
A Fast Metaheuristic for Finding
the Minimum Dominating Set in Graphs

Alejandra Casado1 , Sergio Bermudo2 , Ana Dolores López-Sánchez2 ,
and Jesús Sánchez-Oro1(B)

1 Universidad Rey Juan Carlos, Mostoles, Spain
{alejandra.casado,jesus.sanchezoro}@urjc.es

2 Universidad Pablo de Olavide, Seville, Spain
{sbernav,adlopsan}@upo.es

Abstract. Finding minimum dominating sets in graphs is a problem
that has been widely studied in the literature. However, due to the
increase in the size and complexity of networks, new algorithms with the
ability to provide high quality solutions in short computing times are
desirable. This work presents a Greedy Randomized Adaptive Search
Procedure for dealing with the Minimum Dominating Set Problem in
large networks. The algorithm is conformed by an efficient construc-
tive procedure to generate promising initial solutions and a local search
designed to find a local optimum with respect to those initial solutions.
The experimental results show the competitiveness of the proposed algo-
rithm when comparing it with the state-of-the-art methods.

Keywords: Minimum dominating set · Grasp · Metaheuristics

1 Introduction
Due to the development of large networks in several context such as road net-
works, social networks, electrical networks, communication networks, computer
networks or security networks, among others, graph theory has regained the
interest of researchers and practitioners. The study of problems related to graph
domination is becoming more and more relevant. Since its original proposal [2]
and the main definition of domination number [10], more than two thousand
research papers have been published on this topic (we refer the reader to [6–8].

Given a graph G = (V,E), a dominating set of vertices D is a subset of
V in which every vertex u ∈ V \D is adjacent to, at least, one vertex in D,
i.e., ∃v ∈ D : (u, v) ∈ E. The objective function of the minimum dominating
set problem (MDSP) is evaluated as the number of vertices belonging to the
dominating set, i.e., MDSP(G,D) = |D|. Then, the MDSP consists of finding a
minimum dominating set D� among all possible dominating sets of the graph
under evaluation G. More formally,

D� ← arg min
D∈D

MDSP(G,D)

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Di Gaspero et al. (Eds.): MIC 2022, LNCS 13838, pp. 554–559, 2023.
https://doi.org/10.1007/978-3-031-26504-4_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26504-4_47&domain=pdf
http://orcid.org/0000-0003-3417-6859
http://orcid.org/0000-0003-4838-3170
http://orcid.org/0000-0003-3022-3865
http://orcid.org/0000-0003-1702-4941
https://doi.org/10.1007/978-3-031-26504-4_47

A Fast Metaheuristic for Finding the Minimum Dominating Set in Graphs 555

Fig. 1. Two feasible solutions D1 and D2 for a graph with 10 nodes and 12 edges.

where D represents the set of all possible dominating sets over the graph G.
Let us illustrate this problem with a graphical example, depicted in Fig. 1. In

both examples, the vertices included in the dominating set are colored. Solution
D1 = {A,B,H, I}, depicted in Fig. 1(a), represents a dominating set for the
example graph with an associated objective value of |D1| = 4. If we now analyze
solution D2 = {A,E, J}, the objective function value is |D2| = 3, being better
than D1. In fact, D2 is the optimal solution for the considered graph (i.e., it is
not possible to find a dominating set with less than three vertices).

This problem has several applications in different fields: social networks [9],
radio stations [3], network surveillance [5], etc. The MDSP has been proven
to be NP-hard for arbitrary graphs [8], exact algorithms are not practical for
large-sized graphs. Although there are only a few works focused on finding an
algorithm to approximate the MDSP for general graphs [1,11], it has been exten-
sively studied for particular graphs, proposing several bounds for the minimum
size of the dominating set in general graphs also [6,8].

This work deals with the MDSP from a metaheuristic point of view for pro-
viding high-quality solutions in small computing times. As far as we know, the
best approach for the MDSP is an order-based randomized local search (RLS)
[1], which is shown to be better than previous approaches such as a greedy
heuristic or an Ant Colony Optimization algorithm [11]. This algorithm use a
permutation-based representation of the solution for MDSP which is transformed
into dominating sets using a greedy approach. Then, a local search method based
on randomized jump moves is applied.

The remaining of the paper is organized as follows: Sect. 2 presents the algo-
rithmic approach, Sect. 3 details the computational experiments performed to
test the quality of the proposal, and Sect. 4 draws some conclusions derived
from the research.

2 Greedy Randomized Adaptive Search Procedure

The Greedy Randomized Adaptive Search Procedure (GRASP) is a multi-start
metaheuristic originally introduced for solving the set covering problem [4]. It

556 A. Casado et al.

consists of two well-differenced phases. First, the construction phase is respon-
sible for generating an initial feasible solution and, then, the local improvement
stage finds a local optimum with respect to some predefined neighborhood. The
distinguishing feature of GRASP is the inclusion of randomization in the con-
struction phase, with the aim of increasing the diversity of the search.

