modes like MonkeyDuplex [5]. The block size is 320 bits and
is divided into five 64-bit word x0, · · · , x4. The permutation p is an SPN-based
round transformation using a 5-bit S-box and the bit XOR operation is used as
linear layer. The permutation is composed as follows:

p = pL ◦ pS ◦ pC

where pC , pS and pL represent addition of constants, substitution layer and
linear diffusion layer, respectively.

S-box of ASCON. The 5-bit S-box is shown in Table 6.
Tezcan [21] found 263 5-round impossible differentials using undisturbed dif-

ferential bits. However, the impossible differentials he found were wrong because
the output difference of the fourth row in S4 after passing through linear layer
should be “1110101101001000 0110011110111101110111001010100111000100001
00101” instead of “0110101101001000011 001111011110111011100101010011100
010000100101”, and he only considered the undisturbed differential bits under
a single input difference of the S-box when searching. In our model, we consider
the undisturbed differential bits of the S-box and inverse S-box, and then build
two sets of models. By the solution of the models, we have found sixty-four
4.5-round truncated impossible differentials and there are no longer impossi-
ble differentials in our model; each truncated differential includes 2155 5-round
impossible differentials, a total number of 2161 5-round impossible differentials.

Undisturbed Differential Bits of ASCON’s S-box: There are many input
differences that their output differences have undisturbed differential bits. They
are shown in Table 7:

Undisturbed Differential Bits of Invert S-box of ASCON: When the
input differences of the invert S-box of ASCON are (0,2,8), the output differences
have undisturbed differential bits, and the output difference under the other
input difference does not have undisturbed differential bits (Table 8).

One of 4.5-round truncated impossible differential:



New Automatic Search Tool 55

Algorithm 2: Searching all impossible differentials
1 IDS← φ is a dict
2 INPUTDIFF← φ
3 for i = r − R1 to R0 do
4 Generate i rounds model of encryption and r-i rounds model of decryption

(M0, M1)i
5 end
6 for index=0 to n-1 do
7 for i=r-R1 to R0 do
8 for each v in INPUTDIFF do
9 Add constraints constr2(v, x) to M0i

10 end
11 for value=0 to 1 do
12 Add constraints constr11(yi[index] = value, y′

i[index] = value ⊕ 1) to
(M0, M1)i

13 while (M0, M1)i both has solution and the value of xi is X do
14 IDS[X]← AlloutputID(X)

15 Add constraints constr2(X,xi) to M0i
16 INPUTDIFF← X

17 end
18 Remove constraint constr11
19 end

20 end

21 end
22

23 Function AlloutputID(X)

24 begin
25 for i = r − R1 to R0 do
26 Generate i rounds model of encryption and r-i rounds model of decryption

(M0, M1)i
27 end
28 ID← φ
29 for i = r − R1 to R0 do
30 Generate constraints of constr10(X,xi) and add it to M0i
31 M0i.optimize()
32 The output difference of model M0i is obtained as Ym0

33 for each v in ID do
34 Generate constraints of constr20(v, x′) and add to M1i
35 end
36 for index=0 to n-1 do
37 if Ym0[index] �=? then
38 Add constraint constr11(Ym0[index] ⊕ 1, y′

i[index]) to M1i
39 M1i.optimize()
40 while M1i has solution and it’s input difference is Xm1 do
41 Generate constraint of constr21(Xm1, x′

i) and add it to M1i
42 ID.append(Xm1)

43 end
44 Remove constraint constr11
45 end

46 end

47 end
48 return ID

49 end
50 return IDS
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Table 6. S-box of ASCON

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 4 11 31 20 26 21 9 2 27 5 8 18 29 3 6 28

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S(x) 30 19 7 14 0 13 17 24 26 12 1 25 22 10 15 23

Table 7. Undisturbed differential bits of ASCON’s S-box

Input difference Output difference Input difference Output difference

00000 00000 10011 0???0

00001 ?1??? 10100 0?1??

00010 1???1 10101 ????1

00011 ???0? 10110 1????

00100 ??110 10111 ????0

00101 1???? 10?01 ????1

00110 ????1 10?11 ????0

00111 0??1? 11000 ??1??

00?00 ????0 11100 ??0??

00?10 ????1 11110 ?1???

01000 ??11? 11111 ?0???

01011 ???1? ?0000 ??0??

01100 ??00? ?0100 ??1??

01110 ?0??? ?1000 ??1??

01111 ?1?0? ?1100 ??0??

10000 ?10?? others ?????

10001 10??1

000000000α0000000000000000000000000000000000000000000000000000004.5r�

??88??8?888?8??08?888???8???8????8888?888?8?8??8?08?8??8???88888

where α = 0x13. ? indicates that this S-box can take any value. We can use the 4.5
rounds truncated impossible differentials to generate 2155 5-round bit-oriented
impossible differentials. We found 64 such truncated differentials in total, so we
got 2161 bit-oriented impossible differentials.

3.2 SIMON

SIMON [4] is a family of lightweight block ciphers released by the National
Security Agency (NSA) in June 2013. The design of SIMON is a classical Feistel
structure. To optimize both hardware and software in mind, SIMON has only
three operations: AND, left rotation, and XOR. The 2n-bit input is operated
in each round and the input is divided into left and right halves. After passing
the F function, the left half is XORed with the right half as the left half of the
output. The right half of the output is the same as the left half of the input. The
F function is defined as:

F (x) = (x ≪ 8) � (x ≪ 1) ⊕ (x ≪ 2)
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Table 8. Undisturbed differential bits of invert S-box of ASCON

Input difference Output difference

00000 00000

00010 ???1?

01000 ?1???

Others ?????

SIMON’s key schedule is composed of linear feedback shift registers(LFSR).
For different versions, its subkey generation algorithm is shown as follows:

ki+a =

⎧
⎪⎨

⎪⎩

c ⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)S−3ki+1 if a = 2,
c ⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)S−3ki+2 if a = 3,
c ⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)(S−3ki+3 ⊕ ki+1) if a = 4.

where a = (n/m)×2 and the corresponding version is SIMONn/m. c is a constant
and (zj)i is generated from a known sequence.

For SIMON, bit-oriented impossible differentials are much longer than word-
oriented impossible differentials. Under single-key settings, all versions of SIMON
have at least 2n impossible differentials in round lengths of 11, 12, 13, 16, 19
(respectively corresponded to n = 16, 24, 32, 48, 64). In [22], Wang et al. found
48 and 360 impossible differentials of SIMON32 and SIMON48, respectively.
In our work, we build MILP models for encryption and decryption parts with
rounds R0 and R1, respectively. Then assign contradictory values to the output
differences of these two models and solve the two models. If both models have
solutions at the same time, then we have found a (R0 + R1)-round impossible
differentials. In order to find more impossible differentials at a time, we follow
the method described in Sect. 2.2, adding an extra variable di and setting a
objective function. Finally, We did not find longer differentials than the best-
known, but we found a large number of new impossible differentials. Some of
them are shown in Table 9.

Under the setting of the related-key, it is difficult to search with the
tool [10,18], because the key schedule of SIMON is linear and relatively com-
plex, which leads to a long solution time. The best related-key impossible
differentials searched at present are Kondo et al. [16] find some 15-round
related-key impossible differentials of SIMON32/64 by using iterative key dif-
ference, and Wang et al. [23]. find some 13-round related-key impossible dif-
ferentials of SIMON48/96 by using MILP model. Using our tool, we did not
find longer related-key impossible differential for SIMON32/64, while found
some (14,14,20)-round related-key impossible differentials of SIMON48/96,
SIMON64/128 and SIMON128/256, respectively. The related-key impossible
differentials of SIMON48/96 and SIMON64/128 are shown in Table 10 and
Table 11.
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Table 9. Some impossible differentials of SIMON

Cipher
Num. of

ID
Imp.diff.

SIMON32 1
00000000000000000100000000000001

r11
�

00000000000000000100000010000001

SIMON48 1
000000000000000000000000000000000000000001000000

r12
�

000000000000000001000000000000000101000111100000

SIMON64 218 002200000000000000000000000000000000000000001
r13
�

?022?0?000???0?0000001000000?0?000????00?????

SIMON96 231 09410
r16
�

028?0?000????00?????0?021?0?000????00?????0????????01

SIMON128 246 01241000
r19
�

034?0?000????00?????0????????030?0?000????00?????0???????????????1?000

Table 10. 14-round related-key impossible differential of SIMON48/96

Impossible difference SubKey

0000000000000000000000000000100011000?1010000100� 0x08C2840118000A48010D9D38

011111000110010000100000000000000000000000000000

Table 11. 14-Round related-key impossible differential of SIMON64/128

Impossible difference SubKey

0000000000000000000000000000000011101011111110011111111110011000 � 0xBBF9FF9840000010902050E66081861E

1001111000100110001011011010010100010000000000000000000000000000

3.3 LBlock

LBlock is a lightweight block cipher proposed by Wu and Zhang [25]. Its block
size and key size are 64 and 80 bits, respectively. The structure of LBlock is a 32-
round classical Feistel structure. In the round function, the plaintext is divided
into left and right parts in the round function. Firstly, the left half is XORed with
the round subkey and then through eight different S-boxes, and then through a
nibble permutation. Finally, the left half is XORed with the right half that has
been rotated left by 8 bits.

The key schedule is simple. The master key is 80 bits and denoted by K =
k79, k78, · · · , k0. The leftmost 32 bits of the master key are used as the subkey
sk0 of the first round, and the generation of the remaining subkey ski is shown
in Algorithm 3.

Under the related-key setting, the current best search result is Cui et al.’s
search for the related-key impossible differentials in [10]. They found six 16-round
related-key impossible differentials by using the MILP model. In our search, two
different modeling approaches were used to search for the related-key impossible
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Algorithm 3: Key Schedule of LBlock Cipher
1 sk0 = K79∼48;
2 for 1 ≤ i ≤ 31 do
3 k79∼0 ← k79∼0 ≪ 29;
4 k79∼76 ← S9(k79∼76); k75∼72 ← S8(k75∼72);
5 k50∼47 ← k50∼47 ⊕ [i]2;
6 ski ← k79∼48;

7 end

differentials of LBlock. One is that the model of the key schedule is a model
that characterizes the propagation of undisturbed differential bits. Using this
method, as long as the model has a solution, the impossible differentials found
must exist in the entire key space. We searched for some 16 rounds of related-key
impossible differentials using this approach. Another way is that the model of
the key schedule is a model that characterizes differential propagation. Using
this method, when the model has a solution, the impossible differentials found
may not necessarily hold over the entire key space. Finally, we found a new 17-
round related-key impossible differentials holds on 2−2 key space. It is one round
longer than Cui et al.’s [10], as shown in Table 12.

Table 12. 17-Round related-key impossible differential of LBlock

Rounds Left Right Subkey

0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 0000 00000000

1 0000 0000 0000 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00030000

2 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 0000 0000 0000 00000000

3 0000 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000000

4 ??01 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 0000 0000 0000 0000 0000 01800000

5 ??1? 0000 ???? ?1?? 0000 0000 0000 0011 ??01 0000 0000 0000 0000 0000 0000 0000 00000000

6 0000 ???? ???? ???? 0000 ??10 ??01 0000 ??1? 0000 ???? ?1?? 0000 0000 0000 0011 00000006

7 ???? ???? 0000 ???? ???? ???? ??1? ???? 0000 ???? ???? ???? 0000 ??10 ??01 0000 ?0000000

8 ???? ???? ???? ??10 ???? ???? ???? ???? ???? ???? 0000 ???? ???? ???? ??1? ???? 00000000

9 ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ??10 ???? ???? ???? ????

9 ???? 0000 ???? 0000 ???? ???? ???? 0000 ???? ???? ???? ??01 ???? ???? ???? 0000

10 ???? ??01 ?1?0 0000 ???? 0000 0000 0000 ???? 0000 ???? 0000 ???? ???? ???? 0000 00000αβ0

11 ???? 0000 0000 0000 ???? 0000 0011 0000 ???? ??01 ?1?0 0000 ???? 0000 0000 0000 00000000

12 ?1?0 0000 0000 0000 0000 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0011 0000 00000000

13 0000 0000 0000 0000 0011 0000 0000 0000 ?1?0 0000 0000 0000 0000 0000 0000 0000 0000γδ000

14 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 0000 0000 00000000

15 0000 0000 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000000

16 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 0000 0000 0000 0000 00?00000

17 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000000

Where α ∈ {0, 1, 2, 3}, β ∈ {0, 4, 8, 12}, γ ∈ {0, 1}, δ ∈ {0, 2, 4, 6, 8, 10, 12, 14}.
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3.4 LEA

LEA is a lightweight cipher proposed by Hong et al. [12], its block size is 128
bits, and the key size has three versions of 128,192 and 256 bits. According to
different key sizes, the number of rounds is 24, 28 and 32, respectively. The input
of LEA is divided into four 32-bit words, and these words are outputted after
XORed with the round subkey, modulated and cyclic shift. The operation of the
round function is shown in Fig. 1, where ROLi and RORj means the left rotation
of 32-bit value by i-bit and right rotation of 32-bit value by j-bit, respectively.
In [10], the author did not find any new impossible differentials using the MILP
model. This is because, for the block cipher of the ARX structure, the longest
impossible differentials may not be the case where the number of active bits is 1.
Since the input and output differences need to be determined before the search,
if the input and output active bits are more than 2, it is almost impossible to
complete the search. Using our tool, as mentioned earlier, the search is more
advantageous because the values of the input and output differences are not to
be fixed. We first build the propagation model of the undisturbed differential
bits of the encryption part and the decryption part, and then use Algorithm 2
to search for all impossible differentials. Finally, six new 10-round impossible
differentials are found. They are shown as follows:

Xi[0]

Xi+1[0]

RKi[0]

Xi[1]

Xi+1[1]

ROL9

RKi[2]RKi[1]

Xi[2]

Xi+1[2]

ROR5

RKi[4]RKi[3]

Xi[3]

Xi+1[3]

ROR3

RKi[5]

Fig. 1. The LEA round function

ID0 : 103110311031 � 0681059 ID1 : 103110311031 � 06711059

ID2 : 103110311031 � 0691058 ID3 : 103110311031 � 067111058

ID4 : 103110311031 � 06811058 ID5 : 103110311031 � 067101058

4 Conclusion

In this paper, we proposed a new tool for searching impossible differentials.
This tool can find more impossible differentials, which can improve impossible
differential attacks. Besides, this tool has a faster search speed than the previous
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tools and can output where there are contradictions, eliminating the process of
manual checking. It is greatly reducing the workload. Then, we applied the tool
to search for impossible differentials of ASCON, SIMON, LEA and related-key
impossible differentials of SIMON and LBlock. Under the single key settings,
we found many new impossible differentials. For SIMON and LBlock, we found
some related-key impossible differentials longer than the best-known result.

Due to the duality of zero-correlation linear attacks and impossible differen-
tial attacks, our tool can also be used to search for zero-correlation linear approx-
imations. In zero-correlation linear attacks, multiple zero-correlation cryptanal-
ysis [8] and multidimensional zero-correlation cryptanalysis [7] can reduce the
amount of data required. However, using the previous search tools, the number
of zero-correlation linear approximations can be searched for the symmetric-key
primitives that linear layer is bit-oriented is very small, and it is difficult to apply
multiple zero-correlation cryptanalysis and multidimensional zero-correlation
cryptanalysis to these symmetric-key primitives. Using the tool we proposed,
we can search for more zero-correlation linear approximations, thus extending
the multiple zero-correlation cryptanalysis and multidimensional zero-correlation
cryptanalysis to this type of symmetric-key primitives. This can improve the
zero-correlation linear cryptanalysis for some symmetric-key primitives.
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Abstract. Recently, Chen et al. (ASIACRYPT 2021) introduced a
notion called hierarchical integrated signature and encryption (HISE),
which provides a new principle for combining public key schemes. It uses a
single public key for both signature and encryption schemes, and one can
derive a decryption key from the signing key but not vice versa. Whereas,
they left the dual notion where the signing key can be derived from the
decryption key as an open problem.

In this paper, we resolve the problem by formalizing the notion called
hierarchical integrated encryption and signature (HIES). Similar to HISE,
it features a unique public key for both encryption and signature compo-
nents and has a two-level key derivation mechanism, but reverses the hier-
archy between signing key and decryption key, i.e. one can derive a sign-
ing key from the decryption key but not vice versa. This property enables
secure delegation of signing capacity in the public key reuse setting. We
present a generic construction of HIES from constrained identity-based
encryption. Furthermore, we instantiate our generic HIES construction
and implement it. The experimental result demonstrates that our HIES
scheme is comparable to the best Cartesian product combined public-key
scheme in terms of efficiency, and is superior in having richer functionality
as well as retaining merits of key reuse.

Keywords: Hierarchical integrated signature and encryption ·
Hierarchical identity-based encryption · Key delegation

1 Introduction

Combined usage of public key schemes is a practically relevant topic in the
context of public key cryptography, especially combining public key encryption
(PKE) and signature schemes. In many real-word applications, the two primitives
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are commonly used in combination to guarantee confidentiality and authenticity
simultaneously, such as secure communication software (like PGP [2], WhatsApp
[5]) and privacy-preserving cryptocurrency (like Zether [10], PGC [13]).

Typically, there are two principles for combining these two schemes, key sep-
aration and key reuse, each of which has its own strengths and weaknesses.
Key separation, which means using two independent key pairs for two schemes,
supports secure escrow1 for both signing key and decryption key, while the key
management and certificate costs2 are doubled. Key reuse, which means using a
unique key pair for both PKE and signature schemes, can reduce key manage-
ment and certificate costs, but it does not support secure key escrow, and its
joint security is not immediate.

Recently, Chen et al. [14] proposed a new notion called hierarchical integrated
signature and encryption (HISE), which strikes a sweet balance between key
separation and key reuse. It employs a single public key for both encryption and
signature schemes, and allows one to derive a decryption key from signing key.
This feature gives HISE advantages that (i) key management and certificate
costs are reduced by half and (ii) secure delegation of decryption capacity is
admitted.

Nevertheless, since the signing key is regarded as the master key in HISE,
it is not applicable to some scenarios such as where one wants to delegate his
signing capacity while retaining his decryption capacity. Chen et al. remarked
that it is possible to consider a dual version of HISE, and it could be useful
in scenarios where decryption capability is a first priority. However, they did
not give the formal definition, construction and applications of it, and left it as
an open problem. Therefore, the motivation for this work is two-fold: (i) find a
proper key usage strategy for scenarios where key management costs are desired
to be cheap, and signature delegation is needed; (ii) solve the open problem left
in [14], and complete the key usage strategies.

1.1 Our Contributions

In this work, we resolve the open problem in [14] and our contributions can be
summarized as follows:

Formal Definition of HIES. We start off by formalizing the definition and the
joint security of the dual notion of HISE, called hierarchical integrated encryp-
tion and signature (HIES). It allows one to derive a signing key from the decryp-
tion key, such that secure delegation of signature capacity is allowed. In terms of
joint security, the PKE component is IND-CCA secure even when the adversary
is given the signing key and the signature component is EUF-CMA secure in the
presence of an additional decryption oracle.

1 Key escrow means that the owner delegates his decryption/signing capacity to the
escrow agent simply through sharing his decryption/signing key with the agent.

2 A public key certificate which signed by a certificate authority (CA) is an electronic
document used to validate the public key. Its costs include but not limited to regis-
tration, issuing, storage, transmission, verification, and building/recurring fees.
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Generic Construction from CIBE. We present a generic construction of
HIES from constrained identity-based encryption (CIBE) and give a rigorous
proof of its joint security.

msk → sk

skf1 → dk
0 1

PKESignature

reverse

(a) HISE from CIBE

msk → dk

skf1 → sk
0 1

SignaturePKE

(b) HIES from CIBE

Fig. 1. HISE and HIES from CIBE

Our generic construction is inspired by HISE from CIBE. We notice that
CIBE inherently implies a binary tree, where the root node is served as Private
Key Generator (PKG) who possesses the master secret key, and each leaf node
is viewed as a user, specified by an ID, who owns an ID-based private key.
Indeed, each ID can be interpreted as identifying a unique path from root node
to corresponding leaf node. We refer the reader to Sect. 2.3 for formal definition
of CIBE. As for HISE from CIBE (shown as Fig. 1(a)), users each forms a CIBE
binary tree, employs the master secret key of the root node as the signing key,
and lets the secret key of its right child node be the decryption key, i.e. skf1 ,
the secret key for prefix predicate f1, from which all secret keys for ID prefixed
with “1” can be derived (we use skfv to denote the constrained secret key for
prefix predicate fv, where fv(ID) = 1 iff ID prefixed with v). Thus, the whole
tree is divided into two parts. The left one containing IDs prefixed with “0” is
used for PKE component and the right one containing IDs prefixed with “1” is
used for signature component. Based on above observations, we naturally get a
construction of HIES by switching the roles the two secret keys play (shown in
Fig. 1(b)).

Extensions. We propose three extensions with different purposes. The first
one is for flexible delegation, with which the user is able to delegate his/her
decryption and signing capacities separately to different entities. It is actually
the combination of HISE and HIES. The second is for limited delegation, with
which the user can limit the decryption or signing capacity given to the escrow.
The last one is for finegrained delegation, which is designed to generate keys
labeled by time or identifier information. We believe these extensions is useful
in scenarios where delegation is not straightforward.
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Applications. We give several scenarios where HIES is useful. The first one is
a concern reported in [7]. In a confidential payment system like Zether [10] and
PGC [13], which currently is equipped with a key reuse mechanism, if the signing
key needs to be revoked or rotated, then all encrypted assets of an account need
to be transferred to a new account, which leads to high overhead. While there is
no such trouble if HIES is used, in which one can derive time labeled signing keys.
The second one is the following scenario discussed in Viafirma [4]. In a company,
the president needs to deal with multifarious documents everyday, including but
not limited to commercial contracts, applications for the procurement of goods
and so on. It is quite necessary to delegate his signing right to assistant presidents
so that they can help settle documents which are less important. Meanwhile,
the president may require keeping the decryption key secret for the security of
some confidential business documents. Many similar scenarios where signature
delegation is needed widely appear in other institutions, such as schools and
government departments [1,3].

Indeed, signature delegation, also known as Proxy Signature which was first
introduced by Mambo et al. [28], has numerous applications, such as distributed
systems [29], mobile agent [26] and electronic commerce [16]. Various schemes
and extensions of it were proposed during the last few decades [8,12,22–24,34]. In
contrast to these schemes, HIES not only considers delegating signing right, but
also combines an additional PKE scheme without increasing the size of public
key, yielding a scheme with richer functionality. In general, HIES is suitable for
the scenarios where low key management costs are desired, while the signing key
is not permanent, or the signature delegation is needed.

Instantiation and Implementation. We instantiate our HIES and implement
it with 128-bit security. The performance of our HIES scheme is comparable to
the best Cartesian product combined public-key scheme [30] in terms of effi-
ciency, and is superior in having richer functionality as well as retaining merits
of key reuse.

1.2 Related Works

Here we briefly review the works related to combined usage of public key schemes.

Key Separation. It is the folklore principle for combining PKE and signa-
ture schemes, which indicates using two independent key pairs for two public
key schemes. Paterson et al. formalized it via the notion of “Cartesian prod-
uct” combined public key scheme (CP-CPK) [30], which means using arbitrary
encryption and signature schemes as components, and combining two key pairs
into one simply through concatenating the public/private keys of the component
schemes. They pointed out that CP-CPK provides a benchmark by which other
constructions can be judged, so we use it as a baseline.

Key Reuse. The first work to formally study the security of key reuse was by
Haber and Pinkas [20]. They introduced the concept of a combined public key
(CPK) scheme, where an encryption scheme and a signature scheme are com-
bined. CPK preserves the existing algorithms of sign, verify, encrypt and decrypt,
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while the two key generation algorithms are modified into a single algorithm,
which outputs two key pairs for PKE and signature components respectively,
with the key pairs no longer necessarily being independent. In addition, they
formalized the joint security of CPK scheme, i.e., the encryption component is
IND-CCA secure even in the presence of an additional signing oracle, and the
signature component is EUF-CMA secure even in the presence of an additional
decryption oracle. Integrated signature and encryption (ISE) is an extreme case
of CPK. It uses an identical key pair for both PKE and signature components,
which in turn makes it not support key delegation. In subsequent works, both
Coron et al. [15] and Komano et al. [25] considered building ISE from trap-
door permutations in the random oracle model. Paterson et al. [30] gave an ISE
construction from identity-based encryption.

Hierarchical Integrated Signature and Encryption. It is a new notion
presented by Chen et al. in [14]. HISE employs a unique public key for both
PKE and signature components, and serves the signing key as the master secret
key from which the decryption key can be derived. Thus, HIES supports secure
delegation of decryption power and achieves stronger joint security than ISE,
that is, the encryption component is IND-CCA secure even in the presence of
an additional signing oracle, while the signature component is EUF-CMA secure
even in the presence of the decryption key.

Our notion is dual to HISE, where the hierarchy between signing key and
decryption key is reversed. It completes the last piece of the key usage strategy
puzzle, as shown in Fig. 2. We use index e to indicate keys for PKE component
and s to signature component.

pke ske

pks sks

CP-CPK

pk sk

ISE

pk

ske

sks

HISE

pk

ske

sks

HIES (this work)

Fig. 2. Different key usage strategies

2 Preliminaries

Notations. We use m
R←− M to denote that m is sampled uniformly at random

from a set M and y ← A(x) to denote the algorithm A that on input x outputs
y. We use the abbreviation PPT to indicate probabilistic polynomial-time. We
denote by negl(λ) a negligible function in λ. Let tuple (G1,G2,GT , p, g1, g2, e)
denote the descriptions of asymmetric pairing groups where G1, G2 and GT are
cyclic groups of the same prime order p, and g1, g2 are generators of G1,G2

respectively, and e : G1 × G2 → GT is the bilinear map.
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2.1 Public Key Encryption

Definition 1. A public key encryption (PKE) scheme consists of four
polynomial-time algorithms:

– Setup(1λ): on input a security parameter λ, outputs public parameters pp,
including the descriptions of plaintext space M, ciphertext space C, and ran-
domness space R.

– KeyGen(pp): on input public parameters pp, outputs a public encryption key
ek and a secret decryption key dk.

– Enc(ek,m): on input an encryption key ek and a plaintext m, outputs a
ciphertext c.

– Dec(dk, c): on input a decryption key dk and a ciphertext c, outputs a plaintext
m or a special reject symbol ⊥ denoting failure. This algorithm is typically
deterministic.

Correctness. For any pp ← Setup(1λ), any (ek, dk) ← KeyGen(pp), any m ∈ M
and any c ← Enc(ek,m), it holds that Dec(dk, c) = m.

Security. Let Odec be a decryption oracle that on input a ciphertext, outputs
a plaintext. A public key encryption scheme is IND-CCA secure if for any PPT
adversary A there is a negligible function negl(λ) such that:

Pr

⎡
⎢⎢⎢⎢⎣

β = β′ :

pp ← Setup(1λ);
(ek, dk) ← KeyGen(pp);
(m0,m1) ← AOdec(pp, ek);
β

R←− {0, 1}, c∗ ← Enc(ek,mβ);
β′ ← AOdec(c∗);

⎤
⎥⎥⎥⎥⎦

≤ 1
2

+ negl(λ).

A is not allowed to query Odec for c∗ in the guess stage. The IND-CPA security
can be defined similarly by denying the decryption oracle.

2.2 Digital Signature

Definition 2. A digital signature scheme consists of four polynomial-time algo-
rithms:

– Setup(1λ): on input the security parameter λ, outputs public parameters pp,
including the descriptions of message space M and signature space Σ.

– KeyGen(pp): on input pp, outputs a public verification key vk and a secret
signing key sk.

– Sign(sk,m): on input a signing key sk and a message m, outputs a signature
σ.

– Vrfy(vk,m, σ): on input a verification key vk, a message m, and a signature
σ, outputs a bit b, with b = 1 meaning valid and b = 0 meaning invalid.
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Correctness. For any (vk, sk) ← KeyGen(pp), any m ∈ M and any σ ←
Sign(sk,m), it holds that Vrfy(pk,m, σ) = 1.

Security. Let Osign be a signing oracle that on input a message, outputs a signa-
ture. A digital signature scheme is EUF-CMA secure if for any PPT adversary
A there is a negligible function negl(λ) such that:

Pr

⎡
⎣Vrfy(vk,m∗, σ∗) = 1

∧ m∗ /∈ Q :
pp ← Setup(1λ);
(vk, sk) ← KeyGen(pp);
(m∗, σ∗) ← AOdec(pp, vk);

⎤
⎦ ≤ negl(λ).

The set Q records queries to Osign. The strong EUF-CMA security can be defined
similarly by asking A to output a fresh valid message-signature tuple. The one-
time signature can also be defined similarly by restricting the adversary to access
Osign only once.

2.3 Constrained Identity-Based Encryption

We recall the definition of constrained IBE introduced by Chen et al. [14] below.

Definition 3. A constrained identity-based encryption (CIBE) scheme consists
of seven polynomial-time algorithms:

– Setup(1λ): on input a security parameter λ, outputs public parameters pp. Let
F be a family of predicates over identity space I.

– KeyGen(pp): on input public parameters pp, outputs a master public key mpk
and a master secret key msk.

– Extract(msk, id): on input a master secret key msk and an identity id ∈ I,
outputs a user secret key skid.

– Constrain(msk, f): on input a master secret key msk and a predicate f ∈ F ,
outputs a constrained secret key skf .

– Derive(skf , id): on input a constrained secret key skf and an identity id ∈ I,
outputs a user secret key skid if f(id) = 1 or ⊥ otherwise.

– Enc(mpk, id,m): on input mpk, an identity id ∈ I, and a message m, outputs
a ciphertext c.

– Dec(skid, c): on input a user secret key skid and a ciphertext c, outputs a
message m or a special reject symbol ⊥ denoting failure.

Correctness. For any pp ← Setup(1λ), any (mpk,msk) ← KeyGen(pp), any
identity id ∈ I, any skid ← Extract(msk, id), any message m, and any c ←
Enc(mpk, id,m), it always holds that Dec(skid, c) = m. Besides, for any f ∈ F
such that f(id) = 1, the outputs of Extract(msk, id) and Derive(skf , id) have the
same distribution.



74 M. Zhang et al.

Security. Let Oextract be an oracle of Extract that on input an identity id outputs
skid. Let Oconstrain be an oracle of Constrain that on input a predicate f outputs
skf . A CIBE scheme is IND-CPA secure, if for all PPT adversary A there is a
negligible function negl(λ) suth that:

Pr

⎡
⎢⎢⎢⎢⎣

β = β′ :

pp ← Setup(1λ);
(mpk,msk) ← KeyGen(pp);
(id∗, (m0,m1)) ← AOextract,Oconstrain(pp,mpk);
β

R← {0, 1}, c∗ ← Enc(mpk, id∗,mβ);
β′ ← AOextract,Oconstrain(c∗);

⎤
⎥⎥⎥⎥⎦

≤ 1
2

+ negl(λ).

A is not allowed to query the Oextract with id∗ or query the Oconstrain with f
such that f(id∗) = 1. Meanwhile, two weaker security notions can be defined
similarly. One is OW-CPA security, in which the adversary is required to recover
the plaintext from a random ciphertext. The other is selective-identity IND-CPA
security, in which the adversary must commit ahead of time (non-adaptively) to
the identity it intends to attack before seeing the mpk.

3 Hierarchical Integrated Encryption and Signature

3.1 Definition of HIES

As mentioned in the introduction, HIES allows one to derive the signing key from
the decryption key, which is opposite to HISE. Next, we give a self-contained
description of the formal definition of HIES.

Definition 4. A hierarchical integrated encryption and signature (HIES)
scheme is defined by seven polynomial-time algorithms:

– Setup(1λ): on input a security parameter λ, outputs public parameters pp

including the description of plaintext space M and message space M̃.
– KeyGen(pp): on input public parameters pp, outputs a public key pk and a

decryption key dk. Here, dk serves as a master secret key, which can be used
to derive signing key.

– Derive(dk): on input a decryption key dk, outputs a signing key sk.
– Enc(pk,m): on input a public key pk and a plaintext m ∈ M, outputs a

ciphertext c.
– Dec(dk, c): on input a decryption key dk and a ciphertext c, outputs a plaintext

m or a special reject symbol ⊥ denoting failure.
– Sign(sk, m̃): on input a signing key sk and a message m̃ ∈ M̃, outputs a

signature σ.
– Vrfy(pk, m̃, σ): on input a public key pk, a message m̃, and a signature σ,

outputs a bit b, with b = 1 meaning valid and b = 0 meaning invalid.
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Correctness. The correctness of HIES is divided into two parts, the correctness
of PKE and signature components: (i) the PKE component satisfies correctness
if for any pp ← Setup(1λ), any (pk, dk) ← KeyGen(pp), any m ∈ M and any
c ← Enc(pk,m), it holds that Dec(dk, c) = m; (ii) the signature component
satisfies correctness if for any pp ← Setup(1λ), any (pk, dk) ← KeyGen(pp),
any sk ← Derive(dk), any m̃ ∈ M̃ and any σ ← Sign(sk, m̃), it holds that
Very(pk, m̃, σ) = 1.

Security. (Joint security) The joint security for HIES needs to be considered
from two aspects as well. The PKE component requires to satisfy IND-CCA
security in the presence of a signing key and the signature component requires
to satisfy EUF-CMA security in the presence of a decryption oracle. Let Odec be
the decryption oracle and Osign be the signing oracle. The formal security notion
is defined as below.

Definition 5. HIES is joint secure if its encryption and signature components
satisfy the following security notions:

(i) The PKE component is IND-CCA secure in the presence of a signing key,
if for any PPT adversary A there is a negligible function negl(λ) such that:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

β = β′ :

pp ← Setup(1λ);
(pk, dk) ← KeyGen(pp);
sk ← Derive(dk);
(m0,m1) ← AOdec(pp, pk, sk);
β

R← {0, 1}, c∗ ← Enc(pk,mβ);
β′ ← AOdec(c∗);

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ 1
2

+ negl(λ).

A is not allowed to query Odec with c∗ in the guess stage.
(ii) The signature component is EUF-CMA secure in the presence of a decryption

oracle, if for all PPT adversary A there is a negligible function negl(λ) such
that:

Pr

⎡
⎣Vrfy(pk,m∗, σ∗) = 1

∧m∗ /∈ Q :
pp ← Setup(1λ);
(pk, dk) ← KeyGen(pp);
(m∗, σ∗) ← AOdec,Osign(pp, pk);

⎤
⎦ ≤ negl(λ).

The set Q records queries to Osign.

3.2 HIES from Constrained IBE

In this section, we give a generic construction of HIES from constrained identity-
based encryption. Let CIBE be a constrained IBE scheme and OTS be a strong
one-time signature scheme, then an HIES scheme can be created as Fig. 3. We
assume the identity space of CIBE is I = {0, 1}�+1, and the verification space
of OTS is {0, 1}�.

The correctness of the scheme follows directly from the correctness of CIBE
and OTS. The joint security of the HIES scheme is formalized as below.
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Setup(1λ) :
ppcibe ← CIBE.Setup(1λ)
ppots ← OTS.Setup(1λ)
Return pp = (ppcibe, ppots)

KeyGen(pp) :
Parse pp = (ppcibe, ppots)
(mpk, msk) ← CIBE.KeyGen(ppcibe)
Return (pk, dk) = (mpk, msk)

Derive(dk) :
Parse dk = msk
skf1 ← CIBE.Constrain(msk, f1)
(f1(id) = 1 iff id[1] = 1)
Return sk = skf1

Enc(pk, m) :
Parse pk = mpk
(ovk, osk) ← OTS.KeyGen(ppots)
Set id = 0||ovk
ccibe ← CIBE.Enc(mpk, id, m)
σots ← OTS.Sign(osk, ccibe)
Return c = (ovk, ccibe, σots)

Dec(dk, c) :
Parse c = (ovk, ccibe, σots)
If OTS.Vrfy(ovk, ccibe, σots) �= 1
return ⊥
Parse dk = msk
Set id = 0||ovk
skid ← CIBE.Extract(msk, id)
m ← CIBE.Dec(skid, ccibe)
Return m

Sign(sk, m̃) :
Parse sk = skf1

Set id = 1||m̃
skid ← CIBE.Derive(skf1 , id)
Return σ = skid

Vrfy(pk, m̃, σ) :
Parse pk = mpk and σ = skid

Set id = 1||m̃
m

R←− M
ccibe ← CIBE.Enc(mpk, id, m)
If CIBE.Dec(ccibe, skid) = m
Return 1, else return 0

Fig. 3. A generic construction of HIES from CIBE

Theorem 1. Assume CIBE satisfies IND-CPA security and OTS satisfies
strong EUF-CMA security, then the HIES scheme constructed as Fig. 3 satisfies
joint security.

This theorem comes straightforwardly from two lemmas.

Lemma 1. If CIBE scheme is OW-CPA secure, then the signature component
is EUF-CMA secure in the presence of the decryption oracle.

Proof. If there exists a PPT adversary A against the signature component, we
can construct a PPT adversary B that uses A as a subroutine and attacks the
CIBE. B is given public parameters ppcibe, public key mpk and access to Oextract

and Oconstrain by its own challenger CHcibe, then it simulates A’s challenger CHsign

as below.

– Setup: B runs ppots ← OTS.Setup(1λ), sets pp = (ppcibe, ppots) and pk = mpk,
then sends (pp, pk) to A.

– Signing query: when A requests a signature on message m̃, B queries Oextract

with identity id = 1||m̃ to obtain skid, outputs σ = skid.
– Decryption query: when A requests the plaintext of a ciphertext c, B first

parses c as (ovk, ccibe, σots), then checks whether OTS.Vrfy(ovk, ccibe, σots) =
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1, and returns ⊥ if not; else it queries Oextract for id = 0||ovk to obtain skid

and returns the plaintext m ← CIBE.Dec(skid, ccibe) to A.
– Forgery: when A outputs a forged message-signature pair (m̃∗, σ∗), B first

submits id∗ = 1||m̃ as the target identity to CHcibe and receives back c∗
cibe ←

CIBE.Enc(mpk, id∗,m) for a random plaintext m
R←− M, then it parses σ∗ =

skid∗ , and computes m′ ← CIBE.Dec(skid∗ , c∗
cibe). B wins if m′ = m.

The view of A when it interacts with B is identical to the view of A interacting
with a real challenger, which implies the simulation of B is perfect. If no PPT
adversary B has non-negligible probability to break the OW-CPA security of the
CIBE scheme, then no PPT adversary A has non-negligible probability to break
the EUF-CMA security of signature component. This proves Lemma 1.

Lemma 2. If the OTS scheme satisfies strong EUF-CMA security and the
CIBE scheme satisfies selective-identity IND-CPA security, then the encryption
component PKE satisfies IND-CCA security even in the presence of signing key.

Proof. Consider following games. Let A be an adversary against the PKE com-
ponent and Si be the event that A wins in Game i.

Game 0. This is the standard IND-CCA security experiment for PKE compo-
nent in the presence of a signing key, CHpke interacts with A as below.

– Setup: CHpke runs ppcibe ← CIBE.Setup(1λ) and ppots ← OTS.Setup(1λ),
sets pp = (ppcibe, ppots), then runs (mpk,msk) ← CIBE.KeyGen(ppcibe) , sets
pk = mpk and dk = msk, runs sk ← Derive(dk), and gives (pp, pk, sk) to A.

– Decryption query: upon receiving a ciphertext c, CHpke first parses c =
(ovk, ccibe, σ), checks if OTS.Vrfy(ovk, ccibe, σ) = 1, outputs ⊥ if not; else
sets id = 0||ovk, parses dk = msk, runs skid ← CIBE.Extract(msk, id) and
outputs m ← CIBE.Dec(skid, ccibe).

– Challenge: A outputs a pair of messages (m0,m1). CHpke chooses a random
bit b

R←− {0, 1}, runs (ovk∗, osk∗) ← OTS.KeyGen(ppots), sets id∗ = 0||ovk∗,
computes c∗

cibe ← CIBE.Enc(mpk, id∗,mb), and σ∗ ← OTS.Sign(osk∗, c∗
cibe),

outputs c∗ = (ovk∗, c∗
cibe, σ

∗) to A. Then A can continue to query the decryp-
tion oracle, but it is not allowed to query for c∗.

– Guess: Eventually, A outputs a bit b′. A wins if b′ = b.

Game 1. Same as Game 0 except that CHpke generates the OTS keypair
(ovk∗, osk∗) ← OTS.KeyGen(ppots) in the setup stage rather than in the chal-
lenge stage. The modification is only conceptual and does not affect the advan-
tage of A, so we have:

Pr [S1] = Pr [S0] .

Game 2. Same as Game 1 except that the experiment directly aborts when one
of following two events happens:

E1: in phase 1, A queries the decryption oracle with c = (ovk∗, ccibe, σ) such
that OTS.Vrfy(ovk∗, ccibe, σ) = 1.
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E2: in phase 2, A queries the decryption oracle with c = (ovk∗, c∗
cibe, σ) such

that OTS.Vrfy(ovk∗, c∗
cibe, σ) = 1 and σ �= σ∗.

Let E be the event that E1 or E2 happens, then we have (Game 1 ∧¬E) = (Game
2 ∧¬E). According to the difference lemma, we have:

|Pr [S2] − Pr [S1]| ≤ Pr [E] .

Actually, the two events mean a successful attack on the OTS, while the strong
EUF-CMA security of OTS ensures that for any PPT A, it holds that Pr [E] =
negl(λ).

Claim 1. If the CIBE scheme is selective-identity IND-CPA secure, then for
any PPT adversary A, there is a negligible function negl(λ) such that:

∣∣∣∣Pr [S2] − 1
2

∣∣∣∣ ≤ negl(λ).

Proof. Let B be an adversary against CIBE scheme. It is given public param-
eters ppcibe and access to Oextract and Oconstrain by its own challenger CHcibe. B
simulates A’s challenger as below.

– Setup: B runs ppots ← OTS.Setup(1λ), (ovk∗, osk∗) ← OTS.KeyGen(ppots),
sets id∗ = 0||ovk∗, then commits to id∗ and sends the commitment to its
own challenger CHcibe as the target identity and receives back public key
pk = mpk. Next, B queries Oconstrain with f1, and obtains the signing key
sk = skf1 . B gives pp = (ppcibe, ppots), pk = mpk and sk = skf1 to A.

– Decryption query: When A queries for a ciphertext c = (ovk, ccibe, σ), B
first checks whether OTS.Vrfy(ovk, ccibe, σ) = 1, if not, outputs ⊥; else if
ovk = ovk∗ which means event E1 happens, B aborts; otherwise it must have
ovk �= ovk∗, B queries Oextract with id = 0||ovk to obtain skid, and outputs
m ← CIBE.Dec(skid, ccibe).

– Challenge: A submits two messages (m0,m1) to B. B sends the two messages
to its own challenger and receives back a ciphertext c∗

cibe which is a ciphertext
of mb under the target identity id∗ = 0||ovk∗. B proceeds to compute a
signature σ∗ on c∗

cibe, then sends c∗ = (ovk∗, c∗
cibe, σ

∗) to A.
– Guess: Upon receiving c∗, A continues to query decryption oracle but is not

allowed to query it with c∗. If E2 happens, B aborts. Else it answers the query
as before. Finally, A outputs b′, and B uses b′ as its own guess.

The view of A when it interacts with B is identical to the view of A in
experiment Game 2 which implies the simulation of B is perfect. Due to the
selective-identity IND-CPA security of CIBE, the advantage of A wins in Game
2 is negligible. This proves Claim 1.

Therefore, the proof of Lemma 2 is completed.
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Remark 1. We strengthen PKE component to IND-CCA security via the
Canetti-Halevi-Katz (CHK) transform [11] with the help of a one-time signa-
ture. To enhance the efficiency, we can get rid of OTS and use an id0 = 0�+1 as
a fixed target identity for encryption, then apply the Fujisaki-Okamoto trans-
formation [17] to achieve the IND-CCA security in the random oracle model.

4 Further Discussion

In this section, we discuss three simple extensions of HIES for different delegation
purposes and each of them is in the public key reuse setting. The key observation
is that the prefix predicates in a constrained IBE can be assigned different and
specific meanings.

Flexible Delegation. One delegation function is insufficient sometimes, such as
the cases when the president wants to give his signing right to his assistants and
give his decryption right to vice president. Thus, it is attractive to give a more
flexible notion that enables the secret key owner to delegate these two types of
authorities to different entities. The key technique is equalizing two secret keys
by deriving them both from the master secret key as shown in Fig. 4(a). It is
evident that the extended version satisfies united joint security as long as the two
agents are not in collusion, namely the PKE/signature component is IND-CCA
secure even when the adversary is given the signing/decryption key.

Limited Delegation. In the signature proxy function introduced by Mambo
et al. [27], the full delegation ( giving the full original secret key to the proxy
signer) requests the proxy is authentic, since the proxy signer has the ability to
sign any message and the proxy signature is indistinguishable from the created
by the original signer. The decryption proxy suffers the similar discomfort if
the decryption key is disclosed. In order to limit the decryption and signing
capacity of proxy, we consider an extension which supports partial delegation. It
divides the decryption/signing capacity into two parts so that the original user
can retain the higher power while delegating partial power to agents as shown
in Fig. 4(b).

Finegrained Delegation. Giving the prefix predicates with more specific
meanings such as the ID (identifier information such as email address) of a
person or the number of a department, more finegrained delegation keys can be
derived.

5 Instantiation and Implementation

5.1 Instantiation of HIES

Towards efficient realizations, we choose the hierarchical IBE (cf. Appendix A.1)
rather than the constrained IBE to instantiate our HIES scheme, where the secu-
rity can be similarly demonstrated. By choosing Boneh-Boyen two-level hierar-
chical IBE scheme (BB1-IBE, cf. Appendix A.2), we instantiate our HIES scheme
as below.
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msk

dk ← skf0 skf1 → sk
0 1

SignaturePKE

(a) Flexible delegation

msk

dk ← skf0 skf1 → sk

pdk ← skf01 skf11 → psk

0 1

SignaturePKE

(b) Limited delegation

Fig. 4. Extensions of HIES from constrained IBE

– Setup(1λ): on input the security parameter λ, generates an asymmetric pairing
tuple (G1,G2,GT , p, g1, g2, e), picks two collision resistant hash functions Hj :
{0, 1}∗ → G2 for j = 1, 2, sets ID0 = 0n and ID1 = 1n with n = Θ(λ).
The public parameter pp = ((G1,G2,GT , p, g1, g2, e) ,H1,H2, ID0, ID1). The
plaintext space is GT . The message space is {0, 1}∗.

– KeyGen(pp): on input the public parameters pp, picks a random α ∈ Zp, sets
f1 = gα

1 and f2 = gα
2 , sets public key mpk = f1 = gα

1 and decryption key
dk = msk = f2 = gα

2 .
– Derive(dk): on input the decryption key dk, picks a random r′ ∈ Zp, computes

d′
0 = dk · H1(ID1)r′

and d′
1 = gr′

1 , outputs sk = (d′
0, d

′
1) ∈ (G2,G1).

– Enc(pk,m): on input the public key pk = mpk and a plaintext m ∈ GT ,
firstly picks a random s ∈ Zp and computes A = e(f1, g2)s · m, B = gs

1 and
C1 = H1(ID0)s, outputs c = (A,B,C1) ∈ (GT ,G1,G2).

– Dec(dk, c): on input dk = f2 = gα
2 and a ciphertext c = (A,B,C1), picks

a random r′′ ∈ Zp, computes d′′
0 = dk · H1(ID0)r′′

and d′′
1 = gr′′

1 , outputs
A · e(d′′

1 , C1)/e(B, d′′
0) = m.

– Sign(sk, m̃): on input a signing key sk = skID1 = (d′
0, d

′
1) and a message

m̃ ∈ {0, 1}∗, first picks a random r ∈ Zp, computes d0 = d′
0 ·H2(m̃)r, d1 = d′

1

and d2 = gr
1, outputs σ = skID = (d0, d1, d2) ∈ (G2,G1,G1).

– Vrfy(pk, m̃, σ): on input the public key pk = mpk = f1, a message m̃ ∈ {0, 1}∗

and a signature σ = skID = (d0, d1, d2), outputs 1 if following equation holds,
otherwise outputs 0.

e (f1, g2) · e (d1,H1(ID1)) · e (d2,H2(m̃)) = e (g1, d0) .

Remark 2. We simplify the Vrfy algorithm based on the fact that if σ is a valid
signature for m̃, then it can be used as the secret key for user ID = 〈ID1, m̃〉
to successfully decrypt any ciphertext c = (A,B,C1, C2) for any plaintext m
encrypted by mpk via BB1-IBE. Specifically, for any randomness s, it always
holds that e (f1, g2)

s · e (d1, C1) · e (d2, C2) = e (B, d0).
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5.2 Implementation

Since our HIES is a newly proposed notion, there is no similar schemes can be
used to judge its performance. As mentioned before (see Sect. 1.2), the “Carte-
sian product” construction of combined public key (CP-CPK) scheme introduced
by Paterson et al. [30], which uses arbitrary public key encryption and signa-
ture schemes as components, provides a benchmark for any bespoke construc-
tion. Thus, we build a concrete CP-CPK scheme by choosing the most efficient
encryption and signature schemes, i.e. ElGamal PKE and Schnorr signature and
use it as a baseline.

We implement the concrete CP-CPK scheme atop elliptic curve secp256k1
with 128-bit security in which |G| = 256 bits and |Zp| = 256 bits, and implement
our HIES scheme atop pairing-friendly curve bls12-381 with 128-bit security
level [32] in which |G1| = 381 bits, |G2| = 762 bits, |Zp| = 256 bits, and |GT | =
1524 bits (by exploiting compression techniques [31]).

Both of them are implemented in C++ based on the mcl library [33], and
all the experiments are carried out on a MacBook Pro with Intel i7-9750H CPU
(2.6 GHz) and 16 GB of RAM. Our implementation is released on GitHub and is
available on https://github.com/yuchen1024/HISE/tree/master/hies. The code
follows KEM-DEM paradigm.

Table 1. Efficiency comparison between CP-CPK and our HIES scheme

Functionality
strong

joint security
individual

escrow
key reuse

certificate
costs

CP-CPK ✓ ✓ ✗ ×2

HIES ✓ ✓ ✓ ×1

Sizes (bits) |pk| |sk| |c| |σ|
CP-CPK 512 512 512 512

HIES 381 762 2667 1524

Efficiency (ms) KeyGen Derive Enc Dec Sign Vrfy

CP-CPK 0.015 � 0.118 0.056 0.064 0.120

HIES 0.111 0.116 0.500 0.621 0.117 1.022
In the paradigm of KEM-DEM, we test the efficiency of algorithms of key
generation, key derivation, encryption, decryption, signing and verification
as well as the sizes of public key, secret key, ciphertext and signature. Symbol
� means no corresponding algorithm.

Table 1 offers a comparison of HIES against the previous CP-CPK. In terms
of functionality, it shows that HIES is in the public key reuse setting while CP-
CPK is not. Moreover, HIES reduces the key management and key certificate
costs. In terms of the experimental results, we admit the efficiency of our HIES
scheme is slower than CP-CPK, but it is fortunately still considerable.

https://github.com/yuchen1024/HISE/tree/master/hies
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6 Conclusion

In this work, we resolve the problem left in [14] by formalizing the definition
and the joint security of HIES. Similar to HISE, HIES also has a two-level key
derive system, but the hierarchy between signing key and decryption key are
reversed, thus it enables secure delegation of signature capacity. In addition, we
present a generic construction of HIES from constrained identity-based encryp-
tion and give a rigorous proof of its joint security. Furthermore, we discuss three
simple extensions of HIES for different delegation purposes. In the end, we imple-
ment our HIES scheme with 128-bit security. Though the construction here is a
straightforward variant of HISE from constrained IBE, we emphasize the theo-
retical significance of HIES for completing the last piece of the key usage strategy
puzzle. We leave the more ingenious and efficient constructions for future work.

Acknowledgements. We thank the anonymous reviewers for their helpful feedback.
This work is supported by the National Key Research and Development Program
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A Hierarchical Identity-Based Encryption

Hierarchical identity-based encryption (HIBE) is first introduced in [19,21]. We
formally describe the definition of HIBE below. In an HIBE scheme, users having
a position in the hierarchy, are specified by an ID-tuple ID = (I1, · · · , Ij), where
Ii corresponds to the identity at level i.

A.1 Definition of HIBE

Definition 6. A hierarchical identity-based encryption scheme consists of five
polynomial-time algorithms:

– Setup(1λ): on input a security parameter λ, outputs public parameters pp,
including the plaintext space M, the ciphertext space C and the identity space
I in every level.

– KeyGen(pp): on input the public parameters pp, outputs a public key mpk and
a master secret key msk (i.e. root secret in level-0).

– Extract(mpk, skID, 〈ID, I〉): on input the public key mpk, a secret key for ID-
tuple ID, and an ID-tuple 〈ID, I〉 which is a child node of ID, outputs sk〈ID,I〉.

– Enc(mpk, ID,m): on input public key mpk, the ID-tuple of the intended mes-
sage recipient ID and a message m ∈ M, outputs a ciphertext c ∈ C.

– Dec(skID, c): on input a secret key skID and a ciphertext c, outputs a message
m or a special reject symbol ⊥ denoting failure.

Correctness. An HIBE scheme is correct, if encryption algorithm Enc and
decryption algorithm Dec satisfy the standard consistency constraint, namely,
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when skID is the secret key generated by the extraction algorithm Extract for
user ID, then for any m ∈ M and c ← Enc(mpk, ID,m), it always holds that
Dec(skID, c) = m.

Security. Let Oextract be an oracle of Extract that on input an ID-tuple ID and
outputs skID. An HIBE scheme is IND-CPA secure, if for all PPT adversary A
there is a negligible function negl(λ) such that:

Pr

⎡
⎢⎢⎢⎢⎣

b = b′ :

pp ← Setup(1λ);
(mpk,msk) ← KeyGen(pp);
(ID∗, (m0,m1)) ← AOextract(pp,mpk);
b

R← {0, 1}, c∗ ← Enc(mpk, ID∗,mb);
b′ ← AOextract(c∗);

⎤
⎥⎥⎥⎥⎦

≤ 1
2

+ negl(λ).

In guess stage, A is not allowed to query the Oextract for ID∗ or the ancestor
nodes of it (i.e. IDs which are prefixed with ID∗). Meanwhile, two weaker security
notions can be defined similarly. One is OW-CPA security, in which the adversary
is required to recover the plaintext from a random ciphertext. The other is
selective-identity IND-CPA security, in which the adversary must commit ahead
of time (non-adaptively) to the identity it intends to attack before seeing the
mpk.

A.2 Boneh-Boyen HIBE Scheme

We review the �-HIBE scheme of Boneh-Boyen (BB1-IBE) [9] as below. As [6,18]
noticed, compared to symmetric pairings, asymmetric pairings yield schemes
having more efficiency in terms of both bandwidth and computation time. There-
fore, we adjust the original Boneh-Boyen HIBE with asymmetric pairings.

– Setup(1λ): on input the security parameter λ, generates an asymmetric pair-
ings tuple (G1,G2,GT , p, g1, g2, e), and picks a family of collision resistant
hash functions Hj : {0, 1}∗ → G2 for j ∈ [0, �]. The public parameters pp
include the description of bilinear groups and the hash functions {Hj}j∈[0,�].
The ID at level-j is Ij = ({0, 1}∗)j . The plaintext space is M = GT .

– KeyGen(pp): on input the public parameters pp, picks a random α ∈ Zp, sets
f1 = gα

1 and f2 = gα
2 , sets public key mpk = f1 = gα

1 and master secret key
msk = f2 = gα

2 .
– Extract(mpk, skID, 〈ID, I〉): on input the public key mpk, a level-j private

key skID = (d0, . . . , dj) ∈
(
G2,G

j
1

)
and a level-(j + 1) ID-tuple 〈ID, I〉 =

(I1, . . . , Ij , Ij+1) ∈ ({0, 1}∗)j+1, first picks a random r ∈ Zp and outputs

sk〈ID,I〉 = (d0 · Hj+1(Ij+1)r, d1, . . . , dj , g
r
2) ∈

(
G2,G

j+1
1

)

Note that (1) when ID is an empty set denoted as ε, skID is exactly the
master secret key msk, that is skε = f2 = gα

2 . (2) all the private keys
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can be also extracted directly from the master secret key msk through com-
puting sk〈ID,I〉 =

(
gα
2 · ∏j+1

k=1 Hk(Ik)rk , gr1
1 , . . . , g

rj+1
1

)
with random elements

r1, . . . , rj+1 ∈ Zp.
– Enc(mpk, ID,m): on input the public key mpk, an ID-tuple ID = (I1, . . . , Ij) ∈

({0, 1}∗)j and a message m ∈ GT , picks a random s ∈ Zp and outputs

C = (e(f1, g2)s · m, gs
1,H1(I1)s, . . . ,Hj(Ij)s) ∈

(
GT ,G1,G

j
2

)
.

– Dec(skID, c): on input a private key skID = (d0, d1, . . . , dj) and a ciphertext
C = (A,B,C1, . . . , Cj), outputs

A ·
∏j

k=1 e (dk, Ck)
e (B, d0)

= m.

References

1. Government of Canada. https://www.canada.ca/en/shared-services/corporate/
transparency/briefing-documents/ministerial-briefing-book/delegation.html

2. PGP. https://www.openpgp.org
3. The University of Iowa. https://opsmanual.uiowa.edu/administrative-financial-

and-facilities-policies/facsimile-signatures-and-signature-assignment-2
4. Viafirma. https://www.viafirma.com/blog-xnoccio/en/signature-delegation/
5. WhatsApp. https://www.whatsapp.com
6. Akinyele, J.A., Garman, C., Hohenberger, S.: Automating fast and secure transla-

tions from type-i to type-iii pairing schemes. In: ACM CCS 2015, pp. 1370–1381
(2015)

7. Alimi, P.: On the use of pedersen commitments for confidential payments. https://
research.nccgroup.com/2021/06/15/on-the-use-of-pedersen-commitments-for-
confidential-payments/

8. Boldyreva, A.: Secure proxy signature scheme for delegation of signing rights
(2003). http://eprint.iacr.org/2003/096/

9. Boneh, D., Boyen, X.: Efficient selective-id secure identity based encryption with-
out random oracles. Cryptology ePrint Archive, Report 2004/172 (2004). https://
ia.cr/2004/172

10. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: towards privacy in a smart
contract world. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp.
423–443. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4 23

11. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 16

12. Cao, F., Cao, Z.: A secure identity-based multi-proxy signature scheme. Comput.
Electr. Eng. 35(1), 86–95 (2009)

13. Chen, Y., Ma, X., Tang, C., Au, M.H.: PGC: pretty good confidential transaction
system with auditability. In: ESORICS 2020, pp. 591–610 (2020)

14. Chen, Y., Tang, Q., Wang, Y.: Hierarchical integrated signature and encryption.
Cryptology ePrint Archive, Report 2021/1237 (2021). https://ia.cr/2021/1237

15. Coron, J.-S., Joye, M., Naccache, D., Paillier, P.: Universal padding schemes for
RSA. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 226–241. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 15

https://www.canada.ca/en/shared-services/corporate/transparency/briefing-documents/ministerial-briefing-book/delegation.html
https://www.canada.ca/en/shared-services/corporate/transparency/briefing-documents/ministerial-briefing-book/delegation.html
https://www.openpgp.org
https://opsmanual.uiowa.edu/administrative-financial-and-facilities-policies/facsimile-signatures-and-signature-assignment-2
https://opsmanual.uiowa.edu/administrative-financial-and-facilities-policies/facsimile-signatures-and-signature-assignment-2
https://www.viafirma.com/blog-xnoccio/en/signature-delegation/
https://www.whatsapp.com
https://research.nccgroup.com/2021/06/15/on-the-use-of-pedersen-commitments-for-confidential-payments/
https://research.nccgroup.com/2021/06/15/on-the-use-of-pedersen-commitments-for-confidential-payments/
https://research.nccgroup.com/2021/06/15/on-the-use-of-pedersen-commitments-for-confidential-payments/
http://eprint.iacr.org/2003/096/
https://ia.cr/2004/172
https://ia.cr/2004/172
https://doi.org/10.1007/978-3-030-51280-4_23
https://doi.org/10.1007/3-540-39200-9_16
https://ia.cr/2021/1237
https://doi.org/10.1007/3-540-45708-9_15


You Can Sign but Not Decrypt 85

16. Dai, J.Z., Yang, X.H., Dong, J.X.: Designated-receiver proxy signature scheme for
electronic commerce. In: SMC 2003 Conference Proceedings. 2003 IEEE Interna-
tional Conference on Systems, Man and Cybernetics. Conference Theme - System
Security and Assurance (Cat. No.03CH37483) (2003)

17. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

18. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discret.
Appl. Math. 16, 3113–3121 (2008)

19. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36178-2 34

20. Haber, S., Pinkas, B.: Securely combining public-key cryptosystems. In: ACM CCS
2001, pp. 215–224 (2001)

21. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46035-7 31

22. Huang, X., Mu, Y., Susilo, W., Zhang, F., Chen, X.: A short proxy signature
scheme: efficient authentication in the ubiquitous world. In: Enokido, T., Yan, L.,
Xiao, B., Kim, D., Dai, Y., Yang, L.T. (eds.) EUC 2005. LNCS, vol. 3823, pp.
480–489. Springer, Heidelberg (2005). https://doi.org/10.1007/11596042 50

23. Huang, X., Susilo, W., Mu, Y., Wu, W.: Proxy signature without random oracles.
In: Cao, J., Stojmenovic, I., Jia, X., Das, S.K. (eds.) MSN 2006. LNCS, vol. 4325,
pp. 473–484. Springer, Heidelberg (2006). https://doi.org/10.1007/11943952 40

24. Kim, S., Park, S., Won, D.: Proxy signatures, revisited. In: Han, Y., Okamoto, T.,
Qing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 223–232. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0028478

25. Komano, Y., Ohta, K.: Efficient universal padding techniques for multiplicative
trapdoor one-way permutation. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol.
2729, pp. 366–382. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45146-4 22

26. Lee, B., Kim, H., Kim, K.: Secure mobile agent using strong non-designated proxy
signature. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp.
474–486. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-47719-5 37

27. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures: delegation of the power
to sign messages. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 79(9),
1338–1354 (1996)

28. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing oper-
ation. In: Proceedings of the 3rd ACM Conference on Computer and Communica-
tions Security, pp. 48–57. CCS 1996, Association for Computing Machinery, New
York, NY, USA (1996)

29. Neuman, B.: Proxy-based authorization and accounting for distributed systems. In:
1993 Proceedings. The 13th International Conference on Distributed Computing
Systems, pp. 283–291 (1993)

30. Paterson, K.G., Schuldt, J.C.N., Stam, M., Thomson, S.: On the joint security of
encryption and signature, revisited. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 161–178. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25385-0 9

31. Rubin, K., Silverberg, A.: Compression in finite fields and torus-based cryptogra-
phy. SIAM J. Comput. 37(5), 1401–1428 (2008)

https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1007/3-540-46035-7_31
https://doi.org/10.1007/11596042_50
https://doi.org/10.1007/11943952_40
https://doi.org/10.1007/BFb0028478
https://doi.org/10.1007/978-3-540-45146-4_22
https://doi.org/10.1007/978-3-540-45146-4_22
https://doi.org/10.1007/3-540-47719-5_37
https://doi.org/10.1007/978-3-642-25385-0_9
https://doi.org/10.1007/978-3-642-25385-0_9


86 M. Zhang et al.

32. Sakemi, Y., Kobayashi, T., Saito, T., Wahby, R.S.: Pairing-Friendly Curves.
Internet-Draft draft-irtf-cfrg-pairing-friendly-curves-09, Internet Engineering
Task Force (2020). https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-
friendly-curves-09

33. Shigeo, M.: A portable and fast pairing-based cryptography library. https://github.
com/herumi/mcl

34. Shim, K.A.: Short designated verifier proxy signatures. Comput. Electr. Eng.
37(2), 180–186 (2011)

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-09
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-09
https://github.com/herumi/mcl
https://github.com/herumi/mcl


SR-MuSig2: A Scalable
and Reconfigurable Multi-signature

Scheme and Its Applications

Wenqiu Ma1,2 and Rui Zhang1,2(B)

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

{mawenqiu,zhangrui}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100049, China

Abstract. Multi-signature is a kind of digital signature with a wide range
of uses, such as certificate authorities signing certificates, which can enable
a group of signers to sign the same message in a very short period, thereby
aggregating a compact signature. In this work, we propose SR-MuSig2, a
multi-signature scheme with scalability and reconfigurability. First of all,
we use a tree structure to significantly improve the efficiency of computa-
tion and communication of signers, so that the scheme can support a large
number of participants signing simultaneously and has better scalability.
For the reconfigurability, SR-MuSig2 supports the signers to revoke pas-
sively or actively from the signer group, while can effectively generate the
signature and complete the verification. Then we implement a prototype
system in Python, and evaluate our scheme in the simulation network envi-
ronment. The experimental results show that SR-MuSig2 is able to gen-
erate aggregated signature in an acceptable time with up to thousands of
signers, and it can complete the signing process in only 12 s when there
are 211 signers. In addition, when 5% of the nodes in the signer group (up
to 211 signers) go offline, SR-MuSig2 only needs to update the values of
2.6% of the remaining nodes (nearly 66 s) instead of updating the values
of all the remaining nodes to recover signing process.

Keywords: Multi-signature · Tree structure · Scalability ·
Reconfigurability

1 Introduction

Multi-signature, which was first proposed by K. Itakura and K. Nakamura [7]
in 1983, is a special digital signature scheme that allows multiple signers to
sign a public message in a short period, thereby generating an independent
aggregated signature. The verifier can confirm the validity of it by verifying the
aggregated signature. This is more compact and convenient than verifying a list
of signatures generated by all the signers. The multi-signature scheme has a wide
range of applications, especially in critical network authorities, such as certificate
authorities, timestamping authorities, and directory authorities.
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Multi-signature schemes can be obtained from general signature schemes,
but require the underlying signature scheme to be aggregatable. Many proposed
multi-signature schemes [1,3–6,8,10–13,16,17] are based on Schnorr signature
[15], since it has good aggregability and can be well used in some distributed
scenarios. However, Syta et al. [17] pointed out that multi-signature schemes are
only used or considered practical in small groups (less than 10 signers), because
the time cost of signing increases linearly with the number of signers. When
the number of signers increases beyond 10, the time to complete a signature
increases greatly, which is unacceptable in practice. Therefore, some scholars
proposed multi-signature schemes based on tree structure [6,19] to reduce time
consumption caused by the increase in the number of signers. However, these
schemes are only theoretically feasible, because the case where nodes in the
tree go offline is not considered, so the actual network environment needs to be
taken into account when it is used. CoSi scheme proposed by Syta et al. [17]
in 2016 is based on a tree structure. Although it considers the influence of the
network environment, Drijvers et al. [6] proposed an attack on CoSi in 2019, so
the scheme is insecure. To sum up, the multi-signature scheme based on tree
structure needs further exploration and innovation. In this paper, we propose
SR-MuSig2, a multi-signature scheme with scalability and reconfigurability. The
specific contributions of this paper are as follows:

– Based on MuSig2 [12], we propose a trivial tree-based MuSig2 scheme. By
introducing a tree structure, we allocate the computation and communication
costs of signing to each node of the tree, which improves the efficiency of
signing while not losing security and makes the scheme no longer restricted
by the increasing number of signers. Namely, the trivial tree-based MuSig2
scheme has scalability;

– Based on the above scheme, we propose a scalable and reconfigurable multi-
signature scheme named SR-MuSig2, which not only has the property of scal-
ability, but also supports signers passively or actively revoke from the signer
group while it still can generate multi-signatures and be verified correctly.
Namely, the SR-MuSig2 scheme has scalability and reconfigurability;

– We implement the proposed SR-MuSig2 signature system in Python, and
compare it with Schnorr and tree-based Schnorr multi-signature schemes.
Experimental results show that SR-MuSig2 is able to generate aggregated
signature in an acceptable time with up to thousands of signers, and it can
complete the signing process in only 12 s when there are 211 signers. In addi-
tion, when 5% of the nodes in the signer group (up to 211 signers) go offline,
SR-MuSig2 only needs to update the values of 2.6% of the remaining nodes
(nearly 66 s) instead of updating the values of all the remaining nodes to
recover signing process.

2 Related Work

Multi-signature was first proposed by K. Itakura and K. Nakamura [7] in 1983,
which aims to emphasize that signatures of different signers on the same message
can be combined into an independent signature and verified correctly.
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2.1 Multi-signature Scheme Based on Schnorr

Schnorr signature algorithm has natural aggregation advantages, so it is very
suitable as the underlying scheme of multi-signature. Scholars have designed a
large number of multi-signature schemes based on Schnorr signature.

Based on Schnorr signature, Bellare and Neven [4] added a round to signa-
ture, requiring all participating signers exchange their own commitments, thus
proposing a three-round multi-signature scheme BN [4], which is match to the
standard Schnorr signature. Bagherzandi et al. proposed BCJ [3] scheme based
on BN [4], which reduces the number of rounds from 3 to 2 by using multiplicative
homomorphic commitments, but increases the signature size and computational
cost of signing and verifying phases.

Ma et al. [9] proposed a variant MWLD based on Okamoto [14] signature
scheme in 2010, which makes the scheme continue to execute in two rounds and
reduces the size of the signature compared to Bagherzandi [3] scheme. However,
both schemes above (Bagherzandi [3] and Ma [9]) don’t support key aggregation.

In 2019, Maxwell et al. [10] extended BN [4] scheme and proposed a new
Schnorr-based multi-signature scheme MuSig. A notable feature of this scheme
is that it supports public key aggregation, and the verifier only needs a short
aggregated key instead of an explicit list of all n public keys. The scheme is
proven secure under the assumptions of the plain public-key model and discrete
logarithm. However, whether their scheme can be proven safe under different
assumptions or in a generic group model is currently an open question.

Drijvers et al. [6] showed that all previously proposed two-round multi-
signature schemes (BN [4], BCJ [3], MWLD [9], MuSig [10]) in a pure DL setting
are insecure under concurrent signing sessions. Therefore, Drijvers et al. [6] pre-
sented a two-round scheme mBCJ in 2019, which is safe under discrete logarithm
assumption. However, this two-round scheme is more than twice as efficient as
Schnorr signatures, and the resulting signature format is custom made.

In 2020, Nick et al. [13] proposed a variant of MuSig, MuSig-DN, which is the
first Schnorr multi-signature scheme with deterministic nonces. In this scheme,
signers deterministically generate the nonces in the form of a pseudorandom
function of the message and public keys of all signers, and prove that they do
so by providing NIZK to the co-signers, but NIZK is expensive and hurts the
performance of signers, making MuSig-DN, which requires only two rounds of
interactions, less efficient than three rounds of MuSig in common settings.

Therefore, Nick et al. [12] proposed a simple and practical two-round multi-
signature scheme MuSig2 under the one-more discrete logarithm assumption.
This is the first multi-signature scheme that simultaneously has several advan-
tages: i) is secure under concurrent signing sessions, ii) supports key aggregation,
iii) outputs standard Schnorr signatures, iv) requires only two communications,
v) has signer complexity similar to standard Schnorr signatures. Alper and Bur-
dges [2] used the idea of a linear combination of multiple random numbers to
obtain a two-round multi-signature scheme DWMS, which is very similar to
MuSig2, but lacks some optimizations present in MuSig2.
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2.2 Multi-signature Scheme Based on Tree Structure

Syta et al. [17] designed CoSi using Schnorr multi-signature scheme, which orga-
nizes all cosigners into a tree structure, thereby realizing the rapid generation of
multi-signatures, which is a highly scalable multi-signature scheme that allows
a tree of 8192 signers to sign in less than two seconds. However, CoSi is vulner-
able to rogue-key attack and k-sum problem, and an overpowering leader in this
scheme may replace message m to create a different challenge, which will pose a
threat to its security.

In 2018, Alangot et al. [1] showed through practical analysis that when using
spanning tree topology of CoSi to extend Schnorr multi-signature, an average of
10–30% of the protocols failed. Therefore, they proposed a robust spanning tree
topology and an implementation of BLS multi-signature, the enhanced topology
successfully solves the reliability problem, and BLS multi-signature reduces the
number of messages exchanged compared to Schnorr signature, thereby reducing
failures and improving performance.

After tree-based multi-signature schemes being proposed, some practical
problems come up, such as whether the unreliability of network will affect
the structure of communication tree, thereby affecting communication efficiency
between signing nodes; how to ensure that the signature is re-generated in the
case of minimally affecting other nodes when nodes drop out of the signer group,
etc., the above problems are all that need to be studied and solved.

Xiao Yue et al. [19] proposed a multi-signature scheme GMS based on
Gamma signature [20], which is resistant to rogue-key attack and k-sum problem
attack. This scheme also solves the problem of excessive power of CoSi leader
and achieves provable security. To further improve online performance of GMS,
Xiao Yue et al. [19] proposed a more efficient scheme, Advanced Gamma Multi-
Signature (AGMS), which reduces the computational steps after the message
arrives by changing the running order of the stages in the signature algorithm.

3 Preliminaries

In this section we briefly recall some important components needed in the rest
of the paper, which are multi-signature scheme MuSig2 [12] and tree structure.

3.1 Notation and Definitions

Notation. Given a sampleable set S, we denote s
$←− S the operation of sam-

pling an element of S uniformly at random and assigning it to s. In the following,
λ is the security parameter. G be a cyclic group of order p, where p is a λ-bit
prime, and g be a generator of G. The triplet (G, p, g) are group parameters.

Definition 1 (Multi-signature Scheme). A multi-signature scheme Π con-
sists of three algorithms (KeyGen, Sign, V er). Public parameters are selected
by a setup algorithm taking as input the security parameter. The randomized
key generation algorithm takes no input and returns a private/public key pair
(sk, pk) $←− KeyGen(). The signing algorithm Sign is run by every signer on
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input their key pair (sk, pk), a multiset of public keys L = pk1, ..., pkn, and a
message m, and returns a signature σ for L and m. The deterministic verifica-
tion algorithm V er takes as input a multiset of public keys L = pk1, ..., pkn, a
message m, and a signature σ, and returns 1 if the signature is valid for L and
m and 0 otherwise.

3.2 Multi-Signature Scheme MuSig2

The multi-signature scheme MuSig2 [12] is characterized as follows:

Parameters setup (Setup). On input 1λ, Setup runs (G, p, g) ← GrGen(1λ),
chooses three hash functions Hagg : {0, 1}∗ → Zp, Hnon : {0, 1}∗ → Zp and
Hsig : {0, 1}∗ → Zp, and returns par := ((G, p, g),Hagg,Hnon,Hsig).

Key generation (KeyGen). Each signer chooses a secret key x
$←− Zp ran-

domly and computes a public key X := gx corresponding to its secret key x.

Key aggregation (KeyAgg). The multiset of public keys is L =
{X1,X2, ...,Xn}. KeyAgg runs KeyAggCoef(L,X) := Hagg(L,X) to gen-
erate key aggregation coefficient, in which X are public keys in multiset

L. Then KeyAgg generates aggregated key X̃ :=
n∏

i=1

Xi
ai , where ai :=

KeyAggCoef(L,Xi).

First signing round (Sign and SignAgg). Each signer can perform Sign
before the cosigners and the message have been determined.

Sign: Integer v specifies the number of nonces generated by each signer,
integer n specifies the number of signers. For each j ∈ {1, ..., v}, each signer i

generates random ri,j
$←− Zp and computes Ri,j := gri,j and then outputs v

nonces (Ri,1, ..., Ri,v). Note that in all the schemes below, we set v = 2.
SignAgg: Aggregator receives outputs (R1,1, ..., R1,v), ..., (Rn,1, ..., Rn,v) from

n signers and aggregates them by computing Rj :=
n∏

i=1

Ri,j for each j ∈ {1, ..., v}
and outputting (R1, ..., Rv).

Second signing round (Sign
′
, SignAgg

′
, and Sign

′′
). Let m be the mes-

sage to sign, (X1, x1) be the key pairs of a specific signer, X2, ...,Xn be the
public keys of cosigners, and L = {X1, ...,Xn} be the multiset of all public keys.

Sign
′
: Signers execute KeyAgg to compute X̃ and store their own key

aggregation coefficient ai := KeyAggCoef(L,Xi). Upon receiving of aggre-
gated public nonces (R1, ...Rv), signers compute b := Hnon(X̃, (R1, ..., Rv),m),

R :=
v∏

j=1

Rj
bj−1

, c := Hsig(X̃, R,m), si := caixi +
∑v

j=1 ri,jb
j−1 mod p, and

each signer outputs si.
SignAgg

′
: The aggregator receives individual signatures (s1, ..., sn) from all

signers, then aggregates them and outputs the sum s :=
∑n

i=1 si mod p.
Sign

′′
: Signers receive s and output the final signature σ := (R, s).
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Verification (Ver) . Given an aggregated public key X̃, a message m, and a
signature σ := (R, s), the verifier accepts the signature if gs = RX̃c.

3.3 Tree Structure

In this paper, tree structure is introduced into multi-signature schemes, which
can spread the communication and calculation costs of signing across each signer,
so that the cost of each signer node is at most logarithmic level. The introduction
of tree structure does not change the security, but it makes the multi-signature
scheme have better scalability and higher efficiency.

The tree structure used here is a binary tree. When constructing it in the
preparation stage, all the layers are full except the last one, that is, a binary tree
of height h has at least 2h−1 nodes and at most 2h − 1 nodes.

4 Trivial Tree-Based MuSig2 Scheme

In order to make MuSig2 scheme scalable, we try to introduce tree structure into
the scheme to make it no longer restricted by the number of signers, and also to
improve signing efficiency, while not losing security of the original scheme.

The leader organizes N signers into a balanced binary tree, whose depth is
O(logN), thus spreads the communication and computation costs evenly across
each node. A round of MuSig2 protocol consists of four phases, as shown in
Fig. 1, including two round-trips of communication in a tree:

Fig. 1. MuSig2 uses four communication phases for scalable construction of a Schnorr
multi-signature over a spanning tree.

1) Announcement: The leader (root node) broadcasts down the tree, declaring
the start of signing, along with the message m to be signed.
2) Commitment: Each node i computes Xi

ai , generates random secrets
ri,1, ri,2 and computes its individual commits Ri,1, Ri,2. It then outputs two
nonces (Ri,1, Ri,2). In the bottom-up process, each node i waits for two aggre-
gated commits (Rj,1, Rj,2) and one aggregated public key X̃j from each imme-
diate child node j. Node i then computes its own aggregated commit R̃i,1 =
Ri,1

∏

j∈Ci

R̃j,1, R̃i,2 = Ri,2

∏

j∈Ci

R̃j,2 and public key X̃i = Xi
ai

∏

j∈Ci

X̃j , where Ci

is the set of i’s immediate child nodes. Finally, i passes ((R̃i,1, R̃i,2), X̃i) up to
its parent, unless i is the leader.
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3) Challenge: Upon receiving the commitments and public keys from its two
child nodes, the leader first computes the aggregated public key X̃ = X0

a0 ·
X̃1 · X̃2, where 0 indicates the leader, and 1 and 2 are two child nodes of the
leader. In order to compute b = Hnon(X̃, (R1, R2),m), the leader first needs
to compute final commitments of two nonces (R1, R2), which R1 indicates the
final commitment of the first nonces of all signers, and R2 indicates the final
commitment of the second nonces of all signers. After computing (R1, R2) and
thus the value of b, the leader computes the aggregated commitment of two
nonces R = R1 ·R2

b, and finally generates the challenge c = Hsig(X̃, R,m). The
root node then broadcasts the challenge c down to each node in the tree.
4) Response: In the final bottom-up phase, each node i waits to receive a partial
aggregated response s̃j from each of its immediate child nodes j ∈ Ci. Node i
computes its individual response si = caixi + ri,1 + ri,2b, and then computes its
partial aggregated response s̃i = si +

∑
j∈Cj

s̃j . Node i finally passes s̃i up to
its parent, unless i is the root node.

The final signature is σ := (R, s), which any third party can verify as a
standard Schnorr signature given an aggregated public key X̃ and a message m,
the verifier accepts the signature iff gs = RX̃c.

By applying the tree structure to the signing process, a multi-signature can
be generated more efficiently. The generated multi-signature is calculated and
aggregated by a group of signers, so the multi-signature is compact and cannot
be separated from individual signatures. However, if some signers drop out of
the signer group due to network reasons or voluntarily quit because of their own
subjective reasons, then it is a question of whether the signature is reconfigurable
without starting a new signing round. We will first analyze the feasibility of the
problem and then discuss its solution.

5 SR-MuSig2 Scheme

We have made MuSig2 scalable by introducing tree structure, and in this section
we will focus on reconfigurability, thus proposing a scalable and reconfigurable
multi-signature scheme, SR-MuSig2. First, we improve the original MuSig2, mak-
ing it more applicable to reconfiguring. In addition, we discuss what steps should
be taken when nodes go offline due to network problems. Finally, the solutions
after nodes actively revoke from the signer group will also be discussed.

5.1 Advanced MuSig2 Scheme

Before discussing the reconfigurability of multi-signatures, we first consider the
potential problems in signature generation. In the actual signing process, due
to the uncertainty of the network environment, there may be problems such as
node disconnection. The drop of a node will affect the communication between it
and other directly connected nodes in the tree structure, thus affecting the sig-
nature generation process. How to complete the original signing process without
restarting a new round when some nodes go offline is the problem to be solved.
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By analyzing MuSig2, we can conclude that once a node drops due to network
failure or subjective reasons, L = {X1, ...Xn} will be affected, and then ai =
Hagg(L,Xi) will change. At this time, all signers need to update Xi

ai , which
will bring huge computation overhead. Introducing the concept of key tree and
modifying the rules of computing ai of the original scheme can effectively solve
the above problems without affecting the security of the original scheme.

Definition 2. The key tree is a binary tree composed of the signers’ public keys.
The topology of the key tree is exactly the same as the topology of the signing
tree described above, and each layer of the tree is connected by hash functions.

Fig. 2. The logical structure of the key tree (Take a seven-node tree as an example).

The logical structure of the key tree is shown in Fig. 2. Based on the key tree,
we can redefine the computing rule of ai:

ai = H(aij1 ||aij2 ||H(Xi)) (1)

Note that ij1 and ij2 are the immediate child nodes of i.
Now we have a new scheme, advanced MuSig2. In this scheme, the exit of

any signer will affect ai of only his direct and indirect parent nodes, on the other
hand, it ensures that the exit of any signer will not affect ai of all nodes which
are not in the same subtree with it.

Now we discuss the correctness and security of the advanced MuSig2 scheme
after changing the computing rule of ai.

Correctness requires that for all m ∈ {0, 1}∗ it holds that V er(X̃,m, σ) = 1
with probability one when X̃ = KeyAgg(L), L = {X1,X2, ...,Xn}, σ = (R, s)
and s = SignAgg(s1, s2, ..., sn). If every signer produces his individual signature
honestly, it is not hard to see that the scheme is correct:

gs = g
∑n

i=1 si =
n∏

i=1

gsi =
n∏

i=1

gcaixi+ri,1+ri,2·b =
n∏

i=1

Xi
aic · Ri,1 · Ri,2

b

=
n∏

i=1

Ri,1 · (
n∏

i=1

Ri,2)b · (
n∏

i=1

Xi
ai)c = (R1 · R2

b) · (
n∏

i=1

Xi
ai)c = RX̃c

(2)

Now we analyze the security of the scheme. First, we will introduce the
k-sum problem, and secondly, how to use the Wagner algorithm to solve the
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k-sum problem to attack the old version of MuSig scheme. Then, we will explain
why Wagner’s algorithm cannot be applied to attack MuSig2, thus proving that
MuSig2 is resistant to k-sum attacks. Finally, we explain that our advanced
MuSig2 scheme only changes the computing rule of ai and does not affect the
security of MuSig2, so it is still resistant to k-sum attacks.

Definition 3 (k-Sum Problem). Given a constant t ∈ Zp, an integer km,
and a random oracle H : Zp → {0, 1}n, find a set {q1, ..., qkm

} satisfying
∑km

k=1 H(qk) = t through km queries. As km increases, the difficulty of the prob-
lem gradually becomes lower. Wagner et al. [18] give a sub-exponential level
algorithm without limiting km.

The process of using the Wagner algorithm [18] to attack the old version of
MuSig is as follows: the adversary, who acts as the signer holding the public key
X2 = gx2 in the session process, opens km signature sessions at the same time,
and obtains a total of km nonces R1

1, ..., R
km
1 from the honest signer with the

public key X1 = gx1 . Let X̃ = Xa1
1 Xa2

2 denote the aggregated public key, where
ai = H(〈X1,X2〉,Xi). Given a forged message m∗, the adversary calculates
R∗ =

∏km

k=1 R
(k)
1 , and then uses Wagner’s algorithm to find R

(k)
2 that satisfies

the following conditions:

km∑

k=1

Hsig(X̃, R
(k)
1 R

(k)
2 ,m(k)) = Hsig(X̃, R∗,m∗) (3)

where the left-hand side of the equation is equivalent to the sum of c(k), and the
right-hand side of the equation is equivalent to the challenge value c∗.

After finding all R
(k)
2 that meet the above conditions, the adversary sends all

R
(k)
2 to the honest signer, and the honest signer will feed back all s

(k)
1 = r

(k)
1 +

c(k) · a1x1 to the adversary after receiving R
(k)
2 . Let r∗ =

∑km

k=1 r
(k)
1 = DL(R∗),

the adversary can obtain:

s∗
1 =

km∑

k=1

s
(k)
1 =

km∑

k=1

r
(k)
1 + (

km∑

k=1

c(k)) · a1x1 = r∗ + c∗ · a1x1 (4)

The adversary can further construct the following equation based on s∗
1:

s∗ = s∗
1 + c∗ · a2x2 = r∗ + c∗ · (a1x1 + a2x2) (5)

(R∗, s∗) is the legal signature of m∗, where the signature hash is c∗ =
Hsig(X̃, R∗,m∗). Although the forged message here is only legal for the pub-
lic key X̃ obtained by the aggregation of X1 and X2, as long as the public key
X1 of the honest signer is aggregated with the public key set of the adversary,
the attack can forge legitimate messages with just a few adjustments.

Therefore, from the perspective of the above attack, the old version of MuSig
is vulnerable to k-sum attack. The new version of MuSig adds an additional
commitment round in the process of exchanging the public nonces R1 to prevent
the adversary from calculating the required R2 after obtaining all R1.
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The following analyzes whether the MuSig2 scheme is vulnerable to k-sum
attacks. The ingenuity of MuSig2 is that each signer i needs to send a list of
nonces Ri,1, ..., Ri,v(v ≥ 2), and use their linear combination R̂i =

∏v
j=1 Rbj−1

i,j

as their final nonce instead of a single nonce Ri like the MuSig scheme, where
b = Hnon(X̃, (

∏n
i=1 Ri,1, ...,

∏n
i=1 Ri,v),m) and Hnon : {0, 1}∗ → Zp. In this way,

each time the adversary tries a different R
(k)
2 , the coefficient b(k) will change

accordingly, which in turn changes the R̂1 =
∏v

j=1 Rbj−1

1,j of the honest signer,

and finally changes the R∗ =
∏km

k=1 R̂
(k)
1 on the right-hand side of the equation.

This also causes the right-hand side of the equation to be no longer a constant,
thereby destroying the necessary prerequisites for the k-sum problem, and the
Wagner algorithm is no longer applicable. Therefore, to sum up, the MuSig2
algorithm is also resistant to k-sum attacks.

Finally, we explain that changing the computing rule of ai will not affect the
security of the original scheme. To be specific, the generation of ai in the original
scheme is calculated through the public key list and users’ public keys, that is to
say, the calculation of ai does not rely on private values, so neither the calculation
nor the result of ai need to be kept secret. After changing the computing rule
of ai, ai can also be calculated using only public keys. From another aspect, the
security of the scheme lies in the confidentiality of the private key xi and the
private nonces (ri,1, ri,2). In summary, changing computing rule of ai doesn’t
affect the security of the original scheme. Therefore, our advanced MuSig2 is
also resistant to k-sum attacks.

Given the tree-based advanced MuSig2, which has scalability and is more
applicable to reconfiguring, we further propose SR-MuSig2 which has reconfig-
urability, and discuss it in two separate cases.

5.2 SR-MuSig2 in Case of Network Failure

During communication between tree nodes, if a node i does not receive a message
from its child node j in a certain period, or the child node j does not receive the
message from its parent node i, we can think of it as network failure. Combined
with the above analysis of the tree-based MuSig2 scheme, we mainly focus on
two phases, commitment and response.

In commitment phase, when a node goes offline, the first thing that comes
to mind is to create a missing list to include the ID of the offline node, and
then the verifier calculates the aggregated public keys of the remaining signers
through modular inverse calculation. However, we already know that the final
aggregated public key is in the form of X̃ :=

∏n
i=1 Xi

ai . After careful analysis,
we can see that if the modular inverse X̃

′
:= X̃ · (Xj

aj )−1 is used directly, the
aggregated public key of the remaining signers is not correct. Because as long as
a node is offline, ai of its parent node and all indirect parent nodes will change,
so it is necessary to recalculate new ai, X̃i, and (Ri,1, Ri,2), and upload from the
bottom up. During this process, two issues need to be discussed respectively:

– How to adjust tree structure after nodes go offline due to network failure?
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– Is the set of nodes whose ai are changed and the set whose (R̃i,1, R̃i,2) are
changed the same set?

We start with the first question. The commitment and response phases of
signing are bottom-up value transfer processes. If a node drops, its parent node
will not be able to receive the message from it, and the parent node communicates
up to inform the leader that its child node is offline. The leader adjusts the tree
structure and re-broadcasts the tree topology down, so that each node updates
the tree topology. In this process, the rules for adjusting the tree structure should
meet the goal of minimizing the number of other nodes affected as much as
possible. If multiple nodes drop, the leader should follow the rules described in
Algorithm 1. Before describing the pseudocode, we first give five definitions.

Definition 4. When the nodes are offline, the previous tree will be broken down
into many trees. The tree containing the root node is called the main tree, and
the remaining trees not connected to the root node are called free subtrees.

Definition 5. The dyed node is the node that needs to be recalculated after the
nodes go offline.

Definition 6 Height Priority Criteria. (HPC) If there is a dyed node in
the free subtree, then calculate the height between the vacant position closest to
the dyed node and the dyed node; if there is no dyed node in the free subtree,
then assume that the parent node of the root node of the free subtree is a dyed
node, then calculate the height between the vacant position closest to the dyed
node and the dyed node. The smaller the height, the higher the priority.

Definition 7 Vacancy Priority Criteria. (VPC) If the two trees have the
same priority according to the height priority criteria, then compare the number
of vacant positions in the layer where the vacant position closest to the dyed node
in the two trees. The higher the number, the higher the priority.

Definition 8 Optimal Insertion Node. (OIN) The optimal insertion node
is the one that requires the least number of recalculated nodes when inserting a
subtree under it.

After the nodes are offline, make the parent nodes of all the offline nodes
become dyed nodes.

Given the pseudocode of tree adjustment rules for network failure in commit-
ment phase, we further explain with a specific example. From Fig. 3, we can find
that Node 2, 4, 10, 12 are offline. First, dye the parent nodes of all the offline
nodes, and dye the parent nodes of all the dyed nodes until the root is dyed.
The drop of four nodes caused the previous tree to be split into a main tree and
three free subtrees. Prioritize the three free subtrees, the vacant position of the
second subtree is only one level away from the dyed node, and the remaining two
are all two layers away, so the second subtree has the highest priority. There are
two vacant positions in the layer closest to the dyed node in the first subtree,
but only one in the last tree, so the priority of the last tree is at the end. Finally,
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Algorithm 1. Adjustment rules of tree structure in commitment phase.
Input: A main tree and many free subtrees
Output: A new tree
1: Traverse the entire main tree from bottom to top, and dye the parent nodes of

all dyed nodes until the root node is dyed
2: Prioritize all free subtrees according to HPC and VPC, and store them in a list

called Priority List
3: for subtree in Priority List do
4: get OIN from the main tree as OIN_node
5: insert subtree into OIN_node
6: dye all the nodes on the path from OIN_node to the root node
7: end for
8: return A new tree

Fig. 3. An example of adjustment rules of tree structure in commitment phase.

insert the free subtrees into the main tree in sequence according to the order of
priority, and the adjustment of the tree structure is completed.

Then, we analyze the second question. Based on Fig. 3, we analyze the
nodes who need to update ai and (Ri,1, Ri,2) after network failure. It is not
difficult to see from Fig. 3 that the nodes need to update ai are Node 0, 1, 5,
and the nodes need to update (Ri,1, Ri,2) are the same.

Through the above analysis, we can conclude that the nodes need to recalcu-
late ai and (Ri,1, Ri,2) are completely equivalent. Each time the leader adjusts
the topology of the tree, it only needs to adjust the subtree rooted at the offline
nodes, and the nodes of other subtrees remain unchanged, so the previously cal-
culated values of these nodes do not need to be updated. To a certain extent,
the time cost of signing can be saved a lot.

The solution of network failure problems in commitment stage have been
discussed. Next, we will discuss the problems that should be dealt with when
network failure occurs in the response phase, which is the last stage of signing.
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If a node goes offline at this stage, the cost of recalculation will be very large
because the previously calculated values need to be recomputed, that is to say,
the commitment, challenge and response phase should all be re-executed, thus
the cost is close to that of a new signing round. Therefore, we make a compromise
here. Since the goal of signature is to authenticate the identity of the signer,
if authentication is passed, the verifier can believe that the message has been
signed by the signer group. Therefore, if a signer drops at this stage, we will
not adjust the tree structure first, but to continue the signing process, and use a
special method to verify the signature, which can save a lot of time cost. After
verification is passed, we will adjust the tree structure to facilitate subsequent
signature operations. Below, we use a concrete example to illustrate the special
method for verifying signatures and then give a general rule.

Fig. 4. Nodes go offline in the response phase.

As shown in Fig. 4, if node 0 has not received the message from node 1 in
the response phase, then we can consider that node 1 is offline. At this time, the
root node does not need to adjust the tree structure, but first plays the role of
node 1 to collect signature information of its child nodes (node 3 and node 4),
and integrates it with the information of node 2 and its own information, then
generate an aggregated signature excluding information of node 1. At the same
time, the root node calculates the following values:

a1 = Hash(a3||a4||Hash(X1)) (6)

s
′
= s0 + s̃3 + s̃4 + s̃2 (7)

The root node passes s
′
, b, c, X̃, R, (R1,1, R1,2), X1, a1 to the verifier.

The verifier does the following verification to check if the equation holds:

gs′ · (X1
a1)c · R1,1 · R1,2

b = RX̃c (8)

If the above equation holds, the signature verification passes.
Now we summarize a general rule for generating and verifying the final multi-

signature when nodes go offline at response phase. Whenever root node receives
information about dropped nodes, it adds them to a missing list until it receives
everyone’s signature si. At this point, the root node calculates aj of all the
nodes in the missing list, and the corresponding signature verification value
verifyV al[j] = (Xj

aj )c · Rj,1 · Rj,2
b of each node in this list, the root node

calculates the aggregated signatures s′ =
∑

si of all the remaining signers, and
outputs the final multi-signature which contains three main components:

σ = ((R, s′), verifyV al, proof) (9)
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In which R is the aggregated public nonces of all signers, s′ is multi-signature
of the remaining signers, verifyV al is the list of verification value for missing
signers in the response phase used for verifying, while proof is used for proving
that R and X̃ are fixed before challenge c was generated.

Upon receiving the final multi-signature σ, anyone can verify by checking the
equation gs′ · ∏

verifyV al[j] = RX̃c holds or not.

5.3 SR-MuSig2 in Case of Signers’ Active Revocation

After discussing the situation which nodes may drop due to network problems
during signing, we will further analyze another question. After the signature is
generated and even verified, if there is a signer wants to revoke his signature,
how to deal with it efficiently and make the new signature still be verified. This
question also belongs to the reconfigurable problem of multi-signature.

If a signer wants to revoke his signature after the multi-signature is generated,
then there is no need to re-execute signing, because if it is really necessary to re-
execute signing, then nonces need to be re-selected, and all intermediate values
need to be re-calculated, which will bring huge computation cost. The signer
only needs to provide some information to the root node before he revokes his
signature, and then the root generates a new signature through modular inverse
operation. The specific process is as follows.

The signer i who wants to revoke his own signature needs to provide the root
node with (Xi

ai , Ri, si), then the root node updates the final multi-signature:

s′ = s − si (10)

R′ = R · (Ri)−1 (11)

X̃ ′ = X̃ · (Xi
ai)−1 (12)

In which Ri = Ri,1 · Ri,2
b, the verifier checks whether the equation gs′

=
R′ · X̃ ′c holds or not.

Here we have to note that during verification, if we want to verify c, it will not
pass, because at this time R̃′ and X̃ ′ have been changed, c′ = Hsig(R̃′, X̃ ′,m)
also has changed, thus the verification of challenge c will not pass. To alleviate
this problem, we recommend adding an component called evidence, which will
prove that the missing node has participated in the calculation of the challenge
c, which will not be modified after signing.

6 Evaluation

Based on MuSig2 scheme proposed by Nick et al. [12], the implementation of
SR-MuSig2 proposed in this paper is written in Python, and its main algorithm
consists of 1300 lines of code. SR-MuSig2 implements tree-based multi-signature,
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including exception handling for signer disconnection due to network failure and
active revocation due to individual reasons.

The main aspect we wish to evaluate is whether SR-MuSig2 proposed in this
paper has good scalability and reconfigurability. Other issues to consider include
the impact of changing the computing rule of ai on signing efficiency, the impact
of different network environments (i.e., latency) on signing efficiency, and so on.

We implement SR-MuSig2 proposed in this paper, and compare it with the
basic Schnorr scheme used in SP’16 [17] and MuSig2 scheme when necessary,
then give the experimental results and analysis.

6.1 Experimental Setup

We use 3 physical machines (Intel Xeon Gold 6248R@3.0GHz) with an 8-core
processor and 32GB of RAM to test SR-MuSig2 proposed in this paper. At
the same time, we control the communication delay to simulate different net-
work environment. Except for the experiments on communication delay, all other
experiments are done in the environment where the communication delay is 50ms
(average delay of network communication in China). To simulate as many sign-
ing participants as possible, we assign up to 8192 nodes to 3 machines for signing
experiments, corresponding to a binary tree with a depth of �log2 8192	+1. For
each group of experiments, we conduct 10 tests and calculate the average value.

6.2 Performance of Different Stages

The first experiment we do is to compare which phase occupies the main time
cost in the entire signing process, including the preparation stage before signing,
that is, the construction of tree, the generation of the aggregated public key, the
signing stage, and verification after the signature is generated. It is not difficult
to see from Table 1 that tree construction becomes the most time-consuming
phase. When there are as many as 8192 signers, the time to construct the tree
structure is as high as nearly 7min. However, this phase can be counted as the
offline preparation stage of signing, for multiple signatures of the same signer
group, the construction of tree only needs to be done once. For the signing
process which contains 4 phases, 2048 signers can reach the level of 12 s, which
is a considerable result.

Table 1. Time cost of 4 stages versus number of signers (seconds)

Stages Num of signers
8 32 128 512 2048 8192

Tree construction 0.6992 1.8961 6.7002 25.9696 103.1132 415.5308
Public key aggregation 0.6265 1.0431 1.6183 2.1926 3.7886 12.0023
Signing (4 phases) 1.2911 2.1639 3.3024 5.2775 12.6945 58.3020
Verification 0.0120 0.0117 0.0114 0.0114 0.0397 0.2814
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6.3 Performance of Aggregating Public Keys

The second experiment we need to do is to test whether the change in computing
rule of ai has a huge impact on efficiency of the signature scheme, particularly,
the process of aggregating public keys. We compare the time required for this
process with and without tree structure respectively. The experimental data is
shown in Fig. 5. It is not difficult to see from the figure that whether the scheme
is tree-based or trivial, after changing the computing rule of ai, the efficiency
of aggregating public keys does not change significantly when the number of
signers is less than 2048, and surprisingly, when the number of signers is more
than 2048, the new ai computing rule will improve the efficiency of this process
for both tree-based schemes and trivial ones.

Fig. 5. Time cost of aggregating public
keys versus number of signers.

Fig. 6. Time cost of three phases versus
network latency.

6.4 Impact of Network Environments

In the following experiment, we analyze the influence of communication delay
on the efficiency of constructing trees and generating signatures. We use 0ms to
simulate local network environment, 50ms to simulate average delay of network
communication in China, and 200ms to that of international environment. In
order to make experimental results clearer and more appreciable, we conduct
experiments in a scenario where 8192 participants co-sign, and the results are
shown in Fig. 6.

It is not difficult to see from the figure that although the time cost of aggre-
gating public keys and signing increases linearly with the increase of delay, the
growing rate is not large. This is because in these two phases, the process of
passing values in the tree is a one-time bottom-up or top-down transfer, and
the amount of data transmitted is small, so the increase in communication delay
does not have a great impact on signing efficiency, thus we can implement SR-
MuSig2 scheme in an international network environment, that is, signers can be
dispersed all over the world.

It can also be seen from the figure that although the time spent on con-
structing tree also increases linearly with the increase of delay, the growing rate
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is relatively larger. When all the signers co-sign locally, the time to build the
tree is about 70 s. When they co-sign in China, the time to build the tree is
about 7min, and when they are in different countries, the time is as high as
27min. This phenomenon is attributable to the fact that information is repeat-
edly transmitted when constructing tree, and the amount of data transmitted is
relatively larger. Therefore, the construction of tree is indeed a step that needs
to be optimized. However, for the same signer group, if it performs multiple
signing operations, it is enough to build a tree structure only once.

6.5 Scalability

In the next experiment we evaluate the scalability of implementing SR-MuSig2
among up to 8192 signers. We compare this scheme with 3 other schemes. The
first is an advanced MuSig2 scheme without a tree structure, in which the aggre-
gator collects their public nonces and standard individual signatures through
direct communication with all other signers, and then aggregates them. The
second is the tree-based Schnorr scheme, which implements the Schnorr multi-
signature scheme through a tree structure. The third is the naïve Schnorr multi-
signature scheme without a tree structure, which also relies on direct commu-
nication between the aggregator and other signers to pass values. We extract
the process of aggregating public keys and signing in these four schemes for
comparison.

After introducing tree structure into multi-signature, aggregation that origi-
nally needs to be calculated by a specific node (i.e., aggregator) is now allocated
to each node of the tree, thus saving a lot of computation and communication
cost, and improving the signing efficiency. The experimental results are shown
in Fig. 7 and Fig. 8. It is not difficult to see that under the same signature algo-
rithm, the introduction of the tree structure is much more efficient than that in
the naïve case. As the number of signers increases, the naïve signature is not so
efficient. This experiment shows from a practical point of view that introducing
tree structure will indeed bring about an improvement in efficiency.

Fig. 7. Time cost of aggregating public
keys versus number of signers.

Fig. 8. Time cost of signing versus num-
ber of signers.
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6.6 Reconfigurability

Finally, we conduct experiments on the reconfigurability of SR-MuSig2. The
key to reconfigurability is that after the node is offline, the scheme can quickly
adjust the tree structure and continue to sign, while the trivial tree-based MuSig2
scheme can only go back to the first step of signing, rebuild tree structure for
the remaining nodes, and then start a new round of signing. See Fig. 9 for the
processing logic of these two schemes when the node is offline. Our experiments
focus on analyzing the extra time it takes for trivial tree-based MuSig2 to gener-
ate the final signature compared to SR-MuSig2 scheme after the node is offline,
which shows that SR-MuSig2 can be more efficient than the trivial tree-based
MuSig2 scheme. We have a convention in controlling the number of disconnected
nodes. It is assumed that 5% of the nodes in each layer of the tree drop due to
network failure, and the root node will never be disconnected. The experimental
results are shown in Fig. 10 and Fig. 11.

Fig. 9. Process of SR-MuSig2 and trivial tree-based MuSig2 after nodes go offline.

Figure 10 counts the number of two types of nodes in the tree after the node
drops. The first type is re-calculate nodes, which represent the number of
nodes that need to recalculate public nonces after adjusting the tree structure,
that is, the number of affected nodes. The second type of node is remaining
nodes, that is, the number of nodes remaining in the tree after the node drops.
We can easily know that if the trivial tree-based MuSig2 scheme is used to deal
with the node disconnection problem, then all the remaining nodes in the tree
need to recalculate the nonces, because they need to re-execute signing. However,
the number of nodes to be recalculated required in SR-MuSig2 is very small,
which undoubtedly saves a lot of computation and communication overhead.

Figure 11 counts the time it takes to reconstruct tree and recalculate aggre-
gated nonces after the node goes offline in commitment phase. In SR-MuSig2,
the first thing to do is to adjust the tree structure. After this process is com-
pleted, the calculation in the commitment phase can be directly continued. In
this process, the intermediate values generated by a large number of nodes before
disconnection can be used directly, and only a small number of nodes need to
re-aggregate public nonces due to changes in the tree structure. Since the triv-
ial tree-based MuSig2 scheme has no reconfigurability, after the node drops, it
must go back to the first step of signing, reconstruct a new tree for the remain-
ing nodes, and then start signing from announcement phase, which will cause
large communication and computation overhead. It is not difficult to see from
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Fig. 11 that as the number of signers increases, the efficiency gap between SR-
MuSig2 and trivial tree-based MuSig2 in dealing with network failure increases.
Therefore, reconfigurability is a crucial property for tree-based multi-signature
schemes.

Fig. 10. Number of two types of nodes
versus number of signers.

Fig. 11. Time cost of four phases versus
number of signers.

7 Applications

In the process of information transmission, in order to verify the identity of the
sender, the public key of the sender is usually sent to the receiver, the sender
uses the private key to encrypt the content and then sends it to the receiver,
and the receiver decrypts the public key to verify the sender’s identity.

The client obtains the public key through distribution by the server. If this
process is hijacked by a third party, then the third party forges a pair of keys
and sends the public key to the client. When the server sends data to the client,
the middleman hijacks the information, decrypts it with the hijacked public key,
and then uses its own private key to encrypt the data and send it to the client,
and the client uses the public key to decrypt it, which forms a middleman attack.

In order to prevent this situation, digital certificate plays an important role.
Digital certificate is issued to the server by authoritative Certificate Authority
(CA). CA generates the certificate through the information provided by the
server. The certificate mainly includes the identity information of the certificate
owner, the signature of CA, the public and private key. CA certificate is a string
of numbers that can indicate the identity information of a network user, and
provides a way to verify the identity of a network user on a computer network.

Since CA itself has a pair of public and private keys, this often becomes the
main target of attackers. In order to prevent malicious third parties from using
stolen CA private keys to sign some illegal documents, the traditional single CA
signature mode can be transformed into a multi-certificate authority signature
mode. That is, a large number of authoritative CAs are called together to sign
documents. In this case, the attacker can only sign the document after stealing all
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the private keys. The attack difficulty is significantly increased, and the security
of the CA is protected to a certain extent.

Combined with the above discussion on the application of multi-signatures
in certificate authority, we can well apply SR-MuSig2 proposed in this paper
to CA, so as to perform efficient signing operations of the signature authority
group around the world. At the same time, when nodes are offline due to network
failure or revoke their signatures out of individual reasons, the scheme can quickly
recover the original signing process and thus has certain reconfigurability.

8 Conclusion

This paper proposes SR-MuSig2 scheme based on MuSig2 signature. Compared
to MuSig2, a simple and practical two-round multi-signature scheme under the
one-more discrete logarithm assumption, SR-MuSig2 has scalability and recon-
figurability. Compared to CoSi, the tree-based multi-signature based on Schnorr,
SR-MuSig2 has advanced security.

It is worth mentioning that tree construction is a time-consuming process.
Although this time cost will not be counted in the real signing time, its huge
time consumption brings a certain burden to the whole system. Therefore, how
to construct a tree structure more efficiently so that the scheme can quickly come
into the signing phase is one of our future work.
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Abstract. This paper presents a new McEliece-type public key encryp-
tion scheme based on Gabidulin codes, which uses linearized transfor-
mations to disguise the private key. When endowing this scheme with
the partial cyclic structure, we obtain a public key of the form GM−1,
where G is a partial circulant generator matrix of Gabidulin code and
M as well as M−1 is a circulant matrix of large rank weight. Another
difference from Loidreau’s proposal at PQCrypto 2017 is that both G
and M are publicly known. Recovering the private key is equivalent to
deriving from M a linearized transformation and two circulant matrices
of small rank weight. This scheme is shown to resist some well-known
distinguisher-based attacks, such as the Overbeck attack and Coggia-
Couvreur attack, and also has a very small public key size. For instance,
2592 bytes are enough for our proposal to achieve the security of 256 bits,
which is around 400 times smaller than Classic McEliece that has been
selected into the fourth round of the NIST Post-Quantum Cryptography
(PQC) standardization process.

Keywords: Post-quantum cryptography · Code-based cryptography ·
Gabidulin codes · Partial cyclic codes · Linearized transformations

1 Introduction

Over the past decades, post-quantum cryptosystems (PQCs) have been drawing
more and more attention from the cryptographic community. The most remark-
able advantage of PQCs over classical cryptosystems is their potential resis-
tance against attacks from quantum computers. In the area of PQC, cryptosys-
tems based on coding theory are one of the most promising candidates. Apart
from resisting quantum attacks, these cryptosystems also have faster encryption
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and decryption procedures. The first code-based cryptosystem was proposed by
McEliece [32] in 1978. However, this scheme has never been used in practice due
to the drawback of large key size. For instance, Classic McEliece [3] submitted
to the NIST PQC project [33] requires 255 kilobytes of public key for the 128-bit
security. To overcome this drawback, various improvements have been proposed
one after another.

