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Abstract. Starting from a real-life application, in this short paper, we
propose the original Multi-Depot Multi-Trip Vehicle Routing Problem
with Total Completion Times minimization (MDMT-VRP-TCT). For it,
we propose a mathematical formulation as a MILP, design a matheuristic
framework to quickly solve it, and experimentally test its performance.

It is worth noting that this problem is original as in the literature its
characteristics (i.e., multi-depot, multi-trip and total completion time)
can be found separately, but never all together. Moreover, regardless of
the application, our solution works in any case in which a multi-depot
multi-trip vehicle routing problem must be solved.
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1 Introduction

In this short paper, we study the Multi-Depot Multi-Trip Vehicle Routing Prob-
lem with Total Completion Times minimization (MDMT-VRP-TCT). This prob-
lem arises from a Search & Rescue application: immediately after a natural disas-
ter, a fleet of unmanned aerial vehicles (UAVs) helps rescue teams to individuate
people needing help inside an affected area. In this context, typically diverse civil
defence rescue teams rush from the vicinity to the most affected area, so they
give rise to multiple depots. Moreover, UAVs return to depots to substitute their
batteries and leave for a new tour, so introducing a multi-trip scenario. Finally,
to save as many lives as possible, the most important goal is to get the job done
in the shortest possible time, so we aim at minimizing the total completion time.

The resulting optimization problem is original, as in the literature these three
characteristics can be found separately, but never all together. Indeed, many
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problems having similarities with ours can be found, but they also have essential
differences with respect to ours.

In this short paper we only refer to [2] as a survey paper on Multi-Trip
Vehicle Routing Problems (MTVRP) (where there is a single depot), to [3] for
the description of Multiple Traveling Repairperson Problem (mTRP) (that could
appear similar to ours but the latency is minimized instead of the completion
time), to [1] for the Multiple Traveling Salesperson Problem (mTSP) (where
there are no battery constraints i.e., a single trip for each vehicle), and to [4] for
a description of the Rooted Min-Max Cycle Cover Problem (RMMCCP) (with
single depot).

The rest of this short paper is organized as follows: in Sect. 2, we model
MDMT-VRP-TCT as a MILP; in Sect. 3 we propose a matheuristic framework
to face reasonably large instances and, in Sect. 4, we experimentally test it.

2 Mathematical Formulation

In this section, we present a mathematical formulation for MDMT-VRP-TCT.
Assume to have an area of interest (e.g. the one affected by a natural disaster)

with a set I of target nodes to monitor (e.g. all the damaged buildings). Around
the area, there is a set D of depots where a set U of vehicles start from (e.g. the
places where some rescue teams settle down their bases, each one with a sub-fleet
of UAVs); in general, each vehicle u is characterized by a different budget bu and
then it has to come back to the depot it is uniquely associated to (e.g. each UAV
has a battery; when it runs down, it is necessary to substitute it with a charged
one, and this can be done only at its own depot).

The traveling distance between each pair of nodes i, j ∈ I ∪D is known. Each
node i ∈ I, has an associated service time si (e.g. the needed time to overfly it).

A sequence is any ordered set k of target nodes; the duration of sequence k is
computed as the sum of all traveling distances between consecutive target nodes
in k plus the service times of all the target nodes in k.

The aim of our problem consists in assigning to each vehicle u ∈ D an ordered
set of sequences such that, from its depot, u is able to reach the first target of
any of the sequences assigned to it, serve all its target nodes, come back to ou,
and start again. A sequence k with the addition of the depot of u is called a trip
and its duration, tku is given by the duration of k plus the traveling distances
between the depot associated to u and the two extremes of k.

A sequence k is compatible with a vehicle u if its duration is upper bounded
by bu. A compatibility index, Φku is defined equal to 1 if sequence k is compatible
with vehicle u and equal to 0 otherwise. Of course, k can be assigned to u only if
it is compatible with it (i.e. if Φku = 1 ). A sequence k is considered feasible if it
is compatible with at least one vehicle. Only feasible sequences are considered.

A solution for our problem consists in selecting a set of sequences K whose
union covers I and in assigning them to compatible vehicles. We define the total
completion time of a solution the maximum over all times required by each UAV
to fly over all the trips assigned to it by that solution.
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Then, we introduce the following decision variables:

– Xk ∈ {0, 1}, k ∈ K, is a binary variable assuming value equal to 1 if sequence
k is selected and 0 otherwise;

– Yku ∈ {0, 1}, k ∈ K and u ∈ U , is a binary variable assuming value equal to
1 if sequence k is executed by vehicle u;

– Tu is the completion time of vehicle u;
– τ is a non-negative variable representing the total completion time.