2.1 Construction

The construction phase is one of the key parts of GRASP metaheuristic. It
is responsible for including randomization in the search, which prevents the
algorithm from stagnating in local optima. Algorithm 1 shows the pseudocode of
the proposed constructive procedure, named SNF (Select Non-monitored First).

Algorithm 1. SNF(G = (V,E), α)
1: v ← Random(V)
2: D ← {v}
3: CL ← V \{v}
4: M ← {u ∈ V : (u, v) ∈ E}
5: while |M | ≤ |V \D| do
6: gmin ← minc∈CL g(c)
7: gmax ← maxc∈CL g(c)
8: μ ← gmax − α · (gmax − gmin)
9: RCL ← {c ∈ CL : g(c) ≥ μ}

10: d ← Random(RCL)
11: D ← D ∪ {d}
12: CL ← CL\{d}
13: M ← M ∪ {u ∈ V : (u, d) ∈ E}
14: end while
15: return D

The method starts by randomly selecting the first vertex to be included in
the solutions, as it is customary in GRASP to increase diversity (step 1). Then,
the solution D is initialized with the selected vertex (step 2) and the candidate
list CL is constructed with all the vertices except the selected one (step 3).
Additionally, the set of monitored vertices is created with those vertices which are
adjacent to the selected one, since those are now monitored (step 4). Then, the
method iteratively adds a new vertex to the solution under construction until all
the vertices are monitored (steps 5–14). In each iteration, a greedy function value
g is considered to evaluate how promising a node is. In the context of MDSP,
a vertex is promising if it is able to monitor a large number of non-previously
monitored vertices. Therefore, the greedy function is evaluated as the number of
adjacent vertices to the node under evaluation which are not monitored by any
other node, i.e., g(v) = |{u ∈ V \M : (u, v) ∈ E}|. The procedure then evaluates
the minimum and maximum greedy function value (steps 6–7) to calculate a
threshold μ (step 8). The threshold directly depends on the value of an input

A Fast Metaheuristic for Finding the Minimum Dominating Set in Graphs 557

parameter named α ∈ [0, 1], which controls the randomness/greediness of the
method, i.e., if α = 0, then μ = gmax and the method is completely greedy,
while α = 1 results in μ = gmin, providing a completely random method. This
threshold is used to construct a restricted candidate list RCL which contains
all the candidate vertices whose greedy function value is better (larger) than μ
(step 9). Then, the next vertex is selected at random from the RCL (step 10),
including it in the solution under construction (step 11) and removing it from
the CL (step 12). Additionally, the set of monitored nodes M is updated with all
the adjacent vertices to the selected one (step 13). Finally, the method returns
the constructed solution (step 15).

2.2 Local Improvement

The first element to be defined in order to propose a local search method is the
move operator. In this work, we propose the use of swap moves, which removes a
vertex from the solution and replaces it with a new one. In mathematical terms,

Swap(D, i, j) ← D\{i} ∪ {j}
Notice that this movement is not able to produce any improvement by itself,

since the number of vertices in the dominating set will remain the same. However,
the movement may result in a solution in which some vertices are redundant,
i.e., they are covering vertices which are also covered by another vertex. All
those redundant vertices are removed after each swap move, eventually leading
to an improvement. Given this move operator, the neighborhood to be explored
is defined as all the solutions that can be reached with a single swap move. More
formally,

N(D) ← {D′ ← Swap(D, i, j) ∀i ∈ D ∧ ∀j ∈ V \D}
Having defined the move operator and the neighborhood explored, it is nec-

essary to establish the strategy followed by the local search to explore the
neighborhood. There are two main strategies to traverse the neighborhood: first
improvement and best improvement. Since the problem has constraints related
to computing time, we select first improvement as exploration strategy. Then,
the first swap move that leads to an improvement is performed in each iteration
of the search, avoiding exploring the complete neighborhood in each iteration,
thus leading to reduce the computational effort without deteriorating the quality
of the obtained solutions.

It is worth mentioning that when following a first improvement approach, the
order in which the neighbors is explored is relevant. Although the neighborhood
can be traversed at random, exploring first the most promising neighbors usually
result in better solutions. In the context of MDSP, the nodes to be removed are
selected in ascending order with respect to the number of nodes that remains non-
dominated after its removal, with the aim of increasing the number of redundant
nodes after the swap move. Additionally, the vertex which replaces it will be the
one which dominates the maximum number of non-dominated nodes after the

558 A. Casado et al.

removal. This heuristic selection of the nodes to be removed and the ones to be
added allows the local search procedure to find improvements in a small number
of iterations, resulting in an efficient and effective local search method, as it can
be seen in Sect. 3.