Gabidulin, Paramonov and Tretjakov (GPT) [16] proposed a rank-based
encryption scheme by using Gabidulin codes in the McEliece setting. Research
results show that the complexity of decoding general rank metric codes is much
higher than that for Hamming metric codes. Rank-based cryptosystem, there-
fore, have a more compact representation of public keys. Unfortunately, the GPT
cryptosystem was broken by Gibson [21,22] and then by Overbeck [37]. To resist
these attacks, some reparations of GPT were proposed [14,15,17,40]. However,
because of Gabidulin codes being highly structured, all these variants are still
vulnerable to structural attacks [24,34,38]. Specifically, Gabidulin codes contain
a large subspace invariant under the Frobenius transformation, which makes
Gabidulin codes distinguishable from general linear codes.

Loidreau [29] proposed a McEliece-type cryptosystem using Gabidulin codes,
whose public key is a matrix of the form GM−1. The right scrambler matrix
is chosen such that M has a small rank weight of λ. The public code then
cannot be distinguished from random ones and therefore, Loidreau’s proposal
can prevent the Overbeck attack [38]. However, by operating the dual of the
public code Coggia and Couvreur [12] presented an effective distinguisher and
gave a practical key recovery attack for λ = 2. This attack was extended by
Ghatak [20] to the case of λ = 3 and then by Pham and Loidreau [39]. Let Hpub

be a parity-check matrix of the public code, then Hpub = HMT where H forms a
parity-check matrix of Gabidulin code. Although Loidreau [31] claimed that one
can publish G without losing security, one cannot derive H from Hpub because
of M being kept secret. For this reason we still view this scheme as one with
hidden structure.

Lau and Tan [25] (LT18) proposed a scheme based on Gabidulin codes with
hidden structure. The public key consists of two matrices G+UT and U , where
G is a generator matrix of Gabidulin code and U is a partial circulant matrix,
scrambled by a matrix T over the base field. Recently Guo and Fu [23] showed
that one can recover T in polynomial time and completely break this scheme. By
modifying the idea of LT18, Lau and Tan [26] (LT19) designed another scheme
based on the so-called partial cyclic Gabidulin codes, also with hidden structure.
The public key of LT19 consists of two vectors and therefore has a quite small
size. This scheme can prevent the Guo-Fu attack and remains secure until now
for properly chosen parameters.

Our Contributions. Firstly, we introduce and investigate the properties of lin-
earized transformations over linear codes. Secondly, we propose a McEliece-type
encryption scheme, where linearized transformations are utilized to disguise the
private key. The public matrix in our proposal appears quite random and con-
sequently, some well-known distinguisher-based attacks do not work any longer.
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Besides, the use of the partial cyclic structure greatly reduces the public key
size.

Recently NIST has completed the third round of the PQC standardization
process. Three key-establishment mechanisms (KEMs) based on coding theory
have been selected into the fourth round. These algorithms are Classic McEliece
[3] based on Goppa codes, and HQC [1] as well as BIKE [4] based on quasi-
cyclic moderate density parity check (QC-MDPC) codes. In contrast to these
NIST PQC submissions and Loidreau’s proposal, our scheme has the following
innovations and advantages:

– The use of linearized transformations enhances the security against structural
attacks. Before our work in the present paper, most known approaches used
to disguise the private key are based on linear or affine transformations. That
is, the public key has the form of S(G + M)P , which has been shown to fail
in most cases.

– In the partial cyclic version, the algebraic structure of Gabidulin code can be
published without reducing the security. This enables our proposal to be a
McEliece-type encryption scheme with no hidden structure.

– The use of the partial cyclic structure greatly shrinks the public key. However,
one cannot use this technique in Loidreau’s proposal, otherwise one can easily
deduce an equivalent private key from the public information.

– The advantage over HQC and BIKE is that the decryption algorithm in our
proposal is deterministic and therefore, has no decryption failure that the
former two ones confront.

The rest of this paper is arranged as follows. Section 2 introduces some nota-
tions and preliminaries used throughout this paper. Section 3 presents the RSD
problem in coding theory and two types of generic attacks. In Sect. 4, we intro-
duce the concept of linearized transformations and investigate their properties
over linear codes. Section 5 describes our new proposal and gives some notes on
the private key. Security analysis of the new proposal will be given in Sect. 6. In
Sect. 7, we suggest some parameters for three security levels and compare the
public key size with some other code-based cryptosystems. A few concluding
remarks will be made in Sect. 8.

2 Preliminaries

We now present some notations used throughout this paper, as well as some
basic concepts of linear codes and rank metric codes. Then we introduce the
so-called partial cyclic Gabidulin codes and some related results.

2.1 Notations and Basic Concepts

Let Fq be the finite field with q elements, and Fqm an extension of Fq of degree
m. We call a ∈ F

m
qm a basis vector of Fqm/Fq if the components of a are linearly

independent over Fq. We call α a normal element if (α, αq, . . . , αqm−1
) forms a
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basis vector of Fqm over Fq. Denote by Mk,n(Fq) the space of k × n matrices
over Fq, and by GLn(Fq) the space of invertible matrices in Mn,n(Fq). Let 〈M〉q

be the vector space spanned by the rows of M ∈ Mk,n(Fq) over Fq.
An [n, k] linear code C over Fq is a k-dimensional subspace of F

n
q . The dual

code C⊥ of C is the orthogonal space of C under the Euclidean inner product
over F

n
q . A matrix G ∈ Mk,n(Fq) is called a generator matrix of C if its rows

form a basis of C. A generator matrix of C⊥ is called a parity-check matrix of C.
The rank support of v ∈ F

n
qm with respect to Fq, denoted by RSq(v), is the

linear space spanned by the components of v over Fq. The rank weight of v,
denoted by rkq(v), is the dimension of RSq(v) over Fq. The rank support of
M ∈ Mk,n(Fqm), denoted by RSq(M), is the linear space spanned by the entries
of M over Fq. The rank weight of M , denoted by rkq(M), is the dimension of
RSq(M) over Fq. For v ∈ F

u
qm ,M ∈ Mu,v(Fqm) and N ∈ Mv,w(Fqm), it is easy

to see that rkq(vM) � rkq(v) · rkq(M) and rkq(MN) � rkq(M) · rkq(N).
For α ∈ Fqm and a positive integer l, we define α[l] = αql

to be the l-th
Frobenius power of α. For v = (v1, . . . , vn) ∈ F

n
qm , let v[l] = (v[l]

1 , . . . , v
[l]
n ). For

M = (Mij) ∈ Mu,v(Fqm), let M [l] = (M [l]
ij ). For V ⊆ F

n
qm , let V [i] = {v[i] : v ∈

V}. For M ∈ Mu,v(Fqm), N ∈ Mv,w(Fqm), it is clear that (MN)[l] = M [l]N [l].
For M ∈ GLn(Fqm), clearly (M [l])−1 = (M−1)[l].

2.2 Gabidulin Code

Gabidulin codes are actually the rank metric counterpart of Reed-Solomon codes,
which can be defined through the so-called Moore matrix.

Definition 1 (Moore matrix). Let g = (g1, g2, . . . , gn) ∈ F
n
qm , then the k × n

Moore matrix generated by g is a matrix of the form

Mrk(g) =

⎛
⎜⎜⎜⎝

g1 g2 · · · gn

g
[1]
1 g

[1]
2 · · · g

[1]
n

...
...

. . .
...

g
[k−1]
1 g

[k−1]
2 · · · g

[k−1]
n

⎞
⎟⎟⎟⎠ .

Definition 2 (Gabidulin code). For positive integers k � n � m and g ∈ F
n
qm

with rkq(g) = n, the [n, k] Gabidulin code Gabk(g) generated by g is defined to
be a linear code that has Mrk(g) as a generator matrix.

Remark 1. An [n, k] Gabidulin code Gabk(g) has minimum rank weight n−k+1
[16] and can therefore correct up to

⌊
n−k
2

⌋
rank errors in theory. Several efficient

decoding algorithms for Gabidulin code can be found in [13,28,41].

2.3 Partial Cyclic Code

Lau and Tan [26] used partial cyclic Gabidulin codes to reduce the public key size
in rank-based cryptography. Now we introduce this family of codes and present
some related results.
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Definition 3 (Circulant matrix). For a vector m ∈ F
n
q , the circulant matrix

generated by m is a matrix M ∈ Mn,n(Fq) whose first row is m and i-th row is
obtained by cyclically right shifting its (i − 1)-th row for 2 � i � n.

Definition 4 (Partial circulant matrix). For k � n and m ∈ F
n
q , the k × n

partial circulant matrix PCk(m) generated by m is defined to be the first k rows
of the circulant matrix generated by m. Particularly, we denote by PCn(m) the
circulant matrix generated by m.

Remark 2. Let PCn(Fq) be the space of n×n circulant matrices over Fq. Chalkley
[11] proved that PCn(Fq) forms a commutative ring under matrix addition and
multiplication. It is easy to see that, for a partial circulant matrix A ∈ Mk,n(Fq)
and a circulant matrix B ∈ PCn(Fq), AB forms a k ×n partial circulant matrix.

Now we present a sufficient and necessary condition for a circulant matrix
to be invertible, then make an accurate estimation of the number of invertible
circulant matrices over Fq.

Proposition 1. [35] For m = (m0, . . . , mn−1) ∈ F
n
q , let m(x) =

∑n−1
i=0 mix

i ∈
Fq[x], then PCn(m) is invertible if and only if gcd(m(x), xn − 1) = 1.

Proposition 2. [27] For a monic f(x) ∈ Fq[x] of degree n, let g1(x), . . . , gr(x) ∈
Fq[x] be r distinct monic irreducible factors of f(x), i.e. f(x) =

∏r
i=1 gi(x)ei for

some positive integers e1, . . . , er. Let di = deg(gi) for 1 � i � r, then

Φq(f) = qn
r∏

i=1

(1 − 1
qdi

), (1)

where Φq(f) denotes the number of monic polynomials coprime to f(x) of degree
less than n.

The following corollary is drawn directly from Propositions 1 and 2.

Corollary 1. The number of invertible matrices in PCn(Fq) is Φq(xn − 1).

Now we introduce the concept of partial cyclic codes.

Definition 5 (Partial cyclic code). For k � n and a ∈ F
n
q , let G = PCk(a)

be a partial circulant matrix generated by a, then C = 〈G〉q is called an [n, k]
partial cyclic code.

Remark 3. Let g = (α[n−1], α[n−2], . . . , α) be a normal basis vector of Fqn/Fq and
G = Mrk(g), then G forms a k × n partial circulant matrix. We call G = 〈G〉qn

an [n, k] partial cyclic Gabidulin code generated by g.
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3 RSD Problem and Generic Attacks

Now we introduce the well-known RSD problem in coding theory which lays the
foundation of rank-based cryptography, as well as the best known generic attacks
that will be useful to estimate the practical security of our proposal later in this
paper.

Definition 6 (Rank Syndrome Decoding (RSD) Problem). Given posi-
tive integers m,n, k and t, let H be an (n − k)× n matrix over Fqm of full rank
and s ∈ F

n−k
qm . The RSD problem with parameters (q,m, n, k, t) is to search for

e ∈ F
n
qm such that s = eHT and rkq(e) = t.

The RSD problem has been used for designing cryptosystems since the pro-
posal of the GPT cryptosystem in 1991. However, the hardness of this problem
had never been proved until the work in [19], where the authors gave a random-
ized reduction of the RSD problem to an NP-complete decoding problem [9] in
the Hamming metric.

Generic attacks on the RSD problem can be divided into two categories,
namely the combinatorial attacks and algebraic attacks. The main idea of com-
binatorial attacks consists in solving a multivariate linear system obtained from
the parity-check equation, whose variables are components of ei under a basis of
RSq(e) over Fq. The complexity mainly consists in enumerating t-dimensional
Fq-subspaces of Fqm . The best known combinatorial attacks up to now can be
found in [5,18,36], as summarized in Table 1.

The main idea of algebraic attacks consists in converting an RSD instance
into a multivariate quadratic system and then solving this system with algebraic
approaches, such as the Gröbner basis techniques. Algebraic attacks are generally
believed to be less efficient than combinatorial approaches until the work in [7,8],
whose complexity and applicable condition are summarized in Table 2, where
ω = 2.81 is the linear algebra constant.

Table 1. Best known combinatorial attacks.

Attack Complexity

[36] O
(
min

{
m3t3q(t−1)(k+1), (k + t)3t3q(t−1)(m−t)

})

[18] O
(
(n − k)3m3q

min
{

t�mk
n �,(t−1)

⌈
m(k+1)

n

⌉})

[5] O
(
(n − k)3m3q

t
⌈
m(k+1)

n

⌉
−m

)

4 Linearized Transformations

Note that Fqm can be viewed as an m-dimensional linear space over Fq. Let
(α1, . . . , αm) and (β1, . . . , βm) be two basis vectors of Fqm/Fq. For any α =
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Table 2. Best known algebraic attacks.

Attack Condition Complexity

[8] m
(

n−k−1
t

)
�

(
n
t

) − 1 O
(
m

(
n−p−k−1

t

)(
n−p

t

)ω−1
)
, where

p = max{1 � i � n : m
(

n−i−k−1
t

)
�

(
n−i

t

) − 1}

[7] O
((

((m+n)t)t

t!

)ω)

[8] m
(

n−k−1
t

)
<

(
n
t

) − 1 O
(
qatm

(
n−k−1

t

)(
n−a

t

)ω−1
)
, where

a = min{1 � i � n : m
(

n−k−1
t

)
�

(
n−i

t

) − 1}

O
(

Bb(k+t+1
t )+Cb(mk+1)(t+1)

Bb+Cb
A2

b

)
, where

Ab =
∑b

j=1

(
n
t

)(
mk+1

j

)
,

Bb =
∑b

j=1 m
(

n−k−1
t

)(
mk+1

j

)
,

Cb =
∑b

j=1

∑j
i=1(−1)i+1

(
n

t+i

)(
m+i−1

i

)(
mk+1

j−i

)
,

b = min{0 < a < t + 2 : Aa − 1 � Ba + Ca}

[7] O
((

((m+n)t)t+1

(t+1)!

)ω)

∑m
i=1 λiαi ∈ Fqm with λi ∈ Fq, we define a permutation of Fqm as

ψ(α) =
m∑

i=1

λiβi.

It is easy to see that ψ is Fq-linearized, namely

ψ(γ1α + γ2β) = γ1ψ(α) + γ2ψ(β)

holds for any α, β ∈ Fqm and γ1, γ2 ∈ Fq. By LPm(Fq) we denote the space of
all Fq-linearized permutations of Fqm .

In the sequel we will do further study on this family of permutations. Firstly,
we present a basic fact about Fq-linearized permutations of Fqm .

Proposition 3. The total number of Fq-linearized permutations of Fqm is

|LPm(Fq)| =
m−1∏
i=0

(qm − qi).

Let ψ ∈ LPm(Fq) be an Fq-linearized permutation of Fqm . For any v ∈ F
n
qm ,

let ψ(v) = (ψ(v1), . . . , ψ(vn)). For V ⊆ F
n
qm , let ψ(V) = {ψ(v) : v ∈ V}. For

M ∈ Mk,n(Fqm), let ψ(M) = (ψ(Mij)). In these cases, we call ψ a linearized
transformation over Fqm/Fq.

For v ∈ F
n
qm and ψ ∈ LPm(Fq), a natural question is how the rank weight

of v varies under the action of ψ. For this reason, we introduce the following
proposition.
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Proposition 4. A linearized transformation over Fqm/Fq is an isometry in the
rank metric.

Proof. For n � m, let v ∈ F
n
qm with rkq(v) = n. If rkq(ψ(v)) < n, then there

exists b ∈ F
n
q \{0} such that ψ(v)bT = ψ(vbT ) = 0. This implies that vbT = 0,

which conflicts with rkq(v) = n. More generally, suppose rkq(v) = r < n, then
there exist Q ∈ GLn(Fq) and v∗ ∈ F

r
qm with rkq(v∗) = r such that v = (v∗|0)Q.

It follows that ψ(v) = (ψ(v∗)|0)Q and then rkq(ψ(v)) = rkq(ψ(v∗)) = rkq(v∗) =
rkq(v).

Remark 4. Let E be an extension field of Fqm , then a linearized transformation
over E/Fqm preserves the rank metric over E

n with respect to Fq.

A permutation of Fqm leads to a polynomial of degree at most qm − 1, which
can be derived from the Lagrange Interpolation Formula [27]. An Fq-linearized
permutation ψ of Fqm leads to a linearized polynomial Lψ(x) over Fqm/Fq, which
has the form of

γ0x + γ1x
[1] + · · · + γm−1x

[m−1] ∈ Fqm [x].

Let b be a basis vector of Fqm/Fq and B ∈ Mm,m(Fqm) a Moore matrix gener-
ated by b. Note that Lψ(b) = (γ0, . . . , γm−1)B = ψ(b), then (γ0, . . . , γm−1) =
ψ(b)B−1.

Remark 5. For ψ ∈ LPm(Fq) and a linear code C ⊆ F
n
qm , it is easy to verify that

ψ(C) is Fq-linear, but generally no longer Fqm -linear. However, if Lψ(x) has the
form of γx[j] for γ ∈ F

∗
qm and 0 � j � m − 1, namely Lψ(x) is a monomial, then

ψ preserves the Fqm-linearity of all linear codes over Fqm .

5 Our Proposal

This section first presents a formal description of the new proposal, then gives
some notes on the private key. It should be noted that the following description
and notes are mainly aimed at the partial cyclic version.

5.1 Description of Our Proposal

For a desired security level, choose a field Fq and positive integers m,n, k, l, λ1

and λ2 such that n = lm. Let g = (α[n−1], α[n−2], . . . , α) be a normal basis
vector of Fqn/Fq. Let G = PCk(g), then G = 〈G〉qn forms an [n, k] partial cyclic
Gabidulin code. Our proposal consists of the following three algorithms.

– Key generation
For i = 1, 2, randomly choose an Fq-linear space Vi ⊆ Fqn with dimq(Vi) = λi.
Randomly choose mi ∈ Vn

i with rkq(mi) = λi such that Mi = PCn(mi)
is invertible. Randomly choose ψ ∈ LPl(Fqm) such that Lψ(x) is not a
monomial. Let g∗ = ψ(gM−1

1 )M−1
2 , then PCk(g∗) = ψ(GM−1

1 )M−1
2 . Let

t =
⌊

n−k
2λ1λ2

⌋
, then the public key is (g∗, t), and the private key is (m1,m2, ψ).
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– Encryption
For a plaintext x ∈ F

k
qm , randomly choose e ∈ F

n
qn with rkq(e) = t. Then the

ciphertext corresponding to x is computed as

y = xPCk(g∗) + e = xψ(GM−1
1 )M−1

2 + e.

– Decryption
For a ciphertext y ∈ F

n
qn , compute

yM2 = xψ(GM−1
1 ) + eM2 = ψ(xGM−1

1 ) + eM2,

and
y′ = ψ−1(yM2)M1 = xG + e′

where e′ = ψ−1(eM2)M1. Note that

rkq(e′) � rkq(ψ−1(eM2)) · λ1 = rkq(eM2) · λ1 � rkq(e) · λ2 · λ1 �
⌊n − k

2
⌋
.

Applying the decoder of G to y′ will lead to the plaintext x.

Remark 6. For the case where no partial cyclic structure is used, the only differ-
ence is that it suffices to choose at random a generator matrix G of Gabidulin
code and two matrices Mi with rkq(Mi) = λi. On the other hand, the design of
the new proposal involves three finite fields, that is Fq ⊂ Fqm ⊂ Fqn . The reason
why Fqm is chosen to define ψ consists in two aspects. Specifically, if there is no
such an intermediate field and ψ is defined over Fqn/Fq, then the transformation
will be Fq-linearized and the plaintext has to be chosen from F

k
q . Consequently,

the practical security of this scheme will be bounded from above by O(qk) and
the transmission rate will be only k

n2 , which will greatly weaken the performance
of the proposed scheme.

5.2 Why Not Hide Gabidulin Code

Now we explain why Gabidulin code is not used as part of the private key. Firstly,
we introduce the following proposition, which reveals the relationship between
two normal basis vectors.

Proposition 5. Let α be a normal element of Fqn/Fq, then β ∈ Fqn is normal
if and only if there exists Q ∈ PCn(Fq) ∩ GLn(Fq) such that

(β[n−1], β[n−2], . . . , β) = (α[n−1], α[n−2], . . . , α)Q.

Proof. Trivial from a direct verification.

Let g′ ∈ F
n
qn be an arbitrary normal basis vector of Fqn/Fq. By Proposition

5, there exists a matrix Q ∈ PCn(Fq) ∩ GLn(Fq) such that g′ = gQ. Let G′ =
PCk(g′), then G′ = GQ and

ψ(GM−1
1 )M−1

2 = ψ(G′Q−1M−1
1 )M−1

2 = ψ(G′M−1
1 )Q−1M−1

2 = ψ(G′M−1
1 )M ′

2
−1

,
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where M ′
2 = M2Q ∈ PCn(Fqn)∩GLn(Fqn) satisfies wtR(M ′

2) = λ2. Furthermore,
it is clear that anyone possessing the knowledge of ψ, g′,M1 and M ′

2 can decrypt
any ciphertext in polynomial time. This implies that breaking this cryptosystem
can be reduced to recovering ψ,M1 and M ′

2. Hence we conclude that it does not
make a difference to keep the underlying Gabidulin code secret.

5.3 On the Choice of ψ

We first explain why ψ is chosen such that the associated polynomial Lψ(x) is
not monomial, then investigate the equivalence of linearized transformations.

Why Lψ (x) cannot be monomial Assume that Lψ(x) is a monomial, then
there exist γ ∈ F

∗
qn and 0 � j � l − 1 such that

ψ(GM−1
1 ) = γ(GM−1

1 )[mj] = γG[mj](M [mj]
1 )−1.

It follows that

ψ(GM−1
1 )M−1

2 = G[mj](γ−1M1M
[mj]
2 )−1 = G′M ′−1

,

where G′ = G[mj] and M ′ = γ−1M1M
[mj]
2 . Apparently rkq(M ′) � λ1λ2 and G′

is a Moore matrix generated by g′ = g[mj], a normal basis vector of Fqn/Fq.
Similar to Sect. 5.2, G′ is assumed to be known, and therefore one recover M ′ by
computing PCn(g∗)−1PCn(g′). With the knowledge of (G′,M ′), one can decrypt
any ciphertext in polynomial time.

Equivalence of ψ For any β ∈ F
∗
qn and ψ ∈ LPl(Fqm), it is clear that βψ is

also a linearized transformation, where βψ is defined by βψ(α) = β ·ψ(α) for any
α ∈ Fqn . Furthermore, let ψ′ = βψ,M ′

2 = βM2, then rkq(M ′
2) = rkq(M2) = λ2

and

ψ(GM−1
1 )M−1

2 = β−1ψ′(GM−1
1 )M−1

2 = ψ′(GM−1
1 )(βM2)

−1 = ψ′(GM1
−1)M ′

2
−1

.

In terms of brute-force attack, ψ is said to be equivalent to ψ′. For any two
transformations ψ1, ψ2 ∈ LPl(Fqm), we have either ψ1 = ψ2 or ψ1 ∩ ψ2 = ∅,
where ψi = {βψi : β ∈ F

∗
qn}.

Now we count the nonequivalent linearized transformations. By Proposition
3, the number of Fqm-linearized permutations of Fqn is

|LPl(Fqm)| =
l−1∏
i=0

(qn − qmi).

On the other hand, the number of Fq-linearized transformations with a asso-
ciated monomial is l(qn − 1). Hence the number of nonequivalent linearized
transformations is evaluated as

N (ψ) =
|LPl(Fqm)| − l(qn − 1)

qn − 1
=

l−1∏
i=1

(qn − qmi) − l.
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5.4 On the Choice of (m1, m2)

In this section, we first investigate how to choose (m1,m2) to avoid some struc-
tural weakness, then investigate the equivalence of m1.

How to choose (m1,m2) Note that neither m1 nor m2 should be taken over
Fqm , otherwise the proposed scheme will degenerate into a weak instance. This
problem is investigated in the following two cases.

(1) If m1 ∈ F
n
qm , then M1,M

−1
1 ∈ GLn(Fqm). It follows that

ψ(GM−1
1 )M−1

2 = ψ(G)M−1
1 M−1

2 = ψ(G)(M1M2)−1 = ψ(G)M−1,

where M = M1M2 satisfies rkq(M) � λ1λ2. A direct verification shows
that, if one can recover ψ and M , then one can decrypt any ciphertext in
polynomial time. Let G′

pub = PCn(g∗) and G′ = PCn(g), then it is clear
that G′

pub = ψ(G′)M−1. If one can find ψ, then one can recover M by
computing G′

pub
−1

ψ(G′). This implies that breaking this cryptosystem can
be reduced to finding the secret ψ.

(2) If m2 ∈ F
n
qm , then M2,M

−1
2 ∈ GLn(Fqm). It follows that

ψ(GM−1
1 )M−1

2 = ψ(GM−1
1 M−1

2 ) = ψ(GM−1),

where M = M1M2 satisfies rkq(M) � λ1λ2. A direct verification shows that,
one can decrypt any ciphertext with the knowledge of ψ,G and M . If one
can find ψ, then one can recover GM−1 and hence M as explained above.
This implies that breaking this cryptosystem can be reduced to finding the
secret ψ.

Equivalence of m1. For Q ∈ PCn(Fq)∩GLn(Fq), let M ′
1 = M1Q,M ′

2 = M2Q,
then rkq(M ′

1) = rkq(M1), rkq(M ′
2) = rkq(M2). It follows that

ψ(GM ′
1

−1
)M−1

2 = ψ(GQ−1M−1
1 )M2

−1 = ψ(GM−1
1 )Q−1M−1

2 = ψ(GM1
−1)M ′

2
−1

.

In terms of brute-force attack on m1, it does not make a difference to multiply
m1 with a matrix in PCn(Fq) ∩ GLn(Fq). Let m1 = {m1Q : Q ∈ PCn(Fq) ∩
GLn(Fq)}. In what follows, we count the number of nonequivalent m1’s.

For a positive integer λ < n, let V ⊆ Fqn be an Fq-space of dimension λ. For a
matrix M ∈ PCn(V)∩GLn(V) with rkq(M) = λ, assume that M =

∑λ
j=1 αjAj ,

where αj ’s form a basis of V over Fq and Aj ’s are nonzero matrices in PCn(Fq).
Let A ∈ Mλ,n(Fq) be a matrix whose j-th row is the first row of Aj , then A has
full rank. Denote by N (A) the number of full-rank matrices in Mλ,n(Fq), and
by N (V) the number of λ-dimensional Fq-subspaces of Fqn . Then

N (A) =
λ−1∏
i=0

(qn − qi) and N (V) =
λ−1∏
j=0

qn − qj

qλ − qj
.
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The number of matrices M ∈ PCn(Fqn) ∩ GLn(Fqn) with rkq(M) = λ can be
evaluated as

N (M) = N (V) · N (A) · ξ,

where
ξ =

|{M ∈ PCn(V) ∩ GLn(V) : rkq(M) = λ}|
|{M ∈ PCn(V) : rkq(M) = λ}| .

As for ξ, we have the following proposition (see Appendix A for the proof).

Proposition 6. If qλ − qλ−1 � 2n, then ξ � 1
2 .

Proposition 6 provides a sufficient condition for ξ � 1
2 . Actually, this inequality

always holds according to our extensive experiments in MAGMA [10], even when
the sufficient condition is not satisfied. Hence we suppose ξ = 1

2 in practice.
Finally, the number of nonequivalent m1’s is evaluated as

N (m1) =
N (M1)

|PCn(Fq) ∩ GLn(Fq)| ∼ q(2λ1−1)n.

6 Security Analysis

Attacks in code-based cryptography can be divided into two categories, namely
the structural attacks and generic attacks. Structural attacks aim to recover the
private key or an equivalent private key from the published information, with
which one can decrypt any ciphertext in polynomial time. Generic attacks aim to
recover the plaintext directly without knowing the private key. In what follows,
we investigate the security of the new cryptosystem from these two aspects.

6.1 Structural Attacks

This section mainly introduces some well-known structural attacks in rank-based
cryptography and explains why our scheme can prevent these attacks.

Overbeck Attack. The best known structural attacks on McEliece-type vari-
ants using Gabidulin codes are the Overbeck attack [38] and some of its deriva-
tions [24,34]. All these attacks are based on the fact that Gabidulin code contains
a large subspace invariant under the Frobenius transformation. To prevent these
attacks, Loidreau [29] proposed a cryptosystem that can be seen as a rank metric
counterpart of the BBCRS cryptosystem [6] based on generalized Reed-Solomon
(GRS) codes. In Loidreau’s proposal, the secret code is disguised by right mul-
tiplying a matrix whose inverse has a small rank weight. This method of hiding
information about the private key, as claimed by Loidreau, is able to resist the
structural attacks mentioned above. A similar technique is applied in our pro-
posal, namely the use of the matrix M2 of rank weight λ2, which we believe can
as well prevent these attacks.
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Coggia-Couvreur Attack. Coggia and Couvreur [12] presented an effective
distinguisher for the Loidreau cryptosystem, and gave a practical key recovery
attack for λ = 2 and the code rate being greater than 1/2. Instead of operating
the public code directly, the Coggia-Couvreur distinguisher considers the dual
of the public code. Specifically, let Gpub = GM−1 be the public matrix, where
G is a generator matrix of an [n, k] Gabidulin code G over FqN and M is taken
over a λ-dimensional Fq-subspace of FqN , where N � n. Let H be a parity-check
matrix of G, then Hpub = HMT forms a parity-check matrix of the public code
Gpub = 〈Gpub〉qN . As for G⊥

pub = 〈Hpub〉qN , the Coggia-Couvreur distinguisher
states that the following inequality holds

dimqN (G⊥
pub + G⊥

pub

[1]
+ · · · + G⊥

pub

[λ]
) � min{n, λ(n − k) + λ}.

However, for an [n, k] random linear code Crand over FqN , the following equality
holds with high probability

dimqN (C⊥
rand + C⊥

rand

[1]
+ · · · + C⊥

rand

[λ]
) = min{n, (λ + 1)(n − k)}.

Now we explain why our scheme can prevent the Coggia-Couvreur attack.
For simplicity, we consider the case of l = 2. Let L(x) = γ1x + γ2x

[m] ∈ Fqn [x]
be the linearized permutation polynomial associated to ψ, then

Gpub = ψ(GM−1
1 )M−1

2 = (γ1GM−1
1 + γ2G

[m](M−1
1 )[m])M−1

2 .

It is easy to see that there exists Q ∈ PCn(Fq)∩GLn(Fq) such that G[m] = GQ,
then

Gpub = G(γ1M−1
1 + γ2Q(M−1

1 )[m])M−1
2 = GM−1,

where

M = (γ1M−1
1 + γ2Q(M−1

1 )[m])−1M2. (2)

Although one can recover M directly by computing PCn(g∗)−1PCn(g), it
does not mean one can conduct decryption with the knowledge of G and M . This
is because M appears quite random and rkq(M) can be very large. For instance,
we have run 1000 random tests for q = 2,m = 50, n = 100 and λ1 = λ2 = 2. It
turned out that rkq(M) � 86 holds in all these tests. By the way, rkq(M−1) � 90
holds in 1000 random tests. Consequently, rkq(eM) will be far beyond the error
correcting capability of Gabidulin code and the dual of Gpub = 〈Gpub〉qn appears
indistinguishable from random codes. Exactly, the following equality holds with
high probability according to our experiments,

dimqn(G⊥
pub + G⊥

pub

[1]
+ · · · + G⊥

pub

[λ]
) = min{n, (λ + 1)(n − k)}.

This convinces us that our proposal can prevent the Coggia-Couvreur attack. It
is easy to see that the Coggia-Couvreur attack also does not work for the general
case where no partial cyclic structure is used.
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Furthermore, we point out that recovering the private key is equivalent to
deriving M1,M2 and ϕ, or their equivalent form, from the matrix M in (2).
Firstly, it is clear that if one can decompose M as above, then one has found
an equivalent private key. Conversely, if one can derive an equivalent private
key from the public information, then one is able to get a decomposition of M .
Specifically, given a matrix M of the form (2), one randomly chooses a partial
circulant matrix G of Gabidulin code, then clearly GM−1 forms an instance of
our scheme. This implies that recovering the private key leads to a decomposition
of M .

Loidreau Attack. In a talk [30] at CBCrypto 2021, Loidreau proposed an
attack to recover a decoder of the public code in the Loidreau cryptosystem with
a complexity of O(((λn+(n−k)2)N)ωq(λ−1)N ). With this decoder at hand, one
can decrypt any ciphertext in polynomial time. Similar to the Coggia-Couvreur
attack, this attack also operates the dual of the public code.

Let M ′
1 = (γ1M−1

1 + γ2Q(M−1
1 )[m])−1. Notice that the matrix M in our

scheme is publicly known, an adversary may try to recover M2 or its equivalent
form. However, due to the randomness of M ′

1, GM ′
1 is far from a Moore matrix.

This implies that one cannot construct a linear system as Loidreau attack does.
Therefore, Loidreau attack is not applicable to our cases.

A Brute-Force Attack. Now we consider a potential brute-force attack against
the duple (ψ,m1). Notice that for any ψ′ ∈ ψ,m′

1 ∈ m1, there exists m′
2 ∈ F

n
qn

with rkq(m′
2) = λ2 such that Gpub = ψ(GM1

−1)M−1
2 = ψ′(GM ′

1
−1)M ′

2
−1,

where M ′
1 = PCn(m′

1),M
′
2 = PCn(m′

2). Let G′
pub = PCn(g∗), G′ = PCn(g),

then
G′

pub = ψ(G′M−1
1 )M−1

2 = ψ′(G′M ′
1
−1)M ′

2
−1

.

This implies that one can compute M ′
2 = G′

pub
−1

ψ′(G′M ′
1
−1). Furthermore, a

direct verification shows that one can decrypt any ciphertext with the knowledge
of ψ′,m′

1,m
′
2 and the public g. Apparently the complexity of this brute-force

attack by enumerating (ψ,m1) is O(N (ψ) · N (m1)).

6.2 Generic Attacks

A legitimate message receiver can always recover the plaintext in polynomial
time, while an adversary without the private key has to deal with the underlying
RSD problem presented in Sect. 3. Attacks that aim to recover the plaintext
directly by solving the RSD problem are called generic attacks, the complexity
of which only relates to the parameters of the cryptosystem. In what follows,
we will show how to establish a connection between our proposal and the RSD
problem.

Let Gpub = ψ(GM−1
1 )M−1

2 ∈ Mk,n(Fqn) be the public matrix, and Hpub ∈
Mn−k,n(Fqn) a parity-check matrix of the public code Gpub = 〈Gpub〉qn . Let
y = xGpub + e be the received ciphertext, then the syndrome of y with respect
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to Hpub can be computed as s = yHT
pub = eHT

pub. By Definition 6, one obtains
an RSD instance of parameters (q, n, n, k, t). Solving this RSD instance by the
combinatorial attacks in Table 1 or the algebraic attacks in Table 2 will lead to
the error vector e, then one can recover the plaintext by solving the linear system
y − e = xGpub.

7 Parameters and Public Key Size

In this section, we consider the practical security of our proposal against the
generic attacks presented in Sect. 3, as well as a brute-force attack against the
duple (ψ,m1) in Sect. 6.1 with a complexity of O(N (ψ) · N (m1)). The public
key in our proposal is a vector in F

n
qn , leading to a public key size of n2 log2(q)

bits. In Table 3, we give some suggested parameters for security of at least 128
bits, 192 bits, and 256 bits. After that, we compare the public key size with
some other code-based cryptosystems in Table 5. It should be noted that, when
considering the algebraic attacks in [7,8], the practical security of LT19 under
the original parameters in [26] will be lower than 88 bits. The updated param-
eters of LT19 and corresponding public key size are given in Table 4. It is clear
that our proposal has an obvious advantage over other variants in public key
representation.

Table 3. Parameters and public key size (in bytes).

Parameters Public key size Security
q m n k l λ1 λ2

2 55 110 54 2 2 2 1513 139
2 60 120 64 2 2 2 1800 198
2 72 144 72 2 2 2 2592 258

Table 4. Updated parameters and public key size (in bytes) for LT19.

Parameters Public key size Security
q m n k λ1 λ2 r t

2 167 167 59 3 3 54 9 6973 129
2 194 194 86 3 3 54 9 9409 193
2 203 203 95 3 3 54 9 10303 265
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Table 5. Comparison on public key size (in bytes).

Instance Security
128 192 256

Classic McEliece [3] 261120 524160 1044992
Loi17 [31] 34560 59136
LT19 [26] 6973 9409 10303
HQC [1] 2249 4522 7245
BIKE [4] 1541 3083 5122
RQC [2] 1834 2853 4090
Our proposal 1513 1800 2592

8 Conclusion

This paper has presented a new McEliece-type public key encryption scheme
based on Gabidulin codes, where we use the so-called linearized transformations
to hide the private key. Combining the technique of Loidreau’s proposal, this new
proposal can resist the existing distinguisher-based attacks. When equipped with
the partial cyclic structure, this scheme turns into one with no hidden structure
and with a competitive public key size.

A Proof of Proposition 6

Proof. For a λ-dimensional Fq-linear space V ⊆ Fqn , denote by Mλ(V) the set of
all matrices with rank weight λ in PCn(V). Let U be the set of all singular matri-
ces in Mλ(V), and V = Mλ(V)∩GLn(V). In what follows, we will construct an
injective mapping σ from U to V . First, we divide U into a certain number of sub-
sets. For a matrix M ∈ U , let m = (m0,m1, . . . , mn−1) ∈ Vn be the first row vec-
tor of M , namely M = PCn(m). Let M = {N ∈ U : M −N is a scalar matrix},
a set of matrices in U whose first row resembles M at the last n−1 coordinates.
Let x = (x,m1, . . . , mn−1), and X = PCn(x). Denote by f(x) ∈ Fqn [x] the
determinant of X, then f(x) is a polynomial of degree n. In the meanwhile, we
have that |M | equals the number of roots of f(x) = 0 in V, which indicates that
|M | � n. Let m∗ = (m1, . . . , mn−1), then it is easy to see that rkq(m∗) � λ− 1.
Now we establish the mapping σ in the following two cases:

(1) rkq(m∗) = λ − 1.
For a matrix M1 ∈ M , let m1 = (δ1,m∗) be the first row vector of M1.
Let W = 〈m1, . . . , mn−1〉q, then dimq(W) = λ − 1. Because of qλ − qλ−1 >
n, there exists δ′

1 ∈ V\W such that f(δ′
1) 	= 0, where f(x) is defined as

above. Let m′
1 = (δ′

1,m
∗), then we have M ′

1 = PCn(m′
1) ∈ GLn(V), and

rkq(m′
1) = λ in the meanwhile. We define σ(M1) = M ′

1.
For 2 � i � n and a matrix Mi ∈ M\{Mj}i−1

j=1, if any, let mi = (δi,m
∗) be
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the first row vector of Mi. Because of qλ − qλ−1 − (i − 1) > n, there exists
δ′
i ∈ V\(W ∪ {δ′

j}i−1
j=1) such that f(δ′

i) 	= 0. Let m′
i = (δ′

i,m
∗), then we have

M ′
i = PCn(m′

i) ∈ GLn(V), and rkq(m′
i) = λ in the meanwhile. We define

σ(Mi) = M ′
i .

(2) rkq(m∗) = λ.
For a matrix M1 ∈ M , let m1 = (δ1,m∗) be the first row vector of M1.
Because of qλ > n, there exists δ′

1 ∈ V such that f(δ′
1) 	= 0, where f(x)

is defined as above. Let m′
1 = (δ′

1,m
∗), then we have M ′

1 = PCn(m′
1) ∈

GLn(V), and rkq(m′
1) = λ in the meanwhile. We define σ(M1) = M ′

1.
For 2 � i � n and a matrix Mi ∈ M\{Mj}i−1

j=1, if any, let mi = (δi,m
∗)

be the first row vector of Mi. Because of qλ − (i − 1) > n, there exists
δ′
i ∈ V\{δ′

j}i−1
j=1 such that f(δ′

i) 	= 0. Let m′
i = (δ′

i,m
∗), then we have

M ′
i = PCn(m′

i) ∈ GLn(V), and rkq(m′
i) = λ in the meanwhile. We define

σ(Mi) = M ′
i .

It is easy to see that σ forms an injective mapping from U to V . Apparently
σ(U) = {σ(M) : M ∈ U} ⊆ V , which implies that |U | = |σ(U)| � |V |. Together
with U ∩ V = ∅ and Mλ(V) = U ∪ V , we have that

ξ =
∑

V⊆Fqn ,dimq(V)=λ

|V |
/ ∑

V⊆Fqn ,dimq(V)=λ

|Mλ(V)| � 1
2
.
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Abstract. Synthesis and optimization of quantum circuits are impor-
tant and fundamental research topics in quantum computation, due to
the fact that qubits are very precious and decoherence time which deter-
mines the computation time available is very limited. Specifically in cryp-
tography, identifying the minimum quantum resources for implementing
an encryption process is crucial in evaluating the quantum security of
symmetric-key ciphers. In this work, we investigate the problem of opti-
mizing the depth of quantum circuits for linear layers while utilizing
a small number of qubits and quantum gates. To this end, we present
a framework for the implementation and optimization of linear Boolean
functions, by which we significantly reduce the depth of quantum circuits
for many linear layers used in symmetric-key ciphers without increasing
the gate count.

Keywords: Quantum circuit · Reversible circuit · Linear depth ·
Symmetric-key ciphers

1 Introduction

With the rapid development of quantum technologies and quantum algorithms
such as Grover’s algorithm, Simon’s algorithm, and Shor’s algorithm, the security
of modern cryptography has been challenging. It is widely known that Grover’s
algorithm [22] has a square root speedup over a classical algorithm in terms of the
problem of database search, which can be applied to find the key for a symmetric
cipher instead of a classical exhaustive key search. Moreover, quantum attacks
on symmetric-key schemes are extensively studied these years, including Simon’s
period-finding algorithm [12,25] and other attacks derived from cryptanalytic
techniques [13,14,23,30]. All these works imply that there would be a potential
quantum threat to our symmetric encryption system used today.

To actually implement a quantum key search on a symmetric-key encryp-
tion scheme, e.g., a block cipher, the encryption process is supposed to be
implemented as a Grover oracle, meaning that we should be capable of con-
structing a quantum circuit for the specific encryption algorithm. Meanwhile, in
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the call for proposals to the standardization of post-quantum cryptography, the
National Institute of Standards and Technology (NIST) makes the complexities
of the quantum circuit for AES standards to categorize the security strength
of post-quantum public-key schemes. All these reasons give rise to the growing
appeals for studying the quantum implementation of quantum oracles of itera-
tive symmetric-key ciphers as well as how to optimize the implementation. This
has been an important and fruitful topic recently, which helps understand the
quantum security of current encryption schemes and guide future post-quantum
encryption designs.

Although the circuit implementations of symmetric-key ciphers differ from
each other, a recurring theme can be recognized, which is to construct the quan-
tum circuit for each building block of the cipher separately. Then we can do
post-optimizations for the circuit to reduce the quantum cost, including the
depth, the width (the number of qubits), and the gate count (the number of
quantum gates). For the non-linear building blocks, most work has been focus-
ing on reducing the T -depth due to its importance in fault-tolerant quantum
computation [21]. The circuits that implement the linear building blocks, are
called linear reversible circuits, which only consist of CNOT gates. They have
many important applications in quantum computation, e.g., stabilizer circuits.

Related Work. Work in quantum implementation of symmetric ciphers mostly
focuses on AES due to its popularity and importance. In 2015, Grassl et al. [21]
first proposed a quantum circuit of AES and found that the number of logical
qubits required to implement a Grover attack on AES is around 3000 to 7000.
Followed by their work, Almazrooie et al. [4] gave a more detailed circuit of
AES trying to use fewer qubits. In [33] Langenberg et al. presented an improved
quantum circuit for the S-box of AES which reduced the numbers of Toffoli gates
and qubits. In [48], Zou et al. constructed two quantum circuits for AES S-box
and S-box−1, trying to use fewer qubits as well. Except for these works primarily
focusing on the number of qubits, Jaques et al. in [25] build circuits for AES and
LowMC with the primary goal of reducing the circuit depth. Recently, Huang
and Sun [24] proposed a general structure for implementing quantum circuits for
the round functions of block ciphers. They utilized some techniques to give the
state-of-the-art synthesis of AES, with respect to depth-width trade-offs. Not
surprisingly, their strategy for efficient quantum circuit synthesis is also to build
linear and non-linear cryptographic building blocks separately. The depth of the
linear block is not considered in the first place in their work.

Apart from the efficient quantum implementation of symmetric-key ciphers,
the problem of quantum circuit optimization has been studied for many years in
the field of synthesis and optimization of reversible logic circuits [5,36,38,41,47],
which is historically motivated by theoretical research in low-power electronics
transforms in cryptography and computer graphics. The basic task is to use
reversible gates to implement a reversible Boolean function, i.e., a permuta-
tion. There have been enormous algorithmic paradigms such as search-based,
cycle-based, transformation-based, and BDD-based for reversible circuit synthe-
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sis, both exact and heuristic. One may refer to [38] for a detailed review. Also,
there are some tools developed to study the synthesis of reversible circuits [45].

Specifically for the synthesis and optimization of linear quantum circuits (the
CNOT circuits), traditional methods usually yield a circuit with O(n2) gates
based on standard row reduction methods such as Gaussian elimination and
LU-decomposition for an n×n matrix. In [37], Patel et al. present an algorithm
that uses O

(
n2/ log(n)

)
gates, which is the theoretical lower bound, to build an

n-qubit linear quantum circuit. This will trivially give a bound of O
(
n2/ log(n)

)

on the circuit depth. Furthermore, Jiang et al. [28] reduce this bound by a
factor of n, achieving an asymptotically optimal depth bound of O (n/ log(n)).
Some other efforts were also made to achieve a more compact circuit of linear
layers [17,18]. The synthesis of the CNOT circuits has direct applications to the
synthesis of stabilizer circuits, an important class of quantum circuits introduced
by Aaronson and Gottesman [2]. However, there is still a lack of practical and
efficient strategies for the optimal implementation of the linear components.

Our Contribution. In this work, we first revisit the problem of optimization of
a subclass of quantum circuits - CNOT circuits. We give three characterizations
of the CNOT circuit depth, i.e., sequence depth, move-equivalent depth, and
exchange-equivalent depth. Based on that, we focus on the problem of minimizing
the circuit depth while maintaining the gate count of a gate-count-optimized
CNOT circuit.

We present a practical and efficient framework in Algorithm 3 for the imple-
mentation of linear operators as well as the optimization of their circuits. Conse-
quently, one can construct the quantum circuit for a linear Boolean function with
a small number of CNOT gates and lower circuit depth. For a linear Boolean
function with n-variables, our depth optimization procedure yields a complexity
of O

(
n4/ log(n)2

)
.

We finally showcase the strength of our framework in quantum implementa-
tions of symmetric-key ciphers. For different linear layers used in symmetric-key
ciphers, which corresponds to some invertible matrices, our method can always
give a considerable reduction in the circuit depths of their implementations,
and obtain the state-of-the-art quantum circuits for those linear layers. Notably,
for non-invertible linear transformations that appear in the non-linear building
blocks or other more complex circuit structures, our method can also make the
circuits for these linear part more compact hence reduce the depth of the whole
circuit.

2 Preliminaries

2.1 Quantum Circuit

Among the various alternative models used to represent a quantum computer,
the circuit model is arguably the most widely used. In the circuit model of
quantum computation, a qubit (quantum bit) is a theoretically abstract mathe-
matical object. It has two possible states |0〉 and |1〉 that are usually called basis



132 C. Zhu and Z. Huang

states just as a classical bit has a state of either 0 or 1. The difference between
bits and qubits is that a qubit can be in a state other than |0〉 and |1〉. It can
be a linear combination of basic states, |ψ〉 = α|0〉 + β|1〉, where α, β ∈ C and
|α|2 + |β|2 = 1.

Geometrically, |0〉 and |1〉 can be represented as two-dimensional vectors
|0〉 = [1, 0]T and |1〉 = [0, 1]T . And |ψ〉 is described by a unit vector in a two-
dimensional Hilbert space H ∼= C

2 of which |0〉 and |1〉 are known as compu-
tational basis states. A system of n-qubits, also called an n-qubit register, has
states described by a unit vector in the Hilbert space Hn

∼= H⊗n. Based on
this, the evolution of quantum states is described by unitary transformations, or
quantum gates. A quantum gate acting on n qubits is represented by a 2n × 2n

unitary matrix. For instance, a NOT gate will invert the qubit and has a matrix

form
(

0 1
1 0

)
. There are some important single-qubit gates like the Hadamard

gate H, S gate, T gate:

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, T =

(
1 0
0 eiπ/4

)
.

For two-qubit gate, one of the most important one is the CNOT gate which is a
two qubits (control and target) operation.

CNOT : |x1〉|x2〉 → |x1〉|x1 ⊕ x2〉. (1)

It is worth mentioning that CNOT gate, H gate, and S gate generate the
Clifford group and Clifford + T forms a universal gate library. Whereas, in
the field of cryptography and quantum combined, one mostly works with the
Boolean functions, thus is more interested in a gate set called CNTS gate library,
consisting of the CNOT, NOT, Toffoli, and SWAP gates.

From (1), we can see that a CNOT gate can be seen as an invertible linear

transformation
(

1 0
1 1

)
over F2

2. Similarly, for an n-qubit system, we can charac-

terize a CNOT gate with an n × n matrix instead of its 2n × 2n unitary matrix
form for its linearity. In detail, a CNOT gate controlled by the j-th qubit, acting
on the i-th qubit (i �= j) can be written as

Eij = I + eij , (2)

where I is the n × n identity matrix and eij the elementary matrix with all
entries equal 0 but the entry (i, j) equals 1. In fact, Eij ’s belong to the ele-
mentary matrices in linear algebra or matrix theory. Recall that there are three
types of elementary matrices, which correspond to three types of row operations
(respectively, column operations) and may be interpreted as quantum gates:

1. Row switching: interchange two rows, which will be implemented by renaming
or switching the circuit wires1.

1 This operation can also be implemented by 3 CNOT gates, but this will cost more
quantum resources, since we think the cost of rewiring is free in most cases.
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2. Row multiplication: multiply a row with a nonzero number, which is trivial
in F2 and not concerned in this paper.

3. Row addition: add a row to another one multiplied by a nonzero number,
which in F2 will be interpreted as a CNOT gate.

It is a well-known theorem that any linear reversible matrix can be decomposed
as a product of elementary matrices. All of these indicate that for any linear
Boolean function with n variables, we can use a sequence of CNOT gates on n
qubits, referred as a CNOT circuit with n qubits, to implement it.

Theorem 1. Any invertible matrix A can be decomposed as a product of ele-
mentary matrices.

Two metrics, named width and depth, are often used to characterize the cost
of a quantum circuit. Width refers to the number of qubits that comprise the
circuit and depth refers to the number of layers of gates that are not executed
at the same time. Width and depth are both limiting factors in the execution
of quantum algorithms. For CNOT circuits, since it can be easily implemented
without auxiliary qubits, hence minimizing its width is an easy problem. There-
fore, in this paper, we focus on optimizing the depth of CNOT circuits, by which
we can reduce the depth of the quantum implementations of linear components
of symmetric-key ciphers.

2.2 Depth of the Quantum Circuits

For the depth of a quantum circuit, one usually refers to the minimal number
of stages the hardware needs to execute the gates when we suppose that the
gates acting on different qubits are executed simultaneously. For instance, the
following circuit (a) in Fig. 1 has depth 3 and the circuit (b) in Fig. 1 has depth
2 since the second and the last CNOT gates on the right circuit can be executed
simultaneously. However, when the quantum circuit consists of different kinds
of gates and we want to reduce the depth for a particular gate, e.g., the Toffoli
depth that refers to the number of stages the hardware needs to execute the
Toffoli gates simultaneously, the definition of depth we mentioned should be
fixed.

For instance, the two circuits illustrated in Fig. 2 contain the same gates. In
circuit (b), in order to execute the two Toffoli gate in parallel, the two CNOT

(a) CNOT circuit with depth 3 (b) CNOT circuit with depth 2

Fig. 1. The quantum CNOT circuits with different depth.
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(a) Toffoli depth 2 and circuit depth 2 (b) Toffoli depth 1 and circuit depth 3

Fig. 2. The quantum circuits with different Toffoli depth.

gates should be executed in another two different stages, which makes the circuit
has depth 3.

This example shows that the depth of a circuit should be defined based on
its building structure. The key issue here is that quantum circuits are written
such that the horizontal axis is time, starting at the left hand side and ending at
the right. These lines define the sequence of events, and are usually not physical
cables, resulting in that these two circuits in Fig. 2 are practically two different
events. In this sense, the depth of the quantum circuit actually reveals its exe-
cution time. For this reason, in this paper, when we say a circuit with depth d,
we mean a circuit is described by d layers of gates, and all gates in each layer
can be executed simultaneously.

3 Linear Depth Optimization

Generally for a linear Boolean function or a linear component in symmetric-
key ciphers, one may first easily obtain its matrix A from its algebraic normal
form. Then implementing A with a CNOT circuit is equivalent to decomposing
A into a sequence of elementary matrices and a permutation matrix. Since this
permutation matrix corresponds to rewiring operations which are considered as
free, we only need to focus on this sequence of elementary matrices. We call it
the decomposition sequence of A, which is defined formally as follows.

Definition 1. A decomposition sequence SEQ of a matrix A is a finite sequence
of elementary matrices with a particular order

SEQ = {E(c1, t1), E(c2, t2), · · · , E(cL, tL)}, (3)

such that

A = P

(
1∏

k=L

E(ck, tk)

)

, (4)

where P is a permutation matrix. Here, L is called the length of the sequence,
and

∏1
k=L E(ck, tk) is called the output of the sequence.
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In fact, any invertible matrix in F2 has a decomposition sequence followed by
Theorem 1. Each E(ck, tk) actually corresponds to a CNOT gate controlled by
the line ck acting on the line tk in a quantum context. For convenience, we
may simply use SEQ to denote the decomposition sequence corresponding to a
CNOT circuit for a given linear transformation A. For a SEQ, we say it is divided
continuously into D sub-sequences if

SEQ1 = {E(c1, t1), E(c2, t2), · · · , E(ck1 , tk1)},

SEQ2 = {E(ck1+1, tk1+1), E(ck1+2, tk1+2) · · · , E(ck2 , tk2)},

· · ·
SEQD = {E(ckD−1+1, tkD−1+1), E(ckD−1+2, tkD−1+2) · · · , E(ckD

, tkD
)},

(5)

and
⋃D

k=1 SEQk = SEQ, and {SEQ1, SEQ2, . . . , SEQD} is called a parallel partition
of SEQ if

⋂
i{ci, ti} = ∅ for any i in each SEQk. Then the depth of SEQ is defined

as follows.

Definition 2 (Sequence depth). For a decomposition sequence SEQ, the
depth of SEQ is the minimum D such that there is a parallel partition of SEQ

with D sub-sequence.

Notably, as discussed in Sect. 2.2, the depth of a quantum circuit is a circuit-
architecture-dependent parameter, and from a parallel partition with D sub-
sequences, we can easily achieve a quantum circuit with depth D. Moreover, we
always cluster the CNOT gates leftward when considering the depth of a CNOT
circuit particularly, making as many gates as possible run simultaneously.

It is straightforward to know that if {ci−1, ti−1} ∩ {ci, ti} = ∅ (or {ci, ti} ∩
{ci+1, ti+1} = ∅), E(ci, tj) can be moved forward (or backward) without chang-
ing the output of the sequence. Then we have the following definition for the
equivalence of two decomposition sequences.

Definition 3 (Move-equivalence). Two decomposition sequences SEQ and
SEQ′ are move-equivalent if SEQ′ can be obtained by moving gates in SEQ for-
ward or backward.

Actually, given a CNOT circuit, which corresponds to a decomposition
sequence SEQ, the output of its depth from most quantum resources estima-
tors, for example the Q# resources estimator of Microsoft [1], is the depth of
the move-equivalent sequence of SEQ under the strategy that moves all E(ci, ti)
forward as far as possible. However, we will discuss in the next subsection that
for a SEQ, after exchanging some gates that seem can not be further moved for-
ward (or backward), we can obtain a new decomposition sequence which has
lower depth than all move-equivalent sequences of SEQ.

3.1 Depth Optimization for Decomposition Sequences

By PLU-decomposition, one can easily obtain a decomposition sequence of a
matrix A. However, it is obviously not an optimal implementation when con-
cerning two metrics - the gate count and the circuit depth.
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For the gate count, it is pointed out in [46] that there are seven cases where
three adjacent elementary operations can be equivalently reduced to two, imple-
menting the same Boolean function. As a result, they built seven rules to opti-
mize a given sequence and here we employ the same method to reduce the gate
count of a decomposition sequence.

For the circuit depth, we find that the depth of a CNOT circuit can be further
reduced since there are other equivalent decomposition sequences for a SEQ that
is shallower. For example, we can swap the order of the second and the third
CNOT gates of Circuit (a) in Fig. 3, maintaining the output. Then we obtain
Circuit (b), which has circuit depth 2.

(a) CNOT circuit with depth 3 (b) CNOT circuit with depth 2

Fig. 3. The quantum CNOT circuits with different depth by exchanging gates.

Actually we have the following observation for the elementary matrix (the
CNOT gate) E(ck, jk) in a decomposition sequence:

Observation 1. For elementary matrices, E(ci, ti)E(cj , tj) = E(cj , tj)E(ci, ti)
if and only if ti �= cj and ci �= tj.

Observation 1 is quite obvious from the circuit perspective meaning that two
CNOT gates can swap order with each other if and only if the control qubit of
the first gate is not the target qubit of the other, and vice versa. In Fig. 3 the
first CNOT gate and the second CNOT gate in Circuit (a) can not be exchanged
since the target qubit of the first gate is the controlled qubit of the second gate.
In this way, we have the following definition for exchange-equivalence of two
decomposition sequences.

Definition 4 (Exchange-equivalence). For two adjacent gates E(ck, tk) and
E(ck+1, tk+1) in SEQ, we can exchange the order of the two if and only if tk �=
ck+1 and ck �= tk+1. We say SEQ′ and SEQ are exchange-equivalent if SEQ′ can
be obtained by exchanging the order of the gates in SEQ.

It is worth noting that the move-equivalence is a special case of the exchange-
equivalence. Obviously, now we can try to find a shallower circuit for SEQ among
all exchange-equivalent decomposition sequences. To this end, we present Algo-
rithm 1 to find the exchange-equivalent SEQ′ that has nearly optimal circuit
depth for a given decomposition sequence. Intuitively, we try to apply as many
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quantum gates as possible in a single sub-sequence. To accomplish this, we search
possible swapping between different gates forward and backward as detailed in
the function One-way-opt. Algorithm 1 uses One-way-opt twice, and has the
following property.

Property 1. Given a decomposition sequence SEQ with L gates, the Algorithm 1
has O(L2) steps to achieve a stable depth, meaning the depth will not be further
reduced by using One-way-opt more.

Proof. Suppose the output of the Algorithm 1 is S1 which is exchange-equivalent
to SEQ. If the number of sub-sequences can still be reduced, meaning there is
a redundant sub-sequence Sr all of whose gates can be moved equivalently into
other sub-sequences in S1. For any gate Er in Sr, if the sub-sequence in which
Er can be moved lies before Sr, Er should have been moved there in Step 1
of the Algorithm 1 by the definition of the One-way-opt procedure. Else if the
sub-sequence in which Er can be moved lies after Sr, Er should have been moved
there in Step 3 of the Algorithm 1. All of which claim that there is no such Er

that can be moved equivalently into other sub-sequences. Thus by applying One-
way-opt twice, we achieve a stable depth for implementing SEQ with Algorithm
1. For each gate in SEQ, in the worst case, we may iterate through all the gates
that lie after A in SEQ twice to check whether they can be executed in parallel
and whether they are exchangeable. This will give us a query complexity O(L2).

Remark 1. For a linear Boolean function F with n variables, the result in [37]
shows that it can be implemented with O(n2/ log(n)) CNOT gates. Hence, by
Algorithm 1, we can obtain a low-depth CNOT circuit of F with complexity
O(n4/ log(n)2).

Algorithm 1: CNOT depth optimization of SEQ
Input: A decomposition sequence SEQ.
Output: A low-depth decomposition sequence SEQopt which is

exchange-equivalent to SEQ.
1 SEQleft ←One-way-opt(SEQ);
2 Reverse sort the gates in SEQleft to get SEQrevleft;
3 SEQrev

opt ← One-way-opt(SEQrevleft);
4 Reverse sort the gates in SEQrev

opt to get SEQopt;
5 return SEQopt;

Example 1. Here we show a toy example to demonstrate the effectiveness of our
algorithm. For a decomposition sequence

SEQ = {E(0, 1), E(1, 3), E(2, 3), E(3, 1), E(0, 3), E(0, 2), E(2, 1)}, (6)

its circuit is shown as (a) in Fig. 4 whose sequence depth is obviously 7. After
the first step of Algorithm 1, E(2, 3) is exchanged with E(1, 3) since it can be
executed with E(0, 1) in parallel and is exchangeable with E(1, 3). Then we get
an exchanging-equivalent sequence whose circuit is shown as (b) in Fig. 4 with
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One-way-opt: One-way-opt CNOT depth optimization of SEQ(A)
Input: A decomposition sequence

SEQ(A) = {E(c1, t1), E(c2, t2), · · · , E(cK , tK)} of an invertible matrix A.
Output: A decomposition sequence SEQout(A) of matrix A and the sequence

depth d.
1 SEQout(A) ← {·};
2 d = 0;
3 while length(SEQ(A)) > 1 do
4 Layer ← {·};
5 d = d + 1;
6 Move the first gate in SEQ to Layer;
7 i = 1;
8 while i <= length(K) do
9 if E(ci, ti) can be executed simultaneously with all gates in Layer then

10 CHANGE ← TRUE;
11 for j = 1 : i do
12 if E(cj , tj) can not swap with E(ci, ti) then
13 CHANGE ← FALSE;
14 end

15 end
16 if CHANGE = TRUE then
17 Layer ← E(ci, ti);
18 Remove E(ci, ti) from SEQ

19 end
20 i = i + 1;

21 else
22 i = i + 1;
23 end

24 end
25 Add all gates in Layer to SEQout(A);

26 end
27 Add all gates left in SEQ to SEQout(A);
28 return SEQout(A), d;

depth 5. Furthermore, after Step 3 and Step 4, the order of E(0, 3) and E(0, 2)
are swapped since they are exchangeable and E(0, 3) can be executed in parallel
with E(2, 1), reducing the circuit depth from 5 to 4. Then Algorithm 1 output
the sequence

SEQopt = {E(0, 1), E(2, 3), E(3, 1), E(1, 3), E(0, 2), E(0, 3), E(2, 1)}, (7)

whose circuit is shown as (c) in Fig. 4.

3.2 Finding Better Gate Sequences

Besides the optimized implementation of a given decomposition sequence as well
as all its equivalent sequences, we point out that there are actually other different
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(a) CNOT circuit of SEQ

D 1 D 2 D 3 D 4 D 5

(b) CNOT circuit of SEQleft

D 1 D 2 D 3 D 4

(c) CNOT circuit of SEQopt

Fig. 4. The quantum CNOT circuit of SEQ and its exchange-equivalent circuits obtained
in Algorithm 1.

decomposition sequences that can implement the linear transformation A. As an
example shown in Fig. 5, circuit (a) and circuit (b) realize the same Boolean
function after we rename (or swap) wire i and wire k, hence SEQa for Circuit
(a) and SEQb for Circuit (b) are two different decomposition sequences for the
same matrix. Whereas, circuit (a) has depth 4 and circuit (b) has depth 3 since
the second and the third CNOT gates in (b) can be executed simultaneously.
Hence, we are inspired to find a shallower implementation, by firstly constructing
different decomposition sequences, then applying Algorithm 1 to find a better
decomposition sequence whose minimum depth after our optimization method
in Sect. 3.1 is lower. We present our framework for searching a depth-optimized
linear quantum circuit for a linear building block in Algorithm 3.

i

j

k

l

(a) CNOT circuit with depth 4

k

j

i

l

(b) CNOT circuit with depth 3

Fig. 5. The quantum CNOT circuits with different depth after swapping wires.
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Algorithm 3: Search a low-depth implementation of SEQ(A)
Input: An invertible matrix A ∈ GL(n,F2).
Output: A low-depth decomposition sequence SEQopt(A) of matrix A.

1 Translate A into a binary matrix and decompose it into
{Et, Et−1 · · · , E1};

2 SEQ ← {Et, Et−1 · · · , E1};
3 SEQopt is the output of Algorithm 1 (SEQ), and d(SEQopt) is the depth of

SEQopt ; // Initialize the depth
4 g ← t + 1;
5 while g ≥ 2 do
6 g = g − 1;
7 for i = 0 to t − g do
8 SEQ1 ← {Et, · · · Ei+g−1};
9 SEQ2 ← {Ei+g, · · · Ei+1};

10 SEQ3 ← {Ei, · · · E1};
11 A′ ← {Ei+g, · · · Ei+1};
12 Decompose A′ into {E′

u, E′
u−1 · · · , E1};

13 SEQ′
2 ← {E′

u, · · · , E1};
14 SEQ′ = SEQ1 + SEQ′

2 + SEQ3 ; // New decomposition sequence
15 SEQ′

opt is the output of Algorithm 1 (SEQ′), and d(SEQ′) is the
deoth of SEQ′

opt ; // Minimize depth for SEQ′

16 if d(SEQ′) < d(SEQopt) and |SEQ′| < |SEQopt| then
17 SEQopt = SEQ′;
18 d(SEQopt) = d(SEQ′);
19 Break;
20 end
21 end
22 end
23 return SEQopt;

4 Applications

In this section, we showcase the applications of our algorithm in different linear
building blocks. From these experimental results, one can see that our algorithm
can not only be applied to optimize invertible linear transformations, but also
be extended to optimize non-invertible linear transformations. Consequently, it
is helpful for the optimization of the whole circuit depth for some block ciphers
such as AES by optimizing some linear sub-structures of the whole circuit.
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Optimization for Invertible Linear Transformations. Firstly, we apply
our framework to minimize the quantum circuit depth of a large set of invertible
cipher matrices. Notice that [46] gave state-of-the-art classical implementations
of some cipher matrices to our knowledge in terms of the gate count, which
outperform Paar’s and Boyar-Peralta’s heuristics [32] in most cases. And their
implementation can be typically employed to produce a compact CNOT circuit
implementing the linear transformation. We therefore compare our result with
theirs in Table 1, concerning the circuit depth while maintaining the gate count
same.

The depths of the quantum circuits for different cipher matrices optimized
by our method are listed in the last column. We can see there is a significant
improvement in our synthesis compared with the circuit implementation in [46].
When the matrix size is large such as an 8 × 8 matrix for KHAZAD [9] (the size
is 8 × 8 in GF(8, F2) and 64 × 64 in GF(2, F2)), our method can give a nearly
75% improvement compared with the naive implementation with sequence depth,
and a 45% improvement compared with the usual move-equivalent optimization.
Even for 4×4 small matrices, our method still can reduce the depth of the circuits
in some cases.

Next, we apply our framework to optimize the depth of the quantum circuit
implementation for various invertible matrices, presented in different works [11,
27,35,39,40,43]. All matrices compared can be found in those papers sorted
by their size and the finite field they belong to. The experiment results are
summarized in Table 2. Notice that for different matrices with different sizes, our
method always reduces the circuit depth compared with the previous quantum
circuit construction derived from the in-place implementations of classical linear
circuits. Generally, the larger the size of the matrix, the greater the advantage
of our method.

Optimization for Non-invertible Linear Transformations. Besides, our
framework can also be used to optimize the circuit depth of some non-invertible
linear transformations, since any non-invertible linear transformation can always
be expressed by a sequence as well. For example, we optimized the quantum
circuit depth for AES, by reducing the depth of some linear sub-structures in its
nonlinear blocks. As shown in [16], when using the tower filed structure, there
are two linear components in the implementation of AES S-box, called the top
linear layer and bottom linear layer, respectively. The top linear layer, which is
defined as a 22 × 8 binary matrix, is used to generate desired number of middle
variables used for a tower field construction, while the bottom linear layer, which
is defined as a 8 × 18 binary matrix, is used to generate the output of the S-box
from the output of the tower field construction. After applying our framework,
we can reduce the depth of the top linear layer of the AES S-box circuit from
14 [24,25] to 8, compared with the previous implementations. For the bottom
linear layer, we can reduce the depth from 11 to 7. Thus we can reduce the depth
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of linear layers of an AES S-box by 10. Even though this reduction is not very
large, our new implementation will reduce the depth of the whole AES circuit
significantly, since the S-box and its inverse are used iteratively in the whole
circuit.

Table 1. Quantum circuit depth of cipher matrices under different optimization heuris-
tic

Cipher Sizea # CNOTb Seq Dc Move-eq Dd Exchange-eq De

KHAZAD [9] 64 366 112 54 30

AES [20] 32 92 41 30 28

ANUBIS [44] 32 98 40 26 20

CLEFIA M0 [42] 32 98 41 30 27

CLEFIA M1 [42] 32 103 41 21 16

FOX MU4 [29] 32 136 75 55 48

QARMA128 [6] 32 48 12 6 5

TWOFISH [31] 32 111 53 37 29

WHIRLWIND M0 [8] 32 183 93 65 51

WHIRLWIND M1 [8] 32 190 90 69 54

JOLTIK [26] 16 44 23 20 17

MIDORI [7] 16 24 9 3 3

SmallScale AES [19] 16 43 26 20 19

PRIDE L0 [3] 16 24 9 3 3

PRIDE L1 [3] 16 24 15 5 5

PRIDE L2 [3] 16 24 12 5 5

PRIDE L3 [3] 16 24 11 5 5

PRINCE M0 [15] 16 24 10 6 6

PRINCE M1 [15] 16 24 10 6 6

QARMA64 [6] 16 24 9 6 5

SKINNY [10] 16 12 3 3 3
a The size refers to the degree of the corresponding binary matrix.
b The number of CNOT gates of quantum implementation in [46].
c Quantum circuit depth with sequence depth.
d Quantum circuit depth with minimum move-equivalent depth.
e Quantum circuit depth with minimum exchange-equivalent depth.
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Table 2. Quantum circuit depth of some invertible matrices with different optimization
methods.

Matrices Sizea #CNOTb Seq Dc Move-eq Dd Exchange-eq De

4 × 4 matrices in GF(4, F2)

[11] 16 41 27 23 21

[27] 16 41 28 24 18

[35] 16 44 29 27 26

[43] 16 44 30 25 22

[34] 16 44 29 29 27

[27] (Involutory) 16 41 25 15 14

[43] (Involutory) 16 44 24 19 16

[34] (Involutory) 16 44 33 27 25

[39] (Involutory) 16 38 19 12 11

4 × 4 matrices in GF(8, F2)

[11] 32 114 72 56 47

[27] 32 82 43 26 22

[35] 32 121 79 67 54

[34] 32 104 69 55 42

[43] 32 90 42 23 20

[39] 32 114 58 47 40

[27] (Involutory) 32 83 34 18 14

[43] (Involutory) 32 91 39 18 16

[34] (Involutory) 32 87 39 19 19

[39] (Involutory) 32 93 42 19 18

8 × 8 matrices in GF(4, F2)

[40] 32 183 83 54 44

[43] 32 170 89 59 49

[43] (Involutory) 32 185 85 47 37

8 × 8 matrices in GF(8, F2)

[43] (Involutory) 64 348 117 50 37
a The size refers to the degree of the corresponding binary matrix.
b The number of CNOT gates of quantum implementation in [46].
c Quantum circuit depth with sequence depth.
d Quantum circuit depth with minimum move-equivalent depth.
e Quantum circuit depth with minimum exchange-equivalent depth.

5 Conclusion

In this work, we focus on minimizing the depth of a subclass of quantum cir-
cuits - the CNOT circuits, especially those for the linear building blocks of
symmetric-key ciphers. We are motivated by the quantum security analysis of
current symmetric-key encryption systems and end up with a framework for
constructing low-depth quantum circuits for linear Boolean functions. We fully
characterize the CNOT circuits with decomposition sequence and its two equiva-
lent classes, called move-equivalent sequence and exchange-equivalent sequence.
Based on these two classes, we can give a clearer definition for the depth of
the CNOT circuits and achieve shallower quantum circuit implementations for
a large set of cipher matrices compared with previous results.
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Appendix

In the following, we present the CNOT circuit for AES MixColumns using 92
CNOT gates, which keeps the gate count the same as the implementation with
classical XOR gates in [46]. After our optimization, the circuit depth is reduced
from 41 to 28, compared with direct sequence depth; from 30 to 28, compared
with move-equivalent circuit depth (Table 3).

Table 3. A quantum circuit for AES MixColumns with depth 28, where each XOR
operation is corresponding to a CNOT gate.

No. Operation No. Operation No. Operation No. Operation

Layer 1 Layer 11 44 x8 = x0 ⊕ x8 68 x6 = x5 ⊕ x6

0 x14 = x6 ⊕ x14 21 x3 = x11 ⊕ x3 45 x28 = x12 ⊕ x28 69 x1 = x25 ⊕ x1

Layer 2 22 x20 = x19 ⊕ x20 46 x4 = x31 ⊕ x4 Layer 26

1 x6 = x22 ⊕ x6 23 x26 = x10 ⊕ x26 47 x15 = x7 ⊕ x15 70 x28 = x20 ⊕ x28

Layer 3 Layer 12 Layer 19 71 x14 = x30 ⊕ x14

2 x22 = x30 ⊕ x22 24 x11 = x10 ⊕ x11 48 x16 = x0 ⊕ x16 72 x15 = x7 ⊕ x15

3 x13 = x21 ⊕ x13 25 x19 = x18 ⊕ x19 49 x12 = x15 ⊕ x12 73 x5 = x29 ⊕ x5

Layer 4 Layer 13 50 x27 = x31 ⊕ x27 74 x0 = x24 ⊕ x0

4 x30 = x13 ⊕ x30 26 x10 = x18 ⊕ x10 Layer 20 75 x25 = x9 ⊕ x25

Layer 5 27 x17 = x9 ⊕ x17 51 x0 = x31 ⊕ x0 76 x3 = x19 ⊕ x3

5 x13 = x29 ⊕ x13 Layer 14 52 x25 = x24 ⊕ x25 Layer 27

6 x21 = x5 ⊕ x21 28 x18 = x2 ⊕ x18 53 x11 = x15 ⊕ x11 77 x20 = x4 ⊕ x20

7 x12 = x4 ⊕ x12 29 x9 = x1 ⊕ x9 Layer 21 78 x29 = x21 ⊕ x29

Layer 6 30 x0 = x24 ⊕ x0 54 x31 = x7 ⊕ x31 79 x6 = x14 ⊕ x6

8 x5 = x13 ⊕ x5 Layer 15 55 x24 = x15 ⊕ x24 80 x7 = x23 ⊕ x7

9 x4 = x28 ⊕ x4 31 x18 = x17 ⊕ x18 Layer 22 81 x1 = x0 ⊕ x1

Layer 7 32 x10 = x9 ⊕ x10 56 x7 = x14 ⊕ x7 82 x9 = x17 ⊕ x9

10 x13 = x12 ⊕ x13 33 x11 = x2 ⊕ x11 57 x15 = x23 ⊕ x15 83 x2 = x26 ⊕ x2

11 x29 = x4 ⊕ x29 34 x24 = x8 ⊕ x24 58 x12 = x27 ⊕ x12 84 x19 = x27 ⊕ x19

12 x11 = x27 ⊕ x11 Layer 16 Layer 23 Layer 28

Layer 8 35 x17 = x25 ⊕ x17 59 x14 = x21 ⊕ x14 85 x4 = x12 ⊕ x4

13 x12 = x20 ⊕ x12 36 x2 = x9 ⊕ x2 60 x31 = x22 ⊕ x31 86 x21 = x13 ⊕ x21

14 x4 = x11 ⊕ x4 37 x8 = x23 ⊕ x8 61 x16 = x23 ⊕ x16 87 x22 = x6 ⊕ x22

Layer 9 38 x24 = x16 ⊕ x24 62 x27 = x26 ⊕ x27 88 x23 = x31 ⊕ x23

15 x20 = x27 ⊕ x20 39 x31 = x15 ⊕ x31 63 x30 = x6 ⊕ x30 89 x17 = x0 ⊕ x17

16 x11 = x19 ⊕ x11 Layer 17 Layer 24 90 x26 = x18 ⊕ x26

17 x23 = x31 ⊕ x23 40 x1 = x17 ⊕ x1 64 x22 = x21 ⊕ x22 91 x27 = x11 ⊕ x27

Layer 10 41 x9 = x8 ⊕ x9 65 x23 = x6 ⊕ x23

18 x27 = x3 ⊕ x27 42 x16 = x31 ⊕ x16 66 x26 = x1 ⊕ x26

19 x19 = x23 ⊕ x19 Layer 18 Layer 25

20 x18 = x26 ⊕ x18 43 x17 = x16 ⊕ x17 67 x21 = x28 ⊕ x21
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Abstract. In this paper, we answer the open question pointed out by
Grubbs et al. (EUROCRYPT 2022) and Xagawa (EUROCRYPT 2022),
i.e., the concrete IND-CCA security proof of Kyber. In order to add robust-
ness, Kyber uses a slightly tweaked Fujisaki-Okamoto (FO) transforma-
tion. Specifically, it uses a “double-nested-hash” to generate the final
key. This makes the proof techniques (Jiang et al., CRYPTO 2018) of
proving standard FO transformation invalid. Hence, we develop a novel
approach to overcome the difficulties, and prove that Kyber is IND-CCA
secure in the quantum random oracle model (QROM) if the underlying
encryption scheme is IND-CPA secure. Our result provides a solid quan-
tum security guarantee for the post-quantum cryptography standard of
NIST competition, Kyber algorithm.

Keyword: IND-CCA security, Kyber, Fujisaki-Okamoto transformation,
Quantum random oracle model

1 Introduction

With the development of quantum computation [9,21], post-quantum cryptog-
raphy (PQC) has attracted much attention in the past decade. Particularly,
in 2016, National Institute of Standard and Technology (NIST) launched the
PQC standardization project, which called for candidates of quantum-resistant
public-key cryptographic primitives [17], such as digital-signature, public-key
encryption (PKE) and key encapsulation mechanism (KEM). Recently, NIST
announced the latest results, and selected Kyber [20] as one of the PQC stan-
dards. Kyber is a KEM scheme, the security requirement of which is indistin-
guishability against chosen-ciphertext attacks (IND-CCA) [18], which is widely
accepted as the standard security notion. However, the concrete IND-CCA secu-
rity of Kyber in the quantum setting is currently an open question that pointed
out by Grubbs et al. [10] and Xagawa [25]. In this paper, we answer the open
question in the affirmative and provide a concrete post-quantum security proof
for Kyber.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Y. Deng and M. Yung (Eds.): Inscrypt 2022, LNCS 13837, pp. 148–166, 2023.
https://doi.org/10.1007/978-3-031-26553-2_8
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Kyber [20] uses a variant of the KEM version of the Fujisaki-Okamoto (FO)
transformation [7,8]. FO transformation was first introduced by Fujisaki and
Okamoto [7] in 1999, and it is one of the most important transformations to
construct an IND-CCA [18] secure PKE scheme from a weaker secure one in
the random oracle model (ROM) [3]. There are many variants [4,6,10,11,13–
16,19,25] of FO transformation that are widely used in the submissions to NIST
PQC competition [17]. To obtain a concrete cryptographic scheme, the random
oracle is replaced by a concrete hash function, which a quantum adversary may
evaluate on a quantum superposition of inputs. In order to capture this ability
of quantum adversaries, Boneh et al. [5] introduced the quantum random oracle
model (QROM), where hash functions are modeled as public random oracles
similarly as in the ROM [3] but with quantum access. Now, it is generally believed
that the security of post-quantum cryptographic schemes should be established
in the QROM.

In 2017, Hofheinz et al. [11] first analyzed the KEM version of the FO trans-
formation (FO-KEM) in the QROM. They followed the Targhi and Unruh’s proof
technique [23] and provided two variants of the standard FO-KEM1, i.e., QFO �⊥

m

and QFO⊥
m, which convert a one-way against chosen-plaintext attacks (OW-CPA)

secure PKE scheme into an IND-CCA secure KEM scheme in the QROM. Here
Q means adding an additional length-preserving hash to the ciphertext and �⊥
(⊥) means implicit (explicit) rejection, where a pseudorandom key (a rejection
symbol ⊥) is returned for an invalid ciphertext c in the decapsulation algorithm.

Subsequently, for the FO-KEMs with implicit rejection, Jiang et al. [14]
extended the technique in [5] to remove the additional hash, and proved the
IND-CCA security of FO �⊥

m and FO �⊥ [11] in the QROM. Unfortunately, although
the standard FO-KEMs with implicit rejection, i.e., FO �⊥

m and FO �⊥, can be shown
to be IND-CCA secure in the QROM [4,6,10,13–16,19,25], Grubbs et al. [10] and
Xagawa [25] recently pointed out that the proof technique does not seem to carry
over to Kyber (see Sect. 1.1 for details).

The important trick used by Jiang et al. [14] in their security proofs of FO �⊥ is
to associate the key-derivation-function (KDF) H with a secret random function
H1 by setting K := H(m, c) := H1(g(m)) = H1(c), where g(·) := Enc(pk, ·;G(·)).
The rationality of this simulation depends on the injectivity of g(·). However, in
order to add robustness [1], Kyber uses a slightly tweaked FO �⊥. More concretely,
Kyber hash the hash of m and the hash of c (double-nested-hash) into the final
key K, i.e., K := H(G1(m),H′(c)). Thus, there are two extra nested hash func-
tions between (m, c) and the computation of K. Since the domain of H′ is much
larger than the range of H′, H′ ◦g◦G−1

1 (·) is not injective2. Therefore, these extra
hash functions are a significant barrier to applying the trick used in [14].

Surprisingly, we can easily overcome this barrier in the ROM, where random
oracles can be simulated efficiently via lazy sampling. Thus, we can force G1 and
H′ to be injective without being noticed by the IND-CCA adversary. However,

1 The standard FO-KEMs including FO�⊥, FO�⊥
m, FO⊥ and FO⊥

m [11], where m (without
m) means K := H(m) (K := H(m, c)).

2 H′ ◦ g ◦ G−1
1 (·) is not even a function.
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in the QROM, since quantum adversaries can evaluate the random oracle on a
superposition state of all states, it is natural to have many collisions for G1 and
H′. Therefore, the proof trick [14] cannot be used directly to prove the quantum
security of Kyber. As a result, the concrete IND-CCA security proof of Kyber in
the QROM is currently an open question.

Our Contributions. In this paper, we answer the open question pointed out in
[10,25]. We observe that the significant barrier to prove the IND-CCA security of
Kyber in the QROM is that it uses a “double-nested-hash” to generate the final
key K. This makes the previous proof techniques [14] of proving FO �⊥ invalid in
the QROM. Hence, we develop a novel approach to overcome the barrier, and we
prove that Kyber is IND-CCA secure in the QROM if the underlying PKE scheme
is IND-CPA secure. Our result provides a solid quantum security guarantee for
PQC standard of NIST competition, Kyber algorithm.

1.1 Technical Overview

Before showing our proof, we first review the generic transformation FO �⊥

[11] and its quantum security proof [4,6,13–16]. FO �⊥ converts a PKE
scheme PKE := (Gen,Enc,Dec) into a KEM scheme KEM := FO �⊥[PKE,G,H]
with implicit rejection. The encapsulation of KEM is defined by

Encaps(pk) := (c := Enc(pk,m;G(m)),K := H(m, c)),

where m is picked at random from the message space, G and H are hash functions
(modeled as random oracles). The decapsulation of KEM is defined by

Decaps �⊥(sk, c) :=

{
H(m, c) c = Enc(pk,m;G(m))
H(s, c) c �= Enc(pk,m;G(m)),

where m := Dec (sk, c) and s is a random seed as part of the private key.

Security Proof of FO�⊥. In 2018, Jiang et al. [14] first proved the IND-CCA
security of FO �⊥ in the QROM. During the security reduction, the hardest part is
that the simulator needs to simulate the oracle Decaps �⊥ without possessing the
secret key. In the ROM, an RO-query list can be used to verify the validity of
ciphertexts during the Decaps �⊥ queries, thus helping the simulator to simulate
the oracle Decaps �⊥. However, such an RO-query list does not exist in the QROM
since quantum adversaries can evaluate the random oracle on a superposition
state of exponential many states [5]. In order to overcome this obstacle, Jiang et
al. [14] presented a novel approach to simulate the oracle Decaps �⊥.

Specifically, they associated the KDF H with a secret random function H1

by setting H(m, c) := H1(c) if the input (m, c) ∈ S3, where the set S is defined

3 The set S must satisfy public verifiability, i.e., given any input A, there is a polyno-
mial time algorithm that can effectively check whether A belongs to S.
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by S := {(m, c)|c = Enc(pk,m;G(m))}. Since the decryption of PKE is deter-
ministic, it is not possible for two distinct A1 ∈ S and A2 ∈ S to result in
a same c. Thus, such a simulation of H is a purely conceptual change and it
is still a random oracle in the adversary’s view, see Fig. 1. Moreover, we have
Decaps �⊥(sk, c) = H(m, c) = H1(c) if c is valid4. In addition, if c is invalid, we
can also use H1(c) to simulate the oracle Decaps �⊥ since s is independent of the
adversary’s view, and the adversary cannot distinguish H(s, c) from H1(c) for an
invalid c. Therefore, the simulator can simulate the decapsulation oracle by only
using H1 whether the ciphertext is valid or not.

Fig. 1. The proof framework of FO�⊥. Dashed arrows indicate the real environment and
solid arrows indicate the simulated environment.

However, the proof technique above does not carry over to Kyber. In the
security proof of FO �⊥, we utilize an important property that FO �⊥ satisfies
but Kyber does not, i.e., for any A ∈ S, there exists a polynomial-time algo-
rithm E such that c := E(A)5, and A and c are one-to-one. This property
makes our simulations of H and Decaps �⊥ perfect. If there exist A ∈ S and
c that are many-to-one, i.e., c := E(A1) = E(A2), then the distribution of
H in the real environment is not equal to that in the simulated environ-
ment. If there exist A ∈ S and c that are one-to-many, i.e., c1 ← E(A) and
c2 ← E(A), then Decaps �⊥(c1) = Decaps �⊥(c2) = H(A) in the real environment,
but Decaps �⊥(c1) := H1(c1) is not equal to Decaps �⊥(c2) := H1(c2) in the simu-
lated environment. Next, we try to follow the proof trick of FO �⊥ to prove the
IND-CCA security of Kyber, and explain why Kyber does not satisfy the property.

Security Proof of Kyber, Attempt. Kyber uses a variant of FO �⊥ (see Fig. 5
for details). In Kyber, the KDF is defined by K := H(k̂,H′(c)), where (k̂, r) :=
G(H′(pk),m), c := Enc(pk,m; r) and H′,H,G are modeled as random oracles.
Following the proof trick of proving FO �⊥, the simulation of the oracle Decaps �⊥

can be divided into two steps:

(1) We first modify the simulation of the oracle G. Since h := H′(pk) is public
to adversary, without loss of generality, we can assume that the adversary’s

4 For any fixed (pk, sk), we say that a ciphertext c is valid if c = Enc (pk, m;G(m)),
where m := Dec (sk, c), and invalid otherwise.

5 In FO�⊥, E(m, c) directly outputs c.
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query to oracle G is of the form (h,m) with h := H′(pk) and m ∈ M. Then,
we can use two independent internal random functions G1 : M → K̂ and G2 :
M → R to simulate oracle G, and set (k̂, r) := G(h,m) := (G1(m),G2(m)).
It is obvious that such a simulation of G is a purely conceptual change.

(2) We then modify the simulation of the oracle H. Similar to the proof of FO �⊥,
according to the responses of the decapsulation algorithm to valid cipher-
texts, we can define a public verifiable set S ′ that contains all possible queries
to H during the decapsulation queries for valid ciphertexts:

S ′ := {(k̂, b)|b = H′(c), where c := Enc(pk,m;G2(m)) and m := G−1
1 (k̂)}.

However, Kyber does not satisfy the one-to-one property. (a) If we define the
polynomial-time algorithm E such that E(k̂, b) outputs c, then (k̂, b) ∈ S ′

and c are one-to-many since G1 and H′ are random oracles, see left-hand of
Fig. 2. (b) If we define the polynomial-time algorithm E such that E(k̂, b)
outputs b, then (k̂, b) ∈ S ′ and c are many-to-one when c1 and c2 are a
collision for H′, see right-hand of Fig. 2.

Fig. 2. The relationship between (k̂, b) ∈ S ′ and the corresponding c (and b).

Our Solution. The high-level idea is that we modify the definition of S ′ to
force Kyber to satisfy the property. From the NIST document of Kyber [17],
we have M = K̂ = {0, 1}256. Note that a random function G1 : M → K̂ is
indistinguishable from a random permutation P1 : M → K̂ with probability
O (

q3/2256
)

for any q-query quantum algorithm [27]. Thus, we can replace G1

with P1 in the security proof to force Kyber to satisfy the property. Specifically,
we define a new set

S ′′ := {(k̂, b)|b = H′(c), where c := Enc(pk,m;G2(m)) and m := P−1
1 (k̂)}.

In this case, for any (k̂, b) ∈ S ′′, there exists a unique m such that k̂ = P1(m)
since P1 is a permutation. Moreover, there exists a unique c such that c =
Enc(pk,m;G2(m)) and b = H′(c). Conversely, for any valid ciphertext c, we
can obtain the unique (k̂, b) ∈ S ′′ since Decaps �⊥(sk, c) is deterministic. Thus,
(k̂, b) ∈ S ′′ and c are one-to-one, and we can set H(k̂, b) := H1(c) if the input
(k̂, b) ∈ S ′′ and then simulate the oracle Decaps �⊥ by only using H1.
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Remark. For the KEM variants with “single-nested-hash”, i.e., the KDF is
defined by K := H(G1(m), c) or K := H(m,H′(c)), it is easy to verify that these
two KEM variants satisfy the one-to-one property. Thus, we can use the proof
technique in [14] to prove the IND-CCA security.

1.2 Paper Organization

The rest of this paper is organized as follows. In Sect. 2, some notations and
lemmas are introduced. In Sect. 3, we prove that Kyber is IND-CCA secure in the
QROM. The conclusions are drawn in Sect. 4.

2 Preliminaries

Notations. For a finite set S, let |S| denotes the cardinality of S, let x
$←S

denote the sampling of a uniform random element x, while we denote the sam-
pling according to some distribution D by x ← D. For the Boolean statement
E, [[E]] denotes the bit that is 1 if E is true, and 0 otherwise. We denote deter-
ministic (probabilistic) computation of an algorithm A on input x by y := A(x)
(y ← A(x)). We denote algorithm A with access to an oracle H by AH.

2.1 Public-Key Encryption

A public-key encryption PKE = (Gen,Enc,Dec) consists of three polynomial-time
algorithms and a finite message space M:

– Gen(1k)→ (pk, sk): a key generation algorithm that on input 1k, where k
is the security parameter, outputs a key pair (pk, sk), where pk defines a
randomness space R = R (pk).

– Enc(pk,m)→ c: an encryption algorithm that on input pk and a message
m ∈ M, outputs a ciphertext c ← Enc (pk,m). If necessary, we make the
used randomness of encryption explicit by writing c := Enc (pk,m; r), where

r
$←R and R is the randomness space.

– Dec(sk, c)→ m/⊥: a decryption algorithm that on input decryption key sk
and ciphertext c, outputs either a message m := Dec(sk, c) or a special symbol
⊥ /∈ M to indicate that c is an invalid ciphertext.

Definition 1 (Correctness [11]). We call a public-key encryption scheme PKE
δ-correct if

E[max
m∈M

Pr [Dec (sk, c) �= m : c ← Enc (pk,m)]] ≤ δ,

where the expectation is taken over (pk, sk) ← Gen.
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GAME OW-CPAA GAME IND-CPAA

01 (pk, sk) Gen 07 (pk, sk) Gen

02 m∗ $ 08 b
$ {0, 1}

03 c∗ Enc (pk, m∗) 09 (m∗
0,m

∗
1, st) 1 (pk)

04 m A (pk, c∗) 10 c∗ Enc (pk,m∗
b)

05 return [[m = m∗]] 11 b

A

A2 (pk, c∗, st)
12 return [[b = b]]

Fig. 3. Games OW-CPA and IND-CPA for PKE.

Security. We now define two security notions for public-key encryption: One-
Way against Chosen Plaintext Attacks (OW-CPA) and Indistinguishbility against
Chosen Plaintext Attacks (IND-CPA).

Definition 2 (OW-CPA). For any adversary A, we define its OW-CPA advan-
tage against PKE as follows:

AdvOW-CPA
PKE (A) := Pr

[
OW-CPAA ⇒ 1

]
,

where OW-CPA game is defined as in the left-hand of Fig. 3.

Definition 3 (IND-CPA). For any adversary A = (A1,A2), we define its
IND-CPA advantage against PKE as follows:

AdvIND-CPA
PKE (A) := |Pr

[
IND-CPAA ⇒ 1

] − 1/2|,
where IND-CPA game is defined as in the right-hand of Fig. 3.

2.2 Key Encapsulation Mechanism

A key encapsulation mechanism KEM = (Gen,Encaps,Decaps) consists of three
polynomial-time algorithms:

– Gen(1k)→ (pk, sk): a key generation algorithm that on input 1k, where k is
the security parameter, outputs a key pair (pk, sk).

– Encaps(pk)→ (K, c): an encapsulation algorithm that on input encapsulation
key pk, outputs a tuple (K, c), where c is called an encapsulation of the key
K which is contained in the key space K.

– Decaps(sk, c)→ K: a decapsulation algorithm that on input decapsulation
key sk and an encapsulation ciphertext c, outputs a key K associated with c
or a pseudorandom key (implicit rejection), which implies that c is an invalid
encapsulation ciphertext.

Remark. Implicit (Explicit) rejection means a pseudorandom key K (a rejec-
tion symbol ⊥ /∈ K, resp.) is returned for an invalid encapsulation ciphertext.
Kyber is a KEM with implicit rejection.

Security. We now define Indistinguishability against Chosen Ciphertext Attacks
(IND-CCA) security for key encapsulation mechanism.
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GAME IND-CCAA Decaps (c)
01 (pk, sk) Gen 07 if c = c∗

02 b
$ 0, 1} 08 return ⊥

03 (K∗
0 , c∗) Encaps (pk) 09 else return

04 K∗
1

$ 10 K := Decaps(sk, c)
05 b′

{

K
ADecaps (pk, c∗, K∗

b )
06 return [[b′ = b]]

Fig. 4. Game IND-CCA for KEM.

Definition 4 (IND-CCA). For any adversary A, we define its IND-CCA
advantage against KEM as follows:

AdvIND-CCA
KEM (A) := |Pr

[
IND-CCAA ⇒ 1

] − 1/2|,

where IND-CCA game is defined as in Fig. 4.

2.3 Quantum Random Oracle Model

We prove security in the QROM [5] where adversaries are given quantum access
to the random oracles, and classical access to all the other oracles.

Simulating Quantum Random Oracle. In 2012, Zhandry [26] proved that
for at most q queries, no quantum algorithm AO can distinguish a truly random
function H : X → Y from a 2q-wise independent function f2q, where f2q :
X → Y is a random polynomial of degree 2q over the finite field F|Y|. In 2019,
Zhandry [28] developed the compressed oracle technique, which can also be used
to simulate quantum random oracle.

Lemmas. Next, we will review several important lemmas, which we will use in
our proof. All of the lemmas have been proved in other works.

Lemma 1 (Lemma 4 in [14]). Let ΩH and ΩH′ be the sets of all functions
H : {0, 1}n1 × {0, 1}n2 → {0, 1}m and H′ : {0, 1}n2 → {0, 1}m, respectively.

Let H
$←ΩH , H′ $←ΩH′ , x

$←{0, 1}n1 . Let F0 = H(x, ·), F1 = H′(·). Consider
an oracle algorithm AH,Fi that makes at most q quantum queries to H and Fi

(i ∈ {0, 1}). If x is independent from the AH,Fi ’s view, then∣∣Pr[1 ← AH,F0 ] − Pr[1 ← AH,F1 ]
∣∣ ≤ 2q/

√
2n1 .

Lemma 2 (Theorem 3.1 in [27]). There is a universal constant C such that
the following holds. Let H : X → Y be a random function, then any algorithm
making q quantum queries to H outputs a collision for H with probability at most
C(q + 1)3/|Y| (or O((q + 1)3/|Y|)).
Lemma 3 (Page 5,6 in [27]). There is a universal constant C such that the
following holds. Let Df be a distribution that outputs a truly random function
from N to N , let Dp be a distribution that outputs a truly random permutation
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from N to N . Then any q-query6 quantum oracle algorithm can only distinguish
the distribution Df from Dp with probability Cq3/|N | (or O(q3/|N |)).
Lemma 4 (Theorem 3 in [12]). Let ΠP be the sets of all permutations P :

{0, 1}n → {0, 1}n, let P $← ΠP be a random permutation. Let LR4(f1, f2, f3, f4) be
the 4-round Luby-Rackoff construction, where round functions fi : {0, 1}n/2 →
{0, 1}n/2 (i ∈ {1, 2, 3, 4}) are truly random functions. Then for any q-query
quantum oracle algorithm A, we have

∣∣Pr[1 ← AP] − Pr[1 ← ALR4 ]
∣∣ ≤ O

(√
q3/2n/2

)
.

Lemma 5 (One-Way to Hiding (OW2H) [24]). Let ΩH be the set of all

functions H: X → Y, and let H
$←ΩH be a quantum random oracle. Consider

an oracle algorithm AH that makes at most q queries to H. Let BH be an oracle
algorithm that on input x does the following: picks i

$← {1, · · · , q} and y
$← Y,

runs AH (x, y) until (just before) the i-th query, measures the argument of the
query in the computational basis and outputs the measurement outcome (When
A makes less than i queries to H, B outputs ⊥ /∈ X .). Let

P 1
A := Pr[b′ = 1 : H $← ΩH, x

$←X , b′ ← AH (x,H (x))], (1)

P 2
A := Pr[b′ = 1 : H $← ΩH, x

$←X , y
$←Y, b′ ← AH (x, y)], (2)

PB := Pr[x′ = x : H $← ΩH, x
$←X , x′ ← BH (x)]. (3)

Then
∣∣P 1

A − P 2
A

∣∣ ≤ 2q
√

PB.

Lemma 6 (Generic Distinguishing Problem with Bounded Probabili-
ties [6,13]). Let γ ∈ [0, 1], Z be a finite set. Let F1 : Z → {0, 1} be the following
function: for each z ∈ Z, F1(z) = 1 with probability pz (pz ≤ γ), and F1(z) = 0
else. Let F2 : Z → {0} be the constant zero function. Then, for any (unbounded)
algorithm A issuing at most q quantum queries to F1 or F2,

|Pr[1 ← AF1 ] − Pr[1 ← AF2 ]| ≤ 8(q + 1)2 · γ.

3 IND-CCA Proof for Kyber

According to the NIST document for Kyber [20], we first describe the construc-
tion of Kyber, which uses a variant of FO �⊥ [11]. To a public-key encryption
scheme PKE = (Gen,Enc,Dec) with message space M := {0, 1}256 and random-
ness space R := {0, 1}256, hash functions H′ : {0, 1}∗ → {0, 1}256, G : {0, 1}∗ →
{0, 1}512 and H : {0, 1}512 → K, we associate Kyber = FO �⊥′

[PKE,H′,H,G]. The
algorithms of Kyber = (Gen′,Encaps,Decaps �⊥) are defined in Fig. 5.

The following theorem establish that Kyber is IND-CCA secure in the QROM
if PKE is IND-CPA secure.
6 We say that A is a q-query oracle algorithm [2] if it performs at most q oracle queries.
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Gen′ Encaps(pk) Decaps�⊥(sk′, c)

01 (pk, sk) Gen 06 m
$ 12 m′ := Dec(sk, c)

02 h := H′(pk) 07 m := H′(m) 13 (k̂′, r′) := G(h,m′)

03 s
$

M

{0, 1}256 08 (k̂, r) := G(h,m) 14 c′ := Enc (pk,m′; r′)
04 sk′ := (sk, s, h) 09 c := Enc(pk,m; r) 15 if c = c′, then
05 return (pk, sk′) 10 K := H(k̂,H′(c)) 16 return K := H(k̂′,H′(c))

11 return (K, c) 17 else return K := H(s,H′(c))

Fig. 5. Kyber := FO�⊥′
[PKE,H′,H,G], here H′,H,G are hash functions.

Theorem 1. Given PKE = (Gen,Enc,Dec) is δ-correct. For any IND-CCA
adversary B against Kyber = (Gen′,Encaps,Decaps �⊥) = FO �⊥′

[PKE,H′,H,G],
issuing at most qD classical queries to the decapsulation oracle Decaps �⊥ and
at most qH′ (resp. qH and qG) quantum queries to the random oracle H′ (resp. H
and G), there exists an IND-CPA adversary A against PKE such that

AdvIND−CCA
KEM (B) ≤ 2(qH + qG)

√
AdvIND−CPA

PKE (A) +
1

2256
+

2qH
2128

+ 16(qG + 1)2 · δ

+ O
(

(qH′ + 1)3

2256

)
+ O

(
q3G

2256

)
+ O

(√
q3G/2128

)
.

and the running time of A is that of B.

The proof can be divided into two steps: we first replace the truly quantum
random oracle H with a structured H, then we can simulate the oracle Decaps �⊥

such that it no longer uses secret key. Finally, we apply OW2H lemma [24] to
argue key indistinguishability.

Proof. We first define some notations. Let ΩH, ΩG and ΩG′ be the sets of all
functions H : {0, 1}512 → K, G : {0, 1}∗ → {0, 1}512 and H′ : {0, 1}∗ → {0, 1}256,
respectively. Let Ωa, Ωb and Ωc be the sets of all functions H1 : {0, 1}256 → K,
H2 : C → K and G2 : {0, 1}256 → {0, 1}256, respectively. Let ΠP be the sets of
all permutations P : {0, 1}256 → {0, 1}256. Let B be an adversary against the
IND-CCA security of KEM, issuing at most qH′ (resp. qH and qG) quantum queries
to H′ (resp. H and G), and qD classical queries to Decaps �⊥. Consider the games
in Fig. 6, we will prove security through a sequences of games.
Game G0: The game G0 is the original IND-CCA game, then we have

|Pr [G0 ⇒ 1] − 1/2| = AdvIND−CCA
KEM (B) .

Game G1: The game G1 is identical to game G0, except that the oracle Decaps �⊥

is modified such that H1(H′(ci)) is returned instead of H(s,H′(ci)) for an invalid

encapsulation ciphertext ci, where H1
$←Ωa is an internal random function.

Note that the change is quite similar to the game-hop “G0 ⇒ G1” in the
proof of Theorem 1 in [14], by Lemma 1, we have

|Pr[G0 ⇒ 1] − Pr[G1 ⇒ 1]| ≤ 2qH√
2256

.
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GAMES G0 − G12 H(k̂, b) //G0 − G12

01 (pk, sk′) Gen′, H′ $
ΩH′ , H3

$
ΩH 28 Define the set S //G8 − G12

02 G3
$

ΩG //G0 − G3 29 if (k̂, b) ∈ S //G8 − G12

03 H1
$

Ωa //G1 − G2 30 if c = c∗ //G10 − G12

04 H2
$

Ωb //G3 − G8 31 return H5(m) //G10 − G12

05 H4
$

Ωb //G8 − G12 32 return H4(c) //G8 − G12

06 H5
$

Ωa //G10 − G12 33 return H3(k̂, b)

07 G1
$

Ωc //G4

08 G2
$

Ωc //G4 − G5, G11 − G12 Decaps �⊥ (sk′, ci �= c∗) //G0 − G8

09 G′
2

$
Ωc′ //G6 − G10 34 for j ∈ {1, · · · , i − 1} //G2 − G8

10 construct LR4, LR−1
4 //G7 − G12 35 if ∃cj : H′(cj) = H′(ci) //G2 − G8

11 P1
$

ΠP //G5 − G6 36 QUERY:=true //G2 − G8

12 m
$ , m∗ := H′(m) 37 abort //G2 − G8

13 (k̂∗, r∗) := G(H′(pk), m∗) 38 Parse sk′ = (sk, s, h)

14 r∗ $

M

R, K∗
0

$ K //G12 39 m′ := Dec(sk, ci)
15 c∗ := Enc′(pk, m∗; r∗) 40 (k̂′, r′) := G(h, m′)
16 K∗

0 := H(k̂∗,H′(c∗)) //G0 − G10 41 if Enc (pk,m′; r′) = ci
17 K∗

0 := H5(m∗) //G11 42 return K := H(k̂′,H′(ci))

18 K∗
1

$ , b
$ 0, 1} 43 else return K := H(s,H′(ci)) //G0

19 b′
K {
BDecaps �⊥,H,G,H′

(pk, c∗, K∗
b ) 44 else return K := H1(H′(ci)) //G1 − G2

20 return [[b′ = b]] 45 else return K := H2(ci) //G3 − G8

G (h, m) //G0 − G12

21 (k̂, r) := G3(h, m) //G0 − G3

22 k̂ := G1(m), r := G2(m) //G4 Decaps �⊥ (ci �= c∗) //G9 − G12

23 k̂ := P1(m), r := G2(m) //G5 46 for j ∈ {1, · · · , i − 1}
24 k̂ := P1(m), r := G′

2(m) //G6 47 if ∃cj : H′(cj) = H′(ci)
25 k̂ := LR4(m), r := G′

2(m) //G7 − G10 48 QUERY:=true
26 k̂ := LR4(m), r := G2(m) //G11 − G12 49 abort
27 return (k̂, r 05) return K := H4(ci)

Fig. 6. Games G0−G12 for the proof of Theorem 1. LR4 is the 4-round Luby-Rackoff
construction LR4(f1, f2, f3, f4), where round functions fi : {0, 1}n/2 → {0, 1}n/2 (i ∈
{1, 2, 3, 4}) are truly random functions, which can be simulated by using the compressed
oracle technique developed by Zhandry [28]. LR−1

4 is the inverse permutation of LR4.

Game G2 : In game G2, we raise a flag QUERY in the oracle Decaps �⊥ and
abort if there exists cj for j ∈ {1, · · · , i − 1} such that H′(cj) = H′(ci), where
i means i-th Decaps �⊥ queries. Obviously, G1 and G2 only differ if QUERY is
raised, meaning that there exists a quantum algorithm that finds a collision for
H′. By the difference lemma [22] and Lemma 2, we have
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|Pr[G1 ⇒ 1] − Pr[G2 ⇒ 1]| ≤ Pr[QUERY] ≤ O
(

(qH′ + 1)3

2256

)
.

Game G3 : In game G3, we further modify the oracle Decaps �⊥ such that H2(ci)
is returned instead of H1(H′(ci)) for an invalid encapsulation ciphertext ci, where

H2
$← Ωb is an internal random function. It is not hard to verify that the output

distributions of Decaps �⊥ in G2 and G3 are identical. Therefore, we have

Pr[G2 ⇒ 1] = Pr[G3 ⇒ 1].

Game G4: In game G4, we modify the simulation of the oracle G. Since h :=
H′(pk) is public to adversary, without loss of generality, we can assume that
the adversary’s query to oracle G is of the form (h,m) with h := H′(pk) and
m ∈ M. We then simulate the oracle G by setting G(h,m) := (G1(m),G2(m)),

where G1
$←Ωc and G2

$← Ωc are two independent internal random functions. It
is easy to see that the distributions of the oracle G in G3 and G4 are identical.
Thus, we have

Pr[G3 ⇒ 1] = Pr[G4 ⇒ 1].

Game G5: In game G5, we replace G1
$← Ωc with P

$← ΠP. Note that the distin-
guishing problem between G4 and G5 is essentially the distinguishing problem
between a random function G1 and a random permutation P. By Lemma 3, we
have

|Pr[G4 ⇒ 1] − Pr[G5 ⇒ 1]| ≤ O
(

q3G
2256

)
.

Remark : Since PKE is non-perfectly correct, there exist “bad” r := G2(m) such
that c := Enc(pk,m; r) but Dec (sk, c) �= m. In order to handle decryption errors,
we define a new random oralce G′

2, and force G′
2(m) to be a “good” randomness.

For the fixed (pk, sk) ← Gen, we define a set of “bad” randomness as follows:

Rbad
(pk,sk),m := {r ∈ R : Dec (sk,Enc (pk,m; r)) �= m} .

By the definitions of δ-correct, we have δ(pk,sk),m := |Rbad
(pk,sk),m|/|R|, δ(pk,sk) :=

maxm∈Mδ(pk,sk),m and δ := E
[
δ(pk,sk)

]
, where the expectation is taken over

(pk, sk) ← Gen. Let Rgood
(pk,sk),m := R\Rbad

(pk,sk),m be the set of “good” randomness,
we define G′

2 such that G′
2 (m) is sampled according to the uniform distribution

in Rgood
(pk,sk),m. Let Ωc′ be the set of all function G′

2.

Game G6: In game G6, we replace G2
$← Ωc with G′

2
$← Ωc′ , where G′

2(m) sam-
ples “good” randomness. According to the same analysis as in the proof of [13],
the distinguishing problem between G5 and G6 is essentially the distinguishing
problem between G2 and G′

2, which can be converted into distinguish F1 from
F2, where F1 is a function such that F1(m) is sampled from the Bernoulli dis-
tribution Bδ(pk,sk),m and F2 is a constant zero function. Here, we use the generic
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distinguishing problem proposed in [13] to achieve a better correctness bound
than that in [10,14,15]7. By Lemma 6, for a fixed (pk, sk), we have

|Pr[G5 ⇒ 1 : (pk, sk)] − Pr[G6 ⇒ 1 : (pk, sk)]| ≤ 8(qG + 1)2 · δ(pk,sk).