The mixed integer programming formulation is reported in the following

min τ (of)
∑

k∈Ωi

Xk = 1 ∀i ∈ I (C1)

∑

u∈U

Yku = Xk ∀k ∈ K (C2)

Yku ≤ Φku ∀k ∈ K,∀u ∈ U (C3)

Tu =
∑

k∈K

tkuYku ∀u ∈ U (C4)

τ ≥ Tu ∀u ∈ U (C5)

The objective function consisting into the minimization of the total com-
pletion time, as reported in (of). Constraints (C1) ensure that each target is
covered by exactly one sequence. If a sequence is selected, it must be assigned
to exactly one vehicle, chosen among those compatible with it, (constraints (C2)
and (C3)). The cumulative working time for each vehicle is computed by means of
constraints (C3). The total completion time must be larger than the cumulative
working time of each vehicle, as stated in (C4). This formulation distinguishes
from the trip based standard one in the objective function.

We conclude this section highlighting that the novelty of our approach lies
in considering sequences that can be assigned to vehicles located in different
depots (in fact to all vehicles whose depot position makes them compatible with
them) instead of constructing closed trips (as for example in [5]), that are inher-
ently partitioned among the vehicles. Moreover, regardless of the application, our
modeling approach works in any case in which a multi-depot multi-trip vehicle
routing problem must be solved, whichever is the objective function to be opti-
mized. Therefore, it can be applied also in cases in which the goal is to minimize
the total covered distance, as common in logistics applications.

3 A Model Based Matheuristic Framework

The main idea under the above presented mathematical model consists into
generating all possible feasible sequences and associating them to the set of their
compatible vehicles. When the number of feasible trips is too large to be handled,
the mathematical model becomes intractable. If, for instance, target nodes are
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very near among each other, or batteries are very large, so that several target
nodes can be visited in a single sequence, even small instances may become
difficult to handle exactly.

To overcome this issue, and be able to address larger instances, we derive
from our model a heuristic approach, in which we generate only a subset of the
feasible sequences, K̃, to be passed to the model. It is clear that the choice of
the sequences can dramatically change the performance of the heuristic. There-
fore, the problem of determining which sequences to generate assumes a crucial
importance.

In the following, after giving some operative definitions, we describe how we
generate promising sequences to be passed to the mathematical model.

A sequence k is dominated (strictly dominated) by another one, k′, if they
have the same extremes and contain exactly the same target nodes (possibly in
a different order), but k′ has a lower or equal (strictly lower) duration than k.

We initially generate all the sequences containing only one target node and
directly insert them in the set of sequences to be passed to the model, K̃. We
also insert them in a temporary set of sequences Ktmp which contains sequences
to be expanded. All the sequences included in Ktmp are then processed. Nc child
sequences are generated from each sequence k adding after the last target node
in the sequence, lk, the jth nearest node to lk among those not already included
in k, with j varying in {1, Nc}. For each child sequence kc, we apply a first feasi-
bility check: if the duration sequence kc is larger than the maximum autonomy
of a vehicle, Bmax = maxu∈U bu, then the sequence is immediately discarded.
Otherwise, we pass the corresponding trip to a second feasibility check, in order
to verify that the sequence is neither strictly dominated by nor it strictly dom-
inates another sequence already belonging to K̃. If a domination occurs, the
dominated sequence is discarded otherwise it is kept in K̃. At this point, we set,
for all the vehicles u compatible with k, Φku = 1, and for all the others Φku = 0.

Once all the child sequences of a sequence k have been analyzed, k is removed
from Ktmp. The procedure terminates when Ktmp is empty or when a maximum
allowed number of sequences, Kmax have been added to k̃.

Kmax is a parameter of the algorithm and it plays a crucial role in the per-
formance of the algorithm. A larger value of Kmax would yield to a better global
solution but would increase the computational time required by the heuristic.
To obtain an effective and efficient algorithm, this parameter must be carefully
tuned in order to achieve a good balance between solutions quality and compu-
tational times. The maximum number of children generated by each trip, Nc,
also plays an important role. The larger the value of Nc, the larger the number of
sequences containing a specific number of target nodes. Note that keeping fixed
the value of the maximum number of sequences to generate Kmax, lower values
of Nc allow us to generate sequences containing more target nodes, which could
be promising; on the other hand, in those sequences only nodes which are very
close to each others are visited sequentially, and this would imply that isolated
targets would appear in very few sequences. Instead, with very large values of
Nc, even targets which are not very close to each others can be visited, but
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in this case each sequence have several children, and so the maximum allowed
number of sequence is reached already considering sequences containing a small
number of targets, longer sequences are not generated, and this could negatively
affect the solution quality.