3 Computational Experiments

This section has two main objectives: 1) configure the parameters of the pro-
posed algorithm and 2) perform a competitive testing against the state-of-the-art
method, named RLS [1], previously described in Sect. 1.

The proposed algorithm have been implemented in Java 17 and all the exper-
iments has been carried out in an Intel Core i7 2.7 GHz and 16 GB RAM, while
the state of the art is executed in a similar computer but with 64 GB of RAM. In
order to have a fair comparison, we have used the same testbed of instances as
in the best previous work, conformed by 21 instances with nodes ranging from
34 to 16726, extracted from different applications of the problem. The results
reports the following metrics: Time (s), average computing time required by the
algorithm in seconds; Avg., average objective function value; Dev (%), average
percentage deviation with respect to the best value found in the experiment; and
#Best, number of times in which the best solution of the experiment is reached
by the algorithm.

The preliminary experimentation is designed to select the best configuration
of the proposed algorithm and, in order to avoid overfitting, a subset of 9 out
of 21 representative instances are selected for this stage. The GRASP algorithm
proposed has a single input parameter, which is the α parameter of the con-
structive procedure, which has to be tuned. In particular, the values tested are
α = {0.25, 0.50, 0.75,RND}, where RND indicates that it is selected at random
in the range [0, 1] in each construction. In all the cases, 100 constructions fol-
lowed by its corresponding local improvement are performed. The best results
are achieved when considering α = 0.25, reaching 8 out of 9 best solutions with
a deviation of 0.01%.

The competitive testing is performed against RLS to evaluate the perfor-
mance of GRASP. In this experiment, the complete set of instances is considered.
Table 1 shows the results obtained by both algorithms.

As it can be seen from the results, both algorithms provide similar perfor-
mance in terms of quality. Although RLS is able to reach an additional best solu-
tion, the average deviation of GRASP is smaller than the one of RLS. Finally,
the computing time required by GRASP is considerably smaller than the 10 min
required by RLS. These results show that GRASP emerges as a competitive
algorithm for finding a minimum dominating set in large graphs.

A Fast Metaheuristic for Finding the Minimum Dominating Set in Graphs 559

Table 1. Competitive testing between GRASP and RLS.

Algorithm Time (s) Avg. Dev(%) #Best

GRASP 33.66 603.19 0.40 19

RLS 600.00 603.05 0.68 20

4 Conclusion

The proposed GRASP algorithm is conformed by a greedy randomized adap-
tive constructive procedure and a local search method. The constructive proce-
dure, named SNF, is able to generate high quality and diverse solutions in small
computing times, providing promising starting points for the local search. The
proposed local search is able to find a local optimum with respect to the initial
point without requiring high computational efforts, resulting in an efficient and
effective algorithm for tackling the MDSP. The results obtained show the com-
petitiveness of GRASP when comparing it with the state of the art, providing
similar results, being almost twenty times faster than RLS. As a future work, the
testbed will be enlarged with more challenging instances derived from real-life
networks to show the potential of GRASP.

References

1. Chalupa, D.: An order-based algorithm for minimum dominating set with applica-
tion in graph mining. Inf. Sci. 426, 101–116 (2018)

2. De Jaenisch, C.F.: Applications de l’Analuse mathematique an Jen des Echecs.
Petrograd (1862)

3. Erwin, D.: Dominating broadcasts in graphs. Int. J. Comput. Eng. Technol. 42,
89–105 (2004)

4. Feo, T.A., Resende, M.G.: A probabilistic heuristic for a computationally difficult
set covering problem. Oper. Res. Lett. 8(2), 67–71 (1989)

5. Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination in
graphs applied to electric power networks. SIAM J. Discret. Math. 15(4), 519–529
(2002)

6. Haynes, T.W., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs.
CRC Press, Boca Raton (2013)

7. Haynes, T.W., Hedetniemi, S.T., Henning, M.A.: Structures of Domination in
Graphs. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-58892-2

8. Haynes, T.: Domination in Graphs: Volume 2: Advanced Topics. Routledge (2017)
9. Lozano-Osorio, I., Sánchez-Oro, J., Duarte, A., Cordón, Ó.: A quick grasp-based

method for influence maximization in social networks. J. Ambient Intell. Human.
Comput. 1–13 (2021)

10. Ore, O.: Theory of Graphs. AMS, Providence (1962)
11. Potluri, A., Singh, A.: Hybrid metaheuristic algorithms for minimum weight dom-

inating set. Appl. Soft Comput. 13, 76–88 (2013)

https://doi.org/10.1007/978-3-030-58892-2

	A Fast Metaheuristic for Finding the Minimum Dominating Set in Graphs
	1 Introduction
	2 Greedy Randomized Adaptive Search Procedure
	2.1 Construction
	2.2 Local Improvement

	3 Computational Experiments
	4 Conclusion
	References