By averaging over (pk, sk) ← Gen, we can obtain

|Pr[G5 ⇒ 1] − Pr[G6 ⇒ 1]| ≤ 8(qG + 1)2 · δ.

Game G7: In game G7, we replace P
$← ΠP with the 4-round Luby-Rackoff

construction LR4 [12]. Then the distinguishing problem between G6 and G7 is
essentially the distinguishing problem between a random permutation P and
LR4. By Lemma 4, we have

|Pr[G6 ⇒ 1] − Pr[G7 ⇒ 1]| ≤ O
(√

q3G/2128
)

.

Game G8: In game G8, we construct a structured H via domain separation to
simulate the truly quantum random oracle H. We define a public verifiable set

S := {(k̂, b)|b = H′(c), where c := Enc(pk,m;G′
2(m)) and m := LR−1

4 (k̂)},

where LR−1
4 is the inverse permutation of LR4. Let H3

$←ΩH and H4
$← Ωb be

two independent internal random functions, H is defined by:

H(k̂, b) :=

{
H4 (c) (k̂, b) ∈ S
H3(k̂, b) otherwise.

Note that it is not possible for two distinct (k̂′, b′) ∈ S and (k̂′′, b′′) ∈ S to
result in a same c. The reason is, as G′

2 samples “good” randomness, there exists
at most one value m that satisfies Enc(pk,m;G′

2(m)) = c. And since LR4 and H′

are deterministic, the above follows. Therefore, the distributions of the oracle H
in G7 and G8 are identical. Thus we have

Pr[G7 ⇒ 1] = Pr[G8 ⇒ 1].

Remark : For any (k̂, b) ∈ S, we can compute the unique m = LR−1
4 (k̂) and the

unique c = Enc(pk,m;G′
2(m)). Since G′

2 samples “good” randomness, the unique
c is valid.

Game G9 : This game is identical to game G8, except that the oracle Decaps �⊥ is
modified such that it does not make use of sk′ any more: if QUERY is not raised,
then H4 (ci) is returned as long as ci �= c∗. Let m′ := Dec (sk, ci), k̂′ := LR4(m′)
and r′ := G2

′(m′), we consider the following two case:

7 In [10,14,15], the correctness bound is qG
√

δ, and ours is qG
2δ.
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Case1 : Enc (pk,m′; r′) = ci. In this case, H(k̂′,H′(ci)) is returned in G8 and
H4(ci) is returned in G9. Note that (k̂,H′(ci)) belongs to S, thus we can
rewrite H(k̂′,H′(ci)) = H4 (ci). Hence, querying Decaps �⊥ in G8 and G9 will
return the same value.

Case2 : Enc (pk,m′; r′) �= ci, namely ci is invalid. In this case, H2(ci) is returned
in G8 and H4(ci) is returned in G9. In game G8, since H2 is independent of
all other oracles, the output H2(ci) is uniformly random in B’s view. In game
G9, B’s queries to H can only help him get access to H4 at valid ciphertexts.
Thus, H4(ci) will also be a uniformly random value in B’s view.

As a result, the output distributions of the oracle Decaps �⊥ in G8 and G9 are
identical in B’s view. Thus, we have

Pr[G8 ⇒ 1] = Pr[G9 ⇒ 1].

Game G10 : In game G10, we make a further modification to the oracle H: if
(k̂, b) ∈ S and the computed unique c = c∗, then H5(m) is returned, where

m := LR−1
4 (k̂) and H5

$←Ωa is another independent internal random function.
Since it is impossible for two distinct (k̂′, b′) ∈ S and (k̂′′, b′′) ∈ S to result

in a same c, this further change to H only affects the H-query at one value
(k̂∗, b∗), where b∗ = H′(c∗), k̂∗ = LR4(m∗) and Enc(pk,m∗;G′

2(m
∗)) = c∗. In

this case, H4(c∗) is returned in G9 and H5(m∗) is returned in G10. Since c∗ is a
forbidden decapsulation query, H4(c∗) is a uniformly random value in B’s view
in G9. Moreover, since H5 is independent of all other oracles, the output H5(m∗)
is also a uniformly random value in B’s view. Therefore, the output distributions
of the oracle H in G9 and G10 are identical. Thus, we have

Pr[G9 ⇒ 1] = Pr[G10 ⇒ 1].

Remark : Following the above modification, we can rewrite the generation of K∗
0

in the setup, i.e., “K∗
0 := H5(m∗)” (instead of “K∗

0 := H(k̂∗, b∗)”). This change
does not affect the game in any way.
Game G11 : In game G10, we replace G2

′ $← Ωc′ with G2
$←Ωc, namely G2 is

reset to be an ideal random function in this game. Similar to the game-hop
“G5 ⇒ G6”, we can obtain

|Pr[G10 ⇒ 1] − Pr[G11 ⇒ 1]| ≤ 8(qG + 1)2 · δ.

Game G12 : This is identical to game G11, except that we choose r∗ and K∗
0 uni-

formly at random from R and K, respectively. In this game, bit b is independent
from B’s view. Hence,

Pr[G12 ⇒ 1] = 1/2.
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Next, we use OW2H lemma to bound |Pr[G11 ⇒ 1] − Pr[G12 ⇒ 1]|. Let
(G2 × H5) (·) := (G2 (·) ,H5 (·)). G2 and H5 are internal random oracles that B
can access to only by querying the oracle G and H. The number of total queries
to G2 × H5 is at most qG + qH.

AG2×H5 (pk,m∗, (r∗, K∗
0 )) Decaps �⊥ (ci �= c∗)

01 H′ $
ΩH′ 08 for j ∈ {1, · · · , i − 1}

02 construct LR4, LR−1
4 09 if ∃cj : H′(cj) = H′(ci)

03 H3
$

ΩH, H4
$

Ωb 10 QUERY:=true
04 c∗ := Enc (pk, m∗; r∗) 11 abort

05 K∗
1

$ , b
$ 0, 1} 12 return K := H4 (ci)

06 b′
K {
BDecaps �⊥,H,G,H′

(pk, c∗, K∗
b )

07 return [[b = b′]]

Fig. 7. AG2×H5 for the proof of Theorem 1, where oracles H,G,H′ are defined as in
game G12 of Fig. 6.

Let AG2×H5 be an oracle algorithm that on input (pk,m∗, (r∗,K∗
0 )), see Fig. 7.

If r∗ := G2 (m∗), K∗
0 := H5 (m∗), then AG2×H5 (pk,m∗, (r∗,K∗

0 )) perfectly simu-

lates G11. If r∗ $← R, K∗
0

$←K, then AG2×H5 (pk,m∗, (r∗,K∗
0 )) perfectly simulates

G12. Let CG2×H5 be an oracle algorithm that on input (pk,m∗) does the follow-

ing: pick i
$← {1, · · · , qG + qH}, r∗ $← R, K∗

0
$←K, run AG2×H5 (pk,m∗, (r∗,K∗

0 ))
until (just before) the i-th query, measure the argument of the G2 × H5 query in
the computational basis, output the measurement outcome (when AG2×H5 makes
less than i queries, CG2×H5 outputs ⊥ /∈ M.). Define game G13 as in the Fig. 8.
Then, Pr[CG2×H5 ⇒ m∗] = Pr[G13 ⇒ 1].

Remark : Let H′ $←ΩH′ , m
$←M, then the distribution of m∗ := H′(m) is

equivalent to the distribution of m∗ $←M.
Applying Lemma 5 with x := m∗ and y := (r∗,K∗

0 ), we have

|Pr [G11 ⇒ 1] − Pr [G12 ⇒ 1]| ≤ 2(qH + qG)
√

Pr[G13 ⇒ 1].

It remains to bound Pr [G13 ⇒ 1]. To this end, we can construct an OW-CPA
adversary C(pk, c∗) against the underlying PKE scheme that perfectly simulates
game G13 for B, see Fig. 9.

It is not hard to see that Pr[G13 ⇒ 1] = AdvOW−CPA
PKE (C). It is well known that

IND-CPA8 security of PKE with sufficiently large message space implies its OW-
CPA security. For any OW-CPA adversary C there exists an IND-CPA adversary
A against PKE with the same running time as that of C such that

AdvOW−CPA
PKE (C) ≤ AdvIND−CPA

PKE (A) + 1/2256.

8 Kyber requires the underlying PKE scheme to be IND-CPA secure.
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GAME G13 H(k̂, b)
01 (pk, sk′) Gen′ 13 Define the set S
02 H′ $

ΩH′ , H3
$

ΩH 14 if (k̂, b) ∈ S
03 H4

$
Ωb, H5

$
Ωa 15 if c = c∗

04 G2
$

Ωc 16 return H5(m)
05 construct LR4, LR−1

4 17 return H4(c)

06 m∗ $ , r∗ $ 18 return H3(k̂, b)
07 c∗ := Enc(pk,m∗; r∗)

08 K∗
0 , K∗

1
$ , b

$ 0, 1} Decaps �⊥ (ci �= c∗)

09 i
$

M R

K {
{1, · · · , qG + qH} 19 for j ∈ {1, · · · , i − 1}

10 run BDecaps �⊥,H,G,H′
(pk, c∗, K∗

b ) 20 if ∃cj : H′(cj) = H′(ci)
until the i-th query to G2 × H5 21 QUERY:=true

11 measure the argument m̂ 22 abort
12 return [[m̂ = m∗]] 23 return K := H4(ci)

G (h, m)
24 k̂ := LR4(m), r := G2(m)
25 return (k̂, r)

Fig. 8. Games G13 for the proof of Theorem 1.

C (pk, c∗)
01 Pick a 2qH′ -wise independent function to simulate H′

02 Pick three different 2qH-wise independent functions to simulate
H3,H4 and H5, respectively.

03 Pick a 2qG-wise independent function to simulate G2

04 construct LR4, LR−1
4

05 K* $ , i
$K {1, · · · , qG + qH}

06 run BDecaps �⊥,H,G,H′
(pk, c∗, K∗),

measure the argument m̂ of i-th query to G2 × H5
07 output m̂

Fig. 9. Adversary C against OW-CPA for the proof of Theorem 1, where oracles H,G,H′

and Decaps �⊥ are defined as in game G13 of Fig. 8.

Combining all of the above formulas, we obtain

AdvIND−CCA
KEM (B) ≤ 2(qH + qG)

√
AdvIND−CPA

PKE (A) +
1

2256
+

2qH
2128

+ 16(qG + 1)2 · δ

+ O
(

(qH′ + 1)3

2256

)
+ O

(
q3G

2256

)
+ O

(√
q3G/2128

)
.



164 Z. Chen et al.

4 Conclusions

In order to add robustness, Kyber uses a slightly tweaked FO transformation, i.e.,
it uses a “double-nested-hash” to generate the final key. This makes the proof
techniques [14] of proving standard FO-KEMs with implicit rejection invalid
in the QROM. Recently, Grubbs et al. [10] and Xagawa [25] pointed out that
the concrete IND-CCA security of Kyber is an open question. In this paper, we
answer the open question and develop a novel approach to overcome the difficul-
ties in the security proof. We prove that Kyber is IND-CCA secure in the QROM
if the underlying encryption scheme is IND-CPA secure. Our result provides a
solid quantum security guarantee for the post-quantum cryptography standard
of NIST competition, Kyber algorithm.
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Science Foundation of China (Grant Nos. 61972391, 62272455).
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Abstract. Private set intersection cardinality (PSI-CA) and private
intersection-sum with cardinality (PSI-CA-sum) are two primitives that
enable data owners to learn the intersection cardinality of their data set,
with the difference that PSI-CA-sum additionally outputs the sum of the
associated integer values of all the data that belongs to the intersection
(i.e., intersection-sum). In this paper, we investigate the practical con-
structions of these two primitives, focusing on the multi-party setting.
To our knowledge, all existing multi-party PSI-CA (MPSI-CA) proto-
cols are either impractical or vulnerable to arbitrary collusion (i.e., the
adversary can corrupt any proper subset of all parties), and as for multi-
party PSI-CA-sum (MPSI-CA-sum), there is even no formalization for
this notion at present, not to mention secure constructions for it.

So in this paper, we first propose the first MPSI-CA protocol that
achieves simultaneous practicality and security against arbitrary collu-
sion (in the semi-honest adversary model). We also conduct implementa-
tion to verify its practicality (while the previous results under arbitrary
collusion only present theoretical analysis of performance, lacking real
implementation). Numeric results show that it only takes 12.805 s to fin-
ish the online computation by shifting expensive operations to an offline
phase, even in the dishonest majority setting with 15 parties each hold-
ing 216 data. Among all parties, the cost of clients is especially lower
compared to that of the known results, which is only 0.3 s in finishing
their tasks.

Second, we formalize the notion of MPSI-CA-sum and give the first
realization which admits simultaneous practicality and security against
arbitrary collusion as well. The computational complexity of it is roughly
double that of our MPSI-CA protocol.

Besides the main results, we introduce the notions and provide efficient
constructions of two new building blocks: multi-party secret-shared shuffle
and oblivious zero-sum check, which may be of independent interest.

The original version of this chapter was revised: this chapter contained errors on page
8, 9, 10 & 11 in chapter 9 which is indicated in our final book. The correction to this
chapter is available at https://doi.org/10.1007/978-3-031-26553-2 27

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023, corrected publication 2023
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1 Introduction

Motivation. Private set intersection cardinality (PSI-CA) is a cryptographic
primitive that enables multiple parties to learn the intersection cardinality of
their private data sets without leaking other information beyond the intersec-
tion cardinality. PSI-CA can be applied to real-world applications like measuring
advertisement conversion rates [10] and so on. Despite its broad usage, never-
theless, PSI-CA is still not sufficient for some applications where each data is
associated with an integer value (e.g. payload), like measuring advertisement
conversion rates when one person contributes multiple purchases [10]. Thus a
variant of PSI-CA is proposed, known as private intersection-sum with cardinal-
ity (PSI-CA-sum) [10], which is specified to output the intersection cardinality,
as well as the sum of associated payloads for all the elements that belong to the
intersection (i.e., intersection-sum).

Besides measuring advertisement conversion rates, we come up with the fol-
lowing possible application of PSI-CA-sum. Consider a score-based voting sce-
nario with multiple voters, where voter Pi can vote for any candidate s ∈ {0, 1}∗

that he prefers, and the ballot of him is associated with a score for candidate
s (s is the candidate’s ID). If Pi does not vote for candidate s, then there is
no need for him to give s a score. Pi’s voting result is represented using a set
Si = {(si,1, vi(si,1), ..., (si,m, vi(si,m)} of size m, where si,k, k ∈ [m] are the IDs
of his chosen candidates and vi(si,k) is his score of candidate si,k. Given the set
Si, i ∈ [n] of n voters, the set of common candidates supported by all voters
is denoted as set intersection IS. The total score of a common candidate s is∑n

i=1 vi(s), which can be used to calculate the average score of every common
candidate. In this problem setting, the required information consists of the inter-
section cardinality |IS| and the sum of common candidates’ scores SumIS (i.e.,
SumIS =

∑n
i=1

∑
x∈IS vi(x)), so that the average score of a common candi-

date is SumIS/|IS|. Here, PSI-CA-sum can be employed to securely obtain the
average score without additional information leakage.

However, most existing PSI-CA protocols work in the two-party setting, while
the results of multi-party PSI-CA (MPSI-CA) are either limited by massive
computational overhead, or vulnerable to arbitrary collusion (i.e., the adversary
can corrupt any proper subset of all parties [15]). Meanwhile, to the best of
our knowledge, there has been no work for multi-party PSI-CA-sum (MPSI-CA-
sum). Therefore, we will address the problems and aim at formalizing the notion
of MPSI-CA-sum, proposing protocols for MPSI-CA and MPSI-CA-sum that
can achieve simultaneous practicality and security against arbitrary collusion.
1.1 State of the Art of MPSI-CA

Although there have been some effective two-party PSI-CA schemes [5,7,13],
only a small number of works can deal with the multi-party setting [1,2,11,17].

Existing constructions of PSI-CA protocols can be generally classified into
three categories, depending on whether the protocol is based on circuits, pub-
lic key operations, or oblivious transfer (OT) and its extensions, say oblivious
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programmable pseudorandom function (OPPRF). Previous MPSI-CA schemes
secure against arbitrary collusion typically follow public-key-based paradigm,
and their computational complexities are determined by the number of expen-
sive public key operations. Kissner and Song [11] proposed the first MPSI-CA
protocol in the semi-honest model. This protocol relies on polynomial evaluation
and homomorphic encryption (HE), and the overall computational complexity of
it is O

(
n2m2

max

)
, where n is the number of parties and mmax is the maximum set

size. Debnath et al. [2] presented an MPSI-CA protocol based on inverse bloom
filter (IBF) and HE. The protocols in [2,11] are both proven secure against
arbitrary collusion. Despite their good properties in privacy preserving, it is
impractical for resource-limited devices with large data sets to carry out these
protocols due to the massive computational overhead.

To tackle with this problem, two practical schemes have been proposed.
Chandran et al. [1] introduced a circuit-based generic multi-party computation
protocol, which can be extended to realize MPSI-CA by modifying the circuit.
However, this protocol is only proven secure with honest majority in semi-honest
model. Besides, a concurrent work of [17] presented two OPPRF-based MPSI-CA
protocols under the additional assumption that specific parties are non-colluding,
which deviate from the well-known “threshold security”. Although assuming the
existence of some specific non-colluding parties can improve the performance,
it is believed that the “threshold security” is closer to real life applications for
the following reasons: (1) There may not always exist such well-established non-
colluding parties to participate in the protocol; (2) The identities of corrupted
parties may be kept secret to honest parties, so it is unrealistic to assume that
specific parties are non-colluding and to appoint them to perform special tasks.

Therefore, how to design and implement a practical semi-honest secure MPSI-
CA scheme under arbitrary collusion is still worth studying.

1.2 State of the Art of Two-Party PSI-CA-Sum

(Since there is no result of PSI-CA-sum in the multi-party setting) we sketch
some known results on the two-party PSI-CA-sum [7,9,10]. Motivated by the
business problem of online-to-offline advertisement conversions, Ion et al. [10]
introduced the first two-party PSI-CA-sum protocol by applying the classic
Diffie-Hellman style construction into this new scenario. The protocol then was
further polished in [9] and developed into two new constructions, built on mod-
ern techniques like random OT, which nevertheless rely on expensive HE as a
building block for aggregating intersection-sum. Garimella et al. [7] put forward a
lightweight two-party PSI-CA protocol by adopting oblivious switching network
and OT to successfully avoid the reliance on HE.

1.3 Our Contributions

In this paper we formalize the notion of MPSI-CA-sum and propose the first
MPSI-CA protocol and MPSI-CA-sum protocol that can achieve simultaneous
practicality and security against arbitrary collusion. Details are as follows.
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MPSI-CA Under Arbitrary Collusion. Our MPSI-CA protocol admits the
following properties and advantages.
• It is the first practical realization of MPSI-CA under arbitrary collusion to our

knowledge, and we also conduct an implementation to verify its practicality
(while the previous results under arbitrary collusion only present theoretical
analysis of performance without real implementation).

• The cost of clients is especially lower than the existing schemes with the same
security.

• Its computational efficiency is attributed to the element sharing technique
and underlying lightweight primitives, which do not require any public key
operations besides a set of base OTs.

• In our implementation, most of the expensive operations can be shifted to
an offline phase to significantly reduce the running time of online computa-
tion. Numeric results show that even in the dishonest majority setting with
15 parties each holding 216 data, it only takes 12.805 s to finish the online
computation, which is about one fourth of the original running time.

Table 1 compares our MPSI-CA protocol with current MPSI-CA schemes
with respect to security and computational complexity. On one hand, when
compared to the existing practical schemes [1,17], our protocol is more secure,
since the existing schemes are not resistant to arbitrary collusion (remark that
our protocol is also of practicality which is incomparable to the schemes in [1,17]
due to different running frameworks). On the other hand, when compared to the
existing schemes secure against arbitrary collusion [2,11], our protocol is much
more practical, since it adopts a set of base OTs and symmetric key operations
to reduce the number of expensive public key operations.

Table 1. Comparison between MPSI-CA schemes

Comparison Between MPSI-CA Schemes

MPSI-CA Schemes Techniques Security Model

[1] OT+symmetric key operations Honest majority

Server-aided [17] OT+symmetric key operations Two specific parties are non-colluding

Server-less [17] OT+symmetric key operations Three specific parties are non-colluding

[11] HE Arbitrary collusion

[2] HE Arbitrary collusion

Our Protocol 4.2 OT+symmetric key operations Arbitrary collusion

Computational Complexities of MPSI-CA Schemes Under Arbitrary Collusion

(Number of Public Key Operations)

MPSI-CA Schemes Primary Leader Secondary Leader Client Total

[11] / / O(nm2
max) O(n2m2

max)

[2] O(m1) / O(kmmax) O(knmmax)

Our Protocol 4.2 O(tκ) O(tκ) / O(t2κ)

MPSI-CA-sum Under Arbitrary Collusion. We formalize the notion of
MPSI-CA-sum and propose the first MPSI-CA-sum protocol that achieves simul-
taneous practicality and security against arbitrary collusion. Its computational
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complexity is roughly double that of our MPSI-CA protocol. Compared with
most two-party PSI-CA-sum schemes, our protocol avoids the usage of expen-
sive HE in aggregating intersection-sum, thus greatly reducing the computational
cost.

Additional Contributions. Besides the main contributions, we also introduce
the new notions and efficient constructions of two new building blocks of our
MPSI-CA and MPSI-CA-sum protocols: multi-party secret-shared shuffle and
oblivious zero-sum check.

• Multi-party secret-shared shuffle helps multiple parties jointly shuffle the sum
of their input data in an unknown permutation π and obtain additive secret
shares of the result. It is an advancement of the multi-party Permute+Share
[14] because it can hide π even when confronted with arbitrary collusion. Our
construction is practical since its costly operations can be shifted to an offline
phase.

• Oblivious zero-sum check is a primitive that can securely determine whether
the sum of multiple parties’ inputs is 0 without revealing anything else. Our
construction of oblivious zero-sum check employs Beaver triples to reduce
online computational overhead.

1.4 High-Level Description

In this part, we present a high-level overview of our MPSI-CA and MPSI-CA-sum
protocols. Our protocols involve n parties, including T = t+1 leaders L1, ..., LT

and n−T clients P1, ..., Pn−T , where t is the corruption threshold (t can be up to
n − 1). In order to differentiate between leaders, leader L1 is called the primary
leader, and the rest of the leaders are called secondary leaders. Each party holds
a private set with size m. The data set of the i-th leader Li is Xi, i ∈ [T ], and
that of the j-th client Pj is Sj , j ∈ [n − T ].

Fig. 1. The overview of our MPSI-CA and MPSI-CA-sum protocols

As shown in Fig. 1, in the setting of MPSI-CA, clients first share their encoded
data sets to leaders through element sharing, so that the original n-party MPSI-
CA problem can be reduced to T -party MPSI-CA of T leaders, where T = t+1.
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Then, primary leader L1 invokes OPPRFs with all secondary leaders Li, i ∈ [2, T ]
on each element x1,k ∈ X1. If x1,k belongs to the intersection, then the sum of
all leaders’ outputs and L1’s element sharing on x1,k equals 0, which is denoted
as tk. After participating in T -party secret-shared shuffle, each leader Li obtains
a random additive share of shuffled set {tπ(k)}k∈[m], where the shuffle order π
is kept secret to all parties. Finally, leaders perform oblivious zero-sum check
to securely calculate the number of elements that satisfy γktπ(k) = 0, where the
random value γk is unknown to any leader. If γktπ(k) = 0, then L1 adds one to
intersection cardinality, otherwise the value of tπ(k) will not be revealed.

In the setting of MPSI-CA-sum, parties need to perform element sharing
(payload sharing), OPPRF and secret-shared shuffle on both elements and their
associated payloads. After running oblivious zero-sum check on elements, L1 can
obtain a binary vector �e, which indicates the shuffled indices of elements that
belong to the intersection. As for those elements, L1 invokes OTs with all other
leaders using choice string �e to aggregate the sum of their associated payloads.

1.5 Organizations

Section 2 introduces the preliminaries. In Sect. 3, the notions and constructions
of two new building blocks are presented. We propose the practical MPSI-CA
and MPSI-CA-sum protocols in Sect. 4 and 5, respectively. The computational
complexity of MPSI-CA-sum protocol is roughly double that of our MPSI-CA
protocol, therefore we focus on implementing and analyzing the performance of
our MPSI-CA protocol in Sect. 6.

2 Preliminaries

Notations. We use κ and λ to denote the computational and statistical security
parameters. The set {1, 2, . . . , x} is denoted as [x] (thus

∑T
i=1 is equivalent to∑

i∈[T ]). If the elements of a set {x1, . . . , xm} are arranged in order, then this set
can be expressed in the form of a vector �x = (x1, . . . , xm). Therefore, �x+�y means
performing addition on corresponding elements in two sets x and y to obtain
{x1 + y1, . . . , xm + ym}. Given a permutation π and a set �x = (x1, . . . , xm), we
represent the operation of shuffling the positions of elements in this set using
permutation π with π(�x) = (xπ(1), . . . , xπ(m)). The set intersection is denoted as
IS, and the intersection cardinality is |IS|.

Security Definitions. The parties corrupted by a semi-honest adversary A
will faithfully follow the protocol, while attempting to learn about other parties’
inputs. Moreover, those corrupted parties will collude with each other. By “non-
colluding parties”, we mean that at most one of those parties can be corrupted
by A; while “arbitrary collusion” means that A may corrupt any proper subset of
all parties, which is the most challenging case. The coalition of corrupted parties
is denoted as C. Let Π be a protocol and f be a deterministic functionality.
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We define the following distributions of random variables and use the real-ideal
simulation paradigm to formally define the semi-honest security of Π [6]. In this
paper, we prove the security of all the protocols based on Definition 1.

• RealΠ (κ, C;x1, . . . , xn): Each party Pi runs the protocol honestly using pri-
vate input xi and security parameter κ. Output {Vi | i ∈ C} , (y1, . . . , yn),
where Vi and yi denote the final view and output of party Pi.

• Idealf,S (κ, C;x1, . . . , xn): Compute (y1, . . . , yn) ← f (x1, . . . , xn). Output
S (C, {(xi, yi) | i ∈ C}) , (y1, . . . , yn), where S is a probabilistic polynomial
time (PPT) simulator.

Definition 1. [6] We say that protocol Π securely computes f in the pres-
ence of a semi-honest adversary, if there exists a PPT simulator S such that
for C and all inputs x1, . . . , xn, the distributions RealΠ (κ, C;x1, . . . , xn) and
Idealf,S (κ, C;x1, . . . , xn) are computationally indistinguishable in κ.

Oblivious Key-Value Store (OKVS). The definitions of key-value store
(KVS) and OKVS were first given in [8]. An OKVS is a generalized data structure
that stores the mapping from keys to their values, and it can be instantiated with
polynomial, garbled bloom filter (GBF) [4] and so on.

Definition 2. [8] A KVS is parameterized by a set K of keys and a set V of
values, and consists of two algorithms: (1) Encode takes as input a set of (ki, vi)
key-value pairs and outputs an object S (or, with statistically small probability,
an error indicator ⊥); (2) Decode takes as input the object S, a key k and
outputs a value v. A KVS is correct if, for all A ⊆ K × V with distinct keys:
(k, v) ∈ A and ⊥�= S ← Encode(A) =⇒ Decode(S, k) = v
A KVS is an OKVS if, for any two sets K0,K1 of m distinct keys, the output of
R (K1

)
is computationally indistinguishable to that of R (K0

)
, where:

R (K = (k1, . . . , km))
1. For i ∈ [m] : choose uniform vi ← V; 2. Return Encode ({(k1, v1) , . . . (km, vm)}).

Oblivious Programmable Pseudorandom Function (OPPRF, FF,m,u
opprf ).

The formal definition of OPPRF was first given in [12], which also provided a
semi-honest secure realization. An OPPRF takes as input the queries (q1, . . . , qu)
from receiver and a programmed set P = {〈xi, yi〉}i∈[m] from sender. Then, the
receiver’s OPPRF outputs satisfy the following property: if the query qj = xi ∈
P, then its OPPRF output equals yi, otherwise the output is pseudorandom.
Generally speaking, receiver’s OPPRF outputs are fixed at some selected points.
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Functionality 1: OPPRF FF,m,u
opprf

Parameters: A pseudorandom function (PRF) F ; upper bound m on the number
of points to be programmed, and bound u on the number of queries.
Behaviour: On input P from the sender and u queries (q1, . . . , qu) from the receiver,
where P = {〈x1, y1〉, . . . , 〈xm, ym〉} is a set of points:
•Run KeyGen ((1κ, P)) → (k, hint) and give (k, hint) to the sender, where k is the
PRF key and hint stores the information of the set P.
•Give (hint, F (k, hint, q1) , . . . , F (k, hint, qu)) to the receiver.

Multi-party Pemute+Share (FT ,m,i
mPS ). FT,m,i

mPS takes as input the vectors �xj

from all parties Pj , j ∈ [T ] and a permutation πi from sender Pi, then outputs
additive shares of shuffled sum πi(

∑T
j=1 �xj) to every party. The functionality

of FT,m,i
mPS was given in [14], along with an realization of FT,m,i

mPS based on OT
and switching network, which is proven secure against a semi-honest adversary
which may corrupt up to T − 1 parties. FT,m,i

mPS is an essential building block of
our multi-party secret-shared shuffle primitive proposed in Sect. 3.

Functionality 2: Multi-party Pemute+Share FT,m,i
mPS

Parameters: T parties Pj , j ∈ [T ]; the dimension of vector is m; the sender is Pi.
Behaviour: On input permutation πi and vector �xi = (xi,1, . . . , xi,m) from sender
Pi, and input vector �xj = (xj,1, . . . , xj,m) from each receiver Pj , j ∈ [T ]\{i}:
•Give shuffled share �x′

j = (x′
j,1, . . . , x

′
j,m) to all parties Pj , j ∈ [T ], where

∑

j∈[T ]

x′
j,k =

∑

j∈[T ]

xj,πi(k), k ∈ [m], namely
∑

j∈[T ]

�x′
j = πi(

∑

j∈[T ]

�xj).

3 Two New Primitives and Constructions

In this section, we present the notions and constructions of two new building
blocks for our MPSI-CA and MPSI-CA-sum protocols, namely the multi-party
secret-shared shuffle and oblivious zero-sum check.

3.1 Multi-party Secret-Shared Shuffle

We formalize the new notion of multi-party secret-shared shuffle, and give a
realization of it. It can help parties shuffle the sum of their inputs in an unknown
permutation order π, and obtain additive shares of the result.

Functionality (FT ,m
mSS ). FT,m

mSS can be regarded as an advancement of the original
FT,m,i

mPS , since it ensures that none of the parties gets to know the permutation
π. FT,m

mSS receives permutations πi and vectors �xi from all parties Pi, i ∈ [T ], and
gives them the additive shares of shuffled sum of inputs π(

∑
i∈[T ] �xi) as outputs.
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Functionality 3: Multi-party Secret-Shared Shuffle FT,m
mSS

Parameters: T parties Pi, i ∈ [T ]; the dimension of vector is m.
Behaviour: On input permutation πi and vector �xi = (xi,1, . . . , xi,m) from all par-
ties Pi, i ∈ [T ]:
• Give each party Pi, i ∈ [T ] an additive share �x′

i = (x′
i,1, . . . , x

′
i,m), where∑

i∈[T ] x
′
i,k =

∑
i∈[T ] xi,π(k), k ∈ [m], namely

∑
i∈[T ] �x

′
i = π(

∑
i∈[T ] �xi). Here, per-

mutation π = πT ◦ . . . π2 ◦ π1 is the composition of T permutations.

Protocol. We propose a protocol to realize FT,m
mSS as follows. This protocol

invokes T rounds of T -party Permute+Share [14] in an iterative way. During the
i-th round, Pi acts as the sender who provides permutation πi and vector �x

(i−1)
i ,

others act as receivers with vectors �x
(i−1)
j , j ∈ [T ]\{i} (Here, �x

(0)
j = �xj , j ∈ [T ]).

Then, Pj receives an output �x
′(i−1)
j , where

∑
j∈[T ] �x

′(i−1)
j = πi(

∑
j∈[T ] �xj

(i−1)),

and treats �x
′(i−1)
j as his input vector during the next round. Finally, each party

Pj obtains an additive share �x
′(T−1)
j of the shuffled sum π(

∑
j∈[T ] �x

(0)
j ) with per-

mutation π = πT ◦ · · · ◦ π1. If we adopt the Permute+Share scheme proposed in
[14], then our realization of FT,m

mSS requires O(T (T − 1)m log m) OTs in total.

Correctness. By the definition of FT,m,i
mPS , the sum of all parties’ outputs equals

πT (
∑

j∈[T ] �x
(T−1)
j ) = πT (πT−1(

∑
j∈[T ] �x

(T−2)
j )) = · · · = π(

∑
j∈[T ] �x

(0)
j ).

Theorem 1. This protocol securely computes FT,m
mSS under a semi-honest adver-

sary which may corrupt up to T −1 parties, if FT,m
mPS is secure against semi-honest

adversaries.

Proof. The views of corrupted parties (i.e., C) consist of their inputs and views
during T invocations of FT,m

mPS. As for the first round, simulator S chooses random
vectors as corrupted parties’ outputs by the definition of FT,m

mPS, then treats them
as inputs into the next round. By following the above strategies for each round of
T -party Permuta+Share and leveraging the simulator of subroutine functionality
FT,m

mPS in turn, the view of C during FT,m
mSS can be ideally simulated by S.

3.2 Oblivious Zero-Sum Check

We present the notion and construction of the new primitive of oblivious zero-
sum check. It can help parties securely determine whether the sum of their
inputs is 0 without revealing anything else. It can be employed in the last step
of MPSI-CA to obtain the intersection cardinality of shuffled data.

Functionality (FT ,m
OZK). FT,m

OZK receives input additive shares 〈�x〉i, i ∈ [T ] from
all parties, then outputs a binary vector �e = (e1, . . . , em) to P1. If the k-th
position of the sum of input vectors �x =

∑T
i=1〈�x〉i equals 0, then ek = 1;

otherwise ek = 0 (i.e., ek = 1 only when xk = 0). That is to say, FT,m
OZK ensures

that P1 can not get to know the value of xk unless it is equal to 0.
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Functionality 4: Oblivious Zero-Sum Check FT,m
OZK

Parameters: The number of parties is T ; the dimension of input vector is m.
Behaviour: On input vector 〈�x〉i from Pi, i ∈ [T ], where

∑T
i=1〈�x〉i = �x =

(x1, . . . , xm):
• Give a binary vector �e = (e1, . . . , em) to P1, where ek = 1 if the k-th position of
�x equals 0 (i.e., xk = 0), otherwise ek = 0.

Protocol. As presented in Protocol 3.2, FT,m
OZK can be realized using secret

sharing mechanism. Since each party holds an additive share of secret �x, parties
can obtain their additive shares of the product �γ · �x using Beaver multiplica-
tion triples, where �γ is a “negotiated” random value and notation · denotes
component-wise multiplication of two vectors. �γ is kept secret to everyone, since
each party Pi only knows an additive share 〈�γ〉i of �γ. If xk = 0, it is obvious
that the k-th position of �γ · �x equals 0 (i.e., γkxk = 0); if xk �= 0, P1 can not
infer anything about xk from γkxk due to the random value γk.

Parties need to interact with each other in order to obtain their additive
shares of the product �γ · �x. We note that �γ · �x =

∑
i,j∈[T ]〈�γ〉i〈�x〉j can be

divided into
∑

i∈[T ]〈�γ〉i〈�x〉i and (T 2 − T )/2 components 〈�γ〉i〈�x〉j + 〈�γ〉j〈�x〉i,
where i < j ∈ [T ]. For each component 〈�γ〉i〈�x〉j + 〈�γ〉j〈�x〉i, it is feasible for
Pi and Pj to securely obtain their additive shares shi,j

0 and shi,j
1 using Beaver

triples by following Protocol 3.2. The online pairwise share-based multiplication
will be greatly accelerated by consuming the Beaver triples, which have already
been prepared in the setup stage. Finally, Pi sends the sum of 〈�γ〉i〈�x〉i and his
T −1 shares of

∑
j∈[T ]\{i}(〈�γ〉i〈�x〉j + 〈�γ〉j〈�x〉i) to P1. So that P1 can reconstruct

�γ · �x. If the k-th position of �γ · �x equals 0, P1 sets ek to 1, otherwise ek = 0.

Correctness. It can be verified that shi,j
0 + shi,j

1 = 〈�γ〉i〈�x〉j + 〈�γ〉j〈�x〉i based on
the property of Beaver triples. Therefore, the sum of all parties’ shares equals∑

i∈[T ]〈�γ〉i〈�x〉i +
∑

1≤i<j≤T (〈�γ〉i〈�x〉j + 〈�γ〉j〈�x〉i) = �γ · �x.

Theorem 2. Protocol 3.2 securely computes FT,m
OZK under a semi-honest adver-

sary which may corrupt up to T − 1 parties.

Proof. In the trivial case that P1 /∈ C, the views of corrupted parties C can be
simulated by substituting all shares with random vectors. If P1 ∈ C, for those
positions where ek = 0, all generated and received shares of randomized γkxk

are indistinguishable from uniformly random values; for positions where ek = 1,
shares can be simulated by choosing random values that sum to zero.
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Protocol 3.2: Oblivious Zero-Sum Check
Parameters: The number of parties is T ; the dimension of input vector is m.
Initialization: For every two parties Pi and Pj , i, j ∈ [T ], i < j, they prepare

enough Beaver triples 〈�a〉0,〈�b〉0,〈�c〉0 and 〈�a〉1,〈�b〉1,〈�c〉1 for online share-based multi-

plication, where �c = �a ·�b, �c = 〈�c〉0 + 〈�c〉1, �a = 〈�a〉0 + 〈�a〉1 and �b = 〈�b〉0 + 〈�b〉1. Note

that Pi holds 〈�a〉0,〈�b〉0,〈�c〉0, and Pj holds 〈�a〉1,〈�b〉1,〈�c〉1. �a and �b are kept secret to
both parties.
Input: Additive share 〈�x〉i from party Pi, where �x = (x1, . . . , xm) =

∑T
i=1〈�x〉i.

Output: P1 outputs a binary vector �e = (e1, . . . , em): if xk = 0, then ek = 1, oth-
erwise ek = 0.
Protocol:

1 For i ∈ [T ], each party Pi randomizes his share 〈�x〉i as follows:
(a) (Negotiating Randomness) Pi locally generates a random vector 〈�γ〉i,

so that the random vector �γ =
∑T

i=1〈�γ〉i is unknown to everyone.
(b) (Pairwise Multiplication) Pi computes his additive share of �γ · �x =∑

u,l∈[T ]〈�γ〉u〈�x〉l. For each component 〈�γ〉i〈�x〉j + 〈�γ〉j〈�x〉i, j ∈ [T ]\{i}, Pi

needs to interact with Pj as follows:
• Pi locally computes 〈�α〉0 = 〈�x〉i − 〈�a〉0 and 〈�β〉0 = 〈�γ〉i − 〈�b〉0, then

announces them to Pj ; Pj also locally computes 〈�α〉1 = 〈�x〉j −〈�a〉1 and

〈�β〉1 = 〈�γ〉j − 〈�b〉1, then announces them to Pi.

• Pi reconstructs �α and �β, computes his additive share of 〈�γ〉i〈�x〉j +

〈�γ〉j〈�x〉i as shi,j
0 = 〈�c〉0 + �α · 〈�b〉0 + �β · 〈�a〉0 + �α · �β − 〈�γ〉i〈�x〉i. Pj also

obtains his additive share of 〈�γ〉i〈�x〉j + 〈�γ〉j〈�x〉i as shi,j
1 = 〈�c〉1 + �α ·

〈�b〉1 + �β · 〈�a〉1 +�α · �β −〈�γ〉j〈�x〉j , where shi,j
0 +shi,j

1 = 〈�γ〉i〈�x〉j +〈�γ〉j〈�x〉i.
2 (Reconstruction) Each Pi, i ∈ [2, T ] computes the sum of 〈�γ〉i〈�x〉i and all his

shares of
∑T

j=1,j �=i (〈�γ〉i〈�x〉j + 〈�γ〉j〈�x〉i) (obtained in step 1(a)), and then sends
the result to P1, so that P1 can reconstruct �γ · �x. If the k-th position of �γ · �x
equals 0, P1 sets ek to 1, otherwise ek = 0.

4 MPSI-CA Protocol Under Arbitrary Collusion

In this section, we recall the functionality of MPSI-CA and propose a semi-
honest secure MPSI-CA protocol under arbitrary collusion. First, we introduce
a technique called element sharing to reduce the original n-party MPSI-CA to
T -party MPSI-CA of T leaders. Then, a detailed description of our MPSI-CA
protocol is presented.

Functionality (FMPSI−CA). MPSI-CA allows n parties with m items to learn
the intersection cardinality of their private sets without revealing anything else.

Functionality 5: MPSI-CA FMPSI-CA

Parameters: T leaders L1, . . . , LT ; n − T clients P1, . . . , Pn−T ; the set size is m.
Behaviour: On input data sets Xi from all leaders Li, i ∈ [T ], and data sets Sj

from all clients Pj , j ∈ [n − T ]:
• Give leader L1 the intersection cardinality |IS| = |(⋂T

i=1 Xi) ∩ (
⋂n−T

j=1 Sj)|.

High-Level Description. The fundamental idea of our MPSI-CA protocol is
to let all clients share their PRF-encoded data sets to T leaders Li, i ∈ [T ],
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and then delegate leaders to complete the task of T -party PSI-CA. T is set
to be t + 1, otherwise the T -party MPSI-CA computation will be vulnerable to
collusion attack in the worst case that all leaders are corrupted. Then, L1 invokes
OPPRFs with all secondary leaders. After that, all leaders treat their modified
outputs �ti, i ∈ [T ] as inputs to the following multi-party secret-shared shuffle
and oblivious zero-sum check, so that L1 can obtain the intersection cardinality.

4.1 Element Sharing

Considering that the overhead of MPSI-CA protocol tends to increase with the
number of parties, it is a natural idea to delegate only a small number of parties
to engage in expensive interactive procedures by sharing other parties’ PRF-
encoded data sets to them in the first step. This trick was first adopted by [15]
and is called element sharing for short in this paper.

Sub-protocol 4.1: Element Sharing in MPSI-CA
Parameters: The number of parties is n, number of leaders is T ; set size is m.
Input: Xi = {xi,1, . . . , xi,m} from leader Li, i ∈ [T ]; Sj = {sj,1, . . . , sj,m} from
client Pj , j ∈ [n − T ].
Protocol:

1. (Client) For client Pj , j ∈ [n − T ],
(a) He sends a random PRF key Kj,i to each secondary leader Li, i ∈ [2, T ].
(b) For each element sj,k ∈ Sj , k ∈ [m], Pj computes the PRF-encoded

value of si,j as
∑T

i=2 PRF (Kj,i, sj,k). Then, Pj encodes key-value pairs

{〈sj,k,
∑T

i=2 PRF (Kj,i, sj,k)〉}k∈[m] into an OKVS Dj and sends Dj to pri-
mary leader L1.

2. (Primary Leader) For each element x1,k ∈ X1, k ∈ [m], L1 decodes all
received Dj , j ∈ [n − T ] on x1,k to get Dj(x1,k), and then obtains his element
sharing of x1,k as q1(x1,k) = − ∑n−T

j=1 Dj(x1,k).
3. (Secondary Leader) Each secondary leader Li, i ∈ [2, T ] computes the PRF

outputs of all his elements xi,k ∈ Xi, k ∈ [m] using n−T received keys Kj,i, j ∈
[n−T ], then adds the n−T PRF outputs of xi,k together to obtain his element
sharing of xi,k as qi(xi,k) =

∑n−T
j=1 PRF (Kj,i, xi,k).

The functionality Fn,T,m
ElemSh of element sharing is that: for an element x, if

x ∈ IS, then each leader Li, i ∈ [T ] holds a random additive share qi(x) of
0 corresponding to x. The detailed process is shown in Sub-protocol 4.1, its
correctness is obvious because if x ∈ IS, then each PRF key Ki,j is used twice
by both client Pj and leader Li on the same item x, so that the two PRF outputs
cancel out each other and

∑T
i=1 qi(x) = 0.

We show that Sub-protocol 4.1 can securely compute Fn,T,m
ElemSh under a semi-

honest adversary which may corrupt up to t parties (t < n) by giving a sketch
of how to simulate the views of corrupted parties in the ideal world. The ideal
views of corrupted clients are easy to simulate since they receive no messages.
For corrupted Li, i ∈ [2, T ], his received PRF keys can be simulated using ran-
dom values. For the corrupted L1, the OKVS Dj (from an honest party Pj)
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appears random to him, since all the values encoded in Dj are encrypted using
Pj ’s T − 1 PRF keys. Therefore, S can easily simulate the OKVS by generat-
ing an OKVS that encode m random key-value pairs, which is computationally
indistinguishable from his real view by the obliviousness property of OKVS.

4.2 Detailed Description

Protocol 4.2: MPSI-CA Under Arbitrary Collusion
Parameters: The set size is m; the number of leaders is T = t + 1; hash functions
h1, h2, h3; the number of bins is b.
Input: Xi = {xi,1, . . . , xi,m} from leader Li; Sj = {sj,1, . . . , sj,m} from client Pj .
Protocol:
1. (Element sharing) Run Sub-protocol 4.1 (Fn,T,m

ElemSh). For each element xi,k ∈
Xi, leader Li obtains his element sharing of xi,k as qi(xi,k).

2. (T -party MPSI-CA) Leaders Li, i ∈ [T ] act as follows:
(a) (Bucketing) L1 does Table1 ← CuckooHashb

h1,h2,h3(X1), Li, i ∈ [2, T ]

does Tablei ← SimpleHashb
h1,h2,h3

(Xi).

(b) (OPPRF) L1 invokes FF,3m,b
opprf with every Li, i ∈ [2, T ],

• Sender Li provides a programmed set P = {Pk}k∈[b], where subset
Pk = {〈x, qi(x) − ti,k〉}x∈Tablei[k]

stores key-value pairs for the k-th
bin Tablei[k], and ti,k is a random value.

• Receiver L1 provides b queries {Table1[k]}k∈[b], and outputs �ri =
(ri,1, . . . , ri,b), where ri,k is the OPPRF output on Table1[k].

(c) For each bin k ∈ [b], L1 computes t1,k = q1(Table1[k]) +
∑T

i=2 ri,k.

(d) (T -party Shuffle) All leaders Li, i ∈ [T ] jointly invoke FT,b
mSS.

• Each Li inputs the vector �ti = (ti,1, . . . , ti,b) and a permutation

πi, then outputs an additive share �t′
i of the shuffled sum π(�t) (i.e.,∑T

i=1
�t′
i = π(�t)), where �t =

∑T
i=1

�ti = (t1, . . . , tb) and π = πT ◦ · · · ◦π1.

(e) (OZK) All leaders Li, i ∈ [T ] engage in FT,b
OZK to securely obtain the

number of zeros in the b-dimensional vector
∑T

i=1
�t′
i.

• Each leader Li, i ∈ [T ] inputs his share �t′
i (obtained in step 2(d)).

• L1 outputs a binary vector �e indicating which positions of
∑T

i=1
�t′
i

equal 0. If the k-th position is 0, then ek = 1, otherwise ek = 0.
L1 outputs the number of 1s in �e as the intersection cardinality |IS|.

As shown in Protocol 4.2, leader Li utilizes the bucketing technique [12] to hash
his elements into a hash table Tablei with b bins using simple hashing (or cuckoo
hashing when i = 1) with hash functions h1, h2, h3. For cuckoo hash table Table1,
each element x ∈ X1 will be inserted into only one bin, say Table1[hu(x)] = x
for some u ∈ [3]. Finally, each empty bin will be padded with a dummy element.
As for the simple hash table Tablei, i ∈ [2, T ], each x ∈ Xi will be inserted into
three bins Tablei[h1(x)], Tablei[h2(x)] and Tablei[h3(x)]. When the number of
hash functions is 3, the stash size can be reduced to 0 by setting b = 1.28m while
achieving a hashing failure probability of 2−40 [16].

After invoking FF,3m,b
opprf on b queries Table1[k], k ∈ [b], if Table1[k] ∈ IS, then

leaders hold additive shares of 0 (i.e., tk =
∑

i∈[T ] ti,k = 0). In order to obtain
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the number of k that satisfies tk = 0 without revealing the index k, leaders
invoke FT,m

mSS to obtain additive shares of shuffled tπ(k), where π is unknown to
anyone. Then they engage in FT,m

OZK to securely aggregate and rerandomize the
value of tπ(k). By the definition of FT,m

OZK, the output γktπ(k) equals 0 only when
tπ(k) = 0, therefore L1 adds one to intersection cardinality |IS|.

Correctness. If element Table1[k] ∈ IS, then from the property of element shar-
ing and OPPRF, we have

∑
i∈[T ] qi(Table1[k]) = 0 and ri,k = qi(Table1[k])−ti,k,

and thus tk = 0. By the correctness of multi-party secret-shared shuffle and
oblivious zero-sum check, L1 successfully reconstructs γktπ(k) = 0, and knows
there exists one more element that belongs to IS. Otherwise, if Table1[k] does
not belong to some Xi or Sj , then either the OPPRF output ri,k or the OKVS
decode output q1(Table1[k]) is a random value. Therefore, the probability that
there exists an element Table1[k] /∈ IS s.t. γktπ(k) = 0 is negligible.

Theorem 3. Protocol 4.2 securely computes FMPSI−CA under a semi-honest
adversary which may corrupt up to t parties (t < n), if Fn,T,m

ElemSh, FF,3m,b
opprf , FT,b

mSS

and FT,b
OZK are secure against semi-honest adversaries.

Proof. We divide the proof into three cases.
Case1: (Li /∈ C, i ∈ [T ]). In this trival case, the views of corrupted parties (i.e.,
C) can be easily simulated since they receive no messages.
Case2: (L1 /∈ C). In this case, C receives no final output. The views of corrupted
clients can be simulated in a way similar to Case 1. As for those corrupted
Li, i ∈ [2, T ], simulator S first chooses a random key k to simulate Li’s output of
FF,3m,b

opprf since C only sees the senders’ views. Then, by the definition of FT,b
mSS, S

chooses a random vector �t′i as his output of FT,b
mSS, and leverages the simulators

of subroutine functionalities Fn,T,m
ElemSh, FT,b

mSS, FF,3m,b
opprf and FT,b

OZK to simulate the
view of corrupted Li. The view output by S is indistinguishable from C’s real
view, which is obtained by the underlying simulators’ indistinguishability.
Case3: (L1 ∈ C). In this case, C receives |IS| as final output. S can sim-
ulate C’s view as follows. In step 2(b), it simulates L1’s OPPRF outputs
�ri, i ∈ [2, T ] using uniformly random values while ensuring that: if Li ∈ C, then
ri,k = qi(Table1[k]) − ti,k for every element Table1[k] that belongs to X1 ∩ Xi,
otherwise ri,k and ti,k are independent; if Li /∈ C, then L1’s ri,k is picked at
random. In step 2(d), by the definition of FT,b

mSS, it simulates corrupted parties’
outputs of FT,b

mSS using uniformly random vectors. In step 2(e), it simulates L1’s
output �e of FT,b

OZK by uniformly sampling a binary vector with |IS| ones due to the
uniformly distributed permutation adopted in FT,b

mSS. After that, S can leverage
the simulators of subroutine functionalities Fn,T,m

ElemSh, FT,b
mSS, FF,3m,b

opprf and FT,b
OZK

to simulate the view of C. The view output by S is indistinguishable from C’s
real view, which is obtained by the underlying simulators’ indistinguishability.
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5 MPSI-CA-Sum Protocol Under Arbitrary Collusion

In this section, we first introduce a technique called payload sharing to share the
payloads of clients to leaders. Then we smoothly extend Protocol 4.2 to provide
a practical MPSI-CA-sum protocol that is secure under arbitrary collusion.

Functionality (FMPSI−CA−sum). To the best of our knowledge, we are the
first to formalize the notion of MPSI-CA-sum. The functionality of MPSI-CA-
sum is a generalization of the two-party PSI-CA-sum proposed in [10], with some
modifications as to the number of parties that hold the payloads. The associated
payload of element x is denoted as vi(x) at leader Li’s side and wj(x) at client
Pj ’s side, respectively. The purpose of MPSI-CA-sum is to securely output the
|IS| and intersection-sum SumIS , which is shown in Functionality 6.

Functionality 6: MPSI-CA-sum FMPSI−CA−sum

Parameters: T leaders L1, . . . , LT ; n − T clients P1, . . . , Pn−T ; the set size is m.
Behaviour: On input data set Xi = {xi,1, . . . , xi,m} and payload set Vi =
{vi(xi,1), ...vi(xi,m)} from leader Li, i ∈ [T ]; data set Sj = {sj,1, ...sj,m} and payload
set Wj = {wj(sj,1), ...wj(sj,m)} from client Pj , j ∈ [n − T ]:
• Give output (|IS|, SumIS) to leader L1, where the intersection cardinality is |IS| =
|(⋂T

i=1 Xi)∩ (
⋂n−T

j=1 Sj)|, and the intersection-sum is SumIS =
∑T

i=1

∑
x∈IS vi(x)+

∑n−T
j=1

∑
x∈IS wj(x).

High-Level Description. The procedures of our MPSI-CA-sum protocol are
similar to those of Protocol 4.2. Parties perform payload sharing, OPPRF and
shuffle on their associated payloads of each element, and run Protocol 4.2 in
parallel to obtain a binary vector �e, which shows the shuffled indices of elements
that belong to IS. As for those shuffled elements that belong to IS, L1 invokes
OTs with all other leaders using choice string �e, in order to aggregate the sum
of their associated payloads (i.e., intersection-sum).
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5.1 Payload Sharing

Sub-protocol 5.1: Payload Sharing in MPSI-CA-sum
Input: Set Xi = {xi,1, . . . , xi,m} and payload Vi = {vi(xi,1), ...vi(xi,m)} of leader
Li; Set Sj = {sj,1, . . . , sj,m} and payload Wj = {wj(sj,1), ...wj(sj,m)} of client Pj .
Protocol:
1. (Client) For client Pj , j ∈ [n − T ],

(a) He sends a random PRF key K′
j,i to each leader Li, i ∈ [T ].

(b) For each element sj,k ∈ Sj , k ∈ [m],
• Pj computes its random mask

∑T
i=1 PRF (K′

j,i, sj,k). So his masked

payload of sj,k is ŵj(sj,k) = wj(sj,k) +
∑T

i=1 PRF (K′
j,i, sj,k).

• Pj performs (T, T ) additive secret sharing on ŵj(sj,k), where the i-th

share is denoted as ŵ
(i)
j (sj,k) (i.e.,

∑T
i=1 ŵ

(i)
j (sj,k) = ŵj(sj,k)).

(c) For i ∈ [T ], Pj encodes the i-th set of key-value pairs

{〈sj,k, ŵ
(i)
j (sj,k)〉}k∈[m] into the i-th OKVS DW

(i)
j , and sends it to

Li.
2. (Leader) For each element xi,k ∈ Xi, k ∈ [m], Li, i ∈ [T ] decodes all received

DW
(i)
j , j ∈ [n − T ] on xi,k to obtain DW

(i)
j (xi,k), and computes PRF outputs

using all n − T received PRF keys to obtain his payload sharing of xi,k as

v̂i(xi,k) = vi(xi,k) − ∑n−T
j=1 PRF (K′

j,i, xi,k) +
∑n−T

j=1 DW
(i)
j (xi,k).

Sub-protocol 5.1 presents the steps of payload sharing, which aims to share the
payloads of clients to T leaders. The functionality Fn,T,m

PaySh of payload sharing
is that: for an element x, if x ∈ IS, then each leader Li, i ∈ [T ] holds an
additive share v̂i(x) of the sum of payloads corresponding to x (i.e.,

∑T
i=1 vi(x)+

∑n−T
j=1 wj(x)). The procedures of payload sharing are similar to those of element

sharing. The correctness of Sub-protocol 5.1 relies on the correctness of (T, T )
additive secret sharing scheme and the property that the PRF output of input
x with a fixed PRF key K ′

i,j is deterministic.
We show that Sub-protocol 5.1 can securely compute Fn,T,m

PaySh under a semi-
honest adversary which may corrupt up to t parties (t < n) by briefly simulating
the view of C. The views of corrupted clients can be easily simulated since they
receive no messages from the others. For corrupted Li, i ∈ [T ], his received PRF
key and OKVS from an honest party can be simulated using a random value and
an OKVS that encodes m random key-value pairs, which are computationally
indistinguishable from the real view by the obliviousness property of OKVS.

5.2 Detailed Description

The MPSI-CA-sum protocol under arbitrary collusion is presented in Protocol
5.2. Step 3 and step 4 can be executed in parallel by concatenating each element
with its associated payload to avoid the cost of repeatedly invoking FF,3m,b

opprf and
FT,b

mSS. But note that there is no need to perform FT,b
OZK on additive shares of the

shuffled sum of payloads π(�g) (i.e., �g′
i, i ∈ [T ]). The hash table Tablei, i ∈ [T ]

used in step 4 is generated in step 3 by following step 2(a) of Protocol 4.2.
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After invoking FT,b
OZK during step 3, leader L1 outputs a vector �e =

(e1, . . . , eb). If ek = 1, it means that the element in the π−1(k)-th bin of Table1
belongs to the intersection IS. Although L1 can not infer the original index
of this element (i.e., π−1(k)) from k, he knows the existence of such an ele-
ment. Therefore, he can still aggregate its associated payloads by invoking b
OTs with each secondary leader Li, i ∈ [2, T ]. In the k-th OT with Li, L1

acts as a receiver with choice bit ek, Li acts as a sender who provides two
strings (mki,k,mki,k + g′

i,k), where the random masks mki,k, i ∈ [2, T ], k ∈ [b]
satisfy

∑T
i=2

∑b
k=1 mki,k = 0. Those masks can be generated through additive

secret sharing within secondary leaders. First, each secondary leader Li, i ∈
[2, T ] locally generates a random vector �mk′

i = (mk′
i,1, . . . ,mk′

i,b) that ensures
∑b

k=1 mk′
i,k = 0. Then, Li, i ∈ [2, T ] performs (T −1, T −1) additive secret shar-

ing on vector �mk
′
i, and sends T − 2 shares to other secondary leaders. Finally,

Li, i ∈ [2, T ] sums all his received shares and his local share together to obtain
the new random mask vector �mki.

Correctness. Since the correctness of |IS| (obtained in step 3) has
already been proven in Section 4.2, here we only prove the correct-
ness of SumIS . If ek = 1, then we have Table1[π−1(k)] ∈ IS and
∑T

i=1 g′
i,k =

∑T
i=1 v̂i(Table1[π−1(k)]). After invoking OTs with each sec-

ondary leader, L1 adds the b(T − 1) OT outputs together to obtain
∑T

i=2

∑b
k=1 mki,k +

∑
ek=1,k∈[b]

∑T
i=2 g′

i,k =
∑

ek=1,k∈[b]

∑T
i=2 g′

i,k. Therefore,

we have
∑

ek=1,k∈[b]

∑T
i=2 g′

i,k +
∑

ek=1,k∈[b] g
′
1,k =

∑
x∈IS

∑T
i=1 v̂i(x) =

∑
x∈IS

(∑T
i=1 vi(x) +

∑n−T
j=1 wj(x)

)
= SumIS .

Theorem 4. Protocol 5.2 securely computes FMPSI−CA−sum under a semi-
honest adversary which may corrupt up to t parties (t < n), if Fn,T,m

ElemSh, Fn,T,m
PaySh

FF,3m,b
opprf , FT,b

mSS and FT,b
OZK and OT are secure against semi-honest adversaries.

Proof. (sketch) The view of C during step 1–4 can be simulated by following sim-
ilar strategies given in Theorem 3 of Protocol 4.2. Given |IS|, L1’s input choice
string �e can be simulated with a uniform binary vector with |IS| ones. Since �mki

is a random mask, S can simulate corrupted Li’s OT inputs (mki,k,mki,k +g′
i,k)

using random values, and simulate corrupted L1’s OT outputs from honest par-
ties using random values, while ensuring that all b(T − 1) OT outputs sum to
SumIS − ∑

ek=1,k∈b g′
1,k. Then, C’s view can be simulated by leveraging the

simulator of underlying OT.
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Protocol 5.2: MPSI-CA-sum Under Arbitrary Collusion
Parameters: The set size is m; the number of leaders is T = t + 1; hash functions
h1, h2, h3; the number of bins is b.
Input: Set Xi = {xi,1, . . . , xi,m} and payload Vi = {vi(xi,1), ...vi(xi,m)} of leader
Li; Set Sj = {sj,1, . . . , sj,m} and payload Wj = {wj(sj,1), ...wj(sj,m)} of client Pj .
Protocol:
1-2 (Element/Payload Sharing) Run Sub-protocol 4.1 (Fn,T,m

ElemSh) and Sub-
protocol 5.1 (Fn,T,m

PaySh ) in parallel. For each element xi,k ∈ Xi, Li obtains his
element sharing and payload sharing of xi,k as qi(xi,k) and v̂i(xi,k).

3 (T -party PSI-CA) Run step 2 of Protocol 4.2, then L1 will obtain a binary
vector �e, where the number of 1s in �e equals the intersection cardinality |IS|.

4 (T -party MPSI-CA-sum)
(a) In step 3, each leader Li has already obtained his hash table Tablei, so

there is no need to repeat the bucketing step here.
(b) (OPPRF) L1 invokes FF,3m,b

opprf with every Li, i ∈ [2, T ],
• Sender Li provides a programmed set P = {Pk}k∈[b], where subset

Pk = {〈x, v̂i(x) − gi,k〉}x∈Tablei[k]
stores key-value pairs for the k-th

bin Tablei[k], and gi,k is a random value, k ∈ [b].
• Receiver L1 provides b queries {Table1[k]}k∈[b], and outputs �pi =

(pi,1, . . . , pi,b), where pi,k is the OPPRF output on Table1[k],k ∈ [b].
(c) For each bin k ∈ [b], L1 computes g1,k = v̂1(Table1[k]) +

∑T
i=2 pi,k.

(d) (T -party Shuffle) All leaders Li, i ∈ [T ] jointly invoke FT,b
mSS.

• Each Li inputs the permutation πi (adopted in step 3) and a vector

�gi = (gi,1, . . . , gi,b), then outputs an additive share �g′
i of the shuffled

sum π(�g) = π
(∑T

i=1 �gi

)
, where

∑T
i=1

�g′
i = π(�g) and π = πT ◦ · · · ◦ π1.

5 (Intersection-sum Computation)
(a) L1 locally computes

∑
ek=1,k∈[b] g

′
1,k.

(b) L2, ..., LT jointly generate T − 1 random mask vectors �mki =
(mki,1, . . . , mki,b), i ∈ [2, T ], which satisfy that

∑T
i=2

∑b
k=1 mki,k = 0.

(c) For i ∈ [2, T ], L1 invokes OTs with each secondary leader Li.
• Sender Li inputs a set of strings {(mki,k, mki,k + g′

i,k)}k∈[b].
• Receiver L1 inputs the choice string �e and obtains b outputs. If ek = 0,

then the k-th output is mki,k, otherwise the k-th output is mki,k +g′
i,k.

6 L1 adds
∑

ek=1,k∈[b] g
′
1,k and all b(T−1) OT outputs (received in step 5) together

to obtain the intersection-sum SumIS .

6 Experimental Evaluation

Since the operations of computing intersection-sum is similar to those of comput-
ing intersection cardinality, the computational complexity of our MPSI-CA-sum
protocol is roughly double that of our MPSI-CA protocol. So in this section, we
only focus on evaluating the performance of our MPSI-CA protocol.
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Parameters and Settings. We set statistical security parameter λ = 40 and
computational security parameter κ = 128. We run our experiments on a laptop
with an Intel i7-12700H 2.30 GHz CPU, 28 GB RAM, and Ubuntu-20.04 system
in LAN setting. We instantiate the OPPRF using the realization provided in [12].
In the setup stage, it takes every two parties about 32 s to generate 218 Beaver
triples [3]. Each party adopts separated threads to communicate with others
to ensure parallelism. Besides, we divide our protocol into offline and online
phases in the experiment. The offline phase consists of all base OT operations
in secret-shared shuffle, which can be carried out in advance because they are
independent of the input sets. The online phase consists of all the remaining
operations: element sharing, OPPRF, secret-shared shuffle (without base OT)
and oblivious zero-sum check (without Beaver triples generation).

Running Time and Communication Cost of MPSI-CA (Protocol 4.2).
Table 2 shows the running time of our MPSI-CA protocol in both online and
offline phases, as well as its communication cost, which includes both sent and
received messages.

We present the performance of clients and primary leader under three differ-
ent corruption conditions, namely when t = 1, n/2 and n − 1. Assuming t = 1,
it takes our MPSI-CA protocol only 27.174 s to compute the multi-party inter-
section cardinality of 15 parties, each with a large set size of 218. In the honest
majority situation where t = n/2, the running time of leaders increases with the
number of parties participating in multi-party secret-shared shuffle, and thus the
running time is linear in t. When n = 15 and m = 212, the total running time is
about 4.576 s with the online phase taking only 0.926 s. In the most challenging
dishonest majority setting where t = n−1, parties are not allowed to share their
sets to leaders for fear of collusion attack, therefore, the number of leaders has
to be n. However, since most of the expensive operations of multi-party secret-
shared shuffle can be shifted to an offline phase, the total online running time
can be reduced to only one fourth of the original time.

With respect to the communication performance of different parties, the cost
of client is nearly independent of n and t. Whereas the cost of primary leader
not only depends on n, but is also linear in the number of leaders T = t + 1.
Concretely, when the set size is large (i.e., m = 218), our protocol takes roughly
7KB communication cost per item at each leader’s side when n = 5, t = 4, which
includes both sent and received messages. This cost increases to about 25 KB
per item in the most challeging case that n = 15, t = 14 and m = 218.

Running Time of Different Steps in Protocol 4.2. Table 2 lists the running
time of different steps in Protocol 4.2 when t = n − 2. As shown in the table,
the two steps OPPRF and shuffle take a large percentage of the total running
time. When n grows, the change in the running time of OPPRF is slight since
each party adopts separated threads to communicate with others to ensure par-
allelism. In the case that m = 216, n = 15 and t = 13, it only takes 7.881 s to
finish the online task of MPSI-CA computation with this simple optimization.
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Table 2. The total running time, total communication cost, and the running time of
different steps in our MPSI-CA protocol (Protocol 4.2).

n t Roles
Total Running Time (Seconds) Total Communication Cost (MB)

m = 212 m = 214 m = 216 m = 218 m = 212 m = 214 m = 216 m = 218

5

1
Client 0.109 0.204 0.272 5.919 0.156265 0.625015 2.50002 10

Leader 0.718 1.657 5.015 26.620 5.64464 25.4972 113.907 503.547

Online 0.467 1.354 4.433 24.110

2
Client 0.110 0.221 2.77 5.921 0.156281 0.625031 2.50003 10

Leader 1.022 2.339 6.867 36.352 10.6642 48.4943 217.814 967.094

Online 0.543 1.542 5.067 26.894

4
Leader 2.650 4.025 12.165 52.312 20.7034 94.4886 425.628 1894.19

Online 0.670 1.789 6.289 31.236

10

1
Client 0.122 0.224 0.293 5.96 0.156265 0.625015 2.50002 10

Leader 0.723 1.668 5.126 26.871 6.42595 28.6222 126.407 553.547

Online 0.497 1.360 4.567 24.516

5
Client 0.111 2.37 0.309 5.994 0.156326 0.625076 2.50008 10.0001

Leader 3.302 5.284 15.264 72.882 26.5044 120.611 542.036 2407.74

Online 0.844 1.890 5.733 32.764

9
Leader 7.531 10.796 30.254 150.109 46.5828 212.599 957.664 4261.92

Online 1.004 2.690 10.415 58.485

15

1
Client 0.128 0.245 0.310 5.978 0.156265 0.625015 2.50002 10

Leader 0.726 1.676 5.177 27.174 7.20725 31.7473 138.907 603.547

Online 0.505 1.383 4.598 25.115

7
Client 0.111 0.239 0.349 6.183 0.156357 0.625107 2.50011 10.0001

Leader 4.576 7.766 21.536 107.927 37.3249 169.73 762.35 3384.83

Online 0.926 2.257 5.955 36.913

14
Leader 13.955 22.676 63.061 365.722 72.4621 313.97 1489.7 6629.66

Online 1.477 4.503 12.805 95.228

Running Time of Different Steps (Seconds)

Steps
n = 5, t = 3 n = 10, t = 8 n = 15, t = 13

212 214 216 212 214 216 212 214 216

Element Sharing 0.119 0.250 0.319 0.109 0.237 0.341 0.103 0.263 0.337

OPPRF 0.473 1.261 5.113 0.566 1.407 4.697 0.942 1.821 5.691

Shuffle (Offline) 1.296 1.432 3.723 4.689 7.467 19.278 10.964 17.459 47.680

Shuffle (Online) 0.024 0.069 0.219 0.041 0.177 0.704 0.065 0.279 1.189

Oblivious Zero-Sum
Check

0.006 0.009 0.017 0.013 0.021 0.036 0.019 0.034 0.065

Total 1.938 3.062 9.560 5.485 9.425 25.368 12.269 20.115 55.561

Online 0.642 1.630 5.837 0.796 1.958 6.090 1.305 2.656 7.881

Comparison with Other Works. There are only two MPSI-CA schemes [2,11]
secure against arbitrary collusion in the semi-honest adversary model, but they
only give theoretic analysis of performance without experimental results. Table 3
compares the performance of them and our MPSI-CA protocol (Protocol 4.2) in
terms of computational and communication complexities.
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As shown in Table 3, [2,11] both rely on a large number of expensive public
key operations, which is linear in the maximal set size mmax or even m2

max.
Therefore, it is impractical for resource-limited devices with large data sets to
carry out these protocols due to the massive computational overhead. More-
over, the efficiency of those schemes remains to be improved in the unbalanced
data setting (i.e., the minimal set size mmin � mmax), or when the number of
corrupted parties t only accounts for a small percentage of n.

By adopting lightweight primitives which do not require any public key oper-
ations besides a set of base OTs, the number of public key operations in our
MPSI-CA protocols is independent of set size, which is significantly lower than
that of [2,11]. At the same time, clients only need to send their PRF-encoded
data to leaders instead of participating in expensive cryptographic interactive
protocols for themselves, so that the total computational complexity can be sig-
nificantly reduced especially when t/n is small. Besides, all the OTs required in
multi-party secret-shared shuffle can be carried out in an offline phase, thus fur-
ther decreasing the online computational complexity of our MPSI-CA protocol.

With respect to communication and round complexities, [2,11] both involve
O(n) rounds due to the operation of passing on randomized ciphertexts to the
next party in a circle. Whereas we only need to perform T -party shuffle within
T = t+1 leaders, and the round complexity is O(t). Although utilizing expensive
HE can save the communication cost during the stage of multi-party shuffle
in [2], we reckon that the gap between [2] and our MPSI-CA scheme can be
narrowed in an unbalanced setting, for we can designate the party with the
smallest data set to be leader L1 to ensure that m1 � m < mmax. In this case,
the additional communication overhead brought by multi-party secret-shared
shuffle and oblivious zero-sum check can be reduced, so that the communication
performance of our MPSI-CA scheme is comparable to that of [2].

Table 3. The computational and communication complexities of MPSI-CA schemes,
where m is the average set size, mmax is the largest set size and m1 is L1’s set size; k
is the ratio of OKVS size to its encoded set size m. In our Protocol 4.2, most of the
public key operations can be shifted to the offline phase.

Computational Complexity (Number of Public Key Operations)

MPSI-CA Scheme Primary Leader Secondary Leader Client Total

[11] / / O(nm2
max) O(n2m2

max)

[2] O(m1) / O(kmmax) O(knmmax)

Our Protocol 4.2 O(tκ) O(tκ) / O(t2κ)

Computational Complexity (Number of Symmetric Key Operations)

MPSI-CA Scheme Primary Leader Secondary Leader Client Total

Our Protocol 4.2 O(tm1 log(m1)) O((n − t)m + tm1 log(m1)) O(tm) O((n − t)tm + t2m1 log(m1))

Communication Complexity (Bits)

MPSI-CA Scheme Primary Leader Secondary Leader Client Total

[11] / / O(nmmax) O(n2mmax)

[2] O(m1) / O(kmmax) O(knmmax)

Our Protocol 4.2 O(tm1 log(m1)) O(km + tm1 log(m1)) O(km) O(k(n − 1)m + t2m1 log(m1))
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Abstract. Multiparty computation (MPC) has developed rapidly in the
past three decades. The research on general MPC only considers addi-
tion and multiplication in a circuit because they are Turing-complete.
However, when we consider other arithmetic operations, such as division
and exponentiation, the customed protocols are often more efficient. In
this work, we optimize the overhead of computing division and exponen-
tiation. Our main idea is to use vector oblivious linear-function evalua-
tion (VOLE) to generate correlation multiplication triples and use these
triples to compute correlation multiplication in division and exponenti-
ation protocols. Our method can reduce the cost of a single division to
strictly no more than 2 multiplications. In the batch setting, we reduce
the cost of n correlation division to almost the same as that of one
division. In addition, we use the same method to reduce the cost of n
correlation private exponentiation by about 33%.

Keywords: MPC · Division · Exponentiation

1 Introduction

Multiparty computation (MPC) allows a set of parties to jointly compute a
function over their inputs while keeping them private. The feasibility of MPC
was demonstrated in the 1980s, where it was shown that any probabilistic
polynomial-time functionality can be securely computed [24,43]. In the last
decade, MPC has developed from a largely theoretical field to a practical one
where many applications have been developed on top of it [19,22]. This is mostly
due to the rise of compilers which translate high-level code to secure branching,
additions and multiplications on secret data [7,18,29,35,45].

However, in many cases such as privacy-preserving data-mining/statistical
learning [8,12,33,34] and distributed generation of cryptographic keys [16], the
desired functionality f involves mostly arithmetic operations such as addition,
multiplication, division, and exponentiation over the integers and/or the finite
fields. More efficient protocols for these basic operations can result in an more
efficient protocol for f .
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In this work, we focus on reducing the amortized cost of secure division and
distributed exponentiation over a finite field. Secure division means that the
parties have shares of a and b and want to compute the share of a · b−1 over a
finite field. There are three cases in secure distributed exponentiation: public base
(the base is public and the exponent is secret shared), public exponent (the base
is secret shared and the exponent is public) and private exponentiation (both the
base and the exponent are secret shared). Our focus is private exponentiation,
that is, the parties have shares of a and b and want to compute the share of ba.
As we have mentioned, the goal of this paper is to reduce the cost of division
and distributed exponentiation. We achieve this goal in the multiple-execution
setting, where the parties run many correlated division and exponentiation of
the protocol. As we will see, this enables the parties to amortize the cost of the
correlated randomness over many executions.

Related Work. As previously mentioned, almost all known general MPC proto-
cols over arithmetic circuit (computation is over a finite field Fp) [5,6,17,24,28]
only support addition and multiplication. We remark that arithmetic circuits are
Turing complete, and so any function can be represented in this form. However,
designing special operation protocols for different operations will significantly
improve the efficiency of the protocol. For example, to compute secure division
in Fp, a naive method is to first compute b−1 := bp−2 by Fermat’s little theorem,
and then compute the multiplication of a and b−1. This naive method need p−1
multiplication and can be reduced to O(log p) by square multiplication algo-
rithm, which is very inefficient when p is large. Bar-Ilan and Beaver [3] proposed
the first constant round inverse protocol, which only need one multiplication to
compute b−1, thus reducing the cost of division to just two secure multiplica-
tions. This seems to be the optimal method to compute division over the three
decades.

Private exponentiation was first considered in [15] as an application of their
bit-decomposition protocol. They use the number of multiplicative invocations
to measure the efficiency of the protocol. The number of multiplications of their
protocol is O(l log l), where l is the bit length of field element. Later, Ning and
Xu [38,39] introduced several protocols aiming to remove the necessity of decom-
posing secret inputs into bit representations. They achieve this by using a series
of constructions based on bitwise operations over some randomness. Their work
achieves linear invocation of multiplication O(l). Yu et al. [44] proposed two-
party exponential protocols, which are based on homomorphic encryption (HE)
and oblivious transfer (OT), respectively. Their HE-based protocol is inefficient
due to the low efficiency of HE, and their OT-based protocol need to communi-
cate O(l2) bits. Recently, Aly et al. [1] proposed a new private exponentiation
protocol, which only needs to invoke constant number of multiplications, instead
of depending on element length.

Our Contribution. Our main idea is to use vector oblivious linear evalua-
tion (VOLE) to generate correlated randomness in a batched manner, and use
these correlated randomness to reduce the overhead of division and exponential
protocol. Our protocols are considered in semi-honest setting. We remark that
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our protocols can be made secure against malicious adversaries by standard but
rather expensive techniques such as zero-knowledge proofs. The possibility of an
efficient security-strengthening transformation is outside our scope. Our main
contributions are as follows:

– We reduce the cost of single division from 2 independent multiplication invo-
cations to 2 (more efficient) correlated multiplications.

– We reduce the cost of n correlation division to only more log n factors than
one division.

– We reduce about 33% costs of n correlated private exponentiation.

2 Preliminaries

2.1 Notation

We use κ to denote the computational security parameters. We denote the addi-
tive sharing of a value x by [x], that is, [x] = (x1, . . . , xn) s.t. x1 + · · · + xn = x.
For a bit string v we let vi denote the i-th bit. We use F2σ to denote finite
field composed of all σ-long bit strings. We say that a function f is negligible in
κ if it vanishes faster than the inverse of any polynomial in κ, and write it as
f(κ) = negl(κ). We use the abbreviation PPT to denote probabilistic polynomial-
time. By a

R←− A, we denote that a is randomly selected from the set A. a ← A(x)
denotes that a is the output of the randomized algorithm A on input x, and a := b
denotes that a is assigned by b.

2.2 Security Model

Motivated by building more efficient protocols for basic operations, we operate in
the semi-honest model, where adversaries may try to learn as much information
as possible from a given protocol execution but are not able to deviate from
the protocol steps. This is in contrast to malicious adversaries which are able
to deviate arbitrarily from the protocol. We remark that our protocols can be
made secure against malicious adversaries by standard but rather expensive
techniques such as zero-knowledge proofs. The possibility of an efficient security-
strengthening transformation is outside our scope.

Semi-honest Security. We use the standard security definition for multiparty
computation [13,23] in this work. In brief, an n-party protocol π is defined by
n interactive PPT Turing machines P1, . . . , Pn, called parties. The parties hold
the security parameter 1κ as their joint input and each party Pi holds a private
input xi. The computation proceeds in rounds. In each round j of the protocol,
each party sends a message to each of the other parties (and receives messages
from all other parties). The number of rounds in the protocol is expressed as
some function r(κ) in the security parameter.

The view of a party in an execution of the protocol contains its private
input, its random tape, and the messages it received throughout this execution.
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The random variable viewπ
Pi

(�x, 1κ) describes the view of Pi when executing π
on inputs �x = (x1, . . . , xn) (with security parameter κ). Here, xi denotes the
input of party Pi. The output of an execution of π on �x is described by the
random variable Outputπ(�x, 1κ) = (OutputπP1

(�x, 1κ), . . . ,OutputπPn
(�x, 1κ)), where

OutputπP (�x, 1κ) is the output of party P in this execution, and is implicit in the
view of P . Similarly, for a set of parties with indices I ∈ [n], we denote by �xI

the set of their inputs, by viewπ
I (�x, 1κ) their joint view, and by OutputπI (�x, 1κ)

their joint output.

Definition 1. A protocol π is said to securely compute functionality f :
({0, 1}∗)n → ({0, 1}∗)n in the semi-honest model if there exists a PPT simu-
lator Sim such that for every I ⊂ [n], |I| < n and every �x ∈ ({0, 1}∗)n, it holds
that:

{(viewπ
I (�x, 1κ), outputπ(�x, 1κ))} ≈c {(Sim(I, �xI , fI(�x), 1κ), f(�x))}

2.3 Vector Oblivious Linear-Function Evaluation

Oblivious linear-function evaluation (OLE) can be viewed as a arithmetic gener-
alization of oblivious transfer (OT). The OLE functionality allows a receiver to
learn a secret linear combination of two field elements held by a sender. OLE is a
common building block for secure computation of arithmetic circuits [20,26,36],
analogously to the role of OT for boolean circuits [20,24,25,30].

A useful extension of OLE is vector OLE (VOLE), allowing the receiver to
learn a linear combination of two vectors held by the sender. In several appli-
cations of OLE, one can replace a large number of instances of OLE by a small
number of long instances of VOLE [2]. Many recent works on pseudorandom
correlation generator (PCG) [9–11,14,40,42] has made it very efficient to gen-
erate a large number of VOLEs. As a result, to generate length l VOLE, the
communication cost is only O(κ log l). The formal definition of Fvole is given in
Fig. 1.

Parameters: Sender S, Receiver R, a finite field F, the length of vector l
Functionality:

– Wait for input x ∈ F from the receiver R.
– Wait for input �a,�b ∈ F

l from the sender S.
– Give �ax +�b ∈ F

l to the receiver R.

Fig. 1. Vector oblivious linear-function evaluation functionality Fvole

2.4 Generating Random Shares and Coins

We define the ideal functionality Frand to generate an additive sharing of a ran-
dom value unknown to the parties, and Fcoin to generate a random value to all
parties. A formal description appears in Fig. 2 and Fig. 3.
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Parameters: Party Pi, i ∈ [n], a finite field F

Functionality:

– Upon receiving request from the parties, the ideal functionality chooses a
random r ∈ F and generates a sharing [r] = (r1, . . . , rn) under the constraint
that r1 + · · · + rn = r. Then, the functionality sends each party Pi its share
ri.

Fig. 2. Generating random shares functionality Frand

Parameters: Party Pi, i ∈ [n], a finite field F

Functionality:

– Upon receiving request from the parties, the ideal functionality chooses a
random r ∈ F. Then, the functionality sends r to each party Pi.

Fig. 3. Generating random coins functionality Fcoin

We note that the functionality Frand can be implemented trivially from that
each party select a random value locally, with no communication. And a simple
way to compute Fcoin is to use Frand to generate a random sharing and then
open it. The open procedure can be implemented from that all parties send
their shares of r to each other, resulting the communication is O(n2κ).

2.5 Secure Multiplication

We define the multiplication functionality Fmult that receives shares of two values
x, y as input and outputs shares of the product z = xy in Fig. 4.

Parameters: Party Pi, i ∈ [n], a finite field F

Functionality:

– Upon receiving additive shares [x], [y] from the parties, the ideal functionality
reconstructs x, y and computes z := xy. Then, the functionality shares [z] =
(z1, . . . , zn) and sends zi to each party Pi.

Fig. 4. Secure multiplication functionality Fmult

This functionality is a basic operation in MPC, and there are many different
methods to computes this functionality, e.g. OT, homomorphic encryption (HE).
Our work considers to use preprocessing multiplication triple [4] (also called
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Beaver triple) to compute this functionality, which is commonly used in many
MPC protocols [6,17,21,27,28,31,32,37,41].

A multiplication triple is a triple of shares ([a], [b], [c]) with the property that
c = ab. Given shares of [x], [y] and of [a], [b], [c], to compute [z] = [xy], the
parties compute and open shares of σ = x − a and ρ = y − b, these values reveal
nothing about x and y since a, b are both random. Then all parties compute
[z] := σ[b] + ρ[a] + [c] + σρ. The correctness can be easily verified by equation
z = xy = (x − a + a)(y − b + b) = σρ + σb + ρa + c. The advantage of using
multiplication triple is that most of the multiplication overhead can be put into
the offline stage, which greatly improves the efficiency of the online stage.

To generate a multiplication triple, all distinct parties need to perform an
instance of OLE, the total cost is n(n−1) OLE. We note that the communication
of single OLE instance is O(κ). Since the cost of a multiplication is 2 openings
and n(n − 1) OLE, the communication is O(n2κ).

2.6 Secure Inversion

In the secure inversion functionality Finver, the parties input an additive share
[x] and want to compute the inversion sharing [x−1]. The formal definition is
described in Fig. 5.

Parameters: Party Pi, i ∈ [n], a finite field F

Functionality:

– Upon receiving additive shares [x] from the parties, the ideal functionality
reconstructs x and computes x−1 over F. Then, the functionality shares [x−1]
to the parties.

Fig. 5. Secure inversion functionality Finver

Now we describe the inversion protocols of Bar-Ilan and Beaver [3], which
only uses one multiplication. The parties first invoke Frand functionality to gen-
erate a random share [r]. Then the parties invoke the Fmult functionality with
inputs [x] and [r], and obtain [xr]. Now, all parties open the xr and compute
[x−1] := (xr)−1[r]. The cost of this inversion protocol is 1 multiplication and 1
opening, and the communication is O(n2κ).

2.7 Unbounded Fan-In Multiplication

Bar-Ilan and Beaver [3] also proposed a technique called unbounded fan-in mul-
tiplication, which means we can do unbounded fan-in multiplication in constant
rounds. The functionality F l

unbounded-mult is described in Fig. 6.
The protocol is as follows:
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Parameters: Party Pi, i ∈ [n], a finite field F, the number of multiplication l
Functionality:

– Upon receiving additive shares [x1], . . . , [xl] from the parties, the ideal func-
tionality reconstructs x1, . . . , xl and computes x := Πl

i=1xi over F. Then, the
functionality shares [x] to the parties.

Fig. 6. Unbounded fan-in multiplication functionality F l
unbounded-mult

1. The parties invoke Frand to generate l + 1 random shares [r0], [r1], . . . , [rl].
2. The parties invoke Finver with inputs [r0], . . . , [rl] and obtain [r−1

0 ], . . . , [r−1
l ].

3. For i = 1, . . . , l, the parties invoke 2 Fmult to compute [di] := [ri−1] · [xi] · [r−1
i ].

Then the parties open di to each other.
4. The parties invoke Fmult with input [r−1

0 ] and [rl], and compute [x] =
Π l

i=1[xi] := Π l
i=1di · [r−1

0 ] · [rl].

The correctness follows from x = Π l
i=1di · r−1

0 · rl == Π l
i=1ri−1 · xi · r−1

i ·
r−1
0 · rl = Π l

i=1xi. There are l + 1 multiplications and l + 1 openings in step 2,
and there are 2l multiplications and l openings in step 3. Only 1 multiplication
is used in step 4. The total cost is 3l + 2 multiplications and 2l + 1 openings.
The communication is O(n2κl).

2.8 Public Base Exponentiation

In the public base exponentiation functionality Fpbexp, the parties input an addi-
tive share [a], a public base b, and want to compute the share of [ba]. The formal
definition is described in Fig. 7.

Parameters: Party Pi, i ∈ [n], a finite field F

Functionality:

– Upon receiving additive shares [a] and a public base b from the parties, the
ideal functionality reconstructs a and computes ba over F. Then, the function-
ality shares [ba] to the parties.

Fig. 7. Public base exponentiation functionality Fpbexp

Now we describe the public base exponentiation protocols of Aly et al. [1].
Each party Pi locally computes ci := bai , where ai is the share of a. Then Pi

shares [ci] to all parties. Finally, the parties invoke Fn
unbounded-mult to compute

[Πn
i=1ci] = [ba]. Note that the cost of share all [ci]’s is equal to one opening. The

cost of this public base exponentiation protocol is 3n + 2 multiplications and
2n + 2 openings. The communication is O(n3κ).
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3 Correlated Multiplication

In this section, we describe our core observation, that is, batch correlated mul-
tiplication is almost as efficient as single multiplication.

3.1 Correlated Multiplication Triple Generation

We generalize the multiplication triple to the correlated multiplication triples,
i.e. [a1], . . . , [al], [b], [c1], . . . , [cl], satisfing aib = ci for i = 1, . . . , l. The formal
definition is given in Fig. 8.

Parameters: Party Pi, i ∈ [n], a finite field F, the number of triple l
Functionality:

– Upon receiving request from the parties, the ideal functionality selects ran-
dom a1, . . . , an, b

R
F and computes ci := aib for i = 1, . . . , l. Then, the

functionality shares [a1], . . . , [al], [b], [c1], . . . , [cl] to the parties.

Fig. 8. Correlated multiplication triple generation functionality F l
ctriple

Our main idea is to use VOLE to generate correlated multiplication triples.
The protocol is showed in Fig. 9.

Parameters:

– Party Pi, i ∈ [n], a finite field F, the number of triple l
– Ideal vole primitives specified in Figure 1.
– Ideal rand primitives specified in Figure 2.

Protocol:

1. The parties invoke rand to generate [a1], . . . , [al], [b], where [ak] =
(ak

1 , . . . , ak
n), [b] = (b1, . . . , bn) conditioned on

∑n
j=1 ak

j = ak,
∑n

j=1 bj = b
for k = 1, . . . , l.

2. For every distinct i, j = 1, . . . , n, Pj picks vk
i,j

R
F for k = 1, . . . , l and

defines j := (a1
j , . . . , a

l
j) ∈ F

l v�, i,j := (v1
i,j , . . . , v

l
i,j). Then Pi and Pj invoke

vole, where Pi acts as receiver with input bi and Pj acts as sender with input
( j , �−vi,j). As a result, Pi receives i,j = jbi −

�a

�a �u �a �vi,j .
3. For i = 1, . . . , n, k = 1, . . . , l, Pi computes cki := ak

i bi + j �=i(u
k
i,j + vk

j,i)

Fig. 9. Correlated multiplication triple generation protocol πl
ctriple
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Correctness. The correctness of πl
ctriple is as follows:

n∑

i=1

ck
i =

n∑

i=1

(ak
i bi +

∑

j �=i

(uk
i,j + vk

j,i))

=
n∑

i=1

ak
i bi +

∑

1≤i,j≤n,j �=i

(uk
i,j + vk

j,i)

=
n∑

i=1

ak
i bi +

∑

1≤i,j≤n,j �=i

(uk
i,j + vk

i,j)

=
n∑

i=1

ak
i bi +

∑

1≤i,j≤n,j �=i

(ak
j bi − vk

i,j + vk
i,j)

=
n∑

i=1

ak
i bi +

∑

1≤i,j≤n,j �=i

ak
j bi

= (
n∑

i=1

ak
i )(

n∑

i=1

bi) = ck

Security. We prove the security of above protocols as follows:

Theorem 1. The protocol in Fig. 9 securely computes F l
ctriple against semi-

honest adversaries in the (Frand,Fvole)-hybrid model.

Proof. Assume the set of corrupt parties is I, and let H := [n] \ I be the set
of honest parties. The simulator obtains input and output shares of adversaries
{ak

i }i∈I,k∈[l], {bi}i∈I , {ck
i }i∈I,k∈[l]. To simulate the view of adversaries, the sim-

ulator executes as follows:

1. The simulator invokes simulator of Frand with input shares {ak
i }i∈I,k∈[l],

{bi}i∈I and appends the output to the view.
2. For any (i, j) ∈ [n]× [n] and i �= j, there are three cases need to be simulated:

– If i ∈ H, j ∈ I, the simulator selects random vk
i,j

R←− F for k = 1, . . . , l.
Then the simulator invokes simulator of Fvole with input (�aj ,−�vi,j) and
appends the output to the view.

– If i, j ∈ I, the simulator executes honestly in Fvole with adversaries’
inputs. Note that for any (i, j) pair, two instances of Fvole need to be
simulated: Pi acts as sender and Pi acts as receiver.

– If i ∈ I, j ∈ H, the simulator selects random uk
i,j

R←− F conditioned on
aib

k
i +

∑
j �=i(u

k
i,j + vk

j,i) = ck
i for k = 1, . . . , l. Then the simulator invokes

simulator of Fvole with input (bi, �ui,j) and appends the output to the view.

For i ∈ H, j ∈ I, the simulated input of adversary is the same as real. For
i ∈ I, j ∈ H, since uk

i,j = ak
j bi − vk

i,j , where vk
i,j was selected randomly by

honest party, the distribution of uk
i,j is uniform random. The indistinguishability

between simulated view and the real view can be obtained directly from the
underlining Frand and Fvole security.
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Cost. Recent excellent work on VOLE [9–11,14,40,42] makes it possible to
generate length l VOLE only with cost of O(log l) single OLE. Thus the cost of
generating length l correlated multiplication triple is about equal to the cost of
generating O(log l) multiplication triples.

4 Amortizing Division

In this section we describe our amortizing division protocols. Our construction
includes two aspects: single division case and batch division case.

4.1 Single Division Case

We define the secure division functionality Fdiv in Fig. 10.

Parameters: Party Pi, i ∈ [n], a finite field F

Functionality:

– Upon receiving additive shares [x] and [y] from the parties, the ideal func-
tionality reconstructs x, y and computes x−1y over F. Then, the functionality
shares [x−1y] to the parties.

Fig. 10. Secure division functionality Fdiv

As we introduced in Sect. 2.6, a simple method to implement Fdiv is executing
Finver first to obtain [x−1]. Then the parties invoke Fmult with input [x−1], [y] to
compute [x−1y].

However, the above method need two indenpendent multiplication invoca-
tions. Can we do better? Our observation is that since [x−1] and [x−1y] only
has difference in y, we can compute the multiplication of [x−1] and [y] inner
inversion protocol! Let us room in the inversion protocol: to compute [x−1], the
parties generate a random [a] and compute [a ·x], then open the ax and compute
(ax)−1[a]. If we compute [ax] and [ay] at the same time, then open ax as before,
the division [x−1y] can be obtained directly from (ax)−1[ay]. Note that the cost
of computing [ax] and [ay] is strictly less than two multiplications as we shown
in Sect. 3. We obtain a division protocol with better efficiency.

We describe our division protocol in Fig. 11.

Correctness. The correctness of πdiv follows from:
r−1s = (ρb + c1)−1(σb + c2) = ((x − a1)b + c1)−1((y − a2)b + c2) = x−1y.

Security. We prove the security of above protocols as follows:

Theorem 2. The protocol in Fig. 11 securely computes Fdiv against semi-honest
adversaries in the F l

ctriple-hybrid model.
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Parameters:

– Party Pi, i ∈ [n], a finite field F.
– Ideal l

ctriple primitives specified in Figure 8.

Protocol:

1. The parties invoke 2
ctriple to generate [a1], [a2], [b], [c1], [c2], where a1b =

c1, a2b = c2.
2. The parties compute [ρ] := [x − a1], [σ] := [y − a2] locally and open them.
3. The parties compute [r] = [bx] := ρ[b] + [c1] and [s] = [by] := σ[b] + [c2].
4. The parties open r and compute [x−1y] := r−1[s].

Fig. 11. Single division protocol πdiv

Proof. Assume the set of corrupt parties is I, and let H := [n] \ I be the set
of honest parties. The simulator obtains input and output shares of adversaries
{xi}i∈I , {yi}i∈I , {zi}i∈I , where z = x−1y and [z] = (z1, . . . , zn). The main idea of
simulation is that conditioned on the output shares of the adversary are {zi}i∈I ,
all intermediate values are selected randomly. To simulate the view of adversary,
the simulator executes as follows:

1. The simulator selects random shares of a1
i , a

2
i , bi

R←− F for i ∈ I and computes
ρi := xi − a1

i , σi := yi − a2
i for i ∈ I.

2. For i ∈ H, the simulator selects random ρi, σi
R←− F and computes ρ :=∑n

i=1 ρi, σ :=
∑n

i=1 σi.
3. The simulator selects a random r

R←− F and computes a random share of [r].
4. The simulator computes si := rzi for i ∈ I.
5. The simulator computes c1i := ri − ρbi and c2i := si − σbi for i ∈ I.
6. The simulator invokes simulator of F l

ctriple with input {a1
i }i∈I , {a2

i }i∈I , {bi}i∈I ,
{c1i }i∈I , {c2i }i∈I and appends the output to the view.

7. The simulator appends honest parties’ shares of ρ, σ, r to the view, that is,
{ρi}i∈H , {σi}i∈H , {ri}i∈H .

The distinguishability follows from two facts: 1. the selection of a1, a2 are uniform
random, which infers ρ = x − a1 and σ = y − a2 are also uniform random and
honest party’s sharing of ρ and σ is random. 2. b is randomly selected, which
means r = bx is also random distribution over F, thus the hones party’s sharing
of r is random. As a result, the distribution of simulator’s output is identical to
the real view.

Cost. The cost of πdiv is 3 openings and one instance of length 2 correlated
multiplication triple generation. We note that the cost of a length 2 correlated
multiplication triple generation is strictly less than 2 independent multiplication
triple generation.
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4.2 Batch Division Case

Since it often happens that many correlated divisions are computed at the same
time, we define the secure division functionality in batch setting Fbdiv in Fig. 12.

Parameters: Party Pi, i ∈ [n], a finite field F, the number of division l
Functionality:

– Upon receiving additive shares [x] and [y1], . . . , [yl] from the parties, the ideal
functionality reconstructs x, y1, . . . , yl and computes x−1yi over F for i =
1, . . . , l. Then, the functionality shares [x−1yi] to the parties.

Fig. 12. Batch division functionality Fbdiv

We describe our batch division protocol in Fig. 13.

Parameters:

– Party Pi, i ∈ [n], a finite field F.
– Ideal l

ctriple primitives specified in Figure 8.

Protocol:

1. The parties invoke l+1
ctriple to generate [a0], [a1], . . . , [al], [b], [c0], [c1], . . . , [cl],

where aib = ci for i = 0, 1, . . . , l.
2. The parties compute [ρ] := [x − a0], [σi] := [yi − ai] locally for i = 1, . . . , l and

open them.
3. The parties compute [r] = [bx] := ρ[b] + [c0] and [si] = [byi] := σi[b] + [ci] for

i = 1, . . . , l.
4. The parties open r and compute [x−1yi] := r−1[si] for i = 1, . . . , l.

Fig. 13. Batch division protocol πbdiv

Correctness. The correctness of πbdiv is similar to that of πdiv.

Security. The security of πbdiv is similar to that of πdiv and we omit here.

Cost. The cost of πbdiv is l+2 openings and one instance of length l+1 correlated
multiplication triple generation. Since the open step does not need computation,
and the cost of l + 1 correlated multiplication triple generation is only about
O(log l) multiplication triple generation. The cost of our protocol is almost the
same as a single division instance (except a logarithmic factor).
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5 Amortizing Exponentition

In this section, we consider the batch execution of private exponentition, that
is, the parties input [y], [x1], . . . , [xl] and want to compute [yx1 ], . . . , [yxl ]. The
formal definition is described in Fig. 14.

Parameters: Party Pi, i ∈ [n], a finite field F, the number of exponentition l
Functionality:

– Upon receiving additive shares [y], [x1], . . . , [xl] from the parties, the ideal
functionality reconstructs y, x1, . . . , xl and computes yx1 , . . . , yxl over F.
Then, the functionality shares [yx1 ], . . . , [yxl ] to the parties.

Fig. 14. Batch private exponentiation functionality Fbexp

We improve the state-of-the-art private exponentiation protocol of [1] in
single-instance setting so that the protocol supports batching. The main idea
is also to use correlated multiplication triple to recude the cost of batch expo-
nentition. We describe our protocol in Fig. 15. We note that if change the step 2
in our protocol to generating a single multiplication triple and change the step
6–9 of our protocol to a single execution, the protocol in Fig. 15 is exactly the
same as [1].

Correctness. The correctness of πbexp follows from:

qisi = pxi · gri

= (t · y)xi · g−σib−ci

= gbxiyxi · g−bxi = yxi

Security. We prove the security of above protocols as follows:

Theorem 3. The protocol in Fig. 15 securely computes Fbexp against semi-
honest adversaries in the (F l

ctriple,Fcoin,Frand,Fpbexp,Fmult)-hybrid model.

Proof. Assume the set of corrupt parties is I, and let H := [n] \ I be the set
of honest parties. The simulator obtains input and output shares of adversaries
{x1

i , . . . , x
l
i}i∈I , {yi}i∈I , {z1i , . . . , zl

i}i∈I , where zj = x−1
j y and [zj ] = (zj

1, . . . , z
j
n)

for j = 1, . . . , l. To simulate the view of adversary, the simulator executes as
follows:

1. In step 1, the simulator picks a random generator g
R←− F. Then the simulator

invokes simulator of Fcoin with input g and appends the output to the view.
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Parameters:

– Party Pi, i ∈ [n], a finite field F, the number of exponentition l
– Ideal l

ctriple primitives specified in Figure 8.
– Ideal rand primitives specified in Figure 2.
– Ideal coin primitives specified in Figure 3.
– Ideal pbexp primitives specified in Figure 7.
– Ideal mult primitives specified in Figure 4.

Protocol:

1. The parties invoke coin to generate a random generator g ∈ F.
2. The parties invoke l

ctriple to generate [a1], . . . , [al], [b], [c1], . . . , [cl].
3. The parties invoke pbexp with inputs g, [b] to obtain [t] = [gb].
4. The parties invoke mult with inputs [y], [t] to obtain [p] = [t · y].
5. The parties open p.
6. For i = 1, . . . , l, the parties invoke pbexp with inputs p, [xi] to obtain [qi] =

[pxi ].
7. For i = 1, . . . , l, the parties compute [σi] := [xi−ai] locally and open σi. Then

the parties compute [ri] := −σi[b] − [ci].
8. For i = 1, . . . , l, the parties invoke pbexp with input g, [ri] to obtain [si] = [gri ].
9. For i = 1, . . . , l, the parties invoke mult with input [qi] and [si] to obtain

[yxi ] := [qisi].

Fig. 15. Batch private exponentition protocol πbexp

2. In step 2, the simulator selects random shares of a1
i , . . . , a

l
i, bi, c

1
i , . . . , c

l
i

R←− F

for i ∈ I. Then the simulator invokes simulator of F l
ctriple with above shares

as input and appends the output to the view.
3. In step 3, the simulator selects random shares of {ti}i∈I . Then the simulator

invokes simulator of Fpbexp with input g, {bi}i∈I , {ti}i∈I and appends the
output to the view.

4. In step 4, the simulator selects random shares of {pi}i∈I . Then the simulator
invokes the simulator of Fmult with input {yi}i∈I , {ti}i∈I , {pi}i∈I and appends
the output to the view.

5. In step 5, the simulator picks the random shares of p for honest party, that
is, {pi}i∈H and computes p :=

∑n
i=1 pi. The simulator appends {pi}i∈H to

the view.
6. In step 6, for i = 1, . . . , l the simulator selects random shares of qi, that

is, {qi
j}j∈I . Then the simulator invokes the simulator of Fpbexp with input

p, {xi
j}j∈I , {qi

j}j∈I and appends the output to the view.
7. In step 7, for i = 1, . . . , l, the simulator computes σi

j := xi
j − ai

j for j ∈ I and
selects random σi

j
R←− F for j ∈ H. The simulator computes σi :=

∑
j∈I σi

j

and ri
j := −σibj − ci

j for j ∈ I. Then the simulator appends {σi
j}j∈H to the

view.
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8. In step 8, for i = 1, . . . , l, the simulator selects random shares of si, that
is, {si

j}j∈I . Then the simulator invokes the simulator of Fpbexp with input
g, {ri

j}j∈I , {si
j}j∈I and appends the output to the view.

9. In step 9, for i = 1, . . . , l, the simulator invokes the simulator of Fmult with
input {qi

j}j∈I , {si
j}j∈I , {zi

j}j∈I and appends the output to the view.

In addition to the views of the subprotocols, the simulator only needs to sim-
ulate the openings of p and σi for i = 1, . . . , l. Since a1, . . . , al are randomly
generated by F l

ctriple and σi = xi − ai, thus the honest parties’ shares of σi are
also distributed randomly. Since b is also randomly generated by F l

ctriple, which
implies t = gb is uniform random, we have p = ty is uniform random in F. As
a result, the simulator’s output is identical to the real view in the open step. In
the subprotocol invocation step, the distinguishability follows from the security
of underlining functionality directly.

Cost. The cost of πbexp is as follows:

– In step 1, one opening is needed in Fcoin.
– In step 2, length l correlated multiplication triple generation.
– In step 3, one public base exponentition is needed, including 3n + 2 multipli-

cations and 2n + 2 openings.
– In step 4, one multiplication is needed.
– In step 5, one opening is needed.
– In step 6, l public base exponentition is needed, including (3n + 2)l multipli-

cations and (2n + 2)l openings.
– In step 7, l openings are needed.
– In step 8, l public base exponentitions are needed, including (3n + 2)l multi-

plications and (2n + 2)l openings.
– In step 9, l multiplications are needed.

The total costs are 2n+4+(4n+5)l openings, a length l correlated multiplication
triple generation, 3n + 3 + (6n + 5)l multiplications. While in the original single
instance protocol of [1], the costs are 6n+9 openings and 9n+9 multiplications.
If we use l instance of [1] to implement the batch private exponentiation, the
costs are (6n + 9)l openings and (9n + 9)l multiplications. Since the main costs
is multiplication, the costs saved by our protocol is about 33%.

6 Conclusions

In this paper, we use the VOLE protocol to generate correlated multiplication
triples, we further use these triples to improve the efficiency of the division in
both single and batch settings and private exponentiation in batch setting. Our
protocols are simple and easy to follow and offer security against semi-honest
adversaries.

The extension of the work runs through several directions. First, our tech-
nique can be used to improve any protocol using multiplication triples, so that
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the protocol can reduce the overhead in the case of batch processing. It is desir-
able to find more protcols that meet this setting. Second, the malicious security
is the ultimate goal, and how to use an efficient method to transform our pro-
tocols to satisfing malicious security (instead of general zero knowledge proof)
remains to be studied. Third, our protocols only consider a single operation, i.e.
the division and exponentiation. In complex circuits, e.g. neural networks and
machine learning, how to apply our optimization is also a problem to be studied.
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Abstract. Boomerang connectivity table (BCT), an essential tool in
boomerang attack, gives a unified description of the probability in the
middle round of a boomerang distinguisher. However, it suffers the draw-
back that the asymmetric relationship between the upper and lower dif-
ferentials in the middle round is ignored. To make up for this deficiency,
we propose the generalized boomerang connectivity table (GBCT), which
characterizes all combinations of upper and lower differentials to provide
a more precise probability in the middle round. We first study the cryp-
tographic properties of GBCT and introduce its variants applied in mul-
tiple rounds and Feistel structure. Then, we provide an automatic search
algorithm to increase the probability of the boomerang distinguisher by
adding thorough considerations that more trails can be included, which
is applicable to all S-box based ciphers. Finally, we increase the probabil-
ities of the 20-round GIFT-64 distinguisher from 2−58.557 to 2−57.43 and
the 19-round GIFT-128 distinguisher from 2−109.626 to 2−108.349, both of
which are the highest so far. Applying the key recovery attack proposed
by Dong et al. at Eurocrypt 2022 on the new distinguisher, we achieve
the lowest complexities of the attack on GIFT-64 and the best rectangle
attack on GIFT-128.

Keywords: Rectangle attack · Automatic search algorithm · BCT ·
GIFT

1 Introduction

Differential cryptanalysis, proposed by Biham and Shamir [4] in 1990, is one
of the most effective and widely used methods to attack many cryptographic
primitives. However, it is often hard to find differential characteristics with high
probabilities as the rounds of a cipher increase. In 1999, Wagner [21] proposed
boomerang attack to replace one bad long differential trail with two good short
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Fig. 1. The boomerang attack Fig. 2. The sandwich attack

differential trails. This attack makes it possible to conquer more rounds, and
indicates that the security of a cipher cannot be guaranteed only by the non-
existence of differentials with high probability.

In a boomerang attack, the target cipher E is decomposed into two parts
as E = E1 ◦ E0, where E0 has a differential trail α → β and E1 has a differ-
ential trail γ → δ. Compositing the two sub-ciphers in a swerving way admits
a boomerang distinguisher as long as β �= γ, see Fig. 1. Under the indepen-
dence assumption of E0 and E1, the probability of this distinguisher should
be p2q2. However, it requires an adaptive chosen-plaintext/ciphertext scenario,
which is not applicable to most key recovery settings. Then, the rectangle attack
[3], a chosen-plaintext attack, is proposed to not only overcome this issue but
also increase the probability of the distinguisher. It actually covers all possi-
ble differential trails α → βi for E0 and γj → δ for E1 in the framework of a
boomerang attack, thus increases the probability of the distinguisher to 2−np̂2q̂2,

where p̂ =
√∑

i Pr2(α → βi) and q̂ =
√∑

j Pr2(γj → δ). To perform a rectan-
gle attack, one needs to sieve right quarters (x, y, z, w) with x ⊕ y = z ⊕ w = α
according to this probability.

It was noticed later that the independence assumption was invalid. To
reveal this phenomenon, Biryukov and Khovratovich [5] proposed the boomerang
switch to connect two differentials with a strong dependency. The observations
were depicted in the framework of sandwich attack [13], which decomposes the
cipher as E = E1 ◦ Em ◦ E0, where the middle part Em is the connection of
the upper trail α → β and the lower trail γ → δ, see Fig. 2. Then, Em can be
regarded as a small boomerang distinguisher with probability r, where

r = Pr[E−1
m (Em(x) ⊕ γ) ⊕ E−1

m (E(x ⊕ β) ⊕ γ) = β].

Thus, the probability of the whole boomerang distinguisher is p̂2q̂2r. Besides,
Murphy [18] has pointed out that there may be incompatibility when connect-
ing two independently chosen differential trails, which will result in an invalid
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boomerang distinguisher. Since the dependency between these two differential
trails has a great impact on the probability of a boomerang distinguisher, at
Eurocrypt 2018, Cid et al. [10] captured the above observations in a unified
table called boomerang connectivity table (BCT) when Em is a single S-box
layer. A new switch method named generalized switch was also depicted by the
BCT.