After the sequence generation process is finished, the set of sequences K̃ is
given in input to the mathematical model ((of)–(C4)).

4 Computational Results and Discussion

In this section, we study the performance of our matheuristic, comparing it with
the exact model on small instances) and varying some parameters of the problem.

In this short paper we selected only some experiments, shown in Fig. 1.
In all charts, on the x axis, 3, 4, 5 and 6 represent the used values of Nc.

The y coordinates of the dots correspond to an average computed on 20 random
instances on the same number of nodes: every column of charts corresponds to a
different value of n (increasing going from left to right). The red lines represent
the benchmark values achieved by the model. It is worth to note that when n
is small (n ≤ 30), there are results corresponding to the model; when n = 40,
the model terminates only in 11 cases out of 20, and computational times varied
between 101.38 and 30559.5 s; probably the corresponding instances are partic-
ularly easy to solve (e.g., without clustered target nodes) and for this reason we
decided not to report the average value of the optimal solution. Instead, when
n = 50, the model is not able to terminate in any case.

The experiments perfectly confirm the expectations. Indeed:

– The first three charts in the first row show the percentage gap from the
optimum completion time, that is the main objective function of our problem;
it is clear that it tends to 0 as Nc grows up and, when Nc = 6, it is very close
to 0, showing that our matheuristic works very well. We can also observe that
also with Nc = 3 the gap is very small for instances with 10 nodes, while it
tends to increase for larger instances. The last two charts of the first row,
instead, show the percentage gap w.r.t. the case Nc = 3; since large values of
Nc lead to better solutions, clearly, these gaps are negative.

– The second row of charts corresponds to the number of trips generated in
order to individuate the solution. As expected, the matheuristic dramatically
decreases the number of trips, that is higher and higher when Nc increases
but anyway reasonable. Just this reduction makes the matheuristic tractable
even for large instances.

– The third row of charts corresponds to the time necessary for running the
model and the matheuristic. Clearly, the computational time of the model is
much higher and, for what concerns the matheuristic, it grows up when Nc

is increased.

The novelty of the approach, consists into generating (open) sequences of
nodes, that can be assigned to different vehicles at different costs, instead of
generating complete routes including the depot. This way, the problem can be
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Fig. 1. Experimental results. On the x axis, 3,4,5,6 represent the used values of Nc; the
red lines represent the benchmark values achieved by the model. (Color figure online)

modeled as a multiple choice knapsack, with knapsack-dependent items weight
and maximum knapsack occupancy minimization. Such approach is not only
valid for this specific problem, but can be used for a wide class of multi-depot
multi-trip problems, including those having different objective functions, such as
the classical total travel distance minimization, the minimization of the number
of vehicles used, or the minimization of total cost given by vehicles purchasing
costs plus travel costs. Furthermore, this matheuristic framework can be used
whichever is the method exploited to generate promising sequences. In partic-
ular, it can be combined with well known solutions generation algorithms such
as the Greedy randomized adaptive search (GRASP). However, we believe our
method is more suitable for problems with heterogeneous fleet, since we generate
sequences of increasing length, among which, the smaller ones are compatible
also with vehicles with a limited autonomy (or capacity). Conversely, GRASP
is designed for problems with homogeneous fleet and tend to generate sequences
which exploit the whole capacity/autonomy of the vehicle.

References

1. Bektas, T.: The multiple traveling salesman problem: an overview of formulations
and solution procedures. Omega 34(3), 209–219 (2006)

2. Cattaruzza, D., Absi, N., Feillet, D.: Vehicle routing problems with multiple trips.
4OR 14(3), 223–259 (2016). https://doi.org/10.1007/s10288-016-0306-2

3. Méndez-Dı́az, I., Zabala, P., Lucena, A.: A new formulation for the traveling deliv-
eryman problem. Discret. Appl. Math. 156(17), 3223–3237 (2008)

4. Nagarajan, V., Ravi, R.: Approximation algorithms for distance constrained vehicle
routing problems. Networks 59, 209–214 (2012)
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