As automatic tools has been widely used in searching for cryptographic dis-
tinguishers, it is natural to consider integrating BCTs with automatic tools to
search for good distinguishers. There are mainly three automatic search tools
in cryptanalysis, namely MILP (mixed integer linear programming), SAT/SMT
(satisfiabality module theory) and Matsui’s algorithm. Liu and Sasaki [17] gave
the first generic model of BCT to search for related-key boomerang distinguish-
ers with SMT. Later, Ji et al. [16] proposed an automatic search algorithm by
improving Matsui’s algorithm to search for the clustering of related-key differen-
tial trails utilized in the related-key boomerang distinguisher for GIFT-64 and
GIFT-128, obtaining the best result up to now.

GIFT [2] is a lightweight block cipher with SPN structure. Because of its
excellent performance in both hardware and software implementations, GIFT
has been chosen as primitives in the design of many ciphers, such as GIFT-
COFB [1], HYENA [8], LOCTUS-AEAD and LOCUS-AEAD [7], all of which
are submitted to NIST’s Lightweight Cryptography Project, with GIFT-COFB
being selected as one of the ten finalists. Studying the security of GIFT is there-
fore crucial and imperative.

Our Contributions. The main contributions of this paper are summarized
below.

1. We propose a generalized boomerang connectivity table (GBCT).
The GBCT, which can be viewed as a generalized version of BCT, receives
four distinct differences as input to determine the number of quartets that
meet these four differences. Additionally, we study the cryptographic prop-
erties of GBCT and give some variants of GBCT applied in multiple rounds
and Feistel structure.

2. We provide a new search algorithm for boomerang distinguishers
with considerations that more trails can be included, and increase
the probability of distinguishers for GIFT.
By adding three additional factors to the algorithm in [16], a better automatic
search algorithm for boomerang distinguishers is obtained. Firstly, we relax
the condition of input/output differences from optimal to suboptimal to get
a better clustering effect. Secondly, we modify their method of searching for
differential trails to search for differentials within a probability range. Lastly,
we incorporate GBCT to ensure the compatibility of E0 and E1. Using the
new algorithm, we improved the probabilities of distinguishers for GIFT-64
and GIFT-128, which increase from 2−58.557 to 2−57.43 and from 2−109.626 to
2−108.349 respectively.
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Table 1. Summary of the cryptanalytic results on GIFT

Rounds Approach Setting Time Data Memory Ref.

GIFT-64

23 Boomerang RK 2126.60 263.3 – [17]

25 Rectangle RK 2120.92 263.78 264.10 [16]

26 Differential RK 2123.23 260.96 2120.86 [20]

26 Rectangle RK 2122.78 263.78 263.78 [12]

26 Rectangle RK 2121.75 262.715 262.715 Section 5

GIFT-128

22 Boomerang RK 2112.63 2112.63 252 [16]

23 Rectangle RK 2126.89 2121.31 2121.63 [16]

23 Rectangle RK 2125.175 2120.175 2120.175 Section 5

23 Differential SK 2120 2120 286 [23]

26 Differential SK 2125.75 2120.25 2120.25 [16]

3. We decrease the complexity of the attack on GIFT-64/GIFT-128
under the key recovery framework proposed by Dong et al.
We apply the key recovery attack proposed by Dong et al. on the distinguish-
ers and achieve a lower complexity than previous attacks. The data and time
complexity drop from 263.78 to 262.72 and from 2122.78 to 2121.75 when attack-
ing the 26-round GIFT-64. When attacking 23-round GIFT-128, the data and
time complexity decrease from 2121.31 to 2120.175 and from 2126.89 to 2124.25

respectively. The current cryptanalytic results on GIFT are summarized in
Table 1.

Outline. The rest of the paper is organized as follows. In Sect. 2, we give a
brief overview of some previous work. In Sect. 3, we introduce the generalized
boomerang connectivity table and study properties and variants of it. In Sect. 4,
we outline the strategies for searching for a rectangle distinguisher, and give
a new search algorithm. In Sect. 5, we provide the complexity analysis of the
26/23-round attacks on GIFT-64/GIFT-128. Section 6 concludes the paper.

2 Background and Previous Work

In this section, we give some preliminaries. First, we introduce some tables used
to connect two sub-ciphers, such as BCT, BDT, EBCT (Figs. 3 and 4). Secondly,
we give a brief introduction of some concepts necessary to search for a rectan-
gle distinguisher, including the automatic search tool and the clustering effect.
Finally, we recall the latest advances in key recovery attacks given in [12].
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Fig. 3. Structure of BCT

S

S S

S

Fig. 4. Structures of BDT and EBCT

2.1 BCT, BDT, EBCT

BCT is the first unified tool for evaluating dependencies between E0 and E1,
but only applicable when Em is a single S-box layer. For β, γ ∈ F

n
2 , define

BCT (β, γ) = #{x ∈ F
n
2 | S−1(S(x) ⊕ γ) ⊕ S−1(S(x ⊕ β) ⊕ γ) = β}.

Song et al. [19] noticed that dependencies could affect more rounds. Meanwhile,
some practical experiments [9,17] showed that a higher probability could be
achieved when Em contained two rounds. It is reasonable to believe that the
more rounds Em contains, the more accurate the probability will be. Then, how
to employ BCT in more rounds received much attention in the following research.
Wang et al. [22] proposed a systematic analysis of the boomerang switching effect
in multiple rounds and gave the boomerang difference table (BDT), renamed as
UBCT in [11]. And its variant called BDT’ is also denoted by DBCT in [19] and
renamed as LBCT in [11]. Its entry for (β, β′, γ) ∈ (Fn

2 )3 is computed by

BDT (β, β′, γ) = #

{
x ∈ F

n
2

∣∣∣∣
S(x) ⊕ S(x ⊕ β) = β′,

S−1(S(x) ⊕ γ) ⊕ S−1(S(x ⊕ β) ⊕ γ) = β

}
.

After that, Delaune et al. [11] provided a new table to connect two differ-
entials in more than two rounds, called extended boomerang connectivity table
(EBCT), where for (β, β′, γ, γ′) ∈ (Fn

2 )4,

EBCT (β, β′, γ′, γ) = #

{
x ∈ F

n
2

∣∣∣∣ S(x) ⊕ S(x ⊕ β) = β′, S(x) ⊕ S(x ⊕ γ′) = γ,

S−1(S(x) ⊕ γ) ⊕ S−1(S(x ⊕ β) ⊕ γ) = β

}
.

Besides, Hadipour et al. [14] introduced a new tool to model the dependency
in more rounds called double boomerang connectivity table (DBCT) and used
it for automatic searching for boomerang distinguishers.

2.2 Automatic Tools Modeling BCT

Because of its efficiency and simplicity, automatic tools have become crucial
techniques for cryptanalysis in recent years. The effect of many commonly used
attacks can be improved with the help of automatic tools, not only in searching
for distinguishers but also in key recovery attacks. In this paper, we propose an
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algorithm to search for boomerang distinguishers with the automatic tool SMT.
Here we give a brief introduction to it.

SMT is refereed to the problem of determining whether a mathematical for-
mula is satisfiable. In cryptanalysis, one can use languages (e.g., SMTLIB2, CVC
or BTOR) to model the property of components of a cipher, such as propagation
of a differential and its probability, as an SMT problem, and obtain a desired
solution (e.g., a differential trail with high probability) by SMT solvers. For
example, in [17] the authors modelled the DDT and BCT with boolean con-
straints of an S-box. Following is an example of the description of BCT.

Example 1. Given boomerang propagations (2 → 5) and (2 → 6) of a 4×4 S-box
with BCT (2, 5) = BCT (2, 6) = 4, we can model them with the logic expression
(x = 2) ∧ ((y = 5) ∨ (y = 6)). It is true when x = 2 and y = 5 or 6. Meanwhile,
the probability is depicted by w4 = ((x = 2)∧ (y = 5)∨ (x = 2)∧ (y = 6)), which
means w4 = 1 when the expression in the RHS is true, and the probability is
obviously 4 · w4/16.

2.3 Clustering Effect in Boomerang Distinguishers

When utilizing a boomerang distinguisher, two essential factors are the input
and output differences and the probability of the boomerang trail. Except for the
input and output differences, the specific value of the differentials in the middle
rounds is no longer important. We use r̂ to denote the probability of getting
a right quartet that follows an exact boomerang trail. The actual probability
r is composed of the probabilities r̂ corresponding to all possible intermediate
differences and hence r is always greater than or equal to any single r̂. Ji et al.
gave a definition of the clustering of the related-key differential trails utilized
in an R-round related-key boomerang distinguisher and proposed an automatic
search algorithm for boomerang distinguishers, which exploits the concept of
clustering effect to make the probability improved [16].

2.4 Key-Recovery Algorithms for Rectangle Attacks

Much research has been done on the key recovery algorithm for the rectangle
attacks. The first rectangle attack [3] was proposed by Biham et al. in 2001, and
was applied to Serpent in the single-key setting. Later, numerous research have
been done to reduce the complexity of the attacks. For ciphers with linear key
schedules, Dong et al. recently built a new key recovery attack model, with which
the ratio of right quartets greatly soared. They found the right quartets must
satisfy some nonlinear relations, which could be exploited to filter the wrong
ones, so as to increase the proportion of the right quartets and decrease the
attack complexity. The key recovery attack on GIFT-64 with their algorithm is
the best so far. Afterwards, Dong et al. [12] made some modifications on their
algorithm to give a unified and generic key recovery algorithm, which achieved
the optimal complexity by selecting different parameters. In order to better
illustrate the advantage of the new distinguisher, we use the same attack in [12]
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Fig. 5. Structure of GBCT

to launch on GIFT. Symbols used in the complexity analysis in Sect. 5 of our
attack are the same to theirs as well.

3 Generalized Boomerang Connectivity Table

In this section, we give a generalized boomerang connectivity table (GBCT),
which looses the limitation of the symmetric connections to be arbitrary. After
that, some cryptographic properties of GBCT are exhibited. In addition, we
present some variants of GBCT for multiple rounds and Feistel structure. Finally,
the benefits of GBCT are illustrated by some applications.

3.1 Introduction to GBCT

The idea for generalizing the BCT is natural, that is, instead of considering sym-
metric differences in two directions of the connection part of two sub-ciphers, we
take all possible values in four directions in to consideration, see Fig. 5. When
loosing the limitation of the symmetric input and output differences to be arbi-
trary, all possible connections of two sub-ciphers E0 and E1 are covered. Thus,
a more precise probability of a boomerang distinguisher can be obtained with
GBCT. This idea was mentioned in the [14] with no formal description given.

Definition 1. Let S be a permutation over F
n
2 and β1, β2, γ1, γ2 ∈ F

n
2 . The gen-

eralized boomerang connectivity table of S is a four-dimensional table, in which
the entry for (β1, β2; γ1, γ2) is computed by

GBCT (β1, β2; γ1, γ2) = #{x ∈ F
n
2 |S−1(S(x) ⊕ γ1) ⊕ S−1(S(x ⊕ β1) ⊕ γ2) = β2}.

It is easy to see that GBCT can also be represented as

GBCT (β1, β2; γ1, γ2) = #

{
(x, y) ∈ F

n
2 × F

n
2

∣∣∣∣
S(x) ⊕ S(y) = γ1,

S(x ⊕ β1) ⊕ S(y ⊕ β2) = γ2

}
.

The probability for an S-box with a given quarter of differences (β1, β2; γ1, γ2)
is p = 1

2n ×GBCT (β1, β2; γ1, γ2). The time complexity for generating the GBCT
for an n-bit S-box is O(24n).
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In the following, we explain why GBCT can gain more solutions than BCT
with the S-box of GIFT as an example.

Example 2. Given an input difference β = 8, and two output differences γ1 =
8, γ2 = c, the value of GBCT, DDT, and BCT are GBCT (8, 8; 8, c) = 16,
DDT (8, 8) = DDT (8, c) = 0, BCT (8, 8) = BCT (8, c) = 0, respectively.

By looking up the DDT, we can find {γ′
1 : DDT (γ′

1, 8) = 2} = {γ′
2 :

DDT (γ′
2, c) = 2} = {1, 3, 5, 7, 9, b, c, e}, and the solution for each input difference

is shown in the following table.

γ′
1 1 3 5 7 9 b c e

(x1, x
′
1) (2, 3) (d, e) (9, c) (0, 7) (1, 8) (4, f) (6, a) (5, b)

γ′
2 1 3 5 7 9 b c e

(x2, x
′
2) (a, b) (5, 6) (1, 4) (8, f) (9, 0) (c, 7) (2, e) (3, d)

It is clear that (x1, x
′
1) ⊕ (x2, x

′
2) = (8, 8) always holds when γ′

1 = γ′
2. That

means if (x1, x
′
1) and (x2, x

′
2) are the solutions of two faces of a boomerang

structure, we can use a difference β1 = β2 = 8 to connect the differential trails
on both sides to get a boomerang trail. Due to the symmetry of solutions, we
can obtain 16 solutions in total.

Example 3. Given two input differences β1 = 1, β2 = 7 and an output dif-
ference γ = 5, the value of GBCT, DDT, and BCT are GBCT (1, 7; 5, 5) =
10, DDT (1, 5) = DDT (7, 5) = 2, BCT (1, 5) = BCT (7, 5) = 2, respectively. By
looking up the DDT, we can find {γ′ : DDT (γ′, 5) = 2 or 4} = {1, 2, 3, 4, 5, 7}.
Solutions of DDT (γ′, 5) > 0 are given below.

γ′ 1 2 3 4 5 7

(x, x′) (c, d) (0, 2) (8, b) (1, 5) (a, f) (9, e)

(4,6) (3,7)

Let β1 = 1 and β2 = 7, we can get (x ⊕ β1, x
′ ⊕ β2) as follows.

(x, x′) (c, d)(d, c) (0, 2)(2, 0) (4, 6)(6, 4) (8, b)(b, 8) (1, 5)(5, 1) (3, 7)(7, 3) (a, f)(f, a) (9, e)(e, 9)

(x ⊕ β1, x
′ ⊕ β2) (d, a)(c, b) (1, 5)(3, 7) (5, 1)(7, 3) (9, c)(a, f) (0, 2)(4, 6) (2, 0)(6, 4) (b, 8)(e, d) (8, 9)(f, e)

When x and x′ are shifted by β1 = 1 and β2 = 7 respectively, there are 10
solutions whose output differences are 5. A boomerang trail can be obtained by
connecting the differential trails on both sides of a boomerang structure with
differences β1 = 1 and β2 = 7.
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It can be concluded from the above examples that for a boomerang structure,
(x1, x

′
1) and (x2, x

′
2) are solutions to differential trails γ′

1 → γ1 and γ′
2 → γ2

respectively on both sides of the structure, then GBCT (β1, β2; γ1, γ2) > 0 as long
as there exists two differences β1 and β2 such that (x2 ⊕ β1, x

′
2 ⊕ β2) = (x1, x

′
1).

3.2 Properties of GBCT

In the following we give some basic properties of GBCT and its links with other
tables, most of which can be deduced directly from the definition, so some proofs
are omitted here.

Proposition 1. (Symmetry of GBCT)

GBCT (β1, β2; γ1, γ2)
= GBCT (β2, β1; γ1, γ2) = GBCT (β1, β2; γ2, γ1) = GBCT (β2, β1; γ2, γ1).

Proposition 2. (Telations with DDT and BCT)

GBCT (β, β; γ, γ) = BCT (β; γ), GBCT (β2, β1; 0, γ2) = DDT (β1 ⊕ β2; γ2),
GBCT (0, β2; γ1, γ2) = DDT (β2; γ1 ⊕ γ2).

Proposition 3. (Summation formula I)
∑
β1

GBCT (β1, β2; γ1, γ2) =
∑
β2

GBCT (β1, β2; γ1, γ2) = 2n,

∑
γ1

GBCT (β1, β2; γ1, γ2) =
∑
γ2

GBCT (β1, β2; γ1, γ2) = 2n.

Proposition 4. (Summation formula II)
∑

β1,β2

GBCT (β1, β2; γ1, γ2) =
∑
γ1,γ2

GBCT (β1, β2; γ1, γ2) = 22n.

Proposition 5.

GBCTS−1(γ1, γ2;β1, β2) = GBCTS(β1, β2; γ1, γ2).

Proposition 6.

GBCT (β1, β2; γ1, γ2)

= CDDT (β1, γ2;β2, γ1) +
∑

α�=0,β2

#

( ⋃
α,γ1

∩
( ⋃

α⊕γ1⊕γ2,γ2

⊕β1

))
,

where
⋃

a,b := {x ∈ F
n
2 |S(x) ⊕ S(x ⊕ a) = b} and the cross-DDT of S is

CDDT (β1, γ2;β2, γ1) = #

{
x ∈ F

n
2

∣∣∣∣∣
S(x) ⊕ S(x ⊕ β1) = γ2,

S(x) ⊕ S(x ⊕ β2) = γ1

}
.
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Proposition 7.

GBCT (β1, β2; γ1, γ2)

=
1

24n
·

∑
a,b,c,d

(−1)a·γ1⊕b·γ2⊕c·β1⊕d·β2 · WF (c, a) · WF (c, b) · WF (d, a) · WF (d, b).

where WF (u, v) :=
∑

x(−1)ux⊕vF (x).

Proof. We have

GBCT (β1, β2; γ1, γ2)
= #{(x, y) ∈ F

n
2 × F

n
2 |F (x) ⊕ F (y) = γ1, F (x ⊕ β1) ⊕ F (y ⊕ β2) = γ2}

=
1

22n

∑
x,y

∑
a,b

(−1)a(F (x)⊕F (y)⊕γ1)(−1)b(F (x⊕β1)⊕F (y⊕β2)⊕γ2)

=
1

22n

∑
a,b

(−1)aγ1⊕bγ2
∑
x,y

(−1)a·F (x)⊕b·F (x⊕β1)(−1)a·F (y)⊕b·F (y⊕β2)

=
1

22n

∑
a,b

(−1)aγ1⊕bγ2Cβ1(a, b)Cβ2(a, b),

where

Cβ(a, b) =
∑

x

(−1)a·F (x)⊕b·F (x⊕β)

=
1
2n

∑
w

(−1)w(x⊕y)
∑
x,y

(−1)a·F (x)⊕F (y⊕β)

=
1
2n

∑
w

(−1)w·z ∑
x,z

(−1)a·F (x)⊕b·F (x⊕z⊕β)

=
1
2n

∑
w,x,z

(−1)[a·F (x)⊕w·x]⊕[b·F (x⊕z⊕β)⊕w(x⊕z⊕β)]⊕w·β

=
1
2n

∑
w

(−1)w·βWF (w, a) · WF (w, b).

Proposition 8. Let F,G be two permutations of F
n
2 with G = F ◦ L for an

invertible affine transformation L of Fn
2 . Then we have

gG(a1, a2; b1, b2) = gF (L1(a1), L1(a2), L−1
2 (b1), L−1

2 (b2)).

for all a, b ∈ F
n
2 , where gF (a1, a2; b1, b2) = GBCT (a1, a2; b1, b2) for F .

3.3 Variants of GBCT

GBCT in Multi-rounds. Just as how Wang et al. extend BCT to be used in
two-round Em, GBCT can also be converted with the same idea to be applied in
two rounds. We introduce the generalized boomerang differential table (GBDT)
(Fig. 6).
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S
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S S

S

Fig. 6. Structures of GBDT (left) and GBET (right)

Definition 2. Let S be a permutation over F
n
2 and β1, β2, γ1, γ2, β

′
1, β

′
2 ∈ F

n
2 .

The generalized boomerang differential table (GBDT) of S is a 6-dimensional
table, in which the entry for (β1, β2; γ1, γ2;β′

1, β
′
2) is computed by

GBDT (β1, β2; γ1, γ2;β′
1, β

′
2)

= #

{
(x, y) ∈ F

n
2 × F

n
2

∣∣∣∣∣
S(x) ⊕ S(y) = γ1, S(x ⊕ β1) ⊕ S(y ⊕ β2) = γ2,

S(x) ⊕ S(x ⊕ β1) = β′
1, S(x) ⊕ S(x ⊕ β2) = β′

2

}
.

GBDT and BDT shares some properties, most of which can be easily obtained
from the definition, so it is not proved here. Refer interested readers to [22] for
more details.

Next, we use the same notations as in [22] to show how to calculate the
probability with GBDT. The probability of a two-round Em is the product of
the two probabilities r = p1p2, where

p1 =
∏

(Δ1,Δ2;∇′′
1 ,∇′′

2 ;Δ
′
1,Δ′

2)∈L1

GBDT (Δ1,Δ2;∇′′
1 ,∇′′

2 ;Δ′
1,Δ

′
2)/2n,

p2 =
∏

(∇1,∇2;Δ′′
1 ,Δ′′

2 ;∇′
1,∇′

2)∈L2

GBDT (∇1,∇2;Δ′′
1 ,Δ′′

2 ;∇′
1,∇′

2)/2n.

When Em covers more rounds, we can borrow the idea of EBCT [11] to give the
definition of GBET.

Definition 3. Let S be a permutation over F
n
2 and β1, β2, γ1, γ2, β

′
1, β

′
2, γ

′
1, γ

′
2 ∈

F
n
2 . The generalized boomerang extended table (GBET) of S is a 8-dimensional

table, in which the entry for (β1, β2; γ1, γ2;β′
1, β

′
2; γ

′
1, γ

′
2) is computed by

GBET (β1, β2; γ1, γ2;β′
1, β

′
2; γ

′
1, γ

′
2)

= #

⎧⎪⎨
⎪⎩

(x, y) ∈ F
n
2 × F

n
2

∣∣∣∣∣∣∣

x ⊕ y = γ′
1, (x ⊕ β1) ⊕ (y ⊕ β2) = γ′

2,

S(x) ⊕ S(x ⊕ β1) = β′
1, S(y) ⊕ S(y ⊕ β2) = β′

2,

S(x) ⊕ S(y) = γ1, S(x ⊕ β1) ⊕ S(y ⊕ β2) = γ2

⎫⎪⎬
⎪⎭

.

When Em covers more rounds, the probability is r =
∏

i pi, where

pi =
∏

(Δ1,Δ2;∇1,∇2;∇′
1,∇′

2;Δ
′
1,Δ′

2)∈Li

GBDT (Δ1,Δ2;∇1,∇2;∇′
1,∇′

2;Δ
′
1,Δ

′
2)/2n,

and Li has the same meaning as the previous one.



224 C. Li et al.

Fig. 7. The GBCT in a Feistel structure

Put GBCT into a Feistel Structure. The FBCT was proposed as a coun-
terpart of BCT for Feistel structures and its properties have also been studied in
[6,15]. Similar to BCT, GBCT is also applicable into Feistel structures. Here we
take a generic Feistel structure as example, as shown in Fig. 7. Denote the out-
put after one round of Xi = Li||Ri, i = 1, ..., 4 as Y i = Gi||Li, i = 1, ..., 4.
Assume that X1 ⊕ X2 = β1 = βL

1 ||βR
1 , Y 1 ⊕ Y 3 = γ1 = γL

1 ||γR
1 and

Y 2 ⊕ Y 4 = γ2 = γL
2 ||γR

2 . Now, we check whether X3 ⊕ X4 = β2 = βL
2 ||βR

2 :

βL
2 = L3 ⊕ L4 = L1 ⊕ γR

1 ⊕ L2 ⊕ γR
2 = βL

1 ⊕ γR
1 ⊕ γR

2 ,

βR
2 = R3 ⊕ R4 = F (L3) ⊕ G3 ⊕ F (L4) ⊕ G4

= R1 ⊕ R2 ⊕ γL
1 ⊕ γL

2 ⊕ F (L1) ⊕ F (L1 ⊕ γR
1 ) ⊕ F (L2) ⊕ F (L2 ⊕ γR

2 )

= βR
1 ⊕ γL

1 ⊕ γL
2 ⊕ F (L1) ⊕ F (L1 ⊕ γR

1 ) ⊕ F (L1 ⊕ βL
1 ) ⊕ F (L1 ⊕ βL

1 ⊕ γR
2 ).

If X3 ⊕ X4 = β2, then β2 should satisfy βL
2 = βL

1 ⊕ γR
1 ⊕ γR

2 and βR
2 = βR

1 ⊕
γL
1 ⊕ γL

2 ⊕ F (L1) ⊕ F (L1 ⊕ γR
1 ) ⊕ F (L1 ⊕ βL

1 ) ⊕ F (L1 ⊕ βL
1 ⊕ γR

2 ).
We degenerate the F function to the S-box layer. For each S-box, the input

difference deduced from βL
i , i = 1, 2 and γR

i , i = 1, 2 are denoted as ΔL
i , i = 1, 2

and ΔR
i , i = 1, 2. The output differences are denoted as ∇i, i = 1, 2 which are

deduced from βR
i ⊕ γL

i . Then, the definition of FGBCT for each S-box is given
below:

Definition 4. Let S : Fn
2 → F

m
2 , ΔL

1 ,ΔR
1 ,ΔL

2 ,ΔR
2 ,∇1,∇2 ∈ F

n
2 . The FGBCT

of S is given by a 6-dimensional table, in which the entry for the (ΔL
1 ,ΔR

1 ;ΔL
2 ,

ΔR
2 ;∇1,∇2) position is given by

FGBCT (ΔL
1 , ΔR

1 ;ΔL
2 , ΔR

2 ;∇1, ∇2)

= #

{
x ∈ F

n
2

∣∣∣∣ S(x) ⊕ S(x ⊕ ΔL
1 ) ⊕ S(x ⊕ ΔR

1 ) ⊕ S(x ⊕ ΔL
1 ⊕ ΔR

2 ) ⊕ ∇1 ⊕ ∇2 = 0,

ΔL
1 ⊕ ΔL

2 ⊕ ΔR
1 ⊕ ΔR

2 = 0

}
.

Then, the probability of a boomerang for a Feistel structure with an S-box
is given by 2−n · FGBCT (ΔL

1 ,ΔR
1 ;ΔL

2 ,ΔR
2 ;∇1,∇2).

Similarly, we give the definition of FGBDT and FGBET used in multi-round
Em. Symbols in the definitions are shown in the Fig. 8.
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Fig. 8. Structures of FGBDT and FGBET

Definition 5. Let S : Fn
2 → F

m
2 , and the differences ΔL

1 ,ΔR
1 ,ΔL

2 ,ΔR
2 ,∇1,∇2,

Δ′
1
L
,Δ′

2
L ∈ F

n
2 . The FGBDT of S is given by a 8-dimensional table, in which

the entry for the (ΔL
1 ,ΔR

1 ;ΔL
2 ,ΔR

2 ;∇1,∇2;Δ′
1
L
,Δ′

2
L) position is given by

FGBDT (ΔL
1 , ΔR

1 ;ΔL
2 , ΔR

2 ;∇1, ∇2;Δ
′
1
L

, Δ′
2
L
)

= #

⎧⎪⎪⎨
⎪⎪⎩x ∈ F

n
2

∣∣∣∣∣∣∣∣
S(x) ⊕ S(x ⊕ ΔL

1 ) ⊕ S(x ⊕ ΔR
1 ) ⊕ S(x ⊕ ΔL

1 ⊕ ΔR
2 ) ⊕ ∇1 ⊕ ∇2 = 0,

ΔL
1 ⊕ ΔL

2 ⊕ ΔR
1 ⊕ ΔR

2 = 0,

S(x) ⊕ S(x ⊕ ΔL
1 ) = Δ′

1
L

, S(x) ⊕ S(x ⊕ ΔL
2 ) = Δ′

2
L

⎫⎪⎪⎬
⎪⎪⎭ .

Definition 6. Let S : Fn
2 → F

m
2 , and the differences ΔL

1 ,ΔR
1 ,ΔL

2 , ΔR
2 ,∇1,∇2,

Δ′
1
L
,Δ′

2
L
,Δ′

1
R
,Δ′

2
R ∈ F

n
2 . The FGBET of S is given by a 10-dimensional table,

in which the entry for the (ΔL
1 ,ΔR

1 ;ΔL
2 ,ΔR

2 ;∇1,∇2;Δ′
1
L
,Δ′

2
L;Δ′

1
R
,Δ′

2
R) posi-

tion is given by

FGBET (ΔL
1 , ΔR

1 ;ΔL
2 , ΔR

2 ;∇1, ∇2;Δ
′
1
L

, Δ′
2
L
;Δ′

1
R

, Δ′
2
R
)

= #

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ F
n
2

∣∣∣∣∣∣∣∣∣∣∣

S(x) ⊕ S(x ⊕ ΔL
1 ) ⊕ S(x ⊕ ΔR

1 ) ⊕ S(x ⊕ ΔL
1 ⊕ ΔR

2 ) ⊕ ∇1 ⊕ ∇2 = 0,

ΔL
1 ⊕ ΔL

2 ⊕ ΔR
1 ⊕ ΔR

2 = 0,

S(x) ⊕ S(x ⊕ ΔL
1 ) = Δ′

1
L

, S(x) ⊕ S(x ⊕ ΔL
2 ) = Δ′

2
L

,

S(x) ⊕ S(x ⊕ ∇R
1 ) = ∇′

1
R

, S(x) ⊕ S(x ⊕ ∇R
2 ) = ∇′

2
R

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

3.4 The Advantages of GBCT

The probability of a boomerang distinguisher with BCT in one-round Em is
calculated in [16] as

p̂2q̂2 =
1
2n

∑
i,j

p2i · q2j · BCT (βi, γj).

For each boomerang trail α → βi → γj → δ, if the value of BCT (βi, γj) is 0,
even if the value of p2i · q2j is high enough, the trail is still in vain. Yet, BCT is
limited to connecting β and γ that are symmetric in two faces of Em, leaving out
a large number of asymmetric combinations, which can be completed by GBCT.
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In order to illustrate that GBCT can completely describe all combinations of
β and γ, we list the distribution of GBCTs of some 4-bit S-boxes used in crypto-
graphic primitives in Table 2, where the blue font represents the corresponding
value of BCT. It turns out that GBCT can provide some probabilities that BCT
cannot. The following example illustrates a boomerang trail that is incompatible
when connecting E0 and E1 via BCT but effective with GBCT.

Table 2. GBCTs of 4-bit S-boxes from Sage’s Cryptography package; see
https://doc.sagemath.org/html/en/reference/cryptography/sage/crypto/sboxes.html

S-boxs Prob.

1 0.63 0.5 0.44 0.38 0.31 0.25 0.19 0.13 0.06

GIFT 34(32) 6(2) 48(12) 0 278(6) 24 2426(30) 0 16212(72) 15424

PRESENT 33(33) 0 108(8) 0 60(12) 40 2856(36) 0 16172(60) 16096

SKINNY 4 37(33) 0 116(16) 0 64(0) 96 3028(32) 0 16040(72) 16440

Elephant 35(33) 0 112(12) 0 64(8) 64 2900(32) 0 16140(64) 16184

KNOT 33(33) 0 108(8) 0 60(6) 40 2856(36) 1240 16172(60) 16096

Spook 37(33) 0 116(16) 0 64(0) 96 3028(32) 840 16040(72) 16440

GOST 1 34(32) 6(2) 48(12) 0 278(6) 24 2426(30) 1736 16212(72) 15424

LBlock 0 37(33) 10(0) 116(16) 0 64(0) 96 3028(32) 840 16040(72) 16440

SERPENT S0 35(33) 0 112(12) 0 64(8) 64 2900(32) 1128 16104(64) 16184

KLEIN 31(31) 4(4) 0 16 62(14) 0 1807(23) 2512 16184(72) 17384

Midori Sb0 33(33) 0 108(8) 0 60(12) 40 2856(36) 1240 16172(60) 16096

Piccolo 37(33) 0 116(16) 0 64(0) 96 3028(32) 840 16040(72) 16440

Pride 37(33) 0 116(16) 0 64(0) 96 3028(32) 840 16040(72) 16440

PRINCE 31(31) 1(1) 2(2) 0 75(11) 60 1824(28) 2380 15970(78) 17888

Rectangle 33(33) 0 108(8) 0 60(12) 40 2856(36) 1240 16172(60) 16096

TWINE 31(31) 0 0 0 30(30) 0 1455(15) 2280 17940(60) 16320

BLAKE 1 31(31) 0 75(7) 4 90(14) 114 2056(40) 2756 14990(66) 16680

Iceberg S0 31(31) 4(4) 0 16 62(14) 0 1807(23) 2512 16184(72) 17384

Kuznyechik nu0 31(31) 0 0 0 166(14) 80 1275(27) 2608 16732(84) 17256

Serpent type S0 33(33) 0 108(8) 0 60(12) 40 2856(36) 1240 16172(60) 16096

Golden S0 31(31) 1(1) 13(5) 0 58(14) 148 1980(28) 2508 15525(69) 17344
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Fig. 9. 20-round boomerang trail with GBCT

Example 4. A 20-round boomerang trail of GIFT-64 with GBCT is shown in
Fig. 9. The trail is obtained by connecting two 10-round related-key differential
trails in E0 and two 9-round related-key differential trails in E1 with GBCT.
And two key differences are

ΔiniK = 0x00040000000008000000000000000010,
∇iniK = 0x20000000000000000800000002000800

https://doc.sagemath.org/html/en/reference/cryptography/sage/crypto/sboxes.html
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The probability of this distinguisher is p2q2r = 2−21·2 · 2−15·2 · 2−1 = 2−73 when
connected with GBCT, but 0 when connected with BCT.

4 New Search Algorithm for a Boomerang Distinguisher

The instance in Example 4 illustrates the effectiveness of using GBCT as the
connection in a boomerang trail. Then, we consider to construct a generic model
of the GBCT with automatic the search tool SMT, and search for boomerang
distinguishers.

4.1 Strategies in the Search Algorithm

In [16], Ji et al. proposed an automatic search algorithm to boost the proba-
bility of a related-key boomerang distinguisher by taking the cluster effect into
account, which has the best performance in searching for boomerang distinguish-
ers. Making some improvements on the base of the algorithm, we obtain a new
search algorithm performing better. With the new algorithm, we get boomerang
distinguishers with higher probabilities for GIFT-64 and GIFT-128. The details
of the distinguishers will be given in the next subsection.

Here gives the strategy to search for a rectangle distinguisher. Firstly, we find
that when searching for the 10-round differential trails the optimal probability
is 2−19.83, rather than 2−20.415 searched in [16]. The details of the optimal differ-
entials are listed in Table 6 in Appendix A. Taking the probability range bw = 4,
and choosing the optimal α, we discover that it has only 263 output differences
βi and a total of 308 trails can be obtained, which is smaller than the quantity of
that with the suboptimal α, who has 2944 distinct βi and a total of 5728 trails.
Thus, to get a better cluster effect, we should select α and δ with more β and γ
in the first phase. In addition, replacing the probability of each differential trail
with the probability of differential is a better way to approximate the real prob-
ability. Thirdly, the completeness of the connections in Em should be ensured to
form more valid boomerang trails. Finally, an improved boomerang distinguisher
search Algorithm 1 is proposed in light of the aforementioned factors. And the
search algorithm in single-key setting can be obtained likewise. Symbols used in
Algorithm 1 is explained in Table 3.

Table 3. Symbols in Algorithm 1

P (·), K(·) PermBits operation, AddRoundKey operation

ΔXi, ΔYi the differential value of Xi, Yi in round i

ΔiniKi, ∇iniKj the master key difference of differential trails in E0, E1

W (l) the weight of the differential trail l

BR, B̄R the weight of the R-round optimal, sub-optimal trails

BcR the upper bound of BR

bw, b̄w bw = BcR − BR, b̄w ≥ bw
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Algorithm 1: The search algorithm for related-key boomerang distinguish-
ers
Input: R0, R1; bw, b̄w
Output: Pd; ΔY i

1 , ΔiniKi; ΔXj
R1−1, ∇iniKj

1 Phase 1: Determine all the distinct ΔY i
1 , ΔiniKi and ΔXj

R1−1, ∇iniKj

with minimal and sub minimal weight
2 Search for the R0-round related-key differential trails with BR0 and B̄R0 for E0

with SMT.
3 ΔY i

1 , ΔiniKi and Bi
R0 , 1 ≤ i ≤ m ← first-round output difference, the master

key difference and weight of each R0-round trail.
4 Search for the R1-round related-key differential trails with BR1 and B̄R1 for E1

with SMT.
5 ΔXj

R1−1, ∇iniKj and Bj
R1

, 1 ≤ j ≤ n ← last-round input difference, the master
key difference and weight of each R1-round trail.

6 Phase 2: Search for all the clusters in E0 and E1

7 for each ΔY i
1 , ΔiniKi, B

i
R0 , 1 ≤ i ≤ m do

8 βu
i = K ◦ P (ΔY i

R0), 1 ≤ u ≤ s ← all distinct output differences of E0 within

the probability range (Bi
R0 + bw) searched with SMT.

9 for each βu
i , 1 ≤ u ≤ s do

10 lu1
i , ..., l

ug

i ← all the trails under the probability range (Bi
R0 + b̄w)

searched with SMT.
11 B

iud
R0

← W (l
ud
i ), 1 ≤ d ≤ g

12 pu
i =

∑
1≤d≤g 2

−B
iud
R0 ← the approximate probability of (ΔY i

1 , βu
i ).

13 end

14 end

15 for each ΔXj
R1−1, ∇iniKj , B̄R1 , 1 ≤ j ≤ n do

16 γv
j = P −1 ◦ K−1(ΔX1), 1 ≤ v ≤ t ← all distinct input differences of E1

within the probability range (Bj
R1

+ bw) searched with SMT.

17 for each γv
j , 1 ≤ v ≤ t do

18 lv1j , ..., l
vh
j ← all the trails under the probability range (Bj

R1
+ b̄w).

19 B
ive
R1

← W (lvej ), 1 ≤ e ≤ h

20 qvj =
∑

1≤h≤e 2
−B

ive
R1 ← the approximate probability of (γv

j , ΔXj
R1−1).

21 end

22 end
23 Phase 3: Determine the boomerang distinguisher with highest

probability
24 for each (ΔY i

1 , ΔXj
R1−1), and all βu

i , βu′
i , 1 ≤ u, u′ ≤ s, γv

j , γv′
j , 1 ≤ v, v′ ≤ t do

25 r(βu
i , βu′

i , γv
j , γv′

j ) = 1
2n

GBCT (βu
i , βu′

i , γv
j , γv′

j )

26 Pi,j ← ∑
u,u′,v,v′ pu

i · pu′
i · qvj · qv

′
j · r(βu

i , βu′
i , γv

j , γv′
j )

27 end
28 Pd ← maxi,j{Pi,j}
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4.2 The Improved Distinguisher with GBCT for GIFT

Here, we give the details of the new distinguisher of GIFT-64 and GIFT-128.
Choosing R0 = 10 for E0, R1 = 9 for E1, Rm = 1 for Em and bw = b̄w = 4 to

search for a 20-round GIFT-64 distinguisher. The experimental result indicates
that the probability of the new distinguisher is optimal with the α and δ used
in [16]. But, in Phase 2, we get 376 differentials trails with 376 distinct γj more
than 312 differentials trails searched in [16]. In phase 3, we found a total of
5520 boomerang trails that were left out as BCT could not connect. Finally, the
probability of the 20-round distinguisher found in [16] is increased to 2−57.43.

For GIFT-128, we chose R0= 9 for E0, R1 =9 for E1, Rm = 1 for Em

and bw = b̄w = 4. In phase 1, we got 10184 distinct β. All the β and γ can
form (10184 × 2944)2 possible boomerang trails, which leads to an excessive
calculating complexity. So we select the top 200 β and 450 γ with high probability
to connect by GBCT(βi, βj ; γs, γt), and the remaining are still connected by
BCT(β, γ). Finally, 2782 trails ignored under BCT connection are obtained, and
the probabilities of these trails are accumulated to obtain the probability of the
distinguisher of 2−108.349.

All the parameters of the 20/19-round related-key rectangle distinguisher for
GIFT-64/128 are shown in Table 4 and Table 5.

Table 4. The specifications of the 20-round related-key rectangle distinguisher for
GIFT-64

R0 = 10, Rm = 1, R1 = 9; BcR0 = 24.415, BcR1 = 17.415; p̂2q̂2 = 2−57.43

E0 α1 ΔiniK0

0000 0000 0000 a000 0004 0000 0000 0800 0000 0000 0000 0010

E1 δ1 ∇iniK1

0400 0000 0120 1000 2000 0000 0000 0000 0800 0000 0200 0800

Table 5. The specifications of the 19-round related-key rectangle distinguisher for
GIFT-128

R0 = 9, Rm = 1, R1 = 9; BcR0 = 34, BcR1 = 34; p̂2q̂2 = 2108.349

E0 α1 ΔiniK0

0000 0000 0000 00a0 0000 0000 6000 0000; 8000 0000 0000 0000 0000 0000 0002 0000

E1 δ1 ∇iniK1

0020 0000 0000 0000 0000 0040 0000 2020; 000 0000 0000 0000 0002 0000 0002 0000

5 Rectangle Attacks on GIFT-64 and GIFT-128
with Reduced Complexities

Since the new distinguishers for GIFT-64 and GIFT-128 improve only the prob-
ability while using the same input-output differences as in [16], Dong’s key recov-
ery algorithm can be directly applied with it. Here, we only give the complexity
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analysis of the attack and will not dwell on the details of the key recovery process.
Interested readers are referred to [12,16].

Complexity Analysis of Key-Recovery Attack on GIFT-64

The target key bits are 68 with 30 bits in Eb and 38 bits in Ef . We first guess
mb + m′

f = 60 bits subkey to construct quartet candidates. Then eliminate the
wrong quartets in a guess and filter procedure to determine the remaining 8 bits.
Finally, guess the remaining 128 − h bit keys to check the full key.

- Data complexity: we need to prepare 4 · D = 4 · y · 2rb =
√

s · 2n/2+2/p̂q̂ =√
s · 262.715 data.

- Memory complexity: we need 4 · D + 268−x =
√

s · 262.715 + 268−x memory
to store the data and key counters.
- Time complexity: Firstly, we need T1 =

√
s·2mb+m′

f+n/2+1/p̂q̂ =
√

s·2121.715

to generate quartet candidates. Then, the time complexity of filtering wrong
quartets is T2 = (s · 2mb+m′

f−n+2rf−2hf /p̂2q̂2) · ε = s · 283.43 · ε. Finally, we need
T3 = 2128−h for an exhaustive search.

To balance the above complexity, we choose x = 8, h = 20 and s = 1 in order
to achieve a success probability of 69.45%. At last, we have a time complexity
of 2121.715 for 26-round encryptions, a data complexity of 262.715 and a memory
complexity of 262.715.

Complexity Analysis of Key-Recovery Attack on GIFT-128

The target key bits is 39 with 6 bits in Eb and 33 bits in Ef . We repeat the same
process as the attack on GIFT-64 for GIFT-128 with mb + m′

f = 6 + 0 = 6.

- Data complexity: we need to prepare 4 · D =
√

s · 2120.175 data.
- Memory complexity: we need 4 · D + 268−x =

√
s · 2120.175 + 239 memory to

store the data and key counters.
- Time complexity: Firstly, we need T1 =

√
s·2mb+m′

f+n/2+1/p̂q̂ =
√

s·2125.175

to generate quartet candidates. Then, the time complexity of filtering wrong
quartets is T2 = (s · 2mb+m′

f−n+2rf−2hf /p̂2q̂2) · ε = s · 290.5 · ε. Finally, we need
T3 = 2128−h for an exhaustive search.

To balance the above complexity, We choose h = 20 and s = 1 in order to
achieve a good success probability of 84.00%. At last, we have a time complexity
of 2125.175 23-round encryptions, a data complexity of 2120.175 and a memory
complexity of 2120.175.

6 Conclusion and Future Discussion

In this paper, we propose the GBCT to complement the leaky part that can not
be evaluated by BCT, so as to obtain a more accurate distinguisher probability.
Then, an automatic search algorithm applicable to all S-box-based block ciphers
is provided to obtain a rectangle distinguisher with higher probability. Utilizing
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the algorithm, we achieve the optimal probability of distinguishers for 20/19-
round GIFT-64/128, and therefore the lowest data and time complexities of the
related-key rectangle attacks on GIFT-64/128 up to now.

There are still some unfinished work to be investigated in the future. More
variables introduced by GBCT are very constrained for the MILP model when
Em > 1. In addition, the search algorithm is only applicable to ciphers with
S-boxes as the nonlinear layers. In the future, we will extend the research to
fully assess the probability in Em, not only when Em > 1, but also for ciphers
with nonlinear components like modular additions or bit-wise AND operations.

Acknowledgement. This work was supported by the National Natural Science Foun-
dation of China (Grant No. 61872359, No. 61936008 and No. 61972393) and the Climb-
ing Program from Institute of Information Engineering CAS (Grant No. E1Z0041112).

A 10-Round Optimal (Related-Key) Differentials
for GIFT-64

Table 6. Input and Output differences of 10-round related-key differential trails with
weight 19.8 of GIFT-64

i input differences αi master key differences ΔiniK

1
0000 0000 0000 6002

000C 0000 0000 0000 0040 0000 0000 0011

0000 0000 0000 6004

2
0000 0000 6002 0000

00C0 0000 0000 0000 0004 0000 0000 0022

0000 0000 6004 0000

3
0000 6002 0000 0000

0C00 0000 0000 0000 4000 0000 0000 0044

0000 6004 0000 0000

4
6002 0000 0000 0000

C000 0000 0000 0000 0400 0000 0000 0088

6004 0000 0000 0000

i output differences δi master key differences ∇iniK

1 0800 0400 0220 0310 000C 0000 0000 0000 0040 0000 0000 0011

2 0310 0800 0400 0220 00C0 0000 0000 0000 0004 0000 0000 0022

3 0220 0310 0800 0400 0C00 0000 0000 0000 4000 0000 0000 0044

4 0400 0220 0310 0800 C000 0000 0000 0000 0400 0000 0000 0088
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Abstract. Ciminion is a symmetric cryptographic algorithm proposed
by Dobraunig et al. in EUROCRYPT 2021, which is based on Toffoli-
Gates over F2n or Fp. This cipher is a multiparty computation (MPC),
fully-homomorphic encryption (FHE) and zero-knowledge (ZK) friendly
symmetric-key primitive due to its low multiplicative complexity. There is
currently no published third-party cryptanalysis of this algorithm. In this
paper, we give the first analysis on Ciminion based on higher order differ-
ential cryptanalysis and integral cryptanalysis. We consider the three sets
of instances, i.e., “standard” set, “conservative” set and the instances used
in MPC application, and construct the corresponding reduced-round dis-
tinguishers over F2n and Fp, respectively. On the other hand, we observe
a linear relation between the input and output of the round function and
conclude a new set of weak random numbers based on this observation.
For an aggressive evolution of Ciminion called Aiminion, we recover the
subkeys under these weak random numbers. Although we cannot recover
the master key, the information disclosure of the subkeys also poses certain
potential threats to the cryptographic algorithm. Our results can provide
guidance for designers to choose round random numbers.

Keywords: Ciminion · Aiminion · Higher order differential
cryptanalysis · Integral cryptanalysis · Distinguisher · Weak random
numbers

1 Introduction

Recently, many symmetric cryptographic schemes have been proposed to realize
low multiplicative complexity motivated by the implementations of ciphers in
the context of multiparty computation (MPC), fully-homomorphic encryption
(FHE) and zero-knowledge (ZK) schemes. In these situations, linear operations
come almost for free, since they only incur local computation (resp. do not
increase the noise much), whereas the bottleneck are nonlinear operations that
involve symmetric cryptographic operations and communication between parties
(resp. increase the noise considerably). According to the underlying field on
which the operation is based, these cryptographic algorithms can be roughly
divided into two categories. For instance, Flip [23], Keyvrium [10], LowMC [4]
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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and Rasta [14] are the ciphers that use the multiplications in F2. The other
category contains the ciphers having a natural description in large fields, which
are mostly binary extension fields F2n and prime fields with odd characteristic
Fp, for example, MiMC [3], GMiMC [2], Jarvis [6], Hades [18], Poseidon [17],
Vision [5], Rescue [5] and Ciminion [15].

The cryptanalysis of these ciphers have been receiving widespread attention.
The many potentially devastating attacks on recently published designs imply
that the design of schemes with low multiplicative complexity has not reached
a mature state yet. For example, there exist Gröbner bases attacks on Jarvis [1]
and higher order differential attacks on MiMC [16]. To resist common attacks,
most primitives operating in large fields have a variant of powering field ele-
ments, e.g., x3 or x−1. These mappings become popular to guard against linear
and differential cryptanalysis, and they often have an inverse of high degree,
which provides protection against algebraic attacks. However, they impose some
restrictions, e.g., the map x → xα for integer α ≥ 2 is a bijection in Fq (q = 2n

or q = p) if and only if gcd(q − 1, α) = 1. Hence, one has to consider several
power values α in order for xα to stay a permutation for any field. Ciminion
[15] proposed by Dobraunig et al. in EUROCRYPT 2021 adopts the Toffoli gate
[25] as the nonlinear element which is a permutation for any field, instead of a
power mapping and chooses to multiply two elements of the state, instead of
operating on a single state element, in order to increase the nonlinear diffusion.
With respect to the linear layer, the authors learned from ciphers like LowMC
[4] that very heavy linear layers can have a considerably negative impact on the
performance of applications [13]. So they decided to pair the Toffoli gate with
a relatively lightweight linear layer to construct a cryptographic permutation
on triples of field elements. Due to that the nonlinear transformation has a low
degree, attacks with algebraic techniques seem to be the potential threats to
Ciminion. Note that no nontrivial third-party attack has been published so far1.
In this paper, we propose the first third-party cryptanalysis for Ciminion.

Contributions. In this paper, we give the cryptanalysis of Ciminion over binary
extension fields and prime fields with odd characteristic, and show that there are
still potentially threats. Our attacks are based on the higher order differential
cryptanalysis [19,22] and integral cryptanalysis [9,21]. Our results are detailed
as follows:

1. For the “standard” instance of Ciminion where the data available to the
attacker is limited to 2s, we give (s + 3)-round and (s + 2)-round distin-
guishers over F2n and Fp, respectively, where s is the security level. We firstly
utilize the higher order differential cryptanalysis and integral cryptanalysis to
construct a forward (s+1)-round distinguisher for the permutation. Then we
consider the output of the first block of the cipher, and the first two branches

1 Recently, the work [7] in Tosc 2022 gave an analysis on Ciminion. They constructed
a new polynomial system to recover the full internal state. The idea is different from
ours in this paper, so it will not be described carefully here. Interested readers can
refer to [7].
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of the output can be computed by the corresponding plaintexts and cipher-
texts while the third branch is unknown, so we introduce a new variable to
represent it. In binary extension fields, we use the vectorial Boolean function
instead of the univariate representation to represent the round function. We
consider the middle state after inverting two rounds from the output of the
first block of the cipher, and find that the algebraic degrees on the intro-
duced variables of the first two branches of this middle state are low, which
results in that the number of equations we collected is sufficient to eliminate
all the introduced variables. This means that some linear combinations of the
bits of the first two branches of the middle state depend only on the first
two branches of the output of the cipher. As a result, we can extend the
(s+1)-round distinguisher to the distinguisher of (s+3)-round Ciminion by
inverting 2 rounds from the output of the first block of the cipher. In prime
fields with odd characteristic, we also can concatenate the last one round of
the cipher by inverting 1 round and eliminating the new introduced variable
to obtain the integral property of (s + 2)-round Ciminion. In addition, We
also consider the “conservative” instance of Ciminion and the instances used
in MPC application and give the corresponding results using similar methods.
The detailed results can be seen in Tables 5 and 6.

2. We observe a linear relation between the input and output of Ciminion’s
round function and conclude that this linear relation can be transmitted to the
following round when the adjacent round random numbers satisfy ti · ti+1 =
−1. This condition gives a new set of weak random numbers and improves
the constraint ti /∈ {0, 1} in [15].

3. Under the weak random numbers, we present an analysis to Aiminion which
is an aggressive evolution of Ciminion. We can recover the subkeys K3,. . . ,
K

2
s
2

when all the round random numbers ti of PE satisfy the conditions
ti · ti+1 = −1 and can recover K1 when the all round random numbers ti
of PC also satisfy the conditions. Note that we cannot directly recover the
master key because the key schedule is so complicated. It evidences that the
security of Ciminion relies on the key schedule.

Organization. Next, we describe some preliminaries. Algebraic distinguishers of
reduced-round Ciminion are built in Sect. 3. Then we give a subkey recovery
attacks of Aiminion under weak random numbers in Sect. 4. Finally, we conclude
this paper in Sect. 5.

2 Preliminaries

2.1 Description of Ciminion

Ciminion is a nonce-based stream-encryption scheme proposed by Dobraunig et
al. [15] in EUROCRYPT 2021, which minimizes the number of field multiplica-
tions in large binary or prime fields. In contrast to other schemes that aim to
minimize field multiplications in F

n
2 or Fp, Ciminion relies on the Toffoli gate to

improve the nonlinear diffusion and uses a very lightweight linear layer. In this
section, we give the specific description of Ciminion.
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As shown in Fig. 1, the scheme takes a nonce N along with two subkey
elements K1 and K2 as input, and processes the input with a permutation PC to
output an intermediate state. Then this intermediate state is used as the input
of a permutation PE . The output state is truncated to two elements, which are
used to encrypt two plaintext elements P1 and P2. If more elements need to be
encrypted, the intermediate state can be expanded by repeatedly performing an
addition of two subkey elements, then followed by a call to the rolling function
rol. After each call to the rolling function rol, the output state is used as the
input of the corresponding permutation PE . In this way, two more plaintext
elements P2i−1 and P2i are encrypted by the truncated elements of the resulting
state.

pC

K2

K1

ℵ

pE

P3

C3

pE

K3
K4

rol

K2l−1
K2l

rol

P4

C4

P2l−1

C2l−1

P2l

C2l

pE

P1

C1

P2

C2

Fig. 1. Encryption with Ciminion over F
n
2 . The construction is similar over Fp (⊕ is

replaced by +, the addition modulo p)

Next, we describe the two permutations PC and PE used in Ciminion. They
act on a state of triples (a, b, c) ∈ F

3
q where q = 2n (over binary extension field) or

q = p ≈ 2n (over prime field). Both permutations are the result of the repeated
application of a round function. PC and PE have N and L rounds, respectively.
The round function is shown in Fig. 2. Denote the i-th round function by fi with
i = 0, · · · , N − 1. The i-th round functions of PC and PE are fi and fi+N−L,
respectively. The round function fi uses four round constants (ui, vi, wi, ti) which
are generated with Shake-256 [8,24]. Note that Ciminion requires ti /∈ {0, 1}. We
formally state the round function fi as follows:
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⎡
⎣

ai+1

bi+1

ci+1

⎤
⎦ :=

⎡
⎣
0 0 1
1 ti ti
0 1 1

⎤
⎦ ·

⎡
⎣

ai

bi

ci + ai · bi

⎤
⎦ +

⎡
⎣

ui

vi

wi

⎤
⎦ .

Fig. 2. Round function fi

Fig. 3. Rolling function. Fig. 4. Key generation.

The rolling function rol is a simple NLFSR, as depicted in Fig. 3. It takes
three field elements ιa, ιb and ιc as the input. It outputs three field elements:
ωa := ιc + ιa, ωb := ιa and ωc := ιb. The subkey Ki is derived from two master
keys MK1 and MK2. As shown in Fig. 4, to expand the key, the authors used
the sponge construction instantiated with the permutation PC . The value IVH

can be made publicly available, and is typically set to 1.
The designers defined three sets of round numbers for each permutation in the

encryption scheme, as seen in Table 1. We assume throughout that the security
level of s bits satisfies the condition 64 ≤ s ≤ �log2(q)�. The “standard” set
guarantees s bit of security. For MPC application, the data available to the
attackers is limited to 2

s
2 . The “conservative” number of rounds is obtained by

arbitrarily increasing the number of rounds by 50% of the standard instance.

Aiminion. It is an aggressive evolution of Ciminion the authors presented in
[15] for further analysis. Compared to Ciminion, Aiminion uses the identity
mapping as the rolling function rol, and fixes the number of rounds to 9 for the
permutation PE . The parameters of Aiminion can be seen in Table 2.
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Table 1. Proposed number of rounds based on f for three encryption instances.

Instance PC PE (two output words per block)

Standard s+ 6 max{⌈
s+37
12

⌉
, 6}

Data limit 2
s
2 elements 2(s+6)

3
max{⌈

s+37
12

⌉
, 6}

Conservative s+ 6 max{⌈
3
2

· s+37
12

⌉
, 9}

Table 2. Proposed number of rounds for Aiminion.

Instance PC PE (two output words per block)

Data limit 2
s
2 elements 2(s+6)

3
9

2.2 Polynomial Representations over Binary Extension Fields

Every function E : F2n → F2n can be uniquely represented by a polynomial over
F2n in variable X with maximum degree 2n − 1, i.e., E(X) =

∑2n−1
i=0 φi · Xi for

φi ∈ F2n . We refer to this representation as the word-level representation, the
degree of a single variable in E as the univariate degree. On the other hand,
the function E admits a unique representation as an n-tuple E0, E1, . . . , En−1 of
polynomials over F2 in variables X0, . . . , Xn−1, where Ej : Fn

2 → F2 is a Boolean
function:

Ej(X0, . . . , Xn−1) =
⊕

μ=(μ0,...,μn−1)∈{0,1}n

φj,μ ·
n−1∏
k=0

Xμk

k ,

where the coefficients φj,μ ∈ F2. Denote E : F
n
2 → F

n
2 as vectorial Boolean

functions, the degree of E as the algebraic degree. We call this description the
vectorial Boolean function representation of E. The link between the algebraic
degree and the univariate degree of a vectorial Boolean function is established
in [11, Section 2.2]. Lemma 1 in [12] makes this link explicit.

Lemma 1 [11,12]. Let E : F2n → F2n be a function over F2n and let E(X) =∑2n−1
i=0 φi · Xi denote the corresponding univariate polynomial description over

F2n . The algebraic degree δ(E) of E as a vectorial Boolean function is the max-
imum over all Hamming weight of exponents of non-vanishing monomials, that
is

δ(E) = max
0≤i≤2n−1

{HW (i)|φi 	= 0}.

3 Algebraic Distinguishers of Reduced-Round Ciminion

In this section, we give the cryptanalyses of reduced-round Cinimion using the
higher order differentials over binary extension fields and integral cryptanalysis
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over prime fields with odd characteristic. Specially, we consider the two cases that
the branch b of the input to PC is fixed to 0 or not, as the authors considered
when proposing the rounds number of the permutation PC . Denote the attack
rounds by R = Rc +Re, where Rc and Re are the numbers of rounds of PC and
PE , respectively. We describe our attack process with the special cases of Re = 1
or 2 and Rc = R − Re.

3.1 Higher Order Differential Distinguisher over Binary Extension
Fields

One of the most powerful cryptanalytic methods for symmetric primitives over
F

n
2 with low-degree round function is higher order differential cryptanalysis. This

method allows distinguishing a given Boolean function from a random one. The
idea was introduced by Lai [19,22]. If the algebraic degree of a vectorial Boolean
function E : Fn

2 → F
n
2 (like a permutation) is d, then the sum over the outputs

of the function applied to all elements of a vector space of dimension ≥ d + 1 is
0, i.e., for any vector subspace V ⊆ F

n
2 with dimension strictly greater than the

algebraic degree of E and for any c ∈ F
n
2

⊕
x∈V

E(x + c) = 0. (1)

In Ciminion, we can only directly manipulate a single element (nonce N ). The
other two elements are secret subkeys (K1 and K2). We therefore operate with
N (as variable x) to input value set, while keeping K1 and K2 fixed. Each output
element is the result of a nonlinear function depending on the input elements
x, K1 and K2. For simplicity, we consider the “standard” set encryption scheme
as an example to describe our cryptanalysis, which guarantees s bit of security
under the assumption that the data available to the attacker is limited to 2s.
By Lemma 1 and Eq. (1), if we choose 2s nonces forming a subspace V of Fn

2 ,
then we can construct a distinguisher for the permutation PC when the algebraic
degree denoted of permutation PC is less than s.

Forward Distinguisher of Rc-Round Permutation PC . We study the evo-
lution of the algebraic degree of the permutation PC where the round function
f (see Fig. 2) is iterated N times. We only consider the degrees of the first two
branches, since the degree of the third branch is higher than them. Furthermore,
we conclude that the upper bounds on the degree of the first two branches is
as Table 3. The univariate degree is obtained obviously from the expression of
round function over F2n because the maximal univariate degree of the function
can be doubled per round in the best case. The corresponding algebraic degree
can be obtained from Lemma 1.

According to the table, we can build a distinguisher for Rc-round permutation
PC , where Rc = s, because the algebraic degree of the function is at most s − 1
and the dimension of the available subspace is s. The first two outputs of s-round
PC can be expressed as Fj(x,K1,K2) for j = 0, 1. Then, for any fixed basis of Fn

2
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Table 3. Upper bounds on the degree of the first two branches of PC .

Number of rounds 1 2 3 4 · · · i · · · s s+1

Univariate degree 1 2 4 8 · · · 2i−1 · · · 2s−1 2s

Algebraic degree 1 1 2 3 · · · i − 1 · · · s − 1 s

over F2 defining an isomorphism between F2n and F
n
2 , each element in F2n can

be uniquely represented as an n-dimension vector in F
n
2 . Therefore, the above

outputs can be rewritten by the following form under the fixed basis:

F i
j (x0, x1, . . . , xn−1),

for i = 0, · · · , n − 1 and j = 0, 1, where (x0, x1, . . . , xn−1) is the vectorial repre-
sentation of x. We omit the notation of the corresponding vector representations
of subkeys K1,K2 in the equations for simplicity. So we have 2n equations over
F2 as follows:

⊕
�x∈V

F i
j (x0, x1, . . . , xn−1) = 0, (2)

where (x0, x1, . . . , xn−1) is denoted by �x and V is a set of nonces input which is
a subspace of Fn

2 (i.e., V ⊆ F
n
2 ). So a distinguisher for PC with s-round iterations

is built.
We also consider the case where the input of permutation PC at branch b

is 0. Then the degree of the first two branches of PC remains unchanged for
two rounds. Its increasing trend is as Table 4. Similarly, we can construct an
(s + 1)-round distinguisher for PC .

Table 4. Upper bounds on the degree of the first two branches of PC when the branch
b is zero.

Number of rounds 1 2 3 4 · · · i · · · s+1 s+2

Univariate degree 1 1 2 4 · · · 2i−2 · · · 2s−1 2s

Algebraic degree 1 1 1 2 · · · i − 2 · · · s − 1 s

Note that for the “conservative” set, there are the same results because they
have the same limitation in data available to attackers. For the MPC application,
if the data available to the attacker is limited to 2

s
2 , then there are s

2 -round
distinguisher and ( s

2 + 1)-round distinguisher for the above two cases.

The Distinguisher of Reduced-Round Ciminion . Based on the above
forward distinguishers, we concatenate the reduced-round permutation PE to
extend the distinguishers. We denote the matrix of linear layer by H. The inverse
matrix of the transformation is H−1:

H =

⎡
⎣
0 0 1
1 ti ti
0 1 1

⎤
⎦ ,H−1 =

⎡
⎣

0 1 −ti
−1 0 1
1 0 0

⎤
⎦ .
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As depicted in Fig. 1, the output of the first call to PE is truncated to two
elements as the first two stream keys, while the output of the third branch is
unknown. Let the output at the third branch of permutation PE be y, the first
and the second branches be M1 and M2. So M1 ⊕ P1 = C1, M2 ⊕ P2 = C2

2,
and M1, M2 are the first two stream keys where P1 and P2 are the plaintexts,
C1 and C2 are the corresponding ciphertexts. Now we deduce expressions of
the intermediate state reversely from the output of permutation PE , i.e., M1,
M2 and y. Recall that the number of rounds of PE is Re. The expressions by
inverting one round are as follows:

⎡
⎣

aRe−1

bRe−1

cRe−1 + aRe−1 · bRe−1

⎤
⎦ =

⎡
⎣

0 1 −tRe−1

−1 0 1
1 0 0

⎤
⎦ ·

⎡
⎣

M1 − uRe−1

M2 − vRe−1

y − wRe−1

⎤
⎦ ,

then denoted the state by
⎡
⎣

aRe−1

bRe−1

cRe−1

⎤
⎦ :=

⎡
⎣

g0(M1,M2, y)
g1(M1,M2, y)
g2(M1,M2, y)

⎤
⎦ , (3)

where gi is a polynomial over F2n for i = 0, 1, 2. We conclude that the univariate
degree of gi in variable y is 1 for i = 0, 1 and the univariate degree of g2 is 2.
Similarly, we can deduce the expressions by inverting two rounds as follows:

⎡
⎣

aRe−2

bRe−2

cRe−2

⎤
⎦ :=

⎡
⎣

g′
0(M1,M2, y)

g′
1(M1,M2, y)

g′
2(M1,M2, y)

⎤
⎦ ,

where g′
i is a polynomial over F2n for i = 0, 1, 2. We conclude that the univariate

degree of g′
i in variable y is 2 for i = 0, 1 and the univariate degree of g′

2 is 4.
According to Lemma 1, the algebraic degree of a vectorial Boolean function

can be computed from its univariate representation. So, the algebraic degrees of
gi and g′

i are 1 for i = 0, 1 when they are seen as the vectorial Boolean function
over F

n
2 . We can collect 2n Boolean expressions after inverting two rounds as

follows:

Gi
j(y0, y1, . . . , yn−1, �M1, �M2),

for i = 0, · · · , n − 1 and j = 0, 1, where (y0, y1, . . . , yn−1), �M1 and �M2 are the
vectorial representations of y, M1 and M2, respectively.

When we assume that Re = 2, then for i = 0, · · · , n−1 and j = 0, 1, we have

F i
j (x0, x1, . . . , xn−1) = Gi

j(y0, y1, . . . , yn−1, �M1, �M2).

This system includes 2n linear equations in terms of variables x0, x1, . . . , xn−1,
y0, y1, . . . , yn−1, �M1, �M2. Our aim is to get a reduced set of equations by some-
how eliminating y0, y1, . . . , yn−1 from the variable set. There remains around n

2 ⊕ is replaced by +, the addition modulo p on Fp.
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expressions on the right side denoted by G′ := (G′
0, . . . , G

′
n−1), which are only

on variables �M1, �M2. The left side needs to be manipulated by the same trans-
formation, and the result is denoted by F ′ := (F ′

0, . . . , F
′
n−1). This process can

be seen as a linear transformation denoted by L = (L0, . . . ,Ln−1). Then we have

F ′ = G′, (4)

F ′ := L(F 0
0 , . . . , Fn−1

0 , F 0
1 , . . . , Fn−1

1 ),

G′ := L(G0
0, . . . , G

n−1
0 , G0

1, . . . , G
n−1
1 ).

From the Eqs. (2) and (4), for j = 0, · · · , n − 1, we have
⊕

( �M1, �M2)∈W

G′
j =

⊕
�x∈V

F ′
j

=
⊕
�x∈V

Lj(F 0
0 , . . . , Fn−1

0 , F 0
1 , . . . , Fn−1

1 )

=Lj(
⊕
�x∈V

F 0
0 , . . . ,

⊕
�x∈V

Fn−1
0 ,

⊕
�x∈V

F 0
1 , . . . ,

⊕
�x∈V

Fn−1
1 ) (5)

=0, (6)

where W is the set of pair of ( �M1, �M2) corresponding to the set V of nonces
while ( �M1, �M2) can be represented by the corresponding plaintexts P1, P2 and
ciphertexts C1, C2. So far, we have obtained a distinguisher of the corresponding
plaintexts and ciphertexts under these 2s nonces.

Specially, a distinguisher of (s+1+ 2)-round Ciminion is built if the branch
b is 0 and a distinguisher of (s+2)-round Ciminion is built if the branch b is not
0. Similarly, for “conservative” set and MPC application, the number of rounds
of the distinguisher can also be extended two more rounds. Note that the time
complexity of this cryptanalysis is of around the same order of magnitude as the
data complexity. Table 5 gives these results.

Table 5. The distinguishers over F2n .

Standard (or conservative) MPC application

Data limitation 2s 2
s
2

Rounds (b = 0) (s+1)+2 ( s
2
+1)+2

Rounds (b �= 0) s+2 s
2
+2

Complexity 2s 2
s
2

Remark 1. The representations of the penultimate third round of PE from the
output have higher algebraic degree on variables y0, y1, . . . , yn−1. The equations
we collected are not enough to eliminate these variables.
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3.2 Integral Property over Prime Fields with Odd Characteristic

The above cryptanalysis utilizes the higher order differential technique, which
can be seen as a variant of integral attacks [21]. This comes from the fact that
the sum of the images by E of all inputs in V corresponds to a value of a
derivative of E of order (dim V ) [19,22]. But this fact does not hold anymore
in odd characteristic, and the same technique cannot be applied directly. In
CRYPTO 2020 Beyne et al. presented a similar result for the prime case in odd
characteristic in [9, Proposition 2]. We rewrite the property as follows:

Proposition 1 [9]. Let V be a multiplicative subgroup of F×
p , where p is an odd

prime. For any E : Fp → Fp such that the deg(E) < |V |,
∑
x∈V

E(x) − E(0) · |V | = 0. (7)

Next, we can find an integral property for the permutation PC base on this
proposition.

Forward Integral Property of Rc-Round Permutation PC . Similarly, we
still can only directly manipulate a single element, i.e., nonce N (as variable
x). From Table 3, we can conclude that the univariate degree on variable x of
the first two branches of PC over Fp also can be doubled per round in the best
case. The first two outputs of s-round PC can be expressed as Fj(x,K1,K2)
for j = 0, 1 and for simplicity we sometimes denote it as Fj . Then we have
deg(Fj) ≤ 2s−1 for j = 0, 1. Consider the case that the attackers only have
access to at most 2s nonces for “standard” set. Denote a subgroup of F×

p by T
such that deg(Fj) < |T | ≤ 2s for j = 0, 1. Then we have for j = 0, 1

∑
x∈T

Fj(x) = Fj(0) · |T |. (8)

In other words, the sum of images by Fj of all inputs in the subgroup3 T is
Fj(0) · |T |, which is a multiple of |T |. The value of Fj(0) is related to the subkeys
K1 and K2. So there is an integral property of Rc-round permutation PC , where
Rc = s. For “conservation” set, there is a same result because they have the same
limited data. For the instances used in the MPC application, there is an integral
property of s

2 -round permutation PC .
When the branch b is 0, i.e., the subkey K1 is always 0, then the upper

bounds on the univariate degree of the first two branches of PC is as Table 4.
We can obtain similar results (see Table 6).

The Integral Property of Reduced-Round Ciminion. Like the description
over binary extension fields, we use the same notations. The expressions of the
state obtained by inverting one round from the output of permutation PE can
be seen in Eq. (3). So for j = 0, 1, the equations hold:
3 Note that this analysis only holds for certain large prime numbers, That is, when

the subspace T that satisfies the condition must exist.
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Fj(x) = gj(M1,M2, y).

We only consider the univariate degrees on variable y of g0 and g1, where
deg(g0) = deg(g1) = 1. So the variable y can be eliminated from these two equa-
tions, and denote this linear transformation by L′ and the remaining equation by
G′ including around only one equation. Let F ′ be the item of F corresponding
to G′ after performing the transformation. Then

G′(M1,M2) = F ′(x),
G′(M1,M2) := L′(g0, g1, g2),
F ′(x) := L′(F0, F1, F2).

By Eq. (8), we know that
∑

(M1,M2)∈W

G′(M1,M2) =
∑
x∈T

F ′
0(x)

=
∑
x∈T

L′(F0, F1, F2)

=L′(
∑
x∈T

F0,
∑
x∈T

F1,
∑
x∈T

F2)

=L′(F0(0) · |T |, F1(0) · |T |, F2(0) · |T |)
= |T | · L′(F0(0), F1(0), F2(0)), (9)

where W is the set of pair of (M1,M2) corresponding to the set T of nonces
while (M1,M2) can be represented by the corresponding plaintexts P1,P2 and
ciphertexts C1, C2. So the sum of the images by G′ of all (M1,M2) ∈ W is a
multiple of |T |. So for “standard” set, we build an (s+1)-round integral property.
For “conservation” set, there is a same result because they have the same limited
data. For the instances used in MPC application, there is an ( s

2 + 1)-round
integral property. When the branch b is 0, we can obtain similar results. We
summarize the results for all cases as Table 6.

Remark 2. In the known-key setting [20], we assume that the subkeys have
known values. The attack goal is to find non-random properties of the result-
ing permutation. F0(0), F1(0), F2(0) can be computed from the known subkeys
K1 and K2. In this way, Eq. (9) shows that the sum of the images by G′ is a
constant.

3.3 General Cases

In the above, we present our cryptanalysis for R-round Ciminion where R =
Rc + Re with Re = 2 over F

n
2 and Re = 1 over Fp. In fact, we do not need to

limit the number of rounds for PE to 1 (or 2). We allow that the number of
rounds for PE is greater than 1 (or 2), i.e., Re ≥ 2 over F

n
2 (or Re ≥ 1 over Fp),

then the corresponding number of rounds for PC is Rc = R − Re.
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Table 6. Integral property over Fp.

Standard (or conservative) MPC application

Data limitation 2s 2
s
2

Rounds (b = 0) (s+1)+1 ( s
2
+1)+1

Rounds (b �= 0) s+1 s
2
+1

Complexity 2s 2
s
2

4 Subkey Recovery Under Weak Random Numbers

4.1 Observations on the Round Function

The round function includes nonlinear transformation, linear transformation and
round constant addition, which uses four random numbers (ui, vi, wi, ti). Accord-
ing to the Fig. 2, we can rewrite the output of the i-th round iteration as follows:

ai+1 = ci + ai · bi + ui,

bi+1 = ai + ti · bi + ti · ci + ti · ai · bi + vi,

ci+1 = bi + ci + ai · bi + wi,

where i = 0, · · · , N − 1.

Observation 1. Consider the round function of Ciminion. We denote the input
of the i-th round iteration by (ai, bi, ci) and denote the i-th round constants by
(ui, vi, wi, ti), for ti /∈ {0, 1}. The relation

bi+1 − ti · ai+1 = ai + ti · bi + vi − ti · ui (10)

holds for i = 0, · · · , N − 1.

Specially, for permutation PC , a0 = N , b0 = K1 and c0 = K2. For example

i = 0 : b1 − t0 · a1 = a0 + t0 · b0 + v0 − t0 · u0

= N + t0 · K1 + v0 − t0 · u0,

i = 1 : b2 − t1 · a2 = a1 + t1 · b1 + v1 − t1 · u1,

i = 2 : b3 − t2 · a3 = a2 + t2 · b2 + v2 − t2 · u2,

...

From the above expressions, if a1+t1 ·b1 is always a multiple of b1−t0 ·a1, then
b2 − t1 · a2 can be represented linearly by N and K1. Assume that a1 + t1 · b1 =
λ · (b1 − t0 ·a1), then b2 − t1 ·a2 = λ · (N + t0 ·K1+v0 − t0 ·u0)+v1 − t1 ·u1 where
λ is some constant. For this we need t0, t1 to satisfy the equation t0 · t1 = −1.
Next, we can conclude that
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Observation 2. Consider the round function of Ciminion. We denote the input
of the i-th round iteration by (ai, bi, ci) and denote the i-th round constants by
(ui, vi, wi, ti), for ti /∈ {0, 1}. For each i = 0, · · · , N − 2, if ti · ti+1 = −1, then
there is a linear relation between the output of the (i + 1)-round ai+2, bi+2 and
the input of the i-round ai, bi.

Proof. By Observation 1, we have

bi+1 − ti · ai+1 = ai + ti · bi + vi − ti · ui,

bi+2 − ti+1 · ai+2 = ai+1 + ti+1 · bi+1 + vi+1 − ti+1 · ui+1.

If ti · ti+1 = −1, then we have

bi+2 − ti+1 · ai+2 = ai+1 + ti+1 · bi+1 + vi+1 − ti+1 · ui+1

= ti+1 ·
(

1
ti+1

· ai+1 + bi+1

)
+ vi+1 − ti+1 · ui+1

= ti+1 · (bi+1 − ti · ai+1) + vi+1 − ti+1 · ui+1

= ti+1 · (ai + ti · bi + vi − ti · ui) + vi+1 − ti+1 · ui+1

= ti+1 · ai − bi + δi,

where δi = ti+1 ·vi+ui+vi+1 − ti+1 ·ui+1 is a known constant after the instance
is fixed. �
Remark 3. Specially, the condition becomes ti · ti+1 = 1 over binary extension
fields, which means that the random numbers t of the adjacent rounds cannot
be inverse of each other. The designers only limited that ti /∈ {0, 1} [15]. So we
give a new set of weak random numbers.

Corollary 1. Consider the round function of Ciminion. We denote the input
of the i-th round iteration by (ai, bi, ci) and denote the i-th round constants by
(ui, vi, wi, ti), for ti /∈ {0, 1}. (ar, br, cr) is the output of the permutation PC with
r-round iteration, where 2 ≤ r ≤ Rc. If ti · ti+1 = −1 for i = 0, · · · , r − 2, then
there is a linear relation on ar, br, N and K1, i.e., br − tr−1 · ar = αr · (N + t0 ·
K1) + δ, where αr = tr−1tr−2 · · · t1, δ is related to the round random numbers.

Remark 4. In fact, αr = 0 when (r − 1) mod 4 = 0; αr = t1 when (r − 1)
mod 4 = 1; αr = −1 when (r−1) mod 4 = 2; αr = −t1 when (r−1) mod 4 = 3.
For example, if r = 8, αr = −t1.

When the conditions in Corollary 1 are met, if the attackers obtain the inter-
mediate state after r-round PC , then they can recover the subkey K1 from the
linear relation. Next, we give an analysis for Aiminion under these weak random
numbers.
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4.2 Subkey Recovery of Aiminion Under Weak Random Numbers

Based on the observations as above, we present a cryptanalysis strategy on
Aiminion under weak random numbers. Aiminion [15] is an aggressive evolu-
tion of Ciminion. Compared to Ciminion, it uses the identity mapping as the
rolling function rol, and fixes the number of rounds to 9 for PE . In this strategy,
we assume that the random numbers4 of PE satisfy ti ·ti+1 = −1 for i = 0, · · · , 7.

By Fig. 1, several outputs are generated from the same unknown middle
state by permutation PE . For a given nonce N , let (sN

0 , sN
1 , sN

2 ) ∈ (Fq)3 be the
corresponding middle state. Let the first two elements in the output of the t-th
call of PE be M2t−1 and M2t assuming5 that 1 ≤ t ≤ 2

s
2−1.

According to Observations 1 and 2, there is a linear relation in terms of sN
0 ,

sN
1 , M1 and M2 from the first call of PE . The relation can be rewritten as follows:

M1 − t8 · M2 = −t1 · (sN
0 + t0 · sN

1 ) + δ′, (11)

where δ′ is related to the round random numbers since α8 = −t1. Similarly, for
the second and third calls of PE , the equations are

M3 − t8 · M4 = −t1 · (sN
0 + K4) − t1 · t0 · (sN

1 + K3) + δ′, (12)

M5 − t8 · M6 = −t1 · (sN
0 + K4 + K6) − t1 · t0 · (sN

1 + K3 + K5) + δ′. (13)

By subtracting (12) from (11) and (13) from (12), we have

M1 − M3 − t8 · (M2 − M4) = t1 · (K4 + t0 · K3), (14)
M3 − M5 − t8 · (M4 − M6) = t1 · (K6 + t0 · K5). (15)

If we choose another nonce N ′ (N ′ 	= N , the corresponding round random
numbers are t′i satisfying t′i · t′i+1 = −1 for i = 0, · · · , 7), the corresponding
equations are

M ′
1 − M ′

3 − t′8 · (M ′
2 − M ′

4) = t′1 · (K4 + t′0 · K3), (16)
M ′

3 − M ′
5 − t′8 · (M ′

4 − M ′
6) = t′1 · (K6 + t′0 · K5). (17)

Then, from Eqs. (14)–(17), K3, K4, K5 and K6 can be solved. Note that we can
collect 2(

s
2−2) equations for each nonce when we have access to 2

s
2 stream keys,

so we can solve Ki for i = 3, · · · , 2
s
2−1 by a similar discussion.

Furthermore, if all the round random numbers of PC also satisfy the condi-
tions in Corollary 1, then we can solve the subkey K1.

The subkeys Ki are generated by the two master keys MK1 and MK2 as
shown in Fig. 4. Since the key schedule is complicated and the security of the algo-
rithm relies on the key schedule, the master keys can not be recovered directly.
But the information disclosure of the subkeys also poses a certain potential threat
to the cryptographic algorithm. Our analysis can provide guidance for designers
to choose round random numbers.
4 From Sect. 2.1, we know that the random numbers used in PE are the round random

numbers from the last 9 rounds of PC .
5 For Aiminion, the data limit is 2

s
2 elements. So the number of stream keys we used

is at most 2
s
2 .
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5 Conclusion

In this paper, we focus on the symmetric-key primitive Ciminion and its aggres-
sive evolution called Aiminion. We give the distinguishers of Ciminion over
binary extension fields and prime fields with odd characteristic, respectively,
utilizing higher order differential cryptanalysis and integral cryptanalysis. We
also consider the security of three instances of Ciminion, i.e., “standard” set,
“conservative” set and the instances used in MPC application. On the other
hand, we observe a linear relation between the input and output of the round
function and give a set of weak random numbers. We propose attacks based
on these observations to recover the subkeys under weak random numbers. Our
attacks pose certain potential threats to this algorithm. This can provide some
references for the design of Ciminion.
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Abstract. Differential and linear cryptanalysis are two of the most
important kinds of cryptanalysis for symmetric-key primitives. In this
paper, we propose a graph-based method of evaluating the clustering
effect of iterative differential and linear trails. We also exploit the itera-
tive trails to find exploitable difference and linear propagations. We apply
our method to four lightweight SPN primitives including PRESENT,
GIFT-64, RECTANGLE and KNOT-256. For KNOT-256, we improve
the best difference and linear propagations by 5 and 9 rounds respec-
tively. For RECTANGLE, we improve the best 14-round linear propaga-
tion. Our other results are consistent with the best known results. We
illustrate the dominance of iterative trails by showing the proportion of
trails that are incorporated in our method in a difference or linear prop-
agation. Additionally, for the primary version of KNOT, we find differ-
ence and linear propagations leading to different differential and linear
attacks. We stress here that our results do not threaten the security of
KNOT.

Keywords: Lightweight cryptography · Differential cryptanalysis ·
Linear cryptanalysis · Iterative trails · Clustering effect · Graph theory

1 Introduction

Differential cryptanalysis [4] and linear cryptanalysis [10] are two of the most
powerful attacks against modern symmetric-key cryptographic primitives. The
maximum expected differential probability (EDP) of difference propagations and
the maximum expected linear potential (ELP) of linear propagations are used to
evaluate the security of a primitive against differential and linear cryptanalysis.
The maximum EDP and ELP are usually estimated by the maximum differ-
ential probability of differential trails and the maximum correlation square of
linear trails. The two main kinds of automated search tools for differential and
linear trails are dedicated depth-first search algorithms, e.g. Matsui’s branch-
and-bound algorithm [11] and methods based on mathematical solvers, e.g. the
modelling method using Mixed Integer Linear Programming (MILP) [12,15–
17,23].
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The clustering effect is that a set of trails with the same number of rounds
share the same input and output differences (masks) but propagate along dif-
ferent intermediate differences (masks). This effect was already recognized for
differential cryptanalysis in [9] and linear cryptanalysis in [13]. By considering a
large number of trails, we may obtain a more accurate estimation on EDP (ELP)
for difference (linear) propagations. To find multiple trails, one approach is to
enumerate as many trails as possible using a method of searching trails. One of
these works is [2], where multiple trails are found for lightweight primitives using
an SAT/SMT modelling method. Another breadth-first approach is to conduct
the computation round by round, which scales well with the number of trails
but has high memory requirements. Two examples of this breadth-first approach
are to use partial, sparse transition matrices [1] and to use a multistage graph
combined with memory reservation techniques [7].

In experiments, using Matsui’s algorithm or the solver-based methods, we
find it costly to find the best differential and linear trails of KNOT-256 when
the number of rounds is large and to enumerate trails to investigate the clus-
tering effect for RECTANGLE and KNOT-256. Observing that the best long
differential and linear trails of RECTANGLE and KNOT-256 always contain
rotational iterative trails, we conceive a method of finding iterative trails and
then exploiting them to effectively and efficiently construct difference and linear
propagations considering the clustering effect.

Our Contributions

1. We introduce a new concept called the average weight growth as an indicator
of the advantage of an iterative difference or linear propagation. Based on
available algorithms in graph theory, we propose a new method of quantifi-
cationally evaluating the clustering effect of iterative trails. We apply this
method to PRESENT [5], RECTANGLE [21], GIFT-64 [3] and KNOT-256
[22]. Our results are shown in Table 1.

2. We propose a method of finding exploitable difference and linear propaga-
tions contributed by trails containing iterative ones. We apply this method to
PRESENT, RECTANGLE, GIFT-64 and KNOT-256 and the main results
are shown in Table 2. For KNOT-256, we find the best difference and lin-
ear propagations so far, which are respectively improved by 5 and 9 rounds
compared to the designers’ results. For RECTANGLE, we improve the linear
potential of the best 14-round linear propagation from 2−62.98 [7] to 2−62.05.
Our other results are consistent with the best previous results.

3. For the primary version of KNOT, a round 2 candidate of the NIST
lightweight cryptography standardization process, we find difference and lin-
ear propagations leading to various differential and linear attacks. Our results
are shown in Table 3. We stress that our results do not threaten the security
of KNOT.

4. Taking RECTANGLE and KNOT-256 as examples, we illustrate the domi-
nance of trails containing iterative ones in a difference or linear propagation
by showing the proportion of such trails from all trails.
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Table 1. Summary of results on evaluating the clustering effect of iterative trails for
PRESENT, RECTANGLE, GIFT-64 and KNOT-256. awgt is the minimum average
weight growth of iterative trails. awgc is the minimum average weight growth of iter-
ative difference or linear propagations. The smaller the average weight growth is, the
more advantageous an iterative trail or propagation is. awgc

awgt
shows the clustering effect

of iterative trails.

Cipher Differential Linear
awgt awgc

awgc
awgt

awgt awgc
awgc
awgt

PRESENT 4.50 4.11 0.913 4.00 2.76 0.690
RECTANGLE 5.00 5.00 1.000 6.00 5.46 0.910
GIFT-64 5.00 4.88 0.976 6.00 6.00 1.000
KNOT-256 5.33 4.86 0.912 6.00 4.91 0.818

Table 2. Summary of results on finding the best difference and linear propagations for
PRESENT, RECTANGLE, GIFT-64 and KNOT-256. The results in bold refresh the
published best ones.

Cipher Differential Linear
#Rounds Weight Reference #Rounds Weight Reference

PRESENT 16 61.80 [7] 24 63.61 [7]
16 61.81 Section 4.2 24 63.61 Section 4.2

RECTANGLE 14 60.63 [2] 14 62.98 [7]
14 60.64 Section 4.2 14 62.05 Section 4.2

GIFT-64 13 60.42 [7] 12 64.00 [7]
13 60.42 Section 4.2 12 64.00 Section 4.2

KNOT-256 48 252 [22] 44 250 [22]
53 253.63 Section 4.2 53 255.89 Section 4.2

Organization. The paper is organized as follows. In Sect. 2, we introduce nota-
tions and concepts. In Sect. 3, we present a new graph-based method of evaluat-
ing the clustering effect of iterative trails and exploiting iterative trails to find
exploitable difference and linear propagations. In Sect. 4, We apply our meth-
ods to four SPN symmetric-key primitives and show the results. In Sect. 5, we
conclude our paper.

2 Preliminaries

A block cipher is a function E : Fk
2 ×F

n
2 → F

n
2 with C = E(K,P ) where K, P and

C are the k-bit master key, n-bit plaintext and n-bit ciphertext. A permutation
is a bijective function P : Fn

2 → F
n
2 with SO = P(SI) where SI and SO are the

n-bit input and output state. For a fixed key K, EK = E(K, ·) is a permutation.
In this paper, we focus on iterated key-alternating primitives based on SPN
permutations. The state of such a primitive can be separated into m words of s
bits and it holds that n = s × m. The round function of the i-th round consists
of three layers and is denoted by Ri = L ◦ S ◦ AWi

where the three layers are:
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Table 3. Summary of previous and new results on the various differential and linear
attacks for the primary versions of KNOT.

Scheme Target phase Type of attack Cryptanalysis #Rounds Reference

KNOT-AEAD Initialization Distinguisher Differential 14 Section 4.3
Key recovery Linear 13 Section 4.3
Key recovery Diff-linear 15 [20]

Encryption Distinguisher Linear 12 Section 4.3
Forgery Differential 12 Section 4.3

Finalization Forgery Differential 13 Section 4.3
KNOT-Hash Absorbing Collision Differential 12 Section 4.3

Squeezing Collision Differential 13 Section 4.3

– Addition layer AWi
: xor the i-th n-bit round key or constant Wi to the state;

– Non-linear layer S: apply m parallel s-bit bijective S-boxes to the words, i.e.

S = S0|| · · · ||Sm−1;

– Linear layer L: multiply an invertible matrix to the state.

P (SI) S L S L . . . S L C(SO)
X0 Y0 Z0 X1 Y1 Z1 Zr−2 Xr−1 Yr−1 Zr−1

W0 W1 Wr−1 Wr

R0 R1 Rr−1

R∗
0 R∗

1 R∗
r−1

Fig. 1. Structure of an SPN block cipher or permutation

We show the structure of an SPN primitive in Fig. 1. We use Wi to denote
the i-th round key for a block cipher or round constant for a permutation. We
denote the states before the non-linear layer, before the linear layer and after
the linear layer of the i-th round function by Xi, Yi and Zi. Xi[j] denotes the
j-th word of Xi. The primitive iterates the round function r times. We denote
the i-th round function excluding the addition layer by R∗

i = L ◦ S.

2.1 Differential Cryptanalysis

In differential cryptanalysis, an attacker tries to find an exploitable difference
propagation, which is a difference pair, with high probability that the differences
of the input and output values have a strong relation. For a permutation P :
F

n
2 → F

n
2 , the differential probability of a difference propagation (α, β) is

P(α P−→ β) = 2−n ·
∣
∣
∣{x ∈ F

n
2 |P(x) ⊕ P(x ⊕ α) = β}

∣
∣
∣.
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An r-round differential trail is a sequence of r + 1 differences (ΔX0, · · · ,ΔXr)
with probability computed based one the Markov assumption [9],

P(ΔX0
R0−−→ · · · Rr−1−−−→ ΔXr) ≈

r−1∏

i=0

m−1∏

j=0

P(ΔXi[j]
Si−→ ΔYi[j]),

where ΔXi+1 = L(ΔYi), 0 ≤ i < r. Considering the clustering effect, the
Expected Differential Probability (EDP) of a difference propagation (α, β) is
better estimated by summing the probabilities of all differential trails sharing
the same input and output differences:

EDP(α E−→ β) ≈
∑

ΔX0=α,ΔXr=β
ΔX1,··· ,ΔXr−1

r−1∏

i=0

m−1∏

j=0

P(ΔXi[j]
Si−→ ΔYi[j]).

Truncated Difference Propagation. Let λ be a linear function corresponding
to an n×l binary matrix M . The probability of a truncated difference propagation
of λ ◦ P is given by [6]:

P(α λ◦P−−−→ β) =
∑

ω|β=Mω

P(α P−→ ω).

2.2 Linear Cryptanalysis

In linear cryptanalysis, an attacker tries to find an exploitable linear propagation,
which is a mask pair, revealing an approximate linear relation between the input
and output values. The correlation of a boolean function f : Fn

2 → F2 is

cf = 2−n ·
(∣
∣
∣{x ∈ F

n
2 |f(x) = 0}

∣
∣
∣ −

∣
∣
∣{x ∈ F

n
2 |f(x) = 1}

∣
∣
∣

)

.

For a permutation P : Fn
2 → F

n
2 , the correlation of a linear propagation (α, β) is

Cor(α P−→ β) = cα·x⊕β·P(x).

An r-round linear trail is a sequence of r + 1 masks (ΓX0, · · · , ΓXr) with cor-
relation

Cor(ΓX0
R0−−→ · · · Rr−1−−−→ ΓXr) = (−1)⊕

r
i=0ΓXi·Wi

r−1∏

i=0

m−1∏

j=0

Cor(ΓXi[j]
Si−→ ΓYi[j]),

where ΓYi = LT (ΓXi+1), 0 ≤ i < r. Considering the clustering effect, for a
permutation, the correlation of a linear propagation (α, β) is the signed sum of
correlations of all linear trails sharing the same input and output masks:

Cor(α P−→ β) =
∑

ΓX0=α,ΓXr=β
ΓX1,··· ,ΓXr−1

(−1)⊕
r
i=0ΓXi·Wi

r−1∏

i=0

m−1∏

j=0

Cor(ΓXi[j]
Si−→ ΓYi[j]).
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For a key-alternating block cipher, the Expected Linear Potential (ELP) of a
linear propagation (α, β) is calculated by summing the correlation squares of all
linear trails sharing the same input and output masks according to Theorem
7.9.1 in [6]:

ELP(α E−→ β) =
∑

ΓX0=α,ΓXr=β
ΓX1,··· ,ΓXr−1

r−1∏

i=0

m−1∏

j=0

Cor2(ΓXi[j]
Si−→ ΓYi[j]).

2.3 Iterative Trails

Iterative differential trails were exploited in the differential cryptanalysis against
DES [4]. We restate the definition of an iterative differential (linear) trail for an
SPN symmetric-key primitive as follow:

Definition 1 (Iterative trail). A differential (linear) trail with its difference
(mask) sequence (α0, · · · , αr) is iterative if α0 = αr.

2.4 Concepts in Graph Theory

A directed graph G = (V,E) consists of a set of vertices V and a set E of ordered
pairs of distinct vertices called edges. We denote a directed edge from a vertex
u to a vertex v by u → v. We denote the cost of the edge u → v by c(u → v).
A path pu,v is a sequence of vertices (u = v0, v1, · · · , vk−1, v = vk) such that
vi → vi+1 ∈ E, 0 ≤ i < k. The length of the path is l(pu,v) = k. the cost of the
path is c(pu,v) =

∏k
i=1 c(vi−1 → vi). A hull of (u, v) is defined as the set of all

paths pu,v leading from u to v. More specifically, we define a k-length hull of
(u, v), denoted by hk

u,v, as the set of all paths pu,v satisfying l(pu,v) = k. The cost
of hk

u,v is c(hk
u,v) =

∑

l(pu,v)=k c(pu,v). A path pu,u is called a circuit. A circuit
is elementary if no vertex but the first and last appears twice. Two circuits are
distinct if one is not a cyclic permutation of the other. An induced subgraph
G′ = (V ′, E′) is a strong component of G, if for all u, v ∈ V ′, there exist paths
puv and pvu and this property holds for no subgraph of G induced by a vertex
set V ′ such that V ′ ⊂ V ′ ⊆ V . Tarjan’s algorithm [18] is based on a depth-first
traversal and outputs the strong components with space and time complexity
O(|V | + |E|). Johnson’s algorithm [8], which is based on Tarjan’s algorithm,
enumerates all the elementary circuits with space complexity O(|V | + |E|) and
time complexity O((|V | + |E|)(nc + 1)) where nc is the number of elementary
circuits in G.

Viewing the trail search problem as a graph problem, we associate the con-
cepts in graph theory with the concepts in searching differential and linear trails
as shown in the following:
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Concepts in graph theory Concepts in searching
differential/linear trails

A vertex A difference or mask
An edge A 1-round trail
The cost of an edge Differential probability or correlation

square
A k-length path A k-round trail
A circuit An iterative trail
A k-length hull A k-round difference or linear

propagation

3 Method of Finding and Exploiting Iterative Trails

In this section, first we extend the definition of iterative trails so that we can
deal with ciphers having the rotational symmetry. Next, we present our method
of evaluating the clustering effect of iterative trails and exploiting iterative trails
to find exploitable difference and linear propagations. To facilitate the narrative,
we present our methods in the case of differential cryptanalysis. The situation
is analogous in the case of linear cryptanalysis and we will state the difference
when there is one.

3.1 Extending the Definition of Iterative Trails

Definition 1 is not suitable for primitives having the rotational symmetry like
RECTANGLE and KNOT-256. Defining rotlj(α) = α[j]||α[j + 1]|| · · · ||α[m −
1]||α[0]|| · · · ||α[j−1] and rotrj(·) as its inverse, we give a 1-round differential trail
of RECTANGLE in Example 1. To adapt Example 1 to Definition 1, we extend
Definition 1 by considering the rotational equivalence relation as in Definition
2. We call an iterative trail based on the rotational equivalence relation as a
rotational iterative trail.

Example 1. Let α be 0x6000000000020000, a 1-round differential trail of RECT-
ANGLE [21] with differential probability 2−5 is (α, rotl1(α)). Then we can con-
struct a long-round differential trail as (α, rotl1(α), rotl2(α), · · · ).
Definition 2 (Rotational equivalence relation). For α = α[0]|| · · · ||α[m−
1] and β = β[0]|| · · · ||β[m − 1] where α[i], β[i] ∈ F

s
2,∀i ∈ [0,m − 1], α and β are

rotational equivalent, if there exists a j ∈ [0,m−1] such that β = rotlj(α), where
rotlj(α) = α[j]||α[j + 1]|| · · · ||α[m − 1]||α[0]|| · · · ||α[j − 1].

We define the representative of a rotational equivalence class as the maximum
difference value in lexicographical order and the distance between a difference
a and its representative rep(a) as the j such that rotlj(a) = rep(a). We use
α

15−→ α to denote the class of 16 rotational iterative trails in Example 1 where
each of them is rotri(α) −→ rotr(i+15) mod 16(α),∀i = 0, · · · , 15. For primitives
that don’t have the rotational symmetry, the distance from a difference to its
representative will always be zero.
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3.2 Graph Generating

Viewing finding iterative trails as finding circuits in a graph, we can utilize
currently available graph algorithms. The first step is to generate an interesting
graph, since the graph will be exceedingly huge if we consider all 2n differences
given the block size n. Thus we only consider differences with no more than A
active S-boxes in each round, where A is a parameter for us to set. The larger
A is, the more accurate the results will be and the more memory and runtime
is needed.

We first enumerate input differences activating no more than A S-boxes.
Additionally, we filter out any input difference u such that Asn(L−1(u)) > A
(Asn(LT (u)) > A for finding iterative linear trails) where Asn(·) returns the
number of active S-boxes. Because such a difference will not appear in any circuit
in the generated graph. Then we enumerate output differences v such that the
probability p of the 1-round trail u → v is not zero and Asn(v) ≤ A. For each
u → v, we insert edge rep(u) d−→ rep(v), where d = (jv − ju) mod m, rotlju(u) =

rep(u), rotljv (v) = rep(v), into the graph and set the cost of the edge c(rep(u) d−→
rep(v)) to be p. It is worth mentioning that multiple edges can exist between
rep(u) and rep(v), each labelled by a different d. We use a three-layer hash table
H to restore the graph, i.e. H[rep(u)][rep(v)][d] = p.

After the graph is generated, we reduce it by removing vertices that don’t
have at least one incoming and one outgoing edge until no more vertices can be
removed. The remaining graph, which we call an iterative structure, will contain
the strong components and paths linking two different strong components. When
finding iterative differential trails and iterative difference propagations, only the
strong components are useful (Sect. 3.3 and 3.4). Paths linking two different
strong components are useful in finding difference propagations contributed by
trails containing iterative ones (Sect. 3.5), for we can concatenate two iterative
trails from two different strong components by such paths. Given the parameter
A, we generate the iterative structure IS as shown in Algorithm 1.

3.3 Finding the Best Iterative Differential Trail

Given the iterative structure, we can apply Johnson’s algorithm for enumerating
all elementary (rotational) iterative differential trails. For a differential trail with
probability 2−w, we call w the weight of it. For an r-round iterative differential
trail with weight w, we define its average weight growth as w/r and use it as
an indicator of the advantage of an iterative trail. We refer the best iterative
differential trail to the one with the minimum average weight growth.

Theorem 1. One of the best iterative trails must be elementary.

Proof. Suppose that none of the best iterative trails is elementary. We choose one
best iterative trail it0 with r0 rounds and weight w0. Since it is not elementary,
we can divide it into two iterative trails it1, it2 with r1, r2 rounds and w1, w2 as
weights respectively and we have r1 + r2 = r0, w1 + w2 = w0. If w1

r1
< w2

r2
, then
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Algorithm 1. Generate the iterative structure given the maximum number of
active S-boxes
Input: A: the maximum number of active S-boxes in each round
Output: IS: the iterative structure
1: procedure
2: Create an empty hash table IS.
3: for each u ∈ F

n
2 satisfying Asn(u) ≤ A and Asn(L−1(u)) > A do

4: ju ← the j such that rotlj(u) = rep(u)
5: for each v ∈ F

n
2 satisfying Asn(v) ≤ A and u → v is valid do

6: jv ← the j such that rotlj(v) = rep(v)
7: IS[ru][rv][jv − ju mod m] ← P(u → v)
8: end for
9: end for

10: Find a vertex in IS that has no incoming or outgoing edge and delete the vertex
and its corresponding edges, until no such vertex can be found.

11: return IS
12: end procedure

w1
r1

< w0
r0

< w2
r2

, which contradicts to that w0
r0

is the minimum. Else if w1
r1

= w2
r2

,
then it1, it2 are not elementary since they are also the best. Thus the above
steps can be continuously conducted on it1 and it2. However, the division can’t
be conducted infinite times. it1 or it2 will be elementary at some time and then
we will get a contradiction.

According to Theorem 1, the best average weight growth of iterative trails
equals that of elementary ones. Thus it is enough to investigate only elementary
circuits applying Johnson’s algorithm. We obtain the average weight growth for
each of the elementary circuits and find the best one. The procedure is given as
shown in Algorithm 2.

Algorithm 2. Find the best iterative trail in IS

Input: IS: the iterative structure
Output: The best average weight growth of an iterative trail
1: procedure
2: bawg ← ∞
3: for each elementary circuit (α0, · · · , αr = α0) in IS do
4: wi ← mind − log2 IS[αi][αi+1][d], ∀0 ≤ i < r
5: bawg ← min{∑r−1

i=0
wi
r

, bawg}
6: end for
7: return bawg
8: end procedure
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3.4 Finding the Best Iterative Difference Propagation

If two iterative differential trails have any common difference, we observe that
a better iterative difference propagation can be constructed. Suppose that we
find two elementary iterative differential trail it0 = (α0, α1, α0) with average
weight growth awg0 and it1 = (α0, α1, α2, α0) with average weight growth awg1.
Then the average weight growth of the 6-round difference propagation (α0, α0)
is − log2(2−awg0 + 2−awg1), which is better than either of that of the two single
iterative trails.

In order to investigate the clustering effect of iterative trails, we search for
the best iterative difference propagation in the iterative structure IS, that is,
to compute minr,u∈IS(− log2 c(hr

u,u))/r. For an r-round difference propagation
with weight w, we also use its average weight growth w/r to evaluate its strength.
We expect the gap between the average weight growth of the best single iterative
differential trail and that of the best iterative difference propagation reflects the
strength of the clustering effect of iterative trails.

We obtain the strong components SC of the iterative structure by applying
Tarjan’s algorithm. If a difference reaches out of the strong component it lies in, it
will never reach itself once again. Thus we first reduce the iterative structure IS
to its strong components SC and then we compute minu∈SC,r(− log2 c(hr

u,u))/r.
The procedure is shown in Algorithm 3. As the number of round increases, the
clustering effect will be no weaker if it exists. We cease increasing the number
of rounds r when min− log2 c(hr

u,u) exceeds the block size n.

3.5 Finding the Best Difference Propagation Contributed by Trails
Containing Iterative Ones

An iterative trail can be exploited to form a long trail in two phases. Firstly, it
is concatenated to itself several times. Secondly, the resulting trail is extended
both forward and backward by several rounds. Following this idea, we conceive
a method of exploiting the iterative structure in order to find a exploitable
difference propagation. In the following, for a graph G, we denote its vertex set
as G.V .

We first build three graphs: backward, middle and forward graph denoted
by Gb, Gm and Gf . Gm is set to be the iterative structure IS and Gb, Gf is
initialized to be IS. For each vertex in the IS, we extend it both backward and
forward by re rounds to obtain short-round trails using a depth-first traversal.
We collect as many such extended trails as possible while keeping memory usage
acceptable. We use an extra parameter we to limit the scope of extended trails.
That is, we collect k-round backward (or forward) extended trails (α0, · · · , αk)
with weight w satisfying: (1) αk ∈ IS.V (or α0 ∈ IS.V ); (2) k ≤ re; (3) w ≤
we −wmin(re −k), where wmin is the minimum weight of one-round trails. These
trails are inserted into Gb and Gf respectively.

To find the best difference propagation, we can directly conduct a round-by-
round breadth-first traversal, of which the memory complexity of the breadth-
first traversal is O(|Gb.V | · |Gf .V |). Note that |Gb.V | and |Gf .V | is far larger
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Algorithm 3. Find the best iterative difference propagation in IS

Input: IS: the iterative structure
Output: The best average weight growth of iterative difference propagations
1: procedure
2: bawg ← ∞, r ← 1, SC, H ← the strong components of IS
3: do
4: w ← minu,d − log2 H[u][u][d], bawg ← min{w/r, bawg},
5: add(H, SC), r ← r + 1
6: while w > n
7: return bawg
8: end procedure
9: procedure add(H,H′)

10: Htmp ← ∅
11: for each key (u, v, d1) of H do
12: for each key (v, w, d2) of H′ do
13: d ← d1 + d2 mod m
14: if (u, w, d) exists in Htmp then
15: Htmp[u][w][d] ← Htmp[u][w][d] + H[u][v][d1] · H′[v][w][d2]
16: else
17: Htmp[u][w][d] ← H[u][v][d1] · H′[v][w][d2]
18: end if
19: end for
20: end for
21: H ← Htmp

22: end procedure

than |IS.V | and |Gb.V | · |Gf .V | will be too large. Instead, we first conduct a
breadth-first traversal on the three graphs Gb, Gm and Gf separately, of which
the memory complexity is O(|Gb.V | · |IS.V |+ |IS.V | · |IS.V |+ |IS.V | · |Gf .V |).
And then we traverse the three graphs by considering each vertex in Gb.V sepa-
rately, where the memory complexity can be reduced from O(|Gb.V | · |Gf .V |) to
O(|Gf .V |) in the cost of increasing the time complexity by |Gb.V | times. Com-
pared to [7], taking advantage of the limited size of the iterative structure, our
time-memory tradeoff avoids duplicate computations by increasing the memory
complexity while keeping it acceptable. The procedure is shown in Algorithm 4.

4 Experimental Results

We apply our methods to 4 SPN symmetric-key primitives including PRESENT,
RECTANGLE, GIFT-64 and KNOT-256. All the experiments are conducted on
a PC with Intel(R) Core(TM) i7-4720HQ CPU @ 2.60GHz and 8GB memory.

4.1 Evaluation of the Clustering Effect of Iterative Differential
and Linear Trails

To have a direct understanding of an iterative structure, we first visualize some
of the iterative structures as shown in Fig. 2. Then we evaluate the clustering
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Algorithm 4. Find the best difference propagation contributed by trails con-
taining iterative ones
Input: IS: the iterative structure; r: the number of rounds; re: the maximum number

of rounds to be extended; we: the weight limiting the scope of extended trails.
Output: The weight of the best difference propagation contributed by trails containing

iterative ones
1: procedure
2: Gb ← IS, Gf ← IS
3: for each vertex u in IS do
4: for each trail (α0, · · · , αk) with weight w satisfying k ≤ re, w ≤ wmin(re −

k) + we and α0 = u or αk = u do
5: ji ← the j such that rotlj(αi) = rep(αi), ∀0 ≤ i ≤ k
6: if the trail is starting from αk = u then
7: Gb[rep(αi)][rep(αi+1)][ji+1 −ji mod m] ← c(αi → αi+1), ∀0 ≤ i < k
8: else if the trail is starting from α0 = u then
9: Gf [rep(αi)][rep(αi+1)][ji+1−ji mod m] ← c(αi → αi+1), ∀0 ≤ i < k

10: end if
11: end for
12: end for
13: Hb ← Gb, Hf ← Gf , Hm ← IS, bw ← ∞
14: Conduct add(Hb, Gb) and add(Hf , Gf ) (re − 1) times.
15: Conduct add(Hm, IS) (r − 2re − 1) times.
16: for each first key u of Hb do
17: H[u] ← Hb[u], add(H, Hm), add(H, Hf )
18: bw ← min{minv,d − log2 H[u][v][d], bw}
19: end for
20: return bw
21: end procedure

effect of iterative trails by giving the average weight growth of the best itera-
tive differential (linear) trails and that of the best iterative difference (linear)
propagation as shown in Fig. 3.

For PRESENT, the best iterative differential trail has 4 rounds and aver-
age weight growth 4.50, which is exactly the one given in [19]. From Fig. 3(a),
we can observe a clustering effect of iterative differential trails. Our results in
Fig. 3(b) also shows a strong clustering effect of iterative linear trails with one
active S-box in each round (which are also 1-bit trails), which is in compliance
with the work in [14]. For GIFT-64, we observe a clustering effect of iterative
differential trails where the average weight growth decreases from 5.00 to 4.88
(Fig. 3(c)). It is noteworthy that we observe no clustering effect of iterative linear
trails as shown in Fig. 3(d) while the four iterative linear trails are all discon-
nected with each other in Fig. 2(c). For RECTANGLE, we observe no clustering
effect of rotational iterative differential trails (Fig. 3(e)) and a clustering effect
of rotational iterative linear trails where the average weight growth decreases
from 6.00 to 5.46 (Fig. 3(f)). For KNOT-256, of which the design inherits that
of RECTANGLE, we observe both clustering effect or rotational iterative differ-
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(a) RECTANGLE, differential, A = 2 (b) RECTANGLE, linear, A = 2

(c) GIFT-64, linear, A = 2

(d) KNOT-256, differential, A = 2 (e) KNOT-256, linear, A = 2

Fig. 2. The differential iterative structures of RECTANGLE and KNOT-256 and the
linear iterative structures of RECTANGLE, GIFT-64 and KNOT-256. To clarify, edge
X[0] = 0x2, X[5] = 0x6 d=15:w=5−−−−−−→ X[0] = 0x2, X[5] = 0x6 in Figure (a) indicates a
1-round differential trail 0x6000000000020000 → 0x 0600000000002000 has probability
2−5. The red part is the strong components computed by Tarjan’s algorithm. One
circuit always lies in one strong component. The remaining blue part contains one-way
paths linking disconnecte d strong components.

ential and linear trails where the average weight growth decreases from 5.33 to
4.86 (Fig. 3(g)) and from 6.00 to 4.91 (Fig. 3(h)).
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(a) PRESENT, differential (b) PRESENT, linear

(c) GIFT-64, differential (d) GIFT-64, linear

(e) RECTANGLE, differential (f) RECTANGLE, linear

(g) KNOT-256, differential (h) KNOT-256, linear

Fig. 3. Comparison of the best average weight growth of iterative trails and that of
iterative difference and linear propagations. The red cross marks the average weight
growth of the best iterative trail with the minimum number of rounds. The blue plot
is the average weight growth of the best iterative difference or linear propagation w.r.t.
the number of rounds. Additionally, we increment A by 1 and recompute the best
average weight growth. If there is an improvement, we show the results as the orange
plot. (Color figure online)

4.2 Results on Finding the Best Difference and Linear Propagations
Contributed by Trails Containing Iterative Ones

Since we observe clustering effects of iterative trails in most circumstances. Thus
we expect to find exploitable difference and linear propagation utilizing this clus-
tering effect. Applying Algorithm 4, we search for the best difference and linear
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propagations contributed by trails containing iterative ones. The parameters and
experimental results are shown in Table 4.

For PRESENT and GIFT-64, our results are consistent with the best known
results [7]. For RECTANGLE, we find the best 14-round linear propagation so far
of which the correlation potential is 2−62.05. The previous best weight is 2−62.98

[7]. For KNOT-256, the designers find the best 48-round differential trail with
differential probability 2−252 and the best 40-round linear trail with correlation
potential 2−226 and deduce that the best 44-round linear trail has correlation
potential 2−250 [22]. We find a 53-round exploitable difference propagation with
differential probability 2−253.63 and a 53-round exploitable linear propagation
with correlation potential 2−255.89, improving the designers’ results by 5 and 9
rounds respectively.

Table 4. Results on finding the best difference and linear propagations contributed by
trails containing iterative ones. r is the number of rounds. A is the maximum number of
active S-boxes. re is the maximum number of rounds of the extended trails. we bounds
the weights of the extended trails. (re, we) determines the scope of extended trails we
consider. wtt and wtc is the weight of the best trail and cluster we find. wtprev is the
weight of the best previous result. Time is the runtime of Algorithm 4.

Cryptanalysis Cipher r A (re, we) wtt wtc wtprev Time

Differential KNOT-256 53 3 (3, 12) 279 253.63 279 [22] 13.4 h
RECTANGLE 14 2 (6, 23) 61 60.64 60.63 [2] 20.0 h
GIFT-64 13 2 (3, 12) 62 60.42 60.42 [7] 2 s
PRESENT 16 3 (2, 6) 70 61.81 61.80 [7] 112 s

Linear KNOT-256 53 3 (2, 6) 306 255.89 306 [22] 118 s
RECTANGLE 14 3 (3, 10) 68 62.05 62.98 [7] 8.0 h
GIFT-64 12 3 (3, 12) 64 64.00 64.00 [7] 3.0 h
PRESENT 24 2 (3, 8) 92 63.61 63.61 [7] 0.5 h

4.3 Results on the Security of KNOT-AEAD and KNOT-Hash
Against Differential and Linear Attacks

For KNOT, the distinguishers found in Sect. 4.2 are oriented towards the inner
permutation and can’t be used to attack the AEAD and hash scheme of KNOT.
We need to further consider that: (1) the input and output differences or masks
are restricted to zero according to the attacks towards the sponge construction;
(2) the output difference in the capacity or non-tag part is not required, leading
to a truncated difference propagation.

For the primary version of KNOT-AEAD, the block, rate, capacity, key and
nonce size b, r, c, k, n are 256, 64, 192, 128, 128. For an inner state S, we can sep-
arate it by the nonce and key part denoted by (SN , SK), |SN | = n, |SK | = k,
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by the rate and capacity part denoted by (SR, SC), |SR| = r, |SC | = c or by the
tag and non-tag part denoted by (ST , SnT ), |ST | = k, |SnT | = b − k. For the
primary version of KNOT-Hash, the block, rate, capacity and tag size b, r, c, r′

are 256, 32, 224, 128. For an inner state S, we can separate it by the rate and
capacity part denoted by (SR, SC), |SR| = r, |SC | = c or by the tag and non-tag
part denoted by (ST , SnT ), |ST | = r′, |SnT | = b − r′.

In Table 5, we list differential and linear attacks targeting different phases,
each demanding specific restrictions and truncated conditions on the distinguish-
ers. The attacks proposed are general for cryptographic schemes based on the
sponge construction. For each attack, we give the largest differential probability
or absolute linear correlation of the longest distinguisher of the primary version
of KNOT.

Table 5. Results on the best differential and linear distinguishers for the primary
version of KNOT

Cryptanalysis Phase Type Restrictions and truncations r A (re, we) wt

Differential Initialization Distinguisher ΔSIK = 0, truncated in ΔSOC 14 3 (5,20) 61.08

Linear Initialization Key recovery ΓSOC = 0 13 3 (3,8) 31.28

Linear Encryption Distinguisher ΓSIC = 0, ΓSOC = 0 12 3 (3,10) 30.52

Differential Encryption Forgery ΔSIC = 0, ΔSOC = 0 12 3 (5,20) 62.05

Differential Finalization Forgery ΔSIC = 0, truncated in ΔSOnT 13 3 (5,20) 60.67

Differential Absorbing Collision ΔSIC = 0, ΔSOC = 0 12 3 (5,20) 62.30

Differential Squeezing Collision ΔSIC = 0, truncated in ΔSOnT 13 3 (5,20) 60.67

According to Table 5, it’s suggested that the best differential or linear propa-
gations for the initialization, encryption and finalization phase of KNOT-AEAD
reach 14, 12 and 13 rounds respectively., while the number of rounds of the three
phases are 52, 28 and 32 respectively. The best differential or linear propagations
for the absorbing and squeezing phase of KNOT-Hash reach 12 and 13 round
resp., while the number of rounds of the two phases are 68 and 68 resp. We stress
that our results do not threaten the security of KNOT.

4.4 Verification of the Dominance of Trails Containing Iterative
Ones in a Difference or Linear Propagation

To verify the accuracy of our method, we need to know whether trails containing
iterative ones account for the majority of all the trails in an exploitable differ-
ence or linear propagation. On one hand, we list the number of trails that are
considered in our method grouped by the weight of one trail. On the other hand,
for comparison, we enumerate all the trails of which the weight is below a cer-
tain threshold fixing the input and output difference or mask using the MILP
method.
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For the 14-round difference propagation of RECTANGLE with input differ-
ence 0x1000060000000000 and output difference 0x8610000000000100, we enu-
merate all trails with weight between 61 and 71. For the 15-round linear propaga-
tion of RECTANGLE with input mask 0x5000000600000000 and output mask
0x0002000060000400, we enumerate all trails with weight between 37 and 40.
For the 10-round difference propagation of KNOT-256 with input difference
ΔX[32] = 0x1,ΔX[49] = 0x1 and output difference ΔX[39] = 0x1,ΔX[63] =
0x1, we enumerate all trails with weight between 56 and 74. For the 10-round
linear propagation of KNOT-256 with input mask ΓX[0] = 0x1, ΓX[25] = 0x1
and output mask ΓX[24] = 0x1, ΓX[41] = 0x1, we enumerate all trails with
weight between 30 and 48. For these four difference and linear propagations,
we also output the number of trails considered in our method. The comparison
results are shown in Fig. 4.

Table 6. Results of the accumulative differential probabilities (linear potentials) of the
four difference (linear) propagations corresponding to Fig. 4. [a, b] is the weight range
within which we enumerate trails for the propagation. wtg[a,b] is the accumulative weight
of the enumerated trails within weight range [a, b]. A and (re, we) are the parameters
of our method. wtite[a,b] is the accumulative weight of the trails containing iterative ones
considered in our method within weight range [a, b]. wtite is the accumulative weight
of all trails containing iterative ones considered in our method.

Cipher Propagation [a, b] wtg[a,b] A (re, we) wtite[a,b] wtite

RECTANGLE Difference [61,71] 60.66 3 (6,22) 60.66 60.63
Linear [37,40] 69.14 3 (4,16) 69.15 67.89

KNOT-256 Difference [56,74] 53.49 4 (3,20) 53.49 53.49
3 53.53 53.53

Linear [30,48] 56.21 4 56.21 56.21
3 56.22 56.22

For RECTANGLE, from Fig. 4(a), 4(b) and Table 6, trails containing iter-
ative ones almost cover the trails enumerated with weights within the weight
range. Beyond the weight range, a large number of more trails containing iter-
ative ones are incorporated, while enumerating trails beyond the weight range
will be too costly. And these extra trails improve the accumulative differential
probability and linear potential.

For KNOT-256, from Fig. 4(c), 4(d) and Table 6, when A = 4, trails consid-
ered in our method account for the vast majority. we can also see that, though we
can incorporate more trails setting A = 4, the accumulative differential probabil-
ity or linear potential increases little compared to that setting A = 3, implying
that trails containing iterative trails with no more than 3 active S-boxes in each
round dominates the contribution to the accumulative differential probability or
linear potential.
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(a) RECTANGLE, r = 14, input difference: 0x1000060000000000, out-
put difference: 0x8610000000000100.

(b) RECTANGLE, r = 15, input mask: 0x5000000600000000, output
mask: 0x0002000060000400.

(c) KNOT-256, r = 10, input difference: X32 = 0x1, X49 = 0x1, output
difference: X39 = 0x1, X63 = 0x1.

(d) KNOT-256, r = 10, input mask: X0 = 0x1, X25 = 0x1, output mask:
X24 = 0x1, X41 = 0x1.

Fig. 4. Results of the number of trails considered in the four difference and linear
propagations grouped by the weight of one trail.
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5 Conclusion

In this paper, for four SPN symmetric-key primitives, using a graph approach,
we evaluated the clustering effect of (rotational) iterative trails and exploited
(rotational) iterative trails to find exploitable difference and linear propaga-
tions. We improved the best linear propagation of RECTANGLE and improved
both the best difference and linear propagation of KNOT-256. For the primary
version of KNOT, we find the best difference and linear propagations suitable
for differential and linear attacks on the sponge construction. Moreover, we gave
RECTANGLE and KNOT-256 as examples to illustrate how trails containing
iterative ones dominate the contribution to the differential probability of a dif-
ference propagation or the linear potential of a linear propagation. We leave
the studies on the other three version of KNOT and other primitives including
ASCON, Xoodyak and ARX ciphers for future work.
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Abstract. SPEEDY is a family of ultra low latency block ciphers proposed
at TCHES 2021 by Leander et al.. The standard version, SPEEDY-6-192
offers 128-bit security with high encryption speed in hardware. Differen-
tial cryptanalysis proposed in 1990 by Biham and Shamir is one of the
most popular methods of cryptanalysis of block ciphers. It is usually the
first choice to evaluate the security for designers when designing a new
block cipher. The automatic search for various distinguishers based on
SAT and MILP models etc. boosts the cryptanalysis of block ciphers.
However, the performance of the automatic search is not always satisfac-
tory, especially for searching long differential trails of block ciphers with
large state sizes. Hence, we endeavor to accelerate the SAT-based auto-
matic search model for differentials of SPEEDY. In this paper, we give a
3.5-round differential characteristic with the probability of 2−104.83 and
a 4.5-round differential characteristic with the probability of 2−150.15.
Furthermore, by balancing the key recovery and the differential distin-
guisher, we adjust the distinguisher to speed up filtering wrong pairs with
some tricks. Finally we launch a valid 6-round attack for SPEEDY-7-192
with a complexity of 2158.06. We also propose a 5-round attack utilizing
a 3.5-round differential distinguisher with the time complexity of 2108.95.

Keywords: SPEEDY · Differential cryptanalysis · Automatic search ·
SAT model
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low-latency 6-bit S-box with a two-level NAND gates tree was introduced to
provide confusion, and the linear layer with the depth of 3 XOR was applied to
provide strong diffusion with branch number 8.

Differential cryptanalysis [3] is one of the most fundamental techniques for
cryptanalysis of block ciphers, which was proposed by Biham and Shamir in
1990 to break the Data Encryption Standard (DES). Differential cryptanalysis
is essential to evaluate the security of block ciphers. And many generalizations
are proposed like truncated differentials [7], impossible differential attack [1,6],
the boomerang attack [19] and the rectangle attack [2] etc.

Searching for a good differential characteristic is one of the most important
parts to carry out a differential attack. In [11], Matsui proposed a depth-first
branch-and-bound searching algorithm to identify the optimal differentials with
the maximum probability of block ciphers. The advantage of this algorithm is
enhanced by taking in the customized optimization for the specific cipher. In
recent years, tools for solving the basic mathematical method have been used to
search distinguishers in cryptanalysis. The Boolean satisfiability problem (SAT)
is one of the important basic problems on which the automatic search models
are based, it is NP-complete.

The efficiency of the automatic search model is one of the important problems
we have to face, although some works aimed at improving the efficiency of the
automatic search model proposed, it is still a disturbing problem. The runtime of
solving the automatic search model mainly depends on the solvers. It has been
experimentally shown that minimizing the number of inequalities in a MILP
model did not always minimize the runtime [14], as well there are a few works
considering the acceleration of the automatic search based on SAT method. The
automatic search for bit-oriented block ciphers is more difficult for both methods,
because more variables are introduced for each state and the linear layer mixes
the variables fastly. It is challenging that building an efficient automatic search
model for SPEEDY family, on account of 192-bit suggested block size.

Our Contributions. In this paper, we deliberate on the security of SPEEDY-r
-192 with reduced rounds using differential attack. We unveil some new distin-
guishers, their structural properties, and key recovery attacks on SPEEDY-r-192
which were not reported before. Table 1 gives a summary of attacks on SPEEDY
till date.

Firstly, we proposed an accelerated automatic search model for SPEEDY-
r-192 based on SAT method. Due to a large internal state of 192 bit and the
fast diffusion property, it is hard to exhaust all the values of the bit-level state
for long rounds. Thus it seems difficult to build an effective automatic search
model for SPEEDY-r-192. In this paper, we revisit the constraints of the upper
bound, which is called the Sequential Encoding Method [15], and reduce the
number of auxiliary variables introduced in the clauses by utilizing the proper-
ties of the weight of the probability in differentials for SPEEDY-r-192. In this
way, we build an effective automatic model for searching the differential trails of
SPEEDY-r-192. To evaluate the probability of the differential distinguisher more
precisely, we search for the clustering of differentials with the same input and out-
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put differences. We get the longest differential distinguishers for SPEEDY-r-192,
and the runtime is practical and much lower than the previous method.

Secondly, We make a balance in the probability of the differential distin-
guisher and the non-active bits in the plaintext state that can be used to filter the
wrong pairs. The balance strategy speeds up filtering the pairs that do not sat-
isfy the differential distinguisher for SPEEDY. Since the differential distinguisher
with maximum probability does not necessarily lead to the most effective key
recovery attack, the truncated differentials in the extended rounds also impact
the complexity of the differential cryptanalysis. This case has been discussed
in some rectangle attacks [5,12,20]. Therefore, we adjust the input difference
of the distinguisher and add some conditions to control the difference propaga-
tion in the extended rounds to make there are some bits with zero difference in
the plaintext. The zero difference in the plaintext can filter the wrong pairs in
advance in the data collection phase, which greatly reduces the time complexity
in key recovery phase.

With these techniques, we launch a 6-round key-recovery attack for SPEEDY-7
-192 within the claimed security, which is the longest attack on SPEEDY-r-192
as far as we know. We also proposed a 5-round attack with lower complexity.
The results are shown in Table 1.

Table 1. Summary of cryptanalytic results on SPEEDY.

Distinguishers
Method Round Data Time Memory Ref.

Differential and linear 2 239 239 – [9]
3 269 269 – [9]

Cube 2 214 214 – [13]
Cube 3 213 213 – [13]
Differential 4.5 2150.15 2150.15 – Sect. 4.1
Differential 3.5 2104.83 2104.83 – Sect. 5.1
Key recovery
Integral 3 217.6 252.5 225.2 [13]
Differential 5 2108.91 2108.95 2108.91 Sect. 4
Differential 6 2158.04 2158.06 2158.04 Sect. 5

2 Preliminary

2.1 Description of SPEEDY

SPEEDY [9] is a family of ultra-low latency block ciphers designed by Leander
et al. at TCHES 2021, the designers use SPEEDY-r-6� to differentiate all the
variants, where 6l denotes the block and key size, and r indicates the number of
iterated rounds.
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The internal state is viewed as an � × 6 binary matrix, and we use x[i,j] to
denote the bit located at row i, column j of the state x, where 0 ≤ i < � and
0 ≤ j < 6.

The default block and key size for SPEEDY is 192, i.e. � = 32. And this is the
only block size we considered in this paper, the designers claimed the security for
this instance with iterated rounds 5, 6 and 7. The 5-round version SPEEDY-5-192
has a security level of 2128 time complexity with 264 data complexity as restric-
tion, SPEEDY-6-192 and SPEEDY-7-192 can achieve 128-bit and 192-bit security
levels, respectively. We pay attention to the differential cryptanalysis of the
default version SPEEDY-r-192.

We review the details of the round function for encryption of SPEEDY-r-192.
The round function consists of the following five different operations: SubS-
box(SB), ShiftColumns (SC), MixColumns (MC), AddRoundConstant
(ACi

) and AddRoundKey (Aki
). For encryption, the iterated round function

except the last is defined as

Ri = ACi
◦ MC ◦ SC ◦ SB ◦ SC ◦ SB ◦ Aki

, with 0 ≤ i ≤ r − 2.

The round function in the last round is

Rr−1 = Akr
◦ SB ◦ SC ◦ SB ◦ Akr−1 .

The last round omit the linear layer and constant addition, and append an extra
key addition. Here, we introduce the round operations in the following.

SubSbox (SB): The 6-bit S-box S (seen Table 2) is applied to each row of the
state, i.e. for 0 ≤ i < 32,

(y[i,0], y[i,1], y[i,2], y[i,3], y[i,4], y[i,5]) = S(x[i,0], x[i,1], x[i,2], x[i,3], x[i,4], x[i,5]).

Table 2. The S-box S in SPEEDY

s0s1 s2s3s4s5

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0 08 00 09 03 38 10 29 13 0c 0d 04 07 30 01 20 23

1 1a 12 18 32 3e 16 2c 36 1c 1d 14 37 34 05 24 27

2 02 06 0b 0f 33 17 21 15 0a 1b 0e 1f 31 11 25 35

3 22 26 2a 2e 3a 1e 28 3c 2b 3b 2f 3f 39 19 2d 3d

ShiftColumns (SC): The j-th column of the state is rotated upside by j bits.

y[i,j] = x[i+j,j], 0 ≤ i < 32, 0 ≤ j < 6.

MixColumns (MC): For SPEEDY-r-192, a cyclic binary matrix M(32× 32) is
multiplied to each column of the state. Use x[j] to denote the input of the j-th
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column, and use y[j] to denote the output of the column transform. The column
transform y[j] = M · x[j] is

y[j] = x[j] ⊕ (x[j] ≪ 1)

⊕ (x[j] ≪ 5) ⊕ (x[j] ≪ 9) ⊕ (x[j] ≪ 15) ⊕ (x[j] ≪ 21) ⊕ (x[j] ≪ 26),

where x[j] ≪ t means the column x[j] rotated upside by t bits, i.e., x[i,j] =
x[i+t,j], ∀ 0 ≤ i < 32.

AddRoundKey(Akr
): The 192-bit round key kr is XORed to the internal state,

as:
y[i,j] = x[i,j] ⊕ kr[i,j] , 0 ≤ i < 32, 0 ≤ j < 6.

AddRoundConstant(Acr): The 192-bit constant cr is XORed to the whole of
the state.

y[i,j] = x[i,j] ⊕ cr[i,j] , 0 ≤ i < 32, 0 ≤ j < 6.

Since AddRoundConstant does not alter the validities of attacks in this paper,
the constants cr[i,j] are not introduced.

Key Schedule: The algorithm receives a 192-bit master key and initializes it as
the subkey k0. Then a bit permutation PB is used to compute the next round
subkey, i.e.

kr+1 = PB(kr).

For more details of SPEEDY, please refer to [9].

2.2 Observations on Differential Properties of SPEEDY

For the SB operation with the input difference α and the output difference β,
and differential pair (α, β) satisfies the Eq. 1. We have the following observations
according to the Differential Distribution Table.

S(x) ⊕ S(x ⊕ α) = β. (1)

Observation 1. For given α = 100000 and β = *****0(β �= 0), the probability
of the propagation Pr{α

SB−−→ β} = 3/4 ≈ 2−0.42, and the number of β is 15,
where ′∗′ means the unknown bit value. Each differential pair (α, β) satisfies the
Eq. 1.

Observation 2. For given α = 001000 and β = 0*****(β �= 0), the probability
Pr{α

SB−−→ β} = 15/16 ≈ 2−0.09, and the number of β is 17, where ′∗′ means the
unknown bit value. The differential pair (α, β) satisfies Eq. (1).

Observation 3. For given α = **0***(α �= 0) and β = 010000, the probability
Pr{α

SB−−→ β} ≈ 2−0.54, where ′∗′ means the unknown bit value, and the differ-
ential pair (α, β) satisfies equation (1). Given β = 010000, when α = 0***** or
α = *****0, the probability becomes 2−1 or 2−0.67.
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For each column of MC operation, we have the following observation:

Observation 4. Let y be a column of the input of the inverse of MC and the
corresponding output be x, i.e. y = M · x. We simply consider the output form
x, where y has the form yt �= 0 (t = i, j) and yt = 0 (t /∈ {i, j}), yt denotes the
t-th bit of y.

– j = i + 1, the Hamming weight H(x) is 14, when i = 0, x = 0x4CD019F4;
– j = i + 2, the Hamming weight H(x) is 14, when i = 0, x = 0x6AB8150E;
– j = i + 3, the Hamming weight H(x) is 16, when i = 0, x = 0x798C1373;
– j = i + 4, the Hamming weight H(x) is 12, when i = 0, x = 0xF016104D;
– j = i + 5, the Hamming weight H(x) is 15, when i = 0, x = 0xB4DB11D2.

2.3 Complexity Analysis of the Differential Attack

Let Δin → Δout be a r-round differential characteristic of an algorithm E(x, k),
which is a F

n
2 × F

m
2 → F

n
2 mapping, the couple of (Δin,Δout) should satisfy

Pr{E(x, k) ⊕ E(x ⊕ Δin, k) = Δout} > 2−n

for x ∈ F
n
2 and any fixed k ∈ F

m
2 .

The probability is calculated as the sum of probabilities regarding all trails
sharing the same input and output differences with the differential [8]. Denote
the probability of the r-round differential distinguisher as p0 and the number of
plaintext (or ciphertext) pairs utilized in the attack as ND. Then under the right
key guess, the counter memorizing the number of pairs satisfying the differential
distinguisher follows a binomial distribution of parameters (ND, p0). On the
other side, suppose that the probability of a pair fulfilling the differential under
a wrong key guess is p1. Consequently, the counter follows a binomial distribution
of parameters (ND, p1). We set a threshold τD for the attack, if the counter of
the right pairs is no less than τD, the key guess will be accepted.

There are two types of errors which are always need to face in the hypothesis
test, which are denoted by α, the non-detection error probability, and β, the
false alarm error probability. α and β can be got from the formulas in [4].

Then the total time complexity of the differential cryptanalysis T can be
departed into three parts, denoted by T = T1 + T2 + T3. T1 is the number of
encryptions to prepare the necessary plaintext and ciphertext pairs which lead
to the right pairs passing the distinguisher. We can estimate T1 by N times of
encryption, where N is the number of plaintexts (ciphertexts) we chose, which
corresponds to the data complexity.

Time complexity T2 denotes the average complexity needed to decide whether
a pair satisfy the distinguisher under our key guess. For the ND pairs we utilized
in the attack, use TE to denote the time for one encryption, if we need time TF

to determine whether a pair satisfy the distinguisher or not on average. Then
the time complexity can be estimated by

T2 =
TF

TE
· ND.
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After the key recovery phase, there will be 2m · β keys remaining in the theory.
Therefore, we expected

T3 = 2m · β · (1 − 2−n)

encryptions to recover the entire master key. And the success probability of the
attack is equal to 1 − α.

2.4 Automatic Searching Model Based on SAT Problem

The Boolean Satisfiability (SAT) problem studies the satisfiability of a given
Boolean formula, it is said satisfiable if there exists an assignment of Boolean
values to variables so that the formula is evaluated to be True.

Conjunctive Normal Form (CNF) is a generic representation of SAT problem.
The formula is expressed as conjunction (∧) of one or more clauses, where a
clause is a disjunction (∨) of many Boolean variables (possibly negated). The
CNF encodings for basic operations in cryptographic primitives are introduced.
In this section, we use αi(0 ≤ i < n) to denote the i-th element of the n-bit
vector α, α0 stands for the most significant bit.

– Building constraints for non-probabilistic models. For the linear oper-
ations in cryptographic primitives, we can also build the clauses of the SAT
model by the same method of building clauses for S-boxes without introduc-
ing auxiliary variables, in this section, we just list the clauses for some basic
operations.
Clauses for XOR operation. For a n-bit XOR operation with two input
differences α and β, and the output difference is denoted by γ. The differen-
tial α ⊕ β = γ holds if and only if the values of α, β and γ validate all the
assertions in the following.

αi ∨ βi ∨ γi = 1
αi ∨ βi ∨ γi = 1
αi ∨ βi ∨ γi = 1
αi ∨ βi ∨ γi = 1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

0 ≤ i ≤ n − 1

Clauses for COPY operation. For the n-bit COPY operation with input
difference α and output difference β. The differential β = α holds if and only
if the values of α and β validate all the assertions in the following.

αi ∨ βi = 1
αi ∨ βi = 1

}

0 ≤ i ≤ n − 1

For differentials, the clauses of COPY operation α = β can be also applied
to shifting operations.

– Building constraints for S-box. The propagations of differences and
linear masks for S-box operations are probabilistic. Use an s-bit S-box
for example, according to the method in [17], let (I0, I1, . . . , Is−1) denote
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the variables which indicate the input difference, and (O0, O1, . . . , Os−1)
denote the output difference, introduce several variables ρ0, ρ1, . . . , ρh−1 to
denote the weight of the opposite number of the binary logarithm of the
probability. Because the SAT problem is oriented to binary variables, the
number of auxiliary variables depends on the weight of the probability.
With these variables, we can define a (2s + h)-bit Boolean function f(z),
where z = (I0, I1, . . . , Is−1, O0, . . . , Os−1, ρ0, . . . , ρh−1), if (I0, . . . , Is−1) →
(O0, . . . , Os−1) is a possible propagation with the probability weight w0 ·ρ0+
w1 · ρ1 + · · · + wh−1 · ρh−1, then f(z) = 1, else f(z) = 0. Then we can get
a set of Boolean equations by reformulating the f(z) as the product-of-sum
representation

f(z) =
∧

c∈F
2s+h
2

(
f(c) ∨

2s+h−1∨

i=0

(zi ⊕ ci)
)
,

where c = (c0, c1, . . . , c2s+h−1), after getting the Boolean equations, we can
simplify the expression utilizing some openly available programs like Logical
Friday1, and yield a smaller set of clauses.

– Sequential encoding method for constraining the upper bound.
When we aim at r-round differential trails, denote the auxiliary variables
stand for the probability for the j-th S-box in the i-th round as ρ

(i,j)
l , where

0 ≤ i ≤ r − 1, 0 ≤ j ≤ n − 1 and 0 ≤ l ≤ h − 1. The weight equals to the
opposite number of the binary logarithm of the probability of the differential
trail should be

∑r−1
i=0

∑n−1
j=0

∑h−1
l=0 wl ·ρ(i,j)l . In theory, if we want to constrain

the solution range with the prospective value ω as the weight of the trail, our
model should add the additional constraint

r−1∑

i=0

n−1∑

j=0

h−1∑

l=0

wl · ρ
(i,j)
l ≤ ω.

However, all the variables in the SAT are binary, it is unfeasible to handle
the decimal and the integer part at the same time. So we convert the bound
into several parts with different decimal weights and handle the part with
different weights separately. For example, let the ρ

(i,j)
h−1 denote the part with

decimal weight for each S-box, and the other variables denote the part with
integer weight. Then the constraints for the upper bound can be rewritten as
∑r−1

i=0

∑n−1
j=0

∑h−2
l=0 ρ

(i,j)
l +wh−1 · ∑r−1

i=0

∑n−1
j=0 ρ

(i,j)
h−1. The objective function of

the SAT problem consists of the following two inequalities.

r−1∑

i=0

n−1∑

j=0

h−2∑

l=0

ρ
(i,j)
l ≤ ωI ,

r−1∑

i=0

n−1∑

j=0

ρ
(i,j)
h−1 ≤ ωD (2)

where ωI and ωD are two non-negative integers, and ω = ωI + wh−1 · ωD.
1 https://web.archive.org/web/20131022021257/http://www.sontrak.com/.

https://web.archive.org/web/20131022021257/
http://www.sontrak.com/
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These two restrictions in 2 meet the form
∑n−1

i=0 ui ≤ k, where k is a non-
negative integer. If k = 0, this constraint is equivalent to the following n Boolean
expressions:

ūi = 1, 0 ≤ i ≤ n − 1.

Else if k > 0, according to the method in [10], which is called sequential
encoding method. we introduce (n−1) ·k auxiliary Boolean variables vi,j(0 ≤
i ≤ n − 2, 0 ≤ j ≤ k − 1), and use the following clauses to build the constraints
for

∑n−1
i=0 ui ≤ k:

u0 ∨ v0,0 = 1
v0,j = 1, 1 ≤ j ≤ k − 1
ui ∨ vi,0 = 1
vi,0 ∨ vi,0 = 1
ui ∨ vi−1,j−1 ∨ vi,j = 1
vi−1,j ∨ vi,j = 1

}

1 ≤ j ≤ k − 1

ui ∨ vi−1,k−1 = 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

1 ≤ i ≤ n − 2

un−1 ∨ vn−2,k−1 = 1

Using the model shown above, we build the constraints of the SAT problem for
searching differential characteristics, and we utilize CryptoMinisat5 [16] as the
solver with parameters set as shown in Sect. 3.

3 Searching for Good Differential Trails for SPEEDY

It requires searching a space of exponential size in the number of Boolean vari-
ables to solve the SAT problem. We believe that the size of the problem needed
to be solved is one of the most important factors affecting the runtime of the
SAT based automatic search model. In this section, we try to build the automatic
search model for the differential trails of SPEEDY-r-192 with as few variables as
possible based on the SAT model and discuss how to solve the model with as
few as possible running times.

3.1 Improved Automatic Searching Model for SPEEDY

For SubSbox operation of SPEEDY-r-192, the entries in the DDT of S-box
have six possible evaluations, which are 0, 2, 4, 6, 8, and 16, with corresponding
differential probabilities in the set {0, 2−5, 2−4, 2−3.415, 2−3, 1}. When we use the
automatic search model proposed in [17,18], six auxiliary Boolean variables are
required for each S-box, and O((n − 1) · k) auxiliary Boolean variables are also
needed according to the sequential encoding method in Sect. 2.4 to build the
constraints for the upper bound of the probability for the distinguishers, where
n is the number of variables which denote the probability for each S-box and
k is the upper bound for the probability of the whole distinguisher. In order to
descend the scale of the auxiliary variables, we introduce four Boolean variables
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ρ0, ρ1, ρ2, ρ3, let p denote the probability of the possible differential propagation,
then we build the constraints for the variables as follows:

ρ0||ρ1||ρ2||ρ3 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1110, if p = 2−5

0110, if p = 2−4

0011, if p = 2−3.415

0010, if p = 2−3

0000, if p = 1

In order to build the constraints for the upper bound of the probability of the
whole distinguisher with as few auxiliary variables as possible, we depart the
objective function of the SAT problem into three parts, which are:

r−1∑

i=0

31∑

j=0

2∑

l=0

ρ
(i,j)
l ≤ ωI ,

r−1∑

i=0

31∑

j=0

ρ
(i,j)
2 ≤ ωS and

r−1∑

i=0

31∑

j=0

ρ
(i,j)
3 ≤ ωD.

where ωI , ωS and ωD are non-negative integers, and 0 ≤ i ≤ r − 1, 0 ≤ j ≤
31. The prospective value for the weight of the trail ω can be represented by
ω =

∑r−1
i=0

∑31
j=0

∑2
k=0 ρ

(i,j)
l + 2 · ∑r−1

i=0

∑31
j=0 ρ

(i,j)
2 + 0.415 · ∑r−1

i=0

∑31
j=0 ρ

(i,j)
3 .

It is obvious that the number of S-boxes in the trail can be represented as
∑r−1

i=0

∑31
j=0 ρ

(i,j)
2 , so we can follow the steps in Sect. 3.2 to solve the model.

The constraints for ShiftRows, MixColumns and AddRoundKey have
nothing to do with the probability of the trail, so we do not need to make
addtional constraints on these operations.

3.2 Process of Solving the Model

p1 =
∑r−1

i=0

∑31
j=0

∑2
k=0 ρ

(i,j)
k , p2 =

∑r−1
i=0

∑31
j=0 ρ

(i,j)
2 and p3 =

∑r−1
i=0

∑31
j=0 ρ

(i,j)
3

denote the summation of partial weights respectively. Suppose the optimal trail
we found has the prospective value for the weight of the probability ω = a + 2 ·
b+0.415 · c, i.e. p1 = a, p2 = b and p3 = c, if the number of active S-boxes is not
less than this trail, the trails with higher probability must satisfy the conditions
of the parameters as shown below, the trivial cases p1 ≤ a and p3 ≤ c are ruled
out.

Table 3. Possible value combinations of p1, p2 and p3

p1 p2 p3

1 a+ n b c − � n
0.415

�
2 a − n b c+ � n

0.415
�

3 ≤ a − k + n b+ 1 ≤ c − �n−k+2
0.415

�
4 ≤ a − k − n b+ 1 ≤ c+ �n+k−2

0.415
�
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The case where the number of active S-boxes is greater than b+1 can be dealt
with inductively. And we notice that although there are many possible scenarios
theoretically, we need not test all of them, because the parameter p1 usually
increases with the number of active S-boxes. So we proposed a heuristic method
to search for the differential trail with optimal probability. Firstly we search
for the minimized number of active S-boxes, i.e. we set the objective function
to minimize the parameter p2, suppose the obtained minimum is b. Secondly,
we run the solver again with the objective function to minimize the parameter
p1 with the constraint p2 = b and suppose the minimize objective function is
a, then with the constraints p1 = a and p2 = b, we set the objective function
to minimize the parameter p3, and denote the value is c. Finally, we test the
possible value combinations of p1, p2 and p3 in Table 3 to ensure the probability
of the trail we found is optimal, if it is not, repeat the test.

The minimum of the parameter p1, p2 and p3 have already constrained the
candidate of the test, so we just need to repeat the test few times to ensure the
trail is optimal. The size of the auxiliary variables we introduced is O(r · (3ωI +
ωS +ωD)), which is several times less than the size of the problem that we build
constraints with 6 auxiliary variables for each S-box. The improvement of the
runtime is significant, the average time of solving our model to search for the
4.5-round distinguisher once is about 3 h, as well the time for solving the model
normally once to search for the 4.5-round distinguisher is over 24 h.

4 Differential Cryptanalysis on 6-Round SPEEDY

In this section, we give differential cryptanalysis of SPEEDY-7-192 to achieve the
rounds as long as possible. According to the round function of SPEEDY, we first
select the differential distinguisher with N + 0.5 rounds which are suitable for
the key-recovering phase with the optimal probability and mount a 1 + N + 1
key-recovery attack under chosen-ciphertext ability. In this section, we show that
we can achieve a 6-round attack for SPEEDY-7-192 with the time complexity of
2158.06 and data complexity of 2158.04.

4.1 The 4.5-Round Differential Distinguisher

Because of the rapid propagation of the truncated differential trails of SPEEDY,
it will cost lots of time complexity on filtering out the wrong pairs which do
not conform with the differential trail in the key recovery phase. However, there
is just one ShiftColumns (SC) operation in the last round of round-reduced
SPEEDY-7-192, the truncated propagation of the second SubBox (SB) operation
can be easily handled because the 6-bit non-zero difference of each S-box only
leads to 6 active bits in the state of ciphertexts. So we search for an optimal 4.5-
round differential trail as the distinguisher and launch a 6-round key recovery
attack on SPEEDY-7-192 under chosen-ciphertext ability.

According to the method in Sect. 3.2, firstly we find out that the minimum
number of active S-boxes of 4.5-round differential trails for SPEEDY is 43, and then
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we search for the optimal differential distinguishers with 43 active S-boxes and
get the maximum probability of 4.5-round differential path is 2−150.15. Finally
we resolve the automatic model several times with the constraints for adjusted
parameters to ensure that there are no trails with 44 or 45 active S-boxes have
probability higher than 2−150.15. The 4.5-round differential path we got from the
SAT solver is shown in Fig. 1.

round 0

SB SC SB SC MC

round 1

SB SC SB SC MC

round 2

SB SC SB SC

MC

round 3

SB SC SB SC MC

round 4

SB SC

nonzero difference zero difference

Fig. 1. The 4.5-round differential distinguisher for SPEEDY-r-192

4.2 Speed Up Filtering Wrong Pairs by Optimizing
the Distinguisher

We launch a 6-round key recovery attack based on the 4.5-round differential path
by extending 1 round at the beginning and 0.5 round at the end.

The chosen-ciphertext attack with data structure is applied to reduce the
time complexity. We choose 2s structures of size 2t (t denotes the number of
active bits in the differences of ciphertext). There are about 22t−1 pairs for each
structure. Let p be the probability of the differential distinguisher we found. We
choose enough ciphertexts such that there are about 2s+2t−1−t × p ≥ 1 pairs
satisfying the output of the differential distinguisher. Hence, the data complex-
ity is 2s+t. We need to guess the subkeys for the 2s+2t−1 pairs, which plays a
dominant role in the time complexity of the key recovery phase. Therefore, we
adjust the input difference of the distinguisher and add some conditions to con-
trol the difference propagation in the extend round to make some bits in the
plaintext with zero difference. The zero difference in the plaintext can remove
some pairs not satisfying the truncated differential in the data collection phase,
which reduces the time complexity of the key recovery phase.

Here, we describe the methods to make the differences of some bits of plain-
text pairs become zero. The differential distinguisher with the maximum prob-
ability does not necessarily lead to the most effective key recovery attack, the
truncated differentials in the extended rounds also impact the complexity of
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the differential cryptanalysis. For partial decryption, the operation MC−1 can
spread one active S-box at the beginning of the distinguisher to 19 active S-boxes,
which can diffuse to the whole plaintext state (all the 32 S-boxes are active) after
partial decryption through SC−1 ◦ SB−1. But according to the Observation 4,
two active S-boxes at the beginning of the distinguisher can lead to less active
S-boxes after propagation through MC−1, which make there are some bits with
zero-difference can be used to filter wrong pairs in the data collection phase.
Hence we proposed the trade-off strategy to balance the time complexity.

As shown in Fig. 3, we adjust the differential propagation in round 1, such
that the two active S-boxes at the beginning of the differential distinguisher
can lead to 12 active S-boxes after propagation through MC−1. The probability
of the altered differential characteristic is 2−155.735. And the probability of the
differential distinguisher is 2−155.2, which is recalculated by multi differential
trials. The altered distinguisher can generate 2 rows with zero difference in the
state of plaintext, which are row 8 and row 9.

Meanwhile, considering the differences in rows 19 to 26 of the plaintexts,
although these rows may be active after propagating through SC−1 ◦SB−1, the
actual number of active S-boxes of the first SB operation the rows 19 to 26 of
round 0 depends on the output difference of the rows 18 and 24 of the second
SB layer in round 0. So we exhaust all the possible differences of these active
S-boxes propagating backward through the SB−1 ◦SC−1 ◦SB−1 operation, and
find that the probability of the situations that the differences in rows 21 to 23
of the plaintext state are all zero is 2−1.415, which can be viewed as a part of the
truncated differential.

Up to now, we get the altered distinguisher with zero difference in rows 8,
9, 21, 22 and 23 in plaintexts and zero difference in position 3 of the 6-th col-
umn in ciphertexts. The 4.5-round differential can generate plaintexts by partial
decryption with zero differences in rows 9 to 10 and 21 to 23 of the plaintext
state with the probability 2−155.2−1.415−0.42 = 2−157.04. And this distinguisher
leads to 30-bit filter in the data collection phase (Fig. 2).

SB−1 SC−1 SB−1

pr=2−1.415

19
20
21
22
23
24
25
26

19
20
21
22
23
24
25
26

18
19
20
21
22
23
24
25
26

18
19
20
21
22
23
24
25
26

Fig. 2. Improved pre-filtering phase for the head of the distinguisher.

According to the truncated differential structure, we choose 2s structures,
each including 229 ciphertexts by traversing the active bits with fixed random
values for non-active bits and query the corresponding plaintexts. Let the bits
with the zero-difference of the plaintext as the index to obtain the pairs. There
are about 2s+29×2−1−30 = 2s+27 pairs remaining.
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4.3 Key Recovery of 6-Round SPEEDY-192

Some precomputation tables are used to reduce the time complexity in the key
recovery phase. Use the notations with the meaning in equation (1), we build a
hash table H indexed by (α, β) to store the values (x, SB(x)). For given α =
4, 5, 0x20, there are about 21, 27 and 23 values of β, respectively. For each active
row of the ciphertext pairs, we compute the output difference β of each pair, and
removing the pairing which can not generate the given input difference α. There
are about 2s+27 × 222.1−29 = 2s+20.1 pairs remaining. Then look up the table H
to get the value S(x) by the index, and deduce the key bits involved in this row.
So in the last key addition, we deduce the key bits involved in rows 3, 16, 21, 23
and 30 of the state of ciphertexts by looking up tables. And we get 2s+20.1 pairs
each corresponding to 27.48 30-bit keys.

As the key schedule used in SPEEDY family is linear, use the key bit in the
set 0 to 191 of the zero-th round key k0 to denote the obtained 30-bit key in the
last round, seen in Table 4.

round 0

SB SC SB SC MC

round 1

SB SC SB SC MC

round 2

SB SC SB SC

MC

round 3

SB SC SB SC MC

round 4

SB SC SB SC MC

round 5

SB SC SB

nonzero difference uncertain zero difference

Fig. 3. 6-round attack for SPEEDY-7-192.

Then we deduce the key bits involved in row 18 after SC ◦ SB operation of
round 0. We first deduce the key bits involved in row 20 in the plaintext state,
because the key bit of position 120 is known, there are about 2s+20.1 pairs each
corresponding to 27.48 35-bit keys after looking up the hash table H to deduce
the 5 key bits left. Then compute the key bits involved in row 19 by looking
up the hash table, we get 2s+20.1 pairs, which correspond to 27.48 40-bit keys.
Deduce the key bits involved in the 18-th row by table lookups to obtain 2s+20.1

pairs, which are corresponding to 28.48 45-bit keys. Then we guess the unknown
3 bits values in row 18 of the state after the first SC and check the known output
difference. Up to now we obtain 2s+20.1 pairs, which are corresponding to 25.48

46-bit key.
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Table 4. The deduced key bits involved in the last key addition

Row Key guess

3 138 91 44 189 142 95

16 120 73 26 171 124 77

21 54 7 152 105 58 11

23 66 19 164 117 70 23

30 12 157 110 63 16 161

For the other rows, we just need to calculate the key bits that are not involved
in the positions that we have obtained, the time complexity is much lower than
computing the key bits involved in the first three rows as shown above. For exam-
ple, we only need to guess the key bits involved in rows 13 to 17 when filtering
with row 13 after the second SB layer. The time complexity of each looking up
hash table is approximate to the looking up S-box. The time complexity is about
(2s+27 + 2s+20.1 × (8 + 26)) × 1/32 × 1/12 ≈ 2s+19.

Each guess determines a 168-bit key, and we exhaust the remaining key bits.
By the complexity cryptanalysis in Sect. 2.3, we set s = 129.04. Under the right
key guess, 2s+2×29−1−29 × 2−157.04 = 1 pair is expected in content with the 4.5-
round differential. About 2s+27−29−162 = 2−35.38 pairs will validate the input
and output differences of the 4.5-round distinguisher under a wrong 168-bit key
guess. According to the formulas, we have α < 0.2 and β < 2−40, hence the
success probability is PS = 1 − α > 80% and the total time complexity of the
6-round attack is given by

2129.04+29 + 2129.04+19 + 2192 · 2−40 · (1 − 2−192) = 2158.06.

The data complexity of the 6-round attack is 2s+29 = 2158.04.

5 Differential Cryptanalysis of 5-Round SPEEDY

5.1 Speed up Filtering Wrong Pairs with a 3.5-Round Differential
Distinguisher

In this section, we give an improved 3.5-round differential for SPEEDY-r-192 and
mount a 5-round differential attack.

The searching method of a 3.5-round differential is the same as that used
for searching the 4.5-round differential distinguisher of SPEEDY-r-192. Firstly
we search for the differential characteristic with the minimum number of active
S-boxes. Then we alter the constraints for other parameters and find the optimal
differential trails with the maximum probability. We find out that the minimum
number of active S-boxes of the 3.5-round is 31, and the optimal 3.5-round
differential trail with the probability of 2−104.83 got from the solver is shown in
Fig. 4.
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The differential 000010 SB−−→ 000100 and 000010 SB−−→ 001000 for S-boxes of
SPEEDY both has probability 2−3. So we reduce the number of active S-boxes
in the last AK operation from 8 to 5 without changing the probability. And
following the idea in Sect 4.2, we just alter the differential propagation in the
first round to get a distinguisher with two non-active S-boxes in rows 9 and 10
of the plaintexts. The detail of the altered differential distinguisher is shown
in Fig. 5, and the probability of the trail is 2−106.66. After searching for all the
differential characteristics with the same input and output difference as well as
no more than 35 active S-boxes, the probability of the differential trail is adjusted
to 2−105.7.

In order to increase the number of zero-difference bits in the plaintexts
which are used to remove more wrong pairs in the data collection, we made
a few adjustments to the above distinguisher. Because the active bits in rows
8, 11 and 27 after the first SB layer originate from three different S-boxes
in the second SB layer. According to Observation 3, the differential proba-
bility Pr{**0*** SB−−→ 010000} = 2−0.54, Pr{0***** SB−−→ 010000} = 2−1,
and Pr{*****0 → 010000} = 2−0.67. And these three S-boxes are disjoint in
the truncated differential. Such that the probability of the truncated differen-
tial that the difference in rows 8, 11 and 27 of plaintext state are all zero is
2−0.54−1−0.67 = 2−2.21.

The 3.5-round differential can generate plaintexts by partial decryption with
zero differences in rows 8 to 11 and 27 of the plaintexts, having the probability
2−105.7−2.21 = 2−107.91.

round 0

SB SC SB SC MC

round 1

SB SC SB SC MC

round 2

SB SC SB SC

MC

round 3

SB SC

nonzero difference zero difference

Fig. 4. The 3.5-round differential distinguisher for SPEEDY-r-192.

5.2 Key Recovery of 5-Round SPEEDY-r-192

We launch a 5-round differential attack by extending 1 round at the beginning of
the 3.5-round differential and appending 0.5 round. According to Observation 2,
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we choose the ciphertexts with output differences in the form 0***** instead
of ****** at rows 13 and 21, which can generate the input difference 001000
effectively. There are 28 active bits seen in Fig. 5.

Use the same method in Sect. 4.3, we build a hash table indexed by input
and output differences (α, β) to store the values (x, SB(x)) for S-box. For given
α = 8, 12, there are about 17, 27 values of β, respectively.

We choose 2s structures, each including 228 ciphertexts by traversing the
active bits with fixed random values for non-active bits and query the corre-
sponding plaintexts. Let the bits with the zero-difference of the plaintext as the
index obtain the pairs. There are about 2s+28×2−1−30 = 2s+25 pairs remaining.
For each active row of the ciphertext pairs, we compute the output difference
β of each pair, and remove the pairing which can not generate the given input
difference α. There are about 2s+25 ×222.44−28 = 2s+19.44 pairs remaining. Then
look up the table H to get the value S(x) by the index, and deduce the key bits
involved in these rows. Hence, we deduce the key bits of k6 involved in rows 1, 6,
10, 13 and 21. There are about 2s+19.44 pairs each corresponding to 25.56 30-bit
keys.

round 0

SB SC SB SC MC

round 1

SB SC SB SC MC

round 2

SB SC SB SC

MC

round 3

SB SC SB SC MC

round 4

SB SC SB

nonzero difference uncertain zero difference

Fig. 5. 5-round attack for SPEEDY-r-192.

For the first key addition, we first deduce the key bits involved in row 25 of
the state after the SC ◦ SB in round 0. According to the linear key schedule
of SPEEDY-r-192, the key bits in positions 155, 163, 169, 173, 183, 185 and
177 have been guessed. First, we deduce the key bits involved in row 28 of the
plaintext state, because the key bits in positions 169 and 173 are known, there
are about 2s+19.44 pairs each corresponding to 25.56 34-bit keys after looking up
the hash table to deduce the 4 key bits left. Then compute the key bits involved
in row 30 by looking up the hash table, because the key bits in positions 183
and 183 are known, we get 2s+19.44 pairs each corresponding to 26.56 38-bit keys.
Deduce the key bits involved in row 25 and get 2s+19.44 pairs with 27.56 43-bit
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keys remaining with the known key bit 155, and deduce the key bits involved
in row 29 and get 219.44 pairs with 29.56 48-bit keys with the known key bits
177. Finally, we guess the key bits involved in row 26, get 219.44 pairs with 211.56

54-bit keys remaining, and guess the unknown key bits in row 25 of the state
after the first SC, check the output difference to get a 6-bit filter. Up to now,
we obtain 2s+19.44 pairs each corresponding to 26.56 55-bit keys.

For the other rows, we just need to compute the unknown key bits involved
in the row, the complexity is much lower than the process we stated above. The
time complexity of guessing the key bits involved in the first key addition is
about (2s+25 + 219.44 × (11 + 26)) × 1/32 × 1/10 ≈ 2s+18.

Each guess determines a 166-bit key, and we exhaust the remaining key bits.
In order to get one right pair under the right key guess, we expect 2s+2×28−1−28×
2−107.91 ≥ 1, and set s = 80.91. For the wrong key guess, about 2108.91−28−162 =
2−81.09 pairs will validate the input and output differences of the 3.5-round
distinguisher. According to the formulas in [4], α < 0.15 and β < 2−100, hence
the success probability of the attack is PS > 85% and the total time complexity
of the 5-round attack is given by

280.91+28 + 280.91+18 + 2192 · 2−100 · (1 − 2−192) ≈ 2108.95.

The data used in the attack is about 280.91+28 = 2108.91.

6 Conclusion

In this paper, an accelerated automatic search model for SPEEDY-r-192 based
on SAT method is proposed, the automatic search model is practical to give the
optimal probability of the differential trail for SPEEDY. A 4.5-round differential
characteristic with the probability of 2−150.15 and a 3.5-round differential charac-
teristic with the probability of 2−104.83 are found by the solver. Furthermore, we
propose a 5-round and a 6-round key-recovery attack for SPEEDY-r-192 utiliz-
ing the modified differential distinguisher. These are the attacks that covered the
longest rounds for SPEEDY-r-192 in our knowledge. Our 6-round attack, with
2158.06 time complexity and 2158.04 data complexity, can be viewed as a valid
attack under the security claim for the round-reduced version of SPEEDY-7-192,
which covers 6/7 rounds of the block cipher. And our 5-round attack with 2108.91

data complexity and 2108.95 time complexity can be viewed as a valid attack for
the round-reduced version of SPEEDY-6-192.
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Abstract. This paper is a complementary work to the Edwards curve
family. In this paper, we study the inverted Edwards coordinates on
twisted Edwards curves (denoted by inverted twisted Edwards curves).
We provide explicit addition, doubling, and tripling formulae on inverted
twisted Edwards curves with projective coordinates and extended pro-
jective coordinates. Using the extended projective coordinates, the new
explicit unified addition formulas cost 9M.
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1 Introduction

Elliptic curve cryptography (ECC) is one of the most well-known cryptosystems,
widely employed into reality since 2005. For instance, a research in 2017 sampled
100 major websites and found that 69 of them employing ECC for key exchange
[12], Apple employs elliptic curve digital signature algorithm (ECDSA) as the
signature of iMessage [10].

Compared with other elliptic curves, Edwards curve does not have a long
history in cryptography, even though its mathematical studies could date back
to the days of Gauss and Euler. For a long time afterward, this form of elliptic
curve seemed to vanish from the sea of literature. It was not until 2007 that
Edwards brought this curve back into the public eye and proved that it is a
normal elliptic curve model [7]. The beautiful addition law of the Edwards curve
rapidly caught the attention of cryptographers. In the same year that Edwards
discovered this curve, Bernstein and Lange introduced the Edwards curve into
the elliptic curve cryptosystem [2].

The importance of Edwards curves and their generalized forms, especially
the twisted Edwards curves, is indisputable. Ever since the Edwards form was
introduced to ECC, there has been a rapid development of it in elliptic curve
cryptosystems. It can also be stated that the Edwards curve form is one of the
most significant elliptic curve forms over finite fields with large characteristics,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Y. Deng and M. Yung (Eds.): Inscrypt 2022, LNCS 13837, pp. 295–304, 2023.
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and one of the most favored forms by current standards. The standards that
employed Edwards curves include the Transport Layer Security (TLS) Protocol
Version 1.3 [15], Internet Engineering Task Force Request for Comments(IETF
RFC) 8079 [14], and the National Institute of Standards and Technology (NIST)
draft FIPS 800-186 [5].

The significance of twisted Edwards curves comes from the fact that there
is state-of-the-art scalar multiplication on them. Scalar multiplication is a pro-
cedure that repeatedly adds the same point on itself, which is one of the most
essential parts of ECC. It is also the costliest section of some broadly applied
ECC protocols, e.g., ECDSA. Different forms of elliptic curves have been utilized
to achieve better scalar multiplication efficiency. The improvement of scalar mul-
tiplications has always been a hot research topic in elliptic curve cryptography
[1,13,16].

In scalar multiplication, the most noteworthy two operations are point addi-
tion and doubling. In recent years, the efficient calculations of points tripling have
also aroused interest [16]. Not only the family of Edwards curves provides effi-
cient point addition and doubling formulas, but also offers strongly unified point
addition formulas, which are highly efficient and easily implemented. When the
parameters of the Edwards curve satisfy certain conditions, a better complete
addition formula can be obtained. If a point addition formula works for point
doubling, it is called strongly unified, and if it is valid for all inputs, it is called
complete.

In this paper, we study the point operations on inverted twisted Edwards
curve, which is also one of the Edwards forms. The inverted twisted Edwards
curve is the curve corresponding to the inverted Edwards coordinates on twisted
Edwards curves. The inverted Edwards coordinates were introduced to accelerate
the addition formulae in scalar multiplication computation of Edwards curves
by Bernstein and Lange [3]. Galbraith employed one of the twisted inverted
Edwards curves as an example curve in his study [9]. In this study, we pro-
vide the addition, doubling, and tripling formulae on inverted twisted Edwards
curves. Each formula is based on projective and extended projective coordinates.
The addition, doubling, and tripling explicit formulas on the inverted twisted
Edwards curve are almost as fast as those on twisted Edwards curve.

The rest of this paper is organized as follows: in Sect. 2, we recall the back-
ground of the family of Edwards curves. In Sect. 3, we provide the arithmetic on
inverted twisted Edwards curves. In Sect. 4, we provide our new readdition for-
mula and tripling formula on inverted twisted Edwards curves. Compared with
previous works [3], the readdition formula saves 2 multiplication with constants
and the tripling formula saves one multiplication. In Sect. 5, we present addition,
doubling, and tripling on extended projective coordinates, which are almost as
faster as the state-of-the-art formulas on twisted Edwards curves. In Sect. 6, we
give a time costs comparison. In Sect. 7, we indicate how to compute the single
point scalar multiplication efficiently.
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2 Background

When looking back to Euler’s time, it is the time that elliptic curves were more
commonly referred to as elliptic functions. Euler implied that elliptic curves
x2 + y2 + x2y2 = 1 had the following addition law [8]:

X =
xy′ + yx′

1 − xyx′y′ , Y =
yy′ − xx′

1 + xyx′y′ .

A few decades later, this addition law was explicitly proposed by Gauss when he
studied a variant of this curve [11]. Edwards restudied Euler and Gauss’s work
and generalized the special curve to the form x2 + y2 = a2 + a2x2y2 [7]. He
indicated that if a satisfies a5 �= a, then the following addition law holds for the
above curve.

X =
1
a

· xy′ + yx′

1 + xyx′y′ , Y =
1
a

· yy′ − xx′

1 − xyx′y′ .

Meanwhile, the form x2 + y2 = a2 + a2x2y2 is a normal form. The “normal”
means that every elliptic curve over a non-binary field can employ a birational
map to a relative Edwards curve in an appropriate extension field.

Bernstein and Lange added a new parameter to the Edwards curves [2] to
make the Edwards curve more applicable in cryptography. They generalized the
Edwards curves to the form x2+y2 = a2(1+dx2y2), showing that the well-known
curve25519 is birational equivalent to the curve x2+y2 = 1+121665/121666x2y2,
and presented 3M+4S, i.e., 3 field multiplications and 4 field squarings doubling
formulae and 10M+1S addition formulae under the assumption c = 1. Bernstein
and Lange pointed out that this assumption is easy to achieve. The doubling and
addition formulae broke the speed record of multi-scalar multiplication at that
time.

To further lower the cost, Bernstein and Lange introduced inverted Edwards
coordinates on Edwards curves [3]. Employing the inverted Edwards coordinates,
the doubling, tripling, and addition formulae cost 3M+4S, 9M+4S, and 9M+
1S, respectively.

Bernstein et al. introduced twisted Edwards curves, allowing the family of
Edwards curves to cover a wider family of elliptic curves in cryptography. Each
twisted Edwards curve is a twist of an Edwards curve [1].

So far, the fastest addition formula algorithm in the family of Edwards curves
is proposed by Hisil, Wong, Carter, and Dawson with extended twisted Edwards
coordinates [13]. Their unified formula costs 9M+ 2Ma, and their fast addition
formula costs 9M + Ma, where Ma is a field multiplication with a constant.
When a equals −1, one M and one Ma will be saved on each formula.

In [9], Galbraith employed elliptic curves of Edwards form to carry out the
implementation of their Gallant-Lambert-Vanstone (GLV) method.
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3 Arithmetic on Inverted Twisted Edwards Curves

The inverted twisted Edwards curves are the elliptic curves with the following
equation:

x2 + ay2 = d + x2y2.

∞ is the neutral element, and (−x, y) is the negative of a point (x, y).
The projective form of inverted twisted Edwards curves is

(X2 + aY 2)Z2 = dZ4 + X2Y 2. (1)

When Z �= 0, the point with projective coordinates (X : Y : Z) is corre-
sponding to an affine point (X/Z, Y/Z). When Z = 0, the point is one of two
singularities at infinity. An inverted twisted Edwards curve is isomorphic to a
twisted Edwards curve by the map φ(X,Y,Z) = (Z/X,Z/Y ).

If further allowing T to be an auxiliary coordinate satisfying T = XY/Z,
then the extended twisted Edwards coordinates (T : X : Y : Z) are obtained.
However, this representation may cause an error when Z = 0. Instead, the
inverted twisted Edwards curve with extended twisted Edwards coordinates can
be considered as the intersection of the following two surfaces:

X2 + aY 2 = dZ2 + T 2, and XY = ZT.

Then, the point is well-defined even if Z = 0. By this definition, the point at
infinity can be represented as (1 : 1 : 0 : 0). The curve has four points of order
4: T1 = (

√
a : 0 : 1 : 0), T2 = (0 :

√
d : 0 : 1), T3 = (−√

a : 0 : 1 : 0),
T4 = (0 : −√

d : 0 : 1) and three points of order 2: T1 + T2 = (0 : 0 : −√
d :

√
a),

T1 −T2 = (0 : 0 :
√

d :
√

a), 2T1 = 2T2 = (1 : −1 : 0 : 0) in the extension field. In
the following sections, we will refer to the extended twisted Edwards coordinates
simply as extended projective coordinates.

A point on extended projective coordinates can map to a point in projective
coordinates by ignoring the coordinates T . A point (X : Y : Z) on projective
coordinates with XY Z �= 0 can map to the point (XY : XZ : Y Z : Z2) on
extended projective coordinates.

Considering the projective map from extended twisted Edwards coordinates
to projective coordinates, the point at infinity (1 : 1 : 0 : 0) and the 2-order
point (1 : −1 : 0 : 0) will both map to (1 : 0 : 0) and lose the distinction between
them. Similarly, in projective coordinates, the distinction between T1 and T3 will
be lost. Since the elliptic curve systems always employ the points in prime order
subgroups as the inputs of the scalar multiplications, these losings would not
require exceptional handles.

According to [1] and [9], the unified addition law for inverted twisted Edwards
curves is

(x3, y3) = (x1, y1) + (x2, y2) = (
x1x2y1y2 + d

x2y1 + x1y2
,
x1x2y1y2 − d

x1x2 − ay1y2
). (2)

The following theorem reveals the exception inputs of this addition law.
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Theorem 1. Let K be a field of odd characteristic. Assuming that P = (x1, y1)
is a fixed point on inverted twisted Edwards curve E : x2 +ay2 = d+x2y2 which
is defined over K. Let Q be another point on this curve.

If x1y1 = 0, then x2y1 + x1y2 = 0 if and only if Q ∈ Sx = {(x1,−y1), (−x1,
y1)}; x1x2 − ay1y2 = 0 if and only if Q ∈ Sy = {(

√
ay1, x1/

√
a), (−√

ay1,
−x1/

√
a)}. Otherwise, Sx and Sy are given by

Sx = {(x1,−y1), (−x1, y1), (
√

d/y1,−
√

d/x1), (−
√

d/y1,
√

d/x1)},

Sy = {(√ay1, x1/
√
a), (−√

ay1,−x1/
√
a), (

√
ad/x1,−

√
d/

√
ay1), (−

√
ad/x1,

√
d/

√
ay1)}.

Proof. Sx is given by solving the equations x2
1 + ay2

1 = d + x2
1y

2
1 , x2

2 + ay2
2 =

d + x2
2y

2
2 and x2y1 + x1y2 = 0. Similarly, Sy is given by solving the equations

x2
1 + ay2

1 = d + x2
1y

2
1 , x2

2 + ay2
2 = d + x2

2y
2
2 and x1x2 − ay1y2 = 0.

By Theorem 1, the addition law (2) is unified. Meanwhile, there is no suitable
selection of a and d that can make addition law (2) complete, the exceptions
always exist. The following lemma shows that exceptional cases are not required
to be handled for scalar multiplication with a prime order point as input.

Lemma 1. Let K, E, P , Q be defined as in Theorem 1. If Q ∈ Sx ∪ Sy, then
Q is of even order.

Proof. The proof of this lemma is similar to the proof of Lemma 1 in [13].

4 Points Operations in Projective Coordinates

4.1 Readdition Formula

The readdition can be performed in 9M + 1S with cached values R1 = X2Y2,
T2 = X2Y2/Z2, R2 = dZ2, R3 = aR1, R4 = aY2, where the term readdition
means one of the inputs of the point addition is fixed and some values of this
input have already been cached. The specific algorithm is:

A = X1 · Y1; B = (X1 + X2) · (Y1 + Y2) − A − R1;

C = (X2 + Y1) · (X1 − R4) + R3 − A; D = Z2
1 ; E = R2 · D; F = A · T2;

X3 = (E + F ) · C; Y3 = (F − E) · B; Z3 = Z1 · B · C.

A 8M+1S+1Ma mixed addition formula can be derived by setting Z2 = 1.

4.2 Tripling in Projective Coordinates

By the doubling and addition formulae, the tripling formulae can be obtained as

X3 = X1(X4
1 +2aX2

1Y 2
1 +a2Y 4

1 −4adY 2
1 Z2

1 )(X4
1 −2aX2

1Y 2
1 −3a2Y 4

1 +4adY 2
1 Z2

1 ),
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Y3 = Y1(−X4
1 −2aX2

1Y 2
1 −a2Y 4

1 +4dX2
1Z2

1 )(−3X4
1 −2aX2

1Y 2
1 +a2Y 4

1 +4dX2
1Z2

1 ),

Z3 = Z1(3X4
1 +2A1X2

1Y 2
1 −a2Y 4

1 −4dX2
1Z2

1 )(X4
1 −2aX2

1Y 2
1 −3a2Y 4

1 +4adY 2
1 Z2

1 ).

The new tripling formula can be computed in 9M+3S +2Ma by the following
algorithm:

A = X2
1 ; B = aY 2

1 ; C = A + B − dZ2
1 ;

D = (A + B) · (A − B); E = 2A · C; F = 2B · C;

X3 = X1·(D+F )·(D−F ); Y3 = −Y1·(D+E)·(D−E); Z3 = Z1·(D−F )·(D−E).

5 Points Operations in Extended Projective Coordinates

5.1 Addition in Extended Projective Coordinates

The addition law for extended projective coordinates can be obtained as: (T1 :
X1 : Y1 : Z1) + (T2 : X2 : Y2 : Z2) = (T3 : X3 : Y3 : Z3), where

T3 = (T1T2 + dZ1Z2)(T1T2 − dZ1Z2),

X3 = (T1T2 + dZ1Z2)(X1X2 − aY1Y2),

Y3 = (T1T2 − dZ1Z2)(X2Y1 + X1Y2),

Z3 = (X1X2 − aY1Y2)(X2Y1 + X1Y2).

Derived from the addition law, we have the following algorithm to compute
the addition formulae with 9M+2Ma.

A = dZ1 · Z2; B = T1 · T2; C = X1 · X2; D = Y1 · Y2;
E = (X1 + Y1) · (X2 + Y2) − C − D; H = C − aD; X3 = (A + B) · H;

Y3 = (B − A) · E; Z3 = H · E; T3 = (A + B) · (B − A).

The readdition costs 9M with the caching of R1 = dZ2, R2 = aY2, R3 =
X2Y2, and R4 = aX2Y2.

A = Z1 · R1; B = T1 · T2; C = X1 · Y1; D = (X1 + Y1) · (X2 + Y2) − C − R3;
E = (X2 + Y1) · (X1 − R2) + R3 − C; F = B + A; G = B − A;

T3 = F · G; X3 = F · E; Y3 = G · D;Z3 = D · E.

For the case a = −1, the addition formula can be optimized as

A = dZ1 · Z2; B = T1 · T2; C = (X1 + Y1) · (X2 + Y2); D = (X1 − Y1) · (X2 − Y2);

E = −C −D; H = C −D; X3 = 2(A + B) ·H;

Y3 = 2(B −A) · E; Z3 = H · E; T3 = 4(A + B) · (B −A).

This formula costs 8M+1Ma. The readdition costs 8M with a cached value
dZ2. And the mixed addition costs 7M + 1Ma by assuming Z2 = 1.
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5.2 Doubling in Extended Projective Coordinates

The explicit doubling formulas, in this case, need 4M+ 4S+ 2Ma. X1, Y1, and
Z1 are required to be the inputs.

A = X2
1 ; B = Y 2

1 ;C = (X1 + Y1)2 − A − B; D = 2dZ2
1 ; E = a · B;

X3 = (A + E) · (A − E); Y3 = C · (A + E − D);
Z3 = C · (A − E); T3 = (A + E) · (D − A − E).

One M will be saved if output a point in projective coordinates.

5.3 Tripling in Extended Projective Coordinates

For extended projective coordinates, we present two sets of tripling formulas.
The first set needs 11M + 3S + 1Ma, requiring all of X1, Y1, Z1, and T1 as
inputs. This tripling formula can be performed as

A = X2
1 ; B = aY 2

1 ; C = 2T 2
1 − A − B;

D = (A + B) · (A − B); E = 2A · C; F = 2B · C;

X3 = X1 · (D + F ) · (D − F ); Y3 = −Y1 · (D + E) · (D − E);

Z3 = Z1 · (D − F ) · (D − E); T3 = −T1 · (D + F ) · (D + E).

Two M can be saved if a point in projective coordinates is output by ignoring
the computation of T3.

The second set needs 11M+ 3S+ 2Ma, requiring X1, Y1, and Z1 as inputs:

A = X2
1 ; B = aY 2

1 ; C = A + B − 2dZ2
1 ;

D = (A + B) · (A − B); E = 2A · C; F = 2B · C;

G = X1 · (D + F ); H = −Y1 · (D + E); I = Z1 · (D − F ); J = Z1 · (D − E);

X3 = G · I; Y3 = H · J ; Z3 = I · J ; T3 = G · H.

6 Comparison

In Sect. 4 and Sect. 5, we introduce the point operations in projective coordi-
nates and extended projective coordinates. In the following table, we compare
the explicit formulae on twisted Edwards curves and inverted twisted Edwards
curves.

As in Table 1, on the projective coordinates, the new readdition formula saves
2Ma and the new tripling formula saves 1M. The new addition formula (a = −1)
on extended coordinates saves 1M+1S+1Ma while doubling require 1M more.
The extra cost in the doubling formula can be eliminated by using a mixture of
projective and extended coordinates. For details, please refer to Sect. 7.
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Table 1. Time costs for points operations on inverted twisted Edwards curves

Curve Coordinates ADD reADD Doubling Tripling

M S Ma M S Ma M S Ma M S Ma

Twisted Edwards [3] inv-inv 9 1 2 9 1 2 3 4 2 9 4 2

Inverted twisted Edwards
(This work)

proj-proj / 9 1 0 / 9 3 2

Inverted twisted Edwards
(a = −1, this work)

ext-ext 8 0 1 8 0 0 4 4 1 11 3 1

Inverted twisted Edwards
(a = −1, this work)

ext-proj 7 0 1 7 0 0 3 4 1 9 3 1

Inverted twisted Edwards
(this work)

ext-ext 9 0 2 9 0 0 4 4 2 11 3 2

Inverted twisted Edwards
(this work)

ext-proj 8 0 2 8 0 0 3 4 2 9 3 1

7 Fast Scalar Multiplication

In order to obtain better efficiency, Cohen, Miyaji, and Ono proposed a strategy
of carefully mixing different coordinates on short Weierstrass curves [6] combined
the best doubling and addition system. Hisil et al. introduced this strategy on
twisted Edwards curves, combing the projective and extended twisted Edwards
coordinates to achieve better efficiency. We follow a similar approach.

Recall that given (X : Y : Z) in projective coordinates passing to extended
projective coordinates requires 3M + 1S by computing (XY : XZ : Y Z : Z2).
Given (T : X : Y : Z) in passing to projective coordinates is cost-free by simply
ignoring T .

On inverted twisted Edwards curves, combining extended projective coordi-
nates with projective coordinates speeds up scalar multiplications. When per-
forming a scalar multiplication, some suggestions are provided in the following:

(1) If a point doubling or tripling is followed by another point doubling or
tripling, the corresponding formula on projective coordinates is recom-
mended to be employed.

(2) After each addition, the tripling scalar multiplication should be performed
as early as possible.

(3) If a point doubling or tripling is followed by a point addition, please use
the doubling or tripling on extended projective coordinates the addition
with input points on extended projective coordinates and output projective
coordinates point for the point doubling or tripling and the point addition.

(4) If suggestion (2) is followed and a point addition after tripling still needs to
be calculated, then using projective coordinates is faster than using extended
Edwards coordinates as the coordinates of the midpoint.

In order to achieve better efficiency, the doubling and tripling operations
should be performed under the projective coordinates as much as possible. Since
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the inputs values in doubling and tripling formulas on extended projective coor-
dinates do not contain T -coordinates, these formulas can be regarded as the
doubling and tripling formulas passing the input points on projective coordi-
nates to the output points on extended projective coordinates. Compared to
the doubling and tripling formulas on projective coordinates, the doubling and
tripling formulas on projective coordinates cost additional M and 2M respec-
tively. Therefore, the tripling points operation should be performed as early as
possible to lower the costs. If the point addition after tripling is inevitable, then
they require 18M + 4S on projective coordinates and 19M + 3S if the output
point of tripling is a point on extended projective coordinates. M always takes
more time than S. In Bernstein and Lange Explicit-Formulas Database [4], S is
assumed to be 0.67M to 1M. Employing the projective coordinates to perform
this procedure will be more efficient.

8 Conclusion

We investigate point arithmetic formulas on inverted twisted Edwards curves
for the cases with the curve parameter a = −1 and the cases without restric-
tions on curve parameters. These formulas could be applied to elliptic curve
cryptosystems in the future.
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F.F. (eds.) AAECC 2007. LNCS, vol. 4851, pp. 20–27. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-77224-8 4

4. Bernstein, D.J., Lange, T.: Explicit-formulas database (2020). http://hyperelliptic.
org/EFD/

5. Chen, L., Moody, D., Regenscheid, A., Randall, K.: Draft NIST special publica-
tion 800-186 recommendations for discrete logarithm-based cryptography: elliptic
curve domain parameters. Technical report, National Institute of Standards and
Technology (2019)

6. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1 6

7. Edwards, H.M.: A normal form for elliptic curves. In: Bulletin of the American
Mathematical Society, pp. 393–422 (2007)

https://doi.org/10.1007/978-3-540-68164-9_26
https://doi.org/10.1007/978-3-540-76900-2_3
https://doi.org/10.1007/978-3-540-77224-8_4
http://hyperelliptic.org/EFD/
http://hyperelliptic.org/EFD/
https://doi.org/10.1007/3-540-49649-1_6


304 L. Li and W. Yu

8. Euler, L.: Observationes de comparatione arcuum curvarum irrectificibilium. Novi
commentarii academiae scientiarum Petropolitanae, pp. 58–84 (1761)

9. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. J. Cryptol. 24, 446–469 (2011)

10. Garman, C., Green, M., Kaptchuk, G., Miers, I., Rushanan, M.: Dancing on the
lip of the volcano: chosen ciphertext attacks on apple iMessage. In: 25th USENIX
Security Symposium (USENIX Security 2016), Austin, TX, pp. 655–672. USENIX
Association (2016)

11. Gauss, C.F.: Carl Friedrich Gauss Werke, vol. 3
12. Harkanson, R., Kim, Y.: Applications of elliptic curve cryptography: a light intro-

duction to elliptic curves and a survey of their applications. In: Proceedings of the
12th Annual Conference on Cyber and Information Security Research (2017)

13. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted Edwards curves revis-
ited. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 20

14. Miniero, L., Murillo, S.G., Pascual, V.: Guidelines for End-to-End Support of the
RTP Control Protocol (RTCP) in Back-to-Back User Agents (B2BUAs). RFC 8079
(2017)

15. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446
(2018)

16. Yu, W., Musa, S.A., Li, B.: Double-base chains for scalar multiplications on elliptic
curves. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp.
538–565. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 18

https://doi.org/10.1007/978-3-540-89255-7_20
https://doi.org/10.1007/978-3-030-45727-3_18


Efficiently Computable Complex
Multiplication of Elliptic Curves

Xiao Li1,2, Wei Yu1(B), Yuqing Zhu3,4, and Zhizhong Pan5

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100195, China

{lixiao,yuwei}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100049, China
3 Beijing Key Laboratory of Security and Privacy in Intelligent Transportation,

Beijing Jiaotong University, Beijing 100044, China
zhuyuqing@bjtu.edu.cn

4 School of Computer and Information technology, Beijing Jiaotong University,
Beijing 100044, China

5 Huawei Technologies Co., Ltd., Shenzhen, China

Abstract. After the GLV and GLS methods were proposed, a great deal
of attention was devoted to the efficiently computable complex multipli-
cation of elliptic curves. In this paper, we mainly compute the rational
expressions of complex multiplications of elliptic curves. Our contribu-
tion involves two aspects. We propose a new algorithm to effectively com-
pute the rational expression of a complex multiplication over finite field.
We also present a method to construct an elliptic curve with efficiently
computable complex multiplication by a given quadratic imaginary field.
Specifically, we show all 13 classes of elliptic curves with complex mul-
tiplication over quadratic imaginary fields. This is the first systematic
study of the expression of complex multiplication.

Keywords: Elliptic curves · Complex multiplication · Explicit
expression · GLV method

1 Introduction

In elliptic curve cryptography, the additive group structure of the elliptic curve
is widely used. Examples include the elliptic curve Diffie-Hellman key exchange
and the elliptic curve digital signature algorithm. The calculation of the scalar
multiplication of points on elliptic curves is a basic and important task. Scalar
multiplication acceleration has received much attention for a long time, and has
been extensively studied by the cryptography community.
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In 2001, a groundbreaking algorithm named the Gallant-Lambert-Vanstone
(GLV) method [1] was proposed to achieve the accelerated computation of scalar
multiplication. Specifically, the GLV method works as follows. Suppose E is an
elliptic curve over finite field and P is a point of prime order n. If there is an
efficiently computable endomorphism φ ∈ End(E), then we can compute kP for
k ∈ [1, n − 1] via the decomposition

kP = k1P + k2φ(P ), k1, k2 ≈ √
n.

We call the vector (k1, k2) ∈ Z×Z a short vector if it satisfies k1, k2 ≈ √
n. When

the computational cost of φ is small and k1P +k2Q can be computed simultane-
ously, such as using Shamir’s trick, the calculation of scalar multiplication can
be accelerated.

An important and basic assumption of the GLV method is the existence of
efficiently computable complex multiplications. Most elliptic curves have only the
multiplication-by-integer endomorphisms. An elliptic curve that possesses extra
endomorphisms is said to have complex multiplication (CM). Frobenius mor-
phism, which is a trivial complex multiplication, can be used for Koblitz curves
over binary fields. Thus, the Koblitz curves enable very fast scalar multiplica-
tion. However, the safety of the Koblitz curve has been questioned. Therefore, we
consider the complex multiplication of elliptic curves over finite field Fp. Some
existing complex multiplications, such as ±√−1, −1±√−3

2 , are often used. The
paper [1] provides 4 examples. We list one of them here.

E7,1 is an elliptic curve over Fp defined by

y2 = x3 − 3
4
x2 − 2x − 1, (1)

where p > 3 is a prime such that −7 is a quadratic residue modulo p. There is
a map Φ defined by

Φ(x, y) = (
x2 − ξ

ξ2(x − a)
,
y(x2 − 2ax + ξ)

ξ3(x − a)2
)

as an endomorphism of E7,1, where ξ = (1+
√−7)/2 and a = (ξ−3)/4. Moreover,

Φ satisfies the equation
Φ2 − Φ + 2 = 0,

and Z[Φ] = Z[1+
√−7
2 ] ⊆ Q(

√−7).
The endomorphism ring of an ordinary elliptic curve E with complex multi-

plication is an order in a quadratic imaginary field K [6]. In the 4 examples in [1],
all of the class numbers of the relevant quadratic imaginary fields are equal to
1, and the complex multiplications are exactly defined over quadratic imaginary
fields. Actually, there are only 13 quadratic imaginary fields of class number 1
(9 fundamental, 4 non-fundamental), four of which were presented in the above
examples. These examples have been widely used. For instance, secp256k1 (one
case of elliptic curve E2) is the key mechanism for the implementations of Bitcoin
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and Ethereum [3]. As a well-known cryptocurrency, Bitcoin’s market capitaliza-
tion has exceeded one trillion US dollars. However, we have been unable to find
more examples of elliptic curves with useful endomorphisms in the literature.
Therefore, one of our goals is to find a way to calculate the efficiently com-
putable complex multiplication.

In this paper, we are concerned with 2 aspects of complex multiplication:
If a complex multiplication differs from the Frobenius morphism, how can we
determine its explicit expression; and what are the elliptic curves whose endo-
morphism rings are contained in the other 9 quadratic imaginary fields of class
numbers 1.

Firstly, we present a new algorithm to calculate the explicit expression of a
complex multiplication of any given elliptic curve over Fp. Stark [8] once proposed
a method of continuous fraction expansion to calculate the rational expressions
of complex multiplications. Our algorithm is a brand new method, completely
different from Stark’s. We prove Theorem 4, which states that the degree of a
complex multiplication is equal to its norm. In Theorem 5, we introduce our
algorithm for calculating the rational expression of a complex multiplication.
This algorithm uses the method of undetermined coefficients, and is in time
polynomial in the degree of complex multiplication.

Secondly, for the remaining 9 quadratic imaginary fields of class number 1,
we obtain 9 classes of elliptic curves with complex multiplications. We propose a
new method to compute the explicit expressions over quadratic imaginary fields
for complex multiplications of these elliptic curves. This result is convenient for
us to provide the rational expression of the complex multiplication over any finite
field Fp. The details of these elliptic curves and their complex multiplications
are at the end of Sect. 4.

Paper Organization. The rest of the paper is organized as follows. In Sect. 2,
we briefly describe the properties of the endomorphism rings of elliptic curves
over finite field and introduce the Kohel’s algorithm for calculating endomor-
phism rings. In Sect. 3, we restrict the complex multiplication to finite field, and
propose an algorithm for calculating the rational expression of complex multipli-
cation. Finally in Sect. 4, for a class of special elliptic curves, we give a method
to obtain explicit expressions of the complex multiplications.

2 Preliminary

We briefly introduce endomorphism ring and complex multiplication of elliptic
curve.

By an endomorphism of an elliptic curve E/k, we mean a homomorphism
α : E(k̄) → E(k̄) that is given by rational functions. If the Weierstrass equation
of E is written as y2 = x3 + ax + b, then there are polynomials f(x), g(x) and
rational function r(x, y) with coefficients in k̄ such that

α(x, y) = (
f(x)
g(x)

, r(x, y))
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for all (x, y) ∈ E(k̄). We define the degree of α as

deg(α) = Max{deg f(x),deg g(x)}.

All the endomorphisms of E form a ring, called the endomorphism ring of E,
which is denoted as End(E).

The multiplication by arbitrary integers is always included in End(E). We
say that E has complex multiplication if End(E) is strictly larger than Z. Each
complex multiplication can be represented as a complex number.

It is known that an elliptic curve E over finite field Fp always has complex
multiplication. The p-Frobenius endomorphism, denoted by π, has characteristic
polynomial

X2 − tX + p = 0,

where |t| ≤ 2
√

p. It is obvious that this function has no root in Z. That is,

Z �= Z[π] ⊆ End(E).

Proposition 1 ([9, Theorem 10.6]). Let E be an elliptic curve over finite field
of characteristic p.

1) If E is ordinary, then End(E) is an order in a quadratic imaginary field.
2) If E is supersingular, then End(E) is a maximal order in a definite quaternion

algebra that is ramified at p and ∞ and is split at the other primes.

We only consider the ordinary cases in this paper, which means E satisfies any
of the following equivalent conditions.

1) E[p] ∼= Z/pZ.
2) The trace t of π is prime to p.
3) E has a Hasse invariant of 1.

Since Z[π] ⊆ End(E) ⊂ K for some quadratic imaginary field K, it is clear
that K is equal to the fractional field Z[π]⊗ Q = Q[π]. Let OK be the maximal
order of K, then we have

Z[π] ⊆ End(E) ⊆ OK . (2)

For the quadratic imaginary field, the following basic conclusions in algebraic
number theory exist.

Lemma 2 ([9, p. 314]). Let K be the quadratic imaginary field Q(
√−N), where

N is a square-free positive integer.

1) The integer ring of K is OK = [1, ω], where ω =
√−N when N ≡ 1, 2

mod 4, and ω = 1+
√−N
2 when N ≡ 3 mod 4.

2) Suppose O is an order of the quadratic imaginary field K. It can be repre-
sented as [1,mω], where m = [OK : O] is called the conductor of O.
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3) If an order O can be written as [α, β], define its discriminant D as

D =
(

det
(

α β
ᾱ β̄

))2

,

where ·̄ is the complex conjugate.
4) Moreover, take the discriminant of OK as the discriminant DK of number

field K, then
D = m2DK .

For a given elliptic curve E and chosen prime p, SEA algorithm [4] can be
used to calculate the trace t of π on E(Fp) in the polynomial time of O(p5+ε);
therefore, we may know the ring Z[π] and the field K. Assume the discriminant
of K is DK , and the conductor of Z[π] is m = [OK : Z[π]]. Then

D = disc(Z[π]) = t2 − 4p = m2DK .

It can be verified that

OK = Z

[
π − a

m

]

for a = t/2 if DK ≡ 0 mod 4, and a = (t + m)/2 if DK ≡ 1 mod 4.
To compute End(E), denoted later by O, one actually needs to determine

[OK : O] or [O : Z[π]]. Note that [OK : Z[π]] = m and

π − a ≡ 0 mod mOK .

If [O : Z[π]] = n0, then,

π − a ≡ 0 mod n0O,

π − a �= 0 mod kn0O
with positive integers n0|m, k > 1.

3 Explicit Expression of Complex Multiplication over Fp

The endomorphism ring of a given elliptic curve can be computed by Kohel’s
algorithm [2], and in this section we focus on specific complex multiplication.
Our goal is to find an efficiently computable complex multiplication, and propose
an algorithm to calculate its expression.

In this paper, we denote the isomorphism of an endomorphism ring and an
order by

[·] : C
∼→ End(E).

λ �→ [λ]

λ always represents a complex number, and [λ] always represents an endomor-
phism.
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3.1 Complex Multiplication Restricted to a Finite Field

For a given complex multiplication [λ] ∈ End(E), where λ has the characteristic
polynomial x2 + rx + s = 0, we consider the morphism [λ] restricted to Fp.

Recall that π denotes the Frobenius endomorphism over Fp. For any point
P ∈ E(Fp),

π([λ]P ) = [λ](π(P )) = [λ]P,

so [λ]P ∈ E(Fp).
The following conclusion is trivial, and there are many different proofs. For

the needs of the following calculation, we give a computational proof.

Lemma 3. Let E be an ordinary elliptic curve over finite field Fp. The point
P ∈ E(Fp) such that order(P ) = n is a prime and n2

� #E(Fp). Then, the action
of a complex multiplication [λ] ∈ End(E) on the group 〈P 〉 is equal to the action
of some scalar multiplication.

The conclusion is obvious. It is worth noting that the scalar multiplication
is actually a root of the characteristic polynomial of the complex multiplication
modulo n.

For a given complex multiplication [λ] ∈ End(E), there is always an integer
k such that [λ]P = kP for P ∈ E(Fp). When [λ] = π, the relevant k is obviously
1. When [λ] /∈ Z[π], we may calculate [λ]P instead of kP . If Kohel’s algorithm
shows that End(E) is greater than Z[π], then there is a complex multiplication
that might be used for computational optimization.

3.2 Computing the Rational Expression of CM over Fp

To achieve the scalar multiplication of elliptic curve using complex multiplica-
tion, we would like to provide an algorithm to compute the rational expression
of a given [λ], and find the condition to determine whether the expression can
be effectively computed.

Suppose E/Fp is an ordinary elliptic curve with Weierstrass function y2 =
x3 + ax + b, End(E) ⊆ K where K = Q(

√−N) is an quadratic imaginary field
with discriminant DK . Define ω =

√−N if N ≡ 1, 2 mod 4, and ω = 1+
√−N
2 if

N ≡ 3 mod 4. Then, the integer ring OK = Z[ω]. Note that Norm(ω) = −DK/4
or (1 − DK)/4 and tr(ω) = 0 or 1. Thus for any λ = iω + j ∈ End(E)\Z ⊆ Z[ω]
with characteristic polynomial

x2 + rx + s = 0,

we may have a lower bound estimate for s

s = Norm(λ)

= i2 · Norm(ω) + ij · tr(ω) + j2

= i2(Norm(ω) + j/i · tr(ω) + j2/i2)

≥Norm(ω) + j/i · tr(ω) + j2/i2

≥ − DK/4.
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We wish to bound the degree of [λ] by the norm s. Actually, we have the
following theorem.

Theorem 4. Suppose the elliptic curve E/Fp is an ordinary elliptic curve, and
[λ] ∈ End(E) is a complex multiplication of E. If Norm(λ) = s,deg([λ]) = m,
then s = m.

Proof. Denote the dual to [λ] by [λ′], the conjugate of λ by λ and the conjugate
of λ′ by λ′.

Since deg([λ]) = m, we have

λ · λ′ = m.

Considering the norm on both sides of the equation, we easily know that
Norm(λ′) = m2

s , which means

λ′ · λ′ =
m2

s
.

Note that both [λ′] and [λ′] are the endomorphisms of E, and the norm of λ′

is an integer because λ′ ∈ End(E) ⊆ OK . Furthermore, we consider both sides
of the equation as endomorphisms of E and determine their degrees. Combining
the fact that deg([λ′]) = deg([λ]) = m, we have

deg([λ′]) =
(m2/s)2

deg([λ′])
=

m3

s2
.

Therefore, in general, starting with the conditions Norm(λ) = s and
deg([λ]) = m, we have

Norm(λ′) = Norm(λ′) = m2/s,deg([λ′]) = m3/s2.

Now, define a sequence of endomorphisms {[γi]}i≥0. Let

γ0 = λ, γi+1 = γ′
i, i ≥ 0.

From the above process, we can obtain Norm(γi) = m2i/s2i−1 and deg([γi]) =
m2i+1/s2i for all i ≥ 0. Since γi ∈ OK is integral algebraic and [γi] is an endo-
morphism, norm and degree should be integers for all i. So s must be a factor
of m.

On the other hand, denote the dual to [λ] by [λ
′
], and consider the norm and

degree. Similarly, we can get that

Norm(λ
′
) = s3/m2,deg([λ

′
]) = s2/m.

Define a sequence {[τi]}i≥0 such that τ0 = λ and τi+1 = τi
′ for all i ≥ 0. In the

same way, m must be a factor of s.
In summary, it is clear that s = m. ��
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Now consider the expression of complex multiplication. The endomorphism
[λ] is rational. Therefore, we set

x([λ](X,Y )) = f(X)/g(X)

for some polynomial f, g ∈ Fp[X], where x represents the x-coordinate. Accord-
ing to Theorem 4,

s = deg([λ]) = max{deg(f),deg(g)}.

Based on the maximum of deg(f) and deg(g), we can use the method of
undetermined coefficients to calculate the formulas of f and g.

Theorem 5. There is an algorithm to calculate the rational expression of f
and g relevant to the complex multiplication [λ] in time polynomial in log p and
s = Norm(λ).

Proof. Suppose f(X) = asX
s + · · ·+a1X +a0, g(X) = bsX

s + · · ·+ b1X + b0 ∈
Fp(X). For any point P (X,Y ) ∈ E(Fp), denote X ′ = x([λ]P ). Then, we have
f(X)/g(X) = X ′. That is,

Xsas + Xs−1as−1 + · · · + Xa1 + a0 − X ′Xsbs − · · · − X ′Xb1 − X ′b0 = 0.

If we compute the corresponding X ′
i for enough Xi, we can obtain a system

of linear equations for {as, · · · , a0, bs, · · · , b0}. Linear algebra tells us that the
coefficients can be solved when the number of equations is at least 2s + 2. In
general, when we pick equations that are much more than 2s + 2, the solution
space of the linear system should be one dimensional.

Therefore, we choose N random points P1, · · · , PN where N ≥ 2s + 2, and
define the matrix

AN×(2s+2) =

⎛
⎜⎝

Xs
1 · · · 1 −X ′

1X
s
1 · · · −X ′

1
...

...
...

...
...

...
Xs

N · · · 1 −X ′
NXs

N · · · −X ′
N

⎞
⎟⎠ .

Solve the equation Ax = 0 and obtain a vector v. Then, (as, · · · , a0, bs, · · · , b0) =
v up to a constant multiple.

The computation of this algorithm is concentrated in two parts. The time
complexity of computing kP for N times is O(s log2+ε p). The time complexity
of solving a matrix equation of order 2s+2 is O(s3 log1+ε p). Therefore, the time
complexity of our algorithm is O(s log2+ε p) + O(s3 log1+ε p). ��

Specifically, considering that the group of the elliptic curve used practically
in cryptography is usually a cyclic group of prime order, there is the following
algorithm for such a case.
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Algorithm 1. Computation of the rational expression of CM

Input: Finite field Fp; elliptic curve E; P (xP , yP ) and its prime order n; char-
acteristic polynomial x2 + rx + s = 0 of λ

Output: h(x)
1: k ←− (−r +

√
r2 − 4s)/2 mod n

2: deg ←− s,N ←− 2s + 2. If p is small, N could be larger to ensure that
matrix A is sufficiently random.

3: for i = 1 to N do
4: Randomly select Pi(Xi, Yi) ∈ 〈P 〉
5: X ′

i ←− x(kPi)
6: end for

7: AN×(2 deg+2) ←−

⎛
⎜⎝

Xdeg
1 · · · 1 −X ′

1X
deg
1 · · · −X ′

1
...

...
...

...
...

...
Xdeg

N · · · 1 −X ′
NXdeg

N · · · −X ′
N

⎞
⎟⎠

8: if rank(A) < 2 deg +1 then
9: Go to 3

10: else
11: (adeg, · · · , a0, bdeg, · · · , b0) ←− Solve(Ax = 0)
12: f(x) ←− adegx

deg + · · · + a0, g(x) ←− bdegx
deg + · · · + b0

13: h ←− f/g
14: end if
15: return h(x)

Remark 1. The above discussion ensures that rank(A) ≤ 2 deg +1. If
rank(A) < 2 deg +1, one possible reason is that the selected points are still
not random enough, especially when p is small. Therefore, it is necessary to
repeat the calculation several times.

Applying this algorithm to a given elliptic curve E over finite field Fp, the
calculation is efficient only if s is O(log p). Based on previous discussion, s has
a lower bound −DK/4. For the elliptic curve E, the discriminant of Z[π] is a
certain value D = t2 − 4p. Therefore, if we want DK to be small, D = m2DK

must have a large square part and a small square-free part. More specifically,
consider

t2 − 4p = m2DK

as a factorization. Here, |DK | needs to be small enough to be approximately
log p. This is exactly the condition under which the rational expression of the
complex multiplication can be efficiently computed. Therefore, although P-224
and W-448 have complex multiplications, their rational expressions cannot yet
be computed efficiently.
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4 Q-Elliptic Curves and Their Complex Multiplications

In this section, for a class of special elliptic curves, which are defined over Q

and have nontrival complex multiplications (hereafter refered to as Q-elliptic
curves), we give a method to compute the explicit expressions of their complex
multiplications. All 13 Q-elliptic curves as well as explicit expressions of their
complex multiplications will be stated at the end of this section.

If a quadratic imaginary complex number has a class number of 1, then the
corresponding generated elliptic curve can be naturally defined over Q. In this
subsection, with the help of Algorithm 1 to calculate the expression over Fp of
a complex multiplication, we give a method to obtain the explicit expressions of
the complex multiplications of the Q-elliptic curves.

Proposition 6. ([5, Theorem 2.2])

1) Let E/C be an elliptic curve with complex multiplication by ring R ⊂ C.
Then,

[α]δE = [αδ]Eδ for all α ∈ R and all δ ∈ Aut(C),

where [·]E represents the isomorphism R
∼→ End(E).

2) Let E be an elliptic curve over a field L ⊂ C and with complex multiplication
by the quadratic imaginary field K ⊂ C. Then, every endomorphism of E is
defined over the compositum LK.

For an elliptic curve E/Q with endomorphism ring R ⊂ K = Q(
√−N), its

complex multiplication, if it exists, is defined over K according to Proposition
6.2. This means that we can take a rational expression for the complex multipli-
cation with coefficients in K. The elliptic curve E is defined over Q, which leads
to the fact that j(E) ∈ Q. This case is satisfied only when the class number
of the endomorphism ring R is 1. Smith [7] showed that there are totally 13
quadratic imaginary discriminants of class number 1:

Disc(R1,1) = −4, Disc(R1,2) = −16, Disc(R2,1) = −8,

Disc(R3,1) = −3, Disc(R3,2) = −12, Disc(R3,3) = −27,

Disc(R7,1) = −7, Disc(R7,2) = −28,

Disc(R11,1) = −11, Disc(R19,1) = −19, Disc(R43,1) = −43,

Disc(R67,1) = −67, Disc(R163,1) = −163.

RN,i is an order of Q(
√−N) with conductor i. Denote the elliptic curve associ-

ated with RN,i as EN,i. The j-invariants of these elliptic curves, also stated by
Smith, are all rational numbers, thus the equations are given. Now we calculate
the explicit expressions of the complex multiplications of these elliptic curves.

For a complex multiplication [λ] of EN,i that satisfies the equation x2 + rx+
s = 0, r, s ∈ Z, we set

x([λ](X,Y )) = f(X)/g(X)
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for some polynomials f(X), g(X) ∈ K[X]. Suppose

f(X) = (cs + ds

√−N)Xs + · · · + (c0 + d0
√−N), (3)

g(X) = (es + fs

√−N)Xs + · · · + (e0 + f0
√−N), (4)

where s = Norm(λ), ci, di, ei, fi ∈ Q for i = 0, 1, · · · , s. Choose a large prime
p such that −N is a quadratic residue modulo p. Since EN,i is defined over
Q, we can take an equation for EN,i with coefficients in Q, and reduce the
equation to Fp to obtain the equation of EN,i/Fp. We can also obtain a complex
multiplication [λ]EN,i/Fp

, denoted by [λ]p, whose definition equation is still x2 +
rx+s = 0. The complex multiplication [λ]p of EN,i/Fp has the rational expression

x([λ]p(X,Y )) =
asX

s + · · · + a0

bsXs + · · · + b0
,

where ai ≡ ci + diNp mod p, bi ≡ ei + fiNp mod p for i = 0, 1, · · · , s, and
Np ∈ Fp is a root of the function X2 ≡ −N mod p. We can use Algorithm 1 to
calculate ai and bi. Additionally, let δ be the complex conjugate. Then, according
to Proposition 6.1 as well as the fact that E/Q is fixed by action of δ, we have

[λδ] = [λ]δ.

This indicates that [λ̄] has rational expression x([λ̄](X,Y )) = f̄(X)/ḡ(X).
Therefore, we have

x([λ̄]p(X,Y )) =
a′

sX
s + · · · + a′

0

b′
sX

s + · · · + b′
0

,

where a′
i ≡ ci − diNp mod p, b′

i ≡ ei − fiNp mod p for i = 0, 1, · · · , s. Once
again, we can calculate a′

i and b′
i. In summary, we have the following equations:{

ci + diNp ≡ ai mod p

ci − diNp ≡ a′
i mod p

(5)

and {
ei + fiNp ≡ bi mod p

ei − fiNp ≡ b′
i mod p

. (6)

Therefore, we obtain ci, di, ei, fi modulo p.
Now, we want to reconstruct ci, di, ei, fi ∈ Q. For a given complex multipli-

cation [λ], its coefficients are deterministic. The numerator and denominator of
the coefficients have a specific upper bound, called height and denoted by H.
When p is large enough so that it is greater than 2H2 (or select many primes
and use CRT), we can reconstruct the rational fraction ci, di, ei, fi even though
we do not know the value of H. Specifically, we have the following conclusion.

Lemma 7. R = Z/mZ is a ring of m elements, and u is an element of R. There
is at most one rational number v such that for the representation v = n/d in
minimal terms, it holds that n · d−1 ≡ u mod m, |n| <

√
m/2 and 0 < d <√

m/2.



316 X. Li et al.

Proof. If there are two rational numbers v = n/d and v′ = n′/d′ that satisfy
the conditions, then

n · d−1 ≡ n′ · d′−1 ≡ u mod m.

This is equivalent to n · d′ − n′ · d ≡ 0 mod m. However, we have

|n · d′ − n′ · d| ≤ |n| · |d′| + |n′| · |d| < m,

so it must hold that n · d′ − n′ · d = 0. Thus, v = v′. ��
The math package Magma has a function ‘RationalReconstruction(s)’ to

complete this process. If a response of false is given, it holds that H >
√

p/2. We
need to change a larger prime p. When the reconstruction succeeds, we obtain the
explicit expression of complex multiplication [λ]. The correctness is guaranteed
by uniqueness.

We compute all 13 elliptic curve over Q with complex multiplications and
explicit expressions of their complex multiplications. The classic four cases have
been given in Sect. 1. The remaining 9 elliptic curves and their complex multi-
plications are shown at https://github.com/moyuyi/CM.git.

5 Conclusions

Our contributions are summarized in 2 parts: Firstly, we describe a method to
determine whether a given elliptic curve over finite field has efficiently com-
putable complex multiplications, and propose a new algorithm to calculate the
rational expression of a chosen complex multiplication. Secondly, we construct
all 13 classes of elliptic curves over Q with complex multiplications defined
over quadratic imaginary fields. We develop a method to compute the explicit
expressions of these complex multiplications. For elliptic curve cryptography, our
results provide more useful complex multiplications of elliptic curves.
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Abstract. Boolean functions with n variables are functions from IF2n

to IF2. They play an important role in both cryptographic and error
correcting coding activities. The important information about the cryp-
tographic properties of Boolean functions can be obtained from the study
of the Walsh transform. Generally speaking, it is difficult to construct
functions with few Walsh transform values and determine the Walsh
transform value completely due to the difficulty in solving equations.
In this paper, we study the Walsh transform of the Niho type Boolean
function with the form

f(x) =
k∑

i=l

Trn1 (axsi(2
m−1)+1),

where k, l, m, n are positive integers satisfying 1 ≤ l ≤ k < 2m, n =
2m and a + a2m �= 0. By choosing si properly, three classes of such
functions with at most 5-valued Walsh transform are obtained. Besides,
by using particular techniques in solving equations over finite fields, the
value distributions of the Walsh transform for these functions are also
completely determined.

Keywords: Boolean function · Walsh transform · Niho exponent ·
Value distribution

1 Introduction

Let n, m be two positive integers and IFpn be a finite field with pn elements, where
p is a prime. An S-box is a vectorial Boolean function from IF2n to IF2m , also
called an (n,m)-function. The security of most modern block ciphers importantly
relies on cryptographic properties of their S-boxes since S-boxes usually are the
only nonlinear components of these cryptosystems. It is therefore significant to
investigate the cryptographic properties of functions applied in S-boxes.

Walsh transform is a basic tool in studying the cryptographic properties of
cryptographic functions. Let f(x) be a function from IFpn to IFp. The Walsh
transform of f(x) is defined by
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Y. Deng and M. Yung (Eds.): Inscrypt 2022, LNCS 13837, pp. 318–333, 2023.
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̂f(λ) =
∑

x∈IFpn

ωf(x)−Trn1 (λx), λ ∈ IFpn ,

where ω is the complex primitive p-th root of unity and Trn
1 (·) is the absolute

trace function from IFpn to IFp. The multiset {{ ̂f(w) : w ∈ IFpn}} is called
the Walsh spectrum of f(x). It is a long-studied problem to construct functions
with few Walsh transform values and determine its distributions completely.
Some relevant literatures can be found in [8,13–15,20,21].

Walsh transform is also closely related to Gauss periods and the weight distri-
butions of cyclic codes. It can be immediately recognizable that if f(x) = Trn

1 (xd)
whose univariate representation consists of exactly one monomial, then the
Walsh spectrum of f(x) gives the distribution of cross-correlation values of an
m-sequence and its d-decimation, as well as the weight distribution of the cyclic
codes of length pn − 1 with two zeros α and αd, where α is the primitive ele-
ment of IFpn . In particular, if d is a Niho type exponent over the finite field IFpn

(n = 2m), namely, xd is linear restricted to IFpm or in other words,

d ≡ pi (mod pm − 1) ,

it was proven in [3,9] that for any prime p, the cross correlation of m-sequences
is at least 4-valued. Moreover, it should be noted that for p = 2, all the known d-
decimations with 4-valued cross correlation are Niho type exponents. The reader
is referred to [4,5,9,16] for more details.

Besides, if considering f(x) is a trace function of a linear combination of
power functions with the form

f(x) =
k

∑

i=1

Trn
1 (aix

di), (1)

where n = 2m and di is Niho type for 1 ≤ i ≤ k, then some new functions
with good cryptographic properties can also be produced. The pioneering work
in this direction is due to Dobbertin, Leander, Canteaut et al. in [6]. They
investigated the bent property of the Boolean function f(x) as defined in (1)
when k = 2 and a1, a2 ∈ IF∗

2n satisfying
(

a1 + a2m

1

)2
= a2m+1

2 . Based on a
classical theorem of Niho [16] and new methods to handle Walsh transforms of
Niho power functions, they proposed three pairs of (d1, d2) under which f(x)
are bent functions. By using the same approach, the authors in [10] generalized
one of the constructions in [6] from a linear combination of 2 Niho exponents
to that of 2r Niho exponents. Afterwards, Li, Helleseth, Kholosha and Tang
tried to investigate the Walsh spectrum of f(x) in (1), where k = pr − 1 for
some interger r < m, di = (ipm−r + 1)(pm − 1) + 1 and ai = a satisfying
apm

+ a �= 0 for all 1 ≤ i ≤ k [12]. By using the theory of quadratic forms over
finite fields and some basic discussions on certain equations, they proved that
the Walsh transform of f(x) takes on at most four values and they determined
its distributions completely for any prime p. As a special case, they found that
f(x) is a bent function when p = 2 and gcd(m, r) = 1.
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In General, it is not a easy task to construct functions with few Walsh trans-
form values and determine the Walsh transform value completely. Motivated
by the previous works, in this paper, we aim to seek functions of the form (1)
which have several Walsh transform values. More precisely, we consider Boolean
functions f(x) ∈ IF2n [x] as

f(x) =
k

∑

i=l

Trn
1 (axsi(2

m−1)+1), (2)

where k, l, m, n are positive integers satisfying 1 ≤ l ≤ k < 2m, n = 2m and
a + a2m �= 0. We mainly consider three kinds of parameters (k, l, si) of f(x) in
(2) as follows: (i) (k, l, si) = (2m−1, 1, 2i); (ii) (k, l, si) = (2m−2 + 1, 2, 6 − 4i)
and (iii) (k, l, si) = (2m−1, 1, 4i − 2). By employing the method to treat the
Walsh transform from [10], the Walsh transform value of f(x) in (2) is related to
the number of solutions in unit circle of a high degree equation. Because of the
particularity of the parameters we choose, we can further transform this problem
into solving equations with low degree over finite fields. Based to the known
results on the quadratic equation, cubic equation and the quartic equation, we
explicitly characterize the Walsh transform value distributions of f(x) in (2) for
the cases (i)-(iii). Notably, all of these functions lead to at most 5-valued Walsh
transform, and thus, we provide three other classes of available functions with
few Walsh transform values.

2 Preliminaries

In this section, we state some basic notations and results which will be mainly
used in the sequel.

2.1 The Walsh Transform

For a given function f(x), its Walsh transform has the following well-known
properties.

Lemma 1 ([2]). Let f : IFpn → IFp be a function in n variables, then its Walsh
transform satisfies

(1)
∑

λ∈IFpn
̂f(λ) = pnwf(0);

(2)
∑

λ∈IFpn
| ̂f(λ)|2 = p2n (Parseval’s relation).

Let n = 2m and p be a prime, then xpm

is called the conjugate of x ∈ IFpn .
For simplify, we denote it by x, i.e., x = xpm

. The unit circle of IFpn is the set

U = {x ∈ IFpn : xx = 1} .

An equivalent characterization on the Walsh spectrum of f(x) with the form (1)
for any prime p has been stated in [10,17] as below.
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Lemma 2. Let n = 2m, q = pm, k be a positive integer and di = (q − 1)si + 1
for i = 1, 2, · · · , k. The Walsh transform value of

∑k
i=1 Trn

1

(

aix
di

)

is given by

(N(λ) − 1)q, λ ∈ IFq2

where N(λ) is the number of z ∈ U such that

k
∑

i=1

(

aiz
si + aiz

1−si
) − λz − λ = 0.

2.2 The Roots of Low-Degree Equations

In this subsection, we are going to review the relevant results for solutions of
low-degree equations over IF2n including the quadratic equation, cubic equation
and the quartic equation. The following lemma describes the root distributions
in U of a quadratic equation.

Lemma 3 ([1,7,18]). Let n = 2m be an even positive integer and a, b ∈ IF∗
2n .

Then the quadratic equation x2 + ax + b = 0 has solutions in IF2n if and only if
Trn

1

(

b
a2

)

= 0. Furthermore,

(1) both solutions in the unit circle if and only if

b =
a

a
and Trm

1

(

b

a2

)

= Trm
1

(

1
aa

)

= 1;

(2) exactly one solution in the unit circle, if and only if

b �= a

a
and (1 + bb)(1 + ab + bb) + a2b + a2b = 0.

In the following, descriptions on the factorizations of cubic polynomials and
quatric polynomials over the finite field IF2n will be presented. Given a cubic
polynomial f(x) = x3 + a1x + a0 with a0 �= 0. Let t1, t2 denote the roots of
t2 + a0t + a3

1 = 0. For simplify, if f(x) factors into a product of three linear
factors, we write f = (1, 1, 1). If f(x) factors as a product of a linear factor and
an irreducible quadratic factor, we write f = (1, 2). Otherwise, we will write
f = (3).

Lemma 4 ([19]). Let f(x) = x3 + a1x + a0 ∈ IF2n [x] and a0 �= 0. Then the
factorization of f(x) over IF2n can be characterized as

(1) f = (1, 1, 1) ⇔ Trn
1

(

a3
1/a2

0

)

= Trn
1 (1), t1, t2 are cubes in IF2n (n even), IF22n

(n odd);
(2) f = (1, 2) ⇔ Trn

1

(

a3
1/a2

0

) �= Trn
1 (1);

(3) f = (3) ⇔ Trn
1

(

a3
1/a2

0

)

= Trn
1 (1), t1, t2 are not cubes in IF2n (n even), IF22n

(n odd).
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Similarly as cubic polynomials, the factorization of a quartic polynomial over
finite field IF2n can be given in terms of the roots of a related cubic equation.
Let f(x) = x4 + a2x

2 + a1x + a0 with a0a1 �= 0 and g(y) = y3 + a2y + a1 with
the roots r1, r2, r3. When the roots exist in IF2n , we set wi = a0r

2
i /a2

1.

Lemma 5 ([11]). Let f(x) = x4 + a2x
2 + a1x+ a0 ∈ IF2n [x] with a0a1 �= 0. The

factorization of f(x) over IF2n are characterized as follows:

(1) f = (1, 1, 1, 1) ⇔ g = (1, 1, 1) and Trn
1 (w1) = Trn

1 (w2) = Trn
1 (w3) = 0;

(2) f = (2, 2) ⇔ g = (1, 1, 1) and Trn
1 (w1) = 0,Trn

1 (w2) = Trn
1 (w3) = 1;

(3) f = (1, 3) ⇔ g = (3);
(4) f = (1, 1, 2) ⇔ g = (1, 2) and Trn

1 (w1) = 0;
(5) f = (4) ⇔ g = (1, 2) and Trn

1 (w1) = 1.

Next, we will present our main results of this paper and give the correspond-
ing proofs.

3 The Value Distributions of Niho-type Functions

From now on, we always assume q = 2m and observe the functions f(x) with
the form (2). By selecting si properly which is actually linear on i, namely,
si = μ + νi for some integers μ and ν, we propose three classes of functions
whose Walsh transforms take on at most five values and the value distributions
are completely determined.

According to Lemma 2, in order to investigate the Walsh transform values
of f(x), we need to calculate N(λ), i.e., the number of roots z ∈ U of

k
∑

i=l

(

azsi + az1−si
)

+ λz + λ = 0. (3)

Since si = μ + νi and μ, ν are integers, we can obtain that if z �= 1, then

k
∑

i=l

zsi = zμ
k

∑

i=l

zνi = zμ
zνl

(

1 + (zν)k−l+1
)

1 + zν

=
zμ

(

zνl + zν(k+1)
)

1 + zν

and

k
∑

i=l

z1−si = z1−μ
k

∑

i=l

z−νi = z1−μ
z−νl

(

1 + (z−ν)k−l+1
)

1 + z−ν

=
z1−μ

(

zν(1−l) + z−νk
)

1 + zν
.
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Therefore, when considering the solution z ∈ U\{1} of (3), it is equivalent
to consider the following equation

azμ
(

zνl + zν(k+1)
)

+ az1−μ
(

zν(1−l) + z−νk
)

+
(

λz + λ
)

(1 + zν) = 0. (4)

Moreover, one should note that z = 1 is a solution of (3) if and only if

k
∑

i=l

(a + a) + λ + λ = 0. (5)

3.1 Niho-type Function with si = 2i

In this subsection, we mainly study the Walsh transform of

f(x) =
2m−1
∑

i=1

Trn
1 (axsi(q−1)+1), si = 2i. (6)

Note that k = 2m−1, l = 1, μ = 0 and ν = 2 in this case. Therefore, based on the
discussion above, z = 1 is a solution of (3) if and only if λ + λ = 0, i.e., λ ∈ IFq,
due to (5). Furthermore, from (4), when z ∈ U\{1}, (3) can be written as

λz3 + (a + a + λ) z2 +
(

a + a + λ
)

z + λ = 0.

By dividing z + 1, it can be further reduced to

λz2 +
(

a + a + λ + λ
)

z + λ = 0. (7)

One can see that (7) has at most 2 solutions in U\{1} due to a + a �= 0. Hence,
when λ /∈ IFq, N(λ) takes values from {0, 1, 2}. Otherwise, when λ ∈ IFq, N(λ)
takes values from {1, 2, 3} since z = 1 is always a solution to (3) in this case.
Furthermore, we claim that the Walsh transform of f(x) is at most 4-valued.

Lemma 6. Let f(x) be defined in (6) and N(λ) be defined in Lemma 2. Then
N(λ) = 3 occurs q

2 times when λ runs over IFq2 .

Proof. From above analysis, N(λ) = 3 can happen only when λ ∈ IFq. Therefore,
to prove this lemma, it is sufficient to determine the number of λ ∈ IFq such that

λz2 + (a + a) z + λ = 0 (8)

has exactly 2 solutions in U\{1} from (7). Firstly, we have λ �= 0. Otherwise, if
λ = 0, then (8) has no solution in U\{1} due to a + a �= 0. Now assume that
λ ∈ IF∗

q . Then by using Lemma 3, (8) has 2 solutions in U\{1} if and only if

Trm
1

(

1
(

a+a
λ

)2

)

= Trm
1

(

λ

a + a

)

= 1.

Then the result follows. This completes the proof. �	
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From Lemmas 1, 2 and Lemma 6, we can determine the Walsh spectrum of
f(x) in (6) as below.

Theorem 1. Let m and n be positive integers with n = 2m. The Walsh trans-
form of f(x) defined as (6) with a + a �= 0 takes values from {−q, 0, q, 2q}.
Furthermore, the value distributions is given by

̂f(λ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−q, occurs q(q−2)
2 times;

0, occurs 3q
2 times;

q, occurs q(q−2)
2 times;

2q, occurs q
2 times.

Proof. From the analysis above, we can obtain that N(λ) takes values from
the set {0, 1, 2, 3} when λ runs through IFq2 and therefore, the first assertion
follows. Assume that

Ai = |{λ ∈ IFq2 : N(λ) = i}|, 0 ≤ i ≤ 3.

According to Lemma 2, ̂f(λ) takes values (i − 1)q exactly Ai (0 ≤ i ≤ 3) times,
respectively. Note that A3 = q

2 from Lemma 6. Besides, Lemma 1 gives that

⎧

⎨

⎩

∑3
i=0 Ai = q2;

∑3
i=0 Ai(i − 1)q = q2;

∑3
i=0 Ai((i − 1)q)2 = q4

due to f(0) = 0. The proof is completed by solving the above system of linear
equations. �	
Example 1. Let m = 3, ω be a primitive element of IF26 and a = ω. Magma
experiment shows that the Walsh transform of f(x) defined as (6) is 4-valued
and its value distribution is

̂f(λ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−8, occurs 24 times;
0, occurs 12 times;
8, occurs 24 times;
16, occurs 4 times

which is consistent with the result given in Theorem 1.

3.2 Niho-type Function with si = 6 − 4i

In this subsection, we are going to consider the function as

f(x) =
2m−2+1

∑

i=2

Trn
1 (axsi(q−1)+1), si = 6 − 4i. (9)



Several Classes of Niho Type Boolean Functions 325

By taking k = 2m−2 + 1, l = 2, μ = 6 and ν = −4, we can get that z = 1 is a
solution to (3) if and only if λ + λ = 0, i.e., λ ∈ IFq. Besides, when z ∈ U\{1},
(3) can be reduced to

λz5 + λz4 + (a + a)z3 + (a + a)z2 + λz + λ = 0

by (4), which is equivalent to

λz4 + (λ + λ)z3 + (a + a + λ + λ)z2 + (λ + λ)z + λ = 0 (10)

due to z �= 1. Let u ∈ IFq, r ∈ IFq2\IFq. It is clear that the mapping u 
→ u+r
u+r is

a bijective and u+r
u+r ∈ U\{1}. Without loss of generality, selecting r ∈ IFq2\IFq

such that r + r = 1. By substituting z with u+r
u+r in (10), the number of solutions

z ∈ U\{1} to (10) is equal to the number of solutions u ∈ IFq to

λ

(

u + r

u + r

)4

+(λ+λ)
(

u + r

u + r

)3

+(a+a+λ+λ)
(

u + r

u + r

)2

+(λ+λ)
(

u + r

u + r

)

+λ = 0.

Multiplying both sides of above equation by (u + r)4 gives

c0u
4 + c1u

2 + c2u + c3 = 0, (11)

where c0 = a + a, c1 = a + a, c2 = λ + λ and c3 = λr + λr + (a + a)r2r2. Note
that ci ∈ IFq for all 0 ≤ i ≤ 3 and c0 �= 0 due to a + a �= 0. Thus, (11) becomes

u4 + u2 +
c2
c0

u +
c3
c0

= 0. (12)

In order to determine the Walsh transform value distributions of f(x) defined
in (9), it is necessary to calculate the number of solutions u ∈ IFq of (12) when λ
runs over IFq2 . For the case that λ ∈ IFq and λ ∈ IFq2\IFq, we have the following
results, respectively.

Lemma 7. Let f(x) be defined in (9) and N(λ) be defined in Lemma 2. If
λ ∈ IFq, then N(λ) takes values from the set {1, 3}. Moreover, both N(λ) = 1
and N(λ) = 3 occur q

2 times.

Proof. One should note that λ ∈ IFq if and only if z = 1 is a solution to (3). For
z ∈ U\{1}, (3) is reduced to u4 + u2 + c3

c0
= 0 due to (12) and λ + λ = 0. Let

v = u2, then the above equation is equal to

v2 + v +
λ

a + a
+ r2r2 = 0. (13)

From Lemma 3, one can see that (13) has either 2 solutions or no solution,
depending on whether the value of Trm

1

(

λ
a+a + r2r2

)

equals 0 or not, which
implies that the number of solutions to (12) is 2 or 0. Therefore, N(λ) = 1 or
N(λ) = 3 and both cases occur 2m−1 times when λ runs through IFq since the
balance of trace function. This completes the proof. �	
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Lemma 8. Let f(x) be defined in (9) and N(λ) be defined in Lemma 2. If λ ∈
IFq2\IFq, then N(λ) takes values from the set {0, 1, 2, 4}. Moreover, N(λ) = 1
occurs q(q−1)

3 times when m is even and q(q+1)
3 times when m is odd.

Proof. One can see that (12) has at most four solutions in IFq. Suppose it has
three solutions in IFq, then two of them have multiplicity 1 and one of them has
multiplicity 2. On the other hand, if (12) has repeated roots, then its derivative
have a common solution with it which implies that c2 = 0, a contradiction with
λ ∈ IFq2\IFq. Therefore, (12) has 0, 1, 2 or 4 solutions when λ runs through
IFq2\IFq. This implies N(λ) takes values from the set {0, 1, 2, 4}.

According to Lemma 5(3), (12) has one solution indicates that the polynomial
g(y) = y3 + y + λ+λ

a+a = (3). Considering the corresponding quadratic polynomial

H(t) = t2 + θt + 1, θ =
λ + λ

a + a
.

Let t1, t2 be the zeros of H(t). Clearly, t1t2 = 1 and t1 + t2 = θ. By Lemma
4(c), g = (3) if and only if Trm

1

(

1
θ

)

= Trm
1 (1) and t1, t2 not cubes in IFq when

m is even, or IFq2 when m is odd. As t1t2 = 1, t1, t2 are both cubes or both not
cubes in IFq if Trm

1

(

1
θ

)

= 0, or IFq2 if Trm
1

(

1
θ

)

= 1.
If m is even, g = (3) if and only if Trm

1

(

1
θ

)

= 0 and t1 is not a cube in IF∗
q

since t1 �= 0. Let

T1 = {t1 ∈ IF∗
q : t

q−1
3

1 �= 1}.

It can be easily verified that #T1 = 2
3 (q−1). On the other hand, for any t1 ∈ T1,

we have Trm
1 ( 1θ ) = 0 since t1, t2 ∈ IFq are the roots of H(t) = 0. Review that

t1t2 = 1 and t1 + t2 = θ, the relation between t1 and θ is 2-to-1. Therefore, one
have

E1 = |{θ ∈ IFq : g = (3)}| =
q − 1

3
.

It induces that N(λ) = 1 occurs q
3 (q − 1) times when λ runs through IFq2\IFq

due to θ = λ+λ
a+a .

If m is odd, then g = (3) if and only if Trm
1

(

1
θ

)

= 1 and t1 is not a cube
in IF∗

q2 . By Lemma 3, one has t1 ∈ U . Similarly as m is even, considering the

set {t1 ∈ U : t
q+1
3

1 �= 1} which has cardinality 2
3 (q + 1). One can conclude that

the corresponding number of λ satisfying N(λ) = 1 is q
3 (q + 1) and we omit the

proof here. This completes the proof. �	
From Lemmas 7 and 8, we can see that the Walsh transform of f(x) defined

by (9) takes at most five possible values. With the help of Lemmas 1, 7 and 8,
we determine the Walsh transform value distribution as stated in Theorem 2.

Theorem 2. Let m be a positive integer, n = 2m and q = 2m. The Walsh
transform of f(x) defined as

f(x) =
2m−2+1

∑

i=2

Trn
1 (axsi(q−1)+1), si = 6 − 4i
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for a ∈ IFq2 and a + a �= 0 takes values from {−q, 0, q, 2q, 3q}. Further, when λ
runs through IFq2 , the value distributions is given by

̂f(λ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−q, occurs q(3q−4)
8 times;

0, occurs q(2q+1)
6 times;

q, occurs q2

4 times;
2q, occurs q

2 times;
3q, occurs q(q−4)

24 times

when m is even, and

̂f(λ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−q, occurs 3q(q−2)
8 times;

0, occurs q(2q+5)
6 times;

q, occurs q(q−2)
4 times;

2q, occurs q
2 times;

3q, occurs q(q−2)
24 times

when m is odd.

Proof. The first assertion is due to Lemmas 2, 7 and 8. Assume that

Ai = |{λ ∈ IFq2 : N(λ) = i}|, 0 ≤ i ≤ 4.

Then ̂f(λ) takes values (i−1)q exactly Ai (0 ≤ i ≤ 4) times, respectively. Again
by Lemmas 7 and 8, one has A3 = q

2 and A1 = q
2 + q

3 (q − 1) = q(2q+1)
6 if m is

even and otherwise, A1 = q
2 + q

3 (q + 1) = q(2q+5)
6 . Besides, Lemma 1 gives that

⎧

⎨

⎩

∑4
i=0 Ai = q2;

∑4
i=0 Ai(i − 1)q = q2;

∑4
i=0 Ai((i − 1)q)2 = q4

due to f(0) = 0. The proof is completed by solving the above system of linear
equations. �	
Example 2. Let m = 4, a = ω, where ω is a primitive element of IF28 . Then one
has a+ a �= 0. By a Magma program, it shows that the Walsh transform of f(x)
defined as (9) is 5-valued and its value distribution is given by

̂f(λ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−16, occurs 88 times;
0, occurs 88 times;
16, occurs 64 times;
32, occurs 8 times;
48, occurs 8 times

which is consistent with the result given in Theorem 2.
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Example 3. Let m = 5, a = ω, where ω is a primitive element of IF210 . By a
Magma program, it shows that a + a �= 0 and the Walsh transform of f(x)
defined as (9) is 5-valued whose value distribution is given by

̂f(λ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−32, occurs 360 times;
0, occurs 368 times;
32, occurs 240 times;
64, occurs 16 times;
96, occurs 40 times.

It is also consistent with the result given in Theorem 2.

3.3 Niho-type Function with si = 4i − 2

In this subsection, we continue to discuss the other kind of Niho-type functions
of the form

f(x) =
2m−1
∑

i=1

Trn
1

(

axsi(q−1)+1
)

, si = 4i − 2. (14)

Similarly as before, it is sufficient to calculate the number of roots z ∈ U of

2m−1
∑

i=1

(

az4i−2 + az1−(4i−2)
)

+ λz + λ = 0 (15)

Note that z = 1 is a solution to (15) if and only if λ ∈ IFq. For any z ∈ U\{1},
(15) is equivalent to

(a + λ)z3 + λz2 + λz + λ + a = 0

by (4). Substituting z with u+r
u+r , where u ∈ IFq and r = a for some a ∈ IFq2\IFq,

then the number of solutions to (15) in z ∈ U\{1} is reduced to calculate the
number of solutions u ∈ IFq to

τ0u
3 + τ1u + τ2 = 0,

where τ0 = a+a, τ1 =
(

aa + (λ + λ)(a + a)
)

(a+a) and τ2 =
(

aa + λa + λa
)

(a+
a)2. Therefore, the above equation is equivalent to

u3 +
τ1
τ0

u +
τ2
τ0

= 0 (16)

due to τ0 = a + a �= 0.
In order to solve the distribution of the Walsh transform of f(x) defined

in (14), we firstly present the values of N(λ) for λ ∈ IFq and λ ∈ IFq2\IFq,
respectively.

Lemma 9. Let f(x) be defined in (14) and N(λ) be defined in Lemma 2. When
λ ∈ IFq runs through IFq, then N(λ) takes values from the set {1, 2, 3, 4}. More-
over, N(λ) takes value 2 or 4 exactly q

2 times or q−4
6 times if m is even; other-

wise, exactly q
2 − 1 times or q−2

6 times if m is odd.
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Proof. Since λ ∈ IFq, z = 1 must be a solution to (15). For z ∈ U\{1}, the
number of solutions to (15) is equal to the number of solutions to (16), which is
reduced to

u3 + aau + (aa + aλ + aλ)(a + a) = 0 (17)

due to λ + λ = 0. If aa + aλ + aλ = 0, then λ = aa
a+a ∈ IFq and it induces

that (17) has solutions u1 = 0 and u2 = (aa)
1
2 . Since (17) is a cubic equation,

N(λ) takes values {1, 2, 3, 4} when λ ∈ IFq. Hereafter, we will always assume
that λ �= aa

a+a . Notice that N(λ) takes value 2 or 4 only if (17) has exactly one
solution or three solutions.

(i) From Lemma 4, one can easily check that (17) has only one solution if
and only if Trm

1

(

(aa)3

(a+a)2(aa+λ(a+a))2

)

�= Trm
1 (1). Therefore, N(λ) = 2 occurs

q
2 times or q

2 − 1 times for even m and odd m respectively, since (aa +
λ (a + a))(a + a) is a permutation over IFq when λ ranges over IFq.

(ii) (17) has three solutions. Again by Lemma 4, this case happens if and only
if Trm

1

(

(aa)3

(a+a)2(aa+λ(a+a))2

)

= Trm
1 (1) and t1, t2 cubes in IFq (m even), IFq2

(m odd), where t1, t2 are the roots of

t2 + (aa + aλ + aλ)(a + a)t + (aa)3 = 0. (18)

One can see that t1 + t2 = (aa + aλ + aλ)(a + a), t1t2 = (aa)3.

When m is even, Trm
1

(

(aa)3

(a+a)2(aa+λ(a+a))2

)

= 0 for any t1 ∈ IFq and t
q−1
3

1 = 1

since t1 is the root of (18). On the other hand, if t1 = (aa)
3
2 which is also a cube,

then aa+aλ+aλ = 0 due to t1 = t2 = (aa)
3
2 , which contradicts the assumption

λ �= aa
a+a . Thus, one has

|{λ ∈ IFq : N(λ) = 4}| =
1
2
|{t1 ∈ IFq : t

q−1
3

1 = 1and t1 �= (aa)
3
2 }| =

q − 4
6

.

When m is odd, t1 must belong to the extension field of IFq due to Trm
1 (1) = 1.

Denote

S1 = {t1 ∈ IFq2\IFq : t
q2−1

3
1 = 1}

and
S2 = ∪

q−2
3

j=1 IF∗
q · α3j , α is a primitive element of IFq2 .

Then we have the following facts.

Fact 1: |S1| = |{t1 ∈ IFq2 : t
q2−1

3
1 = 1}| − |{t1 ∈ IFq : t

q2−1
3

1 = 1}| = (q−1)(q−2)
3

due to 3 | (q + 1).
Fact 2: IF∗

q ·α3j1 ∩IF∗
q ·α3j2 = ∅ for any 1 ≤ j1, j2 ≤ q−2

3 and j1 �= j2. Suppose
b ∈ IF∗

q · α3j1 ∩ IF∗
q · α3j2 , then there exists b1, b2 ∈ IF∗

q satisfying b = b1α
3j1 =

b2α
3j2 . It implies that α3(j1−j2) = b2

b1
∈ IF∗

q . Therefore, 3(j1−j2) ≡ 0 (mod q+1).
This holds only if j1 = j2 due to |j1 − j2| < q+1

3 .
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From Facts 1 and 2, we can see that S1 = S2. Besides, one can conclude that
there is exactly one t1 ∈ IF∗

q · α3j such that Trm
1

(

(aa)3

(a+a)2(aa+λ(a+a))2

)

= 1 for

every 1 ≤ j ≤ q−2
3 . Let b ∈ IF∗

q and t1 = bα3j . Review that t1, t2 are the roots
of (18). It gives that

t2 =
(aa)3

t1
, t1 + t2 = t1 +

(aa)3

t1
= (aa + aλ + aλ)(a + a) ∈ IFq.

Hence,
(

t1 + (aa)3

t1

)q

= t1 + (aa)3

t1
which induces that b =

(

aa
(αα)j

) 3
2
. Therefore,

one can conclude that

|{λ ∈ IFq : N(λ) = 4}| =
1

2
|{t1 ∈ IFq2\IFq : t

q2−1
3

1 = 1 and t1 +
(aa)3

t1
∈ IFq}| =

q − 2

6
.

This completes the proof. �	
Lemma 10. Let f(x) be defined in (14) and N(λ) be defined in Lemma 2. When
λ runs through IFq2\IFq, then N(λ) takes values from the set {0, 1, 2, 3} and it
takes value 2 exactly q − 2 times.

Proof. Since λ + λ �= 0, then equation (16) is equivalent to

u3 +
(

(λ + λ)(a + a) + aa
)

u + (aa + aλ + aλ)(a + a) = 0, (19)

which has at most three solutions in IFq. Suppose it has two solutions in IFq,
then one of them have multiplicity 1 and the other has multiplicity 2. It implies
that (aa+aλ+aλ)(a+a) = 0. On the other hand, from the previous analysis, we
can see that N(λ) = 2 means (19) has two different solutions. Therefore, N(λ)
can take value 2 only when aa + aλ + aλ = 0 due to a + a �= 0. Let (19) have
two different roots u1, u2, then we have u1 = 0, u2 = (λa + λa)

1
2 and u1 �= u2.

It gives that

|{λ ∈ IFq2\IFq : N(λ) = 2}| = |{λ ∈ IFq2\IFq : aa + aλ + aλ = 0 and λa �= λa}|.
Denote

M1 = |{λ ∈ IFq2\IFq : aa + aλ + aλ = 0}|,
M2 = |{λ ∈ IFq2\IFq : aa + aλ + aλ = 0 and λa = λa}|.

We then have

M1 = |{λ ∈ IFq2 : Trn
m(λ/a) = 1}| − |{λ ∈ IFq : Trn

m(λ/a) = 1}| = 2m − 1

and
M2 = |{λ ∈ a−1IFq : aa + aλ + aλ = 0}| = 1.

Hence, |{λ ∈ IFq2\IFq : N(λ) = 2}| = M1 − M2 = 2m − 2. The proof is
completed. �	
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Combining Lemmas 9, 10 and Lemma 1, we can immediately present our
main result of this subsection as follows.

Theorem 3. Let m be a positive integer, n = 2m and q = 2m. The Walsh
transform of f(x) defined as

f(x) =
2m−1
∑

i=1

Trn
1

(

axsi(q−1)+1
)

, si = 4i − 2

for a ∈ IFq2 and a + a �= 0 takes values from {−q, 0, q, 2q, 3q}. Further, when λ
runs through IFq2 , the value distribution is given by

̂f(λ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−q, occurs q2−q
3 times;

0, occurs 3q2−4q+4
6 times;

q, occurs 3q−4
2 times;

2q, occurs q2−4q+12
6 times;

3q, occurs q−4
6 times

when m is even, and

̂f(λ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−q, occurs q2−q−2
3 times;

0, occurs 3q2−4q+14
6 times;

q, occurs 3q−6
2 times;

2q, occurs q2−4q+10
6 times;

3q, occurs q−2
6 times

when m is odd.

Example 4. Let m = 4, ω be a primitive element of IF28 and a = ω. Then one has
a + a �= 0. Magma experiment shows that the Walsh transform of f(x) defined
as (14) is 5-valued and its value distribution is given by

̂f(λ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−16, occurs 80 times;
0, occurs 118 times;
16, occurs 22 times;
32, occurs 34 times;
48, occurs 2 times

which is consistent with the result given in Theorem 3.

Example 5. Let m = 5, ω be a primitive element of IF210 and a = ω. Then
one has a + a �= 0. Magma experiment shows that the Walsh transform of f(x)
defined as (14) is 5-valued and its value distribution is given by

̂f(λ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−32, occurs 330 times;
0, occurs 493 times;
32, occurs 45 times;
64, occurs 151 times;
96, occurs 5 times

which is also consistent with the result given in Theorem 3.
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4 Conclusions

Because of the importance of the Walsh spectrum in studying the properties
of cryptographic functions, it is a valuable problem to find functions with few
Walsh transform values and determine their value distributions explicitly. In
this paper, by considering the Boolean function which is a linear combination of
power functions with Niho type exponents as in (2) and selecting proper param-
eters, a class of multinomials with 4-valued Walsh spectrum and two classes of
multinomials with 5-valued Walsh spectrum are obtained. Moreover, we give the
value distributions of all of them by treating certain equations. The numerical
experimental data suggests that other parameters can also be considered to con-
struct functions of the form (2) with few Walsh transform and therefore, it is a
problem worthy to be further investigated in the future.
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Abstract. Trivium as a representative stream cipher has been adopted
by ISO/IEC in 2012. It can be foreseen that Trivium will be widely used
to achieve the goal of information security. In practice, probing attacks
can be used to recover key bits used by an implementation of Trivium
under the (glitch-extended) probing model. In light of this, higher-order
masking scheme secure under the glitch-extended probing model should
be proposed for Trivium. Inspired by the ideas of the DOM masking
scheme proposed by Gross et al. and the CHES 2021 masking scheme
proposed by Shahmirzadi et al., we propose two versions of higher-order
masking scheme for Trivium. We analyze the security of two versions of
higher-order masking scheme under the glitch-extended probing model.
Then, the performance of two versions of higher-order masking scheme
is evaluated on ASIC and FPGA with or without the pipeline technique,
and meaningful observations are obtained. Overall, higher-order masking
schemes that are secure under the glitch-extended probing model are
proposed for Trivium and their performances are evaluated on typical
hardware platforms.

Keywords: Trivium · Higher-order masking scheme · Side-channel
attacks · Glitch-extended probing model · Performance evaluation

1 Introduction

In practice, stream ciphers are used to guarantee the privacy and confidentiality
in many high-performance applications and constrained hardware systems. In
2004, the European Network of Excellence in Cryptology launched a four-year
eSTREAM project [6] to call for proposals of new stream ciphers. After three
rounds of evaluation, two portfolios of stream ciphers were finally confirmed.
Since then, stream ciphers contained in these two portfolios have received great
attentions. Especially, Trivium [5] as a synchronous stream cipher listed in Port-
folio 2 (hardware-oriented) has been chosen as one of the keystream generators
for lightweight stream ciphers in ISO/IEC 29192-3 [14].
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In light of this, the security of Trivium has attracted great attentions from
cryptanalysts in recent years. For example, Fu et al. [9] have proposed a key-
recovery attack on 855-round Trivium with a novel nullification technique of the
Boolean polynomial where only three equivalent key bits can be recovered, while
Ye et al. [30] have shown a conditional differential cryptanalysis on 978-round
Trivium where only one key bit can be recovered. Although published works have
shown that Trivium is secure against classical cryptanalyses, implementations
of Trivium may be threatened by side-channel attacks. Indeed, published works
[8,15] have given differential power analysis (DPA) [16] and correlation power
analysis (CPA) [1] against Trivium implementations.

In order to secure a cryptographic implementation against different styles of
side-channel attacks, different styles of countermeasures are proposed. Typical
ones are masking [3,13], shuffling [27], random delay [4], and so on. Among
them, masking as a provably secure countermeasure can be the most famous
one. Since the idea of masking was first proposed at CRYPTO 1999 [2], masking
schemes for software implementations and hardware implementations have been
proposed over the past two decades. Compared with software implementations,
hardware implementations may face the security problems related to glitch. In
order to analyze the security of masking schemes, adversary models that fit with
practical scenarios should be proposed. Ishai et al. for the first time proposed d-
probing model at CRYPTO 2003 [13] where the adversary is assumed to have the
ability of obtaining d bits with d probes. However, the security of the hardware
implementation of a cryptographic algorithm under the d-probing model can be
not enough since the leakage related to glitch is not considered [17]. For example,
[18,19] applied side-channel attacks on masked AES hardware implementations,
and they lead to the conclusion that glitch can pose a serious threat on the
security of masked AES hardware implementations. In order to consider the
security problems related to glitch, the idea of glitch-extended probing model
was first proposed at CRYPTO 2015 [22]. Then, its formal version was proposed
at CHES 2018 [7].

The first glitch-resistant masking scheme, i.e. Threshold Implementation
(TI), was proposed by Nikova et al. at ICISC 2006 [21]. Three conditions, i.e.
correctness, non-completeness and uniformity should be satisfied in TI. In order
to achieve the non-completeness condition, at least td+ 1 shares should be used
in TI where t denotes the degree of a non-linear function and d denotes the
security order. Therefore, the number of shares needed in TI can be large. Then,
in order to decrease the number of shares needed in TI, Reparaz et al. pro-
posed Consolidating Masking Schemes (CMS) at CRYPTO 2015 [22] by using
fresh randomness. After that, many glitch-resistant masking schemes, such as
Domain-Oriented Masking (DOM) [12] and Unified Masking Approach (UMA)
[11] were proposed to reduce the number of fresh randomness.

The overhead of masking schemes depends on two factors, i.e. the number
of shares and the number of fresh randomness. Theoretically, dth order masking
schemes cannot counteract (d + 1)th order attacks [20]. Therefore, at least d
masks should be used to achieve dth order security. Recently proposed masking
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schemes focus on reducing the number of fresh randomness. In detail, DOM
proposed by Gross et al. [12] can reduce the number of fresh randomness to
d(d + 1)/2. Then, UMA proposed by Gross et al. at CHES 2017 can reduce
the number of fresh randomness from d(d + 1)/2 to d(d + 1)/4. At CHES 2021,
Shahmirzadi et al. proposed 1st order [24] and 2nd order [25] masking schemes
that are glitch-resistant with (almost) no fresh randomness.

In this paper, we show that the naive implementation of Trivium can be
insecure under d−probing attacks. In detail, three types of side-channel attacks
are proposed to recover key bits used by an implementation of Trivium. Among
them, Type 1 and Type 2 attacks can work under the d−probing model, while
Type 3 attack can work under the glitch-extended probing model. In light of this,
masking schemes that are secure under the glitch-extended probing model should
be proposed for Trivium. In practice, the price of d-probing attack increases
significantly with the number of probes [13]. In this paper, in order to secure
the hardware implementation of Trivium, higher-order masking schemes with
order up to 3 are proposed for Trivium. Inspired by the ideas of the DOM
masking scheme and the CHES 2021 masking scheme, two versions of higher-
order masking schemes are proposed for Trivium. In detail, 1st order, 2nd order
and 3rd order cases are considered in version-1 masking scheme, while 1st order
and 2nd order cases are considered in version-2 masking scheme. We theoretically
analyze the security of two versions of higher-order masking scheme under the
glitch-extended probing model.

Then, the performance of two versions of higher-order masking schemes for
hardware implementation of Trivium is evaluated on ASIC and FPGA in two
scenarios. The overhead of fresh randomness is not considered in scenario-1,
while it is considered in scenario-2. Then, three meaningful observations can
be obtained. First, the performance of version-1 masking scheme can be better
than that of version-2 masking scheme with or without pipeline technique on
both ASIC and FPGA in scenario-1, even though the advantage is not obvious.
Second, the performance of version-2 masking scheme can be better than that of
version-1 masking scheme with or without pipeline technique on both ASIC and
FPGA in scenario-2 with an obvious advantage. Third, the pipeline technique
can optimize the throughput of two versions of higher-order masking schemes for
hardware implementation of Trivium with the price of a little extra consumed
area. Overall, higher-order masking schemes that are secure under the glitch-
extended probing model are proposed for Trivium and their performances are
evaluated on typical hardware platforms.

The rest of the paper is organized as follows. Preliminaries are presented in
Sect. 2. Then, three types of probing attacks are proposed to recover key bits
of a Trivium implementation in Sect. 3. In Sect. 4, two versions of higher-order
masking schemes secure under the glitch-extended probing model are proposed
for Trivium. In Sect. 5, the performance of two versions of higher-order masking
schemes is evaluated on ASIC and FPGA. In Sect. 6, T-Test is used to evaluate
the security of the masked hardware implementation of Trivium in the simulated
scenario. Finally, conclusions are drawn in Sect. 7.
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2 Background

Firstly, the details of Trivium is presented; then, the glitch-extended probing
model is presented; third, the higher-order masking schemes proposed by Gross
et al. at TIS@CCS 2016 and Shahmirzadi et al. at CHES 2021 are presented.

2.1 Trivium

Trivium is a hardware and bit oriented synchronous stream cipher with two
inputs: an 80-bit secret key and an 80-bit initialization vector (IV). Trivium is
composed of three shift registers with feeding back into one another making up
an integrated internal state denoted as S = (s1, · · · , s288). The internal state
is initially loaded with the key and IV as well as some padding 0s and 1s. The
setup loading is listed in (1) as follows.

(s1, s2, . . . , s93) ← (k80, . . . , k1, 0, . . . , 0) ,
(s94, s95, . . . , s177) ← (iv80, . . . , iv1, 0, . . . , 0) ,
(s178, s179, . . . , s288) ← (0, . . . , 0, 1, 1, 1) .

(1)

Trivium is consisted of two phases: an initialization phase and a keystream
generation phase. During both phases, the internal state is repeatedly updated
according to the update functions shown in (2).

t1 ← s66 ⊕ s93 ⊕ s91 � s92 ⊕ s171,

t2 ← s162 ⊕ s177 ⊕ s175 � s176 ⊕ s264,

t3 ← s243 ⊕ s288 ⊕ s286 � s287 ⊕ s69.

(2)

The update process of Trivium is shown in (3), where the internal state
rotates clock-wisely one bit per clock cycle, with s1, s94, s178 updated by t3, t1, t2
respectively.

(s1, s2, . . . , s93) ← (t3, s1, . . . , s92) ,
(s94, s95, . . . , s177) ← (t1, s94, . . . , s176) ,
(s178, s179, . . . , s288) ← (t2, s178, . . . , s287) .

(3)

During the initialization phase the state rotates 4 full cycles (288 × 4 =
1152 clocks) without generating any keystream bits. Then, during the keystream
generation phase, one bit keystream z is generated per clock cycle according to
the keystream generation function (4).

z ← s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288. (4)

2.2 Glitch-Extended Probing Model

Security of masking schemes is commonly evaluated under d−probing model
[13], where the adversary can put up to d probes on intermediate variables of the
implementation of a masking scheme. The d−probing model is formally defined
in Definition 1.
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Definition 1 (d−Probing Model [13]). Given a combinational logic circuit
G, an adversary with d probes can observe up to d internal wires of G.

However, glitch exists in hardware implementations. It means that by putting
a probe on the output of G, one may obtain the input of G. Consequently, the
security of hardware implementations should be considered under the glitch-
extended probing model. The glitch-extended probing model is formally defined
in Definition 2.

Definition 2 (Glitch-Extended Probing Model [7]). Given a combina-
tional logic circuit G, an adversary with glitch-extended probes can observe all
the inputs of G up to the latest synchronization point by probing any output of
G.

Example. Given a combinational logic circuit G which can implement function
g = G(x1, · · · , xn), the inputs of G can be represented as xi where 0 < i < n
while the output of G can be represented by g. Under the glitch-extended probing
model, one may obtain the inputs of G i.e. xi by probing g. Note that G can
be some operations in a cryptographic algorithm, and the input and the output
of G are not necessarily the input and the output of the whole cryptographic
algorithm.

2.3 Higher-Order Masking Scheme

The main idea of a higher-order masking scheme with order d is to split every
sensitive intermediate value v into d+1 shares. Each of the d+1 shares and more
generally each collection of d or less shares should be statistically independent
of v. The operation can then be performed safely by hiding the value of v in
d + 1 shares. For a sensitive binary variable a, we denote the shares of a with
ai, where 0 ≤ i ≤ d, and the equation a =

∑d
i=0 ai should be satisfied. Then,

the exclusive OR between a and b can be denoted as c = a ⊕ b while the AND
between a and b can be denoted as c = a � b.

At TIS@CCS 2016, Gross et al. [12] proposed the DOM masking scheme to
reduce the number of fresh randomness to d(d+ 1)/2. For a non-linear function
x = f(a, b) = ab, (5) shows how the DOM scheme can be used to achieve 1st

order, 2nd order and 3rd order security under the glitch-extended probing model
[12]. Note that all ⊕ in the brackets can be computed parallel. Then, the ⊕ out
of the brackets can be computed in any order. Therefore, two register stages are
required in the DOM masking scheme.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x0 = (a0 � b0) ⊕ (a0 � b1 ⊕ r0) ⊕ (a0 � b2 ⊕ r1) ⊕ (a0 � b3 ⊕ r3) ⊕ · · ·
x1 = (a1 � b0 ⊕ r0) ⊕ (a1 � b1) ⊕ (a1 � b2 ⊕ r2) ⊕ (a1 � b3 ⊕ r4) ⊕ · · ·
x2 = (a2 � b0 ⊕ r1) ⊕ (a2 � b1 ⊕ r2) ⊕ (a2 � b2) ⊕ (a2 � b3 ⊕ r5) ⊕ · · ·
x3 = (a3 � b0 ⊕ r3) ⊕ (a3 � b1 ⊕ r4) ⊕ (a3 � b2 ⊕ r5) ⊕ (a3 � b3) ⊕ · · ·

...
...

...
...

(5)
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At CHES 2021, Shahmirzadi et al. proposed a search algorithm to find 1st

order masking scheme [24] without any fresh randomness and 2nd order [25]
masking scheme with almost no fresh randomness. The CHES 2021 masking
scheme satisfies three conditions proposed by Nikova et al. [21] i.e. correctness,
non-completeness and uniformity. Therefore, the CHES 2021 masking scheme
can be secure under the glitch-extended probing model [24]. For a particular
function x = f(a, b, c) = ab+c, (6) and (7) can reach the 1st order and 2nd order
security under the glitch-extended probing model [24,25]. One can see that there
are no fresh randomness in (6) and (7). Note that each x′

i represents one register
to counteract glitch. Overall, it can be seen from (6) and (7) that two register
stages are required in version-2 masking scheme.

⎧
⎪⎪⎨

⎪⎪⎩

(a0 � b0) ⊕ c0 = x′
0

(a0 � b1) = x′
1 x′

0 ⊕ x′
1 = x0

(a1 � b0) = x′
2 x′

2 ⊕ x′
3 = x1

(a1 � b1) ⊕ c1 = x′
3

(6)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a0 � b0) ⊕ b0 = x′
0

(a0 � b1) = x′
1

(a0 � b2) ⊕ c0 = x′
2

(a1 � b0) ⊕ b0 = x′
3

(a1 � b1) = x′
4

(a1 � b2) ⊕ b2 ⊕ c1 = x′
5

(a2 � b0) ⊕ a2 ⊕ c2 = x′
6

(a2 � b1) = x′
7

(a2 � b2) ⊕ a2 ⊕ b2 = x′
8

x′
0 ⊕ x′

1 ⊕ x′
2 = x0

x′
3 ⊕ x′

4 ⊕ x′
5 = x1

x′
6 ⊕ x′

7 ⊕ x′
8 = x2

(7)

3 Security Analysis of Trivium Implementation

In this part, we propose three types of attacks against Trivium implementation.
Type 1 attack and Type 2 attack can work under the d−probing model, while
Type 3 attack can work under the glitch-extended probing model. There are
three update stages (s1, s94, s178) which are updated by t3, t1, t2 respectively. tqp
denotes the update value of tp at round q where p ∈ {1, 2, 3} and q ≥ 1. Then,
we present the process of three attack styles in detail. Note that three types of
attacks are of theoretical interest. In practice, it is very difficult to obtain the
exact bit value or even glitch with probes.

3.1 Type 1 Attack

The update functions shown in (2) do not use the update bits (tqp) until the 67th

round. Inspired by this fact, we note that the entire 80-bit key can be completely
recovered by analyzing the update equations if the leakages related to s1 (t3)
and s94 (t1) in the first 66 rounds can be measured. In general, the leakages
related to s1 (t3) can be used to recover k12 − k77, and the leakages related to



Higher-Order Masking Scheme for Trivium Hardware Implementation 343

s94 (t1) can be used to recover k1 − k11 and k78 − k80. The detailed key-recovery
process is described as follows.

According to the loading rule of Trivium, in the first 66 rounds (s162, s177,
s175, s176, s264) in (2) are loaded with padding 0s and known IV bits. Therefore,
the value of t2 is known and we do not need to recover the value of t2.

According to (1), s69 is loaded with k77 − k12 in the first 66 rounds while
s243, s288, s286, s287 are loaded with padding 0/1s. By substituting s243, s288, s286,
s287 with padding 0/1s, t2 in (2) can be written as (8). In (8), the only non-
deterministic terms are k77 − k12. We assume that the values of t13 − t663 can
be obtained by analyzing the leakages related to the processing of t13 − t663 .
Consequently, the values of k77 − k12 can be recovered.

⎧
⎪⎨

⎪⎩

t13 ← 0 ⊕ 1 ⊕ 1 � 1 ⊕ k12,
...
t663 ← 0 ⊕ 0 ⊕ 0 � 0 ⊕ k77.

(8)

Now, 66 bits of the secret key are recovered. The remaining 14 bits can be
recovered with the leakages of s94 (t1). According to (1), s66, s93, s91, s92 are
loaded with padding 0s or k80 − k1 in the first 66 rounds while s171 is loaded
with IV3 − IV68. So, it is necessary to divide the update progress of t1 into two
parts according to the values loaded.

The first part contains the 14th to the 24th rounds. According to (1), s66 is
loaded with k28 − k38; s93 is loaded with k1 − k11; s91 is loaded with k3 − k13;
s92 is loaded with k2 − k12 and s171 is loaded with IV16 − IV26. Then, t1 in (2)
can be written as (9).

⎧
⎪⎨

⎪⎩

t141 ← k28 ⊕ k1 ⊕ k3 � k2 ⊕ IV16,
...
t241 ← k38 ⊕ k11 ⊕ k13 � k12 ⊕ IV26.

(9)

In (9), k1 − k11 can be recovered with Algorithm 1:

Algorithm 1: Compute k1 − k11

Input: [t141 , t151 , . . . , t241 ]
Output: [k1, k2, . . . , k11]

1 for j = 10 → 0 do

2 T ← t14+j
1 ;

3 PK1 ← k28+j ;
4 PK2 ← k3+j ;
5 PK3 ← k2+j ;
6 IV ← IV16+j ;
7 compute k1+j by k1+j ← T ⊕ PK1 ⊕ PK2 � PK3 ⊕ IV ;

8 end
9 return [k1, k2, . . . , k11].
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In Algorithm 1, t14+j
1 can be recovered with the leakages related to the pro-

cessing of t14+j
1 ; k28+j is already recovered and therefore is known; k3+j and k2+j

are either known or computed in the previous loop; finally, IV16+j is a public
value. Therefore, k1+j can be recovered.

The second part contains the 64th to the 66th rounds. According to (1), s66
is loaded with k78−k80; s93 is loaded with k51−k53; s91 is loaded with k53−k55;
s92 is loaded with k52 − k54 and s171 is loaded with IV66 − IV68. Then, t1 in (2)
can be written as (10).

⎧
⎨

⎩

t641 ← k78 ⊕ k51 ⊕ k53 � k52 ⊕ IV66,
t651 ← k79 ⊕ k52 ⊕ k54 � k53 ⊕ IV67,
t661 ← k80 ⊕ k53 ⊕ k55 � k54 ⊕ IV68.

(10)

By analyzing the leakages related to the processing of t641 , t651 and t661 , we
can recover the values of t641 , t651 and t661 . First, the values of k51, k52 and k53
are known while the value of IV66 is public. Therefore, the value of k78 can be
computed. Second, the values of k52, k53 and k54 are known while the value of
IV67 is public. Therefore, the value of k79 can be computed. Third, the values
of k53, k54 and k55 are known while the value of IV68 is public. Therefore, the
value of k80 can be computed.

Overall, 80 bits of the secret key can be recovered with Type 1 attack. In
practice, measuring the leakages related to two registers at the same time i.e.
2nd order attack may significantly increase the attack price. In light of this, Type
2 attack which is 1st order attack is proposed.

3.2 Type 2 Attack

In Type 2 attack, we measure the leakages related to the processing of s1 (i.e. t3)
in the first 69 rounds; then, we measure the leakages related to the processing of
s178 (i.e. t2) from the 83rd to the 93rd rounds. In general, the leakages related to
s1 (t3) can be used to recover k12−k77 and k78−k80, and the leakages related to
s178 (i.e. t2) can be used to recover k1 − k11 . The detailed key-recovery process
is described as follows.

As in Type 1 attack, k77 − k12 can be recovered with the leakages related to
the processing of s1 in the first 66 rounds.

According to (1), during the 67th to the 69th rounds, s243 is loaded with
t12 − t32; s286 − s288 are loaded with padding 0s and s69 is loaded with k78 − k80.
Then, t3 in (2) can be written as (11).

⎧
⎨

⎩

t673 ← t12 ⊕ 0 ⊕ 0 � 0 ⊕ k78,
t683 ← t22 ⊕ 0 ⊕ 0 � 0 ⊕ k79,
t693 ← t32 ⊕ 0 ⊕ 0 � 0 ⊕ k80.

(11)

As the same with Type 1 attack, t12 − t32 can be computed with public values
and are therefore known. By analyzing the leakages related to the processing of
t673 − t693 , the values of t673 − t693 can be recovered. Then, with the values of t12− t32,
the values of k78 − k80 can be recovered.
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According to (1), during the 83rd to the 93rd rounds, s162 is loaded with
t141 − t241 ; s175 − s177 are loaded with IV bits or t11 − t111 and s264 is loaded with
padding 0s or t12 − t62. So, it is necessary to divide the update progress of t2 into
four parts according to the values loaded.

The first part contains the 83rd round. According to (1), s162 is loaded with
t141 ; s177 is loaded with IV79; s175 is loaded with t11; s176 is loaded with IV80 and
s264 is loaded with padding 0. Then, t2 in (2) can be written as (12).

t832 ← t141 ⊕ IV79 ⊕ t11 � IV80 ⊕ 0. (12)

The second part contains the 84th round. According to (1), s162 is loaded
with t151 ; s177 is loaded with IV80; s175 is loaded with t21; s176 is loaded with t11
and s264 is loaded with padding 0. Then, t2 in (2) can be written as (13).

t842 ← t151 ⊕ IV80 ⊕ t21 � t11 ⊕ 0. (13)

The third part contains the 85th − 87th rounds. According to (1), s162 is
loaded with t161 − t181 ; s177 is loaded with t11 − t31; s175 is loaded with t31 − t51; s176
is loaded with t21 − t41 and s264 is loaded with padding 0. Then, t2 in (2) can be
written as (14). ⎧

⎪⎨

⎪⎩

t852 ← t161 ⊕ t11 ⊕ t31 � t21 ⊕ 0,
...
t872 ← t181 ⊕ t31 ⊕ t51 � t41 ⊕ 0.

(14)

The fourth part contains the 88th − 93rd rounds. According to (1), s162 is
loaded with t191 − t241 ; s177 is loaded with t41 − t91; s175 is loaded with t61 − t111 ;
s176 is loaded with t51 − t101 and s264 is loaded with t12 − t62. Then, t2 in (2) can
be written as (15).

⎧
⎪⎨

⎪⎩

t882 ← t191 ⊕ t41 ⊕ t61 � t51 ⊕ t12,
...
t932 ← t241 ⊕ t91 ⊕ t111 � t101 ⊕ t62.

(15)

According to (1), t11 − t111 can be computed with k15 − k25 (already known)
and public values. In (12)–(15), the only unknown terms are t11 − t241 . We assume
that the values of t832 − t932 can be recovered with the leakages related to the
processing of t832 − t932 . Then, the values of t141 − t241 can be obtained. With the
values of t141 − t241 , the values of k11 − k1 can be recovered with Algorithm 1.

According to the definition of d-probing model [13], a probe can be switched
to another cell between clock cycles. Thus, Type 2 attack fulfills such requirement
and can be a really 1-probe attack. However, in practice, such switch may be
hard to be applied between clock cycles. In light of this, two methods can be
used. First, for a fully controlled device, one can suspend the running of Trivium
after 69 rounds, and run it after the probe is switched. Second, one can run the
Trivium twice with different runs focusing on different cells.
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3.3 Type 3 Attack

Under the glitch-extended probing model, all the input of one function can be
obtained by probing its output. In light of this, the key-recovery process can be
much easy. According to (1), from the 14th to the 66th rounds, s66 is loaded with
k28 − k80; s93 is loaded with k1 − k53; s91 is loaded with k3 − k55; s92 is loaded
with k2 −k54 and s171 is loaded with IV16 − IV68. Then, t1 in (2) can be written
as (16). ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t141 ← k28 ⊕ k1 ⊕ k3 � k2 ⊕ IV16,
t151 ← k29 ⊕ k2 ⊕ k4 � k3 ⊕ IV17,
...
t651 ← k79 ⊕ k52 ⊕ k54 � k53 ⊕ IV67,
t661 ← k80 ⊕ k53 ⊕ k55 � k54 ⊕ IV68.

(16)

If the values of t141 − t661 can be obtained with probe, glitch can leak all the
inputs in (16) i.e. k1−k80 and IV16−IV68 in the right hand of (16). Consequently,
80 bits of the secret key k1−k80 can be recovered. Note that such glitch-extended
probing model is too strong to be satisfied. In practice, even if a small number of
the input of the combinational logic circuit can be hardly recovered with glitch.
In this case, 80 bits of the secret key may not be easy to be recovered.

4 Glitch-Resistant Higher-Order Masking Schemes
for Trivium

In this section, under the idea of DOM masking scheme, glitch-resistant 1st

order, 2nd order and 3rd order masking schemes are proposed for Trivium while
under the idea of CHES 2021 masking scheme, glitch-resistant 1st order and 2nd

order masking schemes are proposed for Trivium. All three update functions of
Trivium have the same form. Therefore, we use (17) to represent three update
functions.

y = Y (a, b, c, d, e) = a � b ⊕ c ⊕ d ⊕ e. (17)

In order to achieve the d order security under the glitch-extended probing model,
each variable in (17) is split into d+1 shares. For example, a = a0⊕· · · ad. Besides,
Y is split into n component functions Yi with 0 ≤ i ≤ n − 1 which are used to
compute shares of y. Then, the sum of component functions gives the value of y
as is shown in (18).

y = Y (a, b, c, d, e) = Y0 ⊕ Y1 ⊕ · · · ⊕ Yn−1. (18)

4.1 Version-1 Masking Scheme

Here, 1st order, 2nd order and 3rd order cases are considered in version-1 masking
scheme, which can be shown in (19), (20) and (21). Note that ri represents a
fresh randomness bit and each y′

i represents one register. Therefore, one can see
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from (19)–(21) that version-1 masking scheme requires two register stages in all
three cases.

{
(a0 � b1) ⊕ c0 ⊕ d0 ⊕ e0 ⊕ r = y′

0

(a1 � b0) ⊕ c1 ⊕ d1 ⊕ e1 ⊕ r = y′
1

y′
0 ⊕ (a0 � b0) = y0
y′
1 ⊕ (a1 � b1) = y1

(19)
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(a0 � b1) ⊕ r0 ⊕ c0 ⊕ d0 = y′
0

(a0 � b2) ⊕ r1 ⊕ e0 = y′
1

(a1 � b0) ⊕ r0 ⊕ c1 ⊕ d1 = y′
2

(a1 � b2) ⊕ r2 ⊕ e1 = y′
3

(a2 � b0) ⊕ r1 ⊕ c2 ⊕ d2 = y′
4

(a2 � b1) ⊕ r2 ⊕ e2 = y′
5

y′
0 ⊕ y′

1 ⊕ (a0 � b0) = y0
y′
2 ⊕ y′

3 ⊕ (a1 � b1) = y1
y′
4 ⊕ y′

5 ⊕ (a2 � b2) = y2

(20)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a0 � b1) ⊕ r0 ⊕ c0 = y′
0

(a0 � b2) ⊕ r1 ⊕ d0 = y′
1

(a0 � b3) ⊕ r3 ⊕ e0 = y′
2

(a1 � b0) ⊕ r0 ⊕ c1 = y′
3

(a1 � b2) ⊕ r2 ⊕ d1 = y′
4

(a1 � b3) ⊕ r4 ⊕ e1 = y′
5

(a2 � b0) ⊕ r1 ⊕ c2 = y′
6

(a2 � b1) ⊕ r2 ⊕ d2 = y′
7

(a2 � b3) ⊕ r5 ⊕ e2 = y′
8

(a3 � b0) ⊕ r3 ⊕ c3 = y′
9

(a3 � b1) ⊕ r4 ⊕ d3 = y′
10

(a3 � b2) ⊕ r5 ⊕ e3 = y′
11

y′
0 ⊕ y′

1 ⊕ y′
2 ⊕ (a0 � b0) = y0

y′
3 ⊕ y′

4 ⊕ y′
5 ⊕ (a1 � b1) = y1

y′
6 ⊕ y′

7 ⊕ y′
8 ⊕ (a2 � b2) = y2

y′
9 ⊕ y′

10 ⊕ y′
11 ⊕ (a3 � b3) = y3

(21)

Security Analysis. Three conditions, i.e. correctness, non-completeness and
uniformity should be satisfied in version-1 masking scheme to ensure that it is
secure under the glitch-extended probing model. First, correctness requires that
the sum of the output shares gives the desired output. Indeed, the correctness
of version-1 masking scheme can be verified by summing up all component func-
tions in (19), (20) or (21). Second, non-completeness requires every component
function is independent of at least one share of each of the input variables. In
version-1 masking scheme, registers should be inserted into the computation of
component functions to satisfy the non-completeness condition under the glitch-
extended probing model. Indeed, with the inserted registers, each probe at most
leak one share of each variable even under the glitch-extended probing model.
For example, the masking scheme in (20) should be secure with upto 2 glitch-
extended probes, which means one cannot obtain any secret value with even 2
glitch-extended probes. In order to obtain as much information as possible, the
glitch-extended probe should be located on y′

∗ or y∗, which can be classified into
three cases, i.e., (y′

∗, y
′
∗), (y′

∗, y∗) and (y∗, y∗). When probing (y′
0, y

′
1), one can

only obtain a0, b0, b1, c0, d0 and e0, which will not leak values of a, b, c, d and e.
Similarly, when probing (y′

∗, y∗) or (y∗, y∗), the values of a, b, c, d and e cannot
be obtained. Third, uniformity requires any values obtained under the glitch-
extended probing model be independent of the inputs of an update function. In
version-1 masking scheme, all shares are independent of the inputs of an update
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function; fresh randomness bits are obviously independent of the inputs of an
update function; finally, y′

i is independent of the inputs of an update function
because a fresh randomness bit is added in the computation of y′

i.
Therefore, uniformity is satisfied in version-1 masking scheme. Overall, all

three conditions are satisfied in version-1 masking scheme. Therefore, version-1
masking scheme can be secure under the glitch-extended probing model.

4.2 Version-2 Masking Scheme

Here, 1st order and 2nd order cases are considered in version-2 masking scheme,
which can be shown in (22) and (23). Note that each y′

i represents one register.
Therefore, version-2 masking scheme requires two register stages in both 1st

order and 2nd order case.
⎧
⎪⎪⎨

⎪⎪⎩

(a0 � b0) ⊕ c0 ⊕ e0 = y′
0

(a0 � b1) ⊕ d0 = y′
1

(a1 � b0) ⊕ d1 = y′
2

(a1 � b1) ⊕ c1 ⊕ e1 = y′
3

y′
0 ⊕ y′

1 = y0
y′
2 ⊕ y′

3 = y1
(22)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a0 � b0) ⊕ b0 ⊕ c0 = y′
0

(a0 � b1) ⊕ e0 = y′
1

(a0 � b2) ⊕ b2 ⊕ d0 = y′
2

(a1 � b0) ⊕ b0 ⊕ c1 = y′
3

(a1 � b1) ⊕ e1 = y′
4

(a1 � b2) ⊕ d1 = y′
5

(a2 � b0) ⊕ d2 ⊕ c2 = y′
6

(a2 � b1) ⊕ e2 = y′
7

(a2 � b2) ⊕ b2 = y′
8

y′
0 ⊕ y′

1 ⊕ y′
2 = y0

y′
3 ⊕ y′

4 ⊕ y′
5 = y1

y′
6 ⊕ y′

7 ⊕ y′
8 = y2

(23)

Security Analysis. First, the correctness of version-2 masking scheme can be
satisfied by summing up all component functions in (22) or (23). Second, under
glitch-extended probing model, one can not obtain all shares of a variable with
d probes. Therefore, the non-completeness condition is satisfied. For example, in
(22), when probing y′

0 under the glitch-extended probing model, one can only
obtain a0, b0, c0 and e0, which will not leak values of a, b, c and e. Similarly, in
(23), when probing arbitrary two registers under the glitch-extended probing
model, one can not obtain full shares of a, b, c, d and e. Third, we evaluate the
statistical relationship between a group of intermediate variables (e.g. shares
and/or y′

i) and the inputs of an update function, and obtain the result that
these two are statistically independent. For example, when probing y0 and y′

0

under the glitch-extended probing model, one can obtain a0, b0, c0, y
′
0, y

′
1 and

y′
2. Then, by traversing the inputs of an update function and estimating the

statistical distribution of (a0, b0, c0, y′
0, y

′
1, y

′
2), we can obtain the result that the

statistical distribution of (a0, b0, c0, y′
0, y

′
1, y

′
2) is independent of values of a, b, c, d

and e. Therefore, the uniformity condition can be satisfied in version-2 masking
scheme. Overall, the higher-order masking schemes shown in (22) and (23) can
be secure under the glitch-extended probing model.
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4.3 Hardware Cost

According to (19)–(23), the hardware cost of version-1 and version-2 masking
schemes can be summarized in Table 1. In detail, AND represents the number of
� operations needed, XOR represents the number of ⊕ operations needed, Rand.
represents the number of fresh randomness bits needed, Register represents the
number of registers needed and Stage represents the number of clock cycles
needed in each scheme.

Table 1. Overview of the hardware costs of different masking schemes

Order AND XOR Rand Register Stage Version

Unpro 1 3 0 0 0 –

1st order 4 10 1 2 2 version-1

4 8 0 4 2 version-2

2nd order 9 21 3 6 2 version-1

9 19 0 9 2 version-2

3rd order 16 36 6 12 2 version-1

It can be seen from Table 1 that version-1 masking scheme and version-2
masking scheme require the same number of AND operation in the 1st order
and 2nd order cases, and they both require 2 clock cycle in all three cases.
Comparatively, version-2 masking scheme needs more registers while version-1
masking scheme needs more XOR operations in the 1st order and 2nd order cases.
Note that version-2 masking scheme does not require any fresh randomness while
version-1 masking scheme require 1, 3 and 6 fresh randomness bits in the 1st

order, 2nd order and 3rd order case respectively. Note that the trade-off between
the Register and the Stage can be possible. For example, the 1st order version-2
masking scheme can also be implemented with 3 registers in 3 clock cycles. In
the first clock cycle, y′

0 and y′
1 can be computed and stored in 2 registers. In the

second clock cycle, y0 can be computed by y′
0 and y′

1 and stored in 1 register.
At the same time, y′

2 and y′
3 can be computed and stored in the 2 registers that

store y′
0 and y′

1. In the third clock cycle, y1 can be computed by y′
2 and y′

3.

5 Performance Evaluation

In this part, two versions of masking schemes are implemented on two typical
hardware platforms i.e. ASIC and FPGA. For the ASIC hardware platform, the
TSMC 130nm process with 1V supply voltage and 25◦C is adopted. Besides,
the implementation of two versions of masking schemes are synthesized with
the Synopsys Design Compiler L-2016.03-SP1. The FPGA hardware platform is
the Xilinx Spartan7 serial [28]. The Synthesis and the Implementation of two
versions of masking schemes are conducted in Vivado 2020.1 [29] which is the
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standard IDE for Spartan7 serials using the Verilog hardware design language. In
order to evaluate the performance more precisely, only the primary component
look up table (LUT) in FPGA is used and resources like SRL16/SRL32, BRAM
and DSP are not applied in our implementations.

Then, the performance of two versions of masking schemes is evaluated in
two scenarios. In scenario-1, fresh randomness are assumed to be generated by
external Pseudo Random Number Generator (PRNG). Therefore, the overhead
of the generation of fresh randomness is not considered in scenario-1. In scenario-
2, following the routine of [11], the fresh randomness used are generated with the
unprotected parallel implementation of Trivium. Finally, the pipeline technique
can be used to achieve the goal of parallelization with the price of some extra
consumed area. Overall, the evaluation results of two versions of masking schemes
in scenario-1 can be summarized in Table 2.

Table 2. Evaluation results on ASIC and FPGA (scenario-1)

Order Rand. Stage ASIC FPGA Version

(Bits/Cyc.) Areaa Max Thr.b Areac Max Thr.b

(GE) (Mbps) LUT FF Slice (Mbps)

Unpro. 0 1 2658 2273 169 305 48 376 –

1st order 1.5 2 5092 961 444 605 123 182 version-1

3 1 5152 1923 454 606 127 355 version-1-pd

0 2 5132 909 449 611 124 181 version-2

0 1 5197 1786 458 612 127 352 version-2-p

2nd order 4.5 2 7502 909 648 911 175 179 version-1

9 1 7711 1754 666 910 184 352 version-1-p

0 2 7623 862 644 920 177 179 version-2

0 1 7739 1613 668 920 190 343 version-2-p

3rd order 9 2 9952 806 858 1227 233 174 version-1

18 1 10394 1408 881 1233 251 347 version-1-p
a Area is obtained under the 1GHz clock.
b The throughput is calculated under the max frequency.
c Area is obtained under the 200MHz clock.
d “-p” represents the pipeline mode.

According to Table 2, the following observations can be obtained. First, the
performance of version-1 masking scheme can be better than that of version-2
masking scheme, even though the advantage is not obvious. Second, the pipeline
technique can significantly optimize the throughput of two versions of masking
schemes with the price of a little extra consumed area. Third, the performance
of two versions of masking schemes decreases with the masking order. Fourth, no
fresh randomness is needed for version-2 masking scheme while the number of
fresh randomness bits that should be used in version-1 masking scheme increases
with the masking order. Overall, in practice, when fresh randomness can be
obtained through external PRNG, version-1 masking scheme should be used to
protect a hardware implementation of Trivium.
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Then, the evaluation results of two versions of masking schemes in scenario-2
can be summarized in Table 3. Note that in Table 3, the price to generate fresh
randomness is evaluated. Besides, the efficiency of a masking scheme as a metric
is computed to evaluate its overall performance.

Table 3. Evaluation results on ASIC and FPGA (scenario-2).

Order ASIC FPGA Version

Area Efficiency Area Efficiency

(GE) % (Mbps/GE) Slice % (Mbps/Slice)

Unpro. 2658 100% 0.377 48 100% 4.17

1st order 7811 100% 0.064 174 100% 0.57 version-1

mask 5092 65.2% 123 70.7%

PRNG 2719 34.8% 51 29.3%

1st order-p 7871 100% 0.127 178 100% 1.12 version-1

mask 5152 65.5% 127 71.3%

PRNG 2719 34.5% 51 28.7%

1st order 5132 100% 0.097 124 100% 0.807 version-2

1st order-p 5197 100% 0.192 127 100% 1.575 version-2

2nd order 10490 100% 0.048 233 100% 0.43 version-1

mask 7580 72.3% 175 75.1%

PRNG 2910 27.7% 58 24.9%

2nd order-p 10621 100% 0.094 242 100% 0.83 version-1

mask 7711 72.6% 184 76%

PRNG 2910 27.4% 58 24%

2nd order 7623 100% 0.066 177 100% 0.565 version-2

2nd order-p 7739 100% 0.129 190 100% 1.053 version-2

3rd order 13902 100% 0.036 301 100% 0.33 version-1

mask 9952 73.2% 233 77.4%

PRNG 3729 26.8% 68 22.6%

3rd order-p 14123 100% 0.071 319 100% 0.63 version-1

mask 10394 73.6% 251 78.7%

PRNG 3729 26.4% 68 21.3%

According to Table 3, the following observations can be obtained. First, when
the price of fresh randomness is considered, the performance of version-2 masking
scheme can be better than that of version-1 masking scheme, and the advantage
can be obvious. Second, the price of fresh randomness can be significant. In
fact, an unprotected parallel implementation of Trivium can be used to generate
fresh randomness. If an unprotected serial implementation of Trivium is used
to generate fresh randomness, the price can be much higher. Third, the ratio of
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the price of fresh randomness in the overall price of a masking scheme decreases
with the mask order. The reason is that compared with the increasing rate of the
price of fresh randomness, the increasing rate of the price of a masking scheme
can be higher. Fourth, even through the addition of fresh randomness decreases
the efficiency of version-1 masking scheme, the advantage of the performances
of masking schemes with pipeline technique over the performances of masking
schemes without pipeline technique can remain. Overall, in scenarios where the
price to generate fresh randomness is high, version-2 masking scheme can be
used to protect a hardware implementation of Trivium.

Discussion. When d probes are used to detect variables in two clock cycles
shown in (19)–(23), two versions of masking schemes can be secure under the
glitch-extended probing model. However, when variables in (19)–(23) beyond
two clock cycles are detected by d probes, version-1 masking scheme can still be
secure under the glitch-extended probing model, while version-2 masking scheme
may be insecure under the glitch-extended probing model. The reason is that,
the outputs of component functions in version-1 masking scheme are uniform and
random, while the outputs of component functions in version-2 masking scheme
can be uniform but not random. In this case, when variables beyond two clock
cycles are combined, the inputs of update functions may be recovered. In light
of this, version-1 masking scheme should be used in security-critical scenarios.

6 Side-Channel Evaluation

T-Test proposed by Goodwill et al. [10] can be used to evaluate the security of
two versions of masked implementations of Trivium in the simulated scenario.
More specifically, the non-specific T-Test leakage detection methodology is used.
Two sets of simulated traces are collected under the Hamming Distance Model.
For a fixed secret key, set Q1 collects simulated traces with a fixed IV and set
Q2 collects simulated traces with randomly chosen IVs. If the number of samples
contained in one power trace is denoted as Ns, the value v of T-Test at sample
w(1 ≤ w ≤ Ns) can be computed as

vw =
X1,w − X2,w√

S2
1,w
N1

+
S2
2,w
N2

, (24)

where X1,w denotes the mean of the power traces contained in Q1 at sample
w, X2,w denotes the mean of the power traces contained in Q2 at sample w,
S2
1,w denotes the variance of the power traces contained in Q1 at sample w,

S2
2,w denotes the variance of the power traces contained in Q2 at sample w, N1

denotes the number of power traces contained in Q1 and N2 denotes the number
of power traces contained in Q2. The null-hypothesis is that the means of both
trace sets can be equal, which is accepted if the computed T-Test values are
between the threshold of ±4.5. If the T-Test values exceed this threshold then
the null-hypothesis is rejected with a confidence larger than 99.999%. In order
to evaluate the security of higher-order masked implementations of Trivium, the
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higher-order T-Test should be used as the evaluation tool. The higher-order T-
Test requires one to preprocess the traces. According to [23,26], the dth-order
T-Test needs one to remove the means of the traces and raise them to power d.
Then, the T-Test values can be computed with the preprocessed traces.

We observe that the variance of the signal under the Hamming Distance
Model can be between 20 and 75. In order to simulate the practical hardware
environment, at most the signal-to-noise ratio of 0.02 should be adopted, which
means the variance of the noise should be between 1000 and 3500. We observe
that the leakage for unprotected implementation can be obtained with only
10,000 traces. The number of traces in the simulated scenario is less than that
needed in the practical hardware environment. The reason can be as follows.
In the simulated scenario, the signal leakage can perfectly follow the Hamming
Distance Model, while the practical hardware environment can be much more
complicated and the signal leakage can be much harder to simulated. Thus, much
more traces can be needed in the practical hardware environment. The evalua-
tion results for two versions of masked implementations of Trivium can be shown
in Fig. 1 and Fig. 2 respectively.

(a) Unprotected (b) 1st order (version-1)

(c) 2nd order (version-1) (d) 3rd order (version-1)

Fig. 1. T-Test results on the version-1 masking implementations of Trivium

Figure 1(a) shows the evaluation results of T-Test on the unprotected hard-
ware implementation of Trivium during the initial phase. The large T-Test values
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(a) 1st order (version-2) (b) 2nd order (version-2)

Fig. 2. T-Test results on the version-2 masking implementations of Trivium

give a strong indication of leakage for unprotected hardware implementation of
Trivium, which means that the unprotected hardware implementation of Triv-
ium can be vulnerable to side-channel attacks in practice. For version-1 mask-
ing scheme, Fig. 1(b) shows the evaluation results of T-Test on the 1st order
masked hardware implementation of Trivium. The T-Test values are located
between the threshold of ±4.5, which shows that it can resist the first-order
side-channel attack. Figure 1(c) shows the evaluation results of T-Test on the
2nd order masked hardware implementation of Trivium. The T-Test values are
located between the threshold of ±4.5, which shows that it can resist the second-
order side-channel attack. Fig 1(d) shows the evaluation results of T-Test on the
3rd order masked hardware implementation of Trivium. The T-Test values are
located between the threshold of ±4.5, which shows that it can resist the third-
order side-channel attack. For version-2 masking scheme, Fig. 2(a) and Fig. 2(b)
show the evaluation results of T-Test on the 1st and 2nd order masked hardware
implementation of Trivium respectively. The T-Test values are located between
the threshold of ±4.5, which shows that it can resist the first-order and the
second-order side-channel attack.

7 Conclusion

In this paper, three types of probing attacks are proposed to recover secret
key bits used by an implementation of Trivium. Then, inspired by the ideas
of the DOM masking scheme proposed by Gross et al. and the CHES 2021
masking scheme proposed by Shahmirzadi et al., two versions of higher-order
masking schemes are proposed to protect hardware implementations of Trivium.
The security of two versions of masking schemes are proved under the glitch-
extended probing model. Then, we evaluate the performance of two versions of
masking schemes on ASIC and FPGA with or without the pipeline technique.
The evaluation results show that, in scenarios where fresh randomness can be
obtained through external PRNG, version-1 masking scheme can be used to
protect a hardware implementation of Trivium. However, when the price of fresh
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randomness should be considered, version-2 masking scheme may be used to
protect a hardware implementation of Trivium.
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Abstract. The cube attack is one of the most important cryptanalytic
techniques against Trivium. As the method of recovering superpolies
becomes more and more effective, another problem of cube attacks, i.e.,
how to select cubes that can effectively attack, is attracting more and
more attention. In this paper, we present a novel framework to search
for valuable cubes whose superpolies have an independent secret vari-
able each, i.e., a linear variable not appearing in any nonlinear term.
To control online complexity, valuable cubes are selected from very few
large cubes. New ideas are given on the large cube construction and
the subcube sieve. As illustrations, we apply the new algorithm to the
stream cipher Trivium. For 815-round Trivium, the complexity of full
key-recovery attack is 247.32. For 820-round Trivium, the complexity of
full key-recovery attack is 253.17. Strong experimental evidence shows
that the full key-recovery attacks on 815- and 820-round Trivium could
be completed within six hours and two weeks on a PC with two RTX3090
GPUs, respectively.

Keywords: Cube attacks · Key-recovery attacks · Division property ·
Trivium

1 Introduction

Cube Attack: The cube attack is a new method of analyzing symmetric-key
cryptosystems proposed by Dinur and Shamir in [1]. The output bit of a stream
cipher can be regarded as a tweakable polynomial in the secret variables k and
the public IV variables v, expressed as f(k,v). In cube attacks, some IV variables
are set as active, that is, all possible combinations of 0/1 are taken, and the rest
of the IV variables are inactive and set to constants. The set of these values is
called a cube. By taking the values of f(k,v) over all values in the cube, the
sum leads to a relation of secret variables. This relation is called the superpoly
of the cube, and it is much simpler than f(k,v). Based on these superpolys,
information about the secret variables can be obtained.

In [1,2], f(k,v) is regarded as a blackbox polynomial and analyzed exper-
imentally. In [3], the division property was first introduced to cube attacks on
stream ciphers, and it could be used to identify the secret variables not involved

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Y. Deng and M. Yung (Eds.): Inscrypt 2022, LNCS 13837, pp. 357–369, 2023.
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in the superpoly efficiently. To improve the effectiveness of cube attacks based on
division property, some new techniques were given in [4,5]. However, the tradi-
tional division property only confirms that a specific monomial does not appear
in the superpoly if the division property cannot propagate to the output bit.
This inaccuracy of the traditional division property makes many previous key-
recovery attacks, e.g., [4,6], degenerate to distinguishing attacks [5,7]. This was
finally resolved by Hao et al. in [8], where the model for three-subset division
property without unknown subset was proposed.

Trivium: Trivium [9] is a bit-oriented synchronous stream cipher designed by
De Cannière and Preneel, which is one of the eSTREAM hardware-oriented
finalists. When the cube attack was first proposed, a key-recovery attack on
767-round Trivium was given, in which 35 linear superpolies were recovered
[1]. Next, key-recovery attacks on 784- and 799-round of Trivium were given in
[2]. Recently, an effective method to construct cubes for linear superpolies was
proposed in [10], and a practical attack against 805-round Trivium was given. On
the other hand, cube attacks based on division property theoretically evaluate
the security of Trivium by targeting a very high round number. In [8], Hao et
al. accurately recovered the superpolies of 840-, 841-, and 842-round Trivium
by using three-subset division property without unknown subset. Meanwhile,
Hu et al. in [11] described the propagation of monomials from a pure algebraic
perspective and proposed monomial prediction technique. Recently, Hu et al.
[12] combined the monomial prediction technique with the backtracking method
in [7] and presented a new framework for recovering the exact ANFs of massive
superpolies, recovering the superpolies for 843-, 844- and 845-round Trivium.
At FSE 2021, Sun proposed a new heuristic method in [13] to reject cubes
without independent secret variables from a preset of candidate cubes. Using the
heuristic algorithm, they recovered a balanced superpoly for 843-round Trivium
and presented practical attacks against 806- and 808-round Trivium.

Motivation: Our work aims to enhance the ability of a practical key-recovery
attack on Trivium. Firstly, we use a special class of balanced superpolies. For a
superpoly p, if p could be decomposed into p(k) = p′(k) ⊕ ki, where ki does not
appear in p′, then we say that p has an independent variable ki. If we obtain
many such superpolies, it is easy to select n superpolies to provide n-bit key
information. We say a cube is valuable if its superpoly has at least one inde-
pendent secret variable. Secondly, to reduce the complexity of the online phase,
the existing practical attacks [10,13] all selected a large cube I and searched the
subcubes of I. So, the attacker only needs 2|I| times to query the encryption
oracle. In the following paper, a desirable large cube is called a mother cube.
Therefore, a good mother cube and a method of searching for valuable subcubes
are critical for practical attacks.

Our work is motivated by the heuristic method of rejecting useless cubes in
[13]. There are two obvious drawbacks of this search algorithm. On one hand,
both rejection and acceptance of this method may be wrong, and it is diffi-
cult for practical attacks to control the size of cube if some valuable cubes are
rejected. On the other hand, when there are many subcubes in the test, it can-
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not terminate within an acceptable period of time. Instead of rejecting useless
cubes, we consider choosing cubes that are more likely to be valuable. Firstly,
we observe that low-degree superpolies are easier to recover and more likely to
contain independent variables. Moreover, for many low-degree balanced super-
polies, it is easy to select n superpolies to provide n-bits of key information.
For simplicity, the degree of a cube refers to the degree of the superpoly
corresponding to the cube. Secondly, we note that the existence of linear terms
is necessary for a superpoly to have independent secret variables. We find that
many superpolies do not have linear terms in experimental tests. It is obvious
that these superpolies without linear terms cannot contain independent secret
variables.

Our Contribution: We present a novel framework to search for valuable sub-
cubes from a mother cube, which is experimentally verified to be quite effective.
It consists of the following three aspects.

1. We modify the algorithm for constructing cubes targeting linear superpolies
presented in [10]. We aim to construct a mother cube with many low-degree
subcubes rather than several low-degree cubes unrelated to each other. There-
fore, we modify the end of the first stage in order to construct a potentially
good mother cube.

2. We propose an efficient method to search for low-degree subcubes. The deep-
first-search strategy is used. We first enumerate the degrees of all the subcubes
with one less variable for a given mother cube. Then, for the subcubes with
degree less than 5, we continually enumerate the subcubes with one less vari-
able until there is no subcube with degree less than 5. As a result, we can
identify most of the low-degree subcubes efficiently.

3. We propose a method for searching for valuable subcubes. We note that the
existence of linear terms is necessary for a superpoly to have independent
secret variables. Moreover, since linear terms account for only a small part of
the superpoly, it is efficient to recover all linear terms of a cube. Therefore, we
recover the linear terms of the low-degree subcubes and reject the subcubes
without linear terms, or all the linear terms have been covered by some simple
superpolies. Experimental data on 820-Trivium show that only about 20% of
the superpolies are left after the rejection.

Fig. 1. The sketch of our idea

As an illustration, we apply our methods, whose sketch is shown in Fig. 1, to
the well-known stream cipher Trivium. Practical attacks on 815- and 820-round
Trivium are given. For 815-round Trivium, we could obtain 35-bit key informa-
tion at 247 online computation complexity. Hence, the total online complexity is
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247 + 245. For 820-round Trivium, we could obtain 30-bit key information at 253

online computation complexity. Hence, the total online complexity is 253 + 250.
This attack on 820-round Trivium improves the previous best practical cube
attacks by 12 more rounds. As a comparison, we summarize full key-recovery
attacks against the round-reduced Trivium in Table 1.1

Table 1. A summary of key-recovery attacks on Trivium

Attack type # of rounds Off-line phase On-line phase Total time Ref.

Cube size # of key bits

Practical 672 12 63 217 218.56 [1]

767 28–31 35 245 245.00 [1]

784 30–33 42 238 239.00 [2]

805 32–38 42 238 241.40 [10]

806 33–37 45 235 239.88 [13]

808 39–41 37 243 244.58 [13]

815 44–46 35 245 247.32 Sect. 4.1

820 48–51 30 250 253.17 Sect. 4.2

Theoretical 799 32–37 18 262 262.00 [2]

802 34–37 8 272 272.00 [14]

805 28 7 273 273.00 [15]

832 72 1 279 279.01 [3,5]

835 35 5 275 275.00 [15]

840 75 3 277 277.32 [11]

840 78 1 279 279.58 [8]

841 78 1 279 279.58 [8]

841 76 2 278 278.58 [11]

842 76 2 279 278.58 [11]

842 78 1 279 279.58 [8]

843 54–57,76 5 275 276.58 [12]

843 78 1 279 279.58 [13]

844 54–55 2 278 278.00 [12]

845 54–55 2 278 278.00 [12]

2 Preliminaries

2.1 Boolean Functions and Algebraic Degree

A Boolean function on n variables is a mapping from F
n
2 to F2, where F2 is the

binary field and F
n
2 is an n-dimensional vector space over F2. A Boolean function

f can be uniquely represented as a multivariable polynomial over F2,

f(x1, x2, . . . , xn) =
⊕

c=(c1,c2,...,cn)∈{0,1}n

ac

n∏

i=1

xci
i , ac ∈ F2,

1 All the related codes and results could be found on https://github.com/
LLuckyRabbit/search-for-valuables-cubes.

https://github.com/LLuckyRabbit/search-for-valuables-cubes
https://github.com/LLuckyRabbit/search-for-valuables-cubes
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which is called the algebraic normal form (ANF) of f . In the following paper,∏n
i=1 xci

i is called a term of f . One important feature of a Boolean function is
its algebraic degree which is denoted by deg(f) and defined as

deg(f) = max{wt(c)|ac �= 0},

where wt(c) is the Hamming Weight of c, i.e., wt(c) =
∑n

i=1 ci.

2.2 Trivium

Trivium is a bit-oriented synchronous stream cipher that was one of the
eSTREAM hardware-oriented finalists. The main building block of Trivium is
a Galois nonlinear feedback shift register, and its internal states are 288 bits
in total. For every clock cycle, three bits of the internal state are updated by
quadratic feedback functions, and all the remaining bits of the internal state
are updated by shifting. In the initialization phase, an 80-bit secret key and an
80-bit IV are loaded in the internal state of Trivium. After updating the internal
state iteratively for 1152 rounds, Trivium starts to output keystream bits. For
more details, please refer to [9].

2.3 Cube Attacks

The cube attack was first proposed by Dinur and Shamir in [1]. In cube attacks,
the output bit of a stream cipher can be regarded as a tweakable polynomial
f(k,v), where k = (k1, k2, ..., kn) are secret key variables and v = (v1, v2, ..., vm)
are public IV variables. For a randomly chosen set I = {vi1 , vi2 , . . . , vid}, f(k,v)
can be represented uniquely as

f(k,v) = tI · pI(k,v) ⊕ qI(k,v),

where tI = vi1 · · · vid , and qI misses at least one variable in I. The IV variables
in I are called cube variables. These cube variables are set as active, that is,
all possible combinations of 0/1 are taken, and the rest of the IV variables are
inactive and set to constants. The set of these values is denoted as a cube, and
the polynomial pI is called the superpoly of I in f . It can be seen that the
summation of the 2d functions derived from f by assigning all the possible values
to d variables in I equals pI . Therefore, in the online phase, it takes 2d queries
the cipher oracle to get the value of the superpoly pI(k,v).

Obviously, pI(k,v) is much simpler than f(k,v). Once an attacker recovers
a certain number of superpolies, he could build a system of equations on secret
key variables k by inquiring the values of all the superpolies. Then some infor-
mation about the secret variables can be achieved. In particular, if a superpoly
is balanced, namely |{k ∈ F

n
2 | f(k) = 0}| = |{k ∈ F

n
2 | f(k) = 1}| = 2n−1,

then 2n−1 illegal keys will be filtered out. However, in a key recovery attack,
it is difficult to obtain �-bits of information about the key even if there are �
balanced superpolies. Moreover, when � is large, it is almost impossible.



362 C. Che and T. Tian

2.4 A Heuristic Algorithm of Constructing Cubes Targeting Linear
Superpolies

In [10], Ye et al. combined the division property based degree evaluation method
with some greedy strategies to construct cubes targeting linear superpolies. The
author heuristically gave a small set of cube variables and then extended it
iteratively. In order to construct cubes targeting linear superpolies, the extension
phase is subdivided into two stages.

– In the first stage, we select a steep IV variable which could decrease the
degrees of the superpolies as fast as possible in each iteration.

– In the second stage, we select a gentle IV variable which decrease the degrees
of the superpolies as slowly as possible in each iteration.

It may fail to construct cubes with linear superpolies by only adding steep IV
variables. The goal of the second stage is to ensure that the degree of the super-
poly could be close to 1 rather than suddenly dropping to 0.

3 A Search Algorithm for Valuable Cubes

To mount key-recovery attacks, enough valuable cubes need to be collected. A
modified algorithm for constructing mother cubes and an efficient method for
searching low-degree subcubes are introduced in Sects. 3.1 and 3.2, respectively.
In Sect. 3.3, we present a method for rejecting useless cubes. Combining the new
methods given in these three sections, we present a novel general framework for
making key-recovery attacks.

3.1 A Modified Algorithm of Constructing Mother Cubes

In [10], Ye et al. completed a practical key-recovery attack on 805-round Trivium
using linear superpolies. As the number of rounds increases, recovering linear
superpolies is not enough to mount a practical attack. We aim to extend linear
superpolies to low-degree superpolies in a practical attack. To reduce the number
of requests in the online phase, we construct a mother cube and then search its
subcubes. When constructing the mother cube, we want a cube that has many
low-degree subcubes and is as small as possible. Therefore, we do not need to
add some gentle IV variables that make the degree of cube approach 1, and we
only need the first stage of the algorithm in Sect. 2.4.

We modify the beginning and the end of the first stage. In [10], the authors
gave a method for determining starting cube sets. In fact, many starting cubes
meet the criteria. We consider selecting the cube with the smallest degree as a
starting set. In the end, because the iteration only adds a steep IV variable, the
degree of the cube drops to 0 quickly. Then, in the last iteration, the resulting
cubes with a non-zero degree are low-degree cubes. However, we want a mother
cube that contains many low-degree subcubes, not some cubes whose last vari-
able is different. Therefore, for the results of the last iteration, we select several
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IV variables to add to the cube to get a large cube. Then, how many IV variables
to choose and which IV variables to choose is a matter for us to consider.

We focus on IV variables that reduce the cube to a lower degree, such as
IV variables with a cube degree less than five after being added. For example,
assuming there are five such IV variables, we will get ten new large cubes if we
combine the three and add them to the original cube. The algebraic degrees of all
subcubes with one less variable are evaluated for the ten large cubes. The large
cube is selected as the mother cube if it has the most subcubes of degree less
than 5. In particular, if the degrees of all subcubes are not small, for example,
greater than 4, it is considered that more IV variables are needed to reduce the
degree of the whole.

3.2 A Method for Searching Low-Degree Subcubes

For the mother cube obtained in Sect. 3.1, the next step is to search for valuable
subcubes. In [13], Sun directly dealt with candidate subcubes to select the cube
that is more likely to have independent variable ki. However, when attacking
820-round Trivium, a mother cube of size 52 has many subcubes. If we deal with
them together and then judge, the time is unacceptable.

Among all subcubes, there will be some complicated cubes, which occupy
most of the solving time. Naturally, we tend to choose subcubes that are more
likely to be valuable and solve faster. The algebraic degree is the most common
way to measure the complexity of a cube. It is generally agreed that low-degree
superpolies are easier to recover. In particular, low-degree superpolies are also
more likely to have independent variables. Therefore, we first evaluate the degree
of a subcube and then judge whether the subcube is valuable. Since the subcubes
are contained in a large cube, we can strategically evaluate algebraic degrees.
Our strategy is based on the following observation.

Observation 1. For a given cube I, the degree of most subcubes is higher than
the degree of I.

We do an experiment where we choose ten large cubes. In all the subcubes
with one variable less, about 90% of the subcubes have higher degrees than the
original cube. Therefore, we use a deep-first-search strategy to evaluate degrees.

Taking 815-round Trivium as an example, for a 47-dimensional cube, we
first enumerate the degrees of 46-dimensional subcubes. Then enumerate the
subcubes with one less variable for the cubes whose degrees are less than 5
in the 46-dimensional subcubes. Because of Observation 1, it is difficult to get
some low-degree subcubes in a cube whose degree is greater than 5. Therefore, we
always enumerate subcubes with one less variable for low-degree cubes until there
is no cube whose degree is less than 5. Using this strategy, we can enumerate a
small number of subcubes and obtain the vast majority of low-degree subcubes,
effectively speeding up the search for low-degree subcubes.
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3.3 A Method for Searching Valuable Subcubes

A large number of low-degree subcubes can be obtained using the method in
Sect. 3.2. The problem to be solved here is how to search for valuable cubes
among many low-degree subcubes. The natural idea is to test whether a spe-
cific secret variable ki is independent. This method only needs to compute the
monomials that involve the variable ki and is more efficient. However, Trivium,
for example, has 80 secret variables. If each secret variable is tested, it can be
more complicated than recovering the superpolies directly, so verifying all secret
variables for a cube is impractical.

Instead of pointlessly verifying all secret variables, we consider which vari-
ables need to be verified for a given cube. We note that the independent secret
variable is a linear term, and the existence of linear terms is necessary for a
superpoly to have independent secret variables. Therefore, if a superpoly does
not contain linear terms, we can reject it without error. If a superpoly contains
linear terms, we only need to verify that these variables are independent. Based
on this consideration, we give the criteria for the primary filtration of candidate
cubes.

The Primary Filtration. If the superpoly corresponding to a cube has no linear
term, then we can reject the cube.

Linear terms account for only a small part of the superpoly, so it is efficient
to recover all the linear terms of a cube. We make simple statistics on the low-
degree cubes of 820-round Trivium, and the cube with linear terms accounts for
about 40%. The specific data are listed in Table 2.

Table 2. Statistics the remaining cubes after filtering for 820-round Trivium

Dim #Cubes #Cubes with linear terms #Remaining cubes

51 31 7 3

50 78 30 17

49 364 157 77

48 195 96 54

Total 668 290 151

After we recover the superpolies of many subcubes, we find that these super-
polies have complex algebraic relations, that is, one superpoly may be generated
by the combination of other superpolies. Therefore, some linear terms occur fre-
quently in superpolies. We only need one superpoly containing the independent
secret variable for a linear term that occurs frequently. Therefore, we can also
do secondary filtering for cubes that contain the same linear term.

The Secondary Filtration. If the linear terms of the superpoly corresponding
to a cube have been recovered in linear or quadratic balanced superpolies, then
we can reject the cube.
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For independent variables appearing in balanced superpolies of degree three
or more, we expect to obtain simpler superpolies. Therefore, we reject only the
independent variables previously obtained in linear or quadratic balanced super-
polies. In particular, to perform the secondary filtration more efficiently, we first
recover the cube with the lowest degree for all cubes with the same linear term.
In the fourth column of Table 2, we also list the remaining cubes filtered twice
during the practical recovery process. The details of our idea are described in
Algorithm 1.

When recovering the remaining cubes, we can use the observation given in
[13] that the higher-degree terms obtained by the subsystem will appear in the
superpoly with high probability. Therefore, we divide the whole system into
several subsystems to solve the superpoly. If the high-degree term related to
the linear term is obtained in a subsystem, then we can reject the cube. In the
practical recovery, the superpolies that we fully recover are all balanced.

Algorithm 1. The algorithm of searching valuable cubes based on linear terms
Require: a set of low-degree cubes B = {I1, . . . , Ic} and the target round r
1: K ← ∅;
2: for I ∈ B do
3: Recover the linear terms of the superpoly corresponding to cube I;
4: L ← linear terms variables;

/* Primary filtration and secondary filtration */
5: if L �= ∅ and L �⊂ K then
6: Recover the superpoly p corresponding to cube I;
7: if superpoly p is balanced then
8: Record cube I and superpoly p;

/* The independent secret variables corresponding to the simple superpoly is updated,
which can be used for secondary filtering. */

9: if deg(p) ≤ 2 then
10: K ← K∪{independent secret variables};
11: end if
12: end if
13: end if
14: end for

4 Applications

In this section, we apply the new framework to Trivium. Practical attacks on
815- and 820-round Trivium are given. Due to the page limits, more details are
provided in our full version [16].

4.1 A Practical Key-Recovery Attack on 815-Round Trivium

To attack 815-round Trivium, we construct the mother cube I1 of size 47, and
found 35 valuable cubes, as shown in Table 3. Next, we need a linearization
method to deal with nonlinear balanced superpolies. Consistent with the method
in [13], we first enumerate the values of 45 variables: {k0, k1, k2, k3, k8, k9, k10, k11,
k13, k14, k15, k16, k17, k19, k21, k27, k28, k32, k36, k37, k39, k40, k41, k45, k50, k52, k54,
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k57, k59, k61, k63, k64, k65, k66, k67, k68, k69, k70, k71, k72, k73, k76, k77, k78, k79},
and the complexity is 245. For each enumeration, the values of the remain-
ing 35 variables can be deduced iteratively in the order: (k23, k35, k48, k49,
k56, k58, k60, k62, k43, k47, k24, k51, k44, k6, k7, k33, k55, k34, k42, k38, k4, k12, k31,
k5, k25, k53, k46, k20, k26, k29, k18, k22, k74, k30, k75), and this deduction only costs
constant time. The total attack complexity is 247 + 245. On a PC with two
RTX3090 GPUs, we mount a practical key-recovery attack within six hours.
Specifically, we use two GPUs to obtain the corresponding values of all cubes in
3.2 h and then use one GPU to guess and enumerate all possible keys in about
2 h. Finally, we successfully obtain the 80-bit key. Comparing 808-round Trivium
attack in [13], we increase the number of attacked rounds by seven by adding only
three IV variables. This also shows that our search algorithm is more efficient.

Table 3. Valuable cubes for attacking 815-round Trivium

Cube indices Independent bits Cube indices Independent bits

I1\{58, 67} k23 I1\{44, 71} k33, k42, k51, k62

I1\{43, 67} k35 I1\{41, 44} k33, k38, k42, k49, k60, k65

I1\{19, 58, 67} k48 I1\{2, 42, 44} k4, k54

I1\{2, 44, 60} k35, k49 I1\{33, 67} k12, k39

I1\{35, 43} k35, k56 I1\{19, 67} k12, k31, k39, k40, k47, k67

I1\{2} k58 I1\{14, 41} k5, k14, k41, k42

I1\{41, 44, 67} k60 I1\{56, 58, 67} k25

I1\{58, 59} k62 I1\{58, 67, 71} k44, k53

I1\{3, 18} k43, k70 I1\{19, 44} k10, k19, k28, k37, k46, k55

I1\{3, 60} k43, k47, k70 I1\{33, 44, 66} k6, k10, k11, k19, k20,k28, k38, k47, k55, k72

I1\{0, 15, 41} k24, k37, k56 I1\{19, 33, 44} k8, k17, k26, k57, k59

I1\{42, 44, 46} k50, k51 I1\{44, 53, 67} k11, k20, k29, k47

I1\{3, 19, 44} k44, k56, k71 I1\{3, 29} k18

I1\{34, 41, 44} k6, k49 I1\{3, 14, 41} k22

I1\{36, 58} k7, k48 I1\{31} k2, k24, k29, k47,k49, k53, k56, k74

I1\{36, 43} k33 I1\{14, 33, 44} k3, k6, k30

I1\{43, 62, 67} k55 I1\{31, 67} k3, k10, k12, k19, k21,k27, k28, k66, k75

I1\{0, 2} k34, k47

I1 = {0, 1, 2, 3, 4, 6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 23, 25, 27, 29, 31, 33, 34, 35, 36,
37, 40, 41, 42, 43, 44, 46, 51, 53, 55, 56, 58, 59, 60, 61, 62, 66, 67, 69, 71, 73, 77, 79}

4.2 A Practical Key-Recovery Attack on 820-Round Trivium

To attack 820-round Trivium, we construct two mother cubes I2 and I3 of size 52,
and found 30 valuable cubes, as shown in Table 4. Next, we need to enumerate the
values of 50 variables: {k0, k1, k4, k5, k6, k7, k9, k11, k12, k15, k16, k17, k18, k19, k21,
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k22, k23, k24, k28, k30, k31, k32, k33, k34, k35, k37, k38, k40, k41, k42, k44, k45,
k46, k47, k48, k49, k50, k52, k57, k59, k62, k64, k67, k68, k69, k71, k73, k76, k77, k78},
and the complexity is 250. For each enumeration, the values of the remaining 30
variables can be deduced iteratively in the order: (k55, k61, k63, k51, k43, k27,
k56, k58, k79, k25, k53, k54, k70, k39, k29, k2, k36, k10, k72, k26, k13, k14, k60, k65,
k74, k3, k75, k8, k20, k66), and this deduction only costs constant time. The total
attack complexity is 253 + 250. Because this calculation is the same as that in
Sect. 4.1, we estimate that the attack on 820-round Trivium could be completed
in two weeks on the same computer.

Table 4. Valuable cubes for attacking 820-round Trivium

Cube indices Independent bits Cube indices Independent bits

I2\{66} k55 I3\{2, 14} k2, k29

I2\{4, 7, 62} k61 I3\{38, 54} k36

I2\{3, 13} k63 I2\{4, 20, 44} k10, k37

I2\{3, 26} k51, k78 I3\{51} k45, k72

I2\{3, 62, 66} k43, k51, k78 I2\{17, 53, 62, 68} k12, k26, k27, k39, k54

I3\{6, 42, 52} k27 I3\{18, 31} k13, k40

I3\{7, 9} k56 I3\{18, 24, 31} k14, k41, k68

I3\{7, 58} k58 I2\{1, 31} k33, k60

I3\{3, 7, 17} k52, k79 I2\{5, 62, 66} k38, k65

I3\{1, 3, 32} k25, k52 I3\{23, 38} k27, k47, k74

I2\{6, 29} k53 I3\{23, 52} k3, k63

I3\{18, 54} k27, k54 I3\{13, 63} k48, k75

I3\{27, 53} k43, k58, k70 I3\{21, 29, 55, 68} k8

I2\{53, 68} k12, k39, k63 I2\{14, 29, 37, 68} k20

I3\{6, 18, 29} k29 I2\{6, 21, 29} k66
I2 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 26,
28, 29, 30, 31, 32, 34, 36, 37, 41, 43, 44, 46, 49, 52, 53, 55, 56, 59, 61, 62, 64, 66, 68,
72, 74, 76, 79}
I3 = {0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 34, 36, 38, 39, 40, 41, 42, 46, 49, 51, 52, 53, 54, 55, 58, 61, 63, 66,
69, 72, 74, 76, 78}

5 Conclusion

In this paper, we focus on full key-recovery attacks on Trivium. A cube leading to
a special kind of balanced superpoly is called a valuable cube. We present a novel
framework to efficiently search for valuable cubes in cube attacks so that many
balanced superpolies can be collected. As applications, two attacks on 815- and
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820-round Trivium are given with time complexity 247.32 and 253.17, respectively.
It is experimentally verified that the two attacks could be completed in six hours
and two weeks on a PC with two RTX3090 GPUs, respectively. Although the key
recovery process is practical, it seems unpractical to collect so many keystream
bits required in our attacks during online communication. Hence, we call our
attacks on 815- and 820-round Trivium experimentally verified attacks. Since
the idea of this new framework to search for valuable cubes is generic in cube
attacks, we believe that it is also helpful in cube attacks on other NFSR-based
cryptosystems.

When analyzing Trivium with some large number of rounds, e.g., 845, recov-
ering only a linear term of a superpoly is already time-consuming because of
the large round number and large cube size. In this case, it is infeasible to sieve
several subcubes. Hence, targeting Trivium with more than 845 rounds is worthy
of working on in the future.

References

1. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 16

2. Fouque, P.-A., Vannet, T.: Improving key recovery to 784 and 799 rounds of Triv-
ium using optimized cube attacks. In: Moriai, S. (ed.) FSE 2013. LNCS, vol.
8424, pp. 502–517. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43933-3 26

3. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10403, pp. 250–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63697-9 9

4. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division prop-
erty based cube attacks exploiting algebraic properties of superpoly. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 275–305. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 10

5. Wang, S., Hu, B., Guan, J., Zhang, K., Shi, T.: MILP-aided method of search-
ing division property using three subsets and applications. In: Galbraith, S.D.,
Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 398–427. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34618-8 14

6. Fu, X., Wang, X., Dong, X., Meier, W.: A key-recovery attack on 855-round Triv-
ium. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp.
160–184. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 6

7. Ye, C., Tian, T.: Revisit division property based cube attacks: key-recovery or
distinguishing attacks? IACR Trans. Symmetric Cryptol. 2019(3), 81–102 (2019)

8. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset
division property without unknown subset. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12105, pp. 466–495. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 17

9. Cannière, C.D., Preneel, B.: Trivium specifications. eSTREAM portfolio, Profile 2
(HW) (2006)

https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-662-43933-3_26
https://doi.org/10.1007/978-3-662-43933-3_26
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-319-96884-1_10
https://doi.org/10.1007/978-3-030-34618-8_14
https://doi.org/10.1007/978-3-319-96881-0_6
https://doi.org/10.1007/978-3-030-45721-1_17


An Experimentally Verified Attack on 820-Round Trivium 369

10. Ye, C.-D., Tian, T.: A practical key-recovery attack on 805-round Trivium. In:
Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13090, pp. 187–213.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3 7

11. Hu, K., Sun, S., Wang, M., Wang, Q.: An algebraic formulation of the division
property: revisiting degree evaluations, cube attacks, and key-independent sums.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 446–476.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4 15

12. Hu, K., Sun, S., Todo, Y., Wang, M., Wang, Q.: Massive superpoly recovery
with nested monomial predictions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT
2021. LNCS, vol. 13090, pp. 392–421. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-92062-3 14

13. Sun, Y.: Automatic search of cubes for attacking stream ciphers. IACR Trans.
Symmetric Cryptol. 2021(4), 100–123 (2021)

14. Ye, C., Tian, T.: A new framework for finding nonlinear superpolies in cube attacks
against trivium-like ciphers. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS,
vol. 10946, pp. 172–187. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-93638-3 11

15. Liu, M., Yang, J., Wang, W., Lin, D.: Correlation cube attacks: from weak-key
distinguisher to key recovery. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 715–744. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78375-8 23

16. Che, C., Tian, T.: An experimentally verified attack on 820-round Trivium (full
version). IACR Cryptol. ePrint Arch. 2022, 1518 (2022)

https://doi.org/10.1007/978-3-030-92062-3_7
https://doi.org/10.1007/978-3-030-64837-4_15
https://doi.org/10.1007/978-3-030-92062-3_14
https://doi.org/10.1007/978-3-030-92062-3_14
https://doi.org/10.1007/978-3-319-93638-3_11
https://doi.org/10.1007/978-3-319-93638-3_11
https://doi.org/10.1007/978-3-319-78375-8_23
https://doi.org/10.1007/978-3-319-78375-8_23


Malware



HinPage: Illegal and Harmful Webpage
Identification Using Transductive

Classification

Yunfan Li1,2,3, Lingjing Yu1,2(B), and Qingyun Liu1,2

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{liyunfan,yulingjing,liuqingyun}@iie.ac.cn

2 National Engineering Laboratory for Information Security Technologies,
Beijing, China

3 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

Abstract. With the growing popularity of the Internet, websites could
make significant profit by hosting illegal and harmful content, such as vio-
lence, sexual, illegal gambling, drug abuse, etc. They are serious threats
to a safe and secure Internet, and they are especially harmful to the
underage population. Government agencies, ISPs, network administra-
tors at various levels, and parents have been seeking for accurate and
robust solutions to block such illegal and harmful webpages. Existing
solutions detect inappropriate pages based on content, e.g., using key-
word matching or content-based image classification. They could be eas-
ily escaped by altering the internal format of texts or images, e.g., mix-
ing different alphabets. In this paper, we propose to utilize relatively
stable features extracted from the relationships between the targeted
illegal/harmful webpages to discover and identify illegal webpages. We
introduce a new mechanism, namely HinPage, that utilizes such features
for the robust identification of PG (pornographic and gambling) pages.
HinPage models the candidate PG pages and the resources on the pages
with a heterogeneous information network (HIN). A transductive classi-
fication algorithm is then applied to the HIN to identify PG pages.

Through experiments on 10,033 candidate PG pages, we demonstrate
that HinPage achieves an accuracy of 83.5% on PG page identification.
In particular, it is able to identify illegal/harmful PG pages that cannot
be recognized by SOTA commercial products.

Keywords: Illegal and harmful webpages · Webpage classification ·
Heterogeneous information network · Transductive classification

1 Introduction

In the past several decades, with the rapid development of the Internet, web-
sites play a vital role in people’s daily life. While most websites are supposed
to be benign and bring positive/useful information, however, some websites pro-
vide illegal and harmful content such as gambling, drug abuse, sexual, violence,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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crime, or political misinformation [14]. These websites not only bring dreadful
online experiences but also threaten the safety of people, especially underage
individuals, and even society. To prevent the spread of illegal/harmful content
over the Internet, governments, ISPs (Internet Service Providers), cooperate IT,
and parents often monitor websites and block illegal/harmful ones.

Previous work on detecting illegal/harmful webpages is mainly based on iden-
tifying certain keywords, pictures or source code on the content of webpages [2–
4,15–20]. For instance, the content of webpages could be directly matched with
pre-selected keywords at the network gateways. [5–7,11,12] integrate visual and
textual features to provide better precision and recall. However, as encryption
techniques are widely adopted by all websites to protect content in transmission,
it is significantly harder to identify illegal/harmful websites through passive traf-
fic filtering. To tackle this problem, new solutions have been proposed to actively
probe for illegal webpages rather than waiting for them passively. For instance,
Yang et al. [8] search for high-frequency keywords in search engines to find illegal
webpages and use the XGboost model to improve the accuracy. Starov et al. [9]
discover malicious campaigns iteratively through IDs, which are given by third
parties and are used in the source code of known malicious webpages. These
approaches were shown to be effective in the active detection of illegal/harmful
content on the Internet, while commercial products, such as Google’s SafeSearch
and Baidu security, have been introduced to the market as well. However, they
could be easily evaded by manipulation of the content, e.g., deformation of key-
words, using a different but visually similar alphabet [30], or adversarial explicit
content [31]. To improve the performance of active illegal/harmful content detec-
tion, new solutions with better accuracy and robustness are expected.

By analyzing a large amount of known illegal/harmful webpages, we have two
important observations: (1) illegal/harmful webpages from different sources often
contain similar third-party content, such as advertisements, pictures, text, and
JavaScript. (2) In the web graph, known illegal/harmful pages are often strongly
associated with other illegal/harmful pages. Based on these observations, we
argue that connectivity information in the web graph and shared third-party
content could be used as reliable features in the identification of illegal/harmful
pages on the Internet. In particular, we propose a novel mechanism named Hin-
Page to discover and identify pornographic and gambling webpages, denoted as
PG webpages in this paper. We pick these types of pages because: (1) while
the porn and gambling pages are especially harmful to underage individuals,
they could be legal in many countries, so that they are not prosecuted by law
enforcement; (2) many known webpage filtering and parental control tools (e.g.,
Symantec) often provide low accuracy in identifying such pages, especially when
the pages do not contain malware (Trojan); (3) these two types of websites are
often interconnected on the Internet, i.e., pornographic websites often contain
links to illegal gambling websites; and (4) they often share advertising platforms
with malicious advertisers or involve in malvertising. Therefore, we consider them
inappropriate content in our HinPage solution.

HinPage consists of three main steps: data collection, HIN construction, and
classification. In the data collection process, HinPage first searches for poten-



HinPage: Illegal/Harmful Webpage Identification 375

tially PG webpages using keywords on search engines and manually confirms
a small set of the discovered PG webpages (the root set). Next, a snowball
crawling approach is developed to collect a candidate set of PG sites based on
network connections or shared HTML elements (e.g., images and JavaScript
code segments). Although PG webpages could modify text or pictures to evade
content-based detection, the connections between sites and the associations with
their advertising agents or certain service providers (e.g., Search Engine Opti-
mization) could not be changed easily. Therefore, in the identification process,
HinPage first models webpages, images, JavaScript code segments, iframes, and
IP addresses using a heterogeneous information network (HIN). HinPage then
applies a transductive classification algorithm HetPathMine [1] that utilizes the
relationships among HIN nodes to identify PG webpages from the candidate set.

The main contributions of this paper are three-fold: (1) We have identified the
disadvantages of the content-based identification of illegal/harmful pages, and
propose to utilize the more robust graph-based page-relationship features for ille-
gal/harmful page identification. (2) We present a novel approach, HinPage, for
PG page identification, as a complementary mechanism to the existing methods.
HinPage models candidate PG pages using a heterogeneous information network
(HIN), and implements a transductive classification algorithm HetPathMine to
identify PG pages through mining the relationships among web resources from
the candidate pages. (3) We evaluate the performance of HinPage on 5 different
datasets. For larger datasets with more nodes/edges and complex relationships
among nodes in HIN, HinPage achieves better performance. Through experi-
ments on the merged dataset, which has 10,033 candidate PG pages, we demon-
strate that HinPage could identify PG pages, with an 83.05% accuracy, 89.96%
precision, 86.57% recall, and 88.24% F1 score. (4) In particular, HinPage rec-
ognizes 954 and 536 illegal/harmful webpages out of the 10,033 candidate PG
pages that are determined as benign by Symantec’s WebPulse Site Review [25]
and Baidu AI [26] respectively.

The rest of this paper is organized as follows. The related work is introduced
in Sect. 2, followed by the theoretical foundation of the HinPage approach in
Sect. 3. The details of the implementation of HinPage are presented in Sect. 4
and the experimental results are presented in Sect. 5. Finally, we conclude the
paper and future plans in Sect. 6.

2 Related Work

In this section, we review the research in the literature that is related to PG
webpages discovery and identification. Existing methods are broadly classified
into three types: text-based, vision-based, and combined methods.

Text-based methods rely on keywords or tags in HTML for classification.
Early work [10,13] removed tags and JavaScript from the source code of web-
pages, and transformed webpage detection tasks into document classification
tasks. Later work focused on keywords in texts. Yang et al. [8] searched for key-
words in search engines to discover illegal webpages. Then the XGboost algo-
rithm was applied to features, which were extracted from keywords, domain,
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and HTML, to classify webpages. Starov et al. [9] took advantage of IDs in
known malicious webpages provided by third parties to discover malicious cam-
paigns. Yang et al. [2] extracted texts included by HTML tags, such as <title>,
<meta>, <li>, <a>, <h>, and applied TF-IDF algorithm on these texts to
generate features vectors, which was utilized to identify gambling webpages by
support vector machine(SVM) algorithm. Lee et al. [19] designed a bilingual
pornographic webpage recognition engine based on the frequency of keywords
on webpages. Farman et al. [3] proposed a system applying fuzzy ontology/SVM
on keywords collected from webpages to identify pornographic content. Some
work also extracted hyperlinks in webpages [15] or headers and cookies from
HTTP post requests [32] to identify pornographic and gambling sites. While
these text-based methods could achieve high accuracy in recognizing ordinary
PG webpages, they often go to fail on some dedicated webpages. For example,
webpages could escape from inspection through keyword deformation. In addi-
tion, this type of approach presents the problem of hypervigilance. For example,
some benign medical websites and law popularization websites might be blocked.

With the development of technology in image recognition, vision-based meth-
ods have received more attention. Li et al. [4] explored the Bag of Words model on
images in webpages to identify pornographic and gambling webpages. Moustafa
et al. [33] extracted features of images by a multi-layer convolutional neural net-
work to detect pornographic webpages. [16,17] detected bare skin in images to
identify pornographic webpages. [20] implemented a child pornography detection
system based on distinguishing features of the face and skin color.

To improve detection accuracy, some researchers [5–7,11] integrated textual
and visual features for webpage classification. Chen et al. [7] improved the Bag-
of-Visual-Words model to generate embeddings of webpage screenshots and then
applied a logistic regression algorithm on the embeddings and text features to
identify pornographic and gambling pages. Huang et al. [6] extracted texts from
screenshots of webpages and learned text features for classification. Wang et al.
[11] proposed a multi-level fusion system employing a multi-modal deep network
on videos and texts to identify pages with live porn videos.

While the combined methods have achieved high accuracy, some tricks, such
as keyword deformation, image/pixel modification, and sensitive content occlu-
sion, could be employed to escape from such methods. As we have observed that
the webpages’ relationships, which are measured by shared content, are rela-
tively stable, HinPage could be employed as a complementary mechanism for
PG webpage discovery and identification to the existing methods.

3 Theoretical Foundation for HinPage

In this section, we present the theoretical foundation for the HinPage approach.
HinPage first models images, scripts, iframes, IP addresses, and their relation-
ships from collected webpages as a heterogeneous information network (HIN),
and then applies a transductive classification algorithm to the HIN.
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(a) The model of a HIN.
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Fig. 1. HinPage and its network schema, and an example of metapath.

3.1 Heterogeneous Information Network

Heterogeneous Information Network. Resources of webpages and their rela-
tionships of resources are defined as a graph G = (V,E), where the set of nodes
V represents resources of webpages and the set of edges E indicate relationships
of resources. As both the number of resource types and the number of edge types
are more than one, G is a heterogeneous information network.

Figure 1(a) shows a simple model of HIN in HinPage. The HIN includes five
types of nodes: webpage(w), image (img), script (js), iframe (e), IP address
(ip), as well as two types of edges: resources requesting of webpages and IP
addresses resolving of domains.

Network Schema. TG = (A,R) is the network schema of a HIN G(V,E), where
A is node types and R is edge types. TG focuses on the relationship between
node types rather than each node. Both ψ: V →A and φ: E→R are mapping
functions, where A is the set of node types and R is the set of edge types.

Figure 1(b) is the network schema of HIN in Fig. 1(a). For example, the rela-
tionship between a webpage and an image on the webpage can be formalized as:
w

request−→ img.

Metapath. A metapath is a path connecting at least two types of nodes on a
network schema TG . Its formal definition is A0

R1−→ A1
R2−→ ...

RL−→ AL, where
L is the length of the metapath. The metapath in Fig. 1(c) indicates that two
webpages have requested the same image.

3.2 Transductive Classification on HIN

Transductive Classification (TC). Given a HIN G = (V,E), Vw ⊆ V rep-
resents nodes of webpages, and V ′

w ⊆ Vw is a set of labeled pages. Transductive
classification predicts labels for nodes in Vw − V ′

w.
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LLGC [21] is the first transductive classification method based on homoge-
neous networks. HetPathMine [1] algorithm extends LLGC from homogeneous
networks to heterogeneous networks. HinPage explores HetPathMine to identify
PG webpages, which are nodes in the HIN.

Based on the network schema of HinPage, we design a set of metapaths
P = [p1, p2, ..., p6], which are described in detail in Sect. 4.3. Based on each meta-
path, HetPathMine calculates the similarity of two webpages using the PathSim
algorithm [24] as follows:

PathSim(kx,y) =
2 ∗ |px→y : px→y ∈ pk|

|px→x : px→x ∈ pk| + |py→y : py→y ∈ pk|
(1)

pk ∈ P is a metapath, and pi→j represents the metapath from node i to node j.
As the contribution of each metapath to the classification effect of webpages is
different, HinPage combines metapaths and the weight vector B = [β1, β2, ..., β6],
where βk represents the weight of metapath pk, to obtain the webpage similarity
matrix M .

M =
6∑

k=1

βk · PathSim(k) (2)

The loss function L(B) is designed to narrow the gap between the similarity
matrix M and the relationship matrix R.

L(B) = ‖
n∑

i,j

R(i, j) − M‖ + μ‖
6∑

k=1

βk‖ (3)

R(i, j) =
{

1 label(pagei) == label(pagej)
0 otherwise (4)

where n is the number of labeled webpages, and μ is used to smooth the result.
Q(F ) is the cost function for transductive classification. The first term is the

smoothness constraint, which indicates that closely related nodes should have
the same label. The second term is the fitting constraint, which states that the
predictions of the nodes should be as consistent as possible with the initial labels.
λ is used to balance the weight of the two terms.

Q(F ) =
1
2

n∑

i,j=1

M‖ Fi√
Dii

− Fj√
Djj

‖2 + λ

n∑

i=1

‖Fi − Yi‖2 (5)

where F is a probability matrix recording the probability of each node cor-
responding to each category with n rows and 2 columns. n is the number of
webpages. Y is the initial label matrix of nodes. D is a diagonal matrix, and the
value of row i in D is equal to the sum of all values of row i in M .

HinPage’s goal is to minimize the function Q(F ) and find the best result for
F . Therefore, we take the derivative of F on Q. The theoretical minimum value
F ∗ of F can be calculated as follows.
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Fig. 2. Overview of the proposed HinPage framework.

dQ

dF
= F ∗ − F ∗S + μ(F ∗ − Y ) = 0 (6)

F ∗ = β(I − αS)−1Y (7)

where α = 1
1+µ , β = µ

1+µ and S = D−1/2MD−1/2.
After the probability matrix F is calculated, the predicted label of the web-

page i can be obtained by the following function.

label(i) = max(F (i, 0), F (i, 1)) (8)

4 The Implementation of the HinPage Approach

In this section, we present the implementation of the HinPage approach, and the
technical details of each HinPage component.

4.1 Overview of HinPage

Figure 2 illustrates the logical components of the HinPage approach and how they
are assembled. HinPage consists of three main components: data collection, HIN
construction, and classification. In data collection, HinPage collects a candidate
set of suspicious PG webpages and extracts resources such as HTML source code,
images, scripts, iframes, and IP addresses from these webpages. Then, HinPage
models these resources and their relationships into a heterogeneous information
network (HIN). Finally, HinPage applies the transductive classification algorithm
on six metapaths we selected to predict unlabeled webpages based on the known
labels. In the following subsections, we will present the details of each component.

4.2 Data Collection

In this subsection, we elaborate on the detail of the data collection process.
Figure 3 shows the overall framework of the data collection module.

In HinPage, we have designed a standard snowball crawling process for data
collection. Initially, we crawl a set of known PG webpages as the root set. Existing
research in the literature, e.g., [8], has shown that some keywords could be used
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Fig. 3. The data collection process.

to effectively identify webpages in the PG category. For example, some gambling
webpages may contain keywords such as Mark Six Lottery or Grand Lisboa.
Hence, we collect a list of keywords from the literature and added additional
terms that frequently appeared on PG webpages from our own exploration. We
search with these keywords in search engines to discover potential PG webpages.
Note that this approach does not provide satisfactory precision and recall, hence,
we only use it as a starting point. We manually examined the crawled initial set
of webpages to construct the root set of PG webpages. We will further expand
the root set to construct the candidate set of PG sites.

One of the approaches that we utilized to grow the root set is to identify and
crawl the sibling pages. A sibling page is a page that shares a significant visual
component of the seed PG page, e.g., a webpage that contains the same image,
iframe, or referral script of the seed page. HinPage discovers sibling pages using
two approaches. The first is to utilize reverse search engines, such as TinEye, to
search for pages that contain the shared images. The other is to identify shared
resources from pages crawled through link-based propagation. Intuitively, a PG
page contains a large number of outgoing links, many of which could be benign
pages. However, if a page that is referred to by the PG page also shares significant
visual components with other PG page(s), this page is more likely to be PG. From
these two methods, we are able to grow the candidate PG set and identify the
sibling page relationships among all the crawled pages.

To automate the design that is described above, we have developed a webpage
crawler named HinCrawl based on Chrome Devtools API [22]. HinCrawl down-
loads the source code of a webpage, and extracts all HTTP(S) requests/resources
on the page. With HinCrawl, we get images and scripts from discovered web-
pages. To reduce noise, for each crawled image, we performed an image hash
comparison [23] with the target image as follows: (1) To normalize the image,
we re-scale the image size to 8 × 8, and then obtain a total of 64 pixels. (2)
we convert the image to a 256-level grayscale image. (3) we calculate the mean
value of all pixels in the grayscale image. (4) For each pixel, if it is greater than
the mean value, it is binarized to 1, otherwise 0. Finally, we get the hash value
of the image by flattening the 8 × 8 binary matrix into a 64-dimensional vector.
(5) Any pair of images are considered to be the same when they have the same
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Table 1. Description of relationship matrices.

Matrix Element Description

P Pij If page i contains image j, then Pij = 1, otherwise, Pij = 0

J Jij If page i contains script j, then Jij = 1, otherwise, Jij = 0

E Eij If page i contains iframe j, then Eij = 1, otherwise, Eij = 0

I Iij If the domain of page i resolves to IP Address j, then Iij = 1,
otherwise, Iij = 0

hash value. If an image being compared is in gif format, we split the gif file into
frames and compare the hash value of each frame. We consider two gif images
to be the same when every frame-wise comparison turned out to be identical.
Finally, we invoke the snowball crawling process to collect any potentially PG
website, and iteratively add the sibling pages of known candidate PG pages into
the candidate set.

4.3 Construction of Heterogeneous Information Network (HIN)

As shown in Figs. 1(a) and 1(b), we extract images, scripts, iframes, and IP
addresses from candidate PG pages, and model the pages, resources, and their
relationships using a HIN. The relationship between resources is represented by
four adjacency matrices, where each element indicate whether two resources are
related. They are defined as follows:

– Matrix P models the relationships between pages and images.
– Matrix J models the relationships between pages and JavaScript snippets.
– Matrix E models the relationships between pages and iframes.
– Matrix I models the relationships between pages and IP addresses.

The definitions of the elements in these matrices are discussed in Table 1.
The multiple relationships in a HIN can be represented by metapaths. We

construct six metapaths (PID1 to PID6) based on the above four relations,
as shown in Table 2. We choose these metapaths for the following reasons: (1)
Webpages with the same images or iframes, i.e., sibling pages, partially share the
same appearance. (2) Webpages may load resources through scripts. Webpages
using the same script may share the same resource. (3) If two webpages resolve
to the same IP address, they are on the same network segment and they may
be managed by the same operator. (4) We further attempt to connect more
webpages through resources. Therefore, in PID5 and PID6, we extend PID1
and PID3, respectively, from one hop (page-resource-page) to two hops (page-
resource-page-resource-page). In this way, two webpages can also establish a
connection through images/iframes and a shared sibling page. Meanwhile, from
our observations, it is rare to have multiple IPs corresponding to the same PG
page at a specific time, hence, we have not observed any page-IP1-page-IP2-
page relationship. Therefore, we do not expand PID4. (5) The main function
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Table 2. Description of metapaths.

PID Metapath Description

1 wa
P→ img

PT→ wb webpages request the same image

2 wa
J→ js

JT→ wb webpages request the same script

3 wa
E→ e

ET→ wb webpages request the same iframe

4 wa
I→ ip

IT→ wb webpages resolve to the same IP address

5 wa
P→ imga

PT→ wb
P→ imgb

PT→ wc wa request the same image with wb, and
wc request the same image with wb

6 wa
E→ ea

ET→ wb
E→ eb

ET→ wc wa request the same iframe with wb, and
wc request the same iframe with wb

of the JavaScript snippets is to load multiple or dynamic resources. Therefore,
the sibling pages connected through JavaScript demonstrate weaker relevance,
hence, we did not make further extensions to PID2.

4.4 Classification

When the candidate PG pages are crawled and modeled with HIN, and a set of
known PG and benign sites/pages are manually annotated, the problem of PG
page identification becomes a classification problem for graph data. In HinPage,
we explore the transductive classification algorithm HetPathMine [1] to the HIN
that is constructed in the previous subsection. In particular, we first compute
the page similarity matrix through a set of metapaths. Then based on the page
similarity matrix, relation matrix, and loss function in Eq. 3, we train the metap-
ath weight vector. Finally, by minimizing the value of the cost function in Eq. 5,
we calculate the probability matrix and obtain the predicted label of webpages.

5 Experiments

In this section, we first introduce our collected dataset. Then we present exper-
imental results and analysis.

5.1 Dataset

In order to evaluate the performance of HinPage, we need a manageable set
of labeled webpages that have been annotated as benign or PG webpages.
Meanwhile, to investigate how different root sets affect the classification perfor-
mance, we manually construct 5 non-overlapping root sets. Through the method
described in Sect. 4.2, we expand these root sets with four iterations, and extract
resources (images, iframes, etc.) from these expanded sets. Although the root
subsets are non-overlapping, duplicate webpages would be found when they are
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Table 3. The number of nodes in each types in datasets.

Dataset ID webpage image script iframe IP

1 3230 6172 2944 172 482

2 1962 5005 2601 107 323

3 2559 4692 2148 123 421

4 1100 342 623 16 200

5 1841 2709 1354 64 367

combined 10033 11027 4381 239 1100

Table 4. The number of edges in each types in datasets.

Dataset ID webpage-image webpage-script webpage-iframe webpage-IP

1 27267 13161 1041 1493

2 10342 7304 287 575

3 21229 11452 813 1109

4 2135 1842 94 327

5 9146 5876 123 979

combined 55167 25043 1492 3731

iteratively added to each subset. With all the dataset combined, we have col-
lected 10,033 unique webpages. We invite 15 volunteers, who are all graduate
students, to annotate the dataset. Volunteers are asked to manually visit each
webpage, evaluate the content of the page, and label whether the webpage is
PG. We divide all webpages into 5 groups, and each volunteer needs to assign
labels to webpages in one group. Hence, each webpage receives three labels from
3 different volunteers. We use a majority voting mechanism to determine the
final label of each webpages.

Finally, 5611 webpages are labeled as PG webpages and 4422 webpages
are labeled as benign. Table 3 lists the number of all resources, e.g., images,
JavaScript snippets, iframes, and IP addresses, extracted from webpages in each
dataset. Table 4 lists the edges established from these resources.

5.2 Performance Evaluation

Evaluation Metrics. To evaluate the performance of each model, we con-
sider four evaluation metrics: Accuracy, Precision, Recall and F1-score. They
are defined as follows, where TP denotes number of true positive pages (ille-
gal/harmful pages labeled as illegal/harmful), FP denotes false positive (benign
pages labeled as illegal/harmful), TN denotes true negative (benign pages
labeled as benign), and FN denotes false negative (illegal/harmful pages labeled
as benign).
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Accuracy =
TP + TN

TP + FP + TN + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1-score (F1) = 2 × R × P

R + P
(12)

Performance of HinPage. First, we examine the contribution of different
types of resources to webpage classification, using the weight vectors of the
metapath. Table 5 shows the result. Images get the highest contribution rate,
which may be caused by the fact that images in a distinct category of webpages
tend to be different and images in the same category of webpages tend to be
similar. Surprisingly, the script makes smaller contributions to webpage classifi-
cation than the other types of resources. This might be explained by the fact that
the same script may be shared by different types of pages, e.g., a script could
be employed to load/render different types of resources appearing on different
categories of webpages.

Table 5. Contribution ranking of different types of resources to webpage classification.

image script iframe IP address

1 4 3 2

To evaluate the effectiveness of the transductive classification (TC) algorithm
employed in HinPage on different sizes of training datasets, we conduct a series
of experiments under the condition that 40%, 50%, 60%, or 70% of the randomly
selected webpages are labeled and used for training.

As shown in Fig. 4, when the proportion of the training dataset increases,
HinPage obtains better performance. Note that when the labeling ratio is 40%,
HinPage achieves high recall (Recall = 88.75%) with lower accuracy and preci-
sion. In this case, the transductive classifier tends to predict all the webpages
towards the PG side. As the proportion of labeled samples increases, the recall
rate of TC decreases gradually and remains at around 86.5%, while the accuracy
and precision rates increase steadily.

Next, we evaluate the performance of HinPage on each dataset generated
from different root sets. We randomly select 70% of each dataset for training
and use the rest for testing. We compare the performance of datasets on each
evaluation metric.

In general, HinPage’s performance on five different datasets are mostly con-
sistent, while the slight differences in classification performance may be explained
by the differences in the characteristics of the datasets. For instance, among all
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Fig. 4. HinPage’s performance with different fractions of training data.

subsets, subset-1 has the best performance with 84.44% accuracy, 86.95% pre-
cision, 81.18% recall and 83.97% F1 score, which may be explained by the fact
that subset-1 has more nodes and edges in each type. Based on metapaths gener-
ated from more nodes and edges, the transductive classification algorithm could
achieve better performance in generating the page similarity matrix. For the
smaller datasets, we have noticed a 6% decrease in HinPage’s performance, e.g.,
in subset-2, subset-3, and subset-5. Note that subset-4 has the highest recall,
but its accuracy and precision are not exceptional. We notice that the edges
among nodes in subset-4 are relatively sparse, which may lead to poorer classi-
fication ability of HinPage, and some benign webpages would be classified into
PG webpages.

Finally, the combined dataset produces the best performance with 83.05%
accuracy, 89.96% precision, 86.57% recall, and 88.24% F1 score, which proves
that the more complicated the relationships among nodes in HIN are, the better
performance the transductive classification algorithm could achieve.

Performance Comparison with Other Algorithms. We compare the trans-
ductive classifier used in HinPage with two classic graph-based modeling/ranking
algorithms, i.e. HITS [28] and Metapath2vec [29] (Fig. 5).

With HITS, we consider both webpages and resources as nodes of the HIN
graph, and the direction of each edge goes from a webpage to a resource. In this
way, a directed graph is constructed. Then, an adjacency matrix is generated
according to the degree of nodes. The initial labels of webpages are used as the
initial node authority. We continuously update the hub values and authority val-
ues of nodes according to the iterative operation of the matrix. Finally, we treat
the hub values of webpages as the prediction scores. Based on the proportion of
illegal/harmful pages in our dataset, we annotate nodes with the top 56% of the
scores as illegal.
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Fig. 5. Performance of datasets on each evaluation metric.

With Metapath2vec, we train a 128-dimensional node embedding for each
metapath. Then we concatenate node embeddings of six metapaths we choose
to get the node embeddings of webpages. A support vector machine approach
was used to perform downstream classification.

To test the performance of the above algorithms, we randomly select 70% of
our dataset for training and the rest for testing. As shown in Fig. 6, TC achieves
the best performance, with 83.05% accuracy, 89.96% precision, 86.57% recall,
and 88.24% F1 score. Meanwhile, the performance of HITS is approximately 7%
to 15% lower than TC. Note that Metapath2vec outperforms TC in recall. This is
because Metapath2vec tends to classify all the samples towards illegal/harmful,
which results in poor precision (55%) but relatively high recall.

Compared with HITS, TC improves classification accuracy by 15%. The rea-
son might be that HITS ignores the impact of different node types in classifica-
tion, while TC properly considers the contribution of different types of resources.
Compared to Metapath2vec, TC provides 29% better accuracy. Metapath2vec
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Fig. 6. Performance of Metapath2vec, HITS and TC algorithm.

Table 6. Number of PG pages that fail to be identified by Symantec WebPulse Site
Review and Baidu Security Platform.

Symantec Baidu security platform

Misclassification 101 4

No results returned 853 532

Total 954 536

has poor precision and high recall, implying that it tends to classify a good
portion of benign pages as illegal pages.

Performance Comparison with SOTA Commercial Products. Finally,
we compare HinPage with state-of-the-art commercially off-the-shelf (COTS)
products for illegal/harmful page detection. We employ Symantec WebPulse
Site Review [25] and Baidu Security Platform [26] to evaluate webpages that
are correctly identified as PG pages by HinPage. As shown in Table 6, 536 PG
webpages are recognized as risk-free by Baidu Security Platform and 954 PG
webpages are recognized as benign webpages or fail to be classified by Syman-
tec. We manually examine webpages that are incorrectly classified by Symantec
and Baidu Security Platform and observe that some webpages deform sensitive
texts and images in them. To our best knowledge, Baidu Security Platform iden-
tifies illegal/harmful webpages by distinguishing illegal/harmful content such as
keywords, images or scripts [27]. Meanwhile, the reason why Symantec fails to
classify some webpages is that they are not on the blacklist of Symantec. This
experiment demonstrates that HinPage could discover and identify PG webpages
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that escape the detection of SOTA commercial products that only utilize content
analysis for PG page detection.

6 Conclusion and Future Works

In this paper, we present HinPage, a novel approach for illegal/harmful web-
page discovery and identification. We start with a root set of manually vali-
dated PG webpages, and iteratively discover new pages that share the same
resources. Through four iterations, we have collected 10,033 potential PG web-
pages. We model the candidate PG pages using a heterogeneous information
network (HIN), where the candidate PG pages and resources are associated by
metapaths. We further develop a transductive classification algorithm to predict
the labels of webpages. As we have demonstrated in the experiments, HinPage
could effectively identify illegal/harmful webpages that are mostly missed by
Symantec’s WebPulse Site Review and the Baidu Security Platform.

In our future work, we plan to improve HinPage in two aspects: scalability
and detection accuracy. First, HinPage utilizes the complete graph information
in classification. When new nodes are added to the graph, we need to repeat
the prediction process. When the size of data is large, HinPage requires large
memory and a long computation time. In particular, it could be expensive to
inverse the relationship matrices when the matrices are huge. In future work,
we plan to use parallel computing to improve HinPage efficiency. For the second
aspect, HinPage detects illegal webpages based on the relationships of resources.
For isolated webpages that have not established connections with other web-
pages, HinPage cannot evaluate them. In future work, we plan to supplement
HinPage with content-based attributes extracted from the webpages to provide
a comprehensive solution.
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Abstract. Missing-check of erroneous execution states may cause crit-
ical security problems, such as null pointer dereference bugs or logic
errors, which could even crash the systems. It’s still a challenge to decide
automatically whether an erroneous state should be validated or not
because of the difficulty in understanding API semantics. Cross-checking
is a sound method to resolve the problem. However, recent cross-checking
studies suffer from poor accuracy due to inaccurate data-flow analysis,
leading to the imprecise analysis of many error states and false positives.

In this paper, we present ERSAnalyzer (Erroneous Return Status
Analyzer), a new static analysis method to improve existing tools to
completely detect inter-procedural missing-check bugs of return values
in the Linux kernel. At first, our approach identifies the functions which
may generate error return status. After that, we propose a new method
to find out the pointer parameter variables carrying error semantics
except for the return values. Then a complete missing-check analysis
on these critical variables is performed to confirm if they are validated
before or after functions return. By utilizing cross-checking, ERSAna-
lyzer achieves higher precision of 71.3% in deciding whether a critical
variable is checked. ERSAnalyzer reports 335 cases; 239 of those are
potential bugs, 25 are manually proved to be actual missing-check bugs.
Limited by the understanding of the code logic and some bugs that have
been fixed in the latest version. We finally submitted 12 new bugs to the
Linux Kernel, and six of our patches have been accepted up to now. The
results show the effectiveness of ERSAnalyzer.
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1 Introduction

Missing-check bugs are common in system software, and those bugs may con-
sequence in unsafe states or even critical security vulnerabilities, especially in
large-scale programs such as the Linux kernel. The problem is hard to resolve for
many reasons. The most important one is that low-level programming languages
like C and assembly, which have poor design for error management, are cho-
sen to implement complex OS kernel modules for better performance and easier
direct interaction with hardware. In the Linux kernel, the erroneous states are
presented as integer error codes or meaningful pointers which are used to indi-
cate some error semantic, and then returned to their callers. In the developers’
view, these erroneous states are desired to be checked and then do something to
handle corresponding errors. Recently, static analysis works [1,2,5,8,11,14] have
tried to resolve this problem with cross checking. By utilizing cross-checking, the
usages of an API function are collected and compared to each other to decide
whether the status should be validated after the API function is returned.

Generally, to enforce cross-checking on the API execution status, error-return
API functions that may generate error status should be analyzed and recognized
at the first. And then, the data-flow analysis will be performed on each callsite of
the target API functions to confirm if the possible return error status has been
checked. Lastly, after the difference analysis, the cases with inconsistent usage are
regarded as bugs. Cross-checking makes the code analysis semantic-aware since
most of the usages of critical variables are concerned to be the ground truth.
Although existing cross-checking works are effective and some have already been
applied to detect inconsistent bugs for over ten years, they are still suffering from
low precision and high false positives for many reasons.

(1) Imprecise data-flow analysis. On the one hand, existing studies, like LRScan
[11] recognize the functions which return error codes as the API functions
may need security checks. However, not all of the error-return functions
can be found in existing tools. On the other hand, inaccurate alias analy-
sis results can lead to many cross-check mistakes. For example, CRIX [14]
performed their points-to analysis for each pointer to a memory location,
relying on LLVM’s AliasAnalysis infrastructure. They have improved the
points-to analysis to refine the alias results. But based on the analysis of the
bug report given by CRIX, there are still more false positives than expected.

(2) The security states are validated in various ways. It is very common that
a function could return multiple error states in the Linux kernel. Those
error states may be checked and handled immediately or far away along the
call chain. Otherwise, based on our investigation, when the execution states
should be checked, the developers can check the return values and some
other relative pointer variables carrying the same or similar error semantics.
In previous papers, these return values are mainly focused on and regarded
as critical variables, but the checks for pointer variables mentioned above
are ignored.
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There are still challenges to enforce cross-checking depending on more accu-
rate and complete analysis. To help this situation, we present our ERSAnalyzer
(Erroneous Return Status Analyzer), a new method to improve existing cross-
checking precision. The key idea of ERSAnalyzer is to get a better result in
error-return function identification and returned-value validation analysis with
higher completeness.

ERSAnalyzer starts with a better error-return function identification. With
more precise identification of error-return functions, we can perform our analysis
on more target functions to reduce possible false negatives. Then we focus on
the return values of identified API functions for a complete data-flow analysis to
confirm whether they are checked or not. We make the following contributions
in this paper:

• A complete analysis of missing-check erroneous returns. We propose a
new approach, ERSAnalyzer, to enforce a complete analysis based on existing
missing-check works and address limitations in current cross-checking works.
The main problems contributing to the low precision and high false positives
are inaccurate alias analysis, ignoring the various kinds of validation, and
poor inter-procedural analysis. We employ multiple new methods to resolve
these problems.

• Improvement methods for a complete analysis of error-return func-
tions and critical pointer variables. The identification of error-return
functions is very important to cross-checking. We improve the existing method
used in CRIX to find out more error-return functions as their return values
are used for cross-checking. We focus on the real code in the Linux kernel and
find that 1) some of the pointer arguments or global variables may also carry
error semantics and be checked after the called API is returned, 2) the criti-
cal variables may be checked in uncertain ways. To address those problems,
we improve the methods for the identification of more critical variables and
complete data-flow analysis to confirm the particular states of these critical
variables.

• Finding numerous new bugs in the linux kernel. ERSAnalyzer gen-
erates 335 reports, 239 of which are potential bugs in the Linux kernel. We
analyzed all of the reported bugs manually and confirmed 25 of them are
actually missing-check bugs; some of them have already been fixed by the
other analysts. Finally, 12 new bugs are submitted to the Linux kernel, and
6 of them have been accepted by the kernel maintainers up to today.

2 Background and Related Work

2.1 Security Check

Security checks are essential and necessary in software programs, they are
designed to protect sensitive variables from illegal reading/writing, or a null
pointer dereference. The bugs caused by missing security checks pose a severe
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Fig. 1. Example of missing-check bugs from the Linux kernel patch.

security threat to the system. In the 2021 CWE (Common Weakness Enumera-
tion) [15] Top 25, missing-check bugs may carry CWE-787, CWE-125, CWE-
20, CWE-22, CWE-476 risks, some of them are presenting an increasing trend
comparing to the passed year.

In the Linux kernel, almost all of the modules are written in low-level C pro-
gramming language. Some of them contain assembly codes for direct interaction
with the hardware. So most of the execution status of specific API functions have
to be validated to ensure the system’s security and reliability. But the missing-
check bugs are still common in the Linux kernel, and some may cause serious
security problems.

As the real code patch shown in the Fig. 1, missing-check of the API func-
tion dev set name may lead to a system crash because of a null pointer derefer-
ence. In fact, we find more than 400 security patches by searching the keyword
dev set name in the kernel commits; Most are adding checks on the function
returns, which roughly show that the API function dev set name is often mis-
used because of missing-check the return value by the kernel developers. In addi-
tion, the usages of API functions such as kstrdup, kmalloc, are suffering similar
problems.

2.2 Related Work

Missing-Check Bugs. The missing-check bugs have already attracted the
attention of researchers. But it’s a challenge to find out all of the bugs with
high precision using static analysis, since there are still existing difficulties in
program analysis. Earlier works [1,6,7,9,10] researched the problem using man-
ual specific API functions, which would consume most of the time to analyze
the target API functions and build a suitable model for future analysis. How-
ever, with the rapid development of software programs, it’s becoming more and
more complex. The manual work may take so much time to understand the error
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Fig. 2. Check for return value.

semantics and build one or more complex patterns to identify the bugs. There
are millions of functions waiting for security analysis in the Linux kernel, and it
seems impossible to be completed with fully manual efforts.

Fortunately, recent works proposed new methods to select target API func-
tions automatically. APISan [12] infers security semantic briefs from existing
API usages with symbolic execution techniques, bugs are reported after com-
paring API usages. PeX [13] infers to find security specifications automatically
and targets to detect capability permission check errors. CRIX [14] presents the
methods of critical variables identification and builds the peer-slice by collecting
the sources and uses of critical variables and performs cross-checks upon those
slices to find bugs.

Cross-checking which takes the more one based on statistics as the ground
truth is a sound method to resolve the problem. However, it also suffers from
low precision and high false positives due to inaccuracy in the data-flow analysis
of the handling of return codes and constraints. On the one hand, mistakes may
generate during target API function selection, critical variable analysis, and
error handling according to our investigation. On the other hand, developers
may realize the code for security checks in various ways since the semantics of
variables are flexible, and some excluding return variables may also carry security
information.

Error-Handling Analysis. Recently, studies have focused on how to automat-
ically detect the bugs in the error-status handling indicated by the error code
returned from critical API functions. EeCatch [17] is used to detect Exagger-
ated Error Handling (EEH) bugs. It accurately identifies errors, extracts their
contexts (spatial and temporal), and automatically infers the appropriate sever-
ity level for error handling. HERO [18] precisely pairs both common and cus-
tom functions based on the unique error-handling structures and then analyze
and identifiers the Disordered Error Handling (DiEH) bugs. Earlier work EIO
[1] detects missing-check bugs in file systems by analysis on error-propagation.
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Fig. 3. Argument pointers can carry out error information to the caller functions.

APEx [9], ErrDoc [20], and EPEx [10] reason about the error-code propagation
in open-source SSL implementations, either automatically or via user definitions.
EESI [21] is a static analysis tool that infers function error specifications for C
programs by returning code idioms.

The code for error-handling is meaningful to learn to get more error seman-
tics. It can help to detect more error-return API functions automatically.

2.3 Analysis of Error Returns in Linux Kernel

Without the high-level support of exception mechanisms in high-level program-
ming languages such as Java [3] and C++ [4], the error states are mostly defined
as macros mnemonic using simple integers, which are also called error codes.
For more convenient use, even the returned pointers would be converted to
special long integer error codes to carry more error message to the callers in
the Linux kernel. The 3 special inline functions IS ERR, IS ERR OR NULL,
PTR ERR OR ZERO are used to simply check if a pointer infers error or not.

The example in Fig. 2 is the most common method to validate the API exe-
cution status in the Linux kernel. The called API functions return their status
using error codes or pointers. Then they can be validated directly by comparing
to 0 or NULL or using inline function ERR PTR. For checks of the return
value, most of the existing works focus on this situation.

On the one hand, the called API functions may infer the security information
by not only the return error values, but also pointers referenced in arguments or
global variables, as the example shown in Fig. 3. The pointer *error is assigned
with the same semantic with the generated error code err , for carrying out more
error message when returning target pointer values.

On the other hand, the developers may validate the return values at an
uncertain position like the example in Fig. 4. Not all return values are checked
immediately. Some of them are checked just before their use. In the Fig. 4, the
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Fig. 4. Erroneous Status can be validated in the following called functions.

pointer info is not checked and directly used as a parameter. But the passed
argument info is validated before use in the API function intel lpss probe.
So it is believed a secure usage.

Not all situations above are considered by existing works, which contribute
to many false positives. For cross-checking, precise and complete analysis results
are the most important factors as the semantic security belief and ground truth.
In other words, better analysis of those steps can lead to better results.

Fig. 5. Overview of ESAlalyzer.

3 Method

3.1 Overview

The key idea of ERSAnalyzer is to improve existing cross-checking works by
enforcing more precise and complete analysis. The overview of ERSAnalyzer is
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shown in Fig. 5. We mainly focus on the improvement for parts of the work
during parsing and analysis, which are underlined in the Fig. 5.

The source files are processed as follows. Firstly, the C files of the source code
of the Linux kernel are compiled into bitcode files(.bc format) by Clang compiler.
And then we build LLVM passes to analyse the bitcode files. An error-return
function means that the function may return an error code or pointer to its’
callers. Upon the IR code, we improve the existing method to identify more
error-return functions, which does more analysis on wrapper function identifica-
tion and the return value analysis, excluding analysis of the return code of the
function. The analysis of the call graph focuses on the indirect call by employing
the existing method MLTA [16].

The second part of ERSAnalyzer is to mark more pointers with error seman-
tic assigned except for these return integers or pointers during error variable
analysis. Analysis in Sect. 2.3 infers that many pointers can also carry error
semantics for developers to validate in reality. And the analysis of these pointers
is still ignored by existing studies up to now.

Then we enforce our missing-check analysis based on all of the critical vari-
ables mentioned above. Besides the intra-procedural analysis, which has been
performed in most works, we do more improvement to realize a complete missing-
check analysis pertinently for the Linux kernel.

Lastly, we implement cross-checking to compare the differences and report
bugs with the collected return value operation slices on the target API functions,
just like what many other cross-checking tools do.

3.2 Design

The goal of ERSAnalyzer is to detect missing-check bugs by improving existing
works to get higher accuracy and lower false positives. There are two tasks to
achieve this goal according to our analysis in Sect. 2.2 and 2.3. The first one is to
detect more potential critical API functions and variables, and the other one is
to implement more complete analysis on missing-check analysis. We make several
improvements based on existing studies to complete those two tasks. What we
do firstly is to identify more error-return functions, and then is to identify more
error semantic pointers.

Identifying More Error-Return Functions. Existing work CRIX [14] iden-
tifies critical security checks using the approach proposed in LRSan [11]. LRSan
can identify the functions returning error codes, and CRIX extends the idea by
supporting error-handling functions. We find that the existing methods to iden-
tify error-return functions used by LRSan and CRIX mainly focus on the analysis
of return codes so that some functions which directly return their callees’ results
cannot be decided as error-return functions. To address this problem, we extend
the existing methods by adding a forward analysis of the handling of the return
value of the target API.

Our method is developed as shown in Algorithm 1. Functions returning point-
ers or integers are selected for the error-return analysis. The variable isReturnErr



Detecting API Missing-Check Bugs 399

Algorithm 1. Error-Return Function Analysis
Require: Func: An integer- or pointer-return function
Ensure: isReturnError
1: function IS ERROR RETURN FUNC(Func)
2: isReturnErr = False;
3: for each ReturnInst in Func do
4: RetV al ← ReturnInst;
5: if isErrorValue(RetV al) then
6: isReturnErr ← True
7: break
8: if isFromCall(RetV al) then
9: CalledFunc ← getFunctionFromInstruction(RetV al)

10: isReturnErr ← IS ERROR RETURN FUNC(CalledFunction)
11: if isReturnErr is True then
12: break
13: if isReturnErr is False then
14: for each Callsite in CallSites do
15: RetV ariable ← CallInst
16: if isCheckErr(RetV ariable) then
17: isReturnErr ← True
18: break

return isReturnErr

is a boolean value which indicates that whether the target API functions is an
error-return function, initialized with a false value. The function isErrorValue
is used to find out whether the given value would be a constant negative integer
value, which is used as an error code in the Linux kernel according to the error’s
macro definition. Firstly, we use a loop to find out whether any ReturnInst in the
Function returns an error integer code or possibly null pointer. If so, the function
is marked as a error-return function. This is same to the other works. Some-
times the ReturnInst refers a value from CallInst, meaning a function call, in
LLVM IR the RetVal is actually a CallInst at this situation, a recursion analysis
would be performed to decide the CalledFunction may return an error. The func-
tion isFromCall is realized to determine if the analyzed return-value is from
another API function.

And if we still cannot get a result exactly, we would search each of the
callsites of the target API function. The function isCheckErr used in line 16
takes a forward dataflow analysis on the return values of the analyzed functions
to decide whether the return values are used in error-checking statements as the
macro described in Sect. 2.3 or the other known specific error-handling functions.
If the return values are used to check if they are error codes or null pointers, the
functions are also marked as error-return functions.

IdentifyingMore Error Semantic Pointers. Based on the study in Sect. 2.3,
pointer arguments of a function can also carry the error messages when the func-
tion frames switching. The developers may check the return values and pointer
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Algorithm 2. Error Semantic Pointers Analysis.
Require: Function: function may return error
Ensure: Collection of EPSet
1: function Error Semantic Pointer Analysis(Function)
2: EPSet ← new Set();
3: PointerArgs ← getArgs(Function)
4: for each RetV al in Function do
5: Constraints ← BackwardInstrFlow(RetV al)
6: RetConditon ← Constraints
7: if RetCondition != NULL then
8: conditionV ar ← RetCondition
9: if conditionV ar in PointerArgs then

10: EPSet.insert(conditionV ar)

11: if isErrorHandling(RetCondition) then
12: for each PointerArg in PointerArgs do
13: if isAssigendErrCode(PointerArg) then
14: EPSet.insert(PointerArg)

return EPSet

arguments to decide the execution states. Existing works ignore this situation. To
address this problem, we design a new method to mark the error-semantic pointer
variables for future missing-check analysis to avoid possible false positives.

According to our observation, the target pointer variables are always used
when a function returns after a condition comparison. As shown in Algorithm2,
we perform a backward analysis on each of the ReturnInst instruction in the
given error-return function. EPSet is initialized as a set to store target pointers.
The PointerArgs is the collection of the pointer parameters of the target function.
In the function BackwardInstrFlow, line 5, we collect the instructions from
the ReturnInst to their incoming source blocks. We analyze the constraints from
the instruction-flow and try to extract the RetCondition, which means the direct
conditions of return statements. We get the critical variable conditionVar from
the RetCondition statements.

There are two possible situations pointer arguments may carry out the error
information when the RetCondition is not NULL. The first one is that the pointer
arguments are used as one of the conditions which would return -EINVAL if
checked failed, which described as line 9 in Algorithm 2. Another one is the
pointer arguments assigned the value of the error code or string message before
return, such as the example in Fig. 3. We use the function isErrorHandling,
which is mainly implemented to analyze the CmpInst to find the error-handling
path, to determine whether the RetCondition is placed in the error-handling
statements, which indicates the pointers may be assigned values with error-
semantic. Then a loop is performed on PointerArg to decide each of the Point-
erArg is actually assigned an error code, by using the function isAssignedEr-
rCode. Both of the two situations above are marked as critical variables.

More Complete Missing-Check Analysis. Not only the limitations of
dataflow analysis technique, but also the flexible programming statements con-
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tribute to the inaccurate missing-check analysis results. To improve this situa-
tion, we mainly focus on enforcing a more complete analysis on critical variables.
This is resolved empirically by optimizing the alias analysis, point-to analysis
and specific error-handling analysis, target to eliminate the wrong results as
much as possible.

4 Implementation

The ERSAnalyzer is implemented in C++ on top of LLVM, including the build-
ing of a global call graph, identification of error-return functions, missing-check
analysis, and cross-check analysis.

The Linux kernel code is compiled with wllvm [22], using the default config-
uration of the Linux kernel, and gets 19,063 bitcode files in total. We build the
global call graph using the same method with MLTA [11,14]. With the results
from MLTA, we can query the callsites of the target API functions or the actu-
ally called function at indirect callsites. Then all of the analyses are realized
upon the LLVM IR.

For a complete analysis of missing-check analysis, we also do more to improve
the results of critical variables’ alias analysis and missing-check analysis based
on our experiences.

• Alias analysis of critical variables. CRIX enforces its’ analysis by relying
on LLVM’s AliasAnalysis infrastructure. Additional field-sensitive analysis
has been performed for each pointer used in memory load/store or function
calls as parameters. But we find that the inaccurate pointer analysis still
causes many false positives. So we fix the problems we found in practice
to raise the precision mainly by carefully analyzing the GetElementPtr
instruction similar to Dr.Checker [23].

• Complete analysis of missing-check. To confirm the validation of the
target API functions’ execution status, existing works focus on finding the
CmpInst or SwitchInst instructions before the critical uses of critical vari-
ables. As we study in Sect. 2.3, the developers may check the return values
in different ways at uncertain positions. We extend existing methods used
by CRIX by a forward analysis on return not only values but also the error
semantic pointer arguments. Those critical variables are often checked at the
position just after they are generated or propagated to their callers. We notice
that some of the critical variables are used as arguments in the called func-
tions, and they would be checked before reading or writing to keep secure
execution states. If any of these critical variables are validated at any posi-
tion before critical uses by the developers, the execution flow is considered
safe. To reduce the false positives, we extend the forward analysis to find out
all of the situations above.

• Cross checking for bug detection. The key idea of cross checking is sim-
ple and direct. More usage cases of the target API are believed the correct
ones. We employ cross-checking only to compare the return values of critical
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functions, which are part of the work done by CRIX. After the usage collec-
tion of the same critical API functions, it’s easy to decide whether the return
values of the critical functions should be checked according to statistics.

5 Evaluation

We evaluate the effectiveness of ERSAnalyzer using the Linux kernel. The exper-
iments were performed on an Ubuntu Server with 128 GB RAM and Intel(R)
Xeon(R) Silver 4110 CPU (2.10 GHz) with 32 cores. We test the bug detection
efficiency on the Linux kernel version 5.15.6 using LLVM 12.0.1 on the Ubuntu
18.04, and the option -inline is disabled for a precise bug position report. For the
Linux Kernel, we used clang and wllvm to compile and generate 39,408 Bitcode
files. And the bitcode files under directories drivers/ and lib/ are chosen to run
as our test.

5.1 Overall Analysis of Bug Detection

We perform ERSAnalyzer’s analysis on a total of 19,063 bitcode files. In those
bitcode files, we parsed out more than 374k functions. More than 169k functions
are identified as error-return functions, around 205k functions may not gen-
erate errors, and more than 514k callsites are analyzed. ERSAnalyzer reports
335 cases, of which 239 are considered potential bugs, 25 are considered actual
missing-check bugs, and 12 of the 25 new bugs have been submitted to the kernel
maintainers.

Not all of the reported bugs can be analyzed easily with manual work due
to the difficulty of understanding the code logic and data flow. After careful
analysis, 25 of them are confirmed to be actual bugs. We finally submit 12
patches to the Linux kernel maintainers, as the rest have already been patched
in the latest kernel code. The detail of the bugs we submitted is shown in Table 1.

Most of our submits in Table 1 are NULL pointer dereference bugs. Those
NULL pointer dereference bugs are caused by memory allocation API func-
tions as they are much easier to be understood. The critical variables in rows
8–11 in Table 1 are all members of complex structures. It shows that our tool is
effective in alias analysis for structure fields.

Figure 6 shows the detail of the bug at row 12 in Table 1. The variable ret
keeps the return value of API function fwnode property read u32. The pre-
vious two return values at line 518 and line 522 are checked immediately, but
at line 526 the return value of fwnode property read u32 is not saved and
missing-check. So that the st−>channel offstate[reg] may be assigned to wrong
value and bring out logic errors.

5.2 Analysis of Critical Variables and Missing-Checks

Identification of Error-Return Functions. We extend the existing methods
used in CRIX to identify more error-return functions, and then compare our
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Table 1. Missing-check bugs found by ERSAnalyzer.

# Position Critical variable Vulnerablity type

1 drivers/gpu/drm/msm/disp/msm dis
p snapshot util.c:171

new blk NULL pointer
dereference

2 drivers/md/bcache/request.c:1109 ddip NULL pointer
dereference

3 drivers/misc/lkdtm/fortify.c:43 src NULL pointer
dereference

4 drivers/soc/bcm/bcm63xx/bcm-
pmb.c:315

pd NULL pointer
dereference

5 drivers/gpu/drm/omapdrm/
omap crtc.c:166

wait NULL pointer
dereference

6 drivers/gpu/drm/amd/amdkfd/
kfd events.c:531

event waiters NULL pointer
dereference

7 lib/mpi/mpi-mod.c:42 ctx NULL pointer
dereference

8 drivers/crypto/stm32/stm32-
hash.c:970

rctx->hw context NULL pointer
dereference

9 drivers/soc/ti/ti sci pm domains.c:
182

pd provider->
data.domains

NULL pointer
dereference

10 drivers/phy/tegra/xusb.c:668 port->dev.driver NULL pointer
dereference

11 drivers/pinctrl/ralink/pinctrl-
rt2880.c:265

p->func[i]->pins NULL pointer
dereference

12 drivers/iio/dac/ad5592r-base.c:526 ret Logic Error

Table 2. Identification of error-return functions.

Number of
bitcode files

Number of total
analyzed functions

ERSAnalyzer CRIX

1,000 31,370 14,701 14,137

3,000 83,660 36,926 35,600

5,000 153,518 70,183 67,981

7,000 254,178 115,911 112,461

9,000 346,788 156,765 151,735

results with CRIX. To evaluate the effectiveness of error-function identification,
we test on the different number of bitcode files.

Table 2 shows that the number of identified error-return functions by the two
methods. ERSAnalyzer identifies more error-return functions than CRIX, at an
average of 3.46%.
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Fig. 6. Logic bug found by ERSAnalyzer.

One of the main difficulties in error-function identification is that the entire
call graph cannot be built exactly and efficiently with existing techniques and
tools, even all of the bitcode files are given, to both our tools and CRIX. So we
have to divide the files into parts in proportion.

More Critical Pointers and Complete Missing Check Analysis. We
improve the existing works mainly by enforcing a complete data-flow analysis
for critical variables, including analysis of error-semantic pointers and careful
analysis to confirm whether the critical variables are missing-check or not. To
evaluate the effects of our complete data-flow analysis, we focus on validating
the ERSAnalyzer’s reports.

In the reported 335 cases, there are 239 cases that are actually missing-
check cases, accounting for 71.3% of the total. We evaluate the improvement by
comparing to CRIX, which reports thousands of cases and manually confirms
278 new bugs upon its’ top 804 cases (34.58%). CRIX blames the inaccuracy
on imprecise points-to analysis (48%), inconsequential checks (25%), implicit
checks (8%) and other causes (19%). Almost all of the reasons could result in
failures when doing missing-check analysis. Those inaccurate analyses lead to
either statistical gaps in cross-checking or mistakes in reporting missing-check
cases. Our method resolves this problem pertinently. The accuracy is improved
to be higher and the total number of reported cases is less. This reduces the
work of manual audit a lot.

5.3 False Positives and False Negatives

There are still false positives and false negatives in the reports of ERSAnalyzer.
This is due to the following reasons.

• Imperfect implementation of data-flow analysis. The points-to analysis
applied in ERSAnalyzer improves a lot upon our experience. It is practically
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enough, but still not as precise as expected. Almost all of the false positives in
the missing-check analysis is attributed to the inaccurate data-flow analysis.

• Dependence of incomplete call graphs. We only analyze parts of the
kernel files because of the high consumption of memory and time due to
our poor code experiences. So we have to perform our analysis on only the
kernel drivers and suffer from incomplete call graphs. Due to the incomplete
call graphs, only 39.9k error-return functions whose callers can be found are
analyzed, and the total number of error-return functions is 203k. It is the
main reason for false negatives.

5.4 Bug Confirmation

It’s not easy work to confirm a bug according to the reports generated by
crossing-check analysis manually. Even though crossing-check checks for the
return values of target API functions in most usages. Without complete and
accurate data-flow analysis, the fewer missing-check cases can also not be iden-
tified as bugs directly. But because of the difficulty in understanding the kernel
context, the bug confirmation work is hard and complex. That is why ERS-
Analyzer’s submits are mostly NULL pointer dereference generated from
memory allocation API functions.

6 Conclusion

In this paper, we present a new static analysis tool, ERSAnalyzer, for detecting
missing-check errors of return values in the Linux kernel. ERSAnalyzer enforces
a complete analysis algorithm to confirm whether a critical variable is being
checked for better completeness. We implement ERSAnalyzer on top of LLVM
12.0.1 and evaluate it on Linux Kernel version 5.15.6. ERSAnalyzer reports 335
cases, 239 of which are potential bugs. After our manual confirmation, 25 of
them are proved as actual missing-check bugs. Among the 25 bugs, 12 newly
discovered bugs have been submitted and accepted into the Linux kernel, and
the other bugs have been fixed in the latest version. The results demonstrate
that ERSAnalyzer can effectively identify missing check bugs.
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and Beijing Nova Program, the other authors are supported in part by NSFC
(U183620050).

References
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Abstract. Despite the great progress of deep neural networks (DNNs),
they are vulnerable to backdoor attacks. To detect and provide concrete
proof for the existence of backdoors, existing techniques generally adopt
the reverse engineering approach. However, most of them suffer from high
computational complexity and weak scalability. In this paper, we make a
key observation that the weights connected to the backdoor target labels
in trojaned DNNs tend to have abnormal distributions, including dis-
similarity to other labels and anomalously large magnitude. Based on
this observation, we propose an efficient and scalable backdoor detection
framework guided by static weight analysis. Our approach first detects
the outlier existing in weight distributions and identifies suspicious back-
door target/victim label pairs. Then we conduct reverse engineering to
recover the triggers, including a newly designed reverse engineering app-
roach for global transformation attacks and one existing approach for
local patch attacks. Finally, we analyze the characteristics of the recov-
ered triggers to suppress false positives. Experimental results show that
our approach has state-of-the-art performance on MNIST, CIFAR-10,
ImageNet, and TrojAI. In particular, it outperforms NC, ABS, and K-
Arm by 31%, 8.7%, and 5% on the public detection benchmark TrojAI
in terms of detection accuracy while maintaining the highest efficiency.

Keywords: Deep neural network · Backdoor detection · Static weight
analysis · Reverse engineering

1 Introduction

Deep neural networks (DNNs) have achieved impressive performance in various
domains, including computer vision [16], malware detection [25], autonomous
driving [3], etc. As constructing and deploying a well-performed DNN requires a
lot of expertise and resources, developers may outsource the training process to
cloud vendors (e.g., Amazon) and then retrieve the trained model. Besides, devel-
opers can also download pre-trained models directly from the internet reposito-
ries, such as Torchvision [29] and TensorFlow Model Garden [35].
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Fig. 1. Illustration of universal attack and label-specific attack. Samples from victim
labels (red nodes) are misclassified to the target label. (Color figure online)

However, recent studies have shown that DNNs are prone to backdoor
attacks [8,18,20,23], which leads to the critical problem of trustworthiness for a
pre-trained DNN from third parties. In the backdoor attack, an adversary typi-
cally defines a backdoor trigger and then implants a backdoor into the model by
poisoning the training dataset [8,21,23]. The trojaned model performs normally
on benign samples, but will misclassify a sample to a target label specified by
the adversary when the sample contains the trigger.

Backdoor attacks can be divided into universal attack and label-specific
attack, as shown in Fig. 1. For universal attacks, all samples with the trigger
will be misclassified to the target label. As for label-specific attacks, the misclas-
sification only occurs from specific victim labels to the target label.

Backdoor detection is determining whether a DNN contains a secret back-
door. To produce a trustworthy and interpretable result, backdoor detection is
supposed to achieve two goals. The first is to disclose the target and victim labels
specified by the adversary. And the second is to recover the trigger to reveal how
the malicious behavior is actually launched. In practice, the defender has zero
knowledge about the training process and trigger pattern. To achieve these goals,
existing techniques [19,26,31] generally adopt a reverse engineering approach.
They start with a small collection of validation data and solve an optimization
problem to recover the backdoor trigger that causes the model prediction to be
overturned from the victim label to the target label.

Although existing reverse engineering based backdoor detection techniques
are capable of achieving these goals, there remain two limitations. First, most
of them [9,31,32] suffer from high computation complexity due to the inef-
ficient identification of target/victim label pairs. For universal attacks, they
treat all output labels as potential target labels and conduct reverse engineer-
ing, leading to a tedious scanning time for models with many labels. As for
label-specific attacks, blindly enumerating all target/victim label pairs incurs
quadratic complexity. Second, most existing techniques [9,26,31] only focus on
backdoor attacks with local patch triggers. It is noteworthy that the triggers
specified by the adversary are no longer limited to local patches, but also the
global transformations, such as Instagram filters [1,19]. Filter triggers can be
utilized to launch backdoor attacks as well by adding artistic effects to the orig-
inal images. Reconstructing global transformation triggers is more challenging
because they modify every pixel and vary from one image to another.
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To address the aforementioned limitations, we propose an efficient and scal-
able backdoor detection framework guided by static weight analysis. We make a
key observation that the weights connected to the target labels tend to be abnor-
mal, including dissimilarity to weight distributions of other labels and anoma-
lously large values. Based on this observation, we first design a pre-selection algo-
rithm for searching potential target/victim pairs through static weight analysis.
Second, we reverse engineer a trigger for each target/victim pair. To counter the
challenge of recovering global transformation triggers, we design a new reverse
engineering approach and integrate it into our framework in addition to the
approach for patch triggers. Finally, we note that reverse engineering for local
patch triggers is prone to two types of false positives, namely adversarial per-
turbations and natural features. These false positives can be considered natural
faults of models, which are distinguished from maliciously implanted backdoors.
We further suppress those false positives by analyzing the attributes of triggers
and activated neuron distributions of models.

Compared with existing detection techniques, our detection framework has
the following advantages. First, static weight analysis can precisely identify sus-
picious target/victim pairs, eliminating optimization for unpromising triggers
and benefiting our framework with high efficiency. Second, the abnormal weight
distributions are prevailing in trojaned models and are agnostic to model archi-
tectures and trigger types. Thus static weight analysis remains effective for var-
ious backdoor attacks, which makes our framework scalable to integrate reverse
engineering approaches and detect patch and global transformation triggers.
Third, our framework with trigger analysis can assist end-users in determining if
the reversed triggers are malicious implants or natural faults in DNNs, allowing
them to take necessary countermeasures.

To demonstrate the effectiveness of our detection framework, we conduct
comprehensive experiments across various model architectures and attack types
on MNIST [17], CIFAR-10 [15], ImageNet [6], and a public backdoor detection
benchmark TrojAI [12]. Results show that our approach has state-of-the-art
(SOTA) performance. For example, our detection accuracy outperforms NC [31],
ABS [19], and K-Arm [26] by 31%, 8.7%, and 5% on TrojAI respectively. Mean-
while, the static weight analysis significantly improves the efficiency of large-scale
model detection tasks. Specifically, our approach is 23.5, 5.8, and 1.2 times faster
than the above techniques. Besides, our approach can detect global transforma-
tion attacks as well, with an accuracy of 81%, 95%, and 95% for filter attacks
on TrojAI, CIFAR-10, and WaNet [21] attack on CIFAR-10 respectively.

Our contributions are summarized as follows.

– We propose an efficient target/victim pairs identification approach for back-
door detection based on static weight analysis. It is agnostic to model struc-
tures and trigger types and thus can significantly improve the efficiency of
backdoor detection for local patch attacks and global transformation attacks.

– We propose a backdoor detection framework guided by static weight analy-
sis. Our framework integrates two trigger reverse engineering approaches (1
existing and 1 new) and two novel backdoor diagnosis strategies to provide
reliable and interpretable detection results.



Efficient DNN Backdoor Detection Guided by Static Weight Analysis 411

– Experiments on various datasets including MNIST, CIFAR-10, ImageNet, and
TrojAI against local patch and global transformation attacks demonstrate the
significant performance of our approach. For instance, it outperforms SOTA
techniques NC, ABS, and K-Arm by 31%, 8.7%, and 5% in terms of detection
accuracy, while maintaining the highest efficiency.

2 Background and Motivation

2.1 Threat Model

We assume that an adversary could implant a hidden backdoor before the DNN
is acquired by the defenders and users. The attack types may be universal
attacks or label-specific attacks. Consistent with the prior work [9,19,26,31],
the defenders have full access to the pre-trained model including its architecture
and weights, as well as a small set of benign data for validation, but have zero
knowledge about the attack types, target/victim pairs, or real triggers. They
need to identify whether the model contains a malicious backdoor. In addition,
they are also supposed to disclose the target and victim labels specified by the
adversary and the trigger that can activate the backdoor behavior.

2.2 Limitations of Existing Techniques

Low Efficiency. NC [31] proposes gradient descent optimization to reverse engi-
neer backdoor triggers. The optimization searches a minimal local patch so that
samples stamped with this patch will be misclassified to the target label. It
necessitates complex gradient calculations and is time-consuming. In universal
attacks, for a DNN model with N output labels, NC treats each label as a
potential target to operate the optimization, and the computation complexity
is O(N). As for label-specific attacks, NC needs to blindly enumerate all tar-
get/victim label pairs, which incurs O(N2) complexity. Without identification
for target/victim pairs, some other reverse engineering based techniques [9,32]
suffer from low efficiency as well.

ABS [19] reveals potential backdoor target labels by operating a stimulation
analysis for internal neurons. It assumes that the backdoor can be triggered
by elevating the activation value of one compromised neuron and exhaustively
searches thousands of inner neurons to identify the compromised neurons, leading
to a high-cost process. What’s more, the one-neuron assumption may not hold
when facing advanced attacks, and analyzing the interaction of multiple neurons
requires exponential complexity.

Weak Scalability. A common and important type of backdoor attack is trig-
gered by global transformations [1,19,21]. Unlike traditional patch triggers that
only cover a local area, global transformation triggers modify every pixel of the
original images. Besides, the modification is no longer a constant but varies from
one input image to another. As a result, global transformation triggers are harder
to detect and recover than local patch triggers.
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Most existing approaches [9,26,31] can only handle patch triggers because
they define the optimization objective as finding a minimal local constant mod-
ification. For example, a recent work K-Arm [26] formalizes the identification
of target labels as a multi-arm bandit problem to improve efficiency. It lever-
ages a scheduler that prioritizes the labels by evaluating the trigger size and its
reduction rate, which is not scalable to deal with global transformation triggers.

2.3 Key Intuition and Observation

To address these limitations, we propose to design a backdoor detection approach
that satisfies the requirements of efficiency and scalability. The intuition behind
our approach is that implanting a backdoor tends to result in abnormal weight
distributions in DNN models. Capturing the anomaly existing in the weights is
highly efficient and agnostic to trigger types and model architectures, which can
serve as a promising clue for backdoor detection.

Given a DNN model F , let R(x) denote the output of the penultimate
layer for the input image x, which are often referred to as representations.
The commonly used DNNs [10,24,27] can be formulated as y = F (x) =
Softmax(R(x) · W ), where W represents the weight matrix in the last hidden
layer, and R(x) · W outputs the predicted scores of input x. The Softmax(·)
function normalizes the scores to a final confidence level.

In the training process, W is updated by W −�W in each back-propagation
step. For a weight vector wl that denotes all the weights connecting to label l,
the formula for updating wl is: wl = wl − α(ŷ − yl)T R, where ŷ is the model’s
output confidence vector, yl denotes the one-hot ground-truth vector, and α is
the learning rate. R is usually the output of the activation function Relu, so
R is non-negative. Thus the modification direction of wl is related to whether
the training data belongs to l, and the position of modification is related to the
activated neurons on R. Since the model learns to connect the features from
victim label v with the target label t during the poison training, wt will have a
larger value in the position of features corresponding to v. But the vectors wc of
clean label c and wv of victim label v have greater values only at positions that
represent their intra-class features. Therefore, the distribution of wt tends to be
furthest away from all weight vectors and has a larger magnitude. In addition,
wv is the most similar one to wt compared with other weight vectors.

We use Fig. 2 for an abstract illustration. It shows a classification task with 4
output labels, where V1 and V2 represent the victim labels, T is the target label,
and C is the clean label. We simplify the representations to units that contain
the features belonging to each class. The blocks in the weight vectors denote
the weights connected to the corresponding units. The darker the colors in the
weight vectors, the greater the magnitude of the weights. We simply count the
number of blocks with the same colors to calculate the similarity between the
weight vectors. The similarity between wt and wv is 3, greater than 1 between
wt and wc, while wc and wv share a commonly large similarity of 3 with each
other. This leads to the following observations.
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Fig. 2. Illustration of our key intuition. While clean or victim labels only learn their
own features, the weight vector of the target label has greater values (denote in a darker
color) for features belonging to multiple labels, thus being dissimilar to other labels.
(Color figure online)

Observation 1: The weights connected to the backdoor target label
show a different distribution from weights connected to other labels,
and have a larger magnitude.

During the poison training, the weights connected to the target label receive
positive modifications from data belonging to other classes. Thus the target label
can be efficiently identified by detecting an outlier among all the weight vectors.

In universal attacks, the weight vectors of all other classes have greater values
only at the position corresponding to their intra-class features, while wt has
larger values at all positions, resulting in a greater distance from other weight
vectors. For this reason, we can further distinguish universal attacks and label-
specific attacks by identifying whether there is an outstanding outlier.

Observation 2: Compared with other labels, the weights connected
to the victim labels have a more similar distribution to the weights
connected to the target label.

The weights connected to target and victim labels both have greater values at
positions that represent the features belonging to the victim class, so they show
similar distributions. This can be utilized to construct promising target/victim
pairs, which is helpful for the efficient detection of label-specific attacks.

Furthermore, the anomaly in weight distribution is agnostic to trigger types,
so the guidance of static weight analysis can assist reverse engineering for dif-
ferent types of triggers. Based on this superiority, we design our framework.

3 Design

3.1 Overview

Figure 3 presents the overview of our detection framework. It consists of 3 com-
ponents: static weight analysis, trigger reverse engineering, and trigger analysis.
First, we design a static weight analysis algorithm that screens out the suspicious
target/victim labels. For a given DNN model, we scan the model weights and
discover top-k suspicious target labels and corresponding victim labels. Second,
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Fig. 3. Overview of our detection framework.

we operate reverse engineering for each suspicious target/victim pair to generate
a trigger. We integrate the reverse engineering approach for local patch triggers
and our novel reverse engineering approach for global transformation triggers.
Finally, we analyze the recovered triggers, exclude adversarial perturbations and
natural features that cause false positives, and retain the real backdoor trigger.

3.2 Static Weight Analysis to Identify Suspicious Target and Victim
Labels

In static weight analysis, we reveal the suspicious target/victim labels by scan-
ning the weights in pre-trained DNN models. The procedure is described in
Algorithm 1.

Identifying Suspicious Target Labels. Recall that in Sect. 2.3, we discover
that the weights connected to the backdoor target label tend to have different
distributions. So we measure this abnormal weight distribution by calculating
the Divergence D(l) between labels as:

D(l) = − 1
n − 1

n∑

i=1

wl · wi

‖wl‖ · ‖wi‖ , i �= l (1)

where n is the number of classes, vector wl denotes the weights connecting to
label l ∈ {1, ..., n} in the last fully connected layer. The larger the D(l) is, the
less similar the weight vector of label l is to other labels.

What’s more, Sect. 2.3 also points out that the weights associated with the
target label tend to have a larger magnitude. Thus, we adopt Summation S(l)
as a statistic to capture this attribute by adding up all the elements in wl:

S(l) = Sum(wl) (2)
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Algorithm 1. Static Weight Analysis
Input: F : pre-trained DNN model; kd: number of Divergence candidates; ks: number
of Summation candidates; kv: number of label-specific attack victim candidates; θ:
universal attack threshold
Output: T : suspicious backdoor target labels; V : suspicious backdoor victim labels

1: T, V, Divergence, Sum = [];
2: Extracting the last layer weights W from F ;
3: for label l in F.labels do
4: Compute D(l) and S(l);
5: Divergence.append(D(l));
6: Sum.append(S(l));
7: end for
8: Dlabels = argsort(−Divergence);
9: Slabels = argsort(−Sum);

10: T = Dlabels[0 : kd] ∪ Slabels[0 : ks];
11: if Divergence[0] − Divergence[1] > θ then
12: V = F.labels;
13: else
14: for label t in T do
15: labelSimilarity = [];
16: for label l in F.labels, l �= t do
17: labelSimilarity.append(CosSim(wt, wl));
18: end for
19: Vlabels = argsort(−labelSimilarity);
20: V [t] = Vlabels[0 : kv];
21: end for
22: end if
23: return T, V

Then we sort the labels according to D(li) and S(li) and select the top kd

and ks labels as suspicious target labels that have the largest D(li) and S(li)
respectively. To reduce the overlap between the two sets, we calculate their union
to get the final set of suspicious target labels.

Identifying Corresponding Victim Labels. After exposing the suspicious
target labels, we identify the victim labels corresponding to each candidate target
label. As discussed in Observation 1, though both universal and label-specific
attacks contribute to the large Divergence of target labels, the universal attacks
will lead to an outstanding value.

Therefore, we compute the difference between the largest Divergence value
and the second-largest value. If the difference is larger than a threshold θ, we
consider the model as universally trojaned, and the victim labels will be all
of the output labels in model F . Otherwise, we consider it as label-specifically
trojaned and find its victim labels as follows. For each suspicious target label t,
we compute the cosine similarity between wt and other n − 1 weight vectors,
then choose the top-kv labels as corresponding victim labels. As described in
Observation 2, the reason behind this approach is that the weight vectors
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of victim labels are most similar to the target label among all weight vectors,
because the trojaned models are forced to make a connection between the benign
features of the victim classes and the target label.

3.3 Reverse Engineering of Backdoor Triggers

After exposing suspicious target/victim pairs through static weight analysis, we
apply reverse engineering to recover the trigger for each pair.

Handling Local Patch Triggers. Patch trigger can be regarded as a specific
pattern added to an image. We formulate the generic function that applies a
patch trigger (P , M) to a benign image x as follows.

x̃ = x ◦ (1 − M) + P ◦ M (3)

where x̃ is the image stamped with the trigger. Operator ◦ stands for Hadamard
product. Pattern P is a color matrix that determines the input values of the trig-
ger, and mask M controls the position and transparency of the trigger. Assuming
the size of an input image x is [C,H,W ]. P has the same dimensions as x, while
the dimensions of M are [1,H,W ], representing each channel shares the same
trigger region. Then we generate a reversed trigger for target label yt by mini-
mizing the objective function:

min
M,P

L(yt, f(x̃)) + β ‖M‖1 , ∀x ∈ X (4)

where f(x̃) outputs the probabilities for x̃. L is the cross-entropy loss. For label-
specific attacks, X contains benign images from one victim class. For universal
attacks, X contains benign images from all the classes other than yt. ‖M‖1
measures the size of mask M , and β controls the constraint degree of mask size.

We define the attack success rate (ASR) of a trigger as the percentage of
classification results that are successfully flipped from the victim label to the
target label. If the generated trigger (M,P ) achieves an ASR higher than 99%
and the size of M reaches convergence, we stop the optimization process.

Handling Global Transformation Triggers. We devise a novel reverse engi-
neering approach for global transformation triggers. The global transformation
trigger modifies all pixels in the image, which is hard to recover through the
traditional approach. Actually, the applying process of such triggers can be sim-
plified as a linear transformation to the image that modifies the values of the
image’s four channels [R,G,B,A] and adds offsets. Thus, we utilize matrix mul-
tiplication to implement the linear transformation of the image as follows.

x̃ = rgba2rgb(Γ · concatenate([x, 1, 1])) (5)

where the concatenate function adds two channels on x, namely alpha and bias.
Channel alpha stands for opacity parameters and bias denotes the offsets. Trigger
Γ is a 2D matrix of size [4, 5] which modifies the pixel values of five channels
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Fig. 4. The optimization results of local patch triggers. (a) and (b) are reversed from
clean models. (a) is an adversarial perturbation that is scattered throughout the image;
(b) is a natural feature belonging to image (c) from the target class; (d) is the reversed
trigger from a trojaned model, and (e) is the ground truth trigger.

and the output is a four-channel RGBA image. The rgba2rgb function converts
the transformed RGBA image to an RGB image.

Observing that triggered images still visually look like the original ones, we
impose Structural Similarity (SSIM) [33] constrain on F to make sure that x̃
is not seriously distorted. We reverse engineer global transformation triggers by
solving the following optimization task:

min
Γ

L(yt, f(x̃)) − γSSIM(x, x̃), ∀ x ∈ X (6)

where hyper-parameter γ balances the constraint of SSIM. We discover that in
label-specific attacks, the optimization could also generate a trigger for benign
labels with a high success rate, but clean models do not have this property. We
conjecture that the feature space inside the model poisoned by global transfor-
mation triggers is corrupted, and a path to the decision domain of the target
label can be created for most labels through a linear transformation. So we opti-
mize from each label to yt and use an average success rate threshold of 90% to
determine whether the model is trojaned.

3.4 Trigger Analysis to Suppress False Positives

After reverse engineering, we compare the L1 norms of the masks with threshold
σ to filter out local patch triggers with very large sizes. However, reverse engi-
neering for local patch triggers is prone to two types of false positives, namely
adversarial perturbations and natural features belonging to the benign target
label (see Fig. 4). So we further analyze the generated triggers to suppress those
false positives.

Excluding Adversarial Perturbations. Previous studies have shown that
DNNs are easily fooled by adversarial perturbations [22]. For a clean model, we
may also obtain a trigger with a small L1 norm by reverse engineering, but the
reversed trigger is actually an adversarial perturbation as shown in Fig. 4(a).
Such small and sparse perturbations make it difficult to successfully implement
backdoor attacks in the physical world, thus they are considered as natural faults
of models instead of maliciously implanted backdoors.

For this reason, we measure the compactness of the trigger to rule out possible
adversarial perturbations. We first divide the whole image evenly into small grids,
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then we count the number of grids covered by the reversed triggers. Finally,
we exclude triggers that cover more than 10% of the grids, since adversarial
perturbations are more sparse than real triggers and cover more grids.

Excluding Natural features. Natural features refer to benign features of the
images that can cause misclassification like backdoors. They are as compact as
real backdoor triggers (see Fig. 4(b)), and thus cannot be ruled out by L1 norm
or compactness. To distinguish natural features from real backdoor triggers, we
further analyze the neuron behavior differences based on explainable artificial
intelligence (XAI) [2]. According to XAI, different neurons in higher layers can
only be activated by specific semantic features. Therefore, images patched with
natural features are likely to activate neurons belonging to the target class. How-
ever, images stamped with real triggers would activate neurons corresponding
to features of the victim class rather than the target class. So we utilize the
activated neurons in the penultimate layer to discriminate natural features from
real backdoor triggers.

We first use clean validation images from the target label to construct a set
Nc of the most activated neurons in the penultimate layer. Next, for each x̃
pasted with the reversed trigger, we also build a set Nx̃ of the most activated
neurons. Then we calculate the Neuron Behavior Similarity (NBS) as follows.

NBS =
∑ | Nc ∩ Nx̃ | / | Nc ∪ Nx̃ |

| X̃ | , ∀x̃ ∈ X̃ (7)

The value of NBS ranges from 0 to 1. A larger NBS indicates that the most
activated neurons by images with the generated trigger are more similar to those
activated by clean images. If NBS is larger than 0.5, we consider the generated
trigger to be a natural feature.

4 Experiments

4.1 Experimental Setup

Datasets. The experiment settings are elaborated in Table 1, including trigger
types, attack types, number of output labels, number of clean and trojaned
models, and model architectures. Datasets details are clarified as follows.

TrojAI. TrojAI [12] is a public benchmark supported by IARPA to combat back-
door attacks. The datasets are released in rounds. Each round consists of trained
models with half of them trojaned. We evaluate our approach on Rounds 1–3
test sets including 532 DNN models with various architectures. The trigger types
in Rounds 2–3 could be polygon patches or Instagram Filters.1

MNIST. We train 100 multi-target models on MNIST [17], which are universally
trojaned by BadNets [8]. Each model has 0–3 target labels randomly. The trigger

1 Datasets details can be found in https://pages.nist.gov/trojai/docs/data.html.

https://pages.nist.gov/trojai/docs/data.html
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Table 1. Details of experiment settings.

Dataset Trigger Attack #Labels #Clean #Trojaned Architecture

MNIST Patch Universal 10 34 66 CCNN [36]

CIFAR-10 Filter Specific 10 10 10 GoogLeNet, DenseNet-{121,161,169,201}
WaNet [21] Universal 10 10 10 ResNet-{18,50}

ImageNet Hidden [23] Specific 10 10 10 AlexNet

Patch Universal 1000 10 10 DenseNet-{121,161,201}
ResNet-{18,50,152}
VGG-{11,13}, VGGbn-{11,16,19}

TrojAI R1 Patch Universal 5 50 50 DenseNet-{121,161,169,201} ,GoogLeNet

ResNet-{18,34,50,101,152}, Inceptionv3

R2 Patch & Universal & 5∼25 72 72 ShuffleNet-{1 0,1 5,2 0}
Filter Specific VGGbn-{11,13,16,19}, MobileNetv2

R3 Patch & Universal & 5∼25 144 144 SqueezeNet-{1 0,1 1}
Filter Specific WideResNet-{50,101}

is a square patch that appears in one or more of the corners. For models with
multiple targets, each target label has one corresponding trigger pattern.

CIFAR-10. We train 20 models with different architectures on CIFAR-10 [15].
Half of them are trojaned by Gotham Filter or Nashville Filter using an open-
source TrojAI software framework [13]. In addition, we train 10 models trojaned
by WaNet [21], another type of global transformation trigger based on image
warping, along with 10 clean models.

ImageNet. Following the settings in Hidden Trigger Attack [23], we train 20
models of 10 labels with different architectures on ImageNet [6]. Half of them are
trojaned by this attack. In addition, we download 10 pre-trained clean models
with 1000 labels of different architectures and fine-tune them to generate 10
universally trojaned models with polygon patch triggers.

Baseline Techniques. We compare our approach with the state-of-the-art
(SOTA) reverse engineering based backdoor detection techniques: NC [31],
ABS [19], TABOR [9], DLTND [32], and K-Arm [26]. When testing efficiency,
we use the same batch size for all techniques, and the same early stop condition
for our approach, NC, and K-Arm to make a fair comparison. Experiments are
all conducted on equipment with a single Nvidia TITAN X GPU.

Metrics. We adopt Accuracy and AUC to evaluate the detection effectiveness.
We compare the efficiency of our approach with the baseline techniques by cal-
culating the elapsed time. The performance of pre-selection is evaluated by the
indicators of Precision, Recall, and F1 score.

Hyper-parameters. We set θ = 0.1 to determine if the model is universally
trojaned, and mask size threshold σ = 350 to filter out triggers with large L1

norms. The number of target and victim label candidates {kd, ks, kv} are set
to {3, 2, 2} on TrojAI Rounds 2–3, and {1, 1, 2} on ImageNet and CIFAR-10.
TrojAI Round 1 only contains universally trojaned models, so we set {kd, ks} =
{1, 1}. The sensitivity of hyper-parameters is discussed in Sect. 4.5.
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Table 2. Experimental results of detecting patch triggers on TrojAI.

Method TrojAI Round1 TrojAI Round2 TrojAI Round3

Acc AUC Time(s) Acc AUC Time(s) Acc AUC Time(s)

NC 67% 0.68 2252.2 50% 0.51 6592.4 57% 0.60 6345.8

TABOR 74% 0.76 4195.2 57% 0.61 11455.6 57% 0.56 11459.5

DLTND 78% 0.80 3717.5 – – – – – –

ABS 89% 0.93 792.0 75% 0.78 1696.8 77% 0.75 1256.3

K-Arm 83% 0.84 399.0 81% 0.81 166.1 88% 0.89 190.3

Ours (Without TA.) 87% 0.91 – 76% 0.79 – 89% 0.91 –

Ours (With TA.) 92% 0.93 326.3 83% 0.83 153.9 92% 0.92 166.5

“TA.” stands for the trigger analysis component.

4.2 Detection Performance on Local Patch Attacks

Detection Effectiveness on TrojAI. Table 2 reports the comparison results
of detecting models poisoned by polygon patch triggers on TrojAI Rounds 1–3.
For ABS, we run it on TrojAI Round 1 and models in Rounds 2–3 with the same
architectures as Round 1, since the authors only published their detection APIs
on Round 1 model architectures. For DLTND, it has to enumerate label pairs
and spends more than 12 h scanning one model with 15 labels, so we do not run
it on Rounds 2–3. And models are all considered universally trojaned on Rounds
2–3 by NC and TABOR for the same reason.

Results in Table 2 show that the detection effectiveness of our approach
greatly outperforms NC, TABOR, DLTND, and ABS on all rounds, with 31%,
26.3%, 14%, and 8.7% higher accuracy respectively. While K-Arm has the best
performance among the baseline techniques, the detection accuracy of our app-
roach is 9%, 2%, and 4% higher than K-Arm on the three rounds. And we achieve
better AUC in the meantime, which is calculated by changing the value of σ. We
also report the detection results without the trigger analysis component as an
ablation study in Table 2. Note that the trigger analysis benefits our approach
with 5%, 7%, 3% higher accuracy and 0.02, 0.04, 0.01 higher AUC on Rounds
1–3. On the whole, our approach achieves SOTA performance in terms of detec-
tion accuracy and AUC, indicating the effectiveness of our detection framework
and the significance of the trigger analysis component.

Detection Efficiency on TrojAI. We also report the elapsed time of baseline
techniques and our approach in Table 2. Without a pre-selection of potential
target/victim pairs, NC, TABOR, and DLTND have to reverse engineer for each
label. As a result, their inspecting time is 7–74 times as our approach, and can
hardly deal with label-specific attacks. As for ABS, it exhaustively searches thou-
sands of inner neurons to identify the compromised neurons, which also leads
to a high-cost process, and is 2, 11, and 7.5 times slower than our approach
on Rounds 1–3 respectively. K-arm uses a scheduling strategy based on the size
convergence rate of patch trigger and utilizes pre-screening to further acceler-
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Table 3. Experimental results on ImageNet.

Method Hidden trigger (10 Labels) Polygon patch (1000 Labels)

Acc AUC Time Acc AUC Time #Samples

ABS 90% 0.90 1707.6 100% 1.00 1038.3 50

K-Arm 90% 0.94 1555.2 90% 0.90 158.9 50

100% 1.00 178.5 1000

Ours 100% 1.00 246.6 100% 1.00 147.6 –

“#Samples” represents the number of images used for pre-selection. Note
that all approaches use the same 50 images for reverse engineering.

ate, so it achieves the highest efficiency among current techniques. However,
our approach is still 18%, 7.3%, and 12.5% faster than K-Arm on Rounds 1–3.
The results demonstrate that our static weight analysis precisely exposes the
target/victim labels, which significantly reduces the detection time.

Detection Results on ImageNet. Table 3 shows the results of detecting Hid-
den Trigger Attack [23] and polygon patch on ImageNet. NC, TABOR, and
DLTND could not finish these detection tasks due to the high computation com-
plexity for label-specific attacks and 1000 labels. For both attacks, we achieve
100% detection accuracy while maintaining the highest efficiency. For Hidden
Trigger Attack, K-Arm selects the wrong target labels of 2 poisoned models,
and thus fails for detection. ABS mistakes 2 poisoned models as benign due to
the wrong selection of compromised neurons. For polygon patch attacks, our
approach is 7 times faster than ABS. Besides, our pre-selection needs no input
images. K-Arm fails to identify the real target labels with the same clean sam-
ples used by ABS during pre-screening, thus could not detect trojaned models
correctly sometimes. It needs 20 times the amount of clean samples to achieve
a relatively stable detection accuracy. On the whole, the effectiveness of static
weight analysis benefits our approach with high accuracy and efficiency.

Visualization of Recovered Local Patch Triggers. Figure 5 presents the
original patch triggers used for poisoning and the reversed triggers with our
approach. For polygon patch on ImageNet, the trigger locates in a fixed position
(bottom right corner), and the reversed triggers for most images mainly concen-
trate in the same area. As for Hidden Trigger Attack [23] and patch triggers on
TrojAI, the original triggers are pasted at random locations. In this scenario,
our reversed triggers may appear at any part of the image and have roughly
consistent shape and color with the original triggers. In general, the reversed
triggers of our approach are visually similar to the original ones.

4.3 Detection Performance on Global Transformation Attacks

Detection Effectiveness and Efficiency. Table 4 shows the detection perfor-
mance of our approach on global transformation triggers, including Instagram
filters and WaNet [21]. We only compare with ABS because other techniques are
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Table 4. Global transformation triggers detection results.

Method TrojAI R2 Filter TrojAI R3 Filter CIFAR-10 Filter CIFAR-10 WaNet

Acc AUC Time Acc AUC Time Acc AUC Time Acc AUC Time

ABS 67% 0.66 1411.8 64% 0.66 1566.7 75% 0.70 1490.3 85% 0.85 213.1

Ours 80% 0.82 766.7 81% 0.87 462.9 95% 0.92 581.3 95% 0.95 136.2

Fig. 5. Visualization of the reversed triggers.

not applicable for handling global transformation triggers. For Instagram filters,
results show that the detection accuracy of our approach outperforms ABS by
13%, 17%, and 20% on Rounds 2–3 and CIFAR-10 respectively. We discover that
ABS well identifies trojaned models, but suffers from a high false positive rate.
This may be because ABS mistakenly selects the neurons that dominate output
results as compromised neurons in clean models. As for WaNet, our approach
reaches a detection accuracy of 95%. ABS fails to detect 3 trojaned models,
while our approach misses only one trojaned model due to the wrong selection
of target label. Besides, the elapsed time of our approach is 1.8, 3.4 times faster
than ABS on TrojAI Rounds 2–3, and 2.6, 1.6 times faster on CIFAR-10 Filter
and CIFAR-10 WaNet. Results show that our approach has the capability to
deal with global transformation triggers.

Visualization of Recovered Global Transformation Triggers. Figure 5
presents the original global transformation triggers and our reversed triggers.
For Instagram filter triggers, our reversed triggers are visually consistent with
the original ones. WaNet aims to design an imperceptible trigger to escape detec-
tion, so the poisoned images are extremely similar to the clean images. Our
reversed triggers for trojaned models look similar to the clean images as well
while achieving a 100% ASR. In contrast, for benign models, more modification
of clean images cannot incur such misclassification. It means that our approach
provides an effective defense against the WaNet attack. On the whole, our app-
roach can reconstruct global transformation triggers which are similar to the
original ones.
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(a) Impact of θ. (b) Impact of kd and ks. (c) Impact of kv.

Fig. 6. The impact on detection accuracy and average model inspection time of hyper-
parameters θ, kd, ks, and kv.

4.4 Advanced Attack Detection

TrojanNet [28] introduces the attack that implants multiple backdoors into a
DNN model. Images are misclassified to different target labels when stamped
with different triggers. Existing defenses are all based on the one-target assump-
tion. We experiment to illustrate the possibility of detecting multi-target back-
doors. We set the Divergence candidate parameter kd = 3. Results show that
our approach achieves 100% model-level and 98.1% label-level detection accu-
racy under the setting of MNIST dataset in Sect. 4.1, indicating the capability of
our approach to handling this attack and accurately pinpointing the real targets.

4.5 Hyper-parameter Sensitivity Analysis

We analyze the sensitivity of the following hyper-parameters in this section.
θ is used to distinguish between universal attacks and label-specific attacks.

When θ decreases, more models are considered universally trojaned. We measure
the detection accuracy and the average model inspection time under different θ
on 20 randomly sampled models from TrojAI Round 3. As shown in Fig. 6(a),
we achieve a stable accuracy when θ ranges from 0.1 to 0.15. The change of θ
has little effect on the average detection time.

kd and ks specify the number of target label candidates. And kv determines
the number of suspected victim labels when the model is judged to be label-
specifically attacked. Results are measured on the same models as θ. We change
kd and ks separately while fixing the other one. Figure 6 shows that the detection
accuracy will be affected when kd, ks, and kv are small, because our approach
may miss the real target or victim labels. As these hyper-parameters increase,
the accuracy remains stable, but the average detection time will increase.

The filtering thresholds are used to distinguish adversarial perturbations,
natural features, and malicious backdoors. We measure their impact on detec-
tion accuracy, False Positive Rate (FPR), and False Negative Rate (FNR) on
all models in TrojAI Round 3. Figure 7(a) shows that when the adversarial per-
turbation threshold is low, it is easy to consider the trojaned models as benign,
resulting in high FNR. As the threshold rises, the detection accuracy remains
stable in the range of 10% to 15%. Figure 7(b) shows that when the natural
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Fig. 7. The impact on detection accuracy, FPR, and FNR of (a) adversarial perturba-
tion threshold and (b) natural feature filtering threshold for trigger analysis; and (c)
attack success rate threshold for global transformation triggers.

Table 5. Experimental results of the adaptive attack.

δ 0 0.01 0.1 1 10 100

Div. Rank 1 6 5 4 6 5

Sum Rank 1 5 4 4 6 6

Clean Acc (%) 85.59 83.57 83.88 83.64 83.56 83.38

ASR (%) 97.51 95.93 95.77 95.73 95.95 95.25

feature filtering threshold increases in the range of 0.3 to 0.5, the FNR will also
be reduced and the detection accuracy rises. When it continues to increase from
0.6 to 0.7, the detection accuracy remains stable.

We set different values for the global transformation trigger success rate
threshold, and evaluate its impact on all models in TrojAI Round 3. As can
be seen from Fig. 7(c), when the success rate threshold rises, the FPR decreases
while FNR increases since more models are considered to be clean. On the whole,
the accuracy is stable and insensitive to this hyper-parameter.

5 Discussion

In this section, we discuss the possibility of an adaptive attack. The goal is to
deliberately evade our static weight analysis by masking the weight anomalies in
trojaned DNNs. This is accomplished by introducing weight regularization into
the loss in the backdoor training phase. The regularization minimizes the dis-
tance between the Divergence and Sum values of wt and the average Divergence
and Sum values of the rest weight vectors w as:

Lada = Ltroj + δ ‖D(wt) + S(wt) − E(D(w)) − E(S(w))‖1 (8)

where Ltroj denotes the cross entropy loss of standard poison training. The
regularization strength is controlled by the hyper-parameter δ. For each δ, we
train 10 models on CIFAR-10 and report the average results. The clean accuracy
and ASR are shown in Table 5. “Div. Rank” and “Sum Rank” represent the
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Divergence and Sum ranking of wt across all 10 weight vectors. Results show that
the regularization successfully perturbs the weights and suppresses the anomaly
existing in wt. However, the model accuracy on clean data and ASR significantly
degrade. Specifically, the accuracy of the model on clean data decreases by 2.02%
when δ = 0.01, indicating that the model performs less effectively and might have
been trojaned.

6 Related Work

Backdoor Defenses. In addition to the trigger reverse engineering based tech-
niques [9,19,31,32] mentioned above, we further discuss other techniques that
defend against backdoor attacks.

Some approaches inspect the poisoned dataset before the DNN training stage.
Activation Clustering [4] analyzes the activation values of the training data to
determine whether there are maliciously inserted poisonous samples. Spectral
Signatures [30] detects the spectrum of feature representations for each input
data. These methods require full access to the training set, which is impractical
when the training process is outsourced.

SentiNet [5] tries to find triggers by identifying the salient parts of the images.
Strip [7] assumes that when the poisoned image is superimposed over a set of ran-
dom images, the model can still output a confident prediction. These techniques
are based on the assumption that the backdoor trigger leads to misclassifica-
tion for all classes, which may not hold when encountering label-specific attacks.
Besides, we focus on the scenario where the real trigger will not be present.

Several advanced defenses detect backdoors by training on a large number
of clean and trojaned models. ULP [14] trains a classifier on different output
logits for clean and trojaned models when receiving universal litmus patterns.
MNTD [34] trains a meta-classifier to predict whether a model is trojaned. Huang
et al. [11] characterize the one-pixel signature representation to detect trojaned
CNN models. These training-based defenses require high computational costs.
Moreover, their generalizability across datasets is questionable.

7 Conclusion

We make a key observation that the weights connected to the backdoor target
labels tend to have abnormal distributions and larger magnitudes. Based on
this observation, we propose an efficient and scalable DNN backdoor detection
framework guided by static weight analysis. The static weight analysis captures
abnormal weights to expose potential target/victim pairs, making our approach
accurate and efficient. Moreover, the anomaly is prevalent in models trojaned
by different attacks, thus our approach is capable of detecting both local patch
attacks and global transformation attacks. Finally, we analyze the attributes
of recovered triggers and activated neuron distributions of models to suppress
false positives. Evaluation results show that the effectiveness and efficiency of our
approach outperform state-of-the-art techniques on various widely-used datasets.
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Abstract. Physical adversarial attacks in object detection have become
an attractive topic. Many works have proposed adversarial patches or
camouflage to perform successful attacks in the real world, but all of
these methods have drawbacks, especially for 3D humans. One is that
the camouflage-based method is not dynamic or mimetic enough. That
is, the adversarial texture is not rendered in conjunction with the back-
ground features of the target, which somehow violates the definition of
adversarial examples; the other is that there is no detailing of non-rigid
physical surfaces, such that the rendered textures are not robust and
very rough in 3D scenarios. In this paper, we propose the Mimic Octopus
Attack (MOA) to overcome the above gap, a novel method for generat-
ing a mimetic and robust physical adversarial texture to target objects
to camouflage them against detectors with Multi-View and Multi-Scene.
To achieve joint optimization, it utilizes the combined iterative training
of mimetic style loss, adversarial loss, and human eye intuition. Experi-
ments in specific scenarios of CARLA, which is generally recognized as an
alternative to physical domains, demonstrate its advanced performance,
resulting in a 67.62% decrease in mAP@0.5 for the YOLO-V5 detector
compared to normal, an average increase of 4.14% compared to the
state-of-the-art attacks and an average ASR of up to 85.28%. Besides,
the robustness in attacking diverse populations and detectors of MOA
proves its outstanding transferability.

Keywords: Adversarial attack · Mimetic camouflage · 3D humans

1 Introduction

Deep Neural Networks (DNN) have brought significant advanced changes to
human society, especially for computer vision tasks [19,30]. However, Szegedy
et al. [36] proposed Adversarial Examples (AE) in 2014 that a tiny and imper-
ceptible adversarial perturbation or noise of the input can make the output of
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DNN seriously wrong. This leads to untrustworthy DNN and even threaten peo-
ple’s life and property safety. After many fruitful attacks [4,11,26] in the digital
domain, attacks in the physical domain also started to rise with the successful
experimentation of naïve direct migration attacks by Kurakin et al. [20] in 2016
and the successful patch-like attack on commercial face recognition systems by
printing AE onto glasses by Sharif et al. [33]. In this paper, we focus more on the
latter as it is a more direct and significant threat to machine learning systems
in the real world.

Fig. 1. Attack for 3D humans effect concept demo comparison. (a) Normal without
adversarial texture method. (b) Use classic AdvPatch [3] method. (c) Use robust Adv-
Texture [14] method. (d) Use Naturalistic [13] method. (e) Use FCA [39] method. (f)
Use our Mimic Octopus Attack (MOA) method.

The impact of lighting, view, scene, occlusion, and other factors complicates
the physical domain attack. To generate AE that is more effective in the real
world, recent works [15,35,39–41,43,44,47] based on the 3D attack method EOT
[1] and AdvPatch [37], have been done with the help of neural renderer [18] and
3D modeling software (e.g., Unreal Engine, CARLA [6], Blender). Although the
existing state-of-the-art methods consider the robustness of the attack in 3D
multiple views (Multi-View) or multiple scenes (Multi-Scene), it still has two
issues, especially in the subfield of human detection.

The random AdvPatch [37] or robust AdvTexture [14] overly pursues the
success rate and almost always generates a conspicuous and fancy adversarial
patch, as shown in Fig 1(b)(c), which somehow reduces the tiny and undetectable
characteristics of AE. Despite the recent emergence of works on camouflage-
based methods [35,39], including the classic patch attack and patch-like attack
based on a full-coverage painted called poster attack.

Unfortunately, firstly, they almost all take rigid objects such as vehicles as
the primary attack target, which is challenging to apply to 3D humans. Stiff
patches do not fit 3D targets well due to folds, posture, and other 3D spatial
factors, resulting in significantly lower attack success rates. Secondly, even worse,
as shown in Fig 1(d)(e), these camouflage-based AE are still recognizable to the
human eye and are not particularly robust. This greatly impairs concealment.

Motivated by the challenge faced in prior works and inspired by the camou-
flage behavior of animals in nature [29] and Fan et al. [8] camouflaged object
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detection, we propose a novel poster attack method called Mimic Octopus Attack
(MOA), which generates textures similar to the environmental background, mak-
ing the AE insignificant and thus achieving dynamic mimetic camouflage. Our
extensive experiments show that in a given scene, it is difficult to be recognized
by humans even if they are concentrating due to visual illusion, and demon-
strate its advanced performance on Multi-View, Multi-Scene, diverse popula-
tions, and different object detectors. An average increase of 4.14% compared
to the state-of-the-art attack. The demo and code of MOA will be availabe at:
https://adv-moa.github.io/. In summary, our main contributions can be sum-
marized as follows.

• We present Mimic Octopus Attack (MOA), a method for generating mimetic
and robust physical adversarial camouflage for 3D Humans. It combines the
advantages of our novel flexible and dynamic textures that mimic the back-
ground of the attack target with a realistic 3D rendering engine.

• To the best of our knowledge, a first end-to-end physical adversarial mimetic
attack was proposed to generate a robust camouflage to confuse both DNN
and humans.

• Extensive experiments show that MOA outperforms existing methods and
is robustly applicable to Multi-View, Multi-Scene, diverse populations, and
object detectors. Moreover, our camouflage is optimized for non-rigid factors
(e.g., folds) and can be more effective in the real world, rendering it unrecog-
nizable to humans.

2 Related Work

2.1 DNN for Human Detection

The DNN-based generic object detectors can be divided into two main types
depending on learning high-level features from the data (such as images or 3D
object parameters of humans). One class is represented by R-CNN [10] and its
variants [12,32]. It is a two-stage process that follows the traditional object detec-
tion pipeline, giving a coarse scan of the whole scenario and generating regional
proposals first, then classifying each proposal into different object categories.
The other class is represented by YOLO [30], its variants [2,17,31,38], and SSD
[22]. It is a one-stage process that regards object detection as a regression or
classification problem, mapping straightly from image pixels to bounding box
coordinates and class probabilities.

2.2 Physical Adversarial Attack

Kurakin et al. [20] first experimentally demonstrated in 2016 that an attack
method that directly migrates the digital domain on the classifier to the physical
domain can still attack successfully. Lu et al. [24] followed this approach to attack
in 2017. The main processes are to print the whole AE and post it onto the
stop sign, which is an early patch attack. However, most real-world situations

https://adv-moa.github.io/
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require attacks against detectors mentioned above in Sect. 2.1 and 3D scenes.
Moreover, this is also expected to overcome the problem of complex issues (e.g.,
illumination change, occlusion, distance perspective, different heights, human
posture, real-time computation). Athalye et al. proposed EOT [1] and generated
Multi-View robust AE by 3D printing. Eykholt et al. [34] performed the first
physical adversarial attack on the detector in 2018.

Based on the above work, Thys et al. [37] present a patch attack method in
2019 that successfully hides a person from YOLO-V2 [31]. However, there are two
problems with this method. First, the method of using a 2D attack and then
printing does not work well in 3D environments with Multi-View and Multi-
Scene, as confirmed by an analysis by Lu et al. [25] and another experiment
on YouTube [5]. Second, AE is visually very splendid and deviates from the
original definition of AE as tiny and imperceptible, whether for local or global
perturbations. The above two points have developed methods of attack using 3D
rendering (Sect. 2.3) and camouflage-based attack (Sect. 2.4).

2.3 3D Rendering for AE

Xiao et al. [43] first used the neural renderer [18] to generate AE for 3D objects.
The neural renderer is a differentiable renderer for 2D images to 3D mesh. By
initializing and iteratively training with different Multi-View parameters (i.e.,
distance, angles, heights), the render could generate the 3D texture mesh to
attack. The subsequent works [27,40,44] utilize this method to render adversarial
camouflage, especially onto the vehicle surface. Further, Zhang et al. [47], Wu
et al. [41], and Wang et al. [39] utilized the CARLA [6] simulator to render an
adversarial patch for 3D objects, which is non-differentiable.

2.4 Camouflage-Based AE

Inspired by camouflage clothes, Zhang et al. [47] proposed a camouflage attack
to generate AE for vehicles by training a generative adversarial network. Follow-
ing that, many works [35,39–41,48] presented a more robust attack adversarial
camouflage method. However, this camouflage is more of a camouflage clothing
effect, which is very weird and still perceptible to the human eye. Hu et al. [13]
and Hu et al. [14] proposed an attack method that uses common objects for
naturalized camouflage. Yin et al. [45] propose a natural camouflage attack for
face recognition with makeup effects. Unfortunately, their camouflage effect does
not consider the background of the target; thus, we achieve mimetic camouflage.

3 Method

In this section, we first introduce the threat model and formally defines the prob-
lem. Then we describe the proposed end-to-end physical camouflage adversarial
attack in detail, including method architecture and the critical loss functions for
rendering mimetic textures to tackle the abovementioned issues.
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3.1 Threat Model

The attack described in this paper is based on the adversary’s inability to con-
trol or influence the data processing process in a machine learning system or
cyber-physical system (CPS), which differs from the threat model of classical
digital domain attacks. It also cannot control or influence the data input side of
sensors(e.g., camera, radar) and can only change the target object itself (e.g.,
human body, face, vehicle) to attack. Thus, methods such as AdvLB [7] that use
lasers to perform external attacks at the input are out of the scope of this paper.

3.2 Problem Definition

The ultimate goal of our attack method is to achieve a mimetic attack on generic
human detection DNN. It precisely consists of two aspects. One is to make the
detector incorrectly or fail to detect the human target, which contains 3D factors
such as multi-view, multiple scenes, human pose, and clothing folds. The second
is also subjectively imperceptible to the human eye.

We statute the problem as a joint optimization problem and define it formally
as follows. Let x as the input (e.g., Multi-View human image) of DNN, F as the
detector function, R as the 3D render, and G as the fold generation network.
When a perturbation δ is added to x and generates xadv , that satisfies F(x) �= y.
The notion y here actually only represents the human label and T ∈ R

n×3 as
the original 3D object. To generate the mimetic patches, the features are first
extracted from the background map of x as the initial value of δ and generate
the naïve xadv as xinit . Suppose L(F(xinit), y) is a loss function applied to F
that can satisfy the above inequality. Then we can generate the final adversarial
mimetic texture x

(n)
adv by solving Eq. 1.

x
(n)
adv = argmax

xadv

(F(R(G(T,HEI(xinit), θcam); θadv); θf ),y) (1)

3.3 MOA Architecture

The overall architecture of MOA is illustrated in Fig. 2. Our goal is to generate a
robust and mimetic camouflage texture through the backpropagation of loss and
Human Eye Intuition (HEI) (Sect. 4.1). The process of generating AE is divided
into three phases: extract Multi-View mimetic features, mesh fold 3D face, and
render the final adversarial texture. We first use a generic segmentation network
to mask the background of targets, then extract features comprehensively (with
the Multi-View (Fig. 3) and Multi-Scene (Fig. 5) overlay). Especially to balance
performance by using cross-overlay between images before extracting features on
the rendered images as the initialized base texture. Then we optimize the mimetic
camouflage by the loss function. Second, we masked the position of AE in the 3D
object and folded it through the shape-context matching network. Finally, we
render the texture onto the 3D object, then perform the adversarial attack. We
control the loss function threshold and the concealment of human eye intuitive
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Fig. 2. MOA architecture for generating robust and mimetic adversarial camouflage
texture. The area surrounded by the blue and red dashed lines indicate mimetic fea-
ture extraction and adversarial texture generation, respectively. The gray dotted line
represents the return direction of the gradient descent. (Color figure online)

judgment to update the final AE iteratively. Algorithm 1 also summarizes the
overall extract mimetic feature and training scheme.

The loss function here secures the entire attack architecture smoothly. We
focus on describing two primary loss functions, the Mimetic Camouflage Loss
that makes the AE texture possess the features of the target Multi-View back-
ground, and the Adversarial Loss that makes the AE evade the detector.

Fig. 3. This top view schematic depicts the camera setup in Multi-View. The � repre-
sents a person, the blue dots refer to the camera locations and the yellow dashed line
describes the direction of the person’s forward movement. The triad (X , Y, Z) denotes
the horizontal distance, offset, and vertical height respectively.
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3.4 Loss Function

As depicted in Fig. 2, we mainly generate mimetic AE by two essential loss
functions: Mimetic Camouflage Loss and Adversarial Loss. We split the mimetic
camouflage loss into two pieces (Style loss, Mimetic loss). To transfer the style
of a reference image onto input to produce the target, we use Lstyle to coarse-
grained reduce the similarity first. Then our intention behind Lmimetic is that
fine-grained detail adjustment. Specifically, it includes filling the foreground
object regions with the content of the background image to remove features
that allow fast perception from feature search. We perform white-box attacks on
YOLO-V5 [17], mainly YOLO-V5s. It uses CSPDarknet to optimize the speed
of completing classification and regression in a single stage. Therefore, it is nec-
essary to concurrently attack both regression and classification. We split the
adversarial loss into three pieces (IoU loss, No-Person loss, and Objectness loss).
To make the detector does not detect the person correctly, we first use Liou

adv to
minimize the Intersection over Union (IoU) between the prediction and truth
bbox. Second, we use Lnpl

adv to reduce the select probability of the target. Then
due to reducing the objections (especially for person) score indicates whether the
prediction bbox contains a person by minimizing its confidence, this loss denotes
as Lobj

adv. To sum up, our final loss is constructed as

Ltotal = θcamLcam + θiouLiou
adv + θnplLnpl

adv + θobjLobj
adv (2)

where θcam, θiou, θobj , θnpl are weights for the corresponding losses. Below we
describe each loss term in detail.

Mimetic Camouflage Loss. Inspired by the neural style transfer method
[9,21,46], we formulate the loss function to generate the desired camouflage
texture xinit, which rendered from extracts background image overlay Ib features
and folded 3D mesh face If . Formally, the loss function is defined as

Lcam = Lstyle + μLmimetic (3)

where Lstyle and Lmimetic are the style loss and mimetic loss, μ is a weight that
balances them, these losses are separately defined as

Lstyle =
L∑

�=1

α�

2N2
�

N�∑

i=1

N�∑

j=1

(
F �

ij (If ) − F �
ij (Ib)

)2
(4)

L�
mimetic =

β�

2N�D�

N�∑

i=1

D�∑

j=1

(
(1 − A) � (

G�
ij (xinit) − G�

ij (Ib)
))2

(5)

where L as the total number of convolutional layers in the network and � rep-
resents the �-th layer. N� refers to the number of filters, and D� is the size of
vectorized feature map produced by each filter. F � ∈ R

N�×N� is a Gram Matrix
that describes the feature correlations, where F �

ij =
∑

k G�
ikG�

jk is the inner
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product between feature maps. G� ∈ R
N�×D� is a feature matrix that stores the

filter responses, and G�
ij is the activation of the i-th filter at position j. α� and β�

are weights controlling the influence of each layer. The � denotes the pixel-wise
vector and matrix multiplication. A is a normalized attention map of the target
object in It, which indicates the significance of different regions in identifying
the object.

Adversarial Loss

• IoU loss. Inspired by FCA [39], we use IoU loss to minimize the area of
overlap between each truth bbox of Multi-View and the predicted result of
the rendered adversarial images to the mean value. In this way, the target
object will be missed by the detector because the IoU is below the threshold.
The loss is formulated as

Liou
adv =

N∑

i=1

M∑

j=1

IoU(yj
adv, y

j
t ) (6)

where N denotes the number of perspectives for Multi-View, M denotes the
multi-scale parameter set when YOLO-V5 prediction, yj

adv and yj
t is the j-th

scale prediction result, and the truth bbox of the target.
• No-Person loss. We follow the work [39] and choose this loss to reduce

the classification probability of the target class. Similarly, we have in the N
Multi-View case to select the j-th scale probability of the target class which
is no a person in the detection result. The loss can be expressed as

Lnpl
adv =

N∑

i=1

M∑

j=1

yj
class �=person (7)

• Objectness loss. We follow the classic method [37] and also use the confi-
dence score of the target as this loss, which iteratively determines whether
the detection box contains the object.

3.5 Special Optimization for Human

Clothes Folds. Previous works [35,39–41,47] paint the adversarial camouflage
on rigid objects (e.g., vehicles) through 2D-to-3D render, which makes it difficult
to get convergence and smooth details during training AE for 3D humans. In
particular, the final generated texture is so stiff that mesh collision bugs will
happen if used directly on a 3D human mask. This AE is unusable for 3D printing
and attacks physically. To solve this problem, we refer to 3D pose works [16,
23,28] and introduce a simple but efficient approach that uses shape-context
matching to optimize the folds of mimetic textures. As shown in Fig. 2, we make
the flods by non-rigid aligning 3D garment fitting to the original 3D object. We
use the parametric garment model. Given a garment template T ∈ R

n×3 and
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Algorithm 1 : Generate camouflage using Mimic Octopus Attack (MOA)
Input: Multi-View training image It, Original 3D object T(�β, �θ), neural renderer
R, object detector F , segmentation network U , shape-context matching network G,
describe adversarial face M
Output: adversarial mimetic texture xadv

Phase 1: Extract Multi-View feature and Mesh fold face
1: for the category of people number of It do
2: I ′

m ← U(I ′
t)

3: I ′
b ← ∏

I ′
m

4: TG ← G(I T (�β, �θ) + M)
5: x′

init ← R((TG, I′
b); θcam)

6: if HEI < 0 then
7: return
8: end if
9: calculate Lcam by Eq. 3

10: end for
11: xinit ← ∑

x′
init

Phase 2: Render final attack texture
1: Initial noise texture with xinit

2: for number of training iterations do
3: xadv ← R((TG,xinit); θadv)
4: b ← F(xinit; θf )
5: calculate Ltotal by Eq. 2
6: update xadv with gradient backpropagation
7: end for

shape �β and pose �θ of the original 3D object, then we can articulate a folding
garment using SMPL [23] as

TG(�β, �θ,M ) = I T (�β, �θ) +M (8)

where donates I as a fold deformation mapping matrix described in [16], and
M ∈ R

m×3 as the mask of original 3D object which we manually set up through
modelling software such as 3ds MAX.

Diversity. We also consider the diversity to make the final AE valid in most
situations. We intentionally uniformly distributed the datasets when construct-
ing the Multi-View images of the five categories of people, as shown in Fig. 4.
This approach makes our AE more robust for different people, and the relevant
evaluation results can be obtained in Table 4. Although it is somewhat naïve, it
is effective.
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Fig. 4. Multi-View images of five categories of people are uniformly distributed in the
training datasets. From left to right are Man (Fat), Man (Thin), Woman (Fat), Woman
(Thin), and Kid.

4 Evaluation

4.1 Experimental Setup

Hardware and Datasets. The AE is generated on the server, equipped with
two Intel Xeon E5-2678 v3 CPU, NVIDIA A100 PCI-E 40GB, and 96GB DDR4
ECC memory, and we utilize PyTorch for implementing MOA. CARLA [6] simu-
lator based on Unreal Engine 4 and relatively mature; previous works mentioned
in Sect. 2.3 are based on it for physical emulator experiments. CARLA also sup-
ports custom 3D models and textures. We utilize its scenario, pedestrian, and
3D rendering configurations provided in version 0.9.13 to construct the datasets
and evaluate the MOA performance in CARLA.

Evaluation Metrics. We want to generate AE that is effective in attacking
machine learning systems and human eye intuition. Thus, the evaluation met-
rics involve false recognition against detectors and imperceptibility evaluation
against intuition. The following lists the metrics.

– Mean Average Precision (mAP). We use the mAP@0.5, which means
when IOUthreshold = 0.5. It is a commonly used metric for evaluating object
detection models.

– Confidence score (Conf). Our MOA method can lower the confidence
score of the target by mimetic features, so we also introduce the Conf.

– Attack Success Rate (ASR). We follow Wu et al. [42] summarize evalua-
tion metric, which is defined as the percentage of the target detected before
perturbation and not detected or falsely detected after perturbation.

– Human Eye Intuition (HEI). It is important to note that human evalua-
tion is subjective and influenced by psychology, visual illusion, etc. We have
performed general, widespread measurements as much as possible. The results
in this section are from data from 30 subjects. Furthermore, this evaluation
metric is original to this paper.
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4.2 Experiments

Comparison of Attacks in Digital Domain. We compare the proposed
attacks with several classic and recent advanced adversarial camouflage attacks,
including AdvPatch [3], AdvTexture [14], Naturalistic [13], and FCA [39]. The
comparison results are listed in Table 1. Note that the target model is all YOLO-
V5 [17], and the experiments are conducted in the CARLA simulator. It can
be concluded that our MOA significantly outperforms other methods, both in
terms of mAP or Conf metrics. In addition, the subjective HEI metric also
shows that MOA is more imperceptible than other methods. We got an average
increase of 4.14% compared to the state-of-the-art attacks FCA and compared
to earlier methods, an average of 30.38% increased the attack strength. Besides,
our approach is imperceptible for the first time in our HEI metric.

Table 1. The comparison result of adversarial attacks in the digital space. The evalu-
ation of HEI can be referred to Fig. 1.

Method Attack type mAP@0.5 Conf HEI

Normal N/A 95.55 93.04 N/A
AdvPatch [37] 2D patch 74.45 73.84 Conspicuous
AdvTexture [14] 2D patch 51.01 50.69 Conspicuous
Naturalistic [13] 2D poster 49.47 48.94 Recognizable
FCA [39] 3D poster 32.07 30.85 Observable
MOA (Ours) 3D poster 27.93 26.10 Imperceptible

Fig. 5. We classify scenes and the weather in constructing of the datasets. Scenes
include street, forest park, and near room. Weather includes clean noon and rain sunset.
The evaluation of this part is also shown in Table 2.
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Multi-scene and Multi-view Adversarial Attack. We perform a compar-
ative experiment on Multi-Scene and Multi-View (8 directions) to evaluate our
performance on CARLA simulator instead of in the real world. And every item
in Table 2 is conducted on different people mentioned in Sect. 3.5 total of 3600
test images. We obtained an average of 85.28% ASR for the highest mimetic
texture in the forest park scene (Fig. 6).

Table 2. The ASR(%) performance of MOA for multi-view of three classic scenes.

Scene View
Front Right-Front Right Right-Back Back Left-Back Left Left-Front Average

Street 87.5 85.0 78.2 83.6 87.3 84.8 77.3 82.1 83.23
Forest park 90.2 88.9 82.8 89.1 88.6 82.1 79.8 80.7 85.28
Near room 83.4 80.1 69.8 82.2 82.9 81.1 70.4 81.7 78.95

Fig. 6. Adversarial camouflage of the human Man (Thin) in multi-view (In a forest
park at clear noon).

Transferability. To verify the effectiveness of our method on other DNN mod-
els, transferable attacks are performed on popular general detectors such as
YOLO and its variants, SSD, and R-CNN variants based on the above setup.
From the Table 3, we can observe the ability to effectively perform transferability
attacks. Moreover, an average of 4%–8% improvement on most detectors com-
pared to FCA. However, we also notice that our MOA is not always better than
others. The mAP@0.5 (%) on YOLO-V7, SSD, and Faster R-CNN degrades com-
pared to FCA. We analyzed the score of the normal situation and our mimetic
textures themselves. The reason may be attributed to the distinct architectural
design of the detectors, some training images are easily identifiable on these
models, and they are powerless to improve transferability.
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Table 3. The mAP@0.5 (%) comparison of camouflage-based attack strength between
detectors in CARLA simulator. The scene and other setup are the same as above.

Detector Method
Normal Naturalistic [13] FCA [39] MOA (ours)

YOLO-V5 [17] 95.55 49.47 32.07 25.93
YOLO-V7 [38] 98.31 75.49 54.78 68.04

YOLO-V4 [2] 94.32 22.63 28.91 25.06

SSD [22] 84.19 40.17 29.17 33.17
Faster R-CNN [32] 89.42 42.47 24.31 28.02

Mask R-CNN [12] 92.78 43.99 35.17 31.11

Table 4. The mAP@0.5 (%) and Conf (%) performance for camouflage objects for
different people and weather.

Diversity Weather Method mAP@0.5 Conf

Man (Fat) Clear noon Normal 94.41 94.39
MOA (ours) 27.32 23.98

Rain sunset Normal 92.23 92.18
MOA (ours) 22.24 18.30

Man (Thin) Clear noon Normal 95.55 93.04
MOA (ours) 27.93 26.10

Rain sunset Normal 95.04 94.72
MOA (ours) 23.22 19.87

Woman (Fat) Clear noon Normal 95.02 94.76
MOA (ours) 30.12 30.10

Rain sunset Normal 93.88 92.99
MOA (ours) 28.32 27.79

Woman (Thin) Clear noon Normal 94.13 93.81
MOA (ours) 25.88 24.91

Rain sunset Normal 91.83 91.15
MOA (ours) 29.02 25.00

Kid Clear noon Normal 95.66 90.32
MOA (ours) 29.14 27.87

Rain sunset Normal 89.26 83.07
MOA (ours) 28.34 24.09

Average Clear noon Normal 94.95 93.26
MOA (ours) 28.08 26.59

Rain sunset Normal 92.45 90.82
MOA (ours) 26.23 23.01

Diversity Adversarial Attack. The details of the performance for each
diverse situation can be seen in Tab. 4, which implies that our camouflaged tex-
tures make the mAP@0.5 score of YOLO-V5 detector much lower, on average
by 66.87% and 66.22%, respectively, whether it is clear noon or rain sunset, and
in all five types of people. This further highlights the robustness of our method
to attack.
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5 Conclusion

This paper proposed MOA, an innovative physical adversarial attack method
for generating mimetic and robust textures for target objects, especially for 3D
humans. In particular, we train AE by jointly optimizing iterations of mimetic
loss, adversarial loss, and human eye intuition, further enhancing the dynamic
concealment of previous camouflage-based methods. In addition, the gap of
attack in human detection is also reduced by non-rigid surface 3D rendering.
Extensive experiments included a comparison with previous work in the CARLA
simulator, which demonstrated the outstanding performance of MOA in Multi-
View and Multi-Scene, and transferability to state-of-the-art detectors. Mean-
while, a better method of using 3D avatar mesh to render virtual humans more
closely could further help enhance the quality and realism of the generated tex-
tures. This will be explored in future work.

Acknowledgements. We thank the reviewers for their insightful feedback. This work
was supported in part by National Natural Science Foundation of China under Grant
No. 62272459.

References

1. Athalye, A., Engstrom, L., Ilyas, A., Kwok, K.: Synthesizing robust adversarial
examples. In: International Conference on Machine Learning, pp. 284–293. PMLR
(2018)

2. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy
of object detection. arXiv preprint arXiv:2004.10934 (2020)

3. Brown, T.B., Mané, D., Roy, A., Abadi, M., Gilmer, J.: Adversarial patch. arXiv
preprint arXiv:1712.09665 (2017)

4. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

5. CCTVnerd: Can you trick CCTV AI using colorful patterns? (2019). https://youtu.
be/fTqhsixhOaM

6. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open
urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot
Learning, pp. 1–16 (2017)

7. Duan, R., et al.: Adversarial laser beam: Effective physical-world attack to DNNs
in a blink. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16062–16071 (2021)

8. Fan, D.P., Ji, G.P., Cheng, M.M., Shao, L.: Concealed object detection. IEEE
Trans. Pattern Anal. Mach. Intell. (2021)

9. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional
neural networks. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2414–2423 (2016)

10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

11. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/1712.09665
https://youtu.be/fTqhsixhOaM
https://youtu.be/fTqhsixhOaM
http://arxiv.org/abs/1412.6572


MOA 443

12. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

13. Hu, Y.C.T., Kung, B.H., Tan, D.S., Chen, J.C., Hua, K.L., Cheng, W.H.: Nat-
uralistic physical adversarial patch for object detectors. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 7848–7857 (2021)

14. Hu, Z., Huang, S., Zhu, X., Sun, F., Zhang, B., Hu, X.: Adversarial texture for
fooling person detectors in the physical world. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 13307–13316 (2022)

15. Huang, L., et al.: Universal physical camouflage attacks on object detectors. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 720–729 (2020)

16. Huang, Z., Xu, Y., Lassner, C., Li, H., Tung, T.: ARCH: animatable reconstruction
of clothed humans. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3093–3102 (2020)

17. Jocher, G., et al.: Ultralytics/YOLOv5: v6.2 - YOLOv5 classification models, Apple
M1, reproducibility, ClearML and Deci.ai integrations (2022). https://doi.org/10.
5281/zenodo.7002879

18. Kato, H., Ushiku, Y., Harada, T.: Neural 3D mesh renderer. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 3907–3916
(2018)

19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. Commun. ACM 60(6), 84–90 (2017)

20. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical
world. In: Artificial Intelligence Safety and Security, pp. 99–112. Chapman and
Hall/CRC (2018)

21. Li, Y., Zhai, W., Cao, Y., Zha, Z.J.: Location-free camouflage generation network.
arXiv preprint arXiv:2203.09845 (2022)

22. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0_2

23. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned
multi-person linear model. ACM Trans. Graph. (2015)

24. Lu, J., Sibai, H., Fabry, E.: Adversarial examples that fool detectors. arXiv preprint
arXiv:1712.02494 (2017)

25. Lu, J., Sibai, H., Fabry, E., Forsyth, D.: No need to worry about adversarial exam-
ples in object detection in autonomous vehicles. arXiv preprint arXiv:1707.03501
(2017)

26. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

27. Maesumi, A., Zhu, M., Wang, Y., Chen, T., Wang, Z., Bajaj, C.: Learning
transferable 3D adversarial cloaks for deep trained detectors. arXiv preprint
arXiv:2104.11101 (2021)

28. Mir, A., Alldieck, T., Pons-Moll, G.: Learning to transfer texture from clothing
images to 3D humans. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7023–7034 (2020)

29. Poulton, E.: Adaptive coloration in animals. Nature 146(3692), 144–145 (1940)
30. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,

real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

https://doi.org/10.5281/zenodo.7002879
https://doi.org/10.5281/zenodo.7002879
http://arxiv.org/abs/2203.09845
https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1712.02494
http://arxiv.org/abs/1707.03501
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/2104.11101


444 J. Li et al.

31. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271
(2017)

32. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

33. Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: Accessorize to a crime: real
and stealthy attacks on state-of-the-art face recognition. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pp.
1528–1540 (2016)

34. Song, D., et al.: Physical adversarial examples for object detectors. In: 12th
USENIX Workshop on Offensive Technologies (WOOT 2018) (2018)

35. Suryanto, N., et al.: DTA: physical camouflage attacks using differentiable trans-
formation network. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 15305–15314 (2022)

36. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199 (2013)

37. Thys, S., Van Ranst, W., Goedemé, T.: Fooling automated surveillance cameras:
adversarial patches to attack person detection. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (2019)

38. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors. arXiv preprint
arXiv:2207.02696 (2022)

39. Wang, D., et al.: FCA: learning a 3D full-coverage vehicle camouflage for multi-view
physical adversarial attack. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, pp. 2414–2422 (2022)

40. Wang, J., Liu, A., Yin, Z., Liu, S., Tang, S., Liu, X.: Dual attention suppression
attack: generate adversarial camouflage in physical world. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8565–
8574 (2021)

41. Wu, T., Ning, X., Li, W., Huang, R., Yang, H., Wang, Y.: Physical adversarial
attack on vehicle detector in the Carla simulator. arXiv preprint arXiv:2007.16118
(2020)

42. Wu, Z., Lim, S.-N., Davis, L.S., Goldstein, T.: Making an invisibility cloak: real
world adversarial attacks on object detectors. In: Vedaldi, A., Bischof, H., Brox,
T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 1–17. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58548-8_1

43. Xiao, C., Yang, D., Li, B., Deng, J., Liu, M.: MeshAdv: adversarial meshes for
visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6898–6907 (2019)

44. Yang, K., Lin, X.Y., Sun, Y., Ho, T.Y., Jin, Y.: 3D-Adv: black-box adversarial
attacks against deep learning models through 3D sensors. In: 2021 58th ACM/IEEE
Design Automation Conference (DAC), pp. 547–552. IEEE (2021)

45. Yin, B., et al.: Adv-makeup: a new imperceptible and transferable attack on face
recognition. arXiv preprint arXiv:2105.03162 (2021)

46. Zhang, Q., Yin, G., Nie, Y., Zheng, W.S.: Deep camouflage images. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12845–12852 (2020)

47. Zhang, Y., Foroosh, H., David, P., Gong, B.: CAMOU: learning physical vehicle
camouflages to adversarially attack detectors in the wild. In: International Confer-
ence on Learning Representations (2018)

48. Zhu, Z., Su, H., Liu, C., Xiang, W., Zheng, S.: You cannot easily catch me: a low-
detectable adversarial patch for object detectors. arXiv preprint arXiv:2109.15177
(2021)

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/2207.02696
http://arxiv.org/abs/2007.16118
https://doi.org/10.1007/978-3-030-58548-8_1
http://arxiv.org/abs/2105.03162
http://arxiv.org/abs/2109.15177


Lattices



Subfield Attacks on HSVP in Ideal
Lattices

Zhili Dong1,2, Shixin Tian1,2, Kunpeng Wang1,2(B), and Chang Lv1

1 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, People’s Republic of China

wangkunpeng@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Science,

Beijing 100093, People’s Republic of China

Abstract. In this paper, we propose two subfield attacks on HSVP
in ideal lattices in number fields (not necessarily Galois fields), both
under the canonical embedding and the coefficient embedding. These
two attacks use the intersection method and the norm method, respec-
tively. In addition,the reduction steps in our attacks are all in polynomial
time. By contrast, the former method reduces HSVP in ideal lattices to
HSVP in ideal lattices in subfields with larger approximate factor than
the latter one, while the latter method has a wider range of applica-
tions. Moreover, in Galois number fields, the intersection method per-
forms better in attacking prime ideals with small decomposition fields,
whilst the norm method works better in prime ideals with large decom-
position fields. Besides, ideals with small norms are vulnerable by both
of these two attacks.

Keywords: Ideal-lattices · Hermite-SVP · Subfield attacks

1 Introduction

In [19], the Learning With Errors problem (LWE) was introduced by Regev.
After that, all of lattice-based cryptographic algorithms are designed based on
LWE. In 2009, Stehlé, Steinfeld, Tanaka and Xagawa [22] studied Ideal-LWE
in power-of-two cyclotomic fields. In the same fields, Lyubashevsky, Peikert
and Regev [12] presented a reduction from search Ring-LWE to the decision
variant. Ideal-LWE and Ring-LWE improve the efficiency of LWE. To support
the security of encryption algorithms based on Ring-LWE, the authors [12,22]
gave polynomial-time quantum reductions from the approximate shortest vector
problem (ASVP) to Ring-LWE in cyclotomic fields. Later, Peikert, Regev and
Stephens-Davidowitz [18] presented a quantum reduction from ASVP to Ring-
LWE in all number fields. Moreover, Lyubashevsky et al. [12] proved that, under
the assumption that approximating the shortest vector problems (SVP) in the
worst-case on ideal lattices are hard for polynomial-time quantum algorithms,
then the Ring-LWE distribution is pseudo-random. These results imply that the
underlying hard problem of Ring-LWE is ASVP.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Y. Deng and M. Yung (Eds.): Inscrypt 2022, LNCS 13837, pp. 447–462, 2023.
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1.1 Previous Works

With various of lattice-based encryption algorithms [2,7,9,12,16,17,20,22] based
on SVP been proposed, SVP becomes more vital. Except for ASVP, the Hermite-
SVP (HSVP) is another important variant of SVP. Compared to ASVP and exact
SVP, an advantage of HSVP is that one can easily check a solution of it.

There is a naive reduction from HSVP to ASVP. By the definition of the
Hermite’s constant [8], for an n−dimensional lattice L, if one can solve ASVP
with factor γ in L, then HSVP with factor γ

√
γn in L can also be solved, where

γn is the Hermite’s constant. Oppositely, a non-trivial reduction from ASVP
with factor γ2 to HSVP with factor γ for γ ≥ √

γn is shown in [10]. Moreover,
the best known basis reduction algorithms [1,6,14] showed that an oracle to
solve exact SVP in dimension k ≤ n/2 yielded solutions to HSVP with factor,

e.g., γ = γ
n−1

2(k−1)

k .
On the other hand, the LLL algorithm [11] solved HSVP with factor (4/3 +

ε)(d−1)/4 in time polynomial in 1/ε and the size of the lattice basis. Moreover,
with a number of calls to the exact SVP oracle in dimension ≤ k, Schnorr [21]
solved HSVP with factor (2k)d/k. Later in [5], Gama et al. improved the factor to
O(k)d/(2k). The best blockwise algorithm is Gama-Nguyen’s slide algorithm [6],

which approximates HSVP with factor
√

(1 + ε)γd
(d−1)/(k−1)

, with a polynomial
number of calls to a SVP oracle in dimension ≤ k.

In 2021, Pan et al. [15] proposed a subfield attack on HSVP in prime ideal
lattices in the power-of-two cyclotomic fields. They heuristically used the decom-
position field of prime ideals. Instead of using the norm of ideals, they used the
intersection of ideals. Pan et al.’s work is a connection between algebraic number
theory and lattice theory.

1.2 Our Results

In this paper, we exploit subfield attacks on HSVP in ideal lattices in number
fields, by improving the results of Pan et al. [15]. Their subfield attack on HSVP
in prime ideal lattices in Galois number fields adopting the canonical embed-
ding, and intelligently use the decomposition fields. In our work, we remove the
requirement of the Galois extension. Moreover, we change the decomposition
fields to any subfields. Since the decomposition fields of prime ideals is difficult
to compute in general, our work is more useful in practice.

Firstly, in Subsect. 3.1, we propose two subfield attacks on HSVP in ideal
lattices in number fields under the canonical embedding. Let L be a number
field with [L : Q] = N , OL its integer ring. For any ideal I of OL, set I1 =
NormL/K(I) and I2 = I ∩ OK , where K is a subfield of L with [K : Q] = n.
Moreover, assume that I2 has prime ideal decomposition:

(∗) I2 = p1p2 · · · pt, satisfying pi + pj = OK for each i �= j.

By using the ideal I1 of OK , which we call the norm method, we reduce
HSVP with factor γ in I under the canonical embedding to HSVP with fac-
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tor γ · |NormK/Q(disc(L/K))|1/2N√
N/nNormL/Q(I)1/n−1/N

in I1, in polynomial time. Meanwhile, by using

the ideal I2 of OK , which we call the intersection method, HSVP with fac-
tor γ in I under the canonical embedding is reduced to HSVP with factor

γ · |NormK/Q(disc(L/K))|1/2N NormL/Q(I)1/N

NormK/Q(I2)1/n
√

N/n
in I2.

Compared to Pan et al.’s [15] work, there are three improvement in our
work. Firstly, we extend their usage of the intersection method on prime ideals
to more general ideals, which satisfy the condition (∗), by using the Lemma 1.
Secondly, we make use of the norm method. By this method, we can deal with
ideal lattice without any limits. Thirdly, our work remove the requirement of the
decomposition fields. Indeed, we can use any subfields in our attacks. Moreover,
in other subfield attacks [3], the approximation factor in previous attacks is
greatly affected during lifting, while our lifting cost is not that much.

Next, in Subsect. 3.2, we give two subfield attacks on HSVP in ideal lattices
under the coefficient embedding, by using the norm method and the intersection
method. Denote I, I1, I2 as above. Then there is a polynomial time reduction
from HSVP in I with factor γ under the coefficient embedding to HSVP in I1

with factor γ · NormL/Q(I)1/N

NormL/Q(I)1/n
. In addition, suppose that the ideal I satisfies the

condition (∗), then an oracle to solve HSVP in I2 with factor γ · NormL/Q(I)1/N

NormK/Q(I2)1/n

yields solutions to HSVP with factor γ in I under the coefficient embedding. We
can see that the expressions of factors in sublattices under these two embeddings
are quite different. This is because that the volume of OL under the coefficient
embedding is 1, while under the canonical embedding is not.

Note that NormK/Q(I2)1/n is smaller than NormK/Q(I)1/n in general, we
conclude that the intersection method induces a larger factor in HSVP in sublat-
tices, which means easier to be attacked. Since the main complexity of our attacks
comes from solving HSVP in sublattices, the intersection method gives a more
efficient attack on ideals satisfying the condition (∗), in general. Now we consider
a special case, which is frequently used in practice. Let L/Q be a Galois exten-
sion, and I = P be a prime ideal of OL. Suppose that K is a subfield of L contain-
ing the decomposition field of P in L/Q. Then NormK/Q(I2) = NormL/Q(I) and
I1 = I2. In this case, HSVP in I1 and I2 are the same. However, the reduction
steps in the norm method is much simpler than the other one. Hence the norm
method performs better than the intersection method in this case. Moreover, for
ideal I with prime ideal decomposition I = P1 · · · Pt, let Li be the decomposi-
tion field of Pi in L/Q. Take K to be a subfield of L containing the composite
field of Li. Then the norm method is more efficient than the intersection method
in this case.

Also, consider the case where L/Q is a Galois extension, and I = P is an
unramified prime ideal of OL. By the norm method, we need to deal with HSVP

in I1 with factor γ1 = γ · |NormK/Q(disc(L/K))|1/2N√
N/npf/n−f/N

(resp., γ1 = γ · pf/N−f/n)

under the canonical embedding (resp., the coefficient embedding), where p
is the rational prime under P, and f is the residue degree of P in L/Q.
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Then for a fixed subfield K, γ1 is a decreasing function of f . Hence, this
method performs well in prime ideals with large decomposition fields. While
by the intersection method, we have to solve HSVP in I2 with factor γ2 =
γ · |NormK/Q(disc(L/K))|1/2N pf/N

pf′/n
√

N/n
(resp., γ ·pf/N−f ′/n) under the canon-

ical embedding (resp., the coefficient embedding), where f ′ is the residue degree
of P ∩ OK in K/Q. Note that f/N − f ′/n ≤ 0, and the equivalence holds if and
only if P ∩ OK is inert in L/K. Therefore, the intersection method works well
prime ideals with small decomposition fields.

1.3 Paper Organization

The remainder of the paper was organized as follows. In Sect. 2, we give some
preliminaries about lattices and algebraic number theory. In Sect. 3, we propose
subfield attacks on HSVP of ideal lattices, both under the canonical embedding
and the coefficient embedding. Then in Sect. 4, we give an analysis of our reduc-
tions, including the complexity and applications. Finally, conclusions and some
open problems are given in Sect. 5.

2 Preliminaries

2.1 Lattice

Lattices are discrete additive subgroups of RD. Any lattice L is generated by a
finite set of linearly independent vectors B =

{
b1, · · · ,bd : bi ∈ R

D
}

for some
integer d ≤ D:

L =

{
d∑

i=1

zibi | zi ∈ Z

}

.

where B is called a basis of L; d and D are called the rank and dimension of L,
respectively. We say that L is full-rank if d = D. Let B be a matrix corresponds
to B, then define the determinant of L to be det(L) =

√|det(BTB)|. Clearly,
when L is full rank, then det(L) = |det(B)|. By the definition, we know that
the determinant of L is exactly the volume of the fundamental domain of it.

The shortest vector problem (SVP) is one of the most hard problems in the
lattice theory. There are several important variants of SVP in application. In
this article, we describe the Hermite-SVP (HSVP).

HSVP: Given a lattice L with dimension n, and a constant γ > 0, find a
vector v ∈ L such that ‖v‖ < γ · det(L)1/n.

2.2 Algebraic Number Theory

In this subsection, we give some basic concepts and results in algebraic number
theory. One can find them in [13].
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We say α is an algebraic number if α is a root of a polynomial f(x) in Z[x].
Let L/K be a finite extension of number fields, define the degree of L/K to
be the dimension of L as a linear space over K, denoted [L : K]. In addition,
since L = K(α) for some α ∈ L, we have [L : K] = deg f(x), where f(x) is the
minimal polynomial of α over K. Denote OL to be the ring of integers of L, i.e.

OL = {x ∈ L| x is an algebraic number}.

Definition 1. Let L/K be a finite extension of number fields with degree n, a
basis (α1, · · · , αn) of L over K is called an integral basis if it is a basis of OL

over OK .

An ideal I of OL is an additive subgroup of OL such that xI ⊂ I, for all
x ∈ OL. A prime ideal P of OL is an ideal satisfying the following condition:

If xy ∈ P, then either x ∈ P or y ∈ P.

For two ideals I1, I2 of OL, define the addition I1 + I2 to be the set

{x + y|x ∈ I1, y ∈ I2}.

Clearly, I1 + I2 is also an ideal of OL. In addition, I1 and I2 is called coprime
if I1 + I2 = OL.

The following proposition implies that any ideal in a number field L is a
full-rank lattice in R

[L:Q].

Proposition 1. Let L/Q be a finite extension with degree n, then any ideal I
of OL is a free module over Z with rank n.

Theorem 1. Let L/K be a finite extension of number fields with degree n.

(a) For any ideal I in OL, there is a unique (up to order) prime ideal decompo-
sition in OL:

I = Pe1
1 Pe2

2 · · · Peg
g ,

where each Pi is a prime ideal of OL;

(b) Let p be a prime ideal of OK , as in (a), we have a prime ideal decomposition

pOL = Pe1
1 Pe2

2 · · · Peg
g .

Let fi = [OL/Pi : OK/p], then we have

n =
g∑

i=1

fiei.

(c) When L/K is a Galois extension, we have

e1 = e2 = · · · = eg = e and f1 = f2 = · · · = fg = f.

Moreover, we have
n = efg.
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Definition 2. Let L/K be a finite extension of number fields. Suppose that p is
a prime ideal of OK .

(a) p is unramified in L/K if each ei in Theorem 1 equals to 1. Otherwise, p is
ramified in L/K.

(b) fi is called the residue degree of Pi in L/K.
(c) p is called inert in L/K if g = 1 and e1 = 1 in Theorem 1.
(d) Let K ′/K be a sub-extension of L/K, then K ′ is called the decomposition

field of p in L/K if the split indexes gp satisfies gp(K ′/K) = gp(L/K) =
[K ′ : K].

Now, we define the discriminant of an extension L/K of number fields.

Definition 3. Let L/K be a finite extension of number fields with integral basis
(α1, · · · , αn), define the discriminant disc(L/K) of L/K to be

disc(L/K) = disc(α1, · · · , αn) = (det(σi(αj)))2.

Remark 1. Proposition 1 implies that an integral basis of number fields L over
K = Q always exists, while for general K does not. However, the discriminant
disc(L/K) of L over K can also be defined, which we will not discuss here.

Lemma 1. Let L/K be a finite extension of number fields. Suppose that P is a
prime ideal of OL, then p = P ∩ OK is a prime ideal of OK .

Moreover, let I be an ideal of OL with prime ideal decomposition I =
P1P2 · · · Pt. Assume that pi = Pi ∩ OK are pairwise coprime, then

I ′ = I ∩ OK = p1p2 · · · pt.
Proof. The first assertion is clearly. Let I1, I2 be coprime prime ideals in OL,
then I1I2 = I1 ∩ I2. Suppose that P1 and P2 are coprime with P3, then P1P2

is coprime with P3. Then we have

I ∩ OK = (P1P2 · · · Pt) ∩ OK = (
⋂

i

Pi) ∩ OK =
⋂

i

pi = p1p2 · · · pt.

� �

2.3 Ideal Lattice

Let L/Q be a finite extension with degree N , OL be the integer ring of L. Then
any ideal I of OL can be regarded as a lattice in two ways:

1. The canonical embedding: Let Emb(L/Q) be the set of all embeddings
of L into C, i.e.

Emb(L/Q) = {σ1, · · · , σN},

Define the canonical embedding to be:

σL : L → R
r1 × C

2r2

a �→ (σ1(a), · · · , σN (a)) ,
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where r1 is the number of the real embeddings of L, r2 is the number of complex
embedding pairs of L, and r1 + 2r2 = N .

By Proposition 1, σL(I) is an N -dimensional lattice. Moreover, the lattice
σL(I) has determinant NormL/Q(I)

√
disc(L/Q), where NormL/K means the

norm map from L to K.
Denote ‖a‖L to be the length of a under the canonical embedding, namely

‖a‖L = ‖σL(a)‖.

2. The coefficient embedding: A number field L is monogenic if L/Q has
a power integral basis, i.e. there is an element α in OL such that

OL = Z[α] = Z + αZ + · · · + αN−1
Z.

For a monogenic field L, define the coefficient embedding to be:

CL : L → R
N ; a =

N−1∑

i=0

xiα
i �→ (x0, · · · xN−1).

Obviously, under the coefficient embedding with basis {1, α, · · · , αN−1}, CL(I)
is a lattice with dimension N .

Denote |a|L to be the length of a under the coefficient embedding, namely

|a|L = ‖CL(a)‖ =

√√√√
N−1∑

i=0

x2
i .

Remark 2. The coefficient embedding depends on the choice of the basis, whilst
the canonical embedding does not. But |a|L is independent of the choice of power
integral basis.

3 Attacks on HSVP of Ideal Lattices

In this section, we propose two subfield attacks on HSVP in ideal lattices in num-
ber fields, both under the canonical embedding and the coefficient embedding.
We do not require the number fields to be Galois in this section.

Let L/Q be a finite extension of number fields, I be an ideal of OL, we still
use I to represent lattices σL(I) and CL(I). For a subfield K of L, denote I1 =
NormL/K(I), I2 = I ∩ OK to be ideals of OK , as well as their corresponding
lattices.

3.1 Under the Canonical Embedding

In this subsection, we always consider ideal lattices under the canonical embed-
ding.
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Theorem 2 (The Norm Method). Let L/Q be a finite extension with degree
N , and I be an ideal of OL. Suppose that K is an intermediate field of L/Q
with [K : Q] = n. Then the solution to HSVP with factor γ in the sublattice I1

will also be a solution to HSVP in I with factor
√

N/nNorm(I)1/n−1/N

|NormK/Q(disc(K/Q))|1/2N · γ.

Proof. Consider the following diagram

I ⊂ OL ⊂ L �� C
N

I1 ⊂ OK ⊂ K �� C
n

(m) ⊂ Z ⊂ Q �� C.

For any element x ∈ K, we have

‖x‖L =

√
N

n
‖x‖K .

Then for x ∈ K satisfying ‖x‖K < γ · (det I1)1/n, we have

‖x‖L <

√
N

n
γ · (det I1)1/n

=

√
N

n
γ · (NormK/Q(I1)

√
|disc(K/Q)|)1/n

=

√
N

n
γ ·

(

NormL/Q(I)

√
|disc(L/Q)|n/N

|NormK/Q(disc(L/K))|n/N
)1/n

=

√
N

n
γ · (NormL/Q(I))1/n−1/N

|NormK/Q(disc(L/K))|1/2N (NormL/Q(I)
√

|disc(L/Q)|)1/N

=

√
N

n
γ · (NormL/Q(I))1/n−1/N

|NormK/Q(disc(L/K))|1/2N (det(I))1/N .

� �

Theorem 3 (The Intersection Method). Let L/Q be a finite extension of
number fields with degree N , K be a subfield of L with [K : Q] = n. Suppose
that I is an ideal of OL satisfying the condition (∗). Then a solution to HSVP
with factor γ in the sublattice I2 yields a solution to HSVP in I with factor

γ · NormK/Q(I2)
1/n

√
N/n

NormL/Q(I)1/N |NormK/Q(disc(L/K))|1/2N .

Proof. Similar to the proof of Theorem 2, for x ∈ K satisfying ‖x‖K < γ ·
(det I2)1/n, we have
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Algorithm 1: Subfield attack for HSVP under the canonical embedding
by the norm method
Input: A number field L with degree N , a subfield K with degree n, an ideal I

of OL, and a constant γ.
Output: A vector x in I with ‖x‖L < γ · det(I)1/N .

1 Compute the ideal I1 = NormL/K(I);
2 Compute | NormK/Q(disc(L/K))| and NormL/Q(I);

3 Find a vector x in I1 such that ‖x‖K < γ · |NormK/Q(disc(L/K))|1/2N√
N/nNormL/Q(I)1/n−1/N

det(I1)
1/n;

4 Output x.

‖x‖L <

√
N

n
γ · (det I2)1/n

=

√
N

n
γ · (NormK/Q(I2)

√
|disc(K/Q)|)1/n

=

√
N

n
γ ·

(
t∏

i=1

NormL/Q(Pi)f
′
i/fi

√
|disc(L/Q)|n/N

|NormK/Q(disc(L/K))|n/N
)1/n

=

√
N

n
γ ·

∏t
i=1 NormL/Q(Pi)f

′
i/nfi−1/N

|NormK/Q(disc(L/K))|1/2N (NormL/Q(I)
√

|disc(L/Q)|)1/N

= γ ·
√

N/n · NormK/Q(I2)1/n

NormL/Q(I)1/N |NormK/Q(disc(L/K))|1/2N det(I)1/N .

� �

Algorithm 2: Subfield attack on HSVP under the canonical embedding
by the intersection method
Input: A number field L with degree N , a subfield K with degree n, an ideal

I ⊂ OL satisfying the condition (∗), and a constant γ.
Output: A vector x in I with ‖x‖L < γ · det(I)1/N .

1 Compute the ideal I2 = I ∩ OK ;
2 Compute | NormK/Q(disc(L/K))|, NormK/Q(I2) and NormL/Q(I);
3 Find a vector x in I2 such that

‖x‖K < γ · NormL/Q(I)1/N | NormK/Q(disc(L/K))|1/2N
NormK/Q(I2)1/n

√
N/n

det(I2)
1/n;

4 Output x.
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3.2 Under the Coefficient Embedding

In this subsection, we propose two subfield attacks on HSVP of ideal lattices
under the coefficient embedding. At the beginning, we compute the determinant
of I under the coefficient embedding.

Lemma 2. Let L = Q(α) be a number field with degree N . Suppose that L/Q
has a set of power integral basis. Consider the coefficient embedding CL of L
into R

N , then for each ideal I in OL, the determinant of the lattice CL(I) is
NormL/Q(I).

Proof. By the definition of the coefficient embedding, we have

det(CL(OL)) = 1.

Since [OL : IOL] = |NormL/Q(I)|, and CL is a linear map, we have

det(CL(I)) = NormL/Q(I).

� �

From Lemma 2, we can see that although CL(a) depends on the choice of basis,
the determinant of L is independent of the choice of basis.

In this subsection, we require number fields L,K satisfy the following condi-
tion:

(∗∗) Assume that L is a number field with degree N . Let {1, α, α2, · · · , αN−1} be
a power integral basis of L/Q. Moreover, let K be a subfield of L with [L : K] = t.
Suppose that K/Q has a power integral basis {1, αt, α2t, · · · , αt(n−1)}, where
n = N

t .

Remark 3. The condition (∗∗) is not strict in practice, since the cyclotomic fields
satisfy this condition.

Theorem 4 (The Norm Method). Assume that L,K satisfy the condition
(∗∗). Let I be a prime ideal of OL, and I1 = NormL/K(I). Then the solution
to HSVP with factor γ in the sublattice I1 will also be a solution to HSVP in I
with factor γ · Norm(I)1/n−1/N .

Proof. For any element x ∈ OK , we have x =
∑n−1

i=o (αt)ixi, then

CK(x) = (x0, x1, · · · , xn−1);

CL(x) = (x0, 0, · · · , 0, x1, 0, · · · , 0, · · · , xn−1, 0, · · · , 0).

Hence
|x|L = |x|K .
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Then for x ∈ K satisfying |x|K < γ · (det I1)1/n, we have

|x|L < γ · (det I1)1/n

= γ · (NormK/Q(I1))1/n

= γ · (NormL/Q(I))1/n

= γ · NormL/Q(I)1/n−1/N (det(I))1/N .

� �

Algorithm 3: Subfield attack on HSVP under the coefficient embedding
by the norm method
Input: Number fields L, K satisfying the condition (∗∗), an ideal I of OL, and

a constant γ.
Output: A vector x in I with |x|L < γ · det(I)1/N .

1 Compute the ideal I1 = NormL/K(I);
2 Compute NormL/Q(I);

3 Find a vector x in I1 such that |x|K < γ · NormL/Q(I)1/N

NormL/Q(I)1/n
det(I1)

1/n;

4 Output x.

Theorem 5 (The Intersection Method). Assume that L,K satisfy the con-
dition (∗∗). Let I be an ideal of OL satisfying the condition (∗). Then the solution
to HSVP with factor γ in the sublattice I2 = I ∩ OK will also be a solution to

HSVP in I with factor γ · NormK/Q(I2)
1/n

NormL/Q(I)1/N
.

Proof. By Lemma 1, we have that

I2 = p1p2 · · · pt.
Then for x ∈ K satisfying |x|K < γ · (det I2)1/n, we have

|x|L < γ · (det I2)1/n

= γ · (NormK/Q(I2))1/n

= γ · (NormL/Q(P1)f
′
1/f1 NormL/Q(P2)f

′
2/f2 · · · NormL/Q(Pt)f

′
t/ft)1/n

= γ · NormL/Q(P1)f
′
1/f1n−1/N · · · NormL/Q(Pt)f

′
t/ftn−1/N (det(I))1/N

= γ · p
f ′
1/n−f1/N

1 · · · pf ′
t/n−ft/N

t (det(I))1/N

= γ · NormK/Q(I2)1/n

NormL/Q(I)1/N
(det(I))1/N .

� �
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Algorithm 4: Subfield attack on HSVP under the coefficient embedding
by the intersection method
Input: Number fields L, K satisfying the condition (∗∗), an ideal I of OL

satisfying the condition (∗), and a constant γ.
Output: A vector x in I with |x|L < γ · det(I)1/N .

1 Compute the ideal I2 = I ∩ OK ;
2 Compute NormL/Q(I) and NormK/Q(I2);

3 Find a vector x in I2 such that |x|K < γ · NormL/Q(I)1/N

NormK/Q(I2)
1/n det(I2)

1/n;

4 Output x.

Remark 4. From the analysis in Sect. 4, we need not to compute the prime ideal
decomposition of ideals, which is a hard problem.

4 Analysis

In this section, we give some analysis on complexity, comparison and applications
of our algorithms.

4.1 Complexity

Our algorithms reduce HSVP in ideal lattices to sublattices with lower dimen-
sions and smaller approximate factors. Hence, our attacks do not break HSVP
in ideal lattices. To express the complexity of our reductions more precisely, we
introduce the pseudo-basis.

Definition 4. Let R be a domain, Frac(R) be its fractional field. Suppose that M
is a finitely generated, torsion free R−module, we say (ωi, αi)1≤i≤t is a pseudo-
basis of M if

M = αiωi ⊕ · · · ⊕ αtωt.

where ωi ∈ Frac(R)n, and αi is a fractional ideal of R.

By the norm method, the main computational complexity of the reduction
steps in Algorithms 1, 3 comes from computing the relative norm NormL/K(I).
When given an absolute basis of I and a pseudo-basis of OL, [4, Algorithm 2.5.2]
gives an algorithm in computing NormL/K(I). This algorithm is in polynomial
time, and performs well in practice.

Similarly, the main technical problem in the reduction steps in Algorithms
2, 4 is to compute I ∩ OK . An important special case is that an umramified
prime ideal P of OL is given by an absolute two-element representation P =
pOL + αOL. Algorithm 2.5.3 in [4] compute P ∩ OK in polynomial time. In
addition, assume that we have an integral pseudo-basis (ωi, ai)i of OL and a
pseudo-basis (βi, bi)i of the ideal I of OL, then it is easy to compute I ∩ OK .
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If not already in this form, we can use Algorithm 1.6.1 in [4] to compute the
Hermite normal form (βi, bi) of the given pseudo-basis. Hence, I ∩ OK = b1.

By the above discussion, we can avoid computing the prime ideal decompo-
sition of ideals, which is a hard problem.

4.2 Comparison

In this subsection, we compare the efficiency and applications of the intersection
method and the norm method. Let L be a number field with degree N , K be
a subfield of L with [K : Q] = n. For any ideal I of OL, set I1 = NormL/K(I)
and I2 = I ∩ OK .

Under the canonical embedding (resp. the coefficient embedding), we need
to solve HSVP with factor

γnorm = γ · |NormK/Q(disc(L/K))|1/2N
√

N/n NormL/Q(I)1/n−1/N

(

resp., γ · NormL/Q(I)1/N

NormL/Q(I)1/n

)

in an n−dimensional sublattice by the norm method. While by the intersection
method, we have to deal with HSVP with factor

γinter = γ
NormL/Q(I)1/N | NormK/Q(disc(L/K))|1/2N

NormK/Q(I2)1/n
√

N/n

(

resp., γ
NormL/Q(I)1/N

NormK/Q(I2)1/n

)

.

Let δ = γnorm/γinter, then

δ =
γnorm
γinter

=
NormK/Q(I2)1/n

NormL/Q(I)1/n
≤ 1.

Hence, we have γinter ≥ γnorm. As a consequence, by the intersection method,
HSVP in sublattices, which we need to deal with, is easier than by the norm
method. Since the maximum amount of computational complexity comes from
solving HSVP in sublattices, the intersection method is more efficient in general.

Suppose that the ideal I has prime ideal decomposition I = P1 · · · Pt. Let
Li be the inertia field corresponding to Pi in L/Q for each i = 1, · · · , t, and L′

be the composite field of L1, · · · , Lt. Take K to be a subfield of L containing
L′, then δ = 1. This means HSVP in sublattices we need to deal with by the
two methods are the same. Therefore, the main difference between Algorithms
1 and 2 (resp., Algorithms 3 and 4) is their reduction steps. In [4], we can
see that computational complexity of I1 and I2 is comparable. But we need to
additionally compute NormK/Q(I2) in Algorithms 2 and 4. As a result, the norm
method performs better in such a case.

Besides the efficiency, we can see that the range of applications of the norm
method is wider than the intersection method. More precisely, the formal method
can by applied to any ideals, while the latter one can only be used in the ideals
satisfying the condition (∗). The reason is that we cannot determine the ideal
I ∩ OL in general, since the intersection operation is not a homomorphism.



460 Z. Dong et al.

4.3 Applications

The discussion of two embeddings is similar, in this subsection, we take the
canonical embedding for instance. Moreover, for simplicity, we only consider
unramified prime ideals P of OL. Set p1 = NormL/K(P), and p2 = P ∩ OK .
Denote p to be the rational prime lying under P, and f (resp., f ′) be the residue
degree of P in L/Q (resp., p2 in K/Q).

In Theorem 2, we can solve HSVP with factor

γ1 =

√
N/npf/n−f/N

|NormK/Q(disc(K/Q))|1/2N · γ
(
< γ · pf/n−f/N

√
N/n

)

in the N−dimensional prime ideal lattice P by dealing with HSVP with factor
γ in an n−dimensional sublattice p1. In particular, take γ =

√
n, then finding a

vector in p1 satisfying the Minkowski bound of p1 yields a vector in P satisfying
the factor

√
Npf/n−f/N , which is larger than the Minkowski bound of P.

For a fixed subfield K, the factor γ1 is an increasing function of f . Hence,
Algorithm 1 will be efficient when prime ideals has small residue degree f . In
particular, in the Galois number fields, primes ideals with large decomposition
field can easily to be attacked by the norm method.

In Theorem 3, we give reduction from HSVP with factor

γ2 =
pf

′/n−f/N
√

N/n · γ

|NormK/Q(disc(L/K))|1/2N
(
< γ · pf

′/n−f/N
√

N/n
)

in the N−dimensional prime ideal lattice P to HSVP with factor γ in the
n−dimensional sublattice p2. In particular, take γ =

√
n, then finding a vec-

tor in p2 satisfying the Minkowski bound of p1 yields a vector in P satisfying
the Minkowski bound of P.

By some simple computation, we have that f ′/n−f/N ≥ 0. The equivalence
hold if and only if p2 is inert in L/K. This means Algorithm 2 will work to their
greatest advantage in this case. Therefore, the intersection method performs well
in prime ideals with small decomposition fields.

Expect for the residue degree, ideals with small norms are also vulnerable in
our attacks. Because HSVP in ideals lattices with small norms, namely deter-
minant, will be reduced to sublattices with large factors. This is not secure in
practice.

5 Conclusions and Open Problems

In this paper, we made use of the norm method and the intersection method
to proposed two subfield attacks on HSVP of ideal lattices in number fields,
both under the canonical embedding and the coefficient embedding. By contrast,
the norm method can be used in any ideal lattices, and worked better in the
ideals with large decomposition fields. While the intersection method can be
applied to ideals satisfying the condition (∗), and performed better in ideals
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with small decomposition fields. Meanwhile, HSVP in ideals with small norm
will be vulnerable by both of two methods. Compared with the previous work
[15], our work can be used in more general ideal lattices of any number fields
and their subfields.

Besides HSVP in ideal lattices, another interesting problem is to study sub-
field attacks on HSVP of module lattices in number fields. The main obstacle to
using our methods in module lattices is the properties of determinant of matrices.
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Abstract. The BKZ algorithm has been one of the most important
tools for analyzing and assessing lattice-based cryptosystems. The sec-
ond order statistical behavior of BKZ algorithm on random lattices has
been well measured in the work of Yu and Ducas. Several simulators have
been proposed to efficiently and accurately predict the profile shape for
random lattices. But for the case q-ary lattices, the situation is much
less understood. Recently, Albrecht and Li proposed a simulator that
predicts the Z-shape of q-ary lattices a good accuracy. However, we find
that this simulator still has its limitations when Z-shape disappears. Our
experiments reveal more features for the shape profile of q-ary lattices.
Based on some results on the distribution of the length of short vectors
and reasonable heuristics, we propose a new simulator for random q-ary
lattices with some extensions. Furthermore, the second order statistical
behavior of BKZ algorithm on q-ary lattices is characterized, their sim-
ilarities and differences compared to that for random lattices have been
briefly analyzed.

Keywords: BKZ algorithm · q-ary lattice · Cryptanalysis · Simulator

1 Introduction

A lattice L of dimension n can be spanned by the rows of a rank n matrix
B ∈ R

n×d via integer combinations: L(B) = {xB : x ∈ Z
n}. Lattice reduction

algorithm aims at finding a good basis made of relatively short and somewhat
orthogonal vectors from an arbitrary input basis. A typical attack to a lattice-
based cryptosystem is to search short vectors of the involved lattice through
some public basis. In [17], Lenstra, Lenstra and Lóvasz proposed a seminal lat-
tice reduction algorithm (LLL) that produces a good reduced basis for the lat-
tice, consisting of short enough and almost orthogonal vectors. After its pub-
lication, LLL was immediately recognized as one of the most important algo-
rithmic achievements of the twentieth century, because of its broad applicability
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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and apparent simplicity. Later in [22], Schnorr and Euchner proposed a new
lattice reduction algorithm based on LLL algorithm, named the Block Korkine-
Zolotarev (BKZ) algorithm. BKZ algorithm can be regarded as a block-size
generalization of LLL with potentially super-exponential complexity. The BKZ
algorithm uses a block-size parameter β ≥ 2: as the block-size β increases, the
running-time increases exponentially and the value of RHF will become smaller.
That is because it needs to solve the Shortest Vector Problem (SVP) in β-
dimensional lattice inside the BKZ algorithm. LLL algorithm corresponds to
the case that β = 2. By now, several optimizations of BKZ algorithm have
been developed, such as BKZ 2.0 algorithm [8] with an early abort technique
and pruned enumeration, Progressive BKZ algorithm [4], Self-Dual BKZ algo-
rithm [19]. In [21], Schnorr introduced geometric series assumption (GSA), which
heuristically assumes the Gram-Schmidt norms ‖b∗

i ‖ of the BKZ-reduced basis
decrease geometrically. More precisely, there exists a quotient r for i = 1, . . . , n
such that the output BKZ-reduced basis satisfies ‖b∗

i ‖2 / ‖b1‖2 = ri−1, for
some r ∈ [3/4, 1). We call this r the GSA constant. In [8], it was argued that
r ≈ ( β

2πe (πβ)
1
β )

1
β−1 when the dimension n is much larger than the block-size

β. It was experimentally observed that the GSA approximately fits well with
the practical performance of BKZ algorithm. However, in the first few indexes
and about the last β indexes, a typical BKZ-reduced basis does not follow GSA
closely. In this paper, we use head and tail to denote the first few and about the
last β indexes respectively, and use the body for the rest region of indexes.

It is of specific significance to exactly predict the practical performance of
BKZ algorithm, and has attracted a series of research work. In [8], Chen and
Nguyen firstly proposed a BKZ simulator to predict the Gram-Schimidt lengths
‖b∗

i ‖ on random lattices after the BKZ algorithm. The simulator was based on
the assumption that each SVP-solver is able to find a lattice vector whose norm
perfectly fits the Gaussian heuristic in the projected local block, except for the
tail. The norm of the tail part can be calculated directly by the block-size β
and the lattice dimension. Later, Yu and Ducas [26] observed inaccuracies of the
previous model for the practical performance of BKZ algorithm and quantified
them based on the second order statistical behavior. They proposed two main
statistical phenomenons. The first one was that in head and tail regions the
behavior of the differences between two consecutive Gram-Schmidt log-norms
ri := log ‖b∗

i ‖ − log
∥
∥b∗

i+1

∥
∥ can be treated as a function of index. The second

was that the covariance between ri and ri+2 is 0 for all i, but ri and ri+1 are
inversely correlated. In the body region, the covariance is only influenced by
the block-size β, but in the head and tail regions both index i and block-size β
influence their covariance.

Building upon [26], the probabilistic BKZ simulator introduced in [5] was
based on a probabilistic version of the Gaussian heuristic, or rather, the dis-
tribution of shortest non-zero vector in random lattice in [23]. It could better
capture the head concavity phenomenon of BKZ algorithm after many tours and
display similarly accurate for the body and the tail region. Therefore, the results
of [5] match experimental results more precisely. Besides, they also proposed
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pressed-BKZ (a variant of the BKZ algorithm), intending to exploit this head
concavity phenomenon.

Two popular problems proven to be widespread building blocks for lattice-
based cryptographic applications [6,13,15,20] are the NTRU problem and Learn-
ing with Errors (LWE) problem (with its ring and module variants). Both the
NTRU problem and LWE problem are based on q-ary lattices generated by q-ary
vectors of the following form (under row-representation):

(
qIm 0
A In

)

∈ Z
(m+n)×(m+n).

However, even though the behavior of BKZ algorithm on random lattices has
been well understood, we are not able to say much about the case for q-ary
lattices. There are differences between q-ary lattices and random lattices. For
example, a BKZ-reduced basis of q-ary lattices has been observed to exhibit a so-
called “Z-shape” in [14,16]. The interesting question of simulating or predicting
the behavior of BKZ algorithm on q-ary lattices was proposed as an open problem
by Albrecht and Ducas in [2].

1.1 Contributions

Our study strategy about the q-ary lattices is different as the block-size changes:
exploring the behavior of the actual experiment for small block-size and analyz-
ing the simulator for large block-size. We investigate the second order statistical
behavior of BKZ algorithm for relatively random q-ary lattices and structured
q-ary lattices including matrix NTRU lattice and circulant NTRU lattice. To
the best of our knowledge, this is a topic that has not been touched on. By
exploring ri, which is the logarithm of the ratio between the i-th and (i + 1)-
st Gram-Schmidt norms in BKZ-reduced basis, we make several observations
on the slope and rough shape for Gram-Schmidt norms. Based on our exten-
sive experiments, we confirm that many results (for random lattices) of [26] can
also be applied to q-ary lattices. We remark that some observable phenomenon
from [26] do not seem to be applicable to q-ary lattices. We further find that
when the Gram-Schmidt norms of BKZ-reduced basis remain Z-shape [9,25],
the range of the ri can be divided into five pieces. The ranges of the ri can
be divided into three pieces when the Z-shape is destroyed, just like random
lattices. Furthermore, our second part studies the simulation that predicts the
behavior of random q-ary lattices. When the Z-shape remained, the experiments
from Albrecht and Li’s [3] can be reproduced. Its simulator yields a nice predic-
tion. However, we find it fails to capture the head concavity phenomenon when
Z-shape is destroyed. To address this problem, we extend Bai-Stehlé-Wen simu-
lator [5] to capture the head concavity phenomenon when Z-shape is destroyed
from random lattices to random q-ary lattices.

From the above analysis and motivated by previous related work, we propose
a new simulator for q-ary lattices where some features from [3] are extended.
More concretely, the excellent first order estimate of ZGSA in [10] is utilized
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to determine the lower bound for the disappearance of the Z-shape. If Z-shape
disappear, treating a shortest non-zero vector of lattice as a random variable
and using the distribution described in [23], our simulator provides more accu-
rate predictions of the head region than that by Albrecht-Li simulator [3] and
maintains a pretty good approximation on both body and tail regions.

Organization. We arrange the rest of our paper as follows. In Sect. 2, some
preliminaries are given. We present the similarity and difference between second
order statistical behavior of random lattices and q-ary lattice, and it might cause
some quantitative analysis of random lattice can not directly apply to q-ary
lattice in Sect. 3. In Sect. 4, we propose a new simulator to predict the behavior
of BKZ algorithm for q-ary lattice when Z-shape disappears. Finally, we conclude
the paper in Sect. 5.

2 Preliminaries

Notation. In this paper, the notation log stands for the base 2 logarithm.
We denote the continuous centered Gaussian (normal) distribution with vari-
ance σ2 as χσ2 . The chi-square distribution with k degrees of freedom as
χ2

k,σ2 =
∑k

i=1 X2
i , where X1, . . . , Xk are independently distributed as χσ2 . The

expectation of chi-square distribution is kσ2.

2.1 Lattices

For an n × d matrix B ∈ R
n×d with full rank n, we denote by L(B) :=

{xB : x ∈ Z
n} the n-dimensional lattice spanned by the rows of B. The rows

of B form a basis of the lattice L = L(B). For a basis B = (b0, · · · , bn−1)T

and i ∈ {0, . . . , n − 1}, πi is defined as the orthogonal projection away from
b0, . . . , bi−1 , and the Gram-Schmidt vectors as b∗

0, . . . , b∗
i−1 where b∗

i = πi(bi).
We use B[l:r) to represent the matrix [πl(bl), · · · , πl(br−1)]T. The Euclidean
norm of a vector is denoted as ‖v‖ and the volume of a lattice is denoted as
vol(L(B)), which is given by

∏n−1
i=0 ‖b∗

i ‖.

Gaussian Heuristic. Let L be an n-dimensional lattice with volume vol(L) and
S represents a measurable set in the real span of L. The Gaussian Heuristic states
that the number of lattice points |L ∩ S| approximately equals vol(S)/det(L).
Furthermore, by applying this to a ball, we can see that the expectation of the
first minimum λ1(L) is about

gh(L) :=
vol(L)1/n

vol (B1)
1/n

≈
√

n/(2πe) · vol(L)1/n

The expected first minimum of a n-dimensional lattice with volume 1 is denoted
by gh(n) ≈ √

n/(2πe).
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Theorem 1 [7]. The set of all full-rank lattices of dimension n with unit volume
is denoted by Γn = {L ∈ R

n | vol(L) = 1} and the volume of an n-dimensional
unit ball is denoted by vn. Sample L uniformly in Γn. The distribution of vn ·
λ1(L)n converges in distribution to Expo(1/2) as n → ∞.

q-ary Lattice. Let q,m, n and ξ be positive integers, and A ∈ Z
n×m be a

matrix, In denote the n × n identity matrix. We call the following basis matrix

B =
(

qIm 0
A ξIn

)

∈ Z
(m+n)×(m+n)

a (scaled) q-ary basis, which produces a (scaled) q-ary lattice. This q-ary lattice is
randomized if each entry of A ∈ Z

n×m
q is independently and uniformly sampled

form Zq [3]. For instance, the NTRU lattice is a q-ary lattice.

2.2 NTRU Lattice

Definition 1 [10]. Let q,n be a positive integer and let f, g ∈ (Z/qZ)[X] be
polynomials of degree n with small coefficients sampled from some distribution
χ under the condition that f is invertible in Rq = (Z/qZ)[X]/(Xn −1). The pair
(f, g) forms the secret key, and the public key is defined as h = g/f (mod Rq).
The NTRU problem is to recover any rotation (Xif ,Xig) of the secret key from
public key h.

In [27], f and g are chosen to both have ternary coefficients with a constant
about n/3 of each value in {−1, 0, 1}. We use exactly the same strategy that
each coefficient is sampled from a discrete Gaussian over Z and the ternary
case is regarded as a discrete Gaussian with variance σ = 2

3 . Besides, a general
matrix description of NTRU where the vectors f, g, h are replaced with matrices
F,G,H ∈ Z

n×n such that H = G/F (mod q) [12]. Same as [10], we consider
the original circulant NTRU and the variant, called matrix NTRU. The original
circulant NTRU was based on n-dimensional vectors f, g and matrices F,G’s
associated vectors is f, g respectively. The matrix NTRU whose the matrices
F,G have no special structure and the coefficients are independently sampled
form a discrete Gaussian.

Definition 2. Let (n, q,F,G,H) be an NTRU case. The NTRU lattice is
defined as

LH ,q = Z
2n ·

(
qIn 0
H In

)

,

and its (secret) dense sublattice of rank n is

LG,F = Z
n · BGF ⊂ LH ,q,BGF =

(
G F

)
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NTRU problem is to find any rotation (Xif ,Xig) of row vectors (g | f)
in NTRU lattice. These row vectors have length of about ‖(g | f)‖ ≈

√
2nσ2,

which is much shorter than Gaussian heuristic value λ1

(LH,q
) ≈ √

nq/(πe) of
the NTRU lattice LH,q when H ∈ (Z/qZ)n×n is a truly uniform random lattice.
To solve NTRU problem we thus have to resort BKZ algorithm to find these
exceptionally short vectors in the NTRU lattice.

2.3 The BKZ Algorithm

Definition 3. A basis B = [b0, . . . , bn−1] is called BKZ-β reduced if

‖b∗
κ‖ = λ1

(L[κ:min(κ+β,d))

)

for all κ = 0, . . . , d − 1

The BKZ algorithm outputs a BKZ-reduced basis from any arbitrary basis.
It finds a shortest vector in each local block B[κ:min(κ+β,d)) by using an SVP-
solver. Applying this once to all positions k = 1, · · · , n − 2 is called a BKZ tour.
In this process, if λ1

(

Λ[k,min(k+β−1,n)]

)

> δ · ‖b∗
k‖, we use LLL to reduce the

local block. Otherwise, BKZ algorithm updates the local block by inserting the
vector found by SVP-solver between indices k − 1 and k, then using LLL to
reduce the updated block. A complete description of the BKZ algorithm is in
Algorithm 1.

Algorithm 1. The BKZ algorithm
Input: A lattice basis B, a block-size β ≥ 2 and a constant δ < 1 .
Output: A BKZ-β reduced basis of L(B)
1: repeat
2: for k = 1 to n − 1 do
3: Find any b such that ‖πk(b)‖ = λ1

(
Λ[k,min(k+β−1,n)]

4: if δ · ‖b∗
k‖ > ‖b‖ then

5: LLL-reduce (b1, · · · , bk−1, b, bk, · · · , bmin(k+β,n))
T

6: else
7: LLL-reduce (b1, · · · , bmin(k+β,n))

T

8: end if
9: end for

10: until no change occurs.

It has already proved that the output basis of BKZ algorithm would be of
sufficiently good quality after C · n2

β2

(

log n + log log max ‖b∗
i ‖

vol(L)1/n

)

tours, where
C is a small constant. But in practice, the quality of output basis is not much
improved after a few dozen tours. To accommodate this, Aono et al. [4] proposed
a variant of the BKZ algorithm named Progressive BKZ. Instead of running
many tours of BKZ-β, Progressive BKZ runs only a few tours using increas-
ingly larger block sizes β′ = 2, 3, . . . , β. Following experimental analysis of BKZ
algorithm [7], Albrecht [1] identifies 16 as the number of tours after which few
improvements is made to the basis quality for Progressive BKZ.



On the Measurement and Simulation of the BKZ Behavior 469

Definition 4. Geometric Series Assumption(GSA) [21] After lattice
reduction, the norms of the Gram-Schmidt vectors b∗

i satisfy

‖b∗
i ‖ = αi−1 · ‖b1‖ , for some 0 < α < 1.

GSA gives an excellent first order estimate of the basis profile after BKZ-
reduction. When a basis is BKZ-β reduced, α can be regarded as a function
of β. But for q-ary lattice, things are a bit different. For q-ary lattice, the initial
basis has ‖b∗

0‖ = · · · =
∥
∥b∗

n−1

∥
∥ = q and ‖b∗

n‖ = · · · =
∥
∥b∗

d−1

∥
∥ = 1. The length

of b0 can not increase in the BKZ algorithm if the length of block-size β is much
less than half of dimension of lattice. Also, b1 can not increase in length and the
tail region can not drop below 1 for the same reasons. But the BKZ algorithm
still can guarantee a sloped part in the middle region, and thus the norms of the
Gram-Schmidt vectors exhibit a Z-shape that have been observed in [2,16,25].
It leads to another heuristic: ZGSA.

Heuristic 2. ZGSA. Let B be a basis of a 2n-dimensional q-ary lattice L with
n q-vectors. After BKZ-β reduction the profile’s shape is as follow:

‖b∗
i ‖ =

⎧

⎪⎨

⎪⎩

q if i � n − m,
√

q · α
2n−1−2i

2
β , if n − m < i < n + m − 1

1, if i � n + m − 1

where αβ = gh(β)2/(β−1), and m = 1
2 + ln(q)

2 ln(αβ)
.

2.4 The BKZ Simulator

Chen and Nguyen [8] firstly presented a simulator (see Algorithm 2) to predict
the practical behavior of BKZ algorithm with a relatively large block size (e.g.,
β ≥ 45) for random lattices. It aimed to estimate the practical behavior of BKZ
for hard instances. In simulator, one tour is divided into two pieces, one part
is [1, n − 45] and another is [n − 46, n]. At the beginning, a boolean flag τ is
initialized to be true, which records the changes in each index k. In one part,
the simulator will find the first minimum for each local block by calculating the
Gaussian heuristic value of the local block: GH

(

B[k,min(k+β−1,n−45)]

)

in line 8
of Algorithm 2.

Not only the computed index k is used to update but also the remaining
indices k′ ∈ [k + 1, n − 45] are all updated one by one to the Gaussian heuristic
GH

(

B[k′,min(k′+β−1,n−45)]

)

in line 9–16 of Algorithm 2, if it is smaller than
the current ‖b∗

k‖. In another part indices k ∈ [n − 46, n], it is simulated with
the experimental result of 45-dimensional unit-volume lattices in line 19–21 of
Algorithm 2. The length of 45 was chosen due to the extensive experiments [8]
that the minimum length obeys Gaussian heuristic quite well when the block-
size β ≥ 45. Applying this once to all positions is called a tour. Just like the
BKZ algorithm, the simulator can run many tours.
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Algorithm 2. The Chen-Nguyen simulator for random lattices

Input: The Gram-Schmidt log-norms {i = log ‖b∗
i ‖}i≤n and an integer N ≥ 1

Output: A prediction of the Gram-Schmidt log-norms
{

̂i = log ‖b∗
i ‖

}

i≤n
after

N tours of BKZ
1: for i = 1 to 45 do ri ← E [log ‖b∗

k‖ : B HKZ-reduced basis of Λ ← Γ45]
2: end for
3: for j = 1 to N do
4: τ ← true
5: for k = 1 to N − 45 do
6: d ← min(β, n − k + 1); e ← k + d − 1
7: log vol

(

Λ[k,e]

) ← ∑e
i=1 i − ∑k−1

i=1 ̂i

8: g ← (

log vol
(

Λ[k,e] − log vd

)

/d
9: if τ = true then

10: if g < lk then
11: ̂k ← g
12: τ ← false
13: end if
14: else
15: ̂k ← g
16: end if
17: end for
18: log vol

(

Λ[k,e]

) ← ∑n
i=1 i − ∑n−45

i=1 ̂i

19: for k′ = n − 44 to n do
20: ̂k′ ← log vol(Λ[k,e])

45 + rk′+45−n

21: end for
22: {1, · · · , n} ←

{

̂1, · · · , ̂n

}

23: end for

Later, Bai et al. refined the Chen-Nguyen simulator and the main difference
is the probabilistic nature of the minimum in random lattices. When Bai-Stehlé-
Wen simulator find minimum in each local block Λ[k,e] = Λ

(

B[k,e]

)

for some
k ≤ n−45 and e = min(k+β−1, n−45) with dimension d = min(β, n−45−k+1),
by Theorem 1, λ1

(

Λ[k,e]

)

is distributed as

λ1

(

Λ[k,e]

)

=

(

X · vol
(

Λ[k,e]

)

vd

)1/d

where X is sampled with distribution Expo[1/2], vd is the volume of n-
dimensional unit ball. Thus, in line 12 of Algorithm 2, it use the logarithm
of λ1

(

Λ[k,e]

)

to obtain

log λ1

(

Λ[k,e]

)

=
log X + log vol

(

Λ[k,e]

) − log vd

d
.

Besides, there were several subtle changes in Bai-Stehlé-Wen simulator. When
the Gaussian Heuristic value is smaller than the current ‖b∗

k‖, Chen-Nguyen
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simulator updated the remaining indices k′ ∈ [k + 1, n − 45] but Bai-Stehlé-Wen
simulator only update the remaining indices k′ ∈ [k + 1, e] in the local block.
The update of adjacent index k′ = k + 1 was based on the uniform distribution
in every dimension and the update of other indices in k′ ∈ [k + 2, e] in the local
block gained an average of the difference between the new value and old value
in indices k′ = k, k + 1. It is reflected in line 13–20 of Algorithm 2.

It also set two sequences of a boolean flag t
(i)
0 , t

(i)
1 , i ∈ [1, n] in line 3, 5. The

sequence of t
(i)
0 , i ∈ [1, n] initialized to be true and set of t

(i)
1 initialized to be

false, which can record the changes in each index k and terminate the simulator
when no changes happen.

Algorithm 3. The Bai-Stehlé-Wen simulator for random lattice

Input: The Gram-Schmidt log-norms {i = log ‖b∗
i ‖}i≤n and an integer N ≥ 1

Output: A prediction of the Gram-Schmidt log-norms
{

̂i = log ‖b∗
i ‖

}

i≤n
after

N tours of BKZ
1: for i = 1 to 45 do ri ← E [log ‖b∗

k‖ : B HKZ-reduced basis of Λ ← Γ45]
2: end for
3: t

(i)
0 ← true, ∀i ≤ n

4: for j = 1 to N do
5: t

(i)
1 ← false, ∀i ≤ n

6: for k = 1 to n − 45 do
7: d ← min(β, n − k + 1); e ← k + d; τ ← false

8: for k′ = k to e do τ ← τ‖t
(k′)
0

9: end for
10: log vol

(

Λ[k,e]

) ← ∑e−1
i=1 i − ∑k−1

i=1 ̂i

11: if τ = true then
12: X ←↩ Expo[1/2] ; g ← (

log X + log vol
(

Λ[k,e]

) − log vd

)

/d
13: if g < lk then
14: ̂k ← g ; ̂k+1 ← k + log(

√

1 − 1/d)

15: γ ← (k + k+1) −
(

̂k + ̂k+1

)

16: for k′ = k + 2 to e do

17: ̂k′ ← k′ + γ/(d − 2) ; t
(k′)
1 ← true

18: end for
19: τ ← false
20: end if
21: end if
22: {k, · · · , e−1} ←

{

̂k, · · · , ̂e−1

}

23: end for
24: log vol

(

Λ[k,e]

) ← ∑n
i=1 i − ∑n−45

i=1 ̂i

25: for k′ = n − 44 to n do
26: ̂k′ ← log vol(Λ[k,e])

45 + rk′+45−n ; t
(k′)
1 ← true

27: end for
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28: {1, · · · , n} ←
{

̂1, · · · , ̂n

}

;
{

t
(1)
0 , · · · , t

(n)
0

}

←
{

t
(1)
1 , · · · , t

(n)
1

}

29: end for

3 Second Order Statistical Behavior for q-ary Lattice

The difference between two consecutive Gram-Schmidt log-norms ri :=
log ‖b∗

i ‖ − log
∥
∥b∗

i+1

∥
∥ reflect the slope of the shape of Gram-Schmidt log-norms

after BKZ−β reduced. For a basis B of an n-dimensional lattice L, the root Her-

mite factor rhf(B) =
(

‖b1‖
vol(L)1/n

)1/n

, as a measure of the quality of a reduced

basis in [11], can be represented as rhf(B) = exp
(

1
n2

∑

1≤i≤n−1(n − i)ri(B)
)

in terms of ri. This means that the root Hermite factor can be assessed and
analyzed by measuring the ri. Based on the above reasons, extensive experi-
ments in [26] have been conducted to reveal second order statistical behavior for
running BKZ on random lattices.

Motivated by their idea, we consider the issue of exploring the second order
statistical behaviors of the BKZ algorithm for q-ary lattices with a lot of exper-
iments and compare it with that of random lattices. From an actual cryptogra-
phy perspective, we are more interested in three types of q−ary lattice. The first
family consists of random q−ary lattices corresponding to LWE with A being
uniform, and the other two families are original circulant NTRU and matrix
NTRU as mentioned in Subsect. 2.2. The sampling procedures of random q-ary
lattices produced by fpylll [24] and original circulant NTRU and matrix NTRU
are sampled according to [10]. In order to achieve a greater rate of convergence,
we use a simplified progressive strategy that is to run BKZ algorithm with block-
size β′ = 2, 3, 4 . . . β progressively. It is noted that for original circulant NTRU
and matrix NTRU, we only show the cases for parameters n = 140, β = 5, 10,
in order to avoid the probability of finding short vectors. Meanwhile, in order
to avoid the influence of overstretched q described in [10], q is set to be 31. As
conclusion, the root Hermite factor can also be quantitatively handled for q-ary
lattices. Some analysis is given as well. All the results and verification codes are
provided in https://github.com/zzszhao/behavior-and-simulator.

3.1 The Mean and Variance of ri

From Fig. 1, the curves of the mean and the variance of random variable ri

inside the body are nearly complete overlap and are almost horizontal for the
various n but the same β, which implies it seems depends on β only. In [26], it
gave a strong claim that the distribution of ri inside the body doesn’t depend
on i for random lattices and ran the Kolmogorov-Smirnov test [18] on samples
of ri and rj for varying i, j to verify this claim. In this paper, we also ran the
Kolmogorov-Smirnov test in Fig. 2 to confirm that the strong claim still holds for
q-ary lattices. In this figure, a black pixel at coordinate (i, j) represent that the
fact that the pair of distributions Di(β, 100) and Dj(β, 100) passed Kolmogorov-
Smirnov Test, i.e. two distributions are close.

https://github.com/zzszhao/behavior-and-simulator.
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Fig. 1. Average value and standard deviation of ri as a function of index i based
on over 5000 samples with dimension n = 100, 140. First halves {ri}i≤(n−1)/2 are left-
justified while last halves {ri}i≥(n−1)/2 are right-justified in order to observe heads and
tails. The blue curves and red curves denotes the mean and variance of ri respectively.
Dashed lines mark indices β and n − β. Plots look similar for various β and thus are
omitted.

(a) Circulant NTRU lattices (b) Random q-ary lattices

Fig. 2. Kolmogorov-Smirnov test with significance level 0.05 on all Dj(β, 100)’s calcu-
lated from 5000 samples. Plots look similar for various β and thus are omitted.

Fig. 3. Experimental measure of e(β)

In [26], the expectation of ri inside the body is denoted by e(β). The exper-
imental measure of e(β) from 5000 random 100-dimensional and 5000 random
140-dimensional q-ary BKZ β-reduced bases are exhibited in Fig. 3. In order to
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compare actual BKZ behaviors between q-ary lattices and random lattices, we
also plot the experimental measure of e(β) from [26] from 5000 random 100-
dimensional BKZβ-reduced bases. The curves of the experimental measure of
e(β) almost coincide.

Fig. 4. Average value and standard deviation of ri as a function of index i based on
over 5000 samples with three types of 140-dimensional q-ary lattices. The blue curves
and red curves denotes the mean and variance of ri respectively. Dashed lines mark
indices β and n − β. (Color figure online)

From Fig. 4, the curves for three types of q−ary lattices nearly coincide and
exhibit Z-shape. Meanwhile, the range of ri is divided into five pieces: the initial
horizontal part, the head, the body, the tail, and the final horizontal part. But
in Fig. 1, when Z-shape is destroyed for large block-size β, the range of ri can
be divided into three pieces: the head, the body and the tail. This is similar
to the cases in random lattices. This observation is utilized to simulate further
the behavior of BKZ algorithm for q-ary lattices in Sect. 4.2 when Z-shape is
destroyed.

3.2 Local Correlations and Global Variance

From rhf(B) =
(

‖b1‖
vol(L)1/n

)1/n

, we have ln(rhf(B)) = 1
n2

∑

1≤i≤n−1(n − i)ri(B).
So

n4 Var(ln(rhf(B))) =
n−1∑

i=1

(n − i)2 Var (ri) + 2
∑

i<j

(n − i)(n − j)Cov (ri, rj) .

To compute the variance of the root Hermite factor (which is called the
global variance), one needs to calculate the covariance matrices Cov(r) with
r = (r1, . . . , rn−1) and variance of ri computed in Sect. 3.1. The covariance
matrices of r is exhibited in Fig. 5. The diagonal entries Cov (ri, ri) are equal to
the variance of ri and thus are set to 0 to enhance contrast. The entries on the
second diagonals seem different when other entries seem very close to 0. Thus we
shall pay more attention to covariance Cov (ri, ri+1) between ri and ri+1, and
call it a local correlation.
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Fig. 5. Covariance matrices of r. Experimental values measured over 5000 samples
with three types of 140-dimensional q-ary lattices with block-size β = 5, 20. Plots look
similar for various β, n and thus are omitted.

Fig. 6. Cov (ri, ri+1) and Cov (ri, ri+2) as a function of i, are denoted by blue curves
and red curves separately. Experimental values measured over 5000 samples with three
types of 140-dimensional q-ary lattices. Dashed lines mark indices β and n − β.

The experimental measure of Cov (ri, ri+1) and Cov (ri, ri+2) are plotted
in Figs. 6, 7. For other Cov (ri, ri+d) with large d > 2, the curves always are
observed as a horizontal asymptote at y = 0 and thus are not plotted for read-
ability.

Our experiments verify that many claims remain valid for q-ary lattices. The
curves for three types of q-ary lattices nearly coincide in Fig. 6. In Fig. 7, the
curves of Cov (ri, ri+1) and Cov (ri, ri+2) inside the body is nearly complete
overlap and almost horizontal for the various n but same β, that it depends
on β only. Thus two functions of v(β) and c(β) are introduced to denote the
expectation of Var (ri) and Cov (ri, rj) in the body respectively.
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Fig. 7. Cov (ri, ri+1) and Cov (ri, ri+2) as a function of index i based on over 5000
samples with dimension n = 100, 140, are denoted by blue curves and red curves
separately. First halves are left-justified while last halves are right-justified in order to
observe heads and tails. Dashed lines mark indices β and n − β.

But some experimental measure of Cov (ri, ri+2) might have something differ-
ent between random lattices and q-ary lattices. For random lattices, Cov (ri, ri+2)
is 0 for all i. It is entirely true inside the body for q-ary lattices, but Cov (ri, ri+2)
has a slight deviation in the tail when Z-shape is destroyed and also in the head
and the tail when Z-shape remains, shown in Fig. 6, 7. But it doesn’t influence
their corollary. Following is a brief description of the corollary.

Corollary 3. For a fixed block-size β and as the dimension n grows, it holds
that

Var(ln(rhf(B))) =
1
3n

v(β) +
2
3n

c(β) + O

(
1
n2

)

Proof.

n4 Var(ln(rhf(B))) =
n−1∑

i=1

(n − i)2 Var (ri) + 2
∑

i<j

(n − i)(n − j)Cov (ri, rj)

=
n−1∑

i=1

(n − i)2 Var (ri) + 2
n−2∑

i=1

(n − i)(n − i − 1)Cov (ri, ri+1)

+ 2
∑

i≤h,i≥n−t

(n − i)(n − i − 1)Cov (ri, ri+2)

Since both h and t are constant, all Var (ri), Cov (ri, ri+1) and Cov (ri, ri+2)
inside the head and tail are of size O (1). Thus the two sums in the head and
tail are O

(

n2
)

, then:

2
∑

i≤h,i≥n−t

(n − i)(n − i − 1)Cov (ri, ri+2) = O
(

n2
)

∑

h<i<n−t

(n − i)2 Var (ri) =
n−1∑

i=1

(n − i)2 Var(r) + O
(

n2
)

= n3

3 v(β) + O
(

n2
)
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∑

h<i<n−t

(n − i)(n − i − 1)Cov (ri, ri+1) =
n−2∑

i=1

(n − i)(n − i − 1)c(β) + O
(

n2
)

= n3

3 c(β) + O
(

n2
)

A straightforward computation then completes the proof. ��

4 A Simulator Tailored for q-ary Lattice

In this section, we start by describing the Albrecht-Li BKZ simulator tailored
for random q-ary lattices, and then propose a new simulator that captures the
head concavity phenomenon when Z-shape is destroyed. It is remarked that the
Albrecht-Li simulator misses this phenomenon.

4.1 The Albrecht-Li BKZ Simulator Tailored for Random q-ary
Lattices

Albrecht and Li [3] has made some progress in simulating the random q-ary
lattice by extracting heuristic analogues of Hermite’s constants are tailored for
BKZ-reduced random q-ary bases. It is referred to in line 1–3 and is applied
in line 11 of Algorithm 4. The heuristic analogues of Hermite’s constants is
computed by extensive experiment and the fact that BKZ algorithm first pre-
process each projected block B[i,ni) using BKZ recursively with a smaller block
size (say, βi - 20) and then invoke an SVP-solver on it, so that B[i,ni) indeed
becomes approximately HKZ-reduced at the end of the i-th BKZ iteration. We
call the Algorithm 4 and compare it with the actual behavior of BKZ algorithm
in Fig. 8 and Fig. 9 as implemented in fpylll.

Algorithm 4. The Albrecht-Li BKZ simulator tailored for random q-ary
lattices
Input: (k, n, q, ξ), where q ≥ 17 is the prime modulus, k is the number of qei-

vectors, n is the dimension, and the scale ξ ∈ Z
+ such that q/ξ ≥ 37/4

Output: A prediction of the Gram-Schmidt log-norms
{

̂i = log ‖b∗
i ‖

}

i≤n
after

running N tours of BKZ-reduction with block size β ∈ [50, n)
1: for i = 1 to β do
2: By equation, extract the heuristic analog ri of Hermite’s constant Υi in

the context of BKZ-reducing random q′-ary bases with scale ξ′ ∈ Z
+ s.t.

q′/ξ′ ≥ 37/4
3: ci ← log

√
ri

4: end for
5: for i = 0 to k − 1 do
6: i ← log q; i+k ← log ξ
7: end for
8: for j = 0 to N − 1 do
9: for i = 0 to n − 2 do

10: g ← ∑ni−1
p=i p

11: if i > cβi
+ g/βi then
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12: for s = i to ni − 1 do
13: s ← ct +

(

g − ∑s−1
p=i p

)

/t where t = ni − s is the rank of local
block B[s,ni)

14: end for
15: end if
16: end for
17: end for
18: return (0, . . . , n−1)

Fig. 8. Gram-Schmidt log-norms for
BKZ50 2.0 at tour 16.

Fig. 9. Gram-Schmidt log-norms for
BKZ60 2.0 at tour 16.

4.2 A New Simulator for Random q-ary Lattices

In our experimentation with the method from [3], some discrepancies are
observed, especially in the head region when Z-shape disappears. To solve this
problem, we utilize the emulation of the probabilistic nature in Theorem 1.
It is noted that this theorem has been applied in Bai-Stehlé-Wen simulator
for the random lattice to capture the head regions. Meanwhile, we choose the
Heuristic ZGSA as an estimator. The disappearance of Z-shape is accepted when
m = 1

2 + ln(q)
2 ln(αβ)

> n, and we bring in the probabilistic nature in line 17 and
heuristic analogues of Hermite’s constants in line 1–3, 17, 31 of Algorithm 5.
Otherwise, when Z-shape exists, we directly invoke Algorithm 4. The new sim-
ulator is described in Algorithm 5.

Algorithm 5. A new simulator tailored for random q-ary lattices

Input: (k, n, q, ξ), where q ≥ 17 is the prime modulus, k is the number of qei-
vectors, n is the dimension, and the scale ξ ∈ Z

+ such that q/ξ ≥ 37/4
Output: A prediction of the Gram-Schmidt log-norms

{

̂i = log ‖b∗
i ‖

}

i≤n
after

running N tours of BKZ-reduction with block size β ∈ [50, n)
1: for i = 1 to β do
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2: By equation, extract the heuristic analog ri of Hermite’s constant Υi in
the context of BKZ-reducing random q′-ary bases with scale ξ′ ∈ Z

+ s.t.
q′/ξ′ ≥ 37/4

3: ci ← log
√

ri

4: end for
5: if n/2 − 1/2 − ln q

2 lnαβ
> 0 then call Algorithm 4; break

6: for i = 0 to k − 1 do i ← log q ; k+i ← log ξ end for
7: for j = 1 to N do
8: t

(i)
1 ← false, ∀i ≤ n

9: for k = 1 to n − t do
10: d ← min(β, n − k + 1); e ← k + d; τ ← false

11: for k′ = k to e do τ ← τ‖t
(k′)
0 end for

12: log vol
(

Λ[k,e]

) ← ∑e−1
i=1 i − ∑k−1

i=1 ̂i

13: if τ = true then
14: X ←↩ Expo[1/2] ; g ← (

log X + log vol
(

Λ[k,e]

))

/d + cd

15: if g < lk then
16: ̂k ← g ; ̂k+1 ← k + log(

√

1 − 1/d)

17: γ ← (k + k+1) −
(

̂k + ̂k+1

)

18: for k′ = k + 2 to e do

19: ̂k′ ← k′ + γ/(d − 2) ; t
(k′)
1 ← true

20: end for
21: τ ← false
22: end if
23: end if
24: {k, · · · , e−1} ←

{

̂k, · · · , ̂e−1

}

25: end for
26: log V ← ∑n

i=1 i − ∑n−tl
i=1 ̂i

27: for k′ = n − 50 to n do
28: ̂k′ ← log V

n−k′ + cn−k′ ; log V = log V −̂k′ ; t
(k′)
1 ← true

29: end for
30: {1, · · · , n} ←

{

̂1, · · · , ̂n

}

;
{

t
(1)
0 , · · · , t

(n)
0

}

←
{

t
(1)
1 , · · · , t

(n)
1

}

31: end for

4.3 Impact of New Simulator Tailored for Random q-ary Lattices

In this subsection, we measure the quality of our new simulator for random q-ary
lattices when Z-shape disappears by comparing with the Albrecht-Li simulator
and the practical behavior of the BKZ algorithm using two quantities: the Gram-
Schmidt log-norms and the root Hermite factors. Experiments show that our
simulator fits better with the practical behavior of BKZ algorithm. We point
out that a similar, such improvement was reported in [5] for comparison between
Chen-Nguyen simulator and Bai-Stehlé-Wen simulator.
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(a) Graph of Gram-Schmidt Log-Norms. In reality, measuring the entrie
sequence of Gram-Schmidt is important for assessing the quality of a reduced
basis. We consider the following experiments: the input lattice are random q-ary
lattices with dimension 120, and we use BKZ50 2.0 [8] in fpylll [24] to measure the
average value of the full sequence of Gram-Schmidt basis. As shown in Fig. 10,
our new simulator can capture the head regions (Fig. 11).

Fig. 10. Gram-Schmidt log-norms for
BKZ50 2.0 at tour 3000.

Fig. 11. Same as left hand side, but
zoomed in.

(b) Root Hermite Factor. By measuring and recording the root Hermite
factors in Fig. 12 obtained with our new simulator, the Albrecht-Li simulator and
the BKZ algorithm, we can observe our new simulator predict the experimental
data more accurately. As the number of tours increases, asymptotic lines of root
Hermite factors obtained by our new simulator and by the BKZ algorithm are
getting closer, but asymptotic lines of root Hermite factors obtained by Albrecht-
Li simulator and by the BKZ algorithm are at a distance away.

Fig. 12. The root Hermite factor during the execution of BKZ50 2.0 with 120-
dimensional q-ary lattices
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5 Conclusion

The second order statistical behaviors of BKZ algorithm had been measured
for random lattices in the literature. In order to better observe and understand
the q-ary lattices, this paper gives a study of these behaviors for three types of
q-ary lattices. Comparison to that of the random lattices is made, similarities
and differences are briefly analyzed. The results lead to a new simulator tailored
for random q-ay lattices to better capture the head phenomenon and maintain
a pretty good approximation in other regions when Z-shape is destroyed.
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Abstract. The Quadratic generator is one of the number theoretic pseu-
dorandom number generators. It works by iterating an algebraic map
F (Vi) = Vi+1 = aV 2

i + b mod p on a secret random initial seed V0.
In this paper, we use the iterative relation of the Quadratic generator
to reconstruct the relevant modular equation and improve the security
bound from 1

5
to 1

4
in the case of multiplier a known and shift b unknown,

based on Coppersmith’s method for finding small roots of the modular
equation. That is, in the case that the bit size of the unknown variable
is 1

4
of the modulus, we can recover the initial seed V0, the map F , and

the subsequent sequence.

Keywords: Nonlinear pseudorandom number generators · Quadratic
generator · Coppersmith’s method

1 Introduction

Pseudorandom number generators play an important role in cryptography, and
they have various uses in many places, such as public-key signatures, encryption
schemes, etc. A pseudorandom number generator is a deterministic algorithm
that expands an initial random seed into a longer number that is indistinguish-
able from a uniform random number. It works by iterating over a secret ran-
dom initial seed V0, with each iteration outputting some consecutive bits of the
intermediate value Vi, where Vi = F (Vi−1) mod p, and F is an algebraic map.
Therefore, its security is closely related to the number of output bits.

When F is an affine function, the pseudorandom number generator is called
a linear congruential generator, which is efficient and has good statistical prop-
erties. However, it is insecure in cryptography. One after another, it has been
shown that one can recover the seed V0 in polynomial time about p, even knowing
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only the most significant bit of each output Vi, when the pseudorandom sequence
is long enough [7,8,16,17]. Therefore, it has been suggested to use nonlinear map
F to avoid these attacks. However, the works [2–5,11,12] demonstrated that a
nonlinear pseudorandom number generator is also insecure when the output bits
during the iteration exceed a certain bound, i.e., the generator is polynomially
time predictable when a sufficient number of consecutive output values of the
pseudorandom sequence are known, even if the degree of F is known but no
specific F is known.

The work in this paper focuses on the Quadratic generator, which corre-
sponds to the map F (x) = ax2 + b mod p. There has been a lot of work as well
as improvements in inferring sequences for the Quadratic generator. The table
below shows the work in various cases of the multiplier a and shift b, known or
unknown, where the number of known outputs is limited. The symbol − indicates
that the corresponding cases were not considered in that paper.

The Quadratic generator [4] [2] [11]

a, b known 1
4

1
4

1
3

a known, b unkonwn − 1
5

−
a, b unkonwn 1

19
− 1

12

The Coppersmith method is a powerful tool in the field of cryptanalysis. In
1996, Coppersmith introduced a lattice-based method for finding small roots in
polynomial time on univariate modular polynomial equations [10] and bivariate
integer equations [9]. The Coppersmith method works by finding linear combi-
nations of equations with common roots that have small coefficients such that
the new equations hold on the integers. Thus, the desired root can be found
by standard root-finding algorithms. In general, the Coppersmith method we
usually use now is a simple reformulation given by Howgrave-Graham [13] that
has been widely adopted. As these techniques have a wide range of cryptana-
lytic applications, some generalizations to more variables have been proposed
[1,6] with some heuristic assumptions to find the desired roots by computing
the resultants or Gröbner basis algorithms.

In 2006, Jochemsz and May [15] described a general strategy to construct
polynomial sets as well as matrices more simply and analyzed the bounds of
the small roots. In 2014, Huang et al. [14] introduced a technique to completely
separate a variable from the original equation, which is used in this paper.

Our Contributions. We reconstruct the modular polynomial equation based
on the iteration relation of the Quadratic generator. In the previous work, they
used the equation Vi = 2kwi +xi, with xi as the unknown variables, where wi is
the known π −k bits of the output, xi is the unknown k bits, and π is the length
of the modulo p. Instead, we construct the polynomial equations by making the
combinations xi − xi+1 and xi + xi+1 as unknown variables. This construction
simplifies the equation form and allows for an easier separation of variables.
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We first show how to solve the modular polynomial f(x1, x2, y) = x1x2 +
ax1 + bx2 + cy +d mod p with bounds on the root in Sect. 3. Then in Sect. 4, the
problem of attacking the Quadratic generator is transformed into the problem of
solving for the modular polynomial f(x1, x2, y) = x1x2+ax1+bx2+cy+d mod p,
and we can infer the sequence produced by the Quadratic generator in the case
that the multiplier a is known and the shift b is unknown, provided that the
root bound X < P

1
4 . This result is better than the best result X < P

1
5 in

the previous work [11]. Section 5 gives experiments about the attack on the
Quadratic generator when π = 1024. Section 6 is a conclusion.

2 Preliminaries

The Coppersmith method is a lattice-based technique that can efficiently solve
the small roots of modular polynomial equations. Hence, we first introduce some
basic definitions and necessary knowledge about the lattice. Then we give a brief
overview of the coppersmith method, estimate the bounds of the small roots by
the LLL algorithm and Howgrave-Graham’s lemma. Finally, we will introduce
the Quadratic generator.

2.1 Lattice

Given n linearly independent row vectors �b1,�b2, · · · ,�bn ∈ R
m, the lattice L

generated by them is defined as follows, that is the set of all integeral linear
combinations of the bi’s:

L(�b1,�b2, · · · ,�bn) = {
∑

xi
�bi|xi ∈ Z}.

The lattice L is a discrete subgroup of Rm. We often denote B as the n×m basis
matrix of L that its rows are the basis vectors �b1,�b2, · · · ,�bn. Then the lattice
can be written as

L(B) = {�xB|�x ∈ Z
n},

where B = [�bT
1 , · · · ,�bT

n ]T .
We call dim L = n the dimension of L, m its rank and detL its determinant.

Then the determinant of L can be computed as

det L =
√

det BBT .

When n = m, the lattice is called full rank and detL = |det B|.
In 1982, Lenstra et al. presented the most famous deterministic polynomial

time algorithm for lattice basis reduction, called the LLL algorithm, to output
a reduced basis satisfying the following property.

Lemma 1 (LLL). Let L be a n-dimensional integer lattice. Within polynomial
time, the LLL algorithm outputs reduced basis vectors �v1, . . . , �vn that satisfy

‖�v1‖ ≤ ‖�v2‖ ≤ · · · ≤ ‖�vi‖ ≤ 2
n(n−1)

4(n+1−i) (det L)
1

n+1−i , 1 ≤ i ≤ n.
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2.2 Coppersmith’s Method

In this subsection, we will review the specific steps of the Coppersmith method.
The first step is to construct more modular polynomials with the same

desired roots. Let f(x1, · · · , xm) mod p be an multivariate polynomial with
a root (a1, · · · , an) satisfying |a1| < X1, · · · , |am| < Xm. We generate a col-
lection of polynomials f1, · · · , fr with the same modular root (a1, · · · , am).
Usually, the form of fi is x

α1,i

1 · · · xαm,i
m fkipt−ki which satisfy the relation

fi(a1, · · · , am) ≡ 0 mod pt.
The second step is to construct a matrix with coefficients of these polynomi-

als. Every row of the matrix is the coefficients of fi(x1X1, · · · , xmXm).
Finally, utilize the lattice reduction algorithms such as the LLL algorithm

to obtain integer polynomials over Z with the desired roots. In the process, the
following lemma, reformulated by Howgrave-Graham [13], is needed. It states
that under which condition a modular equation holds over the integers.

Lemma 2 (Howgrave-Graham). Let f(y1, . . . , ym) be an integer polynomial
that consists of at most ω monomials and (x1, · · · , xm) is the root of f . Let t be
a positive integer and the Xi be the upper bound of |xi| for i = 1, · · · ,m. Suppose
that

1. f(x1, . . . , xm) = 0 (mod pt),
2. ‖f(x1X1, . . . , xmXm)‖ < pt

√
ω
,

then f(x1, . . . , xm) = 0 holds over Z.

The norm of a polynomial f(x1, · · · , xm) =
∑

ci1,··· ,im
xi1
1 · · · xim

m is defined
as ‖f(x1, · · · , xm)‖ =

√∑ |ci1,··· ,im
|2. Therefore, according to Lemma 1 and

Lemma 2, in order to obtain at least m polynomials with the common desired
root (a1, . . . , am), there is the following condition:

2
ω(ω−1)

4(ω+1−m) · (det L)
1

ω+1−m <
pt

√
ω

. (1)

In order to find the desired root (a1, . . . , am) by utilizing the Gröbner basis
technique, we expect the obtained integer polynomials to satisfy the following
assumption, which is often used by Coppersmith-type cryptanalysis [15].

Assumption 1. Let g1, · · · , gm ∈ Z[x1, · · · , xm] be the polynomials that are
found by Coppersmith’s method. Then the variety of the ideal generated by g1(x1,
· · · , xm), · · · , gm(x1, · · · , xm) is zero-dimensional.

2.3 The Quadratic Generator

For a prime p, Fp denotes the field of p elements {0, 1, · · · , p − 1}. For fixed
a ∈ F

∗
p and b ∈ Fp, the Quadratic generator [11] is given by the recurrence

relation occurring on Fp,

Vi = aV 2
i−1 + b mod p,

where V0 is the initial value, the coefficient a is multiplier and b is shift.
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3 Solving f(x1, x2, y) = x1x2 + ax1 + bx2 + cy + d mod p

For p an integer of size π, we denote by Zp the residue ring of p elements. In this
section, we will give the method for solving the modular polynomial equation
f(x1, x2, y) = x1x2 + ax1 + bx2 + cy + d mod p on Zp, as well as the bound X
on the small roots x1, x2, y, where these roots have the same bound.

Since the variable y is independent of the other variables x1, x2, we will
consider the equation f in two parts, following the approach of [14].

Let g(x1, x2) = x1x2 + ax1 + bx2 + d, then the original equation can be
rewritten as f = g + cy mod p. For any positive integer m, we have the binomial
expansion

fm = (g + cy)m = (cy)m +
(

m

1

)
(cy)m−1g +

(
m

2

)
(cy)m−2g2 + · · · + gm.

Therefore, fm is divided into m + 1 parts and the monomials are sorted in the
order of the monomials in the term (cy)m, the monomials in the term (cy)m−1g,
· · · and the monomials in the term gm.

According to Coppersmith’s method, we need to construct the set of modular
polynomials hi,j1,j2,j3(x1, x2, y) = yt−ixj1

1 xj2
2 f j3pt−j3 mod pt with the same root,

where t is some positive integer and i, j1, j2, j3 are non-negative integers. In the
following we present the simple case at t = 2.

3.1 Solution for t = 2

To compute the small root (x′
1, x

′
2, y) of f(x1, x2, y), we first consider the follow-

ing collection of polynomials:

P = {hi,j1,j2,j3(x1, x2, y) = p2−j3y2−ixj1
1 xj2

2 f j3

|i, j1, j2, j3 ≥ 0 and 0 ≤ j1 + j2 + j3 ≤ i and j1 + j2 = max{j1, j2}}.
It is clear that the polynomials h ∈ P all satisfy h(x′

1, x
′
2, y

′) = 0 mod p2. Next,
we construct the lattice spanned by the coefficient vectors of the polynomials

hi,j1,j2,j3(x1X1, x2X2, yY ),

where X1,X2, Y are the bounds of x′
1, x

′
2, y

′, respectively. In order to ensure that
the basis matrix of our constructed lattice is lower triangular, we first consider
the construction of g(x1, x2) = x1x2 + ax1 + bx2 + d. In the set P , the highest
degree of f is 2, then the highest degree of g is also 2, so we denote Gl as the
set of polynomials about g constructed when the highest degree is l.

Gl = {xj1
1 xj2

2 gj3 |j1, j2, j3 ≥ 0 and 0 ≤ j1+j2+j3 ≤ l and j1+j2 = max{j1, j2}}.
Obviously, Gl−1 ⊆ Gl. We can simply obtain the set of polynomials correspond-
ing to G0, G1 and G2.

G0 = {1},

G1 = {1, x1, x2, g},

G2 = {1, x1, x2, g, x2
1, x

2
2, x1g, x2g, g2}.
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The matrixes corresponding to G0, G1 and G2 are lower triangular.
Now, we return to the original polynomial construction.

p2−j3y2−ixj1
1 xj2

2 f j3 = p2−j3y2−ixj1
1 xj2

2 (g + cy)j3

= p2−j3y2−ixj1
1 xj2

2 gj3 + p2−j3xj1
1 xj2

2

(
j3∑

k=1

(
j3
k

)
cky2−i+kgj3−k

)
.

(2)

For i = 0, the monomial y2 can be constructed as a diagonal matrix that corre-
sponds to y2G0.

For i = 1, if j3 = 0, (2) can be written as p2yxj1
1 xj2

2 , indicating that the
resulting matrix adding these monomials is also diagonal. If j3 = 1, (2) is pyg +
pcy2, and the latter monomial y2 has already appeared in the case of i = 0.
The new monomial in pyg is only pyx1x2. Thus, for i = 1, the added monomials
correspond to the monomials in yG1 and the newly composed matrix is lower
triangular.

For i = 2, (2) can be written as

p2−j3xj1
1 xj2

2 gj3 + p2−j3xj1
1 xj2

2

(
j3∑

k=1

(
j3
k

)
ckykgj3−k

)
.

The monomials in the latter part p2−j3xj1
1 xj2

2

(
j3∑

k=1

(
j3
k

)
ckykgj3−k

)
have already

appeared in G0 and yG1. The new monomials are the terms in the first part
p2−j3xj1

1 xj2
2 gj3 that correspond to the polynomials in G2.

We show the matrix L constructed by hi,j1,j2,j3(x1X1, x2X2, yY ) at t = 2 as
follows.

y2 y yx1 yx2 yx1x2 1 x1 x2 x1x2 x2
1 x2

2 x2
1x2 x1x2

2 x2
1x2

2
p2y2 ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p2Y 2 0 0 0 0 0 0 0 0 0 0 0 0 0 ⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p2y 0 p2Y 0 0 0 0 0 0 0 0 0 0 0 0
p2yx1 0 0 p2Y X1 0 0 0 0 0 0 0 0 0 0 0
p2yx2 0 0 0 p2Y X2 0 0 0 0 0 0 0 0 0 0

pyf 0 pdY paY X1 pbY X2 pY X1X2 0 0 0 0 0 0 0 0 0
p2 0 0 0 0 0 p2 0 0 0 0 0 0 0 0

p2x1 0 0 0 0 0 0 p2X1 0 0 0 0 0 0 0
p2x2 0 0 0 0 0 0 0 p2X2 0 0 0 0 0 0

pf 0 pcY 0 0 0 pd paX1 pbX2 pX1X2 0 0 0 0 0
p2x2

1 0 0 0 0 0 0 0 0 0 p2X2
1 0 0 0 0

p2x2
2 0 0 0 0 0 0 0 0 0 0 p2X2

2 0 0 0
px1f 0 0 pcY X1 0 0 0 pdX1 0 pbX1X2 paX2

1 0 pX2
1X2 0 0

px2f 0 0 0 pcY X2 0 0 0 pdX2 paX1X2 0 pbX2
2 0 pX1X2

2 0
f2 c2Y 2 2cdY 2acY X1 2bcY X2 2cY X1X2 d2 2adX1 2bdX2 2(ab + d)X1X2 a2X2

1 b2X2
2 2aX2

1X2 2bX1X2
2 X2

1X2
2 .

The dimension dimL and determinant detL of this matrix L can be directly
obtained as dimL = 14 and detL = p22Y 6X11

1 X11
2 . Substituting ω = dim L =

14 and detL = p22Y 6X11
1 X11

2 into the inequality (1). Since the dimension is
small, we can treat the condition simply as detL < ptω when p is sufficiently
large. That is consistent with the experimental results. Then, the result can be
approximated as follows:

Y 6X11
1 X11

2 < p6.
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Let X1 = pδ1 , X2 = pδ2 and Y = pδ3 . Then the bound of the roots need to
satisfy the following condition, 11δ1 +11δ2 +6δ3 < 6. When Y = X1 = X2 = pδ,
there is δ < 3

14 .
In the following, we will consider the case where t tends to infinity.

3.2 Solution for t → ∞
As t tends to infinity, the idea is similar to that for t = 2. Below we detail that
the basis matrix of the constructed lattice is lower triangular, and the calculation
of the dimension and determinant of the matrix.

We construct the set of polynomials in the general case:

P = {hi,j1,j2,j3(x1, x2, y) = p2−j3y2−ixj1
1 xj2

2 f j3

|i, j1, j2, j3 ≥ 0 and 0 ≤ j1 + j2 + j3 ≤ i and j1 + j2 = max{j1, j2}}.

The polynomials h ∈ P satisfy h = 0 mod pt. Next, we construct the lattice L
spanned by the coefficient vectors of the polynomials hi,j1,j2,j3(x1X1, x2X2, yY ).
We still consider the construction of the polynomial g first. Let Gl denotes the
set of polynomials about gk that k ≤ l.

Gl = {xj1
1 xj2

2 gj3 |j1, j2, j3 ≥ 0 and j1 + j2 + j3 ≤ l and j1 + j2 = max{j1, j2}}.

This is a general construction on a bivariate equation, and previous work has
shown that matrix constructed through the set Gl is lower triangular [15].

We arrange the monomials in the order of i from 0 to t and use mathemat-
ical induction to prove that the matrix is lower triangular. When i = 0, the
monomial yt can be constructed as a diagonal matrix that corresponds to ytG0.
Assuming that the constructed matrix is lower triangular at i = m − 1, then
the newly added polynomials at i = m can be written as pt−j3yt−mxj1

1 xj2
2 f j3 =

pt−j3yt−mxj1
1 xj2

2 gj3 + pt−j3xj1
1 xj2

2

(
j3∑

k=1

(
j3
k

)
ckyt−m+kgj3−k

)
.

Note that the monomials in the second half after the plus sign xj1
1 xj2

2 yt−(m−1)

gj3−1, · · · , xj1
1 xj2

2 yt−(m−j3) have already appeared before for i ≤ m − 1. Because
of j3 ≤ m, the new monomials in the first half part pt−j3yt−mxj1

1 xj2
2 gj3 corre-

spond to the monomials in yt−mGm. Since the matrix constructed by the poly-
nomials in Gm is lower triangular, and yt−mGm is equivalent to multiplying each
monomials in Gm by a yt−m, which does not affect the property of triangular,
the matrix remains lower triangular after adding the new polynomials. To sum
up, the matrix we construct using the polynomials hi,j1,j2,j3(x1X1, x2X2, yY ) is
triangular.

Next, we analyze the dimension and determinant of L. The dimension can
be showed by the sorting process of the monomials:

dim L =
t∑

l=0

#Gl, (3)
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where #Gl is the number of elements in the set Gl. Based on the fact that the
constructed matrix is lower triangular, #Gl is the number of monomials.

#Gl =
l∑

j1=0

l∑

j2=0

1 = (l + 1)2.

Substituting #Gl into (3),

dim L =
t∑

l=0

(l + 1)2 =
1
3
t3 +

3
2
t2 +

13
6

t + 1 =
1
3
t3 + o(t3).

Since L is a triangular matrix, only the elements on the diagonal need to
be considered when calculating the determinant. According to the way we con-
struct L, the diagonal elements can be divided into t + 1 parts, each corre-
sponding to yt−lGl is lower triangular, so we first look at the diagonal prod-
uct in matrix Lyt−lGl

constructed by yt−lGl. From the entries on the diagonal
pt−j3Y t−lXj1

1 Xj2
2 , we get that the determinant of Lyt−lGl

is

det
(
Lyt−lGl

)
= pwpY wY X

wX1
1 X

wX2
2 ,

where

wp =
l∑

j3=0

l−j3∑

j1=1

(t − j3) +
l∑

j3=0

l−j3∑

j2=1

(t − j3) +
l∑

j3=0

(t − j3)

= −1
3
l3 +

(
t − 1

2

)
l2 +

(
2t − 1

6

)
l + t,

wY = (t − l) × #Gl = (t − l)(l + 1)2,

wX1 = wX2 =
l∑

j1=0

l∑

j2=0

j1 =
1
2
l3 + l2 +

1
2
l.

Then the power of P , Y , X1 and X2 corresponds to the determinant of L is the
summation of l from 0 to t, respectively.

t∑

l=0

wp =
t∑

l=0

(
−1

3
l3 +

(
t − 1

2

)
l2 +

(
2t − 1

6

)
l + t

)
=

1
4
t4 + o(t4),

t∑

l=0

wY =
t∑

l=0

(t − l)(l + 1)2 =
1
12

t4 + o(t4),

t∑

l=0

wX1 =
t∑

l=0

(
1
2
l3 + l2 +

1
2
l

)
=

1
8
t4 + o(t4).

The determinant of L can be expressed as follows:

det L = p
1
4 t4+o(t4)Y

1
12 t4+o(t4)X

1
8 t4+o(t4)
1 X

1
8 t4+o(t4)
2 .
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Substituting ω = dimL = 1
3 t3 + o(t3), det L and number of variables m = 3

into the inequality (1) 2
ω(ω−1)
4(ω−2) · (det L)

1
ω−2 < pt

√
ω
, we also ignore the parts of 2

and ω for a sufficiently large p,

det L < pt(ω−2),

and the result is approximated:

Y
1
12 t4+o(t4)X

1
8 t4+o(t4)
1 X

1
8 t4+o(t4)
2 < p

1
12 t4+o(t4).

Let X1 = pδ1 , X2 = pδ2 and Y = pδ3 . We can obtain the relation on the bound
δ1, δ2 and δ3, 2δ3 + 3δ1 + 3δ2 < 2. When Y = X1 = X2 = pδ, there is

δ <
1
12 t4 + o(t4)

1
12 t4 + 1

8 t4 × 2 + o(t4)
t→∞−→ 1

4
. (4)

Result 1. Given a modular polynomial equation f(x1, x2, y) = x1x2 + ax1 +
bx2+cy+d mod p. Under Assumption 1, we can find the modular root (x′

1, x
′
2, y

′)
when the bound X = pδ that x′

1, x
′
2, y

′ < X satisfy

δ <
1
4
.

4 Application: Attacking the Quadratic Generator

The Quadratic generator corresponds to the map F (x) = ax2 + b mod p. If the
multiplier a is known, the shift b is unknown and the three consecutive outputs of
the Quadratic generator are known, we can transform the relevant equation into
the modular polynomial equation in Sect. 3. Therefore, the subsequent sequence
of the Quadratic generator can be obtained under the condition given in Sect. 3
about the bound of root.

Given three consecutive equations
{

V1 = aV 2
0 + b mod p

V2 = aV 2
1 + b mod p

,

the unknown shift b can be eliminated

V1 − V2 = a
(
V 2
0 − V 2

1

)
mod p. (5)

Assume that the Quadratic generator outputs the k most significant bits of
Vi at each iteration, i.e. Vi can be written as 2kwi +zi, where wi is output by the
generator, zi < 2k = pδ stays unknown and π is the bit length of the modulo p.
Our goal is to recover zi and the subsequent sequence with δ as large as possible.

Substituting Vj = 2kwj + zj into Vi − Vi+1 and Vi + Vi+1,

V1 − V2 = 2k(w1 − w2) + (z1 − z2),

V0 − V1 = 2k(w0 − w1) + (z0 − z1),

V0 + V1 = 2k(w0 + w1) + (z0 + z1),
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where let α1 = 2k(w1 − w2), α2 = 2k(w0 − w1) and α3 = 2k(w0 + w1) be
the known part, and β1 = z1 − z2, β2 = z0 − z1 and β3 = z0 + z1 be the
unknown part. Replacing Vk in the Eq. 5 with αi and βj , we get α1 + β1 =
a(α2 +β2)(α3 +β3) mod p. Then, by three consecutive outputs of the Quadratic
generator, the following modular polynomial equation can be obtained

f(x1, x2, y) = x1x2 + α3x1 + α2x2 + (−a−1)y + α2α3 − a−1α1 mod p, (6)

where (β2, β3, β1) is its root.
Based on the result in Sect. 3, in the case of δ < 1

4 , we can solve for the small
root (β2, β3, β1). Then it can be calculated that z0 = 1

2 (β2+β3), z1 = 1
2 (β3−β2)

and z2 = 1
2 (β3−β2)−β1. Thus we can recover the algebraic mapping F (Vi) mod p

of the Quadratic generator, where the shift b = 2kw1 + 1
2 (β3 − β2) − (2π−kw0 +

1
2 (β2 + β3))2 mod p. That is, we can recover all its subsequent sequences.

Result 2. Given three consecutive outputs of the Quadratic generator, we can
predict the entire sequence and recover the initial seed V0 and the shift b under
the condition that at least 3

4π most significant bits are output at each iteration,
that is

δ <
1
4
.

Remark 1. In the case where the multiplier a is known and the shift b is unknown,
the best result of the existing work is 1

5 of [11]. We improve the bound to 1
4 by

the construction method of splitting out an independent variable.

5 Experimental Results

Let us take the Quadratic generator with π = 1024 and π = 256 as examples for
the attack. We ran each case over 500 times in SageMath 9.3 on a PC with an
Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz, 16 GB RAM, and Windows 10
to retrieve the algebraic mapping F (Vi) mod p.

Because the bound δ < 1
4 is reached when t approaches infinity, we choose

t = 2 and t = 3 for our experiments. It can be seen that the corresponding bound
δ increases when t increases, and it is verified that the practical attack bound
has been better than 1

5 (Table 1).
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Table 1. Attack of the Quadratic generator

π t k δ Running time Success rate

1024 2 218 0.213 5.78 s 100%

219 0.214 3.34 s 58%

3 226 0.221 63.2 s 100%

227 0.222 62.0 s 75%

256 2 53 0.207 0.27 s 100%

54 0.211 0.27 s 95.8%

3 55 0.215 9.61 s 100%

56 0.219 9.23 s 97.6%

6 Conclusion

In this paper we first give a specific method for solving the modular polynomial
f(x1, x2, y) = x1x2 + ax1 + bx2 + cy + d mod p, and then apply this method to
the Quadratic generator to improve the upper bound on the unknown output.
Next, we will explore whether the upper bound on the unknown output can be
continued to improve when more than three consecutive outputs are known, and
whether the attack can be improved for the both multiplier and shift are known
or unknown.
